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Abstract 

 

 

 

Availability of realistic 3D building models is important in many applications. In 
urban planning the chance to explore 3D virtual reality world is much more efficient 
than the analysis of 2D maps. For public security, accurate 3D building models are 
indispensable to plan intervention strategies during emergencies. Also, virtual tourism 
may largely benefit from highly realistic city models. 

The rapid development of terrestrial laser scanning (TLS) devices allowed the 
acquisition of point clouds of urban environments in a relatively reduced time. With 
the considerable high point density and the explicit 3D coordinates of such point 
clouds, it is possible to recover both large structures and fine details of buildings. In 
addition, the increase of automation in the acquisition and registration stage of laser 
scans, in conjunction with a reduction of the cost of instruments, extended the chance 
to use terrestrial laser scanners to a larger number of operators. This resulted in a 
growing attention in generating as-built building models on the basis of TLS point 
clouds. In many cases such models are generated by manual modelling of each 
building element. However, this is undoubtedly a rather time consuming and 
expensive procedure that limits the widespread dissemination of building models. 
Automation in the reconstruction is essential to speed up the processing, and thus the 
time needed to deliver the final model can be shortened in comparison with manual 
techniques. Indeed, only if a high degree of automation is maintained throughout the 
whole pipeline, from data acquisition to modelling, the economic sustainability of the 
building model generation can be guaranteed. However, lack of automated approaches 
to understand the building structures captured in raw data is still underlined by 
different operators in the Architecture, Engineering, and Construction (AEC) domain. 

This thesis introduces a new procedure aimed at the automated production of building 
façades models. This method is principally designed to generate as-built models of 
urban construction for thermal retrofitting. Indeed, energy efficient retrofitting of 
existing buildings, mainly the ones built in the period 1950 - 1975, is a key aspect for 
reaching the proposed energy consumption reduction targets fixed by national and 
international authorities. In this field, highly detailed as-built models of buildings are 
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needed on one side for the thermal assessment, and on the other for producing 
executive drawings. The developed approach can be considered as a multi-step 
process in which the building model is iteratively estimated and refined starting from 
the raw point cloud.  

The presented methodology first accomplishes the segmentation of the point cloud of 
a building façade into its planar elements. Then, starting from the identified planar 
clusters, façade breaklines are automatically extracted to be used later to generate a 
3D vector model. During this step some priors on the urban structures like the 
prevalence of straight lines and orthogonal intersections are exploited to set additional 
constraints. Despite considerable effort, data obtained with range scanners may 
suffers from occlusions. However, building façades exhibit a high degree of self-
similarity and redundancy. For this reason an algorithm was developed for the 
reconstruction of incomplete models with the help of high-level architectural objects 
and the identification of repeated patterns in urban façades. The final product is a 
semantically enriched 3D model of the building façade that can be integrated into a 
Building Information Model (BIM). 

To demonstrate the reliability, precision and robustness of the method, several tests on 
different kinds of datasets are illustrated and discussed. The tests presented here 
revealed that while reconstruction efficiency is improved by the developed approach, 
the geometric accuracy of derived models is also comparable to the one achievable by 
the standard modelling process. 

The final building models have several applications. In the last part of this 
dissertation, the integration of building models with thermal images is addressed in 
detail. In recent years this task has become quite popular, but actual approaches may 
not be able to provide accurate and rigorous results. A solution is proposed based on 
mapping of thermal data on the vector building model. The alignment of both data is 
obtained with a combined photogrammetric bundle adjustment including both thermal 
and RGB images. 

Finally, some of the algorithms developed for façade modelling are extended, and 
partially modified, to cope with other applications. In particular, the developed 
segmentation strategy is tested for scan registration of urban scenes which present the 
prevalence of some few basic geometric shapes. In such cases, the identification of 
the same planar features between scans is exploited to determine their registration 
parameters. A final extension of the developed algorithms concerns modelling of 
indoor environments. Indeed, automatic reconstruction of buildings’ exteriors share 
many problems with the issues associated to indoor reconstruction, but in the last case 
the scene may feature a higher degree of clutter and occlusion. For this reason a 
tailored solution is presented and validated. 
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Introduction  

 

 

 

In many countries all over the word the reduction of energy consumption and the 
increase of efficiency in exploiting natural energy sources are playing an important 
role in national and international policies (USDE 2001, CEC 2002, EPA 2002, USDE 
2003, CEC 2007). For example, the European Union (EU) fixed ambitious climate 
and energy targets for 2020 (CEC 2008, Böhringer et al. 2009), and also other 
countries are following the same road map (Giddens 2009). Indeed, climate change 
mitigation and sustainable practices are currently at the top of political and technical 
agendas towards the goal of low carbon cities all over the word. European targets, 
known as the ‘20-20-20’, are: 

• 20% reduction in EU greenhouse gas emissions with respect to 1990 levels; 
• raising the share of energy produced from renewable resources to 20% in the 

countries of the Union; and 
• 20% improvement in the EU's energy efficiency. 

To meet these goals a significant role is played by energy efficient buildings. A 
building can be defined as ‘energy efficient’ if it is designed to provide a significant 
reduction of the energy needed for heating and cooling. In particular, energetic 
qualification of buildings based on energy consumption (as described in directives 
such as 2010/31/CE for the EU) becomes a standard to evaluate the thermal 
efficiency. 

Even if a great attention is paid to the topic of ‘Zero Energy Buildings’ (ZEBs), also 
the retrofitting of existing ones plays a fundamental role to reach the EU’s target. For 
this reason the development of methodologies for a fast evaluation of thermal 
efficiency of such buildings and technologies for their retrofit are growing in their 
interest. In particular, buildings dated between 1950 and 1975 were constructed in an 
era when little or no consciousness was on taking care of energy efficiency 
performance (Fig. 1). They are furthermore those that, according to recent reports 
from the Architect Council of Europe, are requiring envelope refurbishment to 
guarantee their future exploitation as residential or office buildings (ACE, 2012). 
Unlike historical buildings for which the refurbishment has to respect precise 
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restriction and must be controlled by specific authorities, regular civil buildings are 
subjected to a limited number of constraints (for example, the original appearance of 
the façade has in general to be preserved). Furthermore civil buildings constructed 
during 1950 - 1975 fit a similar architectural style which is based on a combination of 
simple geometrical shapes. In particular, these façade share can be generally modelled 
as planar objects or at least can be approximately divided into piecewise planar parts. 

 

Fig. 1 Energy consumption (expressed in kWh/m2a) in buildings since 1900. Buildings built In 1950 – 
1975 show the highest energy consumption. 

This research work was partially supported by the European research project EASEE 
(Envelope Approach to improve Sustainability and Energy efficiency in Existing 
multi-storey multi-owner residential buildings). This project was developed within 7th 
Framework Programme for Research, to tackle the initiative Energy efficiency in 
Buildings Public Private Partnership (EeB PPP). In particular, the EASEE project 
aims at developing a new holistic approach to energy efficient envelope retrofitting of 
multi-storey and multi-owner buildings through a combination of modular pre-
fabricated components, novel insulation approaches and scaffolding-free installation. 
The aim of this research inside the EASEE project is to develop innovative 
methodologies for building survey, modelling and assessment (Fig. 2).  

 

Fig. 2 EASEE approach to envelop retrofitting. Highlighted in red the contribution of the presented 
research in the project.  
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Unfortunately, up-to date and complete digital models are not always available, 
especially for constructions during 1950 - 1975. Executive drawing may have been 
made on analogue supports. Moreover such products are mainly 2D, and they do not 
highlight the 3D structure of a façade which is quire relevant for thermal analysis. 
Also when digital models are available, the model accuracy in the design phase is not 
ensured throughout the entire construction process. Therefore, a new digital model 
may be used to check the original one. Second, building models must incorporate all 
updates due to modification of the structure during its lifetime.  

The availability of as-built models could provide a solution to these issues. Three-
dimensional information related to architectural data is often complex, and thus it 
needs an acquisition method that may extract fine details in order to describe every 
element of the building envelop in the best way. In particular, nowadays an increasing 
interest is paid to the generation of detailed as-built building models from terrestrial 
laser scanning data (TLS), not only in cultural heritage preservation applications, 
where surfaces are complex and irregular, but also for large and medium size civil 
structures. This is mainly due to the fact that automation in acquisition and 
registration of scans, in conjunction with a reduction of the cost of instruments, 
allowed to a larger number of operators the chance to use TLS. 

However, raw point clouds derived from a TLS survey are generally not directly 
ready for modelling applications. This is due to the nature of point clouds, which is 
not associated with any topological relations and presents a very low level of 
abstraction for exhaustive analysis (for example the measurement of areas, rapid copy 
and paste operations, etc.). In addition, further problems arise due to the huge size of 
data to be managed. The resolution of point clouds usually drops in correspondence of 
edges, corners and other linear features which are the ones playing the most important 
role in modelling. In order to overcome those problems, point clouds of buildings are 
generally transformed into vector format by adopting standard reverse engineering 
approaches. However, this task requires a largely time-consuming manual work that 
should be carried out by skilled operators. For this reason an increasing interest is 
paid to automatic modelling of buildings used in conjunction with or as an alternative 
to computer-aided-design (CAD) techniques. Indeed, manual editing can be avoided 
in the case a detailed modelling is not required, or may take place only after a basic 
model has been automatically generated. Automatic processing of point clouds is also 
important for the timely extraction of useful information and for reducing the cost 
with respect to a fully manual approach. Although much research work has been 
done, practical applications of automatic modelling of full façades is still far to cast 
into practice. 
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Motivation of the research 
Point clouds acquired from real-world façades commonly feature several properties 
that pose challenges for any algorithm that further processes this raw data to extract 
information. One major issue is the lack of any structure or topological information in 
generic point clouds. This characteristic does not depend on the acquisition process 
but is rather a natural property of such data sets. As a consequence, identification of 
the true shape of the underlying surface may be a complex task even in densely 
sampled regions. In the case of real-world scans this difficulty is further intensified by 
the inevitable presence of noise and outliers (e.g., due to moving objects in the scene). 
Moreover, acquisition may be incomplete in the sense that large parts of the geometry 
remain hidden to the scanning device due to occlusions and restrictions on scanner 
placement. Last but not least, the size of the generated point clouds can easily be in 
several million points. On the one hand, the large size of point clouds does not 
necessarily reflect corresponding information content. This is because the scanning 
device does not adapt the sampling rate to the acquired local geometry and therefore 
even flat areas (e.g., house walls) will be sampled at the same resolution of fine 
details. It thus seems necessary and reasonable to investigate data representations that 
incorporate redundant information on a higher level. In this context, an observation 
fundamental to this work is that in scenes where man-made objects predominate, like 
in the cases addressed in the previous section, large parts of the acquired geometry 
can usually be efficiently represented by a set of simple parametric primitives. Once 
detected, these primitives achieve the desired effect with respect to the unnecessary 
redundancy in the point-cloud, because each of them resumes its associated set of 
corresponding points. 

The primary goal of this dissertation is to address the above mentioned challenges 
posed by point clouds of building façades. A first step towards this end is developing 
an efficient method for detection of façade planar objects. While fitted shape 
primitives have been previously used for reverse engineering and in computer vision 
application, this research strives to further extend these methods to better exploit the 
primitive representation for building façade modelling. 

The detection of high-level structures should achieve computational efficiency even 
on large point clouds due to their concise representation which can lead to the 
production of the façade vector model. At the same time they can offer improved 
quality due to the geometric and semantic cues provided by the primitives in the 
specific field of façade objects. In particular, the size and shape of a detected 
primitive along with the spatial relationship with the others can also serve as a rough 
classification of the façade parts which is helpful for recognition tasks. On the other 
hand, building façades often exhibit a regular arrangement consisting of repeated 
patterns and self-similarities. The detection and the parameterization of these regular 
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patterns can be used to infer missing geometry due to incomplete survey and to reduce 
holes induced by occlusions. 

Overview of the dissertation 
In this dissertation a novel methodology for fully automatic façade modelling is 
presented. In particular, the procedure follows a scheme that goes from scan 
acquisition up to point-cloud segmentation, automatic breaklines extraction, object 
classification, façade regularity detection and generation of the final 3D Building 
Information Model (BIM) of the façade finalized for thermal retrofitting (Fig. 3). 
Each step of the procedure presents some advances with respect to the state-of-art.  

 

a  b  c  

d  e  f  

Fig. 3. Building façade at different processing steps: (a) row point cloud; (b) detected planar elements; 
(c) output vector model; (d) repeated pattern detected; (e) façade object classification; and (f) final 

CityGML model with semantics. 

 

This dissertation addresses the application to modern building dated between 1950 
and 1975 which are the ones for which thermal retrofitting is more demanding. For 
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residential buildings built in this period elements constituting the façade can be 
largely modelled as planar objects or at least can be approximately divided into 
piecewise planar parts. The developed modelling methodology can be applied to 
unstructured point cloud of tens of millions points. This means that each point is 
parameterized by its spatial coordinates and may also feature some related attributes 
(e.g., intensity, colour, normal vector), but does not share any topological 
relationships with other points in the nearby. The input point cloud can be generated 
by a single or multiple laser scan station(s). Indeed, after scan registration/geo-
referencing, scans are merged together without needing any reorganization into a 
specific data structure. The overall procedure is presented in Fig. 4. 

 

Fig. 4. The flowchart of the developed automatic façade model generation method. 

 

Once all scans are acquired and registered together to output a non-structured point 
cloud, the main elements constituting the façade are firstly identified by means of a 
segmentation process based on a modified RANSAC implementation. In particular, 
the standard RANSAC approach (Boluaassal et al. 2007) for point cloud segmentation 
is modified by considering topology into the process. This topological information 
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between scan points and detected clusters are added in order to minimize problems 
connected to under- and over-segmentation, respectively (Awwad et al. 2009). Once 
planar clusters constituting the façade are detected, façade breaklines are 
automatically derived. During this phase some constraints related to façade geometry, 
like the prevalence of straight lines and orthogonal intersections, are enforced to 
obtain a regularization effect. At the same time, a further classification is performed, 
on the basis of some priors on the façade structure organized in a classification tree. In 
this way detected objects are classified into façade elements (e.g., walls, windows, 
etc.). Façades of buildings addressed in this work present a high regular structure 
characterized by the repetition of some elements forming a regular lattice structure. 
Identification of these regularities can be really useful to partially overcome problems 
connected to the lack of data and occlusions. For this reason a new automatic 
algorithm is developed for façade repeated pattern detection (RPD). Finally, detected 
breaklines along with façade classification results are merged together to obtain a 
semantically enriched 3D model of the entire façade. 

Structure of the dissertation 
This dissertation is divided in two parts. Part A gives a description the adopted 
approach. Part B reports some tests and presents possible integrations and extensions 
of the algorithms presented in Part A. 

In particular, Part A is divided in four Chapters discussing the main steps of the 
methodology for façade modelling. 

In Chapter 1 the developed segmentation strategy for the building façade is presented. 
Firstly, a review of the state of the art is reported. Particular attention is kept to the 
limits of existing techniques and to the expected developments. Then, a new 
segmentation strategy is presented to overcome some important drawbacks of 
previous approaches.  

In Chapter 2 is described the extraction process of edge from the point cloud along 
with their enhancement and smoothing. The goal is to generate a concise model of the 
façade by detecting breaklines and a vector model of the building starting from them. 
The content of the first two Chapters has been also published in Previtali et al. 
(2013a). 

Chapter 3 focuses on the semantic classification of extracted objects. In particular, a 
series of attributes and spatial relationship are defined for each façade segments which 
allow their functional classification into façade objects (e.g., wall elements, doors, 
windows, etc.). For the analysed building type, a series of recognition rules are 
derived from these features and organized into a hierarchical classification tree. 
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Finally, possible outputs of the processed data are presented. The content of this 
Chapter has been also published in Previtali et al. (2013d). 

Chapter 4 discusses the reconstruction of incomplete models with the help of high-
level architectural objects and identification of repeated patterns in urban façades. 
Completion of point clouds is often necessary because, despite considerable attention 
has been put during data acquisition, 3D views obtained with range scanners usually 
suffer from occlusion. On the other hand, building façades exhibit a high degree of 
self-similarity and redundancy. For this reason the method presented in this chapter is 
based on the detection of repeated patterns in the façade and the completion of 
missing parts by means of high-level architectural features (e.g., windows, doors, 
etc.). The content of this Chapter has been presented in Previtali et al. (2013c). 

Part B is organized in two chapters presenting some results of the developed façade 
modelling approach (Chap. 5) and discussing its possible extensions (Chap. 6). 

Chapter 5 examines the efficiency and accuracy of the developed reconstruction 
method presented in Part A. Five datasets of typical façades are presented and 
outcome discussed. Quality evaluation has been done for each step of the developed 
procedure to evaluate overall accuracy and precision. In particular the obtained façade 
models are evaluated against manually derived models considering the metrical 
quality and the completeness of the results. 

In Chapter 6 some extensions of the developed automatic façade modelling approach 
are introduced. In Section 6.2 is presented the integration between the automatically 
generated building models with other data sources, like RGB and thermal images, to 
obtain a more complete building representation (Previtali et al. 2013b). Some of the 
developed algorithms can be used for applications other than façade modelling. In 
particular, the developed segmentation strategy can be used for scan registration and 
modelling of indoor environments. Indeed, the segmentation algorithm can be used 
for registering scans using detected planar features (Sect. 6.2). In addition, point 
clouds are often used not only for generation of detailed models of building façades 
but also for indoor environment modelling. Typically, many of the algorithms useful 
for the reconstruction of exterior building models can be adapted for indoor 
reconstruction, as well. However, due the large amount of clutter and occlusion in 
indoor application a tailored solution is needed (Sect. 6.3). 
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Chapter 1 
Façade segmentation 

 

 

 

This chapter presents a novel segmentation method that prepares input data for 
subsequent processing techniques proposed in this work. Indeed, the segmentation 
process is the first step for turning out a 3D unstructured point cloud into a building 
model. Terrestrial laser scanning (TLS) data, as those from other tools for 3D point 
cloud gathering, are not immediately compatible with numerical models. This is due 
to the fact that that no surfaces or edges are directly provided. To this end, the 
segmentation process can be used as a first recognition stage for further modelling as 
described in the following chapters. 

Since the developed shape detection strategy is primarily intended for processing real-
world scanned point clouds, it needs to specifically address the challenges of this type 
of data. In particular, the two most relevant issues arising in this setting are: the 
unstructured nature of point cloud data, and the corruption induced by noise and 
outliers.  

Instruments for 3D scanning and imaging generally do not provide structured point 
clouds. Also in the case single scans can be handled as structured data (i.e., data with 
topological relations like proximity), see also Kang et al. (2013a), when multiple 
scans are performed and merged together the existing topological relations between 
points are lost. This typically happens with multi-station TLS surveys. In each scan, 
points are detected in correspondence of nodes of a regular angular grid established 
on a sphere around the instrument centre. However, when multiple scans are co-
registered, this data structure is lost. 

Presence of noise and outliers in the point cloud suggest using robust techniques for 
segmentation and detection of primitives. A very popular and versatile robust 
algorithm for segmentation is based on the RANSAC scheme proposed by Fischler 
and Bolles (1981), which, beside its simplicity, is very general and effective. 
Compared to other robust algorithms it has only a relatively small set of parameters 
which in addition have intuitive interpretations. Last but not least, RANSAC requires 
only very little memory in addition to the point cloud itself, which is important when 
working with large data sets. However, in its original formulation, the RANSAC 
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scheme is just an algorithm measuring the consensus to a certain assumed model. 
Consequently, the extracted primitives may not correspond to real architectonical 
object determining the so called ‘bad-segmentation’ problem. Thus, this Chapter 
presents a modified RANSAC algorithm for shape detection in point-clouds trying to 
minimize spurious results. 

As previously anticipated this dissertation is primarily focused at obtaining as-built 
façade models for thermal retrofitting purposes. In particular, it addresses to modern 
building dated between 1950 and 1975 which are the ones for which thermal 
retrofitting is more demanding. Residential buildings of this period feature a similar 
architectural style. In particular, elements constituting the façade are generally planar 
objects or at least can be approximately divided into piecewise planar parts. This 
aspect strongly influences the segmentation. Indeed, the developed approach is aimed 
at identifying planar elements constituting the building façade while the detection of 
other shapes is not relevant for buildings’ styles analysed in this research. 

1.1. Introduction and definitions 
Segments are geometrically continuous elements of object surface that share some 
similarities (Tóvári 2006). In Rabbani et al. (2006) ‘segmentation’ is defined as the 
process of labelling each point in a point clouds so that the points belonging to the 
same surface or region are given the same label. In this process, points having similar 
features in a continuous region are grouped to create a ‘segment’. Formally 
segmentation can be expressed as: 

 

{ }PppP ∈∀=Θ |θ  1.1 

 

where Θ is the segmentation operator in point clouds P and θp is the label assignment 
for a single point p in P. The results of the segmentation operation are n segments (s) 
having following properties: 

• { }PssS ⊂= |         1.2 

• SP⇒Θ          1.3 

• 0>= ii swherePsU        1.4 

• jiwheress ji ≠=∩ Ø        1.5 

This means that each segment s is a closed subset of point clouds P (1.2) while the 
segmentation operator Θ determines the character of each segment (1.3). In particular, 
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every point in the point cloud belongs to a segment only and two different segments 
do not share common points between them (1.5). Each segment is characterized by its 
homogeneity measured according to certain features. These features generally 
represent geometric properties, reflectance intensity of laser pulse and spectral 
properties of the points. The homogeneity criterion used to perform segmentation is 
determined by the aim of segmentation itself. For example, planar surfaces are 
generally sought for building modelling purpose in which segment represents the part 
of building object such as roof or wall. Typically, in laser scanning data geometrical 
properties, such as mathematical surface, surface normal, gradients and curvature 
(Crosilla et al. 2009) in the neighbourhood of a point, are mainly used for 
segmentation purposes. The reflectance strength of laser pulses, i.e. intensity data, as 
well as spectral properties of points are rarely used in the segmentation process 
because of their noisy character (Tóvári 2006).  

Property 1.4 is not always valid for unstructured point clouds as there may be some 
points not assigned to any segments. Other limits exist when focusing on massive 
unstructured point clouds. These problems are termed in literature as ‘bad-
segmentation’ (Stewart 1997) and may be categorized as: 

• under-segmentation, in the case several features are segmented into one; 
• over-segmentation, when one feature is segmented into several ones; and 
• no segmentation: feature is not segmented or wrongly segmented. 

 

Main reason for bad segmentation is that real point cloud are naturally noise affected, 
due to the accuracy of the instrument which usually varies from a few centimetres (for 
example, in Mobile Laser Scanning data sets) up to a few millimetres. Unfortunately, 
all the segmentation algorithms suffer from noisy data because make more difficult 
the prediction of homogenous areas or hinder the plane and curve estimations. As a 
consequence, if segmentation parameters are sensitive enough, most of the proposed 
methods will lead to high rates of point cloud over-segmentation; in alternative, using 
insensitive segmentation to face towards noisy data, an under-segmented point cloud 
will be obtained. In particular, according to Sapkota (2008) the presence of spurious 
planes and bad segmentation results, i.e., results not useful for users, is typical to any 
actual segmentation procedure presented in literature. This is due to the fact that in 
many cases extracted planes and object from the point cloud do not correspond to real 
architectonical objects. 

The different segmentation strategies differentiate in the way how to deal with ‘bad 
segmentation’ problems. 
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1.2. State of the art 
Point cloud segmentation is one of the main research areas in the laser scanning field. 
Indeed, it can be designed to introduce some level of organisation to the data before 
extraction of useful information (Filin and Pfeifer 2006), or as a precursor to object 
recognition and model fitting (Rabbani 2006). Finally, can be also employed as a pre-
processing step before the application of filtering algorithms (Tóvári and Pfeifer 
2005). In the past decades, various algorithms have been designed to extract planar 
surfaces from point clouds, mainly using geometric criteria to detect homogeneous 
regions in data. However, although the large number of works in literature focusing 
on segmentation, this problem is far from being solved even for planar features. The 
different segmentation methods proposed can be categorized into four groups 
(Vosselman and Maas 2010): 

• Feature clustering; 

• Surface growing; 
• Model fitting; and 
• Hybrid techniques. 

In the next subsections the basic principles of the above mentioned methods are 
explained and some of the relevant algorithms proposed in literature are discussed. 

1.2.1. Feature clustering 
The method based on feature clustering offers a general and flexible way to identify 
homogeneous segments in data, without being restricted to one specific pattern. 
Feature clustering methods can be seen as a combination of two processes: first, 
patterns in the data are identified on the basis of some attributes, and then they are 
clustered based on them.  

Firstly, representative measures (‘features’) are defined for each point based on some 
geometrical and radiometric characteristics. These features generally include position 
of each point, locally estimated surface normal, residuals of best fitting surface, and 
reflectance of laser scanning points. All these items of information are used to 
generate an nD feature. Thereafter, clusters are identified in an nD feature space. The 
points belonging to each cluster in the feature space are labelled as unique segment in 
the object space.  

Even if this method is quite general, identification of proper features may be complex 
and segmentation results are highly dependent upon this selection as well as the 
methods used for partitioning the feature space. Since in many cases the features of 
individual points are described using points in local neighbourhood, this segmentation 
technique is also sensitive to noise in the dataset and is influenced by the definition of 
neighbourhood. Therefore, an additional robust method is needed to eliminate the 
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noisy data and outliers. In addition, clustering multidimensional features can be 
computationally infeasible for large point clouds.  

Filin (2002) presented a clustering algorithm using an unsupervised classification 
technique for extracting homogeneous segments in Airborne Laser Scanning (ALS) 
data. A 7D feature vector is defined for each point. Features consist in point 
coordinates, surface parameters of a plane fitted to the point neighbourhood and the 
relative height difference between the point and its neighbours. Then, instead of 
creating a 7D feature space, the author separates positional information to create a 4D 
feature space. After defining surface classes, points are grouped in object space by 
using spatial proximity measures. The goal is to find clusters that are spatially 
meaningful and at the same time to avoid over-segmentation.  

Hofmann et al. (2003) defined a feature clustering segmentation method for TIN 
structures, which is derived from ALS point clouds. For each triangle of the data a 2D 
(slope and orientation) or a 3D (slope, orientation and O-distance) feature is defined. 
According to the authors the O-distance is calculated from the origin O to the plane 
containing the triangle.  

An unsupervised clustering approach based on fuzzy methods is presented in Biosca 
and Lerma (2008). In this case both the Fuzzy C-Means (FCM) algorithm and the 
Possibilistic C-Means (PCM) mode-seeking algorithm are used in combination with a 
similarity-driven cluster merging method.  

1.2.2. Region-growing 
Region-growing methods relay on the main assumption that neighbouring points in 
the cloud presents similar characteristics. For this reason region-growing methods are 
based on the aggregation of homogenous points, basing on certain similarity criteria, 
starting from a point which is called ‘seed’. Therefore, it can be seen as a combination 
of two steps: (i) identification and (ii) growing of the ‘seed’ surface.  

A ‘seed’ surface consists of a group of neighbour points that fits well into a defined 
geometric shape (e.g., a plane). For the ‘seed’ surface selection, a group of adjacent 
points are identified and tested whether they fit well the defined geometric shape or 
not. If a shape is found to fit within some predefined thresholds, it is accepted as seed 
surface; otherwise another point is tested. Once the ‘seed’ surface is selected, every 
point in it is examined to find the neighbour points that may fit to the defined shape. 
This operation is basically intended to grow the surface towards its neighbourhood. 
Points are added in the growing surface if they meet the predefined criteria. After 
adding a point, the equation of the fitted shape is updated. The acceptance decision for 
a point can be based on one or more of the following criteria: 
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a. proximity of points: only points that are within a certain distance from the 
current ‘seed’ surface are added to it. This proximity can be evaluated by 
checking the distance between two points on an edge of a Delaunay 
triangulation or, otherwise, considering the Euclidean or the Manhattan 
distance, i.e., distance between two points measured along axes at right angles 
(Niedermeier and Sanders 1996). This condition can, however, be too strict if 
some outliers are present (Vosselmann et al. 2004); 

b. global planarity (in the case the fitting model is a plane): a plane equation is 
determined by fitting a plane through all points within a given radius around 
the selected ‘seed’. A candidate point is accepted in the segment if the 
orthogonal distance from the plane evaluated by considering all the points 
already in the segment is within a defined threshold; 

c. surface smoothness: local surface normal for each point in the point clouds is 
estimated and a candidate point is accepted if the angle between the local 
surface normal of the point and the normal of the growing surface is below a 
threshold; 

d. height difference: the height difference between a point and its neighbours is 
computed as the distance from the point to the best fitting plane to its 
neighbours along the normal direction; and 

e. principal curvatures through Principal Component Analysis (PCA): the 
geometrical properties of an object in a point are intrinsically described by 
means of principal curvatures from PCA. The curvature ray is maximum in 
correspondence of planar areas while a smaller radius represents the proximity 
to an edge.  

However, there is no universal criterion which has ubiquitous validity (Biosca and 
Lerma 2008).  

Several variations in surface growing techniques of segmentation are suggested in the 
literature.  

Vosselman et al. (2004) proposed an approach to automatically extract planar surfaces 
from TLS point clouds. In this approach, several parameters need to be specified for 
the planar surface-growing algorithm, such as the number of ‘seeds’, the surface-
growing radius and the maximum distance between surfaces. Using different values 
for these parameters, it is easy to obtain significant changes in the segmentation 
results.  

Tóvári and Pfeifer (2005) presented a segmentation method for ALS data. First, the 
normal vector at each point is estimated by using k-nearest neighbours (Samet 2006). 
Then a point is selected randomly and the adjacent points are examined for certain 
criteria. If the criterion meets, the adjusting plane is estimated using those ‘seed’ 



CHAPTER 1.FACADE SEGMENTATION 

16 

 

points. During growing, the neighbouring points are added to the segment if they meet 
criteria (a), (b) and (c) in the above list. For plane adjustment, eigenvector/eigenvalue 
approach using the second moments of point coordinates are used.  

