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Automatic segmentation, classification and extraction of repeated patterns for building facades modelling

Abstract

Availability of realistic 3D building models is ingptant in many applications. In
urban planning the chance to explore 3D virtualiyeavorld is much more efficient
than the analysis of 2D maps. For public secuatgurate 3D building models are
indispensable to plan intervention strategies duemergencies. Also, virtual tourism
may largely benefit from highly realistic city mddge

The rapid development of terrestrial laser scannihS) devices allowed the
acquisition of point clouds of urban environmemtsairelatively reduced time. With
the considerable high point density and the exXpB& coordinates of such point
clouds, it is possible to recover both large streeet and fine details of buildings. In
addition, the increase of automation in the actjaisiand registration stage of laser
scans, in conjunction with a reduction of the afsnstruments, extended the chance
to use terrestrial laser scanners to a larger nurabeperators. This resulted in a
growing attention in generating as-built buildingdels on the basis of TLS point
clouds. In many cases such models are generateshdoyial modelling of each
building element. However, this is undoubtedly dhea time consuming and
expensive procedure that limits the widespreadedigsation of building models.
Automation in the reconstruction is essential teespup the processing, and thus the
time needed to deliver the final model can be gmed in comparison with manual
techniques. Indeed, only if a high degree of autmnas maintained throughout the
whole pipeline, from data acquisition to modellitigge economic sustainability of the
building model generation can be guaranteed. Howéaek of automated approaches
to understand the building structures capturedaw data is still underlined by
different operators in the Architecture, Enginegriand Construction (AEC) domain.

This thesis introduces a new procedure aimed aubmmated production of building
facades models. This method is principally desigieedenerate as-built models of
urban construction for thermal retrofitting. Indeeshergy efficient retrofitting of

existing buildings, mainly the ones built in thaipd 1950 - 1975, is a key aspect for
reaching the proposed energy consumption redudéioyets fixed by national and
international authorities. In this field, highlytdded as-built models of buildings are
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needed on one side for the thermal assessmentomntie other for producing
executive drawings. The developed approach candmsidered as a multi-step
process in which the building model is iterativetimated and refined starting from
the raw point cloud.

The presented methodology first accomplishes tgeeatation of the point cloud of
a building facade into its planar elements. Thearting from the identified planar
clusters, facade breaklines are automatically etacato be used later to generate a
3D vector model. During this step some priors oa thban structures like the
prevalence of straight lines and orthogonal intersas are exploited to set additional
constraints. Despite considerable effort, data inbth with range scanners may
suffers from occlusions. However, building facadesibit a high degree of self-
similarity and redundancy. For this reason an d#lgor was developed for the
reconstruction of incomplete models with the hdipnigh-level architectural objects
and the identification of repeated patterns in arkecades. The final product is a
semantically enriched 3D model of the building f&gahat can be integrated into a
Building Information Model (BIM).

To demonstrate the reliability, precision and rdbass of the method, several tests on
different kinds of datasets are illustrated andcused. The tests presented here
revealed that while reconstruction efficiency igonoved by the developed approach,

the geometric accuracy of derived models is alsoparable to the one achievable by

the standard modelling process.

The final building models have several applicatioms the last part of this
dissertation, the integration of building modelghahermal images is addressed in
detail. In recent years this task has become quapailar, but actual approaches may
not be able to provide accurate and rigorous resAltsolution is proposed based on
mapping of thermal data on the vector building nhodlke alignment of both data is
obtained with a combined photogrammetric bundl@stdjent including both thermal
and RGB images.

Finally, some of the algorithms developed for fagadodelling are extended, and
partially modified, to cope with other applications particular, the developed
segmentation strategy is tested for scan registrati urban scenes which present the
prevalence of some few basic geometric shapesudh sases, the identification of
the same planar features between scans is explate@termine their registration
parameters. A final extension of the developed rdlyms concerns modelling of
indoor environments. Indeed, automatic reconstuactf buildings’ exteriors share
many problems with the issues associated to indmmmmstruction, but in the last case
the scene may feature a higher degree of cluttdramclusion. For this reason a
tailored solution is presented and validated.



Automatic segmentation, classification and extraction of repeated patterns for building facades modelling

Contents

Abstract

Contents

Introduction
Motivation of the research
Overview of the dissertation
Structure of the dissertation

PART A

Chapter 1
Facade segmentation

1.1. Introduction and definitions
1.2. State of the art
1.2.1. Feature clustering
1.2.2. Region-growing
1.2.3. Model fitting
1.2.4. Hybrid techniques
1.3. Critical analysis of existing techniques
1.4. Facade segmentation
1.4.1. Point cloud pre-processing
1.4.2. RANSAC model fitting
1.4.2. Under- and over- segmentation removal

Chapter 2
Geometric reconstruction

2.1. State of the art

2.2. Automated facade modelling
2.2.1. Extraction of geometric edges
2.2.2. Edge smoothing

2.2.3. Reconstruction of facade topology and biizekextraction

© N 0 b~

10
11
13
13
14
16
19
19
22
24
25

34
35
39
40
44
48

29



CONTENTS

2.2.4. Geometric model export in CAD environment

Chapter 3
Semantic model enrichment

3.1. State of the art
3.2. The hierarchical classification approach
3.2.1. Facade knowledge
3.2.2. Facade classification rules
3.2.3. Semantic object classification
3.2.4. Enriched model and export file format

Chapter 4
Facade regularity detection

4.1. State of the art
4.2. Repeated patterns detection
4.2.1. Element clustering
4.2.2. Estimation of facade repeated patterns
PART B

Chapter 5
Experimental tests on real facades

5.1. Performance evaluation framework
5.1.1. Facade segmentation
5.1.2. Geometric reconstruction
5.1.3. Object classification
5.1.4. Regularity detection

5.2. Experimental tests
5.2.1. 'D’Oggiono building’
5.2.2. ‘Courtyard no.1 and no.2’
5.2.3. ‘Building no. 34’

5.2.4. ‘Nave building’
5.2.5. Conclusions

Chapter 6
Other applications

6.1. Facade model integration with IRT images
6.1.1. IRT image integration overview

6.1.2. Thermal camera intrinsic calibration

49

52
53
55
55
58
61
63

71
73
76
78
81
89

90
90
01
93
93
93
94
94

101

107

111

116

118

119
120
121



Automatic segmentation, classification and extraction of repeated patterns for building facades modelling

6.1.3. IRT image orientation
6.1.4. Applications
6.2. Scan registration using planar features
6.2.1. Plane parameterization and scan registration
6.2.2. Applications
6.3. Indoor reconstruction
6.3.1. State of the art
6.3.2. Indoor reconstruction method
6.3.3. Room surface detection
6.3.4. Reconstruction of openings under occlusamsclutter
6.3.5. Applications
Conclusions and further developments
Future investigations
Bibliography

Acknowledgements

123
124
129
132
135
139
139
140
142
146
148
152
155
157
172






Automatic segmentation, classification and extraction of repeated patterns for building facades modelling

Introduction

In many countries all over the word the reductidrenergy consumption and the
increase of efficiency in exploiting natural energyurces are playing an important
role in national and international policies (USDED2, CEC 2002, EPA 2002, USDE
2003, CEC 2007). For example, the European Unidy) (ixed ambitious climate
and energy targets for 2020 (CEC 2008, Bo6hringenlet2009), and also other
countries are following the same road map (Gidd20@39). Indeed, climate change
mitigation and sustainable practices are curregitlihe top of political and technical
agendas towards the goal of low carbon cities atr adhe word. European targets,
known as the ‘20-20-20’, are:

» 20% reduction in EU greenhouse gas emissions w#pact to 1990 levels;

* raising the share of energy produced from renewaddeurces to 20% in the
countries of the Union; and

* 20% improvement in the EU's energy efficiency.

To meet these goals a significant role is playedebgrgy efficient buildingsA
building can be defined as ‘energy efficient’ ifistdesigned to provide a significant
reduction of the energy needed for heating andimgolin particular, energetic
gualification of buildings based on energy consuampias described in directives
such as 2010/31/CE for the EU) becomes a standardvaluate the thermal
efficiency.

Even if a great attention is paid to the topic &éro Energy Buildings’ (ZEBs), also
the retrofitting of existing ones plays a fundanaéntle to reach the EU’s target. For
this reason the development of methodologies fdiast evaluation of thermal
efficiency of such buildings and technologies foeit retrofit are growing in their
interest. In particular, buildings dated betweeb@@nd 1975 were constructed in an
era when little or no consciousness was on takiage f energy efficiency
performance (Fig. 1). They are furthermore thos#, taccording to recent reports
from the Architect Council of Europe, are requiriegvelope refurbishment to
guarantee their future exploitation as residenpialoffice buildings (ACE, 2012).
Unlike historical buildings for which the refurbisient has to respect precise
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restriction and must be controlled by specific auties, regular civil buildings are
subjected to a limited number of constraints (faraple, the original appearance of
the fagcade has in general to be preserved). Fuantirer civil buildings constructed
during 1950 - 1975 fit a similar architectural stythich is based on a combination of
simple geometrical shapes. In particular, thesadaghare can be generally modelled
as planar objects or at least can be approximdteiged into piecewise planar parts.

1600 1925 1950 1975 2000 2025 2050
\new buildings

v

KWhim?a
200

Fig. 1 Energy consumption (expressed in kWejrin buildings since 1900. Buildings built In 1950
1975 show the highest energy consumption.

This research work was partially supported by theopean research project EASEE
(Envelope Approach to improve Sustainability andeffgy efficiency in Existing
multi-storey multi-owner residential buildings). i§tproject was developed withiff'7
Framework Programme for Research, to tackle thiative Energy efficiency in
Buildings Public Private Partnership (EeB PPP)pérticular, the EASEE project
aims at developing a new holistic approach to gnefficient envelope retrofitting of
multi-storey and multi-owner buildings through andmnation of modular pre-
fabricated components, novel insulation approaamesscaffolding-free installation.
The aim of this research inside the EASEE projectta develop innovative
methodologies for building survey, modelling andessment (Fig. 2).

etrofitting
# options

(design and

Building
survey
And assessmen

planmng tool
/2 'ﬁ. Off site
Mor:rt]c;nng E / \) §E component
design and

evaluation
fabrication

- .\ A
On site
scaffold free’
installation

Fig. 2 EASEE approach to envelop retrofitting. Highlighia red the contribution of the presented
research in the project.
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Unfortunately, up-to date and complete digital nmiedare not always available,

especially for constructions during 1950 - 1975eéikive drawing may have been
made on analogue supports. Moreover such produetsiainly 2D, and they do not

highlight the 3D structure of a facade which isrguielevant for thermal analysis.

Also when digital models are available, the modeluaacy in the design phase is not
ensured throughout the entire construction proceéssrefore, a new digital model

may be used to check the original one. Secondgdibgilmodels must incorporate all

updates due to modification of the structure duriadjfetime.

The availability of as-built models could providesalution to these issues. Three-
dimensional information related to architecturatades often complex, and thus it
needs an acquisition method that may extract fetaild in order to describe every
element of the building envelop in the best waypanticular, nowadays an increasing
interest is paid to the generation of detailed @i#-building models fronterrestrial
laser scanning datdqTLS), not only in cultural heritage preservatiapplications,
where surfaces are complex and irregular, but fdsdarge and medium size civil
structures. This is mainly due to the fact thatomdtion in acquisition and
registration of scans, in conjunction with a rettuttof the cost of instruments,
allowed to a larger number of operators the chémemse TLS.

However, raw point clouds derived from a TLS sunag generally not directly
ready for modelling applications. This is due te tature of point clouds, which is
not associated with any topological relations amdsents a very low level of
abstraction for exhaustive analysis (for exampéertiteasurement of areas, rapid copy
and paste operations, etc.). In addition, furthheblems arise due to the huge size of
data to be managed. The resolution of point clasdslly drops in correspondence of
edges, corners and other linear features whickharenes playing the most important
role in modelling. In order to overcome those peofd, point clouds of buildings are
generally transformed into vector format by adaptstandard reverse engineering
approaches. However, this task requires a largelg-tonsuming manual work that
should be carried out by skilled operators. Fos ti@ason an increasing interest is
paid to automatic modelling of buildings used imjcmction with or as an alternative
to computer-aided-design (CAD) techniques. Indeeanual editing can be avoided
in the case a detailed modelling is not requireédnay take place only after a basic
model has been automatically generated. Automaticgssing of point clouds is also
important for the timely extraction of useful infoation and for reducing the cost
with respect to a fully manual approach. Althoughcim research work has been
done, practical applications of automatic modelloigull facades is still far to cast
into practice.
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Motivation of the research

Point clouds acquired from real-world facades comimndeature several properties
that pose challenges for any algorithm that furgh@cesses this raw data to extract
information. One major issue is the lack of anyature or topological information in
generic point clouds. This characteristic does deggend on the acquisition process
but is rather a natural property of such data g&tsa consequence, identification of
the true shape of the underlying surface may b@raptex task even in densely
sampled regions. In the case of real-world scaisgifficulty is further intensified by
the inevitable presence of noise and outliers,(dige to moving objects in the scene).
Moreover, acquisition may be incomplete in the sdhat large parts of the geometry
remain hidden to the scanning device due to oamhgsand restrictions on scanner
placement. Last but not least, the size of the g@ee point clouds can easily be in
several million points. On the one hand, the lasgee of point clouds does not
necessarily reflect corresponding information coht&his is because the scanning
device does not adapt the sampling rate to theit@chlocal geometry and therefore
even flat areas (e.g., house walls) will be sam@edhe same resolution of fine
details. It thus seems necessary and reasonabledstigate data representations that
incorporate redundant information on a higher leWelthis context, an observation
fundamental to this work is that in scenes where-made objects predominate, like
in the cases addressed in the previous sectioge laarts of the acquired geometry
can usually be efficiently represented by a setimiple parametric primitives. Once
detected, these primitives achieve the desirecctet@h respect to the unnecessary
redundancy in the point-cloud, because each of thesumes its associated set of
corresponding points.

The primary goal of this dissertation is to addréss above mentioned challenges
posed by point clouds of building facades. A fst&p towards this end is developing
an efficient method for detection of facade plamdmects. While fitted shape
primitives have been previously used for reversgireering and in computer vision
application, this research strives to further edtdrese methods to better exploit the
primitive representation for building facade mouhg!

The detection of high-level structures should ashieomputational efficiency even
on large point clouds due to their concise reprasem which can lead to the
production of the facade vector model. At the same they can offer improved
quality due to the geometric and semantic cuesigeovby the primitives in the
specific field of fagcade objects. In particularetisize and shape of a detected
primitive along with the spatial relationship wite others can also serve as a rough
classification of the facade parts which is helgbrl recognition tasks. On the other
hand, building facades often exhibit a regular rayeament consisting of repeated
patterns and self-similarities. The detection aral garameterization of these regular
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patterns can be used to infer missing geometry@ugomplete survey and to reduce
holes induced by occlusions.

Overview of the dissertation

In this dissertation a novel methodology for fubyitomatic facade modelling is
presented. In particular, the procedure follows cheme that goes from scan
acquisition up to point-cloud segmentation, auteenbteaklines extraction, object
classification, facade regularity detection andegation of the final 3D Building
Information Model (BIM) of the facade finalized fahermal retrofitting (Fig. 3).
Each step of the procedure presents some advairiteespect to the state-of-art.

Building

E!;lli!ﬂ

WallBody

WalFacade Window ParallelProtrusion RoofBody Door2

A

ProtrusionFacade | FlaRoofDormer FlaRoofDormer

q % ST Eﬁ‘} j J_

Fig. 3. Building facade at different processing stepsrdav point cloud; (b) detected planar elements;
(c) output vector model; (d) repeated pattern detede) facade object classification; and (f) fina
CityGML model with semantics.

This dissertation addresses the application to mmobeilding dated between 1950
and 1975 which are the ones for which thermal figtirgy is more demanding. For
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residential buildings built in this period elemerdsnstituting the facade can be
largely modelled as planar objects or at least loanapproximately divided into

piecewise planar partdhe developed modelling methodology can be appiced

unstructured point cloud of tens of millions poinfshis means that each point is
parameterized by its spatial coordinates and msy f@lature some related attributes
(e.g., intensity, colour, normal vector), but doest share any topological

relationships with other points in the nearby. Tingut point cloud can be generated
by a single or multiple laser scan station(s). &ujeafter scan registration/geo-
referencing, scans are merged together withoutingeahy reorganization into a

specific data structure. The overall procedureésented in Fig. 4.

Automatic facade model
generation

| Scans acquisition |

Registration and point
cloud generation

A 4

Pointcloud
segmentation

| I

Break-lines Object
identification classification

A

Repeated Pattern
Detection (RPD

Semantically enriched
3D facade model

Fig. 4. The flowchart of the developed automatic facadel@hgeneration method.

Once all scans are acquired and registered togaihautput a non-structured point
cloud, the main elements constituting the faca@efiestly identified by means of a
segmentation process based on a modified RANSACemmntation. In particular,
the standard RANSAC approach (Boluaassal et al7 2f@0 point cloud segmentation
is modified by considering topology into the prace$his topological information
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between scan points and detected clusters are addeder to minimize problems

connected to under- and over-segmentation, respéctiAwwad et al. 2009). Once

planar clusters constituting the facade are dalecteacade breaklines are
automatically derived. During this phase some cangs related to facade geometry,
like the prevalence of straight lines and orthodangersections, are enforced to
obtain a regularization effect. At the same timéyréher classification is performed,

on the basis of some priors on the facade strucngi@nized in a classification tree. In
this way detected objects are classified into facalgments (e.g., walls, windows,
etc.). Facades of buildings addressed in this wwdsent a high regular structure
characterized by the repetition of some elementsifig a regular lattice structure.

Identification of these regularities can be realbgful to partially overcome problems
connected to the lack of data and occlusions. R teason a new automatic
algorithm is developed for facade repeated patietaction (RPD). Finally, detected
breaklines along with facade classification resalte merged together to obtain a
semantically enriched 3D model of the entire facade

Structure of the dissertation
This dissertation is divided in two parts. Part Aeg a description the adopted
approach. Part B reports some tests and presesgghf@integrations and extensions
of the algorithms presented in Part A.

In particular, Part A is divided in four Chaptersalissing the main steps of the
methodology for fagade modelling.

In Chapter 1 the developed segmentation strateghéobuilding facade is presented.
Firstly, a review of the state of the art is repdrtParticular attention is kept to the
limits of existing techniques and to the expectezetbpments. Then, a new
segmentation strategy is presented to overcome sompertant drawbacks of
previous approaches.

In Chapter 2 is described the extraction processdge from the point cloud along
with their enhancement and smoothing. The goal geherate a concise model of the
facade by detecting breaklines and a vector maidifleobuilding starting from them.
The content of the first two Chapters has been plslolished in Previtali et al.
(2013a).

Chapter 3 focuses on the semantic classificatioextfcted objects. In particular, a
series of attributes and spatial relationship afendd for each facade segments which
allow their functional classification into facadéjects (e.g., wall elements, doors,
windows, etc.). For the analysed building type,esies of recognition rules are
derived from these features and organized into emalghical classification tree.
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Finally, possible outputs of the processed datapaesented. The content of this
Chapter has been also published in Previtali €2all3d).

Chapter 4 discusses the reconstruction of incomptaidels with the help of high-
level architectural objects and identification epeated patterns in urban facades.
Completion of point clouds is often necessary bseadespite considerable attention
has been put during data acquisition, 3D viewsionbthwith range scanners usually
suffer from occlusion. On the other hand, buildiagades exhibit a high degree of
self-similarity and redundancy. For this reasonrttethod presented in this chapter is
based on the detection of repeated patterns infag@de and the completion of
missing parts by means of high-level architectdealtures (e.g., windows, doors,
etc.). The content of this Chapter has been predentPrevitali et al. (2013c).

Part B is organized in two chapters presenting smrelts of the developed facade
modelling approach (Chap. 5) and discussing itsiptesextensions (Chap. 6).

Chapter 5 examines the efficiency and accuracyhef developed reconstruction
method presented in Part A. Five datasets of tydw@gades are presented and
outcome discussed. Quality evaluation has been ftwneach step of the developed
procedure to evaluate overall accuracy and pretisioparticular the obtained facade
models are evaluated against manually derived rsodehsidering the metrical

guality and the completeness of the results.

In Chapter 6 some extensions of the developed aitorfacade modelling approach
are introduced. In Section 6.2 is presented thegnation between the automatically
generated building models with other data soundes,RGB and thermal images, to
obtain a more complete building representation\(Rxk et al. 2013b). Some of the

developed algorithms can be used for applicaticdhgrothan fagade modelling. In

particular, the developed segmentation strategybeansed for scan registration and
modelling of indoor environments. Indeed, the segaieon algorithm can be used
for registering scans using detected planar feat@&ect. 6.2). In addition, point

clouds are often used not only for generation aéitkel models of building facades
but also for indoor environment modelling. Typigalmany of the algorithms useful

for the reconstruction of exterior building modetsn be adapted for indoor
reconstruction, as well. However, due the large wmhof clutter and occlusion in

indoor application a tailored solution is neede€c{S6.3).
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PART A




CHAPTER 1.FACADE SEGMENTATION

Chapter 1
Facade segmentation

This chapter presents a novel segmentation methat grepares input data for
subsequent processing techniques proposed in thik. Wndeed, the segmentation
process is the first step for turning out a 3D wdtired point cloud into a building
model. Terrestrial laser scanning (TLS) data, asd¢hfrom other tools for 3D point
cloud gathering, are not immediately compatiblenwitimerical models. This is due
to the fact that that no surfaces or edges arecttirprovided. To this end, the
segmentation process can be used as a first reéimogsiage for further modelling as
described in the following chapters.

Since the developed shape detection strategynsapity intended for processing real-

world scanned point clouds, it needs to specificatidress the challenges of this type
of data. In particular, the two most relevant issaeising in this setting are: the

unstructured nature of point cloud data, and theuption induced by noise and

outliers.

Instruments for 3D scanning and imaging generatiyndt provide structured point
clouds. Also in the case single scans can be hdrdiestructured data (i.e., data with
topological relations like proximity), see also Kgaet al. (2013a), when multiple
scans are performed and merged together the exisipological relations between
points are lost. This typically happens with mghation TLS surveys. In each scan,
points are detected in correspondence of nodesrefdar angular grid established
on a sphere around the instrument centre. Howevieen multiple scans are co-
registered, this data structure is lost.

Presence of noise and outliers in the point clawghsest using robust techniques for
segmentation and detection of primitives. A verypyar and versatile robust
algorithm for segmentation is based on the RANSAReme proposed by Fischler
and Bolles (1981), which, beside its simplicity, very general and effective.
Compared to other robust algorithms it has onlglatively small set of parameters
which in addition have intuitive interpretationsadt but not least, RANSAC requires
only very little memory in addition to the poinocd itself, which is important when
working with large data sets. However, in its argi formulation, the RANSAC

10
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scheme is just an algorithm measuring the consetwsascertain assumed model.
Consequently, the extracted primitives may not espond to real architectonical
object determining the so called ‘bad-segmentatimm@blem. Thus, this Chapter
presents a modified RANSAC algorithm for shape cteda in point-clouds trying to
minimize spurious results.

As previously anticipated this dissertation is parity focused at obtaining as-built
facade models for thermal retrofitting purposespanticular, it addresses to modern
building dated between 1950 and 1975 which are dhes for which thermal
retrofitting is more demanding. Residential builghnof this period feature a similar
architectural style. In particular, elements cdnstig the facade are generally planar
objects or at least can be approximately dividgd piecewise planar parts. This
aspect strongly influences the segmentation. Indideddeveloped approach is aimed
at identifying planar elements constituting thelding facade while the detection of
other shapes is not relevant for buildings’ st@ealysed in this research.

1.1. Introduction and definitions

Segments are geometrically continuous elementsbco surface that share some
similarities (Tévari 2006). In Rabbani et al. (200$egmentation’ is defined as the
process of labelling each point in a point cloudgstsat the points belonging to the
same surface or region are given the same lab#htidrprocess, points having similar
features in a continuous region are grouped toterea ‘segment’. Formally
segmentation can be expressed as:

oP={¢p| 0 p O P} 1.1

where® is the segmentation operator in point cloBdsnddp is the label assignment
for a single poinp in P. The results of the segmentation operatiomaegmentss)
having following properties:

« S={s|sO P 1.2
+ OP=S 1.3
* Us =P where |5/>0 1.4
* sns; =0 wherei#]j 15

This means that each segmens a closed subset of point cloudgq1.2) while the
segmentation operat@r determines the character of each segment (1.®articular,

11
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every point in the point cloud belongs to a segnuarty and two different segments
do not share common points between them (1.5). Begiment is characterized by its
homogeneity measured according to certain featufdmse features generally
represent geometric properties, reflectance intensf laser pulse and spectral
properties of the points. The homogeneity critensied to perform segmentation is
determined by the aim of segmentation itself. Franeple, planar surfaces are
generally sought for building modelling purposenihich segment represents the part
of building object such as roof or wall. Typicalip, laser scanning data geometrical
properties, such as mathematical surface, surfacemal, gradients and curvature
(Crosilla et al. 2009) in the neighbourhood of ainpoare mainly used for
segmentation purposes. The reflectance strengtisef pulses, i.e. intensity data, as
well as spectral properties of points are rarelgdusn the segmentation process
because of their noisy character (Tévari 2006).

Property 1.4 is not always valid for unstructurexnp clouds as there may be some
points not assigned to any segments. Other limitst @vhen focusing on massive
unstructured point clouds. These problems are ®@rnme literature as ‘bad-
segmentation’ (Stewart 1997) and may be categoazed

* under-segmentation, in the case several featueesegmented into one;
* over-segmentation, when one feature is segmentedgaveral ones; and
* no segmentation: feature is not segmented or wysegmented.

Main reason for bad segmentation is that real pdoud are naturally noise affected,
due to the accuracy of the instrument which usuadlyes from a few centimetres (for
example, in Mobile Laser Scanning data sets) ugp fiav millimetres. Unfortunately,
all the segmentation algorithms suffer from noisgadbecause make more difficult
the prediction of homogenous areas or hinder thagpbhnd curve estimations. As a
consequence, if segmentation parameters are sensitough, most of the proposed
methods will lead to high rates of point cloud egegmentation; in alternative, using
insensitive segmentation to face towards noisy, dataunder-segmented point cloud
will be obtained. In particular, according to Sagk@008) the presence of spurious
planes and bad segmentation results, i.e., resottaseful for users, is typical to any
actual segmentation procedure presented in litexafthis is due to the fact that in
many cases extracted planes and object from the ploiud do not correspond to real
architectonical objects.

The different segmentation strategies differentiatéhe way how to deal with ‘bad
segmentation’ problems.

12
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1.2. State of the art

Point cloud segmentation is one of the main researeas in the laser scanning field.
Indeed, it can be designed to introduce some levefrganisation to the data before
extraction of useful information (Filin and Pfeif2006), or as a precursor to object
recognition and model fitting (Rabbani 2006). Fipatan be also employed as a pre-
processing step before the application of filtermgorithms (Tévari and Pfeifer
2005). In the past decades, various algorithms Ihe&es designed to extract planar
surfaces from point clouds, mainly using geometriteria to detect homogeneous
regions in data. However, although the large nunabevorks in literature focusing
on segmentation, this problem is far from beingyasdleven for planar features. The
different segmentation methods proposed can begamated into four groups
(Vosselman and Maas 2010):

» Feature clustering;
e Surface growing;
* Model fitting; and
* Hybrid techniques.

In the next subsections the basic principles of dbeve mentioned methods are
explained and some of the relevant algorithms megdan literature are discussed.

1.2.1. Feature clustering

The method based on feature clustering offers @rgéand flexible way to identify
homogeneous segments in data, without being restrito one specific pattern.
Feature clusteringmethods can be seen as a combination of two prege§isst,
patterns in the data are identified on the basisoofe attributes, and then they are
clustered based on them.

Firstly, representative measures (‘features’) afndd for each point based on some
geometrical and radiometric characteristics. THeatures generally include position
of each point, locally estimated surface normadjdeals of best fitting surface, and
reflectance of laser scanning points. All thesengeof information are used to
generate an nD feature. Thereafter, clusters amifobd in an nD feature space. The
points belonging to each cluster in the featurespae labelled as unique segment in
the object space.

Even if this method is quite general, identificatiaf proper features may be complex
and segmentation results are highly dependent tpisnselection as well as the
methods used for partitioning the feature spaceceSin many cases the features of
individual points are described using points iralateighbourhood, this segmentation
technique is also sensitive to noise in the datasetis influenced by the definition of
neighbourhood. Therefore, an additional robust oektls needed to eliminate the
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noisy data and outliers. In addition, clusteringlttdimensional features can be
computationally infeasible for large point clouds.

Filin (2002) presented a clustering algorithm usary unsupervised classification
technique for extracting homogeneous segments linofie Laser Scanning (ALS)

data. A 7D feature vector is defined for each poir¢atures consist in point

coordinates, surface parameters of a plane fitieithé point neighbourhood and the
relative height difference between the point argd neighbours. Then, instead of
creating a 7D feature space, the author separastsomal information to create a 4D

feature space. After defining surface classes,tpanre grouped in object space by
using spatial proximity measures. The goal is tud ficlusters that are spatially
meaningful and at the same time to avoid over-seggtion.

Hofmann et al. (2003) defined a feature clustersegmentation method for TIN

structures, which is derived from ALS point clouisr each triangle of the data a 2D
(slope and orientation) or a 3D (slope, orientaton O-distance) feature is defined.
According to the authors the O-distance is caleddtom the origin O to the plane
containing the triangle.

An unsupervised clustering approach based on forthods is presented in Biosca
and Lerma (2008). In this case both the Fuzzy CAdg&CM) algorithm and the

Possibilistic C-Means (PCM) mode-seeking algoritm® used in combination with a
similarity-driven cluster merging method.

1.2.2. Region-growing

Region-growingmethods relay on the main assumption that neigiigpypoints in
the cloud presents similar characteristics. Fa@ teason region-growing methods are
based on the aggregation of homogenous pointspdasi certain similarity criteria,
starting from a point which is calléseed’. Therefore, it can be seen as a combination
of two steps: (i) identification and (ii) growing the ‘seed’ surface.

