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Abstract

In the recent past, the flow of granular materials has been the subject of many scientific
works; this is due to the large number of natural phenomena (i.e., landslides and debris
flows) and industrial processes involving solid particles flowing. The collective mechanical
behavior of a granular system is governed by the properties of the individual particles and
the interactions among the grains. At the microscale level, the particles interact through
two dissipative mechanisms: enduring contacts among grains which are involved in force
chains, and inelastic collisions. When the first mechanism prevails, the material behaves
like a solid (quasi-static regime). On the other hand, when the particles interact only
through collisions, the material response can be assimilated to that of a gas (collisional
regime). When the grains interact both through force chains and through collisions, the
material is in the transition phase between the two extreme behaviors.

The aim of this work is to propose a theoretical, constitutive model for granular flows, able
to deal with the phase transition, where both enduring contacts among particles involved
in force chains and collisions are considered. In particular, the steady state condition of a
granular material under shear is analyzed.
The energy and the total stress are assumed to be the linear sum of a quasi-static and
a collisional component, accounting, respectively, for the force chains and the collisions.
The quasi-static and the collisional contribution are modeled in the context of the critical
state theory of soil mechanics and the kinetic theory of granular gases, respectively.
In the critical state theory, the granular material approaches a certain attractor state, inde-
pendent of the initial arrangement, characterized by the capability of developing unlimited
shear strains without any change in the concentration. In this context, the dominant role
is played by the friction, which is supposed to support force chains. Also, the quasi-static
component of the stress vanishes when the particle concentration is less than the random
loose packing, which represents the lower limit for the existence of a disordered granular
packing.
In the kinetic theory, the particles are assumed to interact through instantaneous, binary
and uncorrelated collisions. A new state variable of the system is introduced, the granular
temperature, which accounts for the velocity fluctuations. The model has been extended
to account for the decrease in the energy dissipation due to the existence of correlated
motion among the particles and to deal with non-instantaneous collisions.

The proposed theory is applied to two configurations: simple shear flows and Couette
flows. Simple shear flows are characterized by homogeneous shearing: all the variables are
constant along the flow field, except for the horizontal velocity which is linearly distributed.
In such a simple case, at the steady state, under the usual assumptions of constant shear
and normal stresses, the flux of energy is neglected, and an analytical solution can be
obtained. According to this approach, the critical state can be interpreted as a particular
steady state for which the granular temperature vanishes, as well as the shear rate. Also, a
qualitative phase diagram has been drawn in the normal stress-concentration plane. The
theory has been proved to be capable of reproducing, qualitatively and quantitatively,
numerical simulations on spheres taken from the literature, when the concentration is low
and the rensponse of the material is dominated by collisions, in both the cases of friction-
less and frictional particles. Furthermore, when deformations are very slow and the force
chains play a relevant role, the model is able to qualitatively predict the characteristic



features of simple shear flows.

In the conditions for which simple shear flows are quantitatively well predicted, i.e., when
using hard, frictionless particles, the theory is applied to the Couette flow configuration.
In the Couette configuration, the granular material is sheared between two parallel planes,
having infinite length, one at rest and the other moving at constant velocity. The granular
material is an assembly of identical, frictionless spheres, and the inter-particle collisions
are characterized by the coefficient of restitution (ratio of the relative velocity between
two impending particles after and before a collision). The walls are made bumpy by gluing
particles in a regular array, and the bumpiness of the walls is defined in relation with the
distance between the edges of two adjacent glued spheres. The resulting flow fields are
non homogeneous and vary along the flow depth. In this case, the energy diffusion cannot
be neglected, and the set of differential equations deriving from the proposed theory is
numerically solved with appropriate boundary conditions.
In order to make comparisons between the theory and the numerical results, 3D numer-
ical simulations have been performed using the discrete element method (DEM). The
simulations are carried out under the constant volume condition, and periodic boundary
conditions are applied along the flow and the transversal direction. The influence of the
inelasticity of the particles (i.e., the coefficient of restitution) and the boundary conditions
(i.e., the bumpiness of the walls) has been investigated.
The theory is in very good agreement with the numerical results when using appropriate
boundary conditions. A peculiar behavior has been highlighted by the simulations when
using high bumpiness: some flowing particles get stuck in the gaps between wall spheres,
making the bumpy walls disordered and more dissipative than expected.

In short, this thesis focuses on the mechanical behavior of granular materials under steady
conditions. Homogeneous and inhomogeneous granular shear flows are analyzed in order
to investigate the the link between the collective behavior and properties of individual
particles, and to develop a consistent constitutive model.
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1. Introduction

1.1. Granular flows

According to the definition, granular materials are large collections of discrete solid par-
ticles with sizes large enough that Brownian motion is irrelevant [2]. Classical examples
of granular materials are sand, soil and snow, but their are widely diffused also in daily
life: food products like seeds, rice, corns, sugar and coffee, chemical and pharmaceutical
products like pills and powders, building materials such as gravel, are few amongst many
examples of granular materials. Also, the motion of red blood cells or cars in the traf-
fic can be seen as a granular flows. Granular materials are diverse in shapes and sizes,
ranging from micron sized of powders to few meters sized of blocks in rock avalanches.
Due to the large number of industrial processes and applications involving solid particles
flowing, the flow of granular materials has been the subject of many scientific works (Ref.
[38] and references therein). Storing, transporting and manipulating pills, seeds, soils and
powders, are a common matters in pharmaceutical, chemical, agricultural, mineral and
construction-based industries. Above all, research on granular flows has been strongly
motivated by the description and prediction of natural hazards such as landslides, rock
avalanches and debris flows. Furthermore, the study of formation and motion of desert
dunes are the subject of important studies all around the world, often involving granular
theories, as well as the study of ripples formations in the sand under shallow sea waters
can solve important emergencies on many coasts.
The discontinuous and inhomogeneous nature of granular materials leads to complex me-
chanical behaviors, even in the case of simple flow conditions (i.e., elementary geometries,
stationary motions) or when the granular matter is particularly treatable (i.e., dry, no
complex shapes of the grains and no polydispersity, etc). As a consequence, the study
of such medium normally involves interdisciplinary concepts like rheology, plasticity and
viscosity and requires both soil mechanics and fluid dynamics tools.
Given that a discontinuous description of the motion of each single grain is often pro-
hibitive, due to the large number of particles involved, the macroscopic behavior of the
whole system is usually treated in the framework of continuum mechanics. A continuum
description of granular dynamics has to incorporate the micro-mechanical properties of the
single grains and an averaging process over the number of particles which composes the
material. Then, a continuum mechanics model consists of solving a set of partial differ-
ential equations given by the conservation of mass, momentum and energy, supplemented
with boundary conditions and constitutive equations which characterize the behavior of
the material under consideration. In particular, the constitutive relations relate stresses
and deformations, taking into account the physics of the grain-grain interaction. At the
microscale level, two mechanisms of interaction between particles can be recognized: en-
during contacts among grains, which are involved in force chains, and inelastic collisions.
Both the mechanisms are characterized by two salient features: friction and inelastic-
ity, which make the particle-particle interactions dissipative. Whenever grains interact,
through collisions or enduring contacts, they lose part of their energy, and the global
energy lost in the system is transferred to heat and then dispersed to the environment.
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1. Introduction

As a consequence of energy dissipation, granular systems are always in non-equilibrium
states, and a steady state can be reached and maintained only by pumping energy into
the system [46]. Also, homogeneous solutions of the equations of continuum mechanics are
often unstable. Clustering in dilute granular systems and shear bands formation in shear
flows are examples of instabilities which affect granular flows. Another key characteristic
of granular materials is that, due to the macroscopic nature of grains, and, in particular,
to their masses (usually of the order of 1020 molecular masses), the thermal temperature
plays a negligible role in their dynamics. Consequently, the thermal energy of the system
is always many orders of magnitude smaller than the kinetic and potential energy. Ir-
relevance of thermal temperature and dissipative interactions make grains behavior very
different from that of the molecules of fluids and gases, and this is why classical theories
like thermodynamics and statistical mechanics are not sufficient to describe granular flows.
Depending on both the micromechanical properties of the grains (among them, friction
and inelasticity) and the macroscopic characteristics of the flow (i.e., velocity and concen-
tration), granular flows exhibit different behaviors, commonly interpreted as flow regimes.
Considering, for example, a landslide: immediately after the triggering, the soil behaves
like a solid and a sliding motion takes place; but, if the velocity of the motion is large
enough, the landslides evolves to a fluid-like process and the material starts to flow.
Whereas the study of the initiation is the domain of soil mechanics, the propagation
phase has been widely investigated in fluid dynamics.
When the system is very dense, its response is governed by the enduring contacts among
grains which are involved in force chains spanning the whole domain; the deformations are
extremely slow because the entire network of contacts has to be continuously re-arranged.
In these conditions, the granular material behaves like a solid and the corresponding flow
regime is said quasi-static. On the other hand, when the particles are widely spaced, force
chains are inhibited and the energy of the system is totally dissipated through collisions.
As a consequence, the medium is strongly agitated, the particles are free to move in all
directions and the deformations are rapid. There, the material response can be assimi-
lated to that of a gas, and the flow regime is called collisional. When the grains interact
both through force chains and through collisions, the material is in the transition phase
between the two extreme behaviors.
Slowly deforming quasi-static dense granular materials has been mainly investigated in
the framework of geomechanics. There, the majority of the constitutive models are based
on the theories of elastoplasticity and viscoplasticity [33, 69, 98, 107, 121]. In those mod-
els, the granular material reaches a limit condition in which it continues to (plastically)
deform indefinitely without further change in stresses and volume. This attractor state is
known as critical state. The critical state is defined as a non-evolving state reached after
a progressive increase in strain, at a vanishingly small strain rate [93, 106, 110].
The collisional regime has been largely studied in the context of kinetic theories of gran-
ular gases [23, 45, 57]. In those theories, the particles are assumed to interact mainly
through instantaneous, binary and uncorrelated collisions. In analogy with the molecular
kinetic energy determining the thermodynamic temperature of a gas, a state variable of
the system is introduced, the granular temperature. The granular temperature is related
with the particle velocity fluctuations and represents a measure of the degree of agitation
of the system. Standard Kinetic Theories are unable to take into account the correlated
motion among the particles forming clusters occurring at high concentrations. Recently,
Jenkins [52, 53] proposed the so called Extended Kinetic Theory with the intent of incor-
porating such an effect. Nevertheless, kinetic theories fail in reproducing granular flows
at high concentration, when force chains develop.
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1.2. Research aims and approaches

There are several practical problems where the granular material encompasses a transition
from a solid to a more gaseous state, thus suggesting that a collaboration between the two
above mentioned communities would be fruitful. The landslide risk evaluation, requiring
the modeling of both the inception and the evolution of the gravitational collapse, is the
tipical example. Moreover, the increasing success of computational tools in handling large
deformations suggests that such an ambitious goal is now possible and stimulates the need
for constitutive models capable of simulating the mechanical response of granular materi-
als under both quasi-static and collisional conditions. A first step in this direction is the
extension of the critical state concept, interpreted hereafter as a sort of limit condition for
the steady state at vanishingly small strain rate, by employing the granular temperature
as an additional state variable for the system.

1.2. Research aims and approaches

This thesis focuses on the plane shear flow of an ideal granular material, composed of
identical, inelastic spheres, under steady conditions. The plane shear configuration is the
simplest geometry which allows to analyze the rheology of granular materials, i.e., to study
the constitutive relations which relate stresses and deformations [44]. In this simple con-
figuration, the flow is assumed to be one-dimensional and the granular material is sheared
between two walls, one at rest and the other moving at constant velocity. Here, the flow
behavior is influenced by a number of factors, including the particle properties (density,
friction, inelasticity and stiffness), the relative width of the flow gap, the roughness of the
walls and the imposed velocity of the moving plane. In particular, the constitutive behav-
ior of granular systems is studied in both the cases of homogeneous and inhomogeneous
shearing, called simple shear flow and Couette flow, respectevely.
The purposes of the present research are:

• to develop general, physically based constitutive equations for granular flows, in
the framework of continuum mechanics. The theory must be able to deal with the
phase transition, where both enduring contacts among particles involved in force
chains and collisions are considered, including, as special cases, the aforementioned
collisional and quasi-static approaches.

• To perform Soft-Sphere Discrete Element Method simulations, missing in the liter-
ature, on inhomogeneous steady, plane shear flows of frictionless spheres, where the
walls are made bumpy by gluing particles in a regular array.

The proposed constitutive model is derived under the main assumption that the energy
and the total stress are given by the linear sum of a quasi-static and a collisional compo-
nent, accounting, respectively, for the force chains and the collisions. The quasi-static and
the collisional contributions are modeled in the context of the critical state theory of soil
mechanics and the kinetic theory of granular gases, respectively.
The simulations have been carried out using the Soft-Sphere Discrete Element Method.
The SS-DEM technique simulates the motion of each particle and computes the interaction
forces between particles at the contacts. SS-DEM simulations provide physical insights
into both the microscopic and the macroscopic dynamics of the system. The data obtained
from numerical simulations can be used to test constitutive models and boundary condi-
tions. In this thesis, we used the results of the SS-DEM numerical simulations to validate
the collisional component of the constitutive model and to propose boundary conditions
appropriated for this kind of bumpy walls.
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1.3. Outline of the dissertation

Chapter 2 presents some background information on the behavior of granular flows with
brief reviews of Molecular Dynamics simulations and continuum mechanics models.
Chapter 3 provides a summary description of the kinetic theory of granular gases, which
is the theoretical model mostly adopted throughout the thesis.
Chapter 4 describes the constitutive approach developed in this work. The model is based
on the fundamental assumption that the energy of the system is dissipated thorugh two
mechanisms, collisions and enduring contacts among grains involved in force chains. The
two mechanisms are modeled independently by using the kinetic theory, properly modified,
and the critical state theory of soil mechanics. The complete set of constitutive relations
is derived for the case of a collection of identical spheres sheared under steady conditions.
In Chapter 5, the constitutive model is applied to the steady, homogeneous shear flows
of a mixture of identical spheres, usually called simple shear flows. A critical discussion
on the salient properties of the theory is proposed and the comparison with experimental
and numerical results found in literature is illustrated.
Chapter 6 is devoted to the study of non homogeneous shear flows of frictionless and hard
spheres, under steady conditions, at fixed average concentration. The set of differential
equations deriving from the proposed theory is numerically solved with appropriate bound-
ary conditions. Also, numerical simulations have been carried out using a Soft-Sphere
Discrete Element Method code. The SS-DEM method is briefly introduced together with
the contact model adopted. Finally, the results of the numerical simulations are compared
to those obtained from the numerical integration of the equations.
Chapter 7 summarizes the main conclusions and possible extensions to this work.
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2. State of the art

This chapter surveys the literature and background on granular flows, in general, and the
principal results regarding steady, plane shear flows, in particular.

2.1. Background

Granular materials are collections of discrete particles characterized by loss of energy when-
ever the particles interact. Due to their microscopic, discrete nature and their macroscopic
behavior, granular materials are treated in both the frameworks of discontinuum and con-
tinuum mechanics.
In the realm of discontinuum mechanics, several numerical techniques have been devel-
oped, able to reproduce the single particle motions and to control the micro-mechanical
properties of the grains. The Molecular Dynamics or Discrete Element Methods (DEM)
is the term given to the numerical analysis procedure that simulates the behavior within
discontinuum mechanics. There, the material is considered as an assembly of discrete par-
ticles, and by applying the micro-mechanical properties and the interaction-contact laws,
the dynamic behavior can be studied by integrating the equations of motion of each single
grain.
On the other hand, continuum models give a macroscopic view to investigate granular
material behaviors. Continuum mechanics theories solve the conservation equations of
the whole medium, i.e., the balance of mass, momentum and, when necessary, energy.
Although the balance laws are, somehow, easily deducible, the big challenge is the def-
inition of the constitutive relations. The latter relate stresses and deformations, taking
into account the physics of the grain-grain interaction. The constitutive relations have to
be able to capture the macroscopic behavior of the system, incorporating the microscale
particle interaction dynamics.
A granular flow can undergo different constitutive behaviors depending on both the micro-
mechanical properties of the particles and the macroscopic characteristic of the flow (i.e.,
velocity and concentration). The micro-mechanical properties which play a fondamental
role in the motion of a granular material and in the regime transition are the inter-particle
friction and the inelasticity of the particles, which make the grain-grain interactions dis-
sipative.
In the literature, three different granular flow regimes have been identified [38]:

• Collisional regime: characterized by low concentration and rapid deformations; here,
the medium is strongly agitated, the particles are widely spaced and interact only
through collisions (gas-like behavior).

• Quasi-static regime: characterized by high concentrations and enduring, frictional
contacts among the grains, which are involved in force chains spanning the entire
domain; the motion of the medium is slow given that at every step the entire network
of contacts has to be re-arranged (solid-like behavior).

• Intermediate regime: the grains interact both through enduring contacts and through
collisions; (liquid-like behavior).
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Of course, the most ambitious purpose of a theoretical model is to deal with the phase
transition between the different regimes, and it requires both soil mechanics and fluid
dynamics tools.
Several flow configurations have been studied with both discontinuous and continuous
approaches. The six geometries mostly studied are those in which a “simple” shear is
achieved and rheological properties can be measured [44] (Fig. 2.1). These configurations
are divided in confined and free surface flows. In Fig. 2.1, the three pictures on the top
(a, b and c) represent the most commonly studied confined flows, which are the plane
shear geometry, the annular shear and the vertical-chute flow configuration. The three
flow configurations in the bottom (d, e and f) are the free surface flows: inclined plane,
flow at the surface of a pile and flow in a rotating drum.

g

(a)

(a) (a)

(b) (c)

(d) (e) (f )

Figure 2.1.: Example of granular flow configurations: plane shear (a), annular shear (b),
vertical-chute flow (c), inclined plane (d), flow at the surface of a pile (e), rotating drum
(f).

The present work focuses on the steady flow of granular materials in the plane shear config-
uration (Fig. 2.1a), in which the granular material is sheared between two parallel planes,
one at rest and the other moving at constant, fixed velocity, in absence of pressure gradi-
ent. Both the cases of homogeneous and non homogeneous shearing are analyzed. Simple
shear flows is the name given to homogeneous, plane shear flows in steady conditions,
whereas the non homogeneous flows are known as Couette flows. In the second case, the
influence of the boundaries cannot be neglected and continuum mechanics models require
appropriate boundary conditions in order to close the system of (differential) equations.
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2.2. Review of Molecular Dynamics simulations

Molecular Dynamics (MD) method is essentially the simultaneous numerical solution of
Newton’s equation of motion for many particles, and was originally introduced in physics
to simulate the motion of molecules [29]. This numerical technique computes, at each time
step, the position, velocity and acceleration of each simulated particle. Through ensem-
ble averaging of the respective positions and velocities of the particles, the macroscopic
fields of the whole system, such as the density and the mean velocity, can be obtained.
This helps in revealing the insight of the granular behaviour which is difficult to capture
in experimental methods. MD simulations are flexible, allowing the definition of the mi-
cromechanical properties of the grains and the use of flow conditions usually forbidden in
laboratory, for example unlimited boundaries or steady conditions. With MD methods,
one can perform simulations using ideal grains, characterized by micromechanical par-
ticles not possible in the Nature but which are useful to understand the physics of the
global behavior. In such a way, the influence of several micromechanical properties can
be analyzed separately from the others, providing a complete description of the role of
each particle property. Examples of ideal grains which cannot be found in the Nature, but
which have been largely investigated, are frictionless, rigid and perfectly elastic spheres.
Apart from their versatile applications and benefits, these models are still computer simu-
lations, hence having limitations such as excessive computational requirements, round off
errors and truncation errors.
Molecular Dynamics simulation methods include three different techniques: the Event-
Driven molecular dynamics (ED), the Contact Dynamics method (CD), and the Soft-
Sphere Discrete Element Method (SS-DEM). In the first two methods, the particles are
assumed to be infinitely rigid, whereas in the third method deformations of particles during
contacts are modeled allowing a small overlap between grains. All the MD methods simu-
late the inelastic and frictional nature of the contacts among grains through macroscopic
coefficients (i.e., the coefficients of restitutions and the interparticle friction coefficient).
In the SS-DEM methods, all the forces acting on each particle are computed on the basis
of the positions of the particles. The deformability of the grains is taken into account al-
lowing the overlap at the contacts. Then, the Newton’s equations of motion are explicitly
integrated for each particle, and the new particle positions are obtained. The fixed time
step is imposed small enough to resolve the deformation of the contact elements during
the course of the particle interactions. The SS-DEM method has been used in this work
to perform numerical simulations of granular flows in the Couette configuration, and will
be discussed in detail in Section 6.2.
The fundamental assumption in the Event-Driven method is that grains interact by in-
stantaneous collisions. As a consequence, the grains are assumed to be rigid and non
deformable, and the collisions are binary (involve only two particles). Then, the trajecto-
ries of the particles follow an undisturbed motion until an event, i.e., a collision, occurs
[79, 101]. The ED method consists of two steps: first, all potential collisions between
each pair of particles are identified, and, secondly, the potential collision whose time is the
smallest is detected [84]. Then, the algorithm computes the velocities and the positions of
all particles at that time, according to Newton’s law. The velocities (and angular veloci-
ties) of the particles change according to a collision rule, which relates the post-collisional
velocities to the pre-collisional ones, defining completely the interactions among grains.
The (variable) time advancement in the ED simulation is dictated by the interval between
collisions. Then, in contrast to the SS-DEM method where the time step is fixed, ED
techniques employ a variable time step adapted to the problem. Event-Driven methods
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are typically faster than SS-DEM, when applied to dilute systems, because (i) they do not
require the computation of interaction forces; (ii) the positions and the velocities of the
particles are computed only at the collisions, and no computation time is wasted for com-
puting them in the particles free motion. On the other hand, ED methods are impractical
for dense flows, in which collisions are very frequent, particles develop persistent contacts,
and the rigidity assumption becomes invalid [2].
The Contact Dynamic method treats the particles as rigid, non-overlapping and frictional
[32]. In this method, the small elastic response times and displacements characterizing
the contact interactions are neglected and the granular dynamics is formulated at the
scale of particles rearrangements [51, 103]. The CD method is based on a “nonsmooth”
formulation of the equations of motion in which the accelerations are replaced by possible
velocity jumps resulting from collisions. The interactions among particles are described by
contact laws (and not force laws). The contact laws are formulated in terms of kinematic
constraints, which impose the condition of impenetrability of the grains in the normal di-
rection (collisional interaction), and the Coulomb law in the tangential direction (frictional
interaction). The frictional and collisional interactions are described as “complementarity
relations” between the relative velocities and the corresponding forces at the contact points
[35]. As a consequence of the complementary relations, the contacts are treated as strictly
nonsmooth and velocity jumps are expected. Given a contact network, all the kinematic
constraints are imposed in an exact form, i.e., without introducing further regularizing
or damping parameters. The kinematic constraints are simultaneously taken into account
together with the equations of motion, in order to compute the velocities and the contact
forces in the system at each time step, through an iterative procedure. The formulation
of the contact laws at the velocity level implies an implicit time-stepping scheme, together
with an explicit treatment of the evolution of the contact network. The implicit time inte-
gration makes the CD method unconditionally stable, but the uniqueness of the solution
at each time step is not guaranteed. However, the variability of the solutions is generally
below numerical precision [103].

MD simulations have been successfully used to analyze the rheology of granular flows and
the transition among the different flow regimes. A very large number of numerical sim-
ulations have been carried out on various configurations and geometries, so that is quite
impossible to make a list of these works. Collections of results can be found in GDR-MiDi
[44] and in Delannay et al. [32]. This work focuses on steady, plane shear flows of granu-
lar materials, then just a (non exhaustive) list of numerical results obtained on this flow
configuration is reported below.
As previously stated, homogeneous shearing characterizes simple shear flows. In numerical
simulations, simple shear flows can be obtained by imposing the Lees-Edwards [73] peri-
odic boundary conditions in the shearing direction. ED, CD and SS-DEM simulations of
simple shear flows have been performed using disks and spheres. Babic et al. [6] performed
2D SS-DEM simulations of disks to study the relationships between the stresses and shear
rate and speculated the existence of a “regime chart” to classify the flow regimes. A more
intensive study of the stress-strain rate relation was conducted by Campbell [24], Ji and
Shen [61, 62] and Chialvo et al. [28], independently, carring out 3D simulations of soft fric-
tional spheres at imposed concentration. In those works, the authors derived a flowmap
of the various flow regimes and analyzed the transition among them. da Cruz et al. [30]
studied the simple shear flows of a collection of disks prescribing the pressure and the
shear rate, and proposed constitutive relations in terms of dimensionless quantities. The
effect of velocity correlation on the energy dissipation rate and the stresses were investi-
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gated by Mitarai and Nakanishi [88] by performing ED simulations of frictionless spheres.
Estrada et al. [35] carried out a set of CD simulations in order to study the steady-state
strength properties and microstructure of sheared granular media. More recently, Chialvo
and Sundaresan [27] investigated the simple shear flows of frictionless and frictional par-
ticles in the collisional regime through 3D SS-DEM simulations, measuring the stresses
and the granular temperature (mean square of the velocity fluctuations) in a wide range
of imposed concentrations.
Concerning the Couette flows (i.e., inhomogeneous shearing), 2D simulations using fric-
tional spheres and flat, frictional walls have been performed using both CD [114] and
SS-DEM [68] method; 3D SS-DEM simulations using frictional particles were carried out
by Liu and Rosato [74], adopting bumpy walls composed of regularly glued semi-spheres
and imposing periodic boundary conditions in the flow and transversal direction; Xu
et al. [130] solved the kinetic theory equations in rectilinear or axisymmetric rectangular
channels and compared the results with Molecular Dynamics simulations obtained using
walls made bumpy by gluing semi-cylinders at them. Also, sets of physical experiments
have been performed: Orlando and Shen [95] carried out experiments on the flows of glass
spheres in an annular shear cell, where the influence of the boundaries, the average concen-
tration and the particle to apparatus size ratio is investigated; Miller et al. [85] performed
experiments using a special device named Stadium Shear, that can produce plane shear
of a 2D granular material.

2.3. Review of continuum mechanics models

The goal of a theoretical model is to describe and to predict the mechanical behavior of the
whole granular system, starting for the physics of the grain-grain interaction. The most of
the theoretical models are in the framework of continuum mechanics. Then, they require
to write and to solve the motion equations of the material, dealing with the rheology.
A large number of constitutive relations have been proposed to account for the irreversible,
time-dependent mechanical behavior of granular media in the quasi-static regime. Those
phenomenological constitutive models mainly arise from soil mechanics and are based
on plasticity and viscoplasticity theory [33, 69, 98, 107, 121]. Many of them have been
conceived by starting from the well known critical state theory [93, 110]. According to
this theory, the granular material approaches a certain attractor, called the critical state.
This non-evolving state, reached after a progressive increase in strain, at a vanishingly
small strain rate, is independent of the initial arrangement. At the critical state, an ideal
mechanism of yielding is assumed to develop within the specimen: the external work is
totally dissipated by frictional processes at the contact level (disregarding both crushing
and damage), unlimited shear strains develop, the microstructure does not evolve, and
consequently, the concentration remains constant.
On the contrary, most of the works published within the granular flow community (e.g.,
see [45]) deal with the rheology of granular materials at large strain rates and low to
moderate concentration, i.e., in the collisional regime. One of the first rheological models
for granular flows in the collisional regime was proposed in 1954 by Bagnold [7]. This
empirical model, derived from experiments in two-dimensional plane shear flows, basically
states that the stresses are proportional to the square of the strain rate. This simple law,
now known as “Bagnold scaling”, has been the first to understand the physics of granular
dynamics at large deformations and has been verified for dry grains in a number of exper-
iments and simulations [30, 75, 102, 116].
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The collisional regime has beens largely studied in the context of kinetic theories of gran-
ular gases [23, 40, 45, 59, 80, 108]. In those works, the inelastic collisions associated with
the random motion of the grains represent the main mechanism to dissipate the energy
of the system. The kinetic theories take into consideration granular gaseous or collisional
states, in which force chains within the medium, forming the granular skeleton, disap-
pear. In this context, the granular temperature, which represents a measure of the degree
of agitation of the system, is introduced. Classic kinetic theories assume that the par-
ticles interact mainly through instantaneous, binary and uncorrelated collisions. When
the granular material becomes denser, the assumption of chaotic, binary, instantaneous
collisions fails [24, 71, 88]. Jenkins [52, 53] has recently extended the kinetic theories to
account for the decrease in the energy dissipation due to the existence of correlated motion
among the particles occurring at high concentration. Moreover, an heuristic extension of
kinetic theories to deal with non-instantaneous inter-particle collisions, due to the finite
stiffness of the particles, has been suggested by Hwang and Hutter [49]. The possibility
of sticking-sliding collisions has also been included in the theory in an approximate way
[54]. The constitutive model proposed in this work is largely based on kinetic theories of
granular gases; then, a summary description of them is presented in Chapter 3. Neverthe-
less, kinetic theories are not capable of capturing the roughly rate-independent behavior
observed at large concentration, when force chains develop within the medium [30, 82].
On the other side, the constitutive models proposed within the soil mechanics community
do not incorporate the granular temperature as a state variable of the problem. Therefore,
they are unable to deal with the phase-transition of granular materials - from a solid-like
to a fluid-like state, and vice-versa.
More recently, several theories have been developed to model the phase transition and, in
particular, the behavior of granular materials in the intermediate regime. The French re-
search group GDR-MiDi [44] has suggested that dense granular materials obey to a local,
phenomenological rheology that can be expressed in terms of two relations between three
non-dimensional quantities: concentration, shear to normal stress ratio and inertial pa-
rameter (ratio of the time scales associated with the motion perpendicular and parallel to
the flow, respectively). Various constitutive relations, based on the ‘GDR MiDi rheology,
have been developed [30, 31, 65, 67]. Despite the notable results obtained in modeling
many different configurations of dense granular flows [12, 13, 14, 66, 97], the GDR MiDi
rheology does not apply when there is an additional time scale associated with the particle
velocity fluctuations [53], whose intensity is provided by the granular temperature; in fact,
the role of the latter cannot be disregarded in regions of thickness some diameters close
to the boundaries (free surface, rigid and/or erodible bottom) [70, 116].
Most of the constitutive models used to predict the behavior of granular flows in the whole
range of flow regimes are based on additive decomposition of the stress tensor into the sum
of “rate-dependent” and “rate-independent” contributions [16, 63, 64, 72, 78, 108]. Savage
[108] assumed a plastic, frictional behavior and the presence of Gaussian fluctuations of
the strain rate and stresses in the planar flow of a dense granular material. By averaging
strain rate fluctuations, Savage obtained a constitutive relation in which the shear stress
has two contributions: a viscous, rate-dependent part, and a strain rate-independent part.
Also, the theory assumes the viscous shear stress to diverge as the density approaches
the close packing limit. In the theories proposed by Johnson and Jackson [63, 64], Louge
[78] and Lee and Huang [72], the stress tensor is given by the sum of a rate-independent
part and a rate-dependent part. In all those works, the rate-independent part (called
“frictional” in [63], associated to “enduring contacts” in [78] and said “static” in [72]) is
defined by a Coulomb law relation between the the shear and the normal stresses. The
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rate-dependent contribution (“collisional”, “impulsive interactions” or “kinetic”), is mod-
eled by using a kinetic theory developed for dilute flows, that does not take into account
the breaking of the molecular chaos assumption [26], at high concentrations. In these
models, the role of particle stiffness is not taken into account, so that the constitutive
relation for the frictional rate-independent part is not well physically based.
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3. Kinetic theory of granular gases

The approach followed in this thesis for modeling granular flows, which is presented in the
upcoming Section 4.2, is largely based on the kinetic theory of granular gases. This Section
is devoted to a summary description of the kinetic theory of granular gases, and is largely
based on: Brilliantov and Pöschel [20], Garzó et al. [42, 43], Goldhirsch [45, 46], Pöschel
and Luding [100].