Rabbani et al. (2006) presented a method to segment unstructured 3D point clouds of 
industrial scene based on smoothness constraints. Also in this case in a first step, 
normal for each point is estimated by using k-nearest neighbours and Least Squares 
plane fitting. Then residuals of plane fitting are used to approximate the local surface 
curvature. These residuals are sorted and used to select ‘seed’ points. In particular, 
points with minimum residual are considered suitable ‘seed’ points for detecting 
planar segments. The growing phase is carried out by using previously estimated 
point normal and their residuals. In particular, criteria (a) and (c) are implemented. 

Another typical variation of region growing algorithm for ALS data is presented in 
Gorte (2002), where triangles are used as basic surface units. The merging of 
triangular meshes is carried out by comparing the plane equations of neighbouring 
triangles. 

1.2.3. Model fitting 
Methods in this category are based on the identification of geometrical primitives in 
the point cloud. Indeed, many man-made objects can be decomposed into geometric 
primitives like planes, cylinders, cones, tori, spheres, etc. This approach tries to fit 
primitive shapes in point cloud data. Thus, those points conforming to the sought 
primitive are labelled as one segment. However, outliers caused by noise, registration 
errors or miscalibrations are frequently encountered in laser scanning point clouds. 
For this reason a robust parameter estimation methods is needed to extract 
geometrical shapes in the presence of outliers. The two most important algorithms in 
the line of robust fitting are Hough transform (Hough 1962) and RANdom SAmple 
Consensus (RANSAC) introduced by Fischler and Bolles (1981).  

The Hough transform maps, for a given type of parameterized primitive, every point 
in the data to manifold in the parameter space. The manifold describes all possible 
variants of the primitive that contain the original point. In practice each point casts 
votes for many cells in a discretized parameter space. Shapes are extracted by 
selecting those parameter vectors that have received a significant amount of votes. In 
the case of detection of planar objects, a general plane can be represented as: 

 

dYsXsZ yx ++=  1.6 
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where sx and sy represent the slope of the plane along X- and Y-axis, respectively, and 
d denotes the intersect of the plane on the Z-axis. This parameterization for a plane in 
3D space does not describe vertical planes. To overcome this limitation, the normal 
form of the plane equation can be used: 

 

dZsenYsenX =⋅+⋅⋅+⋅⋅ φφθφθ coscoscos  1.7 

 

where θ ∈ [0, 2π] and Ф ∈ [- π / 2, π / 2] denote two angles of the plane normal and d 
represents the distance from the origin to the plane. The major application area of the 
Hough transform remains the 2D domain where the number of parameters typically is 
quite small. However, also 3D applications are reported in the literature. 

Maas and Vosselman (1999) adopted 3D Hough transform for detecting roof planes in 
3D point clouds. The Hough space is described by two slope parameters and a 
distance (Eq. 1.6). This description of clustering space is only suitable for ALS data 
as this form of parameterization cannot describe vertical planes which are common in 
TLS data. 

Vosselman et al. (2004) suggested a variation in Hough transform using surface 
normal to speed up the process of planar surface detection with increased reliability. 
The normal vector and the position of a point is adopted to define a plane whose 
parameters can be directly mapped to a single point in the parameter space. This 
solution avoids the process of computing the intersection of the plane with the 
corresponding bin. Only the increment of counter of each single bin is enough. The 
authors also proposed a two-step procedure for the Hough-based detection of 
cylinders. Similarly Rabbani and Van den Heuvel (2005) decomposed the sphere or 
cylinder detection problem into two sub-problems of a low complexity: the detection 
of the cylinder axis direction (2 parameters) and the direction of a circle in a plane (3 
parameters). 

The RANSAC paradigm is used to extracts shapes by randomly drawing minimal sets 
from the point data and constructing corresponding shape primitives. In particular, a 
minimal set is the smallest number of points required to uniquely compute a given 
type of geometric primitive (for example, 3 non collinear points to estimate a plane in 
space). The resulting candidate shape is tested against all points in the data to 
determine how many of the points are well approximated by the primitive (called the 
‘score’ of the shape). After a given number of trials, the shape which approximates 
the most points (points well approximated by the primitive are also referred to as 
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‘inliers’) is reported. All inliers are then extracted from the dataset and used to 
estimate the detected geometric primitive. 

Bretar and Roux (2005) proposed an algorithm for the detection of roof facets of 
buildings based on normal-driven RANSAC (ND-RANSAC). For this purpose, they 
first calculate the normal vectors for each point and then randomly select sets of three 
points having the same orientation of the normal vectors. The number of random 
draws is managed automatically by statistical analysis of the distribution of normal 
vectors using the Gaussian sphere of the scene. 

The extension of RANSAC algorithm for roof plane detection is proposed in Tarsha-
Kurdi et al. (2007). The authors used the number of trials as an input rather than 
probabilistic calculation. They suggested calculating it by using the point density and 
the foreseeable size of urban roof plane. Another adaptation over the standard 
RANSAC technique is that they use criteria based on standard deviation of distance 
from the plane to select a reduced point-set instead of the original one to evaluate the 
candidate feature. 

RANSAC based algorithm for the detection of several geometrical shapes such as 
planes, spheres, cylinders, cones and tori is presented in Schnabel et al. (2007). In this 
method, they use localized sampling strategy using octree data structure (Samet 2006) 
for the random selection of the minimal subset of points. While evaluating the score 
of the candidate feature, several parameters (e.g., number of points within the 
tolerance distance of the feature, minimum deviation of the surface normal, etc.) are 
taken into account. 

An application of RANSAC to massive unstructured 3D point clouds is reported in 
Boulaassal et al. (2007). In this case, large point clouds of building façades are 
analysed and segmented showing that a sequential application of RANSAC allows the 
automatic segmentation of planar surfaces from 3D point clouds acquired by TLS. 
However, some problems are reported in the case of adjacent planes and in the plane 
connectivity. In addition, the method has been proved only on small point clouds, 
limiting in this way computational problems. 

To cope with the relative computational inefficiency of RANSAC in Kang et al. 
(2013b) a conditional sampling method based on the Bayesian sampling consensus 
(BaySAC) is proposed. This method selects the minimum number of data required 
with the highest inlier probabilities as a hypothesis set. Thus, reducing the number of 
iterations needed to find a good model.  
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1.2.4. Hybrid techniques 
Some authors tried also to combine different methods to better exploit the potential of 
each of them. In general, region growing is combined with other plane detection 
methods as it takes into account the spatial proximity of the points in a more natural 
way.  

Roggero (2002) combined hierarchical region growing and principal component 
analysis (PCA) to segment ALS data. PCA is used to define the aggregation criteria 
and to describe the geometrical properties of the surfaces. Two algorithms differing in 
PCA and in aggregation criteria are proposed. One of the algorithms is based on 
descriptor mapping. First, one or more properties like static moment or curvature or 
pulse intensity are computed and mapped to each point. Then the region growing is 
performed with reference to the property map. The second algorithm does not perform 
descriptor mapping and uses PCA in region growing phase to speed up the method. 

Elberink and Vosselman (2006) used Hough transform for ‘seed’ surface selection 
combined with a surface growing approach. For some arbitrary point, k-nearest 
neighbour points are selected and Hough transform is applied to these points only. If 
the minimum number of points is identified to be in a plane by Hough transform, 
Least Squares are used to fit the parameters of the plane and the points are taken as 
‘seed’ surface. The acceptable ‘seed’ surface is used here instead of the optimal ‘seed’ 
surface (having maximum number of points with minimum residuals) at the cost of 
computation speed. In the growing phase, the orthogonal distance of the adjacent 
points to the growing plane is analysed and the points are added to the surface if the 
distance is below a threshold. 

1.3. Critical analysis of existing techniques 
Summary of the state of the art of segmentation methods presented in the previous 
section is provided in Tab. 1.1. Based on the review of different segmentation 
methods, following conclusion can be drawn for each category.  

The results of the segmentation process based on clustering of features are dictated by 
the choice and the quality of the representative features of each point. In addition, 
clustering multidimensional features for large data volume is computationally very 
expensive while dealing with large data volume is quite natural in laser scanning point 
clouds processing.  

Region-growing based methods always consider spatial proximity of points. 
However, the quality of results from region-growing-based segmentation depends on 
the methodology used for ‘seed’ surface selection and the criteria applied for growing. 
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Segmentation method Work Description 

Clustering 

Filin (2002) 
7D feature space is defined to 
cluster points. 

Hofmann et al. (2003) 
2D and 3D feature space is defined 
for TIN structures 

Biosca and Lerma (2008) 
FCM and PCM in combination with 
a similarity-driven clustering 

Region growing 

Gorte (2002) 
Grouping of TIN, more suitable for 
ALS data. 

Vosselman et al. (2004) 
Several parameters (number of 
seeds, the surface-growing radius, 
etc.) used to grow. 

Rabbani et al. (2006) 
Local surface normal similarity as 
criteria to grow. 

Tóvári and Pfeifer (2005) 
Surface normals, spatial proximity 
and distance to plane as criteria to 
grow. 

Model fitting 

Hough transform 
Maas and Vosselman (1999) 

Utilises slope form of plane equation 
to create 3D Hough space for roof 
plane detection. 

Vosselman et al. (2004) 
Surface normal is introduced in 
Hough space. 

RANSAC 

Bretar and Roux (2005) 

Utilizes local surface normal for 
each point, uses RANSAC selecting 
three points with similar orientation 
of normals. 

Schnabel et al. (2007) 

Localized sampling strategy using 
octree data structure. Different 
parameters are used in candidate 
evaluation. 

Tarsha-Kurdi et al. (2007) 

Uses standard deviation of distance 
to plane and minimum number of 
points as candidate evaluation 
criteria. 

Boulaassal et al. (2007) 

Uses RANSAC for façade 
segmentation. Problems are reported 
in the case of adjacent planes and in 
the plane connectivity. 

Kang et al (2013b) 
Conditional sampling method based 
on the Bayesian sampling consensus 

Hybrid 

Roggero (2002) Combines PCA and region growing 

Elberink and Vosselman (2006) 

Hough transform for seed plane 
selection and then region growing 
based on the distance to plane 
criteria. 

Tab. 1.1. Summary of the state of the art point-cloud segmentation methods. 
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The selection of the ‘seed’ points is of primary importance, because the final 
segmentation results depend on that: in fact, some problems occur when ‘seed’ points 
are extracted close to breaklines or outliers. As a consequence, none of these 
algorithms can be considered a robust solution. It can be noticed that several 
parameters need to be specified for the surface growing algorithms whose selection is 
not always an easy task. Indeed, by using slightly different values for these 
parameters, it is easy to obtain various bad segmentation problems (over-, under- 
and/or no segmentation). With the same number of ‘seeds’, larger surface-growing 
radius or larger maximum distance from surface may lead to under-segmentation. On 
the other hand, smaller surface-growing radius or smaller distance from surface may 
lead to over-segmentation. Pu and Vosselmann (2008) stated that over-segmentation 
is preferable to under-segmentation, because over-segmented parts may have some 
similar properties that can be exploited to merge these segments together at a later 
stage. 

The segmentation based on surface fitting using Hough transform or RANSAC is 
effective in presence of noise and outliers. However, the straightforward 
implementation of both techniques is computationally inefficient. In addition, points 
classified as belonging to the same detected shape by these techniques may not 
necessarily belong to the same object surface. To separate points belonging to 
different object surfaces specific strategies should be employed. While both Hough 
transform and RANSAC strategies were used for processing point clouds, an 
important comparison between them was made in Tarsha-Kurdi et al. (2007) in terms 
of processing time and sensitivity to cloud characteristics using ALS data. The 
authors show that RANSAC is more efficient than the Hough transform algorithm, 
since the difference in processing time is negligible even when data size is very large 
and Hough-transform is also very sensitive to segmentation parameters values. 

The hybrid techniques have some desirable strength as they exploit the benefits of 
more methods. Combination of model fitting on local region with expansion towards 
adjacent points using region growing is one of the most efficient segmentation 
strategies.  

As a general consideration, segmentation techniques analysed in the former section 
had resulted in showing good results in different application domains. Nevertheless, 
none of them has achieved results to be considered the optimal segmentation method 
at least for a specific category of applications: the final results needs to be improved 
by manual editing or post-processing. Furthermore, algorithms lacks of flexibility: a 
method that works well in a specific case can hardly be used for other applications. 
Many methods have a large number of parameters, whose meaning and effects on 
final segmentation are not always clear (Rabbani et al. 2006) and make the reliability 
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of the results very variable according to the specific conditions. Some methods use 
fuzzy logic to interactively estimate the best set of parameters and their values, even if 
these approaches require a training phase that it is not always possible. 

To partially overcome the previous listed limitations of state of the art techniques a 
new automatic approach is presented for the segmentation of planar surfaces based on 
the combination of RANSAC algorithm and region-growing approaches. The aim of 
this strategy is to derive ‘meaningful’ segments from building-façade point clouds. 
This means that extracted segments would correspond to objects of interest (e.g., 
roofs, walls, doors, etc.) or parts thereof instead of being simply those which best fit 
some mathematical models. In particular the main improvements of the presented 
methodologies are: 

• creating a new approach that can deal directly with 3D point clouds from TLS; 

• segmenting and extracting different planes with best fit to reality for complex 
objects starting from massive unstructured 3D point cloud in the presence of 
noisy data; 

• reducing over-segmentation problems by introducing a new score function 
based both on signed distances and normal directions, and defining topology 
information (i.e., definition of neighbourhood between points) in the point 
clouds; and 

• reducing under-segmentation by performing a clustering of extracted planes 
based on topology properties for surfaces. 

1.4. Façade segmentation 
Given a point cloud P = {p1,…, pN} with associated normals N = {n1,…,nN} the output 
of the implemented algorithm is a set of planes Ψ =  {ψ1,…, ψN} with corresponding 
disjoint sets of points PΨ = {PΨ1 ⊂ P,…, PΨN ⊂ P} and a set of remaining points R = P 
\ ⋃Ψ PΨ.  

The overall structure of the method is outlined in Fig. 1.1. In each iteration of the 
algorithm, the primitive with maximal score is searched using the RANSAC 
paradigm. The score function has two free parameters: (i) ε specifies the maximum 
distance of a compatible point while (ii) α restricts the deviation of a points’ normal 
from the one of the plane to judge.  

Plane candidates are generated by randomly sampling minimal subsets of P. After a 
new candidate has been generated, the one with the highest score is computed. The 
best candidate is accepted if, given the number of inliers |m| of the candidate and the 
number of drawn candidates |C|, the probability P(|m|, |C|) that no better candidate 
was overlooked during sampling is high enough.  
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After having determined the maximum consensus plane a check is performed to verify 
if the set of points PΨj belong to a single façade object or more (Forlani et al. 2006). 
This check is performed by setting up a bitmap and finding all connected components 
in it. In this phase some spurious segments might be found. Indeed, each segment 
whose area is far lower than the mean value is rejected. When a candidate is accepted, 
the corresponding points Pinliers are removed from P and the candidates Cm generated 
with points in Pinliers are added to Ψ. The algorithm terminates as soon as P(τ,|C|) for a 
user defined minimal shape size τ is large enough.  

 
Fig. 1.1. Workflow of the developed façade segmentation process. 

 
After having determined all planar elements a clustering of extracted object is 
performed to minimize over-segmentation problems. Clustering is performed by 
means of mean shift clustering in the plane domain on the base of: (i) plane normals, 
(ii) distance between extracted segments and (iii) segment intersection. 
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1.4.1. Point cloud pre-processing 
The term ‘point cloud’ usually refers to an unordered collection of 3D spatial 
locations that can additionally be equipped with a set of attributes at the respective 
position in space: 
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P denote a point cloud with coordinates pi ∈ R3 and attributes ai
j. Typical attributes 

are the local normal ni ∈ S2, point colours ci ∈ [0, 255]3, and laser intensity I i ∈ [0, 
255].  

The most popular acquisition techniques of point clouds, laser range scanning, 
structured light scanning, shape from shading and multi-view photogrammetry in 
general all produce unstructured and irregular 3D point clouds that are sampled from 
the acquired surface geometry. This means that no information of proximity 
(topology) is assigned to any point.  

In the segmentation stage local normal is used in the score function definition. 
However, while some attributes like colours or intensity can be directly acquired from 
scan scanning other like normal vector information at the point locations need pre-
processing. 

Several approaches are presented in the literature for estimating local normals in a 
point cloud (Hoppe et al. 1992, Pauly et al. 2005, Jenke et al. 2008). All of them rely 
on a similar framework: for each point a plan is locally fitted considering a certain 
number of neighbour points. In the developed pre-processing step the local normal is 
estimated using the method proposed in Jenke et al. (2008). This method iteratively 
increases the size of the neighbourhood until the estimated normal and the 
eigenvalues of the weighted covariance matrix C (Nk (p)) stabilize: 
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where µk is the weighted average of all points is Nk (p), hk is the radius of the smallest 
sphere containing Nk (p) cantered at p and ϕ is a positive monotonously decreasing 
weighting function. With respect to other approaches, this has the advantage that 
potentially less neighbourhood sizes have to be considered if stability is detected early 
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on. Even if this approach is heuristic since the algorithms in this work do not require 
correct normal close to sharp features and can easily deal with some smoothing in 
these areas, the method of Jenke et al. (2008) was found to work quite well in 
practice. 

1.4.2. RANSAC model fitting 
As mentioned above the façade types considered in this research are mainly 
characterized by planar objects. For this reason the segmentation step consider only 
identification and extraction of planar segments from the point cloud. Every 3D point 
pi fixes only one parameter of the shape so that for a plane, {p1, p2, p3} constitutes a 
minimal set. To confirm the plausibility of the generated plane, the minimal set is 
accepted only if the three point normal n1, n2, n3 deviations are less than the 
predefined angle α. Once the subset is accepted and the plane passing through these 
tree points is estimated, the score function F is used for measuring the quality of a 
given plane candidate. The score function F takes into account the following aspects: 

• the number of points that fall within the ε-band around the plane; and 
• to ensure that the points inside the band roughly follow the direction of given 

plane, only those points inside the band whose normal do not deviate from the 
normal of the plane more than defined angle α are considered as inliers for the 
guessed plane. 

 
More formally, given a candidate shape C whose fidelity is to be evaluated, F is 
defined as follows: 
 

( ) ψPCF =  1.10 

 

i.e., F(C) counts the number of points in ψP . Being ψP  defined as (Fig. 1.2): 

 

PΨ={p | p ∈ P ∧ |d(ψ,p)| < ε ∧ arcos [n(p)·n(ψ,p)] < α} 1.11 

 
where d(ψ, p) is the signed distance of point p to the plane Ψ, n( p) is the normal in p 
and n(ψ ,p) is the normal of Ψ in p’s projection on ψ.  
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a.  b.  

Fig. 1.2. RANSAC score function: (a) selection criteria of inlier point p for the plane P; and (b) effect 
of the defined score function for inlier detection: points marked in purple are excluded from inlier 

detection because their normal n deviate from the guessed plane normal nP. 

 
In particular, the signed distance function for a plane is given by: 
 

d(x) = < n,x - p > = < n,x > - < n,p > 1.12 
 
where n, |n|=1 is the normal to the plane and p is an arbitrary point in the plane. The 
intuitive threshold value ε for the Euclidean distance between a point and an estimated 
plane can be easily found by the user according to the instrumental noise and 
minimum point density for the acquired point clouds.  

As specified in the definition of the score function F, in contrast to other RANSAC 
approaches (Boluaassal et al. 2007), in the implemented segmentation strategy not 
only the signed distance is evaluated but also the compatibility of the local point 
normal with the estimated plane normal.  

While comparison of local surface normal is not necessary for planar detection, where 
distance to the plane is sufficient criteria, by employing this further check there is no 
way that a maximum consensus plane is obtained from spurious surfaces containing 
points having different normal directions (Fig. 1.3). This reduces some of the bad-
segmentation results reported in Awwad et al. (2009). It must be noted that the plane 
direction, which is obtained by RANSAC, is based on the sequence of choosing the 
three points; therefore, the check in Eq. (1.11) also considers the opposite direction 
for the plane normal.  
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a.  b.  c.  

Fig. 1.3. Example of bad segmentation removal with the defined score function for ‘D’Oggiono 
building’ dataset (a). Results with simple signed distance criterion: points highlighted in red (belonging 

to the roof) are erroneously clustered with the main façade wall (b). Segmentation results with point 
vector consistency check (b) 

However, this two-step approach increases the computational complexity. To face this 
problem, the efficiency of RANSAC is improved by implementing an adaptive 
approach to determine the number of iterations necessary to extract, with a probability 
p, the shape that achieve the highest possible score (Hartley and Ziesserman 2004). 
This problem turns out in evaluating the number of candidates that have to be 
considered to guarantee, that the minimal set is drawn to define this shape, given a 
predefined probability p. This solution is quite popular in RANSAC applications 
when exploiting all possible combinations of points to form the minimal set is 
computationally infeasible.  

In particular, the minimum number of trials (T) to extract with probability p, the plane 
that achieve the highest score is: 

 

( )
( )( )n

p
T

ε−−
−≥
11ln

1ln  1.13 

 

where ε is the outlier percentage and n is the number of parameters to be estimated (in 
the case of a plane n = 3). Being the percentage of outliers unknown at the first 
iteration the outlier percentage is fixed near 100%. When a new maximum consensus 
plane is detected the outlier percentage is calculated according to the current number 
of inliers and the number of required iterations is updated (Tab. 1.2). In the case the 
requested number of iterations has been reached the process stops, otherwise the loop 
iterates. 



CHAPTER 1.FACADE SEGMENTATION 

28 

 

 

n = 3 
Outlier percentage 

5 % 30 % 50 % 70 % 80 % 85 % 90 % 
pt =99 % 2 11 34 168 573 1362 4602 
pt =95 % 2 7 22 109 373 886 2994 

Tab. 1.2. Minimum number of iteration for plane detection wit p = 95% and p = 99%. 

 
When a candidate shape C is accepted as the maximum consensus in the point cloud 
the corresponding points Pinliers are removed from P and the process iterates until new 
shapes are detected having a size larger than a user defined threshold, defined as a 
percentage of the original point clouds (e.g., 3% of the original point cloud). 
 
 
Algorithm 1  Extract planes in the point cloud P 
Ψ ← Ø{extracted shape} 
repeat  

C ← Ø {candidate shape} 
nBest ← 0 {number of points in the best candidate} 

i ← 0 {number of iterations} 
T ← ∞ {number of iteration for having P (|m|, |C|)>pt} 

repeat 
P3 = SelectRandomSubset(P) {select minimum subset of points i.e. 3} 
ψ = ComputePlane(P3) {compute plane from subset} 
nInliers = ComputeInliers(ψ, P) {compute no. of consistent points based on a F} 

ifnInliers>nBest 
nBest = nInliers 
C ← ψ 

T=NumberOfIterations(nInliers, P) 
end if 

until i< T 
return C 
P ← P \ Pinliers {remove inliers points} 

Ψ ← Ψ ⋃ C{add extracted shape} 
until P(τ, |C|)>pt 
return Ψ 

 
 
When a shape having a number of inliers lower than the threshold is detected as the 
one having the maximum consensus the segmentation stops. The workflow of the  
developed RANSAC algorithm for segmentation is reported in Algorithm 1.  
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1.4.2. Under- and over- segmentation removal 
A new approach based on topology information was developed to cope with both 
under- and over- segmentation problems.  

Under-segmentation comes up when several features in the point cloud (ψ1,ψ2, …, ψn) 
are erroneously detected during the segmentation process an assigned to the same 
segment (ψ0). This problem mainly arises when encountering special cases such as 
two or more planar surfaces having the same normal and being at the same level. This 
situation typically occurs for windows (Fig. 1.4).  

a.  b.  

c.  d.  

Fig. 1.4. Example of under-segmentation removal for a set of windows: (a) all windows belonging to 
the same plane are clustered in the same segment; (b) an occupancy map is generated with pixel size 
β=1cm; (c) connected components in the bitmap are detected; and (d) final segmentation results. 

Indeed, all windows are generally on the same plane and are erroneously classified as 
one single object. This is mainly due to the fact that RANSAC does not explicitly held 
connectivity. Indeed, all points which are classified in one group should form a 
connected component in the object space while features representing different objects 
should have spacing between them due to features which are segmented into other 
groups. On the other hand, in unstructured point clouds the connectivity requirement, 
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which is straightforward in image processing (since there, connectivity is defined in 
terms of the 4- or 8- neighbourhood on the pixel grid, see Dorninger and Nothegger 
2007), needs a specific definition of neighbourhood (topology). This could be done, 
for example, by considering two points as neighbours if they are connected by an 
edge in the Delaunay triangulation; however, obtaining the Delaunay triangulation is 
computationally expensive (in particular, for large point clouds).  

Hence, this research uses a criterion based on the definition of a bitmap located in the 
parameter domain of the shape (Fig. 1.5). 

a.  b.  

c.  d.  

e.  

Fig. 1.5. Under-segmentation removal: (a) RANSAC detected cluster; (b-c) generation of the raster 
bitmap; (d) detection of connected components in the bitmap; and (e) correctly detected segments. 

In particular, the bitmap is obtained by projecting each point along the plane normal 
direction. A cell in the bitmap is defined as occupied (and its value set to 1) if at least 
one point is projected into it. Otherwise it remains equal to 0. Ideally, the size β of the 
cells in the bitmap should correspond to the distance between neighbouring points in 
the data, i.e. the sampling resolution. However, in the case of point clouds acquired by 
TLS, data are irregularly sampled. For this reason the cell size β is chosen as the mean 
sampling resolution in the point cloud. Larger cells may sample in a too coarse way 



Automatic segmentation, classification and extraction of repeated patterns for building façades modelling 
 

 

31 

 

the point cloud and do not overcome the problem. Indeed, β should be lower than the 
distance between objects lying in adjacent planes. On the other hand. a too small cell 
size may fit the limit of the scan ground sampling distance (GSD). A reasonable value 
for β can be easily set up by the used. In reality, segmentation results are not 
influenced so much, giving a reasonable cell size, from this parameter. Once the 
bitmap is setup, cells representing a connected component can be easily found. Then 
all points whose projection belongs to the same connected component are grouped 
into the same segment. In this phase some spurious segments might be found. Indeed, 
each segment whose area is far lower than the mean value is rejected.  

Over-segmentation occurs when one feature in the point cloud (ψ0) is segmented into 
several ones (ψ1,ψ2, …, ψn). It is generally associated with noise or irregularities in 
data. Indeed, many façades presents several irregularities like out of plumbs, variation 
of shapes and the like, that are not evaluated in the RANSAC inliers estimation. For 
example in the case of a façade presenting an out of plumb, the segmentation may 
result in subdividing a single façade wall into several objects. Obviously over-
segmentation problems can be prevented increasing the RANSAC tolerances. 
However, this may lead to under-segmented parts which may be difficult to split 
again. For this reason, here restrictive RANSAC tolerances are selected causing a 
moderate over-segmentation.  

a.  b.  

c.  
Fig. 1.6. Parameters evaluated for over-segmentation removal: (a) similarity of plane normal vector; 

(b) small perpendicular distance between points classified in different segments; and (c) an intersection 
zone between clusters. 
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This over-segmentation can be reduced by introducing topology properties for point 
clouds and planes. Indeed, group of points which belong to the same surface should 
share the following parameters (Fig. 1.6): 

• similarity of plane normal vector; 
• small perpendicular distance between points classified in different segments; 

and 
• an intersection zone between them. 
 

The methodology to overcome over-segmentation is based on two steps.  

First, the whole group of detected segments are clustered by using the mean shift 
clustering algorithm (Comaniciu and Meer 2002). This exploits the normal vectors 
using as bandwidth the user-defined tolerance angle α. The main advantage of mean 
shift algorithm is that it is a non-parametric clustering technique which does not 
require prior knowledge of the number of clusters, and does not constrain the shape of 
the clusters. In particular, given n data points xi ∈ R4, the multivariate kernel density 
estimate using a radially symmetric kernel K(x), is given by: 
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where h (termed as the bandwidth parameter) defines the radius of kernel. The 
radially symmetric kernel is defined as: 
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where ck represents a normalization constant which assures K(x) integrates to 1. For a 
Gaussian kernel, as used in our case:  
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Taking the gradient of the density estimator Eq. (1.14) and some further algebraic 
manipulation yields: 
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where g(x) = −k’(x) denotes the derivative of the selected kernel profile. The first 
term is proportional to the density estimate at x (computed with the kernel 
G=cgg(||x||2)). The second term, is the mean shift vector (m), that points toward the 
direction of maximum increase in density and is proportional to the density gradient 
estimate at point x obtained with the kernel K. The mean shift procedure for a given 
point xi is as follows: 
 

1. compute the mean shift vector m(xi
t); 

2. translate density estimation window: xi
t+1= xi

t+ m(xi
t); and 

3. iterate steps 1 and 2 until convergence (i.e., 0)( =∇ ixf ). 

 
During the clustering phase, since the plane normal direction is based on the sequence 
for choosing the points defining the plane, the check considers also the opposite 
normal direction.  

 

a.  b.  

Fig. 1.7. Example of over-segmentation removal: (a) a small out of plumb (1 cm) is detected in the 
façade (green cluster); and (b) clusters are merged after clustering all planes. 

Once extracted planes are clustered according to their normal, the perpendicular 
distance between points classified as representing different objects is evaluated, into 
each family of planes as detected by clustering of normals. If the mean value of these 
distances is lower than the user defined RANSAC threshold and the convex hulls of 
the point clusters intersects, they are recognized as a single object and merged 
together (Fig. 1.7). 
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Chapter 2 
Geometric reconstruction 

 

 

 

In Chapter 1 has been described the segmentation of the building façade into planar 
features. This Chapter presents the developed automatic procedure for geometric 
reconstruction and vectorization of the building façade starting from the features 
detected during the segmentation stage. The generation of a digital vector model of 
the façade also requires a precise description of edges and breaklines, which are not 
achieved during segmentation of planar features. For this reason, a procedure to detect 
façade breaklines along with their post-processing and smoothing is described.  

