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Introduction

The aim of this manuscript is to analyze Blind Source Separation prob-
lems for high-dimensional, massive, and complex data, and to propose new
methods to face these statistical problems. Blind Source Separation prob-
lem consists of retrieving a set of unobserved source signals from a set
of observed mixed signals, according to some a priori hypotheses on the
sources and/or on the mixing process (see [12] for a wide and detailed de-
scription of BSS). Specifically we rely on the following model; let X ∈ Rp be
a random vector and assume the existence of a vector S ∈ RK representing
K latent random sources and such that

X = A(S), (1)

where A : RK → Rp is an unknown mapping from RK to Rp called mixing
process. In this manuscript we consider two simplified assumptions related
to model (1). In particular we assume K ≤ p and A is a linear process.
Then model (1) reads

X = AS, (2)

where A is an unknown p×K matrix of real numbers called mixing matrix.
Therefore the columns of A constitute a basis of a K-dimensional subspace
of Rp; for this reason A is also called basis matrix. If the rows of the n× p
matrix X collect n observed realizations x1, ...,xn ∈ Rp of the random
vector X while the rows of the n×K matrix S represent the corresponding
unobserved realizations of the latent random vector S, model (2) implies
that

X = SA′. (3)

A BSS problem consists in estimating A and S, given X.
BSS problems are widespread in a lot of different fields. They be-

came popular for those areas focused on temporal signals, like speech and
audio signals, telecommunication systems and medical signal processing
(e.g., electroencephalograms signals). Nowadays BSS methods are also
frequently applied to more complex data, such as texts, images and ten-
sors. Image processing, in particular, provides very different applications
for BSS techniques. A typical example is the functional Magnetic Reso-
nance Imaging (fMRI), a functional neuroimaging procedure that measures
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brain activity and provides brain images that can be processed through
BSS methods. Another possible application is the analysis of geo-referred
images gathered by GIS systems.

All these applications share a common feature; the complexity of the
available data is sharply increasing, due to the big improvements in the
technology. Then, new statistical methods need to deal with high-dimensional,
massive, and complex data, that often contain redundant information and
hence make it difficult to extrapolate the relevant features. The crucial
purpose is to find a space of small dimension where data can be easily
analyzed without losing their significative features.

Many approaches are commonly used to solve a BSS problem. The most
common is Principal Component Analysis (PCA) (see [23] for a detailed
description). PCA is a powerful method to find optimal subspaces where
to represent data, but it presents some drawbacks. In particular, PCA
yields an orthonormal basis (i.e., the columns of A are orthogonal vectors);
in many circumstances orthogonality is a desirable property but in some it
introduces an artificial constraint not related to the phenomenological char-
acteristics of the analyzed problem. For this reason basis elements provided
by PCA might not represent physical features of the phenomenon under
study. Indeed PCA is a model free method and this lack of assumptions
might lead to solution that cannot be interpretable. The idea, instead, is
to take into account some assumptions on model (3). These assumptions
can be made on the source matrix S and/or on the basis matrix A. Among
the methods that make assumptions on the sources the most popular is In-
dependent Component Analysis (ICA) [22], which surmises the stochastic
independence between the sources. Other approaches, instead, look for a
sparse basis matrix, since some of the relevant features may involve a great
number of the primitive variables describing the data set while others may
be restricted only to a few. Hence a multi-resolution analysis is desirable.
Among the others we cite Wavelets and Treelets [32, 29]. In a third group
of BSS methods can be considered those methods which aim to find inter-
pretable solution imposing some constraints on S and/or A in the estimate
procedure. These constraints typically come from some a priori knowledge
on the source matrix and the basis matrix. Among these methods we cite
the Nonnegative Matrix Factorization (NMF) [27, 28], which solves the
BSS problem imposing the nonnegativity constraint on both the elements
of S and A.

In this manuscript we present new methods and interesting applications
for BSS problems, particularly suited for high-dimensional, massive, and
complex dataset. Specifically the manuscript is organized as follows.

Part I, Hierarchical Independent Component Analysis: in this
part we present Hierarchical Independent Component Analysis (HICA), a

11



new method which simultaneously introduces sparsity and multi-resolution
on the basis matrix A to obtain meaningful basis elements and sources. In
particular in Chapter 1 we describe the algorithm and we prove some con-
sistency results. We also show the efficiency of our method through some
simulations. In Chapter 2 we apply HICA to an Electroencephalography
(EEG) dataset, comparing the results provided by HICA with those ob-
tained through other popular methods.

Part II, spatial colored Independent Component Analysis: in
this part we present spatial colored Independent Component Analysis (scICA),
a new method that extends ICA by exploiting the dependence structure
within the sources, precisely when sources are generated by a spatial stochas-
tic process. In Chapter 3 we introduce the new method and we show some
simulations to validate it. In Chapter 4 we apply scICA to a geo-referenced
dataset describing the mobile-phone traffic in the area of Milan, Italy. We
compare scICA with other popular methods, also considering the HICA
method described in Part I.

Part III, Alternating Least Square for Functional Data with
equality and inequality constraints: in this part we analyze the res-
olution of the Nonnegative Matrix Factorization through an Alternating
Least Square algorithm. In particular we focus on two issues. The first one
is related on how to face the problem when different kind of constraints
have to be imposed. The second regards the Alternating Least Square algo-
rithm for functional data and, in particular, how to deal with the problem
of misalignment of functional data. In Chapter 5 we describe the algorithm
and the solutions we propose to deal with these two issues, while in Chap-
ter 6 we show an application to the analysis of the gas chromatograms of
chemical mixtures.

Part IV, Computational details: this part is dedicated to the com-
putational details. Specifically we present the help of the R package fastH-
ICA we developed to implement HICA method described in Part I.
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Hierarchical Independent
Component Analysis
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Chapter 1

Methods and simulations

The statistical analysis of high-dimensional and complex data often re-
quires the solution of two related issues: a data-driven dimensional re-
duction and a meaningful multiscale approximation. We look for a basis
generating a space of small dimension where to represent data. We long
for basis elements which are representative of the significant features of
the phenomenon under study; some of these may involve a great number
of the primitive variables describing the data set while others may be re-
stricted only to a few. Hence a multi-resolution analysis is desirable. In
this chapter we propose a new method for the construction of a multi-scale
non-orthogonal data-driven basis.

We refers to the BSS model (3) and we focus on methods which aim to
find multi-resolution basis matrix. PCA and ICA, two of the most common
techniques to face BSS problems, provide basis elements defined globally,
involving all the variables. Hence, if the interest is in catching multi-
resolution behaviors, they are not suitable. Wavelets are commonly used
(see, for instance, [32] and [37]) to generate a localized and multi-scale basis
for data representation. Their main limitation is that the wavelet basis
is not data-driven, since basis elements are fixed, regardless of the data.
The Treelets algorithm is an efficient and recent approach that avoids this
problem [29]. The Treelets algorithm generates a multi-scale orthonormal
data-driven basis yielding a hierarchical tree that, at each level, represents
data through an orthonormal basis. Thus the problem of interpretability of
basis elements due to the exogenously imposed constraint of orthogonality
still holds. We here propose a new approach able to provide a multi-scale
non orthogonal data-driven basis through the integration between ICA and
Treelets: we call it Hierarchical Independent Component Analysis (HICA).

The rest of the chapter is then organized as follows. In Section 1.1 we
briefly describe Independent Component Analysis and the Treelets algo-
rithm in order to introduce HICA in the second part of the section. In
Section 1.2 we consider a procedure for data dimensional reduction with a
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non-orthogonal basis that will be used in HICA. Then, in Section 1.3, we
present some theoretical properties of the HICA method. Finally, in Sec-
tion 1.4 we show some simulations which validate the algorithm proposed.

1.1 Hierarchical Independent Component Analysis

In the first part of this section we describe the main ideas concerning ICA
and Treelets, since HICA is obtained by integrating these two approaches.

1.1.1 Independent Component Analysis

Independent Component Analysis is a method commonly used to solve
Blind Source Separation problems. Consider model (2) and assume K = p.
Given the data matrix X, ICA looks for estimates of the basis matrix A
and of the source matrix S in model (3), such that the columns of S could
be taken as samples of the independent components of S.

The ICA model presents two ambiguities. The first is label switching.
The second is due to the fact that the independent components S1, ..., SK
of the vector S - i.e. the sources - are identifiable only up to multiplicative
constants. Hence, for identifiability, the variances of the independent com-
ponents are usually constrained to be 1; without loss of generality, we also
assume that both the vector X and the vector S have zero mean. Moreover
it is common to preprocess data by whitening X through a transformation
matrix D. The covariance matrix of the transformed vector Z = DX is
required to be the identity, i.e. E[ZZ′] = I; for instance, Z is found by
PCA on the standardized components of X. Therefore model (2) becomes
Z = (DA)S. Since E[SS′] = I, one then derives

I = E[ZZ′] = E[DASS′A′D′] = DAE[SS′]A′D′ = (DA)(DA)′.

Hence A∗ = DA is orthogonal. Once the optimal rotation A∗ has been
found, A is obtained as D−1A∗.

Existence of a basis for data representation through independent com-
ponents is not guaranteed (differently from a representation through un-
correlated components which always exists, and it is found by PCA). In
practical problems, the estimate of the matrix A∗ is obtained through the
minimization of the empirical dependence between the columns of S. In
[21] it is shown that A∗ can be found by maximizing the non-gaussianity
of the sources S1, ..., SK . This simplifies the ICA optimization problem
and suggests some suitable numerical algorithm for its solution. In this
manuscript all analyses regarding ICA will be carried out with the fastICA
algorithm, which maximizes a non-gaussianity measures (e.g. the absolute
value of the kurtosis) through a fast fixed-point procedure. (Details about
the algorithm are presented in [21]).
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Comparing the ICA solution with that provided by PCA, we note that
while PCA yields a basis whose elements are conveniently arranged for di-
mensional reduction, this is not so for ICA which is useless for this purpose.
A common approach to circumvent this difficulty, and to allow for the num-
ber K of independent components to be much smaller than the number p
of primitive variables, is to first project data into the K-dimensional space
generated by the first K principal directions. Then, ICA is carried out in
this reduced K-dimensional space.

1.1.2 Treelets

The Treelets algorithm [29] generates a multi-scale orthonormal basis for
data representation, like wavelets, but the basis is data-driven. The Treelets
algorithm yields a hierarchical tree that, at each level, replaces the two more
correlated variables through a pair-wise Principal Component decomposi-
tion. The procedure consists of an iterative algorithm with p− 1 steps. At
each step three operations are performed:

1. compute the correlations between couples of variables and search for
the two variables with the highest correlation;

2. compute a Principal Component Analysis in the space of the two
selected variables;

3. store the second principal direction, that will not be processed in
the following step, while the first principal direction replaces the two
original variables in the variables set.

At each level l = 0, ..., p − 1, the algorithm provides a multi-resolution
data-driven orthogonal basis B(l), able to catch internal structural features
of the data.

1.1.3 The HICA algorithm

The two methods presented above are useful to reduce the complexity
of high-dimensional problems and to detect relevant features of the data.
However some problems still hold. ICA, as PCA, is a global method that
produces a non-sparse basis. Hence it is not suitable for a multi-resolution
analysis. Treelets provide an orthonormal basis, whose elements can be
unrelated to the phenomenological characteristics of the problem under
study. Hierarchical Independent Component Analysis, instead, aims at the
construction of a multi-scale non orthogonal data-driven basis through the
integration between ICA and Treelets. Basically it consists in replacing
in the Treelets algorithm the pair-wise Principal Component Analysis step
with a pair-wise Independent Component Analysis step. With respect to
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this manuscript wording, we should indeed refer to Treelet analysis as Hi-
erarchical Principal Component Analysis (HPCA). Anyhow we preferred
to keep the authors’ original wording (i.e., Treelets).

A more detailed description of the HICA algorithm is in order. First we
need to define a suitable similarity measure between two random variables.
According to the ICA procedure, we search for a measure that is greater
when the dependence between two variables is larger. In particular we
consider the distance correlation, a measure of dependence introduced in
[47] and based on the distance covariance. Let X1 and X2 be two random
variables and let φX1(t) and φX2(s) be their characteristic functions, while
φ(X1,X2)(t, s) is the characteristic function of the random vector (X1, X2)′.
Then, the distance covariance between X1 and X2 is the non-negative num-
ber V(X1, X2) defined as

V(X1, X2) =

(
1

c2

∫
R2

|φ(X1,X2)(t, s)− φX1(t)φX2(s)|
t2s2

dtds

) 1
2

,

where c = π
Γ(1)

and Γ(·) is the complete gamma function. If we indicate

with V(X1) = V(X1, X1), the distance correlation between two random
variables X1 and X2 is defined as

R(X1, X2) =
V(X1, X2)√
V(X1)V(X2)

.

Note 0 ≤ R(X1, X2) ≤ 1 and R(X1, X2) can be considered to be a measure
of dependence between X1 and X2 in the sense that R(X1, X2) is equal to
0 if and only if X1 and X2 are independent random variables. Moreover
distance variance and distance covariance have some properties that will
be used in the following. In particular:

1. if X1 and X2 are independent random variables, then V(X1 + X2) ≤
V(X1) + V(X2);

2. if (X11, X21)′ and (X12, X22)′ are independent random vectors, then
V(X11 +X12, X21 +X22) ≤ V(X11, X21) + V(X12, X22).

We now describe the HICA algorithm. At level l = 0 of the hierarchi-
cal tree each component X1, ..., Xp of the random vector X is represented
by itself, the basis matrix B(0) is the canonical basis of dimension p and

the coordinates vector Y(0) = (Y
(0)

1 , ..., Y
(0)
p )′ corresponds to the primitive

variables (i.e., Y
(0)
i = Xi). Define C to be a set of indices of the active

variables, initializing C(0) = {1, ..., p}, and compute the sample similarity

matrix R̂(0), where R̂
(0)
ij = R(Y

(0)
i , Y

(0)
j ). Then, for l = 1, ..., p − 1, repeat

the following three steps:
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1. in the first step the two most similar variables are found. In particular
set:

(α, β) = arg max
i<j∈C(l−1)

R̂
(l−1)
ij ;

2. compute an Independent Component Analysis of the variables Y
(l−1)
α

and Y
(l−1)
β :

Y (l−1)
α = a

(l)
11S1 + a

(l)
12S2 (1.1)

Y
(l−1)
β = a

(l)
21S1 + a

(l)
22S2

The idea is to replace Y
(l−1)
α with S1 and Y

(l−1)
β with S2. Hence define

the matrix

Ã(l) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · ã
(l)
11 · · · ã

(l)
12 · · · 0

...
...

. . .
...

...

0 · · · ã
(l)
21 · · · ã

(l)
22 · · · 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 1


where ã

(l)
11 and ã

(l)
22 are, respectively, in position (α, α) and (β, β). The

elements ã
(l)
ij correspond to the a

(l)
ij in (1.1), normalized such that Ã(l)

has columns with unitary norm. Ã(l) represents the non orthogonal
transformation identified by ICA. The new basis matrix and coor-

dinates vector become B(l) = B(l−1)Ã(l) and Y(l) = (Ã(l))−1Y(l−1)

respectively. The similarity matrix R̂(l) is then updated accordingly;

3. order the new variables according to their variances. If the variance

of Y
(l)
α is greater than the variance of Y

(l)
β , store the variable Y

(l)
β

and, at the next step, consider only Y
(l)
α as a possible candidate for

a new aggregation. This corresponds to remove the index β from

the set C, defining C(l) = C(l−1) \ {β}. Otherwise store Y
(l)
α and set

C(l) = C(l−1) \ {α}.

