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Abstract

Reinforced and Prestressed Concrete Structures exposed to aggressive environ-
ments, more or less severe, exhibit a progressive deterioration that reduce their
bearing capacity over time, as well as their residual service life. Carbonation,
spalling, cracking, corrosion due to chlorides and consequent reduction of bar
and tendon areas are what we are used to see in surveying buildings and bridges
forty/fifty years old.

The social and economic relevance of the safety of the structure and infrastruc-
tures gave rise to an intense research activity and was the motivation that led to
undertake the present work.

After having deepened the main physical and mechanical aspects that rule the
time variant capacity of a structure, the attention have been focused on the effects
induced by the most frequent damaging causes on the behavioral and collapse
mechanisms of RC elements. Such a problem involves (I) a representative modeling
of the damage diffusion inside the volume of the RC element; (II) a reliable and
robust modeling of RC cracked element working in membrane state and (III) a
methodology of coupling the physical and the mechanical behaviors over time.

The mechanical aspects are prevailing. Therefore, the work starts by examining
different approaches to the analysis of RC frame and membrane structures. These
approaches have been introduced and developed through ad hoc computer codes,
then tested and compared. In particular, two renowned RC smeared approaches
for bidimensional FE analyses and hands-on verifications have been reviewed and
a wide set of comparisons with experiments concerning shear critical panels and
beams have been carried out. As known, a FE bidimensional analysis is quite heavy
to do for practice. So, in order to search for a synthetic approach, a shear flexible
beam column RC element has been proposed. With reference to the infinitesi-
mal segment of beam, the evolution of the sectional kinematic from the Navier-
Bernoulli, to Timoshenko and to the generalized beam theory is analyzed, showing
how each new grade of refinement requires necessarily a more refined stress-strain
relationship (linear or non-linear). Hence, by proposing two particular section state
determinations, the structural analysis moved from bidimensional towards monodi-
mensional one. The element formulation is accomplished with proposal that allows
computing the stresses in the stirrups and representing, in a conventional way, the
crack pattern in the web of the beam. Also such a model has been validated with
reference to a set of experimental results.



xii

After the analyses oriented to sound RC structures, the damage diffusion pro-
cess and its modeling through the diffusivity equation is presented. The diffusion
problem is solved through the Cellular Automata algorithm. Introductory exam-
ples show the effectiveness of such a numerical approach. The effects of the dam-
age are then specialized to Reinforced Concrete Elements. New damage indexes,
concerning both steel and concrete, are introduced and then tested for different
reinforcement assemblies.

A wide set of applications confirm the soundness of both of theoretic proposals
and of the algorithms used to reduce the problems to a numerical form. Moreover,
significant comparisons have been made between the results given by non-linear
analyses and those given by the limit analyses. Such comparisons led to intro-
duce an efficiency factor that takes into account the different nature of these two
approaches, as well as the different criteria to model the material properties with
respect to the ultimate behavior. The types of applications stand out the effective-
ness of all the proposed models in dealing with actual and complex structures, both
in sound and damaged conditions, and show their usefulness among the method-
ologies for life-cycle appraisals.

Keywords: Concrete structures; Shear modeling; Shear flexible beam column
elements; Non linear analysis; Limit analysis; Corrosion; Environmental damage.
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defined when they first appear.

Latin Letters

a maximum aggregate size
A assembling process
Ac area of concrete fiber
As area of steel bar
as sectional interpolating matrix

b force’s shape functions matrix
B displacement’s shape functions matrix (derivatives)

C concentration of the aggressive agent
C0 initial concentration of the aggressive agent
c nodal coordinate vector

De effective diffusion coefficient
D material’s stiffness matrix [3× 3]
D̄ reduced material’s stiffness matrix [2× 2]

Ec concrete elastic modulus
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fcr tensile cracking stress
fy steel yielding stress
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fp distributed loads vector
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Gc concrete tangential modulus
g residual vector (problem in homogeneous form)

hl beam element’s compatibility matrix
hTl beam element’s equilibrium matrix
H structure’s equilibrium matrix
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J Jacobian matrix
Jp Jacobian matrix of the polar transformation
Jt Jacobian matrix of the quadrilateral transformation

k beam element’s stiffness matrix
k̄ beam element’s stiffness matrix (system without rigid body modes)
kg geometric contribution to beam element’s stiffness matrix
ks section’s stiffness matrix (complete RC section)
kCs section’s stiffness matrix (Concrete contribution)
kSs section’s stiffness matrix (Steel contribution)

M bending moment
Mp plastic moment
M stays prestressing forces matrix

N axial force
N displacements shape functions matrix

p corrosion penetration depth

q beam element’s nodal displacements vector
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Q̄ beam element’s basic forces vector
Qg geometric contribution to beam element’s nodal forces
Qt structural basic forces vector

R pitting factor

si state of the cellular automaton
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1 Introduction

The objectives of the thesis are presented and outlined with the aim of propos-
ing a robust methodology handling the assessment of concrete structures based
on time-variant capacity that account for environmental hazards. Focus is
given to the main reasons for which a study on sound and damaged reinforced
concrete has been carried out.

1.1 Motivation and Problem Statement

The majority of buildings and infrastructures, like bridges, has today reached more
than an half of a century of age. In a research carried out for the Lombardia Region
(Italy), in which the Author collaborate, the bridges that across the Po River have
been inspected. The main result of such a research is that today, a lot of Reinforced
Concrete (RC) structures are reaching their ultimate lifetime. Damage scenarios,
like corrosion due to chlorides, spalling of the concrete cover, reduction of area
of reinforcing, are clearly evident. In some case, a repair intervention is already
present, Fig. 1.1.

(a) Construction (half century ago).                      (b) Today.                        (c) Tomorrow ?(a) Construction (half century ago).(a) Construction (half century ago).                      (b) Today.                        (c) Tomorrow ?(b) Today.(a) Construction (half century ago).                      (b) Today.                        (c) Tomorrow ?(c) Tomorrow.. ?

Figure 1.1: Life steps of a bridge over the Po River, Italy.

Region ask questions such as: what about the future of these bridges? Are they
safe? How much are they safe? And if they are not, what we can do? The answers
to these questions are not so simple as the questions are.
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The phenomena involved in damage processes are not so clear and, in addition,
not so certain due to dependability on aleatory quantities such as the humidity of
the air, the chlorides content and so on. Hence, a robust assessment of concrete
structures based on time-variant capacity that account for environmental hazards
is needed.

The object of the thesis is to propose a methodology that can be applied in
engineering practice in order to couple the structural analysis with the damage
processes, and ables to adequately evaluate the time-evolution of the structural
performances.

1.1.1 Concerning the Structural Model

In recent years, structural modeling and nonlinear analysis are very common and
the Finite Element Method (FEM) is the mainly used computational tool. Several
models dealing with RC structures (Fig. 1.2) can be proposed but, in design or
assessment of real frame structures, the use of complex 2D or 3D FE programs can
turn to be impracticable, not only for the hight computational cost (that in future
will certainly decrease), but for the huge amount of generated data from which a
difficult results interpretation process descends.

For these reasons, it’s clear that between the main characteristics of a model
there are not only accuracy, precision and robustness, but also clarity and simplic-
ity.
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(b) 2D model.
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(c) 1D model.

Figure 1.2: Comparisons between Finite Element Models.

In this framework, 1D modeling with distributed nonlinearity seems a good
compromise. In this models, the generic section of the element is studied by using
the so called “fiber approach”, in which the section is subdivide in sub-domains,
called fibers. When fiber discretization is combined with a force-based element, the
highest degree of accuracy and stability is obtained in a frame structural model at
the current state of knowledge.

Usually, this models are based on the Navier-Bernoulli (plane section) kine-
matic, through which only longitudinal strain is described. As a consequence, only
the problem of normal stresses is addressed.
In dealing with RC structures, such a descending restriction is generally considered
valid, since the interaction with shear stresses is not so common. In fact, concrete
structures design is currently based on the so-called “capacity design”, through
which the shear failures must be avoided a priori. This statement can be reason-
able acceptable regarding new and sound structures, but with respect existing or
damaged ones it cannot be considered no longer valid.
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Three are the main reasons:

1. it’s not so certain that an existing structure has been design considering the
current shear provisions;

2. also admitting that a proper capacity design has been performed, if the struc-
tures is interested by environmental hazards, its structural performances can
varying in time and a change of the failure mode, not considered in the initial
design process, can occur;

3. concerning repair interventions, if a strengthened in bending is performed,
bending load capacity increase. This can produce, once again, a switch be-
tween the failure mechanisms and the structure can became critical with
respect to shear.

Hence, classical beam column elements based on Navier-Bernoulli sectional kine-
matic are not enough, but specific improvements of the beam structural theory
must be considered. This leads to formulate new 1D models with distributed non-
linearity that can adequately address not only the problem of normal forces, but
also the one of shear force. This is not an easy task and, despite severals Authors
have already deal with such a problem, the research is actually open.

1.1.2 Concerning the Damage Model

Corrosion is a complex phenomenon, involving different mechanisms and depend-
ing on many parameters. In literature different studies can be found, in order
to understand the fundamental factors. Both experimental tests and numerical
simulations has been carried out, with the purpose to investigate the effects on a
local and a global level, and also to develop analytical models. Among different
aggressive agents, the presence of chlorides plays a fundamental role in damage
processes of RC structures. For this reason, in this thesis, despite the proposed
approach is general and effectively applicable to other phenomena, the attention is
concentrated on chlorides induced corrosion.

Since corrosion depends on many parameters, such as the relative humidity, the
temperature and the internal stress field, a damage model should considering both
the thermal effects and the material constitutive laws in a full coupled physical-
mechanical process. However, the so-obtained models are at first too complex, but
secondly they need a wide calibration process that seems too far from the nature
of the problem that, in addition, is not so certain.

For these reasons, in lifetime structural assessment, it seems more convenient
the adoption of a macroscopic approach that neglect all the above mentioned in-
teraction process but that, for his simplicity, can be easily extended in the non
deterministic field.

In this work, it is hence assumed that Fick’s law holds and, in order to consider
different geometric domains or different positions of steel bars or different attack
scenarios, a special evolutionary computation technique is used in order to solve
the diffusion process: the cellular automata.
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1.2 Scope and objectives

The thesis is focused on plane RC structures. The general objective is to couple
the structural behavior with the damage process in order to obtain a framework
that permits to perform lifetime predictions. All the phenomena that characterize
the mechanical behavior are dealt with. The thesis is identified by two big parts:

(1) focused on the study of sound RC structures. From bidimensional modeling,
the objective is to move towards monodimensional modeling by including
shear’s effects;

(2) focused on the study of the damage processes interesting RC structures ex-
posed to environmental hazard.
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Figure 1.3: Scope of the thesis. The proposed procedure is the combination of two
independent parts.

This two parts are initially completely independent. In particular, the first ad-
dresses the structural modeling, the second the damage modeling. However, if
Part 1 is used as sub-module of Part 2, structural behavior results coupled with
damage process and lifetime prediction can be performed.

In detailing, with the aim of proposing an efficient computational tools, the
attention is focused on monodimensional modeling. Concerning the constitutive
relationship adopted for reinforced concrete, two different smeared type models
have been considered and compared.
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It is well know that a structural theory, with respect the full 2D problem, con-
tains some intrinsic approximations. For this reason and also aiming to better
understand the complex shear interaction mechanism, at first, a 2D FE model-
ing is considered. Such a computational technique deals with the definition of a
triangular RC finite element. It has been proved that a bidimensional modeling
of RC structures with smeared approaches can be considered effectively a robust
technique that gives very accurate results.

Then, the computational tool is moved towards monodimensional modeling.
In particular, a beam element with two types of sectional strategies is proposed,
implemented and validated not only with respect literature results, but also with
the previous 2D numerical technique.

Finally, a general and versatile method handling the damage process and their
effects on RC structural performance is proposed. The approach deals with chloride
attacks and handles the problem regarding sections with arbitrary shape, with
arbitrary position of reinforcements and with arbitrary corrosion scenarios. All the
principal effects of chlorides-induced corrosion are considered:

1. reduction of the cross-section of reinforcing bars;

2. reduction of ductility of reinforcing steel;

3. reduction of concrete strength;

4. spalling of the concrete cover.

In developing applications concerning damage effects on structural performance,
some interesting concepts that must be clearly taking into account in the design of
refurbishment interventions have been obtained. Such applications are dealt with
non linear analysis but these concepts have been better outlined by using another
procedure considered in this thesis: the Limit Analysis. In this case, only axial
force and bending moment interaction is taken into account and linear programming
methods are used. Such a computational technique, despite its limitation in dealing
with RC problems, is the most synthetic between all the others considered. It would
be hence very useful try to extend Limit Analysis with shear-bending-axial forces
interaction.

1.3 Research significance

This thesis proposes a methodology dealing with the lifetime assessment of RC
structures exposed to environmental hazard.

A very general computational technique concerning damage modeling is pre-
sented. Such an approach is based on the Cellular Automata algorithm and treats
RC arbitrary shaped sections, with arbitrary reinforcements layouts. New damage
indexes, that account for the phenomena previous exposed, are proposed and com-
pared. The so-obtained model, consisting in loop over the time domain, is able to
predict the mechanical degradation of a generic RC domain.
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Due to his generality, several structural models can be nested in it in order to
perform lifetime predictions. The main aim of this work is to consider the possibil-
ities of shear-flexible beam column elements in the study of RC framed structures.
In order to reach such a result, two renown RC membrane theories are at first
reviewed, developed and coded in a bidimensional finite element based program.
Wide comparisons with reference to shear critical panels and beams are carried
out. Then, by proposing two particular section state determinations, the structural
analysis is moved from bidimensional towards monodimensional modeling and the
formulation of the finite beam element with distributed nonlinearity is exposed.
An additional structural analysis technique, based on limit analysis, is considered
in order to outline specific comments related on the so-called effectiveness factor.

The proposed structural models are nested as sub-modules in the damage model
and several case studied permits to point out as the proposed methodology is able
not only to evaluate the structural behavior when the structure is sound, but also
in time, when the structures progressively became damaged.

All the numerical procedures proposed in this thesis have been coded in specific
computer programs written in MatLab(1), by using some basic techniques from ob-
ject oriented programming philosophy. The so-obtained codes interacts with other
structural objects and future improvements are easily permitted. The architecture
of the complete program strictly corresponds to the union of the two parts in which
this thesis is subdivide. In particular, there is a global procedure that handle the
damage processes and the time evolution of the structural performances and, nested
in it, there are the structural models, based on: (a) 2D non linear analysis, (b) 1D
non linear analysis without considering shear’s effects, (c) 1D non linear analysis
with the shear-flexible beam column element and (d) limit analysis for axial force
- bending moment interaction.

Between the several future developments of the work, due to the object oriented
programming philosophy adopted, a stand-alone application can be compiled or
easily translated to a more efficient language.

1.4 Contents of this document

The thesis is composed in these sections:

1. Part I - Sound RC Structures - concerns the methods of structural analysis
suitable to deal with non-linear behavior of RC structures. The main aim of
this part is to propose a shear sensitive beam element. In particular:

- Chapter 2 reviews the basic characteristics of non-linear beam elements
formulation. By applying the Principle of Virtual Work, the longitudi-
nal formulation of the problem is dealt both with a displacement based
element and with a force based element (dual approach). The formula-
tion is general applicable, with no matter about the non linear material
that compose the element;

(1)Matlab is a registered trademark of The MathWorks Inc., 24 Prime Park Way, Natick, MA
01760-1500, U.S.A. Web: http://www.mathworks.com.

http://www.mathworks.com
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- Chapter 3 outlines the problem with respect RC structures. It shows
that the normal forces problem can be successfully solved with classi-
cal beam-column elements, by adopting Navier-Bernoulli sectional kine-
matic, but the problem of shear stresses is more complex and not straight-
forward. With this aim, the State of the Art of RC sectional models is
recalled and the principal models are exposed and compared;

- due to the necessity of a bi-dimensional stress-strain relationships, in
Chapter 4 two known and widely used Theories are examined: the Mod-
ified Compression Field Theory (MCFT) and the Disturbed Stress Field
Theory (DSFT). Both Theories are discussed and tested with an orig-
inal code and with reference to panels and beams having shear critical
behaviors. Results and methods are compared and widely discussed in
order to choice the most effective for the formulation of a shear sensitive
beam element;

- in Chapter 5, the finite element beam suitable to deal with the shear
effects is then proposed and developed both with a fixed strain approach
and a fixed stress approach. The difference between these two ap-
proaches depends on the type of the additional condition to be imposed
in order to make the problem determinate. The element formulation is
accomplished with proposal that allows to compute the stresses in the
stirrups and of a proposal of conventional representation of the crack
pattern in the web of the beam;

2. Part II - Damaged RC Structures - presents the damage process and its
modeling through a diffusivity equation. The problem is solved through the
Cellular Automata algorithm. Introductory examples show the effectiveness
of such a numerical approach. The effects of the damage are then specialized
to RC elements. New damage indexes, concerning both steel and concrete,
are introduced and then tested for different reinforcement layouts. For its
generality, the so-obtained damage models can be jointed with each structural
analysis procedure. The final flow chart of the methodology proposed in the
thesis is hence a loop in the time domain that deals with damage process and
the structural models proposed in Part I are nested in it;

3. Part III - Applications - composed of two Chapters:

- Chapter 7 studies cable stayed and arch bridges and presents a coherent
set of applications involving one or more of the aforementioned problems.
In particular, significant comparisons are made between non-linear anal-
yses and limit analyses results, that led to introduce an efficiency factor
that takes into account the different nature of these two approaches,
as well as the different criteria to model the material properties with
respect to the ultimate behavior;

- Chapter 8 deals with the effects of damage on shear resisting mecha-
nisms. Once again, the FE models exposed in part I have been coupled
with the damage models detailed in part II, and lifetime predictions have
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been performed. The main conclusion of these investigations is that the
effects of damage can produce a variation in the failure modes;

4. Part IV - Other Items suggested & Further Improvements - contains two
appendices, collecting notes, comments and deepening emerged in developing
the theoretical formulations and in setting up the numerical algorithms. In
particular:

- Appendix A contains a set of notes on the so-called fiber method and
outlines some hidden aspects associated to the numerical integration of
section properties;

- Appendix B recalls the limit analysis theory. A set of basic as well as
actual applications put in evidence the powerful and also the care to be
adopted in using this type of analysis.

Finally, the main conclusions and the future developments are given.



I
SOUND RC STRUCTURES





2 A Review of the Non Linear
Beam Problem

This chapter presents the nonlinear beam problem. Since the sectional state
is a sub-module of the beam formulation, only the longitudinal problem is
presented by considering two dual approaches: a displacement-based and a
force-based (or mixed) one. By using standard finite element techniques, the
two approaches are discussed and compared.

2.1 Introduction

Beam-column finite elements are commonly derived with the displacement method
of analysis, but recent studies have highlighted the benefits of frame models that
are based on force interpolation functions. These benefits derive from the fact that
models with force interpolation functions, that reproduce the variation of internal
element forces in a strict sense, yield the exact solution of the governing equations
in the absence of geometric nonlinearity (Neuenhofer and Filippou, 1997).

The structural theory of the beam requires, at first, the definition of sectional
kinematics. Here there are many proposal, for instance the Navier-Bernoulli’s
theory, the Timoshenko’s theory, the Reddy’s third order theory, in which the
complexity of the sectional kinematics progressively grows. Today many research
proposals, focused on the aim of enhance the beam theory are avalaible. Between
them, the most elegant approach is the so-called Generalized Beam Theory, in
which the sectional kinematic presents a very hight level of generality.

Once a proper choice of the sectional kinematic is done, the beam formulation
can be based on the application of the Virtual Work Principle or on the Hu-Washizu
Variational Theorem (Taylor et al., 2003).

For these reasons, and also for the sake of clarity, the attention is given to the
dual formulations used in the developing of finite beam element models and the
section will be presented in the next chapter. Here, it must be viewed as a module
able to solve two types of problems:

- Type 1 Problem (direct):
given a strain state (the sectional strains) es, determine the stress state (the
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Static Field (1): σ, fs, Q Kinematic Field (2): ε, es, q

Virtual Displacement Principle Virtual Force Principle
(1) Real Static Field (1) Real Static Field Variation
(2) Real Kinematic Field Variation (2) Real Kinematic Field
⇒ Equilibrium ⇒ Compatibility

Table 2.1: The two way of using the Virtual Work Principle.

resultant, or restoring, or resisting section forces) fs,r:

es → fs,r (2.1)

- Type 2 Problem (indirect):
given a stress state fs,e, determine the sectional strain state es:

fs → es (2.2)

As it will be shown in the next, in a displacement-based approach the section
is used in a direct way (type 1 problem); in a force-based approach, instead, the
section is used in an indirect way (type 2 problem), but some simplifications has
been proposed in order to avoid that.

2.2 The Virtual Work Principle

The Virtual Work Principle sets the equilibrium conditions of a deformable solid.
It states that:

We = Wi (2.3)

where We is the external work and Wi is the internal work. The work is done by
the static quantities of an equilibrated field (1) and the kinematics quantities of a
compatible field (2). Any choice about fields (1) and (2) can be done. If we chose
as static field the real one and as kinematic field a virtual variation of the real
field, the Virtual Displacement Principle is obtained; if we chose as static field a
virtual variation of the real one and as kinematic field the real field, we find the
Virtual Force Principle. The first imposes equilibrium, the second compatibility,
as reported in the Tab. 2.1.

In formulating beam finite elements, both the approaches can be used. If we ap-
ply the Principle of Virtual Displacements (PVD) we have to compute the internal



2.2 The Virtual Work Principle 15

work produced by a variation of the real kinematic field with the real static field,
by assigning the nodal displacements q. In general, we don’t know the kinematic
quantities in a generic section of the element as a function of q. However, we can
interpolate them by using specific shape functions that can be ordered in a matrix
called B(x). The element formulated in this way is a displacement-based element
and it will be discussed in par. 2.3.

If we apply the Principle of Virtual Forces (PVF), we have to compute the
internal work produced by a variation of the real static field with the real kinematic
field, by assigning the nodal forces Q. Similar to before, in order to compute the
internal work we have to know the static quantities in a generic section of the
element as a function of Q. Now, however, this can be done in very simple way: by
using equilibrium statements. The result is that we can find exact shape functions
b(x) and the consequence is that, now, intrinsic approximations are not present.
The element formulated in this way is a force-based element and it will be discussed
in par. 2.4.

It is important to observe that by working with the PVF two major obstacles
arise. First, global equilibrium equations through a structural flexibility matrix
cannot be easily automated. In addition, only if we deal with a structural theory
is straightforward to find directly matrix b, but in general it is easier to postulate
the kinematic field than the static one (let’s think to a brick element with non
linear behavior for instance). For these reasons, the global equilibrium equations
are derived with the direct stiffness method, which allows the direct superposition
of individual element contributions to yield the structure stiffness and resisting
forces.

Second, the section constitutive relation is commonly given in the form σ =
σ(ε), but is seldom available in the inverse form ε = ε(σ), which is necessary for a
pure flexibility-based approach (Neuenhofer and Filippou, 1997).

In concluding, a flexibility based element presents several advantages with re-
spect a displacement based element, but the major obstacle of the flexibility formu-
lation is its numerical implementation in a standard finite element analysis program
that imposes kinematic, rather than static, boundary conditions at the element
ends (Spacone et al., 1995). These aspects produce an Element State Determina-
tion process that is more complex with respect displacement based elements. The
input are nodal displacements, and the output are nodal forces and element stiff-
ness matrix. However, a flexibility based element does not interpolate the nodal
displacements (known terms), but the nodal forces (unknown terms). There is the
so-called lack-of-fit and additional calculations are needed.

In order to define the State of the Element for a standard finite element analysis
program, that imposes kinematic boundary conditions at the element ends, we
have to find the nodal forces Q associated to the nodal displacements q. These
quantities, for a plane element, are (see Tab. 2.1):

q =
[
q1 q2 q3 q4 q5 q6

]T (2.4)

Q =
[
Q1 Q2 Q3 Q4 Q5 Q6

]T (2.5)
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2.3 Displacement Based Element (Stiffness Approach)

In the stiffness method the displacement field of the element is discretized and
interpolated in terms of generalized displacement degrees of freedom q such that:

u(x) =

[
u0(x)
v0(x)

]
= N(x)q (2.6)

Conventional frame elements are based on cubic Hermitian polynomials for the
transverse displacement fields and linear Lagrangian shape functions for the axial
displacement, as reported in Fig. 2.1.
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Figure 2.1: Shape functions for a conventional frame element.

The expression for the deformation fields is then:

es(x) =

[
ε0
χ

]
=

[
N1,x 0 0 N4,x 0 0

0 N2,xx N3,xx 0 N5,xx N6,xx

]
q = B(x)q (2.7)

According to the Principle of Virtual Displacements, the internal work is:

δWi =

∫ l

0

δeTs (x) · fs(x) dx =

=

∫ l

0

δqTBT (x) · fs(x) dx

= δqT
∫ l

0

BT (x) · fs(x) dx

= δqTQ

(2.8)

in which we can recognize the element resisting forces Q:

Q =

∫ l

0

BT (x) fs(x) dx (2.9)

In order to solve the non linear problem, a tangent approach is used. The
Jacobian matrix involved in the iterations is equal to the tangent stiffness matrix
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k of the element and it is defined by:

k =

∫ l

0

BT (x) ks(x) B(x) dx (2.10)

in which ks(x) is the tangent stiffness matrix of the section at the abscissa x of the
element.

2.3.1 Element state determination

Given the nodal displacements q, the element state determination process (finding
nodal forces and stiffness matrix) for a displacement based element can be done
through the following steps:

1. for each section, in direct form (type 1 sectional problem):

- calculate the section deformations es by using eq. (2.7);

- calculate the section forces fs as the integral over the section domain of
the stresses produced by es;

- calculate the section stiffness matrix ks;

2. weighting the section states to obtain the state of the element:

- resisting forces Q by using eq. (2.9);

- element stiffness matrix k by using eq. (2.10).

As shown, the Element State Determination process is direct and straightforward.

2.4 Force Based Element (Flexibility Approach)

In a force-based element the static field is defined by using equilibrium. Then,
the application of the Virtual Force Principle gives compatibility equations. For
the previous exposed reasons, global equilibrium equations are, once again, derived
with the direct stiffness method. However, a force-based element do not interpolate
the nodal displacements (known terms), but the nodal forces (unknown terms).
There is the so-called lack-of-fit that produces an element state determination
more complex with respect the displacement-based element. The scope of that
procedure is to determine, by using a flexibility approach, the nodal forces and the
element stiffness matrix in order to write global equilibrium equations. It is not a
pure flexibility approach, but a mixed approach as reported in (Taylor et al., 2003).
In order to do that, the definition of two reference systems is required.

2.4.1 Reference systems: with and without rigid body modes

In the following, the quantities referred to the system without rigid body modes
are conventionally over-lined.
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2.4.1.1 Static field

Let’s considered the element reported in Fig. 2.2. Since the element is free in the
space, this system is indicated as element “with rigid body modes”. The nodal
forces Q act in nodes n1 and n2.

(a) Element “with rigid body modes”. (b) Element “without rigid body modes”.

Figure 2.2: Static field: element with and without rigid body modes.

By writing equilibrium, a system of three equations in six unknowns can be ob-
tained:

Q1 +Q4 = 0

Q2 +Q5 = 0

Q3 +Q6 +Q5 · l = 0

(2.11)

In other words, between six nodal forces only three of them are independent: we
call it basic forces Q̄. They act on a system that can be viewed as the element
“without rigid body modes”, Fig. 2.2b. By choosing as basic forces the force in the
second node Q4 and the two nodal moments Q3 and Q6, we define:

Q̄1 = Q4 Q̄2 = Q3 Q̄3 = Q6 (2.12)

and

Q̄ =
[
Q̄1 Q̄2 Q̄3

]
(2.13)

The relation between the nodal forces Q and the basic forces Q̄ can be obtained
by using equilibrium. In matrix form we have:




Q1

Q2

Q3

Q4

Q5

Q6




=




−1 0 0
0 1/l 1/l
0 1 0
1 0 0
0 −1/l −1/l
0 0 1






Q̄1

Q̄2

Q̄3




Q = hTl Q̄

(2.14)

where l is the length of the element.
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2.4.1.2 Kinematic field

Similar to the static field, we can define two types of nodal displacements (Fig. 2.3):
the ones that act on the element “with rigid body modes”, marked with q, and the
ones that act on the element “without rigid body modes”, marked with q̄.

(a) Element “with rigid body modes”. (b) Element “without rigid body modes”.

Figure 2.3: Kinematic field: element with and without rigid body modes.

The relation between the two can be obtained by using the Virtual Work Principle.
The following condition holds:



q̄1
q̄2
q̄3


 =



−1 0 0 1 0 0
0 1/l 1 0 −1/l 0
0 1/l 0 0 −1/l 1







q1
q2
q3
q4
q5
q6




q̄ = hl q

(2.15)

in which we can observe that the transformation matrix is the transpose of the one
relative to the static field (see eq. (2.14)).

2.4.1.3 Additional considerations

Let’s suppose that we know the nodal forces Q and we want to find, by using a
flexibility approach, the element stiffness matrix k. We can do that by inverting the
element flexibility matrix. It’s clear that the flexibility matrix in the system with
rigid body modes is rank deficient (3 times in plane) and so that development can
not be performed. However, we can at first work in the reference system without
rigid body modes (in which matrices have full rank), and than we can move the
information in the reference system with rigid body modes. The following passages
are required:

1. by working in the element without rigid body modes, we can find the static
quantities fs(x) in a generic section by using the static shape functions matrix
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b(x):
[
N
M

]
=

[
1 0 0
0 (x/l − 1) x/l

]

Q̄1

Q̄2

Q̄3




fs(x) = b(x) Q̄

(2.16)

2. eq. (2.16) gives the section forces. By using the section in indirect way (type
2 problem), we can find the sectional deformations es(x):

es(x) = (ks)
−1 fs(x) = φs fs(x) (2.17)

where ks is the section stiffness matrix and φs is the section flexibility matrix;

3. according to the Principle of Virtual Forces the internal work is:

δWi =

∫ l

0

δfTs (x) · es(x) dx =

=

∫ l

0

δQTbT (x) · es(x) dx

= δQT

∫ l

0

bT (x) · es(x) dx

= δQT q̄

(2.18)

in which we can recognize the element nodal displacements q̄, associate to
the nodal forces Q̄, as the integral of section deformations es(x) (produced
by section forces fs(x), interpolated from Q in an exact way):

q̄ =

∫ l

0

b(x)T es(x) dx (2.19)

whose derivatives gives the flexibility matrix Φ̄:

Φ̄ =

∫ l

0

b(x)T φs b(x) dx (2.20)

4. flexibility matrix defined in eq. (2.20) is referred to the system without rigid
body modes. For that reason, matrix Φ̄ has full rank and it can be inverted
in order to obtain the stiffness matrix k̄:

k̄ =
(
Φ̄
)−1 (2.21)

5. matrix k̄ is the operator that gives:

k̄ q̄ = Q̄ (2.22)

What we need, however, is the stiffness matrix referred to the system with
rigid body modes k, so that:

k q = Q (2.23)

We can define that matrix through the following developments:
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(a) we introduce in (2.22) the expression given by eq. (2.15):

k̄ hl q = Q̄ (2.24)

(b) we pre-multiply by hTl :

hTl k̄ hl q = hTl Q̄ (2.25)

(c) for the right term, by remembering eq. (2.14), we can write:
(
hTl k̄ hl

)
q = Q (2.26)

(d) and we have find the definition of matrix k:

k = hTl k̄ hl (2.27)

2.4.1.4 Summary of the Main Transformations

Q = hTl Q̄
q̄ = hl q

k = hTl k̄ hl
Once the transformations between the two reference systems are defined, the ele-
ment state determination algorithm can be explained.

2.4.2 Element State Determination

Since we use a mixed method, the input and output quantities of the element
state determination are the same exposed in par. 2.3.1. In input we have nodal
displacements q, in output we have element resisting forces Q and element stiffness
matrix k.

It’s clear that we can’t directly use the procedure exposed in par. 2.4.1.3 since
we don’t know Q. This fact is know as lack-of-fit and it produces a non linear
system of equations at the element level. The problem can be solved through the
following steps:

1. given the nodal displacement in the element with rigid body modes q, calcu-
late the displacements in the system without rigid body modes:

q̄ = hl q (2.28)

2. determine Q̄ so that: q̄r = q̄ with:

q̄r =

∫ l

0

b(x)Tes(x) dx (2.29)

Such a condition is written in homogeneous form as follows:

g
(
Q̄
)

= q̄− q̄r = 0 (2.30)

and solved by Newton-Raphson (NR) method. The main steps of the NR
solution are:
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(a) choice of an initial solution Q̄0;

(b) linearization of the problem as follows:

g
(
Q̄
) ∼= g

(
Q̄0

)
+ J

(
Q̄0

)
·
(
Q̄− Q̄0

)
= 0 (2.31)

where J
(
Q̄0

)
is the Jacobian matrix evaluated in Q̄0;

(c) search for a new solution, by solving Eq. (2.31):

Q̄1 = Q̄0 −
[
J
(
Q̄0

)]−1 ·g(Q̄0) (2.32)

(d) iteration until convergence.

In a more explicit form, the Jacobian matrix is:

J
(
Q̄
)

=
∂g
(
Q̄
)

∂Q̄
=

∂

∂Q̄
(
q̄− q̄r

(
Q̄
))

= − ∂

∂Q̄
(
q̄r
(
Q̄
))

= − ∂

∂Q̄

(∫ l

0

b(x)Tes(x) dx

)
= −

∫ l

0

b(x)T
∂

∂Q̄
(es(x)) dx

= −
∫ l

0

b(x)T
∂

∂Q̄
(
φs(x)fs(x, Q̄)

)
dx =

= −
∫ l

0

b(x)Tφs(x)
∂

∂Q̄
(
b(x)Q̄

)
dx =

= −
∫ l

0

b(x)Tφs(x)b(x) dx =

= − Φ̄

(2.33)

which shows how J
(
Q̄
)
equals the element flexibility matrix Φ̄ (in the system

without rigid body modes).
The recursive equation of the NR solution results:

Q̄i+1 = Q̄i + [Φ̄i]
−1 ·g

(
Q̄i

)
=

= Q̄i + ∆Q̄i

(2.34)

and will be iterated until convergence.

At each element iteration, we have to compute the residual deformations:

g
(
Q̄i

)
= q̄− q̄r,i (2.35)

The restoring displacements are computed by using eq. (2.29) as integral of
section deformations. In order to do that, the generic section of the element
is used in an indirect way as highlighted by eq. (2.2): for each section, hence,
a non linear system of equations must be solved.

3. once convergence is achieved, we move to the system with rigid body modes
in order to calculate:
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- the element resisting forces:

Q = hTl Q̄ (2.36)

- the element stiffness matrix:

k = hTl [Φ̄i]
−1 hl = hTl k̄ hl (2.37)

and the Element State Determination process is completed.

In conclusion, the Element State Determination is a non linear system of equa-
tions at the element level, due to a lack-of-fit between the force based element and
the global displacement based approach. The non linear solution strategy here ex-
posed is the classical Newton-Raphson approach (NR). Then, at the sectional level,
since we have to compute deformations from interpolated forces, another system of
non linear equations (NR) is present. This holds for each sectional iteration (loop
k), for each element iteration (loop j ), for each structural iteration (loop i) (see
Fig. 2.4).

The procedure here exposed is not the unique way to handle the lack-of-fit
problem, in fact there are several procedures that can be used as exposed in the
next.

2.4.3 Different types of state determination algorithms and
additional comments

In (Nukala and White, 2004) four state determination algorithms, referred to as the
L-L, L-N, N-L and N-N procedures, are discussed and compared. The first symbol
indicates the element level, the second one indicates the section level. Furthermore,
the symbol N indicates that local nonlinear iteration is performed prior to return-
ing to the higher level, whereas the symbol L indicates that only the linearized
equations are satisfied at the corresponding local level.

1. N-N algorithm: iterative element, iterative section.
Conventional Newton iterations on both the element and section level (pro-
cedure previously exposed).

2. N-L algorithm: iterative element, non-iterative section.
At the section level only the linearized equations are satisfied, at the element
level the complete nonlinear iteration is performed. This procedure has been
proposed in (Taucer et al., 1991) and it has been largely used ((Petrangeli
and Ciampi, 1997), (Spacone et al., 1996), (Monti and Spacone, 2000)).

3. L-N algorithm: non-iterative element, iterative section.
Complete iteration at the section level, linearized approach at the element
level.

4. L-L algorithm: non-iterative element, non-iterative section.
It entails the iterative satisfaction of the nonlinear element compatibility and
section constitutive equations for each global iteration. This approach has
been proposed in (Neuenhofer and Filippou, 1997).
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By comparing these procedures, it is clear that the L-L state determination
algorithm resembles more closely the computational steps in a stiffness-based ele-
ment state determination, because only the global Newton type iteration is present.
However, it needs more element storage requirements and it is not particularly ad-
vantageous for cases in which a large number of elements remain elastic and inelas-
ticity is concentrated in a few elements. In general, as indicated in (Nukala and
White, 2004), the N-N algorithm seems the most efficient of the four algorithms.

Actually, the most complete and update formulation can be found in (Lee and
Filippou, 2009), that in addition addresses the issue of a singular section stiffness
(the plastic hinge case). In particular, by using the singular value decomposition
method, it is mathematically proved that a singular section stiffness is not a prob-
lem since one inverts it to get the section flexibility but then inverts it again after
weighting to get the element stiffness, as reported in eq. (2.37).

In Tab. 2.2 a brief summary for displaced-based and force-based element state
determination is reported. Fig. 2.4 shows the logical differences between the two
approaches; in particular, it remarks the attention on the lack-of-fit problem that
produce an element state determination more computational involved in the case
of force-based elements.

Displacement-based Force-based

Section deformations es(x) = B(x)q
Section forces fs(x) = b(x) Q̄
Section state determination fs(x), ks(x) es(x), φs = (ks)−1

Restoring displacements(∗) q̄ =
∫ l
0
b(x)T es(x) dx

Flexibility matrix(∗) Φ̄ =
∫ l
0
b(x)T φs b(x) dx

Stiffness matrix(∗) k̄ =
(
Φ̄
)−1

Element restoring forces Q =
∫ l
0
BT (x) fs(x) dx

Element stiffness matrix k k = hTl k̄ hl
(∗) = quantities in the reference system without rigid body modes

Table 2.2: Comparisons between displaced-based and force-based element state deter-
mination.
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Figure 2.4: Logic comparison between displacement-based (only a global non linear sys-
tem of eqs.) and force-based elements (additional nested non linear systems).
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2.5 Treatment of distributed loads

Let’s considered the element in Fig. 2.5 on which the distributed loads fx and fy
act. The loads define a vector fp so that:

fp =
[
fx fy

]T (2.38)

Figure 2.5: Distributed loads on the element.

2.5.1 Displacement-based element

In a displacement-based element, distributed loads can be included by means of
equivalent nodal forces, whose definition is given by the virtual external work δWe,
produced by the displacements u and the distributed forces fp, and computed in
all the sections of the element:

δWe =

∫ l

0

δuT (x) · fp(x) dx (2.39)

By introducing eq. (2.6) in eq. (2.39) we obtain:

δWe =

∫ l

0

δuT (x) · fp(x) dx =

∫ l

0

δ(N(x)q)T · fp dx =

=

∫ l

0

δqTN(x)T fp dx =

= δqT
∫ l

0

N(x)T · fp dx

= δqT fne

(2.40)

from which we can define the equivalent nodal forces fne:

fne =

∫ l

0

N(x)T · fp dx (2.41)

These nodal forces depends on the shape functions N(x) used to discretize and
interpolate the displacement field in terms of generalized displacement degrees of
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freedom q. If cubic Hermitian polynomials for the transverse displacement fields
and linear Lagrangian shape functions for the axial displacement are chosen (see
Fig. 2.1), the following equivalent nodal forces result:

fne =

[
fx l

2

fy l

2

fy l
2

12

fx l

2

fy l

2
−fy l

2

12

]T
(2.42)

2.5.2 Force-based element

In a force-based element, the inclusion of distributed forces is straightforward. Here
in fact, we don’t interpolate the displacement field, but the static field, and we do
that in an exact way by using equilibrium statements. With respect the formulation
presented in par. 2.4.1.3 on page 19, we just have to add the contribution, in terms
of equilibrium, of the distributed loads represented in Fig. 2.6.

(a) Distributed load in x direction. (b) Distributed load in y direction.

Figure 2.6: Distributed loads and associated reaction forces.

In particular, eq. (2.14) became:



Q1

Q2

Q3

Q4

Q5

Q6




=




−1 0 0
0 1/l 1/l
0 1 0
1 0 0
0 −1/l −1/l
0 0 1






Q̄1

Q̄2

Q̄3


+




−l 0
0 −l/2
0 0
0 0
0 −l/2
0 0




[
fx
fy

]

Q = hTl Q̄ + hf fp

(2.43)

and for eq. (2.16) the following relation holds:

[
N
M

]
=

[
1 0 0
0 (x/l − 1) x/l

]

Q̄1

Q̄2

Q̄3


+

[
(l − x) 0

0 (x2/2− x l/2)

] [
fx
fy

]

fs(x) = b(x) Q̄ + bf (x) fp

(2.44)

These additional terms enter in the element state determination algorithm and the
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restoring displacements (eq. (2.29)) became:

q̄r =

∫ l

0

b(x)Tes(x) dx

=

∫ l

0

b(x)Tφs(x) fs(x) dx

=

∫ l

0

b(x)Tφs(x)
(
b(x) Q̄ + bf (x) fp(x)

)
dx

=

(∫ l

0

b(x)Tφs(x)b(x) dx

)
Q̄ +

∫ l

0

b(x)Tφs(x)bf (x) fp(x) dx

= Φ̄ Q̄ + q̄r,f

(2.45)

2.6 Geometric non linearities

Let P be an axial force applied to the ends of the beam element, and let ∆ be the
corresponding displacement (Fig. 2.7), (Malerba and Bontempi, 1989), (Biondini
et al., 2004a). This displacement is congruent with the deformed shape and equals
the difference between the length of the bent beam, assumed as axially rigid, and
the length of the cord of its deformed axis:

Figure 2.7: Second order geometrical non-linearity.

ds− dx =
√

(dx2 + dy2)− dx =

= dx

[
1 +

1

2

(
dv

dx

)2

− 1

4

(
dv

dx

)4

+ · · ·
]

=
1

2

(
dv

dx

)2

+ · · ·
(2.46)

By neglecting the higher order terms, ∆ became:

∆ =

∫ l

0

(ds− dx) dx =
1

2

∫ l

0

(
dv

dx

)2

dx (2.47)

and adopting the beam’s displacement functions in the following form:

dv

dx
=
[
0 N2,x N3,x 0 N5,x N6,x

]
q = G ·q (2.48)
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the displacement and his virtual variation can be written as:

∆ =
1

2
qT
∫ l

0

GT (x) ·G(x) dx ·q

δ∆ = δqT
∫ l

0

GT (x) ·G(x) dx ·q
(2.49)

The external virtual work can be hence written as:

δWG = P · δ∆ = δqT
∫ l

0

P GT (x) ·G(x) dx ·q (2.50)

By using the same notation introduce before, we can find a geometric contribution
to the element resisting forces Q:

Qg = δqT
(∫ l

0

P GT (x) ·G(x) dx

)
q =

= δqT kg q

(2.51)

in which kg is the geometric stiffness matrix of the element.
In the special case of constant axial force, the geometric stiffness matrix can be

evaluated in close form:

kg = P

∫ l

0

GT (x)G(x) dx =
P

10l




0 0 0 0 0 0
0 12 l 0 −12 l

0 l
4

3
l2 0 −l − l

2

3
0 0 0 0 0 0
0 −12 −l 0 12 −l
0 l − l

2

3
0 −l −4

3
l2




(2.52)

In general, however, also the effects due to geometric non linearities must be eval-
uated by numerical integration since axial forces derive from variable sectional
states.

2.7 Displacement-based vs force-based element: comparisons

In a displacement-based element, the formulation is based on interpolation functions
for the transverse and axial displacements of the member; the functions here used
are cubic Hermitian polynomials for the transverse displacement fields and linear
Lagrangian shape functions for the axial displacement, so that linear curvature and
constant axial strain along the element result. Such a choice represents the exact
solution only for a linear elastic, prismatic beam, without distributed loads. This is
an approximation that, in nonlinear analysis, has well-known shortcomings. These
limitations can be overcome with two types of approaches:

- by using higher-order displacement interpolation functions in connection with
internal element nodes;
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- by increase the discretization used, for example each structural element is
divided in more finite beam elements.

The formulation of flexibility-based elements, on the other hand, is based on in-
terpolation functions for the internal forces. For geometrically linear structures it
is straightforward to select polynomials that satisfy the element equilibrium in a
strict sense, such as constant axial force and linearly varying bending moments in
absence of element loads. These interpolation functions represent the exact solution
to the governing equations, irrespective of the geometry and constitutive law of the
beam element. A discretization error, as generally encountered in stiffness-based
formulations, does not occur (Neuenhofer and Filippou, 1997).

