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Abstract

THE thesis is devoted to the numerical modeling of multiphase gas–particle flows.

This work has been originally motivated by the need of developing numerical

tools for the simulation of explosive volcanic eruptions. Due to the complexity

of volcanic phenomena, that does not allow to reproduce them at the laboratory scale,

mathematical and numerical models are achieving an essential role.

Several theoretical and numerical challenges arise in the field of the simulation of

explosive volcanic eruptions. The mathematical description of the real multiphase fluid

is not trivial, due to the presence of a wide spectrum of solid components and a large

number of chemical gaseous components that interact with each other. Concerning the

numerical modeling of explosive volcanic eruptions, the main difficulties are related

to the multiscale nature of the phenomena and to the wide variety of flow regimes in-

volved. Further difficulties are related to the rigorous model verification and validation.

In conclusion, the accurate and efficient simulation of realistic eruptive scenarios still

represents a challenge for computational fluid dynamics.

After a discussion on different approaches to the mathematical modeling of mul-

tiphase gas–particle flows, a model based on the Eulerian-Eulerian approach is pre-

sented for a mixture of a gaseous phase and N classes of solid particles, able to handle

the widest range of physical phenomena. The mathematical model consists in a set of

balance equations representing the mass, momentum and energy conservation. Appro-

priate closure equations are introduced, based on literature review.

The dimensional analysis of the multiphase equations is carried out for significant

test problems, both on the volcanic scale and the laboratory scale. The relative im-

portance of different physical phenomena that take place in the volcanic jet and in the

pyroclastic density current are assessed. In the volcanic jet problem, we show that the

ejected multiphase mixture can be well approximated as inviscid. Gravitational effects

and dissipation due to viscous and drag forces are negligible. Compressibility effects

are important and a transonic regime can be expected. Moreover, the hypothesis of

equilibrium between different phases is not valid and a fully multiphase mathematical

model is needed to investigate the non-equilibrium dynamics between different phases.

After the volcanic column collapse, in the pyroclastic current gravitational effects be-
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come dominant. When reproducing a multiphase jet on the laboratory scale, particle

dynamics is strongly decoupled from gas dynamics. Moreover, viscous dissipation and

the work done by the drag force may play a key role in the thermodynamics of the mix-

ture. As a consequence, the thermodynamics processes that influence the jet dynamics

on the laboratory scale may differ from those characterizing the volcanic jet dynamics.

Two distinct numerical approximations of the multiphase flow equations are pre-

sented and validated, based on the finite volume and the discontinuous Galerkin ap-

proach. The proposed finite volume scheme achieves second order accuracy in space

and time and it is validated against experimental and numerical results in both super-

sonic and subsonic regimes. The underexpanded jet problem on the laboratory and

volcanic scale, the particle-laden gravity current and the collapsing jet problem are

taken as benchmark tests. Supersonic and subsonic regimes are well described by the

finite volume scheme. The multidimensional second order spatial discretization is es-

sential to accurately capture the shock wave pattern observed in underexpanded jets and

to reduce numerical diffusion. Validation against experiments and comparison against

numerical results is satisfactory.

The alternative p-adaptive discontinuous Galerkin approach allows to achieve higher

accuracy, while keeping a small computational stencil and a relatively limited compu-

tational cost thanks to a p-adaptivity approach. In the present work, the discontinuous

Galerkin scheme is applied to solve multiphase gas–particle equations that accounts for

drag and heat exchange coupling between different phases. Appropriate flux limiting

and slope limiting techniques are applied to the proposed discontinuous Galerkin ap-

proximation of the multiphase flow equations. The discontinuous Galerkin approach

is tested on several benchmark problems in the one-dimensional case. In particular,

monophase and multiphase shock tube test cases are considered in order to assess the

accuracy, the limiting techniques properties and the computational efficiency obtained

thanks to the p-adaptive approach. We show that slope limiting and flux limiting tech-

niques are essential in multiphase shock tube problems to guarantee the positivity of

physical quantities and the stability of the numerical solution. The p-adaptive approach

is able to reduce the computational cost up to 50 % by keeping a good accuracy on the

numerical solution.

In the last part of the work, the finite volume numerical model is applied to study

the effect of gas–particle non-equilibrium on underexpanded volcanic jets by assuming

monodisperse, bidisperse and polydisperse mixtures. By means of a scaling analysis

based on particle Stokes numbers St, i.e., the ratio between the particle relaxation time

and the Mach disk formation time of the underexpanded jet, we classify solid particulate

into two categories, namely fine and coarse particles. Fine particles are tightly coupled

with the gas phase and do not modify the structure of the shock wave pattern in the

jet. On the contrary, coarser particles are decoupled from the gas phase and strongly

influence the jet decompression structure, including the intensity, shape and position of

the Mach disk. Depending on the mass ratio between fine (St ≪ 1) and coarse (St ≫
1) particles, the jet flow pattern can dramatically change, leading to the obliteration of

the Mach disk structure.

On the basis of the results of the time scale analysis, an hybrid pseudogas-multiphase

model is proposed, in which fine particles and the gas phase are modeled together

as a pseudogas with average thermodynamics properties, whereas coarse particles are
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grouped together into a representative class of solid particles with average properties.

Numerical results confirm the validity of the hybrid approach for the simulation of

monodisperse, bidisperse and polydisperse underexpanded jets and highlight the key

effect of the total grain size distribution on the underexpanded jet and on the overall

stability properties of the eruptive column.