The algorithm provides, at each level l, a non orthogonal basis matrix

B(l) = B(0)Ã(1) · · · Ã(l) - an estimate of the basis matrix A - and a coordi-
nates vector Y(l) = Ã(l)−1 · · · Ã(1)−1

Y(0), which is an estimate of the scores
matrix S.
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1.2 Selection of the level of the tree and dimensional
reduction with a non-orthogonal basis

The HICA algorithm generates p different matrices B(0), ..., B(p−1) as es-
timates of the basis matrix A. Obviously one cannot take into account
all these different estimates, but it is reasonable to choose only one (or
some) of them for the analysis. The more natural choice is to consider
the estimate related to the maximum height of the tree, l = p − 1, but
alternatively one can choose any of the basis given at the different levels
l. At a generic level l, B(l) is composed by the l elements stored in the
previous steps and the p− l elements corresponding to variables of the ac-
tive set C(l) that would be ready for aggregation in the following steps. Let
C l be a partition of {1, ..., p} in p − l sets named C l

i , with i = 1, ..., p − l.
By construction each basis element of B(l) is defined on a different set C l

i

of the partition (i.e., the position of the non-zero values of the i-th basis
element correspond to the indexes of the set C l

i). Since at each level a new
variable is generated as a linear combination of two variables of the active
set, the number of sets that form the partition is reduced by aggregating
two of them. Hence at a specific level l the basis elements stored in the
previous steps of the algorithm are defined on subsets of the C l

i . Therefore
we can divide basis elements of B(l) into p − l different groups, according
to the p − l different sets of the partition. For this reason we can relate
the different basis B(l) to different degrees of sparsity, where the different
degrees refer to the different cardinalities of partitions. In particular, the
lower is the level l considered, the greater is the degree of sparsity of the
basis taken into account (i.e., greater is the cardinality of the partition).

Once a specific basis B(l) is chosen, another important aspect to consider
is dimensional reduction. In particular we need to select the dimension K
(with K ≤ p) of a suitable subspace to represent data, choosing only K
basis elements.

To jointly face these two problems (i.e., the choice of the degree of
sparsity and the K “best” basis elements) we consider the energy, an index
related to the fraction of variance explained by a basis. We now first
describe the energy index, focusing on the non trivial case of its evaluation
for a non-orthogonal basis. Then we propose a strategy to choose a suitable
dimension K to represent data in a reduced space and, given K, we show
how to select a specific basis B(l) and its K basis elements.

1.2.1 The energy index

Consider a basis A = [a1; ...; ap], not necessarily orthogonal. Let IK =
{i1, i2, ..., iK} be one of the

(
p
K

)
subsets of the index set {1, ..., p} with car-

dinality K, and let AIK = [ai1 ; ...; aiK ]. Let XAIK = AIK (ATIKAIK )−1ATIKX
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be the orthogonal projection of X on the space spanned by AIK , where
X ∈ Rp is a random vector with zero mean. Then we define

γ(AIK ) =
E[‖XAIK ‖2]

E[‖X‖2]
=
tr(ΣAIK (ATIKAIK )−1ATIK )

tr(Σ)

being Σ = E[XXT ] = Cov(X), and we call γ(AIK ) the energy associated
to the basis AIK . At this point we define ΓK(A) as the maximum energy
among all the

(
p
K

)
energies associated to the K-dimensional subspaces ob-

tained from the basis matrix A:

ΓK(A) = max
IK⊆{1,...,p}

γ(AIK ). (1.2)

If A is non orthogonal the evaluation of ΓK(A) may become cumbersome.
The non orthogonality, in fact, implies that the elements of the best K−1-
dimensional space are not necessary a subset of the elements of the best K-
dimensional space. Therefore we propose a forward selection strategy that
can be easily computed and, in practical problems, produces reasonable
approximations of the space with maximal energy ΓK(A). The strategy
is suitable not only for HICA, but whenever dealing with non orthogonal
basis. We start by calculating the energy γ([ak]) for each basis element
and we set the maximum energy element as the first element of the basis.
Let it be a(1). Then we look for the second basis element, named a(2), such
that

a(2) = arg max
aj 6=a(1)

γ([a(1); aj]).

Once a(1), ..., a(k) have been identified, a(k+1) is found accordingly:

a(k+1) = arg max
aj 6=a(1),...,a(k)

γ([a(1); ...; a(k); aj])

and the procedure continues until a(K) is found.

Remark 1.1 If A is an orthonormal matrix, the exact solution of the op-
timization problem (1.2) can be found efficiently since we do not need to
evaluate all the

(
p
K

)
energies γ(AIK ). In fact, let V = [v1; ...; vp] be an

orthonormal basis, ΓK(V ) is found by computing, for j = 1, ..., p,

γ([vj]) =
E[(vTj X)2]

E[‖X‖2]
=

vTj Σvj

tr(Σ)
=

∑p
i=1 λi(v

T
j ei)

2∑p
i=1 λi

where λi and ei are the eigenvalues and the eigenvectors of Σ. After sorting
the basis elements according to their energy, such that γ([v(1)]) ≥ γ([v(2)]) ≥
· · · ≥ γ([v(p)]), ΓK(V ) is obtained by summing the first K energy terms. In
particular:

ΓK(V ) =
tr(ΣVKV

T
K )

tr(Σ)
=

K∑
k=1

γ([v(k)]),
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where VK = [v(1); ...; v(K)]. This is the same procedure adopted in [29] for
finding the elements of the K-dimensional basis and also coincides with
the criterium used in PCA to order the principal directions. Indeed, if
E = [e1; ...; ep] is the matrix whose columns are the eigenvectors of Σ,

γ([ej]) =
∑p
i=1 λi(e

T
j ei)

2∑p
i=1 λi

=
λj∑p
i=1 λi

and ΓK(E) =
∑K

i=1 γ([e(k)]) =
∑K
k=1 λ(k)∑p
i=1 λi

.

1.2.2 Dimensional reduction and choice of a specific level l of
the tree

We now focus on the energy index as a tool to perform dimensional reduc-
tion and to find the best basis between the p estimates provided by HICA.
We first decide on the best value for K considering only the maximum
height tree basis (i.e., considering only ΓK(B(p−1))). Once K has been de-
termined, we compute ΓK(B(l)), for l = 0, ..., p− 1, and we choose the best
basis Bbest according the same criterium adopted in [29] for Treelets:

Bbest = arg max
Bl:0≤l≤p−1

ΓK(Bl).

This argmax is not necessarily unique. Indeed, at a specific level, say l =
p− k, we have k elements (corresponding to the variables in the active set
C(p−k)) that in the following steps are merged together. It is straightforward
to show that, if the best k-dimensional space was generated by these k
elements, the quantity Γk(B

(p−k)) would not increase in the next levels,
since, even if two of these elements are merged together, the space spanned
by the new elements is the same. In general at level p − k the best k-
dimensional space need not be generated by the k active variables. However
from the level when all variables of the active set C(l) constitute the best k-
dimensional basis, the quantity Γk(B

(l)) does not increase. Hence we could
have more than one basis with the same energy. The choice suggested in [29]
is to take into account the basis with the smallest l. Such proceeding could
however discard solutions which are able to better catch the underlying
structure of the problem. For this reason we suggest to consider all basis
with the same highest energy ΓK . They might have different degrees of
sparsity and this can make some of them more preferable. In the examples
of Section 1.4 we will deepen the analysis of this issue.

1.3 Theoretical results

In this section we analyze the consistence of HICA when data are generated
by K independent sources with disjoint supports plus some noise. Specif-
ically we consider a situation where the p primitive variables are divided
into K groups, with dependent variables within groups and independent
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variables between groups. We want to show that HICA is well suited for
representing and catching the underlying structure of this kind of data,
providing at level p−K loading vectors whose supports are defined on the
different groups. We show this result in Lemma 1.2 and Theorem 1.1, after
the discussion of a preliminary property in Lemma 1.1.

We start by dealing with an issue directly connected to the fact that
the fastICA algorithm is grounded on non-gaussianity measures. In some
special situations the directions maximizing kurtosis, a well-known non-
gaussianity measure, can be found analytically, as it is proved in the fol-
lowing lemma.

Lemma 1.1 Let T be a random variable such that kurt(T ) 6= 0 and let E
be a gaussian random variable. Set Z = (T,E)′ and assume that T and
E are independent. Let w = (w1, w2)′ be a vector of unitary norm. The
absolute value of the kurtosis of the random variable w′Z is maximized by
wmax = (1, 0)′.

Proof. For simplicity we consider T and E to be zero mean and unit variance random
variables. The kurtosis of a zero mean and unit variance random variable Y is kurt(Y ) =
E[Y 4] − 3. If Y is gaussian, kurt(Y ) = 0. Moreover if Y1 and Y2 are independent random
variables and α e β real parameters, kurt(αY1 + βY2) = α4kurt(Y1) + β4kurt(Y2). Hence:

|kurt(w′Z)| = |kurt(w1T + w2E)| =

= |w4
1kurt(T ) + w4

2kurt(E)| = |w4
1kurt(T )|.

(1.3)

Since kurt(T ) 6= 0, (1.3) is maximized by w1 = ±1 (and w2 = 0 because w is a vector of

unitary norm). �

We now deal with p non-gaussian random variables identical but for
an additive gaussian noise, in order to show that, in this particular case,
HICA provides a constant loading vector at the final level l = p − 1, thus
gathering the common component.

Lemma 1.2 Let T be a random variable with 0 mean, kurt(T ) 6= 0 and
such that V(T ) = 1. Let X = (X1, ..., Xp)

′ ∈ Rp be a random vector such
that, for σ2, σ2

e > 0,

Xi = σ2T + σ2
eEi, i = 1, ..., p,

with Ei a random gaussian noise such that, for i, j = 1, ...p, i 6= j, V(Ei) =
1, V(Ei, Ej) = 0 and V(Ei, T ) = 0. At each level 1 ≤ l ≤ p− 1 the HICA
decomposition reads:

B(l) = [a
(l)
1 ; ...;a

(l)
p−l; ã

(l)
1 ; ...; ã

(l)
l ]

Y(l) = (Y
(l)

1 , ..., Y
(l)
p−l, Ỹ

(l)
1 , ..., Ỹ

(l)
l )′

where a
(l)
i = 1√

|Cli |
ICli and Y

(l)
i =

|Cli |√
|Cli |

σ2T + σ2
e√
|Cli |

E
(l)
i , with V(E

(l)
i ) ≤ |C l

i |

and V(Y
(l)
i ) ≤

√
|C l

i |(σ2 +σ2
e) ∀i = 1, ..., p− l (the sets C l

i have been defined
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in Section 1.2). In particular, at the level l = p − 1, a
(p−1)
1 = ( 1√

p
, ..., 1√

p
)′

and Y
(p−1)

1 = p√
p
σ2T + σ2

e√
p
E

(p−1)
1 , with V(E

(p−1)
1 ) ≤ p and V(Y

(p−1)
1 ) ≤

√
p(σ2 + σ2

e).

Proof. Suppose that the aggregation between variables follows the scheme: {· · · {{X1, X2}, X3} · · · , Xp}.
Hence, at level l = 1 we aggregate:

X1 = σ2T + σ2
eE1

X2 = σ2T + σ2
eE2.

The whitening procedure of ICA, transforms the vector X = (X1X2)′ in a new vector Z =
(Z1 Z2)′ such that

Z1 = X1+X2
a

=
2σ2T+σ2

e(E1+E2)

a

Z2 = X1−X2
b

=
σ2
e(E1−E2)

b

where a and b are, respectively, the standard deviations of X1 +X2 and X1 −X2. We observe
that Z1 is a non gaussian variable, while Z2 is gaussian. Because of Lemma 1.1 the rotation
found by fastICA in the whitened space coincides with the identity matrix. According to
the selection criterium and taking into account the normalization of the matrix Ã(1) in step
2 of the HICA algorithm, we obtain a

(1)
1 = ( 1√

2

1√
2
0 · · · 0)′ and Y

(1)
1 = 1√

2
X1 + 1√

2
X2 =

2√
2
σ2T +

σ2
e√
2
E(1), where E(1) = E1 + E2 and V(E(1)) ≤ V(E1) + V(E2) ≤ 2. Furthermore

V(Y
(1)
1 ) ≤ V( 2√

2
σ2T ) + V(

σ2
e√
2
E

(1)
1 ) ≤

√
2(σ2 + σ2

e). At level l = 2 we aggregate:

Y
(1)
1 = 2√

2
σ2T +

σ2
e√
2
E

(l)
1

X3 = σ2T + σ2
eE3.

The whitening procedure provides a vector Z = (Z1 Z2)′ such that

Z1 =
√
2Y

(1)
1 +X3

a′ =
3σ2T+σ2

e(E
(1)
1 +E3)

a′

Z2 =
Y

(1)
1 −

√
2X3

b′ =
√
2σ2
e(E

(1)
1 /2−E3)

b′

where a′ and b′ are, respectively, the standard deviations of
√

2Y
(1)
1 + X3 and Y

(1)
1 −

√
2X3.

Once again, Lemma 1.1 implies that the rotation provided by fastICA is the identity and
according to the selection criterium and to the normalization of Ã(2) we have

a
(2)
1 =



1√
2

0
1√
2

0

0 1
0 0
...

...
0 0


[ √

2
3

1√
3

]
=



1√
3
1√
3
1√
3

0
...
0


and Y

(2)
1 =

√
2
3
Y

(1)
1 + 1√

3
X3 = 3√

3
σ2T +

σ2
e√
3
E

(2)
1 , where E

(2)
1 = E

(1)
1 + E3 and V(E

(2)
1 ) ≤

V(E
(1)
1 ) + V(E3) ≤ 3. Moreover V(Y

(2)
1 ) ≤ V( 3√

3
σ2T ) + V(

σ2
e√
3
E

(2)
1 ) ≤

√
3(σ2 + σ2

e). Iterating,

we obtain the lemma when the aggregation scheme is {· · · {{X1, X2}, X3} · · · , Xp}.
For a general aggregation scheme, at the level l + 1 = 2, ..., p− 1 we aggregate:

Y
(l)
i = m√

m
σ2T +

σ2
e√
m
E

(l)
i

Y
(l)
j = n√

n
σ2T +

σ2
e√
n
E

(l)
j
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with Cli ∩Clj = ∅ and m+ n = l+ 2. The whitening procedure provides a vector Z = (Z1 Z2)′

such that

Z1 =
√
mY

(l)
i +

√
nY

(l)
j

a′′ =
(m+n)σ2T+σ2

e(E
(l)
i +E

(l)
j )

a′′

Z2 =
√
nY

(l)
i −

√
mY

(l)
j

b′′ =
√
mn(E

(l)
i /m−E(l)

j /n)

b′′

where a′′ and b′′ are, respectively, the standard deviations of
√
mY

(l)
i +

√
nY

(l)
j and

√
nY

(l)
i −√

mY
(l)
j . Then

a
(l+1)
i =



0 0
...

...
0 0
1√
m

0

...
...

1√
m

0

0 0
...

...
0 0
0 1√

n

...
...

0 1√
n

0 0
...

...
0 0



 √
m

m+n√
n

m+n

 =



0
...
0
1√
m+n

...
1√
m+n

0
...
0
1√
m+n

...
1√
m+n

0
...
0


and Y

(l+1)
i =

√
mY

(l)
i +

√
nY

(l)
j√

m+n
= m+n√

m+n
σ2T +

σ2
e√

m+n
E

(l+1)
i , where E

(l+1)
i = E

(l)
i + E

(l)
j and

V(E
(l+1)
i ) ≤ V(E

(l)
i )+V(E

(l)
j ) ≤ m+n. Moreover V(Y

(l+1)
i ) ≤ V( m+n√

m+n
σ2T )+V(

σ2
e√

m+n
E

(l+1)
i ) ≤

√
m+ n(σ2 + σ2

e). The result now follows by induction. �

Lemma 1.2 is instrumental for proving the main theoretical result for
HICA. If variables are dependent according to an approximate block struc-
ture where variables in the same block are exchangeable and strongly de-
pendent while variables in different blocks are weakly dependent, then
HICA is able to uncover this feature providing loading vectors constants
on each block and null elsewhere.