Many comparisons between displacement-based and force-based elements has
been done in recent years, by showing the superior behavior of the second approach.
Usually the comparisons are done in the non linear field, because this is the research
goal. However, it is more useful to present comparisons in the elastic field, so that
we can compare the two approaches in a very simple way.

Let’s considering the simple beam shows in Tab. 2.3. The beam is prismatic
and linear elastic. Four examples are considered:

1. Case 1 :
the first node is clamped and the second is free; a concentrated force F acts
in the second node.
In this case, the deformed configuration is a 3th order curve and the bending
moment distribution is linear. Hence, both displacement-based and force-
based elements give the exact solution.

2. Case 2 :
the first node is clamped and the second is free; a distributed loads p acts on
the beam.
In this case, the deformed configuration is a 4th order curve and the bending
moment distribution is parabolic. Both displacement-based and force-based
elements give the exact nodal displacement solution, but only the force-based
formulation is able to catch the complete deformed shape. In fact, with
a displacement-based approach we describe at least a 3th order curve and
linear curvature.
It follows that the deformed configuration is approximate, and the bending
moment distribution is not correct.

3. Case 3 :
with respect Case 2, also the second node is clamped.
In this case, all nodal displacements are equal to zero. Since a displacement-
based element interpolates that displacements, the complete deformed con-
figuration is equal to zero; hence, zero curvatures and zero bending moments
in all the sections descend. In contrast, a force-based approach is able, once
again, to find the exact solution.

4. Case 4 :
it is equal to Case 3, but the beam is studied by using two finite elements. We
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can observe that now also the displacement-based element gives a deformed
configuration with exact nodal displacements but, as happen in Case 2, the
shape is approximated and the the bending moments are not correct.

Case Deformed configurations Bending moments

Dotted lines = displacement-based (d-b) element
Continuous lines = force-based (f-b) element

1(a): 1 element 1(b): d-b ∨ and f-b ∨ 1(c): d-b ∨, f-b ∨

2(a): 1 element 2(b): d-b ∧, f-b ∨ 2(c): d-b ∧, f-b ∨

3(a): 1 element 3(b): d-b ∧, f-b ∨ 3(c): d-b ∧, f-b ∨

4(a): 2 elements 4(b): d-b ∧, f-b ∨ 4(c): d-b ∧, f-b ∨
∨ = numerical solution coincident with the exact one
∧ = numerical solution approximated with respect the exact one

Table 2.3: Some comparisons between displacement-based (dotted lines) and force-based
approach (continuous line).

These simple examples help in understand the differences between a displacement-
based and a force-based element, nevertheless only linear elastic field is considered.
In particular, two type of approximations are present in a displacement approach:

- deformed modes are chosen a priori and, in general, they represents the
correct solution only for some special cases;

- distributed forces are introduced by means of equivalent nodal forces and
hence only the correct nodal effects is described.
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In contrast, a force-based element gives always the correct solutions.

When we move to nonlinear field, these limitations are accentuated and the
superior behavior of flexibility-based element is evident. In the non linear field all
the integrals shown in this chapter must be evaluated by numerical integration.
Thus, the flexibility approach yields the exact solution within the numerical inte-
gration tolerance, since the axial force interpolation function agrees with the exact
solution. A discretization error does not arise. By contrast, the shortcomings of
the stiffness approach are evident. While the latter satisfies equilibrium in the
weighted residual sense, it does not satisfy equilibrium in a strict point-by-point
sense.

In conclusion, the superior behavior of the flexibility-based element derives from
the fact that it is always straightforward to come up with force interpolation func-
tions that satisfy equilibrium exactly, while it is often impossible to find exact
displacement interpolation functions. The consequence is that the finite-element
solution with the stiffness based frame element can only be improved by refining
the finite-element mesh. By contrast, the numerical accuracy of a flexibility-based
approach can be increased by a better numerical integration through either mesh
refinement or an increase of the number of integration points in the element.

2.8 Shear Modeling

In the previous, the attention is given to the problem related to normal stresses.
In fact, all the expression are referred to the generalized stresses N and M and the
work due to the shear force V is not included. In the following, hence, it is recalled
how it is possible to include shear in the non linear beam problem by considering
both displacement-based and force-based elements.

At first, it is necessary to update the generalized stresses and strains definition,
as follow:

es =



ε0
γ0
χ0


 fs =



N
V
M


 (2.53)

With respect to before, the generalized shear deformation γ0 and the shear force
V are present.

2.8.1 Displacement-based Element

The Timoshenko beam finite element with linear interpolation functions of both
transverse deflection and rotation is considered:



u0
v0
ϕ


 =



N1 0 0 N2 0 0
0 N1 0 0 N2 0
0 0 N1 0 0 N2


q = N(x)q (2.54)

with:
N1 = 1− x

l
N2 =

x

l
(2.55)
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Figura 4.3 - Funzioni di forma. 

Le deformazioni generalizzate ', ( e , definite dall'Equazione 4.9, possono 

essere legate alle variabili nodali mediante la relazione: 
 

 �',(� = EA8, 0 00 A8, −A80 0 A8, 
A9, 0 00 A9, −A90 0 A9, 

F ∙ 5 (4.15) 

 

 0 = G ∙ 5  
 

Dove si è fatto uso delle derivate delle funzioni di forma AH, : 
 

 A8, = − 8D (4.16) 

 

 A9, = 8D (4.17) 

 

Utilizzando le Espressioni 4.9 e 4.10, è possibile esprimere il campo 

deformativo e di sforzo in funzione delle sole variabili nodali 5, uniche incognite 

del problema. 
 

 / = � ∙ G ∙ 5 (4.18) 
 

 2 = 1 ∙ � ∙ G ∙ 5 (4.19) 

 

4.1.3 Prevenzione dello shear locking 
 

Il modello di spostamenti così formulato, sebbene rispetti la condizione di 

completezza, per la sua semplicità è soggetto a problemi di natura numerica: se 

applicato all'analisi di travi snelle, nelle quali la deformazione tagliante tende ad 

annullarsi, il modello conduce ad un'amplificazione spuria della rigidezza 

flessionale con conseguente sottostima degli spostamenti trasversali. 

Il problema, noto in letteratura come shear locking, è stato bypassato con 

l'utilizzo del metodo linked (Auricchio, 2003), che consiste nell'introduzione di un 

legame tra il campo di spostamenti verticali �� e rotazionali � mediante la 

funzione di forma bolla AD: 
 

 AD = 89 � I1 −  DJ (4.20) 

 

Figure 2.8: Shape functions.

By applying the internal compatibility equations, the definition of the generalized
stresses is:



ε0
γ0
χ0


 =



N1,x 0 0 N2,x 0 0

0 N1,x −N1 0 N2,x −N2

0 0 N1,x 0 0 N2,x


q = Bq (2.56)

in which the derivatives of the shape functions are present:

N1,x = −1

l
N2,x =

1

l
(2.57)

Then, by following the same steps exposed before, the restoring forces and
element stiffness matrix can be defined.

2.8.1.1 Shear Locking Prevention

In order to avoid shear locking effects, the following bubble function is introduced
(Auricchio, 2003):

NL =
1

2
x
(

1− x

l

)
(2.58)

N =



N1 0 0 N2 0 0
0 N1 NL 0 N2 −NL
0 0 N1 0 0 N2


 (2.59)

B =



N1,x 0 0 N2,x 0 0

0 N1,x NL,x −N1 0 N2,x −NL,x −N2

0 0 N1,x 0 0 N2,x


 (2.60)
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Figura 4.4 - Funzione bolla. 

La matrice delle funzioni di forma C e quella di congruenza G (Equazioni 4.12 

e 4.15) assumono la forma: 
 

 C = @A8 0 00 A8 AD0 0 A8
A9 0 00 A9 −AD0 0 A9

B (4.21) 

 

 G = EA8, 0 00 A8, �AD, −A8	0 0 A8, 
A9, 0 00 A9, �−AD, − A9	0 0 A9, 

F (4.22) 

 

Sostituendo le espressioni delle funzioni di forma nella matrice G, si nota che 

questa è costituita da soli termini costanti lungo lo sviluppo dell'elemento: 

l'introduzione della funzione bolla equivale pertanto ad una integrazione ridotta 

della deformabilità tagliante, con un solo punto di Gauss posto nella mezzeria 

dell'elemento 

 

4.1.4 Il Principio degli Spostamenti Virtuali 
 

Il sistema di equazioni risolventi, nelle sole variabili nodali, viene ricavato 

mediante l'applicazione del Principio degli Spostamenti Virtuali. La condizione 

sufficiente per l'equilibrio del continuo è che la variazione di lavoro interno 

eguagli quella del lavoro esterno, per ogni variazione virtuale del campo di 

spostamenti K5: 
 

 KLH = KLM      ∀ K5 (4.23) 
 

La variazione di lavoro esterno, per il singolo elemento finito, assume la 

forma: 
 

 KLM�K�H	 = P K�H? ∙ QR,HD� S� + K5H? ∙ QT,H + K5H? ∙ UV,H (4.24) 
 

Dove K�H rappresenta la variazione virtuale del campo di spostamenti, 

funzione delle variabili nodali K5H, e QR,H, QT,H ed UV,H rappresentano 

rispettivamente le azioni distribuite (Figura 4.5), quelle nodali e le forze di 

interazione agenti sui gradi di libertà comuni con altri elementi finiti. 

Figure 2.9: Bubble shape function.

Then, reduced integration is applied.
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2.8.2 Force-based Element

In a force-based element, since equilibrium interpolating matrices are used, the
inclusion of shear modeling is very simple and, in addition, no shear locking phe-
nomena born.

Figure 2.10: Inclusion of shear in a force-based element.



N
V
M


 =




1 0 0
0 −1/l −1/l
0 (x/l − 1) x/l





Q̄1

Q̄2

Q̄3




fs(x) = b(x) Q̄

(2.61)

2.9 Closing Remarks

In this chapter, the non linear beam problem has been presented. Particular at-
tention is given to the dual formulations that can be applied in formulating finite
beam-column elements. The two strategies have been presented and critically com-
pared, also with respect the description of shear.

As a general conclusion, it can be stated that a force-based element presents
a superior behavior, because it satisfy equilibrium in a strict point-by-point sense.
In addition, shear locking problems do not arise. However, a displacement-based
element is more simple and less computational demanding.

Once again, it must be pointed out that in this chapter only the longitudinal
problem is considered, since the section is simply a sub-module of the formulation.
Concerning the section, in chapter 3 the State of the Art will be recalled and in
chapter 5 two sectional proposals will be given.



3 RC Sectional Models: Problem
Statement & State of the Art

In the previous chapter the non linear beam problem has been presented. Par-
ticular attention is given to the dual approaches that can be applied in formu-
lating finite beam-column elements. The so-obtained techniques are generally
valid in dealing with geometric and material non linearities. In this chapter,
the problem is outlined with respect RC structures.

3.1 Definition of the Problem

The Finite Element Method (FEM), applied to frame structures discretized with
monodimensional models, works through nested modules that goes from the struc-
ture to the material point (fibre). In particular, 4 nested states must be evaluated:

1. the state of the structure, that is made of elements;

2. the state of the element, that is made of sections;

3. the state of the section, that is made of fibers;

4. the state of the fiber, on which constitutive laws are assumed and/or evaluated
by using specific techniques.

The state of the structure is obtained by assembling the states of the elements in
which it is subdivided. In a global displacement approach, the state of the element
must be obtained starting from its nodal displacements and the results of this phase,
called Element State Determination, are the nodal resisting forces and the element
stiffness matrix. Chapter 2 has clearly deal with it, and two dual formulations
have been presented: a displacement-based and a force-based formulation. It has
been shown that the state of the element is obtained by weighting the state of the
sections that compose it, but no regards are given to the material.

The exposed formulation is hence general, but now it is necessary to specify it
to RC frame structures. In doing that, the work must be done only in the definition
of the sectional state, that is obtained by integrating the state of the fibers that
compose it. In RC sections, it’s clear that we have to deal with two materials:
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(1) the concrete, that is described by a continuum sectional domain, and (2) the
reinforcing steels, that is described by discrete quantities arbitrary positioned in
the sectional domain.

This chapter, hence, deals with the definition of the state of a RC section,
by proposing adequately sectional models that can then applied in formulating fi-
nite beam-column elements. As already outlined, this process can be considered
straightforward if we deal with the problem of normal stresses, but the same prob-
lem in which an hight interaction between normal and shear stresses is present is
still today an object of several researches. In the following, the main reasons are
presented and discussed.

3.1.1 Dealing with Normal Forces

Since a RC section is composed by two materials, the concrete - that corresponds
to a continuum domain - and the reinforcing steel - that corresponds to a union
of discrete bars, in order to obtained the sectional state a specific sectional inte-
gration strategy is needed. At this end, the most adopted strategy is the so called
“fiber approach”, in which the section is subdivide in sub-domains, called fibers
(C.E.B., 1996), according to Fig. 3.1. Mathematically speaking, this rule refers to
the Riemann Mid-Point Integration Rule, through which the function that has to
be integrated is evaluated in the centroid of the fiber and then weighted by its
area; doing that for all the fibers, the integral is obtained through the summation
of each fiber’s contribution. Other integration techniques can be proposed. Some
examples are given in Appendix A, in which a new sectional discretization strategy,
having the fibers approach as a simply particular case, is proposed.

If the Navier-Bernoulli (plane section) hypothesis is assumed (see Tab. 3.1(a)),
only the uniaxial longitudinal strain εx is active. Hence, given the strains in all

Figure 3.1: Fibers Sectional Approach (normal stresses).

the fibers, the longitudinal stresses σx can be computed by using a non-linear
uniaxial constitutive model. Then, their integral over the sectional domain gives
the generalized stresses N,M as Fig. 3.1 shows.
When fiber sectional discretization is combined with a force-based element, the
highest degree of accuracy and stability is obtained in a frame structural model at
the current state of knowledge.
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If the normal solicitations are dominant in the behavior of the framed structure,
plane section hypothesis produce a suitable kinematic constraint, because it has
been observed that this hypotheses remains valid for all range of loading (Bairán,
2005).

However, common fiber beam-column elements that neglect shear effects and
their interaction with other internal forces are not generally applicable, since it has
been recognized that in a beam model the main assumptions, such as the plane
section hypothesis, are more important than the details on more specific aspects
related to the element’s formulation or to the material’s behavior.

3.1.2 Dealing with Normal and Tangential Forces

The inclusion of shear effects in these models is not an easy task (Ferreira, 2013).
If for uniaxial concrete response is simply to furnish uniaxial constitutive models
σ = σ(ε), the same approach applied to a τ = τ(γ) relationship can not be proposed
since the hight complexity of the shear mechanisms in RC elements, generated
along with the strong non linear behavior found in diagonally cracked concrete,
that depends not only to the concrete characteristics, but also to the geometry of
the section and to the position and the types of reinforcements.

On the contrary, as it will be explained in chapter 4, 2D modeling of shear
resistance mechanisms in RC structures is performed since more than thirty years
and successfully applied in the non linear analysis for all range off loadings.

Figure 3.2: Membrane RC element, (Vecchio and Collins, 1986).

Several strategies have been proposed, but in this work the attention is focused
on smeared type models (Fig. 3.2) that treat reinforcing concrete as a continuum
material with his own state-dependent relationships:


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
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σ = D (ε) ε

(3.1)

With this in mind, one objective of this thesis is to investigate the strategies in order
to move from bidimensional towards monodimensional modeling of RC framed
structures, including also shear effects. The effort is to minimize the discrepancies
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between 2D and 1D modeling, using concepts based on Continuum Mechanics
(Fig. 3.3).

Figure 3.3: Enhancement of 1D solution, adapted from (Bairán, 2005).

Once constitutive law are assumed according to eq. (3.1), the stresses as a
function of the strains (σ = σ(ε)) can be evaluated at the material (or fiber) level.
The goal, now, is understand which structural beam theories can be used in order
to do that:

(a) Navier-Bernoulli Beam Theory:
in this theory, plane section hypothesis is used and shear deformation is
neglected. According to Tab. 3.1(a), only the longitudinal deformation εx is
active. As already sad, this implies that uniaxial non-linear constitutive laws
can be applied, but finite beam elements based on this sectional kinematic can
address only the problem of normal stresses. However, if shear is dominant,
this models produce erroneous predictions. In any case, since only εx is
described by this theory, a link with a constitutive law as (3.1) can not be
performed.

(b) Timoshenko Beam Theory:
once again, plane section hypothesis is chosen, but a constant shear strain
distribution is taken into account. Now, two deformations are described
by the model (εx and γxy) but the transversal strain εy, necessary to use
the constitutive model, is not present (Tab. 3.1(b)). However, as it will be
explained later in details, by introducing some assumptions regarding the
strains/stresses patterns, this kinematic can be used in order to formulate
shear-flexible beam-column RC elements.

(c) Generalized Beam Theory:
in the previous theories, the sectional kinematic is taken fixed and the in-
terpolating matrix as depends only on the geometry of the section. Here,
instead, the sectional kinematic is not only able to describe the total strain’s
tensor ε = [εx, εy, γxy]T , but it is also state-dependent with matrix as that
depends on strains (Tab. 3.1(c)). Clearly, this sectional kinematic presents
a very hight level of generality and it really addresses the problem of shear
modeling in RC framed structures, but the implementation of the so-obtained
model is quite challenging due to computational efficient and stability.
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Sectional Kinematic Fundamental Relations

4 Problem statement and State of the Art

Navier-Bernoulli Hypotheses:
{
u(x, y) = u0(x)− y · v′0(x)
v(x) = v0(x)

(1.2)

[
εx
]
=
[
1 −y

] [ε0
χ0

]
=

= as(y) es
(1.3)

(a) Navier-Bernoulli kinematic.

4 Problem statement and State of the Art

{
u(x, y) = u0(x)− y · (v′0(x)− γ0(x))

v(x) = v0(x)
(1.2)

[
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]
=

[
1 0 −y
0 1 0
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(b) Timoshenko kinematic.

4 Problem statement and State of the Art

u(x, y) = ups(x, y) + uw(x, y) (1.2)
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(c) Generalized kinematic.

Table 3.1: Navier-Bernoulli, Timoshenko and Generalized sectional kinematic.
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3.1.3 Shear in RC sections: the main difficulty

As already exposed, when tangential forces are applied, plane section hypothesis
is no longer valid due to the appearance of distortion and the distribution of shear
strains and stresses in the cross section is not only more complex, but also state-
dependent, showing important variations while cracking is developing and when the
ultimate state is approached. The problem can be better explained if Jouraswki
strategy is applied, as outlined in (Ferreira, 2013).

It is know that a variation of the bending moments along the beam’s axis is
possible thanks to the presence of shear forces. Due to this bending increment, a
fiber is submitted to an increment of axial stresses that are equilibrated by out-of-
plane stresses, as deduced by Jourawski in 1856, Fig. 3.4.

(a) Internal forces in a beam. (b) Equilibrium in a fibre.

Figure 3.4: In plane shear stresses in a beam deduced by Jourawski (1856).

The equilibrium equation of the fibre is given by:
∂σx
∂x

+
∂τxy
∂y

= 0 (3.2)

and the shear stresses can be written as:

τxy(y) = −1

b

∫ y

0

∂σx
∂x

b dy (3.3)

In case of isotropic-elastic material, the solution of eq. (3.3) is straightforward:

τxy(y) = −1

b

∫ y

0

V b y

I
dy =

V Q(y)

I b(y)
(3.4)

where Q(y) is the first moment of area integrated from the bottom of the section
to point at quote y and b(y) is the width of the cross section at the coordinate z.
Once the shear stress is defined with eq. (3.4), the shear strain can be obtained by
means of the elastic tangential modulus G:

γxy(y) = − 1

Gb

∫ y

0

V b y

I
dy =

1

G

V Q(y)

I b(y)
(3.5)
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However, cracked concrete is no longer elastic, but presents a strong anisotropic
behavior, in which coupling of normal and tangential stresses and strains appears.
For these reasons, eq. (3.5) is no longer valid, since shear stresses depend not
only on the sectional geometry, but also on the state of the material. In other
words, in RC section it’s not possible to define a corrective shear area, because in
the non linear field there is the dependability also from the material and hence it
becomes state-dependent. This is the main problematic of the difficulty of modeling
nonlinear response of RC sections with the presence of shear forces and, as exposed
in (Bairán and Marí, 2007a), finding a solution or approximation for eqs. (3.4) and
(3.5) is the basis for a kinematic constraint to model shear on cracked RC sections.

3.2 Sectional kinematic approaches considering shear effects

A general review of shear-flexural beam finite elements can be found in (Ceresa
et al., 2007). The classification here proposed defines three group of models:

1. Strut & Tie based Models
in which independent models for the shear and flexural deformations are su-
perimposed, and where a truss analogy is then employed to take into account
the shear deformation and strength. Between them, the following works must
be cited:

- Guedes et al. (1994), that proposes a two node Timoshenko beam ele-
ment. The truss is made of two diagonal concrete struts, whose inclina-
tion represents the directions of principal stresses and strains, and steel
ties in longitudinal and transversal directions. The element has been
implemented in CASTEM 2000(1);

- Ranzo and Petrangeli (1998), focused on a 2-D fiber element following
a flexibility-based approach. The axial-flexural behavior is a function
of section axial deformation and curvature as in the traditional fiber
model, while the shear behavior is a function of the section distortion
identified with a nonlinear truss model;

- Martinelli (2008), in which the contributions to shear strength due to
both the arch action and the inclined thrust-line developing in squat
elements are accounted for. Additionally, in shear, the Mörsch’s truss
is explicitly modeled considering both the tension and compression con-
crete diagonal.

2. Inter-Fibre Equilibrium Approaches
in which shear stress-strain distributions are state-dependent and consequently
change during loading. These models, equivalent to force-based sectional
models, present a very hight accuracy, but also an highly complexity and
computational demanding. Between them:

- Vecchio and Collins (1988), that propose the Dual Section Analysis.
By defining two control sections, the increment of longitudinal stress is

(1)CASTEM 2000 is a Finite Element Program developed by CEA (2000).
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computed by Finite Differences. This is not a real sectional model but
it must be cited because it is the pioneer model of this group;

- Bentz (2000), that improves the Dual Section Analysis by taking the
limit of the distance between the two controlled sections. This method,
called Longitudinal Stiffness Method, is effectively a sectional model
and contains the basis of several more recent approaches. The method
is actually implemented in Response-2000(2);

- Bairán (2005), in which a model named TINSA (Total Interaction Non
linear Sectional Analysis) is presented. This is the most elegant sec-
tional approach proposed to date. Since a finite element analysis of
the cross sections - using 2D concrete elements and 1D steel elements -
must be performed, its implementation in a structural program is quite
challenging;

- Mohr (2011), that deals with a generalized section kinematic aiming
of extending TINSA from the section at the element level. The model
addresses the state-dependent problem by using a series of polynomials.

3. Fixed Pattern Approaches
where an a priori fixed constraint is assumed in the cross section. These
approaches, equivalent to the displacement-based sectional model, estimate
the internal shear stress-strain distribution in the cross section by assuming a
shear strain or stress pattern that is taken constant during the whole loading
process. The inter-fibre equilibrium is not directly verified, as the compatibil-
ity in the transversal direction is not guaranteed. These models are however
less computational demanding but even less accurate than the previous ones.
Between them there are:

- Güner (2008), where shear at the cross section is considered through
different options based on Fixed Pattern Approaches. It was concluded
that shear-strain-based approaches are less computationally demanding
and more stable then shear-stress-based approaches;

- Ceresa et al. (2009), in which a fixed strain approach has been presented
and implemented in a 2 nodes Timoshenko beam;

- Ferreira (2013), that presents a hybrid fibre beam-column model based
on a fixed stress approach. The so-obtained procedure has been imple-
mented in CONS(3) and permits to perform not only analysis of shear
critical framed structures, but also to include the time-dependent be-
havior of RC structures and to study different strengthening scenarios.

Some of these models are detailed in the next.

(2)Response-2000 is free program developed at University of Toronto by Collins, Vecchio, Bentz
and others. Web: http://www.ecf.utoronto.ca/ąńbentz/download.htm.

(3)CONS is a Finite Element Program originally developed at University of California (Berkeley)
by Marí (1984) and extended at the Universitat Politècnica de Catalunya - BarcelonaTECH (UPC)
in (Marí, 2000).

http://www.ecf.utoronto.ca/��bentz/download.htm
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3.2.1 Strut & Tie based Models

3.2.1.1 Martinelli’s Modeling Strategy

Martinelli (2008) developed a fiber column element based on Timoshenko beam
theory to model the cyclic response of the end critical zones of bridge piers charac-
terized by a low-to-intermediate shear slenderness. Shear contribution is computed
by integration along the element of the shear force acting at the cross-sections. The
shear resultant over the cross-section is derived by different resisting mechanisms -
the arch action, the truss mechanism, the compression concrete above the neutral
axis, and aggregate interlock, each of which studied in independent fashion.

ACI Structural Journal/November-December 2008676

RESEARCH SIGNIFICANCE
This paper presents a fiber element capable to account for

the cyclic nonlinear shear behavior, and its coupling with
bending, by means of shear resisting mechanisms. The
proposed element is of simple implementation in existing
displacement-based FE codes, being formulated in the
stiffness-based framework for FE. Its efficiency and
computational economy allow for the coarse modeling of
entire structures, with significant shear effects in the
nonlinear response under cyclic or seismic forces, and for
the economical evaluation of the reanalysis cycles
required by performance-based design.

FIBER ELEMENT FORMULATION
The element follows the approach for stiffness-based fiber

elements representative of RC members. The geometry and
the position of the reinforcement are described by subdividing
selected cross sections in small portions (fibers) where the
cyclic nonlinear material behavior is followed, distinct for
concrete and reinforcement. The nodal restoring forces and
the stiffness matrix are computed by area integrals over these
cross sections and subsequent line integrals along the
element length. The proposed element is characterized by
the way the shear force is obtained, superimposing in the
cross section different shear resisting mechanisms derived
starting from the Timoshenko beam theory to describe shear.

A three-node element is adopted to obtain a linear variation
of the curvature (Fig. 1(a)). To avoid locking, which may
also arise in short nonlinear beam elements using this kinematic
model, the formulation adopts the shear constraints
method.10,11 Consequently, in addition to axial displacements
uan = {u1…3}T the transverse displacements (w1, w3, v1, and
v3) of the end nodes and the nodal rotations ϕzn = {ϕz,1…3}T,
ϕyn = {ϕy,1…3}T are assumed as independent parameters,
herein listed in vector un = {uan

T,v1,v2,w1,w2, ϕzn
T, ϕyn

T}T.
Note that the element does not include torsional degrees of
freedom.

According to the adopted beam kinematics, the only
nonzero components of the engineering strain tensor, listed
in ε = {εx , γxy, γxz}

T, are related to the displacements and
rotation fields inside the element in the following way

(1a)

(1b)

(1c)

where εx is the normal strain; γxy and γxz are the shear distortions;
ua(x) is the displacement along the x axis of the element of a
reference point in the cross section, usually the centroid; v(x)
and w(x) are the transverse displacements of the same point;
ϕy(x) and ϕz(x) the rotations of the cross section, defined
according to Fig. 1(a); and the curvatures χz and χy have
been introduced. Herein the shear strains γxy and γxz are
assumed constant over the cross section, consistent with the
Timoshenko beam model. Denoting with εg = {εa(x), γxy(x),
γxz(x), χz(x), χy(x)}T the vector of the generalized strain
components, which can be used equally well to describe the
strain fields inside the element, from Eq. (1) the following
matrix relation is derived

ε = b(y,z)εg(x) = b(y,z)Cx(u(x)) (2)

where Cx is the linear differential (with respect to x) compatibility
operator that transforms the displacements and rotations vector
u(x) = {ua(x), v(x), w(x), ϕz(x), ϕy(x)}T into εg.

Mapping the x axis domain, which spans the element, in
r ∈ [–1   1] and using an isoparametric formulation, u(x(r))
can be computed from un using appropriate shape functions
N1(r)…N6(r)

(3)

as
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or, in matrix form u(r) = N(r)un. In Eq. (3), n1 = {N1(r),
N2(r), N3(r)} and n2 = {N4(r), N5(r), N6(r)}.
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Fig. 1—(a) Nodal displacements and control sections of
RCIZ element; and (b) shear-resisting contributions in RC
beams. (Note: Fsl = force in flexural reinforcement; Fc =
compressive force in concrete above neutral axis; Tag and
Nag = components of force due to aggregate interlock;
Vdw = force due to dowel action; and Fs = force in transverse
shear reinforcement.)

(a) Nodal displacements and con-
trol sections.
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Fig. 1—(a) Nodal displacements and control sections of
RCIZ element; and (b) shear-resisting contributions in RC
beams. (Note: Fsl = force in flexural reinforcement; Fc =
compressive force in concrete above neutral axis; Tag and
Nag = components of force due to aggregate interlock;
Vdw = force due to dowel action; and Fs = force in transverse
shear reinforcement.)

(b) Shear-resisting contributions
in RC beams.

1.1 Sectional kinematic approaches considering shear effects 3

1.1.1 Martinelli’s Modeling Strategy

Martinelli [1998, 2002 CITA] developed a fiber column element based on Timoshenko
beam theory to model the cyclic response of the end critical zones of bridge piers char-
acterized by a low-to-intermediate shear slenderness. Shear contribution is computed by
integration along the element of the shear force acting at the cross-sections. The shear
resultant over the cross-section is derived by different resisting mechanisms - the arch ac-
tion, the truss mechanism, the compression concrete above the neutral axis, and aggregate
interlock, each of which studied in independent fashion.
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displacement-based FE codes, being formulated in the
stiffness-based framework for FE. Its efficiency and
computational economy allow for the coarse modeling of
entire structures, with significant shear effects in the
nonlinear response under cyclic or seismic forces, and for
the economical evaluation of the reanalysis cycles
required by performance-based design.

FIBER ELEMENT FORMULATION
The element follows the approach for stiffness-based fiber

elements representative of RC members. The geometry and
the position of the reinforcement are described by subdividing
selected cross sections in small portions (fibers) where the
cyclic nonlinear material behavior is followed, distinct for
concrete and reinforcement. The nodal restoring forces and
the stiffness matrix are computed by area integrals over these
cross sections and subsequent line integrals along the
element length. The proposed element is characterized by
the way the shear force is obtained, superimposing in the
cross section different shear resisting mechanisms derived
starting from the Timoshenko beam theory to describe shear.

A three-node element is adopted to obtain a linear variation
of the curvature (Fig. 1(a)). To avoid locking, which may
also arise in short nonlinear beam elements using this kinematic
model, the formulation adopts the shear constraints
method.10,11 Consequently, in addition to axial displacements
uan = {u1…3}T the transverse displacements (w1, w3, v1, and
v3) of the end nodes and the nodal rotations ϕzn = {ϕz,1…3}T,
ϕyn = {ϕy,1…3}T are assumed as independent parameters,
herein listed in vector un = {uan

T,v1,v2,w1,w2, ϕzn
T, ϕyn

T}T.
Note that the element does not include torsional degrees of
freedom.

According to the adopted beam kinematics, the only
nonzero components of the engineering strain tensor, listed
in ε = {εx , γxy, γxz}

T, are related to the displacements and
rotation fields inside the element in the following way

(1a)

(1b)

(1c)

where εx is the normal strain; γxy and γxz are the shear distortions;
ua(x) is the displacement along the x axis of the element of a
reference point in the cross section, usually the centroid; v(x)
and w(x) are the transverse displacements of the same point;
ϕy(x) and ϕz(x) the rotations of the cross section, defined
according to Fig. 1(a); and the curvatures χz and χy have
been introduced. Herein the shear strains γxy and γxz are
assumed constant over the cross section, consistent with the
Timoshenko beam model. Denoting with εg = {εa(x), γxy(x),
γxz(x), χz(x), χy(x)}T the vector of the generalized strain
components, which can be used equally well to describe the
strain fields inside the element, from Eq. (1) the following
matrix relation is derived

ε = b(y,z)εg(x) = b(y,z)Cx(u(x)) (2)

where Cx is the linear differential (with respect to x) compatibility
operator that transforms the displacements and rotations vector
u(x) = {ua(x), v(x), w(x), ϕz(x), ϕy(x)}T into εg.

Mapping the x axis domain, which spans the element, in
r ∈ [–1   1] and using an isoparametric formulation, u(x(r))
can be computed from un using appropriate shape functions
N1(r)…N6(r)

(3)

as

ua(r) = n1uan (3a)

ϕz(r) = n1ϕzn (3b)

ϕy(r) = n1ϕyn (3c)

v(r) = (N1(r)v1 + N3(r)v3 + n2ϕzn (3d)

w(r) = (N1(r)w1 + N3(r)w3 + n2ϕyn (3e)

or, in matrix form u(r) = N(r)un. In Eq. (3), n1 = {N1(r),
N2(r), N3(r)} and n2 = {N4(r), N5(r), N6(r)}.

From Eq. (3), εg(x) = Cx(u(x)) = Cr(N(r))|J|un, where |J| is
the Jacobian of the transformation x(r) and the variable x or
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Fig. 1—(a) Nodal displacements and control sections of
RCIZ element; and (b) shear-resisting contributions in RC
beams. (Note: Fsl = force in flexural reinforcement; Fc =
compressive force in concrete above neutral axis; Tag and
Nag = components of force due to aggregate interlock;
Vdw = force due to dowel action; and Fs = force in transverse
shear reinforcement.)

(a) Nodal displacements and control
sections.

ACI Structural Journal/November-December 2008676

RESEARCH SIGNIFICANCE
This paper presents a fiber element capable to account for

the cyclic nonlinear shear behavior, and its coupling with
bending, by means of shear resisting mechanisms. The
proposed element is of simple implementation in existing
displacement-based FE codes, being formulated in the
stiffness-based framework for FE. Its efficiency and
computational economy allow for the coarse modeling of
entire structures, with significant shear effects in the
nonlinear response under cyclic or seismic forces, and for
the economical evaluation of the reanalysis cycles
required by performance-based design.

FIBER ELEMENT FORMULATION
The element follows the approach for stiffness-based fiber

elements representative of RC members. The geometry and
the position of the reinforcement are described by subdividing
selected cross sections in small portions (fibers) where the
cyclic nonlinear material behavior is followed, distinct for
concrete and reinforcement. The nodal restoring forces and
the stiffness matrix are computed by area integrals over these
cross sections and subsequent line integrals along the
element length. The proposed element is characterized by
the way the shear force is obtained, superimposing in the
cross section different shear resisting mechanisms derived
starting from the Timoshenko beam theory to describe shear.

A three-node element is adopted to obtain a linear variation
of the curvature (Fig. 1(a)). To avoid locking, which may
also arise in short nonlinear beam elements using this kinematic
model, the formulation adopts the shear constraints
method.10,11 Consequently, in addition to axial displacements
uan = {u1…3}T the transverse displacements (w1, w3, v1, and
v3) of the end nodes and the nodal rotations ϕzn = {ϕz,1…3}T,
ϕyn = {ϕy,1…3}T are assumed as independent parameters,
herein listed in vector un = {uan

T,v1,v2,w1,w2, ϕzn
T, ϕyn

T}T.
Note that the element does not include torsional degrees of
freedom.

According to the adopted beam kinematics, the only
nonzero components of the engineering strain tensor, listed
in ε = {εx , γxy, γxz}

T, are related to the displacements and
rotation fields inside the element in the following way

(1a)
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where εx is the normal strain; γxy and γxz are the shear distortions;
ua(x) is the displacement along the x axis of the element of a
reference point in the cross section, usually the centroid; v(x)
and w(x) are the transverse displacements of the same point;
ϕy(x) and ϕz(x) the rotations of the cross section, defined
according to Fig. 1(a); and the curvatures χz and χy have
been introduced. Herein the shear strains γxy and γxz are
assumed constant over the cross section, consistent with the
Timoshenko beam model. Denoting with εg = {εa(x), γxy(x),
γxz(x), χz(x), χy(x)}T the vector of the generalized strain
components, which can be used equally well to describe the
strain fields inside the element, from Eq. (1) the following
matrix relation is derived

ε = b(y,z)εg(x) = b(y,z)Cx(u(x)) (2)

where Cx is the linear differential (with respect to x) compatibility
operator that transforms the displacements and rotations vector
u(x) = {ua(x), v(x), w(x), ϕz(x), ϕy(x)}T into εg.

Mapping the x axis domain, which spans the element, in
r ∈ [–1   1] and using an isoparametric formulation, u(x(r))
can be computed from un using appropriate shape functions
N1(r)…N6(r)

(3)

as
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or, in matrix form u(r) = N(r)un. In Eq. (3), n1 = {N1(r),
N2(r), N3(r)} and n2 = {N4(r), N5(r), N6(r)}.
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the Jacobian of the transformation x(r) and the variable x or
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Fig. 1—(a) Nodal displacements and control sections of
RCIZ element; and (b) shear-resisting contributions in RC
beams. (Note: Fsl = force in flexural reinforcement; Fc =
compressive force in concrete above neutral axis; Tag and
Nag = components of force due to aggregate interlock;
Vdw = force due to dowel action; and Fs = force in transverse
shear reinforcement.)

(b) Shear-resisting contributions in
RC beams.
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The presence of a second diagonal (which is in tension, as
illustrated in Fig. 2(b) for a negative shear distortion) has two
positive effects. First of all, the tension strength of the
concrete can represent the effect of the aggregate interlock
on the rotation of principal compression stresses. In fact, this
effect shows degradation with the increase of the shear
distortion and with the accumulation of strain in the transverse
steel, as it happens for the aggregate interlock. Second, it
avoids the ambiguities present in models2 in which only the
active compressed diagonal is present, related to switching
from one compressed diagonal to the other whenever the
shear distortion changes in sign.

The stress τxy,t is derived considering the effects of two
different diagonal stress fields (one for each concrete diagonal).
The values of the stresses in these diagonal fields are derived
from the analysis of a single module of the ideal truss
(Fig. 2(a)), assuming this is in the x-y plane for the
computation of Vy,s. The following procedure is followed:

1) Compatibility of the shear strain γ in the plane of the
truss with the shear strain γxy(r) from the Timoshenko beam
model in the cross section is imposed assuming (Fig. 2(b))
γ = γxy(r).

2) Strains εd1 and εd2 in the concrete diagonals are computed
from the shear strain γ in the truss plane and the strain εs of the
transverse reinforcement by means of Mohr’s circle under the
assumption that, for a truss in the x-y plane, εy = εs

(8)

where αi,j denotes the cosine of the angle between directions
i and j. A similar transformation is used to compute the strain
ε⊥ in the direction normal to each diagonal.

3) The stress σs of the transverse reinforcement and σd1
and σd2 in the concrete diagonals are computed using
uniaxial constitutive laws for steel and concrete, according
to the current value of εs , εd1, and εd2 coming from Eq. (8)
and those ε⊥ normal to the diagonals; the latter are required
by the model for the strain softening in compression of the
concrete constitutive law.

εd1 εyαy d1, αy d1, γxyαx d1, αy d1,+=

εd2 εyαy d2, αy d2, γxyαx d2, αy d2,+=

4) The equilibrium condition in the y-direction at the
reinforcement-diagonals node (Fig. 2(c)) provides

Fs + Fd1σs,d1 + Fd2σs,d2 = 0 (9)

where αs,d denotes the cosine of the angle between the diagonal
direction and the shear reinforcement.

The forces Fd1, Fd2, and Fs can be expressed as functions of
the normal stresses in Ks, Kd1, and Kd2 exploiting the geometry
of Fig. 2(c). The equilibrium Eq. (9) can then be recast more
conveniently in terms of stresses in the following form

ρsσs + σd1αy,d1αy,d1 + σd2αy,d2αy,d2 = 0 (10)

where ρs denote the reinforcement ratio of the shear reinforcement.
5) If the unbalanced force in Eq. (9) is greater than a fixed

tolerance, the strain εs is modified and Steps 2 to 5 are repeated.
Finally, the shear stress τxy,t is computed superimposing

the effects of the uniaxial stress fields in the concrete diagonals

τxy,t = σd1αx,d1αy,d1 + σd2αx,d2αy,d2 = 0 (11)

Due to the kinematical model adopted for the truss, the
state of the longitudinal reinforcement has no direct effect on
the shear stress τxy,t and the coupling with flexure is
produced both by the kinematic field of the element and by
the assumption that the shear stress τxy,t acts on the area At of
concrete in tension in the cross section, which descends from
the flexural behavior of the element.

The truss analogy adopted is simple in use when cyclic
deformations are concerned, but it is restricted to the case of
shear acting in a fixed plane. This may not be a limit for
some cross section shapes if it is possible to identify a few
planes in which trusses may form, for example, shear walls
or box-hollow cross sections.

Also, the contribution of the truss to the shear stiffness is
derived from the model of Fig. 3, once the tangent stiffness
Es

t , Ed1
t , Ed2

t  of the transverse reinforcement and the
concrete diagonals, respectively, are known. The following
linear incremental relations hold

(12)

Substituting Eq. (12) in Eq. (11); using Eq. (8), (10), and
(11) and solving for γxy yields the value of the tangent shear
modulus equivalent to the truss action 

 = (13)

where ς = .

Arch action and compression concrete 
contribution

In RC beams, shear can be sustained by inclined internal
compression force in the concrete above the neutral axis
(Fig. 1(b)); this mechanism is termed arch action and
requires a reaction component at the beam ends, which is
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Fig. 2—Truss mechanism: (a) module of truss used in
computing shear force; (b) deformed truss configuration;
and (c) concrete portion, equivalent to hinge of roller, used
in imposing equilibrium in y direction.

(c) Nodal displacements and
control sections.
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The presence of a second diagonal (which is in tension, as
illustrated in Fig. 2(b) for a negative shear distortion) has two
positive effects. First of all, the tension strength of the
concrete can represent the effect of the aggregate interlock
on the rotation of principal compression stresses. In fact, this
effect shows degradation with the increase of the shear
distortion and with the accumulation of strain in the transverse
steel, as it happens for the aggregate interlock. Second, it
avoids the ambiguities present in models2 in which only the
active compressed diagonal is present, related to switching
from one compressed diagonal to the other whenever the
shear distortion changes in sign.

The stress τxy,t is derived considering the effects of two
different diagonal stress fields (one for each concrete diagonal).
The values of the stresses in these diagonal fields are derived
from the analysis of a single module of the ideal truss
(Fig. 2(a)), assuming this is in the x-y plane for the
computation of Vy,s. The following procedure is followed:

1) Compatibility of the shear strain γ in the plane of the
truss with the shear strain γxy(r) from the Timoshenko beam
model in the cross section is imposed assuming (Fig. 2(b))
γ = γxy(r).

2) Strains εd1 and εd2 in the concrete diagonals are computed
from the shear strain γ in the truss plane and the strain εs of the
transverse reinforcement by means of Mohr’s circle under the
assumption that, for a truss in the x-y plane, εy = εs

(8)

where αi,j denotes the cosine of the angle between directions
i and j. A similar transformation is used to compute the strain
ε⊥ in the direction normal to each diagonal.

3) The stress σs of the transverse reinforcement and σd1
and σd2 in the concrete diagonals are computed using
uniaxial constitutive laws for steel and concrete, according
to the current value of εs , εd1, and εd2 coming from Eq. (8)
and those ε⊥ normal to the diagonals; the latter are required
by the model for the strain softening in compression of the
concrete constitutive law.

εd1 εyαy d1, αy d1, γxyαx d1, αy d1,+=

εd2 εyαy d2, αy d2, γxyαx d2, αy d2,+=

4) The equilibrium condition in the y-direction at the
reinforcement-diagonals node (Fig. 2(c)) provides

Fs + Fd1σs,d1 + Fd2σs,d2 = 0 (9)

where αs,d denotes the cosine of the angle between the diagonal
direction and the shear reinforcement.

The forces Fd1, Fd2, and Fs can be expressed as functions of
the normal stresses in Ks, Kd1, and Kd2 exploiting the geometry
of Fig. 2(c). The equilibrium Eq. (9) can then be recast more
conveniently in terms of stresses in the following form

ρsσs + σd1αy,d1αy,d1 + σd2αy,d2αy,d2 = 0 (10)

where ρs denote the reinforcement ratio of the shear reinforcement.
5) If the unbalanced force in Eq. (9) is greater than a fixed

tolerance, the strain εs is modified and Steps 2 to 5 are repeated.
Finally, the shear stress τxy,t is computed superimposing

the effects of the uniaxial stress fields in the concrete diagonals

τxy,t = σd1αx,d1αy,d1 + σd2αx,d2αy,d2 = 0 (11)

Due to the kinematical model adopted for the truss, the
state of the longitudinal reinforcement has no direct effect on
the shear stress τxy,t and the coupling with flexure is
produced both by the kinematic field of the element and by
the assumption that the shear stress τxy,t acts on the area At of
concrete in tension in the cross section, which descends from
the flexural behavior of the element.

The truss analogy adopted is simple in use when cyclic
deformations are concerned, but it is restricted to the case of
shear acting in a fixed plane. This may not be a limit for
some cross section shapes if it is possible to identify a few
planes in which trusses may form, for example, shear walls
or box-hollow cross sections.

