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Abstract

Damage mechanics is one of the main frameworks dealing with failure of materi-
als and structures. Several damage mechanics models based on different concepts
have been proposed during the last decades. Lemaitre’s damage mechanics model
as one of the most important continuum damage mechanics models has been in-
vestigated in this research. A comprehensive experimental test program has been
carried out on the different specimen geometries and loading conditions. Multiax-
ial torsion and uniaxial tensile tests have been done on the round and flat smooth
and notched specimens. Test material is ti-6Al-4V titanium alloy. All of the
experiments has been reproduced using finite element models. Lemaitre’s contin-
uum damage mechanics model and plasticity constitutive law has been calibrated
for ti-6Al-4V titanium alloy and implemented into finite element models. Accu-
racy of the predictions of the CDM model in the different loading conditions has
been evaluated especially experimental and numerical load-displacement results
has been compared. Advantages and drawbacks of the Lemaitre’s model have
been evaluated under different loading conditions and potential errors of the ap-
plication of the model have been clarified. Different loading conditions and stress
states in the experiments which leads to different fracture mechanism has been
shown by determination of the stress triaxiality and lode angle parameters from
the finite element models. Scanning electron microscope images of the failure sur-
face of the tested specimens has been studied and different fracture mechanisms
in the experiments have been shown also.
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Sommario

La damage mechanics é uno delle principali metodologie per affrontare il proble-
ma della modellizzazione del cedimento di componenti e strutture. Nel quadro
della damage mechanics, nel corso degli anni, sono stati proposti vari modelli
basati su differenti assunzioni. Il modello di Lemaitre é uno dei pi importanti
tra la categoria dei modelli di tipo continuum damage mechanics. Un completo
programma sperimentale basato su provini aventi differenti geometrie e sottoposti
a carichi di varia natura é stato realizzato. In particolare sono state svolte pro-
ve multi e uniassiali su provini piani e a sezione circolare con e senza intaglio.
Il materiale oggetto dello studio é una lega di titanio del tipo ti-6Al-4V. Tutta la
campagna sperimentale é stata propriamente riprodotta numericamente sviluppan-
do modelli agli elementi finiti. Un modello continuum damage mechanics del tipo
Lemaitre e un opportuno legame costitutivo sono stati calibrati e implementati nei
modelli numerici per la lega ti-6Al-4V. L’accuratezza delle predizioni del modello
CDM sono state valutate confrontando in particolare le curve forza-spostamento
numeriche e sperimentali. Possibili vantaggi e svantaggi del modello di Lemai-
tre sono state evidenziate per differenti condizioni di carico e potenziali errori del
modello sono stati chiarificati. Triassilitá e angolo di Lode sono stati calcolati per
differenti geometrie e carichi per mezzo dei modelli agli elementi finiti mostrando
la loro influenza sulla frattura. Le superfici di frattura corrispondenti ai differenti
tipi di carico sono poi state indagate utilizzando un microscopio a scansione.
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υ elastic volumetric strain
SSS stress deviator
p hydrostatic pressure
q Von Mises equivalent stress
φ Von Mises type yield function
G shear modulus
ee elastic strain deviator
K bulk modulus
νe elastic volumetric strain
ω material integrity
εnecking necking strain
aaa fourth order tensor of elasticity
qqq heat flux
III second order identity tensor



List of Figures

2.1 Physical definition of damage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 One-equation elastic predictor/return mapping algorithm for simplified version of

Lemaitre’s damage model[54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Microstructure of the tested Ti-6Al-4V titanium alloy (a) 200X. (b) 500X. . . . . 35
3.2 Torsion test configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Some of the first series specimens after failure. . . . . . . . . . . . . . . . . . . 38
3.4 Second series experiments set up. . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Flat specimens after the tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Specimen geometry of the third series of experiments. . . . . . . . . . . . . . . . 41
3.7 Test configuration and failure diameter measurement of the third series of experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Three point bending test specimen’s geometry. . . . . . . . . . . . . . . . . . . . 42
3.9 Three point bending test set up. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Axisymetric finite element model of the round smooth specimen. . . . . . . . . . 47
4.2 Best fitted load-displacement curve. . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Finite element models of the first series experimental tests. . . . . . . . . . . . . 48
4.4 Finite element model of the TPBT configuration. . . . . . . . . . . . . . . . . . 51

5.1 Different constitutive laws which has been used in the models. . . . . . . . . . . 55
5.2 PEEQ contour at numerical failure point in the torsion test. . . . . . . . . . . . . 57
5.3 Triaxiality-PEEQ evolution curve in the pure torsion test. . . . . . . . . . . . . . 57
5.4 Lode angle-PEEQ evolution curve in the pure torsion test. . . . . . . . . . . . . . 58
5.5 Experimental and numerical torque-rotation data in the pure torsion test. . . . . . 58
5.6 Equivalanet plastic strain contour at failure moment in the torsion+20KN tension

test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7 (a)PEEQ (b)Damage and (c)Von Mises stress contour in the middle cross section

of the specimen of torsion+20KN tension test. . . . . . . . . . . . . . . . . . . . 60
5.8 Triaxiality-PEEQ graph in the torsion+20KN tension test. . . . . . . . . . . . . . 60
5.9 Lode angle-PEEQ graph in the torsion+20KN test. . . . . . . . . . . . . . . . . 61
5.10 Comparison of the torque-rotation results of the experimental and numerical resluts

in the torsion+20KN tension test. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

XIII



5.11 Damage contour (a)before and (b)after failure in the torsion+30KN tension test. . 62

5.12 Triaxiality-PEEQ evolution curve and average values at failure in the torsion+30KN
tension test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.13 Lode angle-PEEQ evolution curve and average values at failure in the torsion+30KN
tension test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.14 Comparison of the torque-rotation results of the experimental and numerical re-
sults in the torsion+30KN tension test. . . . . . . . . . . . . . . . . . . . . . . . 64

5.15 PEEQ contour at failure moment in the torsion+40KN tension test. . . . . . . . . 64

5.16 Specimen after failure in the torsion+40KN tension test. . . . . . . . . . . . . . . 65

5.17 Triaxiality-PEEQ evolution curve in the torsion+40KN tension test. . . . . . . . 65

5.18 Lode angle-PEEQ evolution curve in the torsion+40KN tension test. . . . . . . . 66

5.19 Comparison of the torque-rotation results of the experimental and numerical re-
sults in the torsion+40KN tension test. . . . . . . . . . . . . . . . . . . . . . . . 66

5.20 Von Mises stress contour before failure in the notched specimen B. . . . . . . . . 67

5.21 (a)Damage contour in specimen B and location of cross section A-A(b)Damage
contour in cross section A-A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.22 Triaxiality-PEEQ evolution curve in specimen B during the loading. . . . . . . . 68

5.23 Lode angle-PEEQ evolution curve in specimen B during the loading. . . . . . . . 68

5.24 Comparison of the experimental and numerical load-displacement results in the
tensile test of specimen B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.25 Comparison of the experimental and numerical load-displacement results in the
tensile test of the smooth flat specimen. . . . . . . . . . . . . . . . . . . . . . . 69

5.26 Triaxiality-PEEQ curve in the smooth flat specimen. . . . . . . . . . . . . . . . 70

5.27 Lode angle-PEEQ curve in the smooth flat specimen. . . . . . . . . . . . . . . . 70

5.28 Equivalent plastic strain contour at failure point in the flat specimen with 20mm
notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.29 (a) Damage and (b) PEEQ contours in the middle cross section of the flat specimen
with 20mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.30 Triaxiality-PEEQ evolution curve during the loading in the flat specimen with
20mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.31 Lode angle-PEEQ evolution curve during the loading in the flat specimen with
20mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.32 Comparison of the experimental and numerical load-displacement results in in the
flat specimen with 20mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . 73

5.33 Damage contour just before the failure in the flat specimen with 10mm notch radius. 74

5.34 Triaxiality-PEEQ evolution curve during the loading in the flat specimen with
10mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.35 Lode angle-PEEQ evolution curve during the loading in the flat specimen with
10mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.36 Comparison of the experimental and numerical load-displacement results in the
plane stress specimen with 10mm notch radius. . . . . . . . . . . . . . . . . . . 75



5.37 Triaxiality-PEEQ evolution curve during the loading in the flat specimen with
6.67mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.38 Lode angle-PEEQ evolution curve during the loading in the flat specimen with
6.67mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.39 Comparison of the experimental and numerical load-displacement results in the
flat specimen with 6.67mm notch radius. . . . . . . . . . . . . . . . . . . . . . . 77

5.40 Triaxiality-PEEQ evolution curve during the loading in the flat specimen with hole. 77
5.41 Lode angle-PEEQ evolution curve during the loading in the plane stress specimen

with hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.42 Damage contour and crack propagation in flat specimen with hole. . . . . . . . . 78
5.43 Comparison of the experimental and numerical load-displacement results in the

flat specimen with hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.44 Triaxiality-PEEQ evolution curve during the loading in the flat shear specimen. . 79
5.45 Damage contour in the flat shear specimen before and after failure. . . . . . . . . 80
5.46 Lode angle-PEEQ evolution curve during the loading in the flat shear specimen. . 80
5.47 Comparison of the experimental and numerical load-displacement results in the

plane stress shear specimen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.48 Triaxiality-PEEQ evolution curve during the loading in the round smooth specimen. 82
5.49 Lode angle-PEEQ evolution curve during the loading in the round smooth specimen. 82
5.50 Triaxiality-PEEQ evolution curve during the loading in the round smooth speci-

men with 6mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.51 Lode angle-PEEQ evolution curve during the loading in the round specimen with

6mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.52 PEEQ distribution contour in the round specimen with 6mm notch radius. . . . . 84
5.53 Load-displacement data comparison between experiment and numerical simula-

tions in the round specimen with 6mm notch. . . . . . . . . . . . . . . . . . . . 84
5.54 (a)Damage and (b)PEEQ contours during the loading in the round specimen with

3mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.55 Triaxiality-PEEQ evolution curve during the loading in the round specimen with

3mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.56 Lode angle-PEEQ evolution curve during the loading in the round specimen with

3mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.57 Load-displacement data comparison between experiment and numerical simula-

tions in the round specimen with 3mm notch. . . . . . . . . . . . . . . . . . . . 86
5.58 PEEQ contour at the numerical failure point in the round specimen with 1.5mm

notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.59 Triaxiality-PEEQ evolution curve during the loading in the round specimen with

1.5mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.60 Lode angle-PEEQ evolution curve during the loading in the round specimen with

1.5mm notch radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.61 (a)Damage and (b)PEEQ and (c) Von Mises stress contours at the numerical failure

moment in the round specimen with 1.5mm notch radius. . . . . . . . . . . . . . 89



5.62 Load-displacement data comparison between experiment and numerical simula-
tions in the round specimen with 1.5mm notch radius. . . . . . . . . . . . . . . . 90

5.63 Load-displacement data comparison between experiment and numerical simula-
tions in the three point bending test-original model parameters. . . . . . . . . . . 91

5.64 Load-displacement data comparison between experiment and numerical simula-
tions in the three point bending test-modified model parameters. . . . . . . . . . 93

5.65 PEEQ-displacement evolution in the finite element models of three point bending
test with different mesh sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.66 Triaxiality-displacement evolution in the finite element models of three point bend-
ing test with different mesh sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.67 PEEQ-triaxiality evolution in the finite element models of three point bending test
with different mesh sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.68 Failure initiation in the three point bending test . . . . . . . . . . . . . . . . . . 95
5.69 Triaxiality-PEEQ curve during the loading in the all of the experiments. . . . . . 96
5.70 Lode angle-PEEQ curve during the loading in the all of the experiments. . . . . . 97
5.71 Average Lode angle-Triaxiality values in the all of the experiments. . . . . . . . 97
5.72 SEM photos of the failure surface (a) Torsion+30KN tension Mag.1000X (b) Ten-

sile test of specimen D Mag.1000X. . . . . . . . . . . . . . . . . . . . . . . . . 98
5.73 SEM photos of the failure surface in shear flat specimen (a)Mag.35X (b)Mag.150X. 100
5.74 SEM photos of the failure surface of flat specimens(a)Notched 20mm 500X(b)Notched

20mm 1200X(c)Notched 10mm 500X(d)Notched 10mm 1200X(e)Notched 6.67mm
600X(f)Notched 6.67mm 1200X(g)Hole 600X(h)Hole 750X. . . . . . . . . . . . 101

5.75 SEM photos of the failure surface of round specimens(a)Smooth 500X(b)Smooth
750X(c)Notched 6mm 500X (d)Notched 6mm 1500X(e)Notched 3mm 500X(f)Notched
3mm 1500X(g)Notched 1.5mm 600X(h)Notched 1.5mm 1000X. . . . . . . . . . 102

5.76 Triaxiality-error graph of the predictions of the CDM model for the failure dis-
placement of experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.77 Lode angle-error graph of the predictions of the CDM model for the failure dis-
placement of experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.78 Comparison between experimental and numerical load-displacement results ob-
tained from optimized constitutive laws for flat specimens. . . . . . . . . . . . . 108

5.79 True stress-true strain curves for the flat specimens:obtained from optimized con-
stitutive laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



List of Tables

1.1 Phenomenological models equations . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Chemical composition of Ti-6Al-4V titanium alloy[60]. . . . . . . . . . . . . . . 35
3.2 torsion Test Specimens’Geometries . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 First series experiments characteristics . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Flat specimens’geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Summary of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Finite element model of the flat specimens. . . . . . . . . . . . . . . . . . . . . 49
4.2 2D Finite element model of the round notch specimens. . . . . . . . . . . . . . . 50
4.3 3D Finite element model of the round notch specimens. . . . . . . . . . . . . . . 51

5.1 Plasticity model parameters calibrated by Giglio et al[12]. . . . . . . . . . . . . 54
5.2 Parameters of the calibrated model for plasticity and damage. . . . . . . . . . . . 56
5.3 Initial and failure diameter of the round specimens. . . . . . . . . . . . . . . . . 89
5.4 Damage model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Damage model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

XVII





Chapter 1

Introduction

Fracture of the structures has an old history as long as existence of the man-made
structures. By improving the technology which makes the structures more and
more complex, this problem is also more important and dangerous. Therefore,
failure analysis of structures plays an important role in the design process. Hav-
ing a comprehensive knowledge about the failure behavior of materials and the
ability of forecasting fracture can significantly reduce the costs related to possible
catastrophic failures of structures. There are different frame works dealing with
failure in the structures and materials. Damage mechanics is one of these engi-
neering fields which is aimed to simulate and predict degradation of materials.
During last decades, several damage models have been proposed based on differ-
ent approaches. However, all of these models can be classified into three main
groups:

• Phenomenological models

• Porosity models

• Continuum Damage Mechanics (CDM) models

Johnson-Cook[1], Rice-Tracey[2], Leroy[3], Cockroft-Latham[4], Ayada et al.[5]
are some of the most famous phenomenological damage models. Generally ac-
cording to the phenomenological models failure occurs when a specific parameter
defined inside the model reaches to its critical value. Equation 1.1 shows the gov-
erning equation of the phenomenological models:

1
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∫
ε f

0
f (σσσ,ε f )dε≥C (1.1)

Table1.1 summarizes some of the phenomenological ductile fracture criteria:

Table 1.1: Phenomenological models equations

Criterion Formula
Rice-tracey[2]

∫ ε f
0 exp(3

2
σH
σvm

)dε =C
Leroy[3]

∫ ε f
0 (σ1−σH)dε =C

Cockroft-Latham[4]
∫ ε f

0
<σ1>

1

σvm
dε =C

Ayada[5]
∫ ε f

0
σH
σvm

dε =C
Brozzo[6]

∫ ε f
0

2<σ1>
3<σ1−σH>

dε =C
Oyane[7]

