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Abstract - English 
 

Aim - The aim of this study was to optimize and validate objective methods of signal detection 

vs. noise for the investigation of brain functional connectivity with resting state functional magnetic 

resonance imaging in healthy subjects and patients with Alzheimer’s disease. 

Background - Resting-state functional magnetic resonance imaging (RS-fMRI) is a widespread 

and powerful technique for investigating the functional connectivity (FC) of the human brain. With 

this technique it is possible to study different Resting State Networks (RSNs) that are associated 

with specific brain functions, and that can be altered in pathological conditions. Although several 

analysis methods are currently used for the analysis of RS-fMRI data, a common problem is the 

separation of noise from the neural-related signal of the RSNs, due to the absence of a model for 

neural activity. Hence, effective methods for the correct identification and removal of the artefacts 

from the data (cleaning or clean-up) are needed to obtain reliable FC analyses. This is particularly 

important in Alzheimer's disease (AD), as the decreased functional connectivity of the default mode 

network (DMN), quantified on RS-fMRI data, is becoming a possible new biomarker for this 

pathology. Therefore an early diagnosis and a detailed characterization of this alteration are crucial. 

Protocols and results - (i) Methodological developments. The amount of FC estimation errors 

in seed-based FC analyses was quantified through surrogate data analysis and two approaches for 

FC maps thresholding have been introduced in order to increase the reliability of single-subject FC 

analyses. Further, an automated denoising method (FMRIB's ICA-based X-noisefier - FIX), 

developed in collaboration with the FMRIB (Functional Magnetic Resonance Imaging of the Brain) 

Centre (University of Oxford, UK), allowed to further improve the FC estimation as, through the 

cleaning of the raw single-subject data, it can be applied to any FC analysis. The cleaning procedure 

with FIX consists of the following major operations: single-subject spatial independent component 

analysis (ICA), component-wise feature extraction, classifier training, components classification, 

and removal of the artefactual components from the data. FIX achieved over 95% classification 

(signal vs noise) accuracy for the training sub-sets built by hand-labelling the single-subject 

independent components (ICs) in three different datasets. The procedure for artefact removal was 

then optimized, testing the efficacy of several cleaning options on different acquisition sequences 

(standard EPI and multi-band slice accelerated EPI) at two group ICA model orders (low- and high-

dimensional ICA) by means of time series (time series amplitude and spectra), network matrices, 

and spatial maps analyses. 

(ii) Applications. The impact of different data-driven cleaning approaches for RS-fMRI data was 

evaluated on a population of aged healthy controls and patients with mild to moderate Alzheimer’s 
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disease (AD). Among the tested approaches, the cleaning procedure with FIX showed to be the 

most effective in correctly detecting the typical FC alteration of the default mode network (DMN) 

in AD patients. Finally, we obtained promising results for a better localisation and quantification of 

FC alterations in AD on two RSNs of interest through the combination of an effective cleaning 

procedure and high-dimensional spatial and temporal RSNs analyses. 

Conclusion - The present work has demonstrated and validated both the optimization of known 

protocols and also novel approaches in basically two directions: 1) an effective cleaning of RS-

fMRI data for reliable FC analyses; 2) a more detailed parcellation of the brain and the analysis of 

the temporal information with time series and network analyses. The discussed results are 

promising towards an early and accurate detection of FC alterations in pathological conditions and 

their monitoring at different stages, and support future developments for the definition of reliable 

non-invasive biomarkers for AD and other pathologies. 

 

 

Keywords: resting state functional magnetic resonance imaging; functional connectivity; artefact 

removal; independent component analysis; network analysis; Alzheimer’s disease 
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Abstract - Italiano 
 

Scopo – Lo scopo di questa tesi è stato quello di ottimizzare e validare metodi obiettivi per 

l’identificazione del segnale riguardante l’attività neurale rispetto al rumore per lo studio della 

connettività funzionale cerebrale in soggetti sani e pazienti con malattia di Alzheimer. 

Introduzione – La risonanza magnetica funzionale a riposo (resting state functional magnetic 

resonance imaging, RS-fMRI) è una tecnica molto diffusa e utilizzata per lo studio della 

connettività funzionale (CF) del cervello umano. Con questa tecnica è infatti possibile studiare 

diverse reti cerebrali, le cosiddette Resting State Networks (RSNs), che sono associate a specifiche 

funzioni e la cui attività può essere alterata in condizioni patologiche. Sebbene esistano attualmente 

diversi metodi per l’analisi dei dati di RS-fMRI, un problema commune è quello della difficile 

separazione del rumore dal segnale relativo all’attività neurale delle RSNs, a causa dell’assenza di 

un modello dell’attività neurale a riposo. Per questo motivo sono necessari metodi efficaci per la 

corretta identificazione e rimozione degli artefatti dai dati, al fine di ottenere analisi di CF affidabili. 

L’ottenimento di misure di CF affidabili è particolarmente importante nella malattia di Alzheimer 

(Alzheimer's disease, AD), poichè la diminuzione di FC osservata in pazienti con AD all’interno 

della cosiddetta default mode network (DMN) e quantificata in dati di RS-fMRI, sta diventando un 

possibile nuovo biomarker per questa patologia. Perciò una diagnosi precoce e una caratterizzazione 

dettagliata di questa alterazione sono di cruciale importanza. 

Metodi e Risultati – (i) Sviluppi metodologici. E’ stato quantificato l’errore di stima in analisi 

di CF seed-based (calcolata cioè come la correlazione tra il segnale in un’area specifica, detta seed 

e il resto del cervello) attraverso l’utilizzo di serie temporali surrogate e sono stati proposti due 

metodi di sogliatura delle mappe di CF, per aumentare l’affidabilità delle analisi di CF a singolo 

soggetto. Successivamente, l’introduzione di un metodo di rimozione (cleaning) di artefatti e 

rumore (FMRIB's ICA-based X-noisefier – FIX), sviluppato in collaborazione con il centro FMRIB 

(Functional Magnetic Resonance Imaging of the Brain) dell’Università di Oxford (Oxford, UK), ha 

permesso di migliorare ulteriormente la stima della CF poichè, rimuovendo gli artefatti direttamente 

dai dati grezzi, può essere applicato a qualsiasi analisi di CF. La procedura di cleaning consiste nei 

seguenti passaggi principali: analisi delle componenti indipendenti (independent component 

analysis, ICA), estrazione di caratteristiche spaziotemporali tipiche delle componenti (features), 

addestramento di un classificatore (training), classificazione delle componenti in segnale o rumore, 

rimozione delle componenti rumorose dai dati. FIX ha raggiunto una accuratezza di classificazione 

di oltre il 95% rispetto alla classificazione manuale in tre diversi dataset costruiti classificando 

manualmente le componenti (independent components, ICs) a singolo soggetto. E’ stata poi 
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ottimizzata procedura per la rimozione degli artefatti, testando l’efficacia di diverse opzioni di 

cleaning su dati acquisiti con diverse sequenza (standard EPI e EPI accelerata multiband), usando 

due diverse dimensionalità per l’analisi ICA di gruppo (bassa e alta dimensionalità), attraverso 

analisi di serie temporali (ampiezza e spettro delle serie temporali), analisi di rete e analisi delle 

mappe spaziali. 

(ii) Applicazioni. E’ stato valutato l’impatto di diversi approcci di cleaning per i dati di RS-fMRI 

in una popolazione di soggetti sani anziani e pazienti con malattia di Alzheimer. Tra gli approcci 

testati, la procedura di cleaning con FIX si è rivelata la più efficace nell’identificare correttamente 

nei pazienti con AD la tipica alterazione di CF della DMN. Infine, combinando il cleaning con FIX 

all’analisi ICA di gruppo ad alta dimensionalità sono stati ottenuti risultati promettenti per una 

miglior localizzazione e quantificazione dell’alterazione funzionale nei pazienti AD in due RSNs di 

interesse (DMN e network sensorimotoria). 

Conclusione – Il presente lavoro ha dimostrato e validato sia l’ottimizzazione di protocolli già 

disponibili, sia nuovi approcci, principalmente in due direzioni: 1) l’efficace rimozione del rumore 

dai dati di RS-fMRI per analisi di CF affidabili; 2) la dettagliata parcellizzazione del cervello e 

l’analisi dell’informazione temporale attraverso analisi delle serie temporali e analisi di rete. I 

risultati discussi si sono dimostrati promettenti per l’identificazione precoce ed accurata delle 

alterazioni di CF in condizioni patologiche e il loro monitoraggio a diversi stadi della patologia, con 

lo scopo ultimo di poter definire accurati biomarker non invasivi per la malattia di Alzheimer e altre 

patologie.  

 

Parole chiave: risonanza magnetica funzionale a riposo; connettività funzionale; rimozione di 

artefatti; analisi delle componenti indipendenti; analisi di rete; malattia di Alzheimer. 
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Extended summary 
 

The present work deals with the study of brain functional connectivity (FC) through resting state 

functional magnetic resonance imaging (RS-fMRI). This technique addresses Resting State 

Networks (RSNs) displaying coherent activity, associated with specific brain functions, and altered 

by pathological conditions. Although several analysis methods are currently used for its analysis, a 

common issue is the absence of a model for neural activity, which hinder the separation of noise 

from the neural-related signal from the RSNs. In this thesis this problem is firstly challenged by a 

preliminary estimation of errors in single-subject seed-based functional connectivity maps and its 

thresholding through surrogate data. Then, by the development of a tool for the automatic 

identification and removal of noise in raw single-subject data, by regressing out artefactual 

independent components (ICs), thus cleaning data prior to any further processing, including group 

ICA. As to the latter, high-dimensional ICA is used as a powerful approach for obtaining a more 

detailed parcellation of the brain that allows performing improved spatial, temporal, and network 

analyses. These methodological innovations are then applied in the challenging field of Alzheimer’s 

disease, where anatomical, microstructural and behavioural abnormalities hinder the quantitative 

comparison with normal controls, which is aimed at evidence based diagnosis, follow-up, and 

prognosis. 

 

Background and aim 

Resting-state functional magnetic resonance imaging (RS-fMRI) is a widespread and powerful 

technique for investigating the functional connectivity (FC) of the human brain. In RS-fMRI 

studies, subjects are asked to rest quietly while brain images are acquired. The idea which stands 

behind this approach is that the brain regions similarly modulated by stimuli or tasks, rather than 

being idle during rest, display instead vigorous and persistent functional activity (Buckner et al., 

2008), mainly detected as spontaneous though coherent low-frequency BOLD signal fluctuations. 

The similarity between the time series in different voxels can be estimated, thus providing measures 

of functional connectivity (FC, Friston et al., 1993; Biswal et al., 1995). In this way FC is suggested 

to describe the relationship between the neuronal activation patterns of anatomically separated brain 

regions, reflecting the level of functional communication between regions (Van Den Heuvel, 2010). 

With this technique it has been observed that, at rest, the brain is organized into Resting State 

Networks (RSNs) that can be associated with specific functions (Beckmann et al., 2005; Smith et 

al., 2009). Today the most studied RSNs are: the default mode network (DMN, the first discovered 

and most studied RSN), the sensory-motor network, the right and the left lateral networks, the 



12 

salience network, the ventral stream network, the task positive network, the primary, the medial and 

the lateral visual networks, and the auditory network. 

Among the different available techniques for FC analysis of RS-fMRI data, the most widespread 

ones, used in this thesis, are seed-based correlation and independent component analysis. Seed-

based correlation was the first method used for RS-fMRI FC analyses (Biswal et al., 1995): one or 

more regions of interest (ROIs) are a priori selected to evaluate the similarity (e.g., temporal 

correlation) of their average time course with each other area or single voxel in the brain. The result 

is a map of brain voxels significantly correlated with the chosen seed ROI or a quantitative 

assessment of the strength of correlation with the selected target ROI (Golestani and Goodyear, 

2011). Independent Component Analysis (ICA) was introduced in fMRI analysis (McKeown et al., 

1998) as a data-driven and hypothesis-free analysis method able to decompose RS-fMRI data into 

spatially independent components. In this way multiple RSNs can be studied simultaneously. ICA 

does not require RNS areas to be completely non-overlapping, but only that the different sources of 

signal change are not distributed in the same way, i.e. that knowledge about the spatial distribution 

of one does not provide any information on the spatial distribution of the other (Beckmann, 2012). 

A common problem of all FC analysis methods is the lack of prior knowledge about the temporal 

signal of interest (no specific task during acquisition), which makes the RS-fMRI data analysis 

more challenging than task-based fMRI. This also hinders the correct separation of noise from the 

neural-related signal from the RSNs. In fact, several sources of noise are present in the data, many 

of which share some spatial or spectral overlap with RSNs. Spatially extended artefacts can be 

caused by the scanner (e.g., hardware instabilities), or, more frequently, they are caused by non-

neuronal physiological mechanisms (head motion, cardiac and respiratory cycles) (Murphy et al., 

2013). Their correct identification and removal (hereafter also called denoising, cleaning or clean-

up) is therefore crucial for reliable FC analyses. Other important methodological issues addressed, 

at least partially, in this thesis were: the need to increase spatial and temporal resolution of fMRI 

data; the optimization of single-subject FC analyses in order to provide sensitive and accurate 

detection of FC alterations, to be used as non-invasive biomarkers; the need of a high-

dimensionality parcellation of the brain in order to allow more detailed network analyses. 

Certainly, the ultimate goal of the optimization of FC analysis methods is their clinical 

application, and the FC analysis of the RSNs is currently used to study a wide range of neurological 

and psychiatric disorders (Cole et al., 2010). In this thesis we focused on Alzheimer’s disease, the 

most common cause of neurodegenerative dementia. In this pathology the study of one RSN in 

particular, the DMN, is especially important because the DMN structures are involved in the 

memory processes and are vulnerable to atrophy, deposition of the amyloid protein, and generally 
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show a reduced glucose metabolism (Buckner et al., 2005). Moreover, with RS-fMRI it has been 

consistently demonstrated a decreased functional connectivity of the DMN, and this is becoming a 

possible new biomarker for AD (Li et al., 2011; Greicius et al., 2004; Gili et al., 2011). Therefore 

an early detection and a detailed characterization of this alteration are crucial. 

Aims of the study 

The aim of this study was to optimize and validate objective methods for the investigation of the 

RSNs based on resting state fMRI, in healthy subjects and patients with Alzheimer’s disease. In 

particular, once quantified the amount of FC estimation errors in seed-based FC analysis (one of the 

most common FC analysis techniques), the problem of artefact removal from the raw data was 

focused, in order to optimize any subsequent FC analysis. An automated denoising method 

(FMRIB's ICA-based X-noisefier - FIX), was developed in collaboration with the FMRIB 

(Functional Magnetic Resonance Imaging of the Brain) Centre (University of Oxford, UK), and was 

tested on different datasets (healthy controls and AD patients), acquisition sequences (standard EPI 

and multi-band accelerated EPI), and group ICA model orders (low- and high-dimensional group 

ICA) for spatial, temporal, and network analyses. Finally, through the combination of an effective 

cleaning procedure and high-dimensional RSNs analysis a better localisation and quantification of 

FC alterations in AD was aimed at. 

 

Methods 

Individual thresholding of seed-based FC maps. 

A method for the evaluation of errors in single-subjects FC maps and their thresholding was 

proposed. It involved the steps summarised in Figure 1 and described below: 

 
Fig. 1. Overall scheme of the methods used for the individual thresholding of seed-based FC maps 
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- preprocessing of RS-fMRI data (slice timing, motion correction, coregistration to MNI 

space, spatial smoothing, regression of nuisance variables, temporal band-pass filtering. See 

par. 2.2.2) 

- extraction of the mean time course within a region of interest (ROI) 

- linear correlation (followed by Fisher's r-to-z transformation) between the ROI-time course 

and the time courses of all acquired voxels in order to obtain the seed-based functional 

connectivity map (zFCmap) 

- generation of surrogate phase-randomized time series of the ROI-time course with the 

iteratively refined amplitude adjusted Fourier transform (iAAFT) method (Schreiber and 

Schmitz, 2000) 

- computation of seed-based functional connectivity maps using each surrogate time series as 

seed, in order to obtain error maps (zERRmaps, i.e. consisting only in random correlations) 

- calculation of the mean and the standard deviation among the error maps, obtaining an error 

mean map (meanERRmap) and an error standard deviation map (stdERRmap) for each 

subject (the distributions of these two maps were fitted to theoretical sample distributions, 

respectively normal and chi-square distribution, in order to describe the characteristics of the 

random correlations (errors) within the brain FC maps) 

- thresholding of the FC maps: 

o global thresholding method: computation of a 2*std (i.e., p<0.05) confidence 

interval (CI) as  (where and  are the mean values of 

meanERRmap and stdERRmap distributions respectively), and application of ICglobal 

to each voxel of the FC map (voxels showing a correlation value out of the CI are 

considered as significantly connected with the seed) 

o local thresholding method: computation of a 2*std (i.e., p<0.05) confidence interval 

for each brain voxel (i) as , and application 

of IClocal to the i-th voxel of the FC map (voxels showing a correlation value out of 

the CI are considered as significantly connected with the seed) 

This procedure was applied in 15 healthy controls to identify the default mode network (DMN) 

using a seed in the posterior cingulate cortex (PCC). We described the distribution of the random 

correlation within the brain, compared the two thresholding methods, and evaluated the intra-

subject and inter-subject variability of the threshold. 

 

 

stdmCIglobal *2±= m std

))((*2))(()( izERRstdizERRmeaniCIlocal ±=
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ICA-based noise identification and removal 

A tool for the automatic identification and removal of noise was developed in collaboration with 

the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Centre (University of Oxford, 

UK). “FIX” (FMRIB's ICA-based X-noisefier) is an automated approach, once trained, for cleaning 

fMRI data of various types of noise. This tool is conceived to clean single-subject data before any 

further processing step (seed-based correlation, group-ICA, network analysis, or other approaches) 

exploiting a preliminary classification of single-subject independent components into signal or 

noise and regressing out the noise ones together with motion regressors. The major operations for 

FIX clean-up can be summarised as follows: 

- preprocessing of RS-fMRI data (motion correction, EPI distortions correction, brain 

extraction, spatial smoothing, high-pass temporal filtering. See par. 3.3.2) 

- single-subject ICA decomposition 

- training dataset generation (training datasets): 

o manual labelling of the individual components in signal and noise 

o classifier training (using expert-/hand-labelled data) 

- automatic classification of single-subject ICs in the test datasets (i.e., predicting components 

likelihood of being signal or noise) 

- noise removal (removal of the artefactual components) (test datasets) – two options: 

o aggressive clean-up: regression of the full space of all artefacts (noise components 

and motion confounds) out of the 4D pre-processed data; however, signal power 

shared by signal and noise components is also cancelled out.  

o soft clean-up: regression of the full space of the motion parameters out of the data; 

estimation of the contribution of noise and signal components, thus preserving the 

shared signal power; subtraction of the contribution of the noise components only. 

FIX cleaning was applied on three datasets (see details in Table 1) in order to: 1) test the 

classification accuracy, 2) test the efficacy of the noise removal procedure, and 3) evaluate the 

impact of the cleaning procedure in a clinical dataset (i.e. patients with Alzheimer’s disease). 
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Table 1. Subjects recruited for FIX training dataset generation and corresponding test dataset used for the different 

studies evaluating FIX performance. 

 Training dataset Test dataset 

Dataset 1 23 subjects (HC) – Standard EPI, 3T 

scanner 

53 subject (HC) – Standard EPI, 3T 

scanner 

Dataset 2 23 subjects (HC) – Multiband 

accelerated (MB6) EPI, 3T scanner 

53 subject (HC) – Multiband accelerated 

(MB6) EPI, 3T scanner 

Dataset 3 46 subjects (HC) – standard EPI, 1.5T 

scanner 

41 subjects (20 HC, 21 AD patients) – 

standard EPI, 1.5T scanner 

Legend: HC = healthy controls; AD = Alzheimer's disease patients; EPI = echo planar imaging; MB6 = multiband 
accelerated, factor 6 

 

Below a summary of the methods applied in the three studies evaluating FIX performance is 

presented. 

1) ICA-based noise identification: accuracy evaluation 

On the training sub-sets respectively relevant to each of the three datasets the evaluation of the 

classification accuracy was tested with a leave-one-out test in terms of “true positive rate” (TPR, 

meaning the percentage of true signal components correctly detected with respect to manual 

labelling) and “true negative rate” (TNR, meaning the percentage of true artefact components 

correctly detected with respect to manual labelling). 

2) ICA-based noise removal: efficacy evaluation on healthy controls 

On the first two test datasets we tested the efficacy of the denoising procedure with different 

options. In particular, we compared the two first-level (within-subject) cleaning approaches (soft vs 

aggressive) for removing artefacts and motion-related parameters from the data and one second-

level cleaning (Nets clean-up, applicable only for time series and network analyses). 

With similar analyses we also investigated the combined effects of different cleanings and 

different acquisition sequences (test dataset 1 vs test dataset 2), in order to evaluate the benefits of 

the multiband slice accelerated sequence (Moeller et al. 2010; Feinberg et al., 2010) developed 

partly for the Human Connectome Project (HCP). 

The methods are summarised in Figure 2 and described below. 
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Fig. 2. Overall scheme of the methods used for the efficacy evaluation of FIX denoising on healthy controls 

 
 

- Templates creation (from training datasets 1 and 2):  

o aggressive removal of the manually-labelled artefactual components 

o coregistration to MNI space 

o temporal concatenation and group ICA at low (d=30) and high (d=100) 

dimensionality 

- preprocessing of test datasets 1 and 2 (motion correction, EPI distortions correction, brain 

extraction, high-pass temporal filtering. See par. 3.3.2) and ICA-based cleaning with two 

options (soft or aggressive), obtaining three sets of data: uncleaned data, softly cleaned data 

and aggressively cleaned data 

- coregistration to MNI space 

- dual regression using the templates as spatial regressors and generation of single-subject 

time series and spatial maps for each component 

- efficacy evaluation of the different cleaning options and comparison of the two acquisition 

sequences and the two ICA model orders on: 

o temporal signal-to-noise ratio (SNR, average value within the brain of the image 

obtained as the ratio between the mean image across time standard deviation image 

across time). 

o time series amplitude (i.e. the time series standard deviation) 

o time series power spectra 

o network matrices (obtained with full correlation, partial correlation and regularised 

partial correlation): consistency across subjects 
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o group spatial maps: similarity with the template 

3) Impact of ICA-based noise removal in a clinical dataset (Alzheimer’s disease) 

The denoising procedure with FIX was also applied to a group of elderly healthy controls and a 

group of patients with Alzheimer’s disease (test dataset 3, using training dataset 3 as sequence-

specific training dataset for FIX) and compared with other two common data-driven approaches for 

the cleaning of RS-fMRI data, in order to evaluate the impact of denoising on the identification of 

FC alterations in AD. The analyses involved the following steps: 

- preprocessing of RS-fMRI data (motion correction, brain extraction, spatial smoothing, 

high-pass temporal filtering. See par. 5.2.3) 

- cleaning with four cleaning options: 

o MOTreg: regression of motion parameters 

o MWCreg: regression of motion parameters, white matter spatial mean signal and 

CSF mean signal 

o FIXsoft: ICA-based denoising with FIX using the soft option 

o FIXagg: ICA-based denoising with FIX using the aggressive option 

- on the data obtained after the different cleaning options (uncleaned, MOTreg, MWCreg, 

FIXsoft, FIXagg), calculation of: 

o temporal signal-to-noise ratio (SNR) 

o %ΔSTD: the reduction of BOLD signal fluctuations with respect to the uncleaned 

data. 

o seed-based correlation analysis with seed in the posterior cingulate cortex (PCC) 

o template-based dual regression (Khalili-Mahani et al., 2012; 2013) 

- evaluation of the performance of the denoising procedures in terms of increase of within-

group consistency and ability to detect the typical FC alteration in the DMN on AD patients 

(between-group differences). 

Clinical application of ICA-based denoising and high-dimensional group ICA in Alzheimer’s 

disease 

The innovative combination of ICA-based cleaning and group ICA at high dimensionality 

introduced and validated on healthy subjects was applied in a preliminary clinical study on AD 

patients (test dataset 3, 20 HC and 21 AD), aiming at investigating in more detail the functional 

connectivity of two selected RSNs and their sub-networks. To achieve this, the following steps were 

performed: 

- preprocessing of RS-fMRI data (motion correction, brain extraction, spatial smoothing, 

high-pass temporal filtering. See par. 6.2.1) 
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- ICA-based (FIX) aggressive cleaning and coregistration to MNI space. 

- temporal concatenation of 4D RS-fMRI preprocessed data and group ICA decomposition at 

low dimensionality (d=25) and high dimensionality (d=70, as suggested by Abou Elseoud et 

al., (2010, 2011) and judged to be compatible with the number of temporal degrees of 

freedom in the data, in order to allow the combination of cleaning and high-dimensional 

ICA) 

- dual regression to obtain single-subject time series and spatial maps for each component 

- manual labelling of the low-dimensional components and selection of the RSNs of interest 

for the study (DMN and sensory-motor network, SMN) 

- definition of a classification algorithm to label the high-dimensional components as 

belonging to the RSNs identified from low-dimensional ICA or as being residual noise; 

accuracy evaluation of the classification with respect to manual labelling; selection of the 

sub-networks of interest for the study 

- evaluation of between-group differences (HC vs AD) with the two ICA dimensionalities on: 

o time series amplitude 

o network matrices (full correlation) 

o spatial maps 

 

Results 

Individual thresholding of seed-based FC maps. 

The distribution of random errors within the brain was observed to be homogeneous and, after 

thresholding with either method, the default mode network areas were well identifiable (see Figure 

3). The two methods yielded similar results (Dice index across subjects = 0.81±0.04), however the 

application of a global threshold to all brain voxels requires a reduced computational load. The 

inter-subject variability of the global threshold was observed to be very low and not correlated with 

age. Global threshold values reached a stable plateau with increasing surrogate and this low value 

can be suggested, with appreciable computational savings. 
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Fig. 3. Results of random error estimation (left, distributions of mean and standard deviation within the brain) and 

thresholding of a FC map (right, FC map before – a- and after global – b - and local – c - thresholding). 
 

ICA-based noise identification: accuracy evaluation 

From the training dataset built through manual labelling of the components, it emerged that the 

amount of noisy components is more than 70% of the estimated components for 1.5T images 

(which corresponds to the 30% of the total variance of the original data) and more than 85% (over 

65% of the total variance) for 3T images. The best leave-one-out (LOO) results for the three 

training datasets are summarised in Table 2. 

 
Table 2. FIX classification accuracy obtained with LOO test for the three datasets at the best threshold. 

 Training dataset 1 Training dataset 2 Training dataset 3 

TPR 97.8 96.5 95.8 

TNR 92.2 97.2 79.4 

Legend: TPR = True Positive Rate; TNR = True Negative Rate. 

 

ICA-based noise removal: efficacy evaluation on healthy controls 

Comparing the different cleaning approaches, the preferable balance between noise removal and 

signal loss was achieved by regressing out of the data the full space of motion-related parameters 

and only the unique variance of the artefact ICA components (FIX soft approach), without 

additional Nets clean-up (see, for example, the results obtained on the power spectra in Figure 4). 
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Fig. 4. Temporal power spectra (panel A) for different cleaning approaches, obtained from scaled time series (i.e., each 
normalised by the amplitude of the corresponding uncleaned time series), averaging the spectra across subjects and then 
calculating median spectra across components. Uncleaned data have the highest power both at low and high frequency; 
however, after normalising for power at the highest frequencies (where the content of thermal noise is higher than the 

content in signal) (panel B), it is clear that with soft clean-up we obtained the highest contrast-to-noise ratio. Results are 
shown for MB6 data, at d=100 (y axis in logarithmic scale), but were similar for the other protocols. 

 

With the multiband accelerated sequence (MB6), after the optimal cleaning procedure, we 

achieved functional connectivity results that were statistically comparable or significantly better 

than the standard (un-accelerated) acquisition, and importantly, with higher spatial and temporal 

resolution (See Figure 5). Moreover, only with the accelerated data were able to successfully 

combine single-subject cleaning and high-dimensional ICA decompositions (d=100), which is 

highly valuable for detailed network analyses. 

 

 
Fig. 5. Group-level z-statistic maps of two RSNs (sensory-motor network and visual network), derived from Standard 
(d=30) and MB6 (d=30 and d=100) datasets using the corresponding training data templates, without and with soft or 

aggressive FIX clean-up. Individual subjects’ z-statistic maps were mixture model corrected and combined using fixed-
effects averaging. Group maps are thresholded at abs(z)>3 (red-yellow colour coding for positive z values, blue-light 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

100

101

102
4.B) Scaled Power Spectra − MB6 d=100

Frequency (Hz)

Ti
m

es
er

ie
s’

 p
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (l

og
)

 

 
No cleaning
Soft
Aggressive
Only Nets
Soft+Nets
Aggressive+Nets
Only −global
Soft−global
Aggressive−global

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−2

10−1

100

101
4.A) Power Spectra − MB6 d=100

Frequency (Hz)

Ti
m

es
er

ie
s’

 p
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (l

og
)

 

 
No cleaning
Soft
Aggressive
Only Nets
Soft+Nets
Aggressive+Nets
Only −global
Soft−global
Aggressive−global

B)A)



22 

blue for negative ones). The effect of the cleaning is noticeably strong in terms of noise removal and more focal signal 
mapping (as highlighted with the ring around the right sensory-motor network). With high dimensionality the RSNs are 

split into multiple components, allowing a more detailed analysis of network connectivity. 
 

Impact of ICA-based noise removal in a clinical dataset (Alzheimer’s disease) 

Figure 6 shows the probability maps of BOLD fluctuation reduction across subjects in the two 

groups: the reduction is localized at brain boundaries after MOTreg, a small further decrease 

involves the ventricles and the WM after MWCreg, a large reduction within ventricles and in areas 

corresponding to blood vessels can be observed after FIX clean-up. 

 

 
Fig. 6. Spatial pattern of change in BOLD signal standard deviation: probability map of areas where %ΔSTD>25% 

across all HC (left) or AD patients (right). Images are shown in radiological convention. 
 

Regarding FC analyses, in both groups the consistency increased after cleaning (lower standard 

deviation across subjects). The consistency was, in general, higher within the HC group than in the 

AD group and the highest consistency was achieved with MWCreg and FIXagg. However, only 

after FIXagg a significant FC decrease within the DMN was observed in the AD group both with 

seed-based correlation and with template-based dual regression (see Figure 7). 
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Fig. 7. Between-group differences in functional connectivity results using a seed in the PCC (top) or DMN template-

based dual regression (bottom) on data cleaned with FIX aggressive clean-up. Images are shown in radiological 
convention. 

 

Clinical application of ICA-based denoising and high-dimensional group ICA in Alzheimer’s 

disease 

Three low-dimensional components of interest were selected: the posterior and anterior part of 

the DMN (respectively the posterior cingulate cortex, PCC, and the medial prefrontal cortex, 

mPFC), and the sensory-motor network (SMN). The classification algorithm showed an accuracy of 

95.7% with respect to manual labelling and the sub-networks of interest are showed in Figure 8. 

 

 
Fig. 8. High-dimensional components relative to the neworks of interest automatically selected by the labelling 

algorithm with the spatiotemporal-based criteria: the posterior default mode network (PCC) was identified in two 
components, the medial prefrontal cortex (mPFC) in three, and five components were labelled as belonging to the 

sensory-motor network (SMN). The number of each component was based on the ranking of variance explained by the 
component. 

 

As regards low dimensionality results, the time series amplitude was significantly lower in AD 

patients in all the three components, while only the correlation between the PCC and mPFC 

components was altered in AD. The spatial analysis highlighted significantly lower activations in 

AD compared to HC only in the PCC component. 
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At high dimensionality, the time series amplitude was significantly decreased (p<0.05) in AD 

patients in both PCC sub-networks (PCC0, PCC11), but only in one component within the mPFC 

(the ventral mPFC, mPFC14) and one in the SMN. The network analyses on the high-dimensional 

components of interest showed both within-network (mPFC and SMN) and between-network 

(mPFC-PCC) connectivity alterations in AD (AD<HC, p<0.05). Significantly lower activation in 

the spatial maps was found in AD patients in three high-dimensionality components (PCC0, 

mPFC14, SMN23). In the PCC sub-network (PCC0), the decreased activation was localised in the 

PCC and the precuneus; the alteration in the mPFC (mPFC14) involved the ventral mPFC, while a 

decreased activation in the SMN was localized in the left precentral gyrus. 

 

Discussion 

In this work, optimized methods for the correct identification of the RSNs and the detection and 

removal of the artefacts from RS-fMRI data were proposed. 

From the preliminary estimation of errors in the single-subject seed-based functional 

connectivity maps we observed a homogeneous distribution of random error within the brain, which 

suggests that this kind of error, although always present, is independent from the resting state 

activity itself. The proposed thresholding methods are promising for a better identification of the 

RSNs at single-subject level and, in future studies, they could be applied in a clinical setting to 

quantify the FC alterations with respect to a seed ROI through the definition of specific FC 

measures. Indeed, the availability of a reliable single-subject FC analysis could be particularly 

useful for rare case studies (when a group study is not feasible) and for the longitudinal evaluation 

of a single patient's disease progression or response to treatment or rehabilitation. 