Point clouds obtained from TLS can be directly used to reconstruct façade models by 
means of simple triangulation of the acquired data. However, these triangulated 
irregular networks (TINs) models are generally computed on the mere basis of an 
irregular distributed point cloud. Therefore, they do only implicitly store break-line 
information. The quality of the break-line description within these models depends on 
the original point sampling interval and on the size of triangles. This representation 
can be adequate for ‘free form objects’, i.e., object whose form cannot be 
parameterized by means of simple geometric shapes (like some decorations, bas-
reliefs, sculptures, etc.), where discontinuities are smooth. However, in the case of 
objects that are made up of several 3D regular solid shapes (like mechanical parts, 
building façades, etc.), transitions between different elements is sharp and explicit 
description of these discontinuities is essential for generating high quality models. In 
addition, TIN models obtained by conventional triangulation methods generally 
results in a tremendous number of triangles. This is because TLS systems acquire data 
at a given sampling rate and therefore even flat areas are sampled with high point 
density. The large size of these models may cause problems in handling such huge 
data sets. 

For these reasons, when dealing with building façades their modelling is performed 
by individuating in the point cloud the basic shapes constituting the façade and fitting 
polygons to them. At the end a 3D vector description of the façade is obtained. 
Indeed, a vector model exploiting the primitive shapes may achieve the desired effect 
of generating a lighter model compared with the original point cloud or TIN model. In 
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addition vector models give the possibility to explicitly describe 3D breaklines. 
Indeed, a ‘break-line’ can be defined as the intersection of two surfaces, each surface 
interpolating the points on either side of the break-line itself. 

Until today, façade vector models have been usually generated with a manual 
approach. In standard reverse engineering, generally, the point cloud is first analysed 
by identifying the basic shapes constituting the façade. Then breaklines are digitized 
by the measurement of relevant points along edges. The selection of the important 
lines and the way the line are discretised is up to the individual human interpretation. 
Then, starting from the detected edges the geometry of a façade element is recovered. 
However, this requires a largely time-consuming manual work performed by skilled 
operators. To speed up the façade modelling, in the field of thermal retrofitting of 
existing buildings, an automatic modelling approach is presented in this Chapter. 
Obtained models can then be used in conjunction with or as an alternative to 
Computer-Aided-Design (CAD). 

In the developed methodology automatic modelling is obtained thought a multi-step 
approach. First, the original point cloud is segmented to identify all planar clusters 
constituting the building façade as described in Chapter 1. Then, considering each 
detected object, the segment edges are identified giving a first rough approximation of 
façade breaklines. The extracted edges are random noise affected and some blunders 
may still present and thus cannot be directly used as final product. For this reason a 
further processing is need to delete gross errors and smooth edges. Here some 
architectural priors are added. Only after these steps, the collected information can be 
used for defining the boundaries of each element of the façade. Then, the topological 
relations between segmented regions are enforced evaluating distance between 
estimates of their edges. Finally the segments, their boundaries, the intersections lines 
and the topological relations, available at this point of the process chain, are used to 
generate the 3D façade model. 

2.1. State of the art 
A first key element for geometric reconstruction of building façade from point cloud 
is a prior modelling of breaklines, based on the original unclassified TLS points. The 
breaklines problems was firstly analysed in the ALS field for Digital Terrain Model 
(DTM) production (Vosselman and Maas 2010). In this field, an edge in a point cloud 
is defined by those points where changes in the local surface properties exceed a 
given threshold. They can be divided in: (i) step discontinuity (a ‘jump’ occurring in 
the data), (ii) slope discontinuity and (iii) curvature discontinuity (one of the principal 
curvature changes locally). The local surface properties mostly used in the edge base 
methods are surface normals, gradients, principal curvatures, or higher order 
derivatives. Edge detection methods look for abrupt changes, therefore they are very 
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sensitive to noise in the range data. From the methodological point of view, the edge 
detection can be carried out by (at least) thee methods, classified as (i) analytical 
direct, (ii) analytical indirect and (iii) geometrical by decimation (Beinat et al. 2007). 
The algorithms involving surface interpolations by any analytical direct function 
belong to the first class (i). These have the common property to provide one or more 
local numerical values directly revealing singularities in the laser point cloud (Briese 
2004, Alshawabkeh et al. 2006). The analytical indirect methods (ii) start with the 
suitable estimation of continuous surfaces in order to interpolate in the best way the 
laser data. Only in a second step, the edges are detected by considering the space 
intersection of such surfaces or simply analysing to which surface each point has been 
assigned. Finally, the geometrical decimation (iii) regards the optimization of the 
mesh, coming out from a triangulation process, and does not involve the coordinate 
points; nevertheless, while the edges are strongly correlated with the result of vertex 
decimation, this approach does not succeed in the slope discontinuity detection.  

In ALS domain, a first break-line detection approach, starting from an ALS range 
image leading to smooth vector breaklines, was presented by Brügelmann (2000). 
Within this method the first and essential step is the extraction of edge pixels in the 
range image. This is performed with the help of a raster-based method using a 
hypothesis testing method presented by Förstner (1998). This method of second 
derivatives and hypothesis testing treats break-line detection in range images on the 
same principle as finding edges in intensity images. The basic idea is that edge pixels 
are borders of homogeneous regions. Therefore the following two basic properties for 
edge pixels should be valid: 

• the homogeneity measure on edge pixels should differ significantly from the 
one determined in homogeneous regions; and 

• the homogeneity measure should be locally maximum across the edge. 
 
In order to derive this homogeneity measure for range images the gradient image is 
calculated. Whereas for intensity images the squared gradient magnitude is often used 
as homogeneity measure, a multi-channel extension is applied to the gradient image. 
This leads to a homogeneity measure called quadratic variation which is closely 
related to the second derivatives based on the two principal curvatures and describing 
the maximum and minimum normal curvature at every pixel (Émery and Meyer 
1989). The results of this process are pixels marked with the attribute ‘edge pixel’. To 
generate the 2D position of the break-line within the broad regions of edge pixels a 
thinning operation is applied after a non-maximal-suppression, taking into account the 
direction of the maximum curvature. Then, a further raster to vector conversion 
allows generating 2D vector breaklines. Within this step some smoothing using a 2D 
cubic polynomial spline method is performed in order to perform a certain 
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generalisation and elimination of ‘zig-zag’ effects caused by the original raster data 
structure. Next to this interesting approach, a lot of further algorithms within the area 
of edge-based segmentation techniques based on raster ALS surface models were 
developed. All have in common to use image processing techniques in order to extract 
2D break-line pixels, which have to be refined in further steps.  

In TLS domain Boulaassal et al. (2009) presented a contour extraction algorithm for 
building façades. Once having performed façade segmentation and detected planar 
clusters in a façade the extraction of their contour is carried out. The main idea 
exploited in this algorithm is based on the hypothesis stipulating that contour points 
belong to the long sides of Delaunay triangles for detected clusters. This algorithm 
proved to be able to detect contour points. However, due to noise in the dataset and 
the random nature of points acquired by TLS systems, the derived contours present a 
very irregular and jagged shape.  

Becker and Haala (2007) presented a procedure for breaklines extraction from point 
cloud of building façades combining two different phases. In a first step a cell 
decomposition of the façade is performed by identifying contour points using a 
rasterization of the façade similar to Brügelmann (2000). Then, façade edges are 
refined by means of an edge matching procedure combining photos and TLS data.  

A procedure for breaklines detection combining multi-image matching and TLS data 
is also presented in Nex and Rinaudo (2009). In this case, edges are extracted from a 
set of oriented images and their 3D position is retrieved trough a multi-image 
matching algorithm. Then, after edge denoising and smoothening, matched edges are 
checked within the TLS data.  

Concerning façade modelling, a few automatic reconstruction methods have been 
proposed, while some commercial packages such as Cyclone®, Phidias® and CC-
modeler®  provide only semi-automated reconstruction functionalities. A common 
aspect of all these methods is that while such systems works well with the data, they 
usually require the user to set up several control parameters. This kind of 
parameterization is very common in fully automatics methods but it turns out to be 
also an under-estimated obstacle, since the search for proper parameters can be very 
time consuming.  

Automatic façade modelling is generally performed with a bottom-up approach, i.e. 
they directly extract features such as points or edges from multi-source data and then 
try to aggregate them into 3D models. 

In earlier works, Stamos and Allen (2000) developed a system for reconstruction of 
buildings from range scans combined with sets of unordered photographs. This 
method is based on fitting planar polygons into pre-clustered point clouds.  
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Bauer et al. (2003) also proposed an approach for the detection and partition of planar 
structures in dense 3D point clouds of façades, like polygonal models, with a 
considerably lower complexity than the original data. 

Frueh et al. (2005) presented an early attempt which integrated TLS data and digital 
image to generate façade meshes. Laser point clouds are first used to generate depth 
images, and foreground (occlusion objects) and background (building façades) are 
distinguished by histogram analysis. TIN mesh models are generated for background 
points and textured with selected photos. The texture holes caused by occlusions are 
filled with texture from similar areas. This approach achieves very high automation 
and realistic results, but no simple geometric shapes (such as polygon) are 
reconstructed. In addition, the generated huge amount of triangles may result in slow 
visualization. 

Pu and Vosselman (2006) presented an automatic approach to extract building façade 
features from a terrestrial point cloud. The method first defines several important 
building features. Then the point cloud is segmented into planar segments. Finally 
each segment is compared with building features. However, the feature extraction 
method does not work for windows. 

Becker and Haala (2007) reconstructed polyhedron models by integrating TLS data 
and digital photos. To achieve registration between different datasets, intensity images 
generated from laser point cloud are used for bridging. This turns out the problem into 
image to image registration, which is solved by the SIFT algorithm (Lowe 1999). 
Assuming that no laser points are available from windows, laser points on window 
edges are extracted. Edges extracted by Sobel filter from digital photos are then used 
to refine the window edges. The resulting model contains windows frames and 
crossbar. Problems may arise when the laser point density is too low to reliably match 
digital images. Moreover, the shape of detectable windows is limited to rectangles. 

Recently, Venagas et al. (2012) proposed an approach for the reconstruction of 
buildings from 3D point clouds with the assumption of Manhattan World Building 
geometry (or ‘Legoland’ as used in Förstner 2010). This system detects and classifies 
features in the data and organizes them into a connected set of clusters from which 
volumetric model description is extracted. However, derived models present a very 
low geometric level-of-detail. 
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2.2. Automated façade modelling 
In this section, a detailed description of the implemented automated façade modelling 
algorithm is given (Fig. 2.1). 
 

 
Fig. 2.1. Workflow of the developed automated façade modelling process. 

In a first step, once planar clusters constituting the façade are detected by the 
segmentation approach presented in Chapter 1, the extraction of their contours is 
carried out. To achieve this task the algorithm described in Section 2.2.1 has been 
developed. 

However, contours extracted in this way are affected by random noise and some 
blunders might still be found. Blunders are firstly removed from the extracted edges 
by evaluating their size. In particular, points forming too small contours are evaluated 
as small holes in the point cloud and filled. Due to the presence of noise and the 
acquisition scheme of laser scanners, edges and corners may present an irregular and 
jagged shape. Indeed, in these locations the spatial resolution of the point cloud is not 
enough to give a complete description of the geometry. On the other hand for the 
considered building types, straight lines prevail. For this reason, the noisy edges are 
split into basic elements (linear and curved elements) and each of these is smoothed 
and eased trough automatic transformation into lines and B-splines. Finally, the basic 
elements are recollected in a unique smoothed edge. 

Due to the RANSAC tolerances in the segmentation steps, topological relations 
between surfaces are lost. In order to restore correct topology in data segment, 
adjacency is evaluated. In this way, starting from the façade segments, their 
boundaries and topological relations, the intersection lines, i.e. breaklines, can be 
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determined. Finally, the geometric reconstruction of the façade, represented by means 
of polygon elements, is exported in CAD standard format in order to give a good 
preliminary data for the graphic visualization of the survey and for an evaluation of 
the achieved results. 

2.2.1. Extraction of geometric edges 
The first step of the presented approach for automatic façade modelling is the 
extraction of contour points for each detected planar segment. Before further 
processing, a preliminary step is performed by defining a new coordinate system for 
each planar cluster. For this purpose, a Principal Component Analysis (PCA) is 
calculated based on the points of the planar segment. The coefficients of the first two 
principal components define vectors that form an orthogonal basis for the plane. The 
third one is orthogonal to the first two, and its coefficients define the normal vector of 
the plane. The original coordinates (Xor., Yor., Zor.) are then transformed in this new 
local space aligned along the principal component directions (Xnew, Ynew, Znew). In 
particular, the component Znew which is approximately directed along the normal 
direction to the planar cluster may be considered as negligible. 

a. b.  

c.  d.  

Fig. 2.2. Delaunay triangulation of a point cloud portion of a building façade (a); curve of lengths of 
triangle sides (b) with a zoom (c) on the curvature changing point; and extracted contours (d). 

At the end, when contour points are extracted, they will be transferred again in the 
original reference system. The presented algorithm for contour point detection relies 
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on the observation (Boulaassal et al. 2007) that points belonging to a cluster contour 
can be individuated after Delaunay triangulation of planar segments. In particular, 
contour points are defined as extremities of long sides of Delaunay triangles. For this 
reason, according to the implementation in Boulaassal et al. (2007) the lengths of all 
triangle sides are ordered in an ascending way. Two classes of side length can be 
distinguished (Fig. 2.2).  

The first one contains short sides that are located on the horizontal part of the curve. 
The second one contains long sides that are represented by the vertical branch. This is 
given by the fact that the number of points belonging to the contour is negligible 
compared to the total number of points. The threshold separating these two classes is 
typically determined around the point P where the curvature is changing. In particular 
the numerical first derivative for each point location in the graph is calculated. The 
threshold value is then fixed in correspondence of a sudden jump of the derivative 
toward almost infinite values. 

a.  b.  

c.  

Fig. 2.3. Limitations of the Boulaassal et al. (2007) contour extraction algorithm. Triangle sides at 
cluster external contours generally do not exhibit a significant increase with respect to the other ones 
(a); and  for compact elements (b) the identification of a point where curvature changes is not evident 

(c). 
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Even if this method proved to work quite well in the extraction of contours in 
previous applications (Alshawa et al. 2009, Boulaassal et al. 2007, Martinez et al. 
2012), some limitations were found with the building addressed in this research: 

• even if it is true that long sides of Delaunay triangulation generally determines 
the presence of a contour, this is mainly true for the identification of holes in a 
cluster, e.g., windows contours inside main façade segment. However, triangle 
sides at cluster external contours generally do not exhibit a significant increase 
with respect to the other ones, e.g., external wall contour sides generally have 
the same size of internal triangles’ sides (Fig. 2.3a); 

• due to the observation made at the previous point the selection of a proper 
threshold between long and short sides is not a simple task. Indeed, while the 
point P, representing the curvature change in the graph, can be properly used 
to identify the presence of points forming a contour hole in the segment, it is 
not appropriate for identifying external contours. On the other hand the 
selection of a lower threshold may generate spurious results; 

• for some specific segments, e.g. compact elements, the identification of a 
point where curvature changes is not evident (Fig. 2.3b-c); and 

• contours obtained in this way are quite irregular and typically show a 
characteristic jagged shape (Fig. 2.2d). 

For these reasons a new approach for automated contour identification was developed 
(Fig. 2.4). Once the new coordinates are calculated (Xnew , Ynew) a bi-dimensional 
Delaunay triangulation is performed. By identifying the threshold between long and 
short side triangles, all the ones having a side exceeding the threshold are removed. In 
this way, all Delaunay triangles that have been wrongly generated in correspondence 
of holes are removed while external contour sides are generally kept. 

 

Fig. 2.4. Workflow of the developed contour extraction process. 
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By analysing the obtained triangulated surfaces, contour points are then derived by 
identifying triangle sides that belong to a single Delaunay triangle. Indeed, points in 
the inner part of the planar clusters belong to triangle sides shared by two triangles. 
On the other hand contour points generate triangle sides belonging to a single 
Delaunay triangle (Fig. 2.5). 

 

Fig. 2.5. Detection of contour points principle: contours lines (red) belong to one triangle only while 
others belong to a couple of triangles. 

The search of these sides can result in a significant computational effort. For this 
reason, a simple way is implemented to quickly identify and ignore the ones that are 
not close to the boundary. Firstly the plane is discretized into cells of size β x β. Then 
a binary image for the cluster is generated. In this image white cells represent 
elements where TLS data are available, while black cells are grid elements with no 
data.  

a. b.  

Fig. 2.6. Detection of contour points: (a) triangulated segment model; (b) contours raster map and 
detected contour points. 
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Points lying inside cells whose 8-neighbors all contain data points are pruned out. In 
this way a set of edge cells is obtained and the search of contour points is performed 
only in these cells (Fig. 2.6). 

The optimal cell size β, as previously discussed, is the mean sampling resolution in 
the point cloud. Of course, accuracy of the extracted edge cells is influenced by the 
cell size. However, a coarse rasterization does not affect the accuracy of the extracted 
contour. Indeed, contour points are computed considering the original data while the 
generation of a raster map is only used to speed up the identification of contour point 
by eliminating a series of non-contour sides. 

2.2.2. Edge smoothing 
As previously observed contour points detected with the presented approach define 
quite irregular and jagged contours showing a characteristic ‘saw-tooth’ shape. In 
fact, these edges have an irregular and waved shape due to the noise and random 
measurement errors. However, this is in contrast with the characteristic façade 
geometry where straight lines are predominant. For this reason, the achieved edges 
cannot be directly used for façade modelling and smoothing is needed to define a 
regular shape of the object. This process has to consider the different typologies of 
edges that compose the object. In particular, edges can be usually split into different 
basic entities (linear or curved parts). Then, each of these entities can be simplified in 
lines and curves. The line and the curve equations must be fitted in the best possible 
way using the dominant points information, while the whole edge can be finally 
reconstructed by linking these entities together. In this paragraph the automated 
reconstruction of edges is presented. 

One of the most common edge simplification methods is the Douglas-Peucker 
algorithm (Douglas and Peucker 1973). It is very simple to implement and it works 
for every edge dimension, once it only relies on the distance between points and lines. 
Its basic rule is that the approximation must contain a subset of the original data 
points and all the original data points must lie within a certain predefined distance to 
the approximation (Wu-Shin and Gonzales-Marquez 2003). The Douglas-Peucker 
algorithm has a hierarchical structure starting with a crude initial guess, namely the 
single edge e joining the first and last vertices of the polyline. Then, the remaining 
vertices are tested for closeness to that edge. If there are vertices further than a 
specified tolerance ε away from the edge, then the vertex farthest from it is added to 
the previously simplified polyline. This creates a new approximation for the original 
polyline. Using recursion, this process continues for each edge until all vertices of the 
original polyline are within ε. This algorithm has O(mn) worst case time and O(n log 
n) expected time, where n is the number of input vertices and m is the number of the 
segments of the simplified polyline. 
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Other simplification algorithms extracts the points that lie on longer line segments by 
means of a sequential approach, looking for positions where the slopes of two 
consecutive edges with similar slopes may be grouped into one line segment 
(Sampath and Shan 2007). In alternative, the ‘sleeve fitting’ algorithm can simplify 
into a line the points that are inside a sector bound defined by an angle (Zhao and 
Saalfeld 1997).  

All these simplification algorithms have been successfully used in aerial applications 
or for map digitalization. They essentially reduce the number of points per edge, 
smooth data into a polyline composed by linear elements (i.e., Douglas-Peucker and 
the Shao-Gonzales methods do that), or they are able to divide an edge in linear 
elements (like ‘sleeve fitting’ method) and regularize them in order to extract simple 
building roofs. 

Unfortunately this kind of solution is not sufficient in the edge reconstruction of the 
architectonic applications as they have usually generic shapes, different length and 
complexity. Anyway, in the great part of residential building façade in the period 
1950 - 1975, long edges that describe the main geometry of the building, can be eased 
in a sequence of lines and curves linked together. In these conditions, the linear and 
curved features have to be recognized and then a specific simplification algorithm has 
to be applied. In order to do that, a specifically designed smoothing algorithm has 
been developed (Fig. 2.7). 

 

Fig. 2.7. Workflow of the developed edge smoothing and regularization process. 
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As previously noticed, an important aspect of the façades targeted in this research is 
given by the fact that the straight lines are predominant in façade elements. In 
addition, these straight lines generally intersect in an orthogonal way. For this reason, 
once the contour points are determined, the dominant edge directions are identified by 
using a sequential RANSAC implementation aimed at extracting linear features 
similar to the one presented in Chapter 1 for the detection of planes. Once dominant 
lines are detected, inliers points are removed and substituted with a straight line. The 
remaining contour edges are then evaluated. Indeed, sometimes, small occlusions on a 
façade or segmentation errors cause irregular edges on the generated outline. These 
irregular edges should be removed by observing that they form short segments, which 
result in a gap on the outline. If the left long edge (to the gap) and right long edge 
belong to the same line, the gap is just filled by connecting a line segment. If the two 
edges are parallel, a line segment which is perpendicular to both is generated, and the 
two edges are extended to reach the perpendicular segment. Finally, in the case the 
two initial edges are orthogonal they are just extended or shortened until they intersect 
at a point to fill the gap (Tab. 2.1). 

Left and right edge on the same line 

Without 
filling priors 

 

With filling 
priors 

 
Left and right edge parallel 

Without 
filling priors 

 

With filling 
priors 

 

Left and 
right edge 
orthogonal 

Without filling priors  With filling priors  

   

Tab. 2.1. Filling of boundaries for different arrangements of edges. 
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In some cases instead of a single small edge a long set of small edges can be found. 
This is generally due to the presence of a curved feature. In the implemented 
procedure instead of detecting the curved shape first and then apply the corresponding 
fitting algorithm, a B-spline curve representation is adopted as uniform mathematical 
model. A B-spline curve of degree p is defined by n+1 control points P0,…,Pn and a 
knot vector of m+1 knots: 
 

{ }muuuU ,...,, 10=  2.1 

 

where U is a non-decreasing sequence with ]1,0[∈iu  and n, m and p must satisfy: 
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The B-spline parametric curve function is of the form: 
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The objective function for a Least Squares curve fitting with a spline function of 
degree k is: 
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where W(x) is a weight and y(x) is the input value at x. The coefficients Pi are the 
parameters to be determined. The knot values may be fixed or they too may be treated 
as parameters. In the developed implementation weights W(x) are fixed equal to 1 
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because no a priori information about noise in the data are available and knots are 
treated as parameters. For determining the number of knots to use and where they 
should be placed, the ‘curvature-based’ square distance minimization proposed by 
Wang et al. (2006) was used. 

Once having individuated dominant lines and possibly curved elements are fitted with 
B-spline the whole edge is reconstructed by linking these entities together. All 
computations are performed in the local principal component space. Finally, 
reconstructed edges are transposed in the original datum (Fig. 2.8). 

a. b.  

c. d. e.  f.  
Fig. 2.8. Boundary edges before (a-c) and after (b-f) the straight line constraint application. Example of 

dominant line detection for a window (d): dominant lines are represented with different colours (e). 

 

2.2.3. Reconstruction of façade topology and break-line extraction 
Because of RANSAC is used and a threshold tolerance was fixed in the segmentation 
phase, some topological relations like intersection between surfaces are lost. Indeed, 
in the case of intersecting surfaces the points lying on the intersection (that belong to 
both surfaces) are assigned only to one cluster (generally to the larger one). Due to 
this shortcoming, segments adjacency is lost. In addition, detected edges for adjacent 
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surfaces do not intersect. These parts are mostly located in the intersection zones 
between features, for example between sidewalls and walls, between sidewalls and 
doors of windows. On the other hand these intersections between features exist in 
reality. To restore them a surface intersection constraint is added into modelling 
pipeline. 

The first step is the detection of adjacent segments. Two segments are considered 
adjacent if at least one pair of line segments from their rough 3D boundaries is close 
to one another. In particular, segments are considered adjacent if the distance between 
them is lower than the RANSAC threshold used for plane detection. Once two 
adjacent segments are detected, surface intersection is enforced. In particular, 
feature’s outline edges which are close to the other feature are replaced, in both 
adjacent segments, with the intersection line of the planes that the two features belong 
to (Fig 2.9). 

a.  b.  

Fig. 2.9. Plane connection before (a) and after (b) the surface intersection constraint. 

Surface intersection constraint, not only re-establish the topology between objects but 
also increase the accuracy of detected breaklines. Indeed, by means of surface 
intersection constraints, breaklines are calculated as the intersection of planes which 
are estimated from a large set of points. While edge calculation from contour points 
may be more affected by noise in the point cloud. In addition, as previously discussed, 
the accuracy of laser scanning measurements in correspondence of edges is generally 
lower than the one on smooth surfaces (see also Soudarissanane et al. 2011). 

2.2.4. Geometric model export in CAD environment 
At this point of the processing chain the segments, their boundaries and intersections 
are available. Thus, the 3D building model can be reconstructed now. 
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The geometry of a reconstructed model can be described in there different ways: (i) 
spatial enumeration, (ii) boundary representation, and (iii) constructive solid 
geometry (CSG). In spatial enumeration models (Frueh et al. 2005) space is described 
as a regular array of cells (usually cubes). Each cell is termed as voxel and a 3D object 
is represented as a list of occupied voxels. This king of representation generally 
requires high memory consumption. In addition, model resolution is limited to size 
and shape of voxels. In the boundary representation a closed 2D surface define a 3D 
object. Object boundaries can be defined in two ways: (i) in a primitive-based way 
where a collection of primitives form the boundary (e.g., a set of polygons) or (ii) in a 
free form-based approach where boundaries are defined by means of splines, 
parametric surfaces or implicit forms. In the boundary representation models (Pu and 
Vosselman 2009, Becker 2009, Tian et al. 2009) the outlines of planar features are 
extracted as polyhedron, so the model sizes are much smaller than the spatial 
enumerations models. The data reduction of boundary representation also leads to 
much faster visualization. With constructive solid geometry (CSG), a building model 
is composed by some fixed primitives arranged by means of Boolean operators 
(union, difference, and intersection). The CSG models are always watertight, and 
require even fewer parameters than boundary representation. However, it is hard to 
represent complex objects with CSG when they can be hardly decomposed into 
simple shapes. Besides, the heavy conversion of a CSG model to the boundary 
representation is always necessary for visualization purposes. In addition, 
representation is not unique. Only a few methods (Haala and Brenner 1999, Suveg 
and Vosselman 2004) are based on CSG building models. 

Interoperability is an important need in order to make the derived model relay 
available to operators (Brumana et al. 2013). Indeed, the presented workflow has been 
implemented in Matworks Matlab® code. This language allowed all the workflow 
steps to be accomplished, but it did not succeed in production of suitable drawing for 
the end-users (e.g., architects and civil engineers). For this reason, the obtained faced 
model is exported by using the Drawing eXchange Format (DXF) format (McHenry 
and Bajcsy 2008). This format enables conversion of data into a format compatible to 
a great number of design and CAD software packages.  

The data format of a DXF is called a ‘tagged data’ format, which means that each data 
element in the file is preceded by an integer number that is called ‘group code’. A 
group code value indicates what type of data element follows. In the presented 
approach, geometric reconstruction can be seen as a process of polygon fitting. For 
this reason, the boundary representation is the closest to the developed method. In 
addition, several standards, as CityGML (Gröger and Plümer 2012.), rely on boundary 
representation for geometry definition. In particular, in the DXF file the building 
boundaries are represented by a set of polygons defined as region objects. 
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In some cases also a polygon mesh representation can be useful. For this reason the 
obtained model is also exported into Polygon File Format (PLY) file format. In this 
case a constrained Delaunay triangulation, where façade breaklines represent 
constraints, is used. The derived model presents the advantage of maintaining the 
detected breaklines. In addition the size of the final model is significantly reduced 
with respect the triangularization of the original point cloud. 
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Chapter 3 
Semantic model enrichment 

 

 

 

This chapter presents an automated procedure for labelling several important building 
features (walls, doors, roof, protrusions, etc.) starting from the planar segments 
detected by the point-cloud segmentation strategy presented in Chapter 1. Extracted 
semantic information are then associated with their geometric properties (e.g., size 
and shape) and spatial relationships. These items are then exploited to produce a 
compact, semantically enriched 3D model that contains the geometry and identity 
information that substantially are required to feed a Building Information Model 
(BIM). 

In the last years, in the Architecture, Engineering, and Construction (AEC) domain, 
the importance of semantically rich 3D models of buildings has been continuously 
growing. In particular, their importance is not limited only to design and construction 
phases, but also extended to throughout the entire building serviceability and the 
facility management phase. Such models are generally known as BIMs. According to 
the United States National Building Information Modelling Standard (NIBS, 2007) a 
‘Building Information Modelling (BIM) is a digital representation of physical and 
functional characteristics of a facility. A BIM is a shared knowledge resource for 
information about a facility forming a reliable basis for decisions during its life-cycle; 
defined as existing from earliest conception to demolition.’ As can be clearly seen 
from this definition (in contrast to traditional building design approaches) a BIM is 
much more than a simple geometric model. It manages not only graphics, but also 
information that allows the automatic generation of drawings and reports, design 
analysis, schedule simulation, facilities management, and more. Last but not least it 
enables the building team to make better-informed decisions. In particular, the BIM 
logic is based not only on a 3D building geometry but also on semantic and 
descriptive information.  

In particular, the process of converting point-cloud data into a BIM is known as ‘scan-
to-BIM’ process. Geometric surfaces or volumetric primitives are fitted to the 3D 
point cloud to model walls, floors, ceilings, columns, beams, and other architectural 
elements of interest. The modelled primitives are annotated with their identity labels 
(e.g., ‘wall’) and metadata, such as the surface material (e.g., ‘concrete’). Spatial and 
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functional relationships between nearby structures and spaces are also established. 
Currently, the ‘scan-to-BIM’ process is primarily a labour-intensive manual operation 
(Anil et al. 2011). Researchers in the AEC domain recognized the need for 
automation tools to speed up such processing (Brilakis et al. 2010, Tang et al 2010). 
However, despite the progress in sensor development, autonomous recognition of the 
building structures remains the most challenging task among the whole reconstruction 
process. 