Theorem 1.1 Let T1, ..., TK be random variables with 0 mean, non zero
kurtosis and such that V(Tk) = 1, k = 1, ..., K. Let X = (X11, ..., X1p1 , ..., XK1, ..., XKpK )′ ∈
Rp be a random vector such that, for σ2

1, ..., σ
2
K , σ

2
e > 0,

Xji = σ2
jTj + σ2

eEji

with Eji random gaussian noise such that V(Eji) = 1, V(Eji, Ehl) = 0 and
V(Eji, Th) = 0 for j, h = 1, ..., K, i = 1, ..., pj and l = 1, ..., ph. Further-
more set V(σ2

jTj, σ
2
hTh) = σjh and assume that

max
1≤j,h≤K

(
σjh
σjσh

)
<

c(σe)

1 + δ2
(1.4)
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with δ = σe
min1≤j≤K σj

and c(σe) a constant such that 0 < c(σe) ≤ 1 and

c(σe)
σe→0−→ 1. Then, at level l = p−K, the HICA decomposition reads:

B(p−K) = [a
(p−K)
1 ; ...;a

(p−K)
K ; ã

(p−K)
1 ; ...; ã

(p−K)
p−K ]

Y(p−K) = (Y
(p−K)

1 , ..., Y
(p−K)
K , Ỹ

(p−K)
1 , ..., Ỹ

(p−K)
p−K )′

where a
(p−K)
i = 1√

|Fi|
IFi and Y

(p−K)
i = |Fi|√

|Fi|
σ2
i Ti + σ2

e√
|Fi|
E

(p−K)
i , with

V(E
(p−K)
i ) ≤ |Fi|, V(Y

(p−K)
i ) ≤

√
|Fi|(σ2

i + σ2
e) and Fi = {i1, ..., ipi}, for

i = 1, ..., K.

Proof. Assume that, at a generic level l < p − K of the tree, random variables from
different blocks have not been merged. Hence, from Lemma 1.2, any two variables in the active
set C have the form:

Y
(l)
u = m√

m
σ2
uTu +

σ2
e√
m
E

(l)
u

Y
(l)
v = n√

n
σ2
vTv +

σ2
e√
n
E

(l)
v

with a
(l)
u =

(
0 · · · 0 1√

m
· · · 1√

m
0 · · · 0

)′
, a

(l)
v =

(
0 · · · 0 1√

n
· · · 1√

n
0 · · · 0

)′
and a

(l)
u , a

(l)
v have

non-zero elements relative to two disjoint subsets of indexes Clu, Clv with |Clu| = m, |Clv| = n.
Let δk = σe

σk
. We now consider two different cases. In the first case Clu ⊆ Fi e Clv ⊆ Fj (i 6= j).

Hence:

Y
(l)
u = m√

m
σ2
i Ti +

σ2
e√
m
E

(l)
i

Y
(l)
v = n√

n
σ2
jTj +

σ2
e√
n
E

(l)
j .

Let
√
mσ2

i + σ̃2
m = V(Y

(l)
u ) (σ̃2

m ≤
√
mσ2

e) and
√
nσ2

i + σ̃2
n = V(Y

(l)
v ) (σ̃2

n ≤
√
nσ2

e). In this

case, the distance covariance and distance correlation between Y
(l)
u and Y

(l)
v are, respectively:

V(Y
(l)
u , Y

(l)
v ) ≤ V( m√

m
σ2
i Ti,

n√
n
σ2
jTj) + V(

σ2
e√
m
E

(l)
i ,

σ2
e√
n
E

(l)
j ) ≤ 4

√
mnσij

R(Y
(l)
u , Y

(l)
v ) = V(Y (l)

u ,Y
(l)
v )√

V(Y (l)
u )V(Y (l)

v )
≤

4√mnσij√√
mσ2

i+σ̃
2
m

√√
nσ2
j+σ̃

2
n

=

=
4√mnσij

4√mnσiσj

√
1+

σ̃2m√
mσ2

i

√
1+

σ̃2n√
nσ2
j

≤ σij
σiσj

.

In the second case Clu, C
l
v are subsets of the same Fk. Hence

Y
(l)
u = m√

m
σ2
kTk +

σ2
e√
m
E

(l)
k1

Y
(l)
v = n√

n
σ2
kTk +

σ2
e√
n
E

(l)
k2 .

Let 4
√
mnσ2

kc(σe) = V(Y
(l)
u , Y

(l)
v ) ≤ 4

√
mnσ2

k, with c(σe) a constant such that 0 < c(σe) ≤ 1

and c(σe)
σe→0−→ 1. Furthermore V(Y

(l)
u ) ≤

√
m(σ2

k +σ2
e) and V(Y

(l)
v ) ≤

√
n(σ2

k +σ2
e). Therefore

the distance correlation between Y
(l)
u and Y

(l)
v are, respectively:

R(Y
(l)
u , Y

(l)
v ) = V(Y (l)

u ,Y
(l)
v )√

V(Y (l)
u )V(Y (l)

v )
≥

4√mnσ2
kc(σe)√√

m(σ2
k
+σ2

e)
√√

n(σ2
k
+σ2

e)
≥

≥
4√mnσ2

kc(σe)

4√mnσ2
k

√
(1+δ2k)

2
= c(σe)

1+δ2
k
.
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Since, from (1.4), the maximum distance correlation between variables belonging to different
blocks is lower than the minimum distance correlation between variables belonging to the same
block, aggregation involves variables relative to the same block and this proves the theorem.

Furthermore, if the noise variance is not too large, the K dimensional space that explains

the most part of the variability is that spanned by the K basis elements related to the K blocks.

Then the energy criterium identifies those elements. �

1.4 Comparison among PCA, ICA, Treelets, and HICA
on synthetic data

In this section we will present some simulated examples to compare PCA,
ICA, Treelets, and HICA performances in different scenarios. For all sce-
narios we consider the following latent variable model:

X =
3∑

k=1

akSk + σE , (1.5)

where X is the observed p-variate random vector, ak represent the columns
of the basis matrix A (i.e., the unknown basis elements), Sk are unobserved
non-gaussian random variables, and E is a p-variate gaussian vector (with 0
mean and identity covariance matrix) acting as a noise term. Our purpose
is to use PCA, ICA, Treelets, and HICA to obtain an estimate for the basis
matrix A from a sample of size n drawn from model (1.5).

In detail, we investigate four different scenarios exploring different struc-
tures of dependence and orthogonality of the components (i.e., depen-
dent/indepedent sources Sk and orthogonal/non-orthogonal basis elements
ak):

Scenario A: Orthogonal and independent latent components.

Scenario B: Orthogonal and dependent latent components.

Scenario C: Non-orthogonal and independent latent components.

Scenario D: Non-orthogonal and dependent latent components.

Below, we focus on scenarios B, C, and D, respectively. Scenario A is not
discussed since, as expected, all four methods are effective in estimating
the model in this trivial case.

All the analyses are carried out with the statistical software R [53].

Scenario B: Orthogonal and dependent latent components. We first con-
sider an example similar to the one presented in [29] where p = 10 random
variables are obtained by linear combinations of three dependent - and thus
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correlated - random sources such that the basis elements a1, a2, and a3 are
non-overlapping - and thus orthogonal -. In particular we set:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]), S3 = c1S1 + c2S2,

with b1 = 20, b2 = 15, c1 = 2, c2 = 1, and σ = 1. The basis elements ak
are defined on disjoint subsets, specifically:

a1 = (1 1 1 1 0 0 0 0 0 0)′,

a2 = (0 0 0 0 1 1 1 1 0 0)′,

a3 = (0 0 0 0 0 0 0 0 1 1)′.

Finally, we sample n = 1000 independent realizations from the model.
This is an example in which neither PCA nor ICA is expected to target

the correct model being the three sources neither uncorrelated nor inde-
pendent. On the contrary, both Treelets and HICA can detect the correct
model if the chosen level of aggregation is l = 7 (i.e., 3 disjoint supports)
and the chosen number of latent sources is K = 3. As shown in the bot-
tom panels of Figure 1.1, this choice of l and K is the one suggested by the
criterion presented in [29] and is among the ones suggested by the criterion
suggested in Section 1.2. This latter criterion supports indeed K = 3 and
l = 7, 8, 9 as candidate values.

Scenario C: Non-orthogonal and independent latent components. The pre-
vious example presents a situation in which hierarchical methods (i.e.,
Treelets and ICA) can outperform non-hierarchical methods (i.e., PCA and
ICA). We now consider a complementary scenario in which ICA-inspired
methods (i.e., ICA and HICA) can outperform PCA-inspired methods (i.e.,
PCA and Treelets). In this scenario p = 6, the basis elements a1 and a2

are overlapping and non-orthogonal and sources S1, S2, and S3 are inde-
pendent. In particular:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]) ⊥⊥ S3 ∼ U([0, b3],

with b1 = b2 = b3 = 20 and σ = 1. The basis elements ak are defined as
follows:

a1 = (1 1 0 0 0 0)′,

a2 = (1 1 1 1 0 0)′,

a3 = (0 0 0 0 1 1)′.

Finally, we sample n = 1000 independent realizations from the model.
Of course in this scenario, PCA and Treelets cannot target the right

solution being the basis elements non-orthogonal. ICA instead targets the
right solution being the sources independent. Figure 1.2 shows that also
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HICA can detect the right solution if K = 3 and l = 4 (i.e., 2 disjoint
supports).

Note that criterion proposed in [29] would have suggested K = 3 and l =
3 (i.e., 3 disjoint supports) which would have taken to a misidentification
of the model for HICA as well (see top panels of Figure 1.2). This example
confirms what suggested in our criterion: once K is chosen, all values
of l providing the maximal energy are candidate values and not just the
minimum one. Good representations are indeed obtained using HICA with
K = 3 and l = 4, 5.

Scenario D: Non-orthogonal and dependent latent components We finally
present a situation in which HICA outperforms PCA, ICA, and Treelets.
This last scenario is simply obtained by setting latent components both
non-orthogonal and dependent. In this case indeed, PCA cannot target the
correct model being the sources non-orthogonal and dependent, ICA can-
not target the correct model being the sources dependent, Treelets cannot
target the correct model being the sources non-orthogonal. HICA remains
the only method having the chance to target the correct model.

We here set p = 6, the basis elements a1 and a2 are overlapping (and
thus non-orthogonal) and the three sources S1, S2, and S3 dependent. In
particular:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]) S3 = S1 + S2 + U,

and U ∼ U([0, b3], with b1 = b2 = 20, b3 = 1, and σ = 1, while basis
elements ak are the same defined as in Scenario C.

As shown in the bottom panels of Figure 1.3, we can draw the same
conclusions of Scenario C with respect to the choice of K and l: K = 3
and l = 3, 4, 5 are good candidate values. Once again (top panels of Figure
1.3) l = 3 (the value suggested by the criterion proposed in [29]) is not the
best choice. Although in this case, neither HICA is able to exactly catch
the right configuration, HICA with K = 3 and l = 4 of course provides the
closest representation: second and third components are very well detected
with some bias in the estimation of the first component.

These simulated examples suggest that when dealing non-Gaussian la-
tent components (even non-orthogonal and/or dependent) HICA always
performs better than or equally to PCA, ICA, and Treelets. Moreover, as
expected by theory, they discourage the use of PCA and ICA when compo-
nents are dependent and the use of PCA and Treelets when components are
non-orthogonal. A summary of the “win situations” for the four methods
that can be drawn from the simulations is reported in Table 1.1.

Simulations also show that the criterion proposed in [29] for the choice
of K and l might take to a misdetection of the model. For a given value of
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K the more proper approach seems indeed to consider as candidate values
for the level of aggregation l all values providing the maximal energy and
not necessarily the minimum one.

PCA ICA Treelets HICA
A: Orthogonal and independent win win win win
B: Orthogonal and dependent win win
C: Non-orthogonal and independent win win
D: Non-orthogonal and dependent win

Table 1.1: Summary of the “win situations” for PCA, ICA, Treelets, and HICA with
respect to orthogonality/non-orthogonality and dependence/independence of the latent
components.
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Figure 1.1: Scenario B: Orthogonal and dependent latent components. Top panels
report the basis elements provided by Treelets (left) and HICA (right) when K = 3
and l = 7. The bottom panels report the energy as a function of l and K for Treelets
decompositions (left) and HICA decompositions (right).

29



1 2 3 4 5 6

Treelet transform − level 3

Coordinate

1s
t c

om
po

ne
nt

−
1.

0
0.

0
0.

5
1.

0

1 2 3 4 5 6

Coordinate

2n
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

Coordinate

3r
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

HICA transform − Level 3

Coordinate

1s
t c

om
po

ne
nt

−
1.

0
0.

0
0.

5
1.

0

1 2 3 4 5 6

Coordinate

2n
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

Coordinate

3r
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

Treelet transform − level 4

Coordinate

1s
t c

om
po

ne
nt

−
1.

0
0.

0
0.

5
1.

0

1 2 3 4 5 6

Coordinate

2n
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

Coordinate

3r
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

HICA transform − Level 4

Coordinate
1s

t c
om

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

Coordinate

2n
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

1 2 3 4 5 6

Coordinate

3r
d 

co
m

po
ne

nt
−

1.
0

0.
0

0.
5

1.
0

● ● ●

● ●

1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Treelet energy

Level

E
ne

rg
y

●

● ●

● ●

●

●

● ● ●

●

● ● ● ●

K=1
K=2
K=3
K=4

● ● ●

● ●

1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

HICA energy

Level

E
ne

rg
y

●

● ●

● ●

●

●

● ● ●

●

● ● ● ●

K=1
K=2
K=3
K=4

Figure 1.2: Scenario C: Non-orthogonal and independent latent components. Top panels
report the basis elements provided by Treelets (left) and HICA (right) when K = 3 and
l = 3. Middle panels report the basis elements provided by Treelets (left) and HICA
(right) when K = 3 and l = 4. The bottom panels report the energy as a function of l
and K for Treelets decompositions (left) and HICA decompositions (right).
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Figure 1.3: Scenario D: Non-orthogonal and dependent latent components. Top panels
report the basis elements provided by Treelets (left) and HICA (right) when K = 3 and
l = 3. Middle panels report the basis elements provided by Treelets (left) and HICA
(right) when K = 3 and l = 4. The bottom panels report the energy as a function of l
and K for Treelets decompositions (left) and HICA decompositions (right).
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Chapter 2

Analysis of EEG signals

This chapter is dedicated to the analysis of a case study where HICA is
applied to a BSS real data problem by analyzing EEG traces of patients
affected by alcoholism. We compare HICA with other BSS techniques,
specifically PCA, ICA and Treelets. We show how multi-resolution and
non-orthogonal properties characterizing the HICA solution, allow to ob-
tain interpretable and meaningful results that provide noticeable improve-
ments in terms of phenomenological interpretation.
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Figure 2.1: On the left: EEG brain signal at a fixed instant of time. On the right: EEG
profile at a fixed electrode.

Data are courtesy of the online UCI Machine Learning Repository [8].
For each patient in the study, measurements from 61 electrodes out of 64
placed on the scalp are available. The electrodes are located at standard
sites [44, 51]. For each electrode, the recorded signal measures the electrode
electric potential with respect to some reference electrode and describes the
electrical activity of the brain in the neighborhood of the electrode across
time. In particular we analyze the brain signal related to one patient. The
subject was exposed to two stimuli. Specifically, the patient was shown two
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pictures chosen from the 1980 Snodgrass and Vanderwart set [46]. The two
stimuli were presented in a matched condition (i.e., the subject has been
asked to look at the same picture twice). For each electrode, we observe
the signal at 256 equally spaced instants along a time span of 1 second. In
Figure 2.1 the kind of data analyzed is shown. The analysis consists in the
decomposition of the original variables through model (3). There are two
different way to look at the data matrix X. We can consider the instants
of time as the observations. In this case we have a sample with n = 256
realizations of a random vector X in Rp, where p = 61 is the number of
electrodes studied. Otherwise we can look at electrodes as the observation.
According this view n = 61 realizations of random vector of dimension
p = 256 are observed. In literature there are some example of both these
approaches. In particular, in the ICA framework, the first approach is
called temporal ICA while the second one is named spatial ICA, because
the sources are temporal and spatial processes, respectively. We follow the
first approach, and we apply HICA method to the following model

xij = si1aj1 + ...+ siKajK ,

where xij represents the signal at the ith time instant for the electrode
j. According to this approach the columns of A contain the spatial maps
of the brain and multi-resolution is a very interesting property for this
data. In fact, some brain processes could involte the whole brain, while
others activities involve only a specific part of brain. For this reason, multi-
resolution methods seem particularly suitable for the analysis of this kind
of data. Imposing multi-resolution property on the elements of A means
that we could find a wide range of different behaviors characterizing the
brain activity.

The rest of the chapter is organized as follow. In Section 2.1 we present
the results obtained through the HICA algorithm described in Chapter 1.
Then, in Section 2.2, we compare the results obtained through HICA with
those provided by Treelets, ICA and PCA.