Subsequently, the developed tool (FMRIB's ICA-based Xnoisefier - FIX) for the automatic 

identification and removal of noise allowed to further improve the reliability of FC estimation since, 

through the cleaning of the single-subject raw data, it can be applied to any FC analysis. Regarding 

the classification of signal and noise, FIX achieved over 95% classification accuracy on the three 

datasets built by hand-labelling of the components, thus demonstrating to be a highly valuable tool 

for the identification of the artefacts in RS-fMRI data. Our results on the denoising efficacy showed 

that FIX cleaning is useful to obtain reliable temporal and spatial RS-fMRI analyses: if an artefact is 

not cleaned at the single subject level and its spatial pattern is overlapping one of the RSNs, it will 

generally influence both the single-subject RSN time series, (i.e. the output of the first stage of dual 

regression) and the RSN spatial maps (obtained from the second step of dual regression). In fact, the 

non-cleaned time series will have higher amplitude with respect to the cleaned data, often with high 

frequency confounds visible in the power spectra, and the presence of shared noise will in general 
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produce less consistent network matrices across subjects. The noise would also lead to noisy 

subject-level z-maps, and affects any following group-level analyses, ultimately reducing the ability 

to detect specific activation patterns within the RSNs. This problem also affects seed-based resting-

state correlation maps for similar reasons, as demonstrated in the application on AD patients. In this 

population we observed the presence of a greater amount of artefacts, possibly due predominantly 

to atrophy, and the cleaning procedure with FIX revealed to be particularly useful to detect the 

typical alteration of the PCC in the DMN with two different FC analysis methods. 

The comparison of two different acquisition sequences suggests that the use of multiband (MB) 

accelerated EPI is advantageous for RS-fMRI analysis for several reasons: i) the increased temporal 

and spatial resolution yielded a better FIX classification accuracy (98% for MB6 versus 95% for 

Standard, with leave-one-out testing); ii) a considerably higher proportion of non-artefactual group-

ICA components was identified in the MB6 dataset, thus suggesting more successful ICA-based 

clean-up of MB data; iii) the MB accelerated data allowed a more detailed time series and network 

analyses through higher dimensionality decomposition (d=100), which was not achievable with the 

Standard sequence because of its lower temporal degrees of freedom; iv) MB time series spectra 

after cleaning showed considerably less structured artefact (i.e., deviation from the expected clean 

1/f-like spectrum) though preserving mean total time series power; v) network patterns were more 

reproducible across subjects with MB6; vi) the results of spatial map analyses were not altered in 

MB data, notwithstanding the lower static image SNR of MB due to its higher resolution. 

FIX is now publicly available; the current version (v1.06) is available as a “plugin” for FSL (the 

FMRIB Software Library) at link www.fmrib.ox.ac.uk/fslwiki/fsl/FIX. The FIX download includes 

training-weights files for “standard” fMRI acquisitions and for Human Connectome Project (HCP 

http://www.humanconnectomeproject.org/) RS-fMRI data. In fact, partly due to the study 

performed in this thesis, FIX is now in use as part of the default HCP analysis pipeline (Smith et al., 

2013), and FIX-cleaned data is the recommended version of the resting-state fMRI data that is 

publicly available – already over 200 subjects’ worth of hour-long datasets having been released to 

date. 

Finally, the combined use of ICA-based denoising and high-dimensional group ICA was applied 

in Alzheimer’s disease, in order to investigate in more detail the functional connectivity of two 

selected RSNs (the DMN and the SMN) and their sub-networks. The creation of an automatic 

labelling algorithm allowed to automatically identify the sub-networks of interest with an objective 

and quantitative criterion and to perform a high-dimensional analysis that added complementary 

information to the low-dimensional one. A future improvement of the algorithm could be the use of 

a standard template to avoid the need of manually label the low-dimensional components or the 
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development of an extension of the classifier used by FIX for the automated labelling of group-level 

components at low and high dimensionality. The study of the temporal information and the more 

detailed parcellation of the RSNs of interest allowed to detect FC changes in AD that were not 

detectable with the more common approach of low-dimensional spatial map analyses, thus 

suggesting that the optimized FC analysis could give further insight into the detection of functional 

connectivity alterations in pathological conditions for evidence based diagnosis, follow-up and 

prognosis (Abou Elseoud et al., 2011; Tian et al., 2013). Of course these results needs further 

research to be confirmed and the analysis on other resting state networks and at different model 

orders would be the natural progress of this study. Moreover, future studies including patients with 

Mild Cognitive Impairment (MCI) and severe AD patients, or longitudinal studies on AD patients 

would better clarify whether the early changes we observed with the temporal analyses truly 

anticipated changes detectable even in the low-dimensional spatial maps at more advanced disease 

stages. 

 

Conclusion 

The aim of this study was to optimize and validate objective methods for the investigation of the 

RSNs and the removal of artefacts in resting state fMRI data, applicable to the context of 

neurodegenerative diseases, especially Alzheimer’s disease. With a preliminary study quantified the 

amount of FC estimation errors in one of the most common FC analysis techniques (seed-based FC) 

was quantified and a thresholding method was proposed for a reliable single-subject FC analysis. 

Through the development of FMRIB's ICA-based X-noisefier (FIX), we then demonstrated that, by 

combining an accurate ICA component classifier with an effective approach for noise removal, we 

were able to remove artefacts directly from the raw data, automatically, and that we were not 

removing significant amounts of non-artefactual signal. Moreover, with multiband accelerated 

sequences and effective cleaning, we were able to perform higher dimensionality decompositions 

and more detailed RSN analyses than with a standard EPI acquisition. The proposed denoising 

approach was also demonstrated to be particularly beneficial in clinical applications, as it allowed to 

correctly detect FC alterations in mild to moderate Alzheimer’s disease (AD) patients. Finally, we 

showed that high-dimensional ICA, supported by a component classification based on low-

dimensional ICA, could be successfully applied in clinical studies (e.g. in AD) to gain additional 

knowledge regarding brain functional connectivity changes in diseased populations. A detailed 

parcellation of the brain and the analysis of the temporal information (e.g. amplitude and networks 

analyses) could give further and earlier insight into the detection of functional connectivity 

alterations in pathological conditions and their monitoring at different stages. The promising results 
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obtained in describing the functional disconnections due to this neurodegenerative disease support 

further efforts in this investigation direction, towards the definition of reliable non-invasive 

biomarkers for AD. 
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Chapter 1- Background and aim 
 

In this chapter, the scientific and clinical background of neuroimaging methods for the study of 

brain functional connectivity will be introduced, and both general and specific aims of optimizing 

these methodologies and applying them in the study of Alzheimer’s disease will be described. 

1.1. Functional MRI, Resting State functional MRI and functional 

connectivity 
Contemporary functional neuroimaging techniques provide excellent opportunities for 

investigating the human brain in vivo. It was the advent of the functional imaging modalities of 

positron emission tomography (PET), single photon emission computed tomography (SPECT), 

functional magnetic resonance imaging (fMRI), high resolution EEG, and magnetoencephalography 

(MEG) that led to a new era in the study of brain function.  

Throughout the last two decades, fMRI has developed into the most prominent method used for 

functional brain imaging (Bandettini et al., 2012; Howseman and Bowtell, 1999) and it is 

increasingly used to probe the functional integrity of brain networks. fMRI is a non-invasive 

technique for examining brain function through the use of blood oxygen level-dependent (BOLD) 

contrast. This contrast relies on two basic principles: i) hemoglobin has different properties 

according to its level of oxygenation (oxyhemoglobin is diamagnetic, while deoxyhemoglobin is 

paramagnetic) (Ogawa et al., 1990; Kim and Ogawa 2012); ii) regional blood oxygenation varies 

according to the levels of neural activity. These properties can be used to indirectly assess brain 

activity (Amaro and Barker, 2006) (Figure 1.1): the activation of a cortical area causes an increase 

of oxygenated blood inflow, higher than the strict metabolic consumption. This is indirectly sensed, 

since the arterial blood accelerates the hemodynamic mean transit time in the district, thus pushing 

away a portion of de-oxygenated blood in the venous capillaries. As deoxyhemoglobin is 

paramagnetic, it increases the local microscopic magnetic field inhomogeneity Δ B thus shortening 

the T2* relaxation time thus accelerating signal fading. In this way, changes in BOLD signal can be 

used to identify areas of increased or decreased neuronal activity (Logothetis, 2004; Raichle and 

Mintun, 2006) while subjects perform motor, sensory, cognitive or emotion-provoking tasks 

(Drobyshevsky et al., 2006). 
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Figure 1.1. Brain activity and BOLD signal principles. 

 

FMRI studies can be divided in two approaches: task-induced and task-independent protocols. 

The initial fMRI studies in humans focused on task-induced responses in the BOLD signal 

(Bandettini et al., 2012; Kwong et al., 1992). In standard task-induced fMRI, an experimental task 

of interest is presented alternately with a control condition (control task or rest) and the BOLD 

signal during the experimental task is compared to the BOLD signal during the control condition. 

As the difference between baseline and task-related activation accounts for about 1–5% of the total 

BOLD signal (Bandettini et al., 1992), statistics over repeated activations (either with a block 

design or event-related design) is necessary in order to provide response images as statistical 

parametric maps. In doing this, a parametric model linking the BOLD signal of each voxel to the 

experimental task is required (Stephan et al., 2006). The mainly adopted model is the general linear 

model (GLM) (Friston et al., 1995). Regressors are the model inputs (design of the experimental 

task), which include the expected hemodynamic response (or a set of possible responses, with more 

sophisticated approaches), and possible confounding factors (registered movements, slow drifts, 

average signal). A modified version, named event-related, considers events either randomly 

presented or a-posteriori registered, again compared to baseline. 

One of the new trends in functional neuroimaging is studying human brain ongoing activity 

expressed by structured BOLD fluctuations when subjects are not performing any particular task. 

This practice is task-independent and is also known as Resting State fMRI (RS-fMRI). In RS-fMRI 

studies, subjects are asked to rest quietly for several minutes while brain images are acquired. Since 

no external time reference is available as in task induced protocols, detection of significant activity 

relies only on the mutual dependence of the ongoing activity in different areas. Yet, a strong link 

with task related activity is recognized and has had a primary role in the discovery and classification 

of RS networks (see below). In fact, the brain regions similarly modulated (i.e., either activated or 

inhibited) by stimuli or tasks, rather than being idle during rest, display instead vigorous and 

persistent functional activity (Buckner et al., 2008) detected as spontaneous low-frequency (<0.1 
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Hz) BOLD signal fluctuations. Interregional correlations of these fluctuations can be estimated, and 

these quantitative estimates provide measures of functional connectivity. 

Functional connectivity (FC) is traditionally defined as the temporal dependency between 

spatially remote neurophysiological events (Friston 2011). In the context of functional 

neuroimaging, FC is suggested to describe the relationship between the neuronal activation patterns 

of anatomically separated brain regions, reflecting the level of functional communication between 

regions (Van Den Heuvel, 2010). The coherent activity of functionally related brain areas can be 

captured in BOLD signal during RS-fMRI acquisitions. The first RS-fMRI study was conducted by 

Biswal and colleagues (Biswal et al., 1995), who, correlating the time course of a seed region of 

interest (ROI) in the motor area with the time course of all other brain voxels, saw that during rest 

the left and right hemispheric regions of the primary motor network are not silent, but show a high 

correlation between their fMRI BOLD time series, suggesting ongoing information processing and 

ongoing functional connectivity between these regions during rest. 

Several studies replicated these pioneering results, showing a high level of FC other regions. In 

fact, when fMRI studies started to examine the possibility of measuring FC between brain regions 

as the level of co-activation of spontaneous fMRI time series recorded during rest (Biswal et al., 

1997; Cordes et al., 2000; Greicius et al., 2003), it was observed that, at rest, the brain is organized 

into networks, called Resting State Networks (RSNs), consistent across subjects and highly similar 

to networks of task-induced activations and deactivations (Beckmann et al., 2005; Damoiseaux et 

al., 2006; De Luca et al., 2006; Veer et al., 2010; Smith et al., 2009). They are believed to belong to 

distinct networks serving different functions such as vision, language, etc. Today the most studied 

RSNs are: the default mode network (DMN), the sensory motor network (SMN), the right and the 

left lateral networks, the salience network, the ventral stream network, the task positive network, the 

primary, the medial and the lateral visual networks and the auditory network (Figure 1.2). 



31 

 
Figure 1.2. The principal and more investigated resting-state networks (Veer et al., 2010) 

 

In particular, the first discovered and most studied RSN is the DMN, which was identified from 

PET data by Raichle et al. (2001). It includes the posterior and anterior cingulate cortex (PCC and 

ACC), the inferior parietal lobule (IPL), the medial prefrontal cortex (mPFC) and the hippocampus, 

regions that are known to show a high level of neuronal activity during rest and a deactivation in 

physiological conditions during the execution of cognitive tasks, suggesting that activity of this 

network is reflecting a default state of neuronal activity of the human brain (Gusnard et al., 2001; 

Raichle et al., 2001; Raichle and Snyder, 2007).  

The FC analysis of the RSNs is currently used to study a wide range of neurological and 

psychiatric disorders, i.e. Alzheimer’s disease (Damoiseaux et al., 2012; Sorg et al., 2009), 

dementia with Lewy bodies (Galvin et al., 2011), frontotemporal dementia (Farb et al., 2013), 

epilepsy (Cataldi et al., 2013), Parkinson’s disease (Göttlich et al., 2013), stroke (Varsou et al., 

2013), depression (Sambataro et al., 2013), and schizophrenia (Karbasforoushan and Woodward, 

2012) among others. It is therefore of crucial importance the development of sensitive and accurate 

methods for the detection of FC alterations, to be used as non-invasive biomarkers. 
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1.2. Functional connectivity analysis methods 
The lack of an a priori hypothesis about the brain activation (no specific task during acquisition) 

makes the RS-fMRI data analysis more challenging than the task-based fMRI. Various methods 

exist for analysing RS-fMRI FC, among which, the most widely used are: seed-based, model-free 

methods and network analysis methods. 

Seed-based functional connectivity analysis 

The first method used for RS-fMRI FC analyses is called seed-based or voxel-based (seed-based 

hereafter) technique. Firstly described by Biswal and colleagues (1995), it was subsequently applied 

in several studies (e.g. Raichle et al., 2001; Fox et al., 2005; Cordes et al., 2000; Taylor et al., 2009; 

Di Martino et al., 2008; Andrews-Hanna et al., 2007). In seed-based approaches one or more 

regions of interest (ROIs) are a priori selected to evaluate the similarity (e.g., temporal correlation) 

of their average time course with each other area or single voxel in the brain. The result is a map of 

brain voxels significantly correlated with the chosen seed ROI or a quantitative assessment of the 

strength of correlation within the target ROI (Golestani and Goodyear, 2011) (Figure 1.3). 

 
Figure 1.3. Seed-based FC. To examine the level of functional connectivity between the selected seed voxel and a 

second brain region j, the RS time series of the seed voxel is correlated with the RS time series of region j. A significant 
correlation between the time series of ROI and voxel j is reflecting a significant level of FC between these regions. 

Furthermore, to map out all functional connections of the selected seed region, the time series of the seed voxel can be 
correlated with the time series of all other voxels in the brain, resulting in a functional connectivity map that reflects the 
regions that show a high level of functional connectivity with the selected seed region (Van Den Heuvel and Hulshoff 

Pol, 2010). 
 

Seed-based correlation has proven to be a powerful, easily interpretable, and effective tool in 

identifying and characterising the brain areas that show activity during the resting state. However, 

the networks obtained from seed-based method depend on the way the seed regions are defined 

(Cole et al., 2010). Typically, seeds are chosen based on the location of activity during a task 

(Biswal et al., 1995; Xiong et al., 1999), using anatomical images as a guide (Di Martino et al., 

2008; Taylor et al., 2009), or based on standardized coordinates (Maldjian et al., 2003). However, 

the anatomical volume of known regions may vary between subjects, in the presence of 
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neurological disease, or with aging, and functional boundaries of brain regions may not be well 

defined. Hence, using this approach undesired voxels may be included, or functionally relevant 

voxels may be excluded. Moreover, the seed-based method only evaluates the relationship between 

the brain and the seed and considers one seed at a time, while, in absence of an a priori hypothesis, 

it might be more informative to simultaneously detect and characterise various different resting 

state networks from a single RS-fMRI acquisition. 

Independent Component Analysis (ICA) 

Data-driven methods, like principal component analysis (PCA) (Friston et al., 1993) and 

independent component analysis (ICA) (Beckmann et al., 2005; De Luca et al., 2006; Binnewijzend 

et al., 2012; Smith et al., 2009) were introduced as FC analysis methods to look for general 

connectivity patterns across brain regions. They aim to discover the underlying structure of the data 

rather than impose an a-priori knowledge on the model, with a blind separation of meaningful 

sources. In this case, instead of pointing a specific RSN by setting a seed, data analysis proceeds on 

indirect measurements, which are a mixture of true underlying source signals orthogonal (PCA) or 

maximally independent (ICA) one to each other (Fox and Grecius, 2010). Usually neither the 

original signals nor the mixing transformation is known and undoing this mixing process is a 

challenging problem known in the field of signal processing as the blind source separation (BSS) 

problem (Zarzoso and Nandi, 1999). 

In this framework, ICA has therefore developed over the course of decades as an extension of 

PCA for investigating solutions to the BSS problem. ICA was introduced (McKeown et al., 1998) 

as an fMRI analysis method able to use decomposition into spatially independent components 

(Figure 1.4) in order to distinguish between non-task-related signal components, movements and 

other artefacts, as well as task-related activations. From clinical experience it was noted that 

psychomotor functions are performed in localized brain areas that can be inferred from specific 

deficits in patients. This led to the assumption that brain areas that respond to a psychomotor task 

are independently distributed from brain areas affected by other sources of variability. This does not 

require these areas to be completely non-overlapping, but only that other sources of signal change 

are not distributed in the same way as the task-related areas, i.e. that knowledge about the spatial 

distribution of one does not provide any information on the spatial distribution of the other 

(Beckmann, 2012). 
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Figure 1.4. Schematic illustration of data representation and spatial decomposition with spatial ICA on fMRI data. The 
volumes obtained with functional image acquisition are rearranged into a 2D matrix by arranging all voxel for each 3D 
functional image into a single row. Then, ICA decomposes this dataset into two new matrices, the first one containing a 

component time course in each column and the second one containing a component spatial map in each row. The i-th 
time course and the i-th spatial map belong to the i-th component and they jointly describe the temporal and spatial 

characteristics of underlying hidden signals (Beckmann, 2012). 
 

Mathematically, the ICA model can be expressed as: 

     𝑿 = 𝑨𝑺     (1.1) 

where the fMRI data are represented by the matrix X p x n (where n is the number of voxels 

belonging to the volume analysed at p different time points), the matrix S contains statistically 

independent spatial maps in its rows (which are the spatial areas in the brain, each with an internally 

consistent temporal dynamic) (Beckmann, 2012), and A is the mixing matrix which contains in its 

columns the time courses associated to the maps. The sources S are estimated by iteratively 

optimising the unmixing matrix W = A-1, so that S = WX contains mutually independent rows, using 

the information-maximization (Infomax) algorithm (Bell and Sejnowski, 1995). 

An extension of the Independent Component Analysis is the probabilistic ICA (pICA) model, 

which assumes that the p-dimensional vectors of observations (time series) are generated from a set 

of q < p (i.e., there are fewer source processes than observations in time) statistically independent 

non-Gaussian sources (spatial maps) via a linear and instantaneous “mixing” process corrupted by 

additive Gaussian noise, η(t): 

    𝒙! = 𝑨𝒔! + 𝝁+ 𝜼!     (1.2) 

xi denotes the individual measurements at voxel location i, si denotes the non-Gaussian source 

signals contained in the data and ηi denoted Gaussian noise ηi ∼ N (0, σ2 Σi). The covariance of the 

noise is allowed to be voxel dependent in order to allow for the vastly different noise covariances 

observed in different tissue types (Woolrich et al., 2005). The vector µ defines the mean of the 

observations xi and the matrix A p x q is assumed to be non-degenerate, i.e. of rank q. Solving the 

blind separation problem requires finding a linear transformation matrix W such that 𝒔 =𝑾𝒙 is a 

good approximation to the true source signals s (Beckmann, 2012). 
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The detailed steps involved in estimating the pICA model, described by Beckmann and Smith 

(2004), implemented in the FSL’s tool MELODIC (www.fmrib.ox.ac.uk/fsl/, University of Oxford), 

and used in this thesis, are schematically illustrated in figure 1.5. 

 
Figure 1.5. Schematic view of the probabilistic ICA model (Beckmann and Smith, 2004). 

 

Network analysis 

An alternative to seed-based and model-free analyses is provided by network analyses. In fact, 

one area of rapidly increasing interest is the mapping of functional networks. Such mapping 

typically starts by identifying a set of functional “nodes”, and then attempts to estimate the set of 

connections or “edges” between these nodes, based on an analysis of the fMRI time series 

associated with the nodes (Smith et al., 2011; Smith 2012). 

There are many ways to define network nodes from fMRI; nodes are often defined as spatial 

regions of interest, for example, as obtained from task-fMRI activation or from brain atlases. 

Alternatively, parcellation via a data-driven clustering of the fMRI data itself (e.g., hierarchical 

clustering or independent component analysis) can be run to define clusters or components (spatial 

maps with associated timecourses), which can be considered network nodes. In this case, although 

the extent of the clusters/components depends on the number of components extracted (e.g. ICA 

dimensionality), if a higher number of components is estimated (Kiviniemi et al., 2009), these are 
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more likely to be smaller, isolated regions (parcels), which can more sensibly be then considered as 

nodes for use in network analysis. 

Once the nodes are defined, each has its own associated timecourse (e.g., the average time series 

from all voxels within the node). These are then used to estimate the connections (edges) between 

nodes: in general, the more similar the timecourses are between any given pair of nodes, the more 

likely it is that there is a functional connection between those nodes. Of course, full correlation 

(between two nodes' time series) is the simplest measure for estimating the connections between 

nodes, but it does not imply either causality (in itself it tells one nothing about the direction of 

information flow), or even whether the functional connection between two nodes is direct (there 

may be a third node “in-between” the two under consideration, or a third node may be feeding into 

the two, without a direct, or even causally-indirect, connection existing between them). Partial 

correlation (and regularised partial correlation), can correctly estimate the direct connections 

(Marrelec et al., 2006; Smith et al., 2011; Smith, 2012), while the study of directionality of the 

connections can be addressed with effective connectivity approaches (Friston 2011), not addressed 

in this thesis. 

After the network matrix estimation, higher-level analyses based on graph theory (Bullmore and 

Sporns, 2009), allow to study the topological characteristics. Although not used in this thesis, these 

analyses include the study of network clustering and hierarchies, the study of network hubs (nodes 

or clusters that are particularly highly connected to other parts of the network), and deriving 

network summary statistical measures such as small-worldness (looking at how the clustering acts 

over multiple scales), and measures of general network efficiency (Rubinov and Sporns, 2010; Van 

Den Heuvel et al., 2008; Van Den Heuvel and Hulshoff Pol, 2010). 

With the growing interest in this field and the huge amount of possible approaches, the scope of 

network-related research almost falls onto a one-dimensional continuum that starts with neural-level 

simulations at one end, passes through network modelling methods that are applied to real fMRI 

data, and ends with the most abstract of the graph-theoretic summaries of a network matrix (Figure 

1.6). The various distinctions between the different levels relate to many of the respective strengths 

and weaknesses of different approaches, and also inform some thoughts about valuable future 

directions (Smith 2012). 
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Figure 1.6. Oversimplified schematic of relationships between various network modelling analyses for/from fMRI 

(Smith 2012). 

1.3. Limitations and future perspectives of RS-fMRI functional connectivity 

analyses 
RS-fMRI has its inherent advantages and disadvantages. It avoids performance-related 

variability of task-induced fMRI studies and the acquisition protocol is easy and quite standard. 

Furthermore, asking no voluntary task to the subject may be an advantage in cases where the 

subject active interaction is impaired (e.g. Alzheimer’s disease considered in this thesis). RS-fMRI 

also allows studying different characteristics (spatial, temporal, network properties) of the brain 

networks and evaluating different functions in a single acquisition. 

On the other hand, this technique has its limitations, both relative to the fMRI technique itself 

(acquisition sequence and preprocessing steps) and specific for the different analysis methods. The 

methodological issues that will be addressed, at least partially, in this thesis are: 

- The need to increase spatial and temporal resolution of fMRI data in order to allow a better 

localisation of the activations and a detailed temporal, spectral and dynamic analysis of the 

BOLD signal. 

- The development of an effective method for artefact identification and removal that 

conversely retains as much neuronally-related signal as possible. 

- The optimization of single-subject FC analyses in order to provide sensitive and accurate 

methods for the detection of FC alterations, to be used as non-invasive biomarkers. 

- The need of a high-dimensionality parcellation of the brain in order to allow more detailed 

Author's personal copy

This is particularly problematic where the measure (derived via
graph theory) is supposed to relate to “path length”, or where simu-
lated “lesioning” is supposed to relate to real connections!

A more general danger is that graph theory is able to abstract the
network matrix to such a high degree (e.g., summarising an entire
study down to a single number representing overall network
efficiency, or small-worldness), that one is very hard pressed to be
confident that any change in this (e.g., between patients and controls)
really reflects a change in the brain connectivity, as opposed to being
driven by any one of a myriad of potential confounds (e.g., factors as
basic as systematic group differences in head motion or heart rate).
However, I don't want to sound over-pessimistic; I do believe that
the future holds great things for this area of work, particularly as
more accurate and meaningful network matrices are fed into it. One
area that I think will be particularly exciting will be to see how
graph theory can help us decide what clusters of nodes are function-
ally meaningful, including addressing questions of how to deal with
overlap between clusters, and how best to define hierarchies of clus-
ters that are useful functional descriptions. Additionally, I would
hope that such work will feed back down, helping direct us in our
search for better methods for estimating the network matrix in the
first place.

FMRI network modelling methods

Finally there is the middle-ground, containing the majority of the
brain connectivity work that has most closely related to practical
network modelling from real FMRI data. Again, here we have a contin-
uum with respect to many distinct factors. At one extreme we have
highly-complexmodels of effective connectivitywithmany free param-
eters, each representing a biological or physical concept, such as neuro-
nal activity and (separately) the haemodynamic response to neural
activity; thismodel is “fit to” data ideally using probabilistic (e.g., Bayes-
ian)methods. The obvious example of such amethod is DCM (Friston et

al., 2003). Not only is themodel complex, but so is the inferencemethod
(for all its advantages,9 Bayesian inference is considerably more com-
plex than simple, e.g., “point estimate”, model fitting). At the other ex-
treme we have mathematically very simple methods, such as
correlation (between node timeseries). The simpler methods are in
general more “robust” (in fitting the model to the data), and faster to
compute, than the complex methods. Related to this, and the fact that
they have many fewer parameters to estimate, the simpler methods
can handle amuch larger number of networknodes than themore com-
plex methods. Additionally, the simpler methods do not require the
scope of possible network models to be pre-specified or constrained,
i.e., they are computationally practical for attempting network search
or discovery, which is more difficult for the most complex methods,
that have traditionally not been able to search over all possible network
matrices.10

However there is a serious downside to the simpler methods (at
the functional connectivity end of the spectrum); they are really just
descriptions of the data, rather than relating to underlying, interpret-
able network parameters. For example, as mentioned earlier, correla-
tion tells one nothing quantitative about causality or network
connection strengths, and as a result is more vulnerable to being af-
fected by confounds in the data. Correlation is affected by factors
such as noise level, neural input amplitude and does not just reflect
local connection strength, but is also affected by distant changes in
brain function (Friston, 2011). Moving towards the more complex
end of the modelling spectrum, with methods such as SEM (structural

Fig. 1. Oversimplified schematic of relationships between various network modelling analyses for/from FMRI.

9 For example, one major advantage of biophysically-based Bayesian modelling
(such as DCM) over non-biological point-estimate approaches is that the modelling
ends up “knowing” which of the biological parameters are (relatively) unambiguously
identifiable from the data.
10 To be fair to the more complex methods, these have often not claimed to be able to
carry out robust network “discovery”. Indeed, strongly hypothesis-driven carefully
thought-out connectivity experimentation often compares rather favourably against
some of the more “fishing-trip” resting-FMRI experiments that end up with sometimes
rather peculiar/non-refutable results!

1260 S.M. Smith / NeuroImage 62 (2012) 1257–1266
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network analyses. 

For a more complete overview, please refer to (Smith 2012; Beckmann 2012; Bullmore 2012; 

Feinberg and Yacoub 2012; Van Essen and Ugurbil 2012). 

1.4. Functional connectivity changes in Alzheimer's disease 
Dementia is one of the main disorders associated with disability, institutionalization, and 

mortality among elderly individuals. The prevalence of dementia in western developed countries 

has been reported to be approximately 4% to 8% among people aged 65 years and older (Berr et al., 

2005; Lobo et al., 2000). Today the most common cause of neurodegenerative dementia is 

Alzheimer’s disease (AD). The typical clinical presentation of AD is characterized by an early and 

prominent impairment of memory functions, followed by a progressive accumulation of additional 

cognitive deficits, eventually resulting in dementia. 

Modern research is increasingly focused on AD and much progress has been made in refining the 

understanding of research. In this framework, imaging techniques have become a major support for 

the clinical diagnosis of neurodegenerative diseases, as they play a key role as a “window on the 

brain” (Johnson et al., 2012). Nowadays, in fact, new neuroimaging biomarkers of this brain 

disorder are available (McKhann et al., 2011); e.g.: structural brain changes visible on MRI with 

early and extensive involvement of the hippocampus and the medial temporal lobe in Alzheimer’s 

disease (AD); molecular neuroimaging changes seen with PET or fMRI with hypo-metabolism or 

hypo-perfusion in specific areas. 

RS-fMRI, though used only in research so far, is most likely one of the instruments with highest 

potential as a new biomarker for this neurodegenerative disease (Li et al., 2011; Greicius et al., 

2004; Gili et al., 2011), since it is able to detect subtle functional abnormalities in brain networks 

supporting complex cognitive processes that are progressively impaired over the course of 

neurodegenerative pathologies (Damoiseaux 2012; Brier et al., 2012). 

In the reach scenario of the RSNs, the DMN is particularly relevant for AD patients since many 

studies have showed that DMN structures, involved in the memory processes, are vulnerable to 

atrophy, deposition of the amyloid protein (Figure 1.7, panel a), and generally show a reduced 

glucose metabolism (Figure 1.7, panel b) (Minoshima et al., 1997; Buckner et al., 2005). With RS-

fMRI it has been consistently demonstrated a decreased functional connectivity of the DMN in its 

posterior portion (precuneus, posterior cingulate cortex) to the anterior portion (anterior cingulate 

and medial prefrontal cortex) also involving medial temporal lobe structures (Figure 1.7, panel c) 

(Brier et al., 2012; Hafkemeijer et al., 2012; Gili et al., 2011) Moreover, changes in functional 

connectivity of regions within the DMN, have been found in patients with Mild Cognitive 
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Impairment (MCI) (Esposito et al., 2013; Gili et al., 2011;Cha et al., 2013; Wang et al., 2013) and 

in healthy individuals at high risk for developing dementia (Sorg et al, 2009; Filippini et al., 2009; 

Hafkemeijer et al., 2012). 

 

 
Figure 1.7. Default mode network alterations in Alzheimer’s disease. a) Deposition of amyloid plaques and atrophy 
progression in Alzheimer’s Disease (AD) as measured respectively by molecular imaging of amyloid plaques using 
PET (left) and by longitudinal MRI (right) (adapted from Buckner et al., 2005). b) Glucose metabolism within the 

DMN. Normal resting glucose metabolism shows a disproportionately high level of metabolism in healthy individuals 
as measured by FDG-PET (left). Arrows indicate high metabolism near the PCC. AD is consistently associated with 

progressive reduction in glucose metabolism (hypo-metabolism) in specific regions that overlap the DMN (right). 
(Minoshima et al., 1997). c) RS-fMRI maps using the PCC as a seed region for cognitive normal subjects (clinical 

dementia rating - CDR 0), very mild (CDR 0.5), and mild (CDR 1) AD patients. Reduced correlations (less orange and 
red) and anti-correlations (blue) were seen with increasing disease severity. (Adapted from Brier et al., 2012) 
 

Recently, RS-fMRI studies have investigated the effects of AD also in other RSNs (Brier et al., 

2012; Agosta et al., 2012; Li et al., 2012; He et al., 2013), in order to study possible additional FC 

changes beyond the default mode network and the memory function. 