A ‘seed’ surface consists of a group of neighboaints that fits well into a defined
geometric shape (e.g., a plane). For the ‘seedasarselection, a group of adjacent
points are identified and tested whether they #tlvihe defined geometric shape or
not. If a shape is found to fit within some predefl thresholds, it is accepted as seed
surface; otherwise another point is tested. Onee'dbed’ surface is selected, every
point in it is examined to find the neighbour psithat may fit to the defined shape.
This operation is basically intended to grow thefaste towards its neighbourhood.
Points are added in the growing surface if theytntiee predefined criteria. After
adding a point, the equation of the fitted shapgiated. The acceptance decision for
a point can be based on one or more of the follgwiiteria:
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a. proximity of points only points that are within a certain distancenirthe
current ‘seed’ surface are added to it. This praincan be evaluated by
checking the distance between two points on an edigea Delaunay
triangulation or, otherwise, considering the Eusdid or the Manhattan
distance, i.e., distance between two points medsalo;ng axes at right angles
(Niedermeier and Sanders 1996). This condition hamwever, be too strict if
some outliers are present (Vosselmann et al. 2004);

b. global planarity(in the case the fitting model is a plane): a plaquation is
determined by fitting a plane through all pointghin a given radius around
the selected ‘seed’. A candidate point is acceptedhe segment if the
orthogonal distance from the plane evaluated bysidening all the points
already in the segment is within a defined threghol

c. surface smoothneskcal surface normal for each point in the palauds is
estimated and a candidate point is accepted ifatigde between the local
surface normal of the point and the normal of trmvng surface is below a
threshold;

d. height differencethe height difference between a point and itgmeours is
computed as the distance from the point to the [figstg plane to its
neighbours along the normal direction; and

e. principal curvatures through Principal Component aysis (PCA) the
geometrical properties of an object in a point iatensically described by
means of principal curvatures from PCA. The curkattay is maximum in
correspondence of planar areas while a smalleusaépresents the proximity
to an edge.

However, there is no universal criterion which hdmsquitous validity (Biosca and
Lerma 2008).

Several variations in surface growing techniguesegfimentation are suggested in the
literature.

Vosselman et al. (2004) proposed an approach traiically extract planar surfaces
from TLS point clouds. In this approach, severabpeeters need to be specified for
the planar surface-growing algorithm, such as thmber of ‘seeds’, the surface-

growing radius and the maximum distance betweefases. Using different values

for these parameters, it is easy to obtain sigmficchanges in the segmentation
results.

Tovari and Pfeifer (2005) presented a segmentatiethod for ALS data. First, the
normal vector at each point is estimated by usimg&rest neighbours (Samet 2006).
Then a point is selected randomly and the adjapeints are examined for certain
criteria. If the criterion meets, the adjusting n#ais estimated using those ‘seed’

15



CHAPTER 1.FACADE SEGMENTATION

points. During growing, the neighbouring points adeled to the segment if they meet
criteria (a), (b) and (c) in the above list. Foane adjustment, eigenvector/eigenvalue
approach using the second moments of point codetireae used.

Rabbani et al. (2006) presented a method to segamsiriuctured 3D point clouds of
industrial scene based on smoothness constraifgs. iA this case in a first step,
normal for each point is estimated by using k-nglaneighbours and Least Squares
plane fitting. Then residuals of plane fitting arged to approximate the local surface
curvature. These residuals are sorted and usedlé¢ot sseed’ points. In particular,
points with minimum residual are considered suéalsieed’ points for detecting
planar segments. The growing phase is carried guiding previously estimated
point normal and their residuals. In particulartesia (a) and (c) are implemented.

Another typical variation of region growing algdmb for ALS data is presented in
Gorte (2002), where triangles are used as basifacgurunits. The merging of
triangular meshes is carried out by comparing tla@e equations of neighbouring
triangles.

1.2.3. Model fitting

Methods in this category are based on the ideatiio of geometrical primitives in

the point cloud. Indeed, many man-made objectsbeadecomposed into geometric
primitives like planes, cylinders, cones, tori, efs, etc. This approach tries to fit
primitive shapes in point cloud data. Thus, thosets conforming to the sought
primitive are labelled as one segment. Howeveljeyatcaused by noise, registration
errors or miscalibrations are frequently encoumtarelaser scanning point clouds.
For this reason a robust parameter estimation rdsthe needed to extract
geometrical shapes in the presence of outliers.tWbemost important algorithms in

the line of robust fitting are Hough transform (lgbul1962) and RANdom SAmple
Consensus (RANSAC) introduced by Fischler and Bdll€©81).

The Hough transform maps, for a given type of patanzed primitive, every point
in the data to manifold in the parameter space. mhaaifold describes all possible
variants of the primitive that contain the origin@int. In practice each point casts
votes for many cells in a discretized parametercasp&hapes are extracted by
selecting those parameter vectors that have rat@isgnificant amount of votes. In
the case of detection of planar objects, a gemdaake can be represented as:

Z=sX+sY+d 1.6
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wheres, ands, represent the slope of the plane along X- and i¥;a&spectively, and
d denotes the intersect of the plane on the Z-&Xis parameterization for a plane in
3D space does not describe vertical planes. Tocows this limitation, theormal
form of the plane equation can be used:

cos@lcos¢l X +sendlcos¢lY +semg(Z =d 1.7

wheref € [0, 2r] and® € [- n / 2,7/ 2] denote two angles of the plane normal dnd
represents the distance from the origin to theepldime major application area of the
Hough transform remains the 2D domain where thebmurof parameters typically is

quite small. However, also 3D applications are reggbin the literature.

Maas and Vosselman (1999) adopted 3D Hough transfmr detecting roof planes in

3D point clouds. The Hough space is described by slope parameters and a
distance (Eq. 1.6). This description of clusterspgce is only suitable for ALS data
as this form of parameterization cannot describ&oazd planes which are common in
TLS data.

Vosselman et al. (2004) suggested a variation imgHotransform using surface
normal to speed up the process of planar surfatetilen with increased reliability.
The normal vector and the position of a point is@dd to define a plane whose
parameters can be directly mapped to a single poirthe parameter space. This
solution avoids the process of computing the iegtien of the plane with the
corresponding bin. Only the increment of counteeath single bin is enough. The
authors also proposed a two-step procedure for Hbagh-based detection of
cylinders. Similarly Rabbani and Van den Heuvel0®0decomposed the sphere or
cylinder detection problem into two sub-problemsaadbw complexity: the detection
of the cylinder axis direction (2 parameters) amel direction of a circle in a plane (3
parameters).

The RANSAC paradigm is used to extracts shapesugamly drawing minimal sets
from the point data and constructing correspondimgpe primitives. In particular, a
minimal set is the smallest number of points rezpliito uniquely compute a given
type of geometric primitive (for example, 3 nonlow@ar points to estimate a plane in
space). The resulting candidate shape is testemhshgall points in the data to
determine how many of the points are well approxéddy the primitive (called the
‘score’ of the shape). After a given number oflsiidhe shape which approximates
the most points (points well approximated by thengive are also referred to as
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‘inliers”) is reported. All inliers are then exttad from the dataset and used to
estimate the detected geometric primitive.

Bretar and Roux (2005) proposed an algorithm fer dletection of roof facets of
buildings based on normal-driven RANSAC (ND-RANSAEDr this purpose, they
first calculate the normal vectors for each pomd éhen randomly select sets of three
points having the same orientation of the normaltors. The number of random
draws is managed automatically by statistical asialpf the distribution of normal
vectors using the Gaussian sphere of the scene.

The extension of RANSAC algorithm for roof planded#ion is proposed in Tarsha-
Kurdi et al. (2007). The authors used the numbetriafs as an input rather than
probabilistic calculation. They suggested calcagiit by using the point density and
the foreseeable size of urban roof plane. Anotldaptation over the standard
RANSAC technique is that they use criteria basedtandard deviation of distance
from the plane to select a reduced point-set idstédhe original one to evaluate the
candidate feature.

RANSAC based algorithm for the detection of sever@bmetrical shapes such as
planes, spheres, cylinders, cones and tori is pteden Schnabel et al. (2007). In this
method, they use localized sampling strategy usaigee data structure (Samet 2006)
for the random selection of the minimal subset @hts. While evaluating the score
of the candidate feature, several parameters (aymber of points within the
tolerance distance of the feature, minimum deuweatbthe surface normal, etc.) are
taken into account.

An application of RANSAC to massive unstructured pa@int clouds is reported in
Boulaassal et al. (2007). In this case, large polatuds of building facades are
analysed and segmented showing that a sequengiitatmpn of RANSAC allows the
automatic segmentation of planar surfaces from 8tpclouds acquired by TLS.
However, some problems are reported in the caseljatent planes and in the plane
connectivity. In addition, the method has been pdownly on small point clouds,
limiting in this way computational problems.

To cope with the relative computational inefficignof RANSAC in Kang et al.
(2013b) a conditional sampling method based onB&gesian sampling consensus
(BaySAC) is proposed. This method selects the mimmmumber of data required
with the highest inlier probabilities as a hypotkeset. Thus, reducing the number of
iterations needed to find a good model.
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1.2.4. Hybrid techniques

Some authors tried also to combine different methtodbetter exploit the potential of
each of them. In general, region growing is comiimgth other plane detection
methods as it takes into account the spatial privxiof the points in a more natural
way.

Roggero (2002) combined hierarchical region growargd principal component
analysis (PCA) to segment ALS data. PCA is usedefine the aggregation criteria
and to describe the geometrical properties of tinfases. Two algorithms differing in
PCA and in aggregation criteria are proposed. Onéhe@ algorithms is based on
descriptor mapping. First, one or more properties $tatic moment or curvature or
pulse intensity are computed and mapped to eagtt.pbiien the region growing is
performed with reference to the property map. Téwsd algorithm does not perform
descriptor mapping and uses PCA in region growimasp to speed up the method.

Elberink and Vosselman (2006) used Hough transffmmiseed’ surface selection
combined with a surface growing approach. For sar@trary point, k-nearest
neighbour points are selected and Hough transferapplied to these points only. If
the minimum number of points is identified to bearplane by Hough transform,
Least Squares are used to fit the parameters gbléme and the points are taken as
‘seed’ surface. The acceptable ‘seed’ surfacead here instead of the optimal ‘seed’
surface (having maximum number of points with miammresiduals) at the cost of
computation speed. In the growing phase, the odahalgdistance of the adjacent
points to the growing plane is analysed and thetpare added to the surface if the
distance is below a threshold.

1.3. Critical analysis of existing techniques

Summary of the state of the art of segmentatiorhaut presented in the previous
section is provided in Tab. 1.1. Based on the weved different segmentation
methods, following conclusion can be drawn for ecategory.

The results of the segmentation process basedustedhg of features are dictated by
the choice and the quality of the representatiaufes of each point. In addition,
clustering multidimensional features for large datdume is computationally very
expensive while dealing with large data volumeugegnatural in laser scanning point
clouds processing.

Region-growing based methods always consider g$patieximity of points.
However, the quality of results from region-growdngsed segmentation depends on
the methodology used for ‘seed’ surface selectiahthe criteria applied for growing.
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Segmentation method

Work

Description

Clustering

Filin (2002)

7D feature space is defined

cluster points.

Hofmann et al. (2003)

2D and 3D feature space is defin
for TIN structures

Biosca and Lerma (2008)

FCM and PCM in combination with

a similarity-driven clustering

Region growing

Gorte (2002)

Grouping of TIN, more suitable fo
ALS data.

Vosselman et al. (2004)

Several parameters (number

[o

ed

of

seeds, the surface-growing radius,

etc.) used to grow.

Rabbani et al. (2006)

Local surface normal similarity a
criteria to grow.

Tévari and Pfeifer (2005)

Surface normals, spatial proximit
and distance to plane as criteria
grow.

Hough transform

Maas and Vosselman (1999)

Utilises slope form of plane equatid
to create 3D Hough space for ro
plane detection.

Vosselman et al. (2004)

Surface normal is introduced i

Hough space.

Model fitting

RANSAC

Bretar and Roux (2005)

Utilizes local surface normal fo

each point, uses RANSAC selecting

three points with similar orientatio
of normals.

r

Schnabel et al. (2007)

Localized sampling strategy usin
octree data structure. Differe
parameters are used in candid
evaluation.

Tarsha-Kurdi et al. (2007)

Uses standard deviation of distan
to plane and minimum number

points as candidate evaluati
criteria.

Boulaassal et al. (2007)

Uses RANSAC for facadé
segmentation. Problems are repor

in the case of adjacent planes and i

the plane connectivity.

5

Kang et al (2013b)

Conditional sampling method bass
on the Bayesian sampling consens

ed
us

Hybrid

Roggero (2002)

Combines PCA and region growing

Elberink and Vosselman (2006)

Hough transform for seed plan
selection and then region growir]
based on the distance to pla

e

g
ne

criteria.

Tab. 1.1.Summary of the state of the art point-cloud segatet methods.
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The selection of the ‘seed’ points is of primarypontance, because the final
segmentation results depend on that: in fact, Smolelems occur when ‘seed’ points
are extracted close to breaklines or outliers. Agsoasequence, none of these
algorithms can be considered a robust solutioncalt be noticed that several
parameters need to be specified for the surfaceiggoalgorithms whose selection is
not always an easy task. Indeed, by using sligliifjerent values for these
parameters, it is easy to obtain various bad setgtien problems (over-, under-
and/or no segmentation). With the same number eéds’, larger surface-growing
radius or larger maximum distance from surface teag to under-segmentation. On
the other hand, smaller surface-growing radiusnaalier distance from surface may
lead to over-segmentation. Pu and Vosselmann (261d8d that over-segmentation
is preferable to under-segmentation, because @agmnsnted parts may have some
similar properties that can be exploited to meilgesé segments together at a later
stage.

The segmentation based on surface fitting usinggHowansform or RANSAC is
effective in presence of noise and outliers. Howevéhe straightforward
implementation of both techniques is computatignalefficient. In addition, points
classified as belonging to the same detected sbgpthese techniques may not
necessarily belong to the same object surface. 8marate points belonging to
different object surfaces specific strategies sthdadé employed. While both Hough
transform and RANSAC strategies were used for @siog point clouds, an
important comparison between them was made in @afsindi et al. (2007) in terms
of processing time and sensitivity to cloud chagestics using ALS data. The
authors show that RANSAC is more efficient than H@ugh transform algorithm,
since the difference in processing time is neglegdven when data size is very large
and Hough-transform is also very sensitive to segat®n parameters values.

The hybrid techniques have some desirable streagtthey exploit the benefits of
more methods. Combination of model fitting on logagion with expansion towards
adjacent points using region growing is one of thest efficient segmentation
strategies.

As a general consideration, segmentation technignay/sed in the former section
had resulted in showing good results in differgmplation domains. Nevertheless,
none of them has achieved results to be considbeedptimal segmentation method
at least for a specific category of applicatiote final results needs to be improved
by manual editing or post-processing. Furthermalgorithms lacks of flexibility: a

method that works well in a specific case can lyab#l used for other applications.
Many methods have a large number of parameterssavhmeaning and effects on
final segmentation are not always clear (Rabbaal.2006) and make the reliability
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of the results very variable according to the dpeconditions. Some methods use
fuzzy logic to interactively estimate the bestafgbarameters and their values, even if
these approaches require a training phase ttaandgtialways possible.

To partially overcome the previous listed limitatsoof state of the art techniques a
new automatic approach is presented for the se@t@miof planar surfaces based on
the combination of RANSAC algorithm and region-gnogvapproaches. The aim of

this strategy is to derive ‘meaningful’ segmentsnirbuilding-facade point clouds.

This means that extracted segments would corresporabjects of interest (e.g.,

roofs, walls, doors, etc.) or parts thereof instehlleing simply those which best fit

some mathematical models. In particular the maiprawvements of the presented
methodologies are:

» creating a new approach that can deal directly @Rtpoint clouds from TLS;

* segmenting and extracting different planes with ffieso reality for complex
objects starting from massive unstructured 3D polotd in the presence of
noisy data;

* reducing over-segmentation problems by introdua@ngew score function
based both on signed distances and normal diregteomd defining topology
information (i.e., definition of neighbourhood betn points) in the point
clouds; and

* reducing under-segmentation by performing a cluggeof extracted planes
based on topology properties for surfaces.

1.4. Facade segmentation

Given a point cloudP = {ps,..., i} with associated normabé = {n,,...,n} the output
of the implemented algorithm is a set of platfes {ysa,..., wn} with corresponding
disjoint sets of pointPy={Py; c P,..., R € P} and a set of remaining poirigs= P
\ Uy Py,

The overall structure of the method is outlinedrig. 1.1. In each iteration of the
algorithm, the primitive with maximal score is sg@ad using the RANSAC

paradigm. The score function has two free paramme{gre specifies the maximum

distance of a compatible point while (it)restricts the deviation of a points’ normal
from the one of the plane to judge.

Plane candidates are generated by randomly sammiinignal subsets ofP. After a
new candidate has been generated, the one withighest score is computed. The
best candidate is accepted if, given the numbénlers | of the candidate and the
number of drawn candidateS|,| the probabilityP(|m|, |IC|) that no better candidate
was overlooked during sampling is high enough.
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After having determined the maximum consensus pdatieeck is performed to verify
if the set of point®y; belong to a single fagade object or more (Foréral. 2006).
This check is performed by setting up a bitmap famting all connected components
in it. In this phase some spurious segments mighfobind. Indeed, each segment
whose area is far lower than the mean value istegje When a candidate is accepted,
the corresponding poin®yjiers are removed fron® and the candidatesS,, generated
with points inPinjiers are added t&. The algorithm terminates as soon as|€)|) for a
user defined minimal shape sizes large enough.

TLS Point Cloud —

RANSAC

Maximum consensus
plane

Connected
componet analysis

. :

Connected components Un-connected points

Connected.
component size

Plane
clustenng

Segmented model

Fig. 1.1 Workflow of the developed fagade segmentatiorc@ss.

After having determined all planar elements a elusy of extracted object is
performed to minimize over-segmentation problemiistering is performed by
means of mean shift clustering in the plane donoaithe base of: (i) plane normals,
(ii) distance between extracted segments ands@iment intersection.
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1.4.1. Point cloud pre-processing

The term ‘point cloud’ usually refers to an unomtercollection of 3D spatial
locations that can additionally be equipped withea of attributes at the respective
position in space:

P :{(pl,ail,...,aik),(pz,aé,...,az'f),...,(pN,aﬁ, o8 )} 1.8

P denote a point cloud with coordinatese R® and attributesa Typical attributes
are the local normat; € &, point colours; € [0, 255F, and laser intensity € [0,
255].

The most popular acquisition techniques of poirdudbk, laser range scanning,
structured light scanning, shape from shading andtiview photogrammetry in
general all produce unstructured and irregular 8tpclouds that are sampled from
the acquired surface geometry. This means that miormation of proximity
(topology) is assigned to any point.

In the segmentation stage local normal is usedhe dcore function definition.
However, while some attributes like colours or isi¢y can be directly acquired from
scan scanning other like normal vector informat&drthe point locations need pre-
processing.

Several approaches are presented in the liter&urestimating local normals in a
point cloud (Hoppe et al. 1992, Pauly et al. 2Qike et al. 2008). All of them rely
on a similar framework: for each point a plan isaly fitted considering a certain
number of neighbour points. In the developed poegssing step the local normal is
estimated using the method proposed in Jenke €2@08). This method iteratively
increases the size of the neighbourhood until tkemated normal and the
eigenvalues of the weighted covariance malxii (p)) stabilize:

cN(®)= X (p, - s )p, - T |, - pl71) 1.9

JON (p)

whereyy is the weighted average of all pointdNis(p), hk is the radius of the smallest
sphere containindlk (p) cantered ap and¢ is a positive monotonously decreasing
weighting function. With respect to other approaghinis has the advantage that
potentially less neighbourhood sizes have to baidened if stability is detected early
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on. Even if this approach is heuristic since tlgathms in this work do not require
correct normal close to sharp features and carnyedsal with some smoothing in
these areas, the method of Jenke et al. (2008)fowasl to work quite well in

practice.

1.4.2. RANSAC model fitting

As mentioned above the facade types consideredhis research are mainly
characterized by planar objects. For this reasensdgmentation step consider only
identification and extraction of planar segmentsrirthe point cloud. Every 3D point
pi fixes only one parameter of the shape so thaafplane{p:, p., ps} constitutes a
minimal set. To confirm the plausibility of the geated plane, the minimal set is
accepted only if the three point normad, rp, nz deviations are less than the
predefined angle. Once the subset is accepted and the plane patsoggh these
tree points is estimated, the score functtors used for measuring the quality of a
given plane candidate. The score function F takiesaccount the following aspects:

» the number of points that fall within tlkeband around the plane; and

» to ensure that the points inside the band roughllgW the direction of given
plane, only those points inside the band whose abdm not deviate from the
normal of the plane more than defined angée considered as inliers for the
guessed plane

More formally, given a candidate sha@ewhose fidelity is to be evaluate#, is
defined as follows:

F(C)= \Pw\ 1.10
i.e., F(C) counts the number of points F), . Being B, defined as (Fig. 1.2):

Py={p | p €P A |d(w.p)| <& Aarcos [n(p)n(y,p)] < o} 111

whered(y, p) is the signed distance of pomto the planée?, n( p) is the normal irp
andn(y ,p) is the normal of? in p’s projection ony.
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}'? (2R

a.

Fig. 1.2 RANSAC score function: (a) selection criteriaimfer pointp for the pland?; and (b) effect
of the defined score function for inlier detectipwints marked in purple are excluded from inlier
detection because their nornmadleviate from the guessed plane normal

In particular, the signed distance function folane is given by:
dX)=<nx-p>=<nx>-<n,p> 1.12

wheren, |n|=1 is the normal to the plane apds an arbitrary point in the plane. The
intuitive threshold value for the Euclidean distance between a point anegséimated
plane can be easily found by the user accordinghéo instrumental noise and
minimum point density for the acquired point clouds

As specified in the definition of the score funatiB, in contrast to other RANSAC
approaches (Boluaassal et al. 2007), in the impMadesegmentation strategy not
only the signed distance is evaluated but alsoctirapatibility of the local point
normal with the estimated plane normal.

While comparison of local surface normal is notessary for planar detection, where
distance to the plane is sufficient criteria, bypémging this further check there is no
way that a maximum consensus plane is obtained fomious surfaces containing
points having different normal directions (Fig. )1.3his reduces some of the bad-
segmentation results reported in Awwad et al. (20@9nust be noted that the plane
direction, which is obtained by RANSAC, is basedtbe sequence of choosing the
three points; therefore, the check in Eq. (1.1%p alonsiders the opposite direction
for the plane normal.
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b. C.

Fig. 1.3 Example of bad segmentation removal with thergefiscore function for ‘D’Oggiono
building’ dataset (a). Results with simple signéstathce criterion: points highlighted in red (bejorg
to the roof) are erroneously clustered with themfag¢ade wall (b). Segmentation results with point
vector consistency check (b)

However, this two-step approach increases the ctatipoal complexity. To face this
problem, the efficiency of RANSAC is improved by plamenting an adaptive
approach to determine the number of iterations sgzng to extract, with a probability
p, the shape that achieve the highest possible getatley and Ziesserman 2004).
This problem turns out in evaluating the numbercahdidates that have to be
considered to guarantee, that the minimal setasvdrto define this shape, given a
predefined probabilityp. This solution is quite popular in RANSAC applicais
when exploiting all possible combinations of poirits form the minimal set is
computationally infeasible.

In particular, the minimum number of trialE) (o extract with probability, the plane
that achieve the highest score is:

T5_In(-p)

T Infl-(-¢&) 113

wheree is the outlier percentage ands the number of parameters to be estimated (in
the case of a plane = 3). Being the percentage of outliers unknowrthat first
iteration the outlier percentage is fixed near 100%hen a new maximum consensus
plane is detected the outlier percentage is caketilaccording to the current number
of inliers and the number of required iterationsislated (Tab. 1.2). In the case the
requested number of iterations has been reachgardless stops, otherwise the loop
iterates.

27



CHAPTER 1.FACADE SEGMENTATION

n=3 Outlier percentage
5 % 30 % 50 % 70 % 80 % 85 % 90 %
p: =99 % 2 11 34 168 573 1362 4602
p: =95 % 2 7 22 109 373 886 2994

Tab. 1.2.Minimum number of iteration for plane detection wit 95% and = 99%.

When a candidate shafkis accepted as the maximum consensus in the ploind
the corresponding poinByiers are removed fror? and the process iterates until new
shapes are detected having a size larger thanradeBeed threshold, defined as a
percentage of the original point clouds (e.g., 3%the original point cloud).

Algorithm 1 Extract planes in the point clo®d
Y — P{extracted shape}

repeat
C «— @ {candidate shape}

nBest— 0 {number of points in the best candidate}
i < 0 {number of iterations}
T « oo {number of iteration for having (Im|, |C)>p}

repeat
P3 = SelectRandomSubsBj({select minimum subset of points i.e. 3}
y = ComputePlane(P3) {compute plane from subset}
ninliers = Computelnlierg(, P) {compute no. of consistent points based &t} a
ifninliers>nBest
nBest = ninliers
C—y
T=NumberOfiterations(ninliers, P)
end if
until i< T
return C
P — P\ Ryiers {remove inliers points}

Y — ¥ U C{add extracted shape}
until P(z, |C|)>p
return ¥

When a shape having a number of inliers lower tih@nthreshold is detected as the
one having the maximum consensus the segmentatips. S’ he workflow of the
developed RANSAC algorithm for segmentation is regmbin Algorithm 1.
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1.4.2. Under- and over- segmentation removal
A new approach based on topology information wagldped to cope with both
under- and over- segmentation problems.

Under-segmentation comes up when several featarédgeipoint cloudy, vz, .. vn)

are erroneously detected during the segmentationeps an assigned to the same
segment (o). This problem mainly arises when encounteringcgpecases such as
two or more planar surfaces having the same noamélbeing at the same level. This
situation typically occurs for windows (Fig. 1.4).

s

J80 B
- -

Fig. 1.4 Example of under-segmentation removal for a fatiedows: (a) all windows belonging to
the same plane are clustered in the same segrbgan pccupancy map is generated with pixel size
p=1cm; (c) connected components in the bitmap atectkd; and (d) final segmentation results.

c. d.

Indeed, all windows are generally on the same péantkare erroneously classified as
one single object. This is mainly due to the faett RANSAC does not explicitly held

connectivity. Indeed, all points which are clagsifiin one group should form a
connected component in the object space while fesitiepresenting different objects
should have spacing between them due to featurgshvane segmented into other
groups. On the other hand, in unstructured pomuiids the connectivity requirement,
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which is straightforward in image processing (sitloere, connectivity is defined in
terms of the 4- or 8- neighbourhood on the pixél,gsee Dorninger and Nothegger
2007), needs a specific definition of neighbourh@mgology). This could be done,
for example, by considering two points as neighbatithey are connected by an
edge in the Delaunay triangulation; however, olmgrthe Delaunay triangulation is
computationally expensive (in particular, for lagg@nt clouds).

Hence, this research uses a criterion based odetir@tion of a bitmap located in the
parameter domain of the shape (Fig. 1.5).
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Fig. 1.5 Under-segmentation removal: (a) RANSAC detectester; (b-c) generation of the raster
bitmap; (d) detection of connected components énbitmap; and (e) correctly detected segments.

In particular, the bitmap is obtained by projectearh point along the plane normal
direction. A cell in the bitmap is defined as ocedgp(and its value set to 1) if at least
one point is projected into it. Otherwise it rensaegual to 0. Ideally, the sifeof the

cells in the bitmap should correspond to the dtdpetween neighbouring points in
the data, i.e. the sampling resolution. Howeveth@case of point clouds acquired by
TLS, data are irregularly sampled. For this reabencell sizes is chosen as the mean
sampling resolution in the point cloud. Larger sgtlay sample in a too coarse way
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the point cloud and do not overcome the problemieda ;s should be lower than the

distance between objects lying in adjacent pla@esthe other hand. a too small cell
size may fit the limit of the scan ground sampliigtance (GSD). A reasonable value
for p can be easily set up by the used. In reality, segation results are not

influenced so much, giving a reasonable cell siman this parameter. Once the
bitmap is setup, cells representing a connectecdpoaoent can be easily found. Then
all points whose projection belongs to the sameneoted component are grouped
into the same segment. In this phase some spwegments might be found. Indeed,
each segment whose area is far lower than the wadae is rejected.

Over-segmentation occurs when one feature in ti ptoud (o) is segmented into
several onesy(,y2, .. yy). It is generally associated with noise or irregities in
data. Indeed, many facades presents several iam@ges like out of plumbs, variation
of shapes and the like, that are not evaluated@nrRANSAC inliers estimation. For
example in the case of a facade presenting an foplumb, the segmentation may
result in subdividing a single facade wall into el objects. Obviously over-
segmentation problems can be prevented increadieg RANSAC tolerances.
However, this may lead to under-segmented partslwimay be difficult to split
again. For this reason, here restrictive RANSAraices are selected causing a
moderate over-segmentation.
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Fig. 1.6 Parameters evaluated for over-segmentation relm@yasimilarity of plane normal vector;

(b) small perpendicular distance between pointssifi?d in different segments; and (c) an inteisect
zone between clusters.
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This over-segmentation can be reduced by introdutmpology properties for point
clouds and planes. Indeed, group of points whidbrigeto the same surface should
share the following parameters (Fig. 1.6):

» similarity of plane normal vector;

» small perpendicular distance between points classih different segments;
and

* an intersection zone between them.

The methodology to overcome over-segmentationsedan two steps.

First, the whole group of detected segments arstered by using the mean shift
clustering algorithm (Comaniciu and Meer 2002). sThkploits the normal vectors
using as bandwidth the user-defined tolerance amgléhe main advantage of mean
shift algorithm is that it is a non-parametric ¢krsng technique which does not
require prior knowledge of the number of clustars] does not constrain the shape of
the clusters. In particular, given n data poits R, the multivariate kernel density
estimate using a radially symmetric kerKgX), is given by:

13 X=X
f =——_ K| ——
" nhd; ( - j 1.14

where h (termed as théandwidth paramet@rdefines the radius of kernel. The
radially symmetric kernel is defined as:

K(¥) = k() 1.15

wherecy represents a normalization constant which asd(pesintegrates to 1. For a
Gaussian kernel, as used in our case:

K(x) == &’

o 1.16

Taking the gradient of the density estimator Eq14)l and some further algebraic
X=X

manipulation yields:
n 2
: ng( h J
i=1
J] - X 1.17

or [y

[x= x|
| h |

2c n
0= 2 [29[
i=1

i=1
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whereg(x) = —-k’(x) denotes the derivative of the selected kernefilprorhe first
term is proportional to the density estimate at confputed with the kernel
G:cgg(||x||2)). The second term, is threean sHi vector(m), that points toward the
direction of maximum increase in density and ispprtional to the density gradient
estimate at point x obtained with the kerKelThe mean shift procedure for a given
pointx; is as follows:

1. compute the mean shift vectm(x');
2. translate density estimation window/*= x;'+ m(x"); and
3. iterate steps 1 and 2 until convergence (i#(x,)=0).

During the clustering phase, since the plane nodimattion is based on the sequence
for choosing the points defining the plane, theckheonsiders also the opposite
normal direction.

a. b.

Fig. 1.7 Example of over-segmentation removal: (a) a smallof plumb (1 cm) is detected in the
facade (green cluster); and (b) clusters are meafied clustering all planes.