The term “granular gas” is used in analogy with a (classic) molecular gas, where the
molecules are largely spaced and free to move in each direction, interacting only through
collisions. The main difference between molecular and granular gases is that in the latter
grains are inelastic (i.e., the collisions are dissipative), so that part of the energy of the
system is irreversibly lost whenever particles interact. Consequently, granular gases are
always in non-equilibrium states and it is always necessary to pump energy into a granular
gas in order to maintain it fluidized [46]. Furthermore, grains undergo attrition, breakup,
coagulation and other processes, which are rare for molecular gases at not-too-high tem-
peratures. Also, granular systems do not usually possess the strong scale separation that
characterizes molecular systems, except in the case of nearly-elastic interactions. This
fact has numerous consequences, one of which is the sizeable normal stress differences in
granular gases.
As in the case of molecular gases (or liquids), one can define macroscopic fields for granular
gases, such as the granular temperature, T , the velocity, u, and the mass density, ρ [45].
The definition of these fields for granular materials requires the introduction of the no-
tion of average over the microscopic scales. For an ordinary gas, the macroscopic velocity
field is given by the average over the single molecule velocity, and the difference between
the velocity of a molecule and the macroscopic velocity is known as the fluctuating (or
peculiar) velocity of that molecule. The average of the square of the fluctuating velocities
of the molecules is proportional to the local thermodynamic temperature of the gas, by
definition. This definition of thermodinamic temperature comes from statistical mechan-
ics and has been proved to be the same as that defined using the standard concepts of
energy and entropy. But the statistical mechanics definition does not require to refer to a
state of equilibrium of the system [45], then allows to define temperature even for systems
which are far from an equilibrium state. Similarly to ordinary gases, the macroscopic ve-
locity field of a granular system is defined as the average over single grain velocity and the
granular temperature is introduced as the mean square of the velocity fluctuations of the
grains. Hence, there is an evident analogy between the grain fluctuation kinetik energy
of granular systems and the molecular kinetic energy that determines the thermodynamic
temperature of a gas.
Kinetic theories assume that particles can interact only through dissipative collisions, and
they have been proved to succeed, describing accurately the beviavior of a granular sys-
tem, whenever the force chains do not span the entire domain of the granular medium.
Although the application of kinetic theory to granular gases involves several problems, for
example, the lack of scale separation, the long range correlations, etc [45], the granular
hydrodynamic equations derived by the kinetic theory of granular gases well describe the
dynamics of granular flows.
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3. Kinetic theory of granular gases

Kinetic equation and distribution function

Following the statistical mechanics approach, kinetic theory deals with the probability
distribution functions describing the state of a granular gas [2]. The corresponding equa-
tions, similar to Boltzmann equations for rarefied gases, can be rigorously derived for the
dilute gas of inelastically colliding particles.
In the context of kinetic theory, the macroscopic properties of granular gases are gov-
erned by the single-particle distribution function. The single-particle distribution function,
f(v,x, t), is defined as the probability to find particles with velocity v at point x at time
t and is determined by a certain time evolution integral equation (the kinetic equation).
Two forms of the time evolution equation for f have been used, the Boltzmann equation
and the Enskog equation, leading to two different classes of kinetic theory. Whereas the
validity of kinetic theories derived by the Boltzmann equation is restricted to dilute sys-
tems of particles, those obtained by using the Enskog equation extend to higher density
gases.
For those theories that employ the Enskog equation, two different approaches are possible:
the Standard Enskog Theory (SET) and the Revised Enskog Theory (RET). The difference
between SET and RET traces to the choice of the two-particle distribution function [43],
f2(v1,x1,v2,x2, t), appearing in the Enskog equation, and which is defined as the prob-
ability that at time t, spheres with velocities near v1 and v2 will be located near x1 and x2.

Hydrodynamic equations of motion

Independently of the adopted starting equation, the macroscopic variables of interest of
the continuum medium (density, velocity and granular temperature) are defined exactly in
terms of moments of f , and the macroscopic, “hydrodynamic” balance equations of motion
are obtained by appropriate manipulation of the time evolution equation for f . Those
resemble the Navier Stokes equations with one (very important) difference: the equation
for the energy density (or granular temperature) contains a “sink term” that represents
the loss of energy due to the inelasticity of the collisions [46]. This term is responsible for
the existence of steady granular shear flows (else the work by shear would have heated the
granular system indefinitely) and for many other phenomena that characterize granular
gases.
The balance equations become a closed set of equations for the hydrodynamic fields once
the constitutive relations are given and are expressed as functionals of these fileds. The
constitutive relations are explicit functionals of f ; so the desired forms are obtained from a
solution to the kinetic equation (Boltzmann or Enskog equation) that expresses the space
and time dependence of f entirely in terms of the hydrodynamic fields. Such a solution is
called a “normal” solution [18].

Solution method

In principle, the solution to the kinetic equation is equivalent to specifying all moments of
the distribution function. Equations for the moments are obtained by taking moments of
the time evolution equation of f , leading to a hierarchy of equations coupling lower order
moments to those of higher order. Then, the set of kinetic equations is not closed. Two
closures of the kinetic equations have been proposed, all of which involve the finding of
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approximations for the distribution function, f . The first approximation is called Grad’s
moment method and consists in truncating the hierarchy of momentum equations. In the
framework of this method, f is modeled by a Gaussian (or Maxwellian) function multi-
plied by a polynomial in the components of the fluctuating velocity. This modification is
substituted in the Boltzmann or Enskog equation, leading to equations of motion for the
coefficients of these polynomials [45]. The latter are then solved, for example, by assum-
ing scale separation or a steady state. The main problem of the Grad’s method is that it
involves a fit to the distribution function and is not systematic.
The second approach is the Chapman-Enskog procedure, and involves a perturbative ex-
pansion about low Knudsen numbers ǫ (a non-dimensional measure of gradients, defined
as the ratio of the mean free path to the scale over which the hydrodynamic fields vary)
or “small gradients”, and thus is not applicable to systems in which free-molecular (non-
continuum) effects play a non-negligible role [43]. The Grad’s moment method, does not
contain similar restrictions, though the derivation is necessarily more complex and thus
has not been performed without resorting to other simplifying assumptions (e.g., equipar-
tition of energy). However, in this thesis the Grad’s moment method is not employed and
only the Chapman-Enskog expansion will be described in detail.
The Chapman-Enskog expansion is a systematic method for constructing a normal so-
lution as an expansion in powers of the Knudsen number ǫ, or spatial gradients of the
fields. When the gradient vanishes (zeroth order of the expansion), the kinetic theory
determines the form of the distribution function to be the ‘local equilibrium’ Maxwellian
for molecular fluids. However, in the presence of dissipation (inelastic particles) the ki-
netic theory requires a different solution at zeroth order, the “local homogeneous cooling”
(HCS) distribution. The HCS distribution agrees with the local Maxwellian only when
the particles are elastic. Following these considerations, two different approaches of the
Chapman-Enskog procedure have been developed. The first is based on the observation
that in the limit of elastic collisions and when the gradients vanish, the distribution func-
tion of the grain velocities is Maxwellian, corresponding to a state of (local) equilibrium.
This limit is not singular and therefore one can expand the solution in two small parame-
ters around this state of equilibrium: the Knudsen number ǫ and the degree of inelasticity,
defined as (1−e2n), where en is the coefficient of normal restitution. In this case, the lowest
order term is indeed the Maxwellian. Such a double expansion is necessarily limited to
asymptotically weak dissipation, i.e. is restricted to the case of nearly-elastic collisions.
The second approach is based on an expansion in the Knudsen number (or gradients)
without any other small parameters, with HCS as the leading order solution and hence
no a priori limitation on the degree of dissipation. Both the last two approaches pro-
duce constitutive relations, which agree with each other in the common domain of validity
(nearly-elastic collisions). In this thesis, the kinetic theory in the form derived by Garzó
and Dufty [40] is adopted, which employs the second approach, then only this one will be
accurately described in the following.
In the most of kinetic theories that employ the Chapman-Enskog procedure, all expansions
are carried out to first order in spatial gradients (Navier Stokes order). This assumptions
requires that the gradients of the macroscopic fields are not large, which means that the
conditions for the solution are restricted to small variations of the hydrodynamic fields
over distances of the order of the mean free path [45]. Nonetheless, evidence of higher-
order effects has been noted in a range of granular flows, and Burnett order effects (second
order in spatial gradients) in particular have been shown to be linked to the anisotropy in
the stress tensor.
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3. Kinetic theory of granular gases

Summary of different kinetic theories

As can be easily deduced, several kinetic theories have been proposed in the literature.
Garzó et al. [43] summerized and classified a collection of previous works based on kinetic
theory on the basis of: the dimensionality of the particles (2D disks or 3D spheres); the
starting kinetic equation: Boltzmann (limited to dilute systems) or Enskog, and the spe-
cific mechanics and assumptions used in the derivation process (SET or RET); the solution
method: Chapman-Enskog (CE) or Grad’s moment method (Grad); the order of expansion
in the Knudsen number (first Navier Stokes order or second Burnett order); the eventual
order of expansion in the degree of inelasticity (which limits the validity of the solution
to nearly-elastic particles). The resulted list is reported in Tab. 3.1, with some integration.

Table 3.1.: Classification of kinetic theories.

Solution Exp. or. Exp. or.
Reference Dimension Kinetic theory method in ǫ in (1− e2n)

Garzó and Dufty [41] 3D Boltzmann CE first -

Serero et al. [112] 3D Boltzmann CE first first

Sela and Goldhirsch [111] 3D Boltzmann CE second first

Brey et al. [18] 3D Boltzmann CE second -

Zamankhan [131] 3D Enskog RET Grad - -

Alam et al. [1] 2D Enskog RET CE first first

Willits and Arnarson [127] 2D Enskog RET CE first first

Jenkins and Mancini [55] 2D and 3D Enskog SET CE first first

Rahaman et al. [104] 3D Enskog SET CE first first

Jenkins and Mancini [56] 3D Enskog RET CE first first

Arnarson and Willits [3] 3D Enskog RET CE first first

Garzó and Dufty [40] 2D and 3D Enskog RET CE first -

Standard vs Extended Kinetic Theory

All the kinetic theories appearing in Tab. 3.1 fall within the context of Standard Kinetic
Theory, i.e., are developed under very restrictive assumptions:

• spherical particles;

• monodisperse systems;

• frictionless particles;

• constant coefficient of restitution;

• rigid particles (i.e., instantaneous collisions);

• binary collisions;

• molecular chaos (i.e., uncorrelated motion).

The kinetic theories based on the Boltzmann equation requires the additional assumption
of dilute systems (low concentration of the particles). Also, if the Chapman-Enskog pro-
cedure is employed as the solution method and the expansion in the Knudsen number is
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3.1. Standard Kinetic Theory

limited to the first Navier Stokes order, the gradients of the macroscopic fields are sup-
posed to be not large. Finally, if also the expansion in the degree of inelasticity is adopted,
an extra hypothesis requires that the collisions are nearly-elastic.

Several modifications to the Standard Kinetic Theories have been introduced in the litera-
ture in order to take into account different effects: inter-particle friction [47, 57, 60, 80, 81];
dependence of the coefficient of restitution on the relative velocity [19]; nonspherical grains
[99]; polydispersivity [41].
Finally, the class of kinetic theories which incorporates the influence of correlated motion is
called Extended Kinetic Theory. Numerical simulations and experiments have shown that
when simultaneous interactions between more than two particles become likely, i.e. when
the particle velocities are correlated, small groups of particles overlap [75, 76, 86] and/or
interact through repeated, weak, “chattering” collisions [88]. The presence of clusters of
particles and force chains influences the energy dissipation. Within the context of kinetic
theory, Jenkins [52, 53] has introduced a length associated with the size of particle clusters
into the expression of the energy dissipation, which accounts for the effect of correlated
motion.

Outline of the Chapter

The present Chapter is outlined in the following way. Section 3.1 is devoted to a summary
description of the Standard Kinetic Theories. In this framework, the Boltzmann equation
is first introduced, then the hydrodynamic equations of the motion are derived and the
Chapman-Enskog procedure is presented. The Standard Kinetic Theory derived from the
Enskog equation, in the form proposed by Garzó and Dufty [40], is then discussed. The
modification introduced by Jenkins and Zhang [60] in order to account for the role played
by the inter-particle friction is finally described. Section 3.2 concerns with the Extended
Kinetic Theory proposed by Jenkins [52, 53], which incorporates the effect of correlated
motion of particles and extends the validity of kinetic theory to dense granular flows.

3.1. Standard Kinetic Theory

3.1.1. The Boltzmann equation

Let’s consider an assembly of smooth, frictionless spheres with a diameter d and a mass m.
The collision between two grains is inelastic and part of the kinetic energy is lost during
the collision. The grains are assumed to be rigid, then the collisions are instantaneous.
The inelastic, instantaneous collision between two particles can be described introducing
the coefficient of normal restitution, en, which relates the relative particle velocities before
and after the collision. Here, the particles are assumed to be frictionless, then the relative
velocities of the colliding particles have only normal component. In this case, the normal
coefficient of restitution is the unique material parameter characterizing the collision, and
is named simply coefficient of restitution. Considering two particles, labeled 1 and 2, and
their velocities, vi and v′

i, i = 1, 2, respectively before and after a collision, the dynamics
of the collision is described by:

g′ · n = −en (g · n) . (3.1)

There, n is the unit vector from the center of particle 1 to that of particle 2, and g =
(v1 − v2) and g′ = (v′

1 − v′
2) are the relative velocities before and after the collision.
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3. Kinetic theory of granular gases

Then, the coefficient of restitution is a single parameter which capture the inelasticity of
collisions. In general, the coefficient of restitution depends on the relative velocity and the
duration time of the collision, but here the simplest case for which en is a constant and
0 < en < 1 is considered. When en = 1, the relative velocity before the collision is totally
recovered, then particles are perfectly elastic. Whereas, en < 1 means that the spheres
lose part of their velocity, and then of their kinetic energy, during the collision.
Considering the granular matter as an assembly of a large number of grains, in the kinetic
theory the approach of the statistical mechanics for the description of the macroscopic
properties of granular gases is adopted. The macroscopic (or hydrodynamic) properties
of interest are governed by the single-particle distribution function. The single-particle
distribution function at point x and time t, f(v,x, t), is defined as the number density n
of particles having velocity v at point x at time t. In other words, f/n is the probability
density for a particle at point x at time t to have a velocity v. The number n of particles
per unit volume at x and t is then given by

n(x, t) =

∫

f(v,x, t)dv.

where the integration is over the entire volume of velocity space. The global number of

particles in the system, at time t, is N(t) =

∫

n(x, t)dx. The average 〈 〉 of a particle

property X is defined in terms of n and the velocity distribution function f by

〈X〉 = 1

n(x, t)

∫

Xf(v,x, t)dv.

Following the standard procedures of kinetic theory, the time evolution of the single-
particle distribution, in absence of external forces, can be described by

(

∂f

∂t
+ v · ∂

∂x

)

f(v,x, t) =

(

∂f

∂t

)

col

, (3.2)

where (∂f/∂t)col represents the rate of change due to the collisions among the particles.
Eq. (3.2) is a non-linear integro-differential equation for f(v,x, t). Note that the left-hand-
side of Eq. (3.2) is independent of the nature of the collisions. By assuming the particle
collisions to be binary, the change rate (∂f/∂t)col depends on the two-particle distribution
function, f2(v1,x1,v2,x2, t), which is defined as the probability that at time t, spheres
with velocities near v1 and v2 will be located near x1 and x2, respectively.
Then, the change rate is, in general, defined as

(

∂f

∂t

)

col

= d2
∫

dv2

∫

Θ(g · n) (g · n)
[

1

e2n
f2
(

v′
1,x1,v

′
2,x1 − dn, t

)

+

−f2 (v1,x1,v2,x1 + dn, t)] dn.

(3.3)

The position x2 appears only for x2 = x1 ± dn and this means that the two particles are
at contact. The Heaviside step function Θ assures that the relative velocities g are such
that a collision takes place.
Eq. (3.2) becomes a kinetic theory (i.e., closed equations for f) only after specifying f2 as
a function (or a functional) of f . In the classic kinetic theory, two assumptions allow to
simplify the expression of the change rate. First, the system is assumed to be dilute, (the
granular gas is rarefied). In this case, the velocity distribution function does not change
with slightly changing the position:

f2(v1,x1,v2,x1 + dn, t) ∼= f2(v1,x1,v2,x1, t).
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3.1. Standard Kinetic Theory

Second, the correlations between colliding particles are neglected, so that the two-particle
distribution function can be decomposed into the single-particle distribution functions as

f2(v1,x1,v2,x1, t) = f(v1,x1, t)f(v2,x1, t).

The second assumption is known as “molecular chaos” hypothesis.
Using the two assumptions above, Eq. (3.2) can be rewritten as

(

∂

∂t
+ v1 ·

∂

∂x1

)

f(v1,x1, t) = I (f, f) , (3.4)

where I (f, f) is called binary collision integral and is given by

I (f, f) = d2
∫

dv2

∫

Θ(g · n) (g · n)
[

1

e2n
f
(

v′
1,x1, t

)

f
(

v′
2,x1, t

)

+

−f (v1,x1, t) f (v2,x1, t)] dn,

(3.5)

Eq. (3.4) is the Boltzmann equation, first derived by Boltzmann in 1872, and holds only
under the following assumptions:

(I) spherical particles;

(II) monodisperse systems;

(III) frictionless particles;

(IV) constant coefficient of restitution;

(V) rigid particles (i.e., instantaneous collisions);

(VI) binary collisions;

(VII) dilute systems;

(VIII) molecular chaos (i.e., uncorrelated motion).

Due to the dissipative nature of the collisions in granular material, the velocity distribution
function has been modified in order to take into account the inelasticity of the particles,
and the Boltzmann equation has been derived in a little different way from the case of
molecular gases.
By multiplying a generic function of the velocity, ψ(v1), to the Boltzmann equation (3.4)
and integrate over v1, the transport equation for ψ(v1) is obtained:

∂

∂t
〈nψ〉+ ∂

∂x1
· 〈nψv1〉 =

∫

ψ(v1)I(f, f)dv1, (3.6)

We notice that the time derivative and the integral over v1 can be exchanged and the
gradient does not act on v.
For a generic function of the the velocity ψ(v1), the binary collision integral satisfies the
following property:

∫

ψ(v1)I(f, f)dv1 =
d2

2

∫

dv1

∫

dv2

∫

Θ(g · n) (g · n)
{[

ψ(v′
1) + ψ(v′

2)
]

+

− [ψ(v1) + ψ(v2)]} f (v1,x1, t) f (v2,x1, t) dn.
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3. Kinetic theory of granular gases

We call collisional invariant each quantity ψ̃(v) which does not change in a collision, i.e.,

ψ̃(v′
1) + ψ̃(v′

2) = ψ̃(v1) + ψ̃(v2), implying that

∫

ψ̃(v)I(f, f)dv = 0. An elastic binary

collision is characterized by the conservation of massm, momentummv and kinetic energy
m |v|2 /2, which are then the collisional invariants in the elastic case (e = 1). For inelastic
collisions, the mass and the momentum are conservative quantities, but not the kinetic
energy.
The three independent, hydrodynamic mean fields are introduced, as the averages of m,
mv and m |v|2 /2:

• the mean mass density of the system:

ρ = mn = m

∫

f(v,x, t)dv;

• the mean velocity of the flow:

u = 〈v〉 = 1

n

∫

f(v,x, t)vdv;

• the macroscopic granular temperature, T :

3

2
T =

1

2

〈

V 2
〉

=
1

n

∫

1

2
V 2f(v,x, t)dv (3.7)

where V = v−u is the particle fluctuating velocity, and V = |V| its magnitude. T is the
average fluctuating kinetic energy per unit of mass of a resting system of grains, as the
temperature in the theory of molecular gases. It is important to stress that the internal
thermodynamic temperature of the grains is a very different entity whose value is usually
not of much interest in the field of granular flows [45].

3.1.2. Hydrodynamic equations of motion

The balance laws for ρ, u and T result from the transport equation (3.6) when ψ is taken
to be m, mv1 and m |v1|2 /2, respectively. Note that for the mass and the momentum,
the right-hand-side of the transport equation (3.6) vanishes; this does not happen for the
kinetic energy if the collisions are inelastic.
The mass balance reads

Dρ

Dt
+ ρ∇ · u = 0, (3.8)

where the material derivative is defined with respect to the mean velocity: D/Dt =
∂/∂t+ u · ∇.
The momentum balance equation, in absence of external forces, is given by:

ρ
Du

Dt
= −∇ · σ, (3.9)

where σ is the stress tensor.
Finally, the balance of fluctuating energy, which describes the time development of the
granular temperature, is:

3

2
ρ
DT

Dt
= −σ : ε̇−∇ · q− Γ. (3.10)
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3.1. Standard Kinetic Theory

Here, q and Γ are, respectively, the flux of fluctuating energy and the collisional rate of
dissipation of fluctuating energy per unit volume, whereas the strain rate tensor, ε̇, is
given by the symmetric part of the velocity gradient:

ε̇ =
1

2

(

∇u+∇tu
)

. (3.11)

The : denotes the tensorial product: A : B = AijBij and the superscript t represents
transposition. Here and in the following, the summation rule is used for twice appearence
of the indices.
Equations (3.8)-(3.10) have to be supplemented by the constitutive relations for the stress
tensor σ, energy flux q, and energy dissipation rate Γ. Their forms, following the integral
procedure, read:

σij = m

∫

ViVjf(v,x, t)dv, (3.12)

q =
m

2

∫

VV 2f(v,x, t)dv, (3.13)

Γ = −m
2

∫

|v|2 I(f, f)dv. (3.14)

From Eq. (3.12), using the definition of granular temperature Eq. (3.7), the stress tensor
can be written as

σ = pI+ ρ 〈D〉 ,

where I is the identity matrix, p = ρT is the hydrostatic pressure, and D is the deviatoric
part of the stress tensor:

Dij = ViVj −
1

3
V 2δij ,

being δij the Kronecker’s symbol. Using the expression of the binary collision integral
(3.5), the rate of dissipation of fluctuating energy can be expressed as

Γ =
(

1− e2n
) πmd2

16

∫

dv1

∫

|g|3 f(v1,x, t)f(v2,x, t)dv2. (3.15)

The dissipation rate is the consequence of the inelasticity of the particles, and vanishes
when en = 1. The set of hydrodynamic equations (3.8)-(3.10) is not close, since requires
the additional constitutive equations for σ, q and Γ which depend on higher moments
of the single-particle distribution function f . The constitutive relations σ, q and Γ have
been provided by the Chapman-Enskog procedure, under the hypothesis of small gradients.

3.1.3. Chapman-Enskog procedure

The Chapman-Enskog theory is a closure of the hydrodynamic equations of motion (3.8)-
(3.10), under two main assumptions. The first assumption is that the mean free path,
λ, that is the average distance traveled by a particle between two successive collisions, is
small with respect to the macroscopic scale length, L, at which the hydrodynamic fields

vary. The mean free path is computed as λ =
(√

2πnd2
)−1

. In the Chapman-Enskog
procedure, the Knudsen number is introduced, ǫ = λ/L, as a non-dimensional measure of
gradients. The spatial scale of the problem changes from x to ǫx, so that all gradients
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3. Kinetic theory of granular gases

are trasformed as ∇ −→ ǫ∇. The first assumption ensure that ǫ is small, then the stress
tensor and the heat flux can be approximated as linear in the gradient:

σij = pδij − η̃ǫ

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij∇ · u

)

, (3.16a)

q = −ǫ (κ̃∇T + µ̃∇ρ) , (3.16b)

where p is the hydrostatic pressure, as already stated, and η̃, κ̃ and µ̃ are the shear viscosity,
the thermal conductivity and the coefficient of the density gradient, respectively. We notice
that the tilde denotes coefficients deriving from the Boltzmann equation, and then valid
in the low density limit. Then, the microscopic expressions of these coefficient have to be
derived.
Also, given that the gradient is scaled as ǫ∇, the hydrodynamic equations, with the stress
tensor and the energy flux computed using Eqs. (3.16), are also scaled as

∂ρ

∂t
= −ǫ∇ · (ρu), (3.17a)

∂u

∂t
= −ǫ

(

u · ∇u+
1

ρ
∇p
)

+ ǫ2
η̃

ρ

[

∇2u+
1

3
∇ (∇ · u)

]

, (3.17b)

∂T

∂t
= −2Γ

3ρ
− ǫ

[

u · ∇T +
2

3ρ
p (∇ · u)

]

+ ǫ2G, (3.17c)

with

G =
2

3ρ

(

κ̃∇2T + µ̃∇2ρ
)

+
2η̃

3ρ

[(

∂uj
∂xi

)(

∂ui
∂xj

)

+

(

∂ui
∂xj

)(

∂ui
∂xj

)

− 2

3
(∇ · u)2

]

,

being ∇2 the Laplacian operator.
The second assumption of the Chapman-Enskog procedure requires that the single-particle
distribution function depends on x and t only through the hydrodynamic mean variables,
ρ(x, t), u(x, t) and T (x, t). Therefore, the time and spatial derivative of f(v,x, t) are
given, respectively, by

∂f

∂t
=
∂f

∂ρ

∂ρ

∂t
+
∂f

∂u
· ∂u
∂t

+
∂f

∂T

∂T

∂t
,

∇f =
∂f

∂ρ
∇ρ+ ∂f

∂u
· ∇u+

∂f

∂T
∇T.

This assumption is based on scale separation: it is assumed that the system locally equi-
librates on a timescale that is shorter than the macroscopic timescales [45].
For consistency with the above assumptions, time scales which measure the time variations
associated to growing powers of ǫ can be introduced:

∂

∂t
=
∂(0)

∂t
+ ǫ

∂(1)

∂t
+ ǫ2

∂(2)

∂t
+ . . .

and the velocity distribution function is expanded into the series of the gradient

f = f (0) + ǫf (1) + ǫ2f (2) + . . .

The expansions are put into the Boltzmann equation (3.4), leading to
(

∂(0)

∂t
+ ǫ

∂(1)

∂t
+ . . .+ ǫv · ∇

)

(

f (0) + ǫf (1) + . . .
)

= I
(

f (0) + ǫf (1) + . . . , f (0) + ǫf (1) + . . .
)

.

(3.18)
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3.1. Standard Kinetic Theory

The rate of dissipation of fluctuating energy is also expanded into the serie of ǫ:

Γ = Γ(0) + ǫΓ(1) + ǫ2Γ(2) + . . .

where Γ(r) are computed using (3.15) with the corresponding r−th order distribution
function f (r). In Eq. (3.18), terms at the same order in ǫ can be solved separately (sup-
plemented by Eqs. (3.17) for the hydrodynamic variables); this must be executed in order
of growing powers of ǫ, since at each order the solution at smaller order is needed.
The zeroth order in the Chapman-Enskog expansion begets the Euler equations, the first
order yields the Navier-Stokes equation, and next are the Burnett and super-Burnett
orders [45].

Zeroth order

At the zeroth (Euler) order, the Boltzmann equation (3.18) and the hydrodynamic equa-
tions (3.17) read

∂(0)

∂t
f (0) = I(f (0), f (0)), (3.19a)

∂(0)

∂t
ρ = 0, (3.19b)

∂(0)

∂t
u = 0, (3.19c)

∂(0)

∂t
T = −2Γ(0)

3ρ
. (3.19d)

This set of equations describes a spatially homogeneous situation, where the density is
uniform, ρ =const, and the velocity field is zero, u = 0; then, the distribution functions
are independent of the space and the system behaves like an equilibrium state at each time
instant, except for the decay of the granular temperature. The formal expressions of the
zeroth order of the distribution function, f (0), and the rate of dissipation of fluctuating
energy, Γ(0), can be evaluated using Eqs. (3.19). The constitutive relations for σ and q

(3.16) become
σij = pδij

q = 0

Then the stress tensor is isotropic and is completely described by the hydrostatic pressure
p = ρT .

First order

For the first order in ǫ (Navier Stokes order), the analysis is similar although more com-
plicated. The stress tensor and the energy flux read, respectively

σij = pδij − η̃

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij∇ · u

)

, (3.20)

q = −κ̃∇T − µ̃∇ρ. (3.21)

Knowledge of f (0) allows to write an expression for f (1), then comparing the expressions
(3.20)-(3.21) with the original definitions of σ and q, (3.12)-(3.13), respectively, and using
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3. Kinetic theory of granular gases

f = f (0) + f (1), the formal expressions for the shear viscosity, the thermal conductivity
and the coefficient of the density gradient are given by:

η̃ = − 1

10

∫

D : γdv, (3.22a)

κ̃ = − 1

3T

∫

S ·αdv, (3.22b)

µ̃ = − 1

3ρ

∫

S · βdv, (3.22c)

where S =
(

V 2 − 5T
)

V/2 and D was previously introduced. The expressions of α, β and

γ are obtained putting the expression of f (1) into the first order Boltzmann equation and
comparing terms with the same gradients. In order to do that, the expression of f (0) has
to be provided.

In the case of elastic collisions (en = 1), the first order set of equations describes transport
without dissipation (i.e., there are no viscosity and thermal conductivity) and f (0) is
the Maxwellian distribution function, which represents the local equilibrium distribution
function:

f
(0)
(en=1)(v) =

n

(2πT )3/2
exp

(

−|v|2
2T

)

. (3.23)

The above coefficients can be analytically deduced:

η̃(en=1) =
5

96
ρpd

√
πT , (3.24a)

κ̃(en=1) =
15

4
η̃(en=1), (3.24b)

µ̃(en=1) = 0, (3.24c)

being ρp = 6m/
(

πd3
)

the particle density.