Also, the contribution of the truss to the shear stiffness is
derived from the model of Fig. 3, once the tangent stiffness
Es

t , Ed1
t , Ed2

t  of the transverse reinforcement and the
concrete diagonals, respectively, are known. The following
linear incremental relations hold

(12)

Substituting Eq. (12) in Eq. (11); using Eq. (8), (10), and
(11) and solving for γxy yields the value of the tangent shear
modulus equivalent to the truss action 

 = (13)

where ς = .

Arch action and compression concrete 
contribution

In RC beams, shear can be sustained by inclined internal
compression force in the concrete above the neutral axis
(Fig. 1(b)); this mechanism is termed arch action and
requires a reaction component at the beam ends, which is
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Fig. 2—Truss mechanism: (a) module of truss used in
computing shear force; (b) deformed truss configuration;
and (c) concrete portion, equivalent to hinge of roller, used
in imposing equilibrium in y direction.

(d) Shear-resisting contribu-
tions in RC beams.
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The presence of a second diagonal (which is in tension, as
illustrated in Fig. 2(b) for a negative shear distortion) has two
positive effects. First of all, the tension strength of the
concrete can represent the effect of the aggregate interlock
on the rotation of principal compression stresses. In fact, this
effect shows degradation with the increase of the shear
distortion and with the accumulation of strain in the transverse
steel, as it happens for the aggregate interlock. Second, it
avoids the ambiguities present in models2 in which only the
active compressed diagonal is present, related to switching
from one compressed diagonal to the other whenever the
shear distortion changes in sign.

The stress τxy,t is derived considering the effects of two
different diagonal stress fields (one for each concrete diagonal).
The values of the stresses in these diagonal fields are derived
from the analysis of a single module of the ideal truss
(Fig. 2(a)), assuming this is in the x-y plane for the
computation of Vy,s. The following procedure is followed:

1) Compatibility of the shear strain γ in the plane of the
truss with the shear strain γxy(r) from the Timoshenko beam
model in the cross section is imposed assuming (Fig. 2(b))
γ = γxy(r).

2) Strains εd1 and εd2 in the concrete diagonals are computed
from the shear strain γ in the truss plane and the strain εs of the
transverse reinforcement by means of Mohr’s circle under the
assumption that, for a truss in the x-y plane, εy = εs

(8)

where αi,j denotes the cosine of the angle between directions
i and j. A similar transformation is used to compute the strain
ε⊥ in the direction normal to each diagonal.

3) The stress σs of the transverse reinforcement and σd1
and σd2 in the concrete diagonals are computed using
uniaxial constitutive laws for steel and concrete, according
to the current value of εs , εd1, and εd2 coming from Eq. (8)
and those ε⊥ normal to the diagonals; the latter are required
by the model for the strain softening in compression of the
concrete constitutive law.

εd1 εyαy d1, αy d1, γxyαx d1, αy d1,+=

εd2 εyαy d2, αy d2, γxyαx d2, αy d2,+=

4) The equilibrium condition in the y-direction at the
reinforcement-diagonals node (Fig. 2(c)) provides

Fs + Fd1σs,d1 + Fd2σs,d2 = 0 (9)

where αs,d denotes the cosine of the angle between the diagonal
direction and the shear reinforcement.

The forces Fd1, Fd2, and Fs can be expressed as functions of
the normal stresses in Ks, Kd1, and Kd2 exploiting the geometry
of Fig. 2(c). The equilibrium Eq. (9) can then be recast more
conveniently in terms of stresses in the following form

ρsσs + σd1αy,d1αy,d1 + σd2αy,d2αy,d2 = 0 (10)

where ρs denote the reinforcement ratio of the shear reinforcement.
5) If the unbalanced force in Eq. (9) is greater than a fixed

tolerance, the strain εs is modified and Steps 2 to 5 are repeated.
Finally, the shear stress τxy,t is computed superimposing

the effects of the uniaxial stress fields in the concrete diagonals

τxy,t = σd1αx,d1αy,d1 + σd2αx,d2αy,d2 = 0 (11)

Due to the kinematical model adopted for the truss, the
state of the longitudinal reinforcement has no direct effect on
the shear stress τxy,t and the coupling with flexure is
produced both by the kinematic field of the element and by
the assumption that the shear stress τxy,t acts on the area At of
concrete in tension in the cross section, which descends from
the flexural behavior of the element.

The truss analogy adopted is simple in use when cyclic
deformations are concerned, but it is restricted to the case of
shear acting in a fixed plane. This may not be a limit for
some cross section shapes if it is possible to identify a few
planes in which trusses may form, for example, shear walls
or box-hollow cross sections.

Also, the contribution of the truss to the shear stiffness is
derived from the model of Fig. 3, once the tangent stiffness
Es

t , Ed1
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t  of the transverse reinforcement and the
concrete diagonals, respectively, are known. The following
linear incremental relations hold

(12)

Substituting Eq. (12) in Eq. (11); using Eq. (8), (10), and
(11) and solving for γxy yields the value of the tangent shear
modulus equivalent to the truss action 

 = (13)

where ς = .

Arch action and compression concrete 
contribution

In RC beams, shear can be sustained by inclined internal
compression force in the concrete above the neutral axis
(Fig. 1(b)); this mechanism is termed arch action and
requires a reaction component at the beam ends, which is
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Fig. 2—Truss mechanism: (a) module of truss used in
computing shear force; (b) deformed truss configuration;
and (c) concrete portion, equivalent to hinge of roller, used
in imposing equilibrium in y direction.

(e) Nodal displacements and
control sections.
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provided by the tie action of the longitudinal reinforcing
bars. A similar mechanism was pointed out by Priestley et al.16

for squat bridge piers, and is already well known for squat
shear walls,17 where part of the shear forces is transferred
directly from one end of the structural element to the other
through a compression field. This resembles the effect of an
inclined compression strut at an angle α with the element
longitudinal axis (Fig. 3(a)). In the model by Priestley et al.,16

the tie action is the axial force N and the portion VFc of shear
force transferred is limited to VFc = Ntan(α). Experimental
results18 point out that the importance of this resisting mechanism
increases as the angle α increases but, at the same time,
the available ductility decreases more than proportionally. For
large values of α, the collapse is due to crushing of the
compression concrete.

In fiber elements adopting uniaxial constitutive laws, the
direction of the concrete fibers is generally normal to the
cross section. In the proposed fiber model, however, which
adopts a uniaxial stress-strain relation for the concrete, the
effect of the inclined internal compression force on the shear
strength is reproduced by a suitable rotation of the response
direction of the fibers, that may then become non-normal to
the cross section during the loading history. The fibers are
assumed aligned with the direction of the compression strut
of Fig. 3(a) to reproduce the arch effect. From the mechanical
point of view, this corresponds to two common assumptions: the
directions of the principal stresses and strains are coincident and
the strut direction determines that of the principal compressive
stress σ2 in the concrete.

The shear force corresponding to this mechanism is
derived in the cross section from the strain εx at each fiber
initially with reference to the case of the strut in the x-y
plane. From a Mohr’s circle for strains, under the assumption
that εy = 0, it is possible to compute the principal strain ε2 for
the generic fiber

ε2 = εx /2 + εx /2cos(2α) (14)

Figure 3(b) and (c) illustrate the application of Eq. (14) for
increasing values of the angle α. For a fixed value of εx , the
compressive strain ε2 increases with α; concrete damage
also increases, depending on plastic part of ε2.

The stress σ2, corresponding to the strain ε2, is computed from
a uniaxial material model (to be described in the following). It
must be recognized that ε2 is consistent (refer to Fig. 3(b) and
(c)) with a shear strain γ that is different from the one given by
the beam element kinematics; this last, however, is only an
average approximation of the behavior of an RC element.

Given σ2, the corresponding normal stress σx and tangential
stress τxy,s are obtained from a Mohr’s circle for stresses
under the assumption of null principal tension stress, σ1 = 0.
The general three-dimensional case is treated in a similar way,
being now the inclined strut not necessarily in the x-y plane.

Indicating with αi the director cosine of the strut with
element axis i = x, y, z, the following stresses are computed
in the cross section

σx = σ2αxαx (15a)

τxy,s = σ2αxαy (15b)

τxz,s = σ2αxαz (15c)

The integration of σx over the concrete area Ac and of τxy,s
and τxz,s over the compression concrete area Acc yields the
concrete contribution to the generalized internal forces at the
cross section

(16a)

(16b)

(16c)

(16d)

(16e)

From Eq. (15) and (16), it appears that the fiber direction
directly couples shear with bending; however, the process
requires an a priori knowledge of the angle α.

The axial force value is not usually high in squat elements:
therefore, it is assumed that the inclined strut connects the
center of compression of the end section having the highest
bending moment with the centroid of the cross section
having zero bending moment. The value of α for each
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Fig. 3—(a) Arch-action-resisting mechanism in squat RC
elements; (b) and (c) Mohr’s circles for strains at increasing
values of angle α; and (d) model used in computing strut
angle α.

(f) Nodal displacements and control sections.
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Figure 1.2: Martinelli’s Element Modeling.

(c) Truss-action Mechanism.

1.1 Sectional kinematic approaches considering shear effects 3

1.1.1 Martinelli’s Modeling Strategy

Martinelli [1998, 2002 CITA] developed a fiber column element based on Timoshenko
beam theory to model the cyclic response of the end critical zones of bridge piers char-
acterized by a low-to-intermediate shear slenderness. Shear contribution is computed by
integration along the element of the shear force acting at the cross-sections. The shear
resultant over the cross-section is derived by different resisting mechanisms - the arch ac-
tion, the truss mechanism, the compression concrete above the neutral axis, and aggregate
interlock, each of which studied in independent fashion.
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RESEARCH SIGNIFICANCE
This paper presents a fiber element capable to account for

the cyclic nonlinear shear behavior, and its coupling with
bending, by means of shear resisting mechanisms. The
proposed element is of simple implementation in existing
displacement-based FE codes, being formulated in the
stiffness-based framework for FE. Its efficiency and
computational economy allow for the coarse modeling of
entire structures, with significant shear effects in the
nonlinear response under cyclic or seismic forces, and for
the economical evaluation of the reanalysis cycles
required by performance-based design.

FIBER ELEMENT FORMULATION
The element follows the approach for stiffness-based fiber

elements representative of RC members. The geometry and
the position of the reinforcement are described by subdividing
selected cross sections in small portions (fibers) where the
cyclic nonlinear material behavior is followed, distinct for
concrete and reinforcement. The nodal restoring forces and
the stiffness matrix are computed by area integrals over these
cross sections and subsequent line integrals along the
element length. The proposed element is characterized by
the way the shear force is obtained, superimposing in the
cross section different shear resisting mechanisms derived
starting from the Timoshenko beam theory to describe shear.

A three-node element is adopted to obtain a linear variation
of the curvature (Fig. 1(a)). To avoid locking, which may
also arise in short nonlinear beam elements using this kinematic
model, the formulation adopts the shear constraints
method.10,11 Consequently, in addition to axial displacements
uan = {u1…3}T the transverse displacements (w1, w3, v1, and
v3) of the end nodes and the nodal rotations ϕzn = {ϕz,1…3}T,
ϕyn = {ϕy,1…3}T are assumed as independent parameters,
herein listed in vector un = {uan

T,v1,v2,w1,w2, ϕzn
T, ϕyn

T}T.
Note that the element does not include torsional degrees of
freedom.

According to the adopted beam kinematics, the only
nonzero components of the engineering strain tensor, listed
in ε = {εx , γxy, γxz}

T, are related to the displacements and
rotation fields inside the element in the following way

(1a)

(1b)

(1c)

where εx is the normal strain; γxy and γxz are the shear distortions;
ua(x) is the displacement along the x axis of the element of a
reference point in the cross section, usually the centroid; v(x)
and w(x) are the transverse displacements of the same point;
ϕy(x) and ϕz(x) the rotations of the cross section, defined
according to Fig. 1(a); and the curvatures χz and χy have
been introduced. Herein the shear strains γxy and γxz are
assumed constant over the cross section, consistent with the
Timoshenko beam model. Denoting with εg = {εa(x), γxy(x),
γxz(x), χz(x), χy(x)}T the vector of the generalized strain
components, which can be used equally well to describe the
strain fields inside the element, from Eq. (1) the following
matrix relation is derived

ε = b(y,z)εg(x) = b(y,z)Cx(u(x)) (2)

where Cx is the linear differential (with respect to x) compatibility
operator that transforms the displacements and rotations vector
u(x) = {ua(x), v(x), w(x), ϕz(x), ϕy(x)}T into εg.

Mapping the x axis domain, which spans the element, in
r ∈ [–1   1] and using an isoparametric formulation, u(x(r))
can be computed from un using appropriate shape functions
N1(r)…N6(r)

(3)

as

ua(r) = n1uan (3a)

ϕz(r) = n1ϕzn (3b)

ϕy(r) = n1ϕyn (3c)

v(r) = (N1(r)v1 + N3(r)v3 + n2ϕzn (3d)

w(r) = (N1(r)w1 + N3(r)w3 + n2ϕyn (3e)

or, in matrix form u(r) = N(r)un. In Eq. (3), n1 = {N1(r),
N2(r), N3(r)} and n2 = {N4(r), N5(r), N6(r)}.

From Eq. (3), εg(x) = Cx(u(x)) = Cr(N(r))|J|un, where |J| is
the Jacobian of the transformation x(r) and the variable x or
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Fig. 1—(a) Nodal displacements and control sections of
RCIZ element; and (b) shear-resisting contributions in RC
beams. (Note: Fsl = force in flexural reinforcement; Fc =
compressive force in concrete above neutral axis; Tag and
Nag = components of force due to aggregate interlock;
Vdw = force due to dowel action; and Fs = force in transverse
shear reinforcement.)

(a) Nodal displacements and control
sections.
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Fig. 1—(a) Nodal displacements and control sections of
RCIZ element; and (b) shear-resisting contributions in RC
beams. (Note: Fsl = force in flexural reinforcement; Fc =
compressive force in concrete above neutral axis; Tag and
Nag = components of force due to aggregate interlock;
Vdw = force due to dowel action; and Fs = force in transverse
shear reinforcement.)

(b) Shear-resisting contributions in
RC beams.

1.1 Sectional kinematic approaches considering shear effects 3

1.1.1 Martinelli’s Modeling Strategy

Martinelli [1998, 2002 CITA] developed a fiber column element based on Timoshenko
beam theory to model the cyclic response of the end critical zones of bridge piers char-
acterized by a low-to-intermediate shear slenderness. Shear contribution is computed by
integration along the element of the shear force acting at the cross-sections. The shear
resultant over the cross-section is derived by different resisting mechanisms - the arch ac-
tion, the truss mechanism, the compression concrete above the neutral axis, and aggregate
interlock, each of which studied in independent fashion.
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model, the formulation adopts the shear constraints
method.10,11 Consequently, in addition to axial displacements
uan = {u1…3}T the transverse displacements (w1, w3, v1, and
v3) of the end nodes and the nodal rotations ϕzn = {ϕz,1…3}T,
ϕyn = {ϕy,1…3}T are assumed as independent parameters,
herein listed in vector un = {uan

T,v1,v2,w1,w2, ϕzn
T, ϕyn

T}T.
Note that the element does not include torsional degrees of
freedom.

According to the adopted beam kinematics, the only
nonzero components of the engineering strain tensor, listed
in ε = {εx , γxy, γxz}

T, are related to the displacements and
rotation fields inside the element in the following way

(1a)

(1b)

(1c)

where εx is the normal strain; γxy and γxz are the shear distortions;
ua(x) is the displacement along the x axis of the element of a
reference point in the cross section, usually the centroid; v(x)
and w(x) are the transverse displacements of the same point;
ϕy(x) and ϕz(x) the rotations of the cross section, defined
according to Fig. 1(a); and the curvatures χz and χy have
been introduced. Herein the shear strains γxy and γxz are
assumed constant over the cross section, consistent with the
Timoshenko beam model. Denoting with εg = {εa(x), γxy(x),
γxz(x), χz(x), χy(x)}T the vector of the generalized strain
components, which can be used equally well to describe the
strain fields inside the element, from Eq. (1) the following
matrix relation is derived

ε = b(y,z)εg(x) = b(y,z)Cx(u(x)) (2)

where Cx is the linear differential (with respect to x) compatibility
operator that transforms the displacements and rotations vector
u(x) = {ua(x), v(x), w(x), ϕz(x), ϕy(x)}T into εg.

Mapping the x axis domain, which spans the element, in
r ∈ [–1   1] and using an isoparametric formulation, u(x(r))
can be computed from un using appropriate shape functions
N1(r)…N6(r)

(3)

as

ua(r) = n1uan (3a)

ϕz(r) = n1ϕzn (3b)

ϕy(r) = n1ϕyn (3c)

v(r) = (N1(r)v1 + N3(r)v3 + n2ϕzn (3d)

w(r) = (N1(r)w1 + N3(r)w3 + n2ϕyn (3e)

or, in matrix form u(r) = N(r)un. In Eq. (3), n1 = {N1(r),
N2(r), N3(r)} and n2 = {N4(r), N5(r), N6(r)}.

From Eq. (3), εg(x) = Cx(u(x)) = Cr(N(r))|J|un, where |J| is
the Jacobian of the transformation x(r) and the variable x or
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Fig. 1—(a) Nodal displacements and control sections of
RCIZ element; and (b) shear-resisting contributions in RC
beams. (Note: Fsl = force in flexural reinforcement; Fc =
compressive force in concrete above neutral axis; Tag and
Nag = components of force due to aggregate interlock;
Vdw = force due to dowel action; and Fs = force in transverse
shear reinforcement.)

(b) Shear-resisting contributions in
RC beams.
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The presence of a second diagonal (which is in tension, as
illustrated in Fig. 2(b) for a negative shear distortion) has two
positive effects. First of all, the tension strength of the
concrete can represent the effect of the aggregate interlock
on the rotation of principal compression stresses. In fact, this
effect shows degradation with the increase of the shear
distortion and with the accumulation of strain in the transverse
steel, as it happens for the aggregate interlock. Second, it
avoids the ambiguities present in models2 in which only the
active compressed diagonal is present, related to switching
from one compressed diagonal to the other whenever the
shear distortion changes in sign.

The stress τxy,t is derived considering the effects of two
different diagonal stress fields (one for each concrete diagonal).
The values of the stresses in these diagonal fields are derived
from the analysis of a single module of the ideal truss
(Fig. 2(a)), assuming this is in the x-y plane for the
computation of Vy,s. The following procedure is followed:

1) Compatibility of the shear strain γ in the plane of the
truss with the shear strain γxy(r) from the Timoshenko beam
model in the cross section is imposed assuming (Fig. 2(b))
γ = γxy(r).

2) Strains εd1 and εd2 in the concrete diagonals are computed
from the shear strain γ in the truss plane and the strain εs of the
transverse reinforcement by means of Mohr’s circle under the
assumption that, for a truss in the x-y plane, εy = εs

(8)

where αi,j denotes the cosine of the angle between directions
i and j. A similar transformation is used to compute the strain
ε⊥ in the direction normal to each diagonal.

3) The stress σs of the transverse reinforcement and σd1
and σd2 in the concrete diagonals are computed using
uniaxial constitutive laws for steel and concrete, according
to the current value of εs , εd1, and εd2 coming from Eq. (8)
and those ε⊥ normal to the diagonals; the latter are required
by the model for the strain softening in compression of the
concrete constitutive law.

εd1 εyαy d1, αy d1, γxyαx d1, αy d1,+=

εd2 εyαy d2, αy d2, γxyαx d2, αy d2,+=

4) The equilibrium condition in the y-direction at the
reinforcement-diagonals node (Fig. 2(c)) provides

Fs + Fd1σs,d1 + Fd2σs,d2 = 0 (9)

where αs,d denotes the cosine of the angle between the diagonal
direction and the shear reinforcement.

The forces Fd1, Fd2, and Fs can be expressed as functions of
the normal stresses in Ks, Kd1, and Kd2 exploiting the geometry
of Fig. 2(c). The equilibrium Eq. (9) can then be recast more
conveniently in terms of stresses in the following form

ρsσs + σd1αy,d1αy,d1 + σd2αy,d2αy,d2 = 0 (10)

where ρs denote the reinforcement ratio of the shear reinforcement.
5) If the unbalanced force in Eq. (9) is greater than a fixed

tolerance, the strain εs is modified and Steps 2 to 5 are repeated.
Finally, the shear stress τxy,t is computed superimposing

the effects of the uniaxial stress fields in the concrete diagonals

τxy,t = σd1αx,d1αy,d1 + σd2αx,d2αy,d2 = 0 (11)

Due to the kinematical model adopted for the truss, the
state of the longitudinal reinforcement has no direct effect on
the shear stress τxy,t and the coupling with flexure is
produced both by the kinematic field of the element and by
the assumption that the shear stress τxy,t acts on the area At of
concrete in tension in the cross section, which descends from
the flexural behavior of the element.

The truss analogy adopted is simple in use when cyclic
deformations are concerned, but it is restricted to the case of
shear acting in a fixed plane. This may not be a limit for
some cross section shapes if it is possible to identify a few
planes in which trusses may form, for example, shear walls
or box-hollow cross sections.

Also, the contribution of the truss to the shear stiffness is
derived from the model of Fig. 3, once the tangent stiffness
Es

t , Ed1
t , Ed2

t  of the transverse reinforcement and the
concrete diagonals, respectively, are known. The following
linear incremental relations hold

(12)

Substituting Eq. (12) in Eq. (11); using Eq. (8), (10), and
(11) and solving for γxy yields the value of the tangent shear
modulus equivalent to the truss action 

 = (13)

where ς = .

Arch action and compression concrete 
contribution

In RC beams, shear can be sustained by inclined internal
compression force in the concrete above the neutral axis
(Fig. 1(b)); this mechanism is termed arch action and
requires a reaction component at the beam ends, which is
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Fig. 2—Truss mechanism: (a) module of truss used in
computing shear force; (b) deformed truss configuration;
and (c) concrete portion, equivalent to hinge of roller, used
in imposing equilibrium in y direction.

(c) Nodal displacements and
control sections.
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The presence of a second diagonal (which is in tension, as
illustrated in Fig. 2(b) for a negative shear distortion) has two
positive effects. First of all, the tension strength of the
concrete can represent the effect of the aggregate interlock
on the rotation of principal compression stresses. In fact, this
effect shows degradation with the increase of the shear
distortion and with the accumulation of strain in the transverse
steel, as it happens for the aggregate interlock. Second, it
avoids the ambiguities present in models2 in which only the
active compressed diagonal is present, related to switching
from one compressed diagonal to the other whenever the
shear distortion changes in sign.

The stress τxy,t is derived considering the effects of two
different diagonal stress fields (one for each concrete diagonal).
The values of the stresses in these diagonal fields are derived
from the analysis of a single module of the ideal truss
(Fig. 2(a)), assuming this is in the x-y plane for the
computation of Vy,s. The following procedure is followed:

1) Compatibility of the shear strain γ in the plane of the
truss with the shear strain γxy(r) from the Timoshenko beam
model in the cross section is imposed assuming (Fig. 2(b))
γ = γxy(r).

2) Strains εd1 and εd2 in the concrete diagonals are computed
from the shear strain γ in the truss plane and the strain εs of the
transverse reinforcement by means of Mohr’s circle under the
assumption that, for a truss in the x-y plane, εy = εs

(8)

where αi,j denotes the cosine of the angle between directions
i and j. A similar transformation is used to compute the strain
ε⊥ in the direction normal to each diagonal.

3) The stress σs of the transverse reinforcement and σd1
and σd2 in the concrete diagonals are computed using
uniaxial constitutive laws for steel and concrete, according
to the current value of εs , εd1, and εd2 coming from Eq. (8)
and those ε⊥ normal to the diagonals; the latter are required
by the model for the strain softening in compression of the
concrete constitutive law.

εd1 εyαy d1, αy d1, γxyαx d1, αy d1,+=

εd2 εyαy d2, αy d2, γxyαx d2, αy d2,+=

4) The equilibrium condition in the y-direction at the
reinforcement-diagonals node (Fig. 2(c)) provides

Fs + Fd1σs,d1 + Fd2σs,d2 = 0 (9)

where αs,d denotes the cosine of the angle between the diagonal
direction and the shear reinforcement.

The forces Fd1, Fd2, and Fs can be expressed as functions of
the normal stresses in Ks, Kd1, and Kd2 exploiting the geometry
of Fig. 2(c). The equilibrium Eq. (9) can then be recast more
conveniently in terms of stresses in the following form

ρsσs + σd1αy,d1αy,d1 + σd2αy,d2αy,d2 = 0 (10)

where ρs denote the reinforcement ratio of the shear reinforcement.
5) If the unbalanced force in Eq. (9) is greater than a fixed

tolerance, the strain εs is modified and Steps 2 to 5 are repeated.
Finally, the shear stress τxy,t is computed superimposing

the effects of the uniaxial stress fields in the concrete diagonals

τxy,t = σd1αx,d1αy,d1 + σd2αx,d2αy,d2 = 0 (11)

Due to the kinematical model adopted for the truss, the
state of the longitudinal reinforcement has no direct effect on
the shear stress τxy,t and the coupling with flexure is
produced both by the kinematic field of the element and by
the assumption that the shear stress τxy,t acts on the area At of
concrete in tension in the cross section, which descends from
the flexural behavior of the element.

The truss analogy adopted is simple in use when cyclic
deformations are concerned, but it is restricted to the case of
shear acting in a fixed plane. This may not be a limit for
some cross section shapes if it is possible to identify a few
planes in which trusses may form, for example, shear walls
or box-hollow cross sections.

Also, the contribution of the truss to the shear stiffness is
derived from the model of Fig. 3, once the tangent stiffness
Es

t , Ed1
t , Ed2

t  of the transverse reinforcement and the
concrete diagonals, respectively, are known. The following
linear incremental relations hold

(12)

Substituting Eq. (12) in Eq. (11); using Eq. (8), (10), and
(11) and solving for γxy yields the value of the tangent shear
modulus equivalent to the truss action 

 = (13)

where ς = .

Arch action and compression concrete 
contribution

In RC beams, shear can be sustained by inclined internal
compression force in the concrete above the neutral axis
(Fig. 1(b)); this mechanism is termed arch action and
requires a reaction component at the beam ends, which is
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Fig. 2—Truss mechanism: (a) module of truss used in
computing shear force; (b) deformed truss configuration;
and (c) concrete portion, equivalent to hinge of roller, used
in imposing equilibrium in y direction.

(d) Shear-resisting contribu-
tions in RC beams.
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The presence of a second diagonal (which is in tension, as
illustrated in Fig. 2(b) for a negative shear distortion) has two
positive effects. First of all, the tension strength of the
concrete can represent the effect of the aggregate interlock
on the rotation of principal compression stresses. In fact, this
effect shows degradation with the increase of the shear
distortion and with the accumulation of strain in the transverse
steel, as it happens for the aggregate interlock. Second, it
avoids the ambiguities present in models2 in which only the
active compressed diagonal is present, related to switching
from one compressed diagonal to the other whenever the
shear distortion changes in sign.

The stress τxy,t is derived considering the effects of two
different diagonal stress fields (one for each concrete diagonal).
The values of the stresses in these diagonal fields are derived
from the analysis of a single module of the ideal truss
(Fig. 2(a)), assuming this is in the x-y plane for the
computation of Vy,s. The following procedure is followed:

1) Compatibility of the shear strain γ in the plane of the
truss with the shear strain γxy(r) from the Timoshenko beam
model in the cross section is imposed assuming (Fig. 2(b))
γ = γxy(r).

2) Strains εd1 and εd2 in the concrete diagonals are computed
from the shear strain γ in the truss plane and the strain εs of the
transverse reinforcement by means of Mohr’s circle under the
assumption that, for a truss in the x-y plane, εy = εs

(8)

where αi,j denotes the cosine of the angle between directions
i and j. A similar transformation is used to compute the strain
ε⊥ in the direction normal to each diagonal.

3) The stress σs of the transverse reinforcement and σd1
and σd2 in the concrete diagonals are computed using
uniaxial constitutive laws for steel and concrete, according
to the current value of εs , εd1, and εd2 coming from Eq. (8)
and those ε⊥ normal to the diagonals; the latter are required
by the model for the strain softening in compression of the
concrete constitutive law.

εd1 εyαy d1, αy d1, γxyαx d1, αy d1,+=

εd2 εyαy d2, αy d2, γxyαx d2, αy d2,+=

4) The equilibrium condition in the y-direction at the
reinforcement-diagonals node (Fig. 2(c)) provides

Fs + Fd1σs,d1 + Fd2σs,d2 = 0 (9)

where αs,d denotes the cosine of the angle between the diagonal
direction and the shear reinforcement.

The forces Fd1, Fd2, and Fs can be expressed as functions of
the normal stresses in Ks, Kd1, and Kd2 exploiting the geometry
of Fig. 2(c). The equilibrium Eq. (9) can then be recast more
conveniently in terms of stresses in the following form

ρsσs + σd1αy,d1αy,d1 + σd2αy,d2αy,d2 = 0 (10)

where ρs denote the reinforcement ratio of the shear reinforcement.
5) If the unbalanced force in Eq. (9) is greater than a fixed

tolerance, the strain εs is modified and Steps 2 to 5 are repeated.
Finally, the shear stress τxy,t is computed superimposing

the effects of the uniaxial stress fields in the concrete diagonals

τxy,t = σd1αx,d1αy,d1 + σd2αx,d2αy,d2 = 0 (11)

Due to the kinematical model adopted for the truss, the
state of the longitudinal reinforcement has no direct effect on
the shear stress τxy,t and the coupling with flexure is
produced both by the kinematic field of the element and by
the assumption that the shear stress τxy,t acts on the area At of
concrete in tension in the cross section, which descends from
the flexural behavior of the element.

The truss analogy adopted is simple in use when cyclic
deformations are concerned, but it is restricted to the case of
shear acting in a fixed plane. This may not be a limit for
some cross section shapes if it is possible to identify a few
planes in which trusses may form, for example, shear walls
or box-hollow cross sections.

Also, the contribution of the truss to the shear stiffness is
derived from the model of Fig. 3, once the tangent stiffness
Es

t , Ed1
t , Ed2

t  of the transverse reinforcement and the
concrete diagonals, respectively, are known. The following
linear incremental relations hold

(12)

Substituting Eq. (12) in Eq. (11); using Eq. (8), (10), and
(11) and solving for γxy yields the value of the tangent shear
modulus equivalent to the truss action 

 = (13)

where ς = .

Arch action and compression concrete 
contribution

In RC beams, shear can be sustained by inclined internal
compression force in the concrete above the neutral axis
(Fig. 1(b)); this mechanism is termed arch action and
requires a reaction component at the beam ends, which is
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Fig. 2—Truss mechanism: (a) module of truss used in
computing shear force; (b) deformed truss configuration;
and (c) concrete portion, equivalent to hinge of roller, used
in imposing equilibrium in y direction.

(e) Nodal displacements and
control sections.
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provided by the tie action of the longitudinal reinforcing
bars. A similar mechanism was pointed out by Priestley et al.16

for squat bridge piers, and is already well known for squat
shear walls,17 where part of the shear forces is transferred
directly from one end of the structural element to the other
through a compression field. This resembles the effect of an
inclined compression strut at an angle α with the element
longitudinal axis (Fig. 3(a)). In the model by Priestley et al.,16

the tie action is the axial force N and the portion VFc of shear
force transferred is limited to VFc = Ntan(α). Experimental
results18 point out that the importance of this resisting mechanism
increases as the angle α increases but, at the same time,
the available ductility decreases more than proportionally. For
large values of α, the collapse is due to crushing of the
compression concrete.

In fiber elements adopting uniaxial constitutive laws, the
direction of the concrete fibers is generally normal to the
cross section. In the proposed fiber model, however, which
adopts a uniaxial stress-strain relation for the concrete, the
effect of the inclined internal compression force on the shear
strength is reproduced by a suitable rotation of the response
direction of the fibers, that may then become non-normal to
the cross section during the loading history. The fibers are
assumed aligned with the direction of the compression strut
of Fig. 3(a) to reproduce the arch effect. From the mechanical
point of view, this corresponds to two common assumptions: the
directions of the principal stresses and strains are coincident and
the strut direction determines that of the principal compressive
stress σ2 in the concrete.

The shear force corresponding to this mechanism is
derived in the cross section from the strain εx at each fiber
initially with reference to the case of the strut in the x-y
plane. From a Mohr’s circle for strains, under the assumption
that εy = 0, it is possible to compute the principal strain ε2 for
the generic fiber

ε2 = εx /2 + εx /2cos(2α) (14)

Figure 3(b) and (c) illustrate the application of Eq. (14) for
increasing values of the angle α. For a fixed value of εx , the
compressive strain ε2 increases with α; concrete damage
also increases, depending on plastic part of ε2.

The stress σ2, corresponding to the strain ε2, is computed from
a uniaxial material model (to be described in the following). It
must be recognized that ε2 is consistent (refer to Fig. 3(b) and
(c)) with a shear strain γ that is different from the one given by
the beam element kinematics; this last, however, is only an
average approximation of the behavior of an RC element.

Given σ2, the corresponding normal stress σx and tangential
stress τxy,s are obtained from a Mohr’s circle for stresses
under the assumption of null principal tension stress, σ1 = 0.
The general three-dimensional case is treated in a similar way,
being now the inclined strut not necessarily in the x-y plane.

Indicating with αi the director cosine of the strut with
element axis i = x, y, z, the following stresses are computed
in the cross section

σx = σ2αxαx (15a)

τxy,s = σ2αxαy (15b)

τxz,s = σ2αxαz (15c)

The integration of σx over the concrete area Ac and of τxy,s
and τxz,s over the compression concrete area Acc yields the
concrete contribution to the generalized internal forces at the
cross section

(16a)

(16b)

(16c)

(16d)

(16e)

From Eq. (15) and (16), it appears that the fiber direction
directly couples shear with bending; however, the process
requires an a priori knowledge of the angle α.

The axial force value is not usually high in squat elements:
therefore, it is assumed that the inclined strut connects the
center of compression of the end section having the highest
bending moment with the centroid of the cross section
having zero bending moment. The value of α for each
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Fig. 3—(a) Arch-action-resisting mechanism in squat RC
elements; (b) and (c) Mohr’s circles for strains at increasing
values of angle α; and (d) model used in computing strut
angle α.

(f) Nodal displacements and control sections.
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provided by the tie action of the longitudinal reinforcing
bars. A similar mechanism was pointed out by Priestley et al.16

for squat bridge piers, and is already well known for squat
shear walls,17 where part of the shear forces is transferred
directly from one end of the structural element to the other
through a compression field. This resembles the effect of an
inclined compression strut at an angle α with the element
longitudinal axis (Fig. 3(a)). In the model by Priestley et al.,16

the tie action is the axial force N and the portion VFc of shear
force transferred is limited to VFc = Ntan(α). Experimental
results18 point out that the importance of this resisting mechanism
increases as the angle α increases but, at the same time,
the available ductility decreases more than proportionally. For
large values of α, the collapse is due to crushing of the
compression concrete.

In fiber elements adopting uniaxial constitutive laws, the
direction of the concrete fibers is generally normal to the
cross section. In the proposed fiber model, however, which
adopts a uniaxial stress-strain relation for the concrete, the
effect of the inclined internal compression force on the shear
strength is reproduced by a suitable rotation of the response
direction of the fibers, that may then become non-normal to
the cross section during the loading history. The fibers are
assumed aligned with the direction of the compression strut
of Fig. 3(a) to reproduce the arch effect. From the mechanical
point of view, this corresponds to two common assumptions: the
directions of the principal stresses and strains are coincident and
the strut direction determines that of the principal compressive
stress σ2 in the concrete.

The shear force corresponding to this mechanism is
derived in the cross section from the strain εx at each fiber
initially with reference to the case of the strut in the x-y
plane. From a Mohr’s circle for strains, under the assumption
that εy = 0, it is possible to compute the principal strain ε2 for
the generic fiber

ε2 = εx /2 + εx /2cos(2α) (14)

Figure 3(b) and (c) illustrate the application of Eq. (14) for
increasing values of the angle α. For a fixed value of εx , the
compressive strain ε2 increases with α; concrete damage
also increases, depending on plastic part of ε2.

The stress σ2, corresponding to the strain ε2, is computed from
a uniaxial material model (to be described in the following). It
must be recognized that ε2 is consistent (refer to Fig. 3(b) and
(c)) with a shear strain γ that is different from the one given by
the beam element kinematics; this last, however, is only an
average approximation of the behavior of an RC element.

Given σ2, the corresponding normal stress σx and tangential
stress τxy,s are obtained from a Mohr’s circle for stresses
under the assumption of null principal tension stress, σ1 = 0.
The general three-dimensional case is treated in a similar way,
being now the inclined strut not necessarily in the x-y plane.

Indicating with αi the director cosine of the strut with
element axis i = x, y, z, the following stresses are computed
in the cross section

σx = σ2αxαx (15a)
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From Eq. (15) and (16), it appears that the fiber direction
directly couples shear with bending; however, the process
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provided by the tie action of the longitudinal reinforcing
bars. A similar mechanism was pointed out by Priestley et al.16

for squat bridge piers, and is already well known for squat
shear walls,17 where part of the shear forces is transferred
directly from one end of the structural element to the other
through a compression field. This resembles the effect of an
inclined compression strut at an angle α with the element
longitudinal axis (Fig. 3(a)). In the model by Priestley et al.,16

the tie action is the axial force N and the portion VFc of shear
force transferred is limited to VFc = Ntan(α). Experimental
results18 point out that the importance of this resisting mechanism
increases as the angle α increases but, at the same time,
the available ductility decreases more than proportionally. For
large values of α, the collapse is due to crushing of the
compression concrete.

In fiber elements adopting uniaxial constitutive laws, the
direction of the concrete fibers is generally normal to the
cross section. In the proposed fiber model, however, which
adopts a uniaxial stress-strain relation for the concrete, the
effect of the inclined internal compression force on the shear
strength is reproduced by a suitable rotation of the response
direction of the fibers, that may then become non-normal to
the cross section during the loading history. The fibers are
assumed aligned with the direction of the compression strut
of Fig. 3(a) to reproduce the arch effect. From the mechanical
point of view, this corresponds to two common assumptions: the
directions of the principal stresses and strains are coincident and
the strut direction determines that of the principal compressive
stress σ2 in the concrete.

The shear force corresponding to this mechanism is
derived in the cross section from the strain εx at each fiber
initially with reference to the case of the strut in the x-y
plane. From a Mohr’s circle for strains, under the assumption
that εy = 0, it is possible to compute the principal strain ε2 for
the generic fiber

ε2 = εx /2 + εx /2cos(2α) (14)

Figure 3(b) and (c) illustrate the application of Eq. (14) for
increasing values of the angle α. For a fixed value of εx , the
compressive strain ε2 increases with α; concrete damage
also increases, depending on plastic part of ε2.

The stress σ2, corresponding to the strain ε2, is computed from
a uniaxial material model (to be described in the following). It
must be recognized that ε2 is consistent (refer to Fig. 3(b) and
(c)) with a shear strain γ that is different from the one given by
the beam element kinematics; this last, however, is only an
average approximation of the behavior of an RC element.

Given σ2, the corresponding normal stress σx and tangential
stress τxy,s are obtained from a Mohr’s circle for stresses
under the assumption of null principal tension stress, σ1 = 0.
The general three-dimensional case is treated in a similar way,
being now the inclined strut not necessarily in the x-y plane.
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Figure 1.2: Martinelli’s Element Modeling.

(d) Arch-action Mechanism.

Figure 3.5: Martinelli’s Modeling Strategy (Martinelli, 2008).

This model represents the most complete formulation between the strategies in
which shear and flexural deformations are superimposed, and where a truss analogy
is employed to take into account the shear’s effects.
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3.2.2 Inter-Fibre Equilibrium Approaches

3.2.2.1 The Dual Sectional Analysis

The “Dual Section Analysis” was originally proposed by (Vecchio and Collins, 1988)
in order to evaluate the gradient of normal stresses generated by the presence of
shear forces. By applying the Finite Difference Method (Fig. 3.6a):

∂σx
∂x
≈ σx(x2)− σx(x1)

S
(3.6)

in which the evaluation of the normal stresses in two different sections separated
by a finite distance S is required. Then, from equilibrium of the two controlled
sections, by applying the iterative procedure shown in Fig. 3.6b, the distribution of
shear stresses and strains can be determined.

(a) The two controlled sections. (b) Logical scheme.

Figure 3.6: The Dual Section Analysis, (Vecchio and Collins, 1988).

It’s clear that this approach used an information that is not well established: the
distance between the two control sections S, besides the value S = H/6 is suggested.
This proposal, hence, is not a sectional model as it needs informations outside
the section, but it is a rigorous analysis approach where inter-fibre equilibrium is
accomplished. However, it is time consuming, has problems of stability and cannot
be introduced easily into a FE code as an independent sectional model.
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3.2.2.2 The Longitudinal Stiffness Method

Bentz (2000) improved the Dual Sectional Analysis by taking the limit of the
distance between the two control sections. The so-obtain approach is called “Lon-
gitudinal Stiffness Method” and it is the base of several more recent approaches.

Chapter 6: The Longitudinal Stiffness Method 

While most sectional analysis prograrns do not include the effects of shear 

stresses that Vary through the depth of the element, Response-2000 includes the effects of 

beam shear stresses, and Shell-2000 includes the effects of out-of-plane shear stresses, 

which both Vary through the depth of the elernent. The challenge is to determine the 

distribution of shear stress with depth. It will be affected by the width of the section, the 

matenal properties of the concrete, and the location and amount of reinforcement. 

The technique used is based on equilibrium of longitudinal stresses as derived by 

Jourawski in 1 856j6. 

The new method presented here is an extension of the methods used by earlier 

nonlinear sectional analysis prograrns 37.6.53 extended to increase performance and 

computational stability. The method is used in Reponse-2000 and Shell-2000 to calculate 

a new estimate of the shear stress profile for a given load level. The prograrns assume an 

initial profile and then use this procedure to calculate a new profile and iterate until the 

assumed and calculated profiles are in agreement. 

6-1 Traditional Shear Stress Calculation 

Consider the pnsmatic beam on simple suppons shown in Fig 6-1. The right side 

of the figure is a fkee body diagram of the part of the beam between sections A and B. 

Section A Sedion B 

Figure 6 - 1 : Shear stress calculation (a) Beam Level.

This section of beam is dx units long, and subjected to constant shear V and no axial 

load. The moment at section A is taken as M, and, due ta the shear, the moment at  

section B will be higher, M + d M  = M + V-dx. The assumeci linear longitudinal strain 

gradient corn the moment will cause a longitudinal stress profile with compression on the 

top and tension on the bottom of the cross section. Consider the shaded m i o n  at the top 

right of Fig 6-1 as a fiez body diagram of  the top of the beam, from elevation z up to the 

top of the beam. It is subjected to a force on the left from the moment, but a higher force 

on the right from the stightly higher moment. This requires a balancing force on the cut 

plane of the beam, shown as H. Due to the summation of moments about a point 

equalling zero, the shear stress in a horizontal plane at a point must equal the venical 

shear stress. As such, the force H divided by the beam width and dx results in the vertical 

shear stress on the beam at depth z. This is the same denvation used to produce 

Jourawski's familiar relationship: 

An implicit assumption in this theory is that plane sections remain plane it was 

used to calculate the longitudinal stresses. Though the shear strains associated with the 

calculated shear stress will warp the section, violating plane sections, the warping does 

not affect the longitudinal stress gradient for regions of constant shearn. 

Compression 

Stress Profile 

Stress Profile 
at Section B 

Tension 

Cross Section Longitudinal Stress Shear Stress 
Profile Profile 

Figure 6 - 2: Intemals of shcar stress calculation (b) Sectional Level.

Figure 3.7: Longitudinal Stiffness Method, (Bentz, 2000).

In this method, the chain-rule is used to determine the gradient of normal
stresses as the derivatives of the stress with respect of the element’s axis. It re-
quires an initial shear strain pattern as a function of the average sectional shear
deformations (that can be assumed as the Jourawski solution Fig. 3.7):

γxy(y) = Fγ(x, y)γ0 =
ASz
Iz b(y)

γ0 (3.7)

where A is the area of the cross section. This shear strain profile is used for the
further load steps. The Bernoulli’s plane section that computes the axial strain
is combined with the current strain pattern. In this manner, the strains in each
fibre are determined from the axial strain, curvature and average shear strain of
the cross section: [

εx
γxy

]
=

[
1 0 −y
0 Fγ(x, y) 0

]

ε0
γ0
χ0




ε(y) = B(y) es

(3.8)

and the differential increment of stress is given by:


σx
σy
τxy


 = Dt



εx
εy
γxy


 (3.9)

where Dt is the tangent stiffness matrix of the fibre.
After static condensation of the terms in the transverse direction, the derivatives

of the normal and shear stresses with respect to the x-axis is computed throught
the chain-rule:

∂σ

∂x
=
∂σ

∂ε

∂ε

∂es
∂es
∂x

= DtB(y)
∂es
∂x

(3.10)

Hence, in contrast to the Dual Section Analysis, this formulation only requires
information from a cross-section of the frame. Only 1D shear flows are considered,
and for this reason, its application is limited to in-plane bending and shear.
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3.2.2.3 The Theory of Bairán-Marí

By generalized the Longitudinal Stiffness Method in 2 dimensions and by applying
equations from the theory of continuum solids mechanics, Bairán (2005) proposes
a model that solves the problem of the six force interactions at the section level,
(Bairán and Marí, 2007a), (Bairán and Marí, 2007b). The model, called TINSA
(Total Interaction Nonlinear Sectional Analysis), considers inter-fibre equilibrium
without any assumption about the stress or strain distributions that, depending
on the state of the section, change continuously.