3.1. State of the art 
A core task of as-built BIM construction is object recognition. It can be defined as the 
process of labelling a set of data points or geometric primitives extracted from the 
data with a named object or object class (Xiong et al. 2013). Whereas the modelling 
task would find a set of points to be a vertical plane, the recognition task would label 
that plane as being a wall. Object recognition algorithms may be divided into two 
categories: recognizing object instances of an exact shape (e.g., instances of a specific 
type of beam), or recognizing classes of objects, where the shape may vary among 
instances from the class (e.g., windows that may vary in height, width, etc.). In the 
case of façade objects because of the great variety of building styles, the classification 
problem has to be formulated in the term of recognizing classes of objects.  

The most common approach uses ‘global-shape’ descriptors, which are less 
discriminative than ‘semi-local’ descriptors used for the recognition of simpler object 
instances. In those cases, the recognition process can be divided in two main steps. 
First, in an off-line process, global shape descriptors are computed for each object to 
be detected. These descriptors are stored in a database that is designed to facilitate 
rapid lookup of descriptors based on the similarity to a query descriptor. Second, at 
runtime, the recognition is performed in a scene where instances of the target object 
are to be detected, or possibly with a pre-segmented data instance to be recognized. 
Shape descriptors are computed at locations in the query scene, either randomly or at 
salient points, and the most similar descriptors in the model database are retrieved. In 
particular, the query object is matched against examples from the entire class. The 
descriptor similarity measure is designed so that similar shaped objects will result in 
similar descriptors. As a result, the closest matching descriptors from the database 
will give an indication of the object class. A complete review presenting a large 
number of global descriptor methods can be found in Shilane et al. (2004). One 
disadvantage of the global descriptor approach is that it is unable to handle dataset 
suffering from occlusions or clutters, both of which are commons in laser-scanning 
data. In particular, the back sides and bottoms of most objects are not visualized. 
Another limiting aspect is the long out-of-core training phase for the descriptors to 
cover various instances in a class. Due to these limits of existing methods, the 
recognition of BIM-specific components such as walls, windows, and doors, is still in 
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its early stage. Methods in this category typically perform an initial shape-based 
segmentation of the scene into planar regions, for example, and then use features 
derived from the segments to recognize objects. This approach is exemplified by Rusu 
et al. (2008) who use heuristics to detect walls, floors, ceilings, and cabinets in a 
kitchen environment.  

Another opportunity is associated with introducing context information into the 
recognition phase. In particular, some researchers proposed leveraging the spatial 
relationships between objects or geometric primitives to reduce the ambiguity of 
recognition results. Such approaches generate semantic labels of geometric primitives, 
and test the validities of these labels with a spatial relationship knowledge base. 
Usually, such a knowledge model is represented by a semantic net (Nüchter and 
Hertzberg 2008). For example, it may specify the relationships between entities such 
as ‘floors are orthogonal to walls and doors and parallel to ceilings’. During the 
recognition process, if a surface is recognized as ‘floor,’ then the algorithm will 
identify that the valid semantic labels of a surface orthogonal to it can only be ‘wall’ 
or ‘door,’ but not ‘ceiling,’ thereby reducing the search space (Cantzler 2003). Such 
validity checking approaches provide ways to integrate domain knowledge into the 
object recognition process making the recognition more robust. An automatic 
extraction and classification algorithm of building features is presented in Pu and 
Vosselman (2009). In this case, objects derived from segmentation are classified 
according to some parameters like their position and extent. Similarly, Luo and Sohn 
(2010) presented an approach based on classification of façade elements according to 
a different set of parameters (e.g., direction, area, depth, shape index, etc.). 

Finally, several works in literature focus on exploiting the regularity of simple façade 
elements, especially windows, to derive semantic information from façade point 
cloud. In particular, some specific grammar rules, either derived in a top-bottom or in 
a bottom-up manner, are used for the description of such repetitive patterns. The work 
of Ripperda (2008) aimed at interpreting building façades with a description grammar. 
Façade elements (such as ‘walls,’ ‘doors,’ and ‘windows’) and abstract elements 
(such as repetition, symmetry and array) are written as ‘terminals,’ and then building 
façades are described by hierarchical composition of these ‘terminals.’ The 
reconstruction of a building façade can be seen as a stochastic process of interpreting 
sensor data with the grammar. The probability distribution of the terminals is searched 
under supervision of the reversible jump Markov Chain Monte Carlo (rjMCMC) 
method (Green 1995). Regular shaped buildings with flat façades can be well 
represented with the defined grammar. However, the stochastic analysis for complex 
façades might not lead to meaningful results. Becker (2009) first reconstructed 
polyhedron models from TLS data and images, and then used the clues extracted from 
the models to synthesize areas without laser data. After the reconstruction step, the 
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structural and hierarchical relations between façade objects are described in the form 
of shape grammar similar to the one in Ripperda (2008). The discovered patterns can 
be propagated to the upper regions of the same façades to compensate the low point 
density, or even propagated to other buildings to create similar styled building 
models. 

The above mentioned procedures generally work well on simple façade elements 
recognition, like walls and windows. However, a more detailed set of façade elements 
need to be represented in building reconstruction at a level-of-detail adequate for 
thermal building analysis. In addition, some of the previous reported methods are 
based on regularity assumptions for building façades that may fail in the case of 
clutter and large occlusions. Finally, detected semantic objects are generally not 
combined with geometric modelling in a unique framework. For these reasons a new 
classification strategy has been developed which is aimed at recognizing a more 
detailed set of façade elements from TLS data, such as sidewalls, roofs, and doors to 
allow modelling at a higher level-of-detail. The developed approach does not make 
use of strong assumptions about façade regularity but exploits a set of generic 
architectural priors for buildings built in 1950 - 1975 for the generation of a semantic 
rich façade model. 

3.2. The hierarchical classification approach 
In this section the developed approach for façade object classification is presented. 
The process is based on some general knowledge derived from the nature of building 
structures. In particular, for the building type considered in this research, façades have 
a dominant planar structure, characterized by a flat dominant surface and with other 
façade’s components having off-plane depth variations with respect to this plane, 
either positive (extrusions) and negative (intrusions). This assumption is also 
generally valid for a great variety of modern building architectural styles. These priors 
are then translated into logic-level terms to derive the rules describing relations 
between concepts which are organized into a hierarchical classification tree. 

3.2.1. Façade knowledge 
As the products of human construction, a building is constituted by various 
components. These components, or ‘features,’ serve as important context ‘nodes’ 
during both construction and recognition process. A building can be decomposed 
either according to component functionality, such as: wall, roof, door, window, 
balcony, dormer, awning, chimney, water pipe and decoration, or according to the 
spatial partitions, such as: floor, floor 1, and so on. In this dissertation façade object 
classification is performed considering the former principle. Indeed, objects with 
different functions usually appear in different geometries, which are easily 
distinguishable from TLS data. On the other hand, the possibility to define the 
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different functionality of each façade object is one of the main aspects of a semantic 
rich model.  

It is not necessary and somewhat redundant to assemble all functional components 
into the knowledge base classification of building features. Thus, the selection of 
features follows three considerations: 
 

1. the features which are within the interests of the reconstruction are only 
considered. For example, awnings and water pipes are not included in the 
classification phase because they are not often desired in the reconstructed 
model;  

2. the features which can be hardly captured in the sensor data are not 
considered. For example, the chimneys are seldom scanned by using TLS; and 

3. the features can be defined in the level of primitive or plane. At this moment, 
only planar features are considered because buildings built in 1950 - 1975 
presents façades that are mainly composed by planar features, and planes can 
be easily extracted from laser point clouds with existing methods. 

 
In particular, only the following feature classes (or semantic type in other words) are 
defined (Fig. 3.1): 
 
Ground:  although ground is not a building feature, it is included in the feature type 
list because generally it is acquired by TLS and it is useful for recognizing other 
façade elements. 
 
Façade wall: is the remaining part after removing all protrusions (e.g., roof, railings, 
etc.) and intrusions (windows, doors, and sidewalls). Since protrusion locates at the 
top/bottom of the façade (e.g., roof), or the inside of the wall (e.g., railings) and 
intrusions locates at the inside of the wall, the wall appear continuous and keep 
coplanar in the area of a façade. Therefore, wall element covers nearly the whole 
façade and is the largest element. 
 
Sidewall attaching window/door: is the side face of the wall and perpendicular to 
the frontal façade wall. Sidewall is the connection between the main façade plane and 
windows/doors elements. It is different from other intrusions like doors and windows, 
which always appear parallel to the frontal face of the wall.  
 
Roof: this element is generally located at the top of the façade. In addition, it is 
generally a horizontal or mildly sloped element protruding out from the façade to 
protect the façade from rain. 
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Fig. 3.1. Example of a façade point cloud and the defined feature classes (highlighted in purple). 
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Window:  is an intrusion element which is parallel to the frontal façade wall. A 
window can be found at each floor and generally it is inside a ‘O shaped’ hole in the 
façade wall. 
 
Door: is an intrusion element which is parallel to the frontal façade wall. A door can 
be found only at the first floor and generally it is inside an ‘inverted U shaped’ hole in 
the façade wall. 
 
Wall attachment: is an element protruding out of the façade wall. Possible wall 
attachments include window sill, stairs, railing and so on. 
 

3.2.2. Façade classification rules 
In a façade, each feature has some peculiar characteristics which may be described as 
recognition rules to be derived either from the statistical analysis of a training set or 
based on the knowledge of some priors about the façade and urban scene. The former 
approach has the main disadvantage of an out-of-core training phase based on a wide 
number of manually classified cases. The latter is applicable only for the building 
types featuring the defined priors. The classification presented in this dissertation 
belongs to this second group and are designed for buildings in the period 1950 - 1975. 
On the other hand, to increase the application domain, the defined rules are quite 
general and they can be used for a wide variety of building types. Only for a limited 
number of architectural styles the defined priors may not be adequate.  

Each building feature has a number of attributes, which are similar within the same 
feature type. Strong clues can be extracted from the combination of feature attributes 
to suggest particular feature types. Some common attributes are considered below: 
 
Size: the size is probably the most distinguishable attribute. It is most likely that walls 
occupy the largest space on a building, and usually windows are not longer than the 
height of a floor. The term size can refer to a feature's length, width, height, area, or 
volume. 
 
Position: some features can be expected at certain relative positions inside a scene. 
For example, ground is usually the lowest part, and roofs are seldom in a higher 
position with respect to other structures. 
 
Orientation:  features' orientations are also predictable. For example, ground surfaces 
are almost horizontal; walls are usually vertical as they are the supporting body of 
buildings; roofs are never vertical. 
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Besides a feature's own attributes, some spatial relations between features can be 
predicted. These spatial relations are: 
 
Intersection: intersection is a basic spatial relation indicating the neighbouring 
relationship of two features. For example, neighbouring walls often intersect 
perpendicularly; dormers must intersect a roof plane. 
 
Angle: angles between building features are often parallel or orthogonal. For 
example, windows on a wall usually are parallel with respect to wall; sidewalls on a 
window often are perpendicular to the main wall. 
 
Inside: if a feature is part of another feature, it is usually inside the boundary of the 
other feature. For example, windows of a wall must be inside the wall's boundary. 
 
To a certain direction of: the locations of some features can be expected to a certain 
direction of other features. For example, a roof can be expected above a wall; 
sidewalls should be perpendicular to the wall façade, etc. 
 
All these information about feature attributes can be formulated in terms of first-order 
logic (Russell and Norvig 2003) to define the initial rules of the knowledge base 
classification. Firstly, the statement of a feature type is represented with a binary 
function: 
 

IsType(arg1,arg2) = TRUE 
 
where arg1 is a geometry feature while arg2 is a constant indicating arg1's feature 
type. For example, the assertion IsType(F1;Wall) = True states that the type of F1 is 
Wall.  
 
Feature attributes and spatial relations are also represented with functions, which take 
the index of a particular feature as their sole argument. Sometimes, a feature's own 
attributes does not give a useful clue if the relative situation is unknown. Therefore, 
some relative attributes and their enquiry functions are introduced. Determination of 
relative information requires sorting of particular attributes throughout a group of 
features. For example, a feature is considered Low if its position is ranked as the 
lowest among the other feature types. The attribute functions are: 
 

• position functions (IsLow), 
• size functions (IsLarge), 

• orientation functions (IsVertical, IsHorizontal). 
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The spatial relation functions are associated with a reference feature. They are: 
 

• ‘to a certain direction of’ functions (IsOver, IsOut), 
• angle functions (IsPerpendicular, IsParallel), 
• inside functions (IsInside). 

 
In particular, the rules for the previously defined façade features are here reported: 
 

1. A ‘ground’ feature (f) is a low, large, and horizontal plane: 

∀ f   IsType(f, Ground) 

⇒ IsLow (f)   ∧   IsHorizontal(f) 

2. A ‘façade wall’ feature is a large and vertical plane: 

∀ f   IsType(f, WallFacade) 

⇒ IsLarge (f)   ∧   IsVertical(f) 

3. A ‘roof’ feature (f1) is a large mild slope element at the top of a wall and 
protruding out of the façade: 

∀ f1   IsType(f1, Roof) 

⇒ ∃ f2   ¬IsVertical (f1)   ∧   IsOver(f1, f2) )   ∧   IsOut(f1, f2)   ∧   IsType(f2, WallFacade) 

4. A ‘wall attachment’ (f1) is an element protruding out of the wall façade: 

IsType(f1, WallAttachment) 

⇒ ∃ f2   IsOut (f1, f2)   ∧   IsType(f2, WallFacade) 

5. A ‘side wall’ (f1) of a window/door is an intrusion of the wall façade 
perpendicular to façade walls: 

∀ f1   IsType(f1, SideWall) 

⇒ ∃ f2   ¬ IsOut (f1, f2)   ∧   IsPerpendicular(f1, f2) )   ∧   IsType(f2, WallFacade) 

6. A ‘window’ ( f1) is an intrusion of the wall façade perpendicular to the wall and 
is inside a ‘O-shape’ of the façade wall: 
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∀ f1   IsType(f1, Window) 

⇒ ∃ f2   ¬ IsOut (f1, f2)   ∧   IsParallel(f1, f2) )   ∧   IsInsideO(f1, f2)   ∧   IsType(f2, WallFacade) 

7. A ‘door’ (f1) is an intrusion of the wall façade perpendicular to the wall and is 
inside a ‘U shape’ of the façade wall: 

∀ f1   IsType(f1, Window) 

⇒ ∃ f2   ¬ IsOut (f1, f2)   ∧   IsParallel(f1, f2) )   ∧   IsInsideU(f1, f2)   ∧   IsType(f2, WallFacade) 

3.2.3. Semantic object classification 
In contrast to other supervised classification strategies, the developed method obtains 
the classification criteria not from statistical analysis of training sets but from 
semantic interpretation of the façade based on the feature types, attributes and rules 
described in the previous section. All these information are stored into a hierarchical 
classification tree. Rules presented in the previous section rely on some information 
associated to object orientation (like verticality and horizontality) and object position 
(e.g., a roof is always over a wall, ground is at the lowest level, etc.). In order to 
manage these relationships, a proper reference system for the point cloud is assumed. 
In particular, a point cloud needs a pre-processing step where it is aligned into a local 
cartesian coordinate system having the Z-axis aligned to the ground up-vector. This 
can be simply obtained by levelling the TLS during data acquisition. In addition, 
actual laser scanners are generally equipped with an electronic inclinometer allowing 
the correction of verticality. 

With reference to Fig. 3.2 the classification process can be divided into two main 
steps. First, simple and easy detectable objects are classified (ground, wall and roof) 
by evaluating both area and position of all the detected objects. The ground is 
detected at first by looking for the lowest object between horizontal (or pseudo-
horizontal) features. 

Then façade walls are extracted since they are perpendicular to the ground and with 
the largest area with respect to all remaining vertical objects. Indeed, the wall area in 
a façade is generally much larger than the one covered by other vertical objects, like 
windows or doors. In addition, main façade planes are generally less than sidewalls, 
windows and doors, so they can be considered as outliers and can be easily detected 
by robust statistics. According to probability theory and mathematical statistic, more 
than 95.4 percent of the sample should fall into ±2σ interval. Therefore, objects whose 
size is beyond + 2σ are classified as wall. 
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Finally, non-vertical objects over walls and protruding out from the façade are 
classified as roof. 

In the second step all non-classified objects are analysed. Their position with respect 
to the main façade wall is evaluated. Objects in front of the façade are considered as 
extrusion objects and then classified in a general way as wall attachments. Objects 
like stars, railing and balconies can be classified into this category. 

 

Fig. 3.2. Hierarchical classification tree, orange diamonds are conditions while blue rectangles 
represent façade elements. 

Objects beyond the plane of the façade are first generically assigned as intrusions. 
Then they are split into sidewalls and windows/doors according to their orientation 
with respect to the main façade. Indeed, sidewalls can be easily recognized because, 
in contrast to other intrusions, their orientation is perpendicular to the façade walls. 
Intrusions parallel to the façade are generically classified as windows/doors. In order 
to distinguish between doors and windows, it is verified their position and the shape 
of the gap in the main façade plan. In particular, doors are searched only at the bottom 
floor and in correspondence of a characteristic gap of the main façade plane having an 
‘inverted U shape.’ Other intrusions parallel to the façade plane and in 
correspondence of ‘O-shape’ gaps in the main wall are classified as windows. 

In the presented approach, classification clauses consider some quite strict spatial 
relations (e.g., vertical, horizontal, perpendicular, and parallel). However, due to 
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imperfections during the construction and noise in the data, the defined rules 
generally do not strictly hold. For example, it is very unlikely that a sidewall is 
perfectly perpendicular to the façade wall. For this reason all the previously defined 
rules concerning spatial relations are relaxed of a predefined angle α, which was fixed 
in the experimental application described in Chapter 5 equal to 5°. 

3.2.4. Enriched model and export file format 
Once the geometrical model of the building is generated and objects are classified in 
façade features according to their functionality a semantically enriched model of the 
façade can be generated. Due to the presence of occlusions or lacks in the point cloud, 
some part of the model might be pending. In the next Chapter 4 a procedure for 
recovering missing data on the basis of regular pattern detection will be addressed. 

Even if several geometric file formats have been developed in both Computer Graphic 
and CAD fields, the number of those allowing the semantic definition is relatively 
small. The two most prominent standards are Industry Foundation Classes (IFC) and 
City Geography Markup Language (CityGML). Even if the two data structures share 
some similarities, several works in the literature (Benner et al. 2005, Isikdag and 
Zlatanova 2009, Nagel et al. 2009) showed differences between the two standards 
both in the description of geometry and in semantic object definition. To allow a 
higher interoperability, once the building geometry has been defined (Sect. 2.2) and 
each façade objects has been classified (Sect. 3.2.3), the 3D model of the building 
façade is generated both in CityGML and IFC standards.  

3.2.4.1. CityGML 

CityGML (Gröger and Plümer 2012) is the international standard of the Open 
Geospatial Consortium (OGC) for the representation and exchange of 3D city models, 
see also OGC (2014). It defines the 3D geometry, topology, semantics and appearance 
of the most relevant topological objects in urban or regional context. The principal 
focus is on the semantic definition of all objects (features) that are relevant for 
applications of 3D city models (e.g., building and their parts: walls, dormers, doors, 
windows, etc.). Furthermore, the relations between those features (e.g., the relation of 
a door to the wall it contains) are represented in explicit way. For the representation of 
geometry (and topology), CityGML uses a standardized model provided by the 
Geography Markup Language (GML) and the eXtended Markup Language (XML). 
CityGML is not just restricted to modelling buildings. It extends to tunnels, bridges, 
transportation infrastructures, water body and vegetation. However, the building 
model is the most important component of CityGML as it enables the representation 
of buildings and their component part with regard to geometry (both outdoor and 
indoor) as well as to semantics (feature types and properties).  
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The geometrical feature representation is based on the geometrical model provided by 
GML 3.1.1 which is an implementation of ISO 19107 ‘Spatial Schema.’ CityGML is 
restricted to planar polygons: all coordinates of the outer boundary and of the optional 
interior boundaries must be located in the same plane. Non-linear structures can be 
approximated by planar surfaces. For each position of the geometrical representation, 
absolute 3D coordinates must be given explicitly. Features are represented 
geometrically by the well-known boundary representation model. Surfaces must be 
mutually non-overlapping and non-penetrating. Building and their parts have common 
attributes (like a class, creation and destruction date, the owner of a building, 
measured height, roof type, the number of stories above and below ground).  

The features in CityGML can be represented in five discrete Levels-of-Detail (LoD). 
In particular, the LoD concept of CityGML is not restricted to geometrical aspects but 
covers also semantic ones: with increasing LoD, the semantic richness also increases. 
The LoD concept is characterized by the following properties: 

• data integration and interoperability is facilitated, since features that are 
represented in the same LoD can be integrated more easily than features of 
different LoDs; 

• each LoDs reflects specific application requirements and hence is suitable for 
a certain class of applications; 

• the LoDs may depend on the reconstruction method; and 

• the same feature can be simultaneously represented in different LoDs. This 
facilitates analysis and visualization tasks, since tools can select dynamically 
the most appropriate LoD for the task. 

 

Fig. 3.3. CityGML file representation of a building at different LODs showed as UML instance 
diagram. 
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A building can be represented in multiple LoDs simultaneously and it is formally 
described by UML diagrams (Fig. 3.3).  

 

 

Fig. 3.4. The five levels of detail (LoD) defined by CityGML [from Kolbe et al. 2005]. 

In particular, the geometry representation becomes more detailed with increasing 
LoD. Different LoDs for building models are described from 0 to 4 (see Fig. 3.4 for 
reference). 

A building in LoD0 can be either represented by horizontal 2.5D polygons with roof 
level height or with footprint level height. The semantics is modelled by Building 
instance with corresponding attribute values.  

In LoD1 a building is represented as block model that is either represented as a solid 
or as multi surface. A Building can be partitioned into different BuildingParts. Each 
part has its own roof type and representation as solid. The roof type refers to the shape 
of the building in reality, not to the representation in LoD1. Hence, the value may be 
‘gabled roof’ while the representation in LoD1 always has a flat, horizontal roof.  

LoD2 adds generalized roof structures to LoD1. In addition, boundary surfaces of a 
building can be represented as thematic features. Vertical walls surfaces are 
represented as WallSurface, surfaces that cover the building from above as 
RoofSurfaces and horizontal surfaces that delimit the bottom of the building from the 
ground are represented as GroundSurfaces.  

If LoD2 is extended by openings (windows, doors), detailed roof structures (dormers, 
chimneys, roof overhanging) and detailed façade structures, LoD3 can be achieved. 
These objects can be represented as features with their own attributes and surface 
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geometry. Windows and doors are assigned to the corresponding wall/roof surface 
and each feature has a surface geometry representing its spatial properties. High-
resolution textures can be mapped onto these structures. 

In LoD4, interior structures of buildings are considered as well. The geometry of each 
room is represented and interior structures for 3D objects (e.g. rooms, interior, stairs, 
furniture, etc.) are added.  

CityGML allows its extension for applications requiring specific feature types, 
attribute and relations. For that purpose, CityGML provides a mechanism called 
Application Domain Extension (ADE). An ADE is specified by an application schema 
of CityGML in different XML name spaces (in the same fashion as CityGML is an 
application schema of GML). It defines new feature types (with new attributes, 
geometries and associations), with may be subtypes of existing types. Furthermore, 
new attributes, geometries, and associations can be added to the existing types by 
using a hooking mechanism. One CityGML dataset may use multiple ADEs 
simultaneously, facilitating the multi-functional use of 3D models. Furthermore, the 
ADE mechanism can be applied iteratively, generating an ADE of an ADE, and using 
object-oriented concepts in order to define application schemas at different LoDs. An 
alternative mechanism to extend City GML is the use of generic grammar attributes to 
add additional features and attributes on demand. 

3.2.4.2. IFC 

The representation of buildings and their structures is also the objective of Building 
Information Models (BIM), of Computer-aided architectural design (CAAD) and 
Architecture, Engineering, Construction (ACE) models. For data exchange in the BIM 
world, there is one important ISO standard called IFC (Industrial Foundation Classes) 
in its version 2x. Currently version is 2x Edition 3. IFC is an object oriented format 
developed by the International Alliance for Interoperability (IAI). The goal of IFC is 
to specify a common language for building industry technology aimed at improving 
communication, productivity, delivery time, cost, and quality throughout the design, 
construction and maintenance life cycle of buildings (Hallberg and Tarandi 2009).  

IFC defines an EXPRESS based entity-relationship model consisting of several 
hundred entities organized into an object-based inheritance hierarchy.  

In particular, IFC divides all entities into rooted and non-rooted entities. Rooted 
entities derive from IfcRoot and have a concept of identity (having a globally unique 
identifier - GUID), along with attributes for name, description, and revision control. 
Non-rooted entities do not have identity and instances only exist if referenced from a 
rooted instance directly or indirectly. In the IFC file format each IfcRoot specification 
(called “class”) is used to describe a range of things that have common characteristics. 
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In particular, there are three kinds of IFC classes: object classes, relation classes and 
property sets. 

The object classes consist of a triplet (GUID, OS, FU), where GUID defines the 
general identifier of the current IFC object, OS defines the ownership features of this 
object and FU are the functional units. These functional units define the context of use 
of the classes (i.e., the geometrical representation, its localization, its composition, 
etc.). Fig. 3.5 shows 12 types of building elements that can represent a building 
structure in IFC standard. 

The relation classes represent the various relations between the object classes and 
their functional units. There are five fundamental relationship types: composition, 
assignment, connectivity, association, and definition. Indeed, IFC format is made of 
objects and connections between them. Object attributes describe the ‘semantic’ of the 
object while connections between objects are represented by ‘relation elements’. For 
example, building elements and opening elements are subtypes of structural element. 
Each building element has zero or more opening elements, i.e., a wall without any 
door or window has zero openings, whereas each opening element (like door, 
window) is attached to only one building element. 

 

 

Fig. 3.5. Simplified IFC file structure. 
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The property classes capture dynamically extensible property sets. A property set 
contains one or more properties which may be a single value (e.g. string, number, unit 
measurement), a bounded value (having minimum and maximum), an enumeration, a 
list of values, a table of values, or a data structure. While IFC defines several hundred 
property sets for specific types, custom property sets may be defined by application 
vendors or end users. 

3.2.4.3. CityGML and IFC comparison 

Common to CityGML and IFC is a detailed semantic and geometrical model of 
building and its interior structures. In the latest version of IFC, coordinates for 
position and height values in the global system WGS 84 can be specified, in addition 
to the local coordinate reference systems typically used in CAD. However, there are 
significant differences between both models: 

• The definition of semantic objects differs in both models. IFC focuses on the 
construction and design of buildings and provides construction elements like 
slab, beam, or wall. Such objects typically are in the boundary of multiple 
rooms and simultaneously are part of the outer boundary of a building. In 
contrast, the definition of CityGML describes how buildings are observed or 
used. Hence, objects such as rooms or wall/ceilings of a single room are 
defined. In addition, IFC holds more detailed information about building 
objects than CityGML. 

• CityGML uses Boundary Representation for the definition of spatial 
properties, since the focus is on how buildings are used and observed. 
According to the constructive nature of CAAD, in IFC additionally 
Constructive Solid Geometries (CSG) and sweep geometries are applied. 

• The objects in IFC are represented in one LoD only. A multi-resolution 
representation as in CityGML is not available. 

The relationships between CityGML and IFC have been discussed intensively in the 
last years. Particularly, the multiplicities of relationship between the two are analysed. 
Indeed, 1:1 relations occur rarely, whereas 1:n (one CityGML feature corresponds to 
n IFC features) and n:1 relations prevail. For this reason no straightforward translation 
rules between IFC and GityGML standards are available. 

3.2.4.4. CityGML and IFC output 

The object features derived from the previous classification step (Sect. 3.2.3) can be 
used in a straightforward way to generate a CityGML model at LOD3. Indeed, the 
features defined in CityGML meta-language as RoofSurface, WallSurface, 
GroundSurface, Window, Door, BuildingInstallation, GroundSurface have a clear 
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correspondence with previously classified objects (Fig. 3.6). Each feature is 
represented by a surface geometry (Sect. 2.2) describing its spatial properties. 
Focusing on the façade geometry, a solid representation of the building is not always 
available (e.g., roofs are missing in many cases). For this reason a multi-surface 
representation, that do not completely seal the building, is given. 

 

Fig. 3.6. Illustration of a LoD3 building represented as CityGML feature structure as UML instance 
diagram. 

As previously mentioned CityGML standard has a high flexibility. This allows high 
interoperability with several CAD environments as well as thermal evaluation 
performance software packages. An important aspect is given by the fact that 
additional information can be added to the model, e.g., the Location which indicates 
the global position of the building and its orientation. This can be used to evaluate 
façade exposition and sunlight or other descriptive data which are of major interest for 
energy efficiency evaluation, like the insulation value (U-value) for windows, walls, 
floors and roofs (see Africani et al. 2013) can be added as generic attribute to the 
building features. 

Concerning IFC, compared to the high semantic differentiation the previously defined 
classification (Sect 3.2.3) appears too coarse for this standard. Indeed objects that 
were previously classified in a general way as wall-attachments, in a IFC files can be 
classified more specifically, according to their functionality, as different features (e.g. 
IfcStair, IfcRailing, etc.). This is the multiplicities of relationship underlined by 
different authors for direct conversion between CityGML and IFC. However, in many 
cases and for a variety of applications it is not necessary and somewhat redundant to 
assemble all functional components of a building into the associated IFC class. For 
this reason, a simplified modelling, both in the geometrical representation and in the 
semantic definition, can be used. In simplified modelling, objects belonging to a 
different IFC classes can be grouped in the same feature. Considering thermal 
analysis and retrofitting of buildings the most important semantic classes concern 
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wall, window, door and roof elements. Indeed these elements are the ones playing the 
most important role in energy dispersion and the first elements to be 
retrofitted/updated for increasing energy efficiency. Lower interest is paid to elements 
like railing and stairs. Then, considering a simplified semantic modelling object 
classified as Wall Attachments within the hierarchical classification step can be 
represented in the IFC standard as IfcBuildingElementProxy, i.e. a definition that 
provides the same functionality as an IfcBuildingElement, but without having a 
defined meaning of the special type of building element it represent. In a similar way, 
the ground can be represented in IFC as a particular kind of IfcSlab that can be 
defined for example as BaseSlab. On the other hand wall, window, door and roof 
object has a direct correspondence with IFC classes. Spatial properties of each class 
are represented by means of surface elements in a Boundary Representation. 
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Chapter 4 
Façade regularity detection 

 

 

 

This chapter addresses the reconstruction of incomplete models with the help of high-
level architectural objects and the identification of repeated patterns in urban façades. 
Indeed, building façades generally exhibit a high degree of self-similarity and 
redundancy. The presented approach explicitly makes use of these characteristics of 
the urban scenes to enable plausible recovery of missing geometry.  