Once extracted planes are clustered according éo ttormal, the perpendicular
distance between points classified as represeniifgrent objects is evaluated, into
each family of planes as detected by clusteringooials. If the mean value of these
distances is lower than the user defined RANSAEsthold and the convex hulls of
the point clusters intersects, they are recogniaeda single object and merged
together (Fig. 1.7).
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Chapter 2
Geometric reconstruction

In Chapter 1 has been described the segmentatittimedfuilding facade into planar
features. This Chapter presents the developed atitorprocedure for geometric
reconstruction and vectorization of the buildingdde starting from the features
detected during the segmentation stage. The gemerait a digital vector model of
the facade also requires a precise descriptiordgé® and breaklines, which are not
achieved during segmentation of planar featurestHt® reason, a procedure to detect
facade breaklines along with their post-procesaimdjsmoothing is described.

Point clouds obtained from TLS can be directly usedeconstruct fagade models by
means of simple triangulation of the acquired dd#tawever, these triangulated
irregular networks (TINS) models are generally categ on the mere basis of an
irregular distributed point cloud. Therefore, thay only implicitly store break-line
information. The quality of the break-line desdoptwithin these models depends on
the original point sampling interval and on theestf triangles. This representation
can be adequate foffree form objects i.e., object whose form cannot be
parameterized by means of simple geometric shdpes gome decorations, bas-
reliefs, sculptures, etc.), where discontinuities amooth. However, in the case of
objects that are made up of several 3D regulad s#apes (like mechanical parts,
building facades, etc.), transitions between dafierelements is sharp and explicit
description of these discontinuities is essenbtalgenerating high quality models. In
addition, TIN models obtained by conventional tgalation methods generally
results in a tremendous number of triangles. Thizecause TLS systems acquire data
at a given sampling rate and therefore even flahsare sampled with high point
density. The large size of these models may catdggms in handling such huge
data sets.

For these reasons, when dealing with building fasatieir modelling is performed
by individuating in the point cloud the basic stepenstituting the facade and fitting
polygons to them. At the end a 3D vector descniptid the facade is obtained.
Indeed, a vector model exploiting the primitive st may achieve the desired effect
of generating a lighter model compared with thgiaal point cloud or TIN model. In
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addition vector models give the possibility to esilly describe 3D breaklines.
Indeed, a ‘break-line’ can be defined as the ietgion of two surfaces, each surface
interpolating the points on either side of the krlae itself.

Until today, facade vector models have been usugéperated with a manual
approach. In standard reverse engineering, gepetiaéd point cloud is first analysed
by identifying the basic shapes constituting thgafee. Then breaklines are digitized
by the measurement of relevant points along edfjes.selection of the important
lines and the way the line are discretised is ughéoindividual human interpretation.
Then, starting from the detected edges the geoméimyfacade element is recovered.
However, this requires a largely time-consuming nahmwork performed by skilled
operators. To speed up the facade modelling, infihé of thermal retrofitting of
existing buildings, an automatic modelling approashpresented in this Chapter.
Obtained models can then be used in conjunctiom wit as an alternative to
Computer-Aided-Design (CAD).

In the developed methodology automatic modellinghtained thought a multi-step
approach. First, the original point cloud is segtadrno identify all planar clusters
constituting the building facade as described iragiér 1. Then, considering each
detected object, the segment edges are identifiatlgga first rough approximation of
facade breaklines. The extracted edges are randa®e affected and some blunders
may still present and thus cannot be directly usedinal product. For this reason a
further processing is need to delete gross erras smooth edges. Here some
architectural priors are added. Only after thespsstthe collected information can be
used for defining the boundaries of each elemetih@facade. Then, the topological
relations between segmented regions are enforceduating distance between
estimates of their edges. Finally the segmentg, bioeindaries, the intersections lines
and the topological relations, available at thismpof the process chain, are used to
generate the 3D fagcade model.

2.1. State of the art

A first key element for geometric reconstructionboflding fagade from point cloud
is a prior modelling of breaklines, based on thginal unclassified TLS points. The
breaklines problems was firstly analysed in the Ale®d for Digital Terrain Model
(DTM) production (Vosselman and Maas 2010). In ftekl, an edge in a point cloud
is defined by those points where changes in thal learface properties exceed a
given threshold. They can be divided in: (i) stegcdntinuity (a ‘jump’ occurring in
the data), (ii) slope discontinuity and (iii) cutuee discontinuity (one of the principal
curvature changes locally). The local surface priogege mostly used in the edge base
methods are surface normals, gradients, principalvatures, or higher order
derivatives. Edge detection methods look for abalfanges, therefore they are very
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sensitive to noise in the range data. From the odetlogical point of view, the edge
detection can be carried out by (at least) theehoust, classified as (@nalytical
direct, (ii) analytical indirectand (iii) geometrical by decimatio(Beinat et al. 2007).
The algorithms involving surface interpolations gy analytical direct function
belong to the first class (i). These have the compr@perty to provide one or more
local numerical values directly revealing singulas in the laser point cloud (Briese
2004, Alshawabkeh et al. 2006). The analytical rexcti methods (ii) start with the
suitable estimation of continuous surfaces in otdenterpolate in the best way the
laser data. Only in a second step, the edges deetdé by considering the space
intersection of such surfaces or simply analysimg/hich surface each point has been
assigned. Finally, the geometrical decimation (i@gards the optimization of the
mesh, coming out from a triangulation process, @els not involve the coordinate
points; nevertheless, while the edges are stroogiselated with the result of vertex
decimation, this approach does not succeed inldipe sliscontinuity detection.

In ALS domain, a first break-line detection appioastarting from an ALS range
image leading to smooth vector breaklines, wasemtesl by Brigelmann (2000).
Within this method the first and essential steghes extraction of edge pixels in the
range image. This is performed with the help ofaater-based method using a
hypothesis testing method presented by Forstne®8(19This method of second
derivatives and hypothesis testing treats break-dietection in range images on the
same principle as finding edges in intensity imadé® basic idea is that edge pixels
are borders of homogeneous regions. Thereforeotlming two basic properties for
edge pixels should be valid:

* the homogeneity measure on edge pixels shouldrdfémificantly from the
one determined in homogeneous regions; and
» the homogeneity measure should be locally maximenosa the edge.

In order to derive this homogeneity measure fogeaimages the gradient image is
calculated. Whereas for intensity images the squgradient magnitude is often used
as homogeneity measure, a multi-channel extensi@applied to the gradient image.
This leads to a homogeneity measure called quadvatiiation which is closely
related to the second derivatives based on theptimgipal curvatures and describing
the maximum and minimum normal curvature at eveixelp(Emery and Meyer
1989). The results of this process are pixels navki¢h the attribute ‘edge pixel’. To
generate the 2D position of the break-line withe broad regions of edge pixels a
thinning operation is applied after a non-maximghsression, taking into account the
direction of the maximum curvature. Then, a furthaster to vector conversion
allows generating 2D vector breaklines. Within thisp some smoothing using a 2D
cubic polynomial spline method is performed in orde perform a certain
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generalisation and elimination of ‘zig-zag’ effecisused by the original raster data
structure. Next to this interesting approach, afdurther algorithms within the area

of edge-based segmentation techniques based ar wisE surface models were

developed. All have in common to use image proogs®chniques in order to extract
2D break-line pixels, which have to be refinedurtlier steps.

In TLS domain Boulaassal et al. (2009) presentedrdour extraction algorithm for
building facades. Once having performed facade setption and detected planar
clusters in a fagade the extraction of their contsucarried out. The main idea
exploited in this algorithm is based on the hypsihestipulating that contour points
belong to the long sides of Delaunay trianglesdetected clusters. This algorithm
proved to be able to detect contour points. Howeslee to noise in the dataset and
the random nature of points acquired by TLS systehesderived contours present a
very irregular and jagged shape.

Becker and Haala (2007) presented a procedureréaklines extraction from point

cloud of building facades combining two differenhages. In a first step a cell
decomposition of the facade is performed by idgmig contour points using a

rasterization of the facade similar to Brigelma2000). Then, facade edges are
refined by means of an edge matching procedure icongphotos and TLS data.

A procedure for breaklines detection combining ivioitage matching and TLS data
is also presented in Nex and Rinaudo (2009). I ¢hse, edges are extracted from a
set of oriented images and their 3D position igieeed trough a multi-image
matching algorithm. Then, after edge denoising smdothening, matched edges are
checked within the TLS data.

Concerning fagcade modelling, a few automatic rettanBon methods have been
proposed, while some commercial packages such api@, Phidia§ and CC-
modelef provide only semi-automated reconstruction fumaliies. A common
aspect of all these methods is that while suchresystworks well with the data, they
usually require the user to set up several conpatameters. This kind of
parameterization is very common in fully automatiesthods but it turns out to be
also an under-estimated obstacle, since the séargroper parameters can be very
time consuming.

Automatic facade modelling is generally performeithva bottom-up approach, i.e.
they directly extract features such as points gesdrom multi-source data and then
try to aggregate them into 3D models.

In earlier works, Stamos and Allen (2000) developeslystem for reconstruction of
buildings from range scans combined with sets obrdered photographs. This
method is based on fitting planar polygons intc@uestered point clouds.
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Bauer et al. (2003) also proposed an approacté&detection and partition of planar
structures in dense 3D point clouds of facades lidolygonal models, with a
considerably lower complexity than the originaladat

Frueh et al. (2005) presented an early attemptiwimtegrated TLS data and digital

image to generate facade meshes. Laser point ckmadfirst used to generate depth
images, and foreground (occlusion objects) and dracind (building facades) are

distinguished by histogram analysis. TIN mesh m®aeé generated for background
points and textured with selected photos. The textwles caused by occlusions are
filled with texture from similar areas. This apptbaachieves very high automation

and realistic results, but no simple geometric sbajfsuch as polygon) are

reconstructed. In addition, the generated huge atmiutriangles may result in slow

visualization.

Pu and Vosselman (2006) presented an automatioagpto extract building facade
features from a terrestrial point cloud. The metliost defines several important
building features. Then the point cloud is segmenteo planar segments. Finally
each segment is compared with building featuresvevyer, the feature extraction
method does not work for windows.

Becker and Haala (2007) reconstructed polyhedrodefsoby integrating TLS data
and digital photos. To achieve registration betwdiéfierent datasets, intensity images
generated from laser point cloud are used for brgigrhis turns out the problem into
image to image registration, which is solved by 8IET algorithm (Lowe 1999).
Assuming that no laser points are available fromdews, laser points on window
edges are extracted. Edges extracted by Sobelffitten digital photos are then used
to refine the window edges. The resulting modeltaims windows frames and
crossbar. Problems may arise when the laser pemdity is too low to reliably match
digital images. Moreover, the shape of detectalelows is limited to rectangles.

Recently, Venagas et al. (2012) proposed an apiprdéac the reconstruction of
buildings from 3D point clouds with the assumpti@inManhattan World Building
geometry (or ‘Legoland’ as used in Forstner 2010js system detects and classifies
features in the data and organizes them into aemed set of clusters from which
volumetric model description is extracted. Howedgrived models present a very
low geometric level-of-detail.
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2.2. Automated facade modelling

In this section, a detailed description of the iempénted automated facade modelling
algorithm is given (Fig. 2.1).

Extraction of contour points
from detected planar
features

y

’ Edge smoothening

Building
Knowledge

Straight line
constraint

intersection

’ Topology restoration
constraint

i

’ Break-lines detection ‘

J

Polygons fitting ‘

y

’ Polyhedron CAD model l

Fig. 2.1 Workflow of the developed automated facade mauglprocess.

In a first step, once planar clusters constitutthg facade are detected by the
segmentation approach presented in Chapter 1, Xtnacgon of their contours is
carried out. To achieve this task the algorithmcdbsd in Section 2.2.1 has been
developed.

However, contours extracted in this way are afféddy random noise and some
blunders might still be found. Blunders are firsthmoved from the extracted edges
by evaluating their size. In particular, pointsmidmg too small contours are evaluated
as small holes in the point cloud and filled. Doetlie presence of noise and the
acquisition scheme of laser scanners, edges amérsomay present an irregular and
jagged shape. Indeed, in these locations the spasalution of the point cloud is not
enough to give a complete description of the gepmé&n the other hand for the
considered building types, straight lines previadr this reason, the noisy edges are
split into basic elements (linear and curved eldas)eand each of these is smoothed
and eased trough automatic transformation intcslared B-splines. Finally, the basic
elements are recollected in a unique smoothed edge.

Due to the RANSAC tolerances in the segmentati@psst topological relations
between surfaces are lost. In order to restoreecbropology in data segment,
adjacency is evaluated. In this way, starting frone facade segments, their
boundaries and topological relations, the intersactines, i.e. breaklines, can be
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determined. Finally, the geometric reconstructibthe facade, represented by means
of polygon elements, is exported in CAD standananfét in order to give a good
preliminary data for the graphic visualization bétsurvey and for an evaluation of
the achieved results.

2.2.1. Extraction of geometric edges

The first step of the presented approach for auticnfacade modelling is the
extraction of contour points for each detected gasegment. Before further
processing, a preliminary step is performed byrded a new coordinate system for
each planar cluster. For this purpose, a Princ@amponent Analysis (PCA) is
calculated based on the points of the planar segrie coefficients of the first two
principal components define vectors that form ahagonal basis for the plane. The
third one is orthogonal to the first two, and ieefficients define the normal vector of
the plane. The original coordinateso(XYor, Zor) are then transformed in this new
local space aligned along the principal componergctions (Xew Ynew Znew). IN
particular, the component,g, which is approximately directed along the normal
direction to the planar cluster may be considesedeagligible.

Lengths of triangle sides

Length (m)

Number of sides (Thousands)

Lengths of triangle sides

Length (m)

Number of sides (Thousands)

C. d.

Fig. 2.2 Delaunay triangulation of a point cloud portidracbuilding facade (a); curve of lengths of
triangle sides (b) with a zoom (c) on the curvatiranging point; and extracted contours (d).

At the end, when contour points are extracted, thilybe transferred again in the
original reference system. The presented algoritbmtontour point detection relies
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on the observation (Boulaassal et al. 2007) thattpdoelonging to a cluster contour
can be individuated after Delaunay triangulationptEnar segments. In particular,
contour points are defined as extremities of logs of Delaunay triangles. For this
reason, according to the implementation in Boukdassal. (2007) the lengths of all
triangle sides are ordered in an ascending way. Glasses of side length can be
distinguished (Fig. 2.2).

The first one contains short sides that are locatethe horizontal part of the curve.
The second one contains long sides that are regeesby the vertical branch. This is
given by the fact that the number of points beloggio the contour is negligible
compared to the total number of points. The thrieskeparating these two classes is
typically determined around the poidtwhere the curvature is changing. In particular
the numerical first derivative for each point looatin the graph is calculated. The
threshold value is then fixed in correspondenca sudden jump of the derivative
toward almost infinite values.
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Fig. 2.3 Limitations of the Boulaassal et al. (2007) camtextraction algorithm. Triangle sides at
cluster external contours generally do not extalstgnificant increase with respect to the otherson
(a); and for compact elements (b) the identifmaif a point where curvature changes is not eviden

(©).
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Even if this method proved to work quite well inetlextraction of contours in
previous applications (Alshawa et al. 2009, Boudah®t al. 2007, Martinez et al.
2012), some limitations were found with the buitflexddressed in this research:

« even if it is true that long sides of Delaunayngalation generally determines
the presence of a contour, this is mainly truetlieridentification of holes in a
cluster, e.g., windows contours inside main facgetgnent. However, triangle
sides at cluster external contours generally daerbibit a significant increase
with respect to the other ones, e.g., external e@itour sides generally have
the same size of internal triangles’ sides (Figa}.

* due to the observation made at the previous pbmtselection of a proper
threshold between long and short sides is not alsitask. Indeed, while the
point P, representing the curvature change in the gragh,be properly used
to identify the presence of points forming a contbale in the segment, it is
not appropriate for identifying external contoufBn the other hand the
selection of a lower threshold may generate spamesults;

« for some specific segments, e.g. compact elemdémesidentification of a
point where curvature changes is not evident (Eigp-c); and

e contours obtained in this way are quite irregulad aypically show a
characteristic jagged shape (Fig. 2.2d).

For these reasons a new approach for automatedwadentification was developed
(Fig. 2.4). Once the new coordinates are calculé¥d, , Ynew) @ bi-dimensional
Delaunay triangulation is performed. By identifyittge threshold between long and
short side triangles, all the ones having a sideeding the threshold are removed. In
this way, all Delaunay triangles that have beennghp generated in correspondence
of holes are removed while external contour sidegganerally kept.

Planar segment

. : ,
\ v

Binary image Delaunay triangulation ‘
Edge cells k v Detection of long sides \

Removal of long sides ‘

|

|

Detection of “single triangle” sides

Contour points

Fig. 2.4 Workflow of the developed contour extraction @ss.
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By analysing the obtained triangulated surfacestao points are then derived by
identifying triangle sides that belong to a sinDlelaunay triangle. Indeed, points in
the inner part of the planar clusters belong tangle sides shared by two triangles.
On the other hand contour points generate triasglies belonging to a single
Delaunay triangle (Fig. 2.5).

Fig. 2.5 Detection of contour points principle: contourgek (red) belong to one triangle only while
others belong to a couple of triangles.

The search of these sides can result in a significamputational effort. For this
reason, a simple way is implemented to quickly idgmnd ignore the ones that are
not close to the boundary. Firstly the plane ismiszed into cells of sizg x . Then

a binary image for the cluster is generated. Irs timage white cells represent
elements where TLS data are available, while btzals are grid elements with no
data.

Fig. 2.6 Detection of contour points: (a) triangulatedraegt model; (b) contours raster map and
detected contour points.
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Points lying inside cells whose 8-neighbors alltaondata points are pruned out. In
this way a set of edge cells is obtained and thecheof contour points is performed
only in these cells (Fig. 2.6).

The optimal cell size8, as previously discussed, is the mean samplingutsn in
the point cloud. Of course, accuracy of the exé@atdge cells is influenced by the
cell size. However, a coarse rasterization doesffett the accuracy of the extracted
contour. Indeed, contour points are computed cenisig the original data while the
generation of a raster map is only used to spedtiaipglentification of contour point
by eliminating a series of non-contour sides.

2.2.2. Edge smoothing

As previously observed contour points detected whth presented approach define
quite irregular and jagged contours showing a dtarstic ‘saw-tooth’ shape. In
fact, these edges have an irregular and waved sthagdo the noise and random
measurement errors. However, this is in contragh whe characteristic facade
geometry where straight lines are predominant. thi@r reason, the achieved edges
cannot be directly used for facade modelling an@athing is needed to define a
regular shape of the object. This process has nsider the different typologies of
edges that compose the object. In particular, edgesbe usually split into different
basic entities (linear or curved parts). Then, esfdiese entities can be simplified in
lines and curves. The line and the curve equatmust be fitted in the best possible
way using the dominant points information, whilee tvhole edge can be finally
reconstructed by linking these entities together.tHis paragraph the automated
reconstruction of edges is presented.

One of the most common edge simplification metha&she Douglas-Peucker
algorithm (Douglas and Peucker 1973). It is veme to implement and it works
for every edge dimension, once it only relies andistance between points and lines.
Its basic rule is that the approximation must cionta subset of the original data
points and all the original data points must li¢hivi a certain predefined distance to
the approximation (Wu-Shin and Gonzales-Marquez3200he Douglas-Peucker
algorithm has a hierarchical structure startinghvétcrude initial guess, namely the
single edgee joining the first and last vertices of the polylinEhen, the remaining
vertices are tested for closeness to that edgéhelfe are vertices further than a
specified tolerance away from the edge, then the vertex farthest fitois added to
the previously simplified polyline. This createsi@wv approximation for the original
polyline. Using recursion, this process continu@selach edge until all vertices of the
original polyline are withire. This algorithm ha®©(mn)worst case time an@(n log

n) expected time, wheneis the number of input vertices andis the number of the
segments of the simplified polyline.
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Other simplification algorithms extracts the poititat lie on longer line segments by
means of a sequential approach, looking for passtiovhere the slopes of two
consecutive edges with similar slopes may be gmup¢o one line segment
(Sampath and Shan 2007). In alternative, the ‘sldating’ algorithm can simplify
into a line the points that are inside a sectornbodefined by an angle (Zhao and
Saalfeld 1997).

All these simplification algorithms have been sssfelly used in aerial applications
or for map digitalization. They essentially redube number of points per edge,
smooth data into a polyline composed by linear elas (i.e., Douglas-Peucker and
the Shao-Gonzales methods do that), or they are tabdivide an edge in linear
elements (like ‘sleeve fitting’ method) and regidarthem in order to extract simple
building roofs.

Unfortunately this kind of solution is not sufficiein the edge reconstruction of the
architectonic applications as they have usuallyegenshapes, different length and
complexity. Anyway, in the great part of residehtiilding facade in the period
1950 - 1975, long edges that describe the main gagraf the building, can be eased
in a sequence of lines and curves linked togethethese conditions, the linear and
curved features have to be recognized and theedafigpsimplification algorithm has
to be applied. In order to do that, a specificalgsigned smoothing algorithm has
been developed (Fig. 2.7).

Contour points

l

Detection of dominant
straight lines

’

Enforcement of straight
line constraint

Detection of short edges
v
Long set of small T T -
edges—:_: _ Edgesize
B-spline fitting ‘ ) l
Gap filling with

architectural priors

|

!

Objectedges

Fig. 2.7. Workflow of the developed edge smoothing and leigation process.
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As previously noticed, an important aspect of thgatles targeted in this research is
given by the fact that the straight lines are preibant in facade elements. In
addition, these straight lines generally intersecn orthogonal way. For this reason,
once the contour points are determined, the dormiexdge directions are identified by
using a sequential RANSAC implementation aimed taeting linear features
similar to the one presented in Chapter 1 for thection of planes. Once dominant
lines are detected, inliers points are removedsastituted with a straight line. The
remaining contour edges are then evaluated. Indeadetimes, small occlusions on a
facade or segmentation errors cause irregular edigedbe generated outline. These
irregular edges should be removed by observingthiegt form short segments, which
result in a gap on the outline. If the left longgedto the gap) and right long edge
belong to the same line, the gap is just filledcbynecting a line segment. If the two
edges are parallel, a line segment which is peiipelad to both is generated, and the
two edges are extended to reach the perpendicedgnent. Finally, in the case the
two initial edges are orthogonal they are just eaézl or shortened until they intersect
at a point to fill the gap (Tab. 2.1).

Left and right edge on the same line
Without 000y0,00440%%% %000, 0°%00%,%,%,% 00"
filling priors
With filing | o0t gteygee®lyy®e et g ———ugbegayd 004400
priors
Left and right edge parallel
wirout | TO®etetergeetiggtooey
_yvrnou 00g o0 0 0 0 .
filling priors L o e o %00
- 0000000044 0%%%4%0 00,
With filling Py .0 0.8
priors *o e e 9 00"
Without filling priors With filling priors
®
* .
g e
. Y
® ..
.. ..
® )
Left and q ¥ ¢
right edge )
orthogonal .O .O
e e
®
0e0g0,004,0%0% %000, 000005004 o 09°% %00,

Tab. 2.1 Filling of boundaries for different arrangemeoffdges.
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In some cases instead of a single small edge adengf small edges can be found.
This is generally due to the presence of a cuneatufe. In the implemented
procedure instead of detecting the curved shagedird then apply the corresponding
fitting algorithm, a B-spline curve representatisradopted as uniform mathematical
model. A B-spline curve of degree p is defined byl ontrol points R...,P, and a
knot vector of m+1 knots:

U :{uo,ul,...,um} 2.1
where U is a non-decreasing sequence with [01] and n, m and p must satisfy:
p=m-n-1 2.2

The B-spline parametric curve function is of thenio
n
C,(u)=>_PN, (u) 2.3
i=0

Nip (u) is the basis function of the B-splines, defined by

1 if u<u<u,

N, (u) =
o) 0 otherwise
2.4
U—Ui ui+ + -u
Ni,p(u) :—Ni,p—l(u)+ a Ni+1,p—1(u)
Up —Ui i+pr1 — Yin

The objective function for a Least Squares curteng§ with a spline function of
degreekis:

y =Z{vv(x){y(x)—ZRNi,p(x)}} 25

whereW(x) is a weight and/(x) is the input value at x. The coefficier®s are the
parameters to be determined. The knot values méixéxt or they too may be treated
as parameters. In the developed implementation hisely(x) are fixed equal to 1
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because no a priori information about noise indh& are available and knots are
treated as parameters. For determining the numibknais to use and where they
should be placed, the ‘curvature-based’ squararmist minimization proposed by
Wang et al. (2006) was used.

Once having individuated dominant lines and pogstbived elements are fitted with
B-spline the whole edge is reconstructed by linkihgse entities together. All
computations are performed in the local princip@mponent space. Finally,
reconstructed edges are transposed in the oridataim (Fig. 2.8).

] —

el D d<_J._._._._..:.'.:' e{J AN

Fig. 2.8 Boundary edges before (a-c) and after (b-f) theght line constraint application. Example of
dominant line detection for a window (d): dominénes are represented with different colours (e).

2.2.3. Reconstruction of facade topology and brediae extraction
Because of RANSAC is used and a threshold toleramsefixed in the segmentation
phase, some topological relations like intersechetween surfaces are lost. Indeed,
in the case of intersecting surfaces the pointgglyin the intersection (that belong to
both surfaces) are assigned only to one clusterefgdly to the larger one). Due to
this shortcoming, segments adjacency is lost. tht@a, detected edges for adjacent
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surfaces do not intersect. These parts are mastigted in the intersection zones
between features, for example between sidewallsveaaits, between sidewalls and
doors of windows. On the other hand these intemestbetween features exist in
reality. To restore them a surface intersectionstramt is added into modelling
pipeline.

The first step is the detection of adjacent segmehtvo segments are considered
adjacent if at least one pair of line segments ftheir rough 3D boundaries is close
to one another. In particular, segments are coresidadjacent if the distance between
them is lower than the RANSAC threshold used faanpl detection. Once two
adjacent segments are detected, surface intenseioenforced. In particular,
feature’s outline edges which are close to the rofeature are replaced, in both
adjacent segments, with the intersection line efglanes that the two features belong
to (Fig 2.9).

Fig. 2.9 Plane connection before (a) and after (b) thiasarintersection constraint.

Surface intersection constraint, not only re-essalthe topology between objects but
also increase the accuracy of detected breaklimsteed, by means of surface
intersection constraints, breaklines are calculatedhe intersection of planes which
are estimated from a large set of points. Whileeedgjculation from contour points
may be more affected by noise in the point clondaddition, as previously discussed,
the accuracy of laser scanning measurements iesmondence of edges is generally
lower than the one on smooth surfaces (see alsdafisganane et al. 2011).

2.2.4. Geometric model export in CAD environment
At this point of the processing chain the segmehisiy boundaries and intersections
are available. Thus, the 3D building model candm®nstructed now.

49



CHAPTER 2. GEOMETRIC RECONSTRUCTION

The geometry of a reconstructed model can be destin there different ways: (i)
spatial enumeration (i) boundary representationand (iii) constructive solid
geometry (CSG)n spatial enumeratiomodels (Frueh et al. 2005) space is described
as a regular array of cells (usually cubes). Eathctermed asoxeland a 3D object
is represented as a list of occupied voxels. Tiig lof representation generally
requires high memory consumption. In addition, niagdsolution is limited to size
and shape of voxels. In th®undary representatioa closed 2D surface define a 3D
object. Object boundaries can be defined in twoswély in a primitive-based way
where a collection of primitives form the boundé&eyg., a set of polygons) or (ii) in a
free form-based approach where boundaries are edefiny means of splines,
parametric surfaces or implicit forms. In the boarnydrepresentation models (Pu and
Vosselman 2009, Becker 2009, Tian et al. 2009)otiéines of planar features are
extracted as polyhedron, so the model sizes arehnsacaller than the spatial
enumerations models. The data reduction of boundgpyesentation also leads to
much faster visualization. Wittonstructive solid geometry (CS@) building model
is composed by some fixed primitives arranged byamseof Boolean operators
(union, difference, and intersection). The CSG nwdee always watertight, and
require even fewer parameters than boundary remassn. However, it is hard to
represent complex objects with CSG when they carhdrelly decomposed into
simple shapes. Besides, the heavy conversion oS& @odel to the boundary
representation is always necessary for visualimatipurposes. In addition,
representation is not unique. Only a few methodsa(&l and Brenner 1999, Suveg
and Vosselman 2004) are based on CSG building model

Interoperability is an important need in order t@ke the derived model relay
available to operators (Brumana et al. 2013). Idddee presented workflow has been
implemented inMatworks Matlab® code. This language allowed all the workflow
steps to be accomplished, but it did not succegmaduction of suitable drawing for
the end-users (e.g., architects and civil engine€iw this reason, the obtained faced
model is exported by using tirawing eXchange FormgDXF) format (McHenry
and Bajcsy 2008). This format enables conversiotgatd into a format compatible to
a great number of design and CAD software packages.

The data format of a DXF is called a ‘tagged d&aaehat, which means that each data
element in the file is preceded by an integer nuntbat is called ‘group code’. A
group code value indicates what type of data el¢énfi@iows. In the presented
approach, geometric reconstruction can be seenpascass of polygon fitting. For
this reason, the boundary representation is thgestoto the developed method. In
addition, several standards, as CityGML (Groger Rlioner 2012.), rely on boundary
representation for geometry definition. In partaoulin the DXF file the building
boundaries are represented by a set of polygomsedieds region objects.
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In some cases also a polygon mesh representatiobecaseful. For this reason the
obtained model is also exported into Polygon Fidenfat (PLY) file format. In this
case a constrained Delaunay triangulation, whemgad@ breaklines represent
constraints, is used. The derived model presemsattvantage of maintaining the
detected breaklines. In addition the size of timalfimodel is significantly reduced
with respect the triangularization of the origipaint cloud.
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Chapter 3
Semantic model enrichment

This chapter presents an automated procedureldellitag several important building
features (walls, doors, roof, protrusions, etcgrtsig from the planar segments
detected by the point-cloud segmentation strategggmted in Chapter 1. Extracted
semantic information are then associated with thewmetric properties (e.g., size
and shape) and spatial relationships. These itemgh&n exploited to produce a
compact, semantically enriched 3D model that costdhe geometry and identity
information that substantially are required to fesedBuilding Information Model
(BIM).

In the last years, in the Architecture, Engineeriagd Construction (AEC) domain,
the importance of semantically rich 3D models ofidings has been continuously
growing. In particular, their importance is not tied only to design and construction
phases, but also extended to throughout the ehtiieling serviceability and the
facility management phase. Such models are gepdwadiwn as BIMs. According to
the United States National Building Information Mdicthg Standard (NIBS, 2007) a
‘Building Information Modelling (BIM) is a digitakepresentation of physical and
functional characteristics of a facility. A BIM i@ shared knowledge resource for
information about a facility forming a reliable lm$or decisions during its life-cycle;
defined as existing from earliest conception to di@mon.” As can be clearly seen
from this definition (in contrast to traditional ilding design approaches) a BIM is
much more than a simple geometric model. It managesonly graphics, but also
information that allows the automatic generationdodwings and reports, design
analysis, schedule simulation, facilities manageimamd more. Last but not least it
enables the building team to make better-informedsions. In particular, the BIM
logic is based not only on a 3D building geometuyt lalso on semantic and
descriptive information.