∫ ε f
0 < 1+A σH

σvm > dε =C

Phenomenological models are increasingly used in the industrial applications due
to their relatively easy calibration and their wide implementation in several com-
mercial finite element codes. According to these models, failure occurs when a
damage parameter reaches a critical value. Generally, phenomenological models
are uncoupled, hence they assume that the damage process does not affect at all
the plastic behavior of material. This assumption makes phenomenological mod-
els relatively easy to implement and to calibrate but the main drawback is that
there is no physical explanation of the damage process. This lack of a strong
theoretical background could potentially lead to a decrement of the model ability
to predict failure for general applications. This is very true in case of complex
loading conditions when commonly, loading conditions could be much different
from the one adopted in the calibration stage. Bao-Wierzbicki model [8],[9] and
modified Mohr-Coulomb model [10],[11] are two recently proposed popular phe-
nomenological models due to the promising results of their application into failure
simulations in very different and extreme load conditions and on real components
(good geometry transferability) [12], [13], [14], [15]. It is well known that stress
triaxiality plays an important role in the ductile fracture [16], [17], [18]. However,
its effect commonly was considered only as a continuous ductility decrement as
long as triaxiality increases (failure strain decreases with triaxiality). Bao and
Wierzbicki [8],[9] questioned this assumption showing that failure strain trend

1<> is the Mac Auley bracket < x >= x if x > 0, < x >= 0 if x≤ 0.
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versus the stress triaxiality is not just monotonic but it could be much more com-
plex. Bao-Wierzbicki’s model born from consideration that for different triaxial-
ity, fracture phenomena are different. In fact, the fracture locus (stress triaxiality
versus fracture strain curve) despite the other damage models, is not continuous
but there are three different regions: compression, shear dominant and tension
dominant. Wierzbicki et al.[8],[9] showed the existence of these discontinuities
in the fracture locus for an 2024-T351 Aluminum alloy. A series of experimental
tests has been done on 2024-T351 Aluminum alloy, including upsetting and ten-
sile tests. Two totally different fracture mechanisms have been clearly observed
from microfractographs of upsetting and tensile specimens. Wierzbiki et al[8]
concluded that it is not possible to capture all features of ductile crack formation
in different stress states with a single criterion and therefore, different functions
are necessary to predict crack formation. Numerical simulations of each test has
been performed and based on the experimental and numerical results, the relation
between the equivalent strain to fracture versus stress triaxiality has been quanti-
fied and it has been showed that there are three different distinct branches of this
function with possible slope discontinuities in the transition regime. Wierzbicki
et al[8] have also lead to this result that for negative stress triaxialities, fracture is
governed by shear mode. For large triaxialities void growth is the dominant fail-
ure mode, while at low stress triaxilities between above two regimes, fracture may
develop as a combination of shear and void growth modes. Giglio et al.[12] also
reported a similar phenomenon in Ti-6Al-4V titanium alloy. However, Bonora
et al.[19] showed that fracture locus is continuous for some materials. Bonora et
al.[19] have been experimentally studied the effect of stress state (by means of
stress triaxiality) on the equivalent plastic strain at fracture for different steels and
high purity copper in the range of stress triaxiality from 0(pure torsion) up to 1.2.
In the most majority of the damage models stress triaxiality is considered as the
only parameter of stress state which affects fracture locus. However, recently
also the importance of another parameter, called lode angle, has been highlighted
[10],[11] and the Modified Mohr-Coulomb model considers also its effect on frac-
ture. In the Modified Mohr-Coulomb fracture locus is no longer just a curve in a
2D plane (stress triaxiality-failure strain) but it is rather a surface in the 3D space
(triaxiality-lode angle- failure strain).
Porosity models are another approach to investigate fracture. The most important
porosity model which is called GTN initially developed by Gurson and subse-
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quently modified by Tveergaard and Neeedleman[20],[21]. Porosity models are
based on micromechanical concepts and governing equations which are responsi-
ble for the effects of microvoids growth in the material. Despite the phenomeno-
logical models, porosity models are much more complex to calibrate. In GTN
model, nine parameters has to be determined for each material. Damage evolution
and plasticity are also coupled in porosity models which means damage evolution
affect the plasticity behavior of material.
The last damage framework, which is worth to describe, is the continuum damage
mechanics (CDM). Lemaitre[22] proposed the first CDM model based on the ef-
fective stress concept of Kachanov [23] and constitutive laws of thermodynamic
aiming to describe ductile damage. During the last decades different CDM mod-
els have been proposed by researchers. In 1998 Bonora[24] proposed another
CDM model which considers nonlinear function for the damage evolution and is
different from Lemaitres model which the damage evolution function is linear.
For each material according to Lemaitre’s model three parameters has to be de-
termined while Bonora’s CDM model needs five different parameter in order to
calibrate the model for each material. There are other different CDM models in the
literature [25], [26], [27] which are basically similar to each other and mostly use
the same concepts of Lemaitre’s CDM model. The application area of the CDM
models has been extended to various fields and it is not just limited to the ductile
damage anymore. In some applications, the assumption of isotropic damage is not
satisfactory, and a comprehensive model, which takes the effect of anisotropy in
damage distribution into account, is needed. Chow et al[28] have developed an
anisotropic theory of continuum damage mechanics for ductile fracture. A new
anisotropic damage evolution equation and a constitutive equation of plasticity
have been formulated using a damage effect tensor proposed by authors. A gener-
alized damage characteristic tensor which is compatible with damage effect tensor
has been developed also to characterize anisotropic damage evolution. Lemaitre
et al.[29] established a formulation for anisotropic damage in the framework of
the principle strain equivalence. The damage variable is still related to the surface
density of microcracks and microvoids and as its evolution is governed by plastic
strain, it is represented by a second order tensor and is orthotropic. The coupling
of damage with elasticity has been written through a tensor on a deviatoric part
of the energy and through a scalar taken as its trace on the hydrostatic part. The
kinetic law of damage evolution is an extension of the isotropic case. The princi-
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pal components of the damage rate tensor are proportional to the absolute value of
principal components of the plastic strain rate tensor and are a nonlinear function
of the effective elastic strain energy. The proposed damage evolution law did not
introduce any other material parameter. Voyoiadiss and Park[30] also proposed a
fourth order damage tensor through the concept of the effective stress within the
framework of continuum damage mechanics.
Damage closure effects and cyclic loading are further applications for CDM mod-
els. In case of presence of compressive loading it is necessary to apply some
modifications to the general CDM models and in several papers this issue has
been addressed. Yang et al.[31] studied the low cycle fatigue damage evolution
by use of continuum damage mechanics theory. Based on thermodynamics, on a
continuum damage variable and on the effective stress concept, a continuum dam-
age model of isotropic low cycle fatigue has been derived and used to analyze the
strain-controlled low cycle fatigue damage evolution of steam turbine blade mate-
rial 2Cr13 steel. Pires et al.[32] extended a previous established model formulated
by Perzyna[33] to include isotropic damage. Such an extension has been obtained
by incorporating the constitutive equations introduced by Lemaitre[22] for ductile
plastic damage into the original model. Proposed modification of Pires et al.[32]
takes into account the partial crack closure effect with isotropic damage which in
its original version Lemaitre’s model did not distinguish tension and compression
in the damage evolution law. Bonora and Pirondi[34] extended Bonora’s previ-
ously proposed model[24] on the basis of a plausible physical description in order
to account for the occurrence of repeated tension-compression overloads causing
failure in the low cycle regime controlled by plastic strain. The modified dam-
age model has been implemented into commercial finite element codes (MARC,
ABAQUS) and tested on a single element and Round notch bar geometry to sim-
ulate material survivability under severe constant strain amplitude fatigue load-
ing. Using the above mentioned extended model of Bonora and Pirondi[34] and
the porous metal plasticity model of leblond, Perrin and Devaux[35], steglich et
al.[36] has done a numerical investigation on the possibility to simulate and pre-
dict cyclic plastic response incorporating damage. To this purpose, unit cell and
continuum approaches based on porous metal plasticity and continuum damage
mechanics have been considered.
Some CDM models for the prediction of creep behavior of materials have been
proposed also. Bhattacharya et al.[37] assuming that damage occurs isotropically
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under uniaxial loading, obtained closed form solutions for ductile damage as a
function of plastic strain, for creep damage as a function of time and for fatigue
damage as function of number of cycles. Jing et al.[38] proposed a nonlinear con-
tinuum damage mechanics model to assess the creep-fatigue life of a steam turbine
rotor, in which effects of complex multiaxial stress and coupling of fatigue and
creep have been taken into account. The nonlinear evolution of damage has been
also considered. The model has been applied to a 600 MW steam turbine under
a practical start-stop operation. Hayhurst et al.[39] developed constitutive equa-
tions for 316 stainless steel at 550 C. Firstly time independent plastic straining
at high temperature has been considered and secondly, mechanisms-based creep
constitutive equations has been described and have been formulated. Constitutive
equations for time dependent creep based on the theory of CDM mechanics has
been developed. Hayhurst et al[39] discussed how the time independent and time
dependent models may combined in a finite element analysis code to predict in-
elastic straining due to initial loading and to stress redistribution encountered in
inherent cracking of welded pressure vessels.
Damage models are generally related to the micromechanic. Therefore, model pa-
rameters only depends on material and damage models are theoretically supposed
to be independent from the geometry and loading conditions. This is an inter-
esting advantage in comparison with other frameworks like fracture mechanics.
However, practically geometry may affect the results of the damage models. It
is common to calibrate a model in a specific loading condition and geometry and
then apply such calibration to other scenarios. This approach may lead in some
circumstances even to relevant errors. In order to avoid such unwanted drawback,
damage models should be investigated for wide loading conditions. Each model
can produce perfect results for some cases and at the same time may fail to have
an acceptable predictions for a different loading condition. A correct calibration
of the damage model parameters plays a significant role in the accuracy of the
results. Some studies have been done in order to investigate different damage
models in the different loading conditions during the last years.
Choung et al.[40] has done some experiments on the API-2W50 and DNV-DH32TM
steel smooth and notched round and flat specimens. From incremental tensile tests
for smooth specimens, average true stress-logarithmic true strain curves have been
obtained and by using Bridgmans formula for round specimen and Choung’s for-
mula for flat specimens, average true stress has been rectified. Tensile tests for
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notched specimens with various notch radiuses have been carried out and damage
tests have been performed to identify material parameters of damage mechanics
model. Shear fracture model, Lemaitre’s CDM model and Gurson’s model have
been investigated by comparison of these models predictions with the experimen-
tal results.
Another study has been done by Coppola et al.[41] Tensile, torsion, flattening and
bending tests have been carried out covering a wide range of stress triaxiality and
Lode angle. This study has been done to investigate the effect of the Lode an-
gle on the fracture locus. Numerical simulations of each test have been set up to
provide additional information whenever direct measures could not be feasible.
Three steel grades for cold working applications, each characterized by two dif-
ferent heat treatments have been investigated in the experimental campaign. The
results stated that fracture limits in the failure strain-triaxiality plane can be con-
fined between two boundary curves, characterized by the values 0 and 1 for the
lode angle. The paper proposed that this evidence is a consequence of the appli-
cation of Tresca criterion for shear failure. It has been furthermore theoretically
derived and experimentally verified that two limits are linked together through
the material hardening behavior. It has been also discussed that an asymmetry
between tension and compression states could exist as a consequence of the pro-
posed approach.
Wierzbicki et al.[42] and Bao et al.[8] have done a comprehensive study on the
2024-T351 aluminum alloy. Upsetting and tensile tests have been done on various
specimen geometries and different phenomenological models have been investi-
gated comparing the results with the experimental data. Seven criteria including
constant equivalent strain criterion[43], the Xue-Wierzbicki fracture criterion[44],
[45] the Wilkins[46], Johnson Cook[1] and the Crach FEM fracture models have
been calibrated and evaluated. Additionally, the maximum shear stress model and
fracture forming limit diagram[47] have been evaluated in this paper. All criteria
have been formulated in the general 3-D case for the power low hardening materi-
als and one-to-one mapping from plane stress condition. Among the investigated
models, old maximum stress failure criterion had the best results. This criteria not
only followed the trend of experimental points with engineering type accuracy but
requires only one test for calibration which make it easy to apply also. However
maximum shear stress model could not predict the failure in the axisymmetric
loading condition. The Xue-Wierzbicki fracture criterion could predict fracture in
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all types of experiments with superior accuracy. However it requires four differ-
ent tests for calibration. The Wilkins criterion recognizes the importance of both
hydrostatic and deviatoric states on fracture. Good predictions has been obtained
either in the range of large or small stress triaxiality but not in both. It has been
shown also that Jhonson-Cook, the fracture forming limit diagram approach and
the constant equivalent strain method can only be used in a situation when stress
triaxiality and or the lode angle vary in vary narrow ranges which are known ahead
of time.
Geometry transferability of the Bonora’s CDM model[24] in occurrence of duc-
tile damage under different stress triaxiality conditions in ferritic steels have been
investigated by Bonora et al[48]. Geometry transferability of the model parame-
ters have been investigated both in the low and high triaxiality region. It has been
shown that Bonora’s CDM model allows good prediction of the failure for tensile
test on round notch specimen. In the high triaxiality region which has been inves-
tigated by means of properly cracked specimens, very good agreement between
the experimental and numerical data has been shown also. It has been demon-
strated that, in the numerical simulation, providing the material plastic flow curve
accurately determined for the post-necking regime, the specimen or component,
global and local response features can be correctly predicted without the need to
invoke the influence of other effects, such as damage softening; while damage
modeling is necessary to predict time and location of the occurrence of failure, to
simulate ductile failure processes and associated material stiffness. The geometry
transferability of the damage model parameters has been demonstrated firstly on
round notched bar configuration. It has been shown that the proposed damage
model allows to predict and understand correctly the failure locus in the stress
triaxiality vs strain space, not only for the proportional loading case but also for
variable load paths. In addition, the numerical simulations, performed with the
damage model, found confirmation not only in the very good agreement of the ge-
ometry structural responses with the experimental data, but also with the damage
maps observed in sectioned samples at different load levels. Similar very good
agreement has been found for high stress triaxiality range which has been tested
in cracked geometries and again the geometry transferability of model parameters
has been demonstrated as well as the possibility to predict geometry constraint on
material resistance to ductile crack advance.
The most comprehensive study about the application of different ductile damage
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criterion in very different scenarios, probably has been done by Li et al.[49]. In
this study, several criteria under the categories of uncoupled damage criterion and
the coupled damage criterion, including the continuum damage mechanics model
of Lemaitre and Gurson-Tveergaard-Needleman model, have been investigated to
determine their reliability in ductile failure prediction. To create diverse stress and
strain states and fracture modes, different deformation scenarios have been gen-
erated using tensile and compression tests of Al-alloy 6061 with different sam-
ple geometries and dimensions. The experimental and numerical simulation have
showed that a decrease in stress triaxiality reduces the accuracy of ductile fracture
prediction for both categories of ductile fracture criteria due to the interplay be-
tween principal stress dominant and shear-stress dominant fracture. For deforma-
tions with higher triaxiality value, both coupled and uncoupled damage model cat-
egories were able to predict the failure location reasonably well. For deformation
with a lower or even negative triaxiality value, The Gurson-tveergaard-Needleman
and Lemaitres model, as well as some of the uncoupled criteria, including Cock-
roft and Lotham[4], Ayada[5] and Oyan models[7], provided relatively reason-
able predictions. Only Tresca and Freudenthal models[50] can properly predict
shear dominant fracture. The reliability sequence in terms of time to fracture and
fracture moment prediction was the Gurson-Tveergaard-Needleman, Lemaitre’s
model and then uncoupled models.
In spite of the researches above mentioned more studies are still needed to inves-
tigate the geometry transferability of damage models especially Lemaitre’s con-
tinuum damage mechanics model which is the mostly used and important CDM
model. Therefore, in this paper Lemaitres model have been investigated. Particu-
lar attention have been devoted to highlight the critical aspects of the model and to
remark advantages and disadvantages of application of the model in the different
stress states. A comprehensive experimental test program has been carried out
on various specimen geometries and under different loading conditions in order
to cover wide range of stress triaxiality and lode angle which are the two main
parameters represent the stress state inside the component. Experimental tests in-
clude four different series of experiments:

1. Multiaxial torsion+tension tests which has been carried out on the round
specimen which covers the loading conditions for the zero and low triax-
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iality values. These series of tests includes also one uniaxial tensile test
performed on the specimen similar to the specimen of the torsion test how-
ever with a notch and one uniaxail tensile test on the flat smooth specimen.