2.1 HICA analysis

In this section we present the results obtained applying HICA to the EEG
dataset. As described in Section 1.2 we use the energy index in order to
find a suitable K (dimension of the subspace) and l (level of the tree). In
Figure 2.2 the energy for the last level l = p − 1 of the tree is shown. A
precise value for K is not very clear (i.e, there is not an elbow). We chose
K = 5 since it is sufficient to find interesting and meaningful results.
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Figure 2.2: Energy for the last level l = p− 1 of the tree varying K.

●●●●
●●●●●

●●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●●

●
●

●

●
●

●●●●●●●●●

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Energy for K=5

Level

E
ne

rg
y

●

●

●

●

●

●

● ●

●

● ● ● ● ● ●

46 48 50 52 54 56 58 60

0.
50

0.
55

0.
60

0.
65

0.
70

Energy for K=5 (zoom)

Level

E
ne

rg
y

Figure 2.3: Energy for K = 5 varying the level l of the tree. In the panel on the left
all the levels are shown. In the panel on the right a zoom of the last levels is depicted.
The plateau is reached for l = p− 6 = 55.

Now we have tho chose a level l of the tree. In Figure 2.3 the energy for
K = 5 varying l is depicted. From the panel on the right it is possible to
see that the plateau is reached at l = p − 6 = 55. As we discussed in the
Section 1.2, the choice between the levels in the plateau should be done
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according the problem under study. In this case, for example, a basis with
a higher degree of sparsity could be preferable, because some important
brain activities involve a small part of the brain (i.e., a few variables). In
Figure 2.4 we compare the lowest and the highest level of the plateau to
see the main differences on the basis elements.
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Figure 2.4: A comparison between the basis elements of level 55 (on the top) and level
60 (on the bottom).

Focusing on the first column of the figure, the component related to the
lowest level identifies the associative activity in the frontal brain area, that
is the area which processes the information related to similarities and dif-
ferences between the two pictures. The corresponding component of the
highest level, instead, present a contrast between the frontal and the oc-
cipital area, making the interpretation less clear. Another difference is
highlighted by the second and the fifth column of Figure 2.4. The basis
elements of level 55 are related to the occipital brain area. This informa-
tion are split in two separate parts. The component shown in the second
column is related to the primary visual cortex, the first area reached by
visual information, which analyzes it in terms of shape and pattern recog-
nition. Then the information flow goes to the internal area of the occipital
hemisphere, highlighted by the component in the fifth column, which asso-
ciates to the stimulus specific features like color, direction or origin. The
level 60, instead, do not provide this separation. In particular, the second
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component involve all the brain.
For these reasons a lower level seems to provide richer information.

Hence we focus on level 55 for the comparison of HICA with other BBS
popular techniques.

2.2 Comparison between HICA, Treelets, PCA and
ICA

In this section we compare HICA with Treelets, PCA and ICA. We consider
K = 5. For Treelets we select the level l = 55, as for HICA, in order to
compare bases with the same degree of sparsity and, in both cases, we
show the 5 components found by the energy criterium. Since l = p − 6,
we expect to find basis elements whose supports are defined on no more
than six different sets of variables. For PCA we show the first 5 principal
components, while for ICA we present the results obtained exploiting the
fastICA [21] algorithm selecting 5 sources. In Figure 2.5 we show some
relevant basis elements identified by these methods for one patient.

Multi-resolution methods yield localized basis elements. This is a very
interesting property, since it highlights components defined on localized
brain regions and allows to identify more precisely the areas involved in
the task. PCA and ICA, instead, yield more general and unspecific com-
ponents, possibly difficult to read. Even when they seem to catch localized
information, basis elements are not so clearly defined since they involve the
entire set of variables. This is apparent in the fourth row of Figure 2.5,
where HICA and Treelets select a single electrode (i.e., a single variable).
This electrode clearly represents some noise either related to facial muscles
activity or due to an unexpected saturation of the electrode. The related
components identified by ICA and PCA, even though highlighting the same
electrode, present more complex loadings diffused on other electrodes. The
first row of Figure 2.5 reveals very similar components for HICA and and
Treelets. Both analyses identify the associative activity in the frontal brain
area, as described in Section 2.1. This crucial component is not caught by
PCA and ICA. The main difference between HICA and Treelets regards
instead the second and the fifth row in Figure 2.5. While Treelets yield
an unfocused result, with components involving all the occipital cerebral
hemisphere (i.e., one component averaging over the entire occipital part
and the other contrasting the right and the left activity in the occipital
part), HICA splits this information in two separate parts. As previously
describes these different areas are responsible of specific activities, which
only HICA is able to point out.
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Figure 2.5: First five loadings found out by HICA (first column on the left), Treelets
(second column), ICA (third column) and PCA (fourth column).
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Part II

Spatial colored Independent
Component Analysis
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Chapter 3

Methods and simulations

Independent Component Analysis (ICA) is a data-driven method widely
used to solve Blind Source Separation Problems [12]. We refer to the model
(3) and we consider the case K = p. Hence, if we define the unmixing
matrix W = A−1, a BSS problem consists in estimating W , given X, and
recovering S through;

S = XW ′

Being ICA a widespread approach for BSS problems a lot of methods have
been developed to solve this problem. Two widely used techniques are
infomax [9] and fastICA [21], where the unmixing matrix is estimated min-
imizing the mutual information (a measure of dependence) between the
sources and this is equivalent to maximize the negentropy, a particular
non-Gaussianity measure (indeed it is possible to show that the sources
should not to be Gaussian distributed in order for the mixing matrix to
be identifiable). These two algorithms rely only on the independence be-
tween the sources and try to estimate the marginal densities of the sources
without any further assumption on the form of such densities.

Other methods, instead, make assumptions on the source densities. For
example Independent Factor Analysis (IFA) [6, 35] models the independent
components as mixtures of Gaussians, while Log-ICA and Lap-ICA [2]
assume that the sources follow a Logistic and a Laplacian distribution,
respectively.

All the above methods, while study the dependence structure between
mixture variables trying to unmix the dependent signals in independent
sources, do not exploit the possible correlation structure within the sources
(and, then, within the mixtures). However in the real applications where
ICA is commonly used, the signals are often autocorrelated, in time or
space. For instance the typical framework where ICA has been introduced
is the cocktail-party problem, where different microphones in a room reg-
ister sounds produced by different sources. The goal here is to recover
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the original audio signals through the time signals registered by the micro-
phones. In this case a time correlation within the sources is present.

ICA is a method widely used also in the analysis of fMRI data [16, 34].
This kind of data consists in the registration of the brain activity in a cer-
tain number of cuboid elements, called voxels, for a period of time. Then
both a spatial (between voxels) and temporal (between instants of time)
dependence is present and there are two different approaches that can be
applied. We can consider each spatial brain map at every instant of time
a mixture of independent image components, or each temporal signal at
every voxel a mixture of independent temporal sources. The former ap-
proach is called spatial ICA (sICA) while the latter is named temporal
ICA (tICA) [34]. Some methods have been developed taking into account
the correlation within the sources for the tICA approach. The method
described in [38] is the first algorithm that considers the temporal auto-
correlation of the sources, through the analysis of their spectral densities.
However this method is based on the assumption that the spectral densities
of the sources are known up to a scale parameter and this assumption is
unrealistic in the real applications. Other methods, like AMUSE or TD-
SEP algorithms (see [49, 52]), exploit the autocorrelation of the sources in
the sense that they estimate the unmixing matrix W taking into account
the independence between the sources at different lags. However they do
not analyze the temporal structure within the single sources. Colored ICA
(cICA) [30], instead, is an innovative procedure that takes into account the
autocorrelation of the sources and it also works in the spectral domain, but
in this case the knowledge of the spectral densities is not needed. Regarding
the sICA approach in the literature there are no methods that involve the
spatial autocorrelation of the sources in the evaluation of the independent
components, imposing some stochastic spatial structure. In this chapter
we provide a method to fill this lack.

Other spatiotemporal dataset that perfectly fit in the BSS framework
are the geo-referred data, where the temporal changes of a certain quantity
are measured on a specific geographic area. In particular we focus on the
analysis of the Erlang, a dimensionless unit related to the mobile-phone
network, in the urban area of Milan, Italy. sICA approach, in this case, is
particularly interesting because allows to find out independent spatial maps
related to different patterns that can be associated with specific activities
within the city. The temporal profiles in the mixing matrix represent the
temporal evolutions of such activities.

The chapter is then organized as follows. Firstly, in Section 3.1 we
briefly present the spatial processes on lattices, introducing some simple
models well known in literature and describing a non-parametric method to
estimate the spectral density of spatial stochastic processes. Then, in Sec-
tion 3.2 we describe in details the method and the algorithm we propose.
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Since it extends the cICA method to the spatial case we call it spatial col-
ored Independent Component Analysis (scICA). Finally, in Section 3.3 we
present some simulations to validate scICA and to show the improvements
due to take into account the spatial correlation within the sources.

3.1 Spatial models on lattices and their spectral rep-
resentation

Let s ∈ R2 be a generic location in a 2-dimensional Euclidean space and
suppose that the potential datum Z(s) at a spatial location s is a random
quantity. If s varies over an index set D ⊆ R2, the spatial random field

{Z(s); s ∈ D} (3.1)

is generated. A realization of (3.1) is denoted {z(s); s ∈ D}. We consider D
a fixed regular collection of countably many points, say D = {s = (u, v)′ :
u = ...,−1, 0, 1, ...; v = ...,−1, 0, 1, ...}. In this case (3.1) is called a spatial
process on a lattice. We consider weakly-stationary processes, when the
covariance C(u) is defined, for every u ∈ Z2, as

C(u) = Cov(Z(s + u), Z(s)) ∀ s ∈ D.

If the covariance values form an absolutely summable sequence, then we
can define its Fourier Transform as:

f(ω) =
1

(2π)2

∑
u∈Z2

C(u)e−iu
′ω

with (ω1, ω2)′ = ω ∈ Π2 = [−π, π] × [−π, π]. The function f(ω) is the
spectral density of the stochastic process Z(s). The covariance function
at lag u can be recovered by the Inverse Fourier Transform of the spectral
density as:

C(u) =

∫
Π2

f(ω)eiu
′ωdω.

Therefore covariance and spectral density form a Fourier pair (a detailed
description of spatial stochastic processes and their properties can be found,
for instance, in [13, 19]).

3.1.1 Spatial Autoregressive Moving-Average Models

We now introduce the class of Spatial Autoregressive Moving-Average
(SARMA) models (see [19] for a complete description), considering the
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following model for Z(u, v):

Z(u, v) =
+∞∑
j=−∞

+∞∑
l=−∞

φjlZ(u− j, v − l) + ε(u, v)

(
1−

+∞∑
j=−∞

+∞∑
l=−∞

φjlT
j
1T

l
2

)
Z(u, v) = ε(u, v)

Φ(T1, T2)Z(u, v) = ε(u, v)

(3.2)

where φ00 = 0, T1 and T2 are such that T p11 Z(u, v) = Z(u + p1, v) and
T p22 Z(u, v) = Z(u, v + p2) and ε(u, v) is white noise with zero mean and
variance σ2. Model (3.2) is called Spatial Autoregressive (SAR) model. For
example, if we consider a symmetric first-order model, Φ(T1, T2) reads:

Φ(T1, T2) = 1− φ1(T1 + T−1
1 )− φ2(T2 + T−1

2 ).

We take into account now a finite lattice with n = n1 · n2 sites {s1, ..., sn}.
We also define the random vector Z in Rn as Z = [Z(s1)Z(s2) ... Z(sn)]′

and the random vector ε in Rn as ε = [ε(s1) ε(s2) ... ε(sn)]′, assuming that
ε is gaussian distributed with 0 mean and a (diagonal) covariance matrix
Λ. Let B = (bjl) be a matrix to be interpreted as the spatial-dependence
matrix (the matrix of the coefficients φjl) with bjj = 0. Then, the SAR
model for Z can be written as:

(I −B)Z = ε.

Thus, it is easy to see that the distribution of ε induces the distribution of
Z. Specifically:

Z ∼ Nn(0, (I −B)−1Λ(I −B′)−1).

By the analogy with time-series models, it is possible to introduce Spatial
Moving-Average (SMA) or Spatial Autoregressive Moving-Average (SARMA)
processes:

Z(u, v) = Θ(T1, T2)ε(u, v)

Φ(T1, T2)Z(u, v) = Θ(T1, T2)ε(u, v)

where θ00 = 1. Defining E = (ejl) the spatial dependence matrix of the
coefficients θjl such that ejj = 0, the SMA model for Z can be written as:

Z = (I − E)ε.

Hence
Z ∼ Nn(0, (I − E)Λ(I − E ′)).

The SARMA model for Z

(I −B)Z = (I − E)ε
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provides

Z ∼ Nn(0, (I −B)−1(I − E)Λ(I − E ′)(I −B′)−1).

3.1.2 Spectral representation for SARMA models

Consider the general expression for SARMA model

Φ(T1, T2)Z(u, v) = Θ(T1, T2)ε(u, v)

that can be reduce to the SAR or SMA model if Θ(T1, T2) = 1 or Φ(T1, T2) =
1 respectively.

It can be shown that the spectral density f(ω) of the stochastic process
Z at a frequency ω ∈ Π2 is given by:

f(ω) =

∣∣∣∣∣
+∞∑
j=−∞

+∞∑
l=−∞

θjle
−i(j,l)·ω

∣∣∣∣∣
2

∣∣∣∣∣1−
+∞∑
j=−∞

+∞∑
l=−∞

φjle
−i(j,l)·ω

∣∣∣∣∣
2

σ2

(2π)2
=
|A(ω)|2

|B(ω)|2
fε(ω)

where fε(ω) = σ2/(2π)2 ∀ω ∈ Π2 is the spectral density of the white noise
and (j, l) · ω = jω1 + lω2.

3.1.3 Estimation of the spectral density based on Whittle log-
likelihood

We now approach the problem of estimating the spectral density. In par-
ticular we focus on a non-parametric estimation of the spectral density
based on Whittle log-likelihood [50]. For this reason we briefly introduce
the spatial periodogram, an essential tool for the Whittle estimator.

The periodogram (also called sample spectral density) is a classical non-
parametric estimator of the spectral density. For spatial process observed
on a regular grid D = {s = (s1, s2) : s1 = 0, ..., n1 − 1; s2 = 0, ..., n2 − 1},
D ∈ R2, n = n1 · n2, the spatial periodogram at a frequency ω ∈ Π2 is
given by:

I(ω) =
1

(2π)2n

∣∣∣∣∣∑
s∈D

Z(s) exp(−is′ω)

∣∣∣∣∣
2

.

The periodogram is usually computed at the set of bidimensional Fourier
frequencies ωk = (ωk1 , ωk2):

ωk1 =
2πk1

n1

k1 = 0,±1, ...,±m1 where m1 = d(n1 − 1)

2
e
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ωk2 =
2πk2

n2

k2 = 0,±1, ...,±m2 where m2 = d(n2 − 1)

2
e.

If we define the Discrete Fourier Transform of the data as:

J(ω) =
1

2π
√
n

∑
s∈D

Z(s)e−is
′ω,

then the periodogram can be obtained as:

I(ω) = J(ω)J(ω) = |J(ω)|2.