In the inelastic case, i.e., en < 1, f (0) is not known analytically, but, if not too much
energy is dissipated in collisions (nearly elastic collisions), it is plausible to assume that
the velocity distribution function does not differ much from the Maxwellian. This is a
furter assumption which means that when the gradients are not ‘too large’ the correction
to the local equilibrium distribution function is a ‘small’ perturbation. Then, f (0) can be
expressed as an expansion in Sonine polynomials of the Maxwellian distribution function.
For instance, truncating f (0) at the second Sonine polynomials, we obtain:

η̃ = η̃(en=1)η̃
∗,

κ̃ = κ̃(en=1)κ̃
∗,

µ̃ =
T

ρ
κ̃(en=1)µ̃

∗,
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3.1. Standard Kinetic Theory

where we defined

η̃∗ =
24

(1 + en)(13− en)

[

1 +
3 (4− 3en)

8 (13− en)
a2

]

κ̃∗ =
32

2(1 + en)(9 + 7en)

[

1 +
797 + 211en
32 (9 + 7en)

a2

]

µ̃∗ =
640(1− en) [1 + h(en)a2]

(1 + en)(9 + 7en)(19− 3en)

h(en) =
50201− 30971en − 7253e2n + 4407e3n

80(1− en)(19− 3en)(9 + 7en)
,

and a2 is the second Soline coefficient:

a2 =
16(1− en)

(

1− 2e2n
)

81− 17en + 30e2n(1− en)
.

3.1.4. The Enskog equation

The validity of the Standard Kinetic Theory derived using the Boltzmann equation is
restricted to dilute systems of particles. This conditions is necessary to consider valid
the “molecular chaos” assumption, which states the independence of colliding particles,
and leads to the Boltzmann equation. In principle, in fact, two colliding particles can
be correlated due to an intersection of their collisional histories: one simple possibility is
that they may have collided some time before or, alternatively, they may have collided
with particles that have collided before. Moreover, the spatial extension of particles (i.e.
the fact that they are not really pointlike) restricts the possibilities of motion, and, as
a consequence, the degree of independence (this is the so called excluded volume effect).
All these kinds of correlations become relevant when the granular gas is not rarefied but
(either moderately or highly) dense.
In 1922 Enskog [26] proposed a generalization of the Boltzmann equation, the Enskog
equation, in order to extend the classic kinetic theory to higher density gases. This sec-
tion is devoted to the kinetic theory based on the Enskog equation, called the Standard
Enskog Theory (SET), and a subsequent extension of this, the Revised Enskog Theory
(RET), proposed in 1972 by van Beijeren and Ernst [119, 120]. The section is mainly
based on [43].
As previously stated, two kinetic theories have been used in the development of hydrody-
namic equations for gases, namely the Boltzmann equation, which has led to the classical
kinetic theory, and the Enskog equation for hard spheres. The difference between these
two equations stems from the treatment of the two-particle distribution function f2 in
the equation of the change rate (3.3) [43]. For the Boltzmann equation, f2 is assumed
equal to the product of the two single-particle distribution functions. This lack of spatial
and pre-collisional velocity correlations between the two particles restricts the Boltzmann
equation to dilute systems. Enskog [26] introduced two crucial changes in the collision in-
tegral [91]: (i) the difference in position between the centers of a colliding pair of molecules
is taken into account; (ii) the collision frequency is increased by a factor that accounts for
the spatial correlations between the two colliding molecules. The two-particle distribution
function, in the Enskog formulation, reads:

f2(v1,x1,v2,x2, t) = χ [d|n(x+ dn/2)] f(v1,x1, t)f(v2,x2, t). (3.25)

Here, χ [d|n(x+ dn/2)] is the equilibrium pair correlation function for |x1 − x2| = d,
and is a function of the number density n evaluated at the contact point (x + dn/2).
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3. Kinetic theory of granular gases

The function χ [d|n] is the equilibrium value of the pair correlation function at contact
corresponding to a uniform density n (the Enskog approximation). More specifically, χ
accounts for excluded volume effects encountered in denser flows, and thus the correspond-
ing Enskog kinetic theory is applicable to moderately dense flows. Using the new form of
the two-particle distribution function into the definition of the rate of change due to the
collisions (∂f/∂t)col in Eq. (3.2), the Enskog equation is obtained instead of the Boltz-
mann equation, which is at the basis of the SET. Although the Enskog theory ignores the
possibility of correlations in the velocities before collision, accounting just for positional
correlations, it leads to transport coefficients that are in good agreement with experimen-
tal and simulation values over a wide range of densities [91]. The Enskog approximation is
expected to deteriorate at higher densities as ring collisions and their associated velocity
correlations become important.

In 1972, van Beijeren and Ernst [119, 120] proposed a modification to the SET, known
as the Revised Enskog Theory (RET). The difference between SET and RET traces to
the choice of the pair correlation function in the two-particle distribution function. In
SET, the pair correlation function χ is a function of concentration (i.e., depends on the
local value only) at a single position of interest, whereas for RET the new pair correlation
function, g0, is treated as a functional of concentration (i.e., depends on the local value
and its gradient) at the two particle centers. Then, in RET the two-particle distribution
function is defined as

f2(v1,x1,v2,x2, t) = g0 [x1,x2|n(t)] f(v1,x1, t)f(v2,x2, t),

Here, g0 [x1,x2|n(t)] is the equilibrium pair correlation function, also called radial distri-
bution function, as a functional of the non-equilibrium density n(x1, t), and takes into
account the spatial non-uniformities in a non-uniform state.
The RET and the SET lead to different predictions in non-homogeneous states. Therefore
the difference between both theories is relevant in states far from equilibrium, as well as
in equilibrium crystal and (metastable) glassy states [91].
The rate of change due to the collisions (∂f/∂t)col in Eq. (3.2) depends on the new two-
particle distribution function, and the corresponding of the Boltzmann equation is the
Enskog equation for the time evolution of the single-particle distribution function:

(

∂

∂t
+ v1 ·

∂

∂x1

)

f(x1,v1, t) = JE [x1,v1|f(t)] , (3.26)

where JE [x1,v1|f(t)] is called the Enskog collisional operator and is given by

JE [x1,v1|f(t)] =d2
∫

dv2

∫

Θ(g · n) (g · n)
[

1

e2n
f2
(

v′
1,x1,v

′
2,x1 − dn, t

)

+

−f2 (v1,x1,v2,x1 + dn, t)] dn.

(3.27)

As for the Boltzmann equation, the macroscopic balance equations for ρ, u and T follow
directly from Eq. (3.26) by multipling by m, mv1 and m |v1|2 and integrating over v1,
and coincide with Eqs. (3.8)-(3.10). The constitutive relations for the stress tensor and
the energy flux are now given by the following expressions:

σ = σk + σc, (3.28)

q = qk + qc, (3.29)

26



3.1. Standard Kinetic Theory

where the superscripts k and c denote the “kinetic” (or streaming) and the “collisional
transfer” contributions, respectively. A primary consequence of the Enskog theory is that
it leads to a collisional transfer of momentum and energy that can be expressed in terms
of f2. The kinetic contributions are defined as the quantities for the dilute case, then by
Eqs. (3.12) and (3.13). The collisional transfer contributions are expressed as function of
f2 [17]:

σcij =
1 + en

4
md3

∫

dv1

∫

dv2

∫

Θ(g · n)×

(g · n)2 n n dn

∫ 1

0
f2 [v1,x− (1− λ)dn,v2,x+ λdn, t] dλ

(3.30)

qc =
1 + en

4
md3

∫

dv1

∫

dv2

∫

Θ(g · n)×

(g · n)2 (G · n)n dn

∫ 1

0
f2 [v1,x− (1− λ)dn,v2,x+ λdn, t] dλ.

(3.31)

Finally, the constitutive relation for the rate of dissipation of fluctuating energy Γ is
changed into

Γ = (1− en)
2 πmd2

16

∫

dv1

∫

dv2

∫

Θ(g · n) (g · n)3 f2(v1,x,v2,x+ dn)dn (3.32)

being G = (V1 +V2) /2 the velocity of the center of mass.
The Enskog equations are not closed, since the equation for a given moment depends
on higher order moments. As for the dilute case, the solution of the set of hydrodynamic
equations, togheter with the constitutive relations, is obtained using the Chapman-Enskog
method. The procedure is exactly the same described above, which adopts the expansion
of the fields in terms of their gradients, with the distribution function determined pertur-
batively [40]. The Chapman-Enskog solution at the first order in the spatial gradient for
the Enskog equations leads to the following constitutive relations:

σij = pδij − 2η

(

ε̇ij −
1

3
δij∇ · u

)

− γ (∇ · u) δij , (3.33)

q = −κ∇T − µ∇ρ. (3.34)

with the hydrostatic pressure computed as

p = ρT

[

1 +
1 + en

3
πnd3g0(n)

]

. (3.35)

The hydrostatic pressure deriving from the Enskog equation differs from that deriving from
the Boltzmann equation due to the presence of the radial distribution function in the two-
particle distribution function. We introduce the solid volume fraction (or concentration),
ν, the fractional, local volume occupied by the spheres, which is defined as ν = πnd3/6.
Then, the pressure can be rewritten as

p = ρT [1 + 2 (1 + en) νg0(ν)] , (3.36)

being ρ = νρp.
The expressions for the shear viscosity η, the thermal conductivity κ, the coefficient of the
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3. Kinetic theory of granular gases

density gradient µ and the additional bulk viscosity γ have been derived by Garzó and
Dufty [40] using a lowest order expansion in Sonine polynomials, and are given by

η = η̃(en=1)η
∗ (3.37a)

κ = κ̃(en=1)κ
∗ (3.37b)

µ =
T

ρ
κ̃(en=1)µ

∗ (3.37c)

γ = η̃(en=1)γ
∗ (3.37d)

where η̃(en=1) and κ̃(en=1) are the low density values of the shear viscosity and the thermal
conductivity in the elastic limit, respectively, expressed in Eq. (3.24). The collisional rate
of dissipation of fluctuating energy is also determined by

Γ =
144

5
√
π

ρ

d
νT 3/2ζ∗ (3.38)

Finally, the auxiliary functions η∗, κ∗, µ∗, γ∗ and ζ∗ are reported in Appendix A, as
function of the radial distribution function g0. The radial distribution function depends
only on the density number, or equivalently, on the volume fraction ν. Various forms of the
radial distribution function have been used. Garzó and Dufty [40] adopted the Carnahan
and Starling [25] approximation, which reads

g0 =
2− ν

2 (1− ν)3
. (3.39)

This expression was determined numerically by Carnahan and Starling for a fluid of iden-
tical hard spheres at contact.
Eqs. (3.36) and (3.37) are rewritten with the following notation

p = 4ρGFT (3.40)

η =
8

5
√
π
dρGJT 1/2 (3.41a)

κ =
4√
π
dρGMT 1/2 (3.41b)

µ =
25

128

√
π
d

ν
NT 3/2 (3.41c)

γ =
4

3
√
π
dρGQT 1/2 (3.41d)

where

G = νg0 (3.42a)

F =
1

4G
+

1 + en
2

(3.42b)

J =
25πη∗

768νG
(3.42c)

M =
25πκ∗

512νG
(3.42d)

N = µ∗ (3.42e)

Q =
5πγ∗

128νG
. (3.42f)
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3.1.5. Friction in kinetic theories

Some kinetic theories have been revised in order to take into account the role of inter-
particle friction. When the particles are frictional, the collisions are characterized by
an impulse having a normal and a tangential component [60], and tangential forces and
grains rotation are the consequence. Walton [124] proposed that impacts can be modeled
in terms of three coefficients: the normal coefficient of restitution, en, the tangential
coefficient of restitution, et, and the interparticle friction coefficient, µ. The normal and
the tangential coefficients of restitution relate, respectively, the normal and the tangential
component of the relative particle velocities before and after the collision. Considering
two colliding spheres of diameters d1 and d2 and masses m1 and m2, with centers located
at x1 and x2, the unit normal along the line joining the centers of the two spheres is
n = (x1 − x2) / |x1 − x2|. Before the collision, the traslational velocities of the spheres
are denoted as v1 and v2, and the angular velocities as ω1 and ω2. The corresponding
post-collision velocities are denoted by primes. The velocities before and after the collision
are related by

J = m1

(

v′
1 − v1

)

= m2

(

v′
2 − v2

)

,

−n× J = 2
I1
d1

(

ω′
1 − ω1

)

= 2
I2
d2

(

ω′
2 − ω2

)

being J the impulse imparted on the first particle by the second, and Ii = mid
2
i /10 the

moment of inertia about the center of a homogeneous sphere. In the case of frictional
contacts, the relative velocity g of the point of contact reads

g = (v1 − v2)−
(

d1
2
ω1 +

d2
2
ω2

)

× n.

The usual normal coefficient of restitution en characterizes the incomplete restitution of
the normal component of g, and is defined by Eq. (3.1). In collisions that involve sliding,
the tangential and normal components of the impulse are related by the interparticle
friction coefficient,

|J× t| = µ (J · n) . (3.43)

Finally, the tangential coefficient of restitution is defined in analogy with the normal one,
using the tangential component of the relative velocities:

n× g′ = −et (n× g) . (3.44)

In Walton’s model, friction and tangential restitution are mutually exclusive properties of
the contact point. The collision can be sliding or sticking depending on the angle between
g and n, γ, defined by:

cot γ =
g · n
g × n

.

If the incident angle γ is less than a threshold value, γ0, the point of contact is sliding
and Eq. (3.43) holds; on the other hand, for greater values of the incident angle, the
contact point is sticking and Eq. (3.44) replaces Eq. (3.43). The limit incident angle
which distinguishes between sliding or sticking collision, γ0, is computed as

(1 + et) = −7

2
(1 + en)µ cot γ0.

When the particles are frictionless (as for the Standard Kinetic Theory) the tangential
component of the collisional impulse vanishes and the tangential coefficient of restitution
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3. Kinetic theory of granular gases

does not play any role. In the case of frictional particles, the coefficient of tangential
restitution ranges between -1 and 1. The case et = 1 corresponds to smooth particles,
that is, the tangential velocity and, thus, the angular velocities of colliding particles do not
change [9]. When et = −1, the tangential component of this velocity reverses completely
and the spheres are said to be perfectly rough [26].

Basically two approaches have been proposed in the literature to account for the presence
of friction in the framework of kinetic theory. The first approach is the most rigorous,
although the most onerous from a computational point of view. It introduces the angular
momentum and the spin for each particle. Then, the standard hydrodynamic equations
for translational degree of freedoms (i.e., density, velocity and granular temperature) are
supplemented by the additional equations for the rotational degrees of freedom: the con-
servation of the angular momentum for the angular velocity field and an evolutive equation
for the spin energy -through a granular spin temperature- or the spin energy must be in-
cluded in the granular temperature [23]. This approach has been employed in Goldstein
and Shapiro [47], Jenkins and Richman [57], Lun [80], Lun and Savage [81].

The second approach has been derived in the case of slightly frictional grains, i.e. small
values of µ, and assumes that the effect of the tangential contact in collisions can be
absorbed in a renormalized restitution coefficient. For small values of µ, Jenkins and Zhang
[60] suggested that hydrodynamic equations for frictional grains are reduced to those for
translational degree of freedoms by introducing an effective restitution coefficient,

eeff = en − 1

2
a1 +

1

2
a2
b1
b2

(3.45)

where

a1 =
µ

µ0

[

πµ0

(

1− 2

π
arctanµ0

)

+
2µ20

1 + µ20

(

1− 2µ

µ0

)]

, (3.46a)

a2 =
5

2

µ

µ0

[

π

2
µ0

(

1− 2

π
arctanµ0

)

+
µ20 − µ40
(

1 + µ20
)2

]

, (3.46b)

b1 =

(

µ

µ0

)2 µ20
1 + µ20

, (3.46c)

b2 =
1

2

µ

µ0

[

π

2
µ0

(

1− 2

π
arctanµ0

)

+
µ20

1 + µ20

]

, (3.46d)

and

µ0 =
7

2

(1 + en)

(1 + et)
µ. (3.47)

The expressions for pressure (3.40), shear viscosity, thermal conductivity, coefficient of
the density gradient and the bulk viscosity (3.41) remain unchanged, and the additional
dissipation of kinetic energy due to friction is taken into account by replacing en with eeff
in all the coefficients appearing in Appendix A.

3.2. Extended Kinetic Theory

In order to test the predictions of Standard Kinetic Theory, Lois et al. [76] and Mitarai and
Nakanishi [87] performed numerical simulations on granular systems of inelastic disks. The
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simulations performed by Lois et al. [76] concern steady, homogeneous shearing flows of
frictionless disks, whereas steady flows of frictional disks down inclines have been analyzed
by Mitarai and Nakanishi [87]. The numerical results show that the rate of collisional
dissipation is overpredicted by the Standard Kinetic Theories. The Extended Kinetic
Theory takes into account the fact that, when repeated collisions induce correlated motion
among the particles, the rate at which energy is dissipated decreases by the factor L
(correlation length) [11]:

Γ =
144

5
√
π

ρ

L
νT 3/2ζ∗. (3.48)

L is the length of a chain of contacting (if soft) or chattering (if rigid) particles, employed
in place of the diameter of the spheres. The idea is that enduring contacts (or reapeted
collisions) between the grains reduce the collisional dissipation between them, while still
permitting the transfer of momentum and energy. Consequently, the rate of dissipation is
modified, but the stresses are not.
Jenkins [53] assumes that the spheres are forced into contact along the principal compres-
sive axis of the shearing flow and that the random motion of the spheres acts to destroy
this order. Then the magnitude and direction of the vector L of chain length is determined
by the simple balance

2L∗ε̇ijLj +
LT 1/2

d2
Li = 0, (3.49)

where L∗ is a function of the concentration and the particle properties. When L is equal to
one diameter, the molecular chaos assumption is valid and the Extended Kinetic Theory
reduces to the Standard Kinetic Theory.
Different expressions of L∗ have been proposed, on the basis of experimental and numerical
results on inclined granular flows and shearing flows. The first form proposed for L∗ was

L∗ =
1

2
cGα, (3.50)

where G = νg0, being g0 the radial distribution function, and c a constant of order one.
The power of G, α, has been chosen equal to 1/2 by Jenkins [52, 53] to provide a good
agreement with the results of numerical simulations. Subsequently Jenkins and Berzi [54]
proposed to use α = 1/3 obtaining a relatively good fit with the physical experiments of
Pouliquen [102] on the steady and fully developed flows of glass spheres on inclined planes.
The presence of an additional material parameter, c, whose physical meaning is not well
defined, represents a weakness of the theory.
Recently, Berzi [11] has suggested an expression for L∗ on the basis of previous results of
numerical simulations of simple shear flows performed by Mitarai and Nakanishi [88]:

L∗ =

(

JG

18νζ∗

)1/2 [2 (1− e)

15
(g0 − g0,f) + 1

]3/2

, (3.51)

where g0,f is the value of g0 at the freezing point, ν = 0.49, i.e., the lowest value of the
volume fraction for which a transition to an ordered state is first possible [118]. This
expression has been derived in the case of steady, shearing flows, and has to be proven to
be valid also in other flow conditions.
Finally, it is important to notice that the Extended Kinetic Theory is a phenomenological
extension of kinetic theory, which aims at incorporating the role of pre-collisional velocity
correlations when the molecular chaos assumption is violated. As a matter of fact, this
improvement is not based in any kinetic description.
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4. Constitutive approach∗

The main goal of this thesis is to develop a general, physically sounded rheological model
for granular flows, in the framework of continuum mechanics. The theory aims to re-
produce the mechanical behavior of granular flows in the different flow regimes and, in
particular, to deal with the phase transition from a solid-like to a fluid-like state and vice
versa. The constitutive model is based on the main assumption that the energy of the
system is dissipated thorugh two mechanisms of interaction between particles: the endur-
ing contacts among grains, which are involved in force chains, and the inelastic, nearly
instantaneous collisions. In Section 4.1, the “hydrodynamic” balance equations of the
continuum mechanics are introduced for the case of “discontinuum” granular materials.
In Section 4.2, the constitutive approach, based on the distinction between enduring con-
tacts between grains and nearly instantaneous collisions, is generally derived. Finally, in
Section 4.3 the steady state condition of a granular material under plane shear conditions
is analyzed.

4.1. A peculiar continuum medium

Despite the fact that granular material is a discontinuous medium, its behavior is com-
monly described by the continuum approach. A continuum mechanical model is mainly
composed of two parts. The first component includes the field equations, which are gener-
ally derived from the conservation laws of mass, momentum and energy. These are applied
to a finite arbitrary volume, called a control volume. This control volume is fixed in time
and space with flow allowed to occur across the boundaries. Then, the macroscopic de-
scription of the system consists of a set of time-evolution equations for the “hydrodynamic
fields” of the continuum, which usually are the density, the velocity and the temperature
related to the energy. The set of partial differential equations has to be supplemented by
“constitutive equations” providing a closed description in terms of the fields alone. The
second component of a continuum mechanics model contains the constitutive equations,
which describe the material characteristics.
For a generic continuum medium, the mass balance reads:

Dρ

Dt
+ ρ∇ · u = 0, (4.1)

where ρ is the density of the material and u the local velocity. Here and in what follows,
D/Dt denotes the material derivative and is defined as D/Dt = ∂/∂t+u · ∇, where ∂/∂t
is the local time derivative.
The momentum balance equation, in absence of external forces, is given by:

ρ
Du

Dt
= −∇ · σ. (4.2)

In continuum mechanics, the stress tensor, σ, represents the manner in which force is
internally trasmitted. Each component of the stress tensor, σij , represents the force in the

∗mainly based on D. Berzi, C. di Prisco, and D. Vescovi. Constitutive relations for steady, dense
granular flows. Physical Review E, 84:031301, 2011
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i-direction on a surface with inward pointing normal unit vector in the j direction.
Considering E to be the internal specific energy of the system (energy per unit mass), the
energy balance can be written as

ρ
DE
Dt

= −∇ · (u · σ)−∇ · q− Γ (4.3)

That is, the convected time rate of change of internal energy, ρDE/Dt, is equal to the
rate that surface stresses do work on the system, −∇ · (u · σ) [109], less the sum of the
diffused energy, which is given by the divergence of the flux of energy, q, and the rate of
dissipation Γ. Equations (4.1)-(4.3) contain several unknonws, u, σ, ν, E , q and Γ, while
only five equations are available. Then, this set of partial differential equations has to be
supplemented by the constitutive relations for the stress tensor σ, the energy flux q and
the rate of dissipation Γ.

As previously stated, granular materials are not actually continuum media but are com-
posed of many discrete particles. An hydrodynamic description of this medium has to
incorporate the micro-mechanical properties of the single grain and an averaging process
over the number of particles which composes the material. Then, a definition of the macro-
scopic variables appearing into Eqs. (4.1)-(4.3), ρ, u and E , has to be provided. However,
in contrast to conventional hydrodynamics, the applicability of granular hydrodynamics is
often questionable given that, typically, there is no separation of scale between microscopic
and macroscopic motion [2].
At the microscopic level, each particle is characterized by its shape, dimension, material
properties and so on. For the sake of simplicity, in this thesis an assembly of identical
spheres, of diameter d and density ρp is considered. The density of the continuum medium
can be computed as the product as the particle density and the solid concentration (or
volume fraction), ν, defined as the fractional, local volume occupied by the spheres:

ρ = ρpν. (4.4)

Each grain moves with its proper velocity v, and the macroscopic flow velocity of the grain
system can be defined as the average over the single particle velocity:

u = 〈v〉 . (4.5)

Here, 〈 〉 represents average over the microscopic scales.
The difference between the velocity of a particle and the macroscopic velocity is the fluc-
tuating velocity:

V = v − u. (4.6)

The internal energy E can be defined as the sum of two contributions [63, 64]:

E = Eh + Ek. (4.7)

where Eh is the specific true thermal energy of the material and Ek is the kinetic specific
energy. The specific thermal energy Eh is given by kBTh/m, where kB is the Boltzmann’s
constant, m the grain mass and Th the true thermal temperature. For a grain of 1 mm
diameter moving with a typical velocity of 1 cm/s at room temperature, Eh is at least ten
orderds of magnitude less than the specific kinetic energy [2, 50], so that E ∼= Ek.
As suggested by Savage [109], the specific kinetic energy of the particles can be expressed
as

Ek =
1

2
〈v · v〉 , (4.8)
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and then subdivided into two parts

Ek = Ek,m + Ek,f (4.9)

where

Ek,m =
1

2
|u|2 (4.10)

is the mean kinetic energy associated with the local mean velocity u, and

Ek,f =
1

2

〈

|V|2
〉

(4.11)

is the “pseudo-thermal” energy associated with deviations of the motion of individual
particles from the mean flow, here called fluctuating kinetic energy.
Then, the energy equation (4.3) becomes

ρ
D

Dt
(Ek,m + Ek,f) = −∇ · (u · σ)−∇ · q− Γ. (4.12)

Taking the vector product of u and the momentum equation (4.2) yields

ρ
DEk,m
Dt

= −u · ∇ · σ.

Then, Eq. (4.12) reduces to

ρ
DEk,f
Dt

= −σ : ∇u−∇ · q− Γ. (4.13)

Finally, assuming the stress tensor to be symmetric, σij = σji, ∇u can be replaced by its
symmetric part, and Eq. (4.13) can be expressed as

ρ
DEk,f
Dt

= −σ : ε̇−∇ · q− Γ, (4.14)

which represents the balance of the fluctuating kinetic energy. The strain rate tensor, ε̇,
is classically defined as the symmetric part of the the gradient of the velocity

ε̇ =
1

2

(

∇u+∇tu
)

. (4.15)

Note that, for a continuum medium, the symmetry of the stress tensor is ensured by the
conservation of angular momentum of the macroscopic flow field. In granular materials,
macroscopic sources of rotation, which lead to additional rotational degrees of freedom, are
caused by the microscopic dissipation of energy. Models based on higher order gradients
of the strain tensor and micropolar Cosserat medium, in which the stress tensor is not
symmetric, have been recently developed [8, 89, 90, 121].

4.2. Constitutive relations

At the micro-scale level, the two possible dissipative mechanisms of interaction among soft
grains are enduring contacts among grains involved in force chains, and inelastic, nearly
instantaneous collisions. When the latter mechanism prevails, which is when the density of
the medium is low to moderate, the stress tensor shows a strain rate-dependent behavior.
Whereas, when the force chains developed along the system span the entire domain, the
stress tensor becomes strain rate-independent. This latter condition can occur only if the
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material is dense enough, and is defined as quasi-static condition. The model proposed in
this thesis is based on the assumption that, in granular flows, the energy of the system is
dissipated throughout the two mechanisms said above: enduring contacts among particles
involved in force chains (quasi-static contribution) and collisions (collisional contribution).
Then, the material behaves like a solid when the first mechanism prevails. On the con-
trary, when the energy is totally dissipated by collisions, the deformations of the system
are rapid and the material flows like a granular gas.

enduring contacts

force chains

(a)

+ collisions

nearly instantaneous

(b)

Figure 4.1.: Mechanisms of interaction between particles: enduring contacts among grains,
which are involved in force chains (a), and inelastic collisions (b).

The existence of force chains is related to the friction of the particles and to the concentra-
tion. In absence of interparticle friction (frictionless particles), force chains are inhibited,
and the quasi-static contribution vanishes. Also, in the case of frictional particles, if the
concentration is lower than a critical threshold, the grains can interact only through col-
lisions. Considering the two dissipation mechanisms, we assume that the rate of energy
dissipation Γ in Eq. (4.3) is given by the sum of two terms:

Γ = Γqs + Γcol (4.16)

where Γqs is the rate at which energy is dissipated by enduring contacts, and Γcol, the
energy dissipated by collisions. Here and in what follows, the subscripts “qs” (quasi-static)
and “col” (collisional) refer to quantities associated with enduring, frictional contacts
of particles involved in force chains (soil skeleton) and nearly instantaneous collisions,
respectively.
We assume to subdivide also the the energy flux and the granular stress tensor into the
sum of two terms:

q = qqs + qcol, (4.17)

σ = σqs + σcol. (4.18)

We suppose that

0 = −σqs : ε̇−∇ · qqs − Γqs, (4.19)

so that enduring contacts among particles in force chains do not contribute to the transport
of kinetic fluctuating energy. Then, the balance of kinetic fluctuating energy (4.14) reduces
to

ρ
DEk,f
Dt

= −σcol : ε̇−∇ · qcol − Γcol. (4.20)
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As a consequence of this last assumption, the quasi-static energy flux and rate of energy
dissipation do not appear into the conservation equations, and are not required to be de-
fined in order to solve the problem.

4.2.1. Collisional contribution

The constitutive relations for the collisional stress tensor, energy flux and rate of energy
dissipation are taken from the kinetic theory of granular gases. The kinetic fluctuating
energy can be expressed in terms of the granular temperature T , using Eq. (3.7) into
Eq. (4.11),

Ek,f =
3

2
T (4.21)

so that Eq. (4.20) becomes

3

2
ρ
DT

Dt
= −σcol : ε̇−∇ · qcol − Γcol. (4.22)

This equation describes the evolution of the granular temperature and has the same shape
and meaning of the balance of fluctuating energy derived by kinetic theory and given by
Eq. (3.10).

The kinetic theory proposed by Garzó and Dufty [40] for the collisional stress tensor and
energy flux is adopted. Then, σcol and qcol are entirely defined by Eqs. (3.33)-(3.34). For
the collisional rate of energy dissipation, Γcol, we use Eq. (3.48) as proposed by Jenkins
[52, 53] in the Extended Kinetic Theory. There, as already mentioned, L is the correlation
length whose form is given by Eq. (3.49).
In order to take into account the role played by the friction during collisions, the approach
suggested by Jenkins and Zhang [60] is here followed. The additional dissipation of kinetic
energy due to friction is incorporate by replacing the coefficient of normal restitution ap-
pearing in the constitutive relations, with an effective coefficient of restitution, eeff, that
depends on the normal coefficient of restitution en, the tangential coefficient of restitution
in a sticking collision, et, and the Coulomb friction coefficient, µ, characterizing sliding
collisions. The expression of the effective coefficient of restitution is given by Eq. (3.45).
From this point onward, the symbol e is used to denote the effective coefficient of restitu-
tion.
The resulting kinetic theory here considered differes from the standard one described in
Section 3.1. Indeed, assumptions of dilute systems (VII), frictionless particless (III), and
molecular chaos (VIII) are overcome: the kinetic theory of Garzó and Dufty [40] was
derived from the Enskog equation, then is even valid for moderate dense systems; the in-
troduction of an effective coefficient of restitution makes the theory applicable to frictional
grains; the Extended Kinetic Theory, throughout the correlation length L, accounts for
the correlated motion of particles.

In this work, two further modifications to the kinetic theory are added.

1. A function fr, which takes into account the influence of the particle stiffness on
the contact duration during collisions, is introduced, allowing to overcome the as-
sumption of rigid particles (V). The functional fr has been suggested by Hwang and
Hutter [49] and reads

fr =

[

1 + 2
d

s

(

ρpT

E

)1/2
]−1

. (4.23)
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There, E is the Young’s modulus of the particles and s is the mean separation
distance among particles. At equilibrium, the latter can be identified as the mean
free path (mean distance traveled by a particle between two successive collisions).
In the context of classic kinetic theories [26],

s =

√
2

12

d

G
, (4.24)

being G = νg0 and g0 the radial distribution function. The constitutive relations of
σcol, qcol and Γcol are all multiplied by fr. When the particles are very rigid, i.e.,
when E is large enough, fr tends to 1 and the particle stiffness does not affect the
collisional contribution.