1.5. Aims of the Study 
The aim of this study was to optimize and validate objective methods for the investigation of the 

RSNs based on resting state fMRI, applicable to the context of neurodegenerative diseases, focusing 

Alzheimer’s disease for a pilot clinical validation. In particular, once quantified the amount of FC 

estimation errors in one of the most common FC analysis techniques (seed-based FC), the wider 

problem of artefact removal from the raw data in order to optimize any FC analysis was faced. The 

proposed method (FMRIB's ICA-based X-noisefier - FIX), developed in collaboration with the 

FMRIB (Functional Magnetic Resonance Imaging of the Brain) Centre (University of Oxford, UK), 

was validated on different datasets (healthy controls and AD patients), acquisition sequences 
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(standard EPI and multi-band accelerated EPI), and network dimensionalities (low- and high-

dimensional ICA). Finally, we obtained promising results for a better localisation and quantification 

of FC alterations in AD through the combination of an effective cleaning procedure and high-

dimensional network analysis. 

The specific objectives of this doctoral thesis were: 

• To study the amount of spurious correlations in single subject seed-based FC maps by 

means of surrogate time series and to calculate a confidence interval for reliable single-

subject FC analyses (Chapter 2). 

• To test the accuracy in noise identification of a recently developed tool for the cleaning of 

RS-fMRI data, based on single-subject ICA decomposition (FMRIB's ICA-based X-

noisefier - FIX) (Chapter 3). 

• To evaluate the effectiveness of FIX in noise removal, testing different cleaning approaches 

on spatial maps, temporal characteristics and brain networks (Chapter 4). 

• To investigate the impact of FIX clean-up on data acquired with an accelerated sequence, in 

order to optimize this preprocessing step for the analysis of the Human Connectome Project 

data (Chapter 4). 

• To evaluate the feasibility and the impact of low versus high dimensional network analyses 

using group-ICA. (Chapter 4). 

• To apply the cleaning algorithm to a dataset of elderly healthy subjects and a group of 

patients affected by Alzheimer’s disease (AD) in order to evaluate the impact of different 

cleaning procedures on the within-group consistency of FC results and on the ability to 

discriminate FC alterations in AD within the DMN (Chapter 5). 

• To apply the high-dimensional ICA analysis on elderly healthy subjects and AD patients for 

a better localisation of the FC alterations in dementia (Chapter 6). 

1.6. Thesis structure and author's personal contribution 
In this paragraph the structure of the whole thesis work is summarized, recalling its development 

and highlighting author's personal contribution. 

 

Chapter 2 describes an exploratory evaluation of the errors that affect seed-based FC 

analyses and two methods for single subject FC analyses. A preliminary phase of the work was the 

collection of the data and the author was entitled to contribute to the acquisitions (15 healthy 

subjects) that were performed at the Fondazione don Carlo Gnocchi, IRCCS Santa Maria Nascente 

(Milano, Italy). Regarding the methods of Chapter 2, the analysis pipeline is mainly based on 
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existing processing and visualisation tools, with novel contributions relevant to: i) optimal order 

selection in preprocessing steps, ii) error distribution estimation by phase randomisation, and iii) 

proposal of two confidence thresholding methods for single-subject FC mappping. The preliminary 

results of this study are reported in two conference proceedings (Griffanti et al., GNB 2012; 

Griffanti et al., BSI 2012), while the final work has now been accepted for publication as a full 

paper (Griffanti et al., Methods of Information in Medicine, in press). 

During the internship at the Functional Magnetic Resonance Imaging of the Brain (FMRIB) 

Centre (University of Oxford, UK), the author collaborated at the development of the tool “FIX” 

(FMRIB's ICA-based X-noisefier). FIX is an automated approach, once trained, for cleaning fMRI 

data of various types of noise and it consists of several major operations: spatial ICA, component-

wise feature extraction, classifier training (using expert-/hand-labelled data), components 

classification (i.e., predicting components likelihood of being signal vs. noise) and denoising 

(removal of the artefactual components).  

Chapter 3 describes the first four steps, from the theoretical basis of the features extraction 

and the classification algorithm, to the tests for classification accuracy. In particular, in this phase 

the author was entitled to build three training datasets and test the classification accuracy of the 

tool. The first two datasets of RS-fMRI data (25 subjects acquired with standard EPI and multiband 

slice accelerated EPI) had been previously acquired with standard EPI and multiband accelerated 

EPI at FMIRB centre, while the author personally contributed to all the acquisitions of the third 

dataset (42 subjects, 1.5 T Siemens Avanto MRI scanner), that were performed at the Fondazione 

don Carlo Gnocchi, IRCCS Santa Maria Nascente (Milano, Italy). On these data the author 

manually classified all the single subject components (on average 70 components per subject for 

dataset 1, 130 for dataset 2 and 18 for dataset 3, as automatically estimated by the ICA tool used for 

the decomposition) in signal or noise and performed the classification accuracy tests. The results of 

these analyses are reported in a paper (Salimi-Khorshidi et al., 2014). 

Chapter 4 addresses the improvement of the last step of denoising starting from the actual 

FIX procedure; i.e., the removal of the artefactual components identified by the classifier. Under the 

supervision of Prof. Stephen M. Smith, different approaches for artefact removal were developed 

and tested on 76 healthy subjects, previously acquired at FMIRB centre both by standard EPI and 

by multiband accelerated EPI. The author carried out all analyses for the optimisation of the 

cleaning method on time series, network matrices, and spatial maps. The preliminary results are 

reported in a conference proceeding (Griffanti et al., OHBM 2013) and the final work is now 

submitted for publication (Griffanti et al., under review). Partially due to the obtained results, FIX is 

now in use as part of the default Human Connectome Project analysis pipeline (Smith et al., 2013), 
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and FIX-cleaned data with the optimized options described in Chapter 4 is the recommended 

version of the resting-state fMRI data that is publicly available – already over 200 subjects’ worth 

of hour-long datasets. 

In Chapter 5 and 6, the methods described in Chapter 4 (cleaning procedure and high 

dimensional ICA network analysis) and optimized on healthy subjects, are applied in a clinical 

setting for the study of functional connectivity alterations in patients with Alzheimer’s disease 

(AD), compared to a group of age-matched elderly healthy subjects. The author contributed to the 

acquisition of all the subjects (41 subjects: 21 AD and 20 controls) and personally cured all the 

image processing and computations both for the cleaning optimization (Chapter 5) and for the high 

dimensional ICA (Chapter 6). The results are presented in two conference proceedings (Griffanti et 

al., ISMRM 2014; Griffanti, Dipasquale et al., ISMRM 2014) and a full paper is currently in 

preparation (Griffanti et al.). 

The existing tools for image processing were the basis for a successful analysis of the 

images and a list of the used software is reported in the Appendix. However, these were combined 

with in-house scripts coded in Matlab/shell scripting. 
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Smith SM. ICA-based artefact removal and accelerated fMRI acquisition for improved Resting 

State Network imaging. (Under review) 

 

Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic 

Denoising of Functional MRI Data: Combining Independent Component Analysis and Hierarchical 

Fusion of Classifiers. NeuroImage 2014; 90C 449-468. 

 

Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud G, Duff E, 

Feinberg DA, Griffanti L, Harms MP, Kelly M, Laumann T, Miller KL, Moeller S, Petersen S, 



43 

Power J, Salimi-Khorshidi G, Snyder AZ, Vu AT, Woolrich MW, Xu J, Yacoub E, Uğurbil K, Van 

Essen DC, Glasser MF; WU-Minn HCP Consortium. Resting-state fMRI in the Human 

Connectome Project. Neuroimage 2013; 80:144-168 

 

Griffanti L, Baglio F, Laganà MM, Preti MG, Cecconi P, Clerici M, Nemni R, Baselli G. 

Individual thresholding of voxel-based Functional Connectivity maps: estimation of Random Errors 

by means of Surrogate Time Series. Methods of Information in Medicine (In press) 

 

Conference Proceedings: 

Griffanti L, Dipasquale O, Laganà MM, Nemni R, Baselli G, Baglio F. How the cleaning of 

resting state fMRI data affects the detection of functional connectivity alterations in Alzheimer's 

disease. (Accepted as PowerPoster at ISMRM 2014, Milan) 

 

Griffanti L*, Dipasquale O*, Baglio F, Nemni R, Baselli G. Analysis of resting state brain 

subnetworks from high dimensional ICA: disconnections in Alzheimer’s disease. (Accepted as E-

poster at ISMRM 2014, Milan) 

 

Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Ebmeier KP, 

Filippini N, Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K, Miller KL, Smith SM. 

Improving resting state fMRI data quality through accelerated acquisition and automatic denoising. 

19th Annual Meeting of the Organization for Human Brain Mapping (OHBM) June 16-20 2013, 

Washington State Convention Center, Seattle, WA, USA. 

 

Griffanti L, Baglio F, Laganà MM, Preti MG, Cecconi P, Clerici M, Nemni R, Baselli G. 

Individual thresholding of voxel-based Functional Connectivity maps: estimation of Random Errors 

by means of Surrogate Time Series. Oral presentation at 7th International Workshop on Biosignal 

Interpretation (BSI 2012), 7th International Workshop on Biosignal Interpretation 2-4/7/2012. Conf. 

Proc. 21-24 

 

Griffanti L, Baglio F, Laganà MM, Preti MG, Cecconi P, Clerici M, Nemni R, Baselli G. Stima 

dell'errore casuale in analisi di connettività funzionale voxel-based: un metodo per la selezione di 

una soglia individuale. III Congresso Gruppo Nazionale di Bioingegneria (GNB), Roma, 26-

29/06/2012. ISBN:978 88 555 3182-5. 

 



44 

1.7.2. Other scientific publications 

Papers: 
Baglio F, Griffanti L, Saibene FL, Ricci C, Alberoni M, Critelli R, Villanelli F, Fioravanti R, Mantovani F, 

D'Amico A, Cabinio M, Preti MG, Nemni R, Farina E. Multistimulation therapy in Alzheimer's disease promotes 

changes in brain functioning (Under review) 

 

Preti MG, Makris N, Papadimitriou G, Laganà MM, Griffanti L, Clerici M, Nemni R, Westin C, Baglio F, Baselli 

G. A novel approach of fMRI-guided tractography at the group level allowing to characterize the clinical evolution of 

Alzheimer’s disease. PlosOne (In press) 

 

Baglio F, Cabinio M, Ricci C, Baglio G, Lipari S, Griffanti L, Preti MG, Nemni R, Clerici M, Zanette M, Blasi V. 

Abnormal cortical and subcortical gray matter development in Borderline Intellectual Functioning (Under review). 

 

Baglio F, Saresella M, Preti MG, Cabinio M, Griffanti L, Marventano I, Piancone F, Calabrese E, Nemni R, Clerici 

M. Neuroinflammation and brain functional disconnection in Alzheimer’s disease. Frontiers in Aging Neuroscience 

2013, 5(81) doi: 10.3389/fnagi.2013.00081 

 

Cagliani R, Guerini FR, Rubio-Acero R, Baglio F, Forni D, Agliardi C, Griffanti L, Fumagalli M, Pozzoli U, Riva 

S, Calabrese E, Sikora M, Casals F, Comi GP, Bresolin N, Cáceres M, Clerici M, Sironi M. Long-Standing Balancing 

Selection in the THBS4 Gene: Influence on Sex-Specific Brain Expression and Gray Matter Volumes in Alzheimer 

Disease. Human Mutation 2013 May; 34(5):743-753. doi: 10.1002/humu.22301 

 

Lipari S, Baglio F, Griffanti L, Mendozzi L, Garegnani M, Motta A, Cecconi P, Pugnetti L. Commentary on 

“Altered and asymmetric default mode network activity in a "hypnotic virtuoso": an fMRI and EEG study” - Reply. 

Consciousness and Cognition 2013 Feb; 22(2): 385-387. doi:10.1016/j.concog.2013.01.005 

 

Lipari S, Baglio F, Griffanti L, Mendozzi L, Garegnani M, Motta A, Cecconi P, Pugnetti L. Altered and 

asymmetric default mode network activity in a "hypnotic virtuoso": an fMRI and EEG study. Consciousness and 

Cognition 2012 Mar; 21(1):393-400. Epub 2011 Dec 16. 

 

Griffanti L, Baglio F, Preti MG, Cecconi P, Rovaris M, Baselli G, Laganà MM. Signal-to-Noise Ratio of Diffusion 

Weighted Magnetic Resonance Imaging: estimation methods and in-vivo application to spinal cord. Biomedical Signal 

Processing and Control 2012, doi:10.1016/j.bspc.2011.06.003 

 

Preti MG, Baglio F, Laganà MM, Griffanti L, Nemni R, Clerici M, Bozzali M, Baselli G. Assessing Corpus 

Callosum Changes in Alzheimer's Disease: Comparison between Tract-Based Spatial Statistics and Atlas-Based 

Tractography. PlosOne 2012;7(4):e35856. Epub 2012 Apr 24 

 

Baglio F, Castelli I, Alberoni M, Blasi V, Griffanti L, Falini A, Nemni R, Marchetti A. Theory of Mind in 

Amnestic Mild Cognitive Impairment: An fMRI Study. Journal of Alzheimer's disease 2012 Jan 1; 29(1):25-37. 

 



45 

Conference Proceedings: 

Baglio F, Griffanti L, Saibene FL, D'Amico A, Baselli G, Nemni R. Altered connectivity in ventral stream and 

medial temporal lobe reflects deficits in Parkinson's disease. Neurological Sciences 2013; 34(S1): S297; ISSN 1590-

1874. XLIV Congress of the Italian Society of Neurology. Milan, 2 - 5 november 2013 

 

Tortorella P, Griffanti L, Baglio F, Cabinio M, Cecconi P, Caputo D, Rovaris M. Effects of Glatiramer Acetate on 

cortical functions and fatigue in multiple sclerosis: a morpho-functional MRI study. Neurological Sciences 2013; 

34(S1): S165; ISSN 1590-1874.  XLIV Congress of the Italian Society of Neurology. Milan, 2 - 5 november 2013 

 

Laganà MM, Tavazzi E, Margaritella N, Griffanti L, Garegnani M, Tortorella P, Bergsland N, Cecconi P, Caputo 

D, Clerici M, Baselli G, Pugnetti L, Rovaris M. Evaluation of spinal cord damage in Multiple Sclerosis patients: a 

diffusion MRI and somatosensory evoked potential study. Neurological Sciences 2013; 34(S1): S394; ISSN 1590-1874.  

XLIV Congress of the Italian Society of Neurology. Milan, 2 - 5 november 2013 

 

Baglio F, Cabinio M, Ricci C, Baglio G, Lipari S, Griffanti L, Nemni R, Clerici M, Zanette M, Blasi V. The 

relationship between brain volume and IQ profile in Borderline Intellectual Functioning. Neurological Sciences 2013; 

34(S1): S205-S206; ISSN 1590-1874.  XLIV Congress of the Italian Society of Neurology. Milan, 2 - 5 november 2013 

 

Tortorella P, Laganà MM, Saresella M, Griffanti L, Tavazzi E, Marventano I, Pinardi G, Corbo M, Lunetta C, 

Cecconi P, Caputo D, Clerici M, Rovaris M. Pathophysiology of tissue damage in progressive multiple sclerosis: an 

immunological and MRI comparative study versus motor neuron disease. Neurological Sciences 2013; 34(S1): S313 

XLIV Congress of the Italian Society of Neurology. Milan, 2 - 5 november 2013 

 

Preti MG, Baglio F, Laganà MM, Griffanti L, Saibene FL, Cecconi P, Nemni R, Makris N, Baselli G. FMRI-

guided tractography reveals functional and structural brain changes in amnestic MCI. 19th Annual Meeting of the 

Organization for Human Brain Mapping (OHBM) June 16-20 2013, Washington State Convention Center, Seattle, WA, 

USA. 

 

Cabinio M, Baglio F, Ricci C, Baglio G, Preti MG, Griffanti L, Clerici M, Zanette M, Blasi V. Borderline 

Intellectual Functioning: the relationship between brain volume and IQ profile. 19th Annual Meeting of the 

Organization for Human Brain Mapping (OHBM) June 16-20 2013, Washington State Convention Center, Seattle, WA, 

USA. 

 

Tortorella P, Laganà MM, Saresella M, Tavazzi E, Griffanti L, Marventano I, Pinardi G, Corbo M, Lunetta C, 

Cecconi P, Caputo D, Clerici M, Rovaris M. Pathophysiology of tissue damage in progressive multiple sclerosis: an 

immunological and MRI comparative study versus motor neuron disease.29th Congress of the European Committee for 

treatment and research in multiple sclerosis (ECTRIMS). Copenhagen 2-5 October 2013. 

 

Preti MG, Makris N, Papadimitriou GM, Laganà MM, Baglio F, Griffanti L, Clerici M,  Baselli G. A novel 

approach of fMRI-guided tractography analysis within a group: construction of an fMRI-guided tractographic atlas. 

34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, 2012 



46 

 

Baglio F, Griffanti L, Saibene F, Cabinio M, Preti MG, D’amico A, Critelli R, Alberoni M, Cecconi P, Baselli G, 

Nemni R, Farina E. The impact of two Different Cognitive Training Programs in Outpatienes affected by Mild 

Cognitive Impairment: a Pilot Study with fMRI. XLIII Congress of the Italian Society of Neurology 2012. It J Neurol 

Sci 2012 

 

Tortorella P, Lagana MM, Saresella M, Griffanti L, Marventano I, Pinardi G, Corbo M, Lunetta C, Cecconi P, 

Caputo D, Clerici M, Rovaris M. Pathophysiology of tissue damage in progressive multiple sclerosis: an immunological  

and MRI comparative study versus motor neuron disease. American Academy of Neurology, 2012 

 

Baglio F, Griffanti L, Preti MG, Laganà MM, Alberoni M, Villanelli F, Carelli L, Saibene F, Critelli R, Cecconi P, 

Baselli G, Nemni R, Farina E. Potential neuroprotective effect of non-pharmacological interventions in promoting 

cognitive and physical well-being in MCI and AD. Oral Presentation at Preconference Meeting 7th Panhellenic 

Conference on Alzheimer's disease, 15/02/2011. 

 

Baglio F, Griffanti L, Preti MG, Laganà MM, Alberoni M, Villanelli F, Carelli L, Saibene F, Critelli R, Cecconi P, 

Baselli G, Nemni R, Farina E. The Efficacy of Multidimensional Stimulation Theraphy in People Living with 

Alzheimer: a Randomized Controlled Trial with Fmri. The journal of Nutrition, Health and Aging 2011; 14(4) pp. 317. 

(International Academy on Nutrition and Aging Meeting)  

 

Baglio F, Preti MG, Saresella M, Laganà MM, Griffanti L, Farina E, Calabrese E, Alberoni M, Piancone F, Baselli 

G, Clerici M, Nemni R. Neuroimmunological and MRI analysis for the detection of prognostic biomarkers in 

Alzheimer's Disease and Mild Cognitive Impairment. It J Neurol Sci 2011; Congress of the Italian Neurological 

Society, SIN 

 

Baglio F, Griffanti L, Preti MG, Laganà MM, Alberoni M, Villanelli F, Carelli L, Saibene F, Critelli R, Cecconi P, 

Baselli G, Nemni R, Farina E. The Efficacy of Multidimensional Stimulation Therapy in Mild to Moderate Alzheimer’s 

Disease Patients: a Randomized Controlled Trial with fMRI. Journal of Alzheimer's disease 2011 Feb; 23 (S1): S47. 

Epub 2011 Feb 18. ISSN 1387-2877. Sindem Meeting: Italian Association for the Study of Dementia linked to the 

Italian Neurological Society, SIN 

 

Baglio F, Griffanti L, Preti MG, Laganà MM, Alberoni M, Critelli R, D'amico A, Pini A, Cecconi P, Baselli G, 

Nemni R, Farina E. Cognitive Training in Outpatients Affected by Mild Cognitive Impairment: a Longitudinal Study 

with fMRI. Journal of Alzheimer's disease 2011 Feb; 23 (S1): S47-S48. Epub 2011 Feb 18. ISSN 1387-2877. Sindem 

Meeting: Italian Association for the Study of Dementia linked to the Italian Neurological Society, SIN 

 

Baglio F, Preti MG, Griffanti L, Pugnetti L, Farina E, Garegnani M, Laganà MM, Cecconi P, Baselli G, Nemni R. 

fMRI, Tractography and EEG Analysis Integrated into Neurological Diagnosis of Corticobasal Degeneration. A Case 

Study. Journal of Alzheimer's disease 2011 Feb; 23 (S1): S46-S47. Epub 2011 Feb 18. ISSN 1387-2877. Sindem 

Meeting: Italian Association for the Study of Dementia linked to the Italian Neurological Society, SIN 

 



47 

Farina E, Baglio F, Griffanti L, Preti MG, Laganà MM, Alberoni M, Villanelli F, Carelli L, Saibene F, Critelli R, 

Cecconi P, Baselli G, Nemni R. Les maladies apparentées à la maladie d'Alzheimer, diagnostic et soins à l'hôpital de 

jour. Poster at 31ème Congrès National des Hôpitaux de Jour Gériatriques 26 et 27 May 2011 – Lyon. 

 

Preti MG, Laganà MM, Baglio F, Griffanti L, Nemni R, Cecconi P, Baselli G. Comparison between skeleton-based 

and atlas-based approach in the assessment of corpus callosum damages in Mild Cognitive Impairment and Alzheimer 

Disease.  Conf Proc IEEE Eng Med Biol Soc. 2011. 

 

Tortorella P, Preti M, Saresella M, Lagana M, Baglio F, Griffanti L, Marventano I, Mendozzi L, Cecconi P, 

Dinacci D, Clerici M, Caputo D, Rovaris M. Determinants of locomotor disability in multiple sclerosis: an 

immunological and diffusion tensor MRI study. Journal of Neurology 2011. 258 (S1): 205-205. ISSN 0340-5354  

 

Tortorella P, Lagana M, Saresella M, Griffanti L, Baglio F, Marventano I, Mendozzi L, Cecconi P, Dinacci D, 

Clerici M, Caputo D, Rovaris M. Determinants of locomotor disability in multiple sclerosis: an immunological and 

diffusion tensor MRI study. Conf Proc ENS, 2011. 

 

Tortorella P, Griffanti L, Saresella M, Lagana M, Marventano I, Pinardi G, Corbo M, Lunetta C, Cecconi P, Caputo 

D, Clerici M, Rovaris M. Pathophysiology of tissue damage in progressive multiple sclerosis:  an immunological  and 

MRI comparative study versus motor neuron disease. Conf Proc ECTRIMS, 2011. 

 

  



48 

Chapter 2 - Individual thresholding of 
seed-based functional connectivity 

maps: estimation of random errors by 
means of surrogate time series.  

 

In this explorative study, an evaluation of the errors that affect seed-based functional 

connectivity analyses is performed through the generation of surrogate time series by phase 

randomisation. Two thresholding methods for the functional connectivity maps are then proposed 

and validated on a group of healthy controls, in order to improve the reliability of single-subject 

results. The proposed method considers that FC is based on linear correlation in time to which 

corresponds phase coherence in the frequency domain. Hence, the null hypothesis can be simulated 

by destroying phase coherence by randomization at equal amplitude distribution. As in any 

bootstrap (surrogate data analysis), confidence intervals are drawn by numerous extractions of 

surrogate data satisfying the null hypothesis. 

 

The preliminary results of this study are reported in two conference proceedings (Griffanti et al., 

GNB 2012; Griffanti et al., BSI 2012), while the final work has now been accepted for publication 

as a full paper (Griffanti et al., Methods of Information in Medicine, in press). 

2.1. Introduction  
Seed-based functional connectivity (FC) analysis (also called voxel-based FC) was the first 

technique used for the analysis of resting state functional MRI (RS-fMRI) data (see par. 1.2 and 

Biswal et al., 1995) and it is still extensively applied (Cole et al., 2010; Fox and Greicius 2010). 

The simplicity of the method, its straightforward interpretability with respect to the other methods, 

and its moderate to high reliability (Shehzad et al., 2009), make seed-based FC an attractive and 

useful approach. 

The functional connectivity map (FCmap) is usually computed as Pearson's linear correlation 

between the signal extracted from a specific region of interest (seed) and all the other brain voxels, 

showing the network of regions functionally connected with the seed (Fox and Raichle 2007). In a 

recent study, Hlinka and colleagues (Hlinka et al., 2011) demonstrated that, after standard fMRI 

preprocessing steps, linear correlation well captures the full functional connectivity. Additionally, 

spatial and temporal filtering further diminishes small nonlinearities in the data. However, some 
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linear correlations could be artefactual, i.e. due to chance and not to real FC, and the p-value 

associated to Pearson’s correlation coefficient, although significant per se, is not independent from 

this random error. 

To our knowledge, these random errors are usually ignored and significant connected voxels are 

detected only at group level. At single-subject level, the use of an arbitrary threshold without a 

quantification of the random error size could lead to misinterpretation of the FC especially for rare 

case studies and clinical applications. 

For this reason, in seed-based FC analyses, a more reliable method is needed for the 

identification of voxels significantly connected with the seed, taking into account for random errors. 

In this work we describe a method for the estimation of this random error by using surrogate 

time series. Moreover, two thresholding methods are proposed for a reliable analysis of single-

subject FC maps. 

2.2. Materials and methods 

2.2.1. Subjects and MRI data acquisition 

Data were acquired from 15 healthy subjects (age: 46.6±23.0 years; M/F = 6/9). MRI 

acquisitions were performed in the Radiology Department of Fondazione don Carlo Gnocchi 

IRCCS in Milan, using a 1.5 T Siemens Magnetom Avanto (Erlangen, Germany) scanner with 8-

channel head coil. RS-fMRI BOLD EPI images (TR/TE = 2500/30 ms; resolution = 3.1 x 3.1 x 2.5 

mm3; matrix size = 64 x 64; number of axial slices = 39; number of volumes = 160) were collected 

at rest (the participants were instructed to be relaxed, with eyes closed, not to think anything in 

particular and not to fall asleep). T1-weighted 3D scans were also acquired (TR/TE = 1900/3.37 ms; 

resolution = 1 x 1 x 1 mm3; matrix size = 192 x 256; number of axial slices = 176). All subjects 

provided written informed consent to participate in the study according to the recommendations of 

the declaration of Helsinki. 

2.2.2. RS-fMRI data preprocessing and generation of seed-based FC maps 
The starting preprocessing steps, performed with SPM8, involved the following: 1) correction 

for slice-timing differences; 2) correction of head motion across functional images; 3) coregistration 

to the anatomical image and spatial normalization to the MNI space with a voxel size of 3 x 3 x 3 

mm3; 4) spatial smoothing with a 4 mm full-with at half-maximum Gaussian kernel. Then, further 

steps specific for RS-fMRI were: 5) regression of nuisance variables (head motion, mean white 

matter signal and mean cerebrospinal fluid signal); 6) temporal pass-band filtering (0.01-0.08 Hz) to 

remove linear trends and constant offsets over each run. For these operations we used REST 
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toolbox (Song et al., 2011). 

For each subject, a region of interest (ROI) of 6 mm radius was positioned in the posterior 

cingulate cortex (with centre at MNI coordinates: 0 -53 26) based on previous studies (Van Dijk et 

al., 2010; Andrews-Hanna et al., 2007). This area plays a central role in the default mode network 

(DMN), the principal and more investigated resting state network (see par. 1.1). The corresponding 

time series (PCC-time course) was extracted as the mean signal within the ROI. Seed-based 

functional connectivity map (FCmap) was then obtained by computing the linear correlation 

between the PCC-time course and the time courses of all acquired voxels. Correlation maps were 

then converted to z-maps using Fisher's r-to-z transformation (zFCmap). 

2.2.3. Estimation of random errors by means of surrogate time series 
Surrogate time series of the PCC-time course were constructed with the iteratively refined 

amplitude adjusted Fourier transform (iAAFT) method, proposed by Schreiber and Schmitz (2000). 

According to this method, the Fourier transform of the series is computed, thus representing second 

order properties in the frequency domain. Next, the substitution of true phases by randomly 

extracted ones (uniform 0-2π distribution) maintains spectrum but alters the probability distribution 

of amplitude in time samples. Deviations in spectrum and distribution from the starting set are 

iteratively corrected. In this way, the obtained iAAFT surrogates preserved both amplitude 

distribution and spectral shape of the original time series, but phases were randomized. 

From the PCC-time course of each subject, 39 surrogate series were generated. The choice of 

generating 39 surrogates is somewhat arbitrary. Basically we started adopting the minimum number 

of surrogates M needed to perform a two-tailed rank-order test (Schreiber and Schmidt 2000), 

calculated as M = 2 K/ α – 1, selecting α=5% as residual probability of false rejection (95% level of 

significance) and K=1. We than verified that this choice did not influence the overall results by 

calculating the CI using different number of surrogates (see section 2.2.4). After surrogate 

generation, the mean correlation between the surrogates and the seed was computed and verified not 

to be significantly different from 0. Seed-based functional connectivity was then computed using 

each surrogate time series as seed. Since the temporal information of the PCC-time course has been 

destroyed in the surrogates, no more correlation is expected between brain voxels and the seed. Any 

correlation in the new FCmap is due to chance, so we obtained a set of 39 random error maps and 

the corresponding z-maps (zERR). 

For each brain voxel, the mean and the standard deviation of the random error among the 39 

maps was computed. Thus, we obtained an error mean map (meanERRmap) and an error standard 

deviation map (stdERRmap) for each subject, whose distributions were fitted to theoretical sample 

distributions, respectively the normal distribution and the chi-square distribution, using maximum 
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likelihood estimation method on shape parameters. 

2.2.4. Thresholding methods for single-subject FCmaps 

The mean values of meanERRmap and stdERRmap distributions (respectively m and std ) were 

then used to compute a 2*std (i.e., p<0.05) confidence interval (CI) with Eq.2.1: 

stdmCI global *2±=           (2.1) 

The boundaries of this CI (Tsup and Tinf) were then used as threshold values and applied to all 

voxels of zFCmaps (global thresholding): only voxels showing a correlation value higher than Tsup 

or lower than Tinf were considered as significantly connected with the seed. 

A possible alternative to this thresholding method was to apply a different threshold to each 

voxel, according to the local amount of random error.  

For this local thresholding, the 2*std (p<0.05) CI was computed for each brain voxel (i) using 

Eq. 2.2:  

))((*2))(()( izERRstdizERRmeaniCIlocal ±=         (2.2) 

In this way, two additional maps were generated for each subject: the superior confidence 

interval map (supCImap) and the inferior confidence interval map (infCImap). Finally, zFCmaps 

were thresholded using supCImap and infCImap: voxels showing a correlation value out of the CI 

were considered as significantly connected with the seed. 

The thresholded maps obtained with the two methods were compared by calculating the Dice 

index as similarity measure: 

Dice = ! !"#$%&!"#$∩!"#$%&!"#
!"#$%&!"#$ ! !"#$%&!"#

         (2.3) 

where tFCmapGLOB is the binary map obtained with global thresholding and tFCmapLOC is the 

binary map obtained with local thresholding. Moreover, the difference in the number of voxels that 

passed the thresholds was evaluated through a paired t-test. 

For global thresholding, mean and standard deviation of Tsup and Tinf across subjects were 

computed and their correlation with age was tested in order to evaluate the inter-subject variability 

of CIglobal. Finally, the variability due to the number (N) of surrogates used, was assessed repeating 

the computation of random error and CIglobal values with N=2:39. 

2.3. Results 
In Fig. 2.1, the meanERRmap and stdERRmap of one subject are shown as examples, as well as 

their distributions. The mean and standard deviation values of random error are spatially 

homogeneous within the brain and the relative distributions were found to be well fitted by 

corresponding theoretical distributions. 
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Figure 2.1. Random Error estimation. The mean random error (top panel) is spatially homogeneous within the brain and 
the distribution is Gaussian-shaped centered in zero. Also the standard deviation of the random error (bottom panel) is 

homogeneous with chi-square distribution. Data relative to a 20-year female healthy subject. 
 

The PCC-zFCmap of one subject before (a) and after global (b) and local (c) random error 

thresholding is illustrated in Fig. 2.2. With both methods, the principal DMN areas (posterior 

cingulate cortex, medial prefrontal cortex and inferior parietal lobule) are well identifiable. 

Comparing the two thresholded maps, the mean Dice index across subjects was 0.81±0.04 and the 

number of voxels significantly connected with the seed obtained using global and local thresholding 

was not significantly different (N voxel after global thresholding = 9144.400 ± 3522.104; N voxel 

after local thresholding = 9322.330 ± 3755.627; p=0.429, paired t-test). 

 
Figure 2.2. Random error thresholding. The single-subject PCC-FCmap is shown before (a) and after global (b) and 

local (c) random error thresholding. It can be observed that, after thresholding, DMN areas are well identifiable. 
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Regarding inter-subjects variability of global threshold, CIglobal standard deviation across subjects 

was very low compared to its mean value (Tsup(z) = 0.252±0.008, Tinf(z) = -0.254±0.005) and not 

correlated with age (correlation Tsup-age: p=0.28; correlation Tinf-age: p=0.34). Obtaining a mean 

global threshold of z=± 0.25 (corresponding to a correlation coefficient r = 0.245), the associated p-

value for a Pearson probability distribution is p<0.001. As shown in Fig. 2.3, this small variability is 

almost independent from the number of surrogates and CIglobal boundaries reach stable values using 

a small number of surrogates (N ≈ 10), thus setting the minimal requirement of computational effort 

for surrogate data production. 