In particular, the process of converting point-calata into a BIM is known as ‘scan-
to-BIM’ process. Geometric surfaces or volumetrianitives are fitted to the 3D
point cloud to model walls, floors, ceilings, colosy beams, and other architectural
elements of interest. The modelled primitives areadated with their identity labels
(e.g., ‘wall’) and metadata, such as the surfactena (e.g., ‘concrete’). Spatial and
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functional relationships between nearby structaed spaces are also established.
Currently, the ‘scan-to-BIM’ process is primarilyjaour-intensive manual operation
(Anil et al. 2011). Researchers in the AEC domagtognized the need for
automation tools to speed up such processing siket al. 2010, Tang et al 2010).
However, despite the progress in sensor developraattnomous recognition of the
building structures remains the most challengirsty 8mong the whole reconstruction
process.

3.1. State of the art

A core task of as-built BIM constructiona®ject recognitionlt can be defined as the
process of labelling a set of data points or geamerimitives extracted from the
data with a named object or object class (Xiongle2013). Whereas the modelling
task would find a set of points to be a verticang, the recognition task would label
that plane as being a wall. Object recognition algms may be divided into two
categories: recognizing object instances of antextzape (e.g., instances of a specific
type of beam), or recognizing classes of objectsere the shape may vary among
instances from the class (e.g., windows that may wraheight, width, etc.). In the
case of facade objects because of the great varfidtyilding styles, the classification
problem has to be formulated in the term of recoiggi classes of objects.

The most common approach uses ‘global-shape’ qescsi which are less
discriminative than ‘semi-local’ descriptors used the recognition of simpler object
instances. In those cases, the recognition pracasde divided in two main steps.
First, in an off-line process, global shape desorgpare computed for each object to
be detected. These descriptors are stored in dak#ahat is designed to facilitate
rapid lookup of descriptors based on the similaritya query descriptor. Second, at
runtime, the recognition is performed in a scenenelhinstances of the target object
are to be detected, or possibly with a pre-segrdediéda instance to be recognized.
Shape descriptors are computed at locations injtleey scene, either randomly or at
salient points, and the most similar descriptortheamodel database are retrieved. In
particular, the query object is matched againstmptas from the entire class. The
descriptor similarity measure is designed so thatlar shaped objects will result in
similar descriptors. As a result, the closest matghdescriptors from the database
will give an indication of the object class. A coete review presenting a large
number of global descriptor methods can be foundhiane et al. (2004). One
disadvantage of the global descriptor approacinas it is unable to handle dataset
suffering from occlusions or clutters, both of whiare commons in laser-scanning
data. In particular, the back sides and bottomsnot objects are not visualized.
Another limiting aspect is the long out-of-coreirtiag phase for the descriptors to
cover various instances in a class. Due to thesésliof existing methods, the
recognition of BIM-specific components such as sallindows, and doors, is still in
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its early stage. Methods in this category typicglgrform an initial shape-based
segmentation of the scene into planar regionsekample, and then use features
derived from the segments to recognize objectss @pproach is exemplified by Rusu
et al. (2008) who use heuristics to detect wallsprs, ceilings, and cabinets in a
kitchen environment.

Another opportunity is associated with introducingntext informationinto the
recognition phase. In particular, some researcpesposed leveraging the spatial
relationships between objects or geometric priregito reduce the ambiguity of
recognition results. Such approaches generate sientevels of geometric primitives,
and test the validities of these labels with a iapatlationship knowledge base.
Usually, such a knowledge model is represented lseraantic net (Nuchter and
Hertzberg 2008). For example, it may specify tHati@nships between entities such
as ‘floors are orthogonal to walls and doors andalpe to ceilings’. During the
recognition process, if a surface is recognizedflasr,” then the algorithm will
identify that the valid semantic labels of a suefacthogonal to it can only be ‘wall’
or ‘door,” but not ‘ceiling,’” thereby reducing tleearch space (Cantzler 2003). Such
validity checking approaches provide ways to irdégrdomain knowledge into the
object recognition process making the recognitionranrobust. An automatic
extraction and classification algorithm of buildifgatures is presented in Pu and
Vosselman (2009). In this case, objects derivednfisegmentation are classified
according to some parameters like their positioth éxtent. Similarly, Luo and Sohn
(2010) presented an approach based on classificatitacade elements according to
a different set of parameters (e.g., directionaadepth, shape index, etc.).

Finally, several works in literature focus on exghg theregularity of simple facade
elements, especially windows, to derive semantforiation from facade point
cloud. In particular, some specifigammar ruleseither derived in a top-bottom or in
a bottom-up manner, are used for the descripticguoh repetitive patterns. The work
of Ripperda (2008) aimed at interpreting buildiagddes with a description grammar.
Facade elements (such as ‘walls,” ‘doors,” and deiws’) and abstract elements
(such as repetition, symmetry and array) are wride ‘terminals,” and then building
facades are described by hierarchical compositibnthese ‘terminals.” The
reconstruction of a building facade can be seea stochastic process of interpreting
sensor data with the grammar. The probability dlistron of the terminals is searched
under supervision of the reversible jump Markov @hilonte Carlo (rfMCMC)
method (Green 1995). Regular shaped buildings Wah facades can be well
represented with the defined grammar. However stbehastic analysis for complex
facades might not lead to meaningful results. Bed@809) first reconstructed
polyhedron models from TLS data and images, and tised the clues extracted from
the models to synthesize areas without laser ddtar the reconstruction step, the
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structural and hierarchical relations between fagaltjects are described in the form
of shape grammar similar to the one in Ripperd®820The discovered patterns can
be propagated to the upper regions of the sameldacim compensate the low point
density, or even propagated to other buildings reate similar styled building
models.

The above mentioned procedures generally work wellsimple facade elements
recognition, like walls and windows. However, a mdetailed set of facade elements
need to be represented in building reconstructioa &evel-of-detail adequate for

thermal building analysis. In addition, some of {hrevious reported methods are
based on regularity assumptions for building fagatteat may fail in the case of

clutter and large occlusions. Finally, detected a®in objects are generally not
combined with geometric modelling in a unique framek. For these reasons a new
classification strategy has been developed whichinsed at recognizing a more

detailed set of facade elements from TLS data, siscsidewalls, roofs, and doors to
allow modelling at a higher level-of-detail. Thevd®ped approach does not make
use of strong assumptions about facade regularity exploits a set of generic

architectural priors for buildings built in 195@975 for the generation of a semantic
rich fagcade model.

3.2. The hierarchical classification approach

In this section the developed approach for facdajeco classification is presented.
The process is based on some general knowledgeeddrom the nature of building
structures. In particular, for the building typensaered in this research, facades have
a dominant planar structure, characterized by tadfleninant surface and with other
facade’s components having off-plane depth vamatiavith respect to this plane,
either positive (extrusions) and negative (intruasjo This assumption is also
generally valid for a great variety of modern buntglarchitectural styles. These priors
are then translated into logic-level terms to derthe rules describing relations
between concepts which are organized into a hieiclclassification tree.

3.2.1. Facade knowledge

As the products of human construction, a buildirsg constituted by various
components. These components, or ‘features,” sasvémportant context ‘nodes’
during both construction and recognition processbulNding can be decomposed
either according to component functionality, such wall, roof, door, window,
balcony dormer, awning chimney water pipeanddecoration or according to the
spatial partitions, such aBoor, floor 1, and so on. In this dissertation facade object
classification is performed considering the fornpeinciple. Indeed, objects with
different functions usually appear in different gesiries, which are easily
distinguishable from TLS data. On the other hard possibility to define the
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different functionality of each facade object isearf the main aspects of a semantic
rich model.

It is not necessary and somewhat redundant to dseati functional components
into the knowledge base classification of buildiiegitures. Thus, the selection of
features follows three considerations:

1. the features which are within the interests of theonstruction are only
considered. For example, awnings and water pipesnat included in the
classification phase because they are not ofteiredes) the reconstructed
model;

2. the features which can be hardly captured in thesme data are not
considered. For example, the chimneys are seldanmed by using TLS; and

3. the features can be defined in the level of prieitdr plane. At this moment,
only planar features are considered because bgddiuilt in 1950 - 1975
presents facades that are mainly composed by pleatures, and planes can
be easily extracted from laser point clouds witlstaxg methods.

In particular, only the following feature classes §emantic type in other words) are
defined (Fig. 3.1):

Ground: although ground is not a building feature, itnsluded in the feature type
list because generally it is acquired by TLS andsiuseful for recognizing other
facade elements.

Facade wall:is the remaining part after removing all protruside.g., roof, railings,
etc.) and intrusions (windows, doors, and sideWywaisnce protrusion locates at the
top/bottom of the facade (e.g., roof), or the iesaf the wall (e.g., railings) and
intrusions locates at the inside of the wall, thallvappear continuous and keep
coplanar in the area of a facade. Therefore, walnent covers nearly the whole
facade and is the largest element.

Sidewall attaching window/door: is the side face of the wall and perpendicular to
the frontal fagade wall. Sidewall is the connecti@iween the main fagade plane and
windows/doors elements. It is different from otir@rusions like doors and windows,
which always appear parallel to the frontal facéhefwall.

Roof: this element is generally located at the top & thcade. In addition, it is

generally a horizontal or mildly sloped elementtprding out from the facade to
protect the facade from rain.
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Window: is an intrusion element which is parallel to thental facade wall. A
window can be found at each floor and generally ihside a ‘O shaped’ hole in the
facade wall.

Door: is an intrusion element which is parallel to thenfal facade wall. A door can
be found only at the first floor and generallysitimside an ‘inverted U shaped’ hole in
the facade wall.

Wall attachment: is an element protruding out of the facade wadisdtble wall
attachments include window sill, stairs, railinglaso on.

3.2.2. Facade classification rules

In a facade, each feature has some peculiar ckasditts which may be described as
recognition rulesto be derived either from the statistical analydis training set or
based on the knowledge of some priors about tredtaand urban scene. The former
approach has the main disadvantage of an out-ef{4tamning phase based on a wide
number of manually classified cases. The latteapplicable only for the building
types featuring the defined priors. The classiitatpresented in this dissertation
belongs to this second group and are designeduitafibgs in the period 1950 - 1975.
On the other hand, to increase the application dontae defined rules are quite
general and they can be used for a wide varietyudéling types. Only for a limited
number of architectural styles the defined prioesymot be adequate.

Each building feature has a number of attributdsicivare similar within the same
feature type. Strong clues can be extracted frarctimbination of feature attributes
to suggest particular feature types. Some comntabutes are considered below:

Size:the size is probably the most distinguishablelatte. It is most likely that walls
occupy the largest space on a building, and uswahgows are not longer than the
height of a floor. The term size can refer to aueas length, width, height, area, or
volume.

Position: some features can be expected at certain relptis@ions inside a scene.
For example, ground is usually the lowest part, eoafs are seldom in a higher
position with respect to other structures.

Orientation: features' orientations are also predictable. kangple, ground surfaces

are almost horizontal; walls are usually verticalthey are the supporting body of
buildings; roofs are never vertical.
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Besides a feature's own attributes, some spatialiors between features can be
predicted. These spatial relations are:

Intersection: intersection is a basic spatial relation indiogtithe neighbouring
relationship of two features. For example, neighimgu walls often intersect
perpendicularly; dormers must intersect a roof @lan

Angle: angles between building features are often paralie orthogonal. For
example, windows on a wall usually are parallehwiéspect to wall; sidewalls on a
window often are perpendicular to the main wall.

Inside: if a feature is part of another feature, it isalguinside the boundary of the
other feature. For example, windows of a wall naestnside the wall's boundary.

To a certain direction of: the locations of some features can be expectadcetain
direction of other features. For example, a rooh ¢ expected above a wall,
sidewalls should be perpendicular to the wall fagasdc.

All these information about feature attributes barformulated in terms of first-order
logic (Russell and Norvig 2003) to define the militrules of the knowledge base
classification. Firstly, the statement of a feattype is represented with a binary
function:

IsType(argl,arg2) = TRUE

whereargl is a geometry feature whilerg2 is a constant indicatingrgls feature
type. For example, the assertitsType(k;Wall) = True states that the type &% is
Wall.

Feature attributes and spatial relations are @presented with functions, which take
the index of a particular feature as their soleuargnt. Sometimes, a feature's own
attributes does not give a useful clue if the redasituation is unknown. Therefore,

some relative attributes and their enquiry functi@ne introduced. Determination of
relative information requires sorting of particulattributes throughout a group of
features. For example, a feature is considered Ifate position is ranked as the

lowest among the other feature types. The attrifwietions are:

» position functionsléLow),

» size functionsléLarge,
» orientation functionsl¢Vertical, IsHorizontg|.
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The spatial relation functions are associated witeference feature. They are:

* 'to a certain direction of’ functionggOver, IsOUY,
* angle functionsléPerpendicular, IsParallg)
» inside functionslginside.

In particular, the rules for the previously defirfadade features are here reported:

1. A‘ground’ featuref) is a low, large, and horizontal plane:
v f IsType(f, Ground)

=IsLow (f) A IsHorizontal(f)

2. A ‘facade wall’ feature is a large and verticaln@a
v f IsType(f, WallFacade)

= IsLarge (f) A IsVertical(f)

3. A ‘roof’ feature ;) is a large mild slope element at the top of al\aab
protruding out of the facade:
v f, IsType(f, Roof)

=>3f, -IsVertical () A IsOver(f, f,)) A IsOut(f, ;) A IsType(, WallFacade)

4. A ‘wall attachment’ {;) is an element protruding out of the wall facade:

IsType(f, WallAttachment)
=3f, IsOut(f,f) A IsType(, WallFacad¢
5. A ‘side wall' (f;) of a window/door is an intrusion of the wall faea
perpendicular to fagade walls:
v f, IsType(f, SideWall)
=3f, -IsOut (f,f,) A IsPerpendicular(f f;)) A IsType(, WallFacade)

6. A ‘window’ (fy) is an intrusion of the wall facade perpendicttathe wall and
is inside a ‘O-shape’ of the facade wall:
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v f, IsType(f, Window)

=>3f, ~IsOut (f, ) A IsParallel(f, f)) A IsInsideO® f,) A IsTyped, WallFacade)

7. A ‘door’ (fy) is an intrusion of the wall facade perpendictitathe wall and is
inside a ‘U shape’ of the facade wall:

v f; IsType(f, Window)

=>3f, =IsOut (f, ) A IsParallel(f, f)) A IsinsideU(f, f,)) A IsTyped, WallFacade)

3.2.3. Semantic object classification

In contrast to other supervised classificationtsgizs, the developed method obtains
the classification criteria not from statistical adysis of training sets but from
semantic interpretation of the facade based orfaatire types, attributes and rules
described in the previous section. All these infation are stored into laierarchical
classification tree Rules presented in the previous section relyamesinformation
associated to object orientation (like verticabtyd horizontality) and object position
(e.g., a roof is always over a wall, ground is Fet towest level, etc.). In order to
manage these relationships, a proper referencemysr the point cloud is assumed.
In particular, a point cloud needs a pre-processteg where it is aligned into a local
cartesian coordinate system having the Z-axis atigio the ground up-vector. This
can be simply obtained by levelling the TLS duriggta acquisition. In addition,
actual laser scanners are generally equipped witlextronic inclinometer allowing
the correction of verticality.

With reference to Fig. 3.2 the classification psgean be divided into two main
steps. First, simple and easy detectable objeetslassified (ground, wall and roof)
by evaluating both area and position of all theedetd objects. The ground is
detected at first by looking for the lowest objédtween horizontal (or pseudo-
horizontal) features.

Then fagade walls are extracted since they areepdrpular to the ground and with
the largest area with respect to all remainingie@robjects. Indeed, the wall area in
a facade is generally much larger than the onereaviey other vertical objects, like
windows or doors. In addition, main facade planesgenerally less than sidewalls,
windows and doors, so they can be considered digrsutnd can be easily detected
by robust statistics. According to probability tme@nd mathematical statistic, more
than 95.4 percent of the sample should fall inte tf2erval. Therefore, objects whose
size is beyond +®are classified as wall.
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Finally, non-vertical objects over walls and prading out from the facade are
classified as roof.

In the second step all non-classified objects asdyaed. Their position with respect

to the main fagade wall is evaluated. Objects amtfiof the fagade are considered as
extrusion objects and then classified in a genewl as wall attachments. Objects

like stars, railing and balconies can be classiiitd this category.

Whole
Polygons
Area,
Positio

v v 2 v
| Non - Wall | | Main Wall | | Roof | | Ground
| Wall attachment | | Intrusion |
v v
Side Walls | | Window / Door |

| Window | | Door |

Fig. 3.2 Hierarchical classification tree, orange diamoadsconditions while blue rectangles
represent facade elements.

Objects beyond the plane of the facade are firsegeally assigned as intrusions.
Then they are split into sidewalls and windows/doaccording to their orientation
with respect to the main fagade. Indeed, sidevealts be easily recognized because,
in contrast to other intrusions, their orientatisrperpendicular to the facade walls.
Intrusions parallel to the facade are genericdtgsified as windows/doors. In order
to distinguish between doors and windows, it igfset their position and the shape
of the gap in the main facade plan. In particulagrs are searched only at the bottom
floor and in correspondence of a characteristicafape main facade plane having an
‘inverted U shape.” Other intrusions parallel toethfacade plane and in
correspondence of ‘O-shape’ gaps in the main walthkssified as windows.

In the presented approach, classification clausesider some quite strict spatial
relations (e.g., vertical, horizontal, perpendiculand parallel). However, due to
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imperfections during the construction and noisethe data, the defined rules
generally do not strictly hold. For example, itviery unlikely that a sidewall is
perfectly perpendicular to the facade wall. Fos tteason all the previously defined
rules concerning spatial relations are relaxed pfealefined angle, which was fixed
in the experimental application described in Chaptequal to 5°.

3.2.4. Enriched model and export file format

Once the geometrical model of the building is gatest and objects are classified in
facade features according to their functionalityeaantically enriched model of the
facade can be generated. Due to the presence lasmets or lacks in the point cloud,
some part of the model might be pending. In thet &xapter 4 a procedure for
recovering missing data on the basis of regulaepatetection will be addressed.

Even if several geometric file formats have beerettged in both Computer Graphic
and CAD fields, the number of those allowing thenartic definition is relatively
small. The two most prominent standards are Ingustundation Classes (IFC) and
City Geography Markup Language (CityGML). Evenhéttwo data structures share
some similarities, several works in the literat@Bznner et al. 2005, Isikdag and
Zlatanova 2009, Nagel et al. 2009) showed diffeeenbetween the two standards
both in the description of geometry and in semaanbgect definition. To allow a
higher interoperability, once the building geometgs been defined (Sect. 2.2) and
each facade objects has been classified (Sec8)3tBe 3D model of the building
facade is generated both in CityGML and IFC stattslar

3.2.4.1. CityGML

CityGML (Grbger and Plumer 2012) is the internasibrstandard of the Open
Geospatial Consortium (OGC) for the representadioth exchange of 3D city models,
see also OGC (2014). It defines the 3D geometpgltayy, semantics and appearance
of the most relevant topological objects in urbarregional context. The principal
focus is on the semantic definition of all obje¢teatures) that are relevant for
applications of 3D city models (e.g., building aheir parts: walls, dormers, doors,
windows, etc.). Furthermore, the relations betwiese features (e.g., the relation of
a door to the wall it contains) are representeekiplicit way. For the representation of
geometry (and topology), CityGML uses a standadlireodel provided by the
Geography Markup Language (GML) and the eXtendedkiMa Language (XML).
CityGML is not just restricted to modelling buildjs. It extends to tunnels, bridges,
transportation infrastructures, water body and teggm. However, the building
model is the most important component of CityGMLitagnables the representation
of buildings and their component part with regandgeometry (both outdoor and
indoor) as well as to semantics (feature typespaioderties).
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The geometrical feature representation is basetiegeometrical model provided by
GML 3.1.1 which is an implementation of ISO 191&patial Schema.” CityGML is
restricted to planar polygons: all coordinateshef duter boundary and of the optional
interior boundaries must be located in the samaeplalon-linear structures can be
approximated by planar surfaces. For each positidhe geometrical representation,
absolute 3D coordinates must be given explicitleatbdres are represented
geometrically by the well-known boundary represeotamodel. Surfaces must be
mutually non-overlapping and non-penetrating. Bagdand their parts have common
attributes (like a class, creation and destructitate, the owner of a building,
measured height, roof type, the number of stoiev@ and below ground).

The features in CityGML can be represented in fhiszrete Levels-of-Detail (LoD).
In particular, the LoD concept of CityGML is notstacted to geometrical aspects but
covers also semantic ones: with increasing LoD sdraantic richness also increases.
The LoD concept is characterized by the followimgpgerties:

» data integration and interoperability is facilitesince features that are
represented in the same LoD can be integrated eesidy than features of
different LoDs;

» each LoDs reflects specific application requireraearid hence is suitable for
a certain class of applications;

* the LoDs may depend on the reconstruction methadl; a

« the same feature can be simultaneously represeémtddferent LoDs. This
facilitates analysis and visualization tasks, sittmds can select dynamically
the most appropriate LoD for the task.

<<Feature>> <<Feature>> <<Geometry>> | <<Feature>>
CityObject 3 Site MultiSurface CeilingSurface

0..17]*0..1 0..1
f | |  <<Feature>>
. InteriorWallSurface

<<Feature>> <<Feature>>
(K—>|

Room AbstractBuilding K>— | |  <<Feature>>
R ' FloorSurface

- Feat
<<Feature>> <<Feature>> | . ||  =<realure>>
Opening 0? BoundarySurface RoofSurface

ﬁ/ . | |  <<Feature>>
WallSurface

<<Feature>>| |<<Feature>> <<Feature>>
Door Window Buildinglnstallation | | <<Feature>>
GroundSurface
|| <<Feature>>
ClosureSurface
|LoD-1| [LoD2]| |[LoD3| [LoD4]

Fig. 3.3 CityGML file representation of a building at difent LODs showed as UML instance
diagram.
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A building can be represented in multiple LoDs diemeously and it is formally
described by UML diagrams (Fig. 3.3).

Fig. 3.4 The five levels of detail (LoD) defined by CityGMfrom Kolbe et al. 2005].

In particular, the geometry representation becomese detailed with increasing
LoD. Different LoDs for building models are desa&tibfrom O to 4 (see Fig. 3.4 for
reference).

A building in LoDO can be either represented by horizontal 2.5D mwiggwith roof
level height or with footprint level height. Thensantics is modelled bBuilding
instance with corresponding attribute values.

In LoD1 a building is represented as block model thaitieeerepresented as a solid
or as multi surface. Muilding can be partitioned into differeBuildingParts Each
part has its own roof type and representation bd. Sdhe roof type refers to the shape
of the building in reality, not to the represerdatin LoD1. Hence, the value may be
‘gabled roof’ while the representation in LoD1 ajwéas a flat, horizontal roof.

LoD2 adds generalized roof structures to LoD1. In aoigjitboundary surfaces of a
building can be represented as thematic featuresticdl walls surfaces are
represented adVallSurface surfaces that cover the building from above as
RoofSurfacesnd horizontal surfaces that delimit the bottonthef building from the
ground are represented @soundSurfaces

If LoD2 is extended by openings (windows, door€taded roof structures (dormers,
chimneys, roof overhanging) and detailed facadecsires,LoD3 can be achieved.
These objects can be represented as features hathawn attributes and surface
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geometry. Windows and doors are assigned to theesmonding wall/roof surface
and each feature has a surface geometry repregeitdirspatial properties. High-
resolution textures can be mapped onto these stasct

In LoD4, interior structures of buildings are considersdvell. The geometry of each
room is represented and interior structures foroBi2cts (e.g. rooms, interior, stairs,
furniture, etc.) are added.

CityGML allows its extension for applications reqng specific feature types,
attribute and relations. For that purpose, CityGMiovides a mechanism called
Application Domain Extension (ADE). An ADE is spied by an application schema
of CityGML in different XML name spaces (in the sarfashion as CityGML is an
application schema of GML). It defines new feataypes (with new attributes,
geometries and associations), with may be subtgpexisting types. Furthermore,
new attributes, geometries, and associations caadded to the existing types by
using a hooking mechanism. One CityGML dataset nugg multiple ADEs
simultaneously, facilitating the multi-functionasel of 3D models. Furthermore, the
ADE mechanism can be applied iteratively, genegatin ADE of an ADE, and using
object-oriented concepts in order to define appbeaschemas at different LoDs. An
alternative mechanism to extend City GML is the ofsgeneric grammar attributes to
add additional features and attributes on demand.

3.24.2. IFC

The representation of buildings and their strudusealso the objective of Building
Information Models (BIM) of Computer-aided architectural design (CAARnd
Architecture, Engineering, Construction (ACHEpdels. For data exchange in the BIM
world, there is one important ISO standard calle@ (Industrial Foundation Classes)
in its version 2x. Currently version is 2x EditiBn IFC is an object oriented format
developed by the International Alliance for Intezagioility (IAl). The goal of IFC is
to specify a common language for building indusaghnology aimed at improving
communication, productivity, delivery time, coshdaquality throughout the design,
construction and maintenance life cycle of buildifgallberg and Tarandi 2009).

IFC defines an EXPRESS based entity-relationshipdehaonsisting of several
hundred entities organized into an object-basedritdnce hierarchy.

In particular, IFC divides all entities into rootethd non-rooted entities. Rooted
entities derive fromfcRootand have a concept of identity (having a globaltyque
identifier - GUID), along with attributes for nameescription, and revision control.
Non-rooted entities do not have identity and insésnonly exist if referenced from a
rooted instance directly or indirectly. In the IFi@ format eachfcRootspecification
(called “class”) is used to describe a range afghithat have common characteristics.
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In particular, there are three kinds of IFC classdgect classes, relation classes and
property sets.

The object classes consist of a triplet (GUID, ®8), where GUID defines the
general identifier of the current IFC object, OSirtkes the ownership features of this
object and FU are the functional units. These fioned units define the context of use
of the classes (i.e., the geometrical represemtatte localization, its compaosition,
etc.). Fig. 3.5 shows 12 types of building elemeahist can represent a building
structure in IFC standard.

The relation classes represent the various rektbmiween the object classes and
their functional units. There are five fundamentalationship types: composition,
assignment, connectivity, association, and definitindeed, IFC format is made of
objects and connections between them. Object attéisbdescribe the ‘semantic’ of the
object while connections between objects are repted by ‘relation elements’. For
example, building elements and opening elementsu#rg/pes of structural element.
Each building element has zero or more opening ehsn i.e., a wall without any
door or window has zero openings, whereas each irmgpeslement (like door,
window) is attached to only one building element.

1 .| <<Object >> << Object >> << Object >>
~] < Ob"_“ > L 0. IfcShape M itewall ] ifeStair
IfcProject .
<< Object >> 1 Representation
0.* IfeProduct << Object >> << Object >>
<< Object >> cFroduc T1_< << Object >> | [|ifcCurtainwall| [ | ifcwindow
IfcSite A IfcLocal
T 011 placement << Object >> << Object >>
<< Object >> 1 << Object >> IfcBeam IfcSlab
IfcBuilding > f ial oﬁ
—> cSpatie 1 0.°* << Object >> << Object >>
Structuretlement - -
<< Object >> IfcDoor IfcRamp
<<Object >> | | ] McElement
IfcBuildingStoery - << Object >> << Object >>
| IfcColumn | IfcRailing
<< Object >> | << Object >> - i << Object >>
ifcSpace IfcOpening 7| icBuilding |CH_| <<Oblect>> || | <<Object>>
Element Element IfcCovering IfcRoof
ot VT
<< Object >>
IfcBuilding
ElementProxy

Fig. 3.5 Simplified IFC file structure.
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The property classes capture dynamically extengiotgperty sets. A property set
contains one or more properties which may be desiajue (e.g. string, number, unit
measurement), a bounded value (having minimum amdmum), an enumeration, a
list of values, a table of values, or a data stmectWhile IFC defines several hundred
property sets for specific types, custom propeetg snay be defined by application
vendors or end users.

3.2.4.3. CityGML and IFC comparison

Common to CityGML and IFC is a detailed semantid aeometrical model of
building and its interior structures. In the latesrsion of IFC, coordinates for
position and height values in the global system WB8%an be specified, in addition
to the local coordinate reference systems typiaadlgd in CAD. However, there are
significant differences between both models:

» The definition of semantic objects differs in batiodels. IFC focuses on the
construction and design of buildings and providesstruction elements like
slab, beam, or wall. Such objects typically aretha boundary of multiple
rooms and simultaneously are part of the outer 8apnof a building. In
contrast, the definition of CityGML describes howildings are observed or
used. Hence, objects such as rooms or wall/ceilofga single room are
defined. In addition, IFC holds more detailed imf@tion about building
objects than CityGML.

 CityGML uses Boundary Representation for the degéini of spatial
properties, since the focus is on how buildings ased and observed.
According to the constructive nature of CAAD, in CIFadditionally
Constructive Solid Geometries (CSG) and sweep gemsaare applied.

* The objects in IFC are represented in one LoD oAlymulti-resolution
representation as in CityGML is not available.

The relationships between CityGML and IFC have baisoussed intensively in the
last years. Particularly, the multiplicities ofaBbnship between the two are analysed.
Indeed, 1:1 relations occur rarely, whereas 1:re (@ityGML feature corresponds to
n IFC features) and n:1 relations prevail. For tesson no straightforward translation
rules between IFC and GityGML standards are aviglab

3.2.4.4. CityGML and IFC output

The object features derived from the previous diaation step (Sect. 3.2.3) can be
used in a straightforward way to generate a CityGiMbdel at LOD3. Indeed, the
features defined in CityGML meta-language &oofSurface WallSurface
GroundSurface, WindgwDoor, Buildinglnstallation GroundSurfacehave a clear

68



Automatic segmentation, classification and extraction of repeated patterns for building fagades modelling

correspondence with previously classified objecksg.( 3.6). Each feature is
represented by a surface geometry (Sect. 2.2) idesgrits spatial properties.
Focusing on the facade geometry, a solid representaf the building is not always
available (e.g., roofs are missing in many casEsjJ. this reason a multi-surface
representation, that do not completely seal thigimgj, is given.

boundedBy

Building

function, roofType, etc.

boundedBy boundedBy

opening opening

lod3MultiSurface
sud : gml:Surface

outerBuildinglnstallation

bi: Buildinglnstallation l gr: GroundSurface ‘

function, etc. lod3MultiSurface

su6 : gml:Surface

lod3MultiSurface
su5 : gml:Surface

Fig. 3.6 lllustration of a LoD3 building represented asyGML feature structure as UML instance
diagram.

As previously mentioned CityGML standard has a HigRibility. This allows high
interoperability with several CAD environments a®liwas thermal evaluation
performance software packages. An important aspedagiven by the fact that
additional information can be added to the model,, ¢heLocation which indicates
the global position of the building and its oridida. This can be used to evaluate
facade exposition and sunlight or other descripdiae which are of major interest for
energy efficiency evaluation, like thesulation value(U-value) for windows, walls,
floors and roofs (see Africani et al. 2013) candagled as generic attribute to the
building features.