2. A different radial distribution function is proposed on the basis of recent numerical
results on plane shear flows of frictionless particles [27, 28, 88, 123].
As stated before, for frictionless particles, momentum is exchanged only through
collisions [122], and the constitutive model reduces to the collisional contribution.
From the constitutive relation for the (collisional) pressure provided by the kinetic
theory, (3.40), and the expressions of G and F , Eqs. (3.42a) and (3.42b),

g0 =
1

2ν(1 + en)

(

p

νρpT
− 1

)

, (4.25)

so that the radial distribution function can be obtained from the numerical (mea-
sured) values of pressure, concentration and granular temperature. For small con-
centrations, g0 obeys the Carnahan and Starling’s expression [25],

g0,cs =
2− ν

2 (1− ν)3
, (4.26)

whereas Torquato’s [118] proposed, on the basis of numerical results on elastic par-
ticles,

g0,t =











g0,cs if ν < 0.49,

(2− 0.49)

2 (1− 0.49)3
(νs − 0.49)

(νs − ν)
otherwise.

(4.27)

Here, νs represents the densest possible disordered configuration of identical spheres,
and depends on the flow configuration and the particles properties. νs coincides with
the random close packing concentration, νrcp = 0.636, defined as the densest possible
disordered packing of identical spheres [117], (i) in static condition and (ii) in the
case of frictionless particles. In dynamic conditions, νs is expected to be different
from νrcp if the particles are frictional, and to depend on the interparticle friction.
Fig. 4.2 shows the radial distribution function obtained from the numerical simula-
tions of Mitarai and Nakanishi [88] and Chialvo and Sundaresan [27] on homogeneous
plane shear flows and the present SS-DEM simulations of inhomogeneous plane shear
flows (described in Chapter 6), using different values of the (normal) coefficient of
restitution. Eq. (4.27) fits well the numerical results in the case of nearly elastic par-
ticles (Fig. 4.2(a)), while underestimates the data for dense flows of particles when
e ≤ 0.95 (Fig. 4.2(b)). In the latter case, as in Vescovi et al. [123], we propose to
use the following expression of g0:

g0 = fg0,cs + (1− f)
2

(νs − ν)
, (4.28)
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where f is a function of the concentration which makes g0 equal to the Carnahan
and Starling’s expression when the concentration is less than a limit value, νm:

f =







1 if ν < νm
ν2 − 2νmν + νs (2νm − νs)

2νsνm − ν2m − ν2s
otherwise

(4.29)

The quadratic expression for f when ν ≥ νm ensures that the first derivative of g0 is
continuous. The radial distribution function depends on two parameters: νs and νm.
In the framework of this thesis, νm has been estimated only for steady, shear flows
of inelastic spheres, and is equal to 0.4, whereas, as mentioned before, νs is affected
by the interparticle friction coefficient µ (see discussion in Section 4.3.1).
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Figure 4.2.: Numerical (symbols) radial distribution function (after Mitarai and Nakanishi
[88], Chialvo and Sundaresan [27] and present SS-DEM simulations) as a function of the
concentration for: (a) e = 0.98 and 0.99; (b) 0.5 ≤ e ≤ 0.95. Also shown are Eq. (4.28)
(solid line) and the expressions of Carnahan and Starling (Eq. 4.26, dot-dashed line) and
Torquato (Eq. 4.27, dotted line).

Finally, the form of the coefficient L∗, appearing in the correlation length L (3.49), is
slightly modified with respect to that proposed by Berzi [11] and expressed by Eq. (3.51).
Here, L∗ is taken to diverge always at νrcp, independently of the interparticle friction
coefficient. Then, Eq. (3.51) is replaced by

L∗ =

(

JG

18νζ∗

)1/2 [2 (1− e)

15
(g̃0 − g̃0,f) + 1

]3/2

, (4.30)

where

g̃0 = f̃ g0,cs +
(

1− f̃
) 2

(νrcp − ν)
, (4.31)

and

f̃ =











1 if ν < νm
ν2 − 2νmν + νrcp (2νm − νrcp)

2νrcpνm − ν2m − ν2rcp
otherwise

(4.32)

with g̃0,f = g̃0(0.49), the value of g̃0 at the freezing point (νf = 0.49).
The new forms of the radial distribution function and of L∗ have been recently derived
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[123] on the basis of numerical results on plane shear flows of frictionless spheres. We will
show in Section 5.3 that these two modifications to the kinetic theory allow to notably
improve the theoretical predictions of the numerical data in the collisional regime.

4.2.2. Quasi-static contribution

The quasi-static component of the stress tensor is modeled by using the “critical state”
theory introduced in soil mechanics fifty years ago and still largely adopted [10, 39, 93, 110].
Since the pioneering works of Roscoe et al. [106] and Schofield and Wroth [110], the critical
state concept has been introduced as a certain attractor state, independent on the initial
arrangement, characterized by the capability of a granular material of developing unlim-
ited shear strains without any change in the concentration [16]. At the critical state, an
ideal mechanism of yielding is assumed to develop within the specimen: the external work
is totally dissipated by frictional processes at the contact level (disregarding both crushing
and damage); the micro-structure does not evolve and, consequently, the concentration,
remains constant.

In geomechanics, the deformation of a continuous body is commonly defined by the strain,
which describes a deformation in terms of relative displacement of a material point x

(which is not necessary a grain). Considering a point, x, in an undeformed continuum
medium, if the body is deformed, the point x will be moved to x′, where

x′ = x+ s.

Here, s is the displacement of the point, with the component si describing the displace-
ments in the xi direction over time, i.e. x′i = xi + si(xi, t). The strain tensor is defined
as

ε =
1

2

(

∇s+∇ts
)

. (4.33)

The strain rate tensor describes the rate of change of the strain of the continuum medium:

ε̇ =
∂ε

∂t
.

Here and in what follows, the dot represents a time derivative. Being the local velocity u

the time derivative of the local displacement, ṡ = u, the strain rate tensor takes the usual
form of the symmetric component of the gradient of the velocity, as given by Eq. (4.15).
In the context of soil mechanics, the strain is finite and the strain rate is zero (and the
granular temperature is ignored). On the other hand, in the context of granular flows, the
strain is infinite and the strain rate is finite, different from zero (as is the granular temper-
ature). The critical state represents the boundary between them, and can be interpreted
as a limit condition for the steady state, for which the strain is infinite and both the strain
rate and the granular temperature vanish.

Soil mechanics studies the behaviour of soils (i.e., granular materials) in quasi-static con-
ditions, i.e., when the deformations are extremely slow and the assumption of small strains
applies. In this framework, geomechanics approaches focus mainly on the initiation of the
deformation of soils under loading and on the coupling between strain, stress, concentra-
tion, and possibly other microstructural properties. Usually, such models do not predict
what happens when continuous quasi-static flow is imposed on the material [38].
In order to study and predict the movements and failure of a soil mass, the relationships
between stresses and strains up to and beyond failure have to be defined. The soil response
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is often described with elasto-plastic or elasto-viscoplastic constitutive models, where soils
are assumed to undergo both elastic and plastic deformation when subject to loading. In
standard elasto-plastic models, the constitutive relations relate the stress rate tensor, σ̇,
to the strain rate tensor (incremental relationships). Then, the stress rate tensor, which
represents the increment of σ in the time (i.e., loading), is computed as

σ̇ = E : ε̇,

where E is the fourth order stiffness tensor. The total strain rate tensor is assumed to be
the sum of an elastic and a plastic part

ε̇ = ε̇el + ε̇pl,

where the superscripts “el” and “pl” stand for elastic and plastic, respectively. The thresh-
old which divides elastic and plastic behaviors is the curve in the stress space known as
yield locus F , or yield surface [92]. When the stress state of an element of soil lies within
the yield locus, it is considered to be elastic and, then, to undergo recoverable and re-
versible deformations. On the other hand, if the stress state lies on the yield surface and
remains on it during the stress increment, plastic (irreversible) strains occur. The elastic
response is related to the stress rate tensor by

σ̇ = Eel : ε̇el

being Eel the fourth order tensor containing the tangential elastic stiffness moduli. This
linear relationship ensures that the elastic strain rate automatically vanishes in steady
conditions, i.e., at constant stress. The plastic strain rate is defined through the flow rule:

ε̇pl = λ̇m,

where λ̇ is the plastic multiplier which determines the magnitude of ε̇pl, while m specifies
the plastic flow direction. Usually, the second order tensor m is derived as the stress
gradient of the plastic potential function G:

m =
∂G
∂σ

.

The flow rule is said associated if the plastic potential coincides with the yield surface,
G = F , and, consequently, the plastic strain rates are directed perpendicular to the yield
surface. The elasto-plastic theory is completed with the consistency law, from which the
plastic multiplier is determined. The consistency law forces the stress states to remain on
the yield surface F during plastic deformations, and is expressed as Ḟ = 0. As a con-
sequence, according to elasto-plastic model, the stress state can never overstep the yield
locus.
Elasto-plasticity is based on two main assumptions: (i) unrecoverable deformations take
place instantaneously and (ii) no role is played by the rate of external loading. Although
elasto-plasticity has been proven to be a powerful tool for capturing most features of the
inelastic response of soils, the assumption of rate-independence prevents some important
experimental evidences to be reproduced, as well as any dependence of the material behav-
ior on the loading rate. To overcome this intrinsic limitations of standard elasto-plasticity,
the theory of elasto-viscoplasticity was purposely introduced.
In the context of the elasto-viscoplasticity, a finite amount of time is required for irre-
versible (viscoplastic) strains to develop. As a result, the time variable actively contributes
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to the global material response, which is in turn determined by the interaction between
the intrinsic material rate-sensitiveness and the external loading rate. The total strain
rate is decomposed into an elastic component ε̇el and a viscoplastic component ε̇vp,

ε̇ = ε̇el + ε̇vp.

The viscoplastic strain rate evolves via a flow rule different from that of elasto-plasticity,

ε̇vp = γ̃Φ(F)
∂G
∂σ

. (4.34)

There, γ̃ is the fluidity parameter and Φ (F) is the viscous nucleus, function of the yield
surface F [98]. This flow rule ensures that viscoplastic strains can happen also in absence
of stress increments (i.e., without loading), and the viscous nucleus describes the time
dependence of the material mechanical response. Finally, in the elasto-viscoplastic model,
the stress state is allowed to lie outside the yield surface when viscoplastic strains develop
(the consistency law does not apply).

Usually, the yield locus is assumed to be described by the Mohr-Coulomb criterion, which,
for three-dimensional stress states, reads

F =
1

2
(σ3 − σ1) +

1

2
(σ3 + σ1) sinφ. (4.35)

There, φ is the internal friction angle and σ1 and σ3 are the major and minor principal
stresses, respectively∗. The yield condition F = 0 describes an angular yield surface in
the principal stress space. The Mohr-Coulomb criterion assumes that the “failure” of the
material (said the initiation of the motion) occurs in the form of plastic sliding on rupture
plains within the granular material element, when F = 0. On the rupture plain, the
Mohr-Coulomb criterion can be rewritten in terms of normal stress, σ, and shear stress,
τ :

F = τ − σ tanφ, (4.36)

where σ and τ are related to the principal stresses: σ = (σ1 + σ3) /2, τ = (σ1 − σ3) /2.
Then, the Mohr-Coulomb criterion asserts than, on the sliding planes, the shear compo-
nent of the stress equals the frictional resistance of the material.

When a soil element reaches the limit condition in which it continues to (plastically) deform
indefinitely without further change in stresses and volume, it is said to have reached the
critical state [110]. Then, the critical state “locus” is defined as a non-evolving state
reached after a progressive increase in strain, at a vanishingly small strain rate, and does
not depend on the initial arrangement of the granular material. A granular material
reaches the critical state when two conditions are simultaneously fulfilled:

• the stress state lies on the yield surface (F = 0);

• in the “compression” plane [92], defined by the volumetric variable void ratio ev
(the ratio of the volume of voids to the volume of solid particles, related to the

∗The (three) principal stresses are defined as the normal stresses which act on the principal planes.
The principal planes are the three orthogonal planes in which there are zero shear stresses (i.e., the stress
tensor is a diagonal matrix and the elements on the diagonal are the principal stresses). The principal
stresses of the stress tensor are the eigenvalues of the stress tensor, and their direction vectors are the
principal directions or eigenvectors.
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4.3. Steady, plane shear flows of granular materials

concentration by the relation ν = 1/(1 + ev)) and the pressure p = trσ/3, the
following relation occurs

ev = Γ− λ log p. (4.37)

The constants Γ and λ are intrinsic material properties, and are not affected by the
stress state and the loading history.

Note that, in principle, the critical state is not necessary associated to a Mohr-Coulomb
criterion.
A fundamental characteristic of the behavior of granular materials is the dilatancy. The
dilatancy is defined as the change in volume associated with distorsion of granular materi-
als. In principle, deformations in granular materials are always accompanied by volumetric
changes, and when granular material is stressed, a shear motion occurs between neigh-
boring grains, which generates a bulk expansion, i.e., dilatation [125]. The volumetric
response of a granular material under loading is different depending on the initial state of
the sample: dense samples dilate, whereas loose samples contract. This feature of granular
materials has been revealed using both triaxial tests and shearing tests. At the critical
state, the dilatancy vanishes, given that the material undergoes deformations without
volume changes. Considering a conventional experiment of triaxial compression (but the
same effect is obtained in shear tests) on a sample of sand, loose samples contract, as
previously stated, and the critical state is reached when the volume change is gradually
ceased, whereas dense samples expand and approach the critical state after strain soften-
ing has occured [92]. The stress-strain curve for dense and loose sands merge together at
the critical state.
Independently of the mechanism which leads the granular material to the critical state
(triaxial compression, shear tests, etc.), soils fall in a purely frictional manner at the crit-
ical state [92] if the Mohr-Coulomb criterion is adopted. Consequently, the critical state
line represents the Mohr-Coulomb failure envelope in the stress space.

A constitutive model adopting the critical state theory and employing the Mohr-Coulomb
yield surface, has to satisfy the Mohr-Coulomb criterion on the shear stress-normal stress
plane when the granular material is in the condition of developing unlimited strains without
any change in the concentration. Here, the critical state is considered as a non-evolving
state reached after a progressive increase in strain, at negligible strain rates. Also, it is
interpreted as a limit condition for the steady state at vanishingly small strain rate, by
employing the granular temperature, as an additional state variable for the system [122].
This work focuses on the behavior of granular materials under steady conditions. In this
case, the quasi-static component of the stress tensor can be easily defined by the definition
of critical state and Mohr-Coulomb criterion, without further assumptions on the form of
the stresses. It is important to notice that the interpretation of the constitutive approach
in the light of standard viscoplasticity can be seen as a first step towards an evolving
constitutive model capable of describing the mechanical behavior of granular material
under both solid-like and fluid-like conditions.

4.3. Steady, plane shear flows of granular materials

A collection of identical spheres, of diameter d and density ρp, sheared under steady
conditions, is considered. Here and in the following, x and y are taken to be the flow and
the shearing directions, respectively, and variations along the transversal direction z are
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ignored. Fig. 4.3 shows a sketch of the flow configuration.

y

τ

σ

x

σ

Figure 4.3.: Plane shear flow configuration of a collection of identical spheres.

In this simple configuration, the flow is assumed to be one-dimensional, such that only the
horizontal velocity component u is nonzero, u = (u, 0), and the flow variables vary only
in the y-direction (∂X/∂x = 0, for each variable X).
At the steady state, the mass balance equation, (4.1), is automatically satisfied, and the
divergence of the velocity is zero, ∇ ·u = 0. The momentum balance equation, in absence
of external forces, (4.2), reduces to

∂τ

∂y
= 0, (4.38a)

∂σ

∂y
= 0, (4.38b)

respectively in the x and y-direction. Here, τ and σ are the shear and the normal stress,
corresponding to the components −σxy and σyy of the stress tensor σ.
By employing the constitutive relations (4.18), the normal and the shear stresses read,
respectively

σ = σqs + σcol, (4.39)

τ = τqs + τcol. (4.40)

Finally, the fluctuating energy equation (4.22) reduces to a balance between the fluctuating
energy produced through the collisional shear work and the sum of collisional energy
diffusion (divergence of the energy flux) and dissipation:

τcol
∂u

∂y
=
∂qcol
∂y

+ Γcol, (4.41)

where qcol is the vertical component of the energy flux, qy,col, and the y subscript is re-
moved for simplicity.
The set of three differential equations (4.39)-(4.41) in the unknown ν, u, T , σqs, τqs, σcol,
τcol, qcol and Γcol is closed when providing the constitutive relations for the quasi-static
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stresses and the collisional contributions.

As stated in Section 4.2.1, the constitutive relations for the collisional stresses, energy
flux and rate of dissipation of fluctuating energy are taken from the kinetic theory of
granular gases derived by Garzó and Dufty [40] (Section 3.1.4), and modified as described
in Section 4.2.1: accounting for the role of the particle stiffness on the contact duration
during collisions (through the function fr defined by Eq. (4.23)) and using the definition
of the radial distribution function given in Eq. (4.28). Using the equation for the stress
tensor (3.33), applied to shearing flows, together with the relations for the pressure (3.40)
and for the shear viscosity (3.41a), and introducing the function fr, the collisional normal
and shear stresses can be written as:

σcol = ρpf1frT, (4.42)

τcol = ρpdf2frT
1/2∂u

∂y
. (4.43)

The collisional rate of dissipation of fluctuating energy, Γcol, is that proposed by Jenkins
[52, 53] in the Extended Kinetic Theory, Eq. (3.48), multiplied by the function fr:

Γcol = ρp
f3
L
frT

3/2. (4.44)

The collisional energy flux qcol is obtained by multiplying Eq. (3.34) by fr:

qcol = −ρpd
(

f4T
1/2∂T

∂y
+ f5T

3/2∂ν

∂y

)

fr. (4.45)

Functions fj , j = 1, · · · , 5 are solely dependent on the concentration and can be easily
derived from the original expressions of σcol, qcol and Γcol, (3.33), (3.34) and (3.48):

f1 = 4νGF, (4.46)

f2 =
8

5
√
π
νGJ, (4.47)

f3 =
12√
π

(

1− e2
)

νG

(

1 +
3

32
c∗
)

, (4.48)

f4 =
4√
π
νGM, (4.49)

f5 =
25

128

√
π
N

ν
. (4.50)

G is the product of ν and the radial distribution function g0, as in (3.42a), and the
new expression of g0 is given by Eq. (4.28). The radial distribution function is assumed
to diverge when the concentration approaches a critical value, νs. The critical value νs
represents the maximum concentration that a disordered collection of identical spheres
can achieve, and is affected by the mechanical properties of the particles. At the steady
state, under shearing, when the concentration reaches νs, a shear rigidity develops, then
νs is here called the ‘shear rigidity concentration’. Functions F , J , M and N are defined
by Eqs. (3.42b), (3.42c), (3.42d) and (3.42e), respectively, and c∗ is computed as

c∗ = 32(1− e)
(

1− 2e2
) [

81− 17e+ 30e2(1− e)
]−1

, (4.51)

as reported in Appendix A.
In Eq. (4.44), L is the correlation length, accounting for the decrease in the rate of colli-
sional energy dissipation due to the correlated motion of particles that is likely to occur
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when the flow is dense [52, 53, 54]. As stated in Section 4.2.1, L has been introduced by
Jenkins [52] in the Extended Kinetic Theory, and its generic form is given by Eq. (3.49).
In the case of planar shearing flows, Eq. (3.49) yields

L

d
= max

(

1, L∗ d

T 1/2

∂u

∂y

)

, (4.52)

where the coefficient L∗ is a function of the concentration and the particle properties.
Several expressions of L∗ have been proposed in the literature. Here, the form derived by
Berzi [11] on the basis of numerical results on simple shear flows of spheres obtained by
Mitarai and Nakanishi [88] is adopted and slightly modified, as described in Section 4.2.1.
Such an expression, given by Eq. (4.30), has been proved to be valid in the case of steady,
shearing flows, and can be rewritten in terms of functions f2 and f3 as

L∗ =

(

f2
f3

)1/2 [2 (1− e)

15
(g̃0 − g̃0,f) + 1

]3/2

, (4.53)

where g̃0 is given by Eq. (4.31) and g̃0,f is the value of g̃0 at the freezing point, ν = 0.49
[118]. Function g̃0 is defined in a manner similar to g0 but replacing νs with νrcp = 0.636,
such as the correlation length diverges at the random close packing concentration, inde-
pendently of the interparticle friction coefficient.
In all the relations, e is the effective coefficient of restitution (eeff), whose expression is
given by (3.45).

At the steady state, the quasi-static static component of the shear stress is assumed to
be proportional to the quasi-static component of the normal stress through the tangent of
the internal friction angle at the critical state:

τqs = σqs tanφ. (4.54)

Eq. (4.54) represents the critical state theory of soil mechanics, which, in the case of
shearing flows, collapse on the Mohr-Coulomb criterion (4.36) in the plane shear stress-
normal stress. Here, the internal friction angle, φ, is a function of both the interparticle
friction coefficient, µ, and the shearing contraints [34].
For dimensional reasons, the quasi-static component of the normal stress must obey

σqs = f0
K

d
, (4.55)

where the particle stiffness K is equal to πdE/8 in the case of linear elastic contacts
[62], with E the Young’s modulus, whereas f0 is solely a function of the concentration
[16, 122]. As anticipated, the quasi-static component of stresses is required to vanish
when the concentration is below the critical threshold which allows the force chains to
develop. Furthermore, the present constitutive model assumes that friction supports force
chains, and the quasi-static contribution must disappear whenever interparticle friction
does not play any role, i.e., when the particles are frictionless.
Then, to be consistent with physical observations on granular packings, the function f0
vanishes when the concentration is equal to the random loose packing value, νrlp, defined
as the minimum concentration at which a disordered packing exists [117]. In other words,
at the random loose packing, the granular material undergoes a phase transition to a
purely collisional regime.
Also, f0 is taken to diverge when the concentration approaches the shear rigidity concen-
tration, νs, here considered as the maximum concentration that a disordered configuration
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of identical spheres can achieve, under steady, shearing conditions. This assumption must
be revised in view of very recent results of numerical simulations, but it does not affect
the qualitative behavior of the model. Therefore,

f0 =











a
(ν − νrlp)

(νs − ν)
if and only if ν > νrlp and νrlp < νs

0 otherwise

(4.56)

where a is a dimensionless material coefficient [16].
According to the model, the response of the material is governed only by collisions (colli-
sional regime) when

ν < νrlp. (4.57)

By substituting Eqs. (4.42), (4.43), (4.55) and (4.54) into (4.39) and (4.40), the expressions
for the total stress in steady, shearing flows read















σ =
K

d
f0 + ρpf1frT (4.58a)

τ =
K

d
f0 tanφ+ ρpdf2frT

1/2∂u

∂y
. (4.58b)

Function fr can be rewritten as function of σ and ν, eliminating the dependence on the
granular temperature. By using Eq. (4.58a),

T =
σ − f0K/d

ρpf1fr
. (4.59)

And also, from Eq. (4.59) and Eq. (4.23),

1

fr
− 2

d

s

√

π

8f1

(

σd

K
− f0

)

1√
fr

− 1 = 0, (4.60)

that gives

fr =
2

2 +A+
√
A2 + 4A

, (4.61)

where, from the definition of the mean separation distance s, (4.24),

A =
36πG2

f1

(

σd

K
− f0

)

. (4.62)

As expected, fr tends to one as K tends to infinity.
It is important to notice that taking into account the role of particle stiffness on the du-
ration of a collision, the collisional contributions σcol, τcol, qcol and Γcol depend not only
on the concentration, the granular temperature and the shear rate, ∂u/∂y, as in classic
kinetic theories, but also on the ratio between the normal stress and the particle stiffness
σ/(K/d) (which can now be considered as a measure of how stiff is a particle).

The idea of adding collisional and quasi-static (frictional) contributions in the granular
stresses has been previously proposed by Johnson and Jackson [63, 64]. However, John-
son and Jackson did not take into account the role of particle stiffness on the frictional
component of the normal stress, so that the constitutive relation for the latter was not
physically based [16]. Moreover, for the collisional contribution to the stresses, they used
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a kinetic theory developed for dilute flows, that does not take into account the breaking
of the molecular chaos assumption [26], at high concentrations. Hence, they were unable
to explain the variation of the ratio of shear to normal stress with concentration observed
in numerical simulations on simple shear flows [30]. Similar considerations apply also to
the theory developed by Savage [109], who assumed a plastic behavior and the presence of
gaussian fluctuations of the strain rate and stresses in the planar flow of a dense granular
material, and obtained constitutive relations very similar to those of Johnson and Jackson
[63, 64].

4.3.1. Model parameters

The model parameters which affect the constitutive relations for the stresses, (4.58), the
collisional energy flux, (4.45), and rate of dissipation of fluctuating energy, (4.44), can
be subdivided into (i) micro-mechanical parameters, characteristics of the single particle
(i.e., ρp, d, K and e); (ii) macro-mechanical parameters, characteristics of the “continuum”
medium (i.e., νrlp, νs, tanφ and a). As previously mentioned, micro and macro-mechanical
parameters are related to each other. In particular, the concentration at which the shear
rigidity develops νs, the random loose packing νrlp, the critical friction angle φ and the
effective coefficient of restitution e are affected by the interparticle friction coefficient µ.

The effective coefficient of restitution, e, depends on µ, en and et through the relation
Eq. (3.45) proposed by Jenkins and Zhang [60]. Foerster et al. [37] developed an ex-
perimental apparatus to measure those quantities from the dynamics of the flights of
colliding spheres. Lorenz et al. [77] employed the same apparatus, slightly modified, to
measure the three coefficients for several materials. A table summarizing the measured
impact properties for a variety of spheres is available at the Cornell University web page:
http://grainflowresearch.mae.cornell.edu/impact/impact.html.

The dependence of the shear rigidity concentration on the interparticle friction coefficient
in the cases of steady, shearing flows has been studied by Chialvo et al. [28] by performing
numerical simulations of simple, shear flows of spheres. The shear rigidity concentration
is identified with the critical concentration defined by Chialvo et al. [28]. For frictionless
particles, that is, µ = 0, νs coincides with the random close packing, νrcp = 0.636 (densest
possible disordered packing of identical spheres in static conditions, [117]), whereas in the
case of frictional particles, νs is a decreasing function of µ.

Also the concentration at the random loose packing decreases with increasing interparti-
cle friction coefficient, as theoretically demostrated by Song et al. [117] and numerically
proved by Silbert [115]. In the case of frictionless particles, νrlp equals the random close
packing concentration, and, consequenlty, νs(µ = 0) = νrlp(µ = 0) = νrcp. Then, the
quasi-static stresses vanish automatically according to Eq. (4.56), satisfying the assump-
tion that force chains can develop only in presence of friction. Measured values of νs(µ)
[28] and νrlp(µ) [115] are reported in Tab. 4.1.

In the case of steady and homogeneous shear flows, the tangent of the critical friction
angle can be interpreted as the yield stress ratio, i.e., the asymptotic value reached by τ/σ
for vanishing small shear rate, ∂u/∂y. This typical rate-independent behavior of frictional
granular material, in such a simple shear flow configuration, will be discussed in details
in Section 5. Nevertheless, the critical friction angle can be easily obtained by performing
numerical simulations of homogeneous, steady shear flows of frictional spheres, by impos-
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4.3. Steady, plane shear flows of granular materials

ing the shear rate to vanish and measuring the constant-value asymptote reached by the
stress ratio τ/σ. These numerical experiments have been performed by Chialvo et al. [28],
and the measured values of tanφ for different values of the interparticle friction angle µ
are summarized in Tab. 4.1.

Table 4.1.: Measurements of the shear rigidity concentration νs, the random loose packing
concentration νrlp and the tangent of the critical friction angle tanφ for different values
of the interparticle friction coefficient µ. The data of νs and tanφ have been obtained
by Chialvo et al. [28] by performing 3D DEM numerical simulations of simple shear flows
of identical spheres, and the values of νrlp have been extrapolated by Silbert [115] by
performing 3D numerical simulations on soft-spheres packings.

µ 0 0.001 0.01 0.1 0.2 0.3 0.5 1 10

νs 0.636 − − 0.613 − 0.596 0.598 0.581 −
νrlp 0.639 0.638 0.634 0.614 0.595 − 0.574 0.556 0.544
tanφ 0.105 − − 0.268 − 0.357 0.382 0.405 −

The unique model parameter which needs to be inferred by numerical simulations or exper-
iments is the constant a appearing in the function f0 (4.56) in the quasi-static component
of the normal stress. Experimental investigations on the critical state of identical spheres
are though rare. To our knowledge, only Wroth [129] performed experiments on the criti-
cal state of 1 mm stainless steel spheres (ρp = 7.79 kg/m3, K = 8.25 · 107 Pa m) using a
shear cell [94]. The experiments confirm that the ratio of τqs to σqs is constant and that
f0 is a unique function of the concentration. In Fig. 4.4(a) the theoretical expression of
Eq. (4.56), with νs = 0.619, νrlp = 0.598 and a = 1.8 · 10−6, obtained from linear regres-
sion, is drawn. The data of Fig. 4.4(a) are plotted in terms of f0 against void ratio ev in
Fig. 4.4(b).
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Figure 4.4.: Experimental (circles, after [129]) and theoretical (solid line) coefficient f0 for
steel spheres as a function of (a) concentration and (b) void ratio.

For stainless steel spheres, Lorenz et al. [77] found that µ = 0.099 ± 0.008; the obtained
value of the shear rigidity concentration, 0.619, is very similar to that measured by Chialvo
et al. [28] at µ = 0.1 (0.613). On the other hand, the random loose packing concentration
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is lower than that estimated by Silbert [115]. The fact that the νrlp obtained by Silbert
[115] exceeds the shear rigidity concentration for µ = 0.1, suggests that that value is not
completely reliable, and here the value 0.598 for νrlp deduced by the experiments of Wroth
[129] is adopted.

4.4. Conclusions

A costitutive model, based on a continuum mechanics approach, has been developed, in
which both standard geotechnical constitutive models, based on the critical state theory,
and kinetic theories of granular gases are merged. Both enduring contacts among particles
involved in force chains and non-instantaneous collisions are considered. In particular, the
steady state condition of a granular material under plane shear has been analyzed. The
energy and the total stress are defined as the linear sum of a quasi-static and a collisional
component, accounting, respectively, for the force chains and the collisions.
The enduring contacts among particles in force chains are assumed not to contribute to
the transport of kinetic fluctuating energy. Then, the quasi-static energy flux and rate of
energy dissipation do not appear into the conservation equations. We have assumed that:
(i) friction supports force chains, and the quasi-static contribution must disappear when-
ever interparticle friction does not play any role, i.e., when the particles are frictionless;
(ii) the quasi-static component of the stress vanishes when the particle concentration is
less than the random loose packing, that represents the lower limit for the existence of a
disordered granular packing [117].
In the collisional contribution, both the role of particle stiffness and the correlated motion
among the particles have been accounted for. For modeling the latter, we have adopted a
recently suggested expression [11] for the correlation length in the dissipation rate of fluc-
tuating energy, which depends only on the coefficient of restitution. The particle stiffness
is introduced through the function fr, which multiplies the collisional contributions and
tends to one when the particles are rigid. Also, we have proposed an expression for the
radial distribution function which is a combination of the Carnahan and Starling’s [25] at
small concentration, and diverges as the concentration approaches the shear rigidity like
the Torquato’s [118] but, unlike the latter, its derivative is continuous in the entire range
of concentration.
The application of the model to homogeneous and non homogeneous shear flows of inelastic
spheres will be described in the following Chapters.
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5. Simple shear flows of granular materials∗

In this Chapter, the theoretical model proposed in Chapter 4 is applied to the steady,
homogeneous shear flows of a mixture of identical spheres, usually called simple shear
flows. Section 5.1 is devoted to the description of the equations governing simple shear
flows, and the constitutive relations derived from the model; then a critical discussion on
the salient properties of the theory is proposed in Section 5.2 and, finally, in Section 5.3
the comparison with experimental and numerical results found in literature is illustrated.