 
Figure 2.3. Global confidence interval (CIglobal) variability. The boxplots illustrate the distribution across subjects of the 
upper boundary (Tsup, top panel) and lower boundary (Tinf, bottom panel) of CIglobal, for different number of surrogates 

used for their computation. 
 

2.4. Discussion and Conclusions 
In this work we examined the problem of random errors in seed-based functional connectivity 

analyses and proposed a method for error evaluation based on surrogate time series. Observing a 

homogeneous distribution of random error within the brain, we can infer that there are no regions 

more influenced by random error than others and that this kind of error is independent from the 

resting state activity. 

Random errors are usually ignored in this kind of analysis and correction is only performed at 

group level. In order to perform a reliable single-subject analysis, we proposed two individual 

thresholding methods, which allow the identification of voxels significantly connected with the seed 
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region. The two methods have been proven to be effective in identifying the DMN areas and are 

substantially equivalent, although the global thresholding approach requires a reduced 

computational load and may be preferable for further analyses. The boundary values of the CIglobal 

have a low inter-subject variability not depending from subjects' age. Moreover the number of 

surrogates needed for the analysis can be remarkably reduced to small values as 10 extractions or 

less, further decreasing the computational load required for the analyses without significant changes 

in the results. 

The analyses presented in this study were performed on data preprocessed with the same 

pipeline, therefore an influence of the preprocessing steps (especially regarding spatial and temporal 

filtering) can not be excluded. A possible future development of this study could be a detailed 

analysis of the effect of each preprocessing step and its effect on the final threshold 
The proposed method is promising for an application in a clinical setting to quantify the FC 

alterations with respect to a seed ROI. Indeed, the availability of a reliable single-subject FC 

analysis could be particularly useful for rare case studies (when a group study is not feasible) and 

for the longitudinal evaluation of a single patient's disease progression or response to treatment or 

rehabilitation. 
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Chapter 3 - Automated artefact 
detection based on Independent 

Component Analysis and hierarchical 
fusion of classifiers: evaluation of 

accuracy 
 

In this chapter an innovative method for the identification and removal of artefacts from RS-

fMRI data is introduced. The proposed denoising method, called FIX (FMRIB's ICA-based X-

noisefier), was developed in collaboration with the FMRIB (Functional Magnetic Resonance 

Imaging of the Brain) Centre (University of Oxford, UK), and consists of several major operations: 

single-subject spatial independent component analysis, component-wise feature extraction, 

classifier training, components classification, and removal of the artefactual components from the 

data. This chapter covers the first four steps, while the last FIX step, the removal of the nuisance 

components, will be described in detail in Chapter 4. In particular the first theoretical part (par. 3.2) 

illustrates the methodological basis of the cleaning algorithm; the second experimental part (par. 

3.3-3.5) describes the training dataset I built and the tests I performed for classification accuracy. 

 

The results of these analyses are reported in a paper (Salimi-Khorshidi et al., 2014). 

3.1. Introduction 
Functional magnetic resonance imaging (fMRI) has become a widely used approach for 

mapping brain function. In most fMRI experiments, however, many sources of temporal fluctuation 

(e.g., head movement, respiratory motion, scanner artefacts, etc.) do corrupt the recorded voxel-

wise time series. Such artefacts reduce the signal-to-noise ratio, complicate the interpretation of the 

data, and can mislead statistical analyses (in both subject- and group-level inference) addressing 

neuronally-related brain activation. 

The main disadvantages of the Resting State fMRI (RS-fMRI), compared to a standard task-

induced fMRI, are the absence of a priori hypothesis of activation and externally triggered temporal 

references. In this way is more difficult to distinguish the signal related to neural activity from non-

neural sources of noise, when the latter are (spatially or temporally) correlated. Moreover, the 

artefacts may share some spatial or spectral overlap with the RSNs and affect their correct 
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identification and quantification of their connectivity. In addition, recent developments in MRI 

acquisition generate ever-better data, but may increase some associated artefacts. Hence the correct 

identification and removal of non-neural fluctuations is crucial. 

Spatially extended artefacts can be caused by the scanner (e.g., hardware instabilities), or, more 

frequently, they are caused by non-neuronal physiological/subject effects (Murphy et al., 2013). For 

example, it is well known that even relatively small amounts of head motion represent a significant 

confound for RS-fMRI network identification (Van Dijk et al., 2012; Power et al., 2012; 

Satterthwaite et al., 2012). Other confounds are related to physiological noise, including: cardiac 

and respiratory cycles (Birn et al. 2006; Shmueli et al., 2007), which occur at relatively high 

frequency (≈ 1 Hz and ≈ 0.3 Hz, respectively) but are generally aliased into lower frequencies at 

standard TR (2-3 s) (Lowe et al., 1998) and appear in resting BOLD signals through arterial CO2 

concentration variations, blood pressure changes and movements (e.g. pulse related). Vascular tone 

also represents a source of physiological noise, generating low-frequency oscillations (<0.1 Hz) in 

absence of stimulus (Aalkjaer et al., 2011). Only by removing such confounds is it possible to 

obtain reliable functional connectivity measures. For this reason, there is increasingly growing 

interest in the development of an effective method for artefact identification and removal that 

retains as much neural-related signal as possible. 

Current noise removal methods for individual resting dataset clean-up can be divided into two 

main categories (see Murphy et al., 2013 for a detailed review): those that use external 

physiological recordings and those that are data-driven. In the former category, with techniques like 

retrospective image correction (RETROICOR – Glover et al., 2000), low-order Fourier series are fit 

to the image data based on the time of each image acquisition relative to the phase of the cardiac 

and respiratory cycles. This approach has been extended to include the regression of low-frequency 

changes in heart rate (Shmueli et al., 2007), while Birn and colleagues (2006) developed a method 

to remove the variance of respiration-induced changes from the data through the regression of the 

respiration volume per time (RVT). 

However, physiological monitoring data are often not available, and are not expected to relate to 

all common forms of artefact; hence, several methods have been proposed to estimate and remove 

the artefacts using only the fMRI data itself. The simplest approach is to apply temporal filtering 

(e.g., a band-pass filter keeping frequencies 0.01-0.08 Hz) that removes the primary cardiac and 

respiration frequencies if the TR is short enough, but not their aliased lower-frequency components 

with more standard TR. Moreover, the removal of high frequency signals through bandpass filtering 

may remove signal that contributes to resting state networks (Niazy et al., 2011). Another standard 

preprocessing step for fMRI analyses is rigid-body head motion correction. Usually, all the volumes 
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are aligned to a reference volume, with the volume-to-volume movement of the head described by 

three translations and three rotations. However, even with perfect geometric correction of head 

motion, spin history effects result in residual motion-related artefacts; it is common to attempt to 

remove these from the data using a multiple linear regression, with the confound regressors derived 

from the estimated motion parameters. However, it has been shown (Power et al., 2012; 

Satterthwaite et al., 2013) that such approaches are often not capable of completely removing the 

effects of motion. Power and colleagues (Power et al., 2012) described a technique called 

“scrubbing” to deal with remaining artefacts: volumes (time points) affected by excessive motion 

are simply excluded from the functional connectivity analyses. In another study (Satterthwaite et al., 

2013) the authors proposed an improved preprocessing procedure by removing a higher number of 

motion-derived regressors (24 regressors, derived from the temporal derivatives of the 6 motion 

parameters, their square, and the combination of both). Further nuisance regressors can be derived 

from the resting data itself. Under the assumption that any process that affects all brain voxels is 

unrelated to the neural activity, global signal regression removes the global mean signal computed 

across all voxels in the brain (Desjardins et al., 2001; Greicius et al., 2003). However, it has been 

demonstrated (Murphy et al., 2009; Saad et al., 2012) that the global regression process also 

introduces spurious anti-correlations that are difficult to interpret. Some studies (Popa et al., 2009; 

de Pasquale et al., 2010) indicate that the global signal can include a significant amount of neural 

activity; therefore, many argue that its removal should be avoided. As BOLD signal related to 

neural activity should be predominantly in the grey matter, an alternative method is to regress out of 

the time series derived from just the white matter and/or CSF voxels (Weissenbacher et al., 2009). 

Confound removal can also be performed through a modification of the acquisition sequence. 

The dual echo approach proposed by Bright and Murphy (Bright and Murphy, 2013) consists of 

simultaneous acquisitions of a short echo time (TE) and a BOLD-weighted (standard TE) fMRI 

data, followed by voxelwise regression of the short TE data from the BOLD-weighted data, to 

remove noise variance. A related method uses a multi-echo approach that allows separation of 

BOLD and non-BOLD signal components based on TE-dependence (Kundu et al., 2012). Multi-

echo data at 3 TEs were acquired and fed into independent component analysis. Components were 

analyzed for the degree to which their signal changes fit models for relaxation-rate (R2*) and initial 

signal intensity (when the TE=0) change, and summary scores were developed to characterize each 

component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like RSN 

components from non BOLD-like components (related to motion, pulsatility, and other nuisance 

effects), and non BOLD-like component timecourses were used as noise regressors to improve 

seed-based correlation mapping. 
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Independent component analysis (ICA) (McKeown et al., 1998) has proven to be a successful 

technique for detecting consistent spatial components and separating signal from noise. ICA 

decomposes the 4D (space x time) data into multiple components, each described by a single 3D 

spatial map and an associated timecourse. Ideally, some components purely reflect BOLD signal, 

and others purely reflect artefactual processes. If the latter can be identified then they can be 

subtracted from (or regressed out of) the data. Identification of artefactual components by hand is 

time-consuming, operator dependent, and requires expert knowledge about signal and noise 

fluctuations’ spatial and temporal characteristics. Thus, there have been several approaches 

proposed that attempt to automate ICA-based denoising using different strategies to classify the 

components as signal or noise. To mention a few examples in addition to the work of Kundu et al. 

(2012): Thomas et al., (2002) identify the noise components to remove using an unsupervised 

algorithm that examines the Fourier decomposition of the time series obtained after principal 

components analysis or ICA; Kochiyama and colleagues (2005) proposed an automatic solution for 

removing the effects of task-related motion, characterising the non-artefactual ICs by virtue of their 

task-related signal changes; Perlbarg et al. (2007) remove signal fluctuations that match known 

spatial patterns of physiological noise; similarly, Beall and Lowe (2007) estimated cardiac and 

respiratory fluctuations from resting state data with temporal ICA and generated spatial weight 

matrices applicable to other resting data. 

However, none of these approaches are comprehensive enough for RS-fMRI denoising. 

The presence of multiple distinct kinds of artefacts in RS-fMRI data requires the identification 

and removal of a wide range of component types (i.e., having potentially quite varied artefactual 

spatial and/or temporal characteristics). Therefore, Tohka et al. (2008) proposed a richer set of 

spatial and temporal features that capture a wider range of ICs’ characteristics, while De Martino et 

al., (2007) used a representation of the components in a multidimensional space of descriptive 

measures (IC-fingerprints), which are then used to classify the components by feeding the features 

into a support vector machine. The “features” are quantities derived from the ICA spatial maps 

and/or timecourses; for example, one feature might be the fraction of the supra-threshold spatial 

map overlaying grey matter, and another might be the fraction of power in the time series spectrum 

lying above 0.05Hz. A set of distinct features can be fed into a trained multivariate classifier in 

order to attempt to classify each ICA component as “good” or “bad”. 

The Oxford University Centre for Functional MRI of the Brain (FMRIB) recently developed 

FMRIB's ICA-based X-noisefier (FIX) tool (Salimi-Khorshidi et al., 2014), which is a fully 

automated (once hand-trained) approach for cleaning fMRI data of various types of noise. The 

general cleaning procedure in FIX, consists of several major operations: spatial ICA, component-
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wise feature extraction, classifier training (using expert-/hand-labelled data), components 

classification (i.e., predicting components likelihood of being signal vs. noise) and denoising 

(removal of the artefactual components). The feature selection/extraction and the hierarchical fusion 

of classifiers (K-nearest neighbour, support vector machines and decision trees) used for the 

classifier training and prediction phase (the components’ classification) are extensively described in 

Salimi-Khorshidi et al., (2014) and will be summarised in the next paragraph. 

In this work the performance of FIX against manual component classifications was assessed 

across various fMRI datasets and evidence of good to excellent performance across three resting 

fMRI datasets was provided. The last step of the denoising procedure with FIX, the removal of the 

nuisance components, will be described in detail in the next chapter (chapter 4). 

3.2. Methodological basis of the cleaning algorithm (FIX) 
In this paragraph the methodological basis of the first operations of the cleaning procedure with 

FIX, developed by the analysis group of the Oxford University Centre for Functional MRI of the 

Brain (FMRIB), is summarised, while reference is made to Salimi-Khorshidi et al., (2014) for a 

detailed presentation. These operations are: spatial ICA, component-wise feature extraction and 

selection, classifier training (using expert-/hand-labelled data), components classification (i.e., 

predicting components likelihood of being signal vs. noise). 

Independent Component Analysis. Firstly, each single run of fMRI space-time data is 

decomposed into multiple components using probabilistic independent component analysis (pICA) 

implemented in MELODIC (Beckmann and Smith, 2004). The details of pICA are illustrated in 

detail in paragraph 1.2. 

Hand-labelling: criteria for the classification of “good” and “bad” components. 

Independent components were manually labelled into three different classes: 

- “good”, predominantly signal; 

- “bad”, predominantly noise; 

- “unknown” , not unambiguously identifiable as good or bad (in such cases, FIX treats these 

components as “good”, as the desired final behaviour is generally to be conservative with respect to 

minimising the chance of incorrectly removing valid neuronal signal). 

The manual identification of each component was carried out by first looking at the thresholded 

spatial map (typically abs(Z)>2.3), then at the temporal power spectrum, and finally at the time 

series. When necessary, the unthresholded spatial map of the component was viewed. 

In the following figures several examples of “good” (Figure 3.1) and “bad” (Figures 3.2-3.6) 

ICA components from typical fMRI datasets are shown, primarily in order to help clarifying the 
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criteria used for hand-labelling and the following descriptions of FIX’s spatial and temporal 

features. 

Briefly, the typical characteristics of signal components are:  

-‐ spatial maps with well-defined grey matter clusters; 

-‐ spatial pattern attributable to the RSNs’ patterns described in literature (Beckmann 2005; De 

Luca 2006; Rytty et al., 2013); 

-‐ predominantly low-frequency (<0.1 Hz) power spectra; 

while noise components can have: 

-‐ spatial overlap with white matter, CSF, or blood vessels; 

-‐ signal localised at the edges of the brain (motion) or in areas of signal drop (susceptibility); 

-‐ spatial maps with irregular/not well-defined clusters; 

-‐ non-predominantly low-frequency (<0.1 Hz) power spectra; 

-‐ spikes in the time series. 

Figure 3.1 illustrates an example components identified as good for a standard EPI acquisition 

sequence (top) and for a multi-band accelerated EPI sequence (bottom), respectively. 
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Figure 3.1: Examples of “good” components from two different acquisitions. The spatial map for a high resolution, 
short TR acquisition (bottom) is visually strikingly different from a more standard acquisition (top), with the signal 

above threshold following very closely the cortical gyrification. The spectral power lies primarily between 0 and 0.05 
Hz for each component. The examples are shown as viewed by the “Melview” program developed by the FMRIB centre 
specifically to display and hand-classify ICA components for FIX training. The list of components (and their assigned 

classifications) appears on the right, and, for the currently selected component, the spatial map, temporal power 
spectrum and time course are displayed. 

 
 
 

 

Conversely, figure 3.2 shows an example of movement-related bad components. Figure 3.3 

demonstrates that two more noise components (respectively, white matter –WM – movement-

related partial volume fluctuations and susceptibility-related artefact) are clearly artefacts as judged 

spatially, though the spectrum of the second example does not look clearly artefactual. Figure 3.4 

shows sample cardiac pulsation (artery) bad components, identified in the cerebrospinal fluid (CSF) 

in the ventricles in one case, and anatomically following arteries (most commonly around the 

posterior cerebral artery and middle cerebral branches) in the other. Figure 3.5, left panel, shows 

components relating to major veins - in these cases, the sagittal sinus vein. Vein components tend to 
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have similar temporal characteristics (including power spectra) to those of good components. The 

right panel instead, shows an example of MRI acquisition/reconstruction related artefact - it does 

not look like artefacts arising directly from any aspect of physiology. Figure 3.6 shows two 

examples of “unknown” components, which do not look like clean neuronal-related signal, but may 

contain some aspects of it.  
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Figure 3.2. Examples of movement-related artefacts. The signal above threshold in the spatial maps is essentially at the 

edges of the brain. The frequencies of the power spectra are disparately distributed and the time courses visually 
dissimilar. 
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Figure 3.3. Two further noise components: “white matter” and “susceptibility-motion”. 
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Figure 3.4. Examples of cardiac-related components. This includes components due to cardiac pulsation and arterial 
contribution. The signal above threshold in the spatial maps is essentially located in the ventricles, or following the 

main arteries (posterior cerebral artery, middle cerebral branches). 
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Figure 3.5. Example of two more artefact components. In the top panel the component is related to large veins and the 
signal above threshold in the spatial maps is essentially following the sagittal sinus. In the bottom panel the artefact is 

related to MRI acquisition/reconstruction. 
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Figure 3.6. Two examples of “unknown” components 
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Features Extraction. On the basis of the characteristics described above for hand labelling, 

FIX extracts 178 features, capturing components spatial and temporal characteristics. The main 

subclasses of these features are summarised in table 3.1. For a complete description see Salimi-

Khorshidi et al., (2014). 

 
Table 3.1. Summary of the features classes and sub-classes used by FIX to discriminate signal and noise 

components. 

Features' classes and subclasses Main characteristic used to 
discriminate signal/noise 

Signal 
characteristic 

Noise 
characteristic 

Spatiotemporal features (1-46) 
   N = number of ICs 

determined by MELODIC 

The presence and extent of various 
noise types affect the number of 
estimated components   

Temporal features    

Autoregressive properties 

temporal smoothness estimated by 
fitting AR(n) models to a 
component's time series and temporal 
autocorrelation 

high temporal 
autocorrelation 

low temporal 
autocorrelation 

Distributional properties shape of the time series' distribution fairly normal bimodal or long-
tailed  

Jump amplitudes Extent of jumps or sudden changes in 
time series' amplitude 

fairly smooth time 
series large jumps 

Fourier transform distribution of power in the frequency 
domain low frequency high frequency 

Correlation 
temporal correlation with other 
reference time series (GM, WM, 
CSF, head motion) 

more GM correlated more WM, CSF, 
motion correlated 

Spatial features (47-178)    
Clusters' size and spatial 
distribution 

Distribution of the activation and 
deactivation cluster-sizes 

low number of large 
clusters 

high number of 
small clusters 

Voxels overlaying bright/dark raw 
data voxels 

multiplication of ICA spatial maps by 
the mean fMRI image across time 

more overlap with 
GM intensity 

overlap with e.g. 
blood vessels 

Percent of brain boundary Overlap between spatial maps and 
brain bondaries low overlap 

motion related 
artefacts highly 
overlap with brain 
boundaries 

Masked based features Overlap between spatial maps and 
masks of GM, WM, CSF, vessels 

overlap with GM 
mask 

overlap with CSF, 
WM, vessels 

other spatial features  …     
 

Features Selection. Feature selection attempts to automatically choose a subset of relevant 

features within the training dataset, for building robust learning models. FIX employs a 

combination of F-score, logistic regression and a linear support vector machine (SVM) for feature 

selection. Assuming LF, LLR, and LSVM being the rankings resulting from F-score, logistic 

regression and linear SVM, respectively, FIX aggregates the top-ranking features from these three 
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rankings and decides on the final subset of features. If a feature is among the top 50% of at least one 

of the three rankings, then it will pass FIX’s feature selection filter (see next paragraph) 

Hierarchical classifier. In the N-dimensional feature space, signal and noise components are 

not simple clusters and hence not trivially separable. Moreover, when manually classifying the 

components, experts tend to consider the components spatial maps and time series separately, and 

then implicitly follow multiple if-then rules that determine the final label. In order to help mimic 

experts’ decision process, while taking into account the components complex properties, FIX 

employs an ensemble learning (or classifier fusion) approach. 

If D is defined as the set of all potentially useful features, then D = DT U DS, where DT and DS 

are the temporal and spatial feature sets. Let Dsel be the subset of selected features, also containing 

temporal and spatial feature sets, Dsel = DT,sel U DS,sel. As a result, the classifier must be trained on 

the 6 defined sets (D, Dsel, DT, DS, DT−sel and DS−sel). 

As there is no absolute best classifier for the detection of signal/noise in a classification setting, 

FIX utilises an ensemble technique known as stacking (Wolpert, 1992), where outputs of individual 

classifiers (k-nearest neighbour algorithm (k-NN), support vector machine (SVM), and decision 

trees) become the inputs of a “higher-level” learner (in FIX’s case, a decision tree) that works out 

the best way of combining them (see Figure 3.7). 

Training the ensemble consists of extracting D, Dsel, DT, DS, DT−sel and DS−sel, training the k-NN, 

decision tree and SVMs, on each of the datasets, and training the fusion-layer decision tree using 

these classifiers outputs. 

The inputs to the stacking classifier are the lower-level classifiers probabilistic outputs (Dzeroski 

and Zenko, 2004) and also the output of the fusion-layer decision tree (FIX’s classification output) 

is a probability. 

 
Figure 3.7. FIX’s hierarchical classifier. In the data layer, full, feature-selected, temporal, spatial, temporal-feature-

selected and spatial-feature-selected datasets (D, Dsel, DT, DS, DT−sel and DS−sel, respectively), are each classified by 5 
classifiers. The result is a vector of 30 (5×6) probabilities (0 and 1 denoting perfect noise and perfect signal, 

respectively), which is the input to a fusion-layer decision tree, whose output is the probability of IC being signal/noise. 

Figure 1: The hierarchical classifier architecture used for FIX. In the data layer, full, feature-selected,
temporal, spatial, feature-selected temporal and feature-selected spatial datasets (D, Dsel, DT , DS ,
DT�sel and DS�sel, respectively), are each classified by 5 classifiers. These classifiers consist of k-NN,
SVMr, SVMp, SVMl and decision tree (simply called tree in this graph). The result is a vector of 30
(5⇥6) probabilities (0 and 1 denoting perfect noise and perfect signal, respectively), which is scored by
a fusion-layer decision tree. The benefit of a decision tree at the fusion layer is replacing an arbitrary set
of if-then rules, with a generalizable data-driven set of if-then rules.

employed an ensemble approach, where all these classifiers score each and every component on each
and every one of the (sub-)datasets, and the resulting scores are then classified by a decision tree (see
Figure 1). The mathematical details of these classifiers can be found in Appendix A.

2.5.1 Learning and Generalisation

The fundamental goal of machine learning is to generalise beyond the examples in the training set. This
is because, no matter how much data we have, it is very unlikely that we will see those exact examples
(when using the trained FIX for prediction). In other words, doing well on the training set is easy (the
classifier can simply memorise the examples), and can create the illusion of success. Hence, when training
a learner algorithm, one must devise a strategy to minimise the risk of over-fitting (i.e., memorising the
examples).

In this study, we used a leave-one-out (LOO) approach across ICA results. This approach (as opposed
to component-wise) is expected provide a situation that is more similar to FIX’s real use-cases.

Steve, what is exactly the LOO mode at the moment?

5
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The decision tree at the fusion layer aims to generate a generalizable data-driven set of if-then rules. (adapted from 
Salimi-Khorshidi et al., 2014) 

 
 

3.3. Methods 
In the following paragraphs I will describe the analyses that I performed to test the classification 

accuracy of FIX, building three different training datasets and performing leave-one-out tests. The 

last step of FIX cleaning procedure, the denoising step, will be described in detail in chapter 4. 

3.3.1. Subjects and MRI data acquisition 
The accuracy tests on FIX performance were performed on the following datasets: 

Dataset 1: 25 healthy subjects  (age 70.6 ± 5.7 years, M/F = 18/7), participants in the 

Whitehall II MRI study (see details in par. 4.2.1.). Data have been previously acquired at FMRIB 

centre by the Neurobiology of Aging research group of the Psychiatry department (University of 

Oxford), using a 3T Siemens Verio MRI scanner with a 32-channel head coil. All subjects gave 

written informed consent to participate in the study. The images were acquired with a standard RS-

fMRI sequence: single-shot EPI T2*-weighted images (TR = 3000 ms, TE = 30 ms, Flip Angle = 

90°, voxel dimension = 3 mm isotropic, whole brain, acquisition time = 10 min for a total of 200 

timepoints); 

Dataset 2: The same 25 subjects of dataset 1 underwent a multi-band accelerated RS-fMRI 

sequence: single-shot EPI T2*-weighted images (TR = 1300 ms, multiband factor MB = 6, TE = 40 

ms, Flip Angle = 66°, voxel dimension = 2 mm isotropic, whole brain, acquisition time = 10 min for 

a total of 460 timepoints), developed partly for the Human Connectome Project (Moeller et al., 

2010; Feinberg et al., 2010; Setsompop et al. 2012); 

In dataset 1 and dataset 2 the following sequences were also acquired: 

- 3D high-resolution T1-weighted MR images were acquired using a MEMPRAGE sequence 

(TR = 2530 ms, TE = 1.79.3,65/5.51/7.37 ms, flip angle = 7°, field of view = 256 mm, voxel 

dimension = 1mm isotropic, acquisition time = ~6 min); 

- Field maps were acquired to reduce MR distortion due to magnetic field inhomogeneities (TR = 

400 ms, TE = 5.19/7.65 ms, flip angle = 60°, field of view = 258 mm, voxel dimension = 3 mm 

isotropic, acquisition time = ~1 min); 

Dataset 3: 42 healthy subjects (age 35.7 ± 22.3 years, M/F = 19/23). The author was entitled 

to contribute to the MRI acquisitions that were performed in the Radiology Department of 

Fondazione don Carlo Gnocchi IRCCS in Milan, using a 1.5 T Siemens Magnetom Avanto 

(Erlangen, Germany) scanner with 8-channel head coil. RS-fMRI BOLD EPI images (TR/TE = 

2500/30 ms; resolution = 3.1 x 3.1 x 2.5 mm3; matrix size = 64 x 64; number of axial slices = 39; 
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number of volumes = 160) were collected at rest. T1-weighted 3D scans were also acquired (TR/TE 

= 1900/3.37 ms; resolution = 1 x 1 x 1 mm3; matrix size = 192 x 256; number of axial slices = 176). 

3.3.2. RS-fMRI data preprocessing and manual labelling of single-subject ICA components 
 The same preprocessing was performed for all datasets using FSL (Smith et al., 2004; 

Jenkinson et al., 2012). Each RS-fMRI dataset was corrected for head motion using MCFLIRT 

(Jenkinson et al., 2002) and corrected for EPI distortions using FMRIB's Utility for Geometrically 

Unwarping EPIs (FUGUE), which performs the unwarping of the EPI images based on fieldmap 

data. Non-brain tissue was removed with BET (Smith, 2002) and data was high-pass temporal 

filtered to remove slow drifts (cutoff period ~ 100.0 s). As the final aim of the study involving 

dataset 1 and dataset 2 was to compare the two sequences (see chapter 4), the data was not spatially 

smoothed, to retain the original information about spatial resolution; data belonging to dataset 3 was 

spatially smoothed with a 5mm (FWHM) Gaussian kernel.. Each 4D pre-processed dataset was then 

fed into MELODIC (Multivariate Exploratory Linear Optimised Decomposition of Independent 

Components – Beckmann and Smith, 2004) to perform single-subject spatial-ICA with automatic 

dimensionality estimation. Finally, the single-subject ICA components for each subject of each 

dataset were hand-labelled into “good” (predominantly signal) or “bad” (predominantly noise), on 

the basis of the criteria illustrated above (par 3.2). 

3.3.3. Accuracy test and performance indices 
 The fundamental goal of machine learning is to generalise beyond the examples in the training 

set. In fact, performing well on the training set can be easy (the classifier can simply memorise the 

examples) and creates the illusion of success. Hence, when training and/or evaluating a learner 

algorithm, one must devise a strategy to minimise the risk of over-fitting (i.e., effectively 

memorising the examples). 

In this study, FIX was tested using a leave-one-out (LOO) approach across sets of ICA output 

components. If the training data consists of n MELODIC outputs (e.g., one per imaged subject), 

each fold of the cross-validation uses n−1 datasets for training, and tests the learned decision 

boundary on the left-out dataset. 

FIX’s performance can be summarised by its accuracy in detecting signal and noise 

components in comparison with labels as provided by experts. We characterised the classification 

accuracy in terms of two measures of success: TPR (“true positive rate”, meaning the percentage of 

true signal components correctly detected) and TNR (“true negative rate”, meaning the percentage 

of true artefact components correctly detected). 
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Given that FIX’s output (the output of the fusion-layer decision tree) is a probability, a 

threshold was applied to determine the binary classification of any given component. Changing the 

threshold shifts the balance between TPR and TNR; lowering it increases the TPR and decreases the 

TNR. For the LOO accuracy testing, therefore, we could evaluate several thresholds in order to 

show how the balance between TPR vs. TNR can be varied 

As the desired final behaviour is generally to be conservative with respect to minimising the 

chance of incorrectly removing valid neuronal signal, when choosing the threshold to use we would 

recommend to prioritize high TPR, obviously at expenses of possible lower TNR. 

Ideally, we would be interested in obtaining a TPR above 95% and TNR above 75%, but these 

values are only indicative and empirically obtained during the accuracy tests of FIX tool (see 

Salimi-Khorshidi et al., 2014), in order to give an indication of a good balance between noise 

removal and signal loss. 

3.4. Results 
The single-subject ICA decompositions found 71.60±15.59 components with the 3T Standard 

sequence data (dataset 1), 133.84±33.91 with 3T MB6 sequence data (dataset 2), and 18.76±5.96 

with 1.5T standard EPI sequence (dataset 3), as judged by the MELODIC automatic dimensionality 

estimation. Of these, the noise components manually identified were: 63.40±16.84 (87.72±5.11 % 

of all components, corresponding to 69.33±11.61% of the total variance of the original data) for 

dataset 1; 119.40±36.74 (88.28±4.98 % of all components, 67.80±10.17% of the total variance) for 

dataset 2; 13.60±5.04 (71.96±10.02 % of all components, 30.60±12.89% of the total variance) for 

dataset 3. 

The results of the LOO test are reported in Table 3.2, 3.3 and 3.4 for dataset 1, 2 and 3 

Respectively and summarised in Figure 3.8 through the use of ROC curves. It can be noted that in 

all cases the optimal threshold (highlighted in bold) is an intermediate value among the tested 

thresholds (5 or 10). 

 

Table 3.2. FIX classification accuracy for dataset 1 (Standard EPI sequence, 3T scanner). 

FIX 

threshold 1 2 5 10 20 30 40 50 

TPR 97.8 97.8 97.8 96.3 94.6 93.0 92.0 90.8 

FPR 91.9 91.9 92.2 94.7 96.1 97.3 97.3 97.6 

TPR = True Positive Rate, i.e., the percentage of true signals correctly classified. TNR = True Negative Rate, i.e., the 
percentage of true artefacts correctly classified. As the FIX “threshold” is lowered, TPR is maximised at the expense of 

high TNR. The best threshold's results are highlighted in bold. 
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Table 3.3. FIX classification accuracy for dataset 2 (Multiband accelerated EPI sequence, 3T 

scanner). 

FIX 

threshold 1 2 5 10 20 30 40 50 

TPR 97.2 97.0 96.5 96.5 96.5 96.0 96.0 95.5 

FPR 92.2 93.0 95.2 97.2 97.2 97.3 97.3 97.3 

TPR = True Positive Rate, i.e., the percentage of true signals correctly classified. TNR = True Negative Rate, i.e., the 
percentage of true artefacts correctly classified. As the FIX “threshold” is lowered, TPR is maximised at the expense of 

high TNR. The best threshold's results are highlighted in bold. 
 
 

Table 3.4. FIX classification accuracy for dataset 3 (Standard EPI sequence, 1.5T scanner). 

FIX 

threshold 1 2 5 10 20 30 40 50 

TPR 96.8 95.8 95.8 94.6 92.3 89.8 89.3 88.8 

FPR 72.3 79.4 79.4 81.4 88.2 90.4 92.4 93.6 

TPR = True Positive Rate, i.e., the percentage of true signals correctly classified. TNR = True Negative Rate, i.e., the 
percentage of true artefacts correctly classified. As the FIX “threshold” is lowered, TPR is maximised at the expense of 

high TNR. The best threshold's results are highlighted in bold. 
 