2. Uniaxial tensile test of the flat specimens with five different geometries
which leads to different failure mechanism varies from the shear dominant
to tension dominant fracture.

3. Uniaxial tensile test of the round smooth and notched specimens with dif-
ferent notch radiuses.

4. Three point bending test of the notched specimen as a further application
for the model.

Lemaitre’s CDM model and plasticity constitutive law has been calibrated first for
the test material which is Ti-6Al-4V titanium alloy using the uniaxial tensile test
of the round smooth specimen and the parameters of the model has been obtained
for Ti-6Al-4V titanium alloy. All of the experimental tests has been reproduced
using the finite element models and implementing the calibrated model into the
finite element models. The experimental results have been compared with the
predictions of the damage models obtained from the finite element models. Load-
displacement/torque-rotation data and also failure displacement has been obtained
from the experimental tests and the results has been compared with the numeri-
cal predictions. Analyzing the scanning electron microscope images of the failure
surface and also stress state analysis of the specimens during the loading proves
the existence of the different failure mechanism in the experiments which satis-
fies the aim of covering a wide range of loading condition and investigating of
the model in the different conditions. Advantages and limitations of the model
have been properly investigated and critical points and possible errors of the ap-
plication of the model for each experiment has been discussed. The choice of
Ti-6Al-4V titanium alloy is due to its importance and large application in the in-
dustry specially in the aerospace structures which comes from high strength and
low density of Ti-6Al-4V titanium alloy. Nevertheless, its importance and wide
usage, Ti-6Al-4V titanium alloy has not been studied in detail in the literature so
far. There are few researches dealing with the application of the damage models in
Ti-6Al-4V titanium alloy. Giglio et al.[12], [13] have calibrated a damage model
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based on the phenomenological damage model of Bao-Wierzbicki[9] for Ti-6Al-
4V titanium alloy and applied a calibration of the damage model to investigate a
real rotor hub of a helicopter. To assess the behavior of the component, a fatigue
test until failure has been done by Giglio et al.[13] on real Ti-6Al-4V hub. Katani
et al.[51] developed a simulation method to predict the effect of microstructural
morphology in mechanical properties and failure mechanism of Ti-6Al-4V tita-
nium alloy. Finite element models have been created based on a clarification of
a damage mechanism to control the ductile cracking. Simulation of the dimple
failure of the failure of the material, using Gurson-Tveergaard-Needleman model,
has been presented also in Katani et al’s.[51] article.
This thesis includes six chapters. Chapter two is about the theoretical background
of the Lemaitre’s continuum damage mechanics model. Definition of damage
in continuum damage mechanics, derivation of the governing equations of the
Lemaitre’s CDM model and one of the mostly used algorithm proposed for the
implementation of the Lemaitre’s model in the numerical simulations has been
discussed in chapter 2. Chapter 3 gives detailed information about all of the exper-
imental tests has been carried out. Different geometries of the specimens, loading
conditions and test set up can be found in this chapter. Numerical simulations and
procedure of making the finite element models has been discussed in chapter 4.
Chapter 5 has been devoted to results and discussions. Information about the cali-
bration of the model, comparison of the experimental and numerical results, error
analysis of the predictions of the model are included in this chapter. Finally chap-
ter 6 discusses about the conclusions and suggestions for the future researches in
this field.
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Chapter 2

Theoritical Background

All materials are composed of atoms, which are held together by bonds resulting
from the interaction of electromagnetic fields. Elasticity is directly related to the
relative movement of atoms. The physical study of the properties of an atomic
lattice leads to the theory of elasticity, but much easier way is to write the math-
ematical constitutive equations directly at the mesoscale level using the property
of reversibility of strain, which implies a one-to-one relationship, and eventually
incorporate the properties of linearity and isotropy.
When debonding occurs, this is the beginning of the damage process. For exam-
ple, metals are organized in crystals or grains: a regular array of atoms except on
many lines of dislocations where atoms are missing. If a shear stress is applied,
the dislocations may move by the displacement of bonds, thus creating a plastic
strain by slip without any debonding.
If dislocation is stopped by a microdefect or microstress concentration, it creates
a constrained zone in which another dislocation may be stopped. This second
process cannot occur without a debonding damage. Several arrests of disloca-
tions nucleate a microcrack. Other damage mechanisms in metal are intergranular
debonding and decohesion between inclusions and the matrix. All these mecha-
nisms create plastic microstrains.

• In polymers, damage occurs by breakage of bonds that exist between the
long chains of molecules.

• In composites damage is the bonding between fibers and the polymeric ma-
trix.
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• In ceramics it is mainly microdecohesions between aggregates and the ce-
ment with the complex influence of water.

• In wood, the weak point where damage occurs is the bonding of the celu-
losic cells.

In all cases elasticity is directly influenced by the damage, since the number of
atomic bonds responsible for elasticity decreases with damage. This coupling,
which occurs at the level of the state of the material defined here by elastic strain
and damage, is called a state coupling[52].
Plasticity is directly related to slips. In metals, slips occur by movement of dislo-
cations or by the climbing of dislocations and twinning. In no case does it induce
any appreciable volume change. In other materials, irreversible strains may occur
by different mechanisms:

• Rearrangement of molecules in polymers;

• Microcracks in ceramics where the large lattice resistance does not allow
movements of dislocations;

• Slips along surfaces of decohesions in concrete;

• Rearrangement of cells in wood.

They may induce a volume change.
In all cases, damage influences plastic or irreversible strains only because the el-
ementary area of resistance decreases as the number of bonds decreases. The
damage does not directly influence the mechanism of slip itself; that is, there is no
state coupling. The indirect coupling owing to an increase in the effective stress
arises only in the kinetic constitutive equation, it is called kinetic coupling.

• Elasticity takes place at the level of atoms.

• Plasticity is governed by slips at the level of crystals or molecules.

• Damage is debonding from the level of atoms to the mesoscale level for
crack initiation.
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Continuum mechanics deals with quantities defined at a mathematical point. From
the physical point of view, these quantities represent averages on a certain vol-
ume. The Representative Volume Element(RVE), must be small enough to avoid
smoothing of high gradients but large enough to represent an average of micropro-
cesses. For experimental purposes and numerical analysis it is useful to consider
the following orders of magnitude of representative volume element which is the
scale of mesomechanics[52]:

• metals and ceramics: 0.1mm3

• polymers and most composites: 1mm3

• wood: 10mm3

• concrete: 100mm3

Another important property to consider is that the damage is always much more
localized than the strain. Remember that the damage, or debonding of atoms, is
restricted to a surface, although the strains, being movements of atoms by varia-
tion of their distance or by many slips, occur throughout the volume. If damage
exists in a single plane at the mesoscale, there is no way to study it by classical
continuum mechanics. Fortunately, most often it exists on many planes at the mi-
croscale, but always with a high space gradient. Micromechanics helps a great
deal in for modeling the damage behavior.
In conclusion:

• the microscale is the scale of the mechanisms used to consider strains and
damage;

• the mesoscale is the scale at which the constitutive equations for mechanics
analysis are written;

• the macroscale is the scale of engineering structures.

2.1 Different manifestations of damage

Even if damage at the microscale is governed by one general mechanism of debon-
ing, at the mesoscale it can manifest itself in various ways depending upon the
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nature of the materials, the type of loading and the temperature.
Brittle damage
The damage is called brittle when a crack is initiated at the mesoscale without a
large amount of plastic strain. Just to give an order of magnitude, let us say that
the ratio of plastic strain to elastic strain is below unity: εp

εe
<1

This means that the cleavage forces are below the forces that could produce slips
but higher than the debonding forces. The degree of localization is high.
Ductile damage
On the other hand, the damage is called ductile when it occurs simultaneously
with plastic deformations larger than a certain threshold pD. It results from the
nucleation of cavities due to decohesions between inclusions and the matrix fol-
lowed by their growth and their coalescence through the phenomenon of plastic
instability. As a consequence, the degree of localization of ductile damage is com-
parable to that of plastic strain.
Creep Damage
When a metal is loaded at elevated temperature, for instance a temperature above
1/3 of the melting temperature, the plastic strain involves viscosity; that is, the ma-
terial may be deformed at constant stress. When the strain is large enough, there
are intergranular decohesions which produce damage and an increase of the strain
rate through the period of tertiary creep. As for ductile damage, the gradients of
creep damage are similar to the visco-plastic strain gradients.
Low cycle fatigue damage
When a material is subjected to cyclic loading at high values for stress or strain,
damage develops together with cyclic plastic strain after a period of incubation
preceding the phases of nucleation and propagation of microcracks. The degree
of damage localization is higher than for ductile or creep damage. Because of the
high values for stress, the low cycle fatigue is characterized by low values of the
number of cycles to rupture, NR:
NR < 10000 cycles
If the material is strain loaded, the damage induces a drop of the stress amplitude
for two stress-strain loops corresponding to the stabilized cycle and cycle to the
rupture.
For metals, the damage can be either intergranular or transgranular microcracking
following slip-ban arrests.
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High Cycle fatigue
When a material is loaded with lower values for stress, the plastic strain at the
mesolevel remains small and is often negligible. It may be high at some points at
note that for brittle damage and high cycle fatigue damage, a stress-strain curve
obtained from a classical tension-compression test at the meso-scale usually does
not represent the true behavior for strain and damage because the space localiza-
tion induces microplastic and damage zones much smaller than those of the spec-
imens. Nevertheless, it is used because mechanical experiments at the microscale
are difficult to perform; but the results are averages of nonuniform quantities over
a mesovolume. The microhardness test may help to characterize a microvolume
as it involves a size of order of microns but its state of stress is complex. The mi-
crolevel where transgranular microcracking occurs only on some planes and most
often at the surface of the specimen by the mechanism of intrusion-extrusion. The
number of cycles to failure may be very large[52]:
NR>10000 cycles
As a consequence, the localization of damage is high.

2.2 Mechanical representation of damage

2.2.1 One dimensional surface damage variable(L.M.Kachanov)

It follows from the preceding section that damage may be interpreted at the mi-
croscale as the creation of micro surfaces of discontinuities: breaking of atomic
bonds and plastic enlargement of microcavities. At the mesoscale, but number of
broken bonds or the pattern of microcavities may be approximated in any plane by
the area of intersections of all the flaws with that plane. In order to manipulate a
dimensionless quantity, this area is scaled by the size of the representative volume
element. This size is of primary importance in the definition of a variable contin-
uous in the sense of continuum mechanics. At one point, it must be representative
effect on failure of microdefects over the mesoscale volume element. It is similar
to plasticity where the plastic strain εp represents, at one point, the average of
many slips.
If a damaged body and a representative volume element (RVE) at a point M ori-
ented by plane defined by its normal ~n and its abscissa x along the direction ~n as
it has been shown in figure 2.1 is being considered where:
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Figure 2.1: Physical definition of damage.

• δS is the area of intersection of the plane with RVE

• δSDx is the effective area of the intersections of all microcracks or micro-
cavities which lie in δS;

The value of damage D(M,~n, x) attached to the point M in the direction~n and at
the abscissa x is:

D(M,~n,x) =
δSD

δS
(2.1)

In order to define a continuous variable over the RVE for its deterioration to fail-
ure in two parts, one must look at all the planes varying with x and consider that
which is most damaged:

D(M,~n) = Max[D(M,~n,x)] (2.2)

The coordinate x disappears, and:

D(M,~n) =
δSD

δS
(2.3)
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It follows from this definition that the value of scalar variable D( which depends
upon the point and the direction considered) is bounded by 0 and 1: 0 < D < 1;
D=0 7−→ undamaged RVE material;
D=1 7−→ fully broken RVE material in two parts.
In fact, the failure occurs for D < 1 through a process of instability. Consideration
of the simple one-dimensional case of a homogeneous damage leads to the simple
definition of damage as the effective surface density of microdefects:

D =
SD

S
(2.4)

2.3 Effective stress concept

If the RVE is loaded by force ~F =~nF , the usual uniaxial stress is:

σ =
F
S

(2.5)

If all the defects are open in such a way that no microforces are acting on the
surfaces of microcracks or microcavities represented by SD, it is convenient to in-
troduce an effective stress σ̃ related to the surface that effectively resists the load,
namely (S-SD):

σ̃ =
F

S−SD
(2.6)

Introducing the damage variable D = SD
S ,

σ̃ =
F

S(1− SD
S )

or σ̃ =
σ

1−D
(2.7)

This definition is the effective stress on the material in tension. In compression, if
some defects close, the damage remaining unchanged, the surface that effectively
resists the load is larger than S-SD. In particular, if all the defects close, the effec-
tive stress in compression σ̃ is equal to the usual stress σ.
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Coming back to the definition of the effective area of microcracks δSD , effec-
tive has to be understood as strength , taking into account the microstress con-
centrations and mutual interactions of defects loaded in tension or shear. Only
micromechanics may give a precise meaning of this concept which will be taken
into account globally at the mesoscale through identification of the damage vari-
able by means of its coupling with elasticity or plasticity.

2.4 Strain equivalence principle

A way to avoid a micromechanical analysis for each type of defect and each type
of mechanism of damage is to postulate a principle at the mesoscale.
In thermodynamics, the method of local state assumes that the thermomechanical
state at a point is completely defined by the time values of a set of continuous
state variables depending upon the point considered. This postulate applied at the
microscale imposes that the constitutive equations for the strain of microvolume
element are not modified by neighboring microvolume element containing a mi-
crocrack. Extrapolating to the mesoscale, this means that the strain constitutive
equations written for the surfaces δS-δSD are not modified by the damage or that
the true stress loading on the material is the effective stress σ̃ and no longer σ.
The following principle results:
Any strain constitutive equation for damaged material may be derived in the same
way as for a virgin material except that usual stress is replaced by the effective
stress.
This statement is a principle because it has been demonstrated only in some par-
ticular cases of damage through homogenization techniques. It will be applied
either to elasticity or plasticity.

2.5 Coupling between strains and damage

In accordance with description of the damage mechanics and direct application of
the strain equivalence principle, one may write the uniaxial laws of elasticity and
plasticity of damaged material.
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2.5.1 Elasticity law

This direct state coupling through the concept of effective stress:
Undamaged material Damaged material
D=0 0<D<1
εe =

σ

E εe =
σ

E(1−D)

Contraction for isotropic damage:

ε
e
22 = ε

e
33 =−νεe (2.8)

E is Youngs modulus of the undamaged material and ν is Poissons ratio.
The elasticity modulus of the damaged material defined by the ratio E= σ

εe
is:

Ẽ = E(1−D) (2.9)

2.5.2 Plasticity

This is a kinetic coupling on the evolution of plastic strain which has to be written
in the plasticity criterion used to derive the kinetic constitutive equations.
In order to model plasticity two kinds of strain hardening are usually considered:

• the isotropic hardening related to the density of dislocations or flow arrests;

• The kinematic hardening related to the state of internal microstress con-
centrations. The corresponding back stress defines the center of the elastic
domain in tension compression( or in three dimensions).

If σy is the yield stress, R the stress due to isotropic hardening and X the back
stress, both functions of the plastic strain, the one dimensional plasticity criterion
defining the current threshold of yield limit is:

σ = σy +R+X or f = |σ−X |−R−σy = 0 (2.10)
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f is the yield function from which the kinetic constitutive equation for plastic strain
is derived:
ε̇p 6= 0 if f = 0 and ḟ = 0
ε̇p = 0 if f < 0 or ḟ < 0
To achieve this, let us write the total strain as:

ε = εe + εp (2.11)

When damage occurs, according to the principle of equivalence, the yield function
f must be written as:

f = | σ

1−D
−X |−R−σy = 0 (2.12)

Experiments and equation:

σ = (σy +R+X)(1−D) (2.13)

Show that the damage equally decreases the yield stress, the isotropic strain hard-
ening stress and the back stress.