Concerning IFC, compared to the high semantic wiffeation the previously defined
classification (Sect 3.2.3) appears too coarsethr standard. Indeed objects that
were previously classified in a general way as-atiichments, in a IFC files can be
classified more specifically, according to theindtionality, as different features (e.qg.
IfcStair, IfcRailing etc.). This is the multiplicities of relationshignderlined by
different authors for direct conversion betweeryGML and IFC. However, in many
cases and for a variety of applications it is netessary and somewhat redundant to
assemble all functional components of a building ithe associated IFC class. For
this reason, a simplified modelling, both in thegetrical representation and in the
semantic definition, can be used. In simplified ®lbdg, objects belonging to a
different IFC classes can be grouped in the samature Considering thermal
analysis and retrofitting of buildings the most mnjant semantic classes concern
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wall, window, door and roof elements. Indeed thelsenents are the ones playing the
most important role in energy dispersion and thestfielements to be
retrofitted/updated for increasing energy efficignicower interest is paid to elements
like railing and stairs. Then, considering a sirigdi semantic modelling object
classified as Wall Attachments within the hieracethi classification step can be
represented in the IFC standard l&BuildingElementProxyi.e. a definition that
provides the same functionality as #uoBuildingElement but without having a
defined meaning of the special type of buildingraat it represent. In a similar way,
the ground can be represented in IFC as a pantiduhal of IfcSlab that can be
defined for example aBaseSlab On the other hand wall, window, door and roof
object has a direct correspondence with IFC clas3gstial properties of each class
are represented by means of surface elements auadary Representation.
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Chapter 4
Facade regularity detection

This chapter addresses the reconstruction of intetemmodels with the help of high-
level architectural objects and the identificat@iirepeated patterns in urban facades.
Indeed, building fagades generally exhibit a higkgrée of self-similarity and
redundancy. The presented approach explicitly makesof these characteristics of
the urban scenes to enable plausible recovery sding geometry.

Completion of point clouds is often necessary bseaeven though a considerable
effort is put on data acquisition planning, dataaoted with range scanners usually
suffers from occluded or defective portions of abgethat either could not be
perceived during acquisition or might have advensgerial properties that hinder the
scanning device (for example, marble, see Godiralet2001). Nonetheless, a
complete surface representation without holes igsallys required for further
processing or rendering. Therefore reconstructigarehms must not only be able to
recover the surface parts that have been captovedhould also synthesize plausible
geometry in missing areas. However, this is a ehgihg problem. This is mainly due
to the wide collection of architectural elementsl atyles that could be combined in
facades, with large changes between different cmsntto variations in sampling
density, and to noise and outliers which might kesent in the point cloud. For these
reasons approaches based on general smoothnessptises or relying on a
database of example cases from which a completirfgce can be retrieved, may be
suitable to complete small holes but generallyifathe case of large missing parts.

The method presented in this Chapter is basedeodmpletion of missing parts by
means of high-level architectural features (e.gndews, doors, etc.) detected in the
building facade by means of the methodologies dssdrin the previous chapters.
Indeed, facades of the building type target of tieisearch often exhibits a regular
arrangement consisting of repeated patterns arnfesiselarities (Fig. 4.1). The

presence and theegular patterns detection (RPDJan be used to reduce holes
induced by occlusions and enhance automatic fagemtlling. The key observation

is that the same geometry is scanned multiple tioves recurrences of the repeated
elements. The non-local multitude of geometry pitesi opportunities to complete
missing parts using information from other regioBgploiting these repetitions is
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very powerful, as it can reveal fully or partialbccluded elements which might
otherwise escape detection. In particular, thedaletefacade features can be extended
into the empty regions and serve as guidance fie-fiibng.

)
L (=}

MRE-. - 02

Fig. 4.1 Examples of buildings presenting repeated pattern

Regularity and self-symmetry in urban buildings visdely demonstrated across
countries and cultures. Such large scale repetgitemse from manufacturing ease,
build-ability, functional requirements and aesttekor thermal retrofitting purposes
the detection of these repetitions, e.g. windowef iprimary importance because they
are the first element to be updated to improventiarefficiency. While in recent
years many techniques have been developed to detpetited parts in models
(Debevec et al. 1996, Hays et al. 2006, Mitra e2@06, Korah and Rasmussen 2007,
Pauly et al. 2008, Musialski et al. 2009), mosth&se works do not investigate how
to optimize the use of strong regularity in urbanldings. Moreover, most of the
techniques are applied in image space by analydingnages sampled over a regular
domain. Only few attempts have been made towartkctien of regularity directly
on 3D geometry.

The challenge lies in the automatically determoraf which elements repeat in the
facade and the regular pattern they form. The cerilyl of the problem is increased
when missing data due to occlusions and the vditiabi data resolution have to be
considered. In the presented approach, insteadatdngn strong prior assumption
about the models and blindly recreating the gegmesing predefined procedural
rules, a bottom-up method is used attempting teaekimaximum information from
the point cloud. Indeed, most buildings are desigaed generated in a procedural
and modular fashion. In particular, building facadeat are targets of this research
can be represented as the repetition of st@sic-geometriesnto multiple 2D
periodic structures However, instead of learning parameters from debook of
rules, repeated elements and lattice structureleaneed directly from empirical data.
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4.1. State of the art

Given the large volume of work on urban modelliwg, refer the reader to the recent
survey by Musialski et al. (2012) for a compreheasieview. Here only previous
works addressing repetition detection of urban sseme recalled.

Detection of symmetries and repeated elements asacwindows and balconies in
urban scenes is a problem that has received signtfiattention in the field of image
analysis while detection in point clouds receivighgicant attention lately.

Image-based facade analysis methods can be bdked @i the processing of single
images (Muller et al. 2007, Musialki et al. 2010@naulti-view images jointly with the
extracted point clouds (Xiao et al. 2009).

Concerning single image analysis, Schaffalitzskgt @resserman (1999) used edge
detection to find interesting elements and suceeblsrecognized patterns by using a
grouping strategy for translational grids basednmaximum likelihood estimation.
Korah and Rasmussen (2007) addressed the problerutamatically detecting 2D
grid structures such as windows on building facdd®s images.

In Muller et al. (2007) and Lee and Nevatia (2018 unique characteristics of
facade structures such as regularity and orthoggnale exploited in a statistical
model to detect translational symmetries and répetwindow structures. However,
those techniques are largely based on the stragrgion that a facade is governed
by a single hidden global rectilinear grid and glbborrelation between repeated
elements in the scene. A more general approactesgepted in Jahangiri and Petrou
(2009), where repetitive elements, and especiaihdows, are detected as blobs in a
colour image but the underlying structure is nalgsed.

Wu et al. (2010) presented a feature-based methatl dxtracts repetition and
symmetry patterns from a rectified image. They msidgplifying assumptions such
as constant repetition height and no gaps betweersf While in Park et al. (2011) a
feature extraction method is used to efficientlyedemultiple fagade regularities, but
this algorithm implicitly relies on structured dadad then it is not suitable for point
clouds.

Finally, shape grammar methods are presented ipeRila and Brenner (2009),
where a limited manual interaction is required andeboul et al. (2011) where an
out-of-core training phase is performed. The gramynelds segmentation of facades
in semantic parts (e.g., walls, windows, balconietg,). However, in both cases
repetitive structures are not detected.
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Works on reconstruction of urban scenes have atsm based on collections of
photos or multi-view stereo relying on photogrammgeteconstruction and image-
based modelling techniques.

Debevec et al. (1996) proposed an iterative imapeth modelling method that
exploited characteristics of architectural objectsupling an image-based stereo
algorithm with manually specified 3D model congitai More recently, Sinha et al.

(2008) presented an interactive modelling systenngusunoriented sets of

photographs, leveraging the piecewise-planarityarchitectural models. Xiao et al.

(2009) efficiently modelled facades from images dgcomposing them into

rectilinear elementary patches. Later they extentiedsemantic segmentation and
analysis to more general scenes, in order to pedisually compelling results by

imposing strong priors on urban regularity.

Fewer approaches exist in the case regularity ifttsatton is performed in large point
clouds. State of art works using structure remetitn urban facades can be classified
in interactive and automatic procedures.

While laser scans are in general dense and rdlatiegular, thus perfectly suited for
architectural reconstruction the acquisition precesay result in corrupted and
incomplete data. In order to overcome such problesaseral methods propose to
process the data with user control. Interactivelstaely on similar frameworks
(Zheng et al. 2010, Nan et al. 2010). The usemdsffirst some basic facade objects
which are then snapped to similar elements in tietgloud.

Boehm (2008) published a method for completion lo® point clouds, which is done
by iteratively utilizing the repetitive informatiatypically present in urban buildings.
Another approach aiming at a similar goal was shiied by Zheng et al. (2010). It is
also an interactive method for consolidation whmbmpletes holes in scans of
building facades. This method exploits repetitibmssonsolidate the imperfect data,
denoise it, and complete the missing parts. Anothiractive tool for assembling
architectural models was introduced by Nan et 2010). In this system, the user
defines simple building blocks (Smart-Boxes), whgtap to common architectural
structures like windows and balconies. They areerabted through a discrete
optimization process that balances between fitting point-cloud data and their
mutual similarity. In combination with user intet@an, the system can reconstruct
complex buildings and fagades.

Discovering regular structures in an automated iwaychallenging task since there is
no a priori knowledge of size, shape, or locatibelements describing the pattern. In
addition, facade elements can be incomplete omupted by noise. For this reason
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automatic solutions generally rely on some archite¢ assumptions about the
building facade.

An automatic data-driven facade reconstructionddlydecomposition is introduced in
Becker and Haala (2009), which requires a coarséw@lding model as input. They
also proposed to automatically derive a facade-gramfrom data in a bottom-up
way. However, this algorithm focused on facadesaiomg windows only and this
could not handle more complex fagades.

In Stamos and Allen (2002) window-like rectanguleaitures are extracted by using
3D edge detection on high-resolution 3D data bugulaity is not enforced. In
Friedman and Stamos (2011) and Mesolongitis andn&a(2012) methods for
detecting regularities in building facades are @nésd. However, they are mainly
addressed to detect only one feature type (e.glamis) and require scan points being
organized in 2D vertical scan-lines which may blerating aspect if multiple scans
are fused together.

In Pauly et al. (2008) a general regularity detectmethod for 3D models is
presented. This general approach can be used fiaicerg a single fagcade pattern.
However, in this case similarities in the model detected by considering a local
similarity measure of the point cloud curvature evhis more prone to output outliers.
In Triebel et al.(2006) a Markov Network approabhattrequires training is used to
label points as windows. In Shen et al. (2011) dasaare adaptively partitioned by
horizontal and vertical planes based on the boyndEatures of planar regions.
However, wrong horizontal or vertical splitting megsult in wrong facade structure
identification. In addition, this method can beisesly affected by the variation in the
resolution and the window appearance, which magxastin a single scan.

These automated methods generally rely on the gggaimthat the facade can be
split into building blocks by a single rectilinegnid. Even if there is a certain number
of facades that satisfy this assumption, in mangesafacades presents a more
complex structure.

Structure discovery is also addressed in the fél@omputer-Aided-Design (CAD).
Shikhare et al. (2001) proposed a compression sehdérat exploits geometric
patterns in CAD models. This method is most effector procedural designed model
where the repetitive elements appear as separatgected components. Li et al.
(2010) introduced regular features trees that peva concise description of
symmetry features in order to capture importaneetgpof the aim of the geometric
design. This method is specifically designed foapss that are bounded by planar
spherical, cylindrical, conical and toroidal sugacHowever, those techniques can be
used only for simple geometry of these typical CbDdels.
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In the next sections the developed proceduredqular patterns detection (RPDg
presented. In contrast to other works (Muller et2807, Xiao et al. 2009, Musialski
et al. 2009) that rely on the assumption that ddmg facade can be split into
building blocks by a single rectilinear grid, therk presents a more flexible strategy
aimed at detecting concatenated and\or interlaceld of elements. Indeed, even if
there are a certain number of facades satisfyingdhtangular lattice assumption, in
many cases facades presents more complex strudtuféig. 4.2 some synthetic
facades are represented demonstrating some casasstcof multiple periodic
regions. In addition, in contrast to other devetbpechniques regular patterns are not
only detected but these repetitions are also etgoloio reveal fully or partially
occluded elements and complete missing areas vgthlével structures.

Fig. 4.2 Synthetic examples demonstrating some casesstimgsof multiple periodic regions.

4.2. Repeated patterns detection

As summarized in Fig. 4.3, the developed methodolfmy RPD consists of two
phaseselement groupingndstructure regularity estimatiolhe presented approach
can be carried out to generate a hierarchical septation of the facade as a series of
basic-geometriesepeated intanultiple 2D periodic structuref.e., alattice). After

an initial estimate of the repeated element locatidhe refinement and the recovery
of missed locations undetected in the first stepparformed by a voting scheme in
which each location votes for lattices that areswmbered good fit for the object
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distribution and represent the local periodicity ihe vertical and horizontal
directions.

| Input Point Cloud |

|
v

| Facade segmentation I—)l Semantic classification |

A4 y

| Pointcloud segments | | Feature classes |
/ v \
Element grouping
Repeated
Patterns v
Detection Structure Regularity
Estimation

N J

v
Estimated Lattice Structures |

Fig. 4.3 Overview of the developed Repeated Patterns Dete(RPD) approach.

The developed procedure for RPD starts from thatpmdoud segments derived from
facade segmentation (Chap. 1) and the associaaddeclasses obtained by semantic
classification (Chap. 3). Facade segments are tsedbtect groups of similarity
elements in the data durirgement groupingoy means of a similarity measure.
During this phase, similarity is evaluated betwegeirs of patches. In particular,
similarities between objects into the same categogysearched for. This means that
similarities are not verified between objects bglag to different facade classes, (e.g.
no similarity is sought between a door and a winddwis reduces the computational
time and prevents wrong regularity estimation. Ef@ment groupingtep not only
allows the detection of similar facade patchesas allows an initial estimation of
the similarity transformation between those patcAd® grouping is achieved by a
geometric registration followed by a iterative bottup clustering of facade object
pairs.

In the structure regularity estimatiophase the parameters of the generative grid
models of repeated patterns are estimated. Thisagin is inspired by Generalized
Hough Transform (Ballard 1981) and a lattice votsapeme (Pauly et al. 2008). In
this phase, grouping information derived in thevpres step is used to perform a
global optimization towards alignment of repetitifagade elements by using Least
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Squares. The final output is a series of lattieggesenting the local periodicity in the
vertical and horizontal direction of each deteatkdster of similar objects. Since to
some extent the result of the regularity estimatisndependent on the element
grouping, these steps are iteratively repeated corivergence

4.2.1. Element clustering

Once the identified planar clusters are subdivided facade classes, the goal of
element grouping is to gather similar objects tbgetso as to identify repetitive
elements. This step also provides the informati@eded to estimate structure
regularity as described in Subsection 4.2.2. Tleaigng is achieved by a two-step
clustering algorithm.

It can be assumed that the facade has a domiremampétructure, characterized by a
flat dominant surface and with other facade’s congmbs having off-plane depth
variations with respect to this plane, either pwsit(outwards) and negative
(inwards). This assumption is generally valid folaege variety of modern building
styles, in particular holds quite well for thoseltup in the period 1950 - 1975.
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Fig. 4.4 Example of a facade with two different windowagp(red and green) (a-b); and (c) clustering
results using base and height of the bounding lhabetected objects.
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First, elements classified in the same facade featiass (e.g., window, door, etc.) are
clustered according to their shape (base and heifyihe bounding box). Indeed,

facade objects belonging to the same feature magept significant geometric

differences and follow different repetitive patterfror example in Fig. 4.4, a facade
with two different types of windows is shown. Tliist step is performed to have a
rough clustering of similar objects and to redulee humber of misclassifications.

Indeed, it is unlikely that objects having a sigraht difference in the bounding box
shape present a high similarity between them.

Once two object§ andS belonging to the same facade feature are clustegadher,
they are aligned to measure the similarity betwtem. This task is performed by
computing a rigid-body transformatiofy; (Fig. 4.5a) using a standadterative
Closest Point(ICP) implementation (Besl and McKay, 1992). Inrtgalar, the
transformationT;; is restricted to be a translational one, alond wbtections of the
facade plane, being the off plane shift negligibledeed, in this research only
repeated structures that can be obtained by ttamgla base object are looked for.
Similarity transformations involving scaling andations are not addressed.
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Fig. 4.5 Example of a calculation of SM. Two objec$sandS, are aligned with ICP (a). Volumetric.
representation of a window: the original point aldar objectS (b), the voxel splitting (c) and the
final tensor representation(d).
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OnceS and§ are aligned thsimilarity measurgSM) is evaluated. To tolerate poor
quality input data the space of the overlappingae@f the aligned slices is quantized
and the similarity betwee8 andS is calculated in this quantized space. Specifically
the aligned slicesS and § are embedded into a volumetric grid whose size is
determined by the bounding box of the overlappiegionB between the two slices
(Fig. 4.5b-c).

The grid resolution is fixed a little bit largerathh the mean sampling distance in the
point cloud. For each resulting voxel two functianandy; are defined to indicate the
number of points contained in the voxel fr&drand S, respectively. At the end, the
original point clouds are quantized into a tenspresentation (Fig. 4.5d). Ti&M
between slice§ and§ is defined as:

vl v,

SM = 4.1
\/H"i ~V H JH"J' ~Yi H
where
v, @) | v, ] 1 &
v, 2 v@ | V=2 vk
v =|. v, = N B 4.2
’ "V :%ZVj (k)
V(K] |v(K))|

The adoptedSM is a generalization of theormalized linear correlatiorcoefficient

(p) and in a similar way it may range from -1 (futiverse correlation) to +1 (full
direct correlation). For this reas@M values close to +1 indicate high similarity
betweenS andS, while in the cas&Mis close to zero or negative, they are assumed
to be different each otheBM also supports partial matching of two slices, sitiee
similarity is defined on the overlapping regiontloéir aligned versions.

Once the similarity is measured for each pair igesl the ones having the maximum
similarity are automatically clustered by usingatbm-up method as far as no more
clusters C,,C,,..., G) can be created. The clustering process is stoppgddSM is
lower than a user-defined threshold (SM = 0.7 heenlused in the experiments). In
this way, elements with low similarity with respdot the others in the cluster are
discarded, improving the robustness of the method.

80



Automatic segmentation, classification and extraction of repeated patterns for building fagades modelling

4.2.2. Estimation of facade repeated patterns

The next step estimates the structure regularityy&mh group of previously detected
similar elements @,;,C,,..., G). In this step, the elements of each Sgf (@re
iteratively aligned and the new ones, based onldbal periodicity of the lattice
histogram M), are assumed. The inputs of this step are thectbet sets of similar
facade element<{,C,,..., G) and their locationd., Ly, ..., L), while the output is a
set of tuples %, Gun,i) WhereSy; is the basic repeated element in the structure and
Gwmniiis a transformation group, having a lattice strrettonsisting oM rows and\
columns, acting 0% ;. The developed iterative procedure is shown in &i§a for a
single set of facade elements while details of rglsi step of the procedure are
summarized in Fig. 4.6b.

Similar facade Pair-wise Object locations |__
object cluster (Ck) tra"Sf("T’;“_)at'°"5 (Lk9)
)

Estimation of repeated
patterns

Lk t+1

‘Checkfor
"“""»»\,,,,\gonvergencg =

Aligned and reconstructed
object locations (LFk)

Pair-wise Object locations
transformations (Ti) (Lk)

|

Hough-like lattice voting ‘

scheme

Lattice Histogram ’

Lattice fitting

Updated object locations
(Lk,+1)

b.

Fig. 4.6 Overview of the iterative repeated patterns egiiom (a); and (b) workflow of a single step of
repeated patterns estimation.
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In other words, it is a set of Q x R 2D points aged in a regular grid with variable
spacing between rows and columns and the eleme@stthe upper left element. Each
of thelj €L can be considered asseéd’or ‘node’ of the lattice. In the cases where
Q=0 or R=0, the lattice becomes one-dimensional.

e I +1 +2 +3 f. 1

Fig. 4.7. Example of a simple 1D regular structure withpaissible pairwise transformations (a-d)
which form a characteristic cumulative patternba transformation histogram H (e-f).

The first step for the generation of the final sfmmation groupGuy is the

construction of a lattice histogram (H) througlatiice votingprocedure based on a
Generalized Hough Transform voting scheme. Theckidsa behind lattice voting is
to consider similar facade object and to evaluatall lattices that are a good fit for
data. In this way, it is possible to have a repreg@n of the local periodicity of the
region in which facade elementsii(G>,..., Gk) belongs to. In addition, the
aggregated information contained in the lattice lealp in estimating updated object
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locations c. In particular, aHough-like lattice voting schenm® used In this scheme
once a couple of similar object G is found the associated pair-wise transformation
Tj votes in aLattice Voting Space), see Fig. 4.7. The resulting histogram (H) has
picks in locations that will be elements for a neerationC’;. Indeed,C’; contains
not only elements also containedGnbut it may also include new points if there are
peaks in locations where no eleméhtin were found (Fig. 4.8). In this way, if the
assumption of underlying multiple regular structuh®lds occluded or yet undetected
features may be revealed.

Fig. 4.8 lllustration of lattice voting: notice the recangtion of the lower left and lower middle
center.

Once the lattice histogram is set up a latticecstine is fitted to it. However, the set
of pair-wise transformation3; may present different values due to noise in the
model, local variations of sample position, and-penfect alignment within the ICP
registration phase. All these contributions lead gome inaccuracies in the
transformation estimation. This dispersion of thensformationsT; reflects in the
Lattice Voting Space (Fig 4.9). In addition, somansformations may miss due to
holes in the input data. For these reasons, th&bhgldetection of regular structures
calls for a grid fitting approach that is robustagt noise and holes. To this end, a
global optimization method based on the work oflfPatial. (2008) has been applied.
However, while in that work the estimation procedwas aimed at detecting only
rectangular lattices that were represented asdimpasition of two base vectors (one
for row and the other for column description), tmethodology takes into account a
more general configuration considering also thesimigy that column and row
spacing may vary within the lattice.
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Fig. 4.9 Distribution of pairwise translation vectors familar facade object pairs.

The unknown grid position for a lattice structure M rows andN columns are
represented by the row coordinak¥s » . ;... mand column coordinaté&y » i .. N
(Fig. 4.10) The input data are the set of pairwisgnsformations (Fig. 4.9)
represented by a vectok TXr, Y1) and the location of detected featuresTo find

the unknown grid positiong;, an optimization scheme combining faemergy terms
is applied.

d%I° L
R =
X A‘\; X

Fig. 4.1Q Lattice estimation: unknown grid positions.

The first term takes into account the distance betwthe grid locatiom; to the
closest feature locatian (Fig. 4.11a):

EC_l = izzj:aiizl.(xgi - XCk)2 +(ng _YQ< )2] 4.4
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Similarly the second energy term takes into accaiet distance between the
transformationrly (X, Yri) and the closest grid locatiouk) (Fig. 4.11b):

7|

Ee o = 2 AT ) 45

The continuous variablg; and gy are weights measuring how reliably a grid location
is mapped to a cluster centre and vice-versa. Tdrey included as additional
unknowns in the optimization process accounting liotes and outliers in the
distribution of the feature locations. Indeed, eslwfe; andf close to zero indicate
a hole or an outlier, respectively, while valuessel to 1 represent a reliable matching
between transformation cluster and grid location.

.. .. . ...... .
Yil .. ec Sij Yi | o
o~ . 1 . L P : : . .
Xi Xi
a. X b. X

Fig. 4.11 Lattice estimation: example of contribution,eo the first energy term (a) angd go the
second one (b).

The last two energy terms are aimed at maximizihg thumber of valid
correspondences between grid location and clustdres:

£, =YY 0-a)) and £,=3 05
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The combination of the four energy terms gives tibtal objective function to be
minimized:

Ezy(Ec_1+Ec_2)+(1_y)(Ea +Eﬂ) 4.7

where the coefficient balances the two energy terms. In the tests choug,y = 0.8
has been adopted.

In order to find repeated similarity in the lattistructure, the spacing between
consecutive columns and rows are calculated anstecked. In the case some grids
present a similar spacing, in the minimization psscthese additional constraints will
be enforced. For example, in the case the spactgelen columnsf'g-Yg:1 and

YG+1-YG+2 are clustered together, the following constraiqaation is added to the
minimization:

(g, -Yg)-(vg., -Yg,,)=0 4.8

To minimize the above objective function an itaratiGauss-Newton Least Squares
technique (Triggs et al. 2000) is applied. As carsben, the minimization process is
non-linear and a set of initial estimates of thee 2f the lattice in terms of rows and

columns is necessary as well as the initial vafoegshe grid locationgy; and the
weightsa;; andp.
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Fig. 4.12 Determination of first iteration approximate vadu The pairwise transformations initially
estimated (a) are then clustered along the two damidirections of the lattice (b-c) giving thetil
estimates of the lattice nodes.
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In the first iteration, approximate values are dateed by clustering iH the pair-
wise transformation3j; along the two dominant directions of the latti€ég( 4.12).
Detected cluster centres are used as approximatfohe lattice row Xg:, 2. and

column (Vg »

y coordinates. The correspondent weightandpy are initialized to

one, since no a priori knowledge on holes and enstlis assumed.
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Fig. 4.13 Regularity structure superimposed to the poiotidl(left) and lattice estimation (right).
Lattices centres are coloured according to theciestsol weight (white for O and black for 1).
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Once the lattice is estimated, the algorithm omsr@eratively by performing a new
element grouping in correspondence of each nodtheflattice. In particular, in
correspondence of nodes which are labelled as mgis@ioles) during the lattice
fitting a feature is searched. In the case SM cordithe assumption this new feature
is included in the similar feature cluster &d a new iteration takes place. The
process halts when no changes in the lattice n@iesobserved between two
successive iterations. In particular, the preserglggrithm can efficiently detect
repeated features with non-rectangular latticeepadt (Fig. 4.13a), where the spacing
between rows and columns may vary, and may alsbwddamissing elements (Fig.
4.13b). In the second case it is possible to olestrat the weight to the bottom-left
element is close to zero.
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PART B
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Chapter 5

Experimental tests on real facades

In Part A of this dissertation a detailed descoiptof the facade modelling procedure
has been given. This chapter examines the effigiand accuracy of reconstruction
methods. Several examples of common facades fraidifgs constructed during
1950 - 1975 are presented. The whole procedure segmentation of raw point
cloud to repeated pattern detection is appliedréwyecase study. Evaluation of results
is made on the basis of common metrics whose gieriis given in Section 5.1.

All the above-mentioned steps for facade modellarg fully implemented in
MatworksMatlab® environment. Exception has been made with the limatin of
final digital models. For this purpose, the obtdifaced models are exported in
different file formats{i) DXF and PLY format for vector model of the falgaand (ii)
CityGML and IFC file for the semantic enriched mbde

5.1. Performance evaluation framework

Overall accuracy and precision are used to evathat@erformances of the presented
facade modelling procedure. In particular, quaditaaluations are performed for each
step of the procedure by following the same schiemeach case study:

90

facade segmentatiothe point cloud of the building facade has beamually
classified into planar clusters and used as grouid facade;

geometric reconstructionthe presented datasets were manually vectorized,
starting from the point cloud, and facade breaklimesre identified. Those
breaklines are used for evaluating the accura@utdmatically detected ones;
object classification points of each type of facade element have been
manually selected from the original point cloudd &ave been compared with
object classification results; and

facade regularity detectionpresence of repeated pattern in the facade are
manually selected and compared with the ones det@ctan automated way.
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5.1.1. Facade segmentation

The performance measurement of a segmentationitalgois conducted on the basis
of the analysis of resulted segments. This taskireg a set of benchmarking data
against which the resulted segments can be compared

Hoover et al (1996) provided methodology to evalutite result of segmentation,
originally designed for range images. A similarnfiework was adopted by Geibel
and Stilla (2000) for the comparison of differembgedures in segmentation of ALS
and by Nyaruhuma (2007) for the performance evalnaif different algorithms for
detecting roof faces in 3D point clouds.

The underlying principle is based on the comparisioihe resulted segments with the
corresponding reference segments and, and on #ieation of how many common
points belong to both datasets. Once the corregpmed are established, correct
segments are found segment is correctly detected if the majoritypaints in the
reference segment are also labelled as a singlmesg#gin the result. Correct
segmentation can be expressed as:

M, =—2 5.1

where M; is the ratio of intersection pointd{) to the total number of points in
reference segmentN(). A pair of segments in the benchmarking data &nd

segmentation results are classified as an instahcerrectly detected segment if the
correspondence percentage is greater than cestanamce valueT):

M, >T 5.2

In the cases where one segment in reference &gtaldes not correspond to any
segmented element, three instances may occur:

* Over-segmentation:this is the case where one segment in referenee(@at
is represented by more segmeri&; So,..., Sn) in the output of the
algorithm. In this case, the total number of intet®n points is thesum of
intersection points in marfy segments:

_N,,;+N,,+..+N

ro2 " ron

rove
N

r

M 5.3
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whereNo1 Noy,..., N corresponds to the total number of points in segse
S1, S2-.., S0 respectively. If a reference segment is classifedover-
segmented the number of detected segm&mts},,..., [n) constituting it can
be determined.

Under-segmentation:if one segmentg) in the output of the segmentation
process intersects with more than one refereegenents$; So,..., &), this
result in under-segmentation. This can be considasthe case of insufficient
separation of multiple planar surfaces. Likewiseower-segmentation, the
total number of intersection points is the sum of thersgction points in
manyS segments:

M,, = 5.4

The values o1, Nio,..., N are the total number of points in segme®is
So,..., S respectively. If a detected segment is classdiedinder-segmented,
the number of real segmengi(S.,..., $) erroneously clustered together can
be found; and

Missed segmenta reference segmertk) is classified as missed segment if it
does not have any correspondence with the obtaiegaents.

In addition, a segment() in the output of the segmentation process isndefias
‘noisy segment’ if thesegment cannot be classified in any of the previatisgories.

Starting from the segment classification, also fbkBowing parameters can be
computed:

Commission error (I Type): the probability of erroneously detecting a plane;
it is evaluated as the ratio between the numbamrohg segments and the total
number of real planes; and

Omission error (Il Type): the probability that of a real plane is undetdgie

is evaluated as the ratio between undetected plaméghe total number of
real planes.

The performance of the developed algorithm has kessessed on the basis the
framework described above. Results will be proviged each of the case studies
described in Section 5.2.
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5.1.2. Geometric reconstruction

The results achieved by the proposed approach teduk checked in order to
guantify the geometrical accuracy of the obtainedter models. In order to do that a
manual reconstruction of the same facade was peeidr(Nex and Rinaudo 2009)
which is considered in the literature the most geenethod to vectorize a point
cloud. For this reason, an experienced operatdompeed the vectorization of the
building model staring from the point cloud. Manuabdels are then compared with
the automatically generated ones. In particulas,dbtected breaklines are compared
with the manually benchmarking model. Firstly, thecuracy of the reconstructed
breaklines was derived by comparing the groundtpasition of each line with the
position estimated by the automatic algorithm. lrtigular, for each edge the
absolute modelling error is defined as the absohltgnitude of the difference
between the ground truth and the model positionedge is considered as correctly
detected if the distance between the manually géeeredge and the closest
automatically generated edge is lower than a pieefthreshold T. Then the
reliability of break-line evaluated by comparingetimumber of commission and
omission errors in a similar way to that one ddmatiin Subsection 5.1.1.