This is the most elegant and complete sectional model proposed to date. The
principal assumption is that sectional displacement field u is obtained by enhancing
the Bernoulli’s plane section theory ups with a three-dimensional warp-distortion
field uw, as represented in Fig. 3.8b.
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elements for transversal steel and point elements for longitudinal steel. Accordingly, the 

stresses applied in a fibre are represented in Figure 2.27b. 

 

 

                                          a)                                                                                  b) 

Figure 2.27 – Theory of Bairán-Marí: a) sectional problem domain and b) fibre equilibrium (Bairán 
and Marí 2007a)  

The sectional displacement field u is defined by the Bernoulli’s plane section theory ups in 

addition to a three-dimensional warp-distortion field uw, as schematically represented in 

Figure 2.28a. In this sense, the additional displacements uw represent an improvement of 

the plane section approach to approximate the actual displacement of the solid, see Figure 

2.28b. 

 

                                     a)                                                                        b) 

Figure 2.28 – Theory of Bairán-Marí: a) displacement field and b) typical solution on the PS-
distortion system (Bairán and Marí 2007b) 

The sectional warp-distortion field uw is considered as an interpolation through the nodal 

displacements by a shape function (NF): uw ≈ NFdF. The nodal warping values dF are 

considered as a function of the generalized sectional strains of the beam element 

(ζ*): dF = A(ζ*). The considered generalized strain vector in the section ζ* is composed by 

(a) Generalized stresses and infinitesimal equilibrium.
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(b) Displacements field decomposition and projections between solutions.

Figure 3.8: TINSA Model, (Bairán, 2005).

It is independent of the constitutive equation, hence any type of 3D model can
be used, and as it treats forces and deformations in a single cross section it can
be independently implemented in any program of structural analysis, regarding
any type of beam element formulation. The model is able to reproduce the force
interaction within a cross section, such as coupled normal and tangential forces,
for any type and any reinforcement layout. However, its high complexity and com-
putational demanding maxes implementation in structural programs to be quite
challenging (Ferreira, 2013).
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3.2.2.4 The Theory of Mohr-Bairán-Marí

Motivating by the challenge of extending model TINSA from the section to the
element level, Mohr (2011) defines shear deformations as a series of polynomials.
At the sectional level, this model is more simple with respect the previous, but it
presents a very hight level of generality and it considers inter-fibre equilibrium. The
same assumption of Bairán’s work is taken so that the displacement field u(x, y) is
due to Bernoulli’s plane section theory ups(x, y) plus a warping field uw(x, y) that
is expressed as a series of polynomials multiplied for unknown coefficients grouped
in vectors U and V:

u(x, y) = ups(x, y) + uw(x, y) (3.11)

with:

{
ups(x, y) = u0 − y · v′0
vps(x) = v0





uw(y) =

ng∑

i=1

Fg,i(y) ·ui = FTg (y) ·U

vw(y) =

ne∑

j=1

Fe,j(y) · vj = FTe (y) ·V

(3.12)

(a) Sectional discetization and ele-
ment nodal displacements.

3938 S. Mohr et al. / Engineering Structures 32 (2010) 3936–3954

Fig. 1. Problem domain definition. (a) Cross-section discretization and local coordinates. (b) Frame element degrees of freedom.

uw(y)

= + + + ...

= + + + ...

U1F1(y)

U1F'1(y) U2F'2(y) U3F'3(y)

U2F2(y)

U3F3(y)

w(y)γ

Fig. 2. Approximation of the warping and distortion fields by means of series of
generalized displacements.

will be approximated by a finite series of predefined shape func-
tions and coefficients as represented in Fig. 2, that is:

uw(y) =

n−
i=1

UiFi(y) = F(y)TU (3.1)

vw(y) =

n−
i=1

ViFi(y) = F(y)TV (3.2)

where F is a vector of predefined shape functions; polynomial
shape functions of increasing order, have been considered in this
study. Shape functions are normalized so their maximum values
are one. U and V are vectors of unknown coefficients which
modulate the shape functions in order to adequately approximate
the actual distribution of warping and distortion. Therefore, the
meaning of these terms ismore numerical than physical. However,
when polynomial functions of increasing order are used as shape
functions (Fig. 2), the first coefficient U1 and V1 are directly related
to the average section shear strain (γ ) and the vertical strain (εy) as
the product of the referenced strains times the section’s depth. The
values of U and V are state dependent and are determined from
internal equilibrium considerations.

2.3. Compatibility conditions

Displacement fields of Eqs. (2) and (3) produce distributions
of strains along the cross-section with different multiaxial
components in each fiber, as shown in Eqs. (4) and (5), for the

plane-section and warping–distortion fields respectively.

εps
x = ε0 (x) − yφ(x) (4.1)

εps
y = 0 (4.2)

γ ps
= 0 (4.3)

εw
x = 0 (5.1)

εw
y = F ′(y)TV (5.2)

γ w
= F ′(y)TU . (5.3)

The complete strain will be formed by the sum of the two previous
ones; as can be seen, it will have components in all terms of the 2D
tensor:

e = eps + ew (6)

where:

e =

εx εy γ

T
. (7)

2.4. Internal equilibrium

A multiaxial differential equilibrium is represented in its
homogeneous form, by means of Cauchy’s equation, which in its
2D version reads as:
∂σx

∂x
+

ατ

∂y
= 0 (8.1)

ατ

∂x
+

∂σy

∂y
= 0. (8.2)

Consequently, with the above hypothesis regarding displacement
and strain decomposition, stresses are also decomposed into a
plane-section component and a distortion component:

s = sps + sw (9)

where:

s =

σx σy τ

T
. (10)

The x-derivatives of the out-of-plane stresses (σy and τ ) is related
with the variation of shear forces and the way distributed loads
are applied when they exist. When considering the internal
equilibrium of B-regions the influence of these terms may be
considered of second order and may be neglected if the length
of the fibers are short enough (differentially short). This is also
in agreement with the hypothesis of neglecting the variation of
warping and distortion along the element’s axis that resulted into
Eq. (5.1). Therefore, Eq. (8) is simplified as:

ατ

∂y
= −

∂σx

∂x
(11.1)

∂σy

∂y
= 0. (11.2)

(b) Deformations as a series of polynomials.

Figure 3.9: The Theory of Mohr-Bairán-Marí, (Mohr et al., 2010).

By using internal compatibility equations, the following expression holds:



εx
εy
γxy


 =



ε0(x)− y ·χ0(x)

0
0


+




0

F
′T
e (y) ·U

F
′T
g (y) ·U


 (3.13)

By introducing the sectional generalized deformations:

es =
[
ε0 γ0 χ0

]T (3.14)
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and by taking outside the coefficients U,V, we have:


εx
εy
γxy


 =




1 0 −y
0 0 0
0 0 0





ε0
γ0
χ0


+



0T 0T

0T F
′T
e

F
′T
g 0T



[
U
V

]

ε = Bps es + Bw a

(3.15)

by setting a = [U V]
T

= A · es, the multiaxial strain state in a generic fibre is
given by:

ε = Bps · es + Bw ·A · es = εps + εw (3.16)

where Bps is the transformation matrix related with the plane section assump-
tion, Bw is the transformation matrix related with the warp-distortion field, and
A represents the coefficients (unknowns) that modulate the warp-distortion shape
functions. Once the values of U and V are determined (from internal equilib-
rium considerations), the Virtual Displacement Principle gives the section resisting
forces:

fs =

∫

A

(Bps + BwA)
T
σ dA =

=

∫

A

Bps T σ dA+ AT

∫

A

Bw T σ dA

(3.17)

whose derivatives gives the section stiffness matrix:

ks =

∫

A

(Bps + BwA)
T Dt (Bps + BwA) dA =

=

∫

A

Bps T DtBps dA+

∫

A

Bps T DtBw dA A+

+ AT

∫

A

Bw T DtBps dA+ AT

∫

A

Bw T DtBw dA

(3.18)

By considering different numbers of terms of the series of polynomials different
sectional models can be obtained:

- ng = 0, ne = 0: Navier Bernoulli beam theory;

- ng = 1, ne = 0: Timoshenko beam theory;

- ng = 6, ne = 6: Mohr key proposal.

The detailed formulation can be found in (Mohr et al., 2010). This model has been
readopted and improved by Le Corvec (2012), in dealing with shear-lag problem in
steel beams.
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3.2.3 Fixed Pattern Approaches

In this last group of models there are the most direct procedures to estimate the
internal shear stress-strain distribution in the cross section. Formally, it is a priori
assumed a fixed pattern either for the shear stress or strain and taken it as constant
during the whole loading process. Thus, the stress or strain at a point is consid-
ered as the value of the assumed pattern multiplied by a generalized quantity of
the cross-section state (Bairán, 2005). Two types of Fixed Pattern Approaches are
available:

Figure 3.10: Comparisons between shear
flow and strain (Vecchio
and Collins, 1988).

1. the Fixed Strain Approaches:

γxy(y) = Fγ(y) γ0 (3.19)

in which the shear response of the
cross section is determined by as-
suming an a priori fixed patter
for the tangential strain. This
approach has been considered by
several authors (Petrangeli et al.
(1999), Güner (2008), Ceresa et al.
(2009)), because of its straightfor-
ward implementation in a Timo-
shenko based FE model: the con-
stant distortion of the element is
taken as the fixed strain in the cross
section.

2. the Fixed Stresses Approaches:

τxy(y) = Fτ (y)V (3.20)

in which the shear response of the cross section is determined by assuming
an a priori fixed patter for the tangential stress. This approach is less simple
with respect the previous, but in general it gives better results. In (Ferreira,
2013), a Fixed Stress Approach has been proposed.

Although the failure load can be reasonable estimated in some cases with the
Fixed Pattern Approaches, the predicted failure mode and the overall non-linear
behaviour often do not reflect the real response. In order to compare the accuracy
achieved by different models, the result computed by these approximate methods
and the more rigorous Dual Section Analysis are presented in Fig. 3.10.
In general, the Fixed Strain Approach underestimates the vertical strains and,
hence, predicts lower stresses in the stirrups after the onset of diagonal cracking.
In addition, it tends to concentrate the shear stresses in the compressive regions of
the section, underestimating the strain in the tension side.

On the contrary, a reasonable chosen Fixed Stress pattern produces a good
strain distribution, slightly overestimating the strains and underestimating the
stresses.
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3.3 Closing Remarks

Common RC beam-column elements are based on Navier-Bernoulli sectional kine-
matic that states that (a) section remains plane and (b) shear deformation can
be neglected. This leads to monodimensional models with distributed nonlinearity
in which the so-called fiber approach is used in order to integrate the material
response, that is obtained adopting uniaxial non linear constitutive laws. Such a
models address in a very rigorous way only the problem of a RC section subjected
to normal forces, such as axial forces and bending moments.

However, if shear acts on the RC section, the Navier-Bernoulli hypothesis is no
longer still valid due to the appearance of distortion. As a consequence, common
finite beam-column elements based on such a sectional kinematic constraint are no
longer applicable and, in order to maintain the model in the 1D domain, improved
strategies are needed.

From the presented state of the art, the following observations arise:

- the problem of shear stresses in RC structures is very complex with respect
to the problem of normal stresses;

- in Navier-Bernoulli kinematic only the longitudinal strain is active; it’s hence
clear that if shear’s effect has to be account for, classical fiber beam-column
elements are not enough;

- since shear in RC structures is not a sectional phenomena, the most intu-
itive approach is try to model it by using physical models, for instance, the
Mörsch’s truss analogy;

- in contrast, if we want to use Continuum Mechanic concepts, kinematic must
be adequately improved in order to obtained a description not only for the
longitudinal strain, but also for the shear and the transversal one, so that a
link with a 2D constitutive model can be performed.

Several approaches are nowadays existing:

- if the real inter-fiber equilibrium is considered, the highest degree of accuracy
is obtained in a frame structural model at the current state of knowledge.
The so-obtained models, however, present (a) problems related to numerical
instability and (b) a very hight computational cost. Since the main goal of a
structural theory is to produce synthetic procedures with respect the full 2D
numerical approach, it’s clear that the implementation of these models in a
finite element code is quite challenging;

- it seems hence more convenient the adoption of approximate solutions, based
for example on particular strains or stresses patterns, assumed a priori. The
so-obtained procedures have, of course, some limitations, but they present
higher computational efficiency.

Since shear resistance mechanism in RC elements and the interaction between
normal and tangential forces are complex, not clearly defined and not straight-
forward to model numerically, despite the object of this thesis is to propose a
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monodimensional modeling of RC structures, it seems very useful to study at first
the problem by bidimensional modeling. Then, by fixing the rules used for 2D and
1D approaches, a complete parallel study can be performed so that the intrinsic
approximations of the monodimensional modeling are clearly evident.

In reaching the main object of the thesis - to propose methodologies able to
couple the structural analysis with the damage processes and to adequately evaluate
the time-evolution of the structural performances by considering environmental
hazards - computationally efficiency and stability are strictly required. In this
work, hence, two sectional approaches have been considered. The first is a fixed
strain approach, in which the strain distribution is assumed a priori, the second
is a fixed stress approach, in which an assumed pattern for the shear stress is
considered.

Finally, it must be pointed out that, with the framework proposed in this thesis,
lifetime predictions can be performed and, to the author’s knowledge, the damage
effects on shear resistance mechanisms has not been carried out to date.





4 Bidimensional Modeling

This chapter deals with bidimensional modeling of RC structures. Between
the large spectrum of possibilities, smeared type models are chosen. After
some historical comments related to shear resistant mechanisms, the Modified
Compression Field Theory and the Disturbed Stress Field Model are presented,
compared and implemented in a 2D finite element code.

4.1 From trusses analogies to the smeared approaches

The first model for the description of shear resistant mechanism in reinforced con-
crete structures (RC) is due to Ritter (1899). Ritter understood that transverse
reinforcement introduces a new resisting mechanism, known as “truss-action”, and
he proposes a model for the determination of the shear behavior and shear capac-
ity: the so called “truss model”, in which the flow of the stresses is idealized as a
series of diagonal concrete struts in compression and tension ties of reinforcement.

Figure 4.1: Truss Analogies Model for concrete beams in shear, adapted from (Vecchio
and Collins, 1988).

Mörsch (1902) improved Ritter’s model by substituting the concrete discrete
struts with a continuously distributed struts: the so called compression field . In
addition, he stated that is not possible to find the true crack inclination angle and
he proposed the safety value of 45o. This equilibrium-based approach is the basis
of the current shear design method.

Some years later, Wagner (1929) proposed the solution to the problem of shear
loading of metal beams with very thin web panels. He supposed that after buckling
panels are able to support shear forces by a diagonal tension field. Wagner was able
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to determine the inclination of principal strains and his theory is know as “Tension
Field Theory”.

Figure 4.2: Metal beam with very thin webs studied by Wagner (1929).

Thirty years later, inspired byWagner solution, Kupfer (1964), Baumann (1970),
Collins and Lampert (1973) solve the problem of determine the crack inclination
in RC panels loaded by shear. They worked with linear constitutive laws and by
neglecting the concrete tensile strength.

An important effort came from Robinson and Demorieux (1968), who found
that concrete compression strength depends on transversal strain: this phenomena
is called compression softening , Fig. 4.3.

Figure 4.3: Compression softening phenomena, (Robinson and Demorieux, 1968).

By using this last concept, Collins (1978) developed the so-called “Compres-
sion Field Theory” - CFT: a smeared model for stress and strains evaluation in
RC panels, in which concrete is treated like an anisotropic material with zero ten-
sile strength. The crack inclination angle is taken coincident with the principal
compression stress. The theory predicts a shear resistance lower with respect the
experimental results. In fact, by neglecting the concrete tensile strength, the ag-
gregate interlock or the dowel action phenomena can’t be described.

An extensive experimental campaign carried out at Toronto University on bidi-
mensional RC panels subjected to plane-stress loading led Vecchio and Collins to
the formulation of the so-called “Modified Compression Field Theory” - MCFT,
(Vecchio and Collins, 1986). These tests were carried out on specially build panel-
tester, Fig. 4.4.

The MCFT add to the CFT a constitutive law for concrete in tension. In
particular, concrete remains linear elastic until the maximum tensile strength is
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reached, then a descending branch, representing the interaction between steel and
concrete phenomena, is considered.
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 �� = ��� + ∑ ��,� ∙ ���,�����  (2.6) 
 

   ��� = ���� + ∑ ��,� ∙ ����,�����  (2.7) 
 

2.2.1.4 Legami costitutivi 

 
Le relazioni di legame tra sforzo e deformazione sono state calibrate sulla base 

dei dati ricavati dalla campagna sperimentale che ha portato alla formulazione 

della teoria. In quell'occasione 30 pannelli quadrati di lato 890    e spessore 

70    in calcestruzzo, provvisti di due ordini ortogonali di barre d'armatura 

sono stati sottoposti a carichi monotoni crescenti mediante un'apparecchiatura 

appositamente predisposta, mostrata in figura 1.4, in grado di sollecitare, in 

modo uniforme lungo i lati, i provini utilizzati. 

 

 

Figura 2.8 - Membrane element tester (Vecchio e Collins, 1986). 

Calcestruzzo 

 
Il legame costitutivo �� − � per il calcestruzzo è espresso nelle direzioni principali 

di deformazione. Convenzionalmente si indica con �� la deformazione principale 

maggiore, con �# quella minore, considerando come positivi i versi indicati in 

Figura 2.9, dove $ rappresenta l'angolo compreso tra l'asse % e l'asse 1. 

Per il ramo di compressione viene utilizzata la parabola di Hognestad, 

espressa in funzione della resistenza a compressione cilindrica in prova 

monoassiale '′� e della corrispondente deformazione �′�: 
 

 �� = '�)*� ∙ +2 - .
./�0 − - .

./�0#1            per 2�′� ≤ � ≤ 0 (2.8) 

 

 

Figure 4.4: Membrane tester.

Parallel to the development of the MCFT,
in the University of Houston an experimental
campaign on the behavior of RC membranes
was carried out by Hsu and his group. As re-
sult, a theory named “Rotating-Angle Softened
Truss Model” - RA-STM (Hsu, 1998) was devel-
oped, differing from the MCFT on the softening
model and stress-strain relationships for con-
crete in compression and tension. The tension-
stiffening model in MCFT is referred to the
concrete and requires checking the crack state
(control of the aggregate interlock), whilst in
the RA-STM it is referred to the steel. In this
manner, safety check at the crack level is not
necessary in the RA-STM, as the stress-strain
relation for steel already takes into account the
possibility of local yielding at the crack. In addition to this model, the Houston
group also proposed the “Fixed-Angle Softened Truss Model” - FA-STM (Pang and
Hsu, 1996), which assumes that concrete struts remain with the same inclination as
the initial cracks, which can be defined as the principal stress directions in concrete
at the onset of cracking (Ferreira, 2013).

In 2000, in order to extend the applicability field of the MCFT and to overcome
some critical points highlighted by Hsu, Vecchio proposes the “Disturbed Stress
Field Model” - DSFM (Vecchio, 2000b) - (Vecchio, 2001), a sort of intermediate
approach between fixed and rotating crack models, in which the principal directions
of stresses and strains do not coincide; this difference is taken into account as a
shear crack-slip through a strain offset.

4.2 Modified Compression Field Theory (MCFT)

The Modified Compression Field Theory - MCFT (Vecchio and Collins, 1986) was
developed by Vecchio and Collins in 1986 in the context of a wide experimen-
tal campaign, as a smeared-crack model with rotating cracks, considering cracked
concrete as a material with his own stress-strain relationships.

4.2.1 Hypothesis and sign conventions

The main assumptions of the MCFT are (Fig. 4.5):

- the reinforcement is considered smeared in concrete;

- cracks are distributed in concrete and are able to rotate continuously;

- loads are applied uniformly in the element;
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MODIFIED COMPRESSION FIELD THEORY - MCFT

Figure 4.5: MCFT: Equilibrium and Compatibility Conditions.

- equilibrium and compatibility equations are evaluated through the average
value of the stresses and strains both in the crack plane and in the concrete
between cracks;

- local check of the stress state is performed at the crack plane to account for
the possible steel yielding;

- principal directions of the stress and strain tensors coincide;

- MCFT is loading history independent;

- it assumes perfect bond between reinforcement and concrete;

- shear stresses in the reinforcement are assumed as null;

- independent constitutive relationships are considered for concrete and steel.

Fig. 4.5 shows the sign convention used for stresses and strains. In addition,
it shows the equilibrium and compatibility conditions considered in the theory:
for equilibrium, the total stresses in reinforced concrete are given as the sum by
stresses in concrete and stresses in smeared reinforcement; instead, due to perfect
bond hypothesis, the strains are the same.
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4.2.2 Compatibility Conditions

Due to perfect bond between steel and concrete, the following relations hold:

εx = εcx = εsx,i

εy = εcy = εsy,i

γxy = γcxy = γsxy,i

(4.1)

Hence, the kinematic variables of the problem are εx, εy and γxy.

4.2.3 Equilibrium Conditions

The external actions are taken by concrete and by the N types of smeared rein-
forcement; the equilibrium equation in the horizontal direction is:

∫

A

σx dA =

∫

Ac

σcx dA+

N∑

i=1

(∫

As,i

σsx,i dA

)
(4.2)

By neglecting the reduction in the concrete area due to the presence of steel bars
(Ac ∼= A), the following relation holds:

σx = σcx +

N∑

i=1

(ρs,i σsx,i) (4.3)

in which ρs,i is the geometric percentage of the i-th smeared reinforcement. In the
same manner, the vertical and rotational equilibrium conditions became:

σy = σcy +

N∑

i=1

(ρs,i σsy,i) (4.4)

τxy = τcxy +

N∑

i=1

(ρs,i τsxy,i) (4.5)

4.2.4 Constitutive laws

Constitutive laws have been calibrated during the extensive experimental cam-
paign carried out at the University of Toronto and involving tests of RC pan-
els subjected to bi-dimensional stress states. 30 square panels, with dimensions
890mm × 890mm, width equal to 70mm, made of reinforced concrete with two
lines of reinforcements, have been tested through a special membrane tester shown
in Fig. 4.4.

4.2.4.1 Concrete

The concrete constitutive law σc− ε is expressed in the principal strains directions
1, 2. By convention, ε1 > ε2 with the sign conventions reported in Fig. 4.6. The
angle between axis y and axis 1 is indicated with ϑ.
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Figure 4.6: Convention for average stresses and strains and equilibrium and compati-
bility conditions.

In compression, the Hognestad parabola is used, as a function of cylindric com-
pression strength f ′c and strain ε′c:

σc = fcmax

[
2

(
ε

ε′c

)
−
(
ε

ε′c

)2
]

2ε′c ≤ ε ≤ 0 (4.6)

fcmax is a function of the strain ε⊥ in the perpendicular direction. It translates
the compression softening effect according to eq. (4.7), as shown in Fig. 4.7:

fcmax =
f ′c

0.8− 0.34 ε⊥/ε
′
c

≤ f ′c (4.7)

Figure 4.7: Compression softening effects in the constitutive laws.

In 2D, the compression softening effects are represented by the dotted curves in
Fig. 4.8.

The behavior in tension is described by a linear law until fcr and then, with
discontinuities, with a descending branch that describe an average strength between
cracks (tension stiffening effect):





σc = Ec ε 0 ≤ ε ≤ εcr

σc =
fcr

1 +
√

200 ε
ε 0 ≤ ε ≤ εcr

(4.8)
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Figure 4.8: Concrete constitutive law.

4.2.4.2 Steel

The steel constitutive law σs,i − ε, for the i-th smeared line of reinforced, is ex-
pressed in the direction defined by the i-th steel, since it is assumed that steel shear
resistance can be neglected. The sign conventions are reported in Fig. 4.9, where
αi is the angle between the x axis and the direction of the reinforcement.

Figure 4.9: Stresses and strains for reinforcement in principal direction.

In relating axial stress to axial strain, the bilinear uniaxial stress-strain rela-
tionship shown in Fig. 4.10 is adopted. Thus:

{
σs,i = Es,i εs,i |εs,i| ≤ εy,i
σs,i = ± fy,i |εs,i| > εy,i

(4.9)

4.2.5 Loading transmission across the cracks

The stress and strain formulations described deal with average values and do not
give information regarding local variations. At a crack, the tensile stresses in the
reinforcement will be higher than the average, while midway between cracks they
will be lower than the average. The concrete tensile stresses, on the other hand,
will be zero at a crack and higher than the average midway between cracks. These
local variations are important because the ultimate capacity of a biaxially stressed
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Figure 4.10: Steel constitutive law.

element may be governed by the reinforcement’s ability to transmit tension across
the cracks (Vecchio and Collins, 1986).

These aspects can not be considered in the constitutive law and hence a crack
check control, between average stresses and stresses across cracks, has been pro-
posed.

(a) Calculated average stresses. (b) Local stresses at a crack.

Figure 4.11: Comparisons of local stresses at a crack with calculated average stresses.

With reference to Fig. 4.11, the stress in the reinforcement is indicated with
σscr,i and the shear stress due to aggregate interlock with τci. The static equivalence
in normal direction to the crack gives the following expression:

σc =

N∑

i=1

(
ρs,i (σscr,i − σs,i) cosβ2

i

)
(4.10)

Since the stress in the reinforcement at a crack cannot exceed the yield strength,
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the following limitation holds:

σc ≤
N∑

i=1

(
ρs,i (fy,i − σs,i) cosβ2

i

)
(4.11)

The static equivalence of the two systems conduces to the expression:

τci =

N∑

i=1

(ρs,i (σscr,i − σs,i) cosβi sinβi) (4.12)

The shear stress τci due to aggregate interlock decreases when the crack spac-
ing w grows and when the maximum aggregate size a decreases. The original
MCFT theory proposes a limitation for τci on the basis of the aggregate interlock
mechanism (Walraven, 1981):

τci ≤
√
f ′c

0.31 + 24 w/(a+ 26)
(4.13)

4.2.6 Additional conditions

In the analysis of adequately reinforced structures, the smeared approach typically
provide good results, since the resulting cracks are widely distributed. Instead,
several experiences suggest that analysis method based of the smeared rotating
crack concept do not adequately model the response of shear-critical concrete beams
containing little (ρs ≤ 0.1) or no shear reinforcement (Vecchio, 2000a). In these
type of elements, in fact, the crack field is dominated by a limited number of cracks
with a spacing that can reach several millimeters. It’s clear that this is difficult to
describe by a smeared theory with average constitutive laws. In addition, a slip
between crack may occur and hence the coincidence between the strains principal
axis angle ϑε and the stress one ϑσ is not still valid.

Vecchio proposes two additional controls in order to enhance the original version
of the MCFT.

4.2.6.1 Crack width limit

In shear critical beam, the formation of a dominant shear crack is localized in a nar-
row band of elements. In these zones, it is reasonable to discount completely their
ability to sustain compressive stresses. Thus, when crack width w exceeds 2mm,
the value of the compression stress is limited by using the expressions (Vecchio,
2000a):

f ′c = f ′c
[
5− w

3

]
2 ≤ w ≤ 5

f ′c = 0 w > 5
(4.14)

4.2.6.2 Residual Tension

In the original formulation, the concrete strength after crack is defined by eq. (4.8)
and limited through the procedure exposed in par. 4.2.5. However, in members
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without shear reinforcement, the latter imposes a compression strength equal to
zero (4.11).

In order to avoid this inconvenient problem, the following minimum value is
proposed (Vecchio, 2000a):

σc ≥ 0.10 fcr (4.15)

This additional control produces effects only in element with low amounts of shear
reinforcement. In general, it is ininfluent.

4.3 Disturbed Stress Field Model (DSFM)

Nevertheless it has been proved that Modified Compression Field Theory (MCFT)
led generally to good results, some experimental tests show that:

- in the cases of (a) panels with hight reinforcement ratio in both directions, (b)
panels with hight biaxial stresses and (c) panels in which principal inclina-
tion angle is limited, MCFT furnishes shear resistance and stiffness generally
lower;

- in the case of panels with low reinforcement in one direction, MCFT furnishes
shear resistance and stiffness generally higher.

Some examples will be furnish in par. 4.5 on page 74.
The major cause of that discrepancies is due to the hypothesis used about

principal direction angle. It is assumed that the principal stresses angle ϑσ is
coincident with the principal strains angle ϑε. This hypothesis is generally valid,
Fig. 4.12, but since the slip between cracks can not be evaluated, the relative shear
stress is not considered and the problems previously exposed born.

In order to extend the applicability field of the MCFT, Vecchio proposes the
“Disturbed Stress Field Model” - DSFM (Vecchio, 2000b), a sort of intermediate
approach between fixed and rotating crack models, in which the principal directions
of stresses and strains do not coincide; this difference is taken into account as a
shear crack-slip through a strain offset. In that theory, cracks are perpendicular
to the principal tension stress direction, that is not coincident with the principal
tension strain direction.

4.3.1 Hypothesis and sign conventions

The hypothesis are the same with respect MCFT (see par. 4.2.1 on page 55), with
the difference that now the principal direction angle for stresses is not equal to
the principal direction angle for strains. Hence, concerning equilibrium the same
approach used in MCFT is used, but new compatibility conditions are introduced.

4.3.2 Compatibility Conditions

The inclusion of the slip between cracks is described by strains superposition:

ε = εc + εs (4.16)
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registrata nei pannelli contenenti una limitata o assente quantità di armatura in 

una direzione. Esempi di questi aspetti sono esposti nei paragrafi 3.2.2 e 3.2.3. 

La causa maggiore di queste discrepanze, risiede nell'ipotesi di coincidenza tra 

angolo di inclinazione delle deformazioni principali $. e angolo di inclinazione 

degli sforzi principali $a. La supposizione, generalmente valida e motivata dai 

risultati sperimentali riassunti in Figura 2.15, porta a trascurare lo scorrimento e 

il conseguente sforzo di taglio che si genera tra le facce scabre delle fessure, con 

conseguenze significative sulla stima della rigidezza nei casi cui si è fatto cenno 

sopra. 

 

Figura 2.15 - Confronto tra la direzione dello sforzo principale di compressione e 

quella della deformazione principale di compressione (tratto da Vecchio e Collins, 

1986) 

Per estendere il campo di validità della MCFT, presso l'Università di Toronto 

venne sviluppato il  Disturbed Stress-Field Model (DSFM, Vecchio, 2000, 2001), un 

modello diffuso per lo studio di elementi in C.A. soggetti a stato di sforzo piano, 

nel quale il calcestruzzo fessurato è trattato come un materiale ortotropo, 

omogeneo in media e le fessure, distribuite in modo diffuso, sono supposte 

mantenersi sempre perpendicolari alla direzione principale dello sforzo di 

trazione, senza che questa sia vincolata a coincidere con la direzione principale 

della deformazione di trazione. 

 

2.2.2.1 Ipotesi e convenzioni 

 
Le ipotesi alla base del DSFM, con riferimento ad un elemento in C.A. di spessore 

costante, sono le seguenti: 

• univocità dello stato di sollecitazione, dato uno stato di sforzo; 

• uniformità delle sollecitazioni esterne applicate; 

• sforzi e deformazioni considerati in media, su una distanza che include un 

numero significativo di fessure; 

Figure 4.12: Comparisons between principal stresses and strains directions, (Vecchio
and Collins, 1986).

where εc is the strain tensor relative to concrete and εs is the one relative to average
crack slip.

From total strains ε, Fig. 4.13, the principal strains ε1 and ε2, with the relative
angle ϑε, can be evaluated using Mohr Circle:

ε1,2 =
(εx + εy)

2
± 1

2

√
(εx − εy)

2
+ γ2xy

ϑε =
1

2
arctan

(
γxy

εy − εx

) (4.17)

In the same manner, from strains εc the principal strain in concrete εc1 and εc2
and the relative angle ϑσ are defined as follows:

εc1,c2 =
(εcx + εcy)

2
± 1

2

√
(εcx − εcy)

2
+ γ2cxy

ϑσ =
1

2
arctan

(
γcxy

εcy − εcx

) (4.18)

The crack slip δs (whose expression will be given in par. 4.3.5) is related to an
average shear strain γs, in direction ϑσ, as Fig. 4.13 shows. By using, once again,
Mohr Circle, the corresponding strains εs in the x− y reference are:

εsx = −γ
s

2
sin 2ϑσ

εsy = +
γs

2
sin 2ϑσ

γsxy = −γs cos 2ϑσ

(4.19)
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DISTURBED STRESS FIELD MODEL - DSFM

Figure 4.13: DSFM: Equilibrium and Compatibility (only for concrete) Conditions.

4.3.3 Equilibrium Conditions

The same equilibrium conditions used in MCFT are considered in the DSFM:

σx = σcx +

N∑

i=1

(ρs,i σsx,i)

σy = σcy +
N∑

i=1

(ρs,i σsy,i)

τxy = τcxy +

N∑

i=1

(ρs,i τsxy,i)

(4.20)

4.3.4 Constitutive laws

Constitutive laws have been updated based on new experimental data (Vecchio and
Collins, 1993).

4.3.4.1 Concrete

The relationship σc − εc for concrete is expressed in the principal direction given
by εc, whose inclination is ϑσ. The sign convection is reported in Fig. 4.13 and, as
in MCFT, it is considered that ε1 > ε2.

Compression softening is described by means of a coefficient βd that depends
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Dove: 
 

 Z = 0,80 − 'f 17⁄  (2.37) 
 

                                            �� = 1,0                                      �f ≤ ��# ≤ 0
� = P0,67 − 'f 62⁄ Q                       ��# < �f

�   (2.38) 

 

 

Figura 2.19 - Legame costitutivo del calcestruzzo a compressione. 

A trazione il legame costitutivo è identico a quello formulato originariamente, 

composto da un tratto lineare con pendenza F� fino al raggiungimento della 

tensione di rottura '�G ,seguito, con discontinuità, da un ramo discendente che 

tiene conto della resistenza media residua del calcestruzzo tra le fessure (tension 

stiffening): 
 

        �� = F� ∙ ��                ,per 0 ≤ �� ≤ ��G (2.39) 
 

 �� = 4�H
�I]#55∙.�            ,per �� > ��G (2.40) 

 

Acciaio 

 
Per il legame costitutivo ��,� − � degli 
 strati d'acciaio diffuso, si considerano 

le stesse espressioni utilizzate nella MCFT (Paragrafo 2.2.1.4). 

 

2.2.2.5 Modellazione dello scorrimento 

 
Le deformazioni medie da scorrimento angolare Dq (Equazioni 2.28-2.30) sono 

definite in funzione di una deformazione media 	*�, legata allo scorrimento tra le 

fessure w� ed alla spaziatura media delle stesse ef, secondo l'espressione: 
 

        	*� = ��
�k (2.41) 

 

il cui significato è graficamente rappresentato in Figura 2.18. 

Lo scorrimento w� viene espresso in funzione dell'ampiezza delle fessure [, 

dello sforzo tangenziale ��� e della resistenza media cubica a compressione ��), 

secondo la relazione (Walraven, 1981): 
 

        w� = ���
�,6^��,�I(5,#89^��,���75,#5)��� (2.42) 

Figure 4.14: DSFM: constitutive law for concrete in compression.

on both principal strains and works both on f ′c and ε′c:

βd =
1

1 + cscd
≤ 1 with:

cd = 0.35

(
−εc1
εc2
− 0.28

)0.8

cs = 1.00

(4.21)

The maximum compression strength and strain are given by:

fp = βd f
′
c

εp = βd ε
′
c

(4.22)

Concerning compression law, the following relations is proposed:

σc2 = fp
n (εc2/εp)

(n− 1) (εc2/εp)
nk

(4.23)

where:
n = 0.80− fp/17

k =

{
1.00 εp ≤ εc2 ≤ 0

0.67− fp/62 εc2 ≤ εp
(4.24)

In tension, concrete constitutive law is equal to that given in eq. (4.8).

4.3.4.2 Steel

The same constitutive law presented in par. 4.2.4.2 is used.
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4.3.5 Crack slip modeling

The average strains εs expressed in eq. (4.19) are defined as a function of a smeared
deformation γsa that is related to the slip between cracks δs and to the relative
distance Sp (Fig. 4.13):

γsa =
δs
Sp

(4.25)

The relative displacement δs can be written as a function of the cracks width w, the
tangential stresses τci and the concrete cubic strength resistance Rcm (Walraven,
1981):

δs =
τci

1.8w−0.8 + (0.23w−0.707 − 0.20)Rcm
(4.26)

The stress τci that develop trough cracks is evaluated by means of eq. (4.12). How-
ever, in case of elements without reinforcement, this approach lead to τci = 0 and
so the strain contribution of γs is completely neglected. In addition, experimental
data have observed that the difference between ϑσ and ϑε (obtained after cracks
developing) remains constant until a smeared line of reinforcing yields.

The model, hence, incorporates these aspects by means of the following empir-
ical formulation:

∆ϑε = ϑic − ϑε (4.27)
{

∆ϑσ = ∆ϑε |∆ϑε| ≤ ϑl

∆ϑσ = ∆ϑε − ϑl |∆ϑε| > ϑl
(4.28)

ϑσ = ϑic −∆ϑσ (4.29)

where ϑic is the first crack angle and ϑl is a constant angle defined as a function
of reinforcement’s type:

- ϑl = 5.0o if the element is reinforced in both directions;

- ϑl = 7.5o in the other cases.

By using eq. (4.18) and by remembering eq. (4.16), a new deformation γsb due
to slip can be obtained:

γsb = −γxy cos 2ϑσ + (εy − εx) sin 2ϑσ (4.30)

The average slip deformation is obtained as follow:

γs = max [γsa, γ
s
b ] (4.31)

It must be pointed out that this hybrid formulation combines the two ap-
proaches: for limited stress levels or for elements without reinforcement, the slip
deformation is controlled by the constant angle ϑl; for hight stress levels, the slip
deformation is given by the smeared relative displacement δs.
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4.4 Reduction of the Problem to Algebraic Form

The two theories previously exposed have been implemented in a computer code in
which the problem is translated in algebraic form by using standard finite element
techniques. In particular, a triangular element is proposed and the numerical
approach used to handle the non linearities is based on a secant formulation .

4.4.1 Displacement Field

Let’s consider a solid with volume V and surface S, on which the following quan-
tities act:

- volumetric forces F;

- surface forces f, acting on Sf ;

- known displacements s0, acting on Su. Modellazione ad elementi finiti piani bidimensionali  42 

 

 

      (a) continuo generico.                         (b) elemento finito a 3 nodi. 

Figura 3.1 - Discretizzazione del continuo nel metodo degli elementi finiti. 

Con rifermento ad un generico elemento finito a 3 nodi con deformazioni 

costanti (CST, Corigliano, 2005) rappresentato in Figura 3.1b, si definiscono il 

vettore degli spostamenti nodali 	 e la matrice delle funzioni di forma 
: 
 

 	 = {
�   ��    
�    ��    
�    �� }� (3.1) 
 

 
 = ��� 0 ��0 �� 0 0 �� 0�� 0 ��� (3.2) 

 

Dove con �� si sono indicate le classiche funzioni di forma bilineari con valore 

unitario in corrispondenza del nodo � e nullo negli altri. 

Nel generico punto P del continuo, lo spostamento 
 è dato dal prodotto: 
 

 � = �
�� = 
 ∙ 	 (3.3) 

 

Indicando con ! l'operatore di congruenza lineare, le deformazioni nel 

generico punto P si ottengono come: 
 

 " = # $%$&'%&( = ! ∙ 	 = ! ∙ 
 ∙ 	 = ) ∙ 	 (3.4) 

 

In assenza di deformazioni inelastiche, indicata con * la matrice di rigidezza 

del materiale, gli sforzi risultano: 
 

 + = # ,%,&-%&( = * ∙ " = * ∙ ) ∙ 	 (3.5) 

 

Le incognite del problema sono quindi rappresentate dai soli spostamenti 

nodali che definiscono il reticolo di suddivisione degli elementi, in funzione dei 

quali è possibile esprimere spostamenti, deformazioni e sforzi nel generico punto 

P del continuo. 

 

 

 

Figure 4.15: Discretization of the continuum domain with a triangular finite element.

Following a displacement-based approach, the continuum solid is divided into finite
elements on which displacement shape functions are chosen. By collecting the nodal
displacements in the vector U:

U =
[
ui vi uj vj uk vk

]T (4.32)

and by using the linear functions matrix N(x, y):

N(x, y) =

[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
(4.33)

the displacements in the generic P point of the solid can be written as:

u(x, y) =

[
u(x, y)
v(x, y)

]
= N(x, y)U (4.34)

Introducing the compatibility equations, the following relation holds:

ε =



εx
εy
τxy


 = BU (4.35)
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By indicating with D the material matrix, the stresses result:

σ =



σx
σy
τxy


 = D ε = DBU (4.36)

Clearly, the unknowns of the problem are the nodal displacements U.

4.4.2 Reference Systems

The global unknowns are referred to the global reference system (0 − xy) and
the constitutive laws are defined in the principal axis reference system (0 − 12),
Fig. 4.16. In order to determine the stress state of the generic element a coordinate
transformation is needed.
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3.1.2 Sistemi di riferimento 
 

Le incognite del problema sono riferite al sistema globale ./0, mentre i legami 

costitutivi dei materiali sono riferiti al proprio sistema principale .12, supposto 

inclinato di un angolo 3 rispetto a quello globale (Figura 3.2). 

 

Figura 3.2 - Sistema di riferimento globale (456) e principale (478). 

Il passaggio dal sistema di riferimento principale (indicato con l'apice) a 

quello globale, in termini di deformazioni e sforzi, è ottenuto mediante le 

relazioni: 
 

 "′ = :" ∙ " (3.6) 
 

 +′ = :+ ∙ + (3.7) 
 

Dove le matrici di trasformazione  :" e  :+ risultano: 
 

 :" = ; cos� 3 sin� 3 ABC3C�D3sin� 3 cos� 3 −ABC3C�D3−2ABC3C�D3 2ABC3C�D3 cos� 3 − sin� 3F (3.8) 

 

 :+ = ; cos� 3 sin� 3 2ABC3C�D3sin� 3 cos� 3 −2ABC3C�D3−ABC3C�D3 ABC3C�D3 cos� 3 − sin� 3F (3.9) 

 

per le quali vale la proprietà: 
 

 :"G7 = :+: (3.10) 

 

3.1.3 Elemento finito piano in calcestruzzo armato 
 

Il generico elemento in C.A. è costituito dal calcestruzzo e da � strati di barre 

d'acciaio diffuse. Nel seguito verranno analizzati separatamente i contributi alla 

rigidezza dei singoli materiali, per giungere all'espressione della rigidezza totale 

dell'elemento mediante le equazioni di equilibrio. 

 

 

 

Figure 4.16: Global (0− xy) and local (0− 12) reference systems.

By indicating with ′ the quantities referred to (0−12) system, the following relations
hold:

ε′ = Tε ε
σ′ = Tσ σ

(4.37)

where transformation matrices are (c = cos Ψ, s = sin Ψ):

Tε =




c2 s2 sc
s2 c2 −sc
−2sc 2sc c2 − s2


 Tσ =



c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2


 (4.38)

for which the following relation holds:

T−1ε = TTσ (4.39)

4.4.3 The RC Triangular Element

As exposed in par. 4.2, the domain of the problem is a RC element with n smeared
types of steel bars. In the following, at first concrete domain and steel domain are
separately studied, then they are joined in order to define the state of the element.
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Figura 3.3 - Determinazione del modulo secante eK� del calcestruzzo. 

Il modulo di elasticità tangenziale per un materiale ortotropo, nell'ipotesi di 

coefficiente di Poisson nullo a fessurazione avvenuta, risulta (Weaver et al., 1984): 
 

         jK = kRg∙kRikRgTkRi (3.18) 

 

La matrice di rigidezza *′H assume dunque l'espressione: 
 

         *′H = ;eA1 0 00 eA2 00 0 jA
F (3.19) 

 

Ed il legame costitutivo per il solo calcestruzzo nel riferimento principale è 

dato dalla relazione: 
 

        +′H = *′H ∙ "′H (3.20) 
 

Il passaggio al riferimento globale avviene con l'ausilio delle matrici di 

trasformazione (3.8) e (3.9), dove l'angolo 3 assume il valore: 
 

        3 = l 2⁄ − NZ (3.21) 
 

Eguagliando i lavori virtuali elementari nei due sistemi di riferimento, con 

l'utilizzo delle relazioni (3.6) e (3.7), si ottiene il legame costitutivo nel sistema di 

riferimento globale, espresso tramite la matrice di rigidezza globale del 

calcestruzzo *H : 
 

          m"H� ∙ +H = m"nH� ∙ +nH = m"nH� ∙ *′H ∙ "nH = m"H� ∙ :"� ∙ *′H ∙ :Q ∙ "K =    

                        = m"H� ∙ *′H ∙ "K  (3.22) 

 

Quindi: 
 

        +H = *H("H) ∙ "H (3.23) 

 

 

 

Figure 4.17: Secant concrete modulus.