Completion of point clouds is often necessary because, even though a considerable 
effort is put on data acquisition planning, data obtained with range scanners usually 
suffers from occluded or defective portions of objects that either could not be 
perceived during acquisition or might have adverse material properties that hinder the 
scanning device (for example, marble, see Godin et al. 2001). Nonetheless, a 
complete surface representation without holes is usually required for further 
processing or rendering. Therefore reconstruction algorithms must not only be able to 
recover the surface parts that have been captured, but should also synthesize plausible 
geometry in missing areas. However, this is a challenging problem. This is mainly due 
to the wide collection of architectural elements and styles that could be combined in 
façades, with large changes between different countries, to variations in sampling 
density, and to noise and outliers which might be present in the point cloud. For these 
reasons approaches based on general smoothness assumptions or relying on a 
database of example cases from which a completing surface can be retrieved, may be 
suitable to complete small holes but generally fail in the case of large missing parts. 

The method presented in this Chapter is based on the completion of missing parts by 
means of high-level architectural features (e.g., windows, doors, etc.) detected in the 
building façade by means of the methodologies described in the previous chapters. 
Indeed, façades of the building type target of this research often exhibits a regular 
arrangement consisting of repeated patterns and self-similarities (Fig. 4.1). The 
presence and the regular patterns detection (RPD) can be used to reduce holes 
induced by occlusions and enhance automatic façade modelling. The key observation 
is that the same geometry is scanned multiple times over recurrences of the repeated 
elements. The non-local multitude of geometry provides opportunities to complete 
missing parts using information from other regions. Exploiting these repetitions is 
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very powerful, as it can reveal fully or partially occluded elements which might 
otherwise escape detection. In particular, the detected façade features can be extended 
into the empty regions and serve as guidance for hole-filling.  

   

Fig. 4.1. Examples of buildings presenting repeated patterns. 

Regularity and self-symmetry in urban buildings is widely demonstrated across 
countries and cultures. Such large scale repetitions arise from manufacturing ease, 
build-ability, functional requirements and aesthetic. For thermal retrofitting purposes 
the detection of these repetitions, e.g. windows, is of primary importance because they 
are the first element to be updated to improve thermal efficiency. While in recent 
years many techniques have been developed to detect repeated parts in models 
(Debevec et al. 1996, Hays et al. 2006, Mitra et al. 2006, Korah and Rasmussen 2007, 
Pauly et al. 2008, Musialski et al. 2009), most of these works do not investigate how 
to optimize the use of strong regularity in urban buildings. Moreover, most of the 
techniques are applied in image space by analysing 2D images sampled over a regular 
domain. Only few attempts have been made towards detection of regularity directly 
on 3D geometry.  

The challenge lies in the automatically determination of which elements repeat in the 
façade and the regular pattern they form. The complexity of the problem is increased 
when missing data due to occlusions and the variability in data resolution have to be 
considered. In the presented approach, instead of making strong prior assumption 
about the models and blindly recreating the geometry using predefined procedural 
rules, a bottom-up method is used attempting to extract maximum information from 
the point cloud. Indeed, most buildings are designed and generated in a procedural 
and modular fashion. In particular, building façades that are targets of this research 
can be represented as the repetition of some basic-geometries into multiple 2D 
periodic structures. However, instead of learning parameters from a codebook of 
rules, repeated elements and lattice structures are learned directly from empirical data. 
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4.1. State of the art 
Given the large volume of work on urban modelling, we refer the reader to the recent 
survey by Musialski et al. (2012) for a comprehensive review. Here only previous 
works addressing repetition detection of urban scenes are recalled. 

Detection of symmetries and repeated elements such as windows and balconies in 
urban scenes is a problem that has received significant attention in the field of image 
analysis while detection in point clouds received significant attention lately. 

Image-based façade analysis methods can be based either on the processing of single 
images (Müller et al. 2007, Musialki et al. 2010) or multi-view images jointly with the 
extracted point clouds (Xiao et al. 2009).  

Concerning single image analysis, Schaffalitzsky and Ziesserman (1999) used edge 
detection to find interesting elements and successively recognized patterns by using a 
grouping strategy for translational grids based on maximum likelihood estimation. 
Korah and Rasmussen (2007) addressed the problem of automatically detecting 2D 
grid structures such as windows on building façades from images. 

In Müller et al. (2007) and Lee and Nevatia (2010) the unique characteristics of 
façade structures such as regularity and orthogonality are exploited in a statistical 
model to detect translational symmetries and repetitive window structures. However, 
those techniques are largely based on the strong assumption that a façade is governed 
by a single hidden global rectilinear grid and global correlation between repeated 
elements in the scene. A more general approach is presented in Jahangiri and Petrou 
(2009), where repetitive elements, and especially windows, are detected as blobs in a 
colour image but the underlying structure is not analysed. 

Wu et al. (2010) presented a feature-based method that extracts repetition and 
symmetry patterns from a rectified image. They made simplifying assumptions such 
as constant repetition height and no gaps between floors. While in Park et al. (2011) a 
feature extraction method is used to efficiently detect multiple façade regularities, but 
this algorithm implicitly relies on structured data and then it is not suitable for point 
clouds.  

Finally, shape grammar methods are presented in Ripperda and Brenner (2009), 
where a limited manual interaction is required and in Teboul et al. (2011) where an 
out-of-core training phase is performed. The grammar yields segmentation of façades 
in semantic parts (e.g., walls, windows, balconies, etc.). However, in both cases 
repetitive structures are not detected. 
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Works on reconstruction of urban scenes have also been based on collections of 
photos or multi-view stereo relying on photogrammetric reconstruction and image-
based modelling techniques. 

Debevec et al. (1996) proposed an iterative image-based modelling method that 
exploited characteristics of architectural objects coupling an image-based stereo 
algorithm with manually specified 3D model constraints. More recently, Sinha et al. 
(2008) presented an interactive modelling system using unoriented sets of 
photographs, leveraging the piecewise-planarity of architectural models. Xiao et al. 
(2009) efficiently modelled façades from images by decomposing them into 
rectilinear elementary patches. Later they extended the semantic segmentation and 
analysis to more general scenes, in order to produce visually compelling results by 
imposing strong priors on urban regularity. 

Fewer approaches exist in the case regularity identification is performed in large point 
clouds. State of art works using structure repetition in urban façades can be classified 
in interactive and automatic procedures. 

While laser scans are in general dense and relatively regular, thus perfectly suited for 
architectural reconstruction the acquisition process may result in corrupted and 
incomplete data. In order to overcome such problems, several methods propose to 
process the data with user control. Interactive tools rely on similar frameworks 
(Zheng et al. 2010, Nan et al. 2010). The user defines first some basic façade objects 
which are then snapped to similar elements in the point cloud.  

Boehm (2008) published a method for completion of TLS point clouds, which is done 
by iteratively utilizing the repetitive information typically present in urban buildings. 
Another approach aiming at a similar goal was introduced by Zheng et al. (2010). It is 
also an interactive method for consolidation which completes holes in scans of 
building façades. This method exploits repetitions to consolidate the imperfect data, 
denoise it, and complete the missing parts. Another interactive tool for assembling 
architectural models was introduced by Nan et al. (2010). In this system, the user 
defines simple building blocks (Smart-Boxes), which snap to common architectural 
structures like windows and balconies. They are assembled through a discrete 
optimization process that balances between fitting the point-cloud data and their 
mutual similarity. In combination with user interaction, the system can reconstruct 
complex buildings and façades. 

Discovering regular structures in an automated way is a challenging task since there is 
no a priori knowledge of size, shape, or location of elements describing the pattern. In 
addition, façade elements can be incomplete or corrupted by noise. For this reason 
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automatic solutions generally rely on some architectural assumptions about the 
building façade. 

An automatic data-driven façade reconstruction by cell decomposition is introduced in 
Becker and Haala (2009), which requires a coarse 3D building model as input. They 
also proposed to automatically derive a façade-grammar from data in a bottom-up 
way. However, this algorithm focused on façades containing windows only and this 
could not handle more complex façades. 

In Stamos and Allen (2002) window-like rectangular features are extracted by using 
3D edge detection on high-resolution 3D data but regularity is not enforced. In 
Friedman and Stamos (2011) and Mesolongitis and Stamos (2012) methods for 
detecting regularities in building façades are presented. However, they are mainly 
addressed to detect only one feature type (e.g. windows) and require scan points being 
organized in 2D vertical scan-lines which may be a limiting aspect if multiple scans 
are fused together.  

In Pauly et al. (2008) a general regularity detection method for 3D models is 
presented. This general approach can be used for extracting a single façade pattern. 
However, in this case similarities in the model are detected by considering a local 
similarity measure of the point cloud curvature which is more prone to output outliers. 
In Triebel et al.(2006) a Markov Network approach that requires training is used to 
label points as windows. In Shen et al. (2011) façades are adaptively partitioned by 
horizontal and vertical planes based on the boundary features of planar regions. 
However, wrong horizontal or vertical splitting may result in wrong façade structure 
identification. In addition, this method can be seriously affected by the variation in the 
resolution and the window appearance, which may co-exist in a single scan. 

These automated methods generally rely on the assumption that the façade can be 
split into building blocks by a single rectilinear grid. Even if there is a certain number 
of façades that satisfy this assumption, in many cases façades presents a more 
complex structure. 

Structure discovery is also addressed in the field of Computer-Aided-Design (CAD). 
Shikhare et al. (2001) proposed a compression scheme that exploits geometric 
patterns in CAD models. This method is most effective for procedural designed model 
where the repetitive elements appear as separate connected components. Li et al. 
(2010) introduced regular features trees that provide a concise description of 
symmetry features in order to capture important aspects of the aim of the geometric 
design. This method is specifically designed for shapes that are bounded by planar 
spherical, cylindrical, conical and toroidal surfaces. However, those techniques can be 
used only for simple geometry of these typical CAD models. 
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In the next sections the developed procedure for regular patterns detection (RPD) is 
presented. In contrast to other works (Müller et al. 2007, Xiao et al. 2009, Musialski 
et al. 2009) that rely on the assumption that a building façade can be split into 
building blocks by a single rectilinear grid, this work presents a more flexible strategy 
aimed at detecting concatenated and\or interlaced grids of elements. Indeed, even if 
there are a certain number of façades satisfying the rectangular lattice assumption, in 
many cases façades presents more complex structure. In Fig. 4.2 some synthetic 
façades are represented demonstrating some cases consist of multiple periodic 
regions. In addition, in contrast to other developed techniques regular patterns are not 
only detected but these repetitions are also exploited to reveal fully or partially 
occluded elements and complete missing areas with high level structures. 

  

Fig. 4.2. Synthetic examples demonstrating some cases consisting of multiple periodic regions.  

4.2. Repeated patterns detection 
As summarized in Fig. 4.3, the developed methodology for RPD consists of two 
phases: element grouping and structure regularity estimation. The presented approach 
can be carried out to generate a hierarchical representation of the façade as a series of 
basic-geometries repeated into multiple 2D periodic structures (i.e., a lattice). After 
an initial estimate of the repeated element locations, the refinement and the recovery 
of missed locations undetected in the first step are performed by a voting scheme in 
which each location votes for lattices that are considered good fit for the object 
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distribution and represent the local periodicity in the vertical and horizontal 
directions. 

 

Fig. 4.3. Overview of the developed Repeated Patterns Detection (RPD) approach. 

The developed procedure for RPD starts from the point cloud segments derived from 
façade segmentation (Chap. 1) and the associated feature classes obtained by semantic 
classification (Chap. 3). Façade segments are used to detect groups of similarity 
elements in the data during element grouping by means of a similarity measure. 
During this phase, similarity is evaluated between pairs of patches. In particular, 
similarities between objects into the same category are searched for. This means that 
similarities are not verified between objects belonging to different façade classes, (e.g. 
no similarity is sought between a door and a window). This reduces the computational 
time and prevents wrong regularity estimation. The element grouping step not only 
allows the detection of similar façade patches but also allows an initial estimation of 
the similarity transformation between those patches. The grouping is achieved by a 
geometric registration followed by a iterative bottom-up clustering of façade object 
pairs. 

In the structure regularity estimation phase the parameters of the generative grid 
models of repeated patterns are estimated. This estimation is inspired by Generalized 
Hough Transform (Ballard 1981) and a lattice voting scheme (Pauly et al. 2008). In 
this phase, grouping information derived in the previous step is used to perform a 
global optimization towards alignment of repetitive façade elements by using Least 
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Squares. The final output is a series of lattices representing the local periodicity in the 
vertical and horizontal direction of each detected cluster of similar objects. Since to 
some extent the result of the regularity estimation is dependent on the element 
grouping, these steps are iteratively repeated until convergence 

4.2.1. Element clustering 
Once the identified planar clusters are subdivided into façade classes, the goal of 
element grouping is to gather similar objects together so as to identify repetitive 
elements. This step also provides the information needed to estimate structure 
regularity as described in Subsection 4.2.2. The grouping is achieved by a two-step 
clustering algorithm.  

It can be assumed that the façade has a dominant planar structure, characterized by a 
flat dominant surface and with other façade’s components having off-plane depth 
variations with respect to this plane, either positive (outwards) and negative 
(inwards). This assumption is generally valid for a large variety of modern building 
styles, in particular holds quite well for those built-up in the period 1950 - 1975. 

a.  b.  

c.  

Fig. 4.4. Example of a façade with two different window types (red and green) (a-b); and (c) clustering 
results using base and height of the bounding box of detected objects. 
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First, elements classified in the same façade feature class (e.g., window, door, etc.) are 
clustered according to their shape (base and height of the bounding box). Indeed, 
façade objects belonging to the same feature may present significant geometric 
differences and follow different repetitive patterns. For example in Fig. 4.4, a façade 
with two different types of windows is shown. This first step is performed to have a 
rough clustering of similar objects and to reduce the number of misclassifications. 
Indeed, it is unlikely that objects having a significant difference in the bounding box 
shape present a high similarity between them.  

Once two objects Si and Sj belonging to the same façade feature are clustered together, 
they are aligned to measure the similarity between them. This task is performed by 
computing a rigid-body transformation Tij (Fig. 4.5a) using a standard Iterative 
Closest Point (ICP) implementation (Besl and McKay, 1992). In particular, the 
transformation Tij is restricted to be a translational one, along both directions of the 
façade plane, being the off plane shift negligible. Indeed, in this research only 
repeated structures that can be obtained by translating a base object are looked for. 
Similarity transformations involving scaling and rotations are not addressed. 

a.  

b.  c.  d.  

Fig. 4.5. Example of a calculation of SM. Two objects, Si and Sj, are aligned with ICP (a). Volumetric. 
representation of a window: the original point cloud for object Si (b), the voxel splitting (c) and the 

final tensor representation vi (d). 
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Once Si and Sj are aligned the similarity measure (SM) is evaluated. To tolerate poor 
quality input data the space of the overlapping region of the aligned slices is quantized 
and the similarity between Si and Sj is calculated in this quantized space. Specifically, 
the aligned slices Si and Sj are embedded into a volumetric grid whose size is 
determined by the bounding box of the overlapping region B between the two slices 
(Fig. 4.5b-c). 

The grid resolution is fixed a little bit larger than the mean sampling distance in the 
point cloud. For each resulting voxel two functions vi and vj are defined to indicate the 
number of points contained in the voxel from Si and Sj, respectively. At the end, the 
original point clouds are quantized into a tensor representation (Fig. 4.5d). The SM 
between slices Si and Sj is defined as: 
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4.2 

 

The adopted SM is a generalization of the normalized linear correlation coefficient 
(ρ) and in a similar way it may range from -1 (full inverse correlation) to +1 (full 
direct correlation). For this reason SM values close to +1 indicate high similarity 
between Si and Sj, while in the case SM is close to zero or negative, they are assumed 
to be different each other. SM also supports partial matching of two slices, since the 
similarity is defined on the overlapping region of their aligned versions. 

Once the similarity is measured for each pair of slices, the ones having the maximum 
similarity are automatically clustered by using a bottom-up method as far as no more 
clusters (C1,C2,…, Cn) can be created. The clustering process is stopped until SM is 
lower than a user-defined threshold (SM = 0.7 has been used in the experiments). In 
this way, elements with low similarity with respect to the others in the cluster are 
discarded, improving the robustness of the method. 
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4.2.2. Estimation of façade repeated patterns 
The next step estimates the structure regularity for each group of previously detected 
similar elements (C1,C2,…, Cn). In this step, the elements of each set (Ci) are 
iteratively aligned and the new ones, based on the local periodicity of the lattice 
histogram (H), are assumed. The inputs of this step are the detected sets of similar 
façade elements (C1,C2,…, Cn) and their locations (L1, L2, …, Ln), while the output is a 
set of tuples (S0,i, GMN,i) where S0,i is the basic repeated element in the structure and 
GMN,i is a transformation group, having a lattice structure consisting of M rows and N 
columns, acting on S0,i. The developed iterative procedure is shown in Fig. 4.6a for a 
single set of façade elements while details of a single step of the procedure are 
summarized in Fig. 4.6b. 

a.  

b.  

Fig. 4.6. Overview of the iterative repeated patterns estimation (a); and (b) workflow of a single step of 
repeated patterns estimation. 
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In other words, it is a set of Q x R 2D points arranged in a regular grid with variable 
spacing between rows and columns and the element l11 is the upper left element. Each 
of the l ij ∈ L can be considered as a ‘seed’ or ‘node’ of the lattice. In the cases where 
Q=0 or R=0, the lattice becomes one-dimensional.  

a. b.  

c. d.  

e. f.  

Fig. 4.7. Example of a simple 1D regular structure with all possible pairwise transformations (a-d) 
which form a characteristic cumulative pattern in the transformation histogram H (e-f).  

 

The first step for the generation of the final transformation group GMN is the 
construction of a lattice histogram (H) through a lattice voting procedure based on a 
Generalized Hough Transform voting scheme. The basic idea behind lattice voting is 
to consider similar façade object and to evaluate local lattices that are a good fit for 
data. In this way, it is possible to have a representation of the local periodicity of the 
region in which façade elements (ci,1,ci,2,…, ci,k) belongs to. In addition, the 
aggregated information contained in the lattice can help in estimating updated object 
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locations c’k. In particular, a Hough-like lattice voting scheme is used. In this scheme 
once a couple of similar object ci, cj is found the associated pair-wise transformation 
Tij votes in a Lattice Voting Space (Ω), see Fig. 4.7. The resulting histogram (H) has 
picks in locations that will be elements for a new iteration C’ i. Indeed, C’ i contains 
not only elements also contained in Ci but it may also include new points if there are 
peaks in locations where no element Ci in were found (Fig. 4.8). In this way, if the 
assumption of underlying multiple regular structures holds occluded or yet undetected 
features may be revealed. 

 

Fig. 4.8. Illustration of lattice voting: notice the reconstruction of the lower left and lower middle 
center.  

 

Once the lattice histogram is set up a lattice structure is fitted to it. However, the set 
of pair-wise transformations Tij may present different values due to noise in the 
model, local variations of sample position, and non-perfect alignment within the ICP 
registration phase. All these contributions lead to some inaccuracies in the 
transformation estimation. This dispersion of the transformations Tij reflects in the 
Lattice Voting Space (Fig 4.9). In addition, some transformations may miss due to 
holes in the input data. For these reasons, the reliably detection of regular structures 
calls for a grid fitting approach that is robust against noise and holes. To this end, a 
global optimization method based on the work of Pauly et al. (2008) has been applied. 
However, while in that work the estimation procedure was aimed at detecting only 
rectangular lattices that were represented as the composition of two base vectors (one 
for row and the other for column description), this methodology takes into account a 
more general configuration considering also the possibility that column and row 
spacing may vary within the lattice. 
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Fig. 4.9. Distribution of pairwise translation vectors for similar façade object pairs.  

The unknown grid position for a lattice structure of M rows and N columns are 
represented by the row coordinates Xg1, 2,…, i, …, M and column coordinates Yg1, 2,…, i, …, N 
(Fig. 4.10) The input data are the set of pairwise transformations (Fig. 4.9) 
represented by a vector Tk (XTk, YTk) and the location of detected features ck. To find 
the unknown grid positions gij, an optimization scheme combining four energy terms 
is applied.  

 

Fig. 4.10. Lattice estimation: unknown grid positions.  

 

The first term takes into account the distance between the grid location gij to the 
closest feature location ck (Fig. 4.11a): 
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Similarly the second energy term takes into account the distance between the 
transformation Tk (XTk, YTk) and the closest grid location x(k) (Fig. 4.11b): 
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The continuous variable αij and βk are weights measuring how reliably a grid location 
is mapped to a cluster centre and vice-versa. They are included as additional 
unknowns in the optimization process accounting for holes and outliers in the 
distribution of the feature locations. Indeed, values of αij and βk close to zero indicate 
a hole or an outlier, respectively, while values close to 1 represent a reliable matching 
between transformation cluster and grid location. 

 

a. b.  

Fig. 4.11. Lattice estimation: example of contribution ec_1 to the first energy term (a) and ec_2 to the 
second one (b).  

 

The last two energy terms are aimed at maximizing the number of valid 
correspondences between grid location and cluster centres: 
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The combination of the four energy terms gives the total objective function to be 
minimized: 

( ) ( )( )βαγγ EEEEE CC +−++= 12_1_  4.7 

 

where the coefficient γ balances the two energy terms. In the tests carried out, γ = 0.8 
has been adopted.  

In order to find repeated similarity in the lattice structure, the spacing between 
consecutive columns and rows are calculated and clustered. In the case some grids 
present a similar spacing, in the minimization process these additional constraints will 
be enforced. For example, in the case the spacing between columns Ycj-Ycj+1 and 
Ycj+1-Ycj+2 are clustered together, the following constraint equation is added to the 
minimization: 

( ) ( ) 0121 =−−− +++ iiii YcYcYcYc  4.8 

 

To minimize the above objective function an iterative Gauss-Newton Least Squares 
technique (Triggs et al. 2000) is applied. As can be seen, the minimization process is 
non-linear and a set of initial estimates of the size of the lattice in terms of rows and 
columns is necessary as well as the initial values for the grid locations gij and the 
weights αij and βk.  

a.  b.  

c.  

Fig. 4.12. Determination of first iteration approximate values. The pairwise transformations initially 
estimated (a) are then clustered along the two dominant directions of the lattice (b-c) giving the initial 

estimates of the lattice nodes.  



Automatic segmentation, classification and extraction of repeated patterns for building façades modelling 
 

 

87 

 

In the first iteration, approximate values are determined by clustering in H the pair-
wise transformations Tij along the two dominant directions of the lattice (Fig. 4.12). 
Detected cluster centres are used as approximations of the lattice row (Xg1, 2,…,M) and 
column (Yg1, 2,…,N) coordinates. The correspondent weights αij and βk are initialized to 
one, since no a priori knowledge on holes and outliers is assumed.  

a.   

b.  

c.   

Fig. 4.13. Regularity structure superimposed to the point cloud (left) and lattice estimation (right). 
Lattices centres are coloured according to the associated weight (white for 0 and black for 1). 
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Once the lattice is estimated, the algorithm operates iteratively by performing a new 
element grouping in correspondence of each node of the lattice. In particular, in 
correspondence of nodes which are labelled as missing (holes) during the lattice 
fitting a feature is searched. In the case SM confirms the assumption this new feature 
is included in the similar feature cluster Ci and a new iteration takes place. The 
process halts when no changes in the lattice nodes are observed between two 
successive iterations. In particular, the presented algorithm can efficiently detect 
repeated features with non-rectangular lattice patterns (Fig. 4.13a), where the spacing 
between rows and columns may vary, and may also deal with missing elements (Fig. 
4.13b). In the second case it is possible to observe that the weight to the bottom-left 
element is close to zero. 
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Chapter 5 
Experimental tests on real façades 

 

 

 

In Part A of this dissertation a detailed description of the façade modelling procedure 
has been given. This chapter examines the efficiency and accuracy of reconstruction 
methods. Several examples of common façades from buildings constructed during 
1950 - 1975 are presented. The whole procedure from segmentation of raw point 
cloud to repeated pattern detection is applied to every case study. Evaluation of results 
is made on the basis of common metrics whose description is given in Section 5.1.  

All the above-mentioned steps for façade modelling are fully implemented in 
Matworks Matlab® environment. Exception has been made with the visualization of 
final digital models. For this purpose, the obtained faced models are exported in 
different file formats: (i) DXF and PLY format for vector model of the façade and (ii) 
CityGML and IFC file for the semantic enriched model. 

5.1. Performance evaluation framework 
Overall accuracy and precision are used to evaluate the performances of the presented 
façade modelling procedure. In particular, quality evaluations are performed for each 
step of the procedure by following the same scheme for each case study: 

• façade segmentation: the point cloud of the building façade has been manually 
classified into planar clusters and used as ground truth façade; 

• geometric reconstruction: the presented datasets were manually vectorized, 
starting from the point cloud, and façade breaklines were identified. Those 
breaklines are used for evaluating the accuracy of automatically detected ones; 

• object classification: points of each type of façade element have been 
manually selected from the original point clouds and have been compared with 
object classification results; and 

• façade regularity detection: presence of repeated pattern in the façade are 
manually selected and compared with the ones detected in an automated way. 
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5.1.1. Façade segmentation  
The performance measurement of a segmentation algorithm is conducted on the basis 
of the analysis of resulted segments. This task requires a set of benchmarking data 
against which the resulted segments can be compared.  

Hoover et al (1996) provided methodology to evaluate the result of segmentation, 
originally designed for range images. A similar framework was adopted by Geibel 
and Stilla (2000) for the comparison of different procedures in segmentation of ALS 
and by Nyaruhuma (2007) for the performance evaluation of different algorithms for 
detecting roof faces in 3D point clouds.  

The underlying principle is based on the comparison of the resulted segments with the 
corresponding reference segments and, and on the evaluation of how many common 
points belong to both datasets. Once the correspondences are established, correct 
segments are found. A segment is correctly detected if the majority of points in the 
reference segment are also labelled as a single segment in the result. Correct 
segmentation can be expressed as: 
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where Mr is the ratio of intersection points (Nro) to the total number of points in 
reference segment (Nr). A pair of segments in the benchmarking data and in 
segmentation results are classified as an instance of correctly detected segment if the 
correspondence percentage is greater than certain tolerance value (T ): 
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In the cases where one segment in reference data (Sr) does not correspond to any 
segmented element, three instances may occur: 

• Over-segmentation: this is the case where one segment in reference data (Sr) 
is represented by more segments (So1, So2,…, Son) in the output of the 
algorithm. In this case, the total number of intersection points is the sum of 
intersection points in many So segments: 
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where No1, No2,…, Non corresponds to the total number of points in segments 
So1, So2,…, Son respectively. If a reference segment is classified as over-
segmented the number of detected segments (So1, So2,…, Son) constituting it can 
be determined. 
 

• Under-segmentation: if one segment (So) in the output of the segmentation 
process intersects with more than one reference segments (Sr1, Sr2,…, Srn), this 
result in under-segmentation. This can be considered as the case of insufficient 
separation of multiple planar surfaces. Likewise in over-segmentation, the 
total number of intersection points is the sum of the intersection points in 
many Sr segments: 
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The values of Nr1, Nr2,…, Nrn are the total number of points in segments Sr1, 
Sr2,…, Srn respectively. If a detected segment is classified as under-segmented, 
the number of real segments (Sr1, Sr2,…, Srn) erroneously clustered together can 
be found; and 

• Missed segment: a reference segment (Sr) is classified as missed segment if it 
does not have any correspondence with the obtained segments. 

In addition, a segment (So) in the output of the segmentation process is defined as 
‘noisy segment’ if the segment cannot be classified in any of the previous categories.  

Starting from the segment classification, also the following parameters can be 
computed:  

• Commission error (I Type): the probability of erroneously detecting a plane; 
it is evaluated as the ratio between the number of wrong segments and the total 
number of real planes; and 

• Omission error (II Type): the probability that of a real plane is undetected; it 
is evaluated as the ratio between undetected planes and the total number of 
real planes. 

The performance of the developed algorithm has been assessed on the basis the 
framework described above. Results will be provided per each of the case studies 
described in Section 5.2. 
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5.1.2. Geometric reconstruction 
The results achieved by the proposed approach need to be checked in order to 
quantify the geometrical accuracy of the obtained vector models. In order to do that a 
manual reconstruction of the same façade was performed (Nex and Rinaudo 2009) 
which is considered in the literature the most precise method to vectorize a point 
cloud. For this reason, an experienced operator performed the vectorization of the 
building model staring from the point cloud. Manual models are then compared with 
the automatically generated ones. In particular, the detected breaklines are compared 
with the manually benchmarking model. Firstly, the accuracy of the reconstructed 
breaklines was derived by comparing the ground truth position of each line with the 
position estimated by the automatic algorithm. In particular, for each edge the 
absolute modelling error is defined as the absolute magnitude of the difference 
between the ground truth and the model position. An edge is considered as correctly 
detected if the distance between the manually generated edge and the closest 
automatically generated edge is lower than a predefined threshold T. Then the 
reliability of break-line evaluated by comparing the number of commission and 
omission errors in a similar way to that one described in Subsection 5.1.1. 

5.1.3. Object classification  
Overall classification accuracy, precision and recall are used to evaluate the 
classification performance.  