5.1.3. Object classification
Overall classification accuracy, precision and He@ae used to evaluate the
classification performance.

At first, actual points of facade point clouds amanually classified into facade
elements to derive a reference dataset. Then thaladassification results and those
predicted from the automatic classification metlaoe evaluated by means of visual
interpretation and a confusion matrix is createdher® each row represents the
instances in a predicted class, and each colunmegsepts the instances in an actual
class. From the confusion matrix, the overall ¢fasgion accuracy can be retrieved,
as the sum of correctly classified segments divioedhe total number. In a similar
way, omission and commission errors can be defid. commission error reflects
the probability that, given an object from a certpredicted class, it does not belong
to the same class in the reference data. And thess@m error measures the
probability that, given an object of the refererd&ta, it has not been correctly
classified in the prediction class. In short, cossion is a measure of the exactness,
whereas omission is a measure of the recall. Tiverldhese two values, the more
excellent the classification performs.

5.1.4. Regularity detection

In order to evaluate the performance of the regylaletection algorithm, a manual
identification of repeated object is performed anchpared with the detected lattices.
In particular, the fractions of commission errov&rdng detections) and omission
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errors (missing detections) in the detection didatnodes have been evaluated with
respect to manually detected nodes, which have laseomed as benchmarking
values.

5.2. Experimental tests

This section presents the application of the dgperlomodelling procedure to some
real building facades. In particular, these testfacused to assess the reliability of
the approach under different operational conditiam&l facades typologies. All
experiments have been performed on buildings #emdiht campus of the Politecnico
di Milano University. In total, five data sets haveen used: (i) ‘D’Oggiono building,’
(i) ‘Courtyard no.1,” (iii) ‘Courtyard no.2,” (iv)'Building no. 34’ and (v) ‘Nave
building’.

5.2.1. ‘D’Oggiono building’

This section provides the experiment details ofOBgiono building’. A portion of
the Lecco campus headquarter was scanned by udih®$ &ARO-FOCUS 3D in 3
scans (Fig. 5.1). Some technical specificationsthaf laser scanner adopted are
reported in Tab. 5.1.

Faro Focus 3D technical specifications Riegl LMS- 420i technical specifications
Range measurement i e-of-fliah
Range measurement mode Phase-shift mode Time-of-flight
Operational range 0.6 —150 m Operational range 2.0-1000 m
Angular resolution 0.009° Nominal accuracy +10 mm
Measurement speed 120.000 - 976.000 Nominal precision t4mmc

points/sec

5 —
Precision at 10 m 0.6 mm (90% reflectivity) Acquisition rate 3000 — 9000 pts/se¢

1.2 mm (10% reflectivity)

3 —
Precision at 25 m 0.95 mm (90% reflectivity) Vertical field of view 80 °

2.2 mm (10% reflectivity)

Tab. 5.1 Technical specifications of the adopted TLS unstent.

Multiple targets have been set up over the areahabthey could be detected by
SCENE 3IF (the post-processing software of FARO scannersyoasrol points for
registration. The final registration accuracy, eaatd in terms of sigma naught, has
resulted as 3.1 mm. The laser data acquisitiortdias 45 minutes in total. Actually,
each single scan only has taken 8 minutes whileghmaining time has been spent on
placing targets and for the instrument setup. TWexage point density is about 20
thousand points per square meter on the wallsotal,t2 building facades were
selected for the experiment (Fig. 5.1) and someltesre shown in the previous
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chapters. This dataset includes facade elementsasuwalls, doors, windows, roofs
and stairs. Some occlusions are present in therlpag of the facade due to some
cars and bikes that could not be removed duringrsog.

Analysed
Buildings
i1
g =
#
L) NI Ly
s | o (’J J l“; o
] & p ¥V “j d
'~ o
' \ Scan 3
[+
a b eScan 2

Fig. 5.1 ‘D’'Oggiono building’ dataset: (a) a picture okthnalysed building; and (b) the scan
acquisition scheme.

First step of the developed methodology is facagigmentation. The parameters
presented in Tab. 5.2 were used in the processing.

‘D’'Oggiono Building’
‘Courtyard no.1’ -
‘Courtzard no.2’ Nave Building’
‘Building no. 34’
RANSAC plane thresholde lcm 5cm
RANSAC normal threshold a 20° 20°
Bitmap cell sizep lcm 2cm
RANSAC dominant line
threshold ¢ 0.7 cm 1cm

Tab. 5.2 Parameters used for facade modelling for theyapdl datasets.

These parameters have been chosen taking intodesagson the instrument accuracy
and the scan registration statistics. Indeed, adetictive selection of the RANSAC

plane threshold fit the limitation given by registration accura@t the same way the

cell sizep was selected considering the average point densidged, a square meter
in the bitmap is represented by 10,000 cells wthie point density is about 20,000
points. On the other hand, these parameters ate rpstrictive with respect to the
ones presented in literature.
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The segmentation results are presented in FigAb\2sual observation of this result
shows that the algorithm is able to detect all atasurfaces present in the data.
Furthermore, larger surfaces (e.g., walls and joaéswell as smaller surfaces (e.g.,
some parts of windows frames) are extracted.

Fig. 5.2 ‘D’'Oggiono building’ segmentation results: (ajginal point cloud; and (b) segmentation
results, each detected segment is representecwlifferent colour.

It can be observed that there are many small seignmezar the ground, which are
mainly due to the presence of other objects likes.cA more detailed data analysis
can be obtained by evaluating the parameters thescin Subsection 5.1.1. Results
are summarized in Tab. 5.3 and Tabs. 5.4 - 5.%ppahticular, Tab. 5.4 reports, for
different tolerances (T), the number of referenegnsents that are either correctly
detected or are instances of bed segmentation.5laleports instead results for the
predicted planes, indicating the correctly detecsegments and the fraction of
segments contributing to over-, under-segmentatra@hnoisy elements.

‘D’Oggiono ‘Courtyard ‘Courtyard | ‘Building no. ‘Nave
building’ no.l’ no.2’ 34 Building’
Automatically
detected Planes 127 119 119 21 650
Manually labelled 120 112 108 29 605
Planes
Tab. 5.3 Segmentation results for for the analysed dataset
‘D'Oggiono building’ results for reference planes
Tolerance No. of o o
(%) No. of correct | No. of over- No. of under- mis.sed Commission | Omission
segmentation | segmentation | segmentation error (%) error (%)
segment
0.8 120 0 0 0 55 0.0
0.85 119 1 0 0 6.3 0.8
0.9 117 3 0 0 7.9 25
0.95 112 7 0 0 11.8 6.7

Tab. 5.4 ‘D'Oggiono building’ results for reference planes
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Tolerance ‘D'Oggiono building’ results for detected planes
(%) No. of correct No. of over- No. of under- No. of noise
segmentation segmentation segmentation segment
0.8 120 0 0 7
0.85 119 2 0 6
0.9 117 6 0 4
0.95 112 15 0 0

Tab. 5.5 ‘D'Oggiono building’ results for detected planes.

The result reveals that the numbers of correctteated segments decreases as the
tolerance increases as expected. However, the marabeorrectly detected segments
with different tolerance classes are quite similprto T = 0.9. This means a high
reliability of the segmentation. In addition, thgaithm is able to detect significant
numbers of correct segments even at the highestatode of T = 0.95 showing
satisfactory results in terms of both omission aathmission errors. The robustness
of the method is also proved by the fewer instardamissing and noisy segments.
This means that there is a strict matching betweéerence and predicted results.
Some instances of over-segmentation are mainlytdusn-conformance of some
wall segments to planar surface assumption. Namsts of under-segmentation in
the dataset are observed. The effectiveness ofntethod can be observed by
comparing results obtained with a ‘naive segmemtatapproach based on a simple
sequential RANSAC plane estimation (Tab. 5.6).his tase, it is possible to observe
that the numbers of correctly detected segmentensparable with over and under
segmented instances and a high number of missimgaisy segments is observable.
In addition, their number rapidly grows when thketance is restricted.

‘D'Oggiono building’
Tolerance No. of correct| No. of over- | No. of under- N.O' of NOI of Commission | Omission
(%) ) i . missed noise
segmentation| segmentation| segmentation error (%) error (%)
segment| segment
50 34 32 9 34 66.7 60
0.5
0.6 48 34 32 11 36 68.0 61.6
0.7 40 30 31 24 49 73.3 68
0.8 37 24 28 36 61 75.3 70.4
0.9 35 20 22 48 73 76.7 72
0.95 10 12 10 93 118 93.3 92

Tab. 5.6 ‘D'Oggiono building’ results for a ‘naive segmatibn’ sequential RANSAC
implementation.

Starting from the derived segments the contourtpa@nd extracted and then the edge
smoothing is performed. The parameters used inpihése are summarized in Tab.
5.2. The obtained building model in CAD format regented in Fig. 5.3.
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a

Fig. 5.3 Geometric reconstruction of ‘D’Oggiono buildingataset: (a) final 3D digital model of the
facade; and (b) facade model with overlaid poiatdl

The comparison of this model with the one obtaisd manual modelling is
summarized in Tab. 5.7 and Fig. 5.4.

‘D’'Oggiono ‘Courtyard ‘Courtyard ‘Building no. ‘Nave
building’ no.l’ no.2’ 34 Building’
Automatically
) 505 524 457 106 650
extracted Breaklines
Manually derived
530 536 478 110 605
Breaklines
Tab. 5.7. Breaklines results for the analysed datasets.
l l .o o .o l
D' Oggiono Building
600 | 50.0
- 45.0
500
/,0——‘/‘—‘ 40.0 == No. of
$ 400 - — - 350 correct
50 - 30.0 ® edges
%300 25.0 £ —@—Commission
! - 20.0 £ error (%)
2 200 150 O
100 - - 10.0 Omission
5.0 error (%)
O T T T T 0.0
0.1 0.3 0.5 0.7 0.9
Tollerance (T)

Fig. 5.4.Geometric reconstruction analysis for ‘D’Oggiongl8ing’ dataset.

As expected, the numbers of correctly detected ®diprreases as the tolerance
increases. However, this decrease presents a isamif discontinuity in
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correspondence of T = 3.0 mm. This means that ¢haracy of the detected edge is
in this order of magnitude. However, an importal@rent needs to be observed.
Manual modelling of a point cloud is indeed infleed by human interpretation and
the definition of breaklines with accuracy highéan 2.0 — 3.0 mm is almost
impossible also for a skilled operator.

In Figure 5.5 the detected repeated patterns asepted. In particular, it is possible
to observe that the presented algorithm can effijiedetect repeated features with
non-rectangular lattice patterns, i.e. variablecsgabetween columns (Fig. 5.5d). In
addition, the method may also deal with missingneliets (Fig. 5.5c¢). In this second
case it is possible to observe that the weightiéddbttom-left element is close to zero
meaning that the element is effectively missing.

-
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Fig. 5.5.Results of RPD algorithm for ‘D’Oggiono buildindataset: the repeated pattern for the two
analysed facades superimposed to the point clebd @ndtwo examples of detected lattices (c-d).
Lattices centres are coloured according to thecéetsal weight (white for 0 and black for 1).
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Classification results lead to the generation ef gemantic rich model shown in Fig.
5.6.

= M8 CityGML Modell

< (@) CityGML Buildina

= @ CityGML Buildinalnstallation
< @ CityGML RoofSurface

= [ CityGML WallSurface

< (@] CityGML GroundSurface

< (B CityGML Door

< (& CityGML Window

Fig. 5.8.Semantic reach model of the ‘D’Oggiono building’CityGML format. The model is
visualized using the FZKViewer developed by thelgahe Institut fur Technologie.

Reference
‘D’'Oggiono
building’ No. of I\(I)(;. No. of | No. of I\(I)(;. No. of No. of Total Commission
wall sidewall | window ground | attachment error [%]
roof door
No. of wall 20 0 0 0 0 0 1 21 4.8
No. of roof 1 6 0 0 0 0 0 7 16.7
No. of 0 0| 40 0 0 0 0 40 0.0
sidewall
o | No.of 0 0 0 0 | o 0 0 30 0.0
2 window
@ | No. of door 0 0 0 0 1 0 0 1 0.0
o
o | No.of 0 0 0 0 0 1 0 1 0.0
ground
No. of 0 0 0 0 0 0 20 20 0.0
attachment
Total 21 6 40 30 1 1 21 12(
omission | 45 | 00| 0.0 00 | 00 00 48
error [%]

Tab. 5.8 Confusion matrix for ‘D’Oggiono building’ dataset
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The confusion matrix is shown in Tab. 5.8. The allazlassification accuracy, which

is calculated as the sum of the correct classdigidcts divided by the total number is
98.3%. In addition a low confusion can be obsenvedab. 5.8. Commission errors

are zero for five classes meaning that most ofctietefacade objects correctly fall

down their actual classes. Also commission errogsgaite low, exception made for

roof objects (even if lower than 20%). Indeed, digal roof element is erroneously

classified as wall object. This is given by thetfdmat rules for roof elements assume
a roof cannot be vertical.

5.2.2. ‘Courtyard no.1 and no.2’

A second test was performed on two different cardyg which were acquired with a
TLS FARO-FOCUS 3D. The scanned scenes presentta logjgh number of clutters
generating occlusions on the building facades asdlting in large missing parts.
Furthermore, facades are constituted by differagade objects, e.g. walls, roofs,
parts of windows frames. The average point dersityhe ‘Courtyard’ datasets is
about 25 thousand points per square meter on this. Waur building facades were
modelled. In Fig. 5.9 the acquisition schemes Far two datasets are presented. In
particular, the two datasets were processed in ralependent way by using
parameters summarized in Tab. 5.2.

: r:o-
Scan 1 =
v o ,“ e
Scan 3
°
Scan 2
1)
® = Scan 1
Analysed Analysed
a Buildings b Buildings

Fig. 5.9 The scan acquisition schemes for ‘Courtyard n@jland ‘Courtyard no.2’ (b) datasets.

A visual representation of segmentation resultbfih datasets is shown in Fig. 5.10,
while segmentation evaluation results are summaiizdabs. 5.3 - 5.9 -5.10-5.11
-5.12.
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Fig. 5.10Q ‘Courtyard no.1'and ‘Courtyard no.2’ (top and tooh row respectively) segmentation
results: (a-c) original point clouds; and (b-d) megtation results, each detected segment is rapeese
with a different colour.

The result are similar for both datasets. In paldic robustness of the method is
confirmed by the high number of correct segments f@w instances of missing and
noisy segments are observed.

‘Courtyard no.1’ results for reference planes
Tolerance No. of

(%) No.cgfrrce%rtrect No. gl‘lg:)_rrect No'u?: d(;ortrect correct Commission | Omission

segmentation segmentation segmentation missed error (%) error (%)

9 9 9 segment

0.8 110 0 0 2 7.6 1.8
0.85 108 2 0 2 9.2 3.6
0.9 107 3 0 2 10.1 45
0.95 102 8 0 2 14.3 8.9
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Tab. 5.9 ‘Courtyard no.1’ results for reference planes.
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‘Courtyard no. 2’ results for reference planes
Tolerance No. of . .
(%) No. of correct No. of over- No. of under- o Commission | Omission
() : . - missed
segmentation | segmentation | segmentation error (%) error (%)
segment
0.8 106 0 0 0 10.9 1.9
0.85 106 0 0 0 10.9 1.9
0.9 103 3 0 0 13.4 4.6
0.95 98 8 0 0 17.6 9.3
Tab. 5.1Q ‘Courtyard no.2’ results for reference planes.
‘Courtyard no. 1’ results for detected planes
Tolerance _
(%) No. of correct No. of over- No. of under- No. of noise
segmentation segmentation segmentation segment
0.8 110 0 0 9
0.85 108 4 0 7
0.9 107 7 0 5
0.95 102 17 0 0
Tab. 5.11 ‘Courtyard no.1’ results for detected planes.
‘Courtyard no.2’ results for detected planes
Tolerance i
(%) No. of correct No. of over- No. of under- No. of noise
segmentation segmentation segmentation segment
0.8 110 0 0 9
0.85 108 4 0 7
0.9 107 7 0 5
0.95 102 17 0 0

Tab. 5.12 ‘Courtyard no.2’ results for detected planes.

The comparison of derived building models with thees obtained by manual
modelling are summarized in Tab. 5.2 and Figs. 5.5112.

550

500

450

400

No. of edges

350

300

1 1
Courtyard no.1
30.0
| . -
’ == No. of
/ L 20.0 — correct
# X edges
- 15.0 g—I—Commission
= error (%)
‘\ - 100 @
Omission
\ r >0 error (%)
. = —— 0.0
0.1 0.3 0.5 0.7 0.9
Tollerance (T)

Fig. 5.11.Geometric reconstruction analysis for ‘Courtyacdln dataset.
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1 1
Courtyard no.2
450 . * 30.0
(7]
(] - —_—
410 20.0 S correct
o 150 © edges
‘s 390 4 : 'é == Commissi
g - 10.0 & on error
370 L) o8)
l ! : w=fe=0Omission
350 ; ; ; . 0.0 error (%)
0.1 0.3 0.5 0.7 0.9
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Fig. 5.12.Geometric reconstruction analysis for ‘Courtyacd2h dataset.

The obtained building models in CAD format is préee in Fig. 5.13.

Fig. 5.13.Geometric reconstruction of ‘Courtyard no.1land®h¢top and bottom row respectively): (a-
c) final 3D digital models of the facades; and jdattade models with overlaid point cloud.
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Also for these two datasets a good matching betwednacted and manually
identified edges is observed up to a 3.0 mm totsramn addition also at lower
tolerances a high number of corresponding segnast®een found.

In Fig. 5.14 the detected repeated for both dataget shown. In particular, it is
possible to observe that the developed algorithmetciently detect missing objects
(like windows) also in the case of severe occlusi@etected regularities can be used
to complete the building model.
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Fig. 5.14.Results of RSD algorithm for ‘Courtyard no.1’ (rend ‘Courtyard no.2’ (c-d). Each
repeated pattern is shown with a different colour.

Classification results are presented in Tabs. 5.5314, where confusion matrices are
reported. The overall classification accuracy isl9®and 98.1% for dataset 1 and 2,
respectively. Also in these datasets the highesfustmn exists between roof and
walls because vertical roof elements have beenneously classified as walls.
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Classification results lead to the generation efghmantic rich models shown in Fig.
5.15 and Fig. 5.16.

= T8 CitvGML Modell

< @ CityGML Buildina

< @) CityGML Buildinalnstallation
< @ CityGML RoofSurface

= 8 CityGML WallSurface

< (@) CityGML GroundSurface

< (B CityGML Door

< 8 CityGML Window

Fig. 5.15.Semantic reach model of the ‘Courtyard no.1’ ityGML format. The model is visualized
using the FZKViewer developed by the Karlsruheitastur Technologie.

Reference
‘Courtyard no.1’ No. of '\é(f)' No. of | No. of '\é(f)' No. of No. of | 1oy | Commission
wall sidewall | window ground | attachment error [%]
roof door
No. of wall 15 0 0 0 0 0 0 15 0.0
No. ofroof 1 6 0 0 0 0 0 7 16.7
No. of 0 0 52 0 0 0 0 52 0.0
sidewall
- No. of 0 0 0 19 0 0 0 19 0.0
Q window
@ | No. ofdoor 0 0 0 0 1 0 0 1 0.0
<
o No. of 0 0 0 0 0 2 0 2 0.0
ground
No. of 0 0 0 0 0 0 15 15 0.0
attachment
Total 16 6 52 19 1 2 15 111
Omission 6.3 0.0 0.0 0.0 0.0 0.0 0.0
error [%]

Tab. 5.13 Confusion matrix for ‘Courtyard no.1’ dataset.
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=8 CityGML Modell

< [@) CityGML Buildina

< @) CityGML Buildinalnstallation
< a8 CityGML RoofSurface

< [ CityGML WallSurface

< (@] CityGML GroundSurface

< (B CitvGML Door

< @ CityGML Window

Fig. 5.16.Semantic reach model of the ‘Courtyard no.2’ ryGML format. The model is visualized
using the FZKViewer developed by the Karlsruheitastur Technologie.

Reference
‘Courtyard no.2 No. of | N | No.of | No.of | No.of | No.of | No. of Commission
of - . Total
wall r0of sidewall | window door ground | attachment error [%)]
No. of wall 18 0 0 0 0 0 0 18 0.0
No. of roof 2 8 0 0 0 o 0 10 25.0
No. of 0 0 45 0 0 0 0 45 0.0
sidewall
No. of 0 0 0 25 0 0 0 25 0.0
3 window
@ No. of 0 0 0 0 0 0 0 0 0.0
3 door
© No. of 0 0 0 0 0 4 0 4 0.0
ground
No. of 0 0 0 0 0 0 5 5 0.0
attachment
Total 20 8 45 25 0 4 5 107 107
Omission 10.0 0.0 0.0 0.0 0.0 0.0 0.0
error [%)]

Tab. 5.14 Confusion matrix for ‘Courtyard no.2’ dataset.

5.2.3. ‘Building no. 34’

A further test was carried out on a fagade of thees storey building named
‘Building no. 34’ located in the Leonardo Campus Rilitecnico di Milano. The
chosen test facade presents existing precast pandte two top floors, while the
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remaining part features a mortar finishing. An imtpot issue related to the survey is
the presences of a large tree just in front offéigade, resulting in large occlusions.

Scans were registered with 8 checkerboard targetsuned with a theodolite Leica
TS30. The same points were also used for the ratist of a block of RGB images,

along with some additional natural points (e.ghdaw and door corners) that have
been used for registration of a set of Thermalair®fd (TIR) images as presented in
the following Section 6.1. The network scheme igspnted in Fig. 5.17. After the

adjustment of the geodetic network, the estimaismuracy in checkerboard target
measurements resulted4r2.0 mm.

Scan1

b. - L ot
Fig. 5.17.'Building no. 34’ dataset: (a) some pictures @& #nalysed building; and the schemes of the
geodetic network (b) and the scan acquisitions (c).

The laser scanning survey was carried out by usiid.S FARO-FOCUS 3D and

consisted in 3 scans (Fig. 17c¢) acquired from thffie standpoints in order to survey
the entire western facades of the building. Theugdosampling distance (GSD)
ranges from 1.5 mm in the lower part of the facapgé¢o 4 mm in the upper part. As
mentioned, scan referencing was performed by usmgGCPs the checkerboard
targets complemented by 5 spherical targets usastréagthen the precision of scan

108



Automatic segmentation, classification and extraction of repeated patterns for building facades modelling

referencing. The mean precision after georefergn@waluated from the residuals on
GCP, was about3 mm.

Facade segmentation results are summarized irbHi§.and Tabs. 5.2 - 5.15 - 5.16.

| IR ‘131
{,! ! 1,’1

Fig. 5.18 ‘Building no. 34’ segmentation results:.(a) onigi point cloud; and (b) segmentation results,
each detected segment is represented with a diffeatour.

Compared to the previously cases this is a simgitaation where planes are quite
wide and separation between them is clear. Forrd#ason fewer errors have been
found.

‘Building no. 34’ results for reference planes
Tolerance No. of
(%) No. of correct No. of over- No. of under- e Commission | Omission
segmentation | segmentation | segmentation missed error (%) error (%)
segment
0.8 21 0 0 1 0.0 4.5
0.85 21 0 0 1 0.0 45
0.9 21 0 0 1 0.0 45
0.95 21 0 0 1 0.0 45
Tab. 5.15 ‘Building no. 34’ results for reference planes.
‘Building no. 34’ results for detected planes
Tolerance _
(%) No. of correct No. of over- No. of under- No. of noise
segmentation segmentation segmentation segment
0.8 21 0 0 0
0.85 21 0 0 0
0.9 21 0 0 0
0.95 21 0 0 0

Tab. 5.16 ‘Building no. 34’ results for detected planes.
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As previously observed the large tree in front loé facade resulted in a large
occlusion. Unfortunately, in this case also theeligwyed completion strategy could
not be exploited because no repetition could bemesl in this area. For this reason,
a manual editing was needed. Results of geomewiteiting and classification steps
are presented in Tabs. 5.3 —5.17 and Figs. 53.96-

Automatic

5 mm
———

d.

Fig. 5.19 ‘Building no. 34’ processing results: (a) findb 8ligital models of the facade (automatic
model, in black, and manual editing, in red); @dde models with overlaid point cloud; (c) CityGML
model; and (d) visual comparison between autonaatit manual modelling results.
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Fig. 5.20.Geometric reconstruction analysis for ‘Building 34’ dataset.
Reference
‘Building no. 34" | N6 of | No.of | No.of | No.of | N | No.of | No. of Commission
) . of Total
wall roof sidewall | window door ground | attachment error [%]
No. ofwall 9 0 0 0 1 0 0 10 10.0
No. of roof 0 0 0 0 0 0 0 0 0
No. of 0 0 8 0 0 0 0 8 0.0
sidewall
No. of
3 window 0 0 0 3 0 0 0 3 0.0
@ | No. ofdoor 0 0 0 0 0 0 0 0 0
©
O | No.of 0 0 0 0 0 1 0 1 0.0
ground
No. of
attachment 0 0 0 0 0 0 0 0 0
Total 9 0 8 3 1 1 0 21
Omission 0.0 0 0.0 0.0 | 100. 0.0 0
error [%)]

Tab. 5.17 Confusion matrix for ‘Building no. 34’ dataset.

In this case, 100% omission error is reported | ¢ase of door element. This is
motivated by the fact that the only door in thengces coplanar with the facade wall
while classification rules assume that such elerskauld be a facade intrusion.

5.2.4. ‘Nave building’

The last dataset presented here is the so callade’Noffice building which was
designed by Gio Ponti inside the Leonardo CampuPaditecnico di Milano. The
southern facade of the building was scanned bygusilong —range scanner RIEGL —
LMS 420i. Some technical specifications of the tasmnner adopted are reported in
Tab. 5.1.
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P 3 W L
G EEER OGGE  ONEE O T D S S SN s R

Fig. 5.21.‘Nave building’ dataset: a pictures of the anatlybeilding, due to the presence of a large
tree in front of the facade a large occluded aesarbsulted in the final point cloud .

Four scans have been gathered to cover in a unifeay the entire facade.
Registration has been carried out in automatic lmaysing 24 retro-reflective targets
that have been set up over the area. The refeistem of the first scan has been
kept fixed. Registration adjustment has providdtal sigma naught of 3.5 mm. In
this case the data acquisition has taken rougliguss. The average point density of
the dataset is about 5 thousand points per squaterrmon the walls. Due to the
presence of a large tree in front of the facadarge occluded area has resulted in the
final point cloud (see Fig. 5.21 and Fig. 5.22).

Due to the large level of noise in the datasetheoted to the nature of the adopted
instrument, the RANSAC tolerances for facade segatiem have been changed with
respect to the previous tests. In the same walysizel of the bitmap was increased up
to 2 cm to take into account the lower data densityTab. 5.2 a summary of the

adopted parameters for the modelling process septed.

A visual representation of segmentation resulgiven in Fig. 5.22. A more detailed
analysis of the data is reported in Tab. 5.3 arfakT4.18 — 5.19.

‘Nave building’ results for reference planes

Tolerance No. of . .
(%) No. of correct No. of over- No. of under- i Commission | Omission
: f ) missed
segmentation | segmentation | segmentation error (%) error (%)
segment
0.8 604 0 0 1 0.2 7.1
0.85 599 5 0 1 1.0 7.8
0.9 593 11 0 1 2.0 8.8
0.95 587 17 0 1 3.0 9.7

Tab. 5.18 ‘Nave building’ results for reference planes.
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Fig. 5.22 ‘Nave building’ segmentation results: (a) oridipaint cloud; and (b) segmentation results;
each detected segment is represented with a diffeadour.

Tolerance ‘Nave building’ results for detected planes
(%) No. of correct No. of over- No. of under- No. of noise
segmentation segmentation segmentation segment
0.8 604 0 0 46
0.85 599 12 0 39
0.9 593 32 0 25
0.95 587 47 0 16

Tab. 5.19 ‘Nave building’ results for detected planes.

Also in this case, in the tolerance range 0.8 +tBe®number of correctly detected
segments is almost constant. Unlike, the previ@ases a quite significant amount of
over-segmentation and missed instances can besdofitiese results may be due to
the higher noise present in the dataset whichrifageinced the estimation of the local
normal. In particular, over-segmentation resules@mnnected to some small segments
at the edge of larger regions or inside some regiamere the noise and the lower data
density made quite difficult the proper estimatairthe local normal vector.
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The obtained building model in CAD format is presehin Fig. 5.23, while
comparison results between manual and automatieisi@de presented in Tab. 5.3
and Fig. 5.24. Also for the geometric evaluatioa tblerances need to be relaxed to
take into account for the lower point density.

The number of correctly detected edges at diffet@letances has followed the same
distribution as in previous experiments. Obviouslye to the higher noise and the
lower density, a good accordance between the mamdhlautomatic results can be
observed only up t&41.0 cm tolerance.

Fig. 5.23 Geometric reconstruction of ‘Nave building’ dataiga) final 3D digital model of the facade
with a detail view of a window (b); and (c) facadedel with overlaid point cloud.

As previously anticipated, a large missing area uan occlusion is present in the
dataset. However, the developed procedure for RB® diven the possibility of
recovering the missing facade objects (Fig. 5.2AHhough this facade shows a quite
complex repetition scheme, the developed procebasesucceeded in detecting all
the repeated patterns.
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Fig. 5.24.Geometric reconstruction analysis for ‘Nave buifdidataset.
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Fig. 5.25.Results of RSD algorithm for ‘Nave building’, easpeated pattern is shown with a
different colour (a), and (b) semantic reach madé¢he ‘Nave building’ in CityGML format.
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The confusion matrix for this dataset is presentedTab. 5.20. The overall
classification accuracy is 99.5%. A misclassifioatof a door element is observable.
This is given by the fact the door is in the samergetric plane of the main facade
wall, while classification rules assume a door @atnas an intrusion. The final
CityGML model is presented in Fig. 5.25b.

Reference
‘Nave building’ | Ng, of No. No. of | No. of No. No. of No. of Commission
of . . of Total
wall sidewall | window ground | attachment error [%)]
roof door
No. of wall 7 0 0 0 0 0 2 9 22.2
No. of roof 0 4 0 0 0 0 0 4 0.0
NO' of 0 0 388 0 0 0 0 384 0.0
sidewall
o | No-of 0 0 0 188 | 0 0 0 188 0.0
3 window
@ | No. of door 1 0 0 0 1 0 0 2 50.0
<
o | No.of 0 0 0 0 0 2 0 2 0.0
ground
No. of 0 0 0 0 0 0 12 12 0.0
attachment
Total 8 4 388 188 1 2 14 60%
omission | 455 | 90| 00 00| od 00 143
error [%]

Tab. 5.2Q Confusion matrix for ‘Nave building’ dataset.