 
 

 
Fig. 3.8. ROC curves illustrating FIX performance as the threshold for the output of the fusion-layer decision tree 

varies. Threshold chosen for subsequent analyses are highlighted in black 
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3.5. Discussion and Conclusions 
In this chapter I summarised the characteristics of a new tool for the automated denoising of 

artefacts in fMRI data, achieved by running independent component analysis, identifying which 

components correspond to artefactual processes in the data, and removing those from the data, 

developed at the Oxford University Centre for Functional MRI of the Brain (FMRIB). I described 

the analyses that I performed to test the classification accuracy of FIX, building three different 

training datasets and performing leave-one-out tests. The last step of FIX cleaning procedure, the 

denoising step (i.e. how to remove the artefactual components identified by the classificator), will 

be described in detail in Chapter 4. 

From the training dataset building through manual labelling of the components, it emerged that 

the amount of noisy components is more than 70% of the estimated components for 1.5T images 

(which corresponds to the 30% of the total variance of the original data) and more than 85% (over 

65% of the total variance) for 3T images. This highlights the importance to correctly identify and 

remove the artefacts from the data for a reliable analysis of RS-fMRI data, especially when 

increasing the static magnetic field strength. 

FIX achieved, on the three datasets built by hand-labelling of the components, over 95% 

classification accuracy on all datasets. FIX therefore can be an effective tool for the identification of 

artefacts in fMRI data. Further analyses shown in (Salimi-Khorshidi et al., 2014), also evaluated the 

accuracy of FIX classification on the Human Connectome Project RS-fMRI data, showing over 

99% accuracy, and on combined training datasets (using data acquired from different protocols), 

demonstrating that the accuracy is quite stable over protocols. However the performance is higher if 

study-specific training is carried out. 

For all the accuracy evaluations performed in this study, FIX classification is compared to hand-

labelled classification. It must be taken into account that manual labelling is likely to be not 100% 

accurate, as, although with guidelines and rules, it remains somehow subjective. However, it still 

represents the current gold standard method for signal and noise identification through the 

evaluation of different spatiotemporal characteristics, and therefore used in this study as a ground 

truth. We also tried to increase accuracy of hand labelling with a double-check/consensus by 

multiple experts (i.e. raters with a good knowledge of both BOLD signal characteristics and 

neuroanatomy to be able to classify the components into signal or noise by looking at their spatial 

and temporal features). If the raters were not in agreement on the classification of a component, it 

was labelled as “unknown” (not unambiguously identifiable as good or bad, and therefore treated by 

FIX as “good”). In pilot analyses (not shown in this thesis), FIX stability across multiple raters has 
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been shown to be good, although a systematic evaluation of inter-rater variability is certainly an 

interesting future development for this study. 

The minimum number of subjects to create a reliable training dataset is variable, depending 

from the characteristics of the data (overall quality, different groups of subjects etc.). As an 

empirical indication, we would suggest to hand label at least 10 subjects ICA outputs, and quite 

possibly more than that (as empirically obtained during the different accuracy tests performed on 

FIX tool  - data not shown).  

FIX is now publicly available; the current version (v1.06) is available as a “plugin” for FSL (the 

FMRIB Software Library) at link www.fmrib.ox.ac.uk/fslwiki/fsl/FIX - it is not yet bundled as part 

of FSL, as it currently relies also on other software, in particular on Matlab (or Octave) and R. The 

FMRIB centre planned to recode a future version of FIX to remove these dependencies and release 

it as part of FSL. The FIX download includes training-weights files for “standard” fMRI 

acquisitions and for Human Connectome Project RS-fMRI data; the scripts supplied with fix make 

LOO evaluation very straightforward, and the value of adding further hand labelling can be 

established by noting whether the LOO result (as a function of number of datasets manually 

labelled) converges to a stable value. 
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Chapter 4 - ICA-based artefact 
removal and accelerated fMRI 

acquisition for improved Resting State 
Network imaging 

 

This chapter covers the last step of the denoising procedure with FIX, introduced in chapter 3. 

Different options for the removal of the noisy components are tested with temporal, network and 

spatial maps analyses on the resting state networks extracted with low and high-dimensional group 

ICA. The optimized cleaning procedure is validated on standard and multiband slice accelerated 

EPI images, and a comparison of the results obtained with the two sequences is also discussed, 

highlighting the benefits of slice accelerated fMRI acquisition on resting state network analyses. 

 

The preliminary results of this work are reported in a conference proceeding (Griffanti et al., 

OHBM 2013) and the final work was submitted for publication (Griffanti et al., under review). 

Partly due to the results obtained in this study, FIX is now in use as part of the default Human 

Connectome Project analysis pipeline (Smith et al., 2013), and FIX-cleaned data with the optimized 

options described in this chapter is the recommended version of the resting-state fMRI data that is 

publicly available. 

4.1. Introduction 
FMRIB's ICA-based X-noiseifier (FIX) tool is conceived to clean single-subject data before any 

further processing step (group-ICA, network analysis, or other approaches) exploiting a preliminary 

classification of single-subject independent components into signal or noise and regressing out the 

noise ones together with motion regressors. The last step of the denoising procedure with FIX tool 

is the removal of the nuisance components identified by the classifier (see Chapter 3 for further 

details), resulting in “cleaned” fMRI data. This is not trivial, as the noise components can share 

variance with components containing RSN signal. For this reason, the first aim of the present work 

was to compare several cleaning approaches and find a recommended procedure for noise removal, 

in order to clean the fMRI data of artefacts, while minimising the loss of signal. 

We applied single-subject independent component analysis (ICA), followed by automatic 

component classification with FMRIB's ICA-based X-noiseifier (FIX) to identify artefactual 

components. We then compared two first-level (within-subject) cleaning approaches for removing 
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those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning 

procedures were assessed using time series (amplitude and spectra), network matrix and spatial map 

RSN analyses, feeding uncleaned and cleaned datasets into both low- and high-dimensional group-

level ICA to identify resting-state networks (see sections 4.2.5 and 4.3 for details). For time series 

and network analyses we also tested the effect of a second-level cleaning, informed by group-level 

analysis (see sections 4.2.5). 

Moreover, the cleaning procedure outcomes were used to quantify improvements yielded by a 

recent acquisition protocol named multiband (MB) or slice accelerated EPI vs. datasets obtained 

with standard EPI. MB EPI displays improved temporal and/or spatial resolution, leading to higher 

sensitivity in detecting RSNs (Moeller et al., 2010; Feinberg et al., 2010; Setsompop et al. 2012). 

Therefore, this technique is seeing rapid take-up in the imaging community, for example, in the 

Human Connectome Project (HCP) and the most recent Thousand Connectomes datasets from the 

Nathan Kline Institute. The second aim of this study was to further evaluate the potential of the 

multiband slice accelerated EPI sequence, and to investigate the effect of combining different 

acquisition pulse sequences with different artefact cleaning approaches (highlighting the different 

signal/noise content of the accelerated multiband acquisitions compared with standard EPI). 

Therefore, all evaluations were performed on two large datasets from the same group of subjects - a 

standard EPI sequence and an MB6 EPI sequence, demonstrating the efficacy of FIX cleaning on 

both sequences via investigation of RSN time series, correlation networks and spatial maps (see 

sections 4.2.5 and 4.3 for details). Partially due to the results obtained in this study, public releases 

of HCP RS-fMRI data are being cleaned using FIX using the “soft” clean-up approach described 

below (Smith et al., 2013). 

4.2. Methods 

4.2.1. Subjects and MRI data acquisition 
Data from 76 healthy subjects, participants in the Whitehall II MRI study (ages 69.1 ± 5.8 years, 

M/F = 52/24), were acquired at FMRIB centre by the Neurobiology of Aging research group of the 

Psychiatry department (University of Oxford) (http://www.psych.ox.ac.uk/research/neurobiology-

of-ageing/research-projects-1/whitehall-oxford) using a 3T Siemens Verio MRI scanner with a 32-

channel head coil. 

The Whitehall II study has examined 10,308 civil servants over the last 25 years at 5 yearly 

intervals, and has therefore information for risk factors, social background, exercise and mental 

activity. Combining long-term Whitehall II information from 800 people with MRI scanning will 

allow examining the connection between risk factors and protective factors and brain changes. 
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Furthermore, it will help establishing the effects of these brain changes on current mental state and 

performance, answering important questions about the natural history of depression and dementia. 

All subjects gave written informed consent to participate in the study. The MRI protocol 

included: 

- Standard RS-fMRI sequence: single-shot EPI T2*-weighted images (TR = 3000 ms, TE = 30 

ms, Flip Angle = 90°, voxel dimension = 3 mm isotropic, whole brain, acquisition time = 10 min for 

a total of 200 timepoints); 

- Multi-band slice accelerated RS-fMRI (MB) sequence: single-shot EPI T2*-weighted images 

(TR = 1300 ms, MB factor = 6 – MB6, TE = 40 ms, Flip Angle = 66°, voxel dimension = 2 mm 

isotropic, whole brain, acquisition time = 10 min for a total of 460 timepoints), developed partly for 

the Human Connectome Project (Moeller et al., 2010; Feinberg et al., 2010; Setsompop et al. 2012); 

- 3D high-resolution T1-weighted MR images were acquired using a MEMPRAGE sequence 

(TR = 2530 ms, TE = 1.79/3.65/5.51/7.37 ms, flip angle = 7°, field of view = 256 mm, voxel 

dimension = 1mm isotropic, acquisition time = ~6 min); 

- Field maps were acquired to reduce MR distortion due to magnetic field inhomogeneities (TR = 

400 ms, TE = 5.19/7.65 ms, flip angle = 60°, field of view = 258 mm, voxel dimension = 3 mm 

isotropic, acquisition time = ~1 min). 

4.2.2. RS-fMRI data preprocessing 
 The same preprocessing was performed on both Standard and MB6 RS-fMRI data using FSL 

(Smith et al., 2004; Jenkinson et al., 2012). Each RS-fMRI dataset was corrected for head motion 

using MCFLIRT (Jenkinson et al., 2002) and then corrected for EPI distortions using FMRIB's 

Utility for Geometrically Unwarping EPIs (FUGUE), which performs the unwarping of the EPI 

images based on fieldmap data. Non-brain tissue was removed with BET (Smith, 2002) and data 

were high-pass temporal filtered to remove slow drifts (cutoff period ~ 100.0 s). Data were not 

spatially smoothed, in order to make it easier to compare and interpret the effect of the different 

acquisition resolutions (e.g., on SNR and apparent spatial detail). Each 4D pre-processed dataset 

was then fed into MELODIC (Multivariate Exploratory Linear Optimised Decomposition of 

Independent Components – Beckmann and Smith, 2004) to perform within-subject spatial-ICA with 

automatic dimensionality estimation (we explain below how the ICA outputs were then used). The 

76 subjects’ datasets were then randomly split into two age-matched subsets: 23 subjects were used 

as the training dataset for FIX ( dataset 1 and 2 described in Chapter 3), and 53 as the test dataset. 

The rationale beyond this group size difference is because we judged 23 subjects to be sufficient to 

train FIX well and provide robust group-level ICA decomposition for the templates (see section 

4.2.3), reducing the manual intervention as much as possible. Moreover, many of the final 
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evaluations depend on cross-subject variance estimations, and hence the size of the second group is 

arguably more important to our quantifications than the size of the first. Subsequent analysis steps 

are summarized in Fig. 4.1. 

 
Fig. 4.1. Graphical illustration of overall evaluation. 

 

4.2.3. Creation of group-ICA RSN templates 
 Next we applied ICA-based artefact removal for all single subject data in the training dataset. 

Each ICA component from every single-subject dataset (from both MB6 and Standard acquisitions) 

was hand-classified into signal or noise, on the basis of the temporal and/or spatial characteristics. 

See Chapter 3 for more detail regarding how hand-classification decisions were made. Next, the full 

space of all artefact time series and motion parameters (as opposed to the partial space, where the 

both artefact and non-artefact time series are included in the regression; see section 4.2.4 for further 

details) was regressed out of the 4D pre-processed data, to achieve a so called “aggressive” artefact 

removal. The rationale for applying a more aggressive artefact regression was that we wanted to 

obtain the cleanest possible group-level ICA maps from the training dataset, to be used as a 

reference of "true signal". The aggressive within-subject-cleaning approach maximizes the noise 

removal at the expense of a potential loss of some RSN-related signal in some subjects, which is 

compensated for by utilizing multiple subjects for the group-ICA-based template generation. We 

registered cleaned RS-fMRI 4D data from single subjects to their high-resolution structural image 

using FLIRT linear registration, enhanced with brain-boundary-registration (BBR – Greve and 

Fischl, 2009), and then to MNI152 standard space via the application of the nonlinear FNIRT tool 
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applied to the structural image (Andersson et al., 2007a,b). All 4D RS-fMRI datasets were 

resampled to 2 × 2 × 2 mm3 resolution in the final MNI152 space. 

We then performed (separately for Standard and MB6 training datasets) group-ICA using 

MELODIC. The group ICA was performed at two dimensionalities (d): with 30 dimensions for a 

more “conventional” ICA analysis (i.e. using a number of components comparable to most of the 

RS-fMRI studies using group ICA – e.g. Beckmann et al., 2005; Filippini et al., 2009), and with 

100 to achieve a more finely-detailed functional 70 parcellation of the data (this is useful for more 

detailed network analyses, if permitted by data quality). The four sets of group maps were used as 

reference templates in subsequent analyses performed on the test datasets, based on the assumption 

that ICA had extracted features common to the whole group (test and training data). The template 

components were manually classified as RSNs vs artefact based on previous knowledge of the 

RSNs patterns described in literature (Beckmann 2005; De Luca 2006; Rytty et al., 2013), and 

following the same rules used for single-subject manual labelling described in Chapter 3 (Salimi-

Khorshidi et al., 2014; Smith, 2013), also including the study of the mean cross-subject temporal 

power spectrum of each component and double-checked by two further experts. (Although ICA-

based clean-up was applied to each separate dataset, some artefactual components can still emerge 

at the group-level. For example, low-level artefactual processes that are too weak to be identified by 

single-session ICA may be consistent across subjects and hence be enhanced at the group level). 

4.2.4. Automated classification and clean-up procedures with FIX 
 In addition to generating the group-ICA template maps, the hand-labelled components from the 

training dataset were also used to train the FIX (FMRIB's ICA-based X-noiseifier) component 

classifier (see chapter 3). We created one training dataset for the Standard data and extended a pre-

existing training dataset for MB6 (though our classification accuracy results were extremely similar 

for MB6, if we only used this current study’s MB6 training dataset). We evaluated FIX’s 

classification accuracy via leave-one-out bootstrap testing (chapter 3). 

 The single-subject ICA components of the test dataset were then automatically classified into 

signal and noise using FIX. As the ground truth of signal and noise is unknown, from now on we 

will refer to “signal” and “noise” components according to FIX classification (purely for 

convenience of notation). For the clean-up procedure we used both the time series relative to noise 

components and 24 motion-estimation confound time series (the six rigid-body parameter time 

series, their backwards-looking temporal derivatives, and the squares of all twelve resulting 

regressors) (Satterthwaite et al., 2013). The 24 motion confound time series then had the same 

temporal highpass filtering applied to them that had been applied to the data. 
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 We evaluated two different cleaning procedures: the “aggressive” clean-up, and a “soft” clean-

up. 

As previously introduced, the “aggressive” approach consisted of regression of the full space of 

all artefacts (noise components) and the motion confounds out of the 4D pre-processed data (Y), 

using: 

𝑌!"#$% = 𝑌 − 𝐶 ∙ (𝑝𝑖𝑛𝑣(𝐶) ∙ 𝑌)         (4.1) 

where C is the matrix of artefact and motion time series (C=[Cmotion ICA(bad)]) and pinv() is 

the matrix pseudo-inverse (for example, as estimated via pinv(C)=(CTC)-1CT). With this method, the 

contribution of the motion and the artefacts is fully removed from the data. In general, the signal 

and noise ICA components are not completely orthogonal; this approach removes all shared 

variance between the two (hence the term “aggressive”). 

 The “soft”, less-aggressive, approach consisted of three steps. First, we regressed out the full 

space of the motion confounds (Cmotion) from both the data and from all the (“good” and “bad”) ICA 

component time series (ICA), in order to fully remove the effect of motion from the data (resulting 

in Ym) and the ICA time series (resulting in ICAm): 

𝑌! = 𝑌 − 𝐶!"#$"% ∙ (𝑝𝑖𝑛𝑣 𝐶!"#$"% ∙ 𝑌)       (4.2) 

𝐼𝐶𝐴! = 𝐼𝐶𝐴 − 𝐶!"#$"% ∙ (𝑝𝑖𝑛𝑣 𝐶!"#$"% ∙ 𝐼𝐶𝐴)      (4.3) 

Second, we estimated the contribution of both good and bad components (β!"#) via multiple 

regression of the data against all (motion-cleaned) ICA time series, in order to be able to identify 

the unique variance of the artefacts (Eq 4.4): 

𝛽!"# = 𝑝𝑖𝑛𝑣 𝐼𝐶𝐴! ∙ 𝑌!          (4.4) 

Finally, using this, the unique contribution of the bad components was removed from the data, 

utilising only the bad ICA components’ time series and the respective regression coefficients: 

𝑌!"#$% = 𝑌! − 𝐼𝐶𝐴! 𝑏𝑎𝑑 ∙ 𝛽!"#   𝑏𝑎𝑑         (4.5) 

Hence we obtained 6 different test datasets (ordered by hypothetically decreasing noise): 

• uncleaned Standard data 

• uncleaned MB6 data 

• softly-cleaned Standard data 

• aggressively-cleaned Standard data 

• softly-cleaned MB6 data 

• aggressively-cleaned MB6 data 

For each dataset, the raw temporal signal-to-noise ratio (temporal-SNR) image was formed for 

each subject, eroded to exclude brain-edge effects, and the median SNR value was calculated as 

a first measure of the cleaning effect (note that the temporal “noise” in the SNR here includes 
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valid RSN-related fluctuations). All subjects’ RS-fMRI test data were then resampled into 2 mm 

MNI152 space, as carried out on the training datasets. 

4.2.5. Dual regression and analyses 
In order to evaluate sensitivity and consistency of RSNs estimated from the test datasets, we 

applied dual-regression (described below) of the training-dataset group-level template spatial maps 

into each test dataset. This resulted in test-dataset subject-specific spatial maps corresponding to the 

template maps, and associated subject-specific time series (Filippini et al., 2009).  

For each version of each single-subject RS-fMRI test dataset (created as described above), the 

full set of d template spatial maps was regressed into the single-subject data (as a spatial 

regression), the output being d single-subject time series (separately for each subject in the test 

dataset). These d subject-level time series (from each of the 53 test dataset subjects) were then used 

to perform time series (temporal standard deviation to represent the time series amplitude, and 

temporal power spectra to analyse the frequency content) and correlation-based network analyses 

(see section 4.3.4-4.3.6 for details). 

Four different analyses were carried out by separately applying the four sets of group-ICA 

templates previously defined in the first stage of dual regression as sets of spatial regressors. 

As the group ICA contained some artefactual components, only for time series and network 

analyses we introduced a further second-level clean-up (“Nets clean-up”), where the time series 

corresponding to the artefactual group-level components manually identified in the templates (see 

section 4.2.3) were regressed out of the remaining RSNs time series using Eq.4.6:  

ICA!"#$% = ICA(good)− ICA(bad) ∙ (pinv ICA(bad) ∙ ICA(good))    (4.6) 

In the case of unknown group-level components (not artefacts but also not clearly RSNs), these 

were simply discarded for the purposes of the Nets clean-up evaluations, and not regressed out of 

the good components. Time series and network analyses were evaluated only using time series 

derived from good template components, with 6 different combinations of first-level (no cleaning, 

soft, aggressive) and time series (with vs. without Nets) cleaning. For the temporal analyses we 

calculated the mean amplitude of the time series for each component (section 4.3.4) and the mean 

power spectrum across subjects and components (section 4.3.5). For the network analysis, d x d full 

correlation, partial correlation and L1-norm regularised partial correlation matrices (Smith et al., 

2011) were estimated using the set of RSN time series (section 4.3.6). The temporal characteristics 

and network matrices were estimated separately for each subject. 

Finally, the second stage of dual regression was carried out for each subject, resulting in subject-

specific spatial maps corresponding to the template maps. This was achieved by regressing the 

subject-specific RS-fMRI datasets against the set of d subject-specific time series as estimated in 
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the first stage. We calculated two sets of test-dataset cross-subject group-level maps (one using 

mixed-effects (ME) statistics and one using approximate fixed-effects (FE) statistics), and 

compared them against the template maps, under the assumption that the more a group RSN map 

reflects the corresponding template map, the more the cleaning approach (or the acquisition 

sequence) correctly identifies the true signal. To do this, we calculated the spatial correlation 

coefficients between the group maps and the templates, which were compared between different 

cleaning procedures and acquisitions. All d components were used in the two dual-regression 

stages, but only the non-artefactual components were then used when comparing the test-dataset 

maps against the training-dataset template maps (see section 4.3.7 for details). 

In the following section we describe in more detail the different comparison analyses, and 

present the comparison results. Section 4.4 then includes a broader discussion of the results 

4.3. Results 

4.3.1. Single-subject independent component classification 
The single-subject ICA decompositions, performed on all 76 subjects, found 69.8 ±14.9 

components (per dataset) with the Standard sequence data, and 124.9 ± 25. 7 with MB6 sequence 

data, as judged by the MELODIC automatic dimensionality estimation (Beckmann et al., 2004). Of 

these, the artefact components (which were manually identified on the 23-subject training/template 

dataset) were more than 85% of all components (60.9 ± 14.9, i.e., 87.7%, for Standard and 111.5 ± 

24.0, i.e., 88%, for MB6). On the remaining 53 subjects, FIX automatically identified 57.4 ± 15.8 

(82%) artefactual components on Standard data and 108.1 ± 29.8 (87%) on MB6 data, in line with 

the proportion of artefacts found with hand labelling of the training dataset. FIX performed with 

higher classification accuracy on MB6 data, with an overall accuracy of 98% for MB6 and 95% for 

Standard (see Chapter 3 for details). 

4.3.2. Temporal SNR results 
Based on the expectation that the cleaning procedure should decrease fluctuation of the signal 

around its mean, we first compared the temporal SNR for each clean-up and sequence. For each RS-

fMRI run (both for Standard and MB6 sequences), a temporal-SNR image was generated after 

motion correction and highpass filtering; the “noise” here includes RSN-related fluctuations, which 

therefore places an upper limit on the possible SNR. The SNR image was eroded by 3 voxels at the 

brain edge to avoid edge effects, and the median SNR value across voxels was computed. This 

process was repeated after soft and aggressive clean-up. The results were then compared across 

cleaning approaches and between sequences by means of two-tailed paired t-tests. 
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The boxplots in Fig. 4.2 show the distributions of the median (across space) SNR value over the 

53 subjects for the two acquisitions with different cleaning options. The raw SNR results (Fig. 

4.2.A) show that the cleaning procedure significantly increases the SNR (p<0.01), while, when 

comparing the two sequences, the combined decrease in voxel volume and the EPI acceleration in 

MB6 results in significant lower SNR (p<0.01) (mainly due to the former, Smith et al., 2013). 

However, if the increased number of time points is taken into account (Fig 4.2.B), the statistical 

power for simple analyses applied to MB6 data is seen to be comparable to those from the Standard 

acquisition. This is of great value because it means that the increase in statistical power due to the 

acceleration counteracts the loss in SNR caused by the increase in spatial resolution. Of course, 

these SNR results do have somewhat limited meaningfulness, because the “noise” in the “SNR” 

includes both interesting signal fluctuations as well as various sources of noise. 

 

 
Fig. 4.2. Temporal SNR estimation for various cleaning procedures and acquisition protocols. The boxplots show the 
distribution across 53 test subjects. From the raw SNR results (A), it is clear that the cleaning procedure increases the 
SNR, while the reduced voxel volume and EPI acceleration decreases it. However, taking into account the increased 
number of time points (B), the statistical power for simple analyses applied to MB6 data is seen to be comparable to 

those from the standard acquisition. This is of great value because it means that the increase in statistical power due to 
the acceleration counters the loss in SNR caused by the increase in spatial resolution. 

 
 

4.3.3. Group ICA components and dual regression - summary 

As described above, group ICA was performed at two dimensionalities (d=30 and d=100). Based 

on visual inspection (agreement of 3 experts) of each component spatial map and (mean cross-

subject) temporal power spectrum, 28/30 and 58/100 group-ICA components were judged to be 

non-artefactual in the MB6 templates, while 19/30 and 43/100 in the Standard ones. We identified 

1/30 and 7/100 components as unknown (i.e., components which could not be unambiguously 

identified as good or bad) in the MB6 templates and 1/30 and 17/100 in the Standard ones. For each 
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dimensionality, the difference in these proportions between the two sequences was tested with a 

binomial test. We found that the proportion of good components found in the templates was 

significantly higher for MB6 (p<0.05), and the proportion of unknown components significantly 

lower (except for the case of only having 1/30 unknown component for both acquisitions with the 

d=30 analyses). These results clearly suggest that MB6 data can be more effectively cleaned of 

artefacts by FIX, both at low and high group-ICA dimensionality. 

As we were interested in comparing both different cleaning procedures and the two acquisitions, 

we performed 12 sets of dual regressions (two sequences × two dimensionalities × three cleanings). 

However, noise removal and high dimensional dual-regression was fully possible with MB6 only, 

while, with Standard data, the temporal degrees of freedom after the cleaning procedure were not 

sufficient to perform the full dual-regression with d=100. For this reason, subsequent comparisons 

among different cleaning approaches were performed on Standard d=30, MB6 d=30 and MB6 

d=100, while the comparisons between the two acquisitions was performed at d=30. Where possible 

and meaningful we included and discussed the results obtained on Standard d=100. For each 

dataset, we obtained subject-level time series (first stage of dual regression) and spatial maps 

(second stage), which were analysed to test the effect of the different cleaning procedures and the 

differences between the two acquisitions. More specifically, the output of the first stage of dual 

regression (subject-level time series of the 53 test subjects) was used to perform time series 

(amplitude and power spectra) and network analyses, while the output of the second stage was 

entered into spatial map analyses. 

4.3.4. Time series amplitude analysis 

Given the hypothesis that the cleaning procedure should decrease the fluctuation of the subject-

level time series with respect to the uncleaned data, we compared the time series amplitude across 

cleanings and sequences. This measure was obtained by scaling each time series standard deviation 

(for each subject and component) by the standard deviation of the corresponding uncleaned time 

series. The ratio between the amplitude of cleaned vs. uncleaned data yielded the normalized 

amplitude (hereon, amplitude) considered in statistical analyses. We directly compared the 

amplitudes obtained with different cleaning approaches through two-tailed paired t-tests and the 

results obtained with the two sequences using two-tailed independent t-tests, and the results are 

shown in Fig. 4.3 and Table 4.1. The boxplots show the distribution of amplitudes across 

components (with the scaled amplitude for a given component averaged across subjects). With all 

protocols, each cleaning step (both at 1st and 2nd level) significantly reduced the time series 

amplitude (p<0.01). Regarding 1st level clean-up, the largest difference was observed between 

uncleaned and cleaned data (almost 50% amplitude reduction), while the difference between soft 
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and aggressive approach was less strong, although statistically significant (p<0.01). Nets clean-up 

significantly reduced the amplitude, especially if the data had not been cleaned at 1st level. On MB6 

d=30 data the effect of Nets clean-up was statistically significant but limited in effect size, because 

only one artefactual component was removed.  

As with the SNR results, these results have limited interpretability because it is not known what 

the balance is between remaining noise and signal contributions to the amplitudes; nevertheless, the 

results are useful indicators of how much variance is being removed in the various cases. For 

example, if there was almost no variance being removed by a given method, further investigations 

would be rather pointless. 

 

 

 
Fig. 4.3. Time series amplitudes. This measure was obtained by scaling (the standard deviation of the) single-subject 

time series associated with each group-level map by the standard deviation of the corresponding uncleaned time series. 
The boxplots show the distribution of amplitudes across components (each component is first averaged across subjects). 

All clean-up approaches decrease the amplitude; the amplitude is higher with MB6 sequence than with Standard. 
STD=Standard sequence; uncl=uncleaned; soft=FIX soft cleaning; agg=FIX aggressive cleaning; nets=Nets cleaning. 
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Table 4.1. Time series Amplitude. Comparison among cleaning approaches (paired t-test). 

Time series amplitude. 
Comparison across cleanings 

Standard d=30 
t-value 

MB6 d=30 
t-value 

Standard d=100 
t-value 

MB6 d=100 
t-value 

uncleaned - soft 21.52 19.59 32.83 32.62 
uncleaned - aggressive 37.54 34.82 58.04 59.39 

uncleaned - nets 25.01 22.91 81.98 82.60 
uncleaned - soft+nets 44.89 21.58 150.43 114.60 
uncleaned - agg+nets 59.58 36.58 168.27 133.79 

soft - aggressive 30.83 30.89 31.90 38.41 
soft - nets -8.39 -18.82 6.99 8.76 

soft - soft+nets 23.59 26.04 31.85 38.01 
soft - agg+nets 28.06 32.17 32.00 38.55 

aggressive - nets -24.20 -34.18 -8.91 -10.91 
aggressive - soft+nets 7.97 -28.30 28.65 27.79 
aggressive - agg+nets 18.77 15.17 29.27 30.83 

nets - soft+nets 39.38 20.84 101.86 84.86 
nets - agg+nets 51.69 35.97 96.85 99.49 

soft+nets - agg+nets 23.46 30.19 24.64 25.65 
Significant results (p<0.01) are highlighted in bold. 

 

Regarding the comparison between the two sequences (see Table 4.2), amplitude with MB6 was 

always higher than Standard: this difference was significant only on Nets clean-up results at low 

dimensionality, and for all cleaning options at high dimensionality. This means that a slightly 

smaller fraction of the temporal variance is removed by the cleaning of the MB6 data. 
 

Table 4.2. Time series Amplitude. Comparison between sequences (unpaired t-test). 

Time series' amplitude. 
Comparison between sequences soft aggressive nets soft+nets aggressive+nets 

standard d=30 - MB6 d=30 
(t-value) -1.23 -0.88 -27.56 -8.76 -5.90 

standard d=100 - MB6 d=100 
(t-value) -2.75 -2.44 -4.77 -8.30 -7.93 

Significant results (p<0.01) are highlighted in bold. 

4.3.5. Time series power spectra 
Time series power spectra (from scaled time series) were also generated in order to evaluate the 

impact of the cleaning procedures at different frequencies. The mean spectra were obtained by 

averaging the spectra across subjects and calculating the median across components. With this 

qualitative analysis we compared: no cleaning, soft clean-up and aggressive clean-up for first-level 

(FIX) cleaning; no cleaning, Nets clean-up and global signal removal, for second-level (“Nets” time 

series) cleaning. As global signal removal is frequently used in the literature (Fox et al., 2009), we 

included this option when comparing our different cleaning approaches, calculating the global 
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signal as the mean time series across all components (good and bad) for each subject. Fig. 4.4 

(panel A) shows the power spectra at each cleaning step for the MB6 sequence at high 

dimensionality (results were similar for other protocols, results not shown). As expected, uncleaned 

data have the highest power both at low frequency (LF, mainly signal) and at high frequency (HF, 

mainly noise, as the content of thermal noise and structured artefacts should strongly dominate over 

neural-related signal). After soft clean-up the power is more reduced at HF than at LF, while 

aggressive clean-up causes the largest power reduction both at LF and HF. Regarding the effect of 

second-level cleaning, there is negligible additional reduction after the removal of the global signal 

(slightly lower power both at LF and HF), while Nets clean-up caused a large additional reduction.  

In order to obtain a different measure of contrast-to-noise ratio (CNR), we scaled each power 

spectrum (Fig. 4.4 panel B) according to the amount of thermal noise. We assumed as index of  

thermal noise level the mean value of the power spectra at the highest frequencies (last 10 bins of 

the spectrum), where the spectral curve has (or nearly has) asymptoted, and where the content of 

thermal noise is higher than the content in signal (Cordes et al., 2002; Triantafyllou et al., 2005). 

Clearly, after this normalisation, the highest CNR was obtained with soft cleaning (green line). This 

cleaning approach is also the one most affected by Nets clean-up, probably because Nets clean-up is 

not effective if the first-level cleaning has not been performed (red dotted line); conversely, data 

cleaned with aggressive clean-up are less affected, since most of the noise has already been 

removed (blue line). 