At first, actual points of façade point clouds are manually classified into façade 
elements to derive a reference dataset. Then the actual classification results and those 
predicted from the automatic classification method are evaluated by means of visual 
interpretation and a confusion matrix is created, where each row represents the 
instances in a predicted class, and each column represents the instances in an actual 
class. From the confusion matrix, the overall classification accuracy can be retrieved, 
as the sum of correctly classified segments divided by the total number. In a similar 
way, omission and commission errors can be defined. The commission error reflects 
the probability that, given an object from a certain predicted class, it does not belong 
to the same class in the reference data. And the omission error measures the 
probability that, given an object of the reference data, it has not been correctly 
classified in the prediction class. In short, commission is a measure of the exactness, 
whereas omission is a measure of the recall. The lower these two values, the more 
excellent the classification performs. 

5.1.4. Regularity detection  
In order to evaluate the performance of the regularity detection algorithm, a manual 
identification of repeated object is performed and compared with the detected lattices. 
In particular, the fractions of commission errors (wrong detections) and omission 
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errors (missing detections) in the detection of lattice nodes have been evaluated with 
respect to manually detected nodes, which have been assumed as benchmarking 
values. 

5.2. Experimental tests 
This section presents the application of the developed modelling procedure to some 
real building façades. In particular, these test are focused to assess the reliability of 
the approach under different operational conditions and façades typologies. All 
experiments have been performed on buildings in different campus of the Politecnico 
di Milano University. In total, five data sets have been used: (i) ‘D’Oggiono building,’ 
(ii) ‘Courtyard no.1,’ (iii) ‘Courtyard no.2,’ (iv) ‘Building no. 34’ and (v) ‘Nave 
building’.  

5.2.1. ‘D’Oggiono building’ 
This section provides the experiment details of ‘D’Oggiono building’. A portion of 
the Lecco campus headquarter was scanned by using a TLS FARO-FOCUS 3D in 3 
scans (Fig. 5.1). Some technical specifications of the laser scanner adopted are 
reported in Tab. 5.1. 
 

Faro Focus 3D technical specifications Riegl LMS- 420i technical specifications 

Range measurement mode Phase-shift 
Range measurement 

mode 
Time-of-flight 

Operational range 0.6 – 150 m Operational range 2.0 – 1000 m 

Angular resolution 0.009° Nominal accuracy ± 10 mm 

Measurement speed 
120.000 – 976.000 

points/sec 
Nominal precision ± 4 mm c 

Precision at 10 m 
0.6 mm (90% reflectivity) 

1.2 mm (10% reflectivity) 
Acquisition rate 3000 – 9000 pts/sec 

Precision at 25 m 
0.95 mm (90% reflectivity) 

2.2 mm (10% reflectivity) 
Vertical field of view 80 ° 

Tab. 5.1. Technical specifications of the adopted TLS instrument. 

Multiple targets have been set up over the area, so that they could be detected by 
SCENE 3D® (the post-processing software of FARO scanners) as control points for 
registration. The final registration accuracy, evaluated in terms of sigma naught, has 
resulted as 3.1 mm. The laser data acquisition has taken 45 minutes in total. Actually, 
each single scan only has taken 8 minutes while the remaining time has been spent on 
placing targets and for the instrument setup. The average point density is about 20 
thousand points per square meter on the walls. In total, 2 building façades were 
selected for the experiment (Fig. 5.1) and some results are shown in the previous 
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chapters. This dataset includes façade elements such as walls, doors, windows, roofs 
and stairs. Some occlusions are present in the lower part of the façade due to some 
cars and bikes that could not be removed during scanning. 

a.  b.  

Fig. 5.1. ‘D’Oggiono building’ dataset: (a) a picture of the analysed building; and (b) the scan 
acquisition scheme. 

First step of the developed methodology is façade segmentation. The parameters 
presented in Tab. 5.2 were used in the processing. 
 

 

‘D’Oggiono Building’ 
‘Courtyard no.1’ 
‘Courtyard no.2’ 
‘Building no. 34’ 

‘Nave Building’ 

RANSAC plane threshold ε 1 cm 5 cm 

RANSAC normal threshold α 20 ° 20 ° 

Bitmap cell size β 1 cm 2 cm 

RANSAC dominant line 
threshold ε 

0.7 cm 1 cm 

Tab. 5.2. Parameters used for façade modelling for the analysed datasets. 

These parameters have been chosen taking into consideration the instrument accuracy 
and the scan registration statistics. Indeed, a too restrictive selection of the RANSAC 
plane threshold ε fit the limitation given by registration accuracy. At the same way the 
cell size β was selected considering the average point density. Indeed, a square meter 
in the bitmap is represented by 10,000 cells while the point density is about 20,000 
points. On the other hand, these parameters are quite restrictive with respect to the 
ones presented in literature. 
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The segmentation results are presented in Fig. 5.2. A visual observation of this result 
shows that the algorithm is able to detect all planar surfaces present in the data. 
Furthermore, larger surfaces (e.g., walls and roofs) as well as smaller surfaces (e.g., 
some parts of windows frames) are extracted.  

a.  b.  

Fig. 5.2. ‘D’Oggiono building’ segmentation results: (a) original point cloud; and (b) segmentation 
results, each detected segment is represented with a different colour. 

It can be observed that there are many small segments near the ground, which are 
mainly due to the presence of other objects like cars. A more detailed data analysis 
can be obtained by evaluating the parameters described in Subsection 5.1.1. Results 
are summarized in Tab. 5.3 and Tabs. 5.4 - 5.5. In particular, Tab. 5.4 reports, for 
different tolerances (T), the number of reference segments that are either correctly 
detected or are instances of bed segmentation. Tab. 5.5 reports instead results for the 
predicted planes, indicating the correctly detected segments and the fraction of 
segments contributing to over-, under-segmentation and noisy elements. 

 
‘D’Oggiono 
building’ 

‘Courtyard 
no.1’ 

‘Courtyard 
no.2’ 

‘Building no. 
34’ 

‘Nave 
Building’ 

Automatically 
detected Planes 

127 119 119 21 650 

Manually labelled 
Planes 

120 112 108 22 605 

Tab. 5.3. Segmentation results for for the analysed datasets. 

Tolerance 
(%) 

‘D'Oggiono building’ results for reference planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of 
missed 

segment 

Commission 
error (%) 

Omission 
error (%) 

0.8 120 0 0 0 5.5 0.0 

0.85 119 1 0 0 6.3 0.8 

0.9 117 3 0 0 7.9 2.5 

0.95 112 7 0 0 11.8 6.7 

Tab. 5.4. ‘D'Oggiono building’ results for reference planes. 
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Tolerance 
(%) 

‘D'Oggiono building’ results for detected planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of noise 
segment 

0.8 120 0 0 7 

0.85 119 2 0 6 

0.9 117 6 0 4 

0.95 112 15 0 0 

Tab. 5.5. ‘D'Oggiono building’ results for detected planes. 

The result reveals that the numbers of correctly detected segments decreases as the 
tolerance increases as expected. However, the numbers of correctly detected segments 
with different tolerance classes are quite similar up to T = 0.9. This means a high 
reliability of the segmentation. In addition, the algorithm is able to detect significant 
numbers of correct segments even at the highest tolerance of T = 0.95 showing 
satisfactory results in terms of both omission and commission errors. The robustness 
of the method is also proved by the fewer instances of missing and noisy segments. 
This means that there is a strict matching between reference and predicted results. 
Some instances of over-segmentation are mainly due to non-conformance of some 
wall segments to planar surface assumption. No instances of under-segmentation in 
the dataset are observed. The effectiveness of the method can be observed by 
comparing results obtained with a ‘naive segmentation’ approach based on a simple 
sequential RANSAC plane estimation (Tab. 5.6). In this case, it is possible to observe 
that the numbers of correctly detected segments is comparable with over and under 
segmented instances and a high number of missing and noisy segments is observable. 
In addition, their number rapidly grows when the tolerance is restricted. 
 

Tolerance 
(%) 

‘D'Oggiono building’ 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of 
missed 

segment 

No. of 
noise 

segment 

Commission 
error (%) 

Omission 
error (%)  

0.5 
50 34 32 9 34 66.7 60 

0.6 48 34 32 11 36 68.0 61.6 

0.7 
40 30 31 24 49 73.3 68 

0.8 
37 24 28 36 61 75.3 70.4 

0.9 
35 20 22 48 73 76.7 72 

0.95 10 12 10 93 118 93.3 92 

Tab. 5.6. ‘D'Oggiono building’ results for a ‘naive segmentation’ sequential RANSAC 
implementation. 

Starting from the derived segments the contour points and extracted and then the edge 
smoothing is performed. The parameters used in this phase are summarized in Tab. 
5.2. The obtained building model in CAD format is presented in Fig. 5.3.  
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a.  b.  

Fig. 5.3. Geometric reconstruction of ‘D’Oggiono building’ dataset: (a) final 3D digital model of the 
façade; and (b) façade model with overlaid point cloud. 

The comparison of this model with the one obtained by manual modelling is 
summarized in Tab. 5.7 and Fig. 5.4. 

 
‘D’Oggiono 

building’ 

‘Courtyard 

no.1’ 

‘Courtyard 

no.2’ 

‘Building no. 

34’ 

‘Nave 

Building’  

Automatically 

extracted Breaklines 
505 524 457 106 650 

Manually derived 

Breaklines 
530 536 478 110 605 

Tab. 5.7. Breaklines results for the analysed datasets. 

 

Fig. 5.4. Geometric reconstruction analysis for ‘D’Oggiono building’ dataset. 

As expected, the numbers of correctly detected edges decreases as the tolerance 
increases. However, this decrease presents a significant discontinuity in 
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correspondence of T = 3.0 mm. This means that the accuracy of the detected edge is 
in this order of magnitude. However, an important element needs to be observed. 
Manual modelling of a point cloud is indeed influenced by human interpretation and 
the definition of breaklines with accuracy higher than 2.0 – 3.0 mm is almost 
impossible also for a skilled operator.  

In Figure 5.5 the detected repeated patterns are presented. In particular, it is possible 
to observe that the presented algorithm can efficiently detect repeated features with 
non-rectangular lattice patterns, i.e. variable spacing between columns (Fig. 5.5d). In 
addition, the method may also deal with missing elements (Fig. 5.5c). In this second 
case it is possible to observe that the weight to the bottom-left element is close to zero 
meaning that the element is effectively missing. 

a.  b.  

c.  

 

d.  

 

Fig. 5.5. Results of RPD algorithm for ‘D’Oggiono building’ dataset: the repeated pattern for the two 
analysed façades superimposed to the point cloud (a-b); and two examples of detected lattices (c-d). 

Lattices centres are coloured according to the associated weight (white for 0 and black for 1). 
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Classification results lead to the generation of the semantic rich model shown in Fig. 
5.6.  

 

Fig. 5.8. Semantic reach model of the ‘D’Oggiono building’ in CityGML format. The model is 
visualized using the FZKViewer developed by the Karlsruhe Institut fur Technologie. 

Tab. 5.8. Confusion matrix for ‘D’Oggiono building’ dataset. 

 

 ‘D’Oggiono 
building’ 

Reference 

No. of 
wall 

No. 
of 

roof 

No. of 
sidewall 

No. of 
window 

No. 
of 

door 

No. of 
ground 

No. of 
attachment Total Commission 

error [%] 

C
la

ss
ifi

ed
 

No. of wall 20 0 0 0 0 0 1 21 4.8 

No. of roof 1 6 0 0 0 0 0 7 16.7 

No. of 
sidewall 

0 0 40 0 0 0 0 40 0.0 

No. of 
window 

0 0 0 30 0 0 0 30 0.0 

No. of door 0 0 0 0 1 0 0 1 0.0 

No. of 
ground 

0 0 0 0 0 1 0 1 0.0 

No. of 
attachment 

0 0 0 0 0 0 20 20 0.0 

Total 21 6 40 30 1 1 21 120 
 

Omission 
error [%] 

4.8 0.0 0.0 0.0 0.0 0.0 4.8 
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The confusion matrix is shown in Tab. 5.8. The overall classification accuracy, which 
is calculated as the sum of the correct classified objects divided by the total number is 
98.3%. In addition a low confusion can be observed in Tab. 5.8. Commission errors 
are zero for five classes meaning that most of detected façade objects correctly fall 
down their actual classes. Also commission errors are quite low, exception made for 
roof objects (even if lower than 20%). Indeed, a vertical roof element is erroneously 
classified as wall object. This is given by the fact that rules for roof elements assume 
a roof cannot be vertical. 

5.2.2. ‘Courtyard no.1 and no.2’ 
A second test was performed on two different courtyards which were acquired with a 
TLS FARO-FOCUS 3D. The scanned scenes present a quite high number of clutters 
generating occlusions on the building façades and resulting in large missing parts. 
Furthermore, façades are constituted by different façade objects, e.g. walls, roofs, 
parts of windows frames. The average point density of the ‘Courtyard’ datasets is 
about 25 thousand points per square meter on the walls. Four building façades were 
modelled. In Fig. 5.9 the acquisition schemes for the two datasets are presented. In 
particular, the two datasets were processed in an independent way by using 
parameters summarized in Tab. 5.2. 

a. b.  

Fig. 5.9. The scan acquisition schemes for ‘Courtyard no.1’ (a) and ‘Courtyard no.2’ (b) datasets. 

A visual representation of segmentation results for both datasets is shown in Fig. 5.10, 
while segmentation evaluation results are summarized in Tabs. 5.3 – 5.9 – 5.10 – 5.11 
– 5.12. 
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a. b.  

c. d.  

Fig. 5.10. ‘Courtyard no.1’and ‘Courtyard no.2’ (top and bottom row respectively) segmentation 
results: (a-c) original point clouds; and (b-d) segmentation results, each detected segment is represented 

with a different colour. 

The result are similar for both datasets. In particular, robustness of the method is 
confirmed by the high number of correct segments wile few instances of missing and 
noisy segments are observed.  

Tolerance 
(%) 

‘Courtyard no.1’ results for reference planes 

No. of correct 
correct 

segmentation 

No. of correct 
over-

segmentation 

No. of correct 
under-

segmentation 

No. of 
correct 
missed 

segment 

Commission 
error (%) 

Omission 
error (%) 

0.8 110 0 0 2 7.6 1.8 

0.85 108 2 0 2 9.2 3.6 

0.9 107 3 0 2 10.1 4.5 

0.95 102 8 0 2 14.3 8.9 

Tab. 5.9. ‘Courtyard no.1’ results for reference planes. 
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Tolerance 
(%) 

‘Courtyard no. 2’ results for reference planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of 
missed 

segment 

Commission 
error (%) 

Omission 
error (%) 

0.8 106 0 0 0 10.9 1.9 

0.85 106 0 0 0 10.9 1.9 

0.9 103 3 0 0 13.4 4.6 

0.95 98 8 0 0 17.6 9.3 

Tab. 5.10. ‘Courtyard no.2’ results for reference planes. 

Tab. 5.11. ‘Courtyard no.1’ results for detected planes. 

Tolerance 
(%) 

‘Courtyard no.2’ results for detected planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of noise 
segment 

0.8 110 0 0 9 

0.85 108 4 0 7 

0.9 107 7 0 5 

0.95 102 17 0 0 

Tab. 5.12. ‘Courtyard no.2’ results for detected planes. 

The comparison of derived building models with the ones obtained by manual 
modelling are summarized in Tab. 5.2 and Figs. 5.11 – 5.12.  

 

Fig. 5.11. Geometric reconstruction analysis for ‘Courtyard no.1’ dataset. 
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Tolerance 
(%) 

‘Courtyard no. 1’ results for detected planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of noise 
segment 

0.8 110 0 0 9 

0.85 108 4 0 7 

0.9 107 7 0 5 

0.95 102 17 0 0 
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Fig. 5.12. Geometric reconstruction analysis for ‘Courtyard no.2’ dataset. 

The obtained building models in CAD format is presented in Fig. 5.13. 

a. b.  

c. d.  

Fig. 5.13. Geometric reconstruction of ‘Courtyard no.1and no.2’ (top and bottom row respectively): (a-
c) final 3D digital models of the façades; and (b-d) façade models with overlaid point cloud. 
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Also for these two datasets a good matching between extracted and manually 
identified edges is observed up to a 3.0 mm tolerance. In addition also at lower 
tolerances a high number of corresponding segments has been found. 

In Fig. 5.14 the detected repeated for both datasets are shown. In particular, it is 
possible to observe that the developed algorithm can efficiently detect missing objects 
(like windows) also in the case of severe occlusions. Detected regularities can be used 
to complete the building model. 

a. b.  

c. d.  

Fig. 5.14. Results of RSD algorithm for ‘Courtyard no.1’ (a-b) and ‘Courtyard no.2’ (c-d). Each 
repeated pattern is shown with a different colour.   

Classification results are presented in Tabs. 5.13 – 5.14, where confusion matrices are 
reported. The overall classification accuracy is 99.1% and 98.1% for dataset 1 and 2, 
respectively. Also in these datasets the highest confusion exists between roof and 
walls because vertical roof elements have been erroneously classified as walls. 
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Classification results lead to the generation of the semantic rich models shown in Fig. 
5.15 and Fig. 5.16.  

 

Fig. 5.15. Semantic reach model of the ‘Courtyard no.1’ in CityGML format. The model is visualized 
using the FZKViewer developed by the Karlsruhe Institut fur Technologie. 

 

‘Courtyard no.1’ 

Reference 

No. of 
wall 

No. 
of 

roof 

No. of 
sidewall 

No. of 
window 

No. 
of 

door 

No. of 
ground 

No. of 
attachment 

Total 
Commission 
error [%] 

C
la

ss
ifi

ed
 

No. of wall 15 0 0 0 0 0 0 15 0.0 

No. of roof 1 6 0 0 0 0 0 7 16.7 

No. of 
sidewall 

0 0 52 0 0 0 0 52 0.0 

No. of 
window 

0 0 0 19 0 0 0 19 0.0 

No. of door 0 0 0 0 1 0 0 1 0.0 

No. of 
ground 

0 0 0 0 0 2 0 2 0.0 

No. of 
attachment 

0 0 0 0 0 0 15 15 0.0 

Total 16 6 52 19 1 2 15 111 
 

Omission 
error [%] 

6.3 0.0 0.0 0.0 0.0 0.0 0.0 
  

Tab. 5.13. Confusion matrix for ‘Courtyard no.1’ dataset. 
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Fig. 5.16. Semantic reach model of the ‘Courtyard no.2’ n CityGML format. The model is visualized 
using the FZKViewer developed by the Karlsruhe Institut fur Technologie. 

‘Courtyard no.2’  

Reference 

No. of 
wall 

No. 
of 

roof 

No. of 
sidewall 

No. of 
window 

No. of 
door 

No. of 
ground 

No. of 
attachment 

Total Commission 
error [%] 

C
la

ss
ifi

ed
 

No. of wall 18 0 0 0 0 0 0 18 0.0 

No. of roof 2 8 0 0 0 0 0 10 25.0 

No. of 
sidewall 

0 0 45 0 0 0 0 45 0.0 

No. of 
window 

0 0 0 25 0 0 0 25 0.0 

No. of 
door 

0 0 0 0 0 0 0 0 0.0 

No. of 
ground 

0 0 0 0 0 4 0 4 0.0 

No. of 
attachment 

0 0 0 0 0 0 5 5 0.0 

Total 20 8 45 25 0 4 5 107 107 

Omission 
error [%] 

10.0 0.0 0.0 0.0 0.0 0.0 0.0 
  

Tab. 5.14. Confusion matrix for ‘Courtyard no.2’ dataset. 

5.2.3. ‘Building no. 34’ 

A further test was carried out on a façade of the seven storey building named 
‘Building no. 34’ located in the Leonardo Campus of Politecnico di Milano. The 
chosen test façade presents existing precast panels at the two top floors, while the 
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remaining part features a mortar finishing. An important issue related to the survey is 
the presences of a large tree just in front of the façade, resulting in large occlusions.  

Scans were registered with 8 checkerboard targets measured with a theodolite Leica 
TS30. The same points were also used for the registration of a block of RGB images, 
along with some additional natural points (e.g., window and door corners) that have 
been used for registration of a set of Thermal Infrared (TIR) images as presented in 
the following Section 6.1. The network scheme is presented in Fig. 5.17. After the 
adjustment of the geodetic network, the estimated accuracy in checkerboard target 
measurements resulted in ± 2.0 mm. 

a.   

b.  c.  
Fig. 5.17. ‘Building no. 34’ dataset: (a) some pictures of the analysed building; and the schemes of the 

geodetic network (b) and the scan acquisitions (c). 

The laser scanning survey was carried out by using a TLS FARO-FOCUS 3D and 
consisted in 3 scans (Fig. 17c) acquired from different standpoints in order to survey 
the entire western façades of the building. The ground sampling distance (GSD) 
ranges from 1.5 mm in the lower part of the façade up to 4 mm in the upper part. As 
mentioned, scan referencing was performed by using as GCPs the checkerboard 
targets complemented by 5 spherical targets used to strengthen the precision of scan 
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referencing. The mean precision after georeferencing, evaluated from the residuals on 
GCP, was about ± 3 mm. 

Façade segmentation results are summarized in Fig. 5.18 and Tabs. 5.2 – 5.15 – 5.16.  

a. b.  
Fig. 5.18. ‘Building no. 34’ segmentation results:.(a) original point cloud; and (b) segmentation results, 

each detected segment is represented with a different colour. 

Compared to the previously cases this is a simpler situation where planes are quite 
wide and separation between them is clear. For this reason fewer errors have been 
found.  

Tolerance 
(%) 

‘Building no. 34’ results for reference planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of 
missed 

segment 

Commission 
error (%) 

Omission 
error (%) 

0.8 21 0 0 1 0.0 4.5 

0.85 21 0 0 1 0.0 4.5 

0.9 21 0 0 1 0.0 4.5 

0.95 21 0 0 1 0.0 4.5 

Tab. 5.15. ‘Building no. 34’ results for reference planes. 

Tolerance 
(%) 

‘Building no. 34’ results for detected planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of noise 
segment 

0.8 21 0 0 0 

0.85 21 0 0 0 

0.9 21 0 0 0 

0.95 21 0 0 0 

Tab. 5.16. ‘Building no. 34’ results for detected planes. 
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As previously observed the large tree in front of the façade resulted in a large 
occlusion. Unfortunately, in this case also the developed completion strategy could 
not be exploited because no repetition could be observed in this area. For this reason, 
a manual editing was needed. Results of geometric modelling and classification steps 
are presented in Tabs. 5.3 – 5.17 and Figs. 5.19 – 5.20. 

a. b.  c.  

d.  

Fig. 5.19. ‘Building no. 34’ processing results: (a) final 3D digital models of the façade (automatic 
model, in black, and manual editing, in red); (b) façade models with overlaid point cloud; (c) CityGML 

model; and (d) visual comparison between automatic and manual modelling results. 
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Fig. 5.20. Geometric reconstruction analysis for ‘Building no. 34’ dataset. 

 ‘Building no. 34’ 

Reference 

No. of 
wall 

No. of 
roof 

No. of 
sidewall 

No. of 
window 

No. 
of 

door 

No. of 
ground 

No. of 
attachment 

Total Commission 
error [%] 

C
la

ss
ifi

ed
 

No. of wall 9 0 0 0 1 0 0 10 10.0 

No. of roof 0 0 0 0 0 0 0 0 0 

No. of 
sidewall 

0 0 8 0 0 0 0 8 0.0 

No. of 
window 

0 0 0 3 0 0 0 3 0.0 

No. of door 0 0 0 0 0 0 0 0 0 

No. of 
ground 

0 0 0 0 0 1 0 1 0.0 

No. of 
attachment 

0 0 0 0 0 0 0 0 0 

Total 9 0 8 3 1 1 0 21 
 

Omission 
error [%] 

0.0 0 0.0 0.0 100.0 0.0 0 
  

Tab. 5.17. Confusion matrix for ‘Building no. 34’ dataset. 

In this case, 100% omission error is reported in the case of door element. This is 
motivated by the fact that the only door in the scene is coplanar with the façade wall 
while classification rules assume that such element should be a façade intrusion.  

5.2.4. ‘Nave building’ 
The last dataset presented here is the so called ‘Nave’ office building which was 
designed by Giò Ponti inside the Leonardo Campus of Politecnico di Milano. The 
southern façade of the building was scanned by using a long –range scanner RIEGL – 
LMS 420i. Some technical specifications of the laser scanner adopted are reported in 
Tab. 5.1.  
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Fig. 5.21. ‘Nave building’ dataset: a pictures of the analysed building, due to the presence of a large 
tree in front of the façade a large occluded area has resulted in the final point cloud . 

Four scans have been gathered to cover in a uniform way the entire façade. 
Registration has been carried out in automatic way by using 24 retro-reflective targets 
that have been set up over the area. The reference system of the first scan has been 
kept fixed. Registration adjustment has provided a final sigma naught of 3.5 mm. In 
this case the data acquisition has taken roughly 5 hours. The average point density of 
the dataset is about 5 thousand points per square meter on the walls. Due to the 
presence of a large tree in front of the façade, a large occluded area has resulted in the 
final point cloud (see Fig. 5.21 and Fig. 5.22).  

Due to the large level of noise in the dataset, connected to the nature of the adopted 
instrument, the RANSAC tolerances for façade segmentation have been changed with 
respect to the previous tests. In the same way, cell size of the bitmap was increased up 
to 2 cm to take into account the lower data density. In Tab. 5.2 a summary of the 
adopted parameters for the modelling process is presented.  

A visual representation of segmentation results is given in Fig. 5.22. A more detailed 
analysis of the data is reported in Tab. 5.3 and Tabs. 5.18 – 5.19. 

Tolerance 
(%) 

‘Nave building’ results for reference planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of 
missed 

segment 

Commission 
error (%) 

Omission 
error (%) 

0.8 604 0 0 1 0.2 7.1 

0.85 599 5 0 1 1.0 7.8 

0.9 593 11 0 1 2.0 8.8 

0.95 587 17 0 1 3.0 9.7 

Tab. 5.18. ‘Nave building’ results for reference planes. 
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a.  

b.  
Fig. 5.22. ‘Nave building’ segmentation results: (a) original point cloud; and (b) segmentation results; 

each detected segment is represented with a different colour. 

Tolerance 
(%) 

‘Nave building’ results for detected planes 

No. of correct 
segmentation 

No. of over-
segmentation 

No. of under-
segmentation 

No. of noise 
segment 

0.8 604 0 0 46 

0.85 599 12 0 39 

0.9 593 32 0 25 

0.95 587 47 0 16 

Tab. 5.19. ‘Nave building’ results for detected planes. 

Also in this case, in the tolerance range 0.8 ÷ 0.9 the number of correctly detected 
segments is almost constant. Unlike, the previous cases a quite significant amount of 
over-segmentation and missed instances can be noticed. These results may be due to 
the higher noise present in the dataset which has influenced the estimation of the local 
normal. In particular, over-segmentation results are connected to some small segments 
at the edge of larger regions or inside some regions where the noise and the lower data 
density made quite difficult the proper estimation of the local normal vector.  
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The obtained building model in CAD format is presented in Fig. 5.23, while 
comparison results between manual and automatic models are presented in Tab. 5.3 
and Fig. 5.24. Also for the geometric evaluation the tolerances need to be relaxed to 
take into account for the lower point density.  

The number of correctly detected edges at different tolerances has followed the same 
distribution as in previous experiments. Obviously, due to the higher noise and the 
lower density, a good accordance between the manual and automatic results can be 
observed only up to ±1.0 cm tolerance. 
 

a. b.  

c.  

Fig. 5.23. Geometric reconstruction of ‘Nave building’ dataset: (a) final 3D digital model of the façade 
with a detail view of a window (b); and (c) façade model with overlaid point cloud. 

As previously anticipated, a large missing area due to an occlusion is present in the 
dataset. However, the developed procedure for RPD has given the possibility of 
recovering the missing façade objects (Fig. 5.25a). Although this façade shows a quite 
complex repetition scheme, the developed procedure has succeeded in detecting all 
the repeated patterns. 
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Fig. 5.24. Geometric reconstruction analysis for ‘Nave building’ dataset. 

a.  

b.  

Fig. 5.25. Results of RSD algorithm for ‘Nave building’, each repeated pattern is shown with a 
different colour (a), and (b) semantic reach model of the ‘Nave building’ in CityGML format. 
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The confusion matrix for this dataset is presented in Tab. 5.20. The overall 
classification accuracy is 99.5%. A misclassification of a door element is observable. 
This is given by the fact the door is in the same geometric plane of the main façade 
wall, while classification rules assume a door element as an intrusion. The final 
CityGML model is presented in Fig. 5.25b. 

  ‘Nave building’  

Reference 

No. of 
wall 

No. 
of 

roof 

No. of 
sidewall 

No. of 
window 

No. 
of 

door 

No. of 
ground 

No. of 
attachment Total Commission 

error [%] 

C
la

ss
ifi

ed
 

No. of wall 7 0 0 0 0 0 2 9 22.2 

No. of roof 0 4 0 0 0 0 0 4 0.0 

No. of 
sidewall 

0 0 388 0 0 0 0 388 0.0 

No. of 
window 

0 0 0 188 0 0 0 188 0.0 

No. of door 1 0 0 0 1 0 0 2 50.0 

No. of 
ground 

0 0 0 0 0 2 0 2 0.0 

No. of 
attachment 

0 0 0 0 0 0 12 12 0.0 

Total 8 4 388 188 1 2 14 605 
 

Omission 
error [%] 

12.5 0.0 0.0 0.0 0.0 0.0 14.3 
  

Tab. 5.20. Confusion matrix for ‘Nave building’ dataset. 

5.2.5. Conclusions 
In this section different tests on some reals façades are presented to evaluate 
performance of the developed modelling procedure.  

The developed segmentation strategy proved to be quite robust. Indeed, statistics 
revealed a low number of commission and omission errors proving the method is able 
to detect in a correct way planes also in the case of restrictive tolerances. The 
robustness of the method is also proved by the fewer instances of missing and noisy 
segments, proving that there is a strict matching of points between reference and the 
obtained segmentation results. Some instances of over segmentation are mainly due to 
non-conformance of some features segments to the planar assumption. Also noise in 
the local normal evaluation may generate over segmentation problems. On the other 
hand, in Chapter 1 it has been already observed that over-segmentation may be 
recovered at a late stage by grouping together several segments. The developed 
segmentation strategy was also successful in detecting both larger surfaces (e.g., 
walls, roofs) as well as smaller features (e.g., parts of windows frames). 