5.1. Simple shear flow configuration and governing equations

This Section focuses on the steady, simple shear flows of an assembly of identical, dry
spherical particles of diameter d and density ρp (Fig. 5.1).

y

u

τ

σ

y

ν

y

x

Figure 5.1.: Simple shear flow configuration of a collection of identical spheres.

Simple shear flows are characterized by homogeneous shearing, then all the variables are
constant along the flow field and the horizontal velocity is linearly distributed along the
shearing direction, y. The kinematic variable which affects the problem is then the shear
rate, γ̇ = ∂u/∂y, that remains constant along y. The momentum balances indicate that
both the normal and the shear stresses are constant, as stated by Eqs. (4.38a)-(4.38b);
also, the divergence of the collisional energy flux can be neglected in the fluctuating energy
equation (4.41), ∂qcol/∂y = 0. Consequently, Eq. (4.41) reduces to

τcolγ̇ = Γcol. (5.1)

Hence, the energy produced by the work of the collisional shear stress is entirely dissipated
in collisions.
By substituting the constitutive relationships for the collisional shear stress, (4.43), and
the collisional rate of dissipation of fluctuating energy, (4.44), into Eq. (5.1), the granular
temperature results an algebraic function of the shear rate:

T = d2f6γ̇
2, (5.2)

∗mainly based on D. Vescovi, C. di Prisco, and D. Berzi. From solid to granular gases: the steady state
for granular materials. International Journal for Numerical and Analytical Methods in Geomechanics,
37:2937-2951, 2013
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with

f6 =
L

d

f2
f3
. (5.3)

Using Eq. (5.2) and the expression of L∗ (4.53), the correlation length, (4.52), can be
written as

L

d
= max

[

1,
2 (1− e)

15
(g̃0 − g̃0,f) + 1

]

, (5.4)

as inferred in [11]. Here, g̃0 is the radial distribution function where the shear rigity con-
centration has been replaced by the random close packing value, νrcp = 0.636, Eq. (4.31).
Then, the correlation length does not depend on the interparticle friction through the
shear rigidity concentration, and diverges at νrcp = 0.636, unlike the other kinetic func-
tion f1, f2, f3 and fr which diverge at νs. The validity of this assumption is confirmed by
numerical experiments, as will be shown in the upcoming Section 5.3.

By introducing Eq. (5.2) into Eqs. (4.58a) and (4.58b), the expressions for the total stresses
in steady, simple shear flows read















σ =
K

d
f0 + ρpd

2f1frf6γ̇
2, (5.5a)

τ =
K

d
f0 tanφ+ ρpd

2f2frf
1/2
6 γ̇2. (5.5b)

Here, functions f0, f1 and f2 are given by Eqs. (4.56), (4.46) and (4.47), respectively. The
coefficient fr is defined by Eq. (4.23), and by using Eq. (5.2), it reads

fr =

[

1 + 6G

(

πf6
ρpd

3γ̇2

K

)1/2
]−1

. (5.6)

In Eq. (5.6), fr depends on the concentration and the shear rate, but, as already stated,
it can be rewritten as a function of the ratio between the normal stress and the particle
stiffness, σ/(K/d), by using Eq. (4.61).
Eqs. (5.5) represent an extension in a four dimensional space of the critical state condition
to nonzero values of γ̇ (or T ) [122]. A graphical illustration of such a locus is reported in
Fig. 5.2, where the different lines in the τ−σ−ev space correspond to different values of T .
In other words, the critical state is here interpreted as a particular steady state for which
the granular temperature vanishes as well as the shear rate. The material parameter values
employed to obtain the curves and used in the following Section 5.2, unless differently
stated, coincide with those of 1 mm stainless spheres reported in Section 4.3.1: d = 10−3
m, ρp = 7.79 kg/m3, K = 8.25 · 107 Pa m, νs = 0.619, νrlp = 0.598, a = 1.8 · 10−6,
e = 0.83 (as computed using Eq. 3.45 with the impacts coefficients evaluated by Lorenz
et al. [77] for stainless steel spheres: µ = 0.1, en = 0.95 and et = 0.32) and tanφ = 0.268
(as estimated by Chialvo et al. [28] for particles having interparticle friction coefficient
µ = 0.1). An alternative way of writing Eqs. (5.5) is the following:



















1− K

σd
f0 −

γ21
γ22

( τ

σ
− tanφ

)

= 0, (5.7a)

τ

σ
− tanφ− t2m

γ21
γ̇2 = 0 (5.7b)
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Figure 5.2.: Evolution of the steady state locus in the space shear stress-normal stress-void
ratio as a function of the granular temperature T .

where tm = d (ρpν/σ)
1/2 is the microscopic time scale associated with the rearrangement

of particles [44], and

γ1 =





ν

fr

(

f2f
1/2
6 − tanφf1f6

)





1/2

, (5.8a)

γ2 =

[

ν

f1frf6

]1/2

. (5.8b)

Eqs. (5.7) provide

γ̇ =
γ1
tm

( τ

σ
− tanφ

)1/2
, (5.9)

which can be interpreted in the viscoplastic framework. According to the definition of the
viscoplastic strain rate tensor, Eq. (4.34), the viscoplastic shear rate reads

γ̇vp = γ̃Φ (F)
∂G
∂τ
. (5.10)

Eq. (5.10) coincides with Eq. (5.9) if an associated flow rule is adopted, i.e., G = F , and
the yield locus, F , is defined by the Mohr-Coulomb criterion (4.36),

F = τ − σ tanφ. (5.11)

Then, the the viscous nucleus, Φ (F), and the fluidity parameter, γ̃, are given by

Φ (F) =

(F
σ

)1/2

, (5.12)

γ̃ =
γ1
tm
. (5.13)

Note that the fluidity parameter is not constant, unlike commonly assumed in the litera-
ture.
The French research group GDR-MiDi [44] has suggested that dense granular materials
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obey to a local, phenomenological rheology that can be expressed in terms of two relations
between three non-dimensional quantities, if the particles are rigid: the concentration ν,
the stress ratio τ/σ and the inertial number I. The inertial number represents the ratio

between the microscopic time scale tm = d (ρpν/σ)
1/2, associated with the transversal

motion of a particle submitted to a normal stress σ, and the macroscopic time scale,
tM = 1/γ̇, associated with the motion parallel to the flow [15], then it sounds

I ≡ tm
tM

= dγ̇
(ρpν

σ

)1/2
. (5.14)

Despite the notable results obtained in modeling many different configurations of dense
granular flows [12, 13, 14, 66, 97], the GDR MiDi rheology does not apply when there
is an additional time scale associated with the particle velocity fluctuations [53], whose
intensity is provided by the granular temperature; in fact, the role of the latter can not be
disregarded in regions of thickness some diameters close to the boundaries (free surface,
rigid and/or erodible bottom) [70, 116]. Moreover, when the particles are soft, i.e., have a
finite stiffness, another dimensionless quantities plays a role: the ratio between the normal
stress and the particle stiffness σ/(K/d). Using Eqs. (5.9), (5.7a) and the definition of the
inertial number (5.14), the constitutive relationships in terms of ν, τ/σ, I and σ/(K/d)
can be derived:

τ

σ
= tanφ+

(

f2f
1/2
6 − tanφf1f6

)

fr
I2

ν
, (5.15a)

I =

[

ν

f1f6fr

(

1− K

σd
f0

)]1/2

. (5.15b)

As mentioned in the previous Chapter, the response of granular materials is governed
only by collisions, i.e., the steady flow is in the collisional regime, when the concentration
is lower than the random loose packing (condition 4.57). In terms of stress ratio, using
Eqs. (5.5) and considering that the quasi-static contributions disappear when ν < νrlp
(f0 = 0), the threshold between the two regimes is the stress ratio value associated with
the random loose packing concentration

( τ

σ

)

rlp
=

f2,rlp

f1,rlpf
1/2
6,rlp

, (5.16)

where the subscript rlp denotes functions evaluated at ν = νrlp.
( τ

σ

)

rlp
is not affected by

σ/(K/d), but depends only on the material parameters d, νrlp, νs and e. By employing

the material parameters adopted in this Section,
( τ

σ

)

rlp
= 0.294. Then, the collisional

regime condition Eq. (4.57), in simple shear flows, is equivalent to

τ

σ
>
( τ

σ

)

rlp
. (5.17)

5.2. Critical discussion of the model

In this Section, the aforementioned constitutive relationship is theoretically discussed.
First, a phase diagram is introduced in Section 5.2.1. Then, steady, simple shear flows
can be physically and/or numerically simulated (i) by imposing the normal stress, and
measuring the concentration (or alternatively the void ratio) and the shear stress as func-
tions of the shear rate (pressure-imposed); (ii) by imposing the concentration (void ratio),
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and measuring the normal and shear stress as functions of the shear rate (concentration-
imposed); (iii) by imposing the stress ratio, and measuring the concentration and the shear
rate as functions of the normal stress (stress ratio-imposed). The results of the three con-
figurations are equivalent, if dimensionless quantities are employed [30]. Pressure-imposed,
concentration-imposed and stress ratio-imposed flow configurations are analyzed in Sec-
tions 5.2.2, 5.2.3 and 5.2.4, respectively.

5.2.1. Phase diagram

From (5.5a), since the second term on the right-hand-side is always positive, it must be

1− K

dσ
f0 ≥ 0. (5.18)

By substituting Eq. (4.56) into Eq. (5.18), for positive values of f0, we obtain

ν ≤ νcs (5.19)

where
νcs =

aνrlp
a+ σd/K

+
νs

1 + a(σd/K)−1
(5.20)

is the concentration at the critical state. νcs represents the maximum concentration that
can be achieved under steady conditions, for a fixed value of σ, when the shear rate van-
ishes.
Fig. 5.3 shows the qualitative phase diagram in the concentration-normal stress plane. For
large values of σd/K, νcs approaches νs; on the other hand, νcs tends to νrlp when σd/K
is small. Then, the range of coexistence of quasi-static and collisional stresses depends on
the imposed normal stress. As a consequence, considering a fixed value of σ, the simple
shear flow can be in the purely collisional regime or in the regime where both collisions
and force chains coexist, depending on the value of the shear rate.
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Figure 5.3.: Phase diagram for steady, simple shear flow of inelastic spheres in the σ − ν
plane. Eq. (5.20) (solid line) is plotted by using d = 1 mm, νrlp = 0.598, νs = 0.619,
a = 1.8 · 10−6 and K = 8.25 · 107 Pa m.

Analogously, Fig. 5.4 depicts the qualitative phase diagram in the concentration-interparticle
friction plane for the steady, simple shear flow of inelastic spheres, i.e., e < 1 and
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5. Simple shear flows of granular materials

νrlp < νs < νrcp, for an imposed value of the normal stress.
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ν
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Figure 5.4.: Phase diagram in the µ− ν plane for a fixed value of σ.

For a given value of the interparticle friction µ, the concentration decreases as the shear
rate increases (as already mentioned, the maximum value is when γ̇ = 0, i.e., at the critical
state, when the collisional stresses vanish). For small values of µ, νrlp is very close to νs,
so that the quasi-static stresses are almost zero: the maximum concentration therefore
coincides with νs and the steady, simple shear flow is always in the collisional regime. At
larger µ, νrlp is lower than νs: the concentration at the critical state is νcs, and quasi-static
and collisional stresses coexist in the range between νrlp ≤ ν ≤ νcs. At the value of γ̇ which
corresponds to a concentration equal to νrlp, the quasi-static stresses vanish and the ma-
terial undergoes a phase transition to the collisional regime. The range of coexistence of
quasi-static and collisional stresses depends on the ratio σd/K, which affects the value of
νcs. In particular, for small values of σd/K, i.e., small values of the total normal stress
or large values of the particle stiffness, νcs approaches νrlp, as already mentioned, thus
reducing the range of influence of quasi-static stresses (force chains) on the flow.

5.2.2. Pressure-imposed flows

As is common in the geotechnical community, pressure-imposed flows can be considered
as a mixed-control test (i.e., both kinematic and loading quantities are imposed).
Pressure-imposed flows are obtained by keeping constant the normal stress σ and com-
puting the concentration and the shear stress as functions of the shear rate. In this flow
configuration, the concentration is obtained by solving Eq. (5.5a), once σ and γ̇ are known,
where the coefficient fr is evaluated by using Eq. (4.61). Then, the shear stress is com-
puted with Eq. (5.5b) as a function of the concentration and the shear rate. Fig. 5.5(a)
and 5.5(b) show respectively the concentration and the stress ratio as functions of the
shear rate for four different values of normal stress.
Depending on the imposed normal stress, the term related to the force chains can be
relevant or not. In Fig. 5.5(a), the solid line is obtained for a large value of the imposed
normal stress (σ = 107 Pa). In this case, the maximum concentration is equal to the
shear rigidity concentration, and the flow is very dense at small values of the shear rate.
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Figure 5.5.: Theoretical (a) concentration and (b) stress ratio versus shear rate for 1 mm
stainless spheres, at different values of the applied normal stress. The light gray regions
represent the collisional regime, satisfying conditions Eqs. (4.57) and (5.17).

On the contrary, the dashed line represents a small value of the normal stress (σ = 10
Pa). The maximum concentration is equal to the random loose packing and the flow is
in the collisional regime for almost each value of the shear rate, i.e., the flow is (almost
completely) governed only by the collisions. The collisional regime, ν < νrlp, is pointed
out in Fig. 5.5(a) by the light gray region.
Fig. 5.5(b) shows the stress ratio as a function of the shear rate. Here, the collisional
regime is characterized by the fulfillment of condition (5.17), represented by the light gray
region. For vanishing values of the shear rate, the stress ratio approaches the constant
value tanφ, for each value of the imposed normal stress. In Fig. 5.5(b), in the purely col-
lisional regime all the curves exhibit a peak. The presence of a decreasing dependence of
the stress ratio on the shear rate in the purely collisional regime is confirmed by numerical
simulations on unbounded shear flows [88]. If the applied normal stress is sufficiently large
(solid line in Fig. 5.5b) the present theory predicts an additional reduction in the stress
ratio occurring when both collisional and quasi-static stresses coexist (i.e., when ν > νrlp).
There, the steady flow is characterized by the condition

τ

σ
< tanφ. (5.21)

The condition for the occurrence of a minimum for γ̇ 6= 0 and τ/σ < tanφ, when both
quasi-static and collisional stresses coexist, (Fig. 5.5b) can be derived from Eq. (5.9).
Indeed, for the shear rate being a real number,

τ/σ − tanφ

fr

(

f2f
1/2
6 − tanφf1f6

) > 0. (5.22)

Hence, the condition (5.21) can occur if and only if

f2f
1/2
6 − f1f6 tanφ < 0, (5.23)

given that fr is always positive. Eq. (5.23) gives

ν > ν∗, (5.24)
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5. Simple shear flows of granular materials

where ν∗ is the value of concentration satisfying

f2

f1f
1/2
6

− tanφ = 0. (5.25)

ν∗ depends on the shear rigidity concentration νs, the critical friction angle φ and the
effective coefficient of restitution e. In the case of stainless steel spheres, using the values
of the model parameters reported in Section 5.1, ν∗ is equal to 0.6074.
If νcs is larger than ν

∗, the material exhibits a non-monotonic dependence of the stress ratio
on the shear rate in the whole range of concentration between ν∗ and νcs. In contrast,
if νcs < ν∗, the stress ratio monotonically increases with γ̇. By using Eq. (5.20), the
condition νcs > ν∗ corresponds to

σ > σ∗, (5.26)

where

σ∗ = a
(ν∗ − νrlp)

(νs − ν∗)

K

d
. (5.27)

The dependence of νcs on σ and the values of ν and σ satisfying conditions (5.24) and
(5.26) are depicted in Fig. 5.6.
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Figure 5.6.: Concentration at the critical state (solid line) attained in the steady, simple
shear flow of 1 mm stainless steel spheres as a function of the applied normal stress. The
dark gray area represents the range of existence of the non-monotonic dependence of τ/σ
on γ̇ when both collisional and quasi-static stresses coexist.

For ν > ν∗, the above mentioned viscoplastic interpretation (Eq. 5.10) still holds, if the
fluidity parameter is allowed to be an imaginary number. The dependence of the fluidity
parameter on the concentration for different values of σ is depicted in Fig. 5.7. The gray
area represents the range of concentration for which γ̃ is imaginary. This condition cannot
be a priori excluded but it must be further investigated by using either experimental or
numerical tests on pressure-imposed flows. In fact, this unexpected trend could be a mis-
leading consequence of the use of unphysical constitutive parameters as well as of having
assumed e to be constant, i.e., independent on both σ and the relative velocity among
colliding particles.
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Figure 5.7.: Fluidity parameter as a function of the concentration for different values of
the normal stress. The curves refer to different values of the imposed normal stress (see
legend in Fig. 5.5).

Finally, Fig. 5.8 shows the same results but in terms of the dimensionless variables; then,
the theoretical relations of Eqs. (5.15a)-(5.15b) between the stress ratio µ, the concen-
tration ν and the inertial number I are plotted. Here, the different ratios σ/(K/d) are
obtained by using the usual particles properties (d = 1 mm, K = 8.25 · 107 Pa m) and the
four values of σ employed in Fig. 5.5.

0.2

0.3

0.4

0.5

0.7

ν

 

 

10
−5

10
0

I

σ/(K/d) = 1.2 10
−10

σ/(K/d) = 1.2 10
−8

σ/(K/d) = 1.2 10
−6

σ/(K/d) = 1.2 10
−4

10
−4

10
−3

10
−2

10
−1

ν
rlp

(a)

10
−5

10
0

0.20

0.25

0.30

0.35

0.40

I

τ/
σ

 

 

10
−4

10
−3

10
−2

10
−1

tan φ

(b)

Figure 5.8.: Theoretical (a) concentration and (b) stress ratio versus inertial number for
1 mm stainless spheres, at different values of the ratio between the normal stress and
the particle stiffness. The light gray regions represent the collisional regime, satisfying
conditions Eqs. (4.57) and (5.17).

For small values of σ/(K/d), all the distinctive features observed by da Cruz et al. [30] on
numerical simulations on disks are present in Fig. 5.8:

(i) at the lowest values of I, the collisional components of the stresses are negligible, so
that the stress ratio is approximately constant and equal to tanφ, a substantially
rate-independent regime (Fig. 5.8b);
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5. Simple shear flows of granular materials

(ii) in that regime, the concentration (Fig. 5.8a) shows the tendency to saturate towards
νcs, lying between the random loose packing and the shear rigidity;

(iii) at the largest values of I, the quasi-static components of the stresses vanish, and the
stress ratio is predicted by classical kinetic theories in the dense limit [58].

Fig. 5.8(b) shows that, for σ/(K/d) < 10−5, σ/(K/d) does not substantially affect the
curves since, for the granular material here considered, the values of νrlp and νs are very
close. For larger values of the ratio between the normal stress and the particle stiffness,
the stress ratio presents a non-monotonic dependence on the inertial number (similarly
to the shear stress), in the regime where both collisional and quasi-static stresses coexist,
corresponding to the fulfillment of condition (5.21).

da Cruz et al. [30] also investigated the influence of the interparticle friction on the τ/σ-I
and ν-I curves. As stated in Section 4.3.1, the interparticle friction affects the critical
friction angle [30] and the values of νrlp and νs [62, 117]. In particular, for frictionless
particles (µ = 0), tanφ = 0 and νrlp = νs = νrcp = 0.636 [36, 117]. Then, the quasi-static
contributions vanish and the theoretical model reduces to the kinetic theory of granular
gases, where the two modifications described in Section 4.2.1 are applied.
Fig. 5.9 shows the results of the present theory in the case of frictionless spheres. Here,
the (collisional) material parameters employed are: d = 10−3 m, ρp = 7.79 kg/m3, K =
8.25 · 107 Pa m, νs = 0.636 and e = 0.7.
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Figure 5.9.: Theoretical (a) concentration and (b) stress ratio versus shear rate at different
values of the applied normal stress, when frictionless particles are used (purely collisional
model with d = 1 mm, K = 8.25 · 107 Pa m, νs = 0.636 and e = 0.7).

The comparison of Fig. 5.9 with Fig. 5.5 allows to emphasize some key predictions of the
theory: (i) the value of the concentration for γ̇ → 0 would be independent of σ in a purely
collisional model; (ii) a purely collisional model cannot predict the asymptotic approach
of the stress ratio to the critical friction angle for γ̇ → 0 [30].
Plotting the same results in terms of inertial number (Fig. 5.10), all the curves collapse
except that obtained for a large value of σ/(K/d). The ratio between the normal stress
and the particle stiffness affects the function fr appearing in the collisional contributions,
which takes into account the influence of the particle stiffness on the contact duration
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Figure 5.10.: Theoretical (a) concentration and (b) stress ratio versus inertial number at
different values of the ratio between the normal stress and the particle stiffness, when
frictionless particles are used (purely collisional model with d = 1 mm, K = 8.25 · 107 Pa
m, νs = 0.636 and e = 0.7).

during collisions. By using Eqs. (4.23), (5.2) and the definition of the inertial number
(5.14), fr can be rewritten as

fr =

[

1 + 2
(π

8

)1/2 d

s
ν−1/2f

1/2
6 I

(

σd

K

)1/2
]−1

. (5.28)

For dense flows, the dimensionless mean separation distance s/d and f6 are of order 10−1,
while ν and I are of order unity. The second member on the right-hand-side of Eq. (5.28)
is therefore negligible if σ/(K/d) is lower than 10−5. On the other hand, when σ/(K/d) >
10−5 (solid line in Fig. 5.10), the collision time influences the material response and the
stress ratio curve differs from the others.

5.2.3. Concentration-imposed flows

In this Section, the steady state condition in concentration-imposed flows is discussed.
As was already mentioned, the concentration-imposed flow is a kinematic-control test
where stresses are computed as a function of the two kinematic variables: concentration
and shear rate. In this configuration, from Eq. (5.5), the stress ratio is given by

τ

σ
=

K

d
f0 tanφ+ ρpd

2f2frf
1/2
6 γ̇2

K

d
f0 + ρpd2f1frf6γ̇2

(5.29)

where the function fr is evaluated by using Eq. (5.6) as a function of the shear rate and
of the imposed concentration.
Figs. 5.11(a) and Fig. 5.11(b) show the results in terms of stress ratio versus shear rate
and normal stress versus shear rate, respectively, for different values of the concentration.
Fig. 5.11(a) highlights the difference between the purely collisional regime and the regime
where both quasi-static and collisional stresses coexist. Indeed, when the concentration
is lower than the random loose packing (collisional regime), the stress ratio is constant
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(curve with ν = 0.595), whereas, for ν > νrlp, τ/σ is affected by the shear rate.
Moreover, when the concentration is lower/greater than ν∗, the stress ratio is an increas-
ing/decreasing function of γ̇, as a consequence of condition (5.24). The limit case is ν = ν∗,
where the stress ratio is constant and equal to tanφ for all values of shear rate.
Fig. 5.11(b) shows that, at low shear rates, there is an evident separation between the two
flow regimes. When ν < νrlp, i.e., in the collisional regime, the normal stress continuously
decreases for decreasing shear rate values, and σ scales quadratically with γ̇; whereas, when
ν > νrlp, the normal stress approaches a constant value for γ̇ −→ 0. When ν > νrlp and γ̇
is vanishingly small, the term relates to force chains (quasi-static contribution) dominates
the material response. As the shear rate increases, all the curves collapse, independently
of the imposed concentration.
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Figure 5.11.: Theoretical (a) stress ratio and (b) normal stress versus shear rate for 1 mm
stainless steel spheres, at different values of concentration.

5.2.4. Stress ratio-imposed flows

The stress ratio-imposed flows are finally discussed in this Section. A stress ratio-imposed
flow is obtained by keeping constant the stress ratio τ/σ, by varying the normal stress and
measuring the shear rate and the concentration; then, it is a load-control test.
When ν > νrlp, by using Eqs. (5.29) and (5.5a), the relation between the concentration
and the normal stress reads

f0



1 +
f1f6

(

tanφ− τ

σ

)

f1f6
τ

σ
− f2f

1/2
6



 =
d

K
σ (5.30)

and the shear rate is given by

γ̇ =

√

√

√

√

√

σ − K

d
f0

ρpd2f1frf6
, (5.31)

where fr is evaluated by using Eq. (4.61).
In the purely collisional regime (ν < νrlp), the concentration is imposed by the stress ratio
through

f2

f1f
1/2
6

=
τ

σ
(5.32)
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and it does not depend on the normal stress. Then, the shear rate reduces to

γ̇ =

√

σ

ρpd2f1frf6
. (5.33)

The threshold between the two regimes is the stress ratio value associated with the random
loose packing concentration, (τ/σ)rlp, defined by Eq. (5.16).
Figs. 5.12(a) and 5.12(b) depict concentration and shear rate versus normal stress, respec-
tively, for different stress ratio values. The curves of Fig. 5.12(a) represent the iso-stress
ratio lines in the phase diagram of Section 5.2.1 (Fig. 5.3).
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Figure 5.12.: Theoretical (a) concentration and (b) shear rate versus normal stress for 1
mm stainless steel spheres, at different values of the stress ratio.

The solid lines of Fig. 5.12(a) represent the limit case τ/σ = tanφ. From Eq. (5.29), by
imposing τ/σ = tanφ, we obtain:

(

f2f
1/2
6 − f1f6 tanφ

)

γ̇2 = 0, (5.34)

which leads to two solutions:

1. γ̇ = 0. It is the usual definition for critical state, where the collisional contribution
vanishes and the concentration is equal to νcs (5.20).

2. f2f
1/2
6 − f1f6 tanφ = 0, implying a concentration independent of σ and equal to ν∗

(Eq. 5.25), with the shear rate given by Eq. (5.31).

When σ > σ∗ (corresponding to νcs > ν∗ and, together, τ/σ < tanφ), the steady flow
undergoes a loss of uniqueness of the solution in terms of the two kinematic variables, ν
and γ̇.
This loss of uniqueness of the solution characterizes also all the curves at imposed stress
ratio lower than tanφ. When τ/σ < tanφ, there is only a limited range of the normal
stress for which the steady state is possible, and, in this range, there are always two con-
centrations and two shear rates for a given value of σ. The range of existence of the steady
state (range of possible normal stresses) increases accordingly to the imposed stress ratio,
and the minimum normal stress in Fig. 5.12(a) moves on the left and tends to σ∗ as τ/σ
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tends to tanφ. All the curves characterized by an imposed stress ratio lower than tanφ
are enclosed between the dark gray area of the phase diagram of Fig. 5.6.
Both the theoretical concentrations are larger than ν∗, as was predicted by Eq. (5.24),
and, consequently, both the steady states belong to the regime of coexistence of quasi-
static and collisional stresses. Fig. 5.13 shows the same results of Fig. 5.12 for the case of
τ/σ = 0.26 only.
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Figure 5.13.: Theoretical (a) concentration and (b) shear rate versus normal stress for
τ/σ = 0.26.

There, point A corresponds to the minimum normal stress possible at the steady state,
whereas B represents the minimum shear rate. Given these two points, we can distinguish
three branches of the curves:

• branch a., where an increasing normal stress induces an increasing shear rate and a
decreasing concentration;

• branch b., where an increasing normal stress induces a decreasing shear rate and an
increasing concentration, as commonly expected;

• branch c., where an increasing normal stress induces an increase in both shear rate
and concentration.

The apparent counter-intuitive behaviour in branches a and c will require further investi-
gations.
When τ/σ > tanφ, the steady state is possible for all values of σ. Multiple solutions can
still occur depending on the value of τ/σ, even in the purely collisional regime [128].
If the applied stress ratio is lower than (τ/σ)rlp (dotted line in Fig. 5.12), the solution
lies in the regime of coexistence of collisions and force chains, and is characterized by an
increasing shear rate, given by Eq. (5.31), and an increasing concentration (5.30), that
varies between νrlp and ν∗. On the other hand, when τ/σ > (τ/σ)rlp, the steady state is
in the collisional regime. Here the concentration is constant, as predicted by Eq. (5.32),
and the shear rate is given by Eq. (5.33). The relationship between the concentration
and the stress ratio in the collisional regime (5.32) is illustrated in Fig. 5.14. This shows
a non-monotonic trend, which implies that, if the imposed stress ratio is in the range
between the local maximum and minimum of τ/σ, there are three possible solutions in
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the collisional regime (i.e., three values of concentration satisfying Eq. 5.32). The relative
maximum and minimum collisional stress ratio correspond to concentrations equal to 0.49
and 0.23, respectively, employing the set of material parameter previously introduced.
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Figure 5.14.: Dependence of the stress ratio on the concentration in the purely collisional
regime (5.32).

5.3. Analysis of the model using numerical and experimental
results

In this Section, the present theoretical model is compared with numerical and experimen-
tal results selected from literature. First, in Section 5.3.1, the theory is validated against
the experiments on incline flows of glass spheres over rigid beds obtained by Pouliquen
[102]. Then, in Section 5.3.2, the theoretical model is compared with numerical simula-
tions performed by Mitarai and Nakanishi [88] and Chialvo and Sundaresan [27] using
frictionless spheres. When the particles are frictionless, the force chains can not develop
and the steady flow is always in the collisional regime. The numerical data analyzed in this
Section are usefull to test the collisional contributions, i.e., the modified kinetic theory.
The sets of numerical simulation are obtained using nearly rigid particles; then, there is
no influence of the function fr, introduced in this work to take into account the role of
stiffness during particle collisions. As a consequence, the new proposed expression of the
radial distribution function is the unique modification which plays a role and can be inde-
pendently tested with the support of numerical results. Finally, Section 5.3.3 is devoted to
the comparison with numerical simulations obtained using frictional spheres. Chialvo and
Sundaresan [27] performed 3D SS-DEM simulations using frictional but very stiff particles,
as for the case of frictionless spheres, and investigated a range of concentration for which
the flow is mainly in the collisional regime. These sets of numerical results allow to check
the influence of the friction in the collisional terms, which in this work is accounted for
through the introduction of the effective coefficient of restitution, in the form proposed
by Jenkins and Zhang [60]. On the other hand, Chialvo et al. [28] performed a set of
numerical simulations, using the same code as in [27], investigating the role of particle
stiffness and in a wide range of concentration. In these second sets of numerical data, (i)
force chains are allowed to develop, so that the definition of the quasi-static contribution
can be tested; also, (ii) the range of particle stiffness investigated is large enough to check
its role in the collisional contribution and to justify the introduction of the function fr.