 
Fig. 4.4. Temporal power spectra (panel A) for different cleaning approaches, obtained from scaled time series (i.e., 

each normalised by the amplitude of the corresponding uncleaned time series), averaging the spectra across subjects and 
then calculating median spectra across components. Uncleaned data have the highest power both at low and high 

frequency; however, after normalising for power at the highest frequencies (last 10 bins of the spectrum, where the 
content of thermal noise is higher than the content in signal) (panel B), it is clear that with soft clean-up we obtained the 

highest contrast-to-noise ratio. Results are shown for MB6 data, at d=100 (y axis in logarithmic scale). 
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In Fig. 4.5 we present similar comparisons, but addressing the comparison of the power spectra 

across the different protocols and processed with the different cleaning options. The clear artefact 

peak that was seen in non-cleaned MB6 data at ~0.25 Hz is not apparent in Standard data power 

spectra because of temporal aliasing of physiological artefacts; the lower temporal resolution 

(TR=3s) does not allow the capturing of such fluctuations cleanly, so the effect of physiological 

artefacts is mixed in with the true underlying fluctuations at other frequencies. At d=30, the LF 

peak (dominated by RSN signal) is always higher for MB6 than Standard, and the difference is 

increased at both first and second level cleaning. The large differences between MB6 d=30 and 

d=100 after Nets clean-up arise because of the different number of bad components removed from 

each dataset (1 bad component for MB6 d=30 and 35 bad components for MB6 d=100). From these 

figures we can also observe that Nets clean-up is not as effective as FIX: in fact, comparing the 

spectra obtained with the two methods (Fig. 5 B vs 5 D), we can see that the HF peak is always 

lower using FIX. Regarding the effect on LF, for MB6 d=100 data the LF peak is higher with FIX, 

suggesting that FIX retains more RSNs-related signal than Nets cleaning. On the contrary, for MB6 

d=30 the LF peak is higher with Nets cleaning. However, it must be taken into account that, as only 

one component is removed with Nets clean-up, the spectra is almost identical to the one from 

uncleaned data (Fig. 5 A), indicating that FIX still offers the best balance between noise removal 

and signal loss. No significant differences at LF peak were observable on Standard d=30. 
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Fig. 4.5. Temporal power spectra of the different protocols for each cleaning option. The spectra were obtained by 

averaging the single subjects’ spectra (from time series scaled using the amplitude of uncleaned data) and calculating 
median spectra across components, without normalisation for high frequency power. Y axis in logarithmic scale. 

 
 

4.3.6. Network analyses 

Network analysis was performed by estimating correlations between all pairs of time series 

(good components only). Full correlation, partial correlation, and L1-norm regularised partial 

correlation (“ICOV” - obtained by regularising the inverse of the covariance matrix) were used for 

the computation of network matrices. Full correlation directly evaluates the similarity between two 

time series and reflects both direct and indirect functional connections; conversely partial 

correlation evaluates the similarity between two time series after regressing out all other time series, 

thus emphasizing direct functional connections, cancelling the indirect ones (Marrelec et al., 2006; 

Smith et al., 2011; Smith, 2012). The L1-norm regularised partial correlation (regularised ICOV) 

shrinks entries that are close to zero more than those that are not (Friedman et al., 2008). In our 

analyses we used a regularisation-controlling parameter lambda=0.1. In this way we were able to 

estimate regularised partial correlation network matrices also for Standard data at high 

dimensionality d=100, for which the degrees of freedom were not sufficient to estimate 

unregularised partial correlation. Correlation matrices were transformed into z-scores using the 

Fisher transform (including an empirical correction for temporal autocorrelation using FSLNets 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) to improve normality. 

0 0.1 0.2 0.3 0.4
10

−2

10
−1

10
0

Frequency (Hz)

Ti
m

es
er

ie
s’

 p
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (l

og
)

5.A) Uncleaned

 

 
Standard d=30
MB6 d=30
MB6 d=100

0 0.1 0.2 0.3 0.4
10

−2

10
−1

10
0

Frequency (Hz)

5.B) Soft cleanup − no nets cleanup

 

 
Standard d=30
MB6 d=30
MB6 d=100

0 0.1 0.2 0.3 0.4
10

−2

10
−1

10
0

Frequency (Hz)

5.C) Aggressive cleanup − no nets cleanup

 

 
Standard d=30
MB6 d=30
MB6 d=100

0 0.1 0.2 0.3 0.4
10

−2

10
−1

10
0

Frequency (Hz)

Ti
m

es
er

ie
s’

 p
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (l

og
)

5.D) Only nets cleanup

 

 
Standard d=30
MB6 d=30
MB6 d=100

0 0.1 0.2 0.3 0.4
10

−2

10
−1

10
0

Frequency (Hz)

5.E) Soft cleanup + nets cleanup

 

 
Standard d=30
MB6 d=30
MB6 d=100

0 0.1 0.2 0.3 0.4
10

−2

10
−1

10
0

Frequency (Hz)

5.F) Aggressive cleanup + nets cleanup

 

 
Standard d=30
MB6 d=30
MB6 d=100

A) B) C)

D) E) F)



92 

The effect of the different cleaning approaches was evaluated by comparing how similar the 

network matrices are across subjects. In a homogeneous group of healthy controls, effective 

cleaning should increase the networks consistency (similarity) across subjects (Smith et al., 2005). 

This analysis was performed by calculating the correlation coefficient between the two network 

matrices (unwrapped into long vectors for the purpose of correlating the networks against each 

other) for each pair of subjects, giving a global index of network similarity across subjects; see Fig. 

4.6. These values were then compared across sequences with two-tailed paired t-tests, and the 

results are shown in Table 4.3 and Table 4.4. 

It can be observed that FIX clean-up (either soft or aggressive) significantly improved the 

similarity across subjects in almost all cases. Aggressive cleaning generally led to higher similarity 

than soft, when considering full correlation. As full correlation is more influenced by the presence 

of any shared signal or noise, it benefits from the aggressive noise removal. The improvement is 

lower for partial correlation and regularised ICOV, particularly for the more detailed network 

modelling (d=100) (which is probably the set of results likely to be of highest general interest). In 

this case almost all improvement in similarity is already achieved with soft cleaning. Nets clean-up 

is not needed for partial correlation by definition, while it increases the similarity assessed by full 

correlation at d=100, when not combined with 1st level cleaning. However, it must be taken into 

account that the results shown in this study were obtained removing the contribution of the template 

bad components, that were obtained with aggressively FIX-cleaned training data (as they were used 

as the reference of “true signal” and “true noise”). In this case the good and bad group components 

were clearly identifiable in the templates. However, if FIX clean-up was not performed, the group 

ICA results themselves would have been less clean, and this would have affected the results of Nets 

clean-up, making this approach certainly less effective. 

Comparing the two sequences (d=30), with MB6 data we obtained higher similarity than with 

Standard data, especially with partial correlation and regularised ICOV. However, when moving to 

higher parcellation (d=100) the superiority of MB6 was evident also in full correlation results. The 

degrees of freedom in Standard data were not sufficient to achieve successful clean-up and 

(regularised or unregularised) partial correlation network modelling, even if the regularisation 

allowed the estimation of the network matrix. 
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Fig. 4.6. Networks’ similarity across subjects. The boxplots show the correlation coefficients (full correlation, partial 

correlation, and regularised ICOV) between network matrices (unwrapped into a vector of network matrix edges) for all 
pairs of subjects, with different cleaning steps and for different protocols. ICOV= L1-regularised partial correlation; 

STD=Standard sequence; uncl=uncleaned; soft=FIX soft cleaning; agg=FIX aggressive cleaning; nets=Nets cleaning. 
 

Table 4.3. Network Similarity across subjects. Comparison among cleaning approaches (paired 
t-test). 

 
Standard d=30 MB6 d=30 Standard d=100 MB6 d=100 

Similarity across subjects 
comparison across 

cleanings (paired t-test) 

mean 
delta r t-value mean 

delta r t-value mean 
delta r t-value mean 

delta r t-value 

FULL CORRELATION 

        uncleaned - soft -0.050 -18.00 -0.052 -20.72 -0.038 -15.21 -0.085 -36.91 

uncleaned - aggressive -0.072 -23.54 -0.104 -41.36 -0.075 -28.33 -0.140 -60.87 

uncleaned - nets -0.080 -34.51 -0.012 -19.53 -0.130 -54.90 -0.191 -94.14 

uncleaned - soft+nets -0.050 -15.53 -0.057 -21.96 -0.028 -10.47 -0.174 -76.95 

uncleaned - agg+nets -0.079 -24.52 -0.106 -41.90 -0.041 -15.35 -0.189 -85.80 

soft - aggressive -0.022 -12.89 -0.052 -29.44 -0.037 -25.74 -0.056 -35.45 

soft - nets -0.030 -11.06 0.041 16.13 -0.093 -39.14 -0.106 -49.45 

soft - soft+nets 0.000 -0.07 -0.005 -6.27 0.010 4.61 -0.089 -45.75 

soft - agg+nets -0.029 -13.08 -0.053 -30.44 -0.003 -1.45 -0.104 -53.11 

aggressive - nets -0.008 -2.64 0.092 37.06 -0.056 -25.52 -0.050 -29.06 

aggressive - soft+nets 0.022 9.24 0.047 26.47 0.047 24.45 -0.033 -22.96 

aggressive - agg+nets -0.006 -3.22 -0.002 -4.00 0.034 19.33 -0.049 -37.27 

nets - soft+nets 0.030 11.49 -0.046 -17.82 0.102 54.67 0.017 13.75 

nets - agg+nets 0.001 0.48 -0.094 -37.83 0.090 49.85 0.002 1.54 

soft+nets - agg+nets -0.028 -24.59 -0.049 -29.58 -0.012 -34.78 -0.015 -36.00 

PARTIAL 

CORRELATION 

        uncleaned - soft 0.023 10.23 -0.030 -18.21  -   -  -0.036 -40.47 

uncleaned - aggressive -0.013 -6.09 -0.059 -38.76  -   -  -0.044 -49.72 

uncleaned - nets -0.039 -27.36 -0.003 -11.25 0.020 20.77 -0.037 -67.57 

uncleaned - soft+nets 0.027 11.25 -0.031 -19.25  -   -  -0.014 -14.34 
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6.A) Full correlation matrix
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6.B) Partial correlation matrix
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6.C) Regularised ICOV matrix (lambda=0.1)A) Full correlation matrix B) Partial correlation matrix C) Regularised ICOV matrix (lambda=0.1)
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uncleaned - agg+nets 0.005 2.01 -0.060 -39.33  -   -  -0.017 -17.88 

soft - aggressive -0.036 -52.61 -0.030 -81.27  -   -  -0.008 -60.77 

soft - nets -0.062 -29.76 0.027 16.60  -   -  0.000 -0.31 

soft - soft+nets 0.004 3.21 -0.002 -13.50  -   -  0.023 60.04 

soft - agg+nets -0.019 -15.38 -0.031 -80.85  -   -  0.019 47.34 

aggressive - nets -0.026 -13.15 0.057 37.23  -   -  0.008 9.55 

aggressive - soft+nets 0.040 32.81 0.028 76.41  -   -  0.031 88.12 

aggressive - agg+nets 0.018 16.91 -0.001 -10.14  -   -  0.027 76.82 

nets - soft+nets 0.066 31.23 -0.029 -17.68  -   -  0.023 26.68 

nets - agg+nets 0.044 21.80 -0.058 -37.87  -   -  0.019 22.56 

soft+nets - agg+nets -0.022 -42.02 -0.029 -83.65  -   -  -0.003 -47.17 

REGULARISED ICOV 

        uncleaned - soft 0.021 9.66 -0.030 -19.16 0.091 67.52 -0.041 -47.28 

uncleaned - aggressive -0.013 -6.31 -0.058 -38.61 0.090 65.61 -0.043 -49.15 

uncleaned - nets -0.038 -27.19 -0.003 -11.18 0.023 25.22 -0.030 -56.96 

uncleaned - soft+nets 0.027 11.35 -0.031 -19.95 0.235 139.90 -0.008 -8.86 

uncleaned - agg+nets 0.005 2.24 -0.058 -39.09 0.235 139.14 -0.011 -11.70 

soft - aggressive -0.035 -50.96 -0.027 -75.78 -0.001 -2.29 -0.002 -10.04 

soft - nets -0.060 -29.18 0.028 17.58 -0.067 -52.17 0.011 13.25 

soft - soft+nets 0.005 4.63 -0.001 -10.27 0.144 120.39 0.033 87.71 

soft - agg+nets -0.016 -13.74 -0.028 -75.49 0.145 119.79 0.030 74.46 

aggressive - nets -0.025 -12.81 0.055 37.10 -0.067 -50.31 0.012 15.42 

aggressive - soft+nets 0.040 33.41 0.026 72.28 0.144 125.29 0.034 103.02 

aggressive - agg+nets 0.018 17.81 -0.001 -8.97 0.145 124.89 0.032 93.42 

nets - soft+nets 0.065 31.33 -0.029 -18.39 0.211 130.57 0.022 26.17 

nets - agg+nets 0.043 21.94 -0.056 -37.65 0.212 129.67 0.019 22.83 

soft+nets - agg+nets -0.022 -41.77 -0.027 -79.04 0.001 11.08 -0.003 -36.57 

Significant results (p<0.01) are highlighted in bold. 

 

Table 4.4. Network Similarity across subjects. Comparison between sequences (paired t-test). 
Similarity across subjects 

between-sequence comparison 
(paired t-test) 

uncleaned soft aggressive nets soft+nets aggressive+
nets 

FULL CORRELATION 
      standard d=30 - MB6 d=30 (mean 

delta r) 0.000 -0.002 -0.032 0.068 -0.007 -0.027 

t-value -0.04 -0.71 -11.17 22.27 -2.19 -10.36 
standard d=100 - MB6 d=100 

(mean delta r) 0.014 -0.033 -0.052 -0.047 -0.132 -0.135 

t-value 4.87 -12.30 -23.35 -28.39 -64.51 -70.14 

PARTIAL CORRELATION 
      standard d=30 - MB6 d=30 (mean 

delta r) -0.012 -0.065 -0.059 0.024 -0.071 -0.077 

t-value -6.20 -31.41 -29.92 13.08 -33.86 -38.91 
standard d=100 - MB6 d=100 

(mean delta r) -0.030 - - -0.086 - - 

t-value -24.25 - - -71.48 - - 
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REGULARISED ICOV       
standard d=30 - MB6 d=30 (mean 

delta r) -0.016 -0.068 -0.060 0.020 -0.074 -0.079 

t-value -8.06 -33.21 -30.98 11.05 -36.24 -40.42 
standard d=100 - MB6 d=100 

(mean delta r) -0.033 -0.165 -0.166 -0.087 -0.276 -0.280 

t-value -27.55 -138.87 -132.80 -72.97 -196.12 -196.38 
Significant results (p<0.01) are highlighted in bold. 
 

Finally, as the cleaning procedure should enhance not only the consistency across subjects but 

also the discriminability regarding classifications of interest, we tested if it was possible to predict 

the subjects' age from the network matrices using multiple regression. We used the correlation 

values between pairs of nodes for each subjects as design matrix columns (features), pre-selecting 

the strongest features (the 25% of the total number of correlations with higher correlation values), 

and performed leave-one-out and permutation testing using FSLNets. As shown in Table 4.5, the 

predicted age was significantly correlated (pcorr<0.05) with the real age only with MB6 and soft 

clean-up on high dimensional (d=100) partial correlation and regularised ICOV matrices. 
 
Table 4.5. Prediction of subjects' age with multiple regression. 

Protocol correlation 
matrix 

p value 

uncleaned FIXsoft FIXagg Nets FIXsoft+ 
Nets 

FIXagg+ 
Nets 

MB6 d=100 
full 0.180 0.953 0.974 0.114 0.833 0.835 

partial 0.739 0.048 0.076 0.111 0.342 0.272 
ICOV 0.1 0.767 0.046 0.052 0.128 0.362 0.258 

Standard 
d=100 

full 0.091 0.163 0.295 0.108 0.398 0.616 
partial 0.928  -   -  0.115  -   -  

ICOV 0.1 0.936 0.259 0.075 0.097 0.273 0.300 

MB6 d=30 
full 0.252 0.301 0.709 0.144 0.484 0.774 

partial 0.543 0.215 0.368 0.415 0.305 0.423 
ICOV 0.1 0.520 0.286 0.419 0.408 0.322 0.483 

Standard 
d=30 

full 0.660 0.342 0.515 0.298 0.340 0.408 
partial 0.350 0.248 0.673 0.399 0.637 0.536 

ICOV 0.1 0.357 0.328 0.708 0.412 0.660 0.521 
Significant results (pcorr<0.05) are highlighted in bold. 
 

To summarise the main results from these tests: networks are more reproducible across subjects 

when using the MB acquisition. In this case, when carrying out more detailed network modelling 

(higher dimensionality) with partial correlation, both soft and aggressive clean-up gave good (and 

similar) results, while Nets clean-up was not useful. We emphasize here the importance of higher 

dimensional network modelling using partial correlation because we consider this to be the most 

interesting and useful general approach for network modelling (compared with the other analyses 

tested above). 
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4.3.7. Spatial maps analysis 

The output of the second stage of dual regression (subject-level RSN spatial maps for the 53 test 

dataset subjects) was used for spatial map analyses. For mixed effect (ME) cross-subject analysis, 

group maps were obtained by performing a one-sample t-test on all subjects’ spatial maps, for each 

component, calculating the corresponding z-statistic map and applying a mixture model correction 

to ensure comparable null distributions in different tests (Beckmann et al., 2004). For fixed effects 

(FE) analysis the single subject, z maps were mixture model corrected, averaged, and multiplied by 

the square root of Nsubjects to obtain valid z-statistics. 

In Fig. 4.7 we show sample group maps derived from the Standard data, 30-dimensional group 

ICA, MB6 d=30, and MB6 d=100 using the corresponding training-dataset templates for dual 

regression (dual regression stage 2 could not be run at high dimensionality for the cleaned Standard 

data, because it did not have enough time points). The displayed components (sensory-motor and 

lateral visual networks, left and right panel respectively) are shown without, with soft, and with 

aggressive clean-up. The effects of the clean-up are quite strong in these components and the 

cortical signal is more focal in the cleaned data. At low dimensionality, these RSNs show similar 

spatial patterns in Standard and MB6 data, but the signal is stronger with MB6 (especially in the 

right sensory-motor network). With high dimensionality group ICA decomposition, these RSNs are 

split into multiple components, allowing a more detailed analysis of network connectivity. 
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Fig. 4.7. Group-level z-statistic maps of two RSNs (sensory-motor network, left panel, and visual network, right panel), 

derived from Standard (d=30) and MB6 (d=30 and d=100) datasets using the corresponding training data templates, 
without and with soft or aggressive FIX clean-up. Individual subjects’ z-statistic maps were mixture model corrected 
and combined using fixed-effects averaging. Group maps are thresholded at abs(z)>3 (red-yellow colour coding for 

positive z values, blue-light blue for negative ones). The effect of the cleaning is quite strong in terms of noise removal 
and more focal signal (as highlighted with the ring around the right sensory-motor network). With high dimensionality 

the RSNs are split into multiple components, allowing a more detailed analysis of network connectivity. 
 

 

Under the hypothesis that similarity between a group map and the corresponding template map 

reflects the ability of the clean-up (or acquisition method) to improve correct identification of the 

true signal, we calculated the spatial correlation between the group maps (ME and FE) and the 

templates, as a quantitative measure to describe the ability of the cleaning approach and/or the 

acquisition to correctly detect RSNs. We then compared the correlation values across cleanings with 

two-tailed paired t-tests and across sequences with two-tailed unpaired t-tests. 

The results reported in Figure 4.8 and Tables 4.5 and 4.6 show that cleaning significantly 

increases the similarity between the group maps and the template. Soft and aggressive clean-up are 

quite similar to each other with a difference in mean correlation as low as 0.01, though statistically 

significant. When comparing the two acquisition methods on uncleaned data, the correlation values 

obtained with Standard data are higher than MB6. This is mainly due to the lower spatial resolution 

(and higher SNR) of the standard sequence; Feinberg et al (2010) already demonstrated that EPI 

acceleration, while keeping spatial resolution fixed, increases the z-statistics of the RSN spatial 

maps. After cleaning, the difference between MB6 and standard sequence ME maps at d=30 is no 
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longer statistically significant, demonstrating the additional benefit of the combination of 

acceleration and cleaning, besides the feasibility of high dimensionality ICA analyses. 

 

 
 

Fig. 4.8. Spatial correlations. The boxplots show the distributions across components of the correlation coefficients 
between the group maps (obtained with ME and FE statistics) and the corresponding templates, for different cleaning 
approaches and for different acquisition protocols. STD=Standard sequence; uncl=uncleaned; soft=FIX soft cleaning; 

agg=FIX aggressive cleaning. 
 

 

Table 4.5. Spatial correlation between template and group maps. Comparison among cleaning 
approaches (paired t-test). 

 
Standard d=30 MB6 d=30 MB6 d=100 

Spatial correlation between template 
and group maps. Comparison across 

cleanings. 

mean 
delta r 

t-
value 

mean 
delta r 

t-
value 

mean 
delta r 

t-
value 

MIXED EFFECTS GROUP MAP       
Uncleaned-soft -0.042 -5.98 -0.130 -13.72 -0.027 -8.47 

Uncleaned - aggressive -0.051 -7.09 -0.139 -14.48 -0.030 -9.86 
Soft - Aggressive -0.009 -10.39 -0.009 -10.36 -0.004 -9.06 

FIXED EFFECTS GROUP MAP       
Uncleaned-soft -0.022 -3.30 -0.149 -13.24 -0.028 -7.83 

Uncleaned - aggressive -0.028 -4.19 -0.156 -13.72 -0.029 -8.22 
Soft - Aggressive -0.006 -20.62 -0.007 -28.49 -0.001 -35.68 

Significant results (p<0.01) are highlighted in bold. 
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8.A) Spatial correlation Template−ME group map
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8.B) Spatial correlation Template−FE group mapA) Spatial correlation Template-ME group map B) Spatial correlation Template-FE group map
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Table 4.6. Spatial correlation between template and group maps. Comparison between 
sequences (unpaired t-test). 
Spatial correlation between template and group maps. 

Comparison between sequences. uncleaned soft aggressive 

MIXED EFFECTS GROUP MAP    
mean(r standard d=30) - mean(r MB6 d=30) 0.1106 0.0224 0.023 

t-value 4.88 1.46 1.59 
mean(r standard d=100) - mean(r MB6 d=100) 0.039   

t-value 3.72 _ _ 
FIXED EFFECTS GROUP MAP    

mean(r standard d=30) - mean(r MB6 d=30) 0.143 0.015 0.014 
t-value 4.70 0.74 0.70 

mean(r standard d=100) - mean(r MB6 d=100) 0.053   
t-value 3.30 _ _ 

Significant results (p<0.01) are highlighted in bold. 

4.4. Discussion 
FMRIB's ICA-based Xnoisefier (FIX) is a fully automatic solution (once trained) for cleaning 

fMRI data of various types of noise. The cleaning procedure with FIX consists of four major 

operations: spatial ICA, classifier training, component classification (noise detection), and 

denoising. The first three steps are extensively described in Salimi-Khorshidi et al., (2014) and 

summarised in chapter 3, demonstrating FIX’s ability to classify the independent components into 

signal or noise with high accuracy. Here we investigated the final stage of the cleaning procedure 

by carrying out detailed spatial and temporal analysis in order to successfully remove the noise 

components while preserving as much signal as possible. 

In this study we evaluated the efficacy of FIX’s automatic denoising step, testing two different 

first-level (single subject) cleaning approaches (aggressive and soft) for removing the artefactual 

components from the fMRI time series data, previously identified in the classification step. We 

compared their effect on both temporal and spatial RS-fMRI analyses: RSNs time series (amplitude 

and power spectra), network matrices (full correlation, partial correlation and L1-norm regularised 

partial correlation) and spatial maps. In this way we were able to investigate the trade-off between 

artefact removal and the partial loss of significant signal. All these evaluations were performed on 

two datasets from the same set of 76 subjects: a Standard EPI acquisition and a MB EPI acquisition 

(MB6) (Moeller et al. 2010, Feinberg et al., 2010) developed partly for the Human Connectome 

Project. 

Our results showed the efficacy of artefact removal, which proved to be important for reliable 

temporal and spatial RS-fMRI analyses. If an artefact is not cleaned at the single subject level and 

its spatial pattern is partially overlapped to one of the RSNs, it will in general influence the single-



100 

subject RSNs time series, i.e. the output of the first stage of dual regression. Consequently, the non-

cleaned time series will have higher amplitude with respect to the cleaned data, often with high 

frequency confounds visible in the power spectra. The presence of shared noise, in general, will also 

produce less consistent network matrices across subjects. During the second step of dual regression, 

the noise contained in the time series corrupts the RSN maps. This leads to noisy subject-level z-

maps, and affects any following group-level analyses, reducing the ability to detect specific 

activation patterns within the RSNs (resulting here in lower spatial correlation with the training data 

templates). Most likely, this problem does not only affect the group-ICA analyses followed by dual-

regression addressed in this work, but would also affect other methods as “back-projection” ICA 

and seed-based resting-state correlation maps, for similar reasons. 

Concerning the comparison of the two cleaning approaches (soft vs aggressive), we obtained 

similar results for spatial correlation measures within spatial maps. Also the network analysis 

results were generally comparable, especially at high dimensionality. However, by way of mean 

amplitudes and power spectra analyses we observed that the reduction in the mean standard 

deviation (time series amplitude) after soft cleaning was caused by a more selective removal of the 

noise related high frequency power, which increases the contrast-to-noise ratio. With aggressive 

cleaning, the significant reduction in mean amplitude, strongly affects the low frequency peak, 

causing a significant signal loss. For this reason we would in general suggest the use of the soft 

cleaning approach, which consists of: 1) removing the full space of the 24 motion parameters 

(Satterthwaite et al., 2013) from the data and the ICA time series; 2) estimating the contribution 

(spatial regression coefficients) of both good and bad components, in order to identify the unique 

variance of the artefacts; 3) subtracting the contribution of the bad components from the data (i.e., 

the sum of the outer product of each noise time series by its spatial regression coefficient). In this 

way a good balance between noise removal and signal loss was achieved. The overall level of 

artefact removal is significant, as shown in Figs 4.3-4.5. 

We also tested the effect of Nets clean-up, a cleaning option for time series and network 

analyses, applied within-subject to the output of dual-regression stage 1, which yields a time series 

for each group-ICA component. Instead of simply discarding noise components, Nets performs a 

regression of each signal time series against all noise time series and uses the residual as cleaned 

signal. However, despite the improvement observed on amplitude and network similarity results, 

this approach proved to be quite aggressive and to significantly decrease the signal, as the amplitude 

reduction after Nets clean-up was localized both at low and high frequencies, not selectively at high 

frequency as FIX-based clean-up does, as demonstrated with the power spectra analysis. Moreover, 

if FIX clean-up was not performed prior to group ICA, the latter would have been less powerful, 
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making the Nets clean-up to be performed next even less effective than seen in this study. For these 

reasons the use of Nets clean-up is probably not advisable, especially when a large number of noise 

components are identified in the group-ICA. 

A detailed analysis of the effects of global signal regression was beyond the scope of this work, 

as resting-state research is increasingly focusing on network matrices estimated with methods 

related to partial correlation, and spatial maps derived from multiple temporal regression. Indeed, 

standard partial correlation analyses cannot be carried out after global signal regression, as the 

correlation matrix is no longer full rank and it is not possible to invert it. Similarly, the generation 

of RSN spatial maps via dual regression (i.e., against RSN time series) is a multiple regression, so 

global signal regression is largely irrelevant. However, we believe it was an interesting result that 

global signal removal has almost no effect on power spectra because it equally affects both LF and 

HF, resulting in a non-specific amplitude loss, and on its own provides a poor level of clean-up. 

The results discussed so far (the relative merits of different clean-up options) were similar for 

both the Standard and MB6 data, demonstrating the efficacy of the cleaning procedure on two quite 

different EPI acquisitions. The only cleaning-approach-specific adjustment to the two datasets was 

the training dataset used for the FIX classification, which was tailored to each pulse sequence type. 

The use of a good (i.e., sequence-specific) training dataset is important because it allows FIX to 

optimize the classification training for the kind of data from a specific study. 

Once successfully cleaned, the second aim of this work was to directly compare the data from 

the Standard and MB6 sequences using the same sets of analysis. As MB-EPI has proven to be 

powerful for obtaining sub-second (or close) whole brain images, reducing the acquisition time 

and/or increasing spatial resolution (Moeller et al., 2010; Feinberg et al., 2010), we wanted to 

further investigate the potential of this sequence for identifying the activation patterns of RSNs and 

detecting their functional connectivity. 

The results suggest MB-EPI as advantageous for RS-fMRI analysis for several reasons. First, 

the increased temporal and spatial resolution yielded a better FIX classification accuracy (98% for 

MB6 versus 95% for Standard, with leave-one-out testing). We obtained, on average, 8.6 good 

single-subject independent components for the Standard sequence and 15.2 for MB6. Thus, per 

subject, on average, 0.43 good components are misclassified as bad in Standard data, compared to 

0.3 only in MB6 (i.e., one subject out of three has a single good component misclassified, and the 

other two subjects have none). Second, a considerably higher proportion of non-artefactual group-

ICA components was identified in the MB6 dataset, thus suggesting more successful ICA-based 

clean-up of MB data (even when driven by hand-labelling of the ICA components). Third, the MB 

data allowed a more detailed time series and network analyses through higher dimensionality 
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decomposition (d=100), which was not achievable with the Standard sequence because of its lower 

temporal degrees of freedom. Fourth, despite comparable mean amplitudes of the time series, the 

spectra after cleaning showed considerably less structured artefacts (i.e., deviation from the 

expected clean 1/f-like spectrum). Fifth, networks were more reproducible across subjects with 

MB6. Finally, the results of spatial map analyses (spatial correlation) were similar between the two 

sequences, notwithstanding much higher static image SNR in the lower-resolution Standard data. 

Arguably, a limitation of this study is the lack of a direct comparison between the two sequences at 

the same resolution, to test the pure effect of acceleration. However, this has already been evaluated 

by Feinberg et al (2010), showing significant statistical advantages of EPI acceleration (with a up to 

60% increase in z statistics), with all acquisitions held at 3x3x3mm. Hence, in our study, given what 

is already known from the Feinberg results, we wanted to make a targeted comparison addressing a 

large number of combinations of various clean-up approaches with the two acquisition types. 

Our results have been already effective for analysis developments in the Human Connectome 

Project: RS-fMRI are acquired with the same spatial resolution as in our MB6 data, and with even 

greater temporal resolution (MB8, 2x2x2mm, 0.72s; Smith et al., 2013); FIX is now in use as part 

of the default HCP analysis pipeline, and FIX-cleaned data is the recommended version of the 

resting-state fMRI data that is publicly available – already over 200 subjects’ worth of hour-long 

datasets having been released to date. 

In this work we used a dataset of healthy (albeit older) controls in order to evaluate the effect of 

cleaning and acquisition protocols on the identification of RSNs; we also demonstrated that the 

combination of the accelerated acquisition and the optimized cleaning (FIX soft) enhance not only 

the consistency across subjects but also the discriminability with respect to a variable of interest 

(subjects' age). An interesting future development could be the study of the impact of the cleaning 

procedure in enhancing the between-group discriminability regarding other classifications of 

interest (controls vs patients, or correlation with behavioural or cognitive indices etc.) (Tian et al., 

2013). We will describe an application to Alzheimer’s disease in Chapter 5. 

4.5. Conclusion 
In conclusion, we have demonstrated that, by combining an accurate ICA component classifier 

with an effective approach for noise removal, we were able to remove artefacts automatically and 

with confidence and that we were not removing significant amounts of non-artefactual signal. 

Moreover, with MB sequences and effective cleaning, we can perform higher dimensionality 

decompositions and more detailed RSN analyses than with a standard EPI acquisition. 
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Chapter 5 - The impact of data-driven 
cleaning procedures for resting state 

fMRI on the detection of DMN 
functional connectivity alterations in 

Alzheimer's disease 
 

In this chapter, the ICA-based cleaning method (FIX), developed and tested in Chapters 3 and 4, 

is applied in a pathological condition (i.e. Alzheimer's disease) and compared to other two 

commonly used data-driven cleaning procedures. The different denoising approaches are compared 

in terms of within-group consistency across subjects and of ability to detect the functional 

connectivity alteration of the default mode network typically observed in patients with Alzheimer's 

disease. 

 

The preliminary results are presented in an abstract (Griffanti et al.,) accepted as PowerPoster at 

ISMRM 2014 and a full paper is in preparation. 

5.1. Introduction 
The cleaning of RS-fMRI data from artefacts is an essential step for a better identification of the 

resting state networks (RSNs) (see Chapter 3.1 and 4). Studies evaluating the efficacy of cleaning 

procedures for fMRI data are usually performed on one group of healthy controls (Marx et al., 

2013; Bright and Murphy 2013; Tohka et al., 2008; Weissenbacher et al., 2009) or on two groups 

of healthy subjects differing for the amount of a specific artefact, typically head motion (Van Dijk 

et al., 2012; Satterthwaite et al., 2013). The performance of the clean-up is generally tested in terms 

of increased within-group consistency of activations and functional connectivity (FC) maps, 

reduction of correlation with noise, and decrease of between-group differences. However, it is more 

difficult to evaluate the success of cleaning when multiple sources of artefacts (not only motion) 

are removed. Moreover, it is important for a cleaning procedure that only the inter-subject 

variability due to the artefacts is removed, preserving valuable individual differences. In fact, the 

ability to capture between subjects variability in FC is very important in clinical applications, in 

order to discriminate different pathologies and monitor their evolution and staging. 
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In Alzheimer’s disease (AD) a decreased FC is mainly observed in the posterior cingulate cortex 

(PCC) within the default mode network (DMN), and this is becoming a possible new biomarker for 

this pathology (see chapter 1.4; Greicius 2004; Li et al., 2011; Gili et al., 2011). In this framework, 

an effective preprocessing of RS-fMRI data is crucial, allowing the correct identification of this FC 

alteration. 