2.6 Lemaitres model

Taking the free-enrgy ψ thermodynamic potential, it is assumed that it is a func-
tion of all observable and internal variables. Using the hypothesis that elasticity
and plasticity behaviors are uncoupled gives:

ψ = ψe(ee,T,D)+ψp(T, p) (2.14)

In order to obtain linear elasticity coupled with damage by means of the effective
stress, ψe must be quadratic in eeeeee and linear in (1−D). If a is the fourth order
tensor of elasticity and ρ the density:
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ψe =
1

2ρ
a : εεε

e : εεε
e(1−D) (2.15)

The damaged elasticity law is:

σσσ = ρ
∂ψe

∂εe = a : εεε
e(1−D) (2.16)

And the variable y associated with D, by the power dissipation (−yḊ) in the phe-
nomenon of damage, is defiend by:

y = ρ
∂ψe

∂D
=−1

2
a : εεε

e : εεε
e (2.17)

The density of elastic strain energy has being defined as:

dWe =σσσ : dεεε
e (2.18)

If we replace dεεεe by its value taken from the damage elasticity law written for
dσσσ = 0 at constant temperature it will be obtained that −y is one half of variation
of We due to an infinitesimal increase of damage at constant stress and tempera-
ture. This gives for −y the name of damage strain energy release rate

−y =
1
2

dWe

dD
)σ,T (2.19)

The expression of y and We show that:

−y =
We

1−D
(2.20)

We is calculated as the sum of shear strain energy and volume dilatation energy
with the tensor of elasticity written in terms of Youngs modulus E and Poissons
ratio ν, that is the following relations between elastic strain deviator eeee and stress
deviator S, the hydrostatic strain εe

H = 1
3tr(εεεe) and hydrostatic stress σH = 1

3tr(σσσ):

ee =
1+ν

E
S

1−D
, ε

e
H =

1−2ν

E
σH

1−D
(2.21)

We obtain:

−y =
1
2
[
1+ν

E
S : S

(1−D)2 +3
1−2ν

E
σ2

H
(1−D)2 ] (2.22)
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With the Von Mises equivalent stress for plasticity:

σeq = (
3
2

S : S)1/2 (2.23)

−y =
σ2

eq

2E(1−D)2 [
2
3
(1+ν)+3(1−2ν)(

σH

σeq
)2] (2.24)

This quantity can be calculated for an equivalent one dimensional case defined by
its stress σ∗:

σeq = σ
∗, σH =

1
3

σ
∗ (2.25)

−y =
σ∗2

2E(1−D)2 (2.26)

y is the variable associated with D, it means that evolution of D is governed by
values of y; by analogy with the Von Mises equivalent stress for plasticity, the
quantity:

σ
∗ = σeq[

2
3
(1+ν)+3(1−2ν)(

σH

σeq
)2]1/2 (2.27)

σ∗ is called dame equivalent stress and can act as a criterion for damage just as
σeq acts as a criterion for plasticity. σ∗/(1−D) is the damage equivalent effective
stress and:

−y =
σ̃∗2

2E
(2.28)

σ∗ is equal to the Von Mises equivalent stress multiplied by a factor function of
the triaxiality σH/σeq which is very important for damage function as shown by
many experimental and theoretical studies.
Within the hypothesis of coupling between intrinsic mechanical and thermal dis-
sipations, the second law of thermodynamics imposes summation of mechanical
dissipation being positive:

σσσ : ε̇̇ε̇ε
p−Rṗ− yḊ≥ 0 (2.29)

Due to the fact that processes of plasticity and damage may be independent, we
must have separately:

σσσ : ε̇̇ε̇ε
p−Rṗ≥ 0, −yḊ≥ 0 (2.30)
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−y being positive Ḋ must be positive which is trivial result. (−yḊ) is the energy
dissipated within the damage process for decohesion of material.
In order to derive constitutive equations for evaluation of dissipative variables, the
existence of a potential of dissipation is assumed: a scalar convex function of flux
variables (ε̇̇ε̇εp, ṗ, Ḋ and the heat flux q) the state variables acting as parameters:
ϕ(ε̇̇ε̇εp, ṗ, Ḋ,q;εεεe,T, p,D)

Other equivalent potentials can be obtained by means of the Legendre-Fenchel
transform, in particular the partial transform changing Ḋ to its dual variable y:
ϕ∗(ε̇̇ε̇εp, ṗ,y,q;εεεe,T, p,D)

The constitutive equation for damage evolution D is given by the normality prop-
erty of that potential:

Ḋ =
∂ϕ∗

∂y
(2.31)

Restricting ourselves to isotropic plasticity and isotropic damage, mathematical
models are of a scalar nature. Ductile plastic damage, as plasticity, is a phe-
nomenon which does not depend explicitly upon time.
Within these hypothesis the main features of ductile plastic damage can be de-
scribed by potential of dissipation restricted to three variables:
ϕ∗(y, ṗ,T )
Written as a power function of y for convenience and linear in ṗ to ensure the non
explicit dependency of D with time:

ϕ
∗ =

S0

(s0 +1)
(
−y
s0

)s0+1 ṗ (2.32)

Where s0 and S0 are material and temperature dependent. The complementary law
of evolution of damage derives from ϕ∗ by:

Ḋ =−∂ϕ∗

∂y
= (
−y
S0

)s0+1 ṗ (2.33)

Ductile plastic damage generally occurs with large deformations and in metal
forming calculations. Large strain theory must then be used. Now:

• εεε is the green Lagrange strain tensor,

• σσσ is the Cauchy stress tensor,
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• εεεe is the elastic strain tensor defined with respect to the unstressed state.

Due to the large strain hypothesis the damage is written as function of total strain
instead of plastic strain. Then:

ṗ = (
2
3

εεε : εεε)1/2 (2.34)

From the potential of dissipation:

D = (
−y
S0

)s0 ṗ (2.35)

In the expression for y:

−y =
σ2

eq

2E(1−D)2 [
2
3
(1+ν)+3(1−2ν)(

σH

σeq
)2] (2.36)

Replace σeq by its value, taken from the Romberg-Osgood hardening law coupled
with damage and written for three dimensional case:

p = [
σeq

(1−D)K
]Mor

σeq

1−D
= K p

1
M (2.37)

Then:

Ḋ = (
K2

2ES0
[
2
3
(1+ν)+3(1−2ν)(

σH

σeq
)2]p

2
M )s0 ṗ (2.38)

This is the governing equation for ductile damage evolution as derived in its orig-
inal form by Lemaitre[22]. However, as it has been mentioned in chapter 1,
Lemaitre’s model has been extended for more general conditions. More details
about the more general forms of the model can be found in[52] and [53]. As an
example, following equations show set of equations which has to be solved for the
isotropic hardening and more general constitutive low rather than Romberg- Os-
good which has been considered in Lemaitre’s original model[22]. The evolution
of the stress tensor, σ, plastic strain, εεεp, and variables D and R is governed by the
following set of elastoplasticity equations[54]:

ε̇̇ε̇ε
e = ε̇̇ε̇ε− ε̇̇ε̇ε

p

ε̇̇ε̇ε
p = γ̇

∂φ

∂σσσ

Ṙ = γ̇

Ḋ = γ̇
1

1−D
(−Y )s

(2.39)
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Where the plastic multiplier γ̇ is consistent with the classical loading/unloading
conditions:

γ̇≥ 0, φ≤ 0, γ̇φ = 0 (2.40)

In the above equations, s is experimentally determined material parameter associ-
ated to damage evolution and Y is the damage energy release rate defined as:

Y =
−1

2(1−D)2σσσ : D−1 : σσσ =
−q2

6G(1−D)2 −
p2

2K(1−D)2 (2.41)

2.7 Numerical Analysis of damage

Damage is essentially a nonlinear phenomenon often coupled with plasticity, also
a nonlinear phenomenon. Therefore we can not expect simple closed-form solu-
tions of mesocrack initiation problems except for rough approximations of simple
cases.
For early design of mechanical components, the coupling of strain behavior with
the damage may be neglected and a post-processing of damage evolution is possi-
ble after a classical structure analysis(D.Hayhurst and F.A.Leckie ). This approach
is the uncoupled analysis based on a reference plastic computation. For localized
plasticity and damage, this reference computation can even be purely elastic with
a local energetic correction to estimate the plastic strain fast.
For accurate engineering applications and when the coupling between strains and
damage is strong, plasticity, damage, and possible cracks distributed over whole
structure deem a fully coupled analysis necessary. The constitutive equations need
to be implemented within a finite element computer code and the numerical anal-
ysis encounters the classical difficulties of convergence of linearized schemes. It
needs special algorithms, much care, and large computer times.
When damage is localized on the mesoscale, there is the possibility to use the two
scale damage model in which damage occurs on microscale only. This locally
coupled analysis mainly applies to high cycle fatigue (fatigue in the elastic range),
eventually with initial plastic strain and damage. The analysis can be performed
by post-processing an elastic computation for elastic fatigue or plastic computa-
tion if the process of creation of non-trivial initial conditions has been modeled.
Another area that requires numerical analysis is the precise identification of the
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material parameters. Even if a fast, rough identification is possible using simple
methods, an adjustment or updating of parameters from more complex tests or
similar studies needs numerous iterations and robust optimization techniques.
In order to apply the Lemaitre CDM ductile damage model in the numerical sim-
ulations, the most general algorithm has been proposed by Doghri[55] which in-
cludes kinematic hardening for the plasticity.In order to apply Doghri[55] algo-
rithm series of 14 equations has to be solved in the same time. E.A. de Souza
Neto[54] simplified Doghri et al[55] algorithm for the isotropic hardening and re-
duced the number of equations which has to be solved to one non linear equation.
In the following section E.A. de Souza Neto[54] method has been explained.

2.7.1 One equation algorithm for Lemaitre ductile damage model

In the finite element context, the numerical integration of elasto-plasticity con-
stitutive equations is typically carried out by means of the so-called elastic pre-
dictor/return mapping schemes. Such methodologies are extensively described
elsewhere[56].
Let us consider what happens to a typical Gauss point of the finite element mesh
within a (pseudo-) time interval [tn, tn+1]. Having the values σn, ε

p
n , Rn and Dn

at tn and given a strain increment ∆ε corresponding to the interval[tn, tn+ 1], the
numerical integration algorithm should obtain the updated values at the end of
interval,σn+1, εn+1, Rn+1 and Dn+1 in a manner consistent with the constitutive
equations of the model.
The first step in the algorithm is the evaluation of the elastic trial state, where the
increment is assumed purely elastic with no evolution of internal variables (inter-
nal variables frozen at tn). Then , the elastic trial stress has to be calculated:

σσσ
trial = (1−Dn)D : εεε

etrial (2.42)

Or, equivalently, in terms of stress deviator and hydrostatic pressure:

Strial = (1−Dn)2Geetrial, ptrial = (1−Dn)Kυ
etrial (2.43)

Where:

εεε
etrial = εεε

e
n +∆εεε, eetrial = ee

n +∆e, υ
etrial = υ

e
n +∆υ (2.44)
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The elastic trial value of the yield function is then evaluated as:

Φ
trial := q̃trial−σy(Rn) (2.45)

Where we have defined the effective elastic trial Von Mises equivalent stress:

q̃trial ≡ qtrial

1−Dn
=

√
3J2(Strial)

1−Dn
=

√
3
2
||Strial||
1−Dn

(2.46)

If Φtrial ≤ 0 the process is indeed elastic within the interval and elastic trial state
coincides with the updated state at tn+1. Otherwise, we need to apply the return
mapping procedure whose step-by-step derivation is described in the following.
Straightforward specialization of standard return mapping procedures for the present
constitutive law leads to the following set of discrete evolution equations:

εεε
e
n+1 = εεε

etrial−∆γ

√
3
2

Sn+1

(1−Dn+1)||Sn+1||
Rn+1 = Rn +∆γ

Dn+1 = Dn +
∆γ

1−D−n+1
(
−Yn+1

r
)s

qn+1
1−Dn+1

−σy(Rn+1) = 0

(2.47)

Which then needs to be solved for unknowns εεεe
n+1, ∆γ, Rn+1 and Dn+1. The last of

the above equations is the so-called consistency conditions that guarantees that the
stress state at the end of plastic step lies on updated yield surface. As we shall see
in what follows, analogously to what happens to the classical Von Mises model,
the above system can be reduced by means of simple algebraic substitutions to a
single non-linear equation for the incremental plastic multiplier ∆γ.
To start with, let us consider the deviatoric/volumetric split of equation 2.47. Since
the flow vector that multiplies ∆γ on the right-hand side of equation 2.47 is devia-
toric, we have:

ee
n+1 = eetrial−∆γ

√
3
2

Sn+1

(1−Dn+1)||Sn+1||
υ

e
n+1 = υ

etrial (2.48)

Expression 2.48 together with the elastic law gives the following updating relation
for the hydrostatic pressure:

pn+1 = (1−Dn+1)p̃n+1 (2.49)
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Where we have defined:

p̃n+1 = Kυ
e
n+1 = Kυ

etrial (2.50)

With the introduction of the elastic law into 2.48, It follows that:

Sn+1 = (1−Dn+1)2Gee
n+1 = (1−Dn+1)2Geetrial−2G∆γ

3
2

Sn+1

||Sn+1||
(2.51)

And we obtain the update equation for stress deviator:

Sn+1 = (1−Dn+1)S̃
trial
n+1−2G∆γ

√
3
2

Sn+1

||Sn+1||
(2.52)

Where we have defiend:

S̃trial ≡ 2Geetrial (2.53)

From 2.52 it is clear that S̃trial
n+1 is proportional to Sn+1 so that we may equivalently

write:

Sn+1 = (1−Dn+1)S̃
trial
n+1−2G∆γ

√
3
2

Sn+1

||Sn+1||
(2.54)

After a trival re-arrangement, the above equation yields the following simpler up-
date formula for Sn+1:

Sn+1 = (1−Dn+1−
3G∆γ

q̃trial )S̃
trial
n+1 (2.55)

From this last expression and definition of the Von Mises equivalent stress, we
obtain:

qn+1 = (1−Dn+1)q̃trial−3G∆γ (2.56)

By introducing 2.56 into 2.47 we obtain the consistency equation:

Φ̃(∆γ,Dn+1)≡ q̃trial− 3G∆γ

1−Dn+1
−σy(Rn +∆γ) = 0 (2.57)

With 2.56 and 2.49 introduce into definition of the damage energy release rate,
2.47, can be written as:

Dn+1−Dn−
∆γ

1−Dn+1
(
−Y (∆γ,Dn+1)

r
)s = 0 (2.58)
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Where:

−Y (∆γ,Dn+1)≡
[
(1−Dn+1)q̃trial−3G∆γ

]2
6G(1−Dn+1)2 +

p̃2
n+1

2K
(2.59)

In summary, the return mapping has been reduced to the set of two scalar equations
comprising equations 2.57 and 2.58. The unknowns of this system of equations
are ∆γ and Dn+1. After solution, with ∆γ and Dn+1 at hand, Sn+1 and pn+1 are
trivially updated, respectively, by equations 2.55 and 2.50. This two-equation re-
turn mapping has been proposed by Vaz Jr[57] in the context of fracture prediction
in metal cutting processes. A similar two-equation algorithm has been adopted by
Steinmann et al.[57] for a variation of the simplified Lemaitre model, where dam-
age energy release rate depends only on the deviatoric part of the strain energy
function.
The above system can be further reduced leading to a computationally more ef-
ficient single-equation return mapping algorithm. Firstly, for convenience, we
define the material integrity as:

ω≡ 1−D (2.60)

With the above definition and equation 2.57 we may write:

ωn+1 ≡ 1−Dn+1 = w(∆γ)≡ 3G∆γ

q̃trial−σy(Rn +∆γ)
(2.61)

In addition, by combining equations 2.57 and 2.59, the updated damage energy
release rate may be expressed as a function of ∆γ only, i.e. we may re-define:

−Y (∆γ)≡
[σy(Rn +∆γ)]2

6G
+

p̃2
n+1

2K
(2.62)

Finally, by combining equations 2.61 and 2.62 with equation 2.61, return mapping
procedure is reduced to the solution of the following scalar equation for ∆γ:

F(∆γ)≡ ω(∆γ)−ωn +
∆γ

ω(∆γ)
(
−Y (∆γ)

r
)s = 0 (2.63)

Once a solution ∆γ has been found, hardening and damage variables has to be up-
dated, the hydrostatic stress and stress deviator using the relevant equations listed
above. The overall algorithm is conveniently listed in figure 2.2.
It should be noted that, in view of definition equation 2.61 , the left-hand side of
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Figure 2.2: One-equation elastic predictor/return mapping algorithm for simplified
version of Lemaitre’s damage model[54].

the return mapping equation 2.63 is singular at ∆γ = 0. Thus, the initial guess
∆γ(0) = 0 usually adopted to start up the newton-Rophson iterations in classical
return mappings, cannot be used in the present context. One possible alternative
is to set:

∆γ
(0) =

[q̃trial−σy(rn)]ωn

3G
(2.64)

Which corresponds to perfectly plastic solution for increment with frozen dam-
aged yield surface at tn. Numerical experiments have shown that an extremely
stable algorithm results from use of the Newton-Raphson scheme with the above
initial guess. The need for line searches does not appear necessary since conver-
gence is attained for well-sized increments even at highly damaged states with D
approaching unit.
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Chapter 3

Experimental Tests

3.1 Introduction

Experimental results are most trustful data which can be used in a comprehensive
research program. Experimental results can be used in order to validate and cal-
ibrate the analytical and numerical models. Before the application of any model
it has to be validated and the accuracy of the predictions of the model has to be
investigated in comparison with some other available reference data which in the
most of the cases, these data has been obtained from experimental tests. More-
over, generally models have some parameters which has to be determined before
the application based on some preknown data. Experimental data are also useful
for this purpose. Once the calibration and validation of a model has been com-
pleted, experimental data can still be used as an investigator for the accuracy of
the models predictions in other cases. Therefore, in this research, a comprehen-
sive test program has been designed and carried out. A wide range of loading
conditions and deformation modes has been investigated. Tests has been designed
in a way that, different stress states which can be represented by stress triaxial-
ity and Lode angle has been covered. Experiments include the stress triaxiality
values starts from near zero until the high triaxiality regions(around 1). Value of
stress triaxiality(η) and Lode angle(θ) is defined according to equations 3.1 and
3.2. The fracture phenomena is also different in the experiments which can be a
good measure to check damage model under different failure mechanisms. Dif-
ferent specimen geometries including notched and smooth round/flat specimens
under the uniaxial tensile, multiaxial torsion and three point bending loading has
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been tested. Load-displacement/torque-rotation data has been extracted from the
experiments and has been used as the main data for the comparisons between nu-
merical models and experimental tests. Four different series of experiments has
been done which more detailed explanation about all of these experiments can be
found in the following sections. Test material is Ti-6Al-4V titanium alloy a widely
used material in the industry.

η =
σH

σvm
(3.1)

θ = 1−arccos
ξ

π

ξ = (
r
q
)3

(3.2)

3.2 Ti-6Al-4V titanium alloy

Ti-6AL-4V, also known as grade 5, is the most commonly used titanium alloy. It
is significantly stronger than commercially pure titanium while having the same
stiffness and thermal properties( excluding thermal conductivity which is about
60% lower in Ti-6Al-4V titanium alloy than commercially pure titanium). Among
its many advantages, it is heat treatable. This Ti Alloy is an excellent combina-
tion of strength, corrosion resistance, weld and fabric ability. This alloy is the
workhorse of the titanium industry. The alloy is fully heat treatable in section size
up to 15mm and is used up to approximately 400 C. Over 70% of all alloy grades
melted are a sub-grade of Ti-6Al-4V, its uses vary in many aerospace airframe
and engine components uses and also major non-aerospace applications in the
marine.[58]. Titanium alloys are generally classified into three main categories:
Alpha alloys, which contain neutral alloying elements (such as Sn) and/or alpha
stabilizers (such as Al, O) only and are not heat treatable; Alpha + beta alloys,
which generally contain a combination of alpha and beta stabilizers and are heat
treatable to various degrees; and Beta alloys, which are metastable and contain
sufficient beta stabilizers (such as Mo, V) to completely retain the beta phase upon
quenching, and can be solution treated and aged to achieve significant increases
in strength. Ti-6Al-4V offers a combination of high strength, light weight, forma-
bility and corrosion resistance which have made it a world standard in aerospace
applications. Ti-6Al-4V may be considered in any application where a combina-
tion of high strength at low to moderate temperatures, light weight and excellent
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corrosion resistance are required. Some of the many applications where this al-
loy has been used include aircraft turbine engine components, aircraft structural
components, aerospace fasteners, high-performance automotive parts, marine ap-
plications, medical devices, and sports equipment[59]. Chemical composition of
the tested ti-6Al-4V titanium alloy has been showed in table 3.1.

Table 3.1: Chemical composition of Ti-6Al-4V titanium alloy[60].

Element Ti Al V N H Fe O C
Et.% Bal. 6.38 4.17 0.01 0.001 0.15 0.16 0.01

Figure 3.1 shows the microstructure of the tested Ti-6Al-4V titanium alloy. This
image has been taken from the etched surface of the material using an optical
microscope. Krolls reagent (94 ml distilled water, 5ml nitric acid and 1ml hy-
drofluoric acid) was used for surface etching. The alpha+beta phases are clearly
visible in Figure 3.1 and the average grain size is approximately 20m.

Figure 3.1: Microstructure of the tested Ti-6Al-4V titanium alloy (a) 200X. (b)
500X.

3.3 First series experimental tests: multiaxial tor-
sion tests

This series of experiments includes multiaxial torsion tests carried out on the
round specimens and tension test which has been performed on one round notched
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and one smooth flat specimen.Three different type of specimen geometries have
been tested which can be found by details in Table 3.2.

Table 3.2: torsion Test Specimens’Geometries

Geometry A Geometry B Geometry C

Specimen type A has been used for the multiaxial torsion tests. This type of
specimen has been tested under the four different loading conditions which are a
combination of torsion and different pre-tensile loads. Torque-rotation data has
been obtained from the experiments. A multiaxial servo hydraulic MTS809 test-
ing machine has been used to carry out the torsion tests and values of rotation and
torque has been obtained from the load cell. Type B and C specimens has been
tests under the uniaxial tensile load.Type A and B are round specimens while type
C specimen is a flat specimen with 3mm thickness and rectangular cross section.
For the uniaxial tensile tests an extensometer with the initial length of 12.5mm
has been used to measure the displacement and a MTS alliance RF/150KN testing
machine has been used to do the tension tests. Table 3.3 shows the explanation of
the all loading conditions of the tests.

Figure 3.2shows the torsion test configuration and two specimens during test(Pure
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Table 3.3: First series experiments characteristics

Test Type Geometry Axial Load(KN)
Pure torsion A 0

Tension+torsion A 20
Tension+torsion A 30
Tension+torsion A 40

Tension B
-

Tension C

torsion and 30KN tensile+torsion). Figure 3.3 also shows some of the tested spec-
imens after the tests.

Figure 3.2: Torsion test configuration.

3.4 Second series experimental tests:Flat specimen

These serie of experiments include uniaxial monotonic tests which has been car-
ried out on the flat specimens. These specimens has been designed in order to
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Figure 3.3: Some of the first series specimens after failure.

Figure 3.4: Second series experiments set up.

create the plane stress condition in the tests. Different specimen geometries with
different notch radiuses has been designed and manufactured to cover a wide range
of stress state. Variation of the triaxiality from near zero to 0.6 is a good indicator
for the different stress states in the specimens. Specimen geometries of these se-
ries of tests can be found in table 3.4 which includes four notched and one shear
specimen. Tests are displacement control and has been done by a MTS alliance
RT/100KN testing machine. An extensometer with initial length of 25mm for
the notched specimens and 50mm for the shear specimen has been used to mea-
sure the displacement during the test. Figures 3.4 and 3.5 respectively shows test
configuration for the specimen with hole and tested specimens after the failure.

3.5 Third series Experimental tests: Uniaxial tensile
test on round notched specimens

Third series of the experiments includes the tests which has been don on the small
round notched specimens. These tests has been done with collaboration of Uni-
versitta’degli studi di Cassino and research group of prof.Nicola Bonora. The tests
are uniaxial displacement control tensile tests which have been carried out on the
round specimens with different notch radiuses in order to have different stress
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Table 3.4: Flat specimens’geometry

Notch radius 20mm Notch radius 10mm

Notch radius 6.67mm Specimen with Hole

Shear specimen
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Figure 3.5: Flat specimens after the tests.

states. Round smooth specimens has been tested also. A more detailed informa-
tion about the geometry of these series of specimens can be found in figure 3.6.
Stress triaxiality value varies from around 0.35 in the smooth specimen to around
1.2 in the specimen with 1.5 notch radius. Similar to the other series of tests, an
extensometer has been used to measure the displacement during the test, in this
case the initial length of the extensometer is 12.5 mm. Failure diameter of the
specimens has been measured also after the tests. Figure 3.7 shows some photos
from the experiment during the test and measurement process.

3.6 Fourth series experimental test: Three point bend-
ing test

In order to have a test in the high triaxiality region and as a further application
for the model, a three point bending test(TPBT) has been performed. The test has
been done on the notch rectangular specimens. Due to the existence of the notch,
extremely high stress concentration occurs in the notch tip which is a good test
to investigate the model in the high stress triaxiality regions. Figure 3.8 shows
the geometry of the tested specimens. The test has been carried out in monoaxial
hydraulic testing machine. Load-displacement data measured from the displace-
ment of the pusher has been obtained from the experiment. A laser sensor (MEL
Mikroelektronik GMBH, M5L/20, range 20mm) has been used to measure the
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Figure 3.6: Specimen geometry of the third series of experiments.

displacement of the pusher.Figure 3.9 shows test set up of the experiment.

3.7 Summary of experiments

The main purpose of the experimental program was to cover a wide range of
loading condition. Stress triaxiality and Lode angle are two important parameters
which can be used as an indicator of the stress state. Experiments cover a wide
range which is approximately from 0 to 1 for both of stress triaxiality and Lode
angle. By performing all these experiments, a lot of experimental data with a wide
variety has been obtained and being used to investigate damage model. Table 3.5
shows a summary of all experimental tests and related information about them.
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Figure 3.7: Test configuration and failure diameter measurement of the third series
of experiments.

Figure 3.8: Three point bending test specimen’s geometry.

Figure 3.9: Three point bending test set up.
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Table 3.5: Summary of experiments

Experiment series Specimen type Obtained experimental data

First series: Multiaxial torsion tests

A-Pure torsion(see tab.3.2) Load cell torque-rotation
A+20KN(see tab.3.2) Load cell torque-rotation
A+30KN(see tab.3.2) Load cell torque-rotation
A+40KN(see tab.3.2) Load cell torque-rotation

B(see tab.3.2) Load-displacement-extensometer 25mm
C(see tab.3.2) Load-displacement-extensometer 25mm

Second Series: Uniaxial tensile test of flat specimens

Notch 20mm(see tab.3.4) Load-displacement data-extensometer 25mm
Notched radius 10mm(see tab.3.4) Load-displacement data-extensometer 25mm

Notched radius 6.67(see tab.3.4)mm Load-displacement data-extensometer 25mm
Specimen with hole(see tab.3.4) Load-displacement data-extensometer 25mm

Shear specimen(see tab.3.4) Load-displacement data-extensometer 50mm

Third Series: Uniaxial tensile test of round specimens

Round smooth(see Fig.3.6) (Load-displacement data-extensometer 12.5mm)+failure diameter
Notch radius 6mm(see Fig.3.6) (Load-displacement data-extensometer 12.5mm)+failure diameter
Notch radius 3mm(see Fig.3.6) (Load-displacement data-extensometer 12.5mm)+failure diameter

Notch radius 1.5mm(see Fig.3.6) (Load-displacement data-extensometer 12.5mm)+failure diameter
Fourth series:Three point bending test Notched specimen(see Fig.3.8) Load-diplacement(displacement of pusher) data
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Chapter 4

Numerical Models

4.1 Introduction

Numerical models are a powerful tool in the research nowadays. Performing ex-
perimental tests are usually expensive and difficult. Numerical models, if properly
build, can be a replace for the experiments. However, numerical models has to be
used carefully and complete understanding of the models using inside the models
and paying attention to the parameters which affect the FEM results are crucial.
Despite the fact that numerical models are powerful and significantly useful they
cannot totally replace the experiments and experimental tests are still an important
part of research which cannot be ignored.
In this research in order to apply the CDM model, finite element simulation has
been used. Finite element model(FEM) of all experiments has been build the ex-
perimental situation has been simulated. Abaqus, Ls-Dyna and Ls-opt softwares
have been used to make the finite element analysis. More detailed information
about the finite element(FE) models and simulation process can be found in the
next sections.

4.2 Calibration of the plasticity constitutive low and
damage model

First step in the application of the model is calibration and obtaining the model
parameters. Plasticity Constitutive law and damage model has to be calibrated
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before the application. Lemaitre’s damage model has 3 parameters (εth,S,Dcr)

which has to be calibrated for each material.

• εth threshold strain value which damage starts from.

• Dcr critical value of damage. Failure occurs when damage is equal to this
value.

• S parameter related to the evolution of damage.

Inverse engineering try and error method has been used in this research in order to
calibrate Lemaitres model. Smooth round specimen of the third series of experi-
ments has been chosen as the calibration experiment. Damage model parameters
has been obtained in a way that the FEM load-displacement data fit as much as
possible to the experimental results. Finite element model of the smooth specimen
has been made in ls-Dyna software. This model has been imported to ls-Opt which
is an optimization software. Ls-opt had to solve the FEM model a lot of times in
order to reach to the optimized solution. Therefore in order to decrease the run-
ning time, axisymmetric 2D model has been created. Load-displacement curve
of the round smooth specimen has been given to the software as the target file.
Possible range of the damage model and plasticity constitutive low parameters,
has been indicated inside the model. Ls-opt using try and error and minimization
of the mean square error between load-displacement data of the FEM and exper-
iment, obtains needed parameters of the damage model and plasticity. Figure 4.1
shows the FE model. Software automatically changes the material model param-
eters in order to reduce the mean square error between the obtained and target
curve. After the completion of the optimization process material model parame-
ters which produce the best results have been determined. Best fitted curve to the
experimental results for the round smooth specimen has been shown in figure 4.2.
More detailed information about the optimization results can be found in section
5.1.

46



CHAPTER 4. NUMERICAL MODELS

Figure 4.1: Axisymetric finite element model of the round smooth specimen.

4.3 Simulation of the experimental tests

4.3.1 First series:Multiaxial torsion tests

3D finite element model of the all specimens has been created. Reduced integrated
cubic elements with the approximate size of the 0.1 mm in the critical region
of the models, has been used. Loading conditions, according to the first series
experimental situations has been simulated in the finite element model. Calibrated
material model has been implemented inside the FE models. Figure 4.3 shows the
finite element model of the all specimens of the first series tests.

4.3.2 Second series:Flat specimens

Three dimensional finite element models of all specimens have been created and
due to symmetry a quarter of the specimens has been simulated in the notched and
hole specimens. For the shear, whole specimen has been simulated however. The
FE-model of the specimens has been implemented into the LS-DYNA software;
cubic reduced integrated 8 node solid elements with the approximate size of 0.1
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Figure 4.2: Best fitted load-displacement curve.

Figure 4.3: Finite element models of the first series experimental tests.

mm in the critical zone have been used. Table 4.1 shows the finite element models
of the flat specimens.