The spatial periodogram is an asymptotically unbiased estimator of the
spectral density, but it is not consistent, since the variance is proportional
to the square of the spectral density at each frequency. Nevertheless, the
periodogram values at different frequencies are asymptotically uncorrelated
[18]. To avoid this inconsistency problem one of the most popular method
in the spectral parametric context is the Whittle estimation, based on
an approximation to the Gaussian negative log-likelihood, and it uses the
periodogram as a pilot estimate. For a parametric model of the spectral

density fθ, with θ ∈ Θ ∈ Rp, the Whittle parameter estimator θ̂ is given
by:

θ̂ = arg min
θ
L(θ, I),

where L(θ, I) denotes the Whittle log-likelihood

L(θ, I) =

∫
Π2

(
log fθ(ω) +

I(ω)

fθ(ω)

)
dω. (3.3)

The log-likelihood (3.3) can be interpreted as the Kullback-Leibler diver-
gence between I and fθ. Note that, in practice, (3.3) is approximated by
a discretized version: ∑

k

(
log fθ(ωk) +

I(ωk)

fθ(bok)

)
(3.4)

where the sum extends over all Fourier frequencies.
Based on the discrete approximation (3.4), it is possible to obtain a

nonparametric estimator for the log-spectral density mθ = log fθ [14, 17].
It is easy to see that, minimizing (3.4) is equivalent to maximize in θ∑

k

(
Yk −mθ(ωk)− eYk−mθ(ωk)

)
where Yk denotes the log-periodogram value at the Fourier frequency ωk.
We consider the estimator obtained for the log-spectral density function
mθ by a multidimensional local linear kernel estimator. For any x ∈ R2,
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we approximate mθ(ωk) by the plane a+ b′(ωk − x). Then, we construct
the local likelihood function∑

k

(
Yk − a− b′(ωk − x)− eYk−a−b′(ωk−x)

)
KH(ωk − x), (3.5)

where the function KH is a reescaled bidimensional kernel, H is a bidi-
mensional bandwidth matrix and KH(x) = |H|−1/2K(H−1/2x). The local
maximum likelihood estimator m̂LK(H,x) ≡ m̂LK(x) of m(x) is â in the

maximizer (â, b̂) of (3.5).

3.2 Spatial colored Independent Component Analy-
sis

We consider now the BSS problem (3) assuming the sources to be spatial
processes defined on a finite lattice D with n sites. Let S = (S1, ..., Sp)

′

be a random vector in Rp. We can define the spectral density and the
periodogram of the jth source as fSj(ω) and I(ω, Sj) respectively. Then
the sources Whittle log-likelihood is given by

L(fS; S) =

p∑
j=1

n∑
k=1

(
I(ωk, Sj)

fSj(ωk)
+ ln(fSj(ωk))

)
(3.6)

where fS is the diagonal spectral density matrix of the sources (diagonal
because the sources are assumed independent). In practice we do not ob-
serve the sources, but we observed the mixed spatial processes. So the
log-likelihood (3.6) can be rewritten as

L(W, fS; X) =

p∑
j=1

n∑
k=1

(
e′jW

′I(ωk,X)Wej

fSj(ωk)
+ ln(fSj(ωk))

)
+ n ln |det(W )|

(3.7)
where I(ωk,X) is the matrix periodogram of the mixed signals at the
Fourier frequency ωk and ej = (0, ..., 0, 1, 0, ..., 0)′ with the jth entry being
1. Then we basically need to estimate both the unmixing matrix W and
the sources spectral density fSj for j = 1, ..., p. Therefore we implement
an iterative algorithm, alternating a step where sources spectral densities

are estimated with a step where an estimate Ŵ of W is obtained. The

iterative algorithm stops when the difference between Ŵnew and Ŵold is
under a convergence threshold, where the difference is measured with the
Amari error (see [4] for details), a criterion widely used in ICA framework.
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3.2.1 The iterative algorithm

Firstly we imagine the unmixing matrix W to be fixed. Then, the log-
periodogram Y (ωk, Sj) can be easily evaluated for every j = 1, ..., p and
every k = 1, ..., n. Hence, for every j = 1, ..., p, the spectral density fSj
can be estimated through the nonparametric method (3.5). In the cICA
algorithm [30], differently, the parameter of the spectral density of the tem-
poral sources are estimated through a parametric procedure and then the
spectral densities are evaluated. In our framework, where sources are as-
sumed to be spatial stochastic processes, a parametric approach could be
to difficult to deal with, because of the nontrivial way to choose the order
of the autoregressive and moving-average parts in SARMA models, and too
restrictive, because of the very different features that spatial sources could
present in real application. Nonparametric approach, although computa-
tionally expensive, allows us to take into account very different structures
for the sources.

We now fix fSj for j = 1, ..., p. A typical procedure in ICA methods
is to prewhite data [22]. In this way W is orthogonal and this allows us
to drop the last term in (3.7). However we need to impose an orthogo-
nality constraint on the unmixing matrix. Then, for every j = 1, ..., p, we
minimize

L̃(W, fS; X) = w′j(Ak + τCj)wj (3.8)

where wj = Wej is the jth column of W , Ak =
∑n

k=1
I(ωk,X)
fSj (ωw)

, Cj =∑
k 6=j wkw

′
k and τ is a positive tuning parameter. Matrix Cj provides an

orthogonality constraint in the sense that w′jCjwj =
∑

k 6=j〈wj,wk〉2. This
representation provides a straightforward estimate for wj. Indeed it is to
see that (Ak+τCj) is symmetric and positive-definite. Hence the argmin of
(3.8) is the eigenvector of (Ak+τCj) corresponding to the lowest eigenvalue.
However, the problem of setting the tuning parameter τ still remains. It is
important to point out that orthogonality has to be a constraint and not
simply a penalization. For this reason we set an initial (small) value for τ
and then we proceed in an alternating way as follows:

a) we obtain Ŵ from (3.8);

b) if the orthogonality error is under a certain threshold, we remain with
this estimate for W . Unless we repeat the step a) setting τ = 2τ .

The orthogonality error is measured by ‖ŴŴ ′− I‖F , with ‖ · ‖F being the
Frobenius norm.

We can finally summarize the iterative algorithm discuss in this section.

Firstly we initialize Ŵ . Then, while the Amari error is greater than a
certain threshold, we repeat the following steps:
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1) we estimate the sources spectral density through the nonparametric
algorithm (3.5);

2) we update Ŵ according the minimization of (3.8), using the rule de-
scribed above to impose the orthogonality constraint.

Remark 3.1 Another possibility to involve the orthogonality constraint is
to use the Newton-Raphson method with Lagrange multiplier as presented
in [30]. However in the framework analyzed in this paper, the nonparamet-
ric estimate of the spectral density could lead to bad conditioned Hessian
matrix in the Newton-Raphson update. For this reason we prefer to esti-
mate the unmixing matrix W through the criterium (3.8). In any case we
point out that, in those situation where the Hessian matrix does not present
bad conditioning problems, the results of the two approaches do not show
relevant differences.

Remark 3.2 We presented here the particular case when K = p. To con-
sider K < p a typical procedure adopted in ICA method is to project data in
the K-dimensional space identified by the first K principal direction. Then
proceed with the estimate of the unmixing and of the mixing matrix in this
space and finally recover the original mixing matrix by the first transfor-
mation.

3.3 Simulation study

In this section we present some simulation studies, comparing the results
obtained by scICA with those obtained by cICA and fastICA (the most
popular ICA algorithm). To perform cICA algorithm, we vectorize the 2D
processes and we consider them as 1D processes. We make this in order to
compare cICA with scICA and to evaluate if taking into account the 2D
dependence gives significative improvements with respect to consider the
dependence only in one direction. fastICA algorithm, instead, is uses as a
benchmark algorithm to implement ICA, since it is the most widespread
method used in the literature. All simulations are carried out on a n1×n2

grid, with n1 = n2 = 20.

3.3.1 First simulation study: symmetric SARMA processes of
the first order

We consider for this simulation two sources and two mixtures. We per-
form 100 different runs and for each run the mixing matrix C is generated
randomly. The first source is generated according the following symmetric
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SAR model of the first order:

Z(u, v) = φ1(Z(u−1, v)+Z(u+1, v))+φ2(Z(u, v−1)+Z(u, v+1))+ε(u, v)
(3.9)

with φ1 = 0.3, φ2 = 0.4 and ε(u, v) a gaussian noise with zero mean and
variance σ2 = 0.32. The second source is generated according the following
SMA model of the first order:

Z(u, v) = ε(u, v) + θ1(ε(u− 1, v) + ε(u+ 1, v)) + θ2(ε(u, v− 1) + ε(u, v+ 1))
(3.10)

with φ1 = 0.25, φ2 = 0.3 and ε(u, v) a gaussian noise with zero mean and
variance σ2 = 0.32. Then, data matrix X is generated according to the
model (3). In the left panel of Figure 3.1 the boxplots of the Amari errors
for every method considered are shown. Both scICA and cICA significantly
outperform fastICA algorithm. The two colored methods seem comparable.
However, if we consider the differences between the two errors for every
run, we can observe that scICA is significantly better. In the right panel
of Figure 3.1 the boxplot of the differences is depicted. Furthermore we
report the p-value of the test to verify if the mean of the difference can
be considered less than zero. The p-value is very low, equal to 0.00304,
providing statistical evidence to reject the null hypothesis.

In BSS problems we are not interested only in a good estimate of the
mixing matrix, but we also aim to reconstruct efficiently the sources. For
this reason we evaluate for each run the error in estimating the sources,
considering the mean of the errors over the 20 × 20 lattice. In Figure 3.2
we show the differences of the error over the 100 runs between scICA and
cICA algorithm, both for the first and the second source. We also depict
the p-value to verify if the mean of the differences could be considered lower
than zero. We can observe that for the second source the p-value is around
0.05, providing us slight evidence to reject the null hypothesis, while for
the first source the evidence is substantially stronger.
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Figure 3.1: Simulation 1 - On the left panel: boxplot of the Amari error for the three
methods considered. On the right panel: boxplot of the differences between scICA and
cICA Amari error. The p-value to test if the mean of the difference can be considered
lower than zero is shown above the boxplot.
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Figure 3.2: Simulation 1 - On the left panel: boxplot of the differences of the errors
between scICA and cICA algorithm in estimating the first source. The p-value to test
if the mean of the difference can be considered lower than zero is shown above the
boxplot. On the right panel: boxplot of the differences of the errors between scICA and
cICA algorithm in estimating the second source. The p-value to test if the mean of the
difference can be considered lower than zero is shown above the boxplot.

49



3.3.2 Second simulation study: spatial sources with irregular
structure

We now take into account two sources, say S1 and S2 created artificially
and showed in Figure 3.3.

5 10 15 20

5
10

15
20

Source 1

5 10 15 20

5
10

15
20

Source 2

Figure 3.3: The two sources considered in the second simulation.

We perform 100 different runs, generating the mixing matrix randomly
at each run and the data matrix according to the model (3), where the
sources matrix is composed by the sources of Figure 3.3 plus some gaussian
noise with zero mean and different variances for the two sources. Specifi-
cally σ2

1 = 22 and σ2
2 = 0.12.

The boxplots of the Amari errors for every method considered are de-
picted in the left panel of Figure 3.4. The two colored methods clearly
outperform fastICA algorithm, as well as in the first simulation. Further-
more, in this case the improvements due to take into account the spatial
structure of the sources seem even more evident. Indeed the p-value is sig-
nificantly lower, as shown in the right panel of Figure 3.4. Comparing the
estimate of the sources for the two colored method, is evident how scICA
strongly outperform cICA, as highlighted by the extremely low p-values in
Figure 3.5.
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Figure 3.4: Simulation 2 - On the left panel: boxplot of the Amari error for the three
methods considered. On the right panel: boxplot of the differences between scICA and
cICA Amari error. The p-value to test if the mean of the difference can be considered
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Figure 3.5: Simulation 2 - On the left panel: boxplot of the differences of the errors
between scICA and cICA algorithm in estimating the first source. The p-value to test
if the mean of the difference can be considered lower than zero is shown above the
boxplot. On the right panel: boxplot of the differences of the errors between scICA and
cICA algorithm in estimating the second source. The p-value to test if the mean of the
difference can be considered lower than zero is shown above the boxplot.
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Chapter 4

Analysis of Telecom data

In this chapter we analyze a mobile-phone traffic dataset, related to the
metropolitan area of Milan (Italy), through different BSS techniques. In
particular we focus on the Independent Component Analysis, comparing
the well known fastICA algorithm (see e.g., [21] with the algorithm scICA
we proposed in Chapter 3. Then we apply also the HICA algorithm de-
scribed in Chapter 1, in order to analyze the behaviors of these different
approaches. The first, ICA, addressed on the source matrix S, while the
second, HICA, on the basis matrix A.

The metropolitan area of Milan, located in the North of Italy is the
fifth biggest metropolitan area of the entire Europe in terms of number of
inhabitants. As all the large metropolitan areas, it is characterized by a
consistent presence of working and residential/leisure activities. Indeed,
the urban area of Milan provides nearly the 10% of the Italian gross do-
mestic product and it is the most populated province of the country, with
a density of more than 1000 inhabitants per km2. An Organization foe
Economic Co-operation and Development (OECD) review of 2006 (see [36]
for the complete report) identified housing, transport and congestion as
the principal limitation for the future development of the area. In par-
ticular most of the principal roads connecting the city of Milan with its
suburbs have reached their saturation during the rushing hours. These as-
pects cause a lot of problems, above all in terms of pollution and economy.
Although in recent years something has been done to decrease the con-
gestion stimulating the use of different means of transport, like the public
transports or car and bike-sharing systems, a deep analysis of the main
features regarding working, residential and mobility activities is crucial for
the well-being of the city. Indeed, as highlighted in [25] and [45], changes
in management of mobility are a key point to understand times, places and
modes of social life, thus structuring the urban areas. Traditional data
sources for mobility and urban investigation are, for example, surveys or
census. However these sources present a lot of limitations. Specifically they
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are characterized by high costs or difficulty of data updating. Furthermore
these kind of data are suitable to represent and to infer about static features
of the urban life, but they less appropriate when the focus is on city dy-
namics and time/spatial dependent variations in intensity of urban spaces
usages at different scales. Mobile phone network data are potentially an
interesting tool in this direction, for the real-time monitoring of the urban
dynamics. Indeed they have been widely analyzed in several experimental
studies (see e.g, [40, 1, 20]). Since these studies are quite qualitative, our
aim is to analyze this kind of data through suitable statistical methods.
In particular these datasets perfectly fit in the BSS framework. Hence we
eant to apply the methods described in this manuscript in order to retrieve
meaningful and useful information for urban planning.

The rest of the chapter is organized as follows. In Section 4.1 we present
the dataset and the pre-processing procedures adopted. Then, in Sections
4.2 and 4.3 we present the results obtained. Firstly following an ICA ap-
proach, comparing fastICA with scICA algorithm. Secondly following a
multi-resolution approach applying the HICA algorithm. Finally, in Sec-
tion 4.4, we summarize the results obtained with the different methods.

4.1 Telecom dataset: description and pre-processing

The dataset we analyze describes the mobile phone traffic on the metropoli-
tan area of Milan. Data are courtesy of Telecom Italia, the biggest mobile
phone Italian company, thanks to a research agreement between Telecom
and the Politecnico di Milano. Telephone traffic is anonymously recorded
as the average number of simultaneous contacts in a time unit. Then,
Telecom elaborates these measurements by means a weighted interpola-
tion, thus obtaining an evaluation of the phone traffic on a tessellation
of the territory in rectangular areas (i.e., pixels). In the database, the
metropolitan area of Milan is dividend into a lattice L0 of 97 × 109 pixels
(232m × 309m each). In order to make the analysis computationally faster
we focus on a zoom on the municipality of Milan of 25 × 28 pixels. For
each pixel of the covered area we observe the Erlang every 15 minutes for
14 days. The Erlang is a dimensionless unit calculated as the sum of the
length of every call in a given time interval divided by the length of the
interval (i.e., 15 minutes). For each pixel and for each quarter of an hour,
this measure represents the average number of mobile phones simultane-
ously calling through the network, that, as a first approximation, can be
considered proportional to the number of active people in that area at that
time. The Erlang xij related to the pixel li ∈ L0 and to the time interval
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tj (i.e., the jth quarter of a hour) is evaluated as

xij =
R∑
r=1

T rij

where T rij indicates the length in minutes of the time interval (or union of
intervals) in which the rth mobile phone is calling while moving in the pixel
li during the time interval tj. R indicates the total number of potential
network users. Hence these data describe a phenomenon in a 2D-space at
different instants of time. This may be represented by a surface varying
along time, as depicted in Figure 4.1.
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Figure 4.1: On the left: Erlang distribution on the lattice at a fixed instant of time. On
the right: Erlang profile at a fixed pixel.