The geometric accuracy of the reconstructed models is also evaluated. Obviously, 
different results have been found according to the point density of each dataset. 
However, the obtained results can be considered as similar to the ones obtainable with 
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a traditional manual modelling procedure. Some problems still exist in the case of 
high fraction of missing data. For those cases, a first automatic modelling followed by 
a manual editing to fix the problems seems the most adequate procedure to save time 
and minimize the human effort. 

The algorithm for façade regularity detection proved to be able to detect complex and 
interlaced grids of repeated elements. Detection and exploitation of repeated patterns 
was effective for completion of missing parts in the case of high repetitive structures. 

The experiment proves that the developed object classification strategy is effective. 
Indeed, overall classification accuracy, precision and recall are always satisfactory. 
Some problems still exists for correct classification of some features. In particular, 
some confusion situation may be found among doors, walls, and roofs. This is given 
by the fact that some of the defined rules does not cover a complete set of clauses to 
ensure correct classification. A higher specialization of these rules can be used to 
partially overcome this limitation. 
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Chapter 6 
Other applications 

 

 

 

This chapter presents some extensions of the developed automatic façade modelling 
approach described in the first part of this dissertation. Indeed, the obtained building 
models can be integrated with other data sources to obtain a more complete 
representation. 

For thermal retrofitting of existing buildings, evaluation of the thermal efficiency is of 
primary importance to properly design the intervention. Infrared Thermography (IRT) 
has been proved to be a valuable diagnostic tool for characterization of buildings’ 
thermal behaviour and detecting thermal bridges and heat losses from the envelop 
(Maldague 2001). However, the use of IRT data for metric purposes presents several 
limitations due to the reduced resolution of thermal sensors, the large distortion 
introduced by the thermographic lens systems, and the impossibility of making 
precise geometric measurements directly on the images. To partially overcame these 
limitations, in Section 6.1 a procedure based on the combination of thermal 
information derived from IRT and geometric information of building structure is 
presented. 

On the other hand some of the algorithms developed for façade modelling can be 
extended, and partially modified, for other applications. 

In particular, the developed segmentation strategy can be used for scan registration. 
Point cloud acquisition by using laser scanners provides an efficient way for 3D as-
built modelling of urban environments. In the case of large structures, several scan-
points are needed to cover the entire scene and this result in a registration problem 
(Vosselman and Maas 2010). Several solutions based on artificial targets are 
nowadays available in commercial software packages. However, artificial targets may 
not be placed in all situations and a different registration strategy is required in those 
cases. Identification of the same geometric features among a series of scans can be 
used to work out the rigid-body transformation useful for the registration of each scan 
into the global reference system of the final point cloud. This may be an interesting 
solution for urban and architectural scenes which presents the prevalence of some few 
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basic geometric shapes. For this reason, a method based on the extraction of planar 
features for scan registration is presented in Section 6.2. 

Laser scanners are often used not only for generation of detailed models of building 
façades but also for indoor environments (Budroni and Boehm 2005). Automatic 
reconstruction of buildings’ exteriors share many properties (and problems) with the 
issues associated with indoor modelling. Typically, many of the algorithms useful for 
the reconstruction of exterior building models can be adapted for indoor 
reconstruction, as well. However, exterior façade modelling methods operate under 
the assumption that the surface being modelled is relatively free from obstructions. 
Even if this may be a reasonable assumption for outdoor scanning, in indoor 
environments objects like furniture and wall-hangings frequently may occlude the 
wall surfaces, making the modelling problem more challenging. For this reason, the 
approach developed for façade modelling was extended to indoor environments (Sect. 
6.3) to work with significant amounts of clutter and occlusion. 

6.1. Façade model integration with IRT images 
In the domain of conservation and maintenance of existing buildings IRT has proved 
to be an adequate and efficient technique (Maldague 2001, Martı́n-Ocaña et al. 2004, 

Ribarić et al. 2009). However, both surface temperature and geometry are needed for 
a reliable evaluation of thermal efficiency, where spatial relationships are important to 
localize thermal defects and quantify affected surfaces. For this reason a procedure is 
developed to combine the geometric content of automatically derived building models 
and the temperature information derived from IRT into a single framework. These 
result in a thermography-textured 3D digital model of a building. This model can be 
interactively browsed, opening in this way new possibilities for the investigators. In 
addition, starting from the textured models, also raster products can be obtained like 
thermographic-mosaics, orthophotos, and rectified images. 

The key factor for a fruitful integration is the co-registration of the thermal images 
and the geometric 3D model of the building. According to the structure of the surface 
and to the image acquisition procedure, the problem can be coped with in different 
ways. A simple homographic transformation can be correctly used only when the 3D 
model of the building façade is flat (González-Jorge et al. 2012). Homography 
estimation requires the identification of at least four corresponding control points 
(CPs) on both image and object surface. If the façade surface has a more complex 3D 
shape, homographic model does not hold any more (exception is made for almost flat 
objects with only small off-plane parts). A more comprehensive approach for image 
registration is based on collinearity equations which are normally used in 
photogrammetry to describe the perspective transformation process behind image 
formation (Luhmann et al. 2006). In this case there are two opportunities both based 
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on 3D perspective transformations: (i) single image resection or (ii) bundle 
adjustment of a block of images.  

The former technique (Abdel Aziz and Karara 1971) is the most popular in most 
commercial software packages. In this case the registration of each image can be 
directly performed by using collinearity equations and by knowing coordinates of at 
least 3 GCPs (e.g., by using a theodolite or directly from the point cloud derived from 
TLS). Coordinates of GCPs have to be measured on the images as well to obtain an 
estimate of camera parameters (position and attitude). However, images are processed 
independently increasing the number of points to be measured and determining some 
problems in overlapping areas between consecutive images. Furthermore, the 
achievable accuracy of the orientation with texture-less images can be questionable. 

In photogrammetry, a bundle adjustment approach is used to partially overcome these 
problems (Luhmann et al. 2006). Several images are registered in a common reference 
system through the solution of a linearized system of collinearity equations. The 
unknowns of the system are the six exterior orientation (EO) parameters of the 
images, while the intrinsic calibration parameters are usually considered as fixed after 
their estimate with a preliminary calibration project. Additional GCPs are used to 
control the solution and setup the reference system. Bundle adjustment has also the 
advantage of exploiting common points between images, reducing so that the total 
number of points to be measured. However, as thermographic cameras have intrinsic 
parameters similar to a telephoto lens (narrow field-of-view and long focal lens) it is 
rather difficult to obtain a block of thermal images suitable for a stable adjustment. 
Indeed, because of the limited field-of-view thermal image blocks generally present a 
low ratio between image baselines and camera-object distance. For this reason a 
simple bundle adjustment of thermal images could provide unreliable results. Here a 
different approach is used to avoid instability problems and to increase precision of 
EO estimation. The developed methodology makes use of thermal and RGB images 
acquired independently, e.g., even in different days. However, the combined 
orientation of both datasets and the larger resolution and format of RGB images help 
compute the EO of thermal images. 

6.1.1. IRT image integration overview 

As previously anticipated the integration between thermal data and geometric building 
model is obtained by mapping thermal images on the 3D semantically enriched model 
of the building derived from the procedure described in Part A. Main steps of 
processing IRT data are reported in the following subsections, while more details can 
be found in (Previtali et al. 2013b). As shown in the workflow in Fig. 6.1, the 
procedure can be divided into two main parts: thermographic image processing and 
automatic façade model generation.  
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Fig. 6.1. Workflow of the proposed methodology for the generation of a thermographic textured 3D 

façade model. 

Once both parallel processing of image and point cloud processing are completed, 
their integration is accomplished by texturing the building model with thermal images. 
The procedure adopted for texture mapping is described in (Previtali et al. 2012). 

6.1.2. Thermal camera intrinsic calibration 
In order to use a camera for photogrammetric purposes, its calibration should be 
carried out to determine the interior orientation parameters and to compensate for the 
effects of lens geometric distortion. In the applications considered in this study, 
neglecting the correction of distortions may lead to a significant worsening of the 
final quality of the textured model.  

In the case of IRT sensors, the pinhole camera model can be assumed and calibration 
applied by using standard photogrammetric methods. However, IRT cameras are not 
designed for metric purposes and their calibration may not be an easy task for a series 
of reasons (see also Luhmann et al. 2013): 

• geometric lens distortion could be quite large, especially at the borders of the 
images; 

• because of the shorter wavelength of IR spectrum with respect to the visible 
one, the diffraction disk diameter is much larger, resulting in a larger pixel 
size in the thermal sensors; 
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• in terrestrial applications the IR image resolution is generally in the order of 
640x480 pixels or lower (except in some highly expensive sensors); 

• auto-focusing systems cannot be usually turned off causing instability in the 
interior orientation parameter estimation; and 

• the limited field of view makes more difficult to carry out a calibration project. 
 

All these aspects should to be taken into account for planning the calibration project, 
in order to fix a proper set of ‘best practice rules’ to be generally adopted. 

Cameras used in this research for IRT surveys were calibrated by using the Brown’s 
model (Brown 1971), which is based on 8 parameters (principal distance, principal 
point coordinates, 3 coefficients for radial distortion compensation, and 2 parameters 
for decentring distortion). These parameters can be estimated by using a proper 
calibration target set (Fig. 6.2), which must be imaged from different positions. The 
solution here adopted is based on a set of 40 iron nails fixed in a wooden structure. 
When exposed to sunlight, nails warm up faster than wooden background and become 
clearly visible in IR images (Gianinetto et al. 2005).  

a.  b.  

c.  

Fig. 6.2. The wooden panel with the iron nails used for IR camera calibration as it is depicted in an 
RGB image (a) and in IR image (b-c), respectively. 

Each of these nails was also measured with a first order theodolite Leica TS30. The 
3D coordinates of all nails and the corresponding image coordinates, manually 
measured on all images, are included in a bundle adjustment, whose solution includes 
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also the Brown’s model calibration parameters. The average precision of this 
procedure can be evaluated through the estimated statistical quality parameters 
computed along with the bundle adjustment. In the case under consideration, the 
computed set of parameters allowed to transform points from the images to the real 
word with an average residual error of ±2 mm. Calibration results for camera FLIR-
Tau 640 adopted in the test described in Paragraph 6.1.4.2 are presented in Tab. 6.1. 

Parameter Calibration result  σ 

Focal length c 19.0851 mm 5.24 x 10-3 

Principal point xp 0.0616 mm 7.10 x 10-3 

Principal point yp 0.1216 mm 6.24 x 10-3 

K1 -1.16 x 10-3 2.61 x 10-5 

K2 6.43 x 10-6 2.20 x 10-5 

K3 0 0 

P1 0 0 

P2 0 0 

Tab. 6.1. Calibration results for thermal camera FLIR-Tau 640. 

6.1.3. IRT image orientation 
The solution presented here is based on a global photogrammetric bundle adjustment 
combining both IR and RGB images, which tries to overcome some drawbacks 
connected to standard space resection and to the bundle adjustment of IR images only 
(Previtali et al. 2013).  

The procedure starts with the acquisition of an adequate set of RGB images with a 
calibrated camera, meaning that the image block should satisfy the standard 
requirements of a close-range survey in terms of image overlap, baseline between 
consecutive images, image resolution (Fraser 1984). For instance, in the case of a 
planar-like façade, a simple strip of images with an overlap of about 80% can be a 
good choice which allows one to find Tie Points (TPs) on 3-4 images. In building 
surveys some factors like occlusions caused by surroundings buildings and/or trees, 
logistics limitation and the like, might influence the block design. Consequently, a 
trade-off between concurring requirements has to be defined.  

Then, RGB images are oriented within a standard photogrammetric bundle 
adjustment, which is based on a set of TPs measured on the images, and some GCPs 
that are used to register the project in the reference system of the building model. An 
important consideration deserves to be mentioned: TPs individuated in this first step 
will be used for the registration of IR images. For this reason TPs should be 
preferably measured in correspondence of elements that are clearly visible in both 
RGB and IR images (e.g., window and door corners). This strategy may turn out in 
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increasing the processing time of the bundle adjustment of the RGB images, if 
compared to a standard photogrammetric project where the integration of IR images is 
not needed. On the other hand, the larger number of TPs will help the registration of 
the IR data.  

After the registration of all RGB images IR images can be added to the block by 
measuring some TPs between RGB-to-thermal and thermal-to-thermal points. A final 
combined bundle adjustment including all images is finally carried out to obtain the 
EO parameters of all images simultaneously. This allows the creation of a more robust 
image block made up of both images, where RGB images strengthen the bundle 
adjustment solution and allow the estimation of reliable EO also for thermal images.  

6.1.4. Applications 
In this subsection two application of the developed integration procedure are reported.  

6.1.4.1. ‘Nave building’ 

A first application example of the developed orientation technique is the ‘Nave 
building’ of Politecnico di Milano.  

a.  b.  

c.  

Fig. 6.3. In the upper row, (a) an RGB image with the measured TPs (red crosses); and a 3D view 
showing camera poses of both RGB (red) and thermal (blue) datasets (b). In the lower row (c), some IR 
images used for texturing the 3D model with measured TPs; red lines are a graphical representation of 

the residuals after registration through the bundle adjustment (a magnification factor 50 is applied). 
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Firstly, 17 RGB images acquired with a Nikon D80 equipped with a 20 mm Sigma 
lens were registered within a bundle adjustment. In this project 16 retro-reflective 
targets, measured with a theodolite Leica TS30 and also employed for the registration 
of laser scans were used as GCPs during bundle adjustment. As can be seen in Fig. 
6.3b the irregular distribution of both RGB (red cameras) and IR images (blue 
cameras) depends on the presence of several occlusions due to obstacles like other 
buildings and trees. Then, 65 IR images were included in the bundle adjustment by 
using more than 600 TPs previously measured in the RGB images. Thermal images 
were acquired with two different IRT cameras (AVIO TVS700 and NEC TH9260) 
and were included in a unique adjustment with different sets of intrinsic calibration 
parameters. The high number of TPs used is connected to the narrow field-of-view of 
both thermal cameras that limits the number of elements clearly measurable in each 
image (Fig. 6.3c).  

a.  

b.  

Fig. 6.4. IR orthoimage (a) of the ‘Nave building’ of Politecnico di Milano and the 3D model textured 
by IR thermal images (b). 

Statistics on the combined bundle adjustment show a final sigma nought of about 1.2 
pixels. This result can be considered as fully acceptable due to the low geometric 
resolution of IR images. In fact, the ground sampling distance (GSD) of thermal 
images was about 1 cm while the one of RGB images was 1 mm, meaning one order 
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of magnitude difference. In Previtali et al. 2013 a quantitative comparison of different 
registration techniques for IRT, RGB and building model are reported and discussed. 
This analysis involved the use of a set of check point, with respect to which residuals 
after image orientation have been worked out. In particular, discrepancies for 
homography and space resection method revealed being much larger than those 
obtained from the combined bundle adjustment. Final orthophoto results are presented 
in Fig. 6.4. 

6.1.4.2. ‘Building no. 34’ 

A second case study is the ‘Building no. 34’. In this case the thermal survey was 
carried out by using an unmanned aerial vehicle (UAV) platform. Indeed, UAVs may 
be really useful for thermographic analysis. The use a UAV platform allows exploring 
areas inaccessible from the ground like roofs. In addition the possibility to reduce the 
camera-object distance allows one to enhance the ground sampling distance (GSD). 
This effect is particularly evident in the case of tall buildings. In these cases, images 
acquired from the ground may present a GSD of several centimetres at top floors, 
while the use of a UAV gives the chance to obtain a uniform GSD all over the 
building. The thermographic survey was carried out by using UAV platform (Fig. 
6.5a-c) AscTec Falcon 8 (70 cm x 60 cm, weight 2 kg), equipped with 8 motors and 
able to fly up to 20 minutes with a single battery.  

a.  b.  

c.  d.  

Fig. 6.5. The ASCTEC Falcon 8 equipped with a FLIR Tau 640 thermal camera (a-c); and (d) the 
thermal image acquisition procedure. 
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The system presents an actively stabilized camera systems that allows mounting 
different payloads. In particular, in experiments 5 RGB images were acquired with a 
Sony NEX-5N camera and 11 thermal images were recorded with FLIR Tau 640 
camera equipped with a 19 mm lens system. The electronic equipment of the Falcon 8 
includes a GPS antenna and a system of accelerometers determining the system roll, 
pitch and yaw. The communication system allows the ground station to receive 
telemetry data and video signals from the on-board sensors. During the survey the 
UAV can be remotely controlled by a human operator while thermal images were 
acquired by using a laptop to record the video signal from the thermal camera (Fig. 
6.5d).  

The survey was completed by acquiring 18 RGB images from the ground. Two 
thermographic campaigns were performed, the first one in winter (March 16th, 2013), 
the second in summer (July 9th, 2013). In both cases thermal images were acquired 
with the UAV following a vertical strip. 

As described in Sect. 6.1.3, the orientation of these images was performed in two 
steps. First, the RGB images were registered within a bundle adjustment. In this 
project 10 natural points (e.g., window and door corners) measured with a Leica TS30 
were used as GCPs during the bundle adjustment. Then, starting from 30 TPs 
measured in the RGB images, 11 IR images were included in the bundle adjustment. 
Statistics of the combined bundle adjustment show a final RMS of about 0.9 pixels 
(Fig. 6.6).  

a.

 

 b.  

Fig. 6.6. Thermal image processing: (a) the acquired thermal images; and (b) camera poses: red 
cameras are IR images, whereas blue cameras represent RGB images. 

After the registration of IR images in the same reference system of laser scanning 
point cloud, data were mapped and mosaicked on the digital model of the façade, and 
then the final thermal orthoimages were derived by simply projecting the data on a 
plan parallel to the façade. Orthophotos shows the presence of some thermal 
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anomalies on the façade. In particular, the presence of some closed doors and other 
objects that are not visible in standard RGB pictures (Fig. 6.7) have been evidenced. 

IR March 2013 

 

IR July 2013 

 

RGB March 2013 

 

Fig. 6.7. Façade thermal orthophoto: March 2013 (a), July 2013 (b) and RGB (c). 
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6.2. Scan registration using planar features 
Point cloud registration plays an essential role in static terrestrial laser scanning data 
processing. In this paragraph, a methodology based on planar features is used to 
combine multiple scans. 

Even if different approaches were developed for scan registration (the reader is 
referred to Barnea and Filin (2010) and Vosselman and Maas (2010) for a more 
comprehensive overview on this topic) target-based approaches are the most 
commonly employed. Indeed, given a sufficient number of 3D point correspondences 
(at least 3) parameters of a rigid-body transformation between the instrumental 
system, termed Intrinsic Reference System (IRS), and a Ground Reference System 
(GRS) can be achieved (see Eq. 6.1 and Fig. 6.8): 
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where (x1, y1, z1) and (x2, y2, z2) are the reference system to register, IRS and GRS 
respectively, R is a 3×3 rotation matrix and T is a 3×1 translation vector. 

 
Fig. 6.8. The general scheme of laser scanning measurements and registration procedure. 

In target based registration approaches targets are used as corresponding elements 
between scans. They are made of special materials and/or with a particular shape and 
can be automatically detected and matched in each laser scan. However, artificial 
elements have to be added to the scene, which is not always possible, and have to be 
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placed in positions which are stable in time to allow a good scan registration. This 
may be a difficult task in the case the same object needs to be scanned at different 
epochs. In addition, a good distribution of targets in the analysed scene is not always 
achievable because of practical reasons (e.g., when some part of the object cannot be 
reached). The use of geometric features can be a partial solution to these problems. 
Indeed, no artificial targets need to be placed and the geometric variation of feature 
object between different epochs is generally negligible. 

In many applications also surface matching techniques are used for scan registration. 
Among all these methods, the Iterative Closest Point (ICP) algorithm (Besl and 
McKay 1992) is the most exploited. ICP for point cloud registration works without 
any pre-knowledge about the point-to-point correspondences. It establishes point-to-
point correspondence iteratively based on the minimum Euclidean distance. If the 
initial values are good enough, this procedure usually converges. ICP is a pair-wise 
registration procedure, and cannot reliably handle simultaneous registration of 
multiple scans. This results in the propagation of registration errors as more scans are 
acquired and added to a project. In addition, ICP requires good initial approximations 
to solve for the relative orientation unknown parameters. For this reason some manual 
measurements of a few correspondences are generally needed. Different approaches 
have been proposed to make ICP more robust by filtering the correspondences for 
effective handling of occlusions (Zhang 1994, Guehring 2001). A comparison of 
different ICP variations is given by Rusinkiewicz and Levoy (2001). Compared with 
standard surface registration approaches (like ICP) registration with features allows 
for global registration (Scaioni and Forlani 2003). Indeed, standard ICP registration 
approaches can only handle a pair of scans at a time. This leads to accumulation of 
errors and sub-optimal use of available information. Conversely by using global 
registration leads to optimal use of available data. In addition, as noted by 
Bennamoun and Mamic (2002) ICP just produces registration without giving any 
information about reliability and confidence of the estimated registration parameters. 
Conversely the presented approach is a direct application of Least Squares fitting and 
gives a full covariance matrix of the fitted parameters. 

This section presents a registration method based on the identification of planar 
features in the acquired point clouds. Unlike the procedure adopted in Part A, rather 
than registering scans first and then modelling, first the unregistered scans are 
analysed and planar objects detected. Then the corresponding models are used to co-
register scans. 

The possibility to used geometric features for scan registration solution is a well know 
topic in the literature. Similar approaches are presented in Dold and Brenner (2006), 
Rabbani et al. (2007), Wang and Brenner (2008) and Van Gooret al. (2011). For this 
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reason the approach discussed in this section is not revolutionary with respect to 
methods already published, but it attempts to increase the automation degree and the 
robustness, as well as to get rid of manual measurements, by using the segmentation 
algorithm described in Chapter 1 as the basis for scan registration. 

Man-made and urban environments consist mainly of objects that can be modelled by 
using a set of a few well defined objects characterized by a planar geometric model. 
Determining the transformation parameters of different scans can therefore be based 
on aligning planar features often present in these environments (Dijkman and van den 
Heuvel 2000).  

 
Fig. 6.9. Workflow of the developed methods for scan registration with planar features. 

The developed method, presented in Fig. 6.9, works toward the solution in the 
following four steps: 

1. points are labelled as belonging to a certain planar object. This is done for 
several objects in different unregistered scans. This step can be automated by 
using the segmentation algorithm presented in Chapter 1; 

2. a Least Squares-based fitting algorithm calculates the object parameters for 
every object in each scan; 

3. correspondences between planes belonging to different scans are established. 
Although the correspondence specification in the actual implementation is 
done manually this process can be automated using either exhaustive search or 
RANSAC based random search through the parameter space. In particular, in 
the case of planes, a minimum of three correspondences are required for 
registration; and 
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4. the final transformation parameters are calculated by Least Squares.  
 
The first steps of the developed approach are already discussed in the previous 
chapters or are simple tasks. Only the Least Squares minimization of planes 
parameters is presented in the next section. 

6.2.1. Plane parameterization and scan registration 
In urban environments many objects consist of one or more planar faces that can be 
used for registration. Describing a plane by the normal vector n = [nx ny nz]

T and the 
perpendicular distance from the origin ρ (Fig. 6.10) provide a singularity free 
representation for infinite planes (Van den Heuvel 1999). This representation is also 
known as Hesse form of the plane and is more suitable for the Least Squares solution 
than other parameterizations. As a plane has only three degrees of freedom, a 
constraint on the length of normal vector n is introduced: 

1222 =++= zyx nnnn  6.2 

The estimation of registration parameters is obtained by Least Squares minimization 
of the sum of squared differences. Mathematically it can be expressed as follows: 
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where there are C correspondences between planes belonging to different scans. Each 
correspondence is established between two objects 1 and 2. ΨR,T is an operator that 
applies the transformation, defined by R and T, to the plane parameters ni,k and ρi,k (h 
= 1, 2). By using this strategy it is also possible to simultaneously deal with N number 
of scans.  

 
Fig. 6.10. Parameters of the plane, normal n and distance from the origin ρ. 
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In particular each plane provides three equations for the difference in normal vector nδ 
and one equation for the difference in the distance from the origin ρδ which is given 
by: 

( )21 nRnn ⋅−=δ  
6.4 

 

( ) TnR ⋅⋅+−= 212 ρρρδ
6.5 

 
 

From Eq. (6.4) it is possible to observe that the normal is only affected by the 
rotation, whereas Eq. (6.5) shows that the change in ρ is a function of both translation 
and rotation of the scan. To solve the non-linear Least Squares problem in Eq. (6.3) 
the Gauss-Newton method is used. In particular, by parameterizing R with Euler 
angles Ω, Φ and Κ, Eqs. (6.4 and 6.5) can be linearized as follows:  

VxA +=∆⋅ δ  6.6 
where: 
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represent the design matrix containing the partial derivatives of Eqs. (6.4 and 6.5) 
with respect to the registration parameters evaluated at the initial approximations; ∆x 
is the vector of unknowns corrections to the approximate values of registration 
parameters: 
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vector δ contains measured minus computed plane parameters 
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and V contains residuals. 

As can be noticed from previous equations partial derivatives of Eq. (6.4) and (6.5) 
with respect to parameters of scan rotation R and translation T are needed. In 
particular, by parameterizing R with Euler angles Ω, Φ and Κ, the partial derivatives 
with respect to rotation are as follows: 
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For translation T: 
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As can be seen from Eqs. (6.4 and 6.5) planes contributes to T only to the direction of 
the normal vector n. For this reason in order to have a reliable scan registration planes 
should be evenly distributed on the scene in order to give a proper estimation of T. 
For this reason a typical proper environment for the presented scan registration 
strategy using planar features is the case of indoor scans. Indeed, in this case room 
walls, floors and ceilings give a robust plane configuration for their registration using 
the presented method. 

The proposed cost function presumes equal weighting and uncorrelated object 
parameters. These assumptions may not be appropriate since significant differences in 
parameter precision and significant correlations between parameters may exist, 
depending upon data coverage of the object. These correlations can have negative 
effects on the convergence of this procedure. This can be taken care of by weighting 
the equations by the inverse of the covariance matrix obtained during model fitting. 
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6.2.2. Applications 
The procedure for scan registration through the use of planar features was attempted 
with datasets featuring different characteristics in terms of network geometry and data 
density. Two examples are illustrated here to present the main advantages and 
disadvantages of this method in real case studies.  

The first example consists in the registration of a single scan pair. These data were 
acquired with a FARO-FOCUS 3D laser scanner, which is based on phase shift 
principle for range measurement. The object is a university classroom. The 
dimensions of the room are 8 m × 4.5 m with a height of 3 m. Each scan (Fig. 6.11) 
consisted of 28 million points. The scans were segmented and planes recovered using 
the approach presented in Chapter 1. In particular, the parameters used to segment the 
two scans are presented in Tab. 6.1. The same parameters are used for both scans to 
have a uniform accuracy in the estimation of planes. 

RANSAC plane threshold ε 1 cm 
RANSAC normal threshold α 10 ° 

Bitmap cell size β 1 cm 
Tab. 6.1. Parameters used for “Classroom” and “Office-room” datasets segmentation. 

The number of recovered planes in Scan 1 is 15 while in Scan 2 are 16. As previously 
discussed, the correspondence specification has been accomplished manually 
although this process can be automated using RANSAC. The coordinate system of 
Scan 1 was defined as the global coordinate system. Approximate registration values 
for Scan 2 were obtained by selecting a minimal set of correspondences and solving 
for the corresponding system of equations. The final sigma nought (σ0) was 3.0 mm, 
while standard deviations of registration parameters are presented in Tab. 6.2. The 
standard deviations of the transformation parameters are obtained by propagating the 
standard deviations of the point measurements to the object parameters. Some steps of 
the registration procedure are shown in  Fig. 6.11. 

Scan Ω (rad) Φ (rad) Κ(rad) Tx (m) Ty (m) Tz (m) 
2 3.105 x 10-5 2.221 x 10-5 2.955 x 10-5 1.504 x 10-4 2.137 x 10-5 1.145 x 10-4 

Tab. 6.2. Standard deviations of estimated transformation parameters for ‘Classroom’ dataset. 

To register the same set of point clouds a set of artificial targets were used and 
compared with the results obtained with the developed registration method. By using 
target based alignment, a sigma nought of 2.0 mm was obtained. The difference 
between the translation vectors and the Euler angles Ω, Φ and Κ obtained from both 
registration techniques directly provides information about the misalignment (Tab. 
6.3). A further check was performed on the coordinates of the artificial targets 
showing a mean difference of 2.1 mm and a standard deviation of 0.9 mm.  
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a.   

b.  

c.  

d.  e  

Fig. 6.11. ‘Classroom’ dataset registration results. An overview of the classroom (a); segmentation 
results for Scan 1 (b) and Scan 2 (c), corresponding segments between the two scans are represented 

with the same color; scan alignment before (d) and after the registration (e).  
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These results are in good accordance with the precision obtainable for target 
alignment with the laser scanner used in this test. 

∆Ω = 0.0033° ∆Φ = 0.0023° ∆Κ = 0.0019° 

∆Tx = 0.00057 m ∆Ty  = 0.00032 m ∆Tz = 0.00051 m 

Tab. 6.3. Comparison between results of proposed and standard target based registration parameters 
for a pair of scans of ‘Classroom’. 

The second example consists in the contemporary registration of three scans of an 
office room (Fig. 6.12). Also in this case the scans are acquired with FARO-FOCUS 
3D laser scanner. The parameters used for the segmentation of the scans are the ones 
presented in Tab. 6.1. The number of recovered objects in Scan 1 – 3 is 20, 18 and 22, 
respectively. The coordinate system of Scan 1 is defined as the global coordinate 
system. Once pairwise correspondences between scans are defined, approximate 
registration values for Scans 2 and 3 were obtained by selecting a minimal set of 
correspondences and performing an independent pairwise registration to Scan 1. Then 
the final 3D global adjustment of all scans was performed using pairwise 
correspondences as described in the previous section. The final sigma nought was 3.2 
mm. Tab. 6.4 presents the standard deviations of registration parameters. 