4.4.3.1 Concrete

In the Disturbed Stress Field Model - DSMF - the average deformations εc in
concrete does not coincide with the total deformations ε, but they are expressed
by using eq. (4.16):

εc = ε− εs (4.40)

where the slip deformations εs are function of the average shear deformation γs

according to the eqs. reported in par. 4.3.5.
Concrete constitutive laws are expressed in the principal directions, that can

be founded as the auto-solutions of the problem:
[
εcx − εi γcxy/2
γcxy/2 εcy − εi

] [
cosϑ
sinϑ

]
=

[
0
0

]
(4.41)

They result:

εc1,c2 =
(εcx + εcy)

2
± 1

2

√
(εcx − εcy)

2
+ γ2cxy (4.42)

and:

ϑσ = ϑ =





1

2
arctan

(
γcxy

εcy − εcx

)
εcy − εcx ≥ 0

π

2
+

1

2
arctan

(
γcxy

εcy − εcx

)
εcy − εcx < 0

(4.43)

In order to describe the non linear behavior, the secant moduli are used:

Ec1 =
σc (εc1)

εc1
Ec2 =

σc (εc2)

εc2
(4.44)

whose geometric representation is reported in Fig. 4.17 The tangential modulus,
by assuming a Poisson’s coefficient υ = 0 after cracking, can be weighed as follow
(Weaver et al., 1984):

Gc =
Ec1 Ec2
Ec1 + Ec2

(4.45)
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Hence, the stiffness matrix in the principal reference system 0, 12 is:

D′c =



Ec1 0 0
0 Ec2 0
0 0 Gc


 (4.46)

and the stresses are:
σ′c = D′c ε

′
c (4.47)

In order to move from the (0 − 12) reference to the global one, transformation
matrices (eq. (4.38)) can be used and the angle Ψ is:

Ψ =
π

2
− ϑσ (4.48)

By imposing the equality between the internal work in the two reference systems
and by remembering eqs. (4.37) the material matrix in the global reference system
is obtained:

δεTc σc = δε′Tc σ
′
c = δε′Tc D′c ε

′
c = δεTc T

T
ε D

′
cTε εc = δεTc Dc εc (4.49)

hence:
Dc = TTε D

′
cTε (4.50)

The stress-strain relationship is finally:

σc = Dc (εc) · εc (4.51)

4.4.3.2 Smeared Steel

The constitutive law for the i − th smeared reinforced steel is expressed in bars
direction, because the shear stress due to steel can be neglect. By using, once
again, the transformation relationship (4.38) in which:

Ψ = αi (4.52)

the following expression holds (c = cos Ψ, s = sin Ψ):

εs,i =
[
c2 s2 cs

]


εx
εy
γxy


 (4.53)

Also for the steel a secant modulus is assumed:

Ēs,i =
σs,i (εs,i)

εs,i
(4.54)

whose geometric meaning is represented in Fig. 4.18.
Matrix D′s,i is:

D′s,i =



Es,i ρs,i 0 0

0 0 0
0 0 0


 (4.55)
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Acciaio diffuso 

 
Il legame costitutivo per lo strato i-esimo d'armatura diffusa è espresso nella 

direzione delle barre, essendo per ipotesi trascurabile lo sforzo di taglio 

trasmesso dalle stesse, Utilizzando la matrice di trasformazione (3.8), dove 

l'angolo di rotazione assume il valore: 
 

        3 = o� (3.24) 
 

Si ottiene, a partire dalle deformazioni totali ", la deformazione principale $I,�: 
 

        $I,� = pcos2 3 sin2 3 ABC3C�D3q ∙ r $/$0'/0s (3.25) 

 

Per tener conto della non linearità del legame costitutivo utilizzato per 

l'acciaio (Equazioni 2.12 - 2.13), la matrice di rigidezza dello strato i-esimo di 

barre nel riferimento principale *′�,t viene formulata con l'utilizzo del modulo 

secante: 
 

         euI,� = Zv,w(Qv,w)Qv,w  (3.26) 

 

Il cui significato è rappresentato graficamente in Figura 3.4. 
 

 

Figura 3.4 - Determinazione del modulo secante euI,�  dell'acciaio i-esimo. 

La matrice di rigidezza *′�,t assume la seguente espressione: 
 

         *′�,t = ;exC,� ∙ yC,� 0 00 0 00 0 0F (3.27) 

 

Ed il legame costitutivo nel riferimento principale è dato dalla relazione: 
 

        +′�,t = z,I,�00 { = |euI,� ∙ yI,� 0 00 0 00 0 0} ∙ #$I,�00 ( = *′�,t ∙ "′�,t (3.28) 

 

Figure 4.18: Secant steel modulus.

and the constitutive law in the principal reference system is:

σ′s,i =



σs,i
0
0


 =



Es,i ρs,i 0 0

0 0 0
0 0 0





εs,i
0
0


 = D′s,i ε

′
s,i (4.56)

In order to move from principal to global reference system, the same procedure
exposed for concrete can be used:

σs,i = TTε,iD
′
s,iTε,i ε = Ds,i ε (4.57)

4.4.3.3 Reinforced Concrete: Concrete & Smeared Steel

In order to obtain the state of the RC element, the solutions related to concrete and
steel must be summed, according to the equilibrium equations (4.20). In general,
n type of smeared steel are present:

σ = σc +

n∑

i=1

σs,i = Dc εc +

n∑

i=1

Ds,i ε = Dc (ε− εs) +

n∑

i=1

Ds,i ε =

=

(
Dc +

n∑

i=1

Ds,i

)
ε−Dc ε

s =

= D ε−Dc ε
s

(4.58)

4.4.3.4 Resisting Forces and Element Stiffness

Resisting forces and element stiffness can be defined through the internal virtual
work δWi:

δWi =

∫

V

δεTσ dV (4.59)
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that, according to eq. (4.32) and eq. (4.58), can be written as:

δWi =

∫

V

δεTσ dV =

=

∫

V

δUTBT (D ε−Dc ε
s) dV =

= δUT

(∫

V

BTDB dV

)
U− δUT

∫

V

BTD εs dV

(4.60)

in which K is the element stiffness matrix:

K =

∫

V

BTDB dV (4.61)

Adopting a secant approach, the element restoring forces Fr,e result:

Fr,e = KU−
∫

V

BTD εs dV = KU− Fse (4.62)

in which the additional forces Fse are due to the slip effect accounted for in the
DSFM. These forces can viewed as external forces and, if MCFT is chosen, they
result equal to zero since no slip is considered (εs = 0).

4.4.4 Secant Solution and Convergence Criterion

By assembling all the element’s contributions given by eq. (4.62), a global system
of equilibrium equations can be obtained. Due to non linear material behavior, the
system is non linear and requires iterative numerical techniques. It must be pointed
out that, in general, not only the stiffness matrix depends from the solution itself,
but also the external forces vector due to presence of the slip. We can write:

Kt(s) = Fe + Fse(s) (4.63)

where Kt is the structure’s stiffness matrix, Fe is the vector of structural external
forces, Fse is the structural contribution of slip effect and s is the global structural
displacements vector. The schematic representation of the secant solution scheme
is reported in Fig. 4.19. Fig. 4.20 shows the flowchart of the computer code, by put
in evidence the difference between MCFT and DSFM. It must be observed that
additional finite elements can be incorporate in the code, just by adding the relative
computation of resisting forces and stiffness matrices in the assembling procedure.
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Figura 3.9 - Soluzione secante alla iterazione D. 

Il primo criterio consiste nel valutare, in norma euclidea, l'incremento di 

spostamento rispetto alla soluzione precedente, rapportandolo alla norma dello 

spostamento attuale. Per un problema generico a � gradi di libertà, alla 

iterazione i-esima, si avrà: 
 

 
‖∆	w‖‖	w‖ = ‖	wG	w°g‖‖	w‖ ≤ �² (3.60) 

 

Dove �² rappresenta la tolleranza adottata per la convergenza negli 

spostamenti, solitamente assunta pari all' 1%. 

Il secondo criterio consiste nel valutare, in norma euclidea, lo squilibrio della 

soluzione, rapportandolo alla norma delle azioni applicate al sistema. Per un 

problema generico a � gradi di libertà, alla iterazione i-esima, si avrà: 
 

 
‖∆�w‖‖�w‖ = ‖�wG¦w∙	w°g‖‖�w‖ ≤ �� (3.61) 

 

Dove �� rappresenta la tolleranza adottata per la convergenza in termini di 

squilibrio, solitamente assunta pari all' 1%. 

Il procedimento iterativo viene quindi arrestato se si verifica una delle 

seguenti condizioni: 

• contemporaneo soddisfacimento dei due criteri di convergenza (3.60) e 

(3.61); 

• raggiungimento del numero massimo di iterazioni. 

Sebbene la velocità di convergenza del metodo secante sia meno elevata 

rispetto a metodi di livello superiore, come quello tangente, la costante 

definizione positiva della matrice di rigidezza lo rende un metodo robusto, e 

questa risulta essere una caratteristica fondamentale in presenza di materiali con 

ramo di softening, come nel caso dei modelli diffusi utilizzati per la presente 

modellazione. 

 

 

 

 

Figure 4.19: Secant solution scheme.

Figure 4.20: MCFT & DSFM: flow chart.
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4.5 Validation and Comments

Both the theories previous exposed have been implemented in a specific computer
code, whose validation is presented now. At first, by focusing the attention on the
differences between MCFT and DSFM, some panels used in the definition of the
smeared theories are presented. Then, two famous beams in which the collapse is
due to shear are considered.

The obtained results show that, in panels, the Disturbed Stress Field Model
gives better results with respect the Modified Compression Field Theory, but in
more complex structures the differences are very small and, in some case, MCFT
gives better results.

4.5.1 PV20 Panel

The first example deals with the PV20 Panel, one of the 30 panels tested for MCFT
formulation (Vecchio and Collins, 1986). It is a 890mm × 890mm square panel,
with a width equal to 70mm. The panel is subject by a pure shear action, as
Fig. 4.21 shows. The materials characteristics are showed in Tab. 4.1. Concerning
the mesh adopted, 4 triangular finite elements are used.
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3.2 Validazione 
 

La validazione dell'algoritmo ad elementi finiti piani é stata effettuata 

analizzando prima alcuni dei pannelli in C.A. che hanno costituito la base 

sperimentale per la definizione dei legami costitutivi dei modelli diffusi, 

ponendo particolare attenzione alle differenze tra le teorie MCFT e DSFM, e 

successivamente si sono analizzate travi aventi una combinazione di geometria e 

armatura tali da provocare un meccanismo di collasso a prete. 

I risultati hanno evidenziato che, se nei pannelli scelti appositamente per 

accentuare lo scarto tra le due teorie (Paragrafi 3.2.2 e 3.2.3), si nota una migliore 

aderenza ai risultati sperimentali per la DSFM, nell'applicazione a strutture più 

complesse la differenza é minima ed in alcuni casi risulta a favore della MCFT. 

Conclude la validazione un'analisi di sensibilità alla variazione della 

dimensione degli elementi costituenti la mesh e alle differenti tipologie di 

modellazione per le barre d'acciaio (diffuse o mediante elementi biella). 

 

3.2.1 Pannello PV20 
 

Il primo confronto riguarda il campione PV20, uno dei 30 pannelli testati da 

Vecchio e Collins per la formulazione della MCFT (Vecchio e Collins, 1986). Il 

pannello quadrato , di lato 890 µµ e spessore 70 µµ, è stato modellato con 4 

Elementi Finiti CST, possiede le caratteristiche meccaniche indicate nelle Tabelle 

3.1 e 3.2 ed è sottoposto ad azione di puro taglio, con i vincoli e le forze specificati 

in Figura 3.11. 

 

Figura 3.11 - Pannello PV20: geometria, vincoli e forze applicate. 

 

Tabella 3.1 - Pannello PV20: caratteristiche meccaniche del calcestruzzo. 

$′K ·′K eK ·K¸ $K¸ 

 [¹º[] [¹º[] [¹º[]  −1,8 ∙ 10G� -19,6 21777 1,46 6,7 ∙ 10G¼ 
 

Tabella 3.2 - Pannello PV20: caratteristiche meccaniche degli acciai diffusi. 

o ·& eI y [°] [¹º[] [¹º[] [%] 
0 460 200000 1,79 

90 297 200000 0,89 

Figure 4.21: PV20 Panel: geometry and forces.

ε′c f ′c [MPa] Ec [MPa] fcr [MPa] εcr

−1.8 · 10−3 −19.6 21777 1.46 6.7 · 10−5

(a) Concrete characteristics.

α [o] fy [MPa] Es [MPa] ρ [%]

0 460 200000 1.79
90 297 200000 0.89

(b) Reinforcing steel characteristics.

Table 4.1: PV20 Panel: materials characteristics.

In Fig. 4.22a, the τxy − γxy curve is presented and a good agreement between
experimental and numerical result is observed. Fig. 4.22b and Fig. 4.22c reports,
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respectively, the ϑσ−τxy and the ϑε−τxy curves. The conceptual difference between
MCFT and DFSM is clearly observed: for MCFT, the two angles are coincident,
instead DSFM is able to predict in a more realistic way the experimental result.
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(a) Shear stress versus shear strain.
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(b) Angle ϑσ versus shear stress.
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(c) Angle ϑε versus shear stress.

Figure 4.22: PV20 Panel: comparisons between MCFT and DSFM results.

4.5.2 PV23 Panel

The second validation concerns the PV23 Panel, cited in (Vecchio, 2000b) as typical
example in which MCFT predicts both a lower stiffness and a lower ultimate load,
due to the contemporaneous presence of shear and biaxial compression state. It is
a 890mm × 890mm square panel, with a width equal to 70mm, Fig. 4.23. Once
again, 4 triangular elements are used for the mesh and the materials characteristics
are showed in Tab. 4.2.

The τxy − γxy curve is presented in Fig. 4.24, in which a better agreement
between experimental result and DSFM is observed.

4.5.3 PB20 Panel

The third example deals with the PB20 Panel, cited in (Vecchio, 2000b) as a typical
case in which MCFT predicts both a greater stiffness and a greater ultimate load
due to the absence of reinforcing steel in one direction. As Fig. 4.25 shows, it is
a 890mm × 890mm square panel, with a width equal to 70mm. The materials
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Figura 3.14 - Pannello PV20: curva  NQ − -%&. 

 

3.2.2 Pannello PV23 
 

Il secondo confronto riguarda il campione PV23, citato dall'autore della DSFM 

(Vecchio, 2000), come tipico esempio nel quale si rileva una sottostima della 

rigidezza e del carico ultimo da parte della MCFT, causata dalla contemporanea 

presenza di uno stato di compressione biassiale, oltre che dello sforzo tagliante. 

 Il pannello quadrato , di lato 890 µµ e spessore 70 µµ, è stato modellato con 

4 Elementi Finiti CST, possiede le caratteristiche meccaniche indicate nelle 

Tabelle 3.3 e 3.4 ed è sottoposto ad una combinazione di taglio e compressione 

biassiale, con i vincoli e le forze specificati in Figura 3.15. 

 

Figura 3.15 - Pannello PV23: geometria, vincoli e forze applicate. 

 

Tabella 3.3 - Pannello PV23: caratteristiche meccaniche del calcestruzzo. 

$′K ·′K eK ·K¸ $K¸ 

 [¹º[] [¹º[] [¹º[]  −2,0 ∙ 10G� -20,5 20500 1,76 8,6 ∙ 10G¼ 

 

Figure 4.23: PV23 Panel: geometry and forces.

ε′c f ′c [MPa] Ec [MPa] fcr [MPa] εcr

−2.0 · 10−3 −20.5 20500 1.76 8.6 · 10−5

(a) Concrete characteristics.

α [o] fy [MPa] Es [MPa] ρ [%]

0 518 200000 1.79
90 518 200000 1.79

(b) Reinforcing steel characteristics.

Table 4.2: PV23 Panel: materials characteristics.

characteristics are showed in Tab. 4.3; 4 triangular elements are chosen for the
structural mesh.
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Tabella 3.6 - Pannello PB20: caratteristiche meccaniche degli acciai diffusi. 

o ·& eI y [°] [¹º[] [¹º[] [%] 
0 424 200000 2,2 

 

 

 

Figura 3.17 - Pannello PB20: geometria, vincoli e forze applicate. 

Incrementando il carico in modo omogeneo fino al raggiungimento del 

collasso, si ottiene la curva -%& − '%& di Figura 3.18: 

 

Figura 3.18 - Pannello PB20: curva  -%& − '%&. 

Il confronto evidenzia la migliore capacità della teoria DSFM nel predirre il 

carico di collasso e la rigidezza dell'elemento al progressivo aumento del carico. 

 

3.2.4 Pannello PW3-2 
 

Il quarto confronto riguarda il pannello PW3-2 (Cervenka, 1970), di caratteristiche 

geometriche indicate nella Figura 3.19  e meccaniche indicate nelle Tabelle 3.7 e 

3.8. La struttura è stata modellata con 988 elementi finiti, come mostrato in Figura 

3.20. 

Figure 4.25: PB20 Panel: geometry and forces.

The τxy − γxy curve is presented in Fig. 4.26, in which a better agreement
between experimental result and DSFM is observed.

4.5.4 PW3-2 Cervenka Panel

The PW3-2 Panel studied in (Cervenka, 1970) is considered. The geometrical
characteristics are showed in Fig. 4.27a and the mechanical ones are reported in
Tab. 4.4-4.5. The structure has been modeled with 988 triangular finite elements,
as Fig. 4.27b shows. It can be observed that both MCFT and DSFM furnish good
predictions of the real structural behavior.
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Figure 4.24: PV23 Panel: shear stress versus shear strain.

ε′c f ′c [MPa] Ec [MPa] fcr [MPa] εcr

−2.0 · 10−3 −21.7 21700 1.79 8.3 · 10−5

(a) Concrete characteristics.

α [o] fy [MPa] Es [MPa] ρ [%]

0 424 200000 2.2

(b) Reinforcing steel characteristics.

Table 4.3: PB20 Panel: materials characteristics.
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Figure 4.26: PB20 Panel: shear stress versus shear strain.

ε′c f ′c [MPa] Ec [MPa] fcr [MPa] εcr

−1.8 · 10−3 −26.8 20000 1.71 8.5 · 10−5

Table 4.4: PW3-2 Cervenka Panel: concrete characteristics.

α [o] fy [MPa] Es [MPa] ρ [%]

0 (inf) 353 190000 1.83
0 (inf) 353 190000 0.92

90 353 190000 0.92

Table 4.5: PW3-2 Cervenka Panel: reinforcing steel characteristics.
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Figura 3.19 - Pannello PW3-2: geometria, vincoli e forze applicate. 

 

Figura 3.20 - Pannello PW3-2: modello numerico. 

 

Tabella 3.7 - Pannello PW3-2: caratteristiche meccaniche del calcestruzzo. 

$′K ·′K eK ·K¸ $K¸ 

 [¹º[] [¹º[] [¹º[]  −1,8 ∙ 10G� -26,8 20000 1,71 8,5 ∙ 10G¼ 

 

Tabella 3.8 - Pannello PW3-2: caratteristiche meccaniche degli acciai diffusi. 

o ·& eI y [°] [¹º[] [¹º[] [%] 
0 (inferiore) 353 190000 1,83 

0 (superiore) 353 190000 0,92 

90 353 190000 0,92 

 

(a) Structural geometry.

12 Numerical Implementation

ε′c f ′c [MPa] Ec [MPa] fcr [MPa] εcr

−1.8 · 10−3 −26.8 20000 1.71 8.5 · 10−5

Table 1.4: PV20

α [o] fy [MPa] Es [MPa] ρ [%]

0 (inf) 353 190000 1.83
0 (inf) 353 190000 0.92
90 353 190000 0.92

Table 1.5: PV20

1.3.4 PW3-2 Cervenka Panel

$9K� ·9K� eK� ·K¸� $K¸�

� ­¹º[®� ­¹º[®� ­¹º[®� �

E1O³  1�G�� 7�(�2� �4444� '�1'� ³OÀ  1�G¼

o� ·&� eI� y�
­½®� ­¹º[®� ­¹º[®� ­¾®�

4������������� 	0	� '34444� '�2	�

4��
���������� 	0	� '34444� 4�3��

34� 	0	� '34444� 4�3��

(a) Axial force - displacement.

$9K� ·9K� eK� ·K¸� $K¸

� ­¹º[®� ­¹º[®� ­¹º[®�

E1O³  1�G�� 7�(�2� �4444� '�1'� ³OÀ  1�

o� ·&� eI� y�
­½®� ­¹º[®� ­¹º[®� ­¾®�

4������������� 	0	� '34444� '�2	�

4��
���������� 	0	� '34444� 4�3��

34� 	0	� '34444� 4�3��

(b) Bending moment - rotation.

Figure 1.13: Rigid perfectly-plastic behavior.

(b) Structural mesh.

Figure 4.27: PW3-2 Cervenka Panel: geometry and mesh.
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Incrementando il carico fino al raggiungimento del collasso, si ottiene la curva 

carico-freccia di Figura 3.21: 
 

 

Figura 3.21 - Pannello PW3-2: curva carico-freccia. 

Il confronto evidenzia buona capacità di entrambe le teorie diffuse nel predire 

la risposta sperimentale in termini di rigidezza e carico critico. La Figura 3.22 

mostra l'andamento del quadro fessurativo, al variare del carico applicato: 

 

Figura 3.22 - Pannello PW3-2: evoluzione del quadro fessurativo. 

 

3.2.5 Trave A1 
 

L'ultimo confronto riguarda la trave A1, testata da Bresler e Scordelis nell'ambito 

di studi sulla resistenza a taglio delle strutture in C.A. (Bresler & Scordelis, 1963). 

Tabella 3.9 - Trave A1: caratteristiche meccaniche del calcestruzzo. 

$′K ·′K eK ·K¸ $K¸ 

 [¹º[] [¹º[] [¹º[]  −1,8 ∙ 10G� -24,1 26778 1,62 6,0 ∙ 10G¼ 

 

 

 

Figure 4.28: PW3-2 Cervenka Panel: numerical crack patterns.
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Figure 4.29: PW3-2 Cervenka Panel: force versus displacement.
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4.5.5 A1 Bresler & Scordelis Beam

The last example deals with A1 Beam, tested by Brelser and Scordelis (1963). It is
a simply supported beam design in order to obtain a shear collapse. The geometry
of the structure is reported in Fig. 4.30a and Fig. 4.31, and the mesh used (made
of 952 triangular elements) in Fig. 4.30b. The materials characteristics are detailed
in Tab. 4.6.

(a)3Structural3geometry.33333333333333333333333333333333333333 (b)3Structural3mesh.

(c)3Experimental3crack3pattern.33333333333333333333333333(d)3Numerical3crack3pattern.

 (f) Principal3tension3strain.

(e) Load-displacement3curve.3333333333333333333333333333333333(g)3Principal3compression3stress.
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Figure 4.30: A1 Bresler & Scordelis Beam: geometry, mesh and results.

By observing (a) the principal deformation pattern, (b) the principal stresses
pattern and (c) the crack pattern, the load transfer mechanism can be explained.
In fact, it’s clear that a smeared compression field is present in the beam’s web and
the collapse can be described by Mörsch analogy (Mörsch, 1902) (see par. 4.1).
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Tabella 3.10 - Trave A1: caratteristiche meccaniche degli acciai diffusi. 

o ·& eI y [°] [¹º[] [¹º[] [%] 
90 325 190000 0,1 

 

Tabella 3.11 - Trave A1: caratteristiche meccaniche delle barre longitudinali. 

barre ·& eI Ø 

 [¹º[] [¹º[] [µµ] 
superiori 345 201000 2 Ø 12,7 

inferiori 555 218000 4 Ø 28,7 

 

 

Figura 3.23 - Trave A1: geometria, vincoli e forze applicate. 

La trave in semplice appoggio, le cui caratteristiche geometriche sono indicate 

nella Figura 3.23 e quelle meccaniche nelle tabelle 3.9 - 3.11, è fortemente armata 

a flessione, al fine di provocarne la rottura per taglio, infatti in prima 

approssimazione, il rapporto tra momento sollecitante ¹I (al carico di collasso 

sperimentale º) e momento resistente ¹Á risulta: 
 

        
ÂÃÂÄ = Å∙Æ Ç⁄�U∙�v∙ª,È∙É = 0,774 < 1 (3.64) 

 

Figure 4.31: A1 Bresler & Scordelis Beam: geometry of the section.

ε′c f ′c [MPa] Ec [MPa] fcr [MPa] εcr

−1.8 · 10−3 −24.1 26778 1.62 6.0 · 10−5

(a) Concrete characteristics.

α [o] fy [MPa] Es [MPa] ρ [%]

90 325 190000 0.1

(b) Reinforcing smeared steel.

bars fy [MPa] Es [MPa] φ [mm]

sup. 345 201000 2φ12.7
inf. 555 218000 4φ28.7

(c) Reinforcing longitudinal steel.

Table 4.6: A1 Bresler & Scordelis Beam: materials characteristics.

4.6 Closing Remarks

This chapter presents the bidimensional modeling of RC structures, focusing the
attention on smeared type models. Two well know smeared theories have been
recalled and compared: the Modified Compression Field Theory (MCFT) and the
Disturbed Stress Field Model (DSFM).

MCFT has been presented in 1986. Such a theory presents some intrinsic limi-
tations that can be solved by introducing additional controls, such as a crack check
control, a crack limit width, or a residual tension control. However, one of the most
restricting hypothesis of MCFT is that the principal stresses angle ϑσ is coincident
with the principal strains angle ϑε, and hence crack slip cannot be evaluated.

In order to overcome these intrinsic limitations, an enhanced theory - the DSFM
- has been presented in 2000. This theory is a sort of intermediate approach between
fixed and rotating crack models, in which cracks are perpendicular to the principal
tension stress direction, not coincident with the principal tension strain one.

Both the theories have been implemented in a finite element code and some
typical examples have been presented. The main result is that DSFM is effectively
ables to describe more in detail the structural behavior in dealing with the specific
panels in which MCFT clearly exhibits its intrinsic approximations. However, in
dealing with more complex structures, the differences decrease and for his simplic-
ity, MCFT can be considered a powerful tool in predicting the structural response
of RC beams in shear.



5 Monodimensional Modeling

This chapter deals with the definition of the state of a generic reinforced con-
crete section by considering shear’s effects, with the aim of formulating shear
flexible beam-column elements. Despite several strategies have been proposed
until now, this problem leads to a rather complex model, whose numerical im-
plementation is not straightforward as happen in dealing with normal stresses.

5.1 Global Framework

The global structural framework is explained with reference to Fig. 5.1. The real
generic structure of Fig. 5.1a is discretized in monodimensional elements as Fig. 5.1b
shows.

(a) Real problem. (b) 1D mesh.

1.1 F i x ed Pat t er n A ppr oac h es 3

F igur e 1.4: Shear flow and st rain dist ribut ion determined with dual sect ion analysis and
fixed pat tern approaches (Vecchio and Collins, 1988).

Nodal displacement q

Nodal forces Q

(c) Element’s nodal quantities.

Figure 5.1: Global Analysis Framework. Real structure, structural mesh and element’s
nodal quantities.

By using a global displacement approach, the unknowns of the problem are the
global displacements s. The external loads acting on the system are transformed
in equivalent nodal forces that can be collected in a vector Fe. Aim of the finite
element analysis is to find the State of the Structure so that the resisting structural
forces Fr are equal to the external ones:

Fr (s) = Fs (s) (5.1)
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This is, in general, a non linear system of equations since both the external and
the resisting forces may depends on the solution itself, represented by the nodal
structural displacements s.

The system shows in eq. (5.1) is obtained by assembling the state of the elements
in which the structure is discretized. The element’s nodal quantities are showed in
Fig. 5.1c; the element’s nodal displacements are collected in vector q, as follow:

q =
[
q1 q2 q3 q4 q5 q6

]T

and the element’s nodal forces are grouped in vector Q:

Q =
[
Q1 Q2 Q3 Q4 Q5 Q6

]T

The element state determination process - evaluate the nodal forces Q given the
nodal displacement q - can be accomplished by the procedures exposed in par.
2.3.1, if the element is displacement-based, or the ones exposed in par. 2.4.2 if a
force-based element is considered.

5.1.1 Element: Resisting Forces and Stiffness Matrix

As already explained in Chapter 2, the state of a 1D element with distributed
nonlinearities can be obtained by weighting the sectional states with the expressions
(2.9) and (2.10) that here are recalled:

Q =

∫ l

0

BT fs,r dx k =

∫ l

0

BT ks B dx

where Q is the already cited vector containing the element’s nodal forces, k is the
element stiffness matrix due to mechanical non linearities only. These quantities
are obtained by integrating along the element’s axis (x−axis) the section resisting
forces fs,r and the section stiffness matrix ks respectively.

Figure 5.2: The 2 Node shear-flexible beam-column element.

The problem of defining the state of the structure is moved, in this way, to the
definition of the element, that can be done both with a displacement approach and
a flexibility one. Despite the choice adopted, the state of the element requires the
definition of the state of the section.
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It’s clear, hence, that the definition of the structural state is moved, by nested
levels, to the definition of the sectional state, that is composed with fibers. In
common finite beam-column element, the state of the section is obtained by direct
integration of fiber’s stresses. Here, instead, aiming of formulate shear-flexible
beam-column elements, also the state of the generic fiber must be obtained and,
as it will be exposed in the next, it requires the solution of a non linear system of
equations.

5.1.2 Section: Resisting Forces and Stiffness Matrix

Figure 5.3: Timoshenko’s kinematic.

As explained, in order to formulate a
monodimensional finite element, the Sec-
tion State Determination process must be
performed. If in the Element State Deter-
mination process the goal is to find the
element resisting forces Q and the ele-
ment stiffness matrix k, concerning the
section, the goal is to find the section re-
sisting forces fs,r and the section stiffness
matrix ks.

By considering Timoshenko kine-
matic, plane section hypotesis is assumed
and a mean shear strain γ0 is considered.
With reference to Fig. 5.3, a generic point
P moves to point P ′.
By using the small rotations hypothesis,
the sectional displacements (u and v) can be written as:

{
u(x, y) = u0(x)− y ·ϕ(x)

v(x) = v0(x)
(5.2)

or, in matrix form:
[
u(x, y)
v(x)

]
=

[
1 0 −y
0 1 0

]

u0(x)
v0(x)
ϕ(x)




u(x, y) = as(y) us(x)

(5.3)

where as is the interpolate section matrix that depends only from the geometry of
the section (y), and us is the vector containing the generalized sectional displace-
ments that depends on the position of the section (x).
By applying the internal compatibility equations, the following strains result:




εx =
∂u

∂x
=

∂

∂x
(u0 − y ·ϕ) =

∂u0
∂x
− y ∂ϕ

∂x
≡ ε0 − y ·χ0

εy =
∂v

∂y
=

∂

∂y
(v0(x)) ≡ 0

γxy =
∂u

∂y
+
∂v

∂x
=

∂

∂x
(v0) +

∂

∂y
(u0 − y ·ϕ) =

∂v0
∂x
− ϕ ≡ γ0

(5.4)
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In Timoshenko kinematic, hence, only two strains can be described and, by using
once again a matrix notation, they result as follow:

[
εx(x, y)
γxy(x)

]
=

[
1 0 −y
0 1 0

]

ε0(x)
γ0(x)
χ0(x)




ε̄(x, y) = as(y) es(x)

(5.5)

where ε0 is axial deformation, γ0 is the mean shear strain, χ0 is the curvature, that
are collected in the section generalized strain vector es. An over line is used on ε in
order to indicate that in Timoshenko kinematic we don’t deal with the full strain
tensor ε =

[
εx εy γxy

]T , but only with a reduced one ε̄ =
[
εx γxy

]T in which,
according to eq. (5.4), εy is not present.

The section resisting forces can be defined through the Virtual Displacement
Principle, by looking at the internal work:

δWi =

∫

A

δε̄T σ̄ dA =

∫

A

δeTs a
T
s σ̄ dA = δeTs

∫

A

aTs σ̄ dA = δeTs fs,r (5.6)

in which also σ is over lined to indicate that we are moving in the reduced Timo-
shenko domain. The section resisting forces result:

fs,r =

∫

A

aTs σ̄ dA =

∫

A




1 0
0 1
−y 0



[
σx
τxy

]
dA =



N
V
M


 (5.7)

The section stiffness matrix can be obtained by using its definition, as follow:

ks =
∂fs,r
∂es

=
∂

∂es

∫

A

aTs (y)σ̄ (ε̄ (es)) dA =

=

∫

A

aTs (y)
∂

∂es
(σ̄ (ε̄ (es))) dA =

∫

A

aTs (y)
∂σ̄

∂ε̄

∂ε̄

∂es
dA =

=

∫

A

aTs (y)
∂σ̄

∂ε̄

∂

∂es
(as(y)es) dA =

=

∫

A

aTs (y)
∂σ̄

∂ε̄
as(y) dA =

=

∫

A

aTs (y) D̄t as(y) dA

(5.8)

in which D̄t is the tangent material matrix. Once again, an over-line is used since
in Timoshenko beam theory this matrix has dimension [2 × 2] and not [3 × 3] as
in the case of the complete plane domain. This is due to the fact that the active
deformations are only εx and γxy, with εy equal to zero.

Concerning the exposed formulation, it deals with a generically non linear Tim-
oshenko beam. The domain in which this theory moves is a reduction of the real
plane domain. It’s clear, hence, that in order to link this beam theory with the
smeared constitutive law assumed for RC elements and exposed in the previous
Chapter, additional considerations are needed as it will be explained in par. 5.2.1.
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5.2 Specialization to RC sections

As exposed, the sectional resisting forces (eq. (5.7)) and the stiffness matrix (eq.
(5.8)) are obtained, respectively, by integrating the stresses and the material con-
stitutive matrix over the sectional domain. Clearly, a numerical integration process
is needed and, since reinforced concrete is a composite material made of concrete
and steel, with reference to Fig. 5.4, the generic section is decomposed in:

1. concrete fibers (with smeared transversal steel);

2. longitudinal bars;

and the sectional resisting forces and stiffness matrix are decompose as:

fs,r = fCs,r + fSs,r
ks = kCs + kSs

(5.9)

in which the upper notation C is to indicate concrete contribution (with or without
smeared transversal steel), and S is referred to longitudinal steel only.

Figure 5.4: RC section: fibers with smeared steel and longitudinal bars.

5.2.1 Concrete Fibers with Smeared Transversal Steel

As clearly highlighted in the previous equations, Timoshenko beam theory works
with a sub-part of the problem. In particular, since εy ≡ 0, σ̄ does not contain σy
and the dimension of matrix D̄t is not [3×3], but [2×2]. Hence, in order to apply a
smeared approach at the fiber level, some additional informations are needed since
we have to link the Timoshenko domain with the full plane tensor:



σx
σy
τxy


 =



D11 D12 D13

D21 D22 D23

D31 D32 D33





εx
εy
γxy




σ = D ε

(5.10)

Concerning constitutive laws, remember the nature of the problem (see Chapter
3): if we can adequately assume a constitutive uniaxial law for concrete σ = σ(ε),
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it’s not possible to obtain a similar law concerning τ = τ(γ). That is why a link
with a plane model, such as the ones presented in Chapter 4, is here performed.

In order to move from the real domain to the reduced one, the condition that
the total stress in the concrete must be equilibrated by the transversal steel is used
in each fiber, according to (Petrangeli et al., 1999) and (Petrangeli, 1999):

σy = σc,y + σs,y = 0 (5.11)

This condition permits to work with the complete domain and to obtain, for
each fiber, his matrix D. Then, however, a static condensation of εy must be
applied in order to come back in the Timoshenko domain. By expanding eq. (5.11)
the following expression is obtained:

σy = D21 · εx +D22 · εy +D23 · γxy = 0 (5.12)

and, by solving it with respect εy the following condition holds:

εy = −D21 · εx +D23 · γxy
D22

(5.13)

By substituting (5.13) in (5.10), the final form of the condensed fiber matrix is
obtained as follow:

[
σx
τxy

]
=




D11 − 2
D12

D22
D13 −

D12 ·D23

D22

D13 −
D12 ·D23

D22
D33 − 2

D32

D22




[
εx
γxy

]

σ̄ = D̄ ε̄

(5.14)

By integrating the material response according to eq. (5.7) and (5.8), concrete
and transversal steel contributions to section resisting forces and section stiffness
matrix can be obtained as follow:

fCs,r =

∫

A

aTs σ̄ dA

kCs =

∫

A

aTs (y) D̄t as(y) dA

(5.15)

5.2.2 Longitudinal Steel

Longitudinal bars contribution can be evaluated in a discrete way, as the summation
of all the nb single bars states. Only longitudinal strain εx is considered. By
specializing eq. (5.5), the longitudinal strain for each bar can be evaluated as:

εx,i = ε0 − yb,i ·χ0 (5.16)

Hence, the material matrix assumes the following expression:

D̄s,i =

[
Es,i 0

0 0

]
(5.17)
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and the contribution of longitudinal steel to sectional resisting forces and stiffness
matrix is:

fSs,r =

nb∑

i=1

(
aTs (yb,i)

[
σx,i
0

])
As,i

kSs =

nb∑

i=1

(
aTs (yb,i)

[
Es,i 0

0 0

]
as(yb,i)

)
As,i

(5.18)

5.3 Section State Determination

At this point, in order to consider different possibilities for determine the state of
the section, two Fixed Pattern Approaches as presented. They can be subdivided
into two groups: the Fixed Strain Approaches and the Fixed Stress Approaches.

5.3.1 Fixed Strain Approaches

A Fixed Strain Approach defines a priori the γxy(y) pattern, with the condition that
the mean value of the so obtained distribution is equal with the shear generalized
deformation:

γ0 =

∫
h
γxy(y) b(y) dy

A
(5.19)

Two type of distribution has been considered, as Fig. 5.5 shows:

Figure 5.5: Fixed Strain Approaches: Input quantities.

The state of the section can be obtained by working with nested loops in each
fiber. In particular:

- εx and γxy are fixed from sectional kinematic (see Fig. 5.5);

- εy is not known, but it can be evaluated by using the condition that the stress
in concrete must be equilibrated by the stress in transversal steel (eq. (5.11))
from which eq. (5.13) follows:

εy = −D21 · εx +D23 · γxy
D22
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The flow chart of the section state determination is exposed in Fig. 5.7a. For
his simplicity, this is the less computational demanding approach, but it tends to
concentrate shear resistance in the compression zone of the section (Vecchio and
Collins, 1988), with a lower prediction of the stirrups stresses as it will be exposed
in par. 5.4.

5.3.2 Fixed Stress Approaches

A Fixed Stress Approach defines a priori the τxy(y) pattern, with the condition
that the mean value of the obtained distribution for γxy(y) is equal with the shear
generalized deformation:

τ∗xy(y) ‖ γ0 =

∫
h
γxy(y) b(y) dy

A
(5.20)

Figure 5.6: Fixed Stress Approaches: Input quantities.

The distribution of τxy(y) can not be imposed a priori, since kinematic variables
are needed in order to use a smeared approach (like MCFT). Hence, also in this
case the solution is reached in an iterative way, by imposing for each fiber of the
section the two conditions: {

σy = 0

τxy = τ∗xy
(5.21)

By remember eq. (5.10), this system can be rewritten in this form:
{
D21 · εx +D22 · εy +D23 · γxy = 0

D31 · εx +D32 · εy +D33 · γxy = τ∗xy
(5.22)

and can be solved for εy and γxy:





εy = − (D23 ·D31 −D21 ·D33) εx −D23 · τ∗xy
D22 ·D33 −D23 ·D32

γxy = +
D22 · τ∗xy + (D21 ·D32 −D22 ·D31) εx

D22 ·D33 −D23 ·D32

(5.23)
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For each fibre, a nested loop solving eq. (5.23) so that (5.21) holds is needed.
At the higher level (the sectional level) however, the condition expressed by eq.
(5.20) must be satisfied. Hence, an additional sectional loop must is needed, as the
flow chart reported in Fig. 5.7b clearly shows.

A similar procedure has been proposed also in (Ferreira, 2013), in which the
sectional loop is not performed but a residual shear force is accounted for. Accord-
ing to (Vecchio and Collins, 1988) the imposition of a parabolic pattern for τxy
produce a result more close to the real solution.

5.3.3 Comparison and Flow Charts

Fig. 5.7 shows the flow charts for the two sectional state determination approaches.
It can be observed that:

- Fixed Strain Approach:
with respect a classical RC section that deals with the problem of normal
stresses, the inclusion of shear modeling produces a sectional state determi-
nation process that is accomplished by an integration of iterative fibers. This
iteration at the fiber level is request in order to calculate the transversal strain
εy so that σy = 0 corresponds. We have, hence, a loop i for each fiber, but
the section is not iterative (see Fig. 5.7a) since, in a fixed strain approach,
the input are kinematic quantities;

- Fixed Strain Approach:
in this case, the input quantities are not only kinematic because a pattern for
the shear stress τxy is imposed. We don’t know the effective value, but we just
say that the pattern is, for example, constant or parabolic. In this case, hence,
in addition to εy as before, we have also γxy as unknown. As a consequence,
the state of the section is obtained with an iterative section, made of iterative
fibers as Fig. 5.7b shows. With respect a fixed strain approach this procedure
is more computational involving.
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5.4 Validation: the “Stuttgart Shear Test”

All the numerical procedures previous exposed are now validated and compared
with the well know shear beam tests carried out in Stuttgart and reported in
(Leonhardt and Walther, 1962) - (Leondardt, 1965). 4 simple supported beams
(ET1, ET2, ET3, ET4) have been considered, with same length and same longitu-
dinal and transversal reinforcement. They differ only for the transversal section,
in which web widths present the variations: 0.30m, 0.15m, 0.10m, 0.05m (see
Fig. 5.9). The goal of this test was to examine the influence of the web width on
the shear strength of the beams. Comparisons deal with:

1. load displacement curves;

2. crack patterns;

3. collapse types;

4. stresses in transversal stirrups.

Concerning the constitutive laws adopted, the relationships of the original MCFT
formulation are considered (Vecchio and Collins, 1986), both for concrete and for
steel. See par. 4.2.4 for details.

All the beams are studied both with bidimensional and monodimensional mod-
els. The corresponding structural meshes are reported in Fig. 5.8.
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Figura 4.15 - Shear Stuttgart tests: modello ad EF di tipo trave. 

 

Figura 4.16 - Shear Stuttgart tests: modello ad EF bidimensionali. 
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Figura 4.17 - Trave ET1: curva carico-freccia. 
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Figura 4.17 - Trave ET1: curva carico-freccia. 

(b) 1D FE model.

Figure 5.8: Stuttgart Shear Test: meshes of the two numerical models used.

The results of 2D modeling are shown in Fig. 5.10. In particular, for all the
beams, the principal tension strain is plotted in correspondence of the collapse
load. It can be observed that in ET1 beam, the higher strains interest the central
bottom part of the beam. This happens in a flexural-type collapse. Then, by
moving from ET1 to ET4 beam, there is a migration of the principal strains in the
web of the beam, as happens in a shear-type collapse.
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(a) Geometry of the beams [mm].

(b) ET1 beam. (c) ET2 beam.

(d) ET3 beam. (e) ET4 beam.

ε′c f ′c [MPa] Ec [MPa] fcr [MPa] εcr

−2.4 · 10−3 −28.5 23800 2.8 1.18 · 10−4

(f) Concrete mechanical properties.

Bars fy [MPa] Es [MPa] φ [mm]

top 420 210000 10
bottom 420 210000 20
transversal 320 200000 6

(g) Steel mechanical properties.

Figure 5.9: Stuttgart Shear Test: geometriy, sections and material’s properties.
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Figure 5.10: Stuttgart Shear Test: comparisons between principal tension strains.

Fig. 5.11 shows the load-displacement curves and the evolution of the stresses in
the stirrups, for all the beams and for all the numerical analysis considered. All
the numerical procedures exposed in this thesis have been used. In particular,
comparisons deal with:

- experimental results;

- 2D modeling;

- 1D modeling with the shear flexible beam-column element;

- 1D modeling with a common beam-column element based on Navier-Bernoulli
kinematic.
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The following comments arise (see Fig. 5.11):

1. bidimensional modeling (based on MCFT):
it is able to predict the nature of the problem, concerning both the load-
displacement curves and the evolution of the stresses in the stirrups, for all
the 4 tested beams;

2. monodimensional modeling based on Navier-Bernoulli kinematic:
in this case, stirrups are not directly modeled and hence the relative stresses
can not be evaluated. The loads-displacement curves can not be considered
adequate since an overestimation of the collapse load and of the structural
ductility are present. In addition, by comparing the 4 beams, it can be
observed that all the curves are, more or less, the same. This is due to the
fact the neutral axis belong to the upper part of the section and, since the
width variations interest the bottom parts, this 1D model is not able to catch
the differences between the beams;

3. monodimensional modeling with the shear-flexible beam-column element:
here, the same constitutive laws assumed for the bidimensional modeling are
considered. The result is that, now, the beam element is able to describe
better the structural behavior: the ultimate load is adequately captured,
with a stiffness that is however higher with respect the 2D modeling. In
addition, the stresses in the stirrups can be evaluated:

- if a fixed strain approach is considered, the shear resistance is concen-
trated in the compression zone of the section and a lower prediction of
the stirrups stresses descends;

- if a fixed stress approach is used, a better representation of the stresses
in the stirrups is generally obtained.