65



5. Simple shear flows of granular materials

Several numerical simulations have been performed in the collisional regime, as well as
different theoretical models have been proposed, based on the kinetic theory. As discussed
in the previous Section 4.3, accordingly to the present theoretical model, the response of
granular materials under steady, shearing conditions, is characterized only by collisions,
i.e., the regime is purely collisional, in two cases: (i) if the particles are frictionless and
(ii), for frictional particles, when the concentration is lower than the random loose pack-
ing, ν < νrlp (4.57). In the purely collisional regime, the theoretical model reduces to the
collisional terms, which are here modelled using the Extended Kinetic Theory introduced
by Jenkins [53], and modified as illustrated in Section 4.2.1: (i) by using a new expression
of the radial distribution function, g0 (4.28), and (ii) by taking into account the role of the
particle stiffness on the contact duration during collisions through the function fr (4.23).
The modified kinetic theory here proposed will be compared, in Sections 5.3.2 and 5.3.3,
with the modified kinetic theory recently proposed by Chialvo and Sundaresan [27], on the
basis of their numerical results. Since the work of Chialvo and Sundaresan [27] is based
on an approach similar to that of the present theory, a short summary of their model is
here presented.
Accordingly to Chialvo and Sundaresan [27], and as previously discussed in Chialvo et al.
[28], three flow regimes are possible in steady, simple shear flows, depending on the con-
centration and the shear rate: (1) a “quasi-static” regime for concentrations larger than
the “critical” concentration, νc, in which normal and shear stresses are independent of the
shear rate; (2) an “inertial” regime, for ν < νc, in which the normal and the shear stresses
scale with the square of the shear rate: σ, τ ∼ γ̇2; (3) an “intermediate” regime occurring
in a narrow range of concentration around νc in which σ, τ ∼ γ̇α with 0.5 ≤ α ≤ 1. Also,
when the particles are very rigid, i.e., when K −→ ∞, only the inertial regime can be
observed.
In this thesis, only two flows regime are considered possible: the collisional regime, for
concentrations lower than the random loose packing, and the regime of coexistence of
collisional and quasi-static contributions, for ν > νrlp. In both the approches, the devel-
opment of force chains which span the whole domain is related to a given value of the
concentration. The critical concentration introduced and measured by Chialvo et al. [28]
is related to the random close packing and the shear rigidity concentration which appear
in the present model. Also, the intermediate regime of Chialvo et al. [28] is here considered
as a particular case of the collisional regime or of the coexistence regime, depending only
on the concentration, when the particle stiffness is large enough to influence the collisional
terms through the function fr. This difference between the two approches, together with
the relationships between νc, νrlp and νs, will be pointed out in the upcoming Section 5.3.3,
in the case of frictional spheres, given that, in the case of frictionless spheres, only the
collisional regime can be observed and all the limit concentrations collapse on the random
close packing concentration.
For both the cases of frictionless and frictional particles, the authors in [27] focused on
the inertial regime (i.e., concentration lower than the critical value and large values of the
particle stiffness) and proposed corrections to the kinetic theory of Garzó and Dufty [40]
on the basis of 3D SS-DEM simulations of simple shear flows. Their modifications can be
summarized as:

1. they propose a new definition of the radial distribution function;

2. they define a different expression of the correlation lenght,

3. they adopt a new expression of the effective coefficient of restitution, as a function
of the interparticle friction coefficient, different from that of Jenkins and Zhang [60];
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5.3. Analysis of the model using numerical and experimental results

4. they introduce of a correction for the constitutive relation of the (collisional) shear
stress;

5. they assume that the normal and the shear stress are unaffected by the interpar-
ticle friction coefficient; then, the effective friction coefficient appears only in the
costitutive relation of the collisional rate of dissipation of fluctuating energy, Γcol.

In the case of frictionless particles and at concentration lower than 0.49, the model of
Chialvo and Sundaresan [27] recover the Standard Kinetic Theory of Garzó and Dufty
[40], as well as the present theory. But, despite the basic forms of the corrections used
to achieve the improved performance all are similar to that of this thesis, the two models
produces very different results. The comparison of the two models will be discussed in
the following, with the support of the numerical data. But it is important to notice that
a weakness of the model proposed by Chialvo and Sundaresan [27] is its limitation to the
case of simple, shear flows. The extension to non homogeneous flows is prevented by the
lack of the definition of the collisional energy flux, whose divergence can not be neglected
in the energy balance, when non homogeneous flows are considered.

5.3.1. Comparison with experimental results on inclined planes

In this Section, the present theoretical model is compared with the experimental results
on the steady and fully developed flows of glass spheres on inclined planes performed by
Pouliquen [102]. In that flow configuration, the stress ratio is constant along the flow cross-
section and equal to the tangent of the angle of inclination of the plane [54]. If the flow is
thick enough (say, depth greater than ten diameters), the influence of the boundaries can
be neglected and both the inertial number and the concentration are also constant along
the cross-section of the flow [54, 70]. The incline flow configuration works therefore as a
rheometer [44] and provides values of τ/σ and I that can be compared with those derived
from the present theory for pressure-imposed flows.
Pouliquen [102] measured the particle depth-averaged velocity, V , and the depth, h, for
different angles of inclination of the plane, θ (ranging from 22◦ to 28◦). As shown by
GDR-MiDi [44], the experimental values of the inertial number and the stress ratio corre-

spond to I = 5V/
[

2 (cos θ)1/2 h3/2
]

and τ/σ = tan θ, respectively.

Fig. 5.15 shows the comparison of the present theory with the results inferred from the
experiments of Pouliquen, in term of stress ratio against the inertial number. The experi-
mental values reported on Fig. 5.15 (symbols) have been obtained by averaging all the data
reported by Pouliquen [102] with depths greater than ten diameters. The line represents
Eq. (5.15a). The model parameters which affect the theory are chosen in agreement with
the experiments: Pouliquen measured the angle of repose for glass sphere, which gives
tanφ = 0.38. This value of the critical friction angle corresponds, accordingly to Tab. 4.1,
to an interparticle friction angle equal to µ = 0.5, from which the random loose packing
and the shear rigidity can be estimated, as in Tab. 4.1: νrlp = 0.574, νs = 0.598. Then,
the glass density and stiffness are adopted, ρp = 2500 kg/m3, K = 70 · 109 Pa m; Jenkins
[53] and Jenkins and Berzi [54] suggested to use e = 0.6 for dense flows of glass spheres;
a = 1.8 · 10−6 is employed as for steel spheres. Finally, in the experiments of Pouliquen,
σ/(K/d) is of order 10−8, then the term fr is about one, as shown in Section 5.2.2, and
does not influence the collisional contributions.

The agreement between the theoretical and the experimental results is remarkable, espe-
cially because there is no tuning of the model parameters. It is also worth emphasizing
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Figure 5.15.: Predicted (line, Eq. 5.15a with σ/(K/d) = 10−8) and measured (symbols,
[102]) values of the stress ratio versus the inertial number for glass spheres (ρp = 2500
kg/m3, K = 70 · 109 Pa m, tanφ = 0.38, νrlp = 0.574, νs = 0.598, e = 0.6, a = 1.8 · 10−6).

that the constitutive relation for the frictional component of the normal stress holds, in
principle, for steel spheres. As already stated, the theories of Johnson and Jackson [63, 64]
and Savage [109] would predict a constant stress ratio, independent of the inertial number,
in contrast with the experiments.

5.3.2. Comparison with numerical simulations of frictionless, hard spheres

In this Section, the numerical results obtained by Mitarai and Nakanishi [88] and Chialvo
and Sundaresan [27] on frictionless spheres are compared with the present theory.
When the particles are frictionless, the steady flow is in the collisional regime and, in
simple shear flows, the governing equations can be summarized as

T

d2γ̇2
= f6, (5.35)

σ

ρpd2γ̇2
= f1frf6, (5.36)

τ

σ
=

f2

f1f
1/2
6

. (5.37)

The model parameters which affect Eqs. (5.35)-(5.37) are the shear rigidity concentration,
νs, and the coefficient of restitution, e. For frictionless particles, νs = νrcp = 0.636 (see
Tab. 4.1) and the (effective) coefficient of restitution coincides with the normal coefficient
of restitution. Then, no model parameters are to be set.
Mitarai and Nakanishi [88] performed Event-Driven simulations of simple shear flows of
hard spheres, whereas Chialvo and Sundaresan [27] used a Soft-Spheres Discrete Element
Method code with a linear spring-dashpot model. In both works, the Lees-Edwards [73]
boundary conditions were implemented in the shearing direction, in order to allow for
the system to remain homogeneous during the shearing. In the ED numerical simulations
performed by Mitarai and Nakanishi [88], the spheres are hard, while Chialvo and Sun-
daresan [27] employed a finite but very high value of K, such as the finite stiffness plays
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5.3. Analysis of the model using numerical and experimental results

no role (K/(ρpd
3γ̇2) −→ ∞). According to Eq. (5.6), the function fr, which represents

the first modification to the kinetic theory introduced in this work, is equal to 1 and does
not affect the system. Then, this two sets of numerical simulations can be used to validate
the second modification here proposed, i.e., the new expression of the radial distribution
function g0 (4.28). Also, the form of the correlation length [11], which, in simple shear
flows, is given by Eq. (5.4), can be tested.
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Figure 5.16.: Numerical (symbols, after Mitarai and Nakanishi [88] and Chialvo and Sun-
daresan [27]) quantities σ/ (ρpT ) (a) and τ/

(

ρpdT
1/2γ̇

)

(b) as functions of the concentra-
tion for e = 0.70 and µ = 0, compared with the theoretical expression of f1 and f2 (solid
lines, Eqs. 4.46 and 4.47). The dot-dashed lines and the dotted lines represent the present
theory when the radial distribution function is that proposed by Carnahan and Starling
[25], (4.26), and Torquato [118], (4.27), respectively.

To check the validity of the proposed expression of the radial distribution function, Eq. (4.28),
we consider the constitutive relations of the collisional stresses, which, for plane shear flows,
are given by Eqs. (4.42)-(4.43). Here, f1 and f2 are solely functions of the concentration
through g0 and are expressed by Eqs. (4.46) and (4.47), respectively. In the collisional
regime, when fr = 1, f1 and f2 can be rewritten as

f1 =
σ

ρpT
, (5.38)

f2 =
τ

ρpdT 1/2γ̇
. (5.39)

By using Eqs. (5.38)-(5.39), f1 and f2 can be inferred by the numerical simulations once
σ, T , τ and γ̇ are measured. Figs. 5.16(a) and 5.16(b) depict, respectively, the quantities
σ/ (ρpT ) and τ/

(

ρpdT
1/2γ̇

)

as functions of the concentration, where σ, T , τ and γ̇ are
those measured by Mitarai and Nakanishi [88] and Chialvo and Sundaresan [27], when
e = 0.70, together with the theoretical expressions of f1 and f2, Eqs. (4.46) and (4.47),
with g0 given by Eq. (4.28) (solid lines). Also plotted in Fig. 5.16, are the predictions of
the present theory if the Carnahan and Starling’s [25] (4.26) (dot-dashed lines) and the
Torquato’s [118] (4.27) (dotted lines) expressions of g0 are employed.
The agreement between the numerical data and the theoretical expressions of f1 and f2
is remarkable when Eq. (4.28) is used for g0. Similar agreement is obtained for other
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values of the coefficient of restitution. The comparison of Eqs. (4.46) and (4.47) with
the measured quantities σ/ (ρpT ) and τ/

(

ρpdT
1/2γ̇

)

for other values of the coefficient of
restitution is reported in Appendix B. If the Carnahan and Starling’s form [25] of g0 is
used into the theoretical functions f1 and f2, the asymptotic behavior of both σ/ (ρpT )
and τ/

(

ρpdT
1/2γ̇

)

is not reproduced. Also, the numerical data are underpredicted at large
concentrations (ν > 0.49), if the Torquato’s expression [118] is adopted.
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Figure 5.17.: (a) Numerical (symbols, after Mitarai and Nakanishi [88] and Chialvo and
Sundaresan [27]) and theoretical (lines, Eq. 5.4) correlation length as a function of the
concentration, for different values of the coefficient of restitution, when µ = 0. (b) Same
as in Fig. 5.17(a) for the case e = 0.7. The dashed line represents the theory of Chialvo
and Sundaresan [27].

For simple shear flows, when fr = 1, using the definition of the collisional rate of dissipation
of fluctuating energy, Γcol, Eq. (4.44), into the energy balance, Eq. (5.1), gives for the
correlation length

L =
f3T

3/2

τ γ̇
. (5.40)

In Fig. 5.17(a) the quantity f3T
3/2/ (τ γ̇) is plotted as a function of the concentration,

where τ and T are those measured by Mitarai and Nakanishi [88] and Chialvo and Sundare-
san [27] in their numerical simulations, while f3 is evaluated from the expression (4.48),
using Eq. (4.28) and the measured values of the concentration. There, the solid lines
represent the theoretical expression of the correlation length, Eq. (5.4). The theoretical
correlation length is in quantitatively agreement with the numerical results. Fig. 5.17(b)
depicts, for comparison, the correlation length obtained from the modification of the ki-
netic theory suggested by Chialvo and Sundaresan [27] when e = 0.7.

The dimensionless quantities T/
(

d2γ̇2
)

and σ/
(

ρpd
2γ̇2
)

, obtained from the numerical
simulations of Mitarai and Nakanishi [88] and Chialvo and Sundaresan [27], are shown in
Fig. 5.18(a) and 5.18(b), respectively, for different values of the coefficient of restitution.
The lines represent Eqs. (5.35) and (5.36), with the radial distribution function given by
Eq. (4.28) and the correlation lenght given by Eq. (5.4). For all the values of the coefficient
of restitution, the scaled normal stress shows a decreasing behavior at low concentrations
(ν < 0.2), then σ increases with ν and diverges at the random close packing concentration
(Fig. 5.18(b)). Also the scaled granular temperature presents a non-monotonic behavior:

70



5.3. Analysis of the model using numerical and experimental results

0.0 0.1 0.2 0.3 0.4 0.5 0.6
10

−1

10
0

10
1

10
2

10
3

10
4

ν

 

 

T
 /
 (
d
   

γ 
 )
 

2
.

2

e = 0.70

e = 0.80

e = 0.90

e = 0.92

e = 0.95

e = 0.98

e = 0.99

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
10

−1

10
0

10
1

10
2

10
3

10
4

ν

 

 

σ
 /
 (
ρ
 d
   

γ 
 )
 

p

2
.

2

(b)

Figure 5.18.: Numerical (symbols, after Mitarai and Nakanishi [88] and Chialvo and Sun-
daresan [27]) and theoretical (lines, Eqs. 5.35 and 5.36) scaled granular temperature (a)
and normal stress (b) as functions of the concentration, for different values of the coefficient
of restitution, when µ = 0.
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Figure 5.19.: Same as in Fig. 5.18 for the case e = 0.7. The dotted line represents the
present theory when L = 1, while the dashed line the theory of Chialvo and Sundaresan
[27].

it drops at very small ν, continues to decreases with the concentration and then becomes
an increasing function at large values of ν (Fig. 5.18(a)).
Except for large coefficients of restitution (e > 0.95), T/

(

d2γ̇2
)

and σ/
(

ρpd
2γ̇2
)

are well
predicted by kinetic theory in the entire range of concentration, if the expressions (4.28) for
g0 and (5.4) for L are adopted. The poor agreement in the case of nearly elastic particles,
although rather unexpected, is clearly limited to concentrations larger than 0.49. This
is an indication that, for nearly elastic particles, Eq. (4.28) is not accurate. Replacing
Eq. (4.28) with Eq. (4.27) would allow a good fitting also for the case of nearly elastic
particles (e > 0.95). In most realistic cases, though, the coefficient of restitution is lower
than 0.95, so that this discrepancy is not crucial.
Figs. 5.19(a) and 5.19(b) depict, for the case e = 0.7, the comparison of the theory
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with (i) the predictions of the present theory if the breaking of the molecular chaos is
not accounted for (i.e., L = 1) and (ii) the predictions from the theory of Chialvo and
Sundaresan [27]. All the models collapse at low concentration, where the radial distribution
function is well predicted by the Carnahan and Starling [25] expression, Eq. (4.26). If
the role of correlated motion among particles is disregarded (i.e., L = 1), the granular
temperature results a monotonically decreasing function of the concentration (dotted line),
in complete contrast with the numerical measurements (Fig. 5.19(a)). This disagreement
in T generates underpredictions of the normal stress, according to the constitutive relation
for σ, Eq. (4.42) (Fig. 5.19(b)). The model of Chialvo and Sundaresan [27] underpredicts
the normal stress and, mostly, the granular temperature, at large concentrations. Using
the proposed g0, Eq. (4.28), in the Extended Kinetic Theory, and the expression of the
correlation length derived by Berzi [11], Eq. (5.4), allows to notably improve the prediction
of T and σ, in the whole range of concentration. The comparisons of the numerical data
and the theories when using different values of the coefficient of restitution confirm the
best agreement of the proposed model.
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Figure 5.20.: (a) Numerical (symbols, after Mitarai and Nakanishi [88] and Chialvo and
Sundaresan [27]) and theoretical (lines, Eq. (5.37)) stress ratio as a function of the concen-
tration, for different values of the coefficient of restitution (see legend in Fig. 5.18), when
µ = 0. (b) Same as in Fig. 5.20(a) for the case e = 0.7. The dotted line represents the
present theory when L = 1, while the dashed line the theory of Chialvo and Sundaresan
[27].

Finally, in Fig. 5.20(a) the measured values of the stress ratio are compared with the
theoretical predictions Eq. (5.37). The theoretical curves are in very good agreement with
the numerical data in the range of coefficient of restitution 0.7-0.95, capturing the non-
monotonic trend and the close-packed limit of τ/σ. When e > 0.95, the stress ratio is
underpredicted as well as the scaled granular temperature and the scaled normal stress.
The present theory reproduces betten than the theory in [27] the behavior of τ/σ, as can
be observed in Fig. 5.20(b) for the case e = 0.7. In particular, Fig. 5.20(a) indicates that
there is no need to modify the constitutive relation of the shear stress of kinetic theory, at
least if the particles are sufficiently inelastic [11]. The presence of the correlation length
into the energy dissipation rate makes the predicted stress ratio a decreasing function of
the concentration in the dense regime, whereas using L = 1 produces an increase of the
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stress ratio (dotted line in Fig. 5.20(b)). The overprediction of τ/σ at very low concen-
tration (ν < 0.2) for e = 0.7, common to both the theories, is at present puzzling.

5.3.3. Comparison with numerical simulations of frictional spheres

The comparison of the present theoretical model with numerical results for frictional
spheres is discussed in this Section. Here, two sets of simulations will be analyzed. In
both the works, concentration-imposed, steady, simple shear flows of frictional spheres
are performed using the same 3D SS-DEM code, but considering differently the role of
the particles stiffness. In [27], the range of concentration investigated is such that the
flows are mostly in the collisional regime. Also, as for the frictionless spheres, Chialvo
and Sundaresan [27] employed a very high values of K, disregarding the role of particle
stiffness. These numerical results are useful to check the role of interparticle friction in
the collisional contribution. On the other hand, Chialvo et al. [28] analyzed the role of
particle stiffness on the different flows regimes and investigated a large range of imposed
concentration. Then, the numerical simulations carried out in [28] allows to investigate
(i) the validity of the function fr in the collisional terms, (ii) the form of the quasi-static
contribution to the stresses.

Frictional, hard spheres and collisional regime

The governing equations for steady, simple shear flows of frictional particles can be written
as

T

d2γ̇2
= f6, (5.41)

σ

ρpd2γ̇2
= f1frf6 + f0

K

ρpd3γ̇2
, (5.42)

τ

σ
=

f0
K

ρpd3γ̇2
+ f1frf6

f0
K

ρpd3γ̇2
tanφ+ f2frf

1/2
6

, (5.43)

The equations for the scaled normal stress and the stress ratio, Eqs. (5.42)-(5.43), reduce
to those valid in the collisional regime, Eqs. (5.36)-(5.37), only when ν < νrlp, i.e., f0 = 0.
In principle, if ν > νrlp, the dimensionless quantities σ/

(

ρpd
2γ̇2
)

and τ/σ are not solely
functions of the concentration, but depend also on the dimensionless particle stiffness
K/
(

ρpd
3γ̇2
)

, whereas the scaled granular temperature, T/
(

d2γ̇2
)

, depends only on the
concentration through the function f6.
Chialvo and Sundaresan [27] performed 3D SS-DEM simulations of steady, simple shear
flows of frictional spheres. The aim of the authors was to investigate the behavior of the
granular material in the ‘inertial’ regime. According to them, the ‘inertial’ regime can
be observed using very hard particle, characterized by stiffness K −→ ∞. Conversely,
in the present theory, only two flow regimes are supposed to be possible: the collisional
regime (ν < νrlp) and the regime of coexistence of collisional and quasi-static contributions
(ν > νrlp). The transition among the two regimes is governed solely by the concentration.
The numerical simulations in [27] have been performed: using large values of K/

(

ρpd
3γ̇2
)

(for which, acconding to Eq. (5.6), the function fr tends to one); setting the tangen-
tial coefficient of restitution, et, equal to 1; varying the normal coefficient of restitution
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(en = 0.7, 0.8, 0.9, 0.95, 0.99) and the interparticle friction angle (µ = 0.1 and 0.5). Hence,
according to Tab. 4.1, here we use: (1) for µ = 0.1: νs = 0.613, tanφ = 0.268, νrlp = 0.598;
(2) for µ = 0.5: νs = 0.598, tanφ = 0.382, νrlp = 0.585. Also, a = 1.8 · 10−6 is adopted, as
for steel spheres, and the effective coefficient of restitution is computed using Eq. (3.45),
with et = 1 and the choosen values of en and µ. Finally, the data have been obtained
for concentrations lower than 0.61, for the case µ = 0.1, and lower than 0.585 for the
case µ = 0.5; then, just a few measurements lie in the narrow window of the regime of
coexistence of collisional and quasi-static contributions, i.e., νrlp < ν < νs, in both the
sets of simulations. As a consequence, the most of the data are in the collisional regime,
where the present theory reduces to the modified kinetic theory.

(1) Slightly frictional particles

Fig. 5.21 shows the measured dimensionless quantities T/
(

d2γ̇2
)

and σ/
(

ρpd
2γ̇2
)

, ob-
tained from the numerical simulations of Chialvo and Sundaresan [27] when using µ = 0.1,
for different values of the normal coefficient of restitution. The lines represent the present
theory, Eqs. (5.41) and (5.42) with g0 and L given by Eqs. (4.28) and (5.4), respectively.
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Figure 5.21.: Numerical (symbols, Chialvo and Sundaresan [27]) and theoretical (lines,
Eqs. 5.41 and 5.42) scaled granular temperature (a) and normal stress (b) as functions of
the concentration, for different values of the normal coefficient of restitution, when µ = 0.1
and et = 1.

The trends of both T/
(

d2γ̇2
)

and σ/
(

ρpd
2γ̇2
)

are similar to the case of frictionless spheres,
and both the variables diminish with increasing interparticle friction coefficient. The
theory predicts extremely well the measurements of the scaled granular temperature and
the scaled normal stress, for all the values of the normal coefficient of restitution (for the
largest value of the normal coefficient of restitution, en = 0.99, the effective coefficient of
restitution is equal to 0.87). It is important to notice that there is no tuning of the model
parameters. The disagreement between the theory and the data in the dilute regime,
ν < 0.2, quantitatively increases with the interparticle friction coefficient.
In Fig. 5.22(a) the stress ratio is plotted as a function of the concentration, for different
values of the normal coefficient of restitution. Here, the symbols represent the numerical
measurements of Chialvo and Sundaresan [27] and the lines Eq. (5.43), with fr = 1.
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5.3. Analysis of the model using numerical and experimental results

The stress ratio is well predicted for en = 0.7 and 0.8 (e = 0.58 and 0.68, respectively),
but slightly underestimated for larger values of en, especially at large concentrations.
Nevertheless, the theory is able to reproduce the change of concavity of τ/σ which occurs,
independently of the coefficient of restitution, at the freezing point, νf = 0.49. Whereas,
the modified kinetic theory of Chialvo and Sundaresan [27] predicts a larger value of
concentration at which the decrease in τ/σ starts to occur, as shown in Fig. 5.22(b) for
the case en = 0.7 (e = 0.58). At very low concentrations, ν < 0.2, the measured stress
ratio is strongly over predicted by both the theories when en = 0.7, as in the case of
frictionless spheres.
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Figure 5.22.: (a) Numerical (symbols, Chialvo and Sundaresan [27]) and theoretical (lines,
Eq. 5.43) stress ratio as a function of the concentration, for different values of the normal
coefficient of restitution (see legend in Fig. 5.21), when µ = 0.1 and et = 1. (b) Same as
in Fig. 5.22(a) for the case en = 0.7. The dashed line represents the theory of Chialvo and
Sundaresan [27].

Finally, the measured correlation length, computed using Eq. (5.40), is illustrated in
Fig. 5.23(a), for different values of the normal coefficient of restitution, together with
the predictions given by Eq. (5.4). Also, a comparison with the correlation length used in
the kinetic theory of Chialvo and Sundaresan [27] is depicted in Fig. 5.23(b) for the case
en = 0.7. The numerical data show that the correlation length does not diverge at the
shear rigidity concentration (0.613 for µ = 0.1) but at the random close packing, 0.636,
and is not affected by the interparticle friction. This evidence justifies the form of L given
in Eq. (5.4), which depends on the concentration throughtout the function g̃0, diverging
at νrcp.
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Figure 5.23.: (a) Numerical (symbols, Chialvo and Sundaresan [27]) and theoretical (lines,
Eq. 5.4) correlation length as a function of the concentration, for different values of the
normal coefficient of restitution (see legend in Fig. 5.21), when µ = 0.1 and et = 1. (b)
Same as in Fig. 5.23(a) for the case en = 0.7. The dashed line represents the theory of
Chialvo and Sundaresan [27].

(2) Very frictional particles

The comparison between the theoretical model and the SS-DEM results of Chialvo and
Sundaresan [27] for µ = 0.5 is shown in Fig. 5.24 in terms of scaled granular temperature
(a), scaled normal stress (b) and stress ratio (c).
Predictions of the theory strongly disagree with the numerical results for so frictional
particles. For all the values of the normal coefficient of restitution, both the granular
temperature and the normal stress are underestimated at concentrations larger than 0.2,
and the discrepancies amplify as the normal coefficient of restitution increases. On the
other hand, the stress ratio is quite well predicted only at large concentrations (ν > 0.5).
The strong discrepancy between the theory and the numerical results, for all the quantities
T/
(

d2γ̇2
)

, σ/
(

ρpd
2γ̇2
)

and τ/σ, is probably related to the effective coefficient of restitution
here adopted. The effective coefficient of restitution accounts for the total energy loss
during a collision, due to both inelasticity and friction, and, accordingly to the model
of Jenkins and Zhang [60], it increases with the interparticle friction coefficient. The
plots of scaled granular temperature (Fig. 5.24(a)) reveal that, for µ = 0.5, the produced
increase in the energy dissipation is too high, such that, the predicted granular temperature
is lower than the measured one (for ν > 0.2). The computed effective coefficients of
restitution are in fact very small compared with the normal ones, such as even very
elastic particles, en = 0.99, loose the 30% of their energy when collide due to the friction
(e = 0.69), whereas for en = 0.7 we obtain e = 0.41. The expression of Jenkins and Zhang
[60] (3.45) was derived under the assumption of slightly frictional spheres, for which the
balance equations for the rotational momentum and energy can be considered satisfied
in approximate ways. Evidently, this assumption does not hold for large values of the
interparticle friction coefficient and it is necessary to solve the balance equations and
boundary conditions for the mean spin and the rotational fluctuation energy in order to
correctly account for the friction.
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Figure 5.24.: Numerical (symbols, Chialvo and Sundaresan [27]) and theoretical (lines,
Eqs. 5.41, 5.42 and 5.43) scaled granular temperature (a), normal stress (b) and stress ratio
(c) as functions of the concentration, for different values of the coefficient of restitution,
when µ = 0.5 and et = 1.

Frictional spheres and regime of coexistence of collisional and quasi-static
contributions

In this Section, the present theory is compared with the numerical simulations of concen-
tration-imposed simple shear flows of frictional spheres, performed by Chialvo et al. [28].
The authors employed the same 3D SS-DEM code as in Chialvo and Sundaresan [27],
analyzing the role of the particle stiffness over a large range of concentrations. They used
spheres characterized by coefficients of normal and tangential restitution equal to en = 0.7
and et = 1, respectively, and two different values of the interparticle friction coefficient,
0.1 and 0.5. Hence, there we use: (a) for µ = 0.1: e = 0.58, νs = 0.613, tanφ = 0.268,
a = 1.8 · 10−6, νrlp = 0.598; (b) for µ = 0.5: e = 0.41, νs = 0.598, tanφ = 0.382,
a = 1.8 · 10−6, νrlp = 0.585. The particle properties, d, ρp and K are used to make dimen-
sionless all the quantities.
Fig. 5.25 shows the measured scaled normal stress, σd/K, versus the scaled shear rate,

γ̇d (ρpd/K)1/2, at various values of the concentration for (a) µ = 0.1 and (b) µ = 0.5.
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Figure 5.25.: Numerical (symbols, Chialvo et al. [28]) scaled normal stress σd/K as a

function of the scaled shear rate γ̇d (ρpd/K)1/2 for different values of the imposed con-
centration, when µ = 0.1 (a) and µ = 0.5 (b), compared with the theoretical expression
(lines, Eq. (5.44)).