Scan Ω (rad) Φ (rad) Κ(rad) Tx (m) Ty (m) Tz (m) 
2 2.988 x 10-5 3.157 x 10-5 3.126 x 10-5 1.998 x 10-4 1.567 x 10-4 2.346 x 10-4 
3 9.465 x 10-6 2.873 x 10-5 8.793 x 10-6 2.731 x 10-4 1.987 x 10-5 1.312 x 10-4 

Tab. 6.4. Standard deviations of estimated transformation parameters for ‘Office room’ dataset. 

Also in this case a comparison with target based registration was carried (see Tab. 
6.5). Differences on artificial targets show a mean difference of 2.4 mm and a 
standard deviation of 1.0 mm for Scan 2 and mean difference of 3.1 mm and a 
standard deviation of 0.9 mm for Scan 3. 

Scan ∆Ω (°) ∆Φ (°) ∆Κ(°) ∆Tx (m) ∆Ty (m) ∆Tz (m) 
2 0.0025 0.0041 0.0035 0.00050 0.00041 0.00041 
3 0.0034 0.0037 0.0022 0.00048 0.00057 0.00048 

Tab. 6.5. . Comparison between results of proposed and standard target based registration parameters 
for ‘Office room’ dataset. 

These results show registration statistics comparable with the ones obtainable by 
using coded target. This is mainly given by the fact that the indoor scene presents a 
high number of planar features having an extent covering the entire scene. Also their 
geometrical distribution was optimal for estimating in a reliable way the registration 
parameters. Indeed, planes were evenly distributed in all directions. Scenes with a 
lower number of planar features and a non-regular distribution of planes in space 
would give significantly worst results. This prevents a large and extensive use of the 
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presented solution for registration of outdoor scenes. Indeed in this case there are few 
planes having horizontal direction preventing a reliable estimation of the shift along 
the vertical. 

a.   

b. c.  

d.  e.  

f. g.  

Fig. 6.12. ‘Office room’ dataset registration results. An overview of the office room (a); segmentation 
results for Scan 1 (b), Scan 2 (c) and Scan3(c), corresponding segments among the scans are 

represented with the same color; estimated scan positions (e); and scan alignment before (f) and after 
the registration (g). 
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6.3. Indoor reconstruction 
Laser scanners are often used not only for generation of detailed models of building 
façades, but also for indoor environment reconstruction. However, also in this case it 
is a manual and time-consuming process. The most experiences reported in the 
literature (see next Subsection 6.3.1) concern the use of static TLS, but the recent 
improvements in the indoor mobile mapping systems (Biswas and Veloso 2011) are 
opening new great possibilities in this field. Indeed, the demand for indoor models for 
different purposes (planned maintenance, preservation and documentation, etc.) has 
recently increased. Thus a higher degree of automation would better satisfy different 
applications and speed up the processes.  

This section presents an automatic method for modelling predominantly planar indoor 
environment using laser scanner data. The presented methodology aims at generating 
reliable models despite the presence of significant amounts of clutter and occlusion, 
which frequently occur in building indoor. In particular, the developed approach can 
be used to detect and fill gaps in the input data by detecting occluded regions and 
model windows or door openings. 

6.3.1. State of the art 
As previously described in Subsections 1.2 – 2.1 – 3.1 – 4.1 several methods have 
been proposed for production of building façades models by using laser scanners (Pu 
and Vosselman 2009, Ripperda and Brenner 2009). These methods operate under the 
assumption that the surface being modelled is relatively unobstructed. Whether this 
may be a reasonable assumption for outdoor scanning, in indoor environments objects 
like piece of furniture and wall-hangings frequently occlude the wall surfaces, making 
the modelling problem more challenging. Indeed, for façade modelling in the case of 
occlusions (e.g., due to trees, parked cars, etc.) it is assumed that occluded regions can 
be observed from different viewpoints (Pu and Vosselman 2009) during the 
acquisition step. Obviously, such method would not work with significant, 
unavoidable occlusions as it is the case of indoor environments. An alternative in 
façade reconstruction is given by model-based approaches (Becker 2009, 
Koutsourakis et al. 2009). In particular, it is assumed that the occluded region is part 
of a repeated pattern. A top-down processing is used to predict patterns in façades and 
to replace missing data with other region that match the pattern, such as one of many 
identical windows on a wall. However, in the case of interior modelling, repetitive 
patterns of walls and windows are more unlucky to be identified and ad-hoc 
algorithms which are robust to clutter are needed. 

Currently, model reconstruction and visualization of generic indoor scenarios is still a 
difficult task (Furukawa et al. 2009). In fact, the reconstruction of interiors is mostly 
performed using interactive or semi-automatic approaches (Cyclone®, Pointools® . . .). 
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Many researchers have studied the problem of reconstruction of building interiors 
using laser scanner data (El-Hakim et al. 1997, Hahnel et al. 2003, Thrun et al. 2004, 
Budroni and Boehm 2005, Okron et al. 2010, Adan and Huber 2011). For some works 
the emphasis was given on creating visually realistic models rather than geometrically 
accurate ones (e.g., El-Hakim et al. 1997). Many authors used TLS data to construct 
detailed models of walls. Thrun et al. (2004) developed a plane extraction method 
based on the ‘expectation–maximization’ algorithm, while Hahnel et al. (2003) used a 
‘plane sweep’ approach to find planar regions. However, even if these algorithms 
work well for extracting planar patches from the laser data, they do not explicitly 
recognize the identity of components, such as walls, ceilings, and floors. In addition, 
several works (Hahnel et al. 2003, Thrun et al. 2004, Budroni and Boehm 2005) do 
not consider the occlusion problem because they focused on modelling of hallways 
with no furniture or other potentially occluding objects. 

‘Context-based’ building modelling was studied by several other researchers 
(Cantzler 2003, Nüchter and Hertzberg 2008, Rusu et al. 2008). These approaches 
rely on hand-coded rules. Recently, Koppula et al. (2011) used a graphical model to 
represent contextual relationships for recognizing objects in indoor scenes using 
3D+colour images (RGBD) from a Microsoft Kinect® sensor (Zhang 2012). However, 
defined rules are usually brittle and break down in the case of noisy measurements or 
significant lack in the data. 

A very specific area of indoor modelling, which has been the topic of intense efforts 
for automation, is the reconstruction of industrial environments. These scenes are 
characterized by repetitive elements such as beams or pipes. Current state of the art in 
commercial reconstruction tools is manual pre-segmentation in combination with 
automated fitting (Rabbani et al. 2007). 

This section presents an automatic method for modelling indoor environments by 
using point clouds obtained from static laser scanning. In particular, the proposed 
methodology addresses the challenges of clutter and occlusion by explicitly reasoning 
about them throughout the process. First, surfaces representing the room walls, ceiling 
and floors are detected in a robust way. Then, to understand the nature of occlusions, 
a ray-tracing algorithm is used to identify regions that are occluded from every 
viewpoint and to distinguish these regions from openings in the surface (e.g., due to 
doorways or windows). 

6.3.2. Indoor reconstruction method 
The developed methodology for automatic indoor reconstruction takes as input a set 
of registered scans with a known ‘up’ direction and the location of scanning point in 
the room. All these prerequisites can be easily obtained in practice. Indeed, scan 
registration is a well-studied problem, and methods to manual or automatically 
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register scans are available both in scientific and commercial software packages. Once 
scans are registered together, scan locations (position and attitude) are known. Also 
the vertical direction is generally known. This is typically directly provided by the 
scanner, since it is generally levelled. If the vertical direction is unknown, the 
orientation can be estimated using statistics on the data. For efficiency, the algorithm 
operates independently on each room. 

The first step in the presented approach (Fig. 6.13) is the detection and estimate of the 
surfaces to be modelled, i.e., walls, ceiling and floor. However, due to occlusions and 
clutter some wall may be missing in the dataset. For this reason an automatic 
procedure is implemented to complete missing elements in a plausible way. To 
achieve this, the developed algorithm incorporates architectural priors on indoor 
scenes, notably the prevalence of orthogonal intersections between walls. Once the 
surfaces describing the room are defined the remaining steps operate on each surface 
individually. In the second phase, each planar surface is analysed to identify and 
model the occluded regions and openings by using a ray-tracing algorithm. Openings 
in the data are detected by using labelling information while contemporarily a further 
classification is operated between windows and doors. Finally, occluded regions are 
completed in a realistic way. 
 

 
Fig. 6.13. Workflow of the developed methods for indoor modelling. 

The output consists of a set of labelled planar patches (wall, floor, and ceiling), 
adjacency maps indicating which patches are connected to one another, and a set of 
openings detected within each planar patch. These patches are intersected with one 
another to form a simple surface-based model of the room. The geometric models of 
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the room along with semantic information are combined together to derive a semantic 
rich models of the room in CityGML and/or IFC format. 

6.3.3. Room surface detection 
The general workflow for room surface detection is presented in Fig. 6.14. The first 
step in the developed methodology is to detect and estimate the surfaces (walls, roof 
and ceiling) constituting the room to be modelled. This detection is performed by 
using the segmentation strategy described in Chapter 1. Once the point cloud 
segments have been detected a first semantic classification, similar to the one 
described in Chapter 3, is performed to detect roof and ceiling. Indeed, by analysing 
the detected segments, the ceiling can be designed as the non-vertical plane having the 
lower height. Conversely the roof is detected as the non-vertical plane located at the 
highest level. In this way, the height of the ceiling and roof are determined (Fig. 
6.15a).  

 

Fig. 6.14. Pipeline for room surfaces detection. 

At this stage the floor plan of the room is determined. To this end, the walls 
constituting the room need to be detected. However, this problem is made more 
difficult due to clutter and occlusions. Some walls may not be sensed by the laser 
scanner and may miss in the point cloud. For this reason a proper completion is 
necessary to reconstruct in a plausible way these missing walls (Fig. 6.15b). 

A first rough floor plan of the room can be obtained by projecting the points 
belonging to the ceiling onto a horizontal plane. Indeed, the acquisition of the ceiling 
surface, due its location, is generally less influenced by clutter and occlusion than 
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other surfaces in the room. The horizontal plane is discretized into cells of size β x β 
and then an occupancy map is generated. In this map, white pixels represent elements 
where TLS data are available, while black pixels are grid elements with no data. 
Starting from this binary image it is possible to derive pixels representing the 
boundary of occupied cells which represent a first rough floor plan.  

a.  b.  

c.  d.  

Fig. 6.15. Detection of room surface for ‘Classroom’ dataset: (a) detected ceiling and floor; (b) some 
wall portions are missing (red circles) due to occlusions, (c) occupancy map of the ceiling with real 

walls (green segments) and spurious boundaries (red segments); (d) detected real wall surfaces. 

The optimal cell size β, as previously discussed, is a function of the mean sampling 
resolution in the point cloud. Due to occlusions the obtained plan may contain some 
spurious boundaries, i.e., the ones not associated to a wall (Fig. 6.15c). To validate the 
obtained boundaries a check is done with the segmentation results. In particular, only 
vertical segments falling inside the cells labelled as boundary are considered as real 
wall surfaces (Fig. 6.15d). 
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As previously discussed, a single small missing wall may jeopardize the entire 
reconstruction of the floor plan. In the developed strategy, these gaps are filled by 
incorporating additional, unseen ‘missing walls’ (Chauve at al. 2010). In indoor 
environment it is possible to observe that walls intersect orthogonally. For this reason 
missing walls are guessed as orthogonal to detected walls and are added from 
boundary of detected ones (Fig. 6.16a). 

a.  b.  

Fig. 6.16. ‘Cell complex’ construction for ‘Classroom’ dataset: (a) detected primitives with ‘missing 
walls’; (b) induced ‘cell complex’. 

To obtain a continuous floor plan from detected and missing walls, a procedure based 
on a ‘cell complex labelling’ is performed. As a first step a 2D arrangement 
(Edelsbrunner et al. 1986) is set up by using both detected and ‘missing’ walls. The 
arrangement generates a partition of the original space domain into convex polygonal 
cells (Fig. 6.16b). The final partition of the complex do not depends on the order in 
which primitives are inserted because each primitive cuts the entire complex domain.  

The floor plan reconstruction can be formulated as an optimal binary labelling of the 
‘cell complex’. Each cell is labelled as empty or occupied, and the floor plan can be 
extracted as the union of all facets separating an occupied cell to an empty one, 
obtaining this way a watertight and intersection-free boundary. This labelling problem 
is handled within the framework of minimum s - t cut on the cell-adjacency graph G 
=(V, E) of the partition: the vertices V are the cells of the polygonal ‘cell complex’ 
while the edges E link adjacent cells, i.e., they correspond to the facets of the 
complex. V is augmented with two additional seeds, a source s and a sink t, with 
edges from s to each cell and from each cell to t. All edges have non-negative weights 
w. A s - t cut (S,T) is a partition of V into two disjoint sets S and T such that s ∈ S and 
t ∈ T. The cost of an s - t cut is the sum of the weights of the edges from S to T. 
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Efficient algorithm with low-polynomial complexity exists to find the s - t with 
minimal cost, allowing a global minimization of the energy. A graph partitioning 
(S,T) corresponds to a binary labelling of cells (Fig. 6.17), where cells in S and T are 
respectively empty and occupied, and the cost of the cut to the energy of the 
associated surface. Weights of edges joining the source or the sink penalize the 
associated cells, while weights of edges between two cells penalize the associated 
facets. 

a.  b.  

Fig. 6.17. Example of s – t cut: (a) graph construction and cost assignment; (b) final binary labelling 
with minimum cost. 

Starting from the available data some cells can be directly categorized as occupied. In 
particular, all cells occupied by points belonging to the ceiling can be directly 
assigned to set T. In a similar way cells bordering an occupied cell and separated from 
it by a detected wall segment are set as empty. For this reason weights of edges 
joining the sink to cells labelled as occupied are set to infinite and, in a similar way, 
edges joining the source to empty cells are set to infinite. Then, weights of edges 
between two occupied cells and between two empty are set to infinite (Fig. 6.18a) and 
weights of edges connecting an empty and an occupied cell are set to zero. In this 
way, it is prevented that cells forming the inner part of the room are erroneously 
labelled as empty or vice-versa. For all other cells an equal unitary weight is 
associated to edges joining the cells to the source and to the sink because there is no a 
priori knowledge about the occupancy of a cell. Weights of remaining edges between 
cells are fixed equal to the length of the edge between the cells. This means that the s 
- t cut problems is aimed at minimizing the length of guessed walls segments (Fig. 
6.18b). To perform s – t cut, the Kolmogorov’s max-flow algorithms is used (Boykov 
and Kolmogorov 2004). Once having computed the S, T partitioning, the boundary of 
the occupied cells of the polygon partition gives the floor plan. 
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a. b.  

Fig. 6.18. ‘Cell complex’ labelling for ‘Classroom’ dataset: initial (a) and final (b) labelling of the ‘cell 
complex’. 

Finally, having obtained the floor plan and having previously defined the ceiling and 
floor heights the surfaces constituting the room can be easily defined. 

6.3.4. Reconstruction of openings under occlusions and clutter 
Once all surfaces constituting the room are detected the presence of openings is 
investigated. Detecting the boundaries of openings, such as windows or doors, in a 
wall is a difficult task. While in façade reconstruction applications windows are 
detected as holes in the façade point cloud, this does not generally hold for indoor 
environments. Indeed, also occlusions and clutter produce significant holes in the 
point cloud which have to be distinguished from real openings. In addition, also an 
opening may be partially occluded increasing the complexity of the problem. To this 
end a ray-tracing labelling is performed and an occupancy map is generated (Adan 
and Huber 2011). 

In this step each surface is separately processed. Once having defined previously the 
wall surface, points representing inliers for the defined plane can be easily detected. 
The detected plane is then discretized into cells of size β x β and then an occupancy 
map (denoted as M0) is generated based on whether inlier points are detected at each 
pixel location or not. Without additional information, it is not possible to distinguish 
between a pixel that is truly empty and one that is merely occluded. This problem can 
be solved by using a ray-tracing labelling to detect occlusion between the sensor and 
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the surface being modelled. For this reason the scanning locations (position and 
attitude) should be known. 

Let S = {S1, S2, …, SN} be the set of scan for the room to be modelled. For each scan 
position SK, a labelling LK is generated by tracing a ray from the scan location to each 
pixel Pi(x,y,z) labelled as empty in M0. Starting from cartesian (xyz) coordinates of Pi 
its spherical coordinates in the Intrinsic Reference System (IRS) of the scanner device 
can be determined. Indeed, by knowing the scanning location (position and attitude) 
the cartesian coordinates in the IRS can be obtained. Then from Eq. 6.14 spherical 
coordinates (range distance d, vertical or nadir angle α, horizontal or azimuth angle θ) 
can be derived.  

�	
��
���
��� = � ∙ �cos 	�	 ∙ cos 	�cos 	�	 ∙ sin 	�sin 	� � 6.14 

Having defined cell location in spherical coordinates, the 20-nearest neighbours for Pi 
can be easily defined. As a measuring distance between Pi and other points, θ and α 
angles are used. In the case the 20-nearest neighbours points have angular distance (θ, 
α) far larger than the predefined angular scanning resolution, this would mean that no 
reflected signal come to the laser scanner due to the presence of an opening. In this 
case the pixel Pi is labelled as empty.  

Conversely, if the angular distance is compatible with the predefined scanning 
resolution, the mean distance of the nearest neighbours is evaluated dmean = mean (d1, 
d2, .., d20). In particular, in the case the mean distance is lower than the Pi distance, 
this would mean that Pi is occluded by some points in the scan and the cell is 
consequently labelled. On the other hand if the mean distance is larger than the Pi 
distance, the cell is labelled as empty. After this ray-tracing labelling for all the scans, 
K labels for each pixel are obtained (Fig. 6.19). Then all the labels are combined in a 
final occupancy map LF adopting the following labelling rule: 

occludediLKjoccludediLandemptyiLIf Fj ==>=∀== )(,...,2,1,)()(0  

In other words, a cell is considered occluded if it is occluded from every scan-point 
(Fig. 6.19). 

Having obtained the occupancy map, openings can be easily detected by identifying 
cells’ labels. Then a procedure similar to the one described in Paragraphs 2.2.1 and 
2.2.2 is used to determine the shape of openings. A further classification is then 
performed between openings to distinguish between doors and windows. In particular, 
are classified as doors those openings intersecting with the ground.  
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a.  b.  

 

c. d.  

e.  f.  

 

g.  h.  

Fig. 6.19. Reconstruction of openings. Reflectance images of Scan 1 (a) and Scan 2 (b) used to model 
the wall; cell labelling for Scan 1 (c) and Scan 2 (d). Reflectance images of a wall with an opening of 

Scan 1 (e) and Scan 2 (f); cell labelling for Scan 1 (g) and Scan 2 (h). 

6.3.5. Applications 
To evaluate the presented modelling methodology the two datasets presented in 
Subsection 6.2.2 are used.  



Automatic segmentation, classification and extraction of repeated patterns for building façades modelling 
 

 

149 

 

The ‘Classroom’ dataset presents significant occlusions and clutter. In addition, a 
recess of the room is partially occluded by another wall. Once having registered the 
scan, the first step for indoor modelling is the segmentation of the point cloud. The 
following parameters were used:  
 

RANSAC plane threshold ε 1 cm 
RANSAC normal threshold α 20 ° 

Bitmap cell size β 1 cm 

Bitmap cell size for wall detection 5 cm 
Tab. 6.6. Parameters used for indoor modelling. 

a. b.

c. d.  

Fig. 6.20. Geometric reconstruction of ‘Classroom’ dataset: (a) room model with overlaid point cloud; 
and (b-c-d) final 3D room model. 

In Fig. 6.15a-b segmentation results are presented and distinction between room 
elements (floor, ceiling and walls) is presented. Once having defined the detected wall 
surfaces, ghost primitives are added and the complex arrangement is set up (Fig. 
6.16). Finally, occupancy maps are generated for all the detected wall surfaces. The 
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obtained room model is presented in Fig. 6.20. To evaluate the geometric accuracy of 
the model a performance analysis similar to the one presented in Section 5.1.2 is 
carried out (Fig. 6.21).  

 

Fig. 6.21. Geometric reconstruction analysis for ‘Classroom’ dataset. 

In particular, it can be noticed that the accuracy of the wall and opening boundaries is 
similar to the one obtainable with manual modelling of the point cloud. These results 
are confirmed also for the ‘Office room’ dataset (Fig . 6.22). In Fig. 6.23 a summary 
of the main processing step for the ‘office-room’ dataset are presented. 

 

Fig. 6.22. Geometric reconstruction analysis for ‘Office room’ dataset. 
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a.  b.  

c. d.  

e.  f.   

Fig. 6.23. Geometric reconstruction of ‘Office room’ dataset: (a) segmentation results; (b) detected 
primitives with ‘missing walls’; (c) induced ‘cell complex’ and (d) final labelling; (e) room model with 

overlaid point cloud; and (f) final 3D room model. 
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Conclusions and further developments 
 

 

 

This dissertation presented an automated methodology for building façade 
reconstruction aimed at supporting the thermal retrofitting of buildings built in the 
period 1950 - 1975. To achieve this final goal, a number of algorithms were 
developed to overcome different problems within the general framework. Both 
existing and new techniques were implemented. 

This research is based on the observation that bottlenecks in the terrestrial laser 
scanning (TLS) field, which is still the primary source of point clouds adopted in 
façade modelling, has been rapidly changed during the last decade. Indeed, for a long 
period the major limitations were due to the slow acquisition speed and manual 
registration problems. Fortunately, the hardware of terrestrial laser systems has been 
significantly improved in recent years, and the bottleneck of data acquisition has 
become less severe. Hereby, terrestrial laser scanning (TLS) of large areas is getting 
much faster and easier. Also the registration problem has been mainly overcome 
thanks to many consolidated techniques that have been introduced into practice. 
Consequently the bottleneck moved from the acquisition and registration to the 
modelling stage. This is partially due to the fact that the extraction of façade models 
requires the semantic interpretation of a very large variety of possible architectural 
elements, depending on the building typology, construction time, and style. Whether 
these tasks may be accomplished with ease (although in a time consuming fashion) by 
trained human operators, they are a critical issue for machine learning systems. In 
addition, point clouds may typically exhibit significant missing data due to occlusions 
increasing the complexity of the problem. However, even if façade modelling is a 
very active research field up to now, three are no commercial software packages 
allowing for automated façade modelling starting from point clouds. 

This research tries to give contribution to increase automation in the process that goes 
from the raw point cloud, to the geometrically enriched model of a building and 
finally to feed a Building Information Model.. 
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The developed approach can be considered as a multi-step process in which the 
building model is progressively and iteratively estimated and refined. 

The segmentation algorithms developed in this work show that detection of planar 
façade objects can indeed be helpful for efficient processing of large point-clouds. 
This is because primitive shapes possess several advantageous aspects which can be 
directly exploited in the modelling pipeline. First of all, because of the simple nature 
of the primitives, the user-controllable settings for the detection algorithm are very 
intuitive and are directly related to easily understandable geometric properties such as 
distance and normal deviation, which moreover are often of immediate relevance to 
the ultimate application. In addition, a single primitive can resume a large number of 
points and can serve as a basis for an efficient encoding of the building geometry in a 
more compact way. It is foreseen that the method will fail in detecting correct 
building outlines for complex building structures, such as curved walls, curved 
protrusions, or columns. More complete set of primitives might be included to detect 
these features. However, for the buildings target of this work almost all relevant 
façade elements can be modelled with planar shapes. Even if a lot of works was done 
for reducing bad-segmentation, some problems still exists and some over-
segmentation was found. For example, highly non-uniform distributed laser points can 
be seriously over-segmented at the sparse regions such that there is no sufficient clue 
for merging. In addition, the optimality of the decomposition is not guaranteed. For 
comparatively small tolerances, as used throughout this work, the suboptimality of the 
detection algorithm is mostly irrelevant because there is only a very limited set of 
possible segmentations since they have to fit the data tightly. Once the allowed 
tolerances are relaxed though, the number of possible segmentations dramatically 
increases and the suboptimality of the algorithm clearly shows up. Finally, the 
definition of proper parameters in the processing has to be defined by the user. The 
chance to have them defined in an automatic way would give a further important step 
to the automation of the entire process.  

The generation of the vector model of a building is the key task in the overall 
procedure because the geometric accuracy of the final model is the most important 
requirement for the digital model to be used for retrofitting drawing generation. The 
key factor is the implementation of some architectural priors like the prevalence of 
straight lines and orthogonal intersections in modern buildings, especially in the ones 
constructed in 1950 - 1975. The exploitation of this further constraint gives an 
important contribution to overcome problems reported by different works in the 
literature. In particular, the edge smoothing has provided good results in the 
regularization into lines and curves of long edges. In addition, the enforcement of 
surface intersections not only helps define the façade topology, but also increases 
break-line accuracy. Nevertheless, some problems still remain in correspondence of 
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curved and complex surfaces. In correspondence of these edges, the implemented 
algorithm may be significantly affected by noise. In addition further problems may 
arise when enforcing intersection of surfaces having curved edges. Some problems 
still exist in the case of high fraction of missing data. For those cases, a first automatic 
modelling followed by a manual editing to fix the problems seems the most adequate 
procedure solution to save time and minimize the human effort. 

The procedure for extracting semantic features from TLS point cloud is of primary 
importance for enriching with semantics the building model. This task gives an 
important contribute to the automation of ‘scan-to-BIM’ processing. Although the 
method worked well with the target datasets, the applicability is limited to the 
building shapes defined in the classification rules. For example, in the current 
implementation doors are described as ‘low features inside a wall façade,’ but doors 
might also appear inside a protrusion/intrusion façade (incomplete knowledge). This 
limitation can only be solved by improving and extending the defined rules. This 
means that for different building types, new façade classification rules need to be 
defined. However, the success of feature extraction not only depends on the 
classification rules, but also relies on the uniformity and completeness of the TLS data 
acquisition. Indeed, if a feature is partially occluded, the calculated geometric 
attributes and topology relations with other features would be unreliable. This may 
lead in turn to incorrect feature extractions. 

In some cases, building features may be partially or completely occluded during 
scanning. If a feature is completely occluded, it might be recovered later by exploiting 
high-regularity of building façades. Indeed, building façades target of this work can 
be represented as the repetition of some basic-geometries into multiple 2D periodic 
structures (lattices). Identification of these lattices may help fill holes and reducing 
occlusion problems. However, this technique can be used only in the case of building 
types presenting high regularity while it is not applicable to façades which cannot be 
described by a rectilinear mixture model, e.g., façades with completely irregular 
repetitive patterns. 

The examples proposed in Section 5 show that the proposed approach can 
successfully deal with different data acquired with different sensors.  

The application of this methodology to support thermal retrofitting may take 
advantage from integration of other data, for example RGB and thermal images, into 
the reconstructed model. An ad-hoc procedure has been developed to this purpose. 
Detection and matching of geometric features could also be used for registration of 
laser scans in urban environments. Indeed, urban environments can be mainly 
decomposed in a set of few basic primitive shapes and planar features are 
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undoubtedly the more frequent ones in architectural scenes. Although, as things stand 
now, it is difficult to forecast a massive use of such a method in complex practical 
projects. For some indoor surveys where no artificial targets can be used the presented 
approach may give satisfactory results.  

Finally, the procedure was adapted to reconstruct indoor environments. Even if some 
common problems are shared by outdoor and indoor environments, the latter case 
presents some specific issues. For this reason the previously developed algorithms 
were adapted to fit these situations. 

Future investigations 

While this research has been able to demonstrate the merit of a fully automated 
methodology for façade modelling, there still remain many avenues to pursue for 
future research. Indeed, quality and completeness of manual models is still superior to 
the ones obtained from automatic modelling. As previously anticipated this is related 
to the fact that generation of façade models requires the interpretation of point cloud 
data from a geometrical, functional and sematic point of view. This is even more 
complicated by the large variety of possible architectural elements, depending on the 
building typology, construction time, and style.  

For detection of primitives, further improvements in efficiency can be envisioned, 
especially if additional information is known in advance, for example the largest 
possible extent of a single primitive or the relative pose of certain ones. This means 
integrating the segmentation and the feature detection phase in a single step. Also the 
feature classification should be further developed to achieve more accurate feature 
recognition and incorporate more feature types. The improvements should be focused 
on two aspects. First, a more exact model to represent the uncertain situations should 
be raised. For example, the conditional belief between clauses should be considered. 
Second, further building types should be investigated and new rules formulated. 
However, extending the developed strategy to further building styles means that the 
ability of choosing the right classification rules should be developed. For this reason 
in the next level of research, the ability to ‘remember’ and ‘learn from’ experiences 
needs to be integrated into the processing pipeline. In this way the feature recognition 
should be more accurate when the procedure operates on a similar building. 

To achieve more accurate reconstruction, integration of imagery can be exploited. 
Image-based building reconstruction has been investigated for many years. From 
multiple 2D images captured from different positions, 3D coordinates of the image 
features (lines for example) can be calculated. Although acquisition of images is 
cheap and easy, the problems of image understanding make it still difficult to 
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automate the reconstruction process on the basis of images only. On the other hand, 
laser scanners allows for explicit and accurate 3D information extraction. For this 
reason, the laser data and images are complementary to each other, and efficient 
integration of the two data types will lead to a more accurate and reliable extraction of 
three dimensional features. Therefore, an image-based refinement method which uses 
strong line features extracted from images could be exploited to improve the building 
façade models generated from TLS point. This refinement not only may fix the 
models' geometry errors, but also could help overcome inconsistencies between laser 
and image data like occlusions. Even if different authors worked on that (Vosselman 
2004, Brenner 2005, Nex and Rinaudo 2009), a reference solution is not available yet. 

The developed idea of repeated pattern detection for model completion can be 
extended to other building styles than the ones target of this research. Indeed, the 
highly regular nature of building façades is widely demonstrated all over the world. 
For example, also historical 20th century buildings present complex decoration but 
arranged in regular patterns. The detection of these elements and their regularity can 
be used to speed up the modelling process of historical buildings. The base element 
can be modelled in an automatic or semi-automatic way, and then its repetition could 
be automatically recognized reducing this way the time needed for manual modelling. 
Also the detection of symmetries might also be beneficial to the completion of objects 
in several respects.  
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