5.2.5. Conclusions
In this section different tests on some reals fagadre presented to evaluate
performance of the developed modelling procedure.

The developed segmentation strategy proved to lite gobust. Indeed, statistics

revealed a low number of commission and omissiocoreproving the method is able

to detect in a correct way planes also in the aafseestrictive tolerances. The

robustness of the method is also proved by therf@waances of missing and noisy
segments, proving that there is a strict matchihgoints between reference and the
obtained segmentation results. Some instancesasfsgmentation are mainly due to
non-conformance of some features segments to Hraphssumption. Also noise in
the local normal evaluation may generate over saggtioen problems. On the other
hand, in Chapter 1 it has been already observed aber-segmentation may be

recovered at a late stage by grouping togetherraewegments. The developed
segmentation strategy was also successful in degetioth larger surfaces (e.g.,

walls, roofs) as well as smaller features (e.gtspaf windows frames).

The geometric accuracy of the reconstructed modelso evaluated. Obviously,
different results have been found according to pbet density of each dataset.
However, the obtained results can be considersth@kar to the ones obtainable with
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a traditional manual modelling procedure. Some larok still exist in the case of
high fraction of missing data. For those casegsadutomatic modelling followed by
a manual editing to fix the problems seems the radstjuate procedure to save time
and minimize the human effort.

The algorithm for facade regularity detection prbv¥e be able to detect complex and
interlaced grids of repeated elements. Detectiahexploitation of repeated patterns
was effective for completion of missing parts ie tase of high repetitive structures.

The experiment proves that the developed objestsifleation strategy is effective.
Indeed, overall classification accuracy, precisamd recall are always satisfactory.
Some problems still exists for correct classifiocatiof some features. In particular,
some confusion situation may be found among dawals, and roofs. This is given
by the fact that some of the defined rules doescowér a complete set of clauses to
ensure correct classification. A higher speciaiatof these rules can be used to
partially overcome this limitation.
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Chapter 6
Other applications

This chapter presents some extensions of the des@lautomatic facade modelling
approach described in the first part of this disgem. Indeed, the obtained building
models can be integrated with other data source®bi@min a more complete
representation.

For thermal retrofitting of existing buildings, dwvation of the thermal efficiency is of
primary importance to properly design the interi@mtinfrared Thermography (IRT)
has been proved to be a valuable diagnostic taotHaracterization of buildings’
thermal behaviour and detecting thermal bridges lzeat losses from the envelop
(Maldague 2001). However, the use of IRT data fetria purposes presents several
limitations due to the reduced resolution of thdrea@nsors, the large distortion
introduced by the thermographic lens systems, dwad impossibility of making
precise geometric measurements directly on the esago partially overcame these
limitations, in Section 6.1 a procedure based oa tombination of thermal
information derived from IRT and geometric informoat of building structure is
presented.

On the other hand some of the algorithms develdpedacade modelling can be
extended, and partially modified, for other appimas.

In particular, the developed segmentation stratagy be used for scan registration.
Point cloud acquisition by using laser scannerwviges an efficient way for 3D as-
built modelling of urban environments. In the ca$darge structures, several scan-
points are needed to cover the entire scene anddhlult in a registration problem
(Vosselman and Maas 2010). Several solutions basedartificial targets are
nowadays available in commercial software packagesiever, artificial targets may
not be placed in all situations and a differenigigtion strategy is required in those
cases. Identification of the same geometric featamong a series of scans can be
used to work out the rigid-body transformation usé&br the registration of each scan
into the global reference system of the final paioud. This may be an interesting
solution for urban and architectural scenes whigsgnts the prevalence of some few
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basic geometric shapes. For this reason, a methseldbon the extraction of planar
features for scan registration is presented ini@eét 2.

Laser scanners are often used not only for geoerati detailed models of building

facades but also for indoor environments (Budrami 8oehm 2005). Automatic

reconstruction of buildings’ exteriors share mamgperties (and problems) with the
issues associated with indoor modelling. Typicaihgny of the algorithms useful for
the reconstruction of exterior building models cdme adapted for indoor

reconstruction, as well. However, exterior facadedelling methods operate under
the assumption that the surface being modelle@latively free from obstructions.

Even if this may be a reasonable assumption fodamrt scanning, in indoor

environments objects like furniture and wall-hamginfrequently may occlude the
wall surfaces, making the modelling problem morallemging. For this reason, the
approach developed for fagade modelling was extetmi@édoor environments (Sect.
6.3) to work with significant amounts of clutterdaocclusion.

6.1. Facade model integration with IRT images

In the domain of conservation and maintenance wtieg buildings IRT has proved
to be an adequate and efficient technique (Mald&§@d., Martn-Ocafia et al. 2004,
Ribari¢ et al. 2009). However, both surface temperatutegaometry are needed for
a reliable evaluation of thermal efficiency, whepatial relationships are important to
localize thermal defects and quantify affected awe$. For this reason a procedure is
developed to combine the geometric content of aatimally derived building models
and the temperature information derived from IRToia single framework. These
result in a thermography-textured 3D digital modih building. This model can be
interactively browsed, opening in this way new paises for the investigators. In
addition, starting from the textured models, alaster products can be obtained like
thermographic-mosaics, orthophotos, and rectifiegges.

The key factor for a fruitful integration is the-oegistration of the thermal images
and the geometric 3D model of the building. Accogdio the structure of the surface
and to the image acquisition procedure, the proldam be coped with in different
ways. A simple homographic transformation can heeotly used only when the 3D
model of the building facade is flat (Gonzéalez-&orgt al. 2012). Homography
estimation requires the identification of at le&stir corresponding control points
(CPs) on both image and object surface. If thedagarface has a more complex 3D
shape, homographic model does not hold any moreftion is made for almost flat
objects with only small off-plane parts). A morengarehensive approach for image
registration is based on collinearity equations ckhiare normally used in
photogrammetry to describe the perspective transfton process behind image
formation (Luhmann et al. 2006). In this case thametwo opportunities both based
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on 3D perspective transformations: (i) single imagesection or (ii) bundle
adjustment of a block of images.

The former technique (Abdel Aziz and Karara 197l)the most popular in most
commercial software packages. In this case thestragjon of each image can be
directly performed by using collinearity equaticersd by knowing coordinates of at
least 3 GCPs (e.g., by using a theodolite or didadm the point cloud derived from
TLS). Coordinates of GCPs have to be measured @inthges as well to obtain an
estimate of camera parameters (position and adfitlldowever, images are processed
independently increasing the number of points tenieasured and determining some
problems in overlapping areas between consecutiwageés. Furthermore, the
achievable accuracy of the orientation with texfiess images can be questionable.

In photogrammetry, a bundle adjustment approacises! to partially overcome these
problems (Luhmann et al. 2006). Several imagesemistered in a common reference
system through the solution of a linearized systa&@ncollinearity equations. The

unknowns of the system are the six exterior ortema(EO) parameters of the

images, while the intrinsic calibration parametamrs usually considered as fixed after
their estimate with a preliminary calibration prdjeAdditional GCPs are used to
control the solution and setup the reference sysiumndle adjustment has also the
advantage of exploiting common points between imageducing so that the total

number of points to be measured. However, as thgnappbic cameras have intrinsic
parameters similar to a telephoto lens (narrowdfadlview and long focal lens) it is

rather difficult to obtain a block of thermal ima&gsuitable for a stable adjustment.
Indeed, because of the limited field-of-view thelmaage blocks generally present a
low ratio between image baselines and camera-oljistance. For this reason a
simple bundle adjustment of thermal images coutivige unreliable results. Here a
different approach is used to avoid instability ldemns and to increase precision of
EO estimation. The developed methodology makesotiskeermal and RGB images

acquired independently, e.g., even in different sdaiowever, the combined

orientation of both datasets and the larger reswoluind format of RGB images help
compute the EO of thermal images.

6.1.1. IRT image integration overview

As previously anticipated the integration betwedw®arinal data and geometric building
model is obtained by mapping thermal images orBihaemantically enriched model
of the building derived from the procedure desatibe Part A. Main steps of
processing IRT data are reported in the followingsections, while more details can
be found in (Previtali et al. 2013b). As shown ire tworkflow in Fig. 6.1, the
procedure can be divided into two main parts: tlogmaphic image processing and
automatic facade model generation.
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Fig. 6.1 Workflow of the proposed methodology for the gatien of a thermographic textured 3D
facade model.

Once both parallel processing of image and poiatudlprocessing are completed,
their integration is accomplished by texturing thelding model with thermal images.
The procedure adopted for texture mapping is desdnn (Previtali et al. 2012).

6.1.2. Thermal camera intrinsic calibration

In order to use a camera for photogrammetric p@apogs calibration should be
carried out to determine the interior orientati@gmeters and to compensate for the
effects of lens geometric distortion. In the apgiicns considered in this study,
neglecting the correction of distortions may leadat significant worsening of the
final quality of the textured model.

In the case of IRT sensors, thimhole cameranodel can be assumed and calibration
applied by using standard photogrammetric methbldsvever, IRT cameras are not
designed for metric purposes and their calibrati@y not be an easy task for a series
of reasons (see also Luhmann et al. 2013):

» geometric lens distortion could be quite large eesdly at the borders of the
images;

* because of the shorter wavelength of IR spectruth wispect to the visible
one, the diffraction disk diameter is much largessulting in a larger pixel
size in the thermal sensors;
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* in terrestrial applications the IR image resolutisrgenerally in the order of
640x480 pixels or lower (except in some highly exgiee sensors);

* auto-focusing systems cannot be usually turneccadising instability in the
interior orientation parameter estimation; and

* the limited field of view makes more difficult t@ey out a calibration project.

All these aspects should to be taken into accaumplanning the calibration project,
in order to fix a proper set of ‘best practice i@ be generally adopted.

Cameras used in this research for IRT surveys wa&librated by using the Brown’s
model (Brown 1971), which is based on 8 paramdjatiecipal distance, principal
point coordinates, 3 coefficients for radial disitmm compensation, and 2 parameters
for decentring distortion). These parameters canest@mated by using a proper
calibration target set (Fig. 6.2), which must begad from different positions. The
solution here adopted is based on a set of 40neols fixed in a wooden structure.
When exposed to sunlight, nails warm up faster thaoaden background and become
clearly visible in IR images (Gianinetto et al. 300

c il
Fig. 6.2 The wooden panel with the iron nails used foc#rera calibration as it is depicted in an
RGB image (a) and in IR image (b-c), respectively.

Each of these nails was also measured with adnd#r theodolite Leica TS30. The
3D coordinates of all nails and the correspondintage coordinates, manually
measured on all images, are included in a bundlesedent, whose solution includes
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also the Brown’s model calibration parameters. Tawerage precision of this
procedure can be evaluated through the estimatatistgtal quality parameters
computed along with the bundle adjustment. In theecunder consideration, the
computed set of parameters allowed to transformtpdrom the images to the real
word with an average residual error of £2 mm. Qalilon results for camera FLIR-
Tau 640 adopted in the test described in Paragddph.2 are presented in Tab. 6.1.

Parameter Calibration result c
Focal length ¢ 19.0851 mm 5.24 X10

Principal point x 0.0616 mm 7.10x 10
Principal point y 0.1216 mm 6.24 x 10
K, -1.16 x 10-3 2.61 x 1D
K, 6.43 x 10-6 2.20 x 1D

Ks 0 0

=} 0 0

P, 0 0

Tab. 6.1.Calibration results for thermal camera FLIR-Tau 640

6.1.3. IRT image orientation

The solution presented here is based on a glombgrammetric bundle adjustment
combining both IR and RGB images, which tries teeroeme some drawbacks
connected to standard space resection and to titiebadjustment of IR images only
(Previtali et al. 2013).

The procedure starts with the acquisition of anqadée set of RGB images with a
calibrated camera, meaning that the image blockuldh®atisfy the standard

requirements of a close-range survey in terms @genoverlap, baseline between
consecutive images, image resolution (Fraser 198d.instance, in the case of a
planar-like facade, a simple strip of images withaverlap of about 80% can be a
good choice which allows one to find Tie Points §¥®Bn 3-4 images. In building

surveys some factors like occlusions caused bysuodings buildings and/or trees,
logistics limitation and the like, might influend¢be block design. Consequently, a
trade-off between concurring requirements has todfimed.

Then, RGB images are oriented within a standardtqgmammetric bundle
adjustment, which is based on a set of TPs measurdde images, and some GCPs
that are used to register the project in the refesystem of the building model. An
important consideration deserves to be mention®s: ifdividuated in this first step
will be used for the registration of IR images. Rbrs reason TPs should be
preferably measured in correspondence of eleméatsare clearly visible in both
RGB and IR images (e.g., window and door cornérk)s strategy may turn out in
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increasing the processing time of the bundle anjest of the RGB images, if
compared to a standard photogrammetric projectevtier integration of IR images is
not needed. On the other hand, the larger numb&Psfwill help the registration of
the IR data.

After the registration of all RGB images IR imagem be added to the block by
measuring some TPs between RGB-to-thermal and tieozthermal points. A final
combined bundle adjustment including all imagefnally carried out to obtain the
EO parameters of all images simultaneously. Thaswal the creation of a more robust
image block made up of both images, where RGB imaiengthen the bundle
adjustment solution and allow the estimation afde EO also for thermal images.

6.1.4. Applications
In this subsection two application of the developegdgration procedure are reported.

6.1.4.1. ‘Nave building’

A first application example of the developed oréinn technique is the ‘Nave
building’ of Politecnico di Milano.

Fig. 6.3 In the upper row, (a) an RGB image with the mead T Ps (red crosses); and a 3D view
showing camera poses of both RGB (red) and the(fioha¢) datasets (b). In the lower row (c), some IR
images used for texturing the 3D model with meas$dies; red lines are a graphical representation of

the residuals after registration through the buadieistment (a magnification factor 50 is applied).
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Firstly, 17 RGB images acquired with a Nikon D8Wipped with a 20 mm Sigma
lens were registered within a bundle adjustmentthla project 16 retro-reflective
targets, measured with a theodolite Leica TS30adsa employed for the registration
of laser scans were used as GCPs during bundlstadjut. As can be seen in Fig.
6.3b the irregular distribution of both RGB (rednexas) and IR images (blue
cameras) depends on the presence of several aodudue to obstacles like other
buildings and trees. Then, 65 IR images were iredduith the bundle adjustment by
using more than 600 TPs previously measured irRG8& images. Thermal images
were acquired with two different IRT cameras (AVIWS700 and NEC TH9260)
and were included in a unique adjustment with d#ffiet sets of intrinsic calibration
parameters. The high number of TPs used is corthéztéhe narrow field-of-view of
both thermal cameras that limits the number of eleis clearly measurable in each
image (Fig. 6.3c).

Fig. 6.4.IR orthoimage (a) of the ‘Nave building’ of Politéco di Milano and the 3D model textured
by IR thermal images (b).

Statistics on the combined bundle adjustment shéiwah sigma nought of about 1.2

pixels. This result can be considered as fully ptaide due to the low geometric

resolution of IR images. In fact, the ground sampldistance (GSD) of thermal

images was about 1 cm while the one of RGB images lvmm, meaning one order
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of magnitude difference. In Previtali et al. 2018uantitative comparison of different
registration techniques for IRT, RGB and buildingdel are reported and discussed.
This analysis involved the use of a set of chedktpavith respect to which residuals
after image orientation have been worked out. Imti@dar, discrepancies for
homography and space resection method revealedy beirch larger than those
obtained from the combined bundle adjustment. For@lophoto results are presented
in Fig. 6.4.

6.1.4.2. ‘Building no. 34’

A second case study is the ‘Building no. 34'. listbase the thermal survey was
carried out by using an unmanned aerial vehicle\(Uplatform. Indeed, UAVs may
be really useful for thermographic analysis. The asJAV platform allows exploring
areas inaccessible from the ground like roofs.dditéon the possibility to reduce the
camera-object distance allows one to enhance thendrsampling distance (GSD).
This effect is particularly evident in the casetalf buildings. In these cases, images
acquired from the ground may present a GSD of séwantimetres at top floors,
while the use of a UAV gives the chance to obtainngorm GSD all over the
building. The thermographic survey was carried loyitusing UAV platform (Fig.
6.5a-c) AscTec Falcon 8 (70 cm x 60 cm, weight 2, kguipped with 8 motors and
able to fly up to 20 minutes with a single battery.

c

Fig. 6.5.The ASCTEC Falcon 8 equipped with a FLIR Tau @#Jal camera (a-c); and (d) the
thermal image acquisition procedure.
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The system presents an actively stabilized camgstgerms that allows mounting
different payloads. In particular, in experiment®GB images were acquired with a
Sony NEX-5N camera and 11 thermal images were decbwith FLIR Tau 640
camera equipped with a 19 mm lens system. Theretectequipment of the Falcon 8
includes a GPS antenna and a system of accelensmermining the system roll,
pitch and yaw. The communication system allows gneund station to receive
telemetry data and video signals from the on-b@ammsors. During the survey the
UAV can be remotely controlled by a human operatbile thermal images were
acquired by using a laptop to record the videodigrom the thermal camera (Fig.
6.5d).

The survey was completed by acquiring 18 RGB images the ground. Two
thermographic campaigns were performed, the finstia winter (March 16th, 2013),
the second in summer (July 9th, 2013). In both £dlsermal images were acquired
with the UAV following a vertical strip.

As described in Sect. 6.1.3, the orientation os¢henages was performed in two
steps. First, the RGB images were registered withibundle adjustment. In this
project 10 natural points (e.g., window and doanecs) measured with a Leica TS30
were used as GCPs during the bundle adjustmentn, Tétarting from 30 TPs
measured in the RGB images, 11 IR images werededlin the bundle adjustment.
Statistics of the combined bundle adjustment shdma RMS of about 0.9 pixels
(Fig. 6.6).

Fig. 6.6.Thermal image processing: (a) the acquired thermades; and (b) camera poses: red
cameras are IR images, whereas blue cameras repRS8 images.

After the registration of IR images in the sameerefice system of laser scanning
point cloud, data were mapped and mosaicked oditil model of the facade, and
then the final thermal orthoimages were derivedsioyply projecting the data on a
plan parallel to the facade. Orthophotos shows pghesence of some thermal
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anomalies on the facade. In particular, the preseficcsome closed doors and other
objects that are not visible in standard RGB pesuiFig. 6.7) have been evidenced.

IR March 2013 IR July 2013 RGB March 2013

-

'
.
.
k
;
i

Fig. 6.7.Facade thermal orthophoto: March 2013 (a), July32®) and RGB (c).
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6.2. Scan registration using planar features

Point cloud registration plays an essential rolstatic terrestrial laser scanning data
processing. In this paragraph, a methodology baseglanar features is used to
combine multiple scans.

Even if different approaches were developed fomspegistration (the reader is
referred to Barnea and Filin (2010) and Vosselmad Klaas (2010) for a more
comprehensive overview on this topitdrget-basedapproaches are the most
commonly employed. Indeed, given a sufficient nundfe3D point correspondences
(at least 3) parameters of a rigid-body transforomatbetween the instrumental
system, termedntrinsic Reference Syste(lRS), and aGround Reference System
(GRS) can be achieved (see Eq. 6.1 and Fig. 6.8):

X, X
Yo [FR Y [T T 6.1
z| |z

where &, Y1, z) and &, Y», 2) are the reference system to register, IRS and GRS
respectively, Rs a 3x3 rotation matrix andi¥ a 3x1 translation vector.

Fig. 6.8.The general scheme of laser scanning measureamht®gistration procedure.

In target based registration approaches targetsised as corresponding elements
between scans. They are made of special matendlsrawith a particular shape and
can be automatically detected and matched in easfr Iscan. However, artificial

elements have to be added to the scene, whicht iglways possible, and have to be
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placed in positions which are stable in time t@wlla good scan registration. This
may be a difficult task in the case the same ohjeeds to be scanned at different
epochs. In addition, a good distribution of targatthe analysed scene is not always
achievable because of practical reasons (e.g., where part of the object cannot be
reached). The use of geometric features can betialpsolution to these problems.

Indeed, no artificial targets need to be placed thiedgeometric variation of feature

object between different epochs is generally ndgkg

In many applications alssurface matchingechniques are used for scan registration.
Among all these methods, the Iterative Closest tP@@P) algorithm (Besl and
McKay 1992) is the most exploited. ICP for poinbwdl registration works without
any pre-knowledge about the point-to-point corresjmces. It establishes point-to-
point correspondence iteratively based on the mininEuclidean distance. If the
initial values are good enough, this procedure lisganverges. ICP is a pair-wise
registration procedure, and cannot reliably hansii@ultaneous registration of
multiple scans. This results in the propagationegistration errors as more scans are
acquired and added to a project. In addition, I€uires good initial approximations
to solve for the relative orientation unknown paedens. For this reason some manual
measurements of a few correspondences are geneesdtjed. Different approaches
have been proposed to make ICP more robust byiridiehe correspondences for
effective handling of occlusions (Zhang 1994, Guehr2001). A comparison of
different ICP variations is given by Rusinkiewiczdal.evoy (2001). Compared with
standard surface registration approaches (like K€Bistration with features allows
for global registration (Scaioni and Forlani 200B)deed, standard ICP registration
approaches can only handle a pair of scans atea fiims leads to accumulation of
errors and sub-optimal use of available informatiQonversely by using global
registration leads to optimal use of available data addition, as noted by
Bennamoun and Mamic (2002) ICP just produces nmagish without giving any
information about reliability and confidence of testimated registration parameters.
Conversely the presented approach is a directagtn of Least Squares fitting and
gives a full covariance matrix of the fitted paraers.

This section presents a registration method basedhe identification of planar
features in the acquired point clouds. Unlike thecpdure adopted in Part A, rather
than registering scans first and then modellingst fthe unregistered scans are
analysed and planar objects detected. Then thesponding models are used to co-
register scans.

The possibility to used geometric features for segyistration solution is a well know
topic in the literature. Similar approaches arespnéed in Dold and Brenner (2006),
Rabbani et al. (2007), Wang and Brenner (2008)\&rd Gooret al. (2011). For this

130



Automatic segmentation, classification and extraction of repeated patterns for building fagades modelling

reason the approach discussed in this section tigawolutionary with respect to
methods already published, but it attempts to esxethe automation degree and the
robustness, as well as to get rid of manual measnts, by using the segmentation
algorithm described in Chapter 1 as the basisdan segistration.

Man-made and urban environments consist mainhbgfats that can be modelled by
using a set of a few well defined objects charaterby a planar geometric model.
Determining the transformation parameters of déifierscans can therefore be based
on aligning planar features often present in tresgronments (Dijkman and van den
Heuvel 2000).

I Unregistered Point Clouds ‘

|

Segmentation

!

Model Fitting

l

Detected planes parameters

Correspondences
identification

|

Least Squares minimization
of planes parameters

|

l Registration parameters l

Fig. 6.9.Workflow of the developed methods for scan registn with planar features.

The developed method, presented in Fig. 6.9, waokgard the solution in the
following four steps:

1. points are labelled as belonging to a certain platgect. This is done for
several objects in different unregistered scanss $tep can be automated by
using the segmentation algorithm presented in @ndpt

2. a Least Squares-based fitting algorithm calculéitesobject parameters for
every object in each scan;

3. correspondences between planes belonging to diffeians are established.
Although the correspondence specification in theuacimplementation is
done manually this process can be automated ughmy exhaustive search or
RANSAC based random search through the parametdeesin particular, in
the case of planes, a minimum of three corresparedermre required for
registration; and
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4. the final transformation parameters are calculbteteast Squares.

The first steps of the developed approach are dyrefiscussed in the previous
chapters or are simple tasks. Only the Least Sguammimization of planes
parameters is presented in the next section.

6.2.1. Plane parameterization and scan registration

In urban environments many objects consist of anmare planar faces that can be
used for registration. Describing a plane by themad vectorn = [ny ny n]" and the
perpendicular distance from the origin (Fig. 6.10) provide a singularity free
representation for infinite planes (Van den Heul@99). This representation is also
known as Hesse form of the plane and is more daifab the Least Squares solution
than other parameterizations. As a plane has dmiget degrees of freedom, a
constraint on the length of normal vectois introduced:

In|=nZ+nZ+n? =1 6.2

The estimation of registration parameters is olethiby Least Squares minimization
of the sum of squared differences. Mathematicaltan be expressed as follows:

C

{g}‘}?} ;[lpm (ni 1P ,1) —Wer (ni 2102 )]2 6.3

where there ar€ correspondences between planes belonging to elifescans. Each
correspondence is established between two objeatsd2. ¥k tis an operator that
applies the transformation, defined by R and Ttheoplane parametersyx andp;k (h
=1, 2). By using this strategy it is also posstblsimultaneously deal with N number
of scans.

>
>

<

Z

Fig. 6.10.Parameters of the plane, normand distance from the origin
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In particular each plane provides three equationghie difference in normal vectoy
and one equation for the difference in the distdnma the originps which is given
by:
_ 6.4
n, =n, ~(RIn,)

Ps =P, = pr+(RIN, )T o

From Eq. (6.4) it is possible to observe that tlwenral is only affected by the
rotation, whereas Eqg. (6.5) shows that the chamgas a function of both translation
and rotation of the scan. To solve the non-linesadt Squares problem in Eq. (6.3)
the Gauss-Newton method is used. In particularpasameterizing R with Euler
angles2, ® andK, Eqgs. (6.4 and 6.5) can be linearized as follows:

AlAX=0+V 6.6
where:
an()_,X apb’,x apb—,x O 0 0
0Q 0P oK
and,y apc?,y aIOLY,y O 0 0

aaQ OGCD aOK 6.7
n

0,z /05,2 105,2 O 0 0
0Q 0o oK

0p; 0ps 0p; Op; 0ps 0P
0Q od 9K JT, AT, T,

x y

represent the design matrix containing the padeivatives of Egs. (6.4 and 6.5)
with respect to the registration parameters evatuat the initial approximationax

is the vector of unknowns corrections to the appnaxe values of registration
parameters:

dQ
do
dK
dT,

X

dT,

y

dT.

z

vectord contains measured minus computed plane parameters
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i nLX_ERmz’Xg
3 n, —(R,
7 .- (Rm,,)
,02—,01+(Rm2)|:|__

and V contains residuals.

As can be noticed from previous equations parteivdtives of Eq. (6.4) and (6.5)
with respect to parameters of scan rotation R aadslation T are needed. In
particular, by parameterizing R with Euler anglesd andK, the partial derivatives
with respect to rotation are as follows:

on; _ OR_ 0ny OR  ony oR

= - n =- n =- n 6.10
00  9Q  ad  9d 2 K 9K °
%:(Enzjg;%:(O_an)g;%:(aﬁnzjtr 6.11
0Q (00 od (9 oK (0K

For translation T:

0
%=0 6.12

oT.

oT,

As can be seen from Egs. (6.4 and 6.5) planesibatés to T only to the direction of
the normal vector n. For this reason in order teehareliable scan registration planes
should be evenly distributed on the scene in otdeagive a proper estimation of T.
For this reason a typical proper environment fog ffresented scan registration
strategy using planar features is the case of indoans. Indeed, in this case room
walls, floors and ceilings give a robust plane gunfation for their registration using
the presented method.

The proposed cost function presumes equal weighéing uncorrelated object
parameters. These assumptions may not be appmpinate significant differences in
parameter precision and significant correlationgwben parameters may exist,
depending upon data coverage of the object. Theselations can have negative
effects on the convergence of this procedure. Tarsbe taken care of by weighting
the equations by the inverse of the covarianceixaltained during model fitting.
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6.2.2. Applications

The procedure for scan registration through theaigdanar features was attempted
with datasets featuring different characteristicserms of network geometry and data
density. Two examples are illustrated here to mieske main advantages and
disadvantages of this method in real case studies.

The first example consists in the registration cfiregle scan pair. These data were
acquired with a FARO-FOCUS 3D laser scanner, wh&lbased on phase shift
principle for range measurement. The object is aveusity classroom. The
dimensions of the room are 8 m x 4.5 m with a hegjl8 m. Each scan (Fig. 6.11)
consisted of 28 million points. The scans were saged and planes recovered using
the approach presented in Chapter 1. In partictiarparameters used to segment the
two scans are presented in Tab. 6.1. The same pteesrare used for both scans to
have a uniform accuracy in the estimation of planes

RANSAC plane thresholgl 1cm
RANSAC normal threshold 10°
Bitmap cell size3 1cm

Tab. 6.1.Parameters used for “Classroom” and “Office-rooratagets segmentation.

The number of recovered planes in Scan 1 is 15ewhiScan 2 are 16. As previously
discussed, the correspondence specification ha$ @@Eomplished manually
although this process can be automated using RANSAE coordinate system of
Scan 1 was defined as the global coordinate syA@mroximate registration values
for Scan 2 were obtained by selecting a minimalo$etorrespondences and solving
for the corresponding system of equations. Thd 8igima noughtdp) was 3.0 mm,
while standard deviations of registration paransetae presented in Tab. 6.2. The
standard deviations of the transformation parareedez obtained by propagating the
standard deviations of the point measurementsetoliject parameters. Some steps of
the registration procedure are shown in Fig. 6.11.

Scan Q (rad) @ (rad) K(rad) Ty (M) T, (m) T,(m)
2 3.105x 10 | 2.221 x 16 | 2.955x 1G | 1.504 x 10' | 2.137 x 1F | 1.145 x 10
Tab. 6.2.Standard deviations of estimated transformatioaaters for ‘Classroom’ dataset.

To register the same set of point clouds a setrificaal targets were used and
compared with the results obtained with the dewsdogegistration method. By using
target based alignment, a sigma nought of 2.0 mm @@ained. The difference
between the translation vectors and the Euler arfgledb andK obtained from both

registration techniques directly provides inforroatiabout the misalignment (Tab.
6.3). A further check was performed on the coongisaof the artificial targets
showing a mean difference of 2.1 mm and a standiewthtion of 0.9 mm.
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Fig. 6.11.‘Classroom’ dataset registration results. An oi@mof the classroom (a); segmentation
results for Scan 1 (b) and Scan 2 (c), correspgnsitgments between the two scans are represented
with the same color; scan alignment before (d) &ftet the registration (e).
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These results are in good accordance with the goeciobtainable for target
alignment with the laser scanner used in this test.

AQ =0.0033° A® = 0.0023° AK =0.0019°

AT,=0.00057 m AT, =0.00032m AT,=0.00051 m

Tab. 6.3.Comparison between results of proposed and statdiayet based registration parameters
for a pair of scans of ‘Classroom’.

The second example consists in the contemporaigtraton of three scans of an
office room (Fig. 6.12). Also in this case the scane acquired with FARO-FOCUS
3D laser scanner. The parameters used for the segtioe of the scans are the ones
presented in Tab. 6.1. The number of recoveredctibje Scan 1 — 3 is 20, 18 and 22,
respectively. The coordinate system of Scan 1 f;el@ as the global coordinate
system. Once pairwise correspondences between stanslefined, approximate
registration values for Scans 2 and 3 were obtalmedelecting a minimal set of
correspondences and performing an independentipairegistration to Scan 1. Then
the final 3D global adjustment of all scans was fqrered using pairwise
correspondences as described in the previous sedti@ final sigma nought was 3.2
mm. Tab. 6.4 presents the standard deviationsgidtration parameters.