Aim of the analysis is to decompose the observed signal as a time-varying
linear combination of a reduced number, say K, of time-invariant source
surfaces. Specifically, for a fixed pixel li and a fixed time interval tj:

xij = si1aj1 + ...+ siKajK ,

where sik represents the contribution of the kth source in the pixel lj and
ajk is the intensity of the kth source at the jth time interval. This problem
fits in the BSS framework, indeed the purpose of the analysis is to represent
X as the product of two matrices, a p x K matrix A and a n x K matrix
S, where each column of S represents the evaluation at the n pixels of the
corresponding source surface and the element ajk indicates the contribution
of the kth surface at time j.

The Erlang data we deal with are recorded from March 18th to March
31st, 2009. Due to discontinuities in the information provided by the Tele-
com antennas, measurements are missing for some time intervals. Further-
more, they have been recorded for two weeks, even we can think that every
week, if special events are not present, shares a common behavior. For
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these reasons a pre-processing step is needed. We follow the analysis on
this dataset presented in some recent works (see [33, 43] for the details).
We perform a pixel-wise smoothing of the Erlang through a Fourier basis
expansion of period one week. In this way we aim to represent the Erlang
profiles ad a weighted sum of sines and cosines of increasing frequency.
Formally we obtain:

xi(t) =
ci0
2

+
H∑
h=1

[αih cos(hωt) + βih sin(hωt)],

where t ∈ [0;T ], ω = 2π/T and T = 60 × 24 × 7 is the period expressed
in minutes. The coefficients c0, α and β are estimated via ordinary least
squares. To perform the analysis we need to sample the pre-processed
Erlang at some time instants. We sample the measurements, for every
pixel i = 1, ..., n (with n = 25 × 28 = 700), at p = 200 instants of time
regularly spaced in the interval [0;T ]. We use this dataset to perform our
analyses.

4.2 Independent Component Analysis: results ob-
tained through fastICA and scICA algorithms

In this section we focus our attention on the ICA framework. In this case
the sources (i.e, the columns of S) are spatial maps. Classical ICA meth-
ods, as fastICA, do not take into account this information. Hence we want
to apply the scICA algorithm we proposed in Chapter 3 that, instead,
exploits this information in the estimate of S and A. Furthermore we com-
pare it with the well-known fastICA algorithm. In Figure 4.2, 4.3 and 4.4
we present three significative components identified by the two algorithms.
Figure 4.2 seems to catch working activities. Indeed the temporal pro-
files, that are quite similar, are turned on during the daily hours of the
working days more than during the daily hours of the weekend (the first
day shown is Wednesday) and turned off during the nights. The spatial
sources highlight the financial districts in the center of the city (i.e., the
areas devoted to working activities). Figure 4.3 catches the behavior of
the railway stations. Indeed both temporal profiles present a peak every
working day around 6pm, when people take the train to come back home
after work. However, while fastICA highlights in the spatial map only the
Central railway station, that is the biggest Milanese station, scICA also
catches the Garibaldi station (in the top central part of the map), another
large station of the city.
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Figure 4.2: Working activities: the top panel presents surface (on the left) and temporal
profile (on the right) identified by scICA. The bottom panel presents surface (on the
left) and temporal profile (on the right) identified by fastICA. The surfaces catch the
areas devoted to working activities. The temporal profiles are quite similar and they
are turned on during the daily hours of the working days more than during the daily
hours of the weekend and turned off during the nights.

Figure 4.4 presents the more interesting component to compare the two
methods, where the improvements due to take into account the spatial
dependence seem clear. The temporal profiles, indeed, are turned on during
the daily hours of the working days more than during the weekend, with
a peak around 6pm. The surfaces identify the areas around the center.
This component seems to speak about the traffic after the work activities.
However scICA component presents a more interesting surface, highlighting
the big outflow streets, while fastICA seems able to highlight only the big
ring around the center of the city.
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Figure 4.3: Railway stations: the top panel presents surface (on the left) and temporal
profile (on the right) identified by scICA. The bottom panel presents surface (on the
left) and temporal profile (on the right) identified by fastICA. Both temporal profiles
present a peak around the 6pm of the working days. The fasICA source (bottom panel
on the left) shows a single pixel with a high value on the Central railway station, the
biggest railway station of Milan. The scICA source (top panel on the left) highlights
the Central railway station, but also highlights Garibaldi railway station (in the central
top part of the map), another large railway station of the city.

4.3 Multi-resolution analysis: results obtained through
HICA algorithm

The two methods analyzed rely on some assumption on the sources. In
particular the independence between the sources, with scICA method that
takes into account also the spatial structure of the independent compo-
nents. However also the structure of the basis matrix can be analyzed.
In particular a multi-resolution analysis seems very useful in this contest,
because temporal profile defined only on restricted time intervals could be
as meaningful as temporal profile defined globally. Indeed, in the analyses
already presented in the literature on this dataset [33] and [43], the treelet
algorithm is performed.
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Figure 4.4: Traffic: the top panel presents surface (on the left) and temporal profile
(on the right) identified by scICA. The bottom panel presents surface (on the left) and
temporal profile (on the right) identified by fastICA. The temporal profiles are on during
the daily hours of the working days more than the weekend, with a peak around 6pm.
The surfaces identify the areas around the center. This component seems to speak about
the traffic after the work activities. The scICA component presents a more interesting
surface, highlighting the big outflow streets of the city.

Treelets, as we described in the introduction, are a multi-resolution data-
driven basis and it is an efficient and computationally fast tool to decom-
pose data. However we point out that, in BSS problems, they present some
drawbacks. In Chapter 1 we proposed HICA, a treelet inspired algorithm
particularly for BSS problems. Hence we apply to this dataset the HICA
algorithm. In Figure 4.5 we show an interesting component catched by
HICA. The spatial map highlights the Central railway station, a feature
we also found in Section 4.2. However in this case the temporal profile is
totally different. It presents two major peaks; the first on Friday around
6pm and the second on Sunday around 7pm. This component seems to
represent the people which leave the city for the weekend.
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Figure 4.5: An example of surface (on the left) and temporal profile (on the right)
identified by HICA. The temporal profile presents two biggest peaks, on Friday around
6pm and on Sunday around 7pm, while the source highlights the Central railway station.
This component seems to represent the people which leave the city during the weekend.

4.4 Summary of the results

In this chapter we analyzed the Telecom dataset through different methods.
The comparison between fastICA and scICA highlighted the improvements
provided by the method we proposed in this manuscript. Indeed, taking
into account the spatial dependence between the observations allows to ob-
tain richer spatial components. In the component shown in Figure 4.3, for
example, we are able to find of two similar railway stations of Milan, while
only one of them were catched by the classical ICA algorithm. The com-
ponents in Figure 4.4 of the two algorithms, instead, seem to describe the
same feature (i.e., the traffic after the work activities). However through
scICA algorithm we obtain a more clear spatial component, thanks to the
fact we include the dependence between the pixels during the procedure
to estimate spatial sources and temporal profiles. Furthermore, this case
study is very useful to highlight the different perspectives and the different
characteristics of BSS methods that rely on assumptions on the sources
and BSS techniques that make assumptions on the mixing matrix. Indeed
we showed how, using different methods, we can find out different tem-
poral behaviors related to the same area. In particular, about the central
railway station, we saw that in one case we are able to catch a global be-
havior (i.e., the peak every working day around 6pm, when people take
the train to come back home after work), while in another case, using a
multi-resolution approach, we are able to find a localized (in time) behav-
ior (i.e., people which leave the city for the weekend). According to the
problem under study and to desired achievements one method typology
can be more useful than the other, but it is impossible to specify the best
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approach overall.
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Part III

Alternating Least Square for
Functional Data with equality

and inequality constraints
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Chapter 5

Alternating Least Square

A very popular method to face BSS problems is Nonnegative Matrix Fac-
torization (NMF), which has been shown to be a useful decomposition tool
for multivariate data (see [27, 28]). In particular it is applied to imaging
problem and text data mining. Furthermore it is widely used in the anal-
ysis of complex chemical, pharmaceutical or agricultural mixtures through
spectrography, spectrometry, or chromatography. In this field it is often re-
ferred as Multivariate Curve Resolution (MCR), as described in [7, 15, 48].
Differently from other BSS methods, where an estimate of S and A is found
making some assumptions on these matrices (e.g., independence between

the sources or sparsity), NMF algorithms aim to find Ŝ and Â, estimates of

S and A respectively, minimizing the distance of ŜÂ′ from the data matrix
X imposing the nonnegativity constraint on all the variables. To minimize
the distance the most common cost functions are the classic Frobenius
norm

F (S, A) = ‖X− SA′‖2
F =

∑
ij

(Xij − (SA′)ij)2 (5.1)

or the generalized Kullback-Leibler divergence

F (S, A) = D(X‖SA′) =
∑
ij

(Xij log
Xij

(SA′)ij
− Xij + (SA′)ij).

Both this functions vanish if and only if X = SA′. In this manuscript
we focus on the Frobenius norm. Our goal is to minimize (5.1) subject-
ing to nonnegativity constraints on both the elements of S and A. Even
considering the unconstraint problem, it is unrealistic to expect to find a
global minimum for the objective function (5.1). Indeed, although it is
convex in S only and in A only, it is not convex in both variable together.
Hence an optimization algorithm is needed. A common way to solve this
problem is to perform an alternating algorithm. In particular, keeping fix
alternatively S and A, the current estimate for the other matrix is found
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through a nonnegative least square (see [28]). This kind of algorithms are
called Alternating Least Square (ALS). However, in practical problems,
nonnegativity could not be the only constraint to take into account. Some
works introduce regularization algorithms to impose sparsity constraints
on S and A, in order to obtain simpler and more manageable solution (see
for example [11]). In other cases can be interesting to impose equality con-
straints. For instance, when the rows of X gather the analysis of chemical
compounds (i.e., gas chromatograms or mass spectrograms), the matrix S
indicates the concentrations of the unknown referent elements of the ma-
trix A that form the mixtures in X. In this case each row of S needs to
sum to 1, since represents the concentration profile of its related mixture.
Generally speaking we can consider both equality and inequality constraint
and we can formalize our problem in the following way:

Problem 5.1 Given a n×K data matrix X, we look for a n×K matrix

Ŝ and a p×K matrix Â, estimates of S and A respectively, such that

(Ŝ, Â) = arg min ‖X− SA′‖2
F

u.c. Ha
kak ≥ hak ∀ k = 1, ..., K

Hs
i si ≥ hsi ∀ i = 1, ..., n

W a
k ak = wa

k ∀ k = 1, ..., K

W s
i sk = ws

i ∀ i = 1, ..., n

(5.2)

where ak is the kth column of A, si is the ith row of S and Ha
k , hak, H

s
i ,

hsi , W
a
k , wa

k, W
s
i and ws

i identify the inequality and equality constraints
for the columns of A and the rows of S.

In the rest of the chapter we focus on two aspects to deal with. In
Section 5.1 we analyze how to deal with the different kind of constraints.
In particular we see that, in some specific situation, taking into account all
the constraints minimizing the objective function provides worst solution.
Hence we propose a procedure to avoid this problem. Then, in Section 5.2,
we deal with the case X is a functional dataset, mainly focusing on the
problem of registration of functional data and how registration affects the
resolution of ALS.

5.1 Equality and inequality constraints

The most common way used in literature to solve the problem (5.2) is the

ALS algorithm. As a preliminary step, starting estimates Ŝ(0) and Â(0) are
set. Then, at the generic level l of the algorithm the following two steps
are performed:
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1) Updating of the estimate of S

Ŝ(l) = arg min ‖X− SÂ′
(l−1)
‖2
F

u.c. Hs
i si ≥ hsi ∀ i = 1, ..., n

W s
i sk = ws

i ∀ i = 1, ..., n

2) Updating of the estimate of A

Â(l) = arg min ‖X− Ŝ(l)A′‖2
F

u.c. Ha
kak ≥ hak ∀ k = 1, ..., K

W a
k ak = wa

k ∀ k = 1, ..., K

and these two steps are repeated until convergence. Then, at each level
of the algorithm, two constrained optimization problem need to be solved.
Inequality constraints involve positivity constraints and, for instance, other
boundary constraints on the variables that can be provided by the specific
problem under study. Equality constraints involve, for example, the con-
straint on the sum of the rows of S or other a priori information on the
variables (e.g., we could know the exact value of some of the elements of S
and/or A) that can be introduced in the optimization algorithm. In par-
ticular the constraint on the sum of the rows of S or on the rows of A is
very important in the resolution of problem (5.2). Indeed, even in those
situation where such a constraint has not a phenomenological interpreta-

tion, it is taken into account to make the solution identifiable. Let (S̃, Ã)
be a solution of problem (5.2). Then, every invertible K × K matrix L

that keeps S̃L and L−1Ã in the feasible region provides an equally valid

solution (S, A), with S = S̃L and A = L−1Ã.
These constraints have to be treated differently. The introduction of

some of them, indeed, could provide a constrained solution significantly
different from the unconstrained one. In order to show clearly this problem
we consider a simplified example. Our goal is to check the behavior of the
estimate of the ith row of S under different constraints when the columns of
A present collinearity. We consider K = 2, in order to graphically represent
the isolines of the objective function. We analyze three different situations,
summarized in Table 5.1.
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Objective function Constraints

Case 1
∑p

j=1(xij − si1aj1 − si2aj2)2 si1 + si2 = 1

Case 2
∑p

j=1(xij − si1aj1 − si2aj2)2 si1, si2 ≥ 0

Case 3
∑p

j=1(xij − si1aj1 − si2aj2)2 si2 = 0

Table 5.1: The three different situations analyzed. For every case objective function
and constraints are displayed.

In particular we are interested in analyzing what happens taking into ac-
count these three different constraints when the unconstrained solution is
out, but close, from the feasible region. We fix p = 12 and we generate the
columns of A randomly such that they have a high correlation. Then X is
generated through the model (3) adding some noise and with S fixed such
that the optimum lays close to the feasible region in the three different
cases of Table 5.1.
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Figure 5.1: Case 1 - the constraint si1 + si2 = 1 is considered and in the graph the
unconstrained solution (white point), the isoline tangent to the feasible region and the
constrained solution (red point) are shown.

From Figure 5.1 it is clear that the introduction of the constraint of sum
1 leads to a constrained solution significantly far from the unconstrained
solution, because of the shape of the isolines due to the collinearity between
the columns of A. This problem is avoided in the other two cases, as
depicted in Figure 5.2.
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Figure 5.2: Case 2 and 3 - the constraints si1, si2 ≥ 0 (on the left) and si2 = 0 (on the
right) are considered and in the graphs the unconstrained solutions (white points), the
isolines tangent to the feasible regions and the constrained solutions (red points) are
shown.

The collinearity problem is generally solved in literature normalizing the
unconstrained solution (or the constrained solution if other constraints are
considered). Although it is a good compromise, such procedure does not
take into account this knowledge about the problem. Then we propose to
modify the objective function through a penalization. Hence we change
the first step of the ALS algorithm in the following way:

1) Updating of the estimate of S

Ŝ(l) = arg min ‖X− SÂ′
(l−1)
‖2
F + λsP (S)

u.c. Hs
i si ≥ hsi ∀ i = 1, ..., n

W s
i sk = ws

i ∀ i = 1, ..., n

2) Updating of the estimate of A

Â(l) = arg min ‖X− Ŝ(l)A′‖2
F

u.c. Ha
kak ≥ hak ∀ k = 1, ..., K

W a
k ak = wa

k ∀ k = 1, ..., K

where P (S) penalizes, for every row of S, the quantity (
∑K

k=1(sik)− 1)2.
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Remark 5.1 We presented the case where the constraint is the sum of the
rows of S equal to 1, but this can be generalized to the matrix A and to the
case where the sum is equal to a constant c 6= 1.

Remark 5.2 At every step of the ALS algorithm a constrained optimiza-
tion has to be solved. Then, an optimization algorithm is needed. We
considered the L-BFGS-M (Limited Memory BFGS), which allows box con-
straints and uses a limited-memory modification of the BFGS quasi-Newton
method (see [10] for the detailed algorithm).