4.3.3 Third Series:Round notched specimens

Experiments which has been done in the third series has been also simulated with
finite element models. All specimen has been modeled both two and three dimen-
sionally. 2D models have been created according to the existence of the asym-
metry inside the models. Axisymmetric shell element with approximate length
of 0.1mm in the notch region has been used in the 2D models. Material model
without damage has been implemented to the 2D models and solved in ls-Dyna
software. Table 4.2 shows 2D finite element models of the third series specimens.
Three dimensional models has been simulated using 8 node solid reduced inte-
grated elements with approximate size of 0.1 mm in the critical region. These
models has been made both in ABAQUS and Ls-Dyna softwares. Material model

48



CHAPTER 4. NUMERICAL MODELS

Table 4.1: Finite element model of the flat specimens.

Notch Radius 20mm Notch Radius 10mm Notch radius 6.67mm

Hole Shear
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with damage have been implemented in Ls-Dyna. Table 4.3 shows the 3D FE
models for the third series experimental tests.

Table 4.2: 2D Finite element model of the round notch specimens.

Smooth Notch Radius 6mm Notch Radius 3mm Notch Radius 1.5mm

4.3.4 Fourth series:Three point bending test

A three dimensional finite element model of the specimen and the experimental
test configuration has been made in Ls-Dyna commercial software. Reduced inte-
grated cubic elements have been used in the simulations. Pusher and the supports
has been simulated also and a contact surface has been defined between the speci-
men and the supports. In the presence of sharp notch, due to the sudden change of
the stress field generally the numerical results of the FE simulations are very sen-
sitive to the element size. Giglio et al.[12] has shown that for Ti-6Al-4V titanium
alloy, the results of the finite element simulation using Bao-wierzbicki’s damage
model is so sensitive to the element size. In order to investigate the sensitivity of
the CDM model to the mesh size three different mesh sizes with an approximate
length of 0.2, 0.1 and 0.075 mm in the critical region around notch have been
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Table 4.3: 3D Finite element model of the round notch specimens.

Smooth Notch radius 6mm

Notch radius 3mm Notch radius 1.5mm

used in the FE models. Figure 4.4 shows the finite element model of the three
point bending test. Calibrated damage model has been implemented inside the FE
model.

Figure 4.4: Finite element model of the TPBT configuration.
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Chapter 5

Results and Discussion

5.1 Constitutive law and damage model calibration

Calibration of the constitutive law is fundamental in the finite element models. In
this research three different plasticity models has been used inside the FEM mod-
els in order to simulate the behavior of Ti-6AL-4V titanium alloy. More detailed
information about these plasticity models can be found in the following lines.
Giglio et al.[12] is calibrated a constitutive law for ti-6Al-4V titanium alloy ac-
cording to the experimental results which has been obtained from the torsion spec-
imens mentioned in section 3.3. Giglio et al.[12] have calibrated for each geom-
etry and loading condition a specific plasticity model . Stress-strain curve can
be divided into two different parts including before and after necking. Before
necking, true stress and strain can be obtained from the engineering stress and
strain. However, after necking due to the localization of the instabilities, value
of the true stress and strain cannot be calculated directly from the experimental
load-displacement data. Considering this fact, Giglio et al.[12] calibrated model
is composed of two different parts responsible for before and after necking. First
part of the model is in the form of the classical power law plasticity models with
three parameters and is constant in all geometries and loading conditions. The
second part of the constitutive law has been added in order to implement effect of
the geometry and loading condition and is different in each test from the others.
Equation 5.1 shows the general form of the plasticity model calibrated by Giglio
et al[12].
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σ = A+Bε
n
p εp ≤ εnecking

σ = A+Bε
n
p +C((

εp

εnecking
)2−1) εp > εnecking

(5.1)

Values of constants in equation 5.1 has been shown in table 5.1 for each geometry
and loading condition.These parameters has been obtained by fitting the numeri-
cal load-displacement data to the equivalent experimental results for each case.

Table 5.1: Plasticity model parameters calibrated by Giglio et al[12].

Geometry Load(KN) A(MPa) B(MPa) n εneckingεneckingεnecking C(MPa)
A 0 930 905.05 0.76 0.13525 −10
A 20 930 905.05 0.76 0.13525 −15.5
A 30 930 905.05 0.76 0.13525 −16.5
A 40 930 905.05 0.76 0.13525 −25
B - 930 905.05 0.76 0.13525 −6

Despite the fact that above mentioned model properly simulate the behavior of the
Ti-6AL-4V titanium alloy, the idea of using specific constitutive law for each test
is not practical. Parameters of the model are specific for one test and by changing
the loading condition they have to be changed. By considering this fact, an average
of the plasticity models considered by Giglio et al[12] has been obtained and used
as the second plasticity constitutive law in the FEM models. This plasticity model
a classical power low with three parameters has been shown in equation(5.2):

σ(MPa) = 925.8+793.7ε
0.6942
p (5.2)

Finally, general form of the last constitutive law, which has been used in all sim-
ulations and is the main model which is implemented inside the finite element
models is shown in equation 5.3:

σ = σ0 +Q1(1− exp(−C1εp))+Q2(1− exp(−C2εp)) (5.3)

As it can be seen in equation 5.3 this model has five parameters and has been ob-
tained according to the experimental data obtained from smooth specimen of the
third series experimental tests(more details about this experiment can be found in
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Figure 5.1: Different constitutive laws which has been used in the models.

section 3.5). The parameters of the model have been obtained in order to have
the minimum difference between the load-displacement of the smooth specimen
in the numerical and experimental results. Calibration has been done using an op-
timization software called ls-opt. Calibration of constitutive law has been done si-
multaneously with the calibration of the coupled damage model. Constitutive law
mainly affects the load-displacement results before failure while damage model is
mostly responsible for the failure moment. More information about the calibra-
tion process are available in section 4.2. Table 5.2 shows the model parameters
obtained from the calibration.
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5.2 Analysis of the experiments

5.2.1 First series experiments

Pure torsion
Above mentioned plasticity model with five parameters equation(5.3) have been
implemented in the finite element model of the pure torsion test. Table5.2 shows
the parameters of the plasticity flow rule and damage model which have been ob-
tained from the calibration process explained in section 4.2. Figure 5.2 shows
equivalent plastic strain(peeq) contour in the finite element model. Stress triax-
iality, Lode angle and equivalent plastic strain values evolution during the test
has been extracted from the finite element model. These values has been calcu-
lated in the critical element of the model which is the element with the greatest
PEEQ value at the failure point. Figures 5.3 and 5.4 respectively show the PEEQ-
triaxiality and PEEQ-Lode angle graphs for the pure torsion test. Average value of
the triaxiality and Lode angle are important parameter which represent the stress
state. These values can be calculated using equations 5.4 and 5.5. These average
values have been calculated in the pure torsion test and the result can be found also
in figures 5.3 and 5.4 . As it can be seen, the average value of the stress triaxiality
is approximately zero which was predictable due to the dominance of the shear
forces during the loading.
Figure 5.5 shows a comparison between the torque-rotation data obtained from
the experiment and finite element model.

ηavg =
1
ε f

∫
ε f

0
ηdε f (5.4)

θavg =
1
ε f

∫
ε f

0
θdε f (5.5)

Table 5.2: Parameters of the calibrated model for plasticity and damage.

Plasticity Damage
σy0(MPa) Q1(MPa) C1 Q2(MPa) C2(MPa) εth S(MPa) Dcr

912.712 499.715 3.627 103.215 146.212 0.2 25 0.1356
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Figure 5.2: PEEQ contour at numerical failure point in the torsion test.

Figure 5.3: Triaxiality-PEEQ evolution curve in the pure torsion test.
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Figure 5.4: Lode angle-PEEQ evolution curve in the pure torsion test.

Figure 5.5: Experimental and numerical torque-rotation data in the pure torsion
test.

Torsion+20KN tension
The plasticity and damage model mentioned in table 5.2 has been implemented to
the finite element model of the torsion+20KN tension test and also to the all tests
in the following simulations. Figure 5.6 shows the distribution of the PEEQ in the
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Figure 5.6: Equivalanet plastic strain contour at failure moment in the tor-
sion+20KN tension test.

model at the numerical failure point. Figure 5.7 shows the damage, plasticity and
Von Mises stress contour at failure moment in the middle cross section of the spec-
imen which is the place of the failure occurrence. As it can be seen, failure starts
from the outer surface of the specimen and evolves towards the center. Similar to
the model of the pure torsion test, value of the equivalent plastic strain, triaxiality
and Lode angle has been extracted in the critical element of the model. Figures 5.8
and 5.9 show the triaxiality-PEEQ and Lode angle-PEEQ graphs obtained from
the analysis. These data has been obtained from the finite element model of the
test with the material model without damage and the plasticity model which has
been mentioned in section 5.1. Average value of the triaxility and Lode angle
respectively according to the equations 5.4 and 5.5 has been calculated also and
been shown in the figures. A comparison between the experimental and numerical
torque-rotation data of the test is shown in figure 5.10. As it can be seen failure
point is predicted properly by the finite element model.
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Figure 5.7: (a)PEEQ (b)Damage and (c)Von Mises stress contour in the middle
cross section of the specimen of torsion+20KN tension test.

Figure 5.8: Triaxiality-PEEQ graph in the torsion+20KN tension test.
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Figure 5.9: Lode angle-PEEQ graph in the torsion+20KN test.

Figure 5.10: Comparison of the torque-rotation results of the experimental and nu-
merical resluts in the torsion+20KN tension test.

Torsion+30KN tension
The similar analysis like the previous tests has been done for torsion+30KN ten-
sion test. Figure 5.11 shows the damage contour before and after failure of the
specimen. Triaxiality-PEEQ and Lode angle-PEEQ evolution graphs and average
values has been shown in figures 5.12 and 5.13 respectively. Damage starts from
the outer surface and evolves towards the center. Comparison of the experimental
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Figure 5.11: Damage contour (a)before and (b)after failure in the torsion+30KN
tension test.

and numerical torque-rotation data has been shown in figure 5.14.

Torsion+40KN tension
The equivalent plastic strain contour at the failure moment, for torsion+40KN
tension test has been shown in figure 5.15. The maximum values are in the mid-
dle of the specimen and failure starts from the outer surface of the middle cross
section. Figure 5.16 demonstrate the failed specimen and the failure surface for
torsion+40KN tension test. Triaxiality-PEEQ and Lode angle-PEEQ curves can
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Figure 5.12: Triaxiality-PEEQ evolution curve and average values at failure in the
torsion+30KN tension test.

Figure 5.13: Lode angle-PEEQ evolution curve and average values at failure in the
torsion+30KN tension test.

be found in figures 5.17 and 5.18 respectively. Torque-rotation data obtained from
the experimental test and numerical analysis has been compared in figure 5.19.
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Figure 5.14: Comparison of the torque-rotation results of the experimental and nu-
merical results in the torsion+30KN tension test.

Figure 5.15: PEEQ contour at failure moment in the torsion+40KN tension test.

High triaxiality specimen (specimen B)
Specimen B is a specimen which has been designed in order to have high stress
triaxialites and stress concentration in the test. Figure 5.20 shows Von Mises
stress contour before failure. As it can be seen high values of stress has been con-
centrated in the notched region. Due to the symmetry and high values of stress,
damage is also highly concentrated in the notch region and failure starts in the
middle cross section A-A as it has been shown in figure 5.21(a). In the cross sec-
tion A-A maximum values of damage are in the central region (figure 5.21(b)) and
therefore according to the model, failure will start from the center of the specimen
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Figure 5.16: Specimen after failure in the torsion+40KN tension test.

Figure 5.17: Triaxiality-PEEQ evolution curve in the torsion+40KN tension test.

and propagates towards the surface and is different from torsion tests which failure
starts from the surface and not from the center (figure 5.7). Triaxiality-PEEQ and
Lode angle-PEEQ evolution curves during the loading has been shown in figures
5.22 and 5.23 respectively. Failure points has been mentioned also in the figures
and has been calculated according to the average values of the triaxiality and Lode
angle during the loading according to the equations 5.4 and 5.5. Figure 5.24 shows
experimental and numerical load-displacement data obtained for specimen B.
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Figure 5.18: Lode angle-PEEQ evolution curve in the torsion+40KN tension test.

Figure 5.19: Comparison of the torque-rotation results of the experimental and nu-
merical results in the torsion+40KN tension test.

Flat smooth specimen
Last specimen in the first series experimental tests is the flat one(see table 3.2).
Load-displacement data comparison between the experimental and numerical re-
sults has been shown in figure 5.25. Like other experiments evolution of the tri-
axiality and Lode angle in the critical element of the FE model has been obtained
which has been illustrated respectively in figures 5.26 and 5.27.
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Figure 5.20: Von Mises stress contour before failure in the notched specimen B.

Figure 5.21: (a)Damage contour in specimen B and location of cross section A-
A(b)Damage contour in cross section A-A.
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Figure 5.22: Triaxiality-PEEQ evolution curve in specimen B during the loading.

Figure 5.23: Lode angle-PEEQ evolution curve in specimen B during the loading.

5.2.2 Second series of experiments:Flat specimens

20mm notched specimen
The first flat specimen in the second series of tests is specimen with 20mm notch
radius which its geometry has been showed in table 3.2. As it has been mentioned
in section 4.3.4 due to the symmetry one quarter of the specimen has been made in
the finite element models. Like as previous models material model which has been
mentioned in table 5.2 and has been obtained from the calibration, has been imple-
mented inside the model in order to obtain numerical load-displacement results.
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Figure 5.24: Comparison of the experimental and numerical load-displacement re-
sults in the tensile test of specimen B.

Figure 5.25: Comparison of the experimental and numerical load-displacement re-
sults in the tensile test of the smooth flat specimen.

Figure 5.28 shows the equivalent plastic strain contour before failure(numerical
failure point) in the 20mm notched specimen.
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Figure 5.26: Triaxiality-PEEQ curve in the smooth flat specimen.

Figure 5.27: Lode angle-PEEQ curve in the smooth flat specimen.

Due to the existence of notch, plastic strain is localized in the middle cross sec-
tion of the specimen which has the smallest width. Maximum values of PEEQ
and damage are located in the central region of the middle cross section of the
specimen. Therefore failure starts in the middle cross section of the specimen
which has the minimum width and inside the cross section propagates from center
toward the surface of the specimen. Figure 5.29 shows respectively damage and
PEEQ contour in the middle cross section.
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Figure 5.28: Equivalent plastic strain contour at failure point in the flat specimen
with 20mm notch radius.

Figure 5.29: (a) Damage and (b) PEEQ contours in the middle cross section of the
flat specimen with 20mm notch radius.

Similar to the other tests, triaxiality-PEEQ and lode angle-PEEQ evolution curves
during the loading has been obtained also for the 20mm notched specimen and has
been shown in figures 5.30 and5.31 respectively. These graphs has been obtained
in the critical element (the element with the highest value of PEEQ at failure).
Values of the PEEQ and average triaxiality and Lode angle has been shown also
in figures 5.30 and 5.31. In order to make a comparison between the experiment
and numerical model, load-displacement data obtained from experiment and finite
element model has been showed in figure 5.32.
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Figure 5.30: Triaxiality-PEEQ evolution curve during the loading in the flat speci-
men with 20mm notch radius.

Figure 5.31: Lode angle-PEEQ evolution curve during the loading in the flat spec-
imen with 20mm notch radius.

Flat specimen with 10mm notch radius
Due to the smaller value of the notch radius in this specimen relative to the pre-
vious test explained in the above section, stress is more concentrated and failure
occurs in smaller displacement. Figure 5.33 shows damage contour just before
failure in the finite element model which is a quarter of the real specimen. As it
can be seen also in this test according to the finite element models, failure starts
in the center of the specimen and propagates toward the surface and notch root.
Triaxiality-PEEQ and Lode angle-PEEQ evolution curves have been shown in fig-
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Figure 5.32: Comparison of the experimental and numerical load-displacement re-
sults in in the flat specimen with 20mm notch radius.

ures 5.34 and 5.35. Due to the existence of the sharper notch, average value of
triaxiality is higher in compare with flat specimen with 20mm notch radius. As
the most important parameter to investigate the damage models accuracy, experi-
mental and numerical load-displacement data has been compared in figure 5.36.