Scan Q (rad) @ (rad) K(rad) Ty (m) T, (m) T,(m)
2 2.988x 10 | 3.157 x 10 | 3.126 x 10 | 1.998 x 1d | 1.567 x 1d' | 2.346 x 10
3 9.465x 10 | 2.873x 10 | 8.793x 1F | 2.731x 10 | 1.987 x 10 | 1.312 x 10

Tab. 6.4.Standard deviations of estimated transformatioaupeters for ‘Office room’ dataset.

Also in this case a comparison with target basgist@ation was carried (see Tab.
6.5). Differences on artificial targets show a maiifierence of 2.4 mm and a
standard deviation of 1.0 mm for Scan 2 and medferdnce of 3.1 mm and a
standard deviation of 0.9 mm for Scan 3.

Scan AQ (°) AD (°) AK(°) AT, (M) AT, (m) AT ,(m)
2 0.0025 0.0041 0.0035 0.00050 0.00041 0.00041
3 0.0034 0.0037 0.0022 0.00048 0.0005f7 0.00048

Tab. 6.5. .Comparison between results of proposed and stamaiayet based registration parameters
for ‘Office room’ dataset.

These results show registration statistics comparalith the ones obtainable by
using coded target. This is mainly given by thd that the indoor scene presents a
high number of planar features having an extenekng the entire scene. Also their
geometrical distribution was optimal for estimatinga reliable way the registration
parameters. Indeed, planes were evenly distributeall directions. Scenes with a
lower number of planar features and a non-reguistrilblution of planes in space
would give significantly worst results. This pret®m large and extensive use of the
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presented solution for registration of outdoor &serindeed in this case there are few
planes having horizontal direction preventing aaf#é estimation of the shift along
the vertical.

Fig. 6.12.'Office room’ dataset registration results. An oxiew of the office room (a); segmentation
results for Scan 1 (b), Scan 2 (¢) and Scan3(cjesponding segments among the scans are
represented with the same color; estimated scatigus(e); and scan alignment before (f) and after
the registration (g).
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6.3. Indoor reconstruction

Laser scanners are often used not only for geoerati detailed models of building

facades, but also for indoor environment reconstncHowever, also in this case it
is a manual and time-consuming process. The mosernces reported in the
literature (see next Subsection 6.3.1) concernuee of static TLS, but the recent
improvements in the indoor mobile mapping systeBiswas and Veloso 2011) are
opening new great possibilities in this field. ledethe demand for indoor models for
different purposes (planned maintenance, preservatnd documentation, etc.) has
recently increased. Thus a higher degree of automatould better satisfy different

applications and speed up the processes.

This section presents an automatic method for niaggiredominantly planar indoor
environment using laser scanner data. The presemétitodology aims at generating
reliable models despite the presence of signifieanounts of clutter and occlusion,
which frequently occur in building indoor. In padiar, the developed approach can
be used to detect and fill gaps in the input datadétecting occluded regions and
model windows or door openings.

6.3.1. State of the art

As previously described in Subsections 1.2 — 23.1— 4.1 several methods have
been proposed for production of building facadesl@®by using laser scanners (Pu
and Vosselman 2009, Ripperda and Brenner 2009k€Threethods operate under the
assumption that the surface being modelled isivelstunobstructed. Whether this
may be a reasonable assumption for outdoor scannimgdoor environments objects
like piece of furniture and wall-hangings frequgridtclude the wall surfaces, making
the modelling problem more challenging. Indeed,fémade modelling in the case of
occlusions (e.g., due to trees, parked cars, iets.pssumed that occluded regions can
be observed from different viewpoints (Pu and Vbeae 2009) during the
acquisition step. Obviously, such method would mebrk with significant,
unavoidable occlusions as it is the case of indmorironments. An alternative in
facade reconstruction is given by model-based a@mhwes (Becker 2009,
Koutsourakis et al. 2009). In particular, it is @sed that the occluded region is part
of a repeated pattern. A top-down processing id ts@redict patterns in facades and
to replace missing data with other region that imaébe pattern, such as one of many
identical windows on a wall. However, in the casanterior modelling, repetitive
patterns of walls and windows are more unlucky ® ibentified and ad-hoc
algorithms which are robust to clutter are needed.

Currently, model reconstruction and visualizatiérgeneric indoor scenarios is still a
difficult task (Furukawa et al. 2009). In fact, theconstruction of interiors is mostly
performed using interactive or semi-automatic apphes (Cyclorié PointoolS . . .).
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Many researchers have studied the problem of réwanti®n of building interiors
using laser scanner data (El-Hakim et al. 1997, ndhat al. 2003, Thrun et al. 2004,
Budroni and Boehm 2005, Okron et al. 2010, Adantdalder 2011). For some works
the emphasis was given on creating visually realmbdels rather than geometrically
accurate ones (e.g., El-Hakim et al. 1997). Manthi@s used TLS data to construct
detailed models of walls. Thrun et al. (2004) depeld a plane extraction method
based on thé&expectation—maximizatioralgorithm, while Hahnel et al. (2003) used a
‘plane sweep’approach to find planar regions. However, evethése algorithms
work well for extracting planar patches from thedadata, they do not explicitly
recognize the identity of components, such as wedlgings, and floors. In addition,
several works (Hahnel et al. 2003, Thrun et al.42@udroni and Boehm 2005) do
not consider the occlusion problem because theyskxt on modelling of hallways
with no furniture or other potentially occludingjebts.

‘Context-based’ building modelling was studied bgveral other researchers

(Cantzler 2003, Nuchter and Hertzberg 2008, Rusal.e2008). These approaches
rely on hand-coded rules. Recently, Koppula e{2011) used a graphical model to

represent contextual relationships for recognizaigects in indoor scenes using

3D+colour images (RGBD) from a Microsoft Kin@aensor (Zhang 2012). However,

defined rules are usually brittle and break dowthm case of noisy measurements or
significant lack in the data.

A very specific area of indoor modelling, which Haeen the topic of intense efforts
for automation, is the reconstruction of industravironments. These scenes are
characterized by repetitive elements such as beampipes. Current state of the art in
commercial reconstruction tools is manual pre-sedai®n in combination with
automated fitting (Rabbani et al. 2007).

This section presents an automatic method for nliadeindoor environments by
using point clouds obtained from static laser soapnin particular, the proposed
methodology addresses the challenges of clutteoadldision by explicitly reasoning
about them throughout the process. First, surfeg@®senting the room walls, ceiling
and floors are detected in a robust way. Thennttetstand the nature of occlusions,
a ray-tracing algorithm is used to identify regiot@t are occluded from every
viewpoint and to distinguish these regions fromropgs in the surface (e.g., due to
doorways or windows).

6.3.2. Indoor reconstruction method

The developed methodology for automatic indoor metrmction takes as input a set
of registered scans with a known ‘up’ direction dhd location of scanning point in

the room. All these prerequisites can be easihaiobtl in practice. Indeed, scan
registration is a well-studied problem, and methdédsmanual or automatically
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register scans are available both in scientific amtimercial software packages. Once
scans are registered together, scan locationsti(posind attitude) are known. Also
the vertical direction is generally known. Thistypically directly provided by the
scanner, since it is generally levelled. If thetieal direction is unknown, the
orientation can be estimated using statistics endédtta. For efficiency, the algorithm
operates independently on each room.

The first step in the presented approach (Fig.)dsl8e detection and estimate of the
surfaces to be modelled, i.e., walls, ceiling dodrf However, due to occlusions and
clutter some wall may be missing in the dataset. #his reason an automatic
procedure is implemented to complete missing elésném a plausible way. To
achieve this, the developed algorithm incorporasshitectural priors on indoor
scenes, notably the prevalence of orthogonal ieatéiens between walls. Once the
surfaces describing the room are defined the rantasteps operate on each surface
individually. In the second phase, each planaraserfis analysed to identify and
model the occluded regions and openings by usiray-dracing algorithm. Openings
in the data are detected by using labelling infdromawhile contemporarily a further
classification is operated between windows and sldeinally, occluded regions are
completed in a realistic way.

[ Registered Point Clouds | I Scan Locations ‘

\—J«

Room Surfaces Detection

l

{ Room Surfaces

|

Occlusion Labelling <

l

Occupancy Maps

L

Openings Detection

|

Openings Classification

|

| SemanticRich Model |

Fig. 6.13.Workflow of the developed methods for indoor mdidgl

The output consists of a set of labelled planaches (wall, floor, and ceiling),

adjacency maps indicating which patches are coaddct one another, and a set of
openings detected within each planar patch. Thasehes are intersected with one
another to form a simple surface-based model ofdben. The geometric models of
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the room along with semantic information are coretitogether to derive a semantic
rich models of the room in CityGML and/or IFC fortna

6.3.3. Room surface detection

The general workflow for room surface detectiomptiesented in Fig. 6.14. The first
step in the developed methodology is to detectemstidnate the surfaces (walls, roof
and ceiling) constituting the room to be modell@tiis detection is performed by
using the segmentation strategy described in ChapteOnce the point cloud
segments have been detected a first semantic fadaisn, similar to the one
described in Chapter 3, is performed to detect avaf ceiling. Indeed, by analysing
the detected segments, the ceiling can be desam#te non-vertical plane having the
lower height. Conversely the roof is detected a&srbn-vertical plane located at the
highest level. In this way, the height of the cwgliand roof are determined (Fig.
6.15a).

I Registered Point Clouds |

!

’ Segmentation ‘
‘ [
v v N
Roof Surface ] l Ceiling Surface I | Detected Wall Surfaces

|

Addition of Ghost
Primitives

l

Surface Extraction

|

Reconstructed Wall
Surfaces

|

[ Room Surfaces l

Fig. 6.14.Pipeline for room surfaces detection.

At this stage the floor plan of the room is detered. To this end, the walls

constituting the room need to be detected. Howetles, problem is made more

difficult due to clutter and occlusions. Some watiey not be sensed by the laser
scanner and may miss in the point cloud. For te@son a proper completion is
necessary to reconstruct in a plausible way thassimg walls (Fig. 6.15b).

A first rough floor plan of the room can be obtalnby projecting the points
belonging to the ceiling onto a horizontal plamedded, the acquisition of the ceiling
surface, due its location, is generally less iniltedd by clutter and occlusion than
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other surfaces in the room. The horizontal plangigsretized into cells of sizeéx S
and then an occupancy map is generated. In this wiafe pixels represent elements
where TLS data are available, while black pixele grid elements with no data.
Starting from this binary image it is possible teride pixels representing the
boundary of occupied cells which represent a foagh floor plan.

cl d

Fig. 6.15.Detection of room surface for ‘Classroom’ datag&}.detected ceiling and floor; (b) some
wall portions are missing (red circles) due to asitns, (c) occupancy map of the ceiling with real
walls (green segments) and spurious boundarieségahents); (d) detected real wall surfaces.

The optimal cell sizef, as previously discussed, is a function of the nm&ampling
resolution in the point cloud. Due to occlusions tbtained plan may contain some
spurious boundaries, i.e., the ones not assodiatadvall (Fig. 6.15c). To validate the
obtained boundaries a check is done with the segmen results. In particular, only
vertical segments falling inside the cells labelfsdboundary are considered as real
wall surfaces (Fig. 6.15d).
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As previously discussed, a single small missingl wady jeopardize the entire
reconstruction of the floor plan. In the develostdhtegy, these gaps are filled by
incorporating additional, unseemissing walls (Chauve at al. 2010). In indoor
environment it is possible to observe that waltsrsect orthogonally. For this reason
missing walls are guessed as orthogonal to detestdts and are added from
boundary of detected ones (Fig. 6.16a).

<«—F>

« > L

a b.

Fig. 6.16.'Cell complex’ construction for ‘Classroom’ datas@) detected primitives witimissing
walls’; (b) induced ‘cell complex’.

To obtain a continuous floor plan from detected amsking walls, a procedure based
on a ‘cell complex labelling’ is performed. As asti step a 2D arrangement
(Edelsbrunner et al. 1986) is set up by using hiattected and ‘missing’ walls. The
arrangement generates a partition of the origipate domain into convex polygonal
cells (Fig. 6.16b). The final partition of the colep do not depends on the order in
which primitives are inserted because each primitirts the entire complex domain.

The floor plan reconstruction can be formulatecdaptimal binary labelling of the
‘cell complex’. Each cell is labelled as empty @copied, and the floor plan can be
extracted as the union of all facets separatingp@upied cell to an empty one,
obtaining this way a watertight and intersectiogefboundary. This labelling problem
is handled within the framework of minimusn- t cut on the cell-adjacency gragh
=(V, B of the partition: the vertice¥ are the cells of the polygonal ‘cell complex’
while the edge<E link adjacent cells, i.e., they correspond to theets of the
complex.V is augmented with two additional seeds, a sosgraeed a sinkt, with
edges frons to each cell and from each cellttAll edges have non-negative weights
w. A's - tcut G,T) is a partition oV into two disjoint set§SandT such thas € Sand

t € T. The cost of ars - tcut is the sum of the weights of the edges fiSito T.

144



Automatic segmentation, classification and extraction of repeated patterns for building fagades modelling

Efficient algorithm with low-polynomial complexitexists to find thes - t with
minimal cost, allowing a global minimization of tlemergy. A graph partitioning
(S,T) corresponds to a binary labelling of cells (FBdL7), where cells i5 andT are
respectively empty and occupied, and the cost ef ¢t to the energy of the
associated surface. Weights of edges joining thecsoor the sink penalize the
associated cells, while weights of edges between dells penalize the associated
facets.

O Sout
. Sin
O Sdoubt

Fig. 6.17.Example of s —t cut: (a) graph construction amst @ssignment; (b) final binary labelling
with minimum cost.

Starting from the available data some cells caditeztly categorized as occupied. In
particular, all cells occupied by points belongitgg the ceiling can be directly
assigned to st In a similar way cells bordering an occupied eeltl separated from
it by a detected wall segment are set as empty.tlisrreason weights of edges
joining the sink to cells labelled as occupied seeto infinite and, in a similar way,
edges joining the source to empty cells are setfinite. Then, weights of edges
between two occupied cells and between two em@gat to infinite (Fig. 6.18a) and
weights of edges connecting an empty and an ocdume# are set to zero. In this
way, it is prevented that cells forming the innertpof the room are erroneously
labelled as empty or vice-versa. For all other scelh equal unitary weight is
associated to edges joining the cells to the scamdeto the sink because there is no a
priori knowledge about the occupancy of a cell. §i&s of remaining edges between
cells are fixed equal to the length of the edgevben the cells. This means that the
- t cut problems is aimed at minimizing the lengthgokssed walls segments (Fig.
6.18b). To perform s —t cut, the Kolmogorov’s nfw algorithms is used (Boykov
and Kolmogorov 2004). Once having computed3hd partitioning, the boundary of
the occupied cells of the polygon partition givies tloor plan.
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O Sout
Sin

O Sdoubt
a b.

Fig. 6.18.'Cell complex’ labelling for ‘Classroom’ datasétitial (a) and final (b) labelling of the ‘cell
complex’.

Finally, having obtained the floor plan and havprgviously defined the ceiling and
floor heights the surfaces constituting the room loe easily defined.

6.3.4. Reconstruction of openings under occlusiolasd clutter

Once all surfaces constituting the room are dedethe presence of openings is
investigated. Detecting the boundaries of openisgsh as windows or doors, in a
wall is a difficult task. While in facade recongttion applications windows are

detected as holes in the facade point cloud, tbes dhot generally hold for indoor
environments. Indeed, also occlusions and cluttedyre significant holes in the
point cloud which have to be distinguished froml ig@enings. In addition, also an
opening may be partially occluded increasing th@mexity of the problem. To this

end a ray-tracing labelling is performed and anupaticy map is generated (Adan
and Huber 2011).

In this step each surface is separately proces¥ece having defined previously the
wall surface, points representing inliers for thedimed plane can be easily detected.
The detected plane is then discretized into cdllsize 5 x f and then an occupancy
map (denoted allp) is generated based on whether inlier points ateated at each
pixel location or not. Without additional informati, it is not possible to distinguish
between a pixel that is truly empty and one thahésely occluded. This problem can
be solved by using a ray-tracing labelling to deteclusion between the sensor and
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the surface being modelled. For this reason the&rseg locations (position and
attitude) should be known.

LetS={S, S, ..., {} be the set of scan for the room to be modellext. dach scan
position, a labellingLg is generated by tracing a ray from the scan looai each
pixel Pi(x,y,z)labelled as empty iiV,. Starting from cartesiarxy? coordinates oP;

its spherical coordinates in the Intrinsic RefeeBystem (IRS) of the scanner device
can be determined. Indeed, by knowing the scanloicgtion (position and attitude)
the cartesian coordinates in the IRS can be oldtaifiben from Eq. 6.14 spherical
coordinates (range distandevertical or nadir angle, horizontal or azimuth angle)
can be derived.

XIRS cos a -cos 6
Yirs| =d - |cos a -sin 8 6.14
ZIRS sin a

Having defined cell location in spherical coordestthe 20-nearest neighbours Fpr
can be easily defined. As a measuring distancedst® and other points) and«
angles are used. In the case the 20-nearest neighpoints have angular distanée (
o) far larger than the predefined angular scannasglution, this would mean that no
reflected signal come to the laser scanner dubdgtesence of an opening. In this
case the pixdP; is labelled as empty.

Conversely, if the angular distance is compatiblgh whe predefined scanning
resolution, the mean distance of the nearest neigishis evaluatedmnean= mean ¢,

dz, .., &o). In particular, in the case the mean distandewser than theP; distance,
this would mean thaP; is occluded by some points in the scan and thkeisel
consequently labelled. On the other hand if thenmdiatance is larger than th
distance, the cell is labelled as empty. After thistracing labelling for all the scans,
K labels for each pixel are obtained (Fig. 6.19)eMAll the labels are combined in a
final occupancy mapr adopting the following labelling rule:

If L,(i))=empty and L,(i) =occluded,Jj =12,...,K => L, (i) = occluded

In other words, a cell is considered occluded i§ibccluded from every scan-point
(Fig. 6.19).

Having obtained the occupancy map, openings cagabiy detected by identifying
cells’ labels. Then a procedure similar to the described in Paragraphs 2.2.1 and
2.2.2 is used to determine the shape of openingfurther classification is then
performed between openings to distinguish betweemsdand windows. In particular,
are classified as doors those openings intersewiitiigthe ground.
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O Occupied @® Occluded ® Opening

O Occupied ® Occluded ® Opening

) irased sd

g.

Fig. 6.19.Reconstruction of openings. Reflectance imagedcah 1 (a) and Scan 2 (b) used to model
the wall; cell labelling for Scan 1 (c) and Scafd® Reflectance images of a wall with an openifig o
Scan 1 (e) and Scan 2 (f); cell labelling for St&g) and Scan 2 (h).

6.3.5. Applications
To evaluate the presented modelling methodology tihe datasets presented in
Subsection 6.2.2 are used.
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The ‘Classroom’ dataset presents significant odchss and clutter. In addition, a
recess of the room is partially occluded by anothelt. Once having registered the
scan, the first step for indoor modelling is thgreentation of the point cloud. The
following parameters were used:

RANSAC plane thresholel lcm

RANSAC normal threshold 20°

Bitmap cell sizeB lcm
Bitmap cell size for wall detection 5cm

Tab. 6.6.Parameters used for indoor modelling.

c. d.

Fig. 6.20.Geometric reconstruction of ‘Classroom’ datasgt:r¢om model with overlaid point cloud;
and (b-c-d) final 3D room model.

In Fig. 6.15a-b segmentation results are preseatetl distinction between room
elements (floor, ceiling and walls) is presentedc®©having defined the detected wall
surfaces, ghost primitives are added and the comaieangement is set up (Fig.
6.16). Finally, occupancy maps are generated tathal detected wall surfaces. The
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obtained room model is presented in Fig. 6.20. Vauate the geometric accuracy of
the model a performance analysis similar to the presented in Section 5.1.2 is
carried out (Fig. 6.21).

'‘Classroom’
110 Jl & 40.0
*

100 A B0 o of
2 90 \?\ / - 300 correct
o0 \( - 250 R edges
2 3o / 20.0 ¥ ==Commission
g // '\\ L 150 2 error (%)
2 70 oo

Y \‘ - 100 Omission
60 : L 5.0 error (%)
N 1

50 . 2 T 0.0
0.1 0.3 0.5 0.7 0.9

Tollerance (T)

Fig. 6.21.Geometric reconstruction analysis for ‘Classrodiataset.

In particular, it can be noticed that the accuraicthe wall and opening boundaries is
similar to the one obtainable with manual modellaighe point cloud. These results
are confirmed also for the ‘Office room’ dataseig(F6.22). In Fig. 6.23 a summary
of the main processing step for the ‘office-roorataket are presented.

' . 1
Office room
150 35.0
O >
140 - 30.0
130 =¢=No. of
3 - 250 correct
50 120 . 200 X edges
2110 ¢ == Commission
° - 15.0 2
G 100 E error (%)
z - 10.0
90 Omission
80 - 50 error (%)
70 i : & 0.0
0.1 0.3 0.5 0.7 0.9
Tollerance (T)

Fig. 6.22.Geometric reconstruction analysis for ‘Office rdatataset.

150



Automatic segmentation, classification and extraction of repeated patterns for building facades modelling

L

Fig. 6.23.Geometric reconstruction of ‘Office room’ dataq@ft segmentation results; (b) detected
primitives with‘missing walls; (c) induced ‘cell complex’ and (d) final labelin(e) room model with
overlaid point cloud; and (f) final 3D room model.
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Conclusions and further developments

This dissertation presented an automated methogolfmy building facade
reconstruction aimed at supporting the thermalofieting of buildings built in the
period 1950 - 1975. To achieve this final goal, amber of algorithms were
developed to overcome different problems within tgeneral framework. Both
existing and new techniques were implemented.

This research is based on the observation thatehetiks in the terrestrial laser
scanning (TLS) field, which is still the primarywsoe of point clouds adopted in
facade modelling, has been rapidly changed dulirddst decade. Indeed, for a long
period the major limitations were due to the slowguasition speed and manual
registration problems. Fortunately, the hardwaréeofestrial laser systems has been
significantly improved in recent years, and thetleaeck of data acquisition has
become less severe. Hereby, terrestrial laser B@aiifiLS) of large areas is getting
much faster and easier. Also the registration gmbhas been mainly overcome
thanks to many consolidated techniques that hawan betroduced into practice.
Consequently the bottleneck moved from the acdosiind registration to the
modelling stage. This is partially due to the fa@t the extraction of facade models
requires the semantic interpretation of a verydavgriety of possible architectural
elements, depending on the building typology, aoesibn time, and style. Whether
these tasks may be accomplished with ease (althougltime consuming fashion) by
trained human operators, they are a critical igsuemachine learning systems. In
addition, point clouds may typically exhibit sigednt missing data due to occlusions
increasing the complexity of the problem. Howewaren if facade modelling is a
very active research field up to now, three arecommercial software packages
allowing for automated facade modelling startimgrirpoint clouds.

This research tries to give contribution to inceeagtomation in the process that goes
from the raw point cloud, to the geometrically ehned model of a building and
finally to feed a Building Information Model..
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The developed approach can be considered as a-steptiprocess in which the
building model is progressively and iterativelyiestted and refined.

The segmentation algorithms developed in this wsitkw that detection of planar
facade objects can indeed be helpful for efficiprdcessing of large point-clouds.
This is because primitive shapes possess severahtagjeous aspects which can be
directly exploited in the modelling pipeline. First all, because of the simple nature
of the primitives, the user-controllable settings the detection algorithm are very
intuitive and are directly related to easily undiensiable geometric properties such as
distance and normal deviation, which moreover drencof immediate relevance to
the ultimate application. In addition, a singlenpitive can resume a large number of
points and can serve as a basis for an efficietdding of the building geometry in a
more compact way. It is foreseen that the metholll faal in detecting correct
building outlines for complex building structuresych as curved walls, curved
protrusions, or columns. More complete set of grnras might be included to detect
these features. However, for the buildings targethes work almost all relevant
facade elements can be modelled with planar sh&ves if a lot of works was done
for reducing bad-segmentation, some problems @#ists and some over-
segmentation was found. For example, highly norieami distributed laser points can
be seriously over-segmented at the sparse regumtstlat there is no sufficient clue
for merging. In addition, the optimality of the d®sposition is not guaranteed. For
comparatively small tolerances, as used througthositvork, the suboptimality of the
detection algorithm is mostly irrelevant becauserghis only a very limited set of
possible segmentations since they have to fit th& dightly. Once the allowed
tolerances are relaxed though, the number of plessibgmentations dramatically
increases and the suboptimality of the algorithmady shows up. Finally, the
definition of proper parameters in the processiag to be defined by the user. The
chance to have them defined in an automatic wayldwgive a further important step
to the automation of the entire process.

The generation of the vector model of a buildingthe key task in the overall
procedure because the geometric accuracy of tla rinodel is the most important
requirement for the digital model to be used fdrafiting drawing generation. The
key factor is the implementation of some architesdtyriors like the prevalence of
straight lines and orthogonal intersections in modriildings, especially in the ones
constructed in 1950 - 1975. The exploitation ofstifiirther constraint gives an
important contribution to overcome problems repbrigy different works in the
literature. In particular, the edge smoothing hasvided good results in the
regularization into lines and curves of long eddasaddition, the enforcement of
surface intersections not only helps define theadactopology, but also increases
break-line accuracy. Nevertheless, some probleithgeshain in correspondence of
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curved and complex surfaces. In correspondencénasfet edges, the implemented
algorithm may be significantly affected by noise.dddition further problems may
arise when enforcing intersection of surfaces hpwdarved edges. Some problems
still exist in the case of high fraction of missidgta. For those cases, a first automatic
modelling followed by a manual editing to fix theoplems seems the most adequate
procedure solution to save time and minimize thadm effort.

The procedure for extracting semantic features fiidks point cloud is of primary
importance for enriching with semantics the buigdimodel. This task gives an
important contribute to the automation of ‘scarBidA’ processing. Although the
method worked well with the target datasets, thpliegbility is limited to the
building shapes defined in the classification rulésr example, in the current
implementation doors are described as ‘low featurssle a wall facade,’ but doors
might also appear inside a protrusion/intrusioratss; (incomplete knowledge). This
limitation can only be solved by improving and exdang the defined rules. This
means that for different building types, new facatissification rules need to be
defined. However, the success of feature extractioh only depends on the
classification rules, but also relies on the umifity and completeness of the TLS data
acquisition. Indeed, if a feature is partially amd, the calculated geometric
attributes and topology relations with other feasuwould be unreliable. This may
lead in turn to incorrect feature extractions.

In some cases, building features may be partiatlicampletely occluded during
scanning. If a feature is completely occluded,ighthbe recovered later by exploiting
high-regularity of building facades. Indeed, builglifacades target of this work can
be represented as the repetition of some basic-gtei@s into multiple 2D periodic
structures (lattices). Identification of theseitas may help fill holes and reducing
occlusion problems. However, this technique candes only in the case of building
types presenting high regularity while it is nophgpable to facades which cannot be
described by a rectilinear mixture model, e.g.,atlgs with completely irregular
repetitive patterns.

The examples proposed in Section 5 show that theposed approach can
successfully deal with different data acquired vditfierent sensors.

The application of this methodology to support thakr retrofitting may take

advantage from integration of other data, for exXeniGB and thermal images, into
the reconstructed model. An ad-hoc procedure has developed to this purpose.
Detection and matching of geometric features c@ldétd be used for registration of
laser scans in urban environments. Indeed, urbafromments can be mainly
decomposed in a set of few basic primitive shaped planar features are
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undoubtedly the more frequent ones in architecrahes. Although, as things stand
now, it is difficult to forecast a massive use atls a method in complex practical
projects. For some indoor surveys where no awifiizirgets can be used the presented
approach may give satisfactory results.

Finally, the procedure was adapted to reconstndaar environments. Even if some
common problems are shared by outdoor and indoweircamments, the latter case
presents some specific issues. For this reasomprngously developed algorithms
were adapted to fit these situations.

Future investigations

While this research has been able to demonstratenibrit of a fully automated
methodology for facade modelling, there still remanany avenues to pursue for
future research. Indeed, quality and completenessaaual models is still superior to
the ones obtained from automatic modelling. As joesly anticipated this is related
to the fact that generation of fagcade models reguine interpretation of point cloud
data from a geometrical, functional and sematiapof view. This is even more
complicated by the large variety of possible aedttiiral elements, depending on the
building typology, construction time, and style.

For detection of primitives, further improvements &fficiency can be envisioned,
especially if additional information is known in\ahce, for example the largest
possible extent of a single primitive or the relatpose of certain ones. This means
integrating the segmentation and the feature detephase in a single step. Also the
feature classification should be further develop@dichieve more accurate feature
recognition and incorporate more feature types. iffrovements should be focused
on two aspects. First, a more exact model to reptete uncertain situations should
be raised. For example, the conditional belief leetwclauses should be considered.
Second, further building types should be investigand new rules formulated.
However, extending the developed strategy to furbhelding styles means that the
ability of choosing the right classification rulskould be developed. For this reason
in the next level of research, the ability to ‘renteer’ and ‘learn from’ experiences
needs to be integrated into the processing pipelmthis way the feature recognition
should be more accurate when the procedure operatesimilar building.

To achieve more accurate reconstruction, integratibimagery can be exploited.
Image-based building reconstruction has been imgatstl for many years. From
multiple 2D images captured from different posiip8D coordinates of the image
features (lines for example) can be calculatedh@dlgh acquisition of images is
cheap and easy, the problems of image understandikg it still difficult to
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automate the reconstruction process on the basmages only. On the other hand,
laser scanners allows for explicit and accurateir¥@rmation extraction. For this
reason, the laser data and images are complemeiotaggch other, and efficient
integration of the two data types will lead to aremaccurate and reliable extraction of
three dimensional features. Therefore, an imageebesfinement method which uses
strong line features extracted from images couléxXj@oited to improve the building
facade models generated from TLS point. This refiemet not only may fix the
models' geometry errors, but also could help owvaegmconsistencies between laser
and image data like occlusions. Even if differemthars worked on that (Vosselman
2004, Brenner 2005, Nex and Rinaudo 2009), a netersolution is not available yet.

The developed idea of repeated pattern detectionnmfodel completion can be
extended to other building styles than the onegetaof this research. Indeed, the
highly regular nature of building facades is widdigmonstrated all over the world.
For example, also historical 2@entury buildings present complex decoration but
arranged in regular patterns. The detection ofeledements and their regularity can
be used to speed up the modelling process of katdsuildings. The base element
can be modelled in an automatic or semi-automadig, \and then its repetition could
be automatically recognized reducing this way theetheeded for manual modelling.
Also the detection of symmetries might also be beiato the completion of objects
in several respects.
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