The aim of this study was to compare four data-driven cleaning procedures (i.e. without the need 

of external recordings of physiological signals) on data relative to elderly healthy subjects and AD 

patients in a mild to moderate stage of the disease, and to evaluate the impact of the cleaning step 

on the ability to detect the typical DMN functional connectivity alterations in AD. In particular, the 

first two cleaning approaches are commonly used in the preprocessing of RS-fMRI data: the 

regression of motion parameters (Satterthwaite et al., 2013) and the regression of motion 

parameters, mean white matter (WM) signal and mean cerebrospinal fluid (CSF) signal 

(Satterthwaite et al., 2013; Fox et al., 2005), while the other two are the soft and aggressive options 

of the previously described FMRIB’s ICA-based Xnoiseifier (FIX) (see Chapter 3 and 4), based on 

single-subject ICA decomposition followed by automatic classification and removal of the motion 

parameters and the full (in aggressive option) or unique (in soft option) variance of the noise 

components. 

The denoising procedures were firstly compared, separately for the HC and AD groups, in terms 

of temporal SNR and BOLD signal fluctuation reductions with respect to the uncleaned data. With 

the datasets obtained with the different cleaning options, we then performed a FC analysis of the 

DMN with two methods: seed-based correlation and template-based dual regression (Khalili-

Mahani et al., 2012; 2013). Finally, we compared the FC results in terms of within-group 

consistency across subjects and pattern of between-group differences, hypothesizing that a more 

effective cleaning approach would lead to more consistent FC results and would allow a better 

identification of the well-known pattern of DMN FC alterations in AD patients. 

5.2. Materials and methods 

5.2.1. Subjects and MRI data acquisition 

Data from 41 subjects (20 healthy controls, HC and 21 AD patients) were acquired at Don 

Gnocchi Foundation, IRCCS Santa Maria Nascente, in Milan, and their characteristics are reported 

in Table 5.1. AD patients were recruited from the Memory Clinic of Don Gnocchi Foundation, 

with a diagnosis of probable AD dementia according to the revised NINCDS-ADRDA criteria (Mc 

Khann et al., 2011) in a mild to moderate stage (Clinical Dementia Rateing Scale, CDR≤2). The 

twenty age-matched HC (Mini-Mental State Examination, MMSE ≥ 26) had no history of 



105 

neurological, cardiovascular or metabolic disorders and voluntarily participated in the study. All 

subjects and/or their caregivers provided written informed consent to participate in the study 

according to the recommendations of the declaration of Helsinki for investigations on human 

subjects. 

 

Table 5.1. Subjects' characteristics  

 
Healthy Controls 

(HC) AD patients Group comparison 
(p-value)# 

N 20 21  Age (years) 71.05 ± 3.66 73.62±5.22 p=0.08 
Gender (F:M) 13:7 13:8 p=0.21 
MMSE 29.55±0.69 21.62±2.71 p<0.01 
motion during fMRI acquisistion (*) 0.07±0.04 0.09±0.06 p=0.27 

MMSE=Mini Mental State Examination;  (*) mean relative displacement in mm as calculated during the preprocessing 
with MELODIC FSL tool. # calculated with two-sample independent t-test or Fisher's exact test, as appropriate. 

 

MRI acquisitions were performed using a 1.5T Siemens Magnetom Avanto (Erlangen, 

Germany) scanner with 8-channel head coil. Resting state fMRI (RS-fMRI), BOLD EPI images 

(TR/TE = 2500/30 ms; resolution = 3.1 x 3.1 x 2.5 mm3; matrix size = 64 x 64; number of axial 

slices = 39; number of volumes = 160; acquisition time 6 min and 40 s) were collected at rest. 

Subjects were instructed to keep their eyes closed, not to think about anything in particular, and not 

to fall asleep. T1-weighted 3D scans were also acquired (TR/TE = 1900/3.37 ms; resolution = 1 x 1 

x 1 mm3; matrix size= 192 x 256; number of axial slices = 176) and used as anatomical references 

for fMRI analysis and for voxel-based morphometry (VBM) analysis. 

5.2.2. Voxel-based morphometry (VBM) analysis 

In order to verify the typical pattern of atrophy in AD patients, we evaluated grey matter (GM) 

volume differences between HC and AD. Structural data were analysed with FSL-VBM (Douaud 

et al., 2007), an optimised VBM protocol (Good et al., 2001) carried out with FSL. First, structural 

images were brain-extracted and grey matter-segmented before being registered to the MNI 152 

standard space using non-linear registration (Andersson et al., 2007a). The resulting images were 

averaged and flipped along the x-axis to create a left-right symmetric, study-specific grey matter 

template. Second, all native grey matter images were non-linearly registered to this study-specific 

template and "modulated" to correct for local expansion (or contraction) due to the non-linear 

component of the spatial transformation. The modulated grey matter images were then smoothed 
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with an isotropic Gaussian kernel with a sigma of 3 mm. Finally, voxel-wise GLM was applied 

using permutation-based non-parametric testing, correcting for multiple comparisons across space. 

5.2.3. RS-fMRI data preprocessing and cleaning approaches 

The individual common preprocessing steps for the analysis of RS-fMRI data were carried out 

using FSL (Smith et al., 2004; Jenkinson et al., 2012). Firstly, images were motion corrected with 

MCFLIRT (Jenkinson et al., 2002); from this operation the six rigid-body parameter time series 

were extracted for each subject (to be used for subsequent cleaning) and the mean relative 

displacement was calculated to ensure that the two groups were matched in terms of average 

amount of head motion (see Table 5.1). Non-brain tissues were removed with brain extraction tool 

(BET) (Smith, 2002), data were spatially smoothed with a 5 mm full width at half maximum 

(FWHM) Gaussian kernel, and high-pass temporal filtering was applied with a cut-off frequency of 

0.01 Hz to remove slow drifts. 

Five datasets were obtained with the following data-driven cleaning approaches: 

1) Uncleaned data: only common preprocessing; 

2) MOTreg (Satterthwaite et al., 2013): a regression of 24 motion parameters. (the six rigid-

body parameter time series, their backward-looking temporal derivatives, and the squares of all 

twelve resulting regressors); 

3) MWCreg (Satterthwaite et al., 2013; Fox et al., 2005): regression of 24 motion parameters, 

WM mean signal and CSF mean signal. (The WM and CSF mean signal was extracted as the mean 

time series from each 4D pre-processed dataset within a ventricular region of interest and a region 

centered in the white matter identified in the MNI space and registered to each subject's individual 

space); 

4) FIXsoft (see section 4.2.4): single-subject spatial ICA with MELODIC (Beckmann and 

Smith, 2004) with automatic dimensionality estimation followed by ICA-based automatic 

denoising using FMRIB’s ICA-based Xnoiseifier (FIX) removing the full variance of the 24 

motion parameters, but only the unique variance of the noisy components (soft clean-up); 

5) FIXagg (see section 4.2.4): single-subject spatial ICA with MELODIC (Beckmann and 

Smith, 2004) with automatic dimensionality estimation followed by ICA-based automatic 

denoising using FIX removing the full variance of both the 24 motion parameters and of the noisy 

components (aggressive clean-up). 

The training dataset used to clean the data was the same for both groups and it was built with 

data from healthy controls (dataset 3 described in chapter 3). Due to the modest number of 

subjects, we were able to manually check the classification results on AD patients and we found a 

good accuracy. 
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5.2.4. Measures of BOLD signal variation 

To test how the different cleaning approaches affect the BOLD signal variation in the two 

groups, we calculated the following measures: 1) a global measure of signal to noise ratio (raw 

temporal-SNR) and 2) a voxel-wise measure (%ΔSTD map) to examine the regional impact of each 

correction method on the BOLD signal (Khalili-Mahani et al., 2013). 

1) For each dataset, a raw temporal-SNR image was formed dividing the mean image across 

time by the standard deviation image over time (STDimg). The temporal-SNR image was then 

eroded to exclude brain-edge effects, and the median SNR value was calculated and compared 

between the two groups at each cleaning step and within groups among different clean-ups. 

2) The %ΔSTD map was defined by Khalili-Mahani et al., (2013) as the percentage of the 

voxel-wise temporal fluctuation amplitude (STDimg) of the uncleaned data that is suppressed by 

the cleaning. This map was calculated for each subject as the difference between the STDimg of 

the cleaned datasets and the STDimg of the uncleaned data, with respect to the STDimg of the 

uncleaned data (Eq. 5.1): 

%∆𝑆𝑇𝐷!"# =
!"#(!"#!"#$!!"#!"#$%)

!"#(!"#!"!")
∙ 100 %      (5.1) 

The %ΔSTD map of all subjects were then registered to the individual's structural scan using 

Brain-Boundary Registration (BBR - Greve and Fischl, 2009) and to the 2 mm MNI152 standard 

space using non linear registration (FNIRT - Andersson et al., 2007a,b), and used to build, for each 

group, a probability map of areas where %ΔSTD>25% across subjects. 

5.2.5. Functional connectivity analyses  

After the cleaning procedures each single subject 4D pre-processed dataset was coregistered to 

the individual's structural scan using BBR and to standard space using FNIRT, and resampled to 2 

× 2 × 2 mm3 resolution in the MNI152 space. We then computed DMN functional connectivity 

analyses with two methods. 

Seed-based correlation: a region of interest (ROI) in the PCC was selected in the MNI152 

template (6-mm radius sphere, centred in x=0; y=-26; z=52) according to previous studies (Van 

Dijk et al., 2010; Andrews-Hanna et al., 2007), and the corresponding mean time series was 

extracted from each 4D pre-processed dataset. Seed-based voxel-wise FC maps were then obtained 

by computing the linear correlation between the PCC-time series and the time series of all acquired 

voxels (REST toolbox; Song et al., 2011). Correlation maps were then converted to z-maps using 

Fisher's r-to-z transformation before entering the statistical analysis.  
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Template-based dual regression (Khalili-Mahani et al., 2012,2013): in order to be able to 

compare the five datasets, functional connectivity was defined in terms of fitting the BOLD 

fluctuations at each voxel with respect to the dominant fluctuation within ten major RSNs (Smith et 

al., 2009), which are frequently detected in resting-state functional connectivity analyses. 

Therefore, the ten-RSNs template was used in the first stage of dual regression (Filippini et al., 

2009) as set of spatial regressors to generate individual temporal dynamics and spatial maps of the 

RSNs of the five datasets. The component corresponding to the DMN of each subject entered the 

statistical analysis. 

5.2.6. Statistical analysis 

In absence of a ground-truth of the neural signal, the cleaning of the data should both enhance 

reproducibility (stability of the functional connectivity measures across subjects) and also 

discriminability regarding classifications of interest (in this case healthy subjects versus AD 

patients). For this reason we tested, for each cleaning procedure, both within-group consistency 

across subjects of the FC measures and between group differences. 

The within-group consistency of the DMN connectivity for each voxel was measured as the 

standard deviation of the z-maps (obtained with seed-based correlation or template-based ICA) 

across subjects, separately for HC and AD groups. The standard deviation maps (unwrapped into 

long vectors for the purpose of comparing them against each other) were then compared voxel-by-

voxel within the brain with a paired t-test, both across cleanings and between groups. 

The comparison between the two groups for the different cleaning approaches was performed on 

the z-maps obtained with the two methods through voxel-wise statistics using non-parametric 

permutation test ("randomise"). Normalised grey matter volume was included as a covariate to 

control for the effect of atrophy. Results were considered significant at p<0.05. Full multiple 

comparison correction was applied after initial cluster-forming threshold of puncorr<0.05, within a 

mean mask created by averaging the grey matter segmentations obtained from each subject's T1-

weighted images with FSL-FAST (Zhang et al., 2001) 

5.3. Results 

5.3.1. VBM results 

Figure 5.1 shows the results of the VBM analysis on structural MRI data. Patients with AD were 

significantly more atrophic than controls in the medial temporal lobe structures (bilateral 

hippocampus and parahippocampus), and in several other brain regions including medial, anterior 

and postero-inferior regions of temporal lobes bilaterally, precuneus/posterior cingulate, thalamus, 



109 

basal ganglia (putamen and caudate nuclei), and frontal lobes. These results are consistent with the 

well-known pattern of grey matter atrophy typical of AD, as described in several previous 

publications (Busatto et al., 2008; Zamboni et al., 2013). 

 
Fig. 5.1. VBM results from group comparison. Results are shown using a significance threshold of p<0.005 fully-

corrected for multiple comparisons using threshold free cluster enhancement. Images are shown in radiological 
convention. 

5.3.2. Effect of cleaning on BOLD signal variation 

The temporal SNR values for the two groups with different cleaning options are reported in 

Figure 5.2 and the results of the comparisons across cleanings are shown in Table 5.2. Within-

group analyses revealed that SNR was significantly higher after cleaning (uncleaned < motion reg 

< MWCreg < FIX soft < FIX aggressive; p<0.01 at paired t-test). The temporal SNR was not 

statistically different between the two groups, except for aggressive FIX clean-up (AD>HC, 

p=0.044; independent two sample t-test). 

 
Fig. 5.2. Temporal SNR estimation for various cleaning procedures in the two groups. 
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Table 5.2. Temporal SNR. Comparisons among different cleaning approaches (paired t-test) 

 HC (t-values) AD (t-values) 
Uncleaned-MOTreg -9.80 -10.55 
Uncleaned-MWCreg -9.51 -10.30 
Uncleaned-FIXsoft -12.86 -10.27 
Uncleaned-FIXagg -10.00 -9.66 
MOTreg-MWCreg -7.21 -5.48 
MOTreg-FIXsoft -11.38 -7.86 
MOTreg-FIXagg -9.26 -8.30 
MWCreg-FIXsoft -10.14 -7.94 
MWCreg-FIXagg -9.38 -8.45 
FIXsoft-FIXagg -3.62 -3.31 

All comparisons were statistically significant (p<0.01). 

 

Figure 5.3 shows the probability maps of the spatial distribution of BOLD fluctuation reduction 

(%ΔSTD>25%) across subjects in the two groups. After regressing out the contribution of motion 

parameters, the highest reduction of BOLD fluctuation was localised at brain boundaries, while the 

inclusion of WM and CSF regressors led to a small further decrease also in correspondence of the 

ventricles and the WM, especially in the AD group. After FIX clean-up (both soft and aggressive), 

the highest reduction of BOLD fluctuation with respect to uncleaned data was more pronounced at 

brain boundaries and within ventricles, but also involved the lateral sulcus and areas in 

correspondence of blood vessels, mainly the sagittal sinus and straight sinus veins, the posterior 

cerebral artery and the middle cerebral branches. These effects were always higher in AD patients 

than HC. 
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Fig. 5.3. Spatial pattern of changes in BOLD signal standard deviation: probability map of areas where %ΔSTD>25% 

across all HC (left) or AD patients (right). Images are shown in radiological convention. 
 
 

5.3.3. Within-group consistency results  

The within-group consistency map (standard deviation across subjects of the z-maps obtained 

with seed-based correlation or template-based dual regression) for the two groups with different 

cleaning approaches is shown in figures 5.4 and 5.5 (the relative mean maps across subjects are 

also reported). The standard deviation z-values across space are showed in the boxplots in Figure 

5.6 and the results of the statistical comparisons across cleanings are reported in Table 5.3. In both 

groups the consistency increased significantly after cleaning (lower standard deviation) and the 

lowest standard deviation values were obtained after MWCreg and FIXagg. The standard deviation 

was, in general, lower (i.e. higher consistency) within the HC group (p<0.01 at paired t-test) with 

respect to the AD group (except for seed based FC on FIXagg data and template-based dual 

regression MWCreg data, where the standard deviation was higher in HC than AD). Comparing the 

results across the FC analysis methods, the seed-based FC results showed a lower variability across 

subjects with respect to template-based dual regression, but also the mean z-statistics of the FC 

maps were much lower. 
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Fig. 5.4. Within-group consistency of PCC seed-based FC. A representative slice o the mean z-map (first and third row) 
and the standard deviation of z-maps (second and fourth row) across subjects is reported for HC (first and second row) 

and AD group (third and fourth row) after the different cleaning procedures. 
 

 
Fig. 5.5. Within-group consistency of the DMN component obtained with Template-based dual regression. A 

representative slice o the mean z-map (first and third row) and the standard deviation of z-maps (second and fourth row) 
across subjects is reported for HC (first and second row) and AD group (third and fourth row) after the different 

cleaning procedures. 
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 Fig. 5.6. Variability of DMN functional connectivity across subjects. Standard deviation of  z-values across space 

obtained with seed-based correlation (A) or template-based dual regression (B) on data cleaned with different cleaning 
procedures for the two groups (HC and AD). 

 
 

Table 5.3. Across-subjects standard deviation. Comparison among different cleaning 
approaches in the two groups (paired t-test on the z-values of the standard deviation maps). 

 

PCC seed template-based 
dual regression 

  
HC 

(t-values) 
AD 

(t-values) 
HC 

(t-values) 
AD 

(t-values) 
Uncleaned-MOTreg 511.3588 260.2754 137.3739 171.8571 

Uncleaned-MWCreg 520.7048 478.4355 135.653 221.4 
Uncleaned-FIXsoft 363.0041 363.8185 -94.8889 53.7983 
Uncleaned-FIXagg 524.6706 559.3019 98.5434 210.6886 
MOTreg-MWCreg 276.2291 393.0219 -3.4958 164.191 

MOTreg-FIXsoft -191.9647 178.8484 -194.3158 -154.9582 
MOTreg-FIXagg 147.2746 463.0707 -81.4483 -55.2723 

MWCreg-FIXsoft -292.9114 -264.4339 -192.9672 -210.0587 
MWCreg-FIXagg 38.3945 249.9889 -80.7162 -107.1374 

FIXsoft-FIXagg 502.2432 602.6446 638.9623 721.0622 

All comparisons were statistically significant (p<0.01). 
 

5.3.4. Between-group differences in FC analysis 

We observed no between group differences at a corrected threshold (not masked for main effect) 

with uncleaned data, MOTreg, MWCreg, and FIXsoft data with both seed-based FC and template-

based dual regression. 
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Only after FIXagg a decreased FC in the AD group with respect to HC was observable (see 

Figure 5.7). In particular, with seed-based correlation AD group showed lower FC in PCC, 

precuneus, left middle and inferior temporal gyri, and left medial temporal lobe structures. With 

template-based dual regression the FC decrease in AD was localised in the PCC, precuneus, and 

left superior and inferior parietal lobule. 

 

 
Fig. 5.7. Between-group differences in functional connectivity results using a seed in the PCC (top) or DMN template-

based dual regression on data cleaned with FIX aggressive clean-up. Images are shown in radiological convention. 
 
 

5.4. Discussion 
In this work we compared different approaches for the cleaning of RS-fMRI data in a group of 

elderly healthy controls (HC) and a group of AD patients in mild to moderate stage of the disease 

in order to evaluate the impact of noise removal in within-group and between-group analyses. 

Firstly, we evaluated the impact of the different cleaning approaches on the BOLD signal 

variation in terms of temporal SNR and of % reduction of cleaned signal STD with respect to the 

uncleaned data (%ΔSTD). The results showed an increase of SNR after each cleaning step and a 

localization of the reduction in BOLD signal fluctuation (%ΔSTD) in line with the well-known 

spatial characteristics of the artefacts being removed. In particular, the higher probability of BOLD 

fluctuation reduction after MOTreg is clearly observable at brain boundaries, where the motion-

related artefacts are usually localised. This effect is more pronounced in the AD group, which 

showed higher mean relative displacement than the HC group, although not statistically significant. 

When FIX clean-up is performed, a consistent reduction of BOLD fluctuation is also localised in 

correspondence of blood vessels and CSF. This suggests that this data-driven method is able to 

capture and remove also the physiological noise (vascular and CSF pulsation artefacts) in absence 

of external recordings. The higher reduction of BOLD fluctuations observed in AD patients with 
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respect to HC is mainly localized in the perivetricular areas and cortical sulci, regions that are more 

extended in AD, due to atrophy, as confirmed by the VBM analysis. 

Regarding the FC results, we observed that after all the clean-up procedures we obtained higher 

within-group consistency across subjects both for seed-based and for template-based dual 

regression results, but only after FIXagg the FC alteration in DMN of AD vs HC were observable. 

Conversely, after MOTreg no differences in FC were detected with both seed-based correlation 

and template-based dual regression. This demonstrates that the removal of only the motion 

parameters is not necessarily sufficient to perform an effective FC analysis. 

The lowest standard deviation values across subjects were obtained after MWCreg and FIXagg 

and the consistency pattern was very similar. However, only after FIXagg the DMN alterations in 

AD patients were detectable. Although both remove the full variance of the artefacts and make the 

data more consistent across subjects, the removed signal is very different: the WM and CSF 

components identified and removed by FIXagg are subject-specific and obtained from ICA 

decomposition, while the WM and CSF regressors removed in MWCreg are derived from 

anatomical basis and might be affected by registration errors. It is also an open issue where the 

ROIs should be located to reliably represent the WM and CSF (Chao-Gan and Yu-Feng, 2010). 

Therefore, they might contain some useful signal that is removed with the clean-up. Moreover, 

FIXagg also removes other important confounds like vascular and susceptibility artefacts. These 

results demonstrate that a single measure of within-group consistency is not always sufficient to 

have a reliable measure of effectiveness of a cleaning procedure, because it is possible that useful 

across-subject variability, necessary to discriminate the two groups, is removed with the cleaning 

or that the cleaning is not effective enough to capture the between-group differences. In fact, from 

the within-group consistency results we observed a significant reduction of the across-subjects 

standard deviation, but from this analysis it was not possible to evaluate if the removed variability 

was due to noise or to neural-related signal. 

Compared to the most commonly used approaches for confounds removal, we showed that FIX 

was more effective in removing multiple sources of artefacts, and allowed the detection of 

pathological FC alterations. Surprisingly, the FC results were not significant at a corrected 

threshold with FIXsoft, while the FC alteration was detectable with FIXagg. The soft and 

aggressive FIX options remove the same number of single-subject ICs, but with FIXagg also the 

shared variance between the good and the noisy components is removed. We therefore hypothesize 

that this amount of variance could contain more artefacts, probably related to morphological 

changes due to atrophy, and its removal in this specific target population is particularly beneficial. 

As these data were acquired with a clinical scanner (1.5T) and a standard EPI protocol, this 



116 

hypothesis should be confirmed with future studies on the same population on images with higher 

spatial and temporal resolution, for which FIXsoft was the recommended option on healthy 

subjects (see Chapter 4; Smith et al., 2013). 

It must be taken into account that, even if FIX approach was demonstrated to be the best one to 

detect FC alterations in AD, a loss of meaningful and disease-specific information cannot be 

excluded. For example, there could be loss of neural-related signal that correlates with motion and 

with the vascular components (certainly different between groups). While no way for distinguishing 

neural-related signal correlating with motion parameters from real motion artifacts is known, so far, 

and we must consider this possible loss as part of the optimized trade-off between noise removal 

and signal loss, interesting future development would be the specific study of the cardiovascular 

components in HC and AD and what is the clinical value of their neural and/or vascular related 

information. 

Moreover, we based our evaluation of FIX efficacy in AD on the assumption that FC in the 

DMN is significantly altered in AD with respect to HC, which has been demonstrated with MRI 

and other imaging modalities (see par 1.4). It would be undoubtedly a corroboration of our findings 

to be able to replicate the differences we observed across cleaning modalities in a different 

population, with a different well-documented functional alteration. 

The FC results obtained (on FIXagg cleaned data) with seed-based correlation and template-

based dual regression are consistent, but not identical, as the FC was measured in different ways: 

the seed-based connectivity results are relative only to the correlation of the mean signal within the 

PCC and the other brain voxels, while the template-based dual regression approach evaluates the 

whole DMN connectivity pattern. Both methods were able to correctly detect the typical DMN 

alteration in AD patients, which involves the PCC and the precuneus (Binnewijzend et al., 2012; 

Greicius et al., 2004; Zhang et al., 2009; Gili et al., 2011; Wang et al., 2007), extending towards the 

parietal cortex (Wang et al., 2007; Greicius et al., 2004) especially in template-based dual 

regression results. For this reason they both showed to be reliable techniques for the evaluation of 

this candidate biomarker for AD. However, only with seed-based correlation we observed other 

damaged areas in the middle and inferior temporal cortex and the medial temporal lobe structures 

(Zhang et al., 2009; Greicius et al., 2004). This higher sensitivity is probably due to the fact that 

with seed-based correlation we were investigating the FC of a more localized area, as we wanted to 

answer a specific question, arising from previous literature evidence. As already pointed out by 

Cole and colleagues (2010), it is advisable to use seed-based FC methods only under precise a 

priori hypothesis (e.g. in this case the PCC connectivity alteration), to ask a straightforward 

question about the FC of a specific area with the rest of the brain, and receiving a direct answer. On 
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the other hand, a data-driven approach, like ICA or template-based dual regression, allows an 

overall view of the FC of the whole network of interest and allows the study of more than one RSN 

at the same time. Thus this option is more advisable in absence of a precise hypothesis to test. 

5.5. Conclusion 
In this work we compared on elderly healthy controls and people with Alzheimer's disease four 

data-driven cleaning approaches (two commonly used in the preprocessing of RS-fMRI data and 

two options of the recently developed ICA-based denoising method, FIX). We demonstrated the 

importance of an effective cleaning of RS-fMRI data from different sources of artefacts, in order to 

correctly detect FC alterations in pathology, in this case the DMN alterations of the PCC in 

Alzheimer’s disease patients. These are promising results towards the definition of a reliable non-

invasive biomarker for AD. 
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Chapter 6 – Future developments: 
towards a detailed parcellation of the 
brain for the detection of functional 

connectivity alterations 
 

In the preliminary study described in this chapter, high-dimensional ICA, introduced in Chapter 

4, is applied to a population affected by Alzheimer’s disease. Promising results of this pilot study 

obtained with spatial and temporal (amplitude and network) analyses and describing the functional 

disconnections due to this neurodegenerative disease will be discussed. Future developments in this 

direction will be described, towards a detailed parcellation of brain functional networks and an 

enhanced analysis of the temporal information for the detection of functional connectivity 

alterations in pathological conditions. 

The preliminary results of this study are described in an abstract (Griffanti, Di Pasquale et al.,) 

submitted to the annual meeting of the International Society for Magnetic Resonance in Medicine 

(ISMRM 2014). 

6.1. Introduction 
In Chapter 4 we introduced the use of group-level high-dimensional independent component 

analysis (ICA), through which the resting state networks (RSNs) are decomposed in sub-networks 

to obtain more detailed and informative network analyses with respect to the more common low-

dimensional approach. The components split by the high-dimensional group-ICA could be the result 

of a differential functionality of sub-networks forming the larger networks obtained with the low 

dimensional analysis (Smith et al., 2009; Abou Elseoud et al., 2010). In applications to pathological 

conditions, this differential functionality of sub-networks could be due to the specific set of subjects 

(Abou Elseoud et al., 2010; Damoiseaux et al., 2012) and driven by the pathology itself, allowing a 

more disease-specific FC analysis. Moreover, Abou Elseoud and colleagues (Abou Elseoud et al., 

2010) showed that ICA analyses results are affected by model order selection and demonstrated on 

patients with seasonal affected disorder (Abou Elseoud et al., 2011) that the between-group 

differences measured with ICA increase with model order (reaching a maximum around 70 

components on data acquired with Standard EPI sequence), thus suggesting multilevel ICA 
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exploration of FC to optimize sensitivity to brain disorders. We therefore hypothesize that the 

analysis of high dimensional independent components could give further insight also into the 

description of the pathological alterations in Alzheimer's disease (AD). 

We also investigated (Chapter 4) the potential of the temporal information obtained by ICA (at 

low and high dimensionality) from RS-fMRI data in the study of brain function from a 

complementary perspective to the information provided by spatial maps. This was also confirmed 

by Tian and colleagues (Tian et al., 2013) in a recent study conducted on healthy subjects 

investigating spatial and temporal features of RS-fMRI related to behaviour, where they highlighted 

the benefit of the temporal analysis of RSNs. 

In this study we applied these innovative analyses in AD, in order to assess whether spatial and 

temporal analyses at low and high ICA dimensionality can give further insight also into the 

understanding of the FC pattern of this pathology, and its differences with respect to the 

physiological condition. For this purpose, we analysed the RS-fMRI data used in the study 

presented in Chapter 5 with two ICA model orders. Firstly, we aimed at developing suitable criteria 

for automatically classifying each high-dimensional component as belonging to a low-dimensional 

one, either classified according to the RSNs described in literature, or as residual noise. Our second 

aim was then to explore the functional connectivity in AD patients and HC within two resting state 

networks (RSNs) (the DMN, primarily altered in AD, and the sensory-motor network - SMN, not 

primarily altered in this pathology) with low- (i.e., 25 components) and high-dimensional analysis 

(i.e., 70 components). To this end, a low-dimensional spatial map analysis was used to verify that 

the results of our study were in line with previous literature (Binnewijzend et al., 2012; Greicius et 

al., 2004; Zhang et al., 2009; Hafkemeijer et al., 2012). We then performed temporal (amplitude and 

network) analysis at low dimensionality, and spatial and temporal analyses at high-dimensionality, 

aiming at investigating in more detail the functional connectivity of the selected RSNs and their 

sub-networks revealed at high dimensionality. 

6.2. Materials and methods 

6.2.1. Subjects, MRI data acquisition and Preprocessing 

The details of subjects (20 healthy controls – HC- and 21 AD patients) and MRI acquisitions 

(RS-fMRI EPI and T1-weighted 3D images) are described in Chapter 5 (par. 5.2.1). 

After initial standard preprocessing with FSL (motion correction, non-brain tissue removal, 

spatial smoothing with 5mm FWHM Gaussian kernel, temporal filtering with a cutoff frequency of 

0.01 Hz), data were cleaned with FIX using the aggressive option (see Chapters 4 and 5), and 

registered to MNI standard space. RS-fMRI data of all the subjects were temporally concatenated 
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across subjects to create a space × time data matrix and group-ICA was performed with MELODIC 

(Beckmann and Smith, 2004). The group-ICA was performed at two dimensionalities (d): with 25 

independent components (ICs) for the low-dimensional ICA, and with 70 for the high-dimensional 

ICA as suggested in (Abou Elseoud et al., 2010,2011) and judged to be compatible with the 

temporal degrees of freedom of the cleaned data. As the low-dimensional group independent 

components (ICs) were used as reference template for the classification of the high-dimensional 

ICs, they were manually classified as RSNs or artefact based on previous knowledge of the RSNs 

patterns described in literature (Beckmann 2005; De Luca 2006; Rytty et al., 2013), following the 

same rules used for single-subject manual labelling described in Chapter 3, and double-checked by 

a second expert. 

6.2.2. Low-dimensional ICA analysis 

Subject-specific time series and spatial maps from the 25 group ICA components were obtained 

with dual regression (Filippini et al., 2009). Among the components that were functionally 

interpretable (judged not to be purely associated with artefact sources), we focused on those 

attributable to the DMN and the SMN. 

Using the subject-specific time series, output of the first stage of dual regression, we calculated 

the amplitude of the selected RSNs as the standard deviation of the time series. Low-dimensional 

network analysis was also performed by estimating full correlation values between all pairs of time 

series of the selected components. Significant differences in amplitude and correlations between 

HC and AD patients were then assessed with a two sample t-test. 

The spatial maps derived from the second stage of dual regression were compared between the 

two groups through voxel-wise statistics using a non-parametric permutation test. Results were 

considered significant at p<0.05, fully corrected for multiple comparisons, after initial cluster-

forming threshold of puncorr<0.05. 

6.2.3. High-dimensional ICA analysis 

Also in this case, dual regression was used to obtain for each of the 70 ICs, the time series and 

spatial maps for each subject. In order to correctly label a high-dimensional component as part of a 

specific RSN identified with low-dimensional ICA, we developed an automatic labelling algorithm. 

Three criteria were experimented for labelling: space-based, correlation-based or spatiotemporal 

labelling. 

Space-based labelling: a high dimensional component i is labelled as part of the low-dimensional 

component j with which it has the highest spatial overlap calculated with Dice coefficient (DCij) on 

the group maps. If DCij is lower than a threshold TDC, the component is classified as noise. 



121 

Correlation-based labelling: a high dimensional component i is labelled as part of the low-

dimensional component j according to the subject specific (i.e., computed after dual regression) 

temporal correlation (TCij) and maximal average score across subjects. Max<TCij>, which must be 

also higher than a threshold TTC, otherwise the component is classified as noise. (It is worth to recall 

that component ordering derives from group ICA and is shared across subjects). 