Fig. 5.12 deals with the crack pattern, by comparing the experiment, the bidimen-
sional modeling and the monodimensional model. Concerning the representation
in the 2D model, a crack is plotted in the finite element if the cracking stress is
reached. The direction of the crack is given by the principal stresses inclination
angle. In the 1D model, instead, the procedure used in order to produce the crack
pattern is as follow:

- in each element, the mid section is considered;

- in each fiber of that section, it is control if the cracking stress is reached and,
if yes, the relative crack inclination is saved;

- by smearing such a results in all the element’s length, a conventional crack
can be obtained.

As clearly Fig. 5.12 shows, in the central part of the beam cracks are vertically ori-
ented since, here, only bending moment is present. A more general representation
of concrete cracking pattern can be found in (Ferreira, 2013).
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(a) ET1: load-displacement curve.
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(b) ET1: stresses in the stirrups.
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(c) ET2: load-displacement curve.
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(d) ET2: stresses in the stirrups.
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(e) ET3: load-displacement curve.
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(f) ET3: stresses in the stirrups.
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(g) ET4: load-displacement curve.
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(h) ET4: stresses in the stirrups.

Figure 5.11: Stuttgart Shear Test: comparisons of load-displacement curves and stresses
in the stirrups.
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5.5 Concluding Remarks

In this chapter, some possibilities of the so-called fixed pattern approaches have
been considered and, in particular, a 2 node Timoshenko beam has been presented
and validated.

At first, the global framework is exposed. The generic structure is subdivided
into monodimensional finite beam-column elements. Each beam element is com-
posed by sections and each section is composed by fibers. In a nested way, the
problem of determine the state of the structure is moved to the determination of
the state of the generic fiber. In order to describe the complex shear behavior and
its interaction with normal stresses, a link with a 2D constitutive model is needed.
the Modified Compression Field Theory (MCFT) is hence adopted at the fiber
level. Transversal reinforcing steels are smeared in the concrete domain.

Then, two section state determinations are presented and compared. The first is
a fixed strain approach, with a set of kinematic variables as input. The so obtained
sectional state requires a numerical integration of iterative fibers. The second is
a fixed stress approach, with both kinematic and static variables as input. The
descending sectional state is represented by an iterative section, made of iterative
fibers.

All the numerical procedures have been validated on a well know shear beam
test. The main conclusion is that only 2D modeling is able to describe the total
complex structural behavior. Between the two monodimensional models proposed
in this chapter (that differ only in the section state determination process), best re-
sults have been obtained with the iterative section in which a parabolic distribution
of shear stresses is considered.

Several improvements of the proposed numerical approached are possible. In
particular, the main problem of a fixed pattern approach is the choice of the pattern
itself. It’s clear that, in dealing with sections with arbitrary shape or arbitrary po-
sition of reinforcements, such a choice is not straightforward and specific extensions
of the formulation are required.





II
DAMAGED RC STRUCTURES





6 Damage modeling in RC struc-
tures exposed to corrosion

A general method able to predict the structural lifetime performance of RC
structures is presented. The diffusion process is modeled by using Cellular
Automata and by including the reduction of cross-sectional areas of corroded
bars, the reduction of ductility of reinforcing steel, the deterioration of con-
crete strength and the spalling of the concrete cover.

6.1 Introduction

Concrete structures exposed to aggressive environments are subjected to lifetime
degradation induced by the kinetic process of diffusion of chemical components,
such as sulphates and chlorides, driven by concentration gradients inside the ma-
terial volume (Glicksman, 2000). Sulphates contained in soil or water can contam-
inate the cement paste causing a progressive loss of concrete strength. Chlorides
beyond a threshold value in carbonated concrete can lead to the corrosion of re-
inforcing steel (Castellani and Coronelli, 1999), (Bertolini et al., 2013). Chlorides
are critical in a marine environment, where they diffuse into concrete as airborne
chlorides and/or by direct contact with seawater, but they can also come from the
application of deicing salts on bridge decks (C.E.B., 1992). In general, for con-
crete structures, damage scenarios are more critical for bridges than for buildings,
since usually the entire structure is directly exposed to the aggressive atmosphere
without protection, (Biondini et al., 2013).

In ordinary condition, reinforcing steel bars embedded in sound concrete are
protected by a thin protective oxide film that prevents corrosion initiation. In fact,
the alkaline solution contained in the pores of the hydrated cement paste promotes
the passivation of steel. However, corrosion can take place when the passive film
is removed or locally damaged due to carbonation of concrete or to chloride pene-
tration (Sgambi et al., 2012). Based on that, the service life of reinforced concrete
structures can be divided in two distinct phases (Fig. 6.1). The first phase is the ini-
tiation of corrosion, in which the reinforcement is passive but carbonation and/or
chloride penetration take place leading to the progressive loss of passivity. The
second phase is propagation of corrosion, that begins when steel is depassivated
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Figure 6.1: Initiation and propagation periods for corrosion in RC structures.

and finishes when a limit state is reached beyond which consequences of corrosion
cannot be further tolerated.

6.1.1 Initiation phase

During the initiation phase, aggressive substances that can depassivate steel pen-
etrate from the surface into the inner layers of concrete. Carbonation begins at
the surface of concrete and moves gradually towards the inner zones, neutralizing
concrete alkalinity by the ingress of carbon dioxide from the atmosphere. As far as
chloride attack, chloride ions can penetrate into concrete and reach the reinforce-
ment, destroying the protective layer if their concentration on steel surface reaches
a critical level (Camnasio, 2013). The duration of the initiation phase depends
mainly on the cover depth and the penetration rate of the aggressive agents as well
as on the concentration necessary to depassivate the steel bars. Design codes define
cover depths according to the expected environmental class (EN-206-1, 2001). The
rate of ingress of the aggressive agents depends on concrete quality, i.e. porosity
and permeability, and on the microclimate on concrete surface. Using protective
measures that prolong the initiation phase is an effective way to improve concrete
durability.

6.1.2 Propagation phase

When the steel protective layer is destroyed, corrosion starts if water and oxygen are
present on the surface of the reinforcement. The corrosion rate greatly depends on
temperature and humidity and determines the time it takes to reach the minimally
acceptable state of the structure, i.e. the durability failure criterion. Corrosion
induced by carbonation is generally uniform on steel surface, since carbonated
concrete leads to complete dissolution of the protective layer (Fig. 6.2a-6.2b). In
presence of high chlorides content, corrosion tends to be localized, with penetrated
attacks of limited area (pits) surrounded by non-corroded areas. This is called
pitting corrosion (Fig. 6.2c). Sometimes, when very high levels of chlorides are
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present, the passive film is destroyed over wide areas, thus causing a generalized
corrosion. Moreover, hydrogen embrittlement can occur on high-strength steel used
in prestressed concrete, under particular environmental, mechanical loading and
electrochemical conditions, leading to the brittle failure of the material (Fig. 6.2d).

(a) Cracking of columns and cross beam. (b) Spalling and delamination.

(c) Pitting corrosion. (d) Brittle failures of prestressing tendons.

Figure 6.2: Examples of consequences of corrosion of steel in concrete (Bertolini, 2006).

In the following, a general method able to predict the structural lifetime per-
formances is presented. At first, the aggressive agent penetration is dealt with.
Such a problem requires the solution of a partial differential equation and, in order
to consider arbitrary geometries and arbitrary positions of reinforcements, a spe-
cial evolutionary computational technique is applied: the cellular automata. Once
chlorides concentration is know in all the RC domain and in time, the reduction
of cross-sectional areas, of ductility of reinforcing steel, the deterioration of con-
crete strength and the spalling of the concrete cover will be modeled by presenting
special damage indexes.
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6.2 Diffusion Processes and Cellular Automata

Corrosion is a complex phenomenon, involving different mechanisms and depending
on many parameters. In literature different studies can be found, in order to under-
stand the fundamental factors. Both experimental tests and numerical simulations
have been carried out, with the purpose to investigate the effects on a local and
a global level, and also to develop analytical models (Titi, 2012). Among differ-
ent aggressive agents, the presence of chlorides plays a fundamental role (Stewart,
2009). Hence, the attention is concentrated on chlorides induced corrosion.

6.2.1 Modeling of Diffusion Processes

The hypothesis of a diffusion mechanism can be acceptable if an effective diffusion
coefficient De is introduced. The simplest model, hence, is the Fick’s first law, wich
assume a linear relationship between the mass flow and the concentration gradient.
The combination of the Fick’s model with the mass conservation principle leads to
the Fick’s second law. Assuming an isotropic media, the problem is described by
the following second-order partial differential equation (Glicksman, 2000):

−∇ · (−De∇C) =
∂C

∂t
(6.1)

where C = C(x, t) is the mass concentration of the component at point x = (x, y, z)
in the t time, and ∇C = gradC. Since De is an effective diffusion coefficient, the
described model can be enhanced by considering the anisotropy of the media, more
diffusion components and particular chemical reactions or stresses effects.

In reinforced concrete structures, the effective diffusion coefficient De depends
on relative humidity, on temperature and on the internal stress field. Hence, Fick’s
law must be improved by considering both the thermal effects and the material con-
stitutive laws in a full coupled physical-mechanical process (C.E.B. (1992), Saetta
et al. (1999), Xi and Bazant (1999), Xi et al. (2000)).

However, the so-obtained models are at first too complex, but secondly they
need a wide calibration process that seems too far from the nature of the problem
that, in addition, is not so certain.

For these reasons, in lifetime structural assessment, it seems more convenient
the adoption of a macroscopic approach that neglect all the above mentioned in-
teraction process but that, for his simplicity, can be easily extended in the non
deterministic field.

In the following, it is hence assumed that Fick’s law holds with an effective
diffusion coefficient De that is constant in time. Eq. (6.1) can be rewritten as:

D∇2C =
∂C

∂t
(6.2)

Despite eq. (6.2) is a linear partial differential equations, his solution exists only
for a limit number of classical cases. For that reasons, tipically the problem of the
penetration of chlorides into concrete cross-sections is studied in a uni-dimensional
form (C.E.B., 1992) and the solution of eq. (6.2) is expressed as:

C(x, t) = Cs

[
1− erf

(
x

2
√
Det

)]
(6.3)
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However, such a 1D approach is applicable for simple sections, but in general,
due to different geometric domains or different positions of steel bars or different
attack scenarios, a numerical solution of eq. (6.2) is needed. Inspired to (Biondini
et al., 2004b) and (Titi, 2012), in order to solve the diffusion process, a special
evolutionary computation technique is used: the cellular automata.

6.2.2 An Introduction to Cellular Automata

A cellular automata is a dynamic system where space, time and states are discrete.
Cellular automata were firstly introduced by von Neumann and Ulam in 1948-1950
(Von Neumann et al., 1966) and subsequently developed by other researchers in
many fields of science (see for reviews: Toffoli and Margolus (1987), Adami (1998),
Wolfram (2002)). Originally related to the study of self-replication problems on
the Turing’s machine, cellular automata left laboratories in the 1970s and became
popular in the academic circles with the now famous Game of Life invented by Con-
way (Gardner, 1970). Basically, they represent simple mathematical idealizations
of physical systems in which space and time are discrete, and physical quantities
are taken from a finite set of discrete values. In fact, any physical system satisfying
differential equations may be approximated as a cellular automaton by introducing
discrete coordinates and variables, as well as discrete time steps. Properly speak-
ing, therefore, models based on cellular automata provide an alternative and more
general approach to physical modeling rather than an approximation; they show a
complex behavior analogous to that associated with complex differential equations,
but in this case complexity emerges from the interaction of simple entities following
simple rules (Biondini et al., 2004b).
The definition of a cellular automata must consider two fundamental characteris-
tics:

1. uniformity : the automa’s elements are equal in all the domain;

2. locality : each element has a state that depends only on what happen around
it.

In its basic form, a cellular automaton consists of a regular uniform grid of sites
or cells, theoretically having infinite extension, with a discrete variable in each cell
which can take on a finite number of states. The state of the cellular automaton
is then completely specified by the values si = si(t) of the variables at each cell
i. During time, cellular automata evolve in discrete time steps according to a
parallel state transition determined by a set of local rules: the variables sk+1

i =
si(tk+1) at each site i at time tk+1 are updated synchronously based on the values
of the variables snk in their “neighborhood” n at the preceding time instant tk. The
neighborhood n of a cell i is typically taken to be the cell itself and a set of adjacent
cells within a given radius r, or i− r ≤ n ≤ i+ r. Thus, the dynamics of a cellular
automaton can be formally represented as:

sk+1
i = φ(ski ; skn) i− r ≤ n ≤ i+ r (6.4)

where function φ is the evolutionary rule of the automaton.
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(a) 1D. Radius r = 1. (b) 1D. Radius r = 2.

(c) 2D. von Neumann r = 1. (d) 2D. Moore r = 1.

Figure 6.3: Typical neighborhoods for 1D and 2D cellular automata.

Clearly, a proper choice of the neighborhood cells n plays a crucial role in
determining the effectiveness of such a rule. Fig. 6.3 shows an example of typical
neighborhoods for one and two dimensional cellular automata, but patterns of
higher complexity can be also proposed.

6.2.3 Cellular Automata Solution of Diffusion Equations

One of the most effective applications of cellular automata is the simulation of
diffusion processes, since their dynamics can accurately reproduce linear or nonlin-
ear flows with complex boundary conditions (Whitney, 1990). This result is easily
achieved through a proper selection of both the neighborhood n and the rule φ. As
reported in (Biondini et al., 2004b), the diffusion process described by Fick’s laws
in d dimensions d = 1, 2, 3 can be effectively simulated by adopting a von Neumann
neighborhood (Fig. 6.3c) with radius r = 1 and the following rule of evolution:

Ck+1
i = φ0C

k
i +

d∑

j=1

φ−j C
k
j−1 + φ+j C

k
j+1 (6.5)

where the discrete variable ski = Cki = C(xi, tk) represents the concentration of
the component in the cell i at time tk. The values of the evolutionary coefficients
φ0(d), φ−j (d) e φ+j (d) must verify the following normality rule:

φ0 +

d∑

j=1

φ−j + φ+j = 1 (6.6)

as required by the mass conservation law.
In addition, for isotropic media, in order to avoid directionality effects, the following
symmetric condition must be satisfy:

φ−j (d) = φ+j (d) = φ+1 (d) (6.7)

It is possible to prove the equivalence by the cellular automata rule adopted
and the diffusive partial equation.
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By considering the one-dimensional case, eq. (6.5) can be rewritten as:

C(x, t+ ∆t) = φ0C(x, t) + φ1[C(x−∆x, t) + C(x+ ∆x, t)] =

= φ0C(x, t) +
1− φ0

2
[C(x−∆x, t) + C(x+ ∆x, t)]

(6.8)

where ∆x is the grid dimension and ∆t the step time increment. By subtracting
in both terms C(x, t) and by dividing for ∆t, the following relation holds:

C(x, t+ ∆t)− C(x, t)

∆t
=

1− φ0
2

1

∆t
[C(x−∆x, t) +C(x+ ∆x, t)− 2C(x, t)] (6.9)

that can be rewritten as:

C(x, t+ ∆t)− C(x, t)

∆t
=

1− φ0
2

∆x2

∆t

[C(x−∆x, t) + C(x+ ∆x, t)− 2C(x, t)]

∆x2
(6.10)

By defining:

D =
1− φ0

2

∆x2

∆t
(6.11)

and taking the limit ∆x→ 0 and ∆t→ 0, the expression of the second Fick’s law
is obtained:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂t2
(6.12)

In conclusion, given a D value, the diffusion process can be dealt with by
choosing two values ∆x, ∆t so that eq. (6.11) holds.

The same procedure can be generalized in d dimensions. In particular eq. (6.11)
becomes:

D =
1− φ0

2d

∆x2

∆t
= φ1

∆x2

∆t
(6.13)

Usually a deterministic value φ0 = 1/2 is related to a good accuracy in the re-
sults (Titi, 2012). In the present investigation a deterministic definition for the
evolutionary coefficient is used; however, in order to consider stochastic effects in
the diffusion process, a probabilistic formulation of the cellular automata can be
applied.

6.3 From Diffusion Process to Damage Indexes

Once the diffusion process has been solved, the mechanical damage can be evaluated
by introducing suitable material degradation laws. In order to consider (a) the
reduction of cross sectional area of corroded bars, (b) the reduction of ductility of
reinforcing steel, (c) the deterioration of concrete strength due to development of
longitudinal cracks induced by the corrosion products and (d) the spalling of the
concrete cover, different damage indexes are proposed. In the following, it will be
show that all these damage indexes can be written as a function of a dimensionless
damage index δs, that will be correlated to the diffusion process described before.
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Figure 3.1 – Modeling of mechanical damage: (a) time evolution of damage indices during diffusion 

process; (b) linear relationship between rate of damage and concentration of aggressive agent. 

In the following, the modeling of corrosion damage is discussed, with particular emphasis on 

chloride-induced corrosion. The effects of corrosion on concrete and steel are illustrated, in order to 

highlight how the mechanical properties of the materials can vary during lifetime. The effectiveness 

of the damage models is validated by comparing the numerical results with experimental data available 

in literature. Finally, an application of the adopted damage model is proposed, accounting for uniform 

corrosion of steel bars and deterioration of concrete under a specified corrosion scenario. 
  

(a) (b)

Figure 6.4: Modeling of mechanical damage: (a) time evolution of damage indices dur-
ing diffusion process; (b) linear relationship between rate of damage and
concentration of aggressive agent.

6.3.1 Definition of the dimensionless damage index δs

Structural damage can be viewed as a degradation of the mechanical properties
which makes the structural system less able to withstand the applied actions. The
effects of corrosion damage can be described in the structural model through dam-
age indexes and corrosion can selectively be applied to damaged structural elements
with a different level of penetration in each reinforcing bar and a different dete-
rioration for concrete parts, in order to consider prescribed damage patterns and
corrosion levels (Camnasio, 2013).

Several formulations has been presented to date in order to correlate the rate
of damage and the concentration of the aggressive agent. A critical comparisons
will be show in par. 6.4. In this thesis, the formulation proposed in (Biondini
et al., 2004b) will be used. In such an approach, a linear relationship between the
rate of damage and the concentration of the aggressive agent after the reaching of
a concentration threshold Ccr is assumed, so that the following relationship holds
(see Fig. 6.4):

∂δs
∂t

=
C(x, t)
Cs∆ts

= ρ C(x, t) (6.14)

where Cs represents the value of constant concentration C(x, t), in a certain po-
sition and at a specified time instant, which lead to a complete damage of the
materials after the time periods ∆ts.

Concerning the damage’s effects, the formulation has been here enhanced by
considering all the chlorides corrosion effects in reinforced concrete. In particular,
four damage’s effects will be presented:

1. the reduction of cross-section of reinforcing bars;

2. the reduction of ductility of reinforcing steel;

3. the reduction of concrete strength;

4. the spalling of the concrete cover.

It will be show that all these effects can be derive as a functions of the dimensionless
damage index δs.
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6.3.2 Reduction of the cross-section of reinforcing bars

The most relevant effect of corrosion is the reduction of the cross-section of the
reinforcing steel bars. Depending on the source of corrosion, different models can
be applied in order to simulate it, Fig. 6.5.

(a) Uniform corrosion. (b) Pitting corrosion. (c) Mixed corrosion.

Figure 6.5: Modeling of cross section reduction of a steel bar, adapted from (Titi, 2012).

By denoting p the corrosion penetration depth, it is useful to introduce a dimen-
sionless corrosion penetration index δ ∈ [0, 1] defined as:

δ =
p

D0
(6.15)

where D0 is the original diameter of the bar. Finally, the area of the corroded steel
can be represented by a function of corrosion penetration index, depending on type
of corrosion:

As(δ) = [1− δs(δ)]As0 (6.16)

where As0 = πD2
0/4 is the area of the undamaged bar and δs = δs(δ) is the

dimensionless damage index for reinforcing steel.

6.3.2.1 Uniform corrosion

In carbonated concrete, without a significant presence of chlorides, corrosion tends
to develop in a uniform way around steel bars, Fig. 6.5a. In this case the penetration
depth is p = 2x, and the damage function δs has the following expression:

δs = δ (2− δ) (6.17)

Exploiting eq. (6.16), the uniform reduction of area is:

As(t) = π

[
D0

2
− x(tp)

]2
(6.18)

where tp is the time in which corrosion begins.
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6.3.2.2 Localized corrosion

If concrete is contaminated by chlorides, reduction of steel area is not uniform
but tend to localize (pit), Fig. 6.5b; the model presented above is therefore not
suitable. From measures of current intensity it is possible to obtain a mean value
of penetration depth; however, due to the localization of the damage, the maximum
depth xmax in correspondence of the pit is significant higher. One solution is to
define the pitting factor R, defined as:

R =
x(t)max
x(t)mean

(6.19)

Indicative values for the pitting factor R can be found in (Gonzalez et al., 1995).

6.3.3 Reduction of ductility of reinforcing steel

Pitting corrosion may involve a significant reduction of steel ductility. Tensile
tests on corroded bars show that for a quite limited mass loss (about 13%) steel
behavior may become brittle (Almusallam, 2001). The results of experimental tests
reported in (Apostolopoulos and Papadakis, 2008) indicate that ductility reduction
is a function of the cross-section loss. Based on this results, the εsu can be related
to the damage index δs = δs(δ) as indicated in (Biondini and Vergani, 2012):

εsu(t) =

{
εsu0 0 ≤ δs ≤ 0.016

0.1521 · δ−0.4583s εsu0 0.016 < δs ≤ 1
(6.20)

where εsu0 is the steel ultimate strain of the undamaged bar.

6.3.4 Effects of corrosion on concrete

Effects of corrosion are not limited to damage of reinforcing steel bars. In fact,
in case of uniform corrosion with low penetration rate, the formation of oxidation
products may led to propagation of longitudinal cracks and concrete cover spalling.
The effects are presented in Fig. 6.6.

(a) Scaling. (b) Delamination. (c) Corner effects.

Figure 6.6: Corrosion effects on concrete cracking.

Concrete degradation can be taken into account by modeling the reduction of
concrete compression strength fc due to cover cracking:

fc = [1− δc(δ)] fc0 (6.21)
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where fc0 is the strength of undamaged concrete. The reduced concrete strength
fc can be evaluated as follows (Coronelli and Gambarova, 2004):

fc(t) =
fc0

1 + κ ε⊥(t)
εc0

(6.22)

where κ is a coefficient related to bar diameter and roughness (κ = 0.1 for medium-
diameter ribber bars), εc0 is the strain at peak stress in compression, and ε⊥ is an
average (smeared) value of the tensile strain in cracked concrete at right angles to
the direction of the applied stress. The transversal strain ε⊥ is evaluated by means
of the following relationship:

ε⊥(t) =
bf (t)− bi

bi
=

∆b(t)

bi
(6.23)

where bi is the width of the undamaged concrete cross-section and bf is the width
after corrosion cracking. The increase ∆b of the beam width is estimated as follows:

bf − bi = wtot(t) (6.24)

and hence:
ε⊥(t) =

wtot(t)

bi
(6.25)

where wtot(t) =
∑
wi(t) is the sum of the mean opening cracks of all the bars.

Several relationships are proposed in literature to evaluate the crack opening
w. The following empirical model is assumed in (Vidal et al., 2004):

w = κw(δs(t)− δs0)As0 (6.26)

where κw = 0, 0575 mm−1 and δs0 is the amount of steel damage necessary for
cracking initiation. This damage threshold is evaluated as follow:

δs0 = 1−
[
1− R

D0

(
7, 53 + 9, 32

c

D0

)
× 10−3

]2
(6.27)

Concrete zones 
undergoing damage

Figure 6.7: Model.

where c is the concrete cover. The crack opening increases
with the expansion of corrosion products up to a critical
width, conventionally sets to 1mm. The spalling of con-
crete cover is assumed to occur when this threshold is
reached.

According to (Biondini and Vergani, 2012), the reduc-
tion of concrete strength is not applied to the entire con-
crete cover, but it is limited to the zones adjacent to rein-
forcing bars. Fig. 6.7 shows a model where the reduction of
concrete strength is applied to a portion of concrete cover
surrounding the corroded bars within a radius equal to
the cover thickness. Through such an approach, both the
mechanisms of spalling of the concrete cover and delami-
nation phenomena can be dealt with.
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6.4 Critical Comparison

As shown, damage modeling needs at first the solution of the diffusion process so
that the concentration of the aggressive agent over the sectional domain is know
in time (C = C(x, t)); secondly, the evaluation of the dimensionless damage index
δs = δs(x, t) is required and, once this index is know, the time-evolution of the
material characteristics can be evaluated with the previous explained relationships.
It’s clear that a proper evaluation of δs plays an important role.

The formulation previous exposed enhances the proposal given in (Biondini
et al., 2004b) and assumes a linear relationship between the rate of damage and the
concentration of the aggressive agent. Other approaches can be used. In particular,
in (Vergani, 2010) and in (Camnasio, 2013) the damage indexes are expressed as a
function of the corrosion rate rcorr, that can be assumed according to Fig. 6.8.

Modeling of corrosion damage 
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Rodriguez (1997) proposed a model that takes into account both uniform and pitting corrosion, as 

usually occur in accelerated corrosion tests (Figure 3.2c). The loss of the steel area ΔAs can be 

evaluated as follow by assuming R  2: 

 ))()(2(
4

2
0 tptpAs 


 (3.18)

2.3. Steel corrosion rate 

 

The corrosion propagation is affected by great uncertainties, mainly due to the numerous set of 

conditions influencing the corrosion rate. The rate of corrosion depends on temperature and 

humidity, being higher when both temperature and humidity increase (Andrade 2002). It also depends 

on concrete resistivity which is lower when relative humidity is higher (Gjørv 2009, Andrade & 

Alonso 2001) and which is related to the corrosion rate by a linear relationship (Gulikers 2005). 

 

 
Figure 3.3 –Schematic representation of corrosion rate of steel in different concretes and exposure 

conditions (after Andrade et al. 1990, modified). 

On structures exposed to the atmosphere, the corrosion rate can vary from several tens of μm/year 

to localized values of 1mm/year as the relative humidity rises from 70 to 95% and the chloride 

content increases from 1% by mass of cement to higher values. The corrosion rate is usually 

expressed as the penetration rate and is measured in μm/year. The corrosion rate can be considered 

negligible if it is below 2μm/year, low between 2-5μm/year, moderate between 10-50μm/year and 

very high for values above 100μm/year (Figure 3.3). 

Once the attack begins in chloride-contaminated structures, a high corrosion rate can lead in a 

relatively short time to an unacceptable reduction in the cross-section of the reinforcement. In 

presence of high chloride contents, even for relative humidities the corrosion rate can be up to 2 

Figure 6.8: Schematic representation of corrosion rate of steel in different concretes and
exposure conditions (Camnasio, 2013).

steel bars

Figure 6.9: Cellular automata grid and steel bars sampling points position.

The different formulations are now compared on the RC section reported in
Fig. 6.9. Steel bar’s diameter in position 1 is equal to 14mm and in position 2 and
3 is equal to 12mm. On the bottom edges of the section (red edges), a chlorides
concentration with C0 = 1.5 % (mass chlorides percentage over mass cement) acts.
The following data are assumed: ∆ts = 40 years, ρ = 0.025/C0 and Ccr = 0.6%.
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Once the boundary conditions are defined, the diffusion process is simulated by
cellular automata, with a diffusion coefficient D = 10 x 10−12 m2/s, a grid dimen-
sion ∆x = 10 mm and a time step ∆t = 0.04 years. The obtained concentration
maps of the aggressive agent in time are reported in Fig. 6.10.
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(a) t = 10 years.
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(b) t = 30 years.
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(c) t = 50 years.

Figure 6.10: Normalized concentration maps in time.

The dimensionless damage index δs is reported, for all the considered formu-
lations, in Fig. 6.11. In particular, Fig. 6.11a refers to steel bars in position 1 and
Fig. 6.11b to steel bars in position 2.
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(a) Steel bars in position 1.
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(b) Steel bars in position 2.

Figure 6.11: Comparisons between different formulations for the dimensionless damage
index δs.

The following comments arise:

- the formulations given in (Biondini et al., 2004b) and (Camnasio, 2013) are
very similar. In addition, they produce more safety evaluations, because
worst values for the dimensionless damage index δs are obtained;

- (Vergani, 2010): if a uniform corrosion in considered, wrong predictions of
the damage level can be obtained. Better results are obtained if the pitting
factor R is introduced, as R = 6.
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For these reasons, in this thesis the formulation presented in (Biondini et al.,
2004b) will be considered. It is worst noting, however, that not only the reduction
of steel bars areas is here modeled, but also the reduction of steel ductility, the
reduction of concrete strength and the spalling of the concrete cover. All these
effects are directly linked with the diffusion process, through the dimensionless
damage index δs.

6.5 Closing Remarks

Among different aggressive agents interesting RC structures, the presence of chlo-
rides plays a fundamental role. For this reasons, the effects of chlorides induced
corrosion have been presented. Since corrosion is a complex phenomenon, involv-
ing different mechanisms and depending on many parameters, in lifetime structural
assessments, seems convenient the adoption of a macroscopic approach that, for his
simplicity, can be easily extended in the non deterministic field.

It has been hence assumed that Fick’s law holds with an effective diffusion
coefficient constant in time. The so-obtained governing equation is a linear partial
differential equation whose solution, however, exists only for a limited number of
classical cases. In particular, in several european codes the solution is based on a
1D diffusion model. Such a model can be applied in dealing with compact sections,
but in general a procedure that considers the real sectional domain is needed. The
approach here proposed is based on cellular automata and presents an hight level
of generality, being able to deal with arbitrary shaped sections and with arbitrary
position of reinforcements.

Once the solution of the diffusive process is know in the sectional domain and
in time, several damage index can be evaluated. In this chapter, four chlorides
corrosion effects has been presented:

1. the reduction of cross-section of reinforcing bars;

2. the reduction of ductility of reinforcing steel;

3. the reduction of concrete strength;

4. the spalling of the concrete cover.

With the so-obtained procedure, lifetime structural assessments can be per-
formed. It is sufficient to couple the damage model, here exposed, with the struc-
tural models presented in Part I. The structural analysis became in this way a
sub-module of the damage analysis and the structural behavior can be evaluated
not only when the RC structure is sound, but also in time, when the structure is
progressively damaged.

The flow chart of the complete procedure proposed in this thesis is exposed in
Fig. 6.12, that clearly shows how the structural analysis is inserted in a loop in the
time domain. The logic flow is specialized to a monodimensional modeling with RC
beam-column elements, using a tangent approach. However, other solution schemes
and others structural models can be used and nested in the damage’s model. The
proposed procedure is hence very general.
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III
APPLICATIONS





7 Damage Effects on Structural
Performances of Bridges

This chapter deals with the study of sound and damaged RC bridges. The
damage’s effects are coupled with the structural performances in order to con-
sider time-variant capacity accounting for environmental hazards. The struc-
tural behavior is carried out by a complete parallel study between Non Linear
and Limit Analysis.

7.1 Introduction

The structural performances of two bridges - a Cable Stayed Harp Bridge and
an Arch Bridge - are presented. The main aim is to understand which are the
damage’s effects on the structural behaviors. The formulation exposed in chapter
6 consents to evaluate the effects of corrosion at the material level, by considering
the reduction of steel bars areas, the reduction of steel ductility, and the reduction
of concrete strength until the spalling of the concrete cover occurs. The procedure,
based on cellular automata, deals with RC sections with arbitrary shape and with
arbitrary reinforcing positions. Once the damage’s effects at the material level are
know, the corresponding effects at the sectional level and, then, at the structural
level can be obtained by computational structural analysis techniques. In order to
deeply investigate the time-variant capacity accounting for environmental hazards,
different approaches are considered.

At first, Non Linear Analysis are performed. Non Linear Analysis presents an
hight level of generality and permits to take into account not only the mechanical
non linearities, but also the geometric effects due to configuration’s change (see
par. 2.6).

Secondly, Limit Analysis are presented. It must be emphasize that the ap-
plicability of Limit Analysis to RC structures can be reasonable acceptable if an
effectiveness factor is considered, as exposed in par. B.1. Since the evaluation
of this factor is based on theoretical/empirical/experimental observations, in this
context a different choice is adopted and no correction factors are used. It follow,
of course, that Limit Analysis results are not consistent because concrete is treated
as a material with infinite ductility, assumption too far from reality. However,
the so-obtained not consistent results can be compared with Non Linear Analysis
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ones that give, instead, a more realistic collapse load without requiring effective-
ness factor definitions. In this way, a sort of structural effectiveness factor can be
numerically obtained.

Since Limit Analysis described in this thesis do not considered shear’s effects,
but only bending moment - axial forces interactions, Non Linear Analysis is per-
formed with the common RC beam finite element presented in par. 2.3 - 2.4.

All these comparisons are performed both for sound and damaged bridges, so
that the structural performances can be evaluated not only at the age of construc-
tion but, by using the technique exposed in chapter 6, also in time.

7.2 Sound Cable Stayed Bridge

The cable stayed harp bridge presented in (Seif and Dilger, 1990) and (Bontempi
et al., 1995a) is considered. The geometry of the structure, the different section’s
types and the different levels of prestress in the deck are reported in Fig. 7.1. Fig. 7.2
reports the geometry of the sections and the reinforcing steel positions. The sec-
tional characteristics and the different levels of prestress are reported in Tab. 7.1.

Figure 7.1: Cable Stayed Harp Bridge: geometry, sections and prestress levels.

(a) Deck.

(b) Antenna Sup. 1. (c) Antenna Sup. 2. (d) Antenna Inf.

Figure 7.2: Cable Stayed Harp Bridge: geometry of the sections.

The loads acting on the bridge are:
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1. the death weight q, introduced by a uniform distributed load on the deck
with intensity equal to q = 100 kN/m;

2. the prestressing forces in the bridge’s deck FP0, introduced by equivalent
nodal forces according to Tab. 7.1;

3. the pretensioning forces Ti=1:24 in the cables, evaluated so that the deck,
under the self weight q, presents zero displacements in correspondence of the
stays.

Acls [m2] As1 [cm2] As2 [cm2] As3 [cm2] Ap [cm2] FP0 [kN ]

Deck 1 3.96 150 50 150 80 9600
Deck 2 3.96 150 50 150 160 19200
Deck 3 3.96 150 50 150 240 28800

Ant. Inf 4.04 202 202 0 0
Ant. Sup 2 2.30 131 131 0 0
Ant. Sup 1 1.86 130 130 0 0

(a) Geometrical characteristics.

Concrete f ′c = −34MPa εc0 = −0.002 εcu = −0.0035

Normal steel fsy = 400MPa Es = 200000MPa εsy = 0.02

Prestressing steel fspy = 1680MPa Esp = 190000MPa εspy = 0.0088

(b) Mechanical characteristics.

Table 7.1: Cable Stayed Harp Bridge: geometrical/mechanical characteristics and pre-
stressing levels.
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Figure 7.3: Cable Stayed Harp Bridge: Axial Force-Bending Moment Resistance Dia-
grams.
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7.2.1 Cable Prestressing Forces Evaluation

The 24 prestressing forces in the cables are evaluated so that, under the self weight
q:

- in all the anchorages stay-deck, the vertical displacements are equal to zero
(22 conditions);

- the horizontal displacements at the top of the antennas are equal to zero (2
conditions).

With reference to Fig. 7.1, the following system of equations can be generated:

M · t = s0 (7.1)

where matrixM contains the displacements due to unitary prestressing forces in the
cables, t is the unknown prestressing forces vector and s0 is the vector containing
the displacements due to the self weight q. In explicit form, the system (7.1)
became:




s11 s21 s31 s41 s51 · · · s231 s241
s12 s22 s32 s42 s52 · · · s232 s242
s13 s23 s33 s43 s53 · · · s233 s243
s14 s24 s34 s44 s54 · · · s234 s244
s15 s25 s35 s45 s55 · · · s235 s245
· · · · · · · · · · · · · · · · · · · · ·
s123 s223 s323 s423 s523 · · · s2323 s2424
s124 s224 s324 s424 s524 · · · s2324 s2424




·




T1
T2
T3
T3
T4
T5
· · ·
T23
T24




=




s01
s02
s03
s03
s04
s05
· · ·
s023
s024




(7.2)

whose solution is reported in the histogram in Fig. 7.4. The so obtained prestress
distribution is not symmetric since the constraints acting on the bridge are not
symmetric (an hinge in the left support and a roller in the right one).
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Figure 7.4: Histogram of the prestressing forces in the cables.
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7.2.2 Non Linear Analysis

Non Linear Analysis results are reported in Fig. 7.5 - 7.6 for three different values
of the load q acting on the deck. q = 381 kN/m is the collapse load obtained by
considering both mechanical and geometrical non linearities. Instead, the collapse
load due to mechanical non linearities only is equal to q = 420 kN/m (see Tab. 7.2).

Analysis N.L.G. N.L.M. Collapse load Load Factor

(1)
√ √

381 kN/m 3.81
(2) -

√
420 kN/m 4.20

Table 7.2: Different analysis for the Cable Stayed Bridge. N.L.G. = Non Linear Geom-
etry, N.L.M. = Non Linear Mechanics.

(a) Step 1: q = 100 kN/m.

(b) Step 2: q = 136 kN/m.

(c) Step 3: q = 381 kN/m.

Figure 7.5: Cable Stayed Harp Bridge: deformed configurations until collapse.

The displacements and the bending moments in the deck, with the bending mo-
ments in the pylons are reported in Fig. 7.6, for the three different values of the
load q acting on the deck. It can be observed that, under q = 100 kN/m, the deck’s
displacements are practically coincident with zero, since this load combination has
been chosen in order to design the prestressing forces in the stays.
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(a) Displacements in the deck.
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(b) Bending moments in the deck.

-40000 -30000 -20000 -10000 0 10000 20000

-35

-28

-21

-14

-7

0

7

14

21

28

35

42

(c) Bending moments in left pylon.
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(d) Bending moments in right pylon.

Figure 7.6: Cable Stayed Harp Bridge: displacements and bending moments in the deck
and bending moments in the pylons.



7.2 Sound Cable Stayed Bridge 125

7.2.3 Limit Analysis and Comparisons

Limit Analysis requires the definition of the interaction domains for all the sections
of the bridge. Concerning the pylon and the deck, the domain used in the analysis
are reported Fig. 7.3. The stays, instead, are considered infinitely resisting. The
collapse load obtained by Limit Analysis is equal to q = 594 kN/m and the relative
mechanism is show in Tab. 7.3. By comparing Non Linear Analysis and Limit
Analysis, the following observations arise, Tab. 7.3:

- Limit and Non Linear Analysis results are not equal. By comparing the
collapse load due to Limit Analysis and the one due to Non Linear Analysis
without geometric effects there is a difference that can be used in order to
determine a sort of numerical structural effectiveness factor νe:

νe =
λNLA
λLA

=
420

594
= 0.71

- the geometrical effects on the collapse load can be estimated with a percentage
that is approximately equal to 10 %;

- despite the results are different, both the analyses identify as critical struc-
tural part the bottom of the antenna. In particular, Non Linear Analysis pre-
dict here a large concentration of deformations; Limit Analysis, instead, pre-
dicts the formation of three plastic hinges as the collapse mechanism shown.

Collapse Load Load Factor

An. (1) 381 kN/m 3.81
An. (2) 420 kN/m 4.20
An. (3) 594 kN/m 5.94
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41%
56%

10%

LIMIT ANALYSIS

NON LINEAR ANALYSIS

An. (1) Non Linear Analysis (with both mechanical and geometrical non linearities)
An. (2) Non Linear Analysis (with mechanical non linearities only)
An. (3) Limit Analysis

Table 7.3: Cable Stayed Harp Bridge: Non Linear Versus Limit Analysis.
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7.3 Sound Arch Bridge (Corace River, Calabria, Italy)

Following the same procedures adopted for the cable stayed bridge of the previous
section, Non Linear Analysis and Limit Analysis are now compared with reference
to the reinforced concrete arch bridge over the Corace river in Italy (Fig. 7.7). The
bridge, designed by Galli and Franciosi (1955), presents a span equal to 80m and
a dept equal to 26.10 . The bridge is more than half a century old.

(a) Construction process.

(b) View of the bridge.

Figure 7.7: Corace Bridge (Calabria, Italy), (Franciosi, 1959).

The structural model refers to the data presented in (Galli and Franciosi, 1955)
and (Ronca and Cohn, 1979b). The beam has a two-cellular cross-section with
main nominal dimensions 6.00m× 2.00m. The distribution of the reinforcements
along the beam refers to the subdivision shown in Fig. 7.8 and is given in Tab. 7.4c.
The arch has a 6.00m× 0.57m rectangular cross-section and it is reinforced with
45 + 45 = 90 steel bars, each having a nominal diameter φ = 28mm (see Tab. 7.4d
and Fig. 7.9b).
With reference to Fig. 7.8, two types of loads are considered:

(1) dead load:

- an uniform distributed load on the beam: g0 = 102.9 kN/m;
- an uniform distributed load on the arch: g1 = 85.0 kN/m;

(2) live load:

- an uniform distributed load acting on the half span of the beam:
p = 53.3 kN/m.
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Figure 7.8: Geometry of the bridge.

x [m] y [m]

0.00 0.00
8.89 11.43
17.80 19.04
26.70 23.76
35.60 25.98
40.00 26.10

(a) Arch Shape.

Data

l 80.00 m
f 26.10 m
h 27.00 m
g0 102.90 kN/m
g1 85.00 kN/m
g0 53.30 kN/m

(b) Geometric data.

Beam 1 2 3 4 5 6 7 8 9

A′s 21φ28 48φ28 42φ28 30φ28 24φ8 48φ8 48φ8 45φ8 33φ8
130φ8 130φ8 130φ8 130φ8 130φ8 130φ8 130φ8 130φ8 130φ8

As 21φ28 30φ28 42φ28 24φ28 24φ28 21φ28 36φ28 27φ28 24φ28

(c) Distribution of the top A′s and bottom As reinforcement along the beam. nφd = n steel
bars with diameter d [mm].

Element A′s As

Arch 45φ28 45φ28
Supp. Walls - Type (a) 12φ18 12φ18
Supp. Walls - Type (b) 12φ18 12φ18
Supp. Walls - Type (c) 12φ18 12φ18

(d) Reinforcement distribution in the arch
and supporting walls.

Concrete fc = −30MPa εcu = −0.0035 εc0 = −0.002

Steel fsy = 300MPa Es = 206000MPa εsy = 0.0014563

(e) Material’s characteristics.

Table 7.4: Corace Bridge: reinforcing steel and material’s characteristics.
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(a) Beam’s section.

(b) Arch section.

(c) Column - Type (a) section.

(d) Column - Type (b) section.

(e) Column - Type (c) section.

Figure 7.9: Corace Bridge: geometry of the sections and reinforcement positions.
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The bridge is analyzed with different type of analysis, not only with the aim of
compare them, but principally in order to understand the structural behavior:

- Non Linear Analysis:

- with mechanical and geometric non linearities;

- with mechanical non linearities only;

- Limit Analysis:

- without considering geometric non linearities and without applying ef-
fectiveness factor.

It is recalled that with Limit Analysis only informations related to the collapse
are obtained. Since no effectiveness factor are used, limit analysis results are not
consistent. In contrast, with Non Linear Analysis we can follow the real structural
behavior for all the range of loadings and the definition of effectiveness factor is not
required. Hence, by comparing Non Linear with Limit results, a sort of numerical
structural effectiveness factor can be obtained.

7.3.1 Non Linear Analysis

Non Linear Analysis results are reported in Fig. 7.10 for two different values of
the load p acting on the deck. p = 112 kN/m is the collapse load obtained by
considering both mechanical and geometrical non linearities. Instead, the collapse
load due to mechanical non linearities only is equal to p = 157 kN/m (see Tab. 7.5).

(a) Step 1: 10% of the collapse load. (b) Step 2: 90% of the collapse load.

Figure 7.10: Non Linear Analysis: deformed configuration until collapse.

Analysis N.L.G. N.L.M. Collapse load Load Factor

(1)
√ √

112 kN/m 2.10
(2) -

√
157 kN/m 2.95

Table 7.5: Different analysis for the Corace Bridge. N.L.G. = Non Linear Geometry,
N.L.M. = Non Linear Mechanics.
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7.3.2 Limit Analysis and Comparisons

Limit Analysis requires the definition of the interaction domains for all the sections
of the bridge. Concerning the arch and the beam, the domain used in the analysis
are reported, also for sound conditions, in Fig. 7.17. Since the supporting walls are
only compressed, they are assumed infinitely resisting. The collapse load obtained
by Limit Analysis is equal to p = 217 kN/m and the relative mechanism is show
in Tab. 7.6. By comparing Non Linear Analysis and Limit Analysis, the following
observations arise (Tab. 7.6):

- Limit and Non Linear Analysis results are not equal. By comparing the
collapse load due to Limit Analysis and the one due to Non Linear Analysis
without geometric effects there is a difference that can be used in order to
determine a sort of numerical structural effectiveness factor νe:

νe =
λNLA
λLA

=
157

217
= 0.72

- the geometrical effects on the collapse load can be estimated with a percentage
that is approximately equal to 40 %;

- despite the results are different, both the analyses identify the same crit-
ical structural parts (see the comparisons between deformed configuration
obtained with Non Linear Analysis and the mechanism obtained with Limit
Analysis in Tab. 7.6).