The numerical measurements show that, at low shear rates, there is an evident separatrix
occuring at a certain “critical value” of concentration. For concentrations lower than the
critical threshold, σd/K continuously decreases for decreasing shear rate, and, in particu-

lar, it scales quadratically with γ̇
(

ρpd
3/K

)1/2
, whereas the scaled normal stress approaches

a constant value at concentration larger than the critical threshold. As the shear rate in-
creases, all the curves approach a shared asymptote. Considering a curve characterized
by a concentration lower than the critical value, it presents a change of slope for increas-

ing shear rate, passing from σd/K ∼
[

γ̇
(

ρpd
3/K

)1/2
]2

to σd/K ∼
[

γ̇
(

ρpd
3/K

)1/2
]α

with α < 2. On the other hand, curves characterized by concentrations greater than the
critical value, show no rate dependence al low shear rates and gradually become rate-
dependent for increasing shear rate. The constant values reached at vanishingly small
shear rate increase with the imposed concentration. The same distinctive characteristics
of concentration-imposed simple shear flows have been observed also by other authors
[6, 24, 61].
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5.3. Analysis of the model using numerical and experimental results

As mentioned in the previous Section, Chialvo and Sundaresan [27] identified three flow
regimes on the basis of the numerical results: the quasi-static regime, characterized by
rate-independent normal stress; the inertial regime, where σ scales quadratically with the
shear rate; and the “intermediate” regime, where σ ∼ γ̇α, with α < 2. Also, the authors
related the phase transition among the distinct regimes to both the concentration and the
scaled shear rate.
The comparison of the proposed theoretical model with the numerical data is depicted in
Figs. 5.25, where the lines represent the theoretical expression of the scaled normal stress,
which, using Eq. (5.5a), reads

σd

K
= f0 + f1frf6

ρpd
3γ̇2

K
, (5.44)

The comparison with the numerical results clearly points out that the proposed model
exhibits several weaknesses:

1. the theory is unable to reproduce steady flows at concentrations larger than the shear
rigidity concentration, whereas the numerical results show that steady, concentration-
imposed flows are possible also at ν > νs;

2. in the regime where force chains span the whole domain of the system (νrlp < ν <
νs), the scaled normal stress is underpredicted by the theory. In particular, the
discrepancies increase with the friction, the imposed concentration and for decreasing
shear rates;

3. when the particles are very frictional (µ = 0.5, Fig. 5.25(b)), the scaled normal stress
is underestimated also in the collisional regime (ν < νrlp), especially at large values
of the imposed concentration.

Nevertheless, the model is able to capture the characteristic features of concentration-
imposed simple shear flows. In particular, if the “critical” value is interpreted as the
random loose packing concentration, the collisional regime and the regime of coexistence
of collisional and quasi-static contribution can be recognized in the two distinct sets of
curves.
In the collisional regime (ν < νrlp), as shown in Section 5.2, when the scaled particle stiff-
ness K/

(

ρpd
3γ̇2
)

is large, function fr does not affect the collisional contribution and the
normal stress scales quadratically with the shear rate. When the scaled particle stiffness
decreases, i.e., for increasing γ̇d (ρpd/K)1/2, function fr plays a role and the normal stress
is given by Eq. (5.36). As a consequence, σd/K scales less than quadratically with the
scaled shear rate.
On the other hand, in the regime where both collisions and force chains are present
(ν > νrlp), for vanishingly small shear rate the collisional contribution disappears and
the normal stress is given by the rate-independent quasi-static part, Eq. (4.55). Then,
the theory reproduces the asymptotic behavior of the normal stress at vanishingly small
shear rates. For increasing shear rates, the normal stress remains almost constant and
equal to the quasi-static contribution until the collisional, rate-dependent term becomes
comparable to the quasi-static one. For large enough values of the scaled shear rate, the
two contributions are comparable and the resulting scaled normal stress is an increasing
function of the scaled shear rate. Also, at large shear rates, the collisional contribution
dominates and the curves approach the same asymptote of those of the purely collisional
regime.
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5. Simple shear flows of granular materials

The reasons to the “quantitative” discrepancies between the model and the data have to
be sought among the assumptions made when defining each term which affects the theory.
The underprediction of the scaled normal stress in the case of very frictional particles
(µ = 0.5) has been highlighted in the previous Section, and is attributable to the use of a
“wrong” effective coefficient of restitution.
A new interesting feature revealed by these sets of simulations concerns the role of particle
stiffness in the collisions. The collisional contribution is modeled using the kinetic theory,
and, as highlighted in Section 3, Standard Kinetic Theories assume several semplifications
in solving the flow dynamics. In this work, the Extended Kinetic Theory proposed by
Jenkins [52, 53] is adopted, then the molecular chaos hypotesis is overcome; also, the use
of the effective coefficient of restitution allows to consider frictional particles. Finally,
with the introduction of the function fr here proposed, the time duration of a collision is
accounted for and the collisions are no longer assumed to be instantaneous. Nevertheless,
two strong assumptions still remain: binary collisions and constant coefficient of restitu-
tion. When the particle stiffness is small, two effects influence the particles motion in the
collisional regime: multiple collisions occur and the time duration of each collision is finite
and not negligible. If multiple particle collisions are possible, the number of collisions
increases in a given time step, whereas the longer is the collision duration, the less is the
number of collisions. The number of collisions affects the particle velocity fluctuations
and, consequently, the granular temperature. In short, for small particle stiffness, the
finite duration of the collisions produces a decrease in the granular temperature, but, at
the same time, the occuring of multiple collisions generates an increase in T . Function fr
takes into account only the finite duration of the collisions, and produces a decrease in
the slope of the scaled normal stress, at large scaled shear rate, which is related to the
decrease in the granular temperature. The right trend of the measured normal stress is

not captured in the collisional contribution at large γ̇
(

ρpd
3/K

)1/2
, where the theory un-

derestimates the data, because the role of multiple collisions needs to be introduced. This
lack in the collisional contribution affects the curves in both the purely collisional regime
and the regime of coexistence of quasi-static and collisional contributions, at large values
of the scaled shear rate, i.e., at small values of the dimensionless stiffness K/(ρpd

3γ̇2).
The most salient weakness of the proposed theory is the impossibility to simulate steady,
shearing flows at concentrations larger than the shear rigidity. This limitation of the model
is due to the expressions of the functions which affect both the collisional and the quasi-
static terms. In the collisional contribution, all the functions of the concentration f1, f2, f3
and fr (except for the correlation length) involve the radial distribution function, whose
expression diverges at the shear rigidity. Similarly, the function f0 in the quasi-static
stresses diverges at νs, as well. As a consequence, both the two contributions are defined
only for concentrations lower than the shear rigidity. The theory was conceived assuming
that the maximum concentration that a sheared, steady granular flow can achieve is the
shear rigidity, corresponding to the densest disordered configuration of identical spheres
attainable under steady, shearing conditions. The numerical results show that the simple
shear flows can overcome this threshold and also ordered configurations are possible in
dynamic, steady conditions. As a consequence, the model must be extended to denser
flows of ordered configurations. This can be done by redefining the function f0 in the
quasi-static contribution (the data show that there is no need that it diverges). E.g.,

Chialvo et al. [28] obtained f0 ∝ |νs − ν|2/3 from their SS-DEM simulations using linear
contact model. A new form of f0 will not change the physical sense of the quasi-static
contribution and, in particular, its relationships with force chains and friction.
Sencondly, when the flow reaches ordered configuration, i.e., when ν > νs, the collisional
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contribution must be defined.

All the modifications required to improve the predictions of the model do not change the
distinctive features of the present theory, discussed in Section 5.2. In particular, indepen-
dently of the expression of f0, the phase diagram presented in Section 5.2.1 still holds.
Just the shape of the critical state concentration, νcs, would be different, accordingly to
the new definition of f0. Moreover, the peculiar concentration ν∗, associated to the non-
monotonic dependence of the stress ratio on the shear rate when ν > νrlp, is an intrinsic
property of the model. The existence of ν∗ is associated to two basic assumptions: (i)
adding the two contributions and (ii) requiring that friction supports force chains, i.e.,
that the quasi-static shear stress is proportional to the quasi-static normal stress through
the friction coefficient.
The quantitative improvements of the model are post-poned to future works.

5.4. Conclusions

In this Chapter, the theoretical, constitutive model has been used to solve for the steady,
simple shear flow of identical, inelastic spheres. The interpretation of the constitutive
relationship in the light of standard viscoplasticity is a first step towards an evolving
constitutive model capable of describing the mechanical behaviour of granular material
under both solid-like and fluid-like conditions. A phase diagram has been described on
the plane normal stress-concentration, according to which, if the concentration is lower
than the random loose packing, the grains can interact only through collisions. Also, the
theory predicts the existence of a maximum “critical state” concentration, νcs, which can
be achieved under steady conditions, for a fixed value of the normal stress. The critical
state concentration define the range of coexistence of force chains (quasi-static terms) and
collisions, and depends on the imposed normal stress.
Three flow configurations have been considered: pressure-, concentration- and stress ratio-
imposed flows. Accounting for the stiffness of the particles allows to highlight the occur-
rence of the limit condition τ/σ < tanφ, corresponding to ν > ν∗, which produces a pecu-
liar behaviour of the variable’s profiles in the three considered flow conditions. Indeed, in
the pressure-imposed flow, the stress ratio curves become non-monotonic in the range of
concentration between ν∗ and νcs, and the fluidity parameter is imaginary. Correspond-
ingly, in the concentration-imposed flow, the τ/σ function changes from an increasing to
a decreasing dependence on the shear rate. Finally, the occurrence of the same condition
generates in the stress ratio-imposed flow a loss of uniqueness of the solution for concen-
trations larger than the random loose packing, associated with a limited range of normal
stresses at which steady state is possible.
The predictive capability of the proposed model is tested by comparing its predictions for
simple shear flows against experimental and numerical results taken from the literature.
We first have considered numerical results obtained in the collisional regime, in order
to verify the collisional contribution (i.e., the modified kinetic theory) in absence of the
quasi-static one. The comparison with numerical simulations of (nearly) hard, friction-
less [88] and slightly frictional [27] spheres has shown that the kinetic theory successfully
reproduces the normal stress, the granular temperature and the stress ratio, for different
values of the collisional coefficient of restitution, if the proposed expression of the radial
distribution function is adopted. On the other hand, when using more frictional spheres,
the predictions of the kinetic theory disagree with the numerical results. This seems to be
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a limit of the use of an effective coefficient of restitution, whose form was developed for
slightly frictional particles, even in the case of very frictional particles.
When force chains develop, the model is able to qualitatively capture the characteris-
tic features of concentration-imposed simple shear flows. In particular, the asymptotic
behavior of the normal stress at vanishingly small shear rates and concentrations larger
than the random loose packing, shown by the numerical data [28], is captured. Also, the
introduction of the function fr, which accounts for the particle stiffness in the collisional
contribution, allows to predict the change of slope in the normal stress which happens at
large values of the shear rate. On the other hand, the assumptions made in defining the
functions of the model produce evident quantitative discrepancies between the predictions
and the numerical simulations. The major limitation of the theory is the impossibility to
simulate steady, shearing flows at concentrations larger than the shear rigidity, νs, where
the particles reach an ordered configuration. The extension of the model to the case ν > νs
will be the subject of future works.
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6. Couette flows of frictionless spheres:
kinetic theory and 3D Soft-Sphere DEM
simulations∗

This Chapter is devoted to the study of non homogeneous shear flows of identical, fric-
tionless and hard sphere, under steady conditions, at fixed average concentration. In the
previous Chapter, the model was proven to predict very well the steady, homogeneous
shear flows of an assembly of frictionless and hard spheres (Section 5.3.2), whereas the
comparison with numerical results performed using frictional and soft particles (Section
5.3.3), has shown that the theory requires modifications in that case. The aim of this
Chapter is to test the ability of the model to reproduce also non homogeneous steady,
shear flows, in the conditions for which the homogeneous flows are well predicted.
In order to make comparisons between the theory and numerical results, 3D SS-DEM
simulations have been carried out using a pre-existent code [21]. This Chapter is orga-
nized as follows. In Section 6.1 the set of differential equations deriving from the proposed
theory is numerically solved with appropriate boundary conditions. Section 6.2 is devoted
to describe the simulation method. Finally, the comparison between the results of the
SS-DEM simulations and those obtained from the numerical integration of the equations
is summarized in Section 6.3.

6.1. Couette flow configuration and governing equations

The non homogeneous shear flows of a mixture of identical, frictionless and hard sphere,
under steady conditions, is known as Couette flow. In the Couette configuration, the
granular material is sheared between two parallel planes, having infinite length, one at
rest and the other moving at constant velocity V (Fig. 6.1). Here, x and y are taken to
be the flow and the shearing directions, respectively, and variations along the transversal
direction z are ignored. The granular material is an assembly of identical, frictionless
spheres, having diameter d and density ρp. The mechanical properties of frictionless
grains are described by the stiffness, K, and the (normal) coefficient of restitution, en.
As stated in the previous Sections, in the case of frictionless particles, en is the unique
material parameter characterizing the collision; then in this Section, the subscript n is
omitted for semplicity.
The boundaries are made bumpy by gluing spheres having the same properties of the
moving particles at the walls in a regular hexagonal array, where l is the distance between
the edges of two adjacent spheres. The bumpiness of the wall is measured by ψ, with
sinψ = (1+ l)/2 [105], as depicted in the inset in Fig. 6.1. We take y = 0 to be at the top
of the particles glued at the resting wall, and y = H to be at the bottom of the particles
glued at the moving wall.
For frictionless particles, momentum is exchanged only through collisions [122], and the

∗based on D. Vescovi, D. Berzi, P. Richard, and N. Brodu. Plane shear flows of frictionless spheres:
kinetic theory and 3D Soft-Sphere DEM simulations. Physics of Fluids, submitted, 2014
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Figure 6.1.: Sketch of the constant-volume Couette flow configuration. A granular material
confined between two horizontal solid planes is sheared by moving one of planes at constant
velocity V (x are y are respectively the flow and shear directions). The two planes are
made bumpy by gluing grains at their surface in a regular hexagonal array, where l is the
distance between the edges of two adjacent spheres.

theoretical model reduces to the collisional contribution, which is modeled using the ki-
netic theory with the modifications described in Section 4.2.1. In this Section, only hard
particles will be considered, so that the function fr (Eq. 4.23) is equal to one and the
collisions are supposed to be nearly instantaneous.
In the absence of external forces, and in steady conditions, the momentum balance triv-
ially asserts that the normal stress and the shear stress are constant along y, as stated by
Eqs. (4.38a)-(4.38b). The balance of the fluctuating energy, Eq. (4.41), reads

τu′ = q′ + Γ. (6.1)

For semplicity, here and in what follows, the subscript “col” is omitted and a prime in-
dicates the derivative with respect to the y direction. Also all the quantities are made
dimensionless using the particle diameter d, the particle density ρp and the wall velocity
V .
The constitutive relations for the normal stress, σ, the shear stress, τ , the rate of dissipa-
tion of fluctuating energy, Γ, and the the energy flux, q, are given by Eqs. (4.42)-(4.45),
respectively, which, when fr = 1, reduce to

σ = f1T, (6.2)

τ = f2T
1/2u′, (6.3)

Γ =
f3
L
T 3/2, (6.4)

q = −
(

f4T
1/2T ′ + f5T

3/2ν ′
)

. (6.5)

f1, f2, f3, f4 and f5 are explicit functions of the concentration and the coefficient of resti-
tution and are given by Eqs. (4.46)-(4.50); L is the correlation length, whose expression,
according to Eq. (4.52), and using Eqs. (6.2) and (6.3), sounds

L = max

(

1, L∗ f1
f2

τ

σ

)

, (6.6)

with L∗ expressed by Eq. (4.53).
From the constitutive relations for the shear stress (6.3) and the normal stress (6.2), we
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obtain the differential equation governing the velocity,

u′ =
τ

σ

f1
f2
T 1/2. (6.7)

By deriving Eq. (6.2) and using Eq. (6.5), the differential equation for the concentration
results

ν ′ =
Q

T 1/2

f21
f4

[

σf1,ν

(

1− f5f1
f4f1,ν

)]−1

, (6.8)

where f1,ν represents the derivative of f1 with respect to the concentration, which, using
Eq. (4.46) with the expression of F , (3.42b), and G = νg0, is

f1,ν = 1 + 2 (1 + e) ν (2g0 + νg0,ν) ,

being g0 the radial distribution function, expressed by Eq. (4.28), and g0,ν its first deriva-
tive with respect to ν.
Finally, using Eqs. (6.2), (6.4) and (6.7) into Eq. (6.1), the differential equation for the
energy flux reads

q′ = σT 1/2

[

f1
f2

( τ

σ

)2
− f3
Lf1

]

. (6.9)

The constant volume condition is imposed, which corresponds to keeping constant the
average concentration along the flow depth. An additional differential equation for the
partial mass hold-up, defined as M =

∫ y
0 νdz, is introduced:

M ′ = ν. (6.10)

Then, the value of the average concentration, ν̄, along y can be implemented as a boundary
condition for M .
The set of the four differential equations Eqs. (6.7)-(6.10) is numerically solved using
the function ‘bvp4c’ implemented in MATLAB, and fixing the flow gap H. The normal
stress and the shear stress are treated as parameters, so that six boundary conditions are
required to solve the problem. As already mentioned, the fixed average concentration is
implemented as a boundary condition for the the partial mass hold-up at the top wall
(y = H), i.e.,

MH = ν̄H, (6.11)

while, at the resting wall (y = 0),

M0 = 0. (6.12)

Here and in what follows, the index represents the coordinate y at which the quantity is
evaluated. The particles are allowed to slip at the bumpy walls, so that, for symmetry,

u0 = uw, (6.13)

uH = 1− uw, (6.14)

where uw is the slip velocity. The expression for the slip velocity has been proposed by
Richman [105] in the case of rigid, nearly elastic semi-spheres attached to a flat wall:

uw =

√

π

2
h
τ

σ
T
1/2
0 , (6.15)
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with

h =
2

3

[

1 +
5F0 (1 +B) sin2 ψ

2
√
2J0

]

2 (1− cosψ)

sin2 ψ

+
5F0√
2J0

, (6.16)

where B = π [1 + 5/ (8G0)] /
(

12
√
2
)

, and G0, J0 and F0 are obtained from the corre-
sponding expressions of G (3.42a), J (3.42c) and F (3.42b) with ν = ν0. The bumpy walls
act either as a sink or a source of fluctuating energy to the system. The two boundary
conditions for the energy flux are

q0 = qw, (6.17)

qH = −qw, (6.18)

where Richman [105] proposed

qw = τuw −
√

π

2
σT

1/2
0 (1− e)

2 (1− cosψ)

sin2 ψ
. (6.19)

The results of the numerical integration will be compared with those obtained from SS-
DEM simulations described in the next Section.

6.2. 3D Soft-Sphere Discrete Element Method simulations

In order to make comparisons between the theory and numerical results, 3D numerical
simulations of Couette granular flows have been performed using the Soft-Sphere Dis-
crete Element Method (SS-DEM). Section 6.2.1 presents a background information on
microscale SS-DEM simulations of granular flows, whereas the numerical simulations per-
formed in this work are described in Section 6.2.2.

6.2.1. Soft-Sphere Discrete Element Method

The Soft-Sphere Discrete Element Method (SS-DEM), is a family of numerical methods
for computing the motion of large number of particles. Cundall and Strack [29] originally
developed the SS-DEM for the analysis of rocks mechanics, to simulate the behavior of
discontinuous materials. These methods are becoming widely accepted as an effective way
of addressing engineering problems in granular and discontinuous materials, especially in
granular flows and rock mechanics. In SS-DEM, the material is modeled as a finite number
of discrete particles, each with its own properties. The interactions between particles are
treated as dynamic processes with states of equilibrium developing when the internal forces
balance.
Due to the complexity of the properties of granular materials, and the limitations of current
mathematical models and computer calculation capacity, it is impossible to capture all
physical features in the simulations. Therefore, only the important aspects would be
considered in the Soft-Sphere Discrete Element Model. As previously stated, the granular
material is considered as a collection of discrete particles which interact each other through
contact forces. Since the realistic modeling of the deformations of the particles is such too
complicated, the grains are assumed to be non-deformable spheres which are allowed to
overlap [79].
The general SS-DEM approach involves three stages.

1. The first stage is to detect the contacts between elements.
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2. In the second stage, interaction force is calculated when two particles have slightly
interpenetrated. This is the kernel step in SS-DEM models and different models
exist to compute the interaction force.

3. At last, Newton’s equations of motion are applied and numerically integrated to
compute the resulting acceleration while combining all interaction forces. The equa-
tions of motion are integrated over a small time step to relocate a new position for
each particle.

This three-stage process is repeated until the whole simulation is finished. Based on the
fundamental simulation flow, a large variety of modified algorithms exist and they differ
mostly by the contact model and the techniques used in interaction force calculation.
In 3D SS-DEM, each grain i is a soft but stiff sphere of diameter di, mass mi, moment
of inertia Ii, positions ri, velocity vi and angular velocity ωi. For a pair of particles, the
relative distance vector, xij , the relative velocity, vij , and the normal unit vector, nij , are
defined as

xij = xi − xj ,

vij = vi − vj ,

nij =
(xi − xj)

|xi − xj |
.

Also, the normal relative velocity, vn
ij , and the tangential velocity at the contact point,

vt
ij , in the case of small overlap, are given by

vn
ij = (vij · nij)nij ,

vt
ij = vij − vn

ij −
(

di
2
ωi +

dj
2
ωj

)

× nij .

Note that there is no sum over repeated indices.
Two particles are in contact if their normal overlap, defined as

δnij =
di + dj

2
− xij · nij ,

is strictly positive, δnij > 0, and the contact point is assumed to be the center of the overlap
(Fig. 6.2(a)).

In general, the force on particle i from the interaction with particle j is the sum of a
normal and a tangential contribution:

Fij = Fn
ij + Ft

ij .

Although the present Section deals with frictionless particles, for which the contact force
is purely normal and the grains are submitted to neither tangential forces nor torques, the
general procedure is here introduced, for completeness.
As the most important step in SS-DEM, force interaction can vary, and represent different
physical properties. In this work, the so called spring-dashpot model, which is schemati-
cally shown in Fig. 6.2(b), is adopted.
The forces are modeled as the sum of a linear elastic and a linear dissipative component
in both the normal and the tangential direction:

Fn
ij = knδ

n
ijnij − γnv

n
ij , (6.20)

Ft
ij = −ktδtijtij − γtv

t
ij . (6.21)
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Figure 6.2.: Sketches of two particles at contact (a) and of the contact forces used (b).

Here, kn and kt are the normal and the tangential spring constants, and γn and γt the
normal and the tangential damping coefficients, which are used to obtain an inelastic
collision; δtij is the tangential overlap, and tij the tangential unit vector: tij = vt

ij/|vt
ij |.

The tangential overlap is set to zero at the initiation of a contact and its rate of change is
given by the tangential relative velocity:

dδtij
dt

=
∣

∣vt
ij

∣

∣ .

Note that the rigid body motion around the contact is taken into account to ensure that
the tangential displacement is always in the local tangent plane of the contact.
The magnitude of δtij is truncated as necessary to satisfy Coulomb law, i.e,

∣

∣Ft
ij

∣

∣ ≤ µ
∣

∣Fn
ij

∣

∣ ,

where µ is the interparticle friction coefficient. Note that the static friction coefficient is
assumed to be equal to the dynamic one and that this friction coefficient depends neither on
velocity nor on aging [22]. In this simplified framework, the contact surfaces are treated as
a sticking contact if |Ft

ij | < µ|Fn
ij | and as a sliding contact if the yield criterion is satisfied,

i.e., if |Ft
ij | = µ|Fn

ij |.
Then, the total force on particle i is a combination of contact forces with other particles,
with boundaries and an eventual resulting external force Fext. The resulting force Fi and
torque ti are given by

Fi = Fext +
N
∑

j=1,j 6=i

Fij , (6.22)

ti =
N
∑

j=1,j 6=i

di
2
Fij × nij (6.23)

where N is the total number of spheres. Once the forces and torques are calculated for
all the particles, the Newton’s equations of motion, for the translational and rotational
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degrees of freedom, are integrated:

mi
d2xi

dt2
= Fi, (6.24)

Ii
dωi

dt
= ti. (6.25)

Note that the last equation is only valid when δnij = 0. The torque is the vector product
of the lever arm and the force. But in Eq. (6.23), it is assumed that the lever arms have
lengths equal to di/2 or dj/2, which is true only when the grains do not overlap. The
application of Eq. (6.25) will thus produce a violation of angular momentum conservation
of order O (δn/d) [83].
Eqs. (6.24) and (6.25) are ordinary differential equations (ODE) which must be numeri-
cally solved in order to update a new position for particle i. In principle, any numerical
integration scheme, suitable for a large ODE system, can be implemented. In the SS-DEM
code here adopted, a velocity Verlet integration scheme is implemented. The standard im-
plementation scheme of the algorithm proposed by Verlet can be summarized as follows.
For a fixed time step ∆t, once the position, the velocity and the acceleration of each
particle are known at time t, xi(t), vi(t), ai(t), ∀i = 1, · · · , N :

1. the velocity and the angular velocity are calculated at the intermediate time, t+∆t/2:

vi (t+∆t/2) = vi (t) + ai(t)
∆t

2
,

ωi (t+∆t/2) = ωi (t) +
ti(t)

Ii

∆t

2
,

2. the position is calculated at time t+∆t:

xi (t+∆t) = xi(t) + vi (t+∆t/2)∆t;

3. the force and the torque acting on particle i at time t+∆t, Fi(t+∆t) and ti(t+∆t),
are calculated using Eqs. (6.22) and (6.23), and, consequently, the acceleration is
computed: ai(t+∆t) = Fi(t+∆t)/mi;

4. the velocity and the angular velocity are calculated at time t+∆t:

vi (t+∆t) = vi (t+∆t/2) + ai(t+∆t)
∆t

2
,

ωi (t+∆t) = ωi (t+∆t/2) +
ti(t+∆t)

Ii

∆t

2
.

As already mentioned in Section 3.1.5, the collisions may be described using the coeffi-
cients of normal and tangential restitution, relating the pre-collisional and post-collisional
relative velocities. For the spring-dashpot model, the following relashionships between the
coefficients of restitution, the spring constants and the damping coefficients hold [116]:

γn =

√

4mijkn (log en)
2

π2 + (log en)
2

γt =

√

2

7

4mijkt (log et)
2

π2 + (log et)
2

kt =
2

7
kn
π2 + (log et)

2

π2 + (log en)
2
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with the reduced mass mij = mimj/(mi+mj) (for spheres of equal mass m, mij = m/2).
Also, the collision time can be analytically obtained:

tc =
π

[

kn
mij

− 1

4

γ2n
m2

ij

]

1/2
.

The value of the spring constant kn should be large enough to avoid particle interpenetra-
tion, yet not so large as to require an unreasonably small simulation time step ∆t, since
an accurate simulation typically requires ∆t ∼ tc/50 [116].

SS-DEM simulations provide the complete microscopic description of the system at each
time step, i.e., the position and the velocity of each particle, as well as the interparticle
forces at contact. Macroscopic (continuum mechanical) variables, such as concentration,
mean velocity, granular temperature, stresses, etc., can be determined by an appropriate
averaging procedure [4], which consists of both spatial and temporal averaging. Here, the
continuous concentration, ν, and velocity, u, fields are computed using the definition by
Serero et al. [113]

ν(x, t) =
N
∑

i=1

πd3i
6
ki(xi(t)− x),

u(x, t) =

N
∑

i=1

miviki(xi(t)− x)

N
∑

j=1

mjkj(xj(t)− x)

,

being x = (x, y, z) the position at which to compute the average field, xi the position of
the center of grain i, and N the total number of grains. ki is a kernel that distributes the
mass mi of grain i over space. The uniform density kernel is adopted:

ki(xi − x) =

{

ρp when ‖xi − x‖ < di/2 and xi ∈ V

0 elsewhere,

where ‖·‖ denotes the Euclidean norm of a vector and V is the averaging volume. In the
case of Couette flows, the flows are uniform in x and z, and he averaging volume reduces to
a slice having the same length and width of the whole domain (in the x and z directions),
and assigned height ∆s. Then, the condition xi ∈ V is equivalent to require that the
center of particle i is located within the averaging slice of thickness ∆s centered at yi:
y −∆s/2 < yi < y +∆s/2.
The fluctuating velocity of particle i is given by Vi(x, t) = vi(t) − u(x, t). The granular
temperature field is computed as

T (x, t) =
1

3















N
∑

i=1

mi |vi|2 ki(xi − x)

N
∑

j=1

mjkj(xj − x)

− |u|2















.

Finally, the stress tensor is calculated as the sum of the “kinetic” (or streaming) and the
“contact” contribution

σ = σk + σc.
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Usually, the kinetic and the contact parts of the stress tensor are computed as [79]:

σk =
1

V

Nv
∑

i=1

miVi ⊗Vi,

σc =
1

V

Nv
∑

i=1

∑

j 6=i

Fij ⊗ xij ,

where ⊗ denotes the outer produc and Nv is the number of particles in the averaging
volume. In these expressions, the kernel is implicitly a uniform density on a cube of fixed
volume V . In the code, the stresses are computed using the same kernel implemented for
the mean velocity and the temperature (which assigns uniform density over each grain
volume), as proposed by Babic [5]. Then, the contact part of the stress tensor is more
complicated to express and involves an integral over the branch vector. The adopted
expressions for σs and σc read [4, 5]:

σk =
N
∑

i=1

miVi ⊗Viki(xi − x),

σc =

N
∑

i=1

N
∑

i=1+1

Fij ⊗ xij

∫ 1

0
ki(x− xi + sxj)ds.

6.2.2. SS-DEM simulations of Couette granular flows

The SS-DEM code is employed to simulate the Couette flows of frictionless, inelastic, iden-
tical spheres of diameter d and density ρp. The flow configuration adopted is the same
described in the previous Section and depicted in Fig. 6.1. Here, the granular material is
bounded between two parallel, bumpy planes, one at rest and the other moving at con-
stant velocity V . As already mentioned, the numerical results are given in nondimensional
units: distances, times, velocities, forces, elastic constants and viscoelastic constants are,
respectively, measured in units of d, d/V , V , ρpd

2V 2, ρpdV
2 and ρpd

2V .
All the simulations have been performed in a rectangular box of length Lx = 20, width
Lz = 10 and height Ly = 20 - so that the flow gap is H = Ly − 2 = 18 - with N = 3132.
The bumpiness has been generated by gluing, in a regular hexagonal array, a total of
340 particles at the two walls in the case of ψ = π/5, and 154 in the case ψ = π/3.
Hence, taking into account the extra-space accessible to any flow particle in between the
wall-spheres, ν̄ = 0.45 when ψ = π/5 and ν̄ = 0.44 when ψ = π/3. Periodic boundary
conditions are employed in the x and z directions and the horizontal flat walls are located
at y = −1 and y = H+1, the latter moving at constant horizontal velocity V . Those walls
are treated as spheres of infinite size and density and the grains glued on their surface
to create the bumpiness are treated like spheres of diameter 1 and infinite density. The
particle stiffness of the linear spring model has been set as kn = 2 · 105 and the value of
the damping coefficient γn is adjusted to obtain the chosen normal restitution coefficient.
The non-dimensional ratio of the particle stiffness over the normal stress is greater than
105 in all the simulations. This ensures that the contact time during a collision is much
less than the flight time in between two successive collisions, the latter can be considered
instantaneous [16, 96] (as shown in Section 5.2.2), and the function fr is equal to one.
Simulations have been performed by changing the coefficient of restitution (e = 0.2, 0.50,
0.60, 0.70, 0.80, 0.92, 0.98) and the bumpiness of the walls (ψ = π/5 and π/3).
This work focuses on the steady state of sheared granular flows, that is considered achieved
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when the space-averaged granular temperature T̄ becomes approximately constant (fluc-
tuations around the time-averaged value less than 10%). The space-averaged granular
temperature is computed as

T̄ =
1

3N





N
∑

i=1

‖vi‖2 −
(

N
∑

i=1

‖vi‖
)2


 .