Flat specimen with 6.67 mm notch radius
The specimen with 6.67 mm notch radius is the specimen with the highest stress
triaxiality among the flat specimens. Triaxiality-PEEQ and Lode angle-PEEQ
evolution curves during loading has been shown in figures 5.37 and 5.38. Figure
5.39 shows experimental and numerical load-displacement data during the test. It
can be seen that displacement at failure is smaller in compare with other plane
stress specimens for the specimen with 6.67mm notch radius which is due to the
existence of higher stress triaxialities. Similar to the other notched plane stress
specimens failure starts from the center of the specimen and propagates toward
the notch root in the surface. Dunand and Mohr[61] carried out some experimen-
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Figure 5.33: Damage contour just before the failure in the flat specimen with 10mm
notch radius.

Figure 5.34: Triaxiality-PEEQ evolution curve during the loading in the flat speci-
men with 10mm notch radius.

tal tests and numerical simulations on the specimens made from TRIP780 steel
and similar geometry of flat specimens of this research. Dunand and Mohr[61]
also verified that crack will start from the center of the specimens and propagates
toward center.
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Figure 5.35: Lode angle-PEEQ evolution curve during the loading in the flat spec-
imen with 10mm notch radius.

Figure 5.36: Comparison of the experimental and numerical load-displacement re-
sults in the plane stress specimen with 10mm notch radius.

Flat specimen with hole
Geometry of specimen with hole is slightly different from the other notched flat
specimens. Evolution of stress triaxiality and Lode angle during loading is there-
fore different from the notched specimens. Value of stress triaxiality and Lode
angle are approximately constant during the loading which is different from the
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Figure 5.37: Triaxiality-PEEQ evolution curve during the loading in the flat speci-
men with 6.67mm notch radius.

Figure 5.38: Lode angle-PEEQ evolution curve during the loading in the flat spec-
imen with 6.67mm notch radius.

general trend of triaxiality and Lode angle in the notched flat specimens explained
above. Average value of stress triaxility is smaller than the notched flat speci-
mens however Lode angle is greater in the specimen with hole in compare with
notched flat specimens. Figures 5.40 and 5.41 show triaxiality-PEEQ and Lode
angle-PEEQ evolution curves during the loading and at the failure point.

From the point of view of fracture initiation, flat specimen with hole is similar
to the notched flat specimens and fracture starts from the center of the specimen.
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Figure 5.39: Comparison of the experimental and numerical load-displacement re-
sults in the flat specimen with 6.67mm notch radius.

Figure 5.40: Triaxiality-PEEQ evolution curve during the loading in the flat speci-
men with hole.

Damage contour and propagation of crack during the loading has been shown in
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Figure 5.41: Lode angle-PEEQ evolution curve during the loading in the plane
stress specimen with hole.

Figure 5.42: Damage contour and crack propagation in flat specimen with hole.

figure 5.42 and it is obvious that failure first stars from the center of the specimen.
The fracture surface is the middle cross section of the specimen which has the
minimum width and cross section area. Load-displacement data during the exper-
iment and numerical model has been compared in figure 5.43.

Flat shear specimen
Last specimen in the flat specimen test series is the shear specimen. This specimen
has been designed in order to have shear dominant failure. Figure 5.44 obviously
shows that value of triaxiality during the loading is always around zero and the
average value is so close to zero. This proves that failure is due to the shear and
is different from the other flat specimens where failure occurs due to the tension.
Figure 5.45 shows the FEM model of the shear specimen and damage contour in
the failure region before and after failure. It can understood also from figure 5.45
that failure occurs due to the shear. Evolution curve of Lode angle-PEEQ during
the loading at the critical element has been showed in figure 5.46. Similar to the
triaxiality, Lode angle is always around zero during the test. Finally a comparison
has been made between experimental and numerical load-displacement results in
figure 5.47.
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Figure 5.43: Comparison of the experimental and numerical load-displacement re-
sults in the flat specimen with hole.

Figure 5.44: Triaxiality-PEEQ evolution curve during the loading in the flat shear
specimen.
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Figure 5.45: Damage contour in the flat shear specimen before and after failure.

Figure 5.46: Lode angle-PEEQ evolution curve during the loading in the flat shear
specimen.

5.2.3 Third series tests: Round specimens

Round smooth specimen
Round smooth specimen of third series experimental tests has been used in or-
der to calibrate material model (detailed information can be found in section 4.2).
Therefore there is a very good agreement between the experimental and numeri-
cal load-displacement data as it can be seen in figure 4.2. Triaxiality-PEEQ and
Lode angle-PEEQ curves during the loading has been extracted from the critical
element of the model and has been shown in figures 5.48 and 5.49 respectively.
Value of Lode angle is almost constant and equal to 1. Which is quite high relative
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Figure 5.47: Comparison of the experimental and numerical load-displacement re-
sults in the plane stress shear specimen.

to the most of other tests in sections 5.2.1 and 5.2.2.

Round specimen with 6mm notch
Geometry of round specimen with 6mm notch can be found in table 3.6. Value of
triaxiality has to be higher in the round notched specimens in compare with the
round smooth specimen. Therefore as it can be seen in figures 5.50 and 5.51 which
are the evolution curves of PEEQ-triaxiality and PEEQ-Lode angle, average value
of triaxiality in 6mm notched specimen is higher than smooth. On the other hand
failure PEEQ is smaller in compare with smooth specimen. PEEQ distribution
contour at failure point has been shown in figure 5.52. Maximum PEEQ occurs
in the middle of the notched region and then specimen fails also in the middle
section and damage starts from the center of the specimen and propagates toward
the surface. Load-displacement curves of experiment and numerical simulation
has been shown also in figure 5.53.
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Figure 5.48: Triaxiality-PEEQ evolution curve during the loading in the round
smooth specimen.

Figure 5.49: Lode angle-PEEQ evolution curve during the loading in the round
smooth specimen.

Round specimen with 3mm notch
In the all of round specimens failure occurs in the middle cross section of the
specimen which has the smallest diameter. Damage also starts in all cases from
the center of the cross section and propagates towards the surface of the specimen.
Figure 5.54 shows the evolution contours of the damage and PEEQ in the middle

82



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.50: Triaxiality-PEEQ evolution curve during the loading in the round
smooth specimen with 6mm notch radius.

Figure 5.51: Lode angle-PEEQ evolution curve during the loading in the round
specimen with 6mm notch radius.

cross section A-A during the loading which demonstrate that initially damage
starts in the center. Similar to the other experiments, triaxiality-PEEQ and Lode
angle-PEEQ curves have been shown also in figures 5.55 and 5.56 respectively.
Average values of the triaxiality and Lode angle have been calculated and demon-
strated also in figures 5.55 and 5.56. A comparison between the load-displacement
data obtained from the experiment and numerical simulations has been shown in
figure 5.57.
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Figure 5.52: PEEQ distribution contour in the round specimen with 6mm notch
radius.

Figure 5.53: Load-displacement data comparison between experiment and numer-
ical simulations in the round specimen with 6mm notch.
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Figure 5.54: (a)Damage and (b)PEEQ contours during the loading in the round
specimen with 3mm notch radius.

Figure 5.55: Triaxiality-PEEQ evolution curve during the loading in the round
specimen with 3mm notch radius.
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Figure 5.56: Lode angle-PEEQ evolution curve during the loading in the round
specimen with 3mm notch radius.

Figure 5.57: Load-displacement data comparison between experiment and numer-
ical simulations in the round specimen with 3mm notch.

Round specimen with 1.5mm notch
Round specimen with the 1.5mm notch radius has the sharpest notch among the
notched specimens of these series of tests and therefore highest values of stress
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Figure 5.58: PEEQ contour at the numerical failure point in the round specimen
with 1.5mm notch radius.

concentration in the notched region and highest stress triaxiality also. Figure 5.58
shows the PEEQ contour in the specimen at the numerical failure moment and
as it can be seen equivalent plastic strain is highly concentrated in the notched
region. Triaxiality-PEEQ and Lode angle-PEEQ evolution curves combined with
the average values of triaxiliy and Lode angle during the loading have been shown
also in figures 5.59 and 5.60.

As it has been mentioned before, in the all of these series of experiments due
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Figure 5.59: Triaxiality-PEEQ evolution curve during the loading in the round
specimen with 1.5mm notch radius.

Figure 5.60: Lode angle-PEEQ evolution curve during the loading in the round
specimen with 1.5mm notch radius.

the existence of the notch failure occurs in the middle of the specimen which
has the minimum cross section area. Figure 5.61 shows damage, PEEQ and Von
Misses stress contours in the middle cross section at the failure moment. Damage
starts from the center and evolves toward the surface of the specimen. Load-
displacement curves of experiment and finite element simulation can be found in
figure 5.62.

Failure diameter of the third series specimens
In the third series of experiments, failure diameter of the specimens has been mea-
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Figure 5.61: (a)Damage and (b)PEEQ and (c) Von Mises stress contours at the
numerical failure moment in the round specimen with 1.5mm notch
radius.

sured also. These specimens are round and therefore it is possible to measure the
average failure strain using Bridgman’s solution (equation 5.6):

ε = 2ln(
φ0

φ
) (5.6)

Initial and failure diameter of the all of round specimens of the third series has
been measured. Failure diameter of the corresponding finite element models has
been measured also. Average plastic strain according to the equation 5.6 has been
calculated for each test. Table 5.3 shows the obtained values.

Table 5.3: Initial and failure diameter of the round specimens.

Specimen geometry
Experiment FEM

Initial diameter(mm) Failure diameter(mm) Failure strain Initial diameter(mm) Failure diameter(mm) Failure strain
Round smooth 3.164 2.442 0.51804 3 2.23899 0.58517

Round notch 6mm 3.097 2.71 0.26697 3 2.53728 0.33504
Round notch 3mm 2.968 2.539 0.31224 3 2.56584 0.31265

Round notch 1.5mm 2.993 2.71 0.19865 3 2.73588 0.18432
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Figure 5.62: Load-displacement data comparison between experiment and numer-
ical simulations in the round specimen with 1.5mm notch radius.

5.2.4 Three point bending test(TPBT)

The stress gradient near the notch in the three point bending test is remarkable
and is therefore an interesting point to check the ability of the calibrated model.
The calibrated model parameters have been used in the finite element models with
different mesh sizes. Similar to the other experiments, the load-displacement be-
havior of the specimen under the test has been used as the main investigator of
the models predictions and has been compared with the experimental data. Figure
5.63 shows the load displacement data obtained from the experimental test and the
numerical simulations. As mentioned in section 4.3.4 , three different mesh sizes
have been used in the finite element models. Figure 5.63 shows the high mesh
sensitivity in the results. Decreasing the mesh size significantly affects the failure
displacement and decreases its value.
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Figure 5.63: Load-displacement data comparison between experiment and numer-
ical simulations in the three point bending test-original model param-
eters.

The calibrated model fails to exhibit good geometry transferability to the three
point bending test Although the predicted failure point for the finite element model
with a 0.075mm mesh size is closer to the experimental data than with a 0.2mm
mesh size element model, there is still a sufficiently high difference between the
numerical and experimental failure displacements. Therefore a new series of dam-
age model parameters has been chosen for the TPBT and another series of finite
element simulations has been performed with these new model parameters. Ta-
ble 5.4 shows the old and new damage model parameter values. Changing the
threshold strain εth strongly affect the behavior of the Lemaitre’s damage model.
Physically, εth indicates the value of the strain at which damage starts. In the
first series of the damage model parameters the value of the εth is 0.2, which is
high for the three point bending test. Generally the value of the failure strain de-
creases with the increment of the triaxiality. Therefore the value of 0.2 for the
threshold strain means that the failure stain will be greater than 0.2 which accord-
ing to the existence of the high triaxiality in the notch tip is not very appropriate
for the TPBT. According to this fact, the value of the threshold strain has been
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reduced in the new model parameters, to 0.1. The value of the parameter S has
also been reduced according to the reduction of the εth. The aim of the applica-
tion of the second series of the model parameters is to show that with appropriate
model parameters Lemaitres model is able to better predict the failure point in
the three point bending test. The experimental and numerical load-displacement
results obtained with new damage model parameters are shown in figure 5.64.
The numerical results are closer to the experimental values with the new series of
the model parameters. Therefore, even though Lemaitres model fails to include
geometry transferability from smooth specimen to the three point bending test it
is still able to predict the failure point in the three point bending test with a new
calibration for the material parameters. Each calibration is valid for some loading
conditions and when the loading conditions are very different from the initial case
which has been used for the calibration, new calibrations are necessary.

Table 5.4: Damage model parameters

Original calibration New calibration
εth S(MPa) Dcr εth S(MPa) Dcr

0.2 25 0.1356 0.1 7.5 0.1356

Also with the new series of the damage model parameters the results are signif-
icantly affected by the mesh size. The failure displacement of the 0.2mm mesh
size still has 50% difference with the experimental data. However, the 0.1mm and
0.075 mesh sizes gives acceptable results. Figures 5.65 and 5.66 show respec-
tively the accumulative equivalent plastic strain (PEEQ) and the triaxiality evolu-
tion with the displacement in the models with different mesh sizes. The values of
the PEEQ and the triaxiality have been obtained from the critical elements in the
model (the element which fracture starts from) and the value of the displacement
represents the total displacement.

Figures 5.65 and 5.66 clearly show the general trend of the evolution of PEEQ and
triaxiality are identical. However, with an increase of the mesh size, at a constant
displacement, the model with the smaller mesh size predicts higher values for the
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Figure 5.64: Load-displacement data comparison between experiment and numeri-
cal simulations in the three point bending test-modified model param-
eters.

Figure 5.65: PEEQ-displacement evolution in the finite element models of three
point bending test with different mesh sizes.
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Figure 5.66: Triaxiality-displacement evolution in the finite element models of
three point bending test with different mesh sizes.

PEEQ and the triaxiality, which explains the earlier occurrence of the failure in the
models with a smaller mesh size. In fact, there is a delay in the results of the mod-
els with bigger element size with respect to the models with smaller elements. Due
to the high stress state fields in the small areas around the notch tip and the sudden
changes of the stress value, bigger elements are unable to simulate these situa-
tions as well as smaller elements. Figure 5.67 shows the PEEQ-Stress triaxiality
curve obtained from the critical element in the models with the different element
size. In this case there is no significant effect of the mesh size. The comparison
of figures 5.65 and 5.66 with figure 5.67 shows that to obtain the same value for
the triaxiality and PEEQ in the model with the bigger element size, higher values
for the load (displacement) are needed. However, the trend of the triaxiality and
PEEQ is the same.

Damage distribution contour at the failure point also has been shown in figure
5.68. In the numerical models fracture starts from the central point beneath the
notch.
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Figure 5.67: PEEQ-triaxiality evolution in the finite element models of three point
bending test with different mesh sizes.

Figure 5.68: Failure initiation in the three point bending test
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Figure 5.69: Triaxiality-PEEQ curve during the loading in the all of the experi-
ments.

5.3 Evaluation of the experiments based on the stress
triaxiality and lode angle

Triaxiality-PEEQ and Lode angle-PEEQ evolution curves for each experiment has
been shown in the previous sections. Figures 5.69 and 5.70 show triaxiality-PEEQ
and Lode angle-PEEQ curves together for all of the experiments in order to under-
stand the difference in the stress state in the experiments. As it has been mentioned
before, these graphs have been obtained from finite element models and extracted
from the critical elements (element which failure starts from) at the experimental
failure displacement. Average triaxiality and Lode angle for each experiment has
been calculated using equations 5.4 and 5.5 and have been shown in figure 5.71. It
can be seen that average triaxiality and Lode angle of the performed experiments
are distributed in the large area, demonstrating that very different stress states have
been investigated. Blue curve in figure 5.71 which demonstrates the relationship
between the triaxiality and Lode angle in the plane stress situation has been cal-
culated using equation 5.7 [62]:

−27
2

η(η2− 1
3
) = Sin(

πθ

2
) (5.7)

In the Pure torsion test, both the triaxiality and Lode angle values are almost con-
stant during loading and average value is approximately zero which guarantees
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Figure 5.70: Lode angle-PEEQ curve during the loading in the all of the experi-
ments.