5.2 The problem of registration for functional datasets

We now focus on the case where X presents functional features (see [39]
for a detailed description of Functional Data Analysis). In the ALS prob-
lem, if X gather n functional data, the matrix A presents K functional
reference elements and S the coefficients which generate the data. This
is the case when the analysis of some chemical compounds is performed
through spectrometry (or chromatography), for instance. In this case the
spectrogram (or the chromatogram) is studied as a function. For exam-
ple, in [5] mixtures of acetone and acrolein are analyzed through their gas
chromatograms. In this case the chromatogram, as function of time, is
the functional data. In [7], instead, spectrograms of several pharmaceu-
tical samples are studied. In this case the functional data is represented
by the spectrogram, as function of the wavelength. In literature there are
a lot of issues related to Functional Data Analysis. In particular we deal
with a problem often encountered with functional data, the misalignment
of the data, and how it affects the ALS algorithm. In some situations the
different functions follow a similar course, but the more important charac-
teristics of this course happen at different time. In this case the alignment
(or registration) is crucial to allow a correct analysis of the variability in
the ordinate (amplitude variability). Then, there is the need to decouple
the amplitude variability from the variability present in the abscissa (phase
variability). If we are interesting in studying the amplitude variability, the
misalignment has to be removed, in order to avoid the estimate of the K
functional reference elements catching the phase variability. Even if this
problem can be a crucial criticism in the ALS resolution, it has not been
treated in literature. In particular, when functions depend on time, the
misalignment is often critical for a correct resolution of the BSS problem,
as we analyze in the following chapter.

A lot of methods for curve registration have been proposed and studied
in the literature, exploiting, for example, self-modeling non linear regres-
sion methods or non linear mixed effects model (see [3, 26, 31] for the
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details). Another line of research, instead, defines suitable similarity in-
dexes between curves, and then the registration is performed maximizing
their similarities by means of a Procustes procedure (see [41, 42, 24] for
the detailed works). We consider the latter line of research and we pro-
pose to perform the registration of data as a preliminary step of the ALS
algorithm.

What we propose is to perform a k-medoid alignment, described in [42],
which aims at aligning k groups of functional data, performing alignment
and clustering simultaneously. In our case we consider k = 1, since our
attention is only for the registration problem. Then, once data have been
aligned, we can proceed with the ALS described in Section 5.1.
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Chapter 6

Analysis of chromatograms

In this chapter we apply the ALS algorithm to the analysis of the chro-
matograms of some chemical mixtures in order to retrieve the chromatograms
of the original chemical compounds which generate the mixtures and the
concentrations in each mixture. In particular we perform two different
analyses. One exploiting a multivariate dataset obtained by a synthesis of
the chromatograms and the other using the whole chromatogram (i.e., a
functional data).

In this analysis we have n = 16 chemical mixtures of K = 3 original
chemical compounds. The mixtures are analyzed through a gas-chromatography
procedure. A gas chromatograph is a chemical analysis instrument for sep-
arating chemical elements in a complex mixture. A gas chromatograph uses
a flow-through narrow tube, through which different chemical constituents
of a mixture pass in a gas stream at different rates depending on their
various chemical properties and their interaction with a specific column
filling, called the stationary phase. When the elements exit at the end of
the column, they are detected and identified. The function of the station-
ary phase in the column is to separate different chemical elements, causing
each one to exit the column at a different time (retention time). Hence
a chromatogram presents different peaks at different retention times. At
each retention time is associated a specific chemical element and the area
under the peak represents the quantity of its related element present in the
analyzed mixture. One of the chromatogram analyzed in this chapter (i.e.,
a part of it related to a standard reference area) is shown in Figure 6.1.
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Figure 6.1: Example of chromatogram. The numbers from 1 to 11 highlight the peaks
considered for the evaluation of the areas.

We obtain an evaluation of each chromatogram in p = 4100 instants of
time. Due to the nature of the problem, the chromatogram of the ith
mixture at the jth instant satisfies:

xij =
K∑
k=1

sikajk (6.1)

where sik is the concentration of the kth original compound in the mixture
i and ajk is the value of the chromatogram of the kth original compound
at the jth instant of time. Each variable sik, ajk for i = 1, ..., n, j = 1, ..., p
and k = 1, ..., K needs to be greater than zero. Then we have a further
constraint on the elements sik. Specifically, for every i = 1, ..., n, we require∑K

k=1 sik = 1. Since we use mixtures prepared in laboratory, we know
both the chromatograms of the original compounds a1(t), ..., aK(t) and the
concentrations sik. Then we can use this dataset to test the procedures
described in the previous chapter. Since the concentrations matrix has
some elements equal to zero, we consider to know them, introducing other
equality constraints sik = 0 for some i and some k.
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Mixture A B C

1 0.9 0.05 0.05

2 0.25 0 0.75

3 0.15 0.85 0

4 0.2 0.4 0.4

5 0 0.13 0.87

6 0.05 0 0.95

7 0.3 0.4 0.3

8 0 0.5 0.5

9 0.15 0.3 0.55

10 0.6 0.1 0.3

11 0.3 0.7 0

12 0.03 0.01 0.96

13 0.35 0.55 0.1

14 0.4 0.4 0.2

15 0.25 0.15 0.6

16 0.96 0.03 0.01

Mixture A B C

1 X X X

2 X 0 X

3 X X 0

4 X X X

5 0 X X

6 X 0 X

7 X X X

8 0 X X

9 X X X

10 X X X

11 X X 0

12 X X X

13 X X X

14 X X X

15 X X X

16 X X X

Figure 6.2: Real concentrations matrix (on le left) and matrix containing the information
known a priori (on the right).

The real concentrations matrix and the matrix with the information known
a priori are shown in Figure 6.2. Our goal is to retrieve the chromatograms
of the original compound and the concentrations matrix through the chro-
matograms of the mixtures, the a priori information and the suitable con-
straints. Hence we implement an ALS algorithm, taking into account the
functional nature of the data. However we also analyze a multivariate data,
coming from a synthesis of the chromatogram. In particular, since every
peak of the chromatogram is associated to the retention time of a specific
chemical element, the area of the peak provides the quantity of that specific
element. An idea is to “vectorize” the functional data measuring the areas
of some relevant peaks. In this analysis we take into account the areas
of the 11 peaks highlighted in Figure 6.1. Before the comparison between
these two different analyses it is worth to point out that the evaluation
of the areas presents some drawbacks. Firstly it introduces a subjective
choice of the points which identify the base of the peak for the evaluation
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of the area. Then, in some situations, the separation between two or more
peaks is not so clear. This is the case, for example, of the peaks 7 and 8
in Figure 6.1.

The rest of the chapter is organized as follows. In Section 6.1 we present
a useful a simple procedure to choose the value of K. Then, in Sections 6.2
and 6.3, we present the results obtained using the vector of the areas and
the whole chromatograms, respectively. Finally, in Section 6.4 we compare
the multivariate and the functional approaches.

6.1 Choice of K

In this synthetic analysis all the variables are known. Hence we can check
the goodness of our results. For instance we know the value of K (i.e.,
K = 3) of original compounds generating the mixtures. However, in the
real problems, K is often unknown. Then, a procedure to find the right
K is needed. In this particular situation the chromatograms of the mix-
tures x1, ...,xn are generated by a convex linear combination of the chro-
matograms of the original compounds a1, ..., aK . This means that data lay
in the K − 1 dimensional simplex generated by a1, ..., aK . Hence data live
in a space of dimension K − 1.

Figure 6.3: Toy example to show that data live in a K − 1 dimensional space. In the
picture the case with K = 3, where data live the 2D triangle generated by the columns
of A, is shown.

In Figure 6.3 we can see a toy example with K = p = 3 and where data
have been generated according to the model (6.1). The picture shows that
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data lay in a 2-d triangle. Hence our proposal is to perform a Principal
Component Analysis [23] to find the dimension h where data live. Then
we set K = h+ 1.

6.2 Analysis with multivariate data

In this section we analyze the chromatograms using the vector of the p = 11
areas highlighted in Figure 6.1. Firstly we perform a PCA to find the right
value for K. In this case we know that K = 3. Hence, according to the
Section 6.1, we should find an elbow at 2 Principal Components. However
the graph on the left of Figure 6.4, seems to suggest h = 4 Principal
Components (i.e., K = 5). This further artificial variability could have
been introduced by some error in the measurements of the areas. Hence,
some diagnostic tools are needed.
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Figure 6.4: Portion of explained variance by the PCs of the original multivariate dataset
(on the left) and the dataset after that the peaks 7 and 8 have been eliminated (on the
right). In the panel on the right an elbow at h = 2 is evident, as expected.

6.2.1 Diagnostic tools

The more natural diagnostic tool is to consider how our estimates fit the
data. In particular we focus on the difference

(xij −
K∑
k=1

ŝikâjk)
2, (6.2)

checking (6.2) for every element of the data matrix X (i.e, for i = 1, ..., n
and j = 1, ..., p). The evaluation of the misfit can lead us to find anomalous
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behaviors for some observations (mixtures) and/or some variables (peaks).
Specifically, if we find out that the biggest misfit errors are all related to
the same observation, we can interpretate it as anomalous and proceed
in the analysis eliminating the observation (and the same can be done
with a variable). In our problem, eliminating an observation correspond
to eliminate a mixture. This means that we will not be able to estimate
the concentrations related to that mixture. Eliminating a variable, on the
contrary, means that we will not be able to estimate one peak area of the
original compounds generating the mixtures. However, given that the new
n and the new p remain greater than K, we can still estimate all the other
quantities. In fact, the elimination of the aberrations should provide a more
accurate estimate. Hence, giving up to find some quantities of interest is
preferable if it allows us to improve the rest of the estimates.

Figure 6.5: Left panel: evaluation of ‖X− X̂‖ for the original data matrix. The biggest

errors seem to occur for the peaks 3,7 and 8. Right panel: evaluation of ‖X− X̂‖ after
the elimination of peaks 7 and 8. Errors are small for every mixture and for every peak.

In the left panel of Figure 6.5 the evaluation of ‖X−X̂‖ for every element
of the matrix is shown. The biggest errors seem to occur for the peaks 3,7
and 8. Peaks 7 and 8, in particular, are those peaks whose separation is not
so clear. This implies some difficulties in the measurements of the areas.
For this reason we chose to eliminate only these two peaks and to check
again the PCA and the misfit errors. In this case, looking at the right panel
of Figure 6.4, there is a clear elbow at h = 2, as we expected. Regarding
the misfit errors, from the right panel of Figure 6.5 it is possible to notice
that the errors are small for every mixture and for every peak.

This analysis highlights the fact that, if the evaluation of the areas is
not done correctly, data present incongruence that can lead to an inefficient
resolution of the BBS problem. The diagnostic through the analysis of the
misfit errors helps us to find these anomalies. Moreover we can also look
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at the PCA as a diagnostic tool itself in those cases where K is known.
Indeed, if we know the dimension of the space where data should live, we
can use the PCA to verify that data live in the desired space.

We now analyze the results obtained in the estimate of S and A through
the ALS algorithm described in the Section 5.1.

6.2.2 Analysis of results

We analyze the modified dataset after the elimination of the anomala peaks.
Firstly we focus on the concentration matrix S. In particular we analyze
the introduction of the penalty related to the constraint on the rows of S
(i.e., every row of S needs to sum up to 1), in order to verify if the penalty
effectively provides improvements on the solution. In Figure 6.6 the error
as a function of λs is shown. The error is measured as the mean of the
estimation error of the unknown concentrations in the matrix S. Figure 6.6
shows a clear improvement introducing a penalty in the objective function.
In particular the error with λ = 0 is equal to 0.04366, while with λ optimum
it is equal to 0.03532, reducing by a 20%.
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Figure 6.6: Estimation error of matrix S versus λ. There is a minimum for λ = 3 ∗ 1011

where the error is reduced by 20%.

In Figure 6.7 we compare Ŝ obtained for λ = 0 and for the λ optimum, with
the true S and the main improvements provided by the penalized solution
are highlighted.
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Mix A B C

1 0.9 0.05 0.05

2 0.25 0 0.75

3 0.15 0.85 0

4 0.2 0.4 0.4

5 0 0.13 0.87

6 0.05 0 0.95

7 0.3 0.4 0.3

8 0 0.5 0.5

9 0.15 0.3 0.55

10 0.6 0.1 0.3

11 0.3 0.7 0

12 0.03 0.01 0.96

13 0.35 0.55 0.1

14 0.4 0.4 0.2

15 0.25 0.15 0.6

16 0.96 0.03 0.01

Mix A B C

1 0.94 0.06 0

2 0.29 0 0.71

3 0.07 0.93 0

4 0.2 0.41 0.39

5 0 0.05 0.95

6 0.03 0 0.97

7 0.3 0.39 0.31

8 0 0.35 0.65

9 0.11 0.36 0.53

10 0.68 0 0.32

11 0.25 0.75 0

12 0.03 0.0 0.97

13 0.34 0.56 0.11

14 0.41 0.3 0.29

15 0.27 0.03 0.7

16 0.99 0 0.01

Mix A B C

1 0.94 0.06 0

2 0.29 0 0.71

3 0.07 0.93 0

4 0.21 0.39 0.4

5 0 0.04 0.96

6 0.03 0 0.97

7 0.3 0.4 0.31

8 0 0.35 0.65

9 0.1 0.37 0.53

10 0.66 0.05 0.29

11 0.25 0.75 0

12 0.02 0.04 0.94

13 0.33 0.58 0.09

14 0.39 0.37 0.23

15 0.24 0.15 0.61

16 0.99 0 0.01

Figure 6.7: Comparison of the true S (on the left) with Ŝ obtained for λ = 0 (in the
middle) and for λ optimum (on the right). The main improvements due to the penalty
are highlighted.

We now focus on the penalized solution to compare the true A with Â,
which represents the estimate of the peak areas of the original compounds.
In Figure 6.8 the comparison is depicted and can be inferred that, for all
the original compounds, the areas of the peaks are estimated very accu-
rately. It is worth to point out that, since we removed two peaks after
the diagnostic procedures, we are not able to estimate those areas for the
original compounds generating the mixtures.
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Figure 6.8: Comparison between Â (red) and A (green). In the top panel the first and
the second compound are shown on the left and on the right respectively. In the bottom
panel the third compound is depicted.

6.3 Analysis with functional data

We now consider for the analysis the whole chromatogram. For each mix-
ture we evaluate its chromatogram at p = 4100 retention times and these
objects are treated as a functions. Firstly, we can see from Figure 6.9 that
data are misaligned. Since each peak is associated to a specific retention
time and each retention time to a chemical elements, we expect to find the
corresponding peaks among the different mixtures at the same abscissa.
But this is not the case. The misalignment is probably due to slightly
different condition of the machine during the experiment or, simply, is a
measurement error. However we are not interested in catching such vari-
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ability. Hence, the alignment step is needed. In Figure 6.10 the aligned
chromatograms are depicted. Now the phase variability seems almost dis-
appeared.
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Figure 6.9: In the top panel all the chromatograms contained in X are shown and the
problem of misalignment is evident. In the bottom panel only the first part of the
chromatograms is depicted.

Therefore we can proceed applying the ALS algorithm to the aligned chro-
matograms. Before to do that, we check, through the PCA, if it is possibile
to infer on the value of K, when it is unknown. The portion of variance
explained by the PCs is shown in the left panel of Figure 6.11. It seems
that the first PC is sufficient to explain all the variability of the problem.
However, looking at the zoom of the picture in the right panel of Figure
6.11, an elbow at h = 2 can be observed. Hence, although the functional
nature of the data is such that almost the entire variability can be expressed
through the first principal component (the mean function), something on
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the real value of K can be still inferred, even if less clearly than in the
multivariate case.
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Figure 6.10: In the top panel the aligned chromatograms are shown. In the bottom
panel only the first part of the chromatograms is depicted.

We now analyze the results obtained through the ALS algorithm. In this
case the penalty does not provide any reasonable improvement. For this
reason we consider only the unpenalized solution. In Figure 6.12 the true S
is compared with its estimates obtained with the aligned and non aligned
chromatograms. It is evident how the aligned solution is significantly better
than the non aligned solution. The mean of the error over the unknown
coefficients is, indeed, 0.0959 for the aligned solution and 0.3661 for the non
aligned one. This makes clear the crucial part played by the registration
in the resolution of the ALS algorithm.
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Figure 6.11: Portion of explained variance by the PCs of the functional dataset (on the
left) and a zoom of that (on the right). In the panel on the right an elbow at h = 2 is
evident, as expected.