We have checked that the steady state does not depend on the initial configuration, by
preparing two different initial states, consisting of N spheres uniformly distributed in the
volume. In the first case the spheres are initially at rest; in the second case, a linear distri-
bution (from 0 to 1) of the x-velocity of the spheres is assigned. This second configuration
corresponds to a higher value of the initial energy, i.e., of the initial space-averaged granu-
lar temperature. In both cases, the same steady state is achieved, i.e., with the same value
of space-averaged granular temperature and the same distributions of the field variables.
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Figure 6.3.: Time evolution of the mean granular temperature for different values of the
coefficient of restitution when N = 3132 and (a) ψ = π/5 (ν̄ = 0.45); (b) ψ = π/3
(ν̄ = 0.44).

The time at which the steady state is reached increases when the coefficient of restitu-
tion decreases (e.g., see Fig. 6.3(a) for the case ψ = π/5). Depending on the bumpiness,
the mean granular temperature changes drastically its time dependence. For ψ = π/3
(Fig. 6.3(b)) T̄ increases with time and reaches the steady state for each value of the
coefficient of restitution. For ψ = π/5 (Fig. 6.3(a)), T̄ is a decreasing function of t. Also,
as the coefficient of restitution decreases, the mean granular temperature decreases faster
in time. For sufficiently small coefficients of restitution (case e = 0.2 in Fig. 6.3(a)), the
mean granular temperature continues to decrease, without reaching a steady state. The
slope of the curve approaches the value -2 that characterizes the Homogeneous Cooling
State (HCS) [45], where the rate of change of the granular temperature in the balance of
fluctuating energy is only due to the collisional dissipation and the granular temperature
obeys the Haff’s law, T ∝ (1 + t)−2 [48]. This finding will be discussed in the following
Section.

Once the steady state is reached, measurements are averaged in time, over at least 2000
time steps, and over the lengths of the domain along the x and z directions, using 20
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horizontal slices. Given that the averaging is sensitive to the amplitude of the spatial
discretization [126], we checked that the number of slices is sufficiently large not to affect
the results. Example of profiles of ν, u, T and u′ are plotted in Fig. 6.4 for ψ = π/5
and e = 0.80, when 20 or 40 horizontal slices are employed. The velocity profile has a
characteristic S-shape, in agreement with recent physical experiments performed on disks
[85]. Also, the profile of the shear rate very much resembles the experimental findings.
The concentration increases and the granular temperature decreases with distance from
the walls. The core of the flow is dense, i.e., the concentration is larger than 0.49, and
there the molecular chaos assumption breaks down.
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Figure 6.4.: Profiles of ν, u, T and u′ obtained from SS-DEM simulations when H = 18,
ν̄ = 0.45, ψ = π/5 and e = 0.80, when the domain along the y-direction is divided into 20
(open circles) and 40 (crosses) slices to perform the averaging. The dashed line in (a) is
the value of the concentration at the freezing point, ν = 0.49.

In order to quantitatively test the code, we compare the SS-DEM results obtained on the
Couette configuration with other numerical data taken from the literature. According to
the kinetic theory, in the plane shear flows of frictionless and hard particles, the constitu-
tive relations for the normal and the shear stress are given by Eqs. (6.2)-(6.3). Those are
the same for both the cases of homogeneous and non homogeneous flows. Once σ, τ , T
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and u′ are measured, f1 and f2 can be computed as

f1 =
σ

T
, (6.26)

f2 =
τ

T 1/2u′
, (6.27)

as functions of the concentration. Figs. 6.5(a) and 6.5(b) depict, respectively, the quanti-
ties σ/T and τ/

(

T 1/2u′
)

as functions of the concentration, where σ, T , τ and u′ are those
measured on the SS-DEM simulations on steady, non homogeneous plane shear flows when
using e = 0.70 and ψ = π/5 (squares) and ψ = π/3 (diamonds). Also, the data obtained
from the numerical simulations on steady, homogeneous plane shear flows of Mitarai and
Nakanishi [88] (Event-Driven simulations, crosses) and Chialvo and Sundaresan [27] (SS-
DEM simulations, circles) are plotted. Finally, the theoretical expressions of f1 and f2,
Eqs. (4.46)-(4.47), with the radial distribution function given by Eq. (4.28), are also shown
(lines).
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Figure 6.5.: Numerical quantities σ/T (a) and τ/
(

T 1/2u′
)

(b) as functions of the con-
centration for e = 0.7. The numerical measurements obtained with the present SS-DEM
simulations of non homogeneous flows when ψ = π/5 (squares) and ψ = π/3 (diamonds)
are compared with the data obtained by Mitarai and Nakanishi [88] (crosses) and Chialvo
and Sundaresan [27] (circles) on homogeneous flows. The lines represent the theoretical
expressions of f1 (4.46) and f2 (4.47) with g0 given by Eq. (4.28).

All the numerical data collapse, independently of the simulation method and the flow con-
figuration, and are in very good agreement with the theoretical curves. Similar agreement
is obtained for other values of the coefficient of restitution.

6.3. Results and comparisons

In this Section, we compare the results of the numerical integration of Eqs. (6.7)-(6.10),
with the SS-DEM simulations in terms of profiles of concentration, velocity and granular
temperature, distinguishing between small and large bumpiness.
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6.3.1. Small bumpiness

Figs. 6.6(a), 6.6(b) and 6.6(c) show, respectively, the distribution of concentration, velocity
and granular temperature obtained from the present SS-DEM simulations when using
ψ = π/5, ν̄ = 0.45 and various coefficients of restitution. The lines in Fig. 6.6 represent
the solution of the numerical integration of Eqs. (6.7)-(6.10) when using ν̄ = 0.45, as in
the simulations, and the boundary conditions developed by Richman [105].
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Figure 6.6.: Distribution of concentration (a), velocity (b) and granular temperature (c)
obtained from the present SS-DEM simulations (symbols) for ψ = π/5, ν̄ = 0.45 and
various coefficients of restitution. The data are compared with the numerical integration
of Eqs. (6.7)-(6.10) for e = 0.50 (dashed line), e = 0.70 (solid line) and e = 0.92 (dot-
dashed line) when the boundary condition on the slip velocity is Eq. (6.15).

The SS-DEM simulations reveal that the concentration increases with the distance from
the wall (Fig. 6.6(a)), and the maximum concentration decreases with the coefficient of
restitution. The velocity profiles are not linear (Fig. 6.6(b)), and the slip velocity increases
as the coefficient of restitution decreases. Also, the walls are always “hotter” than the
interior (Fig. 6.6(c)), i.e., the granular temperature is lower in the core of the flow. The
boundaries are said to be “energetic”, i.e., the fluctuating energy flux is directed towards
the interior of the flow. For very inelastic particles (e = 0.5), the granular material roughly
moves as a plug and a dense core surrounded by two more dilute layers appear.
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Figs. 6.6(a), 6.6(b) and 6.6(c) show that, at small bumpiness (ψ = π/5), and using the
boundary conditions of Richman [105], the modified kinetic theory only qualitatively repro-
duces the SS-DEM results. Those boundary conditions were developed for nearly elastic
particles. Actually, the slip velocity and the concentration are underestimated, and the
granular temperature is strongly overestimated when the coefficient of restitution is far
from unity. On the other hand, the profiles are very well predicted when using nearly
elastic particles (e = 0.92).
Fig. 6.7(a) depicts the value of the measured slip velocity uw as a function of the coef-
ficient of restitution. For e = 0.5, the slip velocity approaches the value 0.5, for which
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Figure 6.7.: (a) Slip velocity as a function of the coefficient of restitution obtained from the
present SS-DEM simulations when ψ = π/5. (b) Correction for the theoretical expression
of the coefficient h given in Eq. (6.16) obtained from the present SS-DEM simulations.
The solid line represents Eq. (6.29).

there is a condition of perfect slip at the walls: in that case, the particles do not touch the
walls, so that no exchange of energy with the boundaries is possible. This is the reason
why, for e lower than 0.5, the energy initially put into the system is entirely dissipated
in collisions and the evolution of the mean granular temperature obeys the Haff’s law
(Fig. 6.3(a)). The boundary condition proposed by Richman [105] for the slip velocity is
given by Eq. (6.15), and can be rewritten as

uwσ

T
1/2
0 τ

=

√

π

2
h. (6.28)

There, h is defined by Eq. (6.16) as a function of the concentration, the coefficient of
restitution and the bumpiness. The quantity on the left-hand-side of Eq. (6.28) can be
inferred by the numerical simulations once uw, σ, T0 and τ are measured. Fig. 6.7(b)

shows the ratio of the quantity uwσ/
(

T
1/2
0 τ

)

obtained from the SS-DEM simulations to

the coefficient h obtained from Eq. (6.16) using ψ = π/5 and the numerical values of the
concentration at the walls. The boundary condition on the slip velocity of Richman [105]
must be corrected in order to reproduce the measurements. On the basis of best fitting,
we propose to use

uwσ

T
1/2
0 τ

= h exp(7.3− 8.6e), (6.29)
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which represents the solid line in Fig. 6.7(b).
If we employ Eq. (6.29) instead of Eq. (6.15) as a boundary condition, when numerically
integrating the equations of kinetic theory, the agreement with the numerical simulations
is remarkable even in the case of very inelastic particles, as can be seen in Figs. 6.8(a),
6.8(b) and 6.8(c). We expect the numerical coefficients in Eq. (6.29) to depend on the
bumpiness and, perhaps, the particle stiffness. We postpone to future works a systematic
investigation on the role of those quantities in determining the correction to the slip
velocity.
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Figure 6.8.: Comparison of the SS-DEM results for ψ = π/5 and ν̄ = 0.45 with the
new profiles of concentration (a), velocity (b) and granular temperature (c) obtained by
numerically integrating Eqs. (6.7)-(6.10) using Eq. (6.29) as the boundary condition for
the slip velocity.

6.3.2. Large bumpiness

Figs. 6.9 shows the variable’s profiles obtained from the present SS-DEM simulations when
using ψ = π/3, ν̄ = 0.44 and various coefficients of restitution, together with the solution
of the numerical integration of Eqs. (6.7)-(6.10) when the boundary conditions of Richman
[105] are employed.
The SS-DEM simulations indicate that, at large bumpiness (ψ = π/3), the concentration
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Figure 6.9.: Distribution of concentration (a), velocity (b) and granular temperature (c)
obtained from the present SS-DEM simulations (symbols) for ψ = π/3, ν̄ = 0.44 and
various coefficients of restitution. The data are compared with the numerical integration
of Eqs. (6.7)-(6.10) for e = 0.50 (dashed line), e = 0.70 (solid line) and e = 0.92 (dot-
dashed line) when the boundary conditions are Eqs. (6.15) and (6.19).

and the granular temperature are rather uniform (Figs. 6.6(a) and 6.6(c), respectively),
and the velocity profile is linearly distributed with zero slip velocity (Fig. 6.9(b)), for
all the values of the coefficient of restitution. Then, the flows resemble (homogeneous)
simple shear flows. Predictions of the modified kinetic theory in the case ψ = π/3 when
the boundary conditions Eqs. (6.15) and (6.19) are employed strongly disagree with the
SS-DEM results. Visual observation of the particle motion suggests that, for large enough
bumpiness, some of the flowing particles get stuck in the gaps between the particles glued
at the walls; those trapped particles contribute then to create a “disordered” bumpy wall,
similar to that employed in the numerical simulations of Silbert et al. [116], which is far
less energetic than the “ordered” bumpy wall of Richman [105]. In the case e = 0.70 and
0.92, the walls are even slightly colder than the interior (Fig. 6.9(c)), i.e., the boundaries
are dissipative (the fluctuating energy flux is directed towards the walls).
If we use uw = Qw = 0 instead of Eqs. (6.15) and (6.19), i.e., we assume that the bound-
aries are neutral (they do not furnish nor subtract fluctuating energy), and the mean
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concentration obtained by averaging the SS-DEM profiles as boundary conditions, the
numerical integration of the modified kinetic theory, which coincides with the analyti-
cal solution of simple shear flows, provides a fairly good agreement with the SS-DEM
simulations, as shown in Figs. 6.10(a), 6.10(b) and 6.10(c).
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Figure 6.10.: Comparison of the SS-DEM results for ψ = π/3 and ν̄ = 0.44 with the
new profiles of concentration (a), velocity (b) and granular temperature (c) obtained by
numerically integrating Eqs. (6.7)-(6.10) using uw = Qw = 0 as boundary conditions.

To check our intuition about the particles being trapped at the walls, we have also per-
formed SS-DEM simulations, with e = 0.7, when random conformations of particles are
glued at the walls (the details for the generation of this kind of boundaries are given in
Silbert et al. [116]). The distributions of the concentration, velocity and granular tem-
perature are very similar to the case ψ = π/3, as illustrated in Figs. 6.11(a), 6.11(b) and
6.11(c). The mean concentration is different in the two cases, because the space accessible
to the flowing particles, whose number is constant and equal to 3132, is different. Also,
the fact that the mean concentration measured in the SS-DEM simulatons ν̄DEM is, in
general, less than the theoretical value 0.44, that would characaterize the ψ = π/3 case
when N = 3132, is an indication of particle trapping. Indeed, a rough estimate of the

99



6. Couette flows of frictionless spheres: kinetic theory and 3D Soft-Sphere DEM simulations

thickness ∆ of this trapped particle layer is

∆ =
N

2LxLz

(

1− ν̄DEM

0.44

)

. (6.30)

Fig. 6.11(d) shows that ∆ goes to zero as e approaches one. Also, the thickness ∆ saturates
to a constant value for coefficients of restitution lower than 0.7. Once again, we postpone
to future works the generalization of these findings to other values of the bumpiness and
the particle stiffness.
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Figure 6.11.: Distribution of concentration (a), velocity (b) and granular temperature
(c) obtained from the present SS-DEM simulations with ordered (ψ = π/3, circles) and
disordered (diamonds) bumpy walls, when e = 0.7. (d) Thickness of the trapped particle
layer as a function of the coefficient of restitution when ψ = π/3.

Finally, Fig. 6.12 shows the influence of the coefficient of restitution on the stress ratio,
s/p, for both the cases of small and large bumpiness. Contrary to results reported for 2D
plane shear flows of frictional grains submitted to imposed pressure [30], the coefficient of
restitution strongly affects the stress ratio. In the range 0.50 ≤ e ≤ 0.98, the stress ratio
obtained from the present SS-DEM simulations is a decreasing function of the coefficient
of restitution for large bumpiness (ψ = π/3, open circles); while s/p has a maximum
around e = 0.80 for small bumpiness (ψ = π/5, filled circles). The predictions of kinetic
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theory when Eqs. (6.29) and (6.19) are employed as boundary conditions for ψ = π/5, and
uw = Qw = 0 for ψ = π/3 are, once again, in a fairly good agreement with the simulations
(filled and open squares, respectively). The drop in the stress ratio for small bumpiness
and coefficients of restitution less than 0.8 is due to the already mentioned increasing of
the slip velocity, with the corresponding approaching to the Homogeneous Cooling State,
in which the shear stress, and consequently the stress ratio, vanishes.
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Figure 6.12.: Stress ratio τ/σ as a function of the coefficient of restitution obtained from
the SS-DEM simulations when ψ = π/5 (filled circles) and ψ = π/3 (open circles), and
from the numerical integration of Eqs. (6.7)-(6.10) with the proposed modifications of the
boundary conditions (ψ = π/5, filled squares; ψ = π/3, open squares).

6.4. Conclusions

In this Chapter, the theoretical model is numerically solved for the shear flows of identi-
cal, frictionless particles bounded between two parallel, bumpy planes, at constant volume
(Couette flow). According to the model, when the particles are frictionless, the force
chains can not develop and the steady flow is always in the collisional regime. Then, the
model reduces to the modified kinetic theory. The bumpiness is due to spheres identical
to those of the flow, glued at the walls in a regularly spaced, hexagonal array. 3D SS-
DEM simulations have been performed in the same flow configuration in order to test the
theory and to investigate the role of the coefficient of restitution and the bumpiness of the
boundaries.
At small bumpiness, the SS-DEM simulations show that the concentration increases with
the distance from the wall, for every value of the coefficient of restitution, and the wall
is always “hotter” than the interior. The slip velocity at the boundaries decreases with
the elasticity of the particles, and, for coefficients of restitution less than 0.5, the slip is
perfect: the boundaries do not touch the flowing particles, so that the system evolves
accordingly to the Homogeneous Cooling State (it is not possible to obtain a steady shear
flow). Also, the measured stress ratio is a non-monotonic function of the coefficient of
restitution, and reaches a maximum for e = 0.80. The results of the numerical integration
of the theory agree well with the simulations if a correction to the expression of the slip
velocity depending on the coefficient of restitution is introduced in the boundary condi-
tions derived for nearly elastic particles by Richman [105].
At large bumpiness, the SS-DEM simulations show nearly uniform profiles of concentra-
tion and granular temperature, and linear distributions of the velocity field, as for simple
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shear flows. This is due to the fact that, when the gaps between the spheres glued at the
walls is large enough, some of the soft flowing particles get stuck, making the bumpy wall
more “disordered”, and, then, more dissipative than expected. Even in the case of large
bumpiness, the model is able to reproduce the simulation results, if both the slip velocity
and the fluctuating energy flux at the walls are taken to be zero.
Summarizing, we have shown that the modified kinetic theory has the capability of quan-
titatively reproducing the flow of frictionless spheres in the entire range of concentration
for which the collisions can be considered nearly instantaneous and random (i.e., the en-
tire collisional regime of granular flows). Numerical simulations dealing with friction,
non-instantaneous collisions and enduring contacts will be the subject of future works.
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The fundamental characteristic of granular flows is that the interactions between grains are
intrinsically dissipative. The energy of the system is dissipated through two mechanisms:
nearly instantaneous collisions and enduring contacts among grains, which are involved
in force chains. When only one of the two mechanisms is present, the granular material
behaves like a gas (only collisions) or like a solid (only force chains).
This thesis is focused on the development of a constitutive model for granular flows able
to reproduce the phase transition between the two extreme regimes, where both enduring
contacts and collisions are considered. In this perspective, the present research lies between
soil mechanics and fluid dynamics, and aims to incorporate and connect the approaches
coming from those two (very) different points of view.
The critical state theory of soil mechanics and the kinetic theory of granular gases have
been merged to provide a theoretical description of steady granular flows under shear
conditions. The energy and the stress tensor are assumed to be the linear sum of a quasi-
static and a collisional contribution, independently modeled by using the aforementioned
theories, and accounting, separately, for the two dissipative mechanisms (enduring contacts
involved in force chains and collisions, respectively). The interpretation of the constitutive
relationship in the light of standard viscoplasticity is the first step towards an evolving
constitutive model capable of describing the mechanical behavior of granular material
under both solid-like and fluid-like conditions.
The first part of this thesis concerns the application of the constitutive model to the
homogeneous shear flows of frictionless and frictional spheres. A critical discussion of
the main features of the model has been presented and numerical data taken from the
literature have been used to test the theory in this configuration. Several conclusions can
be drawn from the analysis. First, dimensional analysis suggests that simple shear flows are
governed by four dimensionless variables: the concentration, the stress ratio, the inertial
number (ratio of the time scales associated with the motion perpendicular and parallel to
the flow) and the ratio of the normal stress to the particle stiffness. The latter does not
play any role only if the particles are very hard. On the other hand, when the ratio of the
normal stress to the particle stiffness is not negligible, a non-monotonic behavior of the
normal stress occurs in pressure-imposed flows when force chains are presents. Second,
the model is able to qualitatively reproduce the characteristic features of concentration-
imposed flows, shown by the numerical simulations, in the whole range of flow regimes.
In particular:

• when the particles are rigid and the the flow is in the collisional regime (i.e., force
chains are not present), kinetic theory successfully reproduces all the variables gov-
erning the system if the expression of the radial distribution function proposed in
this work is adopted; a perfect quantitative agreement between the numerical results
and the theory has been shown for various values of the coefficient of restitution and
using both frictionless and slightly frictional particles.

• The presence of the quasi-static contribution allows the theory to predict the asymp-
totic behavior of the normal stress at vanishingly small shear rates and concen-
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trations larger than the random loose packing. A purely collisional model cannot
reproduce such a rate-independent response.

• The introduction of the function fr, which accounts for the role of non-instantaneous
collisions (i.e., particle stiffness) in the collisional contribution, allows to capture the
change of slope in the normal stress which happens at large values of the shear rate.

The second part of this thesis is dedicated to the study of inhomogeneous shear flows of
frictionless spheres. The dynamics of an assembly of hard and frictionless spheres sheared
between two bumpy walls has been investigated by performing numerical Soft-Sphere
Discrete Element Method simulations. The influence of the inelasticity of the particles
(i.e., the coefficient of restitution) and the boundary conditions (i.e., bumpiness of the
walls) have been investigated. We have used the information obtained from the numerical
simulations to propose appropriate boundary conditions, distinguishing between small
and large bumpiness. Those boundary conditions have been employed to numerically
integrate the differential equations of the theory, which, for frictionless particles, reduces
to the collisional contribution. Finally, the numerical results have been compared with
the predictions of the theoretical model. The main conclusions of this study are:

• at small bumpiness, the boundaries are energetic: the flux of energy is directed
towards the interior of the flow. As a result, the walls are always hotter than the
interior and the concentration increases with the distance from the wall. The slip
velocity increases with the inelasticity of the particles, and for very inelastic particles,
the granular material roughly moves as a plug. When the slip velocity approaches
the value 0.5, for which there is a condition of perfect slip at the walls, the particles
do not touch the walls, so that no exchange of energy with the boundaries is possible.
In that case, the energy initially put into the system is entirely dissipated in collisions
and the steady state is never reached.

• At large bumpiness, we have observed that some flowing particles get stuck in the
gaps between the wall spheres. The bumpy walls become “disordered”, and, then,
more dissipative (or less energetic) than expected. The concentration and the gran-
ular temperature exhibit a rather uniform profile, resembling homogeneous flows.

• The coefficient of restitution strongly affects the stress ratio, as well as the distri-
butions of concentration and granular temperature, in both cases of small and large
bumpiness.

• We have proved that the kinetic theory has the capability of quantitatively repro-
ducing the flow of frictionless spheres in the entire range of concentration for which
the collisions can be considered nearly instantaneous.

7.1. Recommendations and future works

This work is a first step towards a complete and accurate description of the rheology of
granular flows. There are several limitations and many aspects that can be improved in
future research.

Even though the collisional contribution (i.e., modified kinetic theory) has been demostrated
to predict extremely well the flows of hard, frictionless and slightly frictional particles, it
quantitatively disagrees with the numerical simulations when very frictional and/or soft
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particles are considered.
The role of the friction into the collisional term has been modeled using an effective co-
efficient of restitution whose expression has been derived for slightly frictional particles.
In order to correctly account for the friction, a rigorous approach would be to include the
balance equations for the mean spin and the rotational fluctuation energy in the set of
hydrodynamic equations. Alternatively, a new expression for the effective coefficient of
restitution must be inferred from the numerical simulations.
The particle stiffness has been introduced into the collisional contribution in order to ac-
count for the non-instantaneous duration of the collisions. When the particles are soft,
not only the time duration of a collision increases, but also multiple collisions occur. In
the present model, the collisions are assumed to be binary. This assumption leads to
the underprediction of the normal stress at large shear rate in the concentration-imposed
simple shear flows. Therefore, a possible direction of future research is the generalization
of the model to include the role of multiple collisions.

The simple approach based on linearly adding the quasi-static and collisional contribution
qualitatively reproduces simple shear flows but, up to now, is unable to simulate flows at
concentrations larger than the shear rigidity. According to the model, this limit concen-
tration represents densest disordered configuration of identical spheres attainable under
steady, shearing conditions. The numerical results have shown that this threshold can be
overcome by the flows, and ordered configurations can be reached. As a consequence, the
theory must be extended to the denser flows of ordered configurations.

The unexpected non-monotonic trend of the stress ratio with the shear stress (or, equiv-
alently, with the inertial number) in the regime where both collisions and force chains
coexist, must be further investigated. Numerical simulations on homogeneous pressure-
imposed shear flows of frictional and soft particles could be performed in order to confirm
(or refute) this peculiarity of the model.

Finally, in inhomogeneous shear flows, the numerical simulations performed in this work
have shown that the granular material response changes drastically when using small or
large bumpiness. Future research can focus on a systematic investigation on the role of
the bumpiness. In particular, on the basis of numerical measurements of the slip velocity
and the energy flux at the walls, a generalization of the theoretical boundary conditions
here proposed can be drawn. The study could be also extended to the influence of the
particle stiffness and the friction.

Last but not least, the development of a 3D continuum mechanics based numerical code
for the solution of the set of hydrodynamics equations provided by the theory is probably
the most ambitious challenge.
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A. Kinetic theory auxiliary functions

In this Appendix the auxiliary functions estimated by [40] for the revised kinetic theory
are reported. The coefficients η∗, κ∗, µ∗ and γ∗ appearing in the expressions of the shear
viscosity, η, the thermal conductivity, κ, the coefficient of the density gradient, µ and the
bulk viscosity, γ, are:
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The coefficient ζ∗ appearing in the expression of the collisional rate of dissipation of
fluctuating energy, Γ, reads:

ζ∗ = ζ0∗ + ζ1∗
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where
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B. Comparison of the collisional contribution
with numerical results

From the constitutive relation for the collisional normal stress and shear stress, for plane
shear flows,

f1 =
σcol
ρpT

, (B.1)

f2 =
τcol

ρpdT 1/2γ̇
, (B.2)

so that the functions f1 and f2 can be obtained from the numerical (measured) values
of σcol, τcol, T and γ̇ = u′. In this Appendix, we show the comparison of the theoretical
expressions of f1 and f2, Eqs. (4.46) and (4.47), with the measured quantities σ/ (ρpT )
and τ/

(

ρpdT
1/2γ̇

)

obtained, in the collisional regime, from the numerical simulations of
Mitarai and Nakanishi [88] and Chialvo and Sundaresan [27] on homogeneous plane shear
flows and the present SS-DEM simulations of inhomogeneous plane shear flows, using
different values of the normal coefficient of restitution and of the interparticle friction
coefficient.

Frictionless spheres (µ = 0)

In the case of nearly elastic particles (e = 0.98 and 0.99), f1 is slightly underpredicted if
the proposed radial distribution function is adopted (Figs. B.6(a) and B.7(a)). Replacing
Eq. (4.28) with Eq. (4.27) into Eq. (4.46) would allow a good fitting also for the case of
nearly elastic particles (e > 0.95).
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Figure B.1.: Theoretical f1 (a) and f2 (b) (solid lines, Eqs. 4.46 and (4.47)), compared
with the numerical σ/ (ρpT ) and τ/

(

ρpdT
1/2γ̇

)

obtained from numerical simulations when
µ = 0 (νs = νrcp = 0.636) and e = 0.5 (symbols).
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Figure B.2.: Same as in Fig. B.1 but for e = 0.8.
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(b)

Figure B.3.: Same as in Fig. B.1 but for e = 0.9.
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Figure B.4.: Same as in Fig. B.1 but for e = 0.92.
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Figure B.5.: Same as in Fig. B.1 but for e = 0.95.
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Figure B.6.: Same as in Fig. B.1 but for e = 0.98.
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Figure B.7.: Same as in Fig. B.1 but for e = 0.99.
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Slightly frictional spheres (µ = 0.1)
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Figure B.8.: Theoretical f1 (a) and f2 (b) (solid lines, Eqs. 4.46 and (4.47)), compared
with the numerical σ/ (ρpT ) and τ/

(

ρpdT
1/2γ̇

)

obtained by Chialvo and Sundaresan [27]
when µ = 0.1 (νs = 0.613), et = 1 and en = 0.7 (symbols).
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Figure B.9.: Same as in Fig. B.8 but for en = 0.8.
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Figure B.10.: Same as in Fig. B.8 but for en = 0.9.
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Figure B.11.: Same as in Fig. B.8 but for en = 0.95.
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Figure B.12.: Same as in Fig. B.8 but for en = 0.99.

113





Bibliography

[1] M. Alam, J.T. Willits, B.O. Arnarson, and S. Luding. Kinetic theory of a binary
mixture of nearly elastic disks with size and mass-disparity. Physics of Fluids, 14:
4085–4087, 2002.

[2] I. Aranson and L. Tsimring. Patterns and collective behavior in granular media:
Theoretical concepts. Reviews of Modern Physics, 78:641–692, 2006.

[3] B.O. Arnarson and J.T. Willits. Thermal diffusion in binary mixtures of smooth,
nearly elastic spheres with and without gravity. Physics of Fluids, 10:1324–1328,
1998.

[4] M. Babic. Unsteady Couette granular flows. Physics of Fluids, 9:2486–2505, 1997.

[5] M. Babic. Average balance equations for granular materials. International Journal
of Engineering Science, 35:523–548, 1997.

[6] M. Babic, H.H. Shen, and H.T. Shen. The stress tensor in granular shear flows of
uniform, deformable disks at high solids concentrations. Journal of Fluid Mechanics,
219:81–118, 1999.

[7] R.A. Bagnold. Experiments on a gravity-free dispersion of large solid spheres in a
newtonian fluid under shear. Proceedings of the Royal Society A, 255(1160):49–63,
1954.

[8] J.P. Bardet and I. Vardoulakis. The asymmetry of stress in granular media. Inter-
national Journal of Solids and Structures, 38:353–367, 2001.
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[19] N. Brilliantov and T. Pöschel. Granular gases with impact-velocity-dependent resti-
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[20] N.V. Brilliantov and T. Pöschel. Kinetic Theory of Granular Gases. Oxford Uni-
versity Press, Oxford, U.K., 2004.

[21] N. Brodu, P. Richard, and R. Delannay. Shallow granular flows down flat frictional
channels: Steady flows and longitudinal vortices. Physical Review E, 87:022202,
2013.

[22] L. Bureau, T. Baumberger, and C. Caroli. Rheological aging and rejuvenation in
solid friction contacts. European Physical Journal E, 8:331–337, 2002.

[23] C.S. Campbell. Rapid granular flows. Annual Review of Fluid Mechanics, 22:57–92,
1990.

[24] C.S. Campbell. Granular shear flows at the elastic limit. Journal of Fluid Mechanics,
465:261–291, 2002.

[25] N.F. Carnahan and K.E. Starling. Equation of state for nonattracting rigid spheres.
Journal of Chemical Physics, 51:635–636, 1969.

[26] S. Chapman and T.G. Cowling. The mathematical theory of non-uniform gases.
Cambridge University Press, Cambridge, U.K., 1970.

[27] S. Chialvo and S. Sundaresan. A modified kinetic theory for frictional granular flows
in dense and dilute regimes. Physics of Fluids, 25:070603, 2013.

[28] S. Chialvo, J. Sun, and S. Sundaresan. Bridging the rheology of granular flows in
three regimes. Physical Review E, 85:021305, 2012.

[29] P.A. Cundall and O.D.L. Strack. A discrete numerical model for granular assemblies.
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Discrete-element modeling of granular materials. Wiley, 2001.

[84] S. McNamara. Event-driven method. In F. Radjäı and F. Dubois, editors, Discrete-
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