Spatiotemporal labelling: a high dimensional component i is labelled as part of the low-

dimensional component j with which it has the highest Dice coefficient and the highest temporal 

correlation. If component i has DCij or TCij under the thresholds TDC and TTC, it is classified as 

residual noise. When the spatial and temporal matching results disagree, the component is classified 

as "unknown". 

A manual labelling was used as gold standard firstly to assess the best performing thresholds for 

the spatial and temporal criterion separately, and then to compare the three criteria. In particular we 

tested two TDC (0.1 and 0.4) and two TTC thresholds (0.4 and 0.55) and the comparison between the 

three criteria was performed using the optimised thresholds. 

The labels provided by the best performing algorithm were used to select the high dimensional 

components relevant to the RSNs selected for this study (DMN and SMN). The calculation of 

amplitude values and temporal correlations among these components was analysed as described 

above for low dimensional analysis and the results were compared between the two groups (HC vs 

AD, two sample t-test). Similarly, the spatial maps analyses of the components of interest were 

compared between AD and HC through voxel-wise statistics using a non-parametric permutation 

test. Results were considered significant at p<0.05, fully corrected for multiple comparisons, after 

initial cluster-forming threshold of puncorr<0.05. 

6.3. Results 

6.3.1. Low dimensional ICA results 

Components of interest. Out of the 25 components detected by low-dimensional ICA, we 

identified 9 RNSs and focused our analysis on the following three (see Figure 6.1): 

1) the posterior portion of the DMN: it included the posterior cingulate cortex (PCC), the 

inferior parietal lobule and part of the frontal lobe. Hereon we will refer to this component 

as the PCC component; 

2) the anterior part of the DMN: mainly the medial prefrontal cortex (mPFC); 

3) the sensory-motor network (SMN). 
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Fig. 6.1 Low-dimensional components relative to the neworks of interest selected for this study: the default mode 

network in its posterior and anterior portion, respectively the posterior cingulate cortex (PCC) and the medial prefrontal 
cortex (mPFC), and the sensory-motor network (SMN). The number of each component was based on the ranking of 

variance explained by the component. 
 

Time series amplitude. From the time series analysis, we observed that in all the three 

components AD patients showed significantly decreased amplitude values (p<0.05, Figure 6.2). 

 

 
Fig. 6.2. Low-dimensional components (IC0,PCC; IC9, mPFC; IC2,SMN) showing decreased amplitude values in AD 

patients compared to HC (p<0.05). 
 

 

Network analysis (full correlation). Only the correlation between PCC and mPFC was 

significantly different between the two groups (p < 0.05, AD<HC; Figure 6.3). 
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Figure 6.3. Between-networks disconnections (p<0.05; AD<HC) identified with low-dimensional ICA analysis. 

 

Spatial maps analysis. Significantly smaller activation areas were found in AD patients only in 

the posterior portion of the DMN, the PCC component, mainly localised in the PCC, the precuneus, 

and the left superior and inferior parietal lobule (Figure 6.4). 

 

 
Fig. 6.4. Between-group differences (AD<HC) in functional connectivity in the posterior part of the DMN (PCC 

component identified with low-dimensional ICA). Images are shown in radiological convention. 
 

6.3.2. High dimensional ICA results 

Labelling algorithm for the selection of the components of interest. The optimal spatial and 

correlation threshold for the labelling algorithm were found to be TDC =0.1 and TTC = 0.4, 

respectively. 

The spatiotemporal criterion showed the best accuracy (95.7%) in signal vs noise classification, 

compared to correlation-based and the space-based ones (89% and 85%, respectively). The high-

dimensional components labelled as part of the selected RSNs are shown in figure 6.5 (their 

automatic classification was in concordance with the manual labelling): the posterior default mode 

network (PCC) was identified in two components, the mPFC in three components, and five 

components were labelled as belonging to the SMN. 
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Fig. 6.5. High-dimensional components relative to the neworks of interest automatically selected by the labelling 
algorithm with the spatiotemporal-based criteria: the posterior default mode network (PCC) was identified in two 
components, the medial prefrontal cortex (mPFC) in three, and five components were labelled as belonging to the 

sensory-motor network (SMN). The number of each component was based on the ranking of variance explained by the 
component. 

 

Time series amplitude. The time series amplitude analysis performed on these components 

revealed a significantly decreased amplitude (p<0.05) in AD patients in both PCC sub-networks 

(PCC0, PCC11), but only in one component within the mPFC (the ventral mPFC, mPFC14) and one 

in the SMN (precentral gyrus, SMN23) (Figure 6.6). 
 

 
Fig. 6.6. High-dimensional components (from top-left to bottom-right: PCC0, PCC11, mPFC14, SMN23) showing 

decreased amplitude values in AD patients compared to HC (p<0.05). 
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Network analysis (full correlation). From the network analysis we observed the presence of 

disconnections both within-network (i.e., the connectivity between sub-networks belonging to the 

same RSN) and between-network (i.e., the connectivity between either RSNs or sub-networks 

belonging to different RSNs) in AD patients. 

Regarding the DMN, the within-network connectivity was not different in the PCC, while a FC 

alterations in AD (p<0.05; AD<HC) was detected among two of the three connections in the mPFC 

network, namely those involving the ventral mPFC (mPFC12- mPFC14; mPFC14- mPFC46, Figure 

6.7, A), in which we previously observed the amplitude's decrease. As regards the between-network 

connectivity, the anterior-posterior disconnection in AD patients observed between PCC and mPFC 

at low dimensionality was also detectable at high dimensionality among two PCC components and 

two mPFC components (PCC0-mPFC12, PCC0-mPFC14, PCC11-mPFC12, PCC11-mPFC14, Figure 6.7, 

B). 

 
Figure 6.7. High-dimensional ICA network analysis of the DMN. A) Within-network disconnections (p<0.05; AD<HC) 
in the mPFC and B) between-networks disconnections (p<0.05; AD<HC) between the anterior and posterior DMN sub-

components. 
 

The same analysis in the SMN resulted in a decreased within-network connectivity among all the 

subnetworks belonging to the SMN (Figure 6.8, A), and one altered between-network connection 

between SMN and DMN (PCC0-SMN26) (Figure 6.8, B) 
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Figure 6.8. High-dimensional ICA network analysis of the SMN. A) Within-network disconnections (p<0.05; AD<HC) 
in the SMN and B) between-networks disconnections (p<0.05; AD<HC) between the DMN and SMN sub-components. 

 

Spatial maps analysis. Significantly lower activation was found in AD patients in three high-

dimensional components (PCC0, mPFC14, SMN23). In the PCC sub-network (PCC0), the decreased 

activation was localised in the PCC and the precuneus; the alteration in the mPFC (mPFC14) 

involved the ventral mPFC, while a decreased activation in the SMN was localised in the precentral 

gyrus (see Figure 6.9). 
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Fig. 6.9. High-dimensional spatial maps analysis. Between-group differences (AD<HC) were detected in one PCC 

component, one mPFC component and one SMN component. Images are shown in radiological convention. 
 

6.4. Discussion 
In this work we applied low- and high-dimensional group ICA on RS-fMRI data of a group of 

elderly healthy controls (HC) and a group of AD patients in mild to moderate stage of the disease 

in order to investigate the effect of the dimensionality of group ICA decomposition in the detection 

of FC damage using spatial and temporal (amplitude and network) analysis. 

The creation of an automatic labelling algorithm allowed to automatically identify the sub-

networks of interest with an objective and quantitative criterion and to perform a high-dimensional 

analysis that was a complementary approach to the low-dimensional one. A future improvement of 

the algorithm could be the use of standard templates, avoiding the time consuming labelling phase, 

or a customization of the classifier used by FIX for the automated labelling of group-level 

components at low and high dimensionality. 

In our application to AD patients we focused on two RSNs: the DMN (divided in its posterior 

and anterior portions), as the most damaged by AD, and the SMN, for which the role of the 

pathology is still unclear and under debate. 

As regards the posterior part of the default mode network (the PCC), through the low-

dimensional spatial map analysis we verified the loss of activation in the PCC typical of AD 

patients and extensively supported by literature (Binnewijzend et al., 2012; Greicius et al., 2004; 

Zhang et al., 2009; Gili et al., 2011). The same analysis at higher dimensionality better localised 

the altered activation in the PCC. Considering the time series amplitude of low- and high-
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dimensional PCC components, a significant decrease was always observable in AD patients, 

probably because the two PCC sub-components are equally (and fully) altered in terms of 

activation with respect to the HC. This is confirmed by the results of the within-network 

connectivity at high dimensionality, where no differences were found in the correlation values. 

At low dimensionality, no differences in the spatial maps between HC and AD were found in the 

mPFC component, the anterior part of the DMN. However, the ventral mPFC sub-network showed 

a reduced activation in AD with high-dimensional spatial maps analysis. This is an interesting 

result in the light of the time series analyses, that showed: i) decreased amplitude in AD at low-

dimensionality; ii) decreased amplitude in the ventral mPFC component; iii) decreased within-

network connectivity between the ventral mPFC component and the other two. The alteration in the 

anterior part of the DMN in AD is also described in literature (Greicius et al., 2004; Zhang et al., 

2009; Gili et al., 2011), but more at an advanced stage of the disease (Brier et al., 2012; Zhang et 

al., 2010; Damoiseaux et al., 2012), probably due to the progression of the structural changes of the 

pathology (Buckner et al., 2005; Minoshima et al., 1997). We hypothesize that in our sample this 

alteration was not severe enough to be detectable on the low-dimensional spatial maps (Abou 

Elseoud et al., 2011). Moreover, the analysis of the temporal information showed to be more 

sensitive with respect to the spatial information, as between-group differences were detected both 

at low and high dimensionality (Tian et al., 2013). 

This innovative temporal analysis at low and high dimensionality was also useful to better 

explain the FC between the anterior and posterior DMN previously described in literature (Gili et 

al., 2011; Wang et al., 2007). In fact, although this alteration was already detectable at low 

dimensionality, it was better localised at high dimensionality, where it emerged that one of the 

three mPFC sub-networks still preserved its FC with the PCC, probably due to the fact that the AD 

patients were in mild to moderate stage of the disease. 

The SMN confirmed to be less altered in AD patients with respect to the DMN. No differences 

were found between the two groups in the low-dimensional spatial maps, and a decreased 

activation in only one of the five sub-networks was detectable at high dimensionality. Alterations 

in the time series amplitude were observable in the low dimensionality component and in one high-

dimensional sub-network. Interestingly, despite the amplitude alteration in only one SMN sub-

network, all the within-network correlations were significantly lower in AD patients. We therefore 

hypothesize that the connectivity damage in AD could be not confined into the DMN, but could 

extend to other areas as the sensory-motor regions (in line with recent findings by Damoiseaux et 

al., 2012), manifesting, in the initial stage of the disease, more as a loss of within-network 
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connectivity than a decreased activation. Of course this speculation needs further research to be 

confirmed. 

A wider analysis using different ICA dimensionalities would also be useful to define the most 

suitable model order for the detection of AD alterations. As already pointed out by Abou Elseoud 

and co-workers (2011), the higher model order provides higher sensitivity, but also increases the 

risk of false positives and advanced statistical methods applied at the level of RSNs would be 

beneficial in order to correct for type I errors. 

Certainly, future studies including subjects in the prodromal stage of AD (Mild Cognitive 

Impairment) and moderate to severe AD patients, or longitudinal studies on AD patients would 

better clarify if the changes we observed with the temporal analyses in mild to moderate AD were 

early signs that anticipate future changes in the spatial maps. 

6.5. Conclusion 
In this work we showed that high-dimensional ICA, supported by a component classification 

based on low-dimensional ICA, can be applied in RS-fMRI to gain additional knowledge regarding 

brain functional connectivity also in applications to diseased populations. A detailed parcellation of 

the brain and the analysis of the temporal information (e.g. amplitude and network) could give 

further insight into the detection of functional connectivity alterations in pathological conditions 

and their monitoring at different stages. This promising, albeit preliminary, results obtained in 

describing the functional disconnections due to this neurodegenerative disease, support future 

developments in this direction. 
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Chapter 7 – Discussion and 
conclusion 

 

The functional organization of the human brain and its changes in clinical conditions still present 

several unclear and unexplored characteristics that have to be investigated. Advanced fMRI 

techniques have shown invaluable capacity of non-invasively investigating in vivo brain activity, 

thus opening a window on overall cerebral organization and its pathological alterations. Namely, 

functional connectivity (FC) analyses of resting-state fMRI (RS-fMRI) data allow describing the 

relationship between spontaneous neuronal activation patterns involving anatomically separated 

brain regions and reflecting the level of functional communication between regions. With RS-fMRI 

different characteristics (spatial, temporal, network properties) of the so-called resting state 

networks (RSNs) can be studied, evaluating different functions disentangled out of a single 

acquisition, with an easy and standard acquisition protocol also applicable in cases where the 

subject active interaction is impaired. 

However, the correct separation of noise from the neural-related signal from the RSNs is 

particularly challenging in RS-fMRI data, due to the lack of prior knowledge about the temporal 

signal of interest and of any external reference timing. In fact, several sources of noise are present 

in the data, many of which display some spatial or spectral overlap with RSNs. Spatially extended 

artefacts can be caused by the scanner (e.g., hardware instabilities) or, more frequently, they are 

caused by non-neuronal though physiological mechanisms (head motion, cardiac and respiratory 

cycles) (Murphy et al., 2013). Their correct identification and removal is therefore crucial for 

reliable FC analyses in healthy subjects and in clinical applications. In fact, FC analyses of the 

RSNs are currently used to study a wide range of neurological and psychiatric disorders (Cole et al., 

2010), and the ultimate goal of the optimization of FC analysis methods is certainly the quantitative 

evaluation of FC changes in pathological condition, and their monitoring at different stages. 

In Alzheimer’s disease (AD) it has been consistently demonstrated by RS-fMRI a decreased 

functional connectivity of the default mode network (DMN), and this is considered a possible new 

biomarker for AD (Li et al., 2011; Greicius et al., 2004; Gili et al., 2011). Therefore an early 

detection and a detailed characterization of this alteration are crucial to clinical diagnosis, staging, 

and monitoring of AD. 

 

In this work objective methods for RSNs identification and noise separation in RS-fMRI were 

introduced and validated in healthy subjects and patients with Alzheimer's disease. In particular, 
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once quantified the amount of FC estimation errors in seed-based FC analyses (chapter 2), this work 

faced the wider problem of artefact removal from the raw data in order to optimize via ICA any 

further FC analysis, whether based on ICA or other approaches. Therefore, an automated denoising 

method (FMRIB's ICA-based X-noisefier – FIX) was developed (chapter 3 and 4) in collaboration 

with the FMRIB (Functional Magnetic Resonance Imaging of the Brain) Centre (University of 

Oxford, UK), and was tested on different acquisition sequences (standard and multi-band 

accelerated EPI, chapter 4), increasing network dimensionalities (obtained with low- and high-

dimensional group ICA, chapter 4), and different populations (healthy controls, HC, and AD 

patients, chapter 5). Finally, we obtained promising results for a better localisation and 

quantification of FC alterations in AD, through the combination of an effective cleaning procedure 

and high-dimensional RSNs analysis (chapter 6). 

 

From the preliminary estimation of errors in the single-subject seed-based FC maps we observed 

a homogeneous distribution of random error within the brain, which suggests that this kind of error, 

although always present, is independent from the resting state activity itself. The proposed 

thresholding methods are promising for a better identification of the RSNs at single-subject level 

and in future studies they could be applied in a clinical setting to quantify the FC alterations with 

respect to a seed ROI through the definition of specific FC measures. Indeed, the availability of a 

reliable single-subject FC analysis could be particularly useful for rare case studies (when a group 

study is not feasible) and for the longitudinal evaluation of a single patient's disease progression or 

response to treatment or rehabilitation. 

The developed tool (FMRIB's ICA-based Xnoisefier - FIX) for the identification and removal of 

noise, further improved the reliability of FC estimation as, through the cleaning of the single-

subject raw data, can be applied to any FC analysis. FIX is a fully automatic solution (once trained) 

for cleaning fMRI data of various noise types, and it consists of four major operations: spatial ICA, 

classifier training, component classification (noise detection), and denoising. 

Regarding the ability to classify the independent components into signal or noise, FIX achieved 

over 95% classification accuracy on the three training datasets built by hand-labelling of the 

components, demonstrating to be a very valuable tool for the identification of artefacts in RS-fMRI 

data. 

As regards to the final stage of the cleaning procedure, i.e. the removal of the artefactual 

components from the RS-fMRI data, we aimed at successfully remove the noise components while 

preserving as much signal as possible. Our results on the denoising efficacy showed that FIX 

cleaning is useful to obtain reliable temporal and spatial RS-fMRI analyses: if an artefact is not 
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cleaned at the single-subject level and its spatial pattern is overlapping one of the RSNs, it will in 

general influence both the single-subject RSNs time series, (i.e. the output of the first stage of dual 

regression) and the RSN spatial maps (obtained from the second step of dual regression). In fact, the 

non-cleaned time series will have higher amplitude with respect to the cleaned data, often with high 

frequency confounds visible in the power spectra, and the presence of shared noise will in general 

produce less consistent network connection matrices across subjects. Noise would also lead to 

altered subject-level z-maps, thus affecting any following group-level analyses, reducing the ability 

to detect specific activation patterns within the RSNs, and obscuring pathological alterations. This 

problem also affects seed-based resting-state correlation maps for similar reasons, as also 

demonstrated in the application on AD patients. 

The efficacy of the cleaning procedure was demonstrated on two quite different EPI acquisitions 

(standard EPI and multiband accelerated EPI), obtaining similar results on the relative merits of 

different clean-up options. The only difference in the cleaning approach for the two datasets was the 

training dataset used for the FIX classification, which was tailored to each specific pulse sequence. 

The use of a sequence-specific training dataset is important because it allows FIX to optimize the 

classification training for the kind of data from a specific study. An interesting future development 

would be to investigate whether and how the different preprocessing steps can influence the training 

phase, the cleaning of the data, and consequently the final results, depending on the scan hardware 

and the sequence features. 

Compared to most of the currently available ICA-based approaches (see introduction Chapter 3), 

FIX approach can be considered a development/improvement of those methods, as it takes into 

account and merges information regarding spatial characteristics (as used in Perlbarg et al., 2007), 

temporal characteristics (Beall and Lowe, 2007), and spectral characteristics (Thomas et al., 2000) 

of the components. It is also an extension of methods that already combined multiple features 

(Tohka et al., 2008; De Martino et al., 2007). Moreover, the use of a hierarchical fusion of 

classifiers provides high classification accuracy. Conversely, the multi-echo method proposed by 

Kundu and colleagues (2012) relies on a totally different and original approach characterizing 

neurally-related BOLD signals in terms of changes in R2* (inverse of the relaxation time T2*) and 

initial signal intensity (S0), based on the analysis of TE dependence. As a direct comparison 

between the two methods was not feasible in this study, due to the lack of data acquired with multi-

echo EPI, a detailed comparison of FIX vs multi-echo method is provided in Table 7.1. 
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Table 7.1. Main characteristics comparison of two denoising approaches. 

 
Multi-echo method 

(Kundu et al., 2012) 
FIX 

Acquisition 
sequence 

Requires a specific acquisition 
sequence with different TEs. 

Applicable to any RS-fMRI dataset. No 
specific sequence required. 

Priors 
Theoretical reference functions 
(models for R2* and initial intensity 
S0 changes to fit signal changes) 

Individual T1 image and standard 
vessels masks required  

Features 

Two features related to R2* 
(modulated by changes in field 
homogeneity) and S0 (modulated by 
changes in T1): κ (high κ in 
BOLD-like components) and ρ 
(high ρ in non BOLD-like 
components)  

More than 180 features related to 
spatial, temporal, spectral 
characteristics of the components.  

Component 
classification 

Automatic classification of BOLD-
like components as the ones for 
which the associated κ is over a 
threshold and ρ is under a 
threshold. 

Training dataset required, built by hand 
labelling of components (requires 
expertise about signal and noise 
characteristics); automatic classification 
in signal, noise, unknown components. 

Unknown 
components 

If a component is not classified as 
purely signal is removed. (Possible 
loss of meaningful information). 

If a component is classified as pure 
noise is removed. (Conservative 
approach). 

Components 
removal 

Subtraction of the partial fit of the 
nuisance regressors (the non 
BOLD-like components) 

Subtraction of the contribution of the 
noisy components to the data. Two 
options for noise removal (soft and 
aggressive) 

 

From this summary it clearly emerges that both methods have different advantages and 

limitations and a future development comparing them on the same dataset would undoubtedly be 

interesting. 

When comparing two different acquisition sequences it emerged that the use of multiband (MB) 

accelerated EPI is advantageous for RS-fMRI analysis for several reasons: i) the increased temporal 

and spatial resolution yielded a better FIX classification accuracy (98% for MB6 versus 95% for 

Standard, with leave-one-out testing); ii) a considerably higher proportion of non-artefactual group-

ICA components was identified in the MB6 dataset, thus suggesting more successful ICA-based 

clean-up of MB data; iii) the MB accelerated data allowed a more detailed time series and network 

analyses through higher dimensionality decomposition (d=100), which was not achievable with the 

Standard sequence because of its lower temporal degrees of freedom (DOF); iv) MB time series 
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spectra after cleaning showed considerably less structured artefact (i.e., deviation from the expected 

clean 1/f-like spectrum) though preserving mean total time series power; v) network patterns were 

more reproducible across subjects; vi) results of spatial map analyses were not altered in MB, 

notwithstanding the lower static image SNR of MB due to its higher resolution. 

An important observation emerging from this comparison is that the characteristics of the data do 

also influence the decisions regarding the dimensionality of group ICA decomposition. In fact, it 

must be taken into account that the cleaning procedure reduces the number of DOF in the data, 

limiting the possibility to perform high-dimensional group ICA and dual regression. For example, 

in chapter 4, in Standard sequence the data has 200 time points; after cleaning (on average 60.9 ± 

14.9 components per subject manually identified as noise) the remaining DOF are around 140. 

Although a group ICA with temporal concatenation is feasible with d=100, the single subject data at 

the same dimensionality cannot be obtained by dual regression as the number of components is 

similar and in some cases could be higher than the actual number of DOF. For similar reasons in 

Chapter 6 we were able to do a reliable high-dimensionality analysis only at d=70. 

The denoising with FIX was also demonstrated to be beneficial in clinical studies, as 

demonstrated in our application in mild to moderate Alzheimer’s disease (AD) patients. In this 

population we observed the presence of a larger amount of artefacts with respect to aged healthy 

controls, possibly due predominantly to atrophy. The cleaning procedure with FIX revealed to be 

particularly useful to detect the typical alteration of the PCC functional connectivity in the DMN 

(evaluated with two different FC analysis methods), which were not detectable using uncleaned data 

or data cleaned with more common data-driven cleaning approaches (removal of the contribution of 

motion parameters or removal of the contribution of motion parameters, WM signal and CSF 

signal). It would be undoubtedly a corroboration of our findings to be able to replicate the 

differences we observed across cleaning modalities in a different population, with a different well-

documented functional alteration. 

Regarding the two different options for FIX denoising (soft vs aggressive), for data acquired on 

healthy subjects with good spatial and temporal resolution (chapters 3 and 4) we would in general 

suggest the use of the soft cleaning approach, which consists of: 1) removing the full space of the 

24 motion parameters (Satterthwaite et al., 2013) from the data and the ICA time series; 2) 

estimating the contribution (spatial regression coefficients) of both good and bad components, in 

order to identify the unique variance of the artefacts; 3) subtracting the contribution of the bad 

components from the data (the outer product of their time series and spatial regression coefficients, 

summed over noise components). Conversely, in the application on patients using data acquired 

with a clinical scanner (chapters 5 and 6), we found that the aggressive option (i.e. the removal of 



135 

the full space of motion parameters and artefactual components from the data) revealed to be more 

effective. Therefore this difference could be due either to the characteristics of the data (number of 

timepoints acquired, field strength, resolution) or to the populations (healthy subjects versus AD 

patients), or a combination of the two and, although FIX demonstrated to be an effective cleaning 

procedure for different sequences and populations, further research is needed to define the 

optimized cleaning options for each specific application.  

FIX is now publicly available; the current version (v1.06) is available as a “plugin” for FSL (the 

FMRIB Software Library) at link www.fmrib.ox.ac.uk/fslwiki/fsl/FIX. The FIX download includes 

training-weights files for “standard” fMRI acquisitions and for the MB RS-fMRI dataset delivered 

by the Human Connectome Project (HCP http://www.humanconnectomeproject.org/). In fact, partly 

due to the study performed in this thesis, FIX is now in use as part of the default HCP analysis 

pipeline (Smith et al., 2013), and FIX-cleaned data is the recommended version of the resting-state 

fMRI data that is publicly available –over 200 subjects worth of hour-long datasets having been 

released to date. 

Finally, the combined use of ICA-based denoising and high-dimensional group ICA was applied 

in Alzheimer’s disease, in order to investigate in more detail the functional connectivity of two 

selected RSNs (the DMN and the SMN) and their sub-networks. The creation of an automatic 

labelling algorithm allowed to automatically identify the sub-networks of interest with an objective 

and quantitative criterion and to perform a high-dimensional analysis that added complementary 

information to the low-dimensional one, relevant to loss of connectivity poorly detected by the 

latter. A future improvement of the algorithm could be the use of a standard template to avoid the 

need of manually label the low-dimensional components or the development of an extension of the 

classifier used by FIX for the automated labelling of group-level components at low and high 

dimensionality. 

The study of the temporal information and the more detailed parcellation of the RSNs of interest 

allowed to detect FC changes in AD that were not observable with the more common approach of 

low-dimensional spatial map analyses, suggesting that these optimized FC analysis methods could 

give further insight into the detection of functional connectivity alterations in pathological 

conditions for evidence based diagnosis, follow-up and prognosis (Abou Elseoud et al., 2011; Tian 

et al., 2013). Of course, these results need further research to be confirmed and a wider analysis on 

other resting state networks, different AD stages, and other pathologies would be the natural 

progress of this study. In fact, this work focused on a homogeneous sample of AD patients in a 

mild to moderate stage of the disease. Certainly, future studies including people with Mild 

Cognitive Impairment (MCI) and severe AD patients, or longitudinal studies on AD patients would 



136 

better clarify if the connectivity changes we observed by the proposed method enhancements were 

early signs that anticipate changes well recognized in the low-dimensional spatial maps at higher 

AD severity. 

 

Conclusion 

The aim of this study was to optimize and validate objective methods for the investigation of the 

RSNs and the removal of artefacts in resting state fMRI data, applicable to the context of 

neurodegenerative diseases, especially Alzheimer’s disease. With a preliminary study the amount of 

FC estimation errors in one of the most common FC analysis techniques (seed-based FC) was 

quantified and a thresholding method was proposed for a reliable single-subject FC analysis. 

Through the development of FMRIB's ICA-based X-noisefier (FIX), we then demonstrated that, by 

combining an accurate ICA component classifier with an effective approach for noise removal, we 

are able to remove artefacts directly from the raw data, automatically, without removing significant 

amounts of useful signal. Moreover, with multiband accelerated sequences and effective cleaning, 

we were able to perform higher dimensionality decompositions and more detailed RSN analyses 

than with a standard EPI acquisition. The proposed denoising approach was also demonstrated to be 

particularly beneficial in clinical applications, as it allowed to correctly detect FC alterations in mild 

to moderate Alzheimer’s disease (AD) patients. Finally, we showed that high-dimensional ICA, 

supported by a component classification based on low-dimensional ICA, could be successfully 

applied in clinical studies (e.g. in AD) to gain additional knowledge regarding brain functional 

connectivity changes in diseased populations. A detailed parcellation of the brain and the analysis 

of the temporal information (e.g. amplitude and network) could give further insight into the 

detection of functional connectivity alterations in pathological conditions and their monitoring at 

different stages. The promising results obtained in describing the functional disconnections due to 

this neurodegenerative disease foster further investigation in this direction, towards the definition of 

reliable non-invasive biomarkers for AD. 
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Appendix - Processing pipelines and 
software used 

 

RS-fMRI preprocessing with SPM (chapter 2) 

-‐ Image format conversion: dcm2nii part of MRIcron 

(http://www.mccauslandcenter.sc.edu/mricro/mrocron) 

-‐ Reorientation of T1 and EPI images with spm8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8) 

-‐ Preprocessing with DPARSF (Data Processing Assistant for Resting State fMRI; 

http://www.rfmri.org/DPARSF): 

o Removal of first 10 time points 

o Slice Timing 

o Realignment 

o Coregistration on T1 

o Normalisation to MNI space 

o Resampling (3 x 3 x 3 mm3) 

o Spatial smoothing (FWHM = 4 mm) 

o Removal of nuisance covariates (motion parameters, WM signal, CSF signal) 

o Detrend 

o Temporal filtering (0.08-0.1 Hz) 

 

 

Seed-based correlation (chapters 2 and 5) 

-‐ REST -Resting State fMRI Data Analysis Toolkit; http://restfmri.net/forum/REST_V1.8) 

 

 

Individual trhesholding of seed-based FC maps (chapter 2) 

-‐ generation of surrogate time series: Matlab script (http://www.mathworks.it/) 

(http://www.mathworks.com/matlabcentral/fileexchange/4612-surrogate-data) 

-‐ seed-based FC with REST Toolbox (http://restfmri.net/forum/REST_V1.8) 

-‐ confidence interval estimation: Matlab scripts (http://www.mathworks.it/) 

-‐ zFC map thresholding: Matlab scripts (http://www.mathworks.it/) 
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RS-fMRI preprocessing with FSL (http://www.fmrib.ox.ac.uk/fsl) (chapters 3-6) 

-‐ Image format conversion: dcm2nii part of MRIcron 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/) 

-‐ Brain extraction on T1 images: BET (Brain Extraction Tool) part of FSL  

-‐ MELODIC (part of FSL): 

o correction for head motion using MCFLIRT 

o correction for EPI distortions using FMRIB's Utility for Geometrically Unwarping 

EPIs (FUGUE) 

o Non-brain tissue was removal from EPI images with BET 

o high-pass temporal filter (cutoff period ~ 100.0 s) 

o spatial smoothing (no smoothing for dataset 1 and 2, FWHM = 5 mm for dataset 3) 

-‐ FIX classification and denoising: Matlab and shell scripts 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX) 

-‐ coregistration of the RS-fMRI data to their high-resolution structural image with FLIRT 

linear registration (part of FSL), enhanced with brain-boundary-registration (BBR), and then 

to MNI152 standard space via application of the nonlinear FNIRT (part of FSL) 

 

 

Group ICA and dual regression analysis 

-‐ temporal group ICA with MELODIC, part of FSL (performed on training dataset 1 and 2 

and test dataset 3 with dimensionality estimation d  - different d for low and high 

dimensional group ICA) 

-‐ dual regression, part of FSL, using group ICA maps (chapter 6) or template maps (chapter 4 

and 5) 

-‐ Time series and network analyses: Matlab scripts  (http://www.mathworks.it/), some of 

which are included in FSLNets (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslnets) 

-‐ Spatial maps analyses with GLM and randomise, part of FSL 
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Abbreviations 
 

ACC = anterior cingulate cortex 

AD = Alzheimer’s disease 

ADRDA = Alzheimer’s Disease and Related Disorders Association 

BOLD = blood oxygen level-dependent 

BSS = blind source separation 

CDR = clinical dementia rating 

CI = confidence interval 

CNR = contrast-to-noise ratio 

CSF = cerebrospinal fluid 

DMN = default mode network 

DOF= degrees of freedom 

EPI = echo planar imaging 

FC = functional connectivity 

FE = fixed effects 

fMRI = functional magnetic resonance imaging 

FWHM = full width at half maximum 

GLM = general linear model 

GM = grey matter 

HC = healthy controls 

HCP = Human Connectome Project 

HF = high frequency 

iAAFT = iteratively refined amplitude adjusted Fourier transform 

IC = independent component 

ICA = independent component analysis 

ICOV = inverse covariance matrix 

IPL = inferior parietal lobule 

k-NN = k-nearest neighbour algorithm 

LF = low frequency 

LOO = leave-one-out 

MB = multiband 

MCI = mild cognitive impairment 

ME = mixed effects 
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MEG = magnetoencephalography 

MMSE = mini-mental state examination 

MNI = Montreal neurological institute 

mPFC = medial prefrontal cortex 

MPRAGE = magnetization prepared rapid gradient echo 

MRI = magnetic resonance imaging 

NINCDS =  National Institute of Neurological and Communicative Disorders and Stroke 

PCA = principal component analysis 

PCC = posterior cingulate cortex  

PET = positron emission tomography 

pICA = probabilistic independent component analysis 

ROI = region of interest 

ROIs = regions of interest 

RS = resting state 

RS-fMRI = resting state functional magnetic resonance imaging 

RSN = resting state network 

SMN = sensory motor network 

SNR = signal-to-noise ratio 

SPECT = single photon emission computed tomography 

SVM = support vector machine 

TE = echo time 

TNR = true negative rate 

TPR = true positive rate 

TR = repetition time 

VBM = voxel based morphometry 

WM = white matter 
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