Mix A B C

2 0.25 0 0.75

3 0.15 0.85 0

4 0.2 0.4 0.4

5 0 0.13 0.87

6 0.05 0 0.95

7 0.3 0.4 0.3

8 0 0.5 0.5

9 0.15 0.3 0.55

10 0.6 0.1 0.3

11 0.3 0.7 0

12 0.03 0.01 0.96

13 0.35 0.55 0.1

14 0.4 0.4 0.2

15 0.25 0.15 0.6

16 0.96 0.03 0.01

Mix A B C

2 0.36 0 0.65

3 0.11 0.89 0

4 0.28 0.34 0.39

5 0 0.42 0.59

6 0.12 0 0.86

7 0.44 0.06 0.48

8 0 0.61 0.39

9 0.2 0.26 0.53

10 0.67 0.12 0.21

11 0.28 0.72 0

12 0 0.45 0.54

13 0.34 0.61 0.04

14 0.41 0.41 0.18

15 0.28 0.25 0.46

16 0.98 0.02 0

Mix A B C

2 1 0 0

3 0.94 0.06 0

4 0.46 0.05 049

5 0 0 1

6 0.24 0 0.76

7 0 0.57 0.43

8 0 0.51 0.49

9 0 0.6 0.4

10 0 0.73 0.37

11 0.24 0.76 0

12 0 0.81 0.19

13 0 1 0

14 0 1 0

15 0 1 0

16 0 1 0

Figure 6.12: Comparison of the true S (on the left) with Ŝ obtained for the aligned (in
the middle) and the non aligned (on the right) dataset. The estimated obtain with the
aligned dataset in consistently better.
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We now compare the true A with its estimate Â, that is the estimate of the
whole chromatogram of the original compounds generating the mixtures.
In Figure 6.13 this comparison can be appreciated. We show only a part
of the chromatogram in order to make the graph understandable. The
estimate of the chromatograms of the original compounds seems to be very
accurate.
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Figure 6.13: Comparison between the true A (dashed curves) with its estimate (solid
curves). Curves are misaligned in order to make the comparison easier.

6.4 A comparison between multivariate and functional
approach

In this section we compare the multivariate and the functional approach.
Regarding the estimate of S, shown in Figure 6.14, the multivariate analy-
sis gives a very good result. The mean error over the unknown coefficients
is equal to 0.03532. The estimate provided by the functional presents a
slightly higher error, precisely equal to 0.0959. However this estimate is
still acceptable. Moreover, looking at the estimates of Figure 6.14, it is
possible to notice that the matrix provided by the functional approach,
but for a few mixtures (i.e., mixtures number 5, 7 and 12) where the esti-
mate is not very accurate, is absolutely comparable with the matrix given
by the multivariate approach, for some mixtures even better. Although
the analysis of the concentration estimates seems to make the multivari-
ate approach preferable, it is worth to point out that it presents some
drawbacks, as partially described in the previous sections. First of all it re-
quires the manually evaluation of the peak areas and this procedure could
introduce some unwanted variability. Sometimes the diagnostic tools can
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solve this problem, but the functional approach, in this sense, is prefer-
able, since it does not require any manual pre-processing operation. The
functional approach only requires the alignment of the data, in order to
avoid that the phase variability compromises the efficiency of the estimate.
This procedure is done automatically through an alignment algorithm, like,
for instance, the one we proposed in Section 5.2. The only drawback of
this step is that data need to be perfectly aligned. In the application we
described in this chapter, indeed, we removed the first mixture, since it
presented a problem during the alignment step.

Mix A B C

1 0.9 0.05 0.05

2 0.25 0 0.75

3 0.15 0.85 0

4 0.2 0.4 0.4

5 0 0.13 0.87

6 0.05 0 0.95

7 0.3 0.4 0.3

8 0 0.5 0.5

9 0.15 0.3 0.55

10 0.6 0.1 0.3

11 0.3 0.7 0

12 0.03 0.01 0.96

13 0.35 0.55 0.1

14 0.4 0.4 0.2

15 0.25 0.15 0.6

16 0.96 0.03 0.01

Mix A B C

1 0.94 0.06 0

2 0.29 0 0.71

3 0.07 0.93 0

4 0.21 0.39 0.4

5 0 0.04 0.96

6 0.03 0 0.97

7 0.3 0.4 0.31

8 0 0.35 0.65

9 0.1 0.37 0.53

10 0.66 0.05 0.29

11 0.25 0.75 0

12 0.02 0.04 0.94

13 0.33 0.58 0.09

14 0.39 0.37 0.23

15 0.24 0.15 0.61

16 0.99 0 0.01

Mix A B C

1 - - -

2 0.36 0 0.65

3 0.11 0.89 0

4 0.28 0.34 0.39

5 0 0.42 0.59

6 0.12 0 0.86

7 0.44 0.06 0.48

8 0 0.61 0.39

9 0.2 0.26 0.53

10 0.67 0.12 0.21

11 0.28 0.72 0

12 0 0.45 0.54

13 0.34 0.61 0.04

14 0.41 0.41 0.18

15 0.28 0.25 0.46

16 0.98 0.02 0

Figure 6.14: Comparison of the true S (on the left) with Ŝ obtained through the mul-
tivariate approach (in the middle) and the functional approach (on the right) dataset.
The estimated obtain with the multivariate approach provide a slightly better result.

Another aspect which makes the functional approach preferable is that
we use the entire chromatogram and not only a synthesis of it. This is
important under at least two point of view. The first is that, when we
use some peak areas instead of the whole function, if we select peaks where
there is no variability between the original compounds, we cannot solve the
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problem. However, since the original compounds are unknown, we cannot
be sure to avoid this criticism. The functional approach, on the contrary,
allows to use the entire chromatogram and to take into account all the
differences between the original compounds, even considering larger areas
than the standard reference part, where the divisions between peaks are
not very clear and then the multivariate approach is unfeasible. The second
advantage given by the functional approach is that it allows to estimate the
whole chromatograms of the original compound generating the mixtures
and not just the peak areas. If the interest is not focused simply on the
concentrations this is an important aspect to take into account. Finally,
the multivariate approach, since involves less variables, is computationally
cheaper than the functional approach.

83



Part IV

Computational details
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Package ‘fastHICA’
November 22, 2013

Type Package

Title Hierarchical Independent Component Analysis: a multi-scale
sparse non-orthogonal data-driven basis

Version 1.0

Date 2013-11-22

Author Piercesare Secchi, Simone Vantini, and Paolo Zanini

Maintainer Paolo Zanini <paolo.zanini@polimi.it>

Depends fastICA, extracat, grid, MASS, colorspace, hexbin, lattice,scales, ggplot2, reshape, plyr

Description This package implements HICA (Hierarchical Independent Component Analysis) algo-
rithm. This approach, obtained through the integration between treelets and Independent Compo-
nent Analysis, is able to provide a multi-scale non-orthogonal data-driven basis, whose ele-
ments have a phenomenological interpretation according to the problem under study.

License GPL (>= 2)

R topics documented:
basis_hica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
energy_hica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
extract_hica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
similarity_hica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Index 7

basis_hica Construction of the HICA basis

Description

This function builds the HICA tree up to a prespecified height providing the corresponding non-
orthogonal bases.

Usage

basis_hica(X, maxlev = dim(X)[2] - 1, dim.subset = 512)

1



2 basis_hica

Arguments

X Data matrix with nrow(X) observations and ncol(X) variables.

maxlev The maximum level of the tree. This must be an integer between 1 and ncol(X)-
1. The default value is set to ncol(X)-1.

dim.subset The dimension of the subset used for the evaluation of the similarity index (i.e.,
distance correlation). If this it is greater than nrow(X) all the observations are
used, unless a random subsample of dim.subset observations is used. The
default value is set to 512.

Value

X data matrix.

basis a list with maxlev elements. The ith element of the list contains the basis matrix
provided at level i of the tree. Each column of the basis matrix represent a basis
element.

aggregation a matrix with maxlev rows and 3 columns. At each row the first two columns
contain the variable indeces merged at the corresponding level of the tree. In the
third column the distance correlation of the two merged variables is recorded.

Note

The distance correlation is evaluated through the function wdcor of the package "extracat". It be-
comes computational unfeasible if the number of observations is too large. For this reason it is
possibile to choose the dimension of the subsample to be used in the evaluation of the similarity
matrix. By default the dimension is set to 512.

Author(s)

Piercesare Secchi, Simone Vantini, and Paolo Zanini.

References

Secchi, Vantini, and Zanini (2013).

See Also

energy_hica, similarity_hica, extract_hica

Examples

## Not run:

############################################################
# Example 2 - Independent sources and overlapping loadings #
############################################################

c1=c(0,0,0,0,1,1)
c2=c(1,1,1,1,0,0)
c3=c(1,1,0,0,0,0)

s1=runif(1000,0,20)
s2=runif(1000,0,20)
s3=runif(1000,0,20)
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# Here we generate the simulation dataset

X=s1%*%t(c1)+s2%*%t(c2)+s3%*%t(c3)+rnorm(6*1000,0,1)

X_in=t(t(X)-colMeans(X)) # Data-matrix whose columns have zero-mean

# Here we perform HICA on the simulation dataset

basis=basis_hica(X,5,1000)
energy=energy_hica(basis,6,5,plot=TRUE)

# We plot the 3 main components of HICA basis
# (according to the energy criterium) for 4th level.

ex4=extract_hica(energy,3,4)
loa4=ex4$C

windows()
par( mfrow = c(3,1))
barplot(loa4[,1], ylim = c(-1, 1),main="HICA transform - Level 4",
ylab="1st component",xlab="Coordinate",names.arg=1:6,col="red",mgp=c(2.5,1,0))
barplot(loa4[,2], ylim = c(-1, 1),ylab="2nd component",
xlab="Coordinate",names.arg=1:6,col="green",mgp=c(2.5,1,0))
barplot(loa4[,3], ylim = c(-1, 1),ylab="3rd component",
xlab="Coordinate",names.arg=1:6,col="blue",mgp=c(2.5,1,0))

## End(Not run)

energy_hica Energy criterion

Description

This function implements the energy criterion defined in Secchi, Vantini, and Zanini (2013).

Usage

energy_hica(HICA.obj, maxcomp = 1, nlevel = 1, plot = TRUE)

Arguments

HICA.obj An object provided by the function basis_hica.
maxcomp The maximum space dimension considered.
nlevel The number of levels analyzed. Specifically the levels from p-nlevel to p-1 are

analyzed, where p is the number of variables.
plot A logical value. If TRUE the energy is plotted.

Details

This function computes the energy according the criterion presented in Secchi, Vantini and Zanini
(2013). It is useful to find the best representation. It receives in input the output of the basis_hica
function.
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Value

energy A matrix with maxcomp rows and p-1 columns, where p is the number of vari-
ables. In position (i,j) it contains the energy of the best i-dimensional space for
the jth level of the tree. Only the last nlevel columns are filled.

components A matrix with maxcomp rows and p-1 columns, where p is the number of vari-
ables. In position (i,j), it contains the index of th ith basis element for jth level
of the tree. Only the last nlevel columns are filled.

HICA.obj The same object, output of the function basis_hica, provided in input.

Author(s)

Piercesare Secchi, Simone Vantini, and Paolo Zanini

References

Secchi, Vantini, and Zanini (2013)

See Also

basis_hica, similarity_hica, extract_hica

extract_hica Extraction of score and loading matrices.

Description

This function extracts the score matrix and the loading matrix given the dimension of the subspace
considered and the level of the tree chosen. Furthermore it provides the cumulant energies for the
subspace extracted.

Usage

extract_hica(energy.obj, comp, level)

Arguments

energy.obj An object provided by the function energy_hica.

comp Dimension of the subspace.

level Level of the tree.

Value

X data matrix.

S score data matrix.

C loading matrix. Each column represent a basis element.

cum.energy cumulant energy for the subspace extracted.

Author(s)

Piercesare Secchi, Simone Vantini, and Paolo Zanini.
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References

Secchi, Vantini, and Zanini (2013).

See Also

basis_hica, similarity_hica, energy_hica

similarity_hica Estimate of the similarity matrix

Description

This function provides an estimate of the similarity matrix of the original data, before performing
HICA algorithm.

Usage

similarity_hica(X, dim.subset = 512)

Arguments

X Data matrix with nrow(X) observations and ncol(X) variables.

dim.subset The dimension of the subset used for the evaluation of the similarity index (i.e.,
distance correlation). If this it is greater than nrow(X) all the observations are
used, unless a random subset of dim.subset observations is used. The default
value is set to 512.

Details

This function is auxiliary for the basis_hica function. Indeed its output is the estimate of the
similarity matrix at the first step of the algorithm.

Value
similarity_matrix

similarity matrix of the original data.

subset subset used for the evaluation of distance correlation between variables.

Note

The distance correlation is evaluated through the function wdcor of the package "extracat". It be-
comes computational unfeasible if the number of observations is too large. For this reason it is
possibile to choose the dimension of the subsample to be used in the evaluation of the similarity
matrix. By default the dimension is set to 512.

Author(s)

Piercesare Secchi, Simone Vantini, and Paolo Zanini.

References

Secchi, Vantini, and Zanini (2013).
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See Also

basis_hica, energy_hica, extract_hica
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Conclusion

This manuscript focused on the resolution of Blind Source Separation (BSS)
problems for high-dimensional, massive, and complex data. In particular
we aimed to obtain solutions with a phenomenological interpretation ac-
cording to the physics of the problem under study. We analyzed how,
in literature, this purpose is not achieved through model-free methods
(as, for instance, Principal Component Analysis) but making statistical
or mathematical assumptions on the quantities of interest. In particular
we considered three different approaches. The first one regarding statisti-
cal assumptions on the random sources (e.g, independence), the second one
related on mathematical assumptions on the mixing matrix (e.g., sparsity
or multi-scale property) and the last one based on the introduction of some
constraints, generally provided by an a priori knowledge about the solu-
tion, on both the source matrix and the mixing matrix (e.g., nonnegativity
constraint). Hence we developed our work in three different parts, each
related to one of these approaches.

In the first part of the thesis we addressed our attention to the multi-
resolution analysis of complex datasets. In particular we developed a new
method, named Hierarchical Independent Component Analysis (HICA). It
is built through the integration between treelets and Independent Compo-
nent Analysis (ICA), and provides a multi-scale nonorthogonal data-driven
basis. We also applied this new method to an EEG dataset of patients af-
fected by alcoholism. We analyze one patient and we show how our method
is able to provide meaningful and interpretable results and to give notice-
able improvements with respect to other popular BSS methods.

In the second part we focused on the ICA framework. In particular we dealt
with those situations where the sources are spatial stochastic processes on
lattices. We built a new method, named spatial colored Independent Com-
ponent Analysis (scICA), to take into account the spatial dependence of
the observations. The key point of our method is to work in the frequency
domain instead of the spatial domain, and the key statistical tool used
to implement this method is the Whittle likelihood. We also applied the
proposed method to a mobile phone traffic dataset, provided by Telecom
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Italia. We compared scICA and fastICA (the more famous algorithm im-
plementing ICA) algorithms and we show how our method is able, through
the information carried out by the spatial dependence structure, to reveal
some interesting population and mobility characteristics.

In the third part we faced some problems of the Alternating Least Square
(ALS), an algorithm to solve Nonnegative Matrix Factorization (NMF)
problem. Specifically we focused on two main problems to deal with. The
first one is related to the implementation of the constraints. Indeed, non-
negativity is often not the only constraint one want to impose. In partic-
ular, equality constraints play an important role in a lot of applications.
However we showed that a specific treatment for these kind of vincola is
needed. Hence we proposed a procedure to deal with this kind of constraint
(i.e., we introduce a suitable penalty in the objective function). The second
aspect related to ALS is the analysis of functional dataset. In particular
we dealt with the misalignment problem and we analyzed how misalign-
ment can affect the solution. Then we present a real application where we
studied some chemical mixtures through their gas chromatograms in order
to retrieve the chromatograms of the original compounds generating the
mixtures and the concentrations in each mixture.

All the analyses have been carried out through the statistical software R.
In particular we also developed an R package, fastHICA, implementing the
HICA algorithm we proposed. It has been published on the CRAN reposi-
tory. The development of an R package implementing the scICA algorithm
is also in order, although it not available on the CRAN repository yet. In
the last part of this manuscript we presented the help of the fastHICA
package.
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