Collapse Load Load Factor

An.(1) 112 kN/m 2.10
An.(2) 157 kN/m 2.95
An.(3) 217 kN/m 4.08
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38%

94%

40%

LIMIT ANALYSIS

NON LINEAR ANALYSIS

An. (1) Non Linear Analysis (with both mechanical and geometrical non linearities)
An. (2) Non Linear Analysis (with mechanical non linearities only)
An. (3) Limit Analysis

Table 7.6: Arch Bridge: Non Linear Versus Limit Analysis.



7.4 Damaged Arch Bridge (Corace River, Calabria, Italy) 131

7.4 Damaged Arch Bridge (Corace River, Calabria, Italy)

As already sad, the Corace Bridge studied in the previous section is more than an
half century old. For this reason, the lifetime behavior of the bridge is now pre-
sented and, by considering different scenarios, the damage effects on the structural
performances are outlined and discussed.

The same structure has been studied also in (Biondini and Frangopol, 2008),
in a probabilistic limit context. However, the effects considered here are not only
due to the reduction of steel bars areas, but also to the reduction of steel ductility,
the to reduction of concrete strength and to the concrete spalling, according to the
formulation presented in chapter 6. In addition, Non Linear and Limit Analysis
are compared in order to understand the evolution of the effectiveness factor in
time.

7.4.1 Corrosion scenarios

In order to perform lifetime predictions, the informations about types, position,
and intensities of the aggressive agents are required. In the following, three types
of chlorides-corrosion scenarios are considered according to Fig. 7.11:

1. only arch is interested by corrosion, in the adjacent zones to the supporting
walls (Fig. 7.11a);

2. only beam is interested by corrosion, in the zones highlighted by Fig. 7.11b;

3. both arch and beam are interested by corrosion, according to Fig. 7.11c;

(a) Scenario 1: only arch. (b) Scenario 2: only beam.

(c) Scenario 3: arch and beam.

Figure 7.11: Corrosion scenarios: longitudinal distribution of the aggressive agent.

In addition to the longitudinal position of the corroded zones, the local sectional
distributions are needed. Concerning the beam, it is reasonable to assume that
chlorides attack interests only the lateral and the bottom parts of the section;
concerning the arch, since it is completely exposed, all the 4 external parts of the
section are considered attacked. The so obtained sectional corrosion scenarios are
reported in Fig. 7.12.
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(a) Corrosion Scenario for the beam (3 side corrosion).

(b) Corrosion Scenario for the arch (4 side corrosion).

Figure 7.12: Corrosion scenarios: sectional distribution of the aggressive agent.

7.4.2 Solution of the diffusion process

With reference to Fig. 7.12, the diffusion process is dealt with cellular automata. By
considering a nominal diffusivity coefficient D = 10−11m2/s, the cellular automa-
ton is defined by a grid dimension ∆x = 10mm and a time step ∆t = 0.16 year.
Damage rates are assumed to be defined by the values C0 = 3 %.

The diffusion process is highlighted in Fig. 7.13 and 7.14, where the maps of
concentration C(x, t)/C0 of the aggressive agent at different time instants are shown
in the arch and the beam respectively.

(a) t = 0 years. (b) t = 20 years.

(c) t = 3 years. (d) t = 40 years.

(e) t = 7 years. (f) t = 60 years.

Figure 7.13: Evolution in time of the normalized concentration maps for the arch.
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7.4.3 Mechanical damage induced by corrosion

Once the diffusion process has been solved, damage indexes can be computed in all
the points of the cross-section, for all the materials, and for all the time instants.
Several damage’s effects are here considered:

1. reduction of steel bars areas;

2. reduction of steel ductility;

3. reduction of concrete strength;

4. spalling of the concrete cover.

According to what exposed in section 6.3.4, that not all the parts of the section
are interested by effects 3− 4, but only the zones adjacent to reinforcing bars. In
this way, both local effects and delamination phenomena can be dealt with.

The obtained corrosion effects on the cross-sections are reported in Fig. 7.15-
7.16, which show the concrete parts interested by spalling. It can be observed
that in the beam, due to the position of reinforcing steel and to the choice of
the aggressive scenario (the upper part is not interested by corrosion), spalling
interests three local zones at the bottom. Instead, in the arch, spalling interests all
the external parts of the cross-section (delamination). In the same Figs., specific
evolutions of geometrical and mechanical parameters are showed in time:

- in the beam, Fig. 7.15, the damage effects in the central upper part of the
section are equal to zero. Instead, the maximum values of corrosion are
obtained in the external corners at the bottom. This clearly depends not only
on the geometry of the section, but also on the corrosion scenario considered
(in this case, only the two lateral and the bottom parts of the section are
attacked by the aggressive agent);

- in the arch, Fig. 7.16, the same reductions are obtained in the upper and the
bottom parts, due to the symmetry of the corrosion scenario that interests
all the 4 sides of the section.

All these considerations concern the time effects of damage on the materials and
on the relative distributions in the sectional domain. In order to understand the
damage effects on the section’s performances, the time evolution of the resistance
curves f(N,M) = 0 are reported in Fig. 7.17. It can be observed that we have a
reduction in time and the spalling of the concrete cover acts like a discontinuity
(cyan area). In the beam, spalling’s effect is very limited, in the arch, instead,
spalling produces a big reduction of the sectional resistance.

In the following, aiming to describe the effects of damage at the structural level,
two types of evaluations are presented:

1. the damage effects on the service performance of the bridge, where Non Linear
Analysis is used;

2. the damage effects on the ultimate performance of the bridge, where Non
Linear Analysis is compared, in time, with Limit Analysis.
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Figure 7.15: Damage effects on the section of the beam.
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Figure 7.16: Damage effects on the section of the arch.
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Figure 7.17: Axial Force-Bending Moment Resistance Diagrams.
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7.4.4 Effects on Service Performance

In order to understand the damage effects on the service performances of the bridge,
the influence line of the vertical displacement in the mid-span of the beam, due
to a moving 30 tons truck, is presented in time. As clearly Fig. 7.18 shows, the
damage effects cannot be catch by observing the displacements due to normal load
conditions. All the influence lines results in fact coincident and very small variations
can be observed at t = 40 years and t = 60 years.

(a) Load position 1. (b) Load position 4.

(c) Load position 2. (d) Load position 5.

(e) Load position 3. (f) Load position 6.
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Figure 7.18: Corace Bridge: influence line of the vertical displacement in the mid-span
of the beam due to a moving load with intensity equal to 30 tons.
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7.4.5 Effects on Ultimate Performance

The ultimate performances are now considered and studied both with Non Linear
and with Limit Analysis. The time-evolutions of the so obtained collapse multipliers
are reported in Fig. 7.19 for the different damage scenarios chosen (see Fig. 7.11):

1. corrosion acts only on the arch. Two sub-cases are considered: (1) only steel is
interested by corrosion, Fig. 7.19a; (2) both steel and concrete are interested
by corrosion (complete corrosion), Fig. 7.19b;

2. corrosion acts only on the beam, Fig. 7.19c;

3. corrosion acts both on arch and on beam, Fig. 7.19d;
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(c) Beam (complete corrosion).
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Figure 7.19: Time evolution of the collapse multiplier.

As clearly highlighted in Fig. 7.19a, if corrosion interests only the reinforcements
of the arch, significant reductions of the collapse load are not observed. The arch, in
fact, works prevalently in compression and hence its behavior depends principally
on concrete. However, when a full corrosion is considered as in Fig. 7.19b, the
spalling of the concrete cover produce a significant reduction of the arch sectional
resisting area; as a consequence, the reduction of the collapse multiplier is higher.
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It is interesting to observe the trends between Limit and Non Linear Analysis
results. In particular, when corrosion interests the arch, the difference between the
two curves is decreasing in time; when corrosion interests the beam, instead, the
trend is contrary, with the difference between the two curves that increase in time.
Since what we have in the middle is a sort of numerical effectiveness factor at the
structural level, defined as:

νe =
λNLA
λLA

it’s clear that:

- in the case of arch corrosion, the effectiveness factor is increasing in time and,
after 60 years, it is equal to 2.7/3.3 = 0.82 (see Fig. 7.19b);

- in the case of beam corrosion, the effectiveness factor is decreasing in time
and, after 60 years, it is equal to 2.5/3.5 = 0.71 (see Fig. 7.19c).

The conclusion is that, in the first case, the collapse is governed by reinforcing
steel, that presents hight ductility; in the second case, instead, the collapse is
governed by concrete, for which the assumption of infinite ductility used in Limit
Analysis is too far from reality and a more hight effectiveness factor is needed.

Such a conclusion is confirmed also by the diagrams in Tab. 7.7 - 7.8 - 7.9, where
the time evolutions of the internal forces (axial forces and bending moments) and
the collapse mechanisms are given for the three corrosion scenarios.
From Tab. 7.7, it can be observed that a corrosion scenario in the arch produces a
redistribution of solicitations that is moved from the arch, damaged, to the beam,
that is sound. This happens until a flexural collapse (hence with hight ductility)
affects the beam.
In Tab. 7.8, instead, the opposite behavior is outlined: if the beam is damaged, the
forces progressively moves to the arch, until a collapse due to compression (hence
with low ductility) is obtained.
When a mixed scenario is considered as in Tab. 7.8, an intermediate behavior can
be observed.

These conclusion are very important in the study of damaged RC structures,
because we can directly see which parts of the structure are damaged, but this is
not sufficient in order to design a repair intervention since the structure maybe has
varied its behavior in time, with a flow of forces that progressively is moved from the
damaged parts to the sound ones. A more specific attention is hence required, and
a coupling between damage’s effects and global structural performances is needed.
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7.5 Concluding Comments

In this chapter, the structural performances of two bridges - a Cable Stayed Harp
Bridge and an Arch Bridge - have been presented. The damage’s effects are cou-
pled with the structural performances in order to consider time-variant capacity
accounting for environmental hazards. The structural behavior is carried out by a
complete parallel study between Non Linear and Limit Analysis.

Between the most important conclusions:

- Non Linear Analysis presents an hight level of generality and permits to take
into account not only the mechanical non linearities, but also the geometric
effects due to configuration’s changes. However, despite based on the most
synthetic formulation (monodimensional modeling with beam-column finite
elements), the interpretation of the obtained results requires some consider-
ations. If, for instance, we are searching the causes of the collapse, a lot of
data and informations must be checked, aiming to find where a large amount
of strains occur, or where instable behaviors have been obtained, etc.

- in contrast, Limit Analysis is the most immediate tool in order to understand
the structural behavior but, since concrete is not a perfectly plastic material,
it can be applicable to RC structures only if an adequate effectiveness factor
is considered. And here a problem arises: what about an adequate choice of
such a factor? If the collapse is governed by the steel, a correct evaluation of
the effectiveness factor can be obtained, but in general, the definition of such
a factor is based on theoretical/empirical/experimental observations. The
main suggestion is to use prudential values. For these reasons, a complete
different choice has been done: no effectiveness factor are used. It follow,
of course, that Limit Analysis results are not consistent because concrete is
treated as a material with infinite ductility, assumption too far from reality.
However, the so-obtained not consistent results can be compared with Non
Linear Analysis ones that give, instead, a more realistic collapse load without
requiring effectiveness factor definitions. In this way, a sort of structural
effectiveness factor has been numerically obtained.

- the obtained value for the effectiveness factor are in the range 0.70 ÷ 0.85.
The lower bond identifies a collapse governed by concrete, the upper value a
collapse governed by steel.

- all these considerations have been outlined not only when the structure is
sound, but also when it is damaged. At first, the damage’s effects are deeply
exposed at the material level, then they are moved at the sectional level, and
at the structural level. It has been obtained that, despite localized corrosion
scenarios have been considered, the structural performances can varying in
time in a non-straightforward way. In particular, since a real structure is
statically undetermined, if corrosion acts in a section, here we have a decrease
of the structural stiffness and the consequence is that the solicitations move
in time towards the sections in which the stiffness is higher, so towards the
sound sections.
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- hence, the most important practical conclusion is that damage produce not
only the reduction of the local capacity, but also a redistribution of the so-
licitations towards the sound structural parts. For these reasons, in design
repair interventions, it is not sufficient to repair the damaged parts, but it is
more important to check if the sound structural components have sufficient
resistance to contrast time-variant solicitations.

Since current design is based on the Lower Bond Theorem, it’s seems very useful
try to enhance also Limit Analysis by considering axial force - bending moment -
shear force interaction, so that the complete structural behavior can be dealt with.
This is one the possible improvement of this thesis.



8 Damage Effects on Shear Re-
sisting Mechanisms

Structural performances can vary in time due to environmental hazards. In
the previous chapter, particular attention is given to the global response. In
this chapter, instead, the effects of damage on shear resistance mechanisms
are presented and discussed. The structural models are coupled with the dam-
age ones in order to study the time-variant structural behavior.

8.1 Problem statement and diffusive process

The Stuttgart Beams (Leonhardt and Walther, 1962) presented in par. 5.4 are
considered. The beams, simply supported with a span equal to 3000mm, are
loaded by two equal concentrate loads P as sketched in Fig. 8.1. This figure also
shows the reinforcement layout.

Figure 8.1: Geometry of the beams [mm].

The element’s depth, flange width and reinforcements are taken fixed, while web
thickness varied in order to investigate its influence on the overall response. Four
variations of the web thickness has been created in order to produce four specimens
called ET1, ET2, ET3 and ET4.

All the beams have been studied in par. 5.4, both with a bidimensional and a
monodimensional modeling. Accordingly to the numerical results, all beams failed
by crushing of concrete in the web. However, in the first beam this happens after
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extensive yielding of longitudinal bars instead, in other three cases, after yielding of
stirrups, with an importance that progressively grows by moving from ET2 towards
ET4 beam. The general conclusion is that ET1 fails in bending, ET2 presents a
mixed shear-bending failure, ET3 and ET4 fail in shear.

For these reasons, since this chapter aim to understand the damage effects on the
resisting mechanisms, only the first two beams (ET1 and ET2) are now considered,
Fig. 8.2. With respect to the previous analysis, however, their structural behavior
is not only studied in sound conditions, but it is also evaluated in time.

(a) ET1 beam. (b) ET2 beam.

Figure 8.2: Geometry of the sections ET1-ET2.

8.1.1 Corrosion Scenario

Concerning the corrosion scenario, a chlorides corrosion attacks is considered. The
distribution of such a scenario is as follow:

- the longitudinal distribution of corrosion is uniform and interests the entire
beams;

- the sectional distribution of corrosion is assumed to be located along the
two laterals and the bottom sides of the cross-sections, with a concentration
C0 = 3 %, as Fig. 8.3 shows.

Aggressive agent

(a) ET1 beam.

Aggressive agent

(b) ET2 beam.

Figure 8.3: ET1-ET2 corrosion scenario: sectional position of the aggressive agent.
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8.1.2 Cellular Automata solution of the diffusion process

Once the corrosion scenario has been defined, the diffusion problem must be solved
both in the sectional domain and in time. The cellular automata technique is
hence applied (see chapter 6), with a diffusivity coefficient D = 10−11m2/s, a
grid dimension ∆x = 10mm and a time step ∆t = 0.04 year. The results are the
concentration maps, in time, for the two considered cross-sections, Fig. 8.4.
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(a) ET1 (t = 10 years).
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(b) ET1 (t = 30 years).
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(c) ET1 (t = 50 years).
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(d) ET2 (t = 10 years).
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(e) ET2 (t = 30 years).
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(f) ET2 (t = 50 years).

Figure 8.4: Time evolution of the normalized concentration maps for the cross-sections.

Despite the corrosion scenario is the same for the two cross-sections, the two
penetration paths are different. This is the shape’s effect and, if the problem is
handle with 1D diffusion models, as suggested in (C.E.B., 1992), wrong predictions
can be obtained. These 1D models can be applied in dealing with compact sections,
but in general a procedure that considers the real sectional domain is needed. The
approach here proposed, instead, presents an hight level of generality and is able to
deal with arbitrary shaped sections and with arbitrary position of reinforcements.

8.2 Time variant structural analysis

The structural behavior can be studied in time by coupling the diffusion process
with the structural analysis. At each time instant, from the concentration in a
generic point of the section (C = C(x, t)), it is possible to compute all the damages
indexes exposed in chapter 6. For the sake of simplicity, despite the proposed
procedure is able to consider also the reduction of steel ductility, the reduction of
concrete strength and the concrete cover spalling, only the reduction of steel bars
areas is taken into account.
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Hence, starting from the results obtained in par. 5.4, where the beams are in
sound conditions, their structural behavior is now studied in time. Tab. 8.1 shows
the time evolution of the principal tension strain. It can be observed that:

- in ET1 beam, damage process does not produce large effects. It seems that
the collapse mechanism remains a flexural-type mechanism also in time (see
the first column of Tab. 8.1);

- in ET2 beam, instead, we can observe that strains are moving towards the
beam’s web, like happens in a shear-type mechanism (see the second column
of Tab. 8.1).

It is interesting to check also the evolution in time of the stresses in the stirrups
and in the longitudinal bars, Tab. 8.2. The following comments arise:

- ET1 beam (first column of Tab. 8.2):
the greater stresses interest the longitudinal bars and this happens for all the
studied time instants;

- ET2 beam (second column of Tab. 8.2):
when the beam is sound, collapse is reached with yielded longitudinal bars,
but with not-yielded stirrups, despite an hight stress is present. In time,
however, such a trend vary and after 50 years of corrosion, stirrups are yielded
before longitudinal bars. For these reasons, strains are moving towards the
web and the beam’s collapse became clearly a shear-type mechanism.

These comments have been outlined by considering both load and time as a
variables. However, the conclusion became very simple if we fix the acting load
and consider only time variations. Fig. 8.5 shows the time evolution of the stresses
(normalized with respect to yielding) in the stirrups and in the longitudinal bars,
for an acting total load equal to 240 kN . It is evident that in the ET1 beam the
greater stresses are measured in longitudinal bars. This holds also for ET2 beam,
but only from 0 to 25 years circa; then there is a switch and the greater stresses are
measure in the stirrups. The effects of damage, hence, produce a switch between
collapse mechanisms. When the beam is sound, a mixed shear-bending failure
occurs, but in time the collapse is moved clearly towards a shear failure.
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Figure 8.5: Evolution in time of the stresses for a constant total load equal to 240 kN .
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Table 8.1: Time evolution of the principal tension strain for ET1 and ET2 beams.
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Table 8.2: Time evolution of the maximum stresses in longitudinal bars and stirrups.
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8.3 Closing Remarks

This chapter has dealt with a specific problem: the effects of damage on the resisting
mechanisms in RC beams. The problem is not only important from a theoretical
point of view, but also from a practical point of view, since today the majority of
RC structures are reaching their ultimate lifetime.

In order to accomplish such a problem, the FE models exposed in part I have
been coupled with the damage models detailed in part II, and lifetime predictions
have been performed. Concerning corrosion scenarios, a chloride induced corrosion
has been considered, with a given distribution along the cross-section’s edges.

In particular, the diffusion process has been solved through cellular automata
at first. The boundary conditions, the diffusion parameters and the size of the
automaton have been detailed; secondly, the evolution of the concentration maps
in time has been given. Starting to these results, the structural analysis are then
performed in time and the damage’s effects on the structural performances have
been finally obtained.

The main conclusion of these investigations is that the effects of damage can
produce a variation in the failure modes. Due to the complexity of the RC mech-
anisms, this conclusion can not be taken as a general statement, for these reasons:

- RC mechanism depends not only on the ratio of transverse reinforcements,
but also on the shape of the section. Since the worst damage’s effect in
RC elements is the reduction of steel bars areas, it’s clear that if a beam
can transfer the load mainly through concrete contribution, a reduction of
transversal steel does not produce effects on the ultimate behavior. This is
the case of ET1 beam in which, thanks to the compact section’s shape, the
load can be transfer by inclined compression stresses acting on concrete that
creates a smeared compression field;

- on the contrary, if the load transfer flow is based also to concrete-steel in-
teractions, it’s clear that a reduction of steel areas can produce dangerous
effects. This is the case of ET2 beam. In sound condition, its failure mode
can be classified as a bending-shear type collapse mechanism, with a concrete
crushing in the web anticipated by the yielding of the longitudinal steel. Stir-
rups are not yielded, but they present an hight stress level. If the structural
behavior is studied in time, a switch between longitudinal and transversal
steel roles has been obtained after 25 years of corrosion. After that time, the
collapse of the beam can be classified as a shear-critical collapse mechanism.

Finally, it must be observed that the proposed methodology is able to predicts
all these complex behaviors and, by coupling the structural analysis with the dam-
age’s models, is able to account for environmental hazards. Hence, it can be very
useful in a general life-cycle approach.
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A A sectional parametric sub-
domains discretization

A methodology handling the integrals that define the state of a generic R.C.
section is presented. The section is divided in subdomains that are paramet-
rically transformed in the same square parent domain on which integration
rules refer. In this way, several combinations of integration strategies can be
performed, with the widely used “fibers method” as particular case.

A.1 Introduction

Lets’ consider the section domain, referred to a right handed reference system
(0, x, y, z) with the origin placed in the centroid of the concrete domain. The
x− axis is normal to the sectional plane and oriented along the element, Fig. A.1.

Figure A.1: A generic RC section and his reference system.

Once suitable constitutive laws are assumed, so that the stresses σ in a generic
point of the section can be evaluated from the strains ε, and once a suitable inter-
polating matrix as is defined, the generalized stresses fs can be evaluated by direct
integration of the local stresses over the section domain. Such an integral is given
in the following equation:

fs =

∫

A

as (y, z, ε)σ (ε) dA (A.1)
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This problem always arise at the sectional level, despite the formulation adopted
for the finite beam-column element. In common sectional kinematic assumptions
such as Navier-Bernoulli or Timoshenko, matrix as does not depend from ε, but
only to (y, z) (see Tab.A.1). Instead, in beam theories with a more hight kinematic
level, the interpolating matrix can be state-dependent.

Navier-Bernoulli Timoshenko

εx =
[
1 −y

] [ε0
χ0

]
= as es

[
εx
γxy

]
=

[
1 0 −y
0 1 0

]ε0γ0
χ0

 = as es

Table A.1: Navier-Bernoulli and Timoshenko sectional kinematics.

In any case, since the arise stresses on the section are not linear, the evaluation
of the integral (A.1) must be performed numerically. Actually, the most used
numerical approach that deals with sectional numerical integration is the so-called
“fibers approach” (C.E.B., 1996), through which the section is subdivided in sub-
domains called “fibers” and the integral is evaluated with the Riemann Mid-Point
Integration Rule, Fig. A.2.

Fiber ("slice")

Figure A.2: Fibers Approach (Riemann Mid-Point Integration Rule).

In the following, instead, a special numerical integration technique is presented.
The strategy has been proposed in (Malerba, 1984); in this context, a contribution
that deals with circular or circular/hollow sections is proposed. The classical fibers
approach is simply a particular case of the present more general approach.
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DIFFERENTrQUADRATURErRULESrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrsamplingrpoints

Newton-CotesrrrrrrrGauss-LobattorrrrrrGauss-LegendrerrrrrrrrrrrrrrrrrrrrrrrrrrrrʺFibersrApproachʺ

(Riemannrmiddlersum)

asrparticularrcase

Figure A.3: Integration strategies. The section is divided into sub-domains and the
integration works sampling in a parent domain by using parametric trans-
formations. The so called fibers approach is a particular case of these
integration procedures.

A.2 Numerical Integration by Parametric Transformations

In order to deal with sections of arbitrary shape, the numerical integration is based
on parametric transformations. The section is divided into sub-domains and the
actual geometry of each sub-domain is transformed into a parent geometry by using
parametric equations (Malerba, 1984), (Bontempi, 1992). In this way, sampling
points refer to the parent domain and the relation with the reference to the actual
geometry is ruled by Jacobian of the transformation. We set the integral form as
follows:

I =

∫

A

f(z, y) dA (A.2)

and we consider the section subdivided with these two types of sub-domains:

1. quadrilateral sub-domains;

2. circle or semicircle or circular ring sub-domains.

Obviously, sections composed by both can be dealt with. The application fields of
such discretization choices are shown in Fig.A.3. In case 1, only one parametric
transformation is needed. In case 2, two different transformations are required.
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A.2.1 Quadrilateral sub-domain

In this case, the transformation from the given quadrilateral sub-domain to the
square parent domain (Fig.A.4) is ruled by the well-known bilinear interpolation
function (Bathe, 1996):

  

     6.1 Trapezoidal subdomain 

     In this case, the transformation from the given trapezoidal subdomain to the square parent domain 

(Fig.3)  is ruled by the well-known  bilinear interpolation function (Bathe 1996): 
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Fig.3 Transformation between real trapezoidal subdomain and square parent domain 
 
The corresponding determinant of the Jacobian matrix is: 
 

( ) ( ) ( ) ( )24 13 13 24 14 23 23 14 12 34 34 12

1
det

8t z y z y z y z y z y z yζ η = − + ⋅ − + ⋅ − J
 

ij i jz z z= − ij i jy y y= −  
(25) 

 

     6.2 A circular sector subdomain 

     In this second case, two transformations are needed. The first one uses polar coordinates to transform 

the sector in a rectangular domain by using the relationships: 

 

cos

z sen

y

ρ ϑ
ρ ϑ

=
=

 (26) 

 
The relative Jacobian of the polar transformation is: 

Figure A.4: Transformation between real quadrilateral sub-domain and square parent
domain.

Ni =
(1 + ζ · ζi)(1 + η · ηi)

4
, i = 1, 2, 3, 4 (A.3)

which, ordered in matrix form, results:

x =

[
z
y

]
= N · c (A.4)

with
N =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
(A.5)

c =
[
z1 y1 z2 y2 z3 y3 z4 y4

]T (A.6)

The corresponding determinant of the Jacobian matrix is:

det(Jt) =
1

8
[(z24 · y13 − z13 · y24) + (z14 · y23 − zz23 · y14) ζ + (z12 · y34 − z34 · y12) η]

zij = zi − zj , yij = yi − yj
(A.7)

A.2.2 Circular sectorial sub-domain

In this second case, two transformations are needed (Fig.A.5). The first one uses
polar coordinates to transform the sector in a rectangular domain by using the
relationships: {

z = ρ · sin θ

y = ρ · cos θ
(A.8)

The relative Jacobian of the polar transformation is:

det(Jp) = ρ (A.9)

Then, a second step transforms the rectangular sub-domain in the usual square
parent domain.
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( )det p ρ=J  (27) 
 
Then, a second step transforms the rectangular subdomain in the usual square parent domain, Fig.4. 

 

 
 

Fig. 4 From a quadratic shape to a circular sector: a double transformation 
 
 
 

     6.3 Integration Rules 

     Through the transformations previously exposed, the generic integral is written with reference to the 

basic square parent domain. The differential must contain the corresponding Jacobian matrix. 
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The problem is reduced to algebraic form through sums, which for the trapezoidal subdomain, are: 
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And for the circular sector subdomain are: 
 

( ) ( )( ) ( )( )
1 1

, det , det ,
n n
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I f w wζ η ζ η ϑ ρ
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As shown, in this second case two Jacobian matrices are involved. 

The sampling points location and the relative weights depend on the quadrature rule adopted 

(Abramowitz 1964).  

Figure A.5: From a quadratic shape to a circular sector: a double transformation.

A.2.3 Integration Rules

Through the transformations previously exposed, the generic integral is written
with reference to the basic square parent domain. The differential must contain
the corresponding Jacobian matrix.

I =

∫

A

f(z, y) dA =

∫ 1

−1

∫ 1

−1
f(ζ, η)det(J(ζ, η)) dζdη (A.10)

The problem is reduced to algebraic form through sums, which for the quadri-
lateral sub-domain, are:

I ≈
n∑

i=1

n∑

j=1

f(ζi, ηj)det(Jt(ζi, ηj)) ·wi ·wj (A.11)

and for the circular sector sub-domain are:

I ≈
n∑

i=1

n∑

j=1

f(ζi, ηj) det(Jt(ζi, ηj)) det(Jp) wi ·wj (A.12)

As shown, in this second case two Jacobian matrices are involved. The sampling
points location and the relative weights depend on the quadrature rule adopted
(Abramowitz and Stegun, 1964).

For the sake of comparison, in this work, three type of quadratures rules and
different numbers of sampling points n have been considered.

- Newton-Cotes rule, that integrates exactly polynomials of grade n− 1;

- Gauss-Legendre rule, that integrates exactly polynomials of grade 2n− 1;

- Gauss-Lobatto rule, that integrates exactly polynomials of grade 2n− 3.

We remember that we are dealing with problems concerning reinforced concrete
sections. In this field the most used integration strategy discretizes the section into
fibers (C.E.B., 1996), that in fact are sub-domains with only one sampling point.
Such an integration rule (midpoint integration rule) is the simplest possible and
corresponds to what proposed in this work just putting n = 1. On the other side,
working with R.C. sectional problems, we know that the maximum strains lie on
the boundaries, so it seems more effective adopt Gauss-Lobatto rule, which choses
sampling points on the frontier of the domain.
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A.2.4 Sampling Points and Weights Factors

Sampling points location and relative weights can be find in specific book of Nu-
merical Analysis. For example, Fig. A.6 and A.7 report the sampling given in
(Abramowitz and Stegun, 1964).

Figure A.6: Gauss-Legendre quadrature, (Abramowitz and Stegun, 1964).

Figure A.7: Gauss-Lobatto quadrature, (Abramowitz and Stegun, 1964).

In the following tables, the sampling points and weights are furnish for n =
1, 2, . . . , 12, divided in the three quadrature rules previously exposed (see Tab.A.2,
A.3, A.4). These quadrature rules are used in the code developed in this thesis not
only at the sectional level, but also at the element level.
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Newton-Cotes

n xi αi n xi αi

1 0.000000000000000 2.000000000000000 2 -1.000000000000000 1.000000000000000
- - 1.000000000000000 1.000000000000000

3 -1.000000000000000 0.333333333333333 4 -1.000000000000000 0.250000000000000
0.000000000000000 1.333333333333330 -0.333333333333333 0.750000000000000
1.000000000000000 0.333333333333333 0.333333333333333 0.750000000000000

- - 1.000000000000000 0.250000000000000

5 -1.000000000000000 0.155555555555556 6 -1.000000000000000 0.131944444444444
-0.500000000000000 0.711111111111111 -0.600000000000000 0.520833333333333
0.000000000000000 0.266666666666667 -0.200000000000000 0.347222222222222
0.500000000000000 0.711111111111111 0.200000000000000 0.347222222222222
1.000000000000000 0.155555555555556 0.600000000000000 0.520833333333333

- - 1.000000000000000 0.131944444444444

7 -1.000000000000000 0.097619047619048 8 -1.000000000000000 0.086921296296296
-0.666666666666667 0.514285714285714 -0.714285714285714 0.414004629629630
-0.333333333333333 0.064285714285714 -0.428571428571429 0.153125000000000
0.000000000000000 0.647619047619048 -0.142857142857143 0.345949074074074
0.333333333333333 0.064285714285714 0.142857142857143 0.345949074074074
0.666666666666667 0.514285714285714 0.428571428571429 0.153125000000000
1.000000000000000 0.097619047619048 0.714285714285714 0.414004629629630

- - 1.000000000000000 0.086921296296296

9 -1.000000000000000 0.069770723104056 10 -1.000000000000000 0.063772321428571
-0.750000000000000 0.415379188712522 -0.777777777777778 0.351361607142857
-0.500000000000000 -0.065467372134039 -0.555555555555556 0.024107142857143
-0.250000000000000 0.740458553791887 -0.333333333333333 0.431785714285714
0.000000000000000 -0.320282186948854 -0.111111111111111 0.128973214285714
0.250000000000000 0.740458553791887 0.111111111111111 0.128973214285714
0.500000000000000 -0.065467372134039 0.333333333333333 0.431785714285714
0.750000000000000 0.415379188712522 0.555555555555556 0.024107142857143
1.000000000000000 0.069770723104056 0.777777777777778 0.351361607142857

- - 1.000000000000000 0.063772321428571

11 -1.000000000000000 0.053668296723852 12 -1.000000000000000 0.049866461823927
-0.800000000000000 0.355071882849661 -0.818181818181818 0.309710717041446
-0.600000000000000 -0.162087141253808 -0.636363636363636 -0.074338463587596
-0.400000000000000 0.909892576559243 -0.454545454545455 0.579316509589947
-0.200000000000000 -0.870310245310245 -0.272727272727273 -0.220356178350970
0.000000000000000 1.427529260862590 -0.090909090909091 0.355800953483245
0.200000000000000 -0.870310245310245 0.090909090909091 0.355800953483245
0.400000000000000 0.909892576559243 0.272727272727273 -0.220356178350970
0.600000000000000 -0.162087141253808 0.454545454545455 0.579316509589947
0.800000000000000 0.355071882849661 0.636363636363636 -0.074338463587596
1.000000000000000 0.053668296723852 0.818181818181818 0.309710717041446

- - 1.000000000000000 0.049866461823927

Table A.2: Newton-Cotes Quadrature Rule: sampling points and weight factors.
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Gauss-Legendre

n xi αi n xi αi

1 0.000000000000000 2.000000000000000 2 -0.577350269189626 1.000000000000000
- - 0.577350269189626 1.000000000000000

3 -0.774596669241483 0.555555555555556 4 -0.861136311594054 0.347854845137453
0.000000000000000 0.888888888888889 -0.339981043584857 0.652145154862547
0.774596669241483 0.555555555555556 0.339981043584856 0.652145154862547

- - 0.861136311594053 0.347854845137453

5 -0.906179845938664 0.236926885056189 6 -0.932469514203153 0.171324492379169
-0.538469310105683 0.478628670499367 -0.661209386466264 0.360761573048140
0.000000000000000 0.568888888888889 -0.238619186083197 0.467913934572692
0.538469310105683 0.478628670499366 0.238619186083197 0.467913934572688
0.906179845938664 0.236926885056189 0.661209386466263 0.360761573048142

- - 0.932469514203154 0.171324492379169

7 -0.949107912342760 0.129484966168868 8 -0.960289856497539 0.101228536290375
-0.741531185599394 0.279705391489280 -0.796666477413624 0.222381034453380
-0.405845151377397 0.381830050505115 -0.525532409916329 0.313706645877883
0.000000000000000 0.417959183673472 -0.183434642495650 0.362683783378361
0.405845151377397 0.381830050505116 0.183434642495650 0.362683783378367
0.741531185599394 0.279705391489280 0.525532409916330 0.313706645877877
0.949107912342760 0.129484966168868 0.796666477413623 0.222381034453384

- - 0.960289856497541 0.101228536290372

9 -0.968160239507627 0.081274388361574 10 -0.973906528517184 0.066671344308679
-0.836031107326636 0.180648160694859 -0.865063366688974 0.149451349150606
-0.613371432700590 0.260610696402935 -0.679409568299027 0.219086362515955
-0.324253423403809 0.312347077040002 -0.433395394129248 0.269266719310012
0.000000000000000 0.330239355001260 -0.148874338981631 0.295524224714749
0.324253423403809 0.312347077040002 0.148874338981631 0.295524224714748
0.613371432700590 0.260610696402936 0.433395394129247 0.269266719310012
0.836031107326635 0.180648160694856 0.679409568299026 0.219086362515954
0.968160239507625 0.081274388361576 0.865063366688971 0.149451349150604

- - 0.973906528517182 0.066671344308682

11 -0.978228658146072 0.055668567116165 12 -0.981560634246719 0.047175336386509
-0.887062599768073 0.125580369464943 -0.904117256370479 0.106939325995323
-0.730152005574058 0.186290210927675 -0.769902674194298 0.160078328543347
-0.519096129206811 0.233193764592044 -0.587317954286623 0.203167426723058
-0.269543155952345 0.262804544510203 -0.367831498998179 0.233492536538362
0.000000000000000 0.272925086777940 -0.125233408511469 0.249147045813402
0.269543155952345 0.262804544510209 0.125233408511469 0.249147045813397
0.519096129206813 0.233193764592032 0.367831498998180 0.233492536538368
0.730152005574051 0.186290210927684 0.587317954286623 0.203167426723051
0.887062599768080 0.125580369464944 0.769902674194297 0.160078328543355
0.978228658146071 0.055668567116162 0.904117256370483 0.106939325995318

- - 0.981560634246718 0.047175336386509

Table A.3: Gauss-Legendre Quadrature Rule: sampling points and weight factors.
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Gauss-Lobatto

n xi αi n xi αi

1 0.000000000000000 2.000000000000000 2 -1.000000000000000 1.000000000000000
- - 1.000000000000000 1.000000000000000

3 -1.000000000000000 0.333333333333333 4 -1.000000000000000 0.166666666666667
0.000000000000000 1.333333333333330 -0.447213595499958 0.833333333333333
1.000000000000000 0.333333333333333 0.447213595499958 0.833333333333333

- - 1.000000000000000 0.166666666666667

5 -1.000000000000000 0.100000000000000 6 -1.000000000000000 0.066666666666666
-0.654653670707977 0.544444444444445 -0.765055323929465 0.378474956297847
0.000000000000000 0.711111111111111 -0.285231516480645 0.554858377035486
0.654653670707977 0.544444444444444 0.285231516480645 0.554858377035487
1.000000000000000 0.100000000000000 0.765055323929466 0.378474956297847

- - 1.000000000000000 0.066666666666666

7 -1.000000000000000 0.047619047619048 8 -1.000000000000000 0.035714285714286
-0.830223896278567 0.276826047361566 -0.871740148509606 0.210704227143505
-0.468848793470714 0.431745381209862 -0.591700181433143 0.341122692483504
0.000000000000000 0.487619047619047 -0.209299217902479 0.412458794658704
0.468848793470714 0.431745381209863 0.209299217902479 0.412458794658705
0.830223896278567 0.276826047361566 0.591700181433144 0.341122692483504
1.000000000000000 0.047619047619048 0.871740148509606 0.210704227143505

- - 1.000000000000000 0.035714285714287

9 -1.000000000000000 0.027777777777778 10 -1.000000000000000 0.022222222222219
-0.899757995411461 0.165495361560804 -0.919533908166462 0.133305990851074
-0.677186279510739 0.274538712500162 -0.738773865105502 0.224889342063127
-0.363117463826178 0.346428510973048 -0.477924949810446 0.292042683679680
0.000000000000000 0.371519274376416 -0.165278957666387 0.327539761183900
0.363117463826178 0.346428510973047 0.165278957666387 0.327539761183896
0.677186279510738 0.274538712500162 0.477924949810445 0.292042683679684
0.899757995411461 0.165495361560805 0.738773865105504 0.224889342063124
1.000000000000000 0.027777777777778 0.919533908166459 0.133305990851073

- - 1.000000000000000 0.022222222222222

11 -1.000000000000000 0.018181818181822 12 -1.000000000000000 0.015151515151508
-0.934001430408055 0.109612273266991 -0.944899272222886 0.091684517413205
-0.784483473663149 0.187169881780302 -0.819279321644002 0.157974705564372
-0.565235326996204 0.248048104264036 -0.632876153031862 0.212508417761012
-0.295758135586939 0.286879124779002 -0.399530940965349 0.251275603199208
0.000000000000000 0.300217595455696 -0.136552932854928 0.271405240910697
0.295758135586939 0.286879124779002 0.136552932854928 0.271405240910697
0.565235326996203 0.248048104264035 0.399530940965349 0.251275603199208
0.784483473663149 0.187169881780303 0.632876153031864 0.212508417761012
0.934001430408056 0.109612273266991 0.819279321643999 0.157974705564372
1.000000000000000 0.018181818181821 0.944899272222888 0.091684517413205

- - 1.000000000000000 0.015151515151508

Table A.4: Gauss-Lobatto Quadrature Rule: sampling points and weight factors.
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A.3 RC Section based on Navier-Bernoulli kinematic

In order to compare the sectional discretization strategy here proposed with the
fibers approach, the State of a RC Section based on Navier-Bernoulli kinematic
is presented. By using such an assumption, it’s clear that only the problem re-
lated with normal stresses can be dealt with. However, this is the most com-
mon approach used in reinforced concrete and consent to determine, for example,
Moment-Curvature Diagrams or Interaction Domains. In addition, the state of the
so obtained section can be used in the formulation of beam-column finite elements
in which shear’s effect is not directly considered. The following hypotheses are
hence assumed:

(a) plane sections remain plane after deformations;

(b) shear deformation is not considered;

(c) perfect bond holds between steel and concrete.

Figure A.8: RC section and generalized normal stresses.

According to these hypotheses, in a deformed configuration, the normal dis-
placement at a generic point P (Fig.A.8) of the section is given by:

wp(x, y, z) = w0(x)− y ·φz(x) + z ·φy(x) (A.13)

where w0 is the displacement at the origin and φz, φy(x) are, respectively, the
rotations around the z and y axes. The corresponding normal strain at point P
(Fig.A.8) is given by:

εp(x, y, z) =
∂wp(x, y, z)

∂x
= ε0(x)− y ·χz(x) + z ·χy(x) (A.14)

where ε0 is the normal strain at the origin and χz, χy are, respectively, the cur-
vatures around the z and y axes. The kinematic variables can be grouped by
introducing the sectional displacement vector s(x) and the sectional deformation
vector es(x):

s(x) =
[
w0 φz φy

]T (A.15)

es(x) =
[
ε0 χz χy

]T (A.16)
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Through the operator:
as(z, y) =

[
1 −y z

]
(A.17)

eqs. (A.13) and (A.14) can be put in the matrix form:

wp(x, y, z) = as(z, y) · s(x) (A.18)

εp(x, y, z) = as(z, y) · es(x) (A.19)

With reference to a section belonging to a beam element, eqs. (A.18) and (A.19)
decompose the kinematic field into the product of a function as(z, y), depending
on the coordinates on the section, by a function of the coordinate x of the section
along the beam axis.

A.3.1 Section Equilibrium

The sectional equilibrium equations are derived through the Principle of Virtual
Displacements, by equating the work done by the static quantities of the actual
equilibrated field and the kinematic quantities of a virtual kinematic field. The
section is considered belonging to a unitary length segment of the beam.

δWi = δWe (A.20)

The external and internal works are, respectively:

δWe = δes(x)T · fs,e(x) (A.21)

δWi =

∫

A

δεp(x, y, z)σp(x, y, z) dA (A.22)

By substituting in Eq. (A.22) the expression of εp given by (A.19), it follows that:

δes(x)T · fs,e(x) = δes(x)T ·
∫

A

as(z, y)Tσp(x, y, z) dA ∀δes (A.23)

Doing such an equation be valid for any virtual δes, the following relationship must
hold:

fs,e(x) =

∫

A

as(z, y)Tσp(x, y, z) dA =

∫

A




1
−y
z


σp(x, y, z) dA (A.24)

This equation defines the generalized section stresses N , Mz, My which equilibrate
the distribution of the internal uniaxial stresses σx:

fs,r(x) =



N(x)
Mz(x)
My(x)


 =

∫

A




1
−y
z


σp(x, y, z) dA (A.25)
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and can be rewritten as:

N(x) =

∫

A

σp(x, y, z) dA

Mz(x) =

∫

A

−y ·σp(x, y, z) dA

My(x) =

∫

A

z ·σp(x, y, z) dA

(A.26)

Clearly, the integrals are meant extended to all the materials composing the section.
These integrals will be continuous over the concrete domain and discrete sums on
the reinforcing bars.

A.3.2 The two types of Section Problems

The stress σp(x, y, z) in Eq. (A.25) is given as function of the strain εp(x, y, z) by
an assumed uniaxial constitutive law. The most known stress-strain relationships
are those proposed by (Kent and Park, 1971) and (Mander et al., 1988).

fs,r(x) =

∫

A

as(z, y)Tσp(es(x)) dA (A.27)

Eq. (A.27), strictly speaking, is an equilibrium equation. Its use in the design
practice and in finite element analysis can be associated to the following two types
of problems:

- given a strain state (the sectional strains) es, determine the stress state (the
resultant section forces) fs,r; this happen in a displacement based element
and the problem is in a direct form;

- given a stress state fs,e, determine the sectional strain state es; this happen
in a flexibility based element and the problem is a indirect form.

A.3.2.1 Type 1 Problem

The first problem is formulated in a direct way. In fact, given the section defor-
mations es, the section stresses in any point are directly given by the assumed
constitutive law. The integral of the stresses over the section domain gives the
section forces fs,r. Hence Problem 1 requires a suitable integration strategy only.