Figure 5.71: Average Lode angle-Triaxiality values in the all of the experiments.

the shear dominant failure in the specimen. In the other torsion tests with pre-
applied tension loads (20, 30, 40KN) general trend of the evolution of triaxiality
and Lode angle are similar. Although the general trend is the same average values
of triaxialty and Lode angle increases by increasing the pre applied tension loads.
Average triaxiality varies from 0 to 0.3 which causes failure due to the mixed
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Figure 5.72: SEM photos of the failure surface (a) Torsion+30KN tension
Mag.1000X (b) Tensile test of specimen D Mag.1000X.

shear and tension mechanism. Tensile test of the notched specimen B, has a stress
state which is different from all of the other tests have been done in the first series
of experiments. Both the trend of evolution and average values of triaxiality and
Lode angle in the tensile test of the notched specimen B is different from mul-
tiaxial torsion tests. Due to the existence of the notch high values of triaxiality
and Lode angle are obtained in specimen B. While the stress state is different in
specimen B, failure mechanism will be also different from other experiments in
the first series. Tensile dominant fracture which occurs with the large number
of dimples and microvoids inside the specimen is the governing failure mecha-
nism. Figure 5.72 shows scanning electron microscope(SEM) photos taken from
the failure surface of the trosion+30KN tension test and tensile test of specimen
B. In the multiaxial torsion tests, failure is characterized by several dimples on
the failure surface. No micro cracks exist on the surface and the dimples are rela-
tively uniform in size without the presence of the particularly large dimples. The
overall size of surface dimples is smaller in these test specimens compared with
flat notched specimens. Sliding effects of the surfaces caused by shear are also
evident on the failure surface of the multiaxial torsion tests . The round notched
specimen has a medium high triaxiality (around 1). The failure is ductile with
typical dimple rupture which indicates that tensile stress is dominant. Many small
dimples surrounded by larger ones are clearly visible.
In the second series of experiments which includes the flat specimens shear spec-
imen as it is expected, has average stress triaxiality and Lode angle values which
are close to zero and is similar from this point of view to the pure torsion exper-
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iment in the first series of tests. However, during the loading in flat shear speci-
men stress triaxiality and load angle varies which in pure torsion test it is almost
constant. In the notched flat (R20, R10 and R6.67) specimens stress triaxiality
evolution during the loading has a similar trend but the average value increases by
decreasing the notch radius. In these specimens triaxiality varies between 0.4-0.6
which is relatively high and causes tensile dominant failure. In the flat specimen
with hole, evolution trend of the triaxiality is different from the notched flat spec-
imens. In the specimen with hole, triaxiality is almost constant during the loading
and proportional loading condition exists in the test. On the other hand, in the
notched specimens triaxiality exhibits strong variations during the loading. SEM
photos of the failure surfaces of flat specimens can also proves the existence of
the different failure mechanisms inside the experiments. Figures 5.73 and 5.74
show SEM photos of the failure surface of the flat shear and notched flat speci-
mens respectively. In the notched flat specimens, many dimples of varying size
and secondary cracks are present on the failure surface of the specimens. This
surface morphology is typical of a mostly ductile fracture and hence it is possible
to state that the flat notched specimens have a ductile fracture. However, in some
cases the fracture surface exhibits also some partially brittle ruptures even if the
fracture is mainly ductile. Among the notched flat specimens, the specimen with
a 20mm notch radius which has the smallest triaxiality value, has a more ductile
failure surface with less micro cracks on the failure surface. The failure surface of
the flat specimen with a hole is quite similar to the notched flat specimens. Also
in this case micro cracks are detectable on the failure surface. However, it seems
that failure mechanism is more ductile compared with the notched flat specimens
(the triaxiality is lower for the flat specimen with a hole). The failure surface of
the shear specimen is different from the other flat specimens. Average triaxiality
and Lode angle values are close to zero in the shear specimen and therefore very
distant from the other tested flat configurations. The shear morphology area is
deformed by shear stresses and is stretched along the applied load, with no de-
tectable cracks present on the failure surface.

In the third series of experiments(round smooth, round notch 6mm, round notch
3mm and round notch 1.5mm) all experiments provide Lode angle value which is
almost constant during the loading and is approximately equal to 1. These region
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Figure 5.73: SEM photos of the failure surface in shear flat specimen (a)Mag.35X
(b)Mag.150X.

is different from other experiments in the first and second series from the Lode
angle point of view. On the other hand, the triaxiality changes strongly in the all
of the specimens tested in these series. In all of the round notched specimens tri-
axiality evolution trend is similar while average value increases with decrement
of the notch radius. Round notch specimen with the 1.5 mm notch radius has the
minimum fracture strain value. Like notched flat specimen, in the round notch
specimens failure mechanisms occurs in the tension dominant region and is due
to the micro voids and dimples nucleation and enlargement. Cup-cone fracture
has been occurred in the all of the round specimens. Figure 5.75 shows the failure
surface of the round specimens.
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Figure 5.74: SEM photos of the failure surface of flat specimens(a)Notched 20mm
500X(b)Notched 20mm 1200X(c)Notched 10mm 500X(d)Notched
10mm 1200X(e)Notched 6.67mm 600X(f)Notched 6.67mm
1200X(g)Hole 600X(h)Hole 750X.

101



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.75: SEM photos of the failure surface of round specimens(a)Smooth
500X(b)Smooth 750X(c)Notched 6mm 500X (d)Notched 6mm
1500X(e)Notched 3mm 500X(f)Notched 3mm 1500X(g)Notched
1.5mm 600X(h)Notched 1.5mm 1000X.

102



CHAPTER 5. RESULTS AND DISCUSSION

5.4 Error analysis of the CDM models predictions

As it can be seen in figures of the previous sections which are related to the com-
parison between the experimental and numerical load-displacement data, CDM
models predictions for the failure displacement are generally different from the
experimental results, which shows that changing the geometry affects the damage
model parameters calibration and CDM model is not able to predict the failure
displacement with the same accuracy of the calibration test. This difference be-
tween the numerical and experimental results varies in the different cases, for
some very good accuracy is still exist while in other cases results have consider-
able errors. However, in most of the cases CDM model is still able to predict the
failure displacement in a satisfactory way. In order to analyze the experimental
and numerical load-displacement data of all experiments together, difference be-
tween the experimental failure displacement and the value predicted by the finite
element models has been calculated for each test. Figures 5.76 and 5.77 show
triaxiality-error and Lode angle-error graphs for CDM model obtained from the
comparison between the experiment and numerical models. These data have been
obtained from load-displacement graphs presented in the previous sections. Dif-
ferences between the experimental and numerical failure displacement has been
determined for each test and corresponding error has been calculated. These error
values has been combined with the relevant average triaxiality and Lode angle of
each experiment. Red line in this figures demonstrate 20% error limit. As it can be
seen in figures 5.76 and 5.77 in most of the cases error value for the CDM models
is less than 20% which guaranties a reasonable accuracy of the above mentioned
model for the different loading conditions. In some cases model even can predict
the failure displacement with very high accuracy (less than 5% error). However, in
two regions of triaxiality CDM model fails to provide appropriate predictions and
the error is more than 20%, and in some cases reaches to 67%. The first region is
the one between 0.15−0.35 triaxiality (First series of experiments: torsion+40KN
tension). Experimental test of the torsion+40KN tensile load which has the aver-
age triaxiality of 0.164 has biggest error (35%) in this region. As it can be seen
in figures 5.76 and 5.77, error of the CDM model predictions in the other two ex-
perimental points which are close to this critical point is also relatively high (17.5
and 21.7%). A possible explanation for this error can be the existence of a dis-
continuity in the fracture locus of the material in this region. Some researches has
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shown that effect of triaxiality on the fracture strain is not continuous ([8], [9],
[12]) and around this triaxiality range there is a sharp discontinuity in the frac-
ture locus and the general trend of the evolution of fracture strain with triaxiality
changes. This transient region is characterized by a failure mechanism changing
from shear dominant failure to the tensile dominant and failure mechanics is a
combination of shear and tensile. Also in the SEM photo of the torsion+30KN
tension test in figure 5.72 it can be seen that number of microvoids in the fracture
surface are more than shear specimen and less the specimen B with notch. This
phenomenon may lead to some additional errors in the predictions of the model
when the loading condition is close to this region.

Figure 5.76: Triaxiality-error graph of the predictions of the CDM model for the
failure displacement of experiments.

Other region which model has big error in the prediction of the failure displace-
ment, is the experiments regarding to very high triaxiality around 1 (First series ex-
periments: specimen B and third series experiments: round specimen with 1.5mm
notch). CDM model has respectively 31.25% and 67.27% error in this point. This
error can be related to the experimental test which has been used in order to cali-
brate CDM model. As it has been explained in section 4.2 tensile test of the round
smooth specimen has been used for the calibration of the CDM specimen. High

104



CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.77: Lode angle-error graph of the predictions of the CDM model for the
failure displacement of experiments.

triaxiality value in the notched round specimens is so far from the stress state of
the calibration test and can be the potential reason for this error in the models
prediction. In fact these error shows when it comes to the practical applications
of the Lemaitre CDM model model, experimental tests which are used for the cal-
ibration is important and it is better to use damage models with more caution in
the loading conditions which are very far from the calibration conditions. Having
knowledge about the stress state of the component which is the aim of investiga-
tion therefore plays a crucial role in the application of the CDM model.

5.5 Effect of triaxiality and Lode angle on the plas-
ticity constitutive law

Since the experimental results obtained in 1931 by Taylor and Quinney [63], the
most spread yielding criterion is the Von Mises and the most popular continuum
plasticity model is the J2-flow theory. This model can be applied with satisfactory
results to many different metals but for some materials its application can lead to
an inaccurate material response. The reasons for this discrepancy can be mainly
attributed to the hypothesis of the model, which states that the hydrostatic stress
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(first invariant of the stress tensor, J1) and the third invariant of the stress deviator
(lode parameter, J3) are assumed to have no effect on plasticity. According to [64],
the hydrostatic pressure can affect the size of the yield surface, whereas the lode
angle parameter is responsible for its shape. The 1045 steel is an example of a
metal which has no relevant hydrostatic pressure and lode angle dependence [44].
However, hydrostatic stress and especially lode angle play an important role in the
plasticity of other metals like aluminum alloys such as 2024-T351 and 2A12-T4
[64],[44]. Comparison of the experimental and numerical load-displacement re-
sults obtained in this research and reported in the previous sections also clearly
shows that the initially calibrated constitutive law cannot perfectly predict the ex-
perimental load-displacement data in all experiments and changing triaxiality and
lode angle affects the constitutive law. Effect of triaxiality and lode angle on the
constitutive law is the main reason of the difference between the experimental and
numerical load-displacement data obtained in this research and damage model has
no significant role in this difference before failure point. As an example to show
more clearly variation of the constitutive law by changing the stress triaxiality and
Lode angle, special constitutive law has been calibrated for each experiment of
the second series of tests which include flat specimens (see section 3.4) in this
section. Similar to the main constitutive law ls-opt software has been used and
for each experiment parameters of the constitutive law has been obtained in order
to minimize error between numerical and experimental load-displacement results.
General shape of the constitutive law is similar to equation 5.3 and no damage
model has been considered in this case. Table summarizes parameter obtained for
the constitutive law for each of the second series experiments. True stress-true
strain graphs according to these constitutive laws and a comparison between the
experimental load-displacement data and the numerical prediction has been shown
respectively in figures 5.78 and 5.79. As it can bee seen in table 5.5 and figure
5.79 constitutive laws for different experiments are generally different with each
other which demonstrate the effect of the stress triaxiality and Lode angle on the
constitutive law. Due to the fact that all of constitutive law in this section have
been obtained separately from the optimization process, in all cases experimental
and numerical load-displacement data fit perfectly to each other (figure 5.78).
it worth to mention that variation of the constitutive law might affect also the fail-
ure point in the CDM model due to the existence of the coupling between damage
and plasticity in these kind of models. However, from a practical point of view,
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once a model has been calibrated, it will be applied to the other loading conditions
and aim of this research is to investigate the errors that may exist in the predictions
of the damage models including errors due to the variation of the plasticity.

Table 5.5: Damage model parameters

Notch radius 6.67mm Notch radius 10mm Notch radius 20mm Shear Specimen with hole
σy0[MPa] 977.69 757.24 748.2 996.19 937.6
Q1[MPa] 72.69 129.9 139.7 331.66 96.95
C1[MPa] 26.92 19.52 18.95 4 0.0212
Q2[MPa] 30 198.15 263.24 1.5 163.43
C2[MPa] 30.47 293.7 554.73 600 6.24
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Figure 5.78: Comparison between experimental and numerical load-displacement
results obtained from optimized constitutive laws for flat specimens.

Figure 5.79: True stress-true strain curves for the flat specimens:obtained from op-
timized constitutive laws.
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Conclusions

Lemaitre’s continuum damage mechanics model has been investigated in this re-
search under different loading conditions. All specimens have been made from
ti-6Al-4V titanium alloy which is a commonly used material in the different ap-
plications specially aerospace industry. Lemaitre’s continuum damage mechanics
model and plasticity constitutive law with five parameters, has been calibrated for
ti-6Al-4V titanium alloy and material model parameters has been obtained us-
ing inverse engineering technique and uni-axial tensile test of the round smooth
specimen. A comprehensive experimental test program has been performed on
the specimens with different geometries and loading conditions including multi-
axial torsion and uni-axial tensile tests on the smooth and notched round and flat
specimens. Finite element model of all of experiments has been made using Ls-
Dyna and Abaqus commercial softwares. Load-displacement data obtained from
the finite element models has been compared with the experimental results in the
all cases. Comparison of the failure displacement in numerical models and ex-
periments showed that Lemaitre’s continuum damage mechanics model accuracy
changes by changing the geometry and loading conditions and the same accu-
racy of the calibration can not be achieved for the other experiments. However,
Lemaitre’s model was still able to predict the failure displacement in most of the
cases with quite good accuracy and less than 20% error. By changing the stress
state which can be represented by variation of the stress triaxiality and lode angle,
accuracy of the predictions of model for the failure displacement changes. In the
two region, model predictions for the failure displacement has errors bigger than
20%. First region is the triaxiality region around 0.15-0.35 and lode angle around
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0.3-0.5. Combination of the shear and tensile loads is responsible for the failure in
this region and transition in the failure mechanism occurs in this region. Second
region which models predictions has big errors is related to the experiments with
high value of triaxiality and lode angle (bigger than 1). Very different stress state
in this region in compare with calibration condition can be the possible reason
for big error of the model. Lemaitre’s model was also able to predict the critical
points in all experiments properly.
Analyze of the stress state in the experiments by calculating the average stress tri-
axaility and lode angle demonstrated that different loading conditions which leads
to different failure mechanism has been created in the experiments. SEM photos
of the failure surface of the experiments also shows different failure phenomenons
in the experiments.
It has been shown by comparison of the numerical and experimental load-displacement
data that changing the triaxiality and lode angle clearly affect the plasticity con-
stitutive law which normally supposed to be independent from the geometry and
loading conditions. This effect has to be taken into consideration in the practical
applications.
For the three point bending test, model was not able to achieve a reasonable accu-
racy in the prediction of the failure displacement with original calibration obtained
from the smooth specimen however new parameters for the model can improve the
accuracy of the model. Very high mesh sensitivity of the results also has been ob-
served for the three point bending test.
Investigation of the failure phenomena from the micro-structural point of view
is an interesting topic for the future studies. especially in the transient region
between the shear dominant and tensile dominant failure more studies will be use-
ful to understand more clear the physical phenomena. More experiments in this
region will help to improve our knowledge about behavior of the model in this
region and potential errors of its applications. Changing the constitutive law in-
directly affects damage model results which in some cases may lead to additional
errors it is also interesting to investigate effect of variation of the constitutive law
on the predictions of the damage model.
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