A.3.2.2 Type 2 Problem

The second problem can’t have a direct solution. It involves the solution of a system
of nonlinear equations and can be stated as follow: for an assigned vector of section
forces fs,e, reckon the section deformations es giving corresponding internal forces
fs,r (resisting or restoring forces) equal to fs,e. The internal forces are computed
through the integration of the stress distribution over the section domain:

fs,r(es) =

∫

A

as(z, y)Tσp(es) dA (A.28)
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The equilibrium condition states that:

fs,e = fs,r(es) (A.29)

Such a condition is written in homogeneous form as follows:

g(es) = fs,e − fs,r(es) = 0 (A.30)

and solved by Newton-Raphson (NR) method. The main steps of the NR solution
are:

1. choice of an initial solution es0.

2. linearization of the problem as follows:

g(es) ∼= g(es0) + J(es0) · (es − es0) = 0 (A.31)

where J(es0) is the Jacobian matrix evaluated in es0.

3. search for a new solution, by solving Eq. (A.32):

es1 = es0 − [J(es0)]−1 ·g(es0) (A.32)

4. iteration until convergence.

In a more explicit form, the Jacobian matrix is given by the Equation:

J(es) =
∂g(es)
∂es

=
∂(fs,e − fs,r(es))

∂es

= −∂fs,r(es)
∂es

(A.33)

which shows how J(es) equals the derivatives of the resisting forces fs,r(es) with
respect to es. By expanding Eq. (A.33) we have:

∂fs,r(es)
∂es

=
∂

∂es

∫

A

aTs σp(es) dA =

∫

A

∂(aTs σp(es))
∂es

dA =

∫

A

aTs
∂(σp(es))
∂es

dA =

=

∫

A

aTs
∂σp
∂εp

·
∂εp
∂es

dA =

∫

A

aTs
∂σp
∂εp

·
∂(as · es)
∂es

dA =

∫

A

aTs
∂σp
∂εp

·as dA =

=

∫

A

aTs Etanas dA ∼= ks

(A.34)
where Etan is the tangent modulus and ks is the tangent sectional stiffness matrix.
The following relationship between Jacobian matrix and tangent stiffness matrix
holds:

J(es) = −ks (A.35)

The recursive equation of the NR solution results:

es,i+1 = es,i + [ks(es,i)]−1 ·g(es,i) = es,i + ∆ei (A.36)

and will be iterated until convergence.
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A.3.3 Remarks on the Section Stiffness Matrix

For a linear elastic material, the expanded form of the sectional stiffness matrix ks
is:

ks =

∫

A

aTs Etanas dA =

∫

A

Etan




1 −y z
−y y2 −yz
z −yz z2


 dA (A.37)

The stress-strain relationship is simply σ = Eε and ∂σp/∂εp = E, where E is the
Young’s modulus. For the special case of homogeneous sections, Eq. (A.37) can be
rewritten as:

ks = E

∫

A

aTs as dA = E

∫

A




1 −y z
−y y2 −yz
z −yz z2


 dA (A.38)

If the system (y, z) coincides with that of the principal axis of the section, the first
order moments equal zero and the two flexural components uncouple, so that Eq.
(A.38) becomes:

ks = E



A 0 0
0 Iz 0
0 0 Iy


 (A.39)

For a non linear stress strain relationship and non homogeneous sections, the tan-
gent modulus varies with the sampling point P on the section. Further compli-
cations arise if the section is non homogeneous (made of concrete and reinforcing
bars). In this case there isn’t a reference system more effective than another. The
simplest way is to assume the origin in the centroid of the concrete section. As
a consequence, the tangent stiffness matrix is always full (Ciampi and Di Carlo,
1977).

In conclusion, two types of problems arise in dealing with the section state. The
first one is written in an explicit way, the second one requires a numerical strategy
for solving systems of nonlinear equations. In both of them, clearly, numerical
integration over the section must be performed.

A.3.4 Interaction Domains

We refer to a generic reinforced concrete section. The interaction domain is a
volume which contains all the states [N,Mz,My] acceptable within certain limits,
stated according to given hypotheses. Its frontier is the locus of the points corre-
sponding to an ultimate sectional state. In such a surface frontier lie the points
having as coordinates the triplets of values [N,Mz,My] which lead a fiber of con-
crete or a bar of steel to reach its ultimate strain. In this paragraph we deal with
the problem to define such a surface. The problem may be solved both in the
space of the deformations es(x) as well as in the space of the forces fs. In the first
case we have to solve an ordinate succession of problems Type 1 (direct problems).
The succession will explore all the deformative states corresponding to an ultimate
value of the material strains. In the second case, working in the space of forces, we
have to solve problems Type 2, involving repeated solutions of nonlinear equations.
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This second way is time consuming, but more effective from a practical point of
view, because it works defining the 3D domain N,Mz,My as a succession of 2D
domains N,Mz,My, reckoned for a constant value of the axial force.

  

fibers (“slices”) (CEB 1996), that in fact are subdomains with only one sampling point. 
Such an integration rule (midpoint integration rule) is the simplest possible and 
corresponds to what proposed in this work just putting n=1. 
On the other side, working with R.C. sectional problems, we know that the maximum 
strains lie on the boundaries, so it seems more effective adopt Gauss-Lobatto rule, 
which choses sampling points on the frontier of the domain. 
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According to (Bontempi 1992), we work through the following steps, Fig. 5: 
1. we chose a value N N N N      ; 

2. in the plane ( , , )y zN M M we have to find the points associated to an ultimate limit 

state. To this purpose: 

Figure A.9: Generic 3D Interaction Domain.

According to (Bontempi, 1992), we work through the following steps, Fig. A.9:

1. we chose a value N = N ∈ [N+;N−];

2. in the plane N,Mz,My we have to find the points associated to an ultimate
limit state. To this purpose:

- we chose at first an angle ϕ = 0÷ 2π;

- this angle gives a line on which we define a local variable λ so that:

Mz = λ · cosϕ

My = λ · sinϕ
(A.40)

- with the bisection method we find the value of λ to which correspond
the forces producing an ultimate state;

By repeating this search for a discrete set of angles ϕ and axial forces N the surface
frontier is built point wise. The same approach is applicable to the definition of
2D domains (M −N moment-axial force).

A.4 Validation and Applications

The three reinforced concrete sections shown in Fig.A.10 are now considered: the
first one is a square section reinforced with symmetrical bars, the second is a L
shaped section, with distributed bars and the third is an hollow circular section
with distributed bars. As already explained the first and the second sections need
only one transformation while the third involves two parametric transformations.
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     (a) Square section.                                          (b) L shaped section.                         (c) Hollow circular section.

Figure A.10: R.C. sections considered for benchmarking.

Figure A.11: Example of sub-domains discretization and sampling points position.

In order to compare the results with those of other Authors, for concrete the
stress-strain parabola-rectangle relationship has been used. The steel is assumed
having an elastic perfectly plastic behavior. The strength and ultimate strains
parameters are listed in Tab.A.5.

Concrete Steel
fc = −15MPa fy = 375MPa
εc0 = −0.0020 εy = 0.0020
εcu = −0.0035 εy = 0.0100

Table A.5: Material characteristics.

Benchmark organization

• Square RC Section: reckoning of moment-curvature diagrams, with compar-
isons among different discretizations and different grids of sampling points.
The fiber discretization method is also used. The results are compared in
term of moment-curvature diagrams and assigned and approximate stress
distributions;

• Square, L-shaped and hollow circular sections: construction of the multiaxial
interaction domains.
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A.4.1 Square section. Comparisons among different discretiza-
tions

The square reinforced concrete section of Fig.A.10(a), loaded by three different
axial forces N = −240 − 1200 − 1680 kN , is considered. The section is subdived
into 30 sub-domains and in each sub-domain a Gauss-Lobatto integration scheme
with n=3 sampling points is used. The corresponding moment-curvature diagrams
are shown in Fig.A.12. The results obtained with this fine discretization agree
with those reported in (C.E.B., 1978) and will be considered in the following as the
reference solution.
as the reference solution. 
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Figure A.12: Moment-curvature diagrams for different axial forces.

Fig.A.13 shows the stress distributions for different states of the moment-
curvature diagram for the case with N = −240 kN . One can observe how the
neutral axis is moving upward and how at the final stage the points on the upper
border catch the maximum compressive stress equal to 15MPa. 

 

 
 

Figure A.13: Stresses in the concrete at different states (N = −240 kN).

Tensile stresses are null below the neutral axis, so we have to deal with the integra-
tion of a function that presents discontinuities whose position is state-dependent.
On the other hand the interpolation functions associated to the integration rules
are continuous.
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In order to deal with the local discontinuity, three possible ways are explored and
compared:

1. by fixing the dimension of the sub-domains and improving the integration by
changing or the quadrature rule or the number of the sampling points;

2. by fixing the quadrature rule and increasing the number of sub-domains in
order to increase the possibility to catch the stress discontinuity;

3. a combination of the two previous cases.

Fig. A.14 shows the moment-curvature diagram for the square R.C. section with
N = −240 kN . One can observe that by increasing the number of the sampling
points the accuracy increases. From n ≥ 5, no practical differences are observed
in the results. Considering now the case with n = 8 sampling points. By working
with strategy 2 we use different sub-domain discretizations, taking always n = 8.
The results are reported in Fig.A.14(c). No practical differences are observed in
the results.

  

 
Fig.8 Stresses in the concrete at different states (N = -240 kN) 

Tensile stresses are null below the neutral axis, so we have to deal with the integration 
of a function that presents discontinuities whose position is state-dependent. On the 
other hand the interpolation functions associated to the integration rules are 
continuous. In order to deal with the local discontinuity, three possible ways are 
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1. by fixing the dimension of the subdomains and improving the integration by 
changing or the quadrature rule or the number of the sampling points; 

2. by fixing the quadrature rule and increasing the number of subdomains in order 
to increase the possibility to catch the stress discontinuity; 

3. a combination of the two previous cases. 
Figure 9 shows the moment-curvature diagram for the square R.C. section with N=-
240kN. One can observe that by increasing the number of the sampling points the 
accuracy increases. From 5n , no practical differences are observed in the results. 
Considering now the case with n=8 sampling points. By working with strategy 2 we use 
different subdomain discretizations, taking always n=8. The results are reported in Fig. 
9(c). No practical differences are observed in the results. 
 

 
    (a) Single subdomain (n=1:4)    (b) Single subdomain (n=5:8)  (c) Different subdomains (n=8) 

 
 
 

Fig.9 Moment-curvature diagrams for different integration orders 
 
Fig. 10 and Fig.11 report the results for different discretizations and different numbers 
of sampling points. With reference to the ultimate states, these figures compare the 
stress distribution, associated to the assumed constitutive law, and the stress 
distributions as interpolated according to the integration rule.  
Even though the final results globally agree with the equilibrium condition, we observe 
that the interpolated stresses may have shapes quite different with respect the given 
one and that, in particular, they have non-null values below the neutral axis. 
Numerical convergence is reached through the balance of positive and negative areas, 
which tends to sum zero. 
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Figure A.14: Moment-curvature diagrams for different sectional discretizations.

Fig.A.15 and Fig.A.16 report the results for different discretizations and dif-
ferent numbers of sampling points. With reference to the ultimate states, these
figures compare the stress distribution, associated to the assumed constitutive law,
and the stress distributions as interpolated according to the integration rule. Even
though the final results globally agree with the equilibrium condition, we observe
that the interpolated stresses may have shapes quite different with respect the
given one and that, in particular, they have non-null values below the neutral axis.
Numerical convergence is reached through the balance of positive and negative ar-
eas, which tends to sum zero. As a consequence of these first results, it appears
more convenient deal with to a so marked discontinuity, by adopting more small
sub-domains. In fact, the well known fiber approach works with many fibers and
uses a single sampling point.
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As a consequence of these first results, it appears more convenient deal with to a so 
marked discontinuity, by adopting more small subdomains. In fact, the well known fiber 
approach works with many fibers and uses a single sampling point.  
 
 
 

 

 
 

 

 
 

(a) n=1 (e) n=5 

  
 

 

 

 
 

(b) n=2 (f) n=6 

  
 

 

 

 

 

(c) n=3 (g) n=7 

  
 

 

 

 

 

(d) n=4 (h) n=8 

 
Figure A.15: First discretization strategy. Real (black) and approximated (blue) distri-

butions of stresses at the final state of moment-curvature curve. Compar-
ison between the exact resultant of stresses (grey area) and approximate
distribution (cyan area).
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Fig.10 First discretization strategy. Real (black) and approximated (blue) distributions of 
stresses at the final state of moment-curvature curve. Comparison between the exact 
resultant of stresses (grey area) and approximate distribution (cyan area) 
 
 

 

 

 
 
  

 

 
 

(a) 1 subdomain, n=8 (c) 4 subdomains, n=2 

  
 

 

 

 

(b) 2 subdomains, n=4 (d) 8 subdomains, n=1 

 
 
 
Fig.11 Second discretization strategy. Real (black) and approximated (blue) 
distributions of stresses at the final state of moment-curvature curve. Comparison 
between the exact resultant of stresses (grey area) and approximate distribution (cyan 
area) 
 

 

 

 
 
  

 

 

(a) 30 subdomains, n=1 (c) 30 subdomains, n=3 

 
Fig.12 Huge discretization. Real (black) and approximated (blue) distributions of 
stresses at the final state of moment-curvature curve. Comparison between the exact 
resultant of stresses (grey area) and approximate distribution (cyan area) 

Figure A.16: Second discretization strategy. Real (black) and approximated (blue) dis-
tributions of stresses at the final state of moment-curvature curve. Com-
parison between the exact resultant of stresses (grey area) and approxi-
mate distribution (cyan area).

  

Fig.10 First discretization strategy. Real (black) and approximated (blue) distributions of 
stresses at the final state of moment-curvature curve. Comparison between the exact 
resultant of stresses (grey area) and approximate distribution (cyan area) 
 
 

 

 

 
 
  

 

 
 

(a) 1 subdomain, n=8 (c) 4 subdomains, n=2 

  
 

 

 

 

(b) 2 subdomains, n=4 (d) 8 subdomains, n=1 

 
 
 
Fig.11 Second discretization strategy. Real (black) and approximated (blue) 
distributions of stresses at the final state of moment-curvature curve. Comparison 
between the exact resultant of stresses (grey area) and approximate distribution (cyan 
area) 
 

 

 

 
 
  

 

 

(a) 30 subdomains, n=1 (c) 30 subdomains, n=3 

 
Fig.12 Huge discretization. Real (black) and approximated (blue) distributions of 
stresses at the final state of moment-curvature curve. Comparison between the exact 
resultant of stresses (grey area) and approximate distribution (cyan area) 

Figure A.17: Dense discretization. Real (black) and approximated (blue) distributions
of stresses at the final state of moment-curvature curve. Comparison be-
tween the exact resultant of stresses (grey area) and approximate distri-
bution (cyan area).
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A.4.2 Multiaxial interaction domains

For the three R.C. sections shown in Fig.A.10, the multiaxial interaction domains
are exposed in the next.

A.4.2.1 A square R.C. section

The first example concerns the square R.C. section reported in Fig.A.10(a). The
section has been subdivided in 4 sub-domains and the Gauss-Lobatto rule with
5 sampling points has been used in each of them. Fig.A.18(a) shows the 3D
interaction domain. The relative bottom, top and lateral view are reported in
Fig.A.18(c-d-e).
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Figure A.18: Interaction domain for the square section of Fig.A.10(a).
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A.4.2.2 An L shaped R.C. section

The second example concerns the L-shaped R.C. section reported in Fig.A.10(b).
The section has been subdivided in 4 sub-domains and the Gauss-Lobatto rule
with 7 sampling points has been used in each of them. Fig.A.19(a) shows the
3D interaction domain. The relative bottom, top and lateral view are reported in
Fig.A.19(c-d-e).
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Figure A.19: Interaction domain for the L shaped section of Fig.A.10(b).
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A.4.2.3 An hollow circular R.C. section

The third example concerns the circular hollow R.C. section reported in Fig.A.10(c).
The section has been subdivided in 10 sub-domains and the Gauss-Lobatto rule
with 5 sampling points has been used in each of them. Fig.A.20(a) shows the
3D interaction domain. The relative bottom, top and lateral view are reported in
Fig.A.20(c-d-e).
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Figure A.20: Interaction domain for the circular hollow section of Fig.A.10(c).





B Limit analysis

A systematic approach to the limit analysis of framed structures, which con-
siders axial force and bending moment interaction, is presented. Following
the general theory for limit analysis, the complete solution of the problem
(i.e. the collapse loads, a stress distribution at the incipient collapse and a
collapse mechanism) is obtained by linear programming.

B.1 Introduction and Basic Hypothesis

The theory dealing with the determination of the load-carrying capacity of struc-
tures made of perfectly plastic materials is called limit analysis. A general formu-
lation of a complete theory for perfectly plastic materials was given by Gvozdev
(1938), but his work was not known in the Western world until the 1950s, where
previously, mainly in works of Prager while at Brown University (Drucker et al.
(1952) and Prager (1952)), a very similar theory had been developed (Nielsen and
Hoang, 2011). One of the most important improvements in the development of the
plastic theory was undoubtedly the establishment of the upper and lower bound
theorems that, when the first computer based calculations became possible, can be
translated in linear mathematical programming problems. Some of the first works
in that direction has been done by De Donato and Maier (1972) and Maier (1973),
in which also the geometrical non linearities are considered.

In many cases, the ultimate limit state of structural collapse can be adequately
evaluated by assuming perfectly plastic behavior and neglecting second order ef-
fects, which make the general theory of limit analysis applicable to steel structures.
Instead, since concrete is not a perfectly plastic material, the application of limit
analysis to reinforced concrete structures requires some preliminary considerations.

Since reinforced concrete is a composite material, made of concrete and rein-
forcing steel, the use of a plastic approach is acceptable in cases where the strength
is governed mainly by the reinforcement, e.g., flexure of beams and slabs. Also in
this case, however, concrete properties can modify the ultimate structural behav-
ior. If it is simple to assume that the tensile strength of concrete can be neglected,
concerning the compression strength is much more difficult to propose reasonable
assumptions, since concrete exhibits a significant strain softening. In addition, lo-
cal mechanical properties can be influenced by cracks phenomena or interaction
mechanisms between steel and concrete.
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For that reasons, limit analysis seems not generally applicable to reinforced
concrete structures. However, several experiences suggest that limit analysis can
be successfully applicable to RC problems if (Biondini, 1999):

- concrete tensile strength is neglected;

- concrete compression strength is modify trough a coefficient νe called effec-
tiveness factor :

f∗c = νe fc with νe ∈ [0; 1] (B.1)

Of course, adequate values for νe are required. Exner (1979) proposes the evalu-
ation of the effectiveness factor by using the energy equivalence reported in Fig. B.1.

e

Figure B.1: Effectiveness factor.

However, it must be pointed out that con-
crete properties alone cannot define such
a coefficient, because several informations
must be considered, e.g., properties and
position of reinforcing steel, structural
geometry, support conditions, structural
forces flow and load conditions. For these
reasons, prudential values has been pro-
posed, such as νe = 0.60 suggested in
(Marti, 1985) and (Rogowsky and Mac-
Gregor, 1986).

Several applications of limit analy-
sis by mathematical programming can be
found in (Cocchetti and Maier, 2003),
(Ardito, 2004), (Ardito et al., 2008), in which also softening plastic-hinge mod-
els are considered in the elastic-plastic analyses of frames and critical thresholds
on deformations are introduced by solving a nonconvex nonsmooth constrained op-
timization problem usually referred to in the literature as “mathematical program
under equilibrium constraints” (Ardito et al., 2010).

The approach here proposed neglects shear failures and considers axial force
N and bending moment M as interacting generalized plastic stresses. A rigid
perfectly-plastic constitutive law is adopted to relate these stresses to the correlative
generalized plastic strains, represented by the cross-sectional axial elongation ∆l
and bending rotation ϑ, respectively. In this way, the behavior of the discrete
cross-sections where the plastic strains tend to develop can be represented by a
generalized plastic hinge that allows a free axial-bending kinematic behavior and,
at the same time, fully transfers the corresponding plastic values of the axial force
and bending moment. The plastic collapse is reached when the set of generalized
plastic hinges is able to activate a kinematic mechanism for which the equilibrium
can no longer be satisfied, (Biondini and Frangopol, 2008).

The hypothesis used are: (1) small displacements; (2) rigid perfectly-plastic
behavior; (3) only axial force and bending moment active and interacting (Fig. B.2);
(4) ultimate axial forces and bending moments described by the interaction domain,
that can be linearized as Fig. B.3 shows; (5) the formation of plastic hinges is limited
at the extreme of the elements. This approximation produces limitations that can
be overcome by increasing the elements number of the mesh.
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(a) Axial force - displacement. (b) Bending moment - rotation.

Figure B.2: Rigid perfectly-plastic behavior.

(a) Real domain. (b) Linearized domain.

Figure B.3: Limit Interaction Domains.

B.2 Global Equilibrium and Compatibility Equations

In order to apply the Limit Analysis Theorems, global equilibrium and compatibil-
ity equations must be formulated. At this end, the generic structure is subdivided
in finite elements as Fig. B.4 shown. Forces and generalized stresses are assumed in
accordance with the conventions and with the reference systems shown in Fig. B.4c.

(a) Geometry. (b) Mesh. (c) Reference system.

Figure B.4: Limit analysis: structural geometry, structural mesh and reference system.

Since it is reasonable to replace a distributed load with statically equivalent
concentrated loads in an appropriate number of cross-sections, no distributed loads
are considered acting on the element. In these cases, an additional subdivision of
the mesh can be introduced in order to increase accuracy.



180 Limit analysis

B.2.1 Equilibrium Equations

Let’s considered the generic j−th element of a structure. The equilibrium equations
can be obtained by following the steps used for a force-based element (see par. 2.4).

(a) Element “with rigid body modes”. (b) Element “without rigid body modes”.

Figure B.5: Static field: element with and without rigid body modes.

In particular, by removing the rigid body motions, the following relation holds:

Qj = hTl Q̄j (B.2)

The nodal forces in the global reference system Qg,j can be obtained from the local
ones Qj through the transformation matrix Tα:

Tα =

[
T0 0
0 T0

]
with T0 =




cosα − sinα 0
sinα cosα 0

0 0 1


 (B.3)

so that:
Qg,j = Tα Qj (B.4)

By substituting in (B.4) eq. (B.2), the following relation holds:

Qg,j = (Tα hl) Q̄j

= Hg,j Q̄j

(B.5)

where Hg is the element equilibrium matrix.
Finally, by assembling all the ne elements, the nodal equilibrium equations for the
whole structure result as follows:

Fe =

ne∑

j=1

A (Qg,j)

=

ne∑

j=1

A
(
Hg,j · Q̄j

)
(B.6)

that, in matrix form, becomes:

Fe = H ·Qt (B.7)

where Fe is the external nodal forces vector, H is the equilibrium matrix of the
structure and Qt is the vector that contain all the basic forces of the elements.
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B.2.2 Compatibility Equations

Fig. B.6 shows the kinematic quantities in the reference system “with rigid body
modes” and in the one “without rigid body modes”. The same quantities are used
in a force-based element.

(a) Element “with rigid body modes”. (b) Element “without rigid body modes”.

Figure B.6: Kinematic field: element with and without rigid body modes.

Compatibility conditions for the whole structure can be obtained by using a dual
approach with respect equilibrium, in which the Virtual Force Principle is applied.
The external and the internal works are:

δWe = δFT s δWi = δQT
t qt (B.8)

and the Principle of Virtual Forces states that:

δWi = δWe ⇒ δFT s = δQT
t qt (B.9)

For the static field the following equilibrium equation holds:

δF = H δQt (B.10)

By substituting eq. (B.10) in eq. (B.9) the following relation is obtained:

δQT
t H

T s = δQT
t qt (B.11)

Since such an equation is valid for any choice of δQT
t , the following compatibility

equations are finally obtained:
qt = HT s (B.12)

where matrixHT is the compatibility matrix of the structure and it is the transpose
of the equilibrium matrix.

B.2.3 About Equilibrium and Compatibility matrices

It has been show that the equilibrium matrix is the transpose of the compatibility
matrix. Such a results can be used in order to classify a structure:

- if matrix H has full rank, with equilibrium equations we can find the vector
of basic forces and hence the internal forces: this is the case of a statically
determined structure;
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- if matrixH has more columns than rows, equilibrium states that infinite solu-
tions can be possibile. This is the case of a statically undetermined structure;

- if matrix H has more rows than columns, equilibrium states that there are
not solutions. This is the case of a kinematic undetermined structure.

B.3 Material Constitutive Models

According to the hypothesis of the rigid perfectly-plastic constitutive law, (a) the
yielding criterion, which defines the stress state corresponding to the start of the
plastic flow, is convex, and (b) the flow rule, through which the increments of the
plastic strains are correlated to the stress state, is associated with the yielding
surface (normality rule).

B.3.1 Yield condition

By assuming the normal force Ni and the bending moment Mi as the only active
generalized plastic stresses (Fig. B.7), the yielding criterion for the i − th generic

Figure B.7: Yielding criterion.

critical cross-section can be written as:

fi(Ni,Mi) = 0 (B.13)

Such a criterion defines, in the N−M plane, a do-
main that can be reasonably idealized by a step-
wise approximation which is, for the sake of safety,
inscribed within the convex yielding criterion:

fi(Ni,Mi) ≤ 0 (B.14)

By assuming a stepwise linearization with q sides
for each i− th plastic domain, with reference to Fig. B.7 we can define:

- a matrix Ni, in which each row contains the components with respect the
axis of the normal vector nij to the j − th side of the curve (nij1, nij2);

- a vector ki, with inside the kj distance between the side of the domain and
the origin of the axis.

The dimension of these quantities depends on the quality of the stepwise lineariza-
tion chosen. Matrix Ni and vector ki have this expression:

Ni =




ni11 ni12
ni21 ni22
· · · · · ·
nij1 nij2
· · · · · ·
niq1 niq2




ki =




ki1
ki2
· · ·
kij
· · ·
kiq




(B.15)

Therefore, the yielding criterion for each i−th critical cross-section can be rewritten
in matrix form as:

Θi = Ni ri − ki ≤ 0 (B.16)
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where ri is the vector whose components are the generalized stresses acting in the
i− th section:

ri =

[
Ni
Mi

]
(B.17)

and Θi is the plastic potential vector, whose components give a measure of the
distance between the point and the j − th side of the limit domain:

Θi =
[
Θi

1 Θi
2 · · · Θi

j · · · Θi
q

]T (B.18)

The internal forces ri in a generic section of the element can be evaluated from the
basic forces Q̄ by using the equilibrium equation:

[
N
M

]
=

[
1 0 0
0 (x/l − 1) x/l

]

Q̄1

Q̄2

Q̄3


 (B.19)

In this formulation, only the extreme sections of the element are controlled and
hence:

rn1 =

[
N
M

]
=

[
1 0 0
0 −1 0

]

Q̄1

Q̄2

Q̄3


 rn2 =

[
N
M

]
=

[
1 0 0
0 0 1

]

Q̄1

Q̄2

Q̄3


 (B.20)

For each element, the yielding criterion becomes:

Θi = Ni Q̄− ki ≤ 0 (B.21)

By assembling all the elements, it is possible to set the structural yielding criterion
as follows:

Θt =

ne∑

j=1

A (Θj) ≤ 0

=

ne∑

j=1

A
(
Nj Q̄t − kj

)
≤ 0

= N Qt − k ≤ 0

(B.22)

In (Olsen, 1998) the influence of the linearization of the yield surface on the
load-bearing capacity is detailed.

B.3.2 Flow rule

The associated flow rule for each i− th critical cross-section is given by:

di =





∆li = µi
∂fi
∂Ni

θi = µi
∂fi
∂Mi

(B.23)
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with the multiplier µi that allows plastic flows only for the points lying on the
yielding curve along the outside normal (Fig. B.7):

{
µi = 0 if fi(Ni,Mi) < 0

µi > 0 if fi(Ni,Mi) = 0
(B.24)

or, in compact form:
µi · fi(Ni,Mi) = 0 (B.25)

For the linearized case, the following matrix notation can be introduced:

di = NT
i ·µi (B.26)

with {
µij ·φij = 0 j = 1, · · · , q
µi ≥ 0

(B.27)

where vector µi contains the terms µij relative to each side of the linearizated
domain:

µi =
[
µi1 µi2 · · · µj1 · · · µiq

]T
(B.28)

As before, the flow rule can be written for the generic element by connecting
the vector of plastic deformation di with the vector of basic displacement q̄:

q̄ = NT
i µi (B.29)

By assembling all the element, the structural flow rule becomes:

q =

ne∑

j=1

A
(
q̄j
)

=

ne∑

j=1

A
(
NT
j µj

)
= NT µ (B.30)

with {
µij ·φij = 0 j = 1, · · · , q
µ > 0

(B.31)

B.4 Static and kinematic approach (duality)

Let P0 be a vector of constant loads and P a vector of loads whose intensity is
proportional to a given scalar multiplier λ ≥ 0. By assuming that the structure is
safe for λ = 0, the collapse multiplier λc associated with its failure is derived from
the two fundamental theorems of limit analysis.

The lower bound theorem states that λc is the maximum of the multipliers
associated with stress fields that satisfy both the equilibrium conditions and the
yielding criterion. In mathematical terms:

λc = max {λ | λP−H Qt = −P0, N Qt ≤ k, λ ≥ 0} (B.32)



B.4 Static and kinematic approach (duality) 185

Theorem Input Output

H equilibrium matrix λc collapse multiplier
Lower Bond N yielding criterion matrix Q basic forces

k yielding distance vector

HT compatibility matrix λc collapse multiplier
Upper Bond N yielding criterion matrix s nodal displacements

k yielding distance vector µ flow parameters vector

Table B.1: Limit Analysis Theorem: Input & Output variables.

The upper bound theorem states that λc is the minimum of the multipliers
associated with plastic flows that satisfy both compatibility conditions and flow
rule. In mathematical terms:

λc = min
{
kTµ−PT0 s | NTµ−HT s = 0, PT s = 1, µ ≥ 0

}
(B.33)

Therefore the fundamental theorems of the limit analysis can be translated
into dual linear constrained optimization problems: the first one requires to find a
maximum, while the second one a minimum. It is worth noting that in the second
case, the minimum condition is related to the work done by the proportional loads
P for the displacements s associated with the collapse mechanism. Since this
mechanism is associated with an arbitrary multiplier, it results in being univocally
identified by the condition PT s = 1. The solution of the previous dual linear
programs leads to the complete solution of the problem, i.e. the collapse multiplier,
the stress distribution at the incipient collapse and the collapse mechanism. As it
is the separator of two sets, λc is unique. However, the uniqueness of λc does not
necessarily mean the uniqueness of the collapse mechanism, or that of the stress
field at collapse.

Finally, it must be pointed out that computationally speaking the two theorems
are not equal. In fact, in the case of the lower bond theorem, the solution is a
search in the space defined by equilibrium, on which the yielding criterion acts like
a constrain: the unknowns of the problem are λc and the basic forces Qt in all
the elements. Instead, in the case of the upper bond theorem, the solution is a
search in the space defined by compatibility, but the flow rule and, in particular,
the vector µ enter in the definition of the space: the unknowns of the problem are
λc, the displacement vector s and vector µ. Since the last has a dimension that
depends on the number of stepwise linearization used for domains, it is clear that
the upper bond theorem is more computational demanding with respect the lower
bond one.

Limit analysis procedure previously exposed has been implemented in a specific
computer code. The optimization problem has been solved by the simplex method .
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B.5 Benchmarks

In the following, three benchmarks with increasing complexity are presented:

1. a portal frame with two variable concentrate loads (Dell’Acqua, 1994);

2. a clamped RC arch (Ceradini and Gavarini, 1965);

3. a collaborating beam-arch system (Ronca and Cohn, 1979a).

B.5.1 A portal frame

The portal frame shows in Fig. B.8 is considered. It is supposed that the bend-
ing moment is the only active generalized plastic stresses. The resisting bending
moment of the beam is double with respect the columns. The geometry of the
structure, the external supports, the loads acting and the mesh used are reported
in Fig. B.8a. Limit analysis gives the combinations of (λ1, λ2) that produce the
collapse of the portal frame. The results are shown in Fig. B.8b.

(a) Definition of the problem. (b) Limit analysis result.

Figure B.8: Portal frame with two variable concentrate loads.

In the first mechanism, there is a plastic hinge in the fixed support at the left
and two plastic hinges at the top of the columns. In the second mechanism, there
is a plastic hinge in the fixed support at the left, a plastic hinge in the middle of the
beam and a plastic hinge at the top of the right column. In the third mechanism,
two plastic hinges at the top of the columns and a plastic hinge in the middle of
the beam are present.
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B.5.2 A clamped RC arch

The clamped arch subdivided in 28 elements and shown in Fig. B.9 is analyzed.

Figure B.9: Clamped RC arch. Geometry and discretization.

Two load combinations (with same multiplier λ) are considered:

1. Case 1: p1 = 0.0 N/mm and p2 = 100N/mm;

2. Case 2: p1 = 300N/mm and p2 = 100N/mm.

For both, Fig. B.10 reports the collapse mechanisms and the relative internal forces.

(a) Case 1: collapse mechanism. (b) Case 2: collapse mechanism.

(c) Case 1: axial forces [kN]. (d) Case 2: axial forces [kN].

(e) Case 1: bending moments [kNm]. (f) Case 2: bending moments [kNm].

Figure B.10: Clamped RC arch: limit analysis results.
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Fig. B.11 shows the positions of the generalized plastic hinges in the interaction
domains.
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(b) Case 2.

Figure B.11: Clamped RC arch: plastic hinges position in the interaction domains.

Finally, the obtained results are compared with the ones gives in (Ceradini and
Gavarini, 1965), in order to control the validity of the proposed computer code.
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(a) Case 1: axial forces.
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(b) Case 2: axial forces.
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(c) Case 1: bending moments.
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(d) Case 2: bending moments.

Figure B.12: Clamped RC arch: comparisons with the solution obtained by (Ceradini
and Gavarini, 1965).
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B.5.3 A collaborating beam-arch system

The collaborating beam-arch system shown in Fig. B.13a is considered. For ge-
ometry and loads: l = 4000mm, f = 750mm, h = 800mm; g0 = 1.87N/mm,
g0 = 1.87N/mm, g1 = 1.18N/mm, g2 = 0.90N/mm, g3 = 0.56N/mm, p =
10.00N/mm. For the beam, a resisting bending moment equal to Mp = 6 kNm
is considered. For the arch, the three interaction domains shown in Fig. B.14 are
used. The connections between beam and arch are considered as infinitely resisting.

(a) Structural scheme.

(b) Structural discretization.

Figure B.13: Geometry and loads of the beam-arch system.

Fig. B.14 shows the position of plastic hinges in the interaction domains. The
limit solution is show in Fig. B.15, where in addition the comparisons with (Ronca
and Cohn, 1979a) are reported.
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Figure B.14: Collaborating beam-arch system: plastic hinge positions.
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(a) Collapse mechanism.

(b) Axial forces [kN]. (c) Bending moments [kNm].
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(d) Axial forces in the arch.
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(e) Bending moments in the arch.
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(f) Bending moments in the beam.

Figure B.15: Collaborating beam-arch system: limit analysis solution and comparisons
(Ronca and Cohn, 1979a). λc = 3.835.
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Conclusions

Outline & General Conclusions

A robust methodology for the assessment of reinforced concrete structures based on
time-variant capacity has been presented. Structural analyses have been coupled
with the damage processes in order to evaluate the time-evolution of the structural
performances accounting for environmental hazards.

The thesis is composed of four parts:

- Part I concerns the methods of structural analysis suitable to deal with the
non-linear behavior of RC structures. The main aim of this part is to propose
a shear sensitive beam element;

- Part II extends theories and methods previously developed to damaged RC
structures modeling;

- Part III studies cable stayed and arch bridges and presents a coherent set of
applications involving one or more of the aforementioned problems, as well
as significant comparisons with other approaches to the structural analysis of
R.C. structures (non linear analysis versus limit analysis). In addition, the
damage effects on resisting mechanisms are outlined and discussed;

- Part IV contains two appendices, collecting notes, comments and deepening
emerged in developing the theoretical formulations and in setting up the
numerical algorithms.

Part I

Chapter 1 frames the argument of the thesis, outlines the research significance
and presents its aims. In Chapter 2, after a short recall of the Principle of Vir-
tual Work, the basic characteristics of non-linear beam elements are derived by
using both a displacement-based and a force-based approach (dual formulation).
In particular, it is shown how a force-based beam element is suitable to represent,
for any distributed applied load, the exact internal forces distribution, while a
displacement-based element is constrained by the assumed shape functions. Chap-
ter 3 distinguishes the different and nested levels of analysis (structure, element,
section, fiber). With reference to the infinitesimal beam element, the evolution
of the sectional kinematic from the Navier-Bernoulli, to Timoshenko and to the
generalized beam theory is analyzed, showing how each new grade of refinement
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requires necessarily a more refined stress-strain relationship (linear or non linear
too):

- for the Navier-Bernoulli beam only normal strains and normal stresses are
involved, hence a mono-dimensional stress-strain relationship (linear or non
linear) is sufficient;

- for the Timoshenko beam, in the elastic field only the normal and tangential
elasticity modulus of elasticity are needed, but the same model is not suitable
to deal with non linear material, because for such an extension we cannot
simply superimpose two elementary behavior (behavior under the normal
strains and, separately, that under the shear strains), but a coupling between
normal and tangential stresses is required;

- hence, a non linear shear beam element necessarily involves a more rich kine-
matic field, with all the term of the strain tensor, and, as a consequence, a
corresponding fully bi-dimensional stress-strain constitutive laws.

In the same Chapter the main approaches proposed until now are presented
and shortly discussed:

- Strut & Tie based Models;

- Inter-fiber equilibrium model;

- Fixed Pattern based Approaches.

Due to the necessity of a bi-dimensional stress-strain relationships, in Chapter 4
two known and widely used Theories are examined: the Modified Compression Field
Theory (MCFT) and the Disturbed Stress Field Theory (DSFT). Both Theories
are discussed and tested with an original code and with reference to panels and
beams having shear critical behaviors. Results and methods are compared and
widely discussed in order to choice the most effective for the formulation of a shear
sensitive beam element.

A finite element beam suitable to deal a with the shear effects is then proposed
and developed in Chapter 5 both with a fixed strain approach and a fixed stress
approach. The difference between these two approaches depends on the type of
the additional condition to be imposed in order to make the problem determinate.
The element formulation is accomplished with proposal that allows to compute
the stresses in the stirrups and of a proposal of conventional representation of the
crack pattern in the web of the beam. The model has been validated with reference
to beams of the Stuttgart series ET1, ET2, ET3, ET4. These beams have been
analyzed through (I) 2D CST-F.E. analyses and MCFT Theory, (II) with no shear
1D beam elements and (III) with 1D shear sensitive beam elements.

The comparisons have been made with respect to the load-displacement curves,
the crack patterns, the collapse mechanism and the stresses in the stirrups. The
general agreement is good. The differences among some results have been discussed
and motivated.
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Part II

The damage diffusion process and its modeling through the diffusivity equation is
presented. The diffusion problem is solved through the Cellular Automata algo-
rithm. Introductory examples show the effectiveness of such a numerical approach.
The effects of the damage are then specialized to Reinforced Concrete Elements.
New damage indexes, concerning both steel and concrete, are introduced and then
tested for different reinforcement assemblies.

Part III

This part studies cable stayed and arch bridges and presents a coherent set of
applications involving one or more of the aforementioned problems. In particular,
significant comparisons are made between non-linear analyses and limit analyses
results, that led to introduce an efficiency factor that takes into account the different
nature of these two approaches, as well as the different criteria to model the material
properties with respect to the ultimate behavior.

Part IV

Two appendices, collecting notes, comments and deepening emerged in developing
the theoretical formulations and in setting up the numerical algorithms are exposed.
A set of notes on the so called fibre method outline some hidden aspects associated
to the numerical integration of section properties. A concise recall of the limit
analysis theory and a set of basic as well as actual applications put in evidence the
powerful and also the care to be adopted in using this type of analysis.

Original Contributions

In developing the theoretical formulations and in setting up the numerical algo-
rithms, several original contributions has been carried out.

Concerning the structural model, the main contribution is the development
of the shear sensitive beam element, based on two different sectional approaches
depending on the type of the condition to be imposed. In particular, a new section
state determination process, effectively efficient and stable, has been presented.
In order to reach such a result, an important effort comes from the fact that
also bidimensional modeling has been developed and coded in a finite element
based program. It has been shown that such a computational technique can be
successfully applied in dealing with the non linear behavior of RC structures for
all range off loadings. Clearly, since a structural 1D theory contains some intrinsic
approximations with respect the complete 2D problem, such a strategic choice has
permitted to obtained critical suggestions in order to move the formulation from
bidimensional towards monodimensional modeling.

Concerning the damage model, a general computational approach based on the
Cellular Automata algorithm has been formulated in dealing with damage processes
affecting RC structures. Through such an approach, it is possible to deal with:
(a) the reduction of steel bars areas, (b) the reduction of steel ductility, (c) the
reduction of concrete strength until (d) the spalling of concrete cover occurs.
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Due to his generality, the so-obtained damage model can be linked with any
structural model. Hence, a general method aiming to asses the life cycle perfor-
mances of a generic RC structures has been obtained. This is the most important
and practical contribution of this work.

Two others marginal contributions are the following.
In coding beam-column elements, specific numerical integrations strategies are re-
quired both at the element level and at the sectional level. In the last case, the
most used approach is the so-called fibers approach, through which the section
is divided is sub-domains, called fibers, and the integral is evaluated with the
Riemann Mid-Point Integration Rule. In this work, a more general numerical inte-
gration strategy, able to deal with arbitrary quadrilateral-circular shaped sections,
has been proposed. The section is divided, once again, in sub-domains that now
are parametrically transformed in the same square parent domain on which inte-
gration rules refers. In this way, several combinations of integration strategies can
be performed, with the widely uses fiber method as particular case.

In developing the applications, a complete parallel study between limit and non
linear analysis has been carried out. Through such a parallelism, a proposal for the
evaluation of the so-called effectiveness factor has been given, not only when the
structural system is sound, but also in time, when the structure is progressively
interested by damage.

Final Conclusions

The main aim of this work is to consider the possibilities of shear-flexible beam
column elements in the study of RC structures, both in sound and in damaged
conditions. In order to reach this result the basic methods of non linear structural
analysis, two renown RC membrane theories have been reviewed, developed and
compared with reference to shear critical panels and beams. A finite element beam
suitable to deal a with the shear effects is then proposed and developed two different
approaches depending on the type of the additional condition to be imposed. The
model has been validated with reference to beams of the Stuttgard series ET1-ET4.
The comparisons have been made with respect to the load-displacement curves,
the crack patterns, the collapse mechanism and the stresses in the stirrups. The
general agreement is good. These theories and methods have been then extended
to model damaged RC Structures. New damage indexes, concerning both steel
and concrete, have been introduced and then tested for different reinforcement
assemblies. A wide set of applications confirm the soundness of both of theoretic
proposals and of the algorithms used to reduce the problems to algebraic forms.
The types of application stand out the effectiveness of the model in dealing with
actual and complex structures. Particular interesting are the effects of damage on
shear resistance mechanisms.

In concluding, this thesis proposes a general and versatile methodology that
deals with the time-evolution of RC structural performances accounting for en-
vironmental hazards. The proposed procedure can be applied also as a general
life-cycle approach.
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Further Developments

Based on the achieved results, several future developments of this work are possible:

- the shear-flexible beam-column element:
the formulation proposed in this thesis is based on fixed pattern approaches.
Despite different types of patterns are considered, it’s clear that this choice
contains some intrinsic approximations. The main difficulty in formulating
beam-column elements sensible to shear is the definition of a consistent sec-
tion state determination process. Since shear mechanism in RC elements is
not a sectional phenomena, it’s clear that this step is not straightforward. A
very important improvement of the beam formulation must be reckoned in
the so-called generalized beam theory, in which the kinematic of the section
is state dependent. A lot of work in this field has been already carried out
and the most elegant approaches have been recalled in Chapter 5;

- concerning limit analysis:
it has been shown that limit analysis is the most synthetic approach. If small
displacement hypothesis is assumed, the solution of the problem (i.e. the
collapse load, a stress distribution at the incipient collapse and a collapse
mechanism) is obtained by linear programming. In the formulation exposed
in the thesis, only axial force and bending moment interaction is considered.
In the plane, however, three are the interacting generalized stresses: the
axial force N , the shear force V and the bending moment M . If an adequate
resistance criterion, that consider N − V −M interaction, is proposed, then
limit analysis can be extended also in the study of shear collapse mechanisms.
Since current design criterion are based on the lower bond theorem, this is a
very practical and useful development of this work;

- dealing also with seismic performances:
an important development concerns the extension of the presented procedures
also in the dynamic field, so that also the time-variant seismic performances
can be evaluated considering different environmental hazards;

- extension to the non deterministic field:
it has been shown that the phenomena involved in damage processes are
not so clear and, in addition, not so certain due to dependability on aleatory
quantities such as the chlorides content, the position of the corrosion scenarios
and so on. A natural development of this work is to extend the proposed
procedure in the non deterministic field, in order to deal with the intrinsic
uncertainties affecting the considered phenomena.

As shown, several and not directly linked improvements can be possible. This is
due to the methodology adopted in carrying out this research, that is obtained as
a nested summation on independent theoretical and computational parts.
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