The developed methodology and techniques are general and can be extended to the

many different multiphase gas–particle flows that can be encountered in geophysical

and industrial applications.
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CHAPTER1

Introduction

THE object of the present thesis is the investigation of numerical modeling ap-

proaches for multiphase gas–particle flows, with a special focus on the applica-

tion to explosive volcanic eruptions. Volcanic eruptions are complex phenom-

ena that involve many physical processes. A significant progress towards understanding

these phenomena has been done in the last years thanks to the synthesis of mathemati-

cal and laboratory models with data and observations. However, due to intrinsic danger

that makes direct measurement of volcanic processes rather difficult and due to the

complexity of these phenomena, that does not allow to reproduce them at the labora-

tory scale, mathematical and numerical models are achieving an essential role in the

study of volcanic eruptions. This is especially important in view of the growing need to

quantify and map the hazards associated to future explosive eruptions in known active

areas, such as the Vesuvian area and the Campi Flegrei area in Italy.

Volcanoes display a wide range of eruption styles, from the effusion of lava flows

to explosive eruptions. The difference in the eruption style can be associated with the

fluid mechanics governing magma ascent inside the volcano. Examples of interacting

factors, that can determine the eruption style, are the ascent rate of magma, the magma

rheology and the interaction of magma with external sources of water [55]. Magma,

stored in the magma chamber, is composed by a silicate melt with solid crystals and dis-

solved volatile species, primarily water. During a volcanic eruption, magma is driven

to the surface by buoyancy and/or by overpressure in the magma chamber. The liquid

magma starts rising in the volcanic conduit and the decompression during the ascent

causes dissolved gases to exsolve from the melt and to form bubbles, thus providing

an additional driving force for the eruption. Gaseous components can derive from the

exsolved magmatic volatiles in magmatic eruptions, vaporized free water or hydrother-
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Chapter 1. Introduction

mal fluids in hydromagmatic and phreatomagmatic eruptions [102]. As gas is exsolved,

bubbles form and rapidly expand inside the magma until the liquid film around them

breaks up and a fragmented mixture of ash and volatiles ascends along the volcanic vent

and is decompressed into the atmosphere. If the gas trapped in the growing bubbles is

lost during the magma ascent by permeable gas flow or by outgassing, magma tends to

erupt effusively. This happens typically for low viscosity and slowly ascending mag-

mas. On the other hand, if outgassing is inefficient on the time scale of the eruption,

the bubbly magma can fragment forming a gas–pyroclast dispersion. In this process

the potential and thermal energy of the melt and the gas phases are converted to kinetic

energy, causing an explosive eruption.

In the first stages of the explosive eruption, the hot, dense mixture expands and be-

gins to entrain and heat ambient air, thereby lowering the mixture density, but it also

decelerates under gravity. If the eruption velocity is sufficiently high, then the material

can become buoyant and will generate a buoyant ash plume, called eruption column,

which rises above the vent (see Figure 1.1). In contrast, if the eruption velocity is small

or the mass flux is very large, then the material will typically collapse back toward

the vent and form a dense, laterally spreading flow (see Figure 1.2). Buoyant erup-

tion columns are able to transport the material high into the atmosphere, since they

provide an efficient means of converting the initial thermal energy of the mixture into

potential energy through entrainment and heating of ambient air. Dense, hot ash flows,

generated by collapsing columns, transport ash and clasts laterally from the vent, sedi-

menting many of the larger clasts and entraining ambient air. As a result, the density of

the mixture may fall below that of the atmosphere, and the finer-grained solid material

may thereby become buoyant and rise from the flow.

Several theoretical and numerical challenges arise in the field of the simulation of ex-

plosive volcanic eruptions. Explosive eruptions involve the ejection of dense mixtures

of gas and ashes from the volcanic vent at high pressures and speeds. The mathemati-

cal description of the real multiphase fluid is not trivial, due to the presence of a wide

spectrum of solid components and a large number of chemical gaseous components

that interact with each other. A general understanding of the dynamics of the multi-

phase pyroclast flow in the atmosphere was first achieved by describing the eruptive

mixture as homogeneous, i.e. by assuming kinetic and thermal equilibrium between

gas and particles, and inert, i.e. by neglecting chemical reactions and phase transi-

tions [95, 96, 128]. Mathematical models based on multiphase flow formulation have

been proposed starting from the late 1980s [34, 138] and have become more popular in

the last decade [32, 42, 71, 104]. However, further work is still necessary to test their

adequacy in describing volcanic multiphase flows.

Concerning the numerical simulation of explosive volcanic eruptions, one of the

main difficulties is related to the multiscale nature of the phenomena and on the wide

variety of flow regimes involved. Large volcanic eruptions can generate a buoyant ash

plume (Plinian eruption column) that rises above the vent and is able to transport mate-

rial high into the upper part of the atmosphere, up to tens of kilometers in height [147].

There, pyroclasts can be transported by winds for thousands of kilometers. On a shorter

time scale, they can cause disruption of air traffic, see e.g. [59]. On longer time scales,

they can even influence global climate, see e.g. [74]. At the same time dense and hot
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Figure 1.1: Spectacular explosive eruption at Mount St. Helens volcano (Washington, U.S.) occurred on

July 22nd, 1980. This eruption sent pumice and ash up to 18 kilometers into the air, and was visible in

Seattle, Washington, 160 kilometers to the north. Image by USGS.

Figure 1.2: Pyroclastic flow at Mount St. Helens volcano (Washington, U.S.), after the explosive event

on August 7th, 1980. Image by USGS.
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ash flows can be generated by the lateral collapsing of the column. These pyroclastic

flows transport ash laterally from the vent, sedimenting many of the larger clasts and

entraining air. The distance traveled by a pyroclastic flow can reach several kilometers,

depending on the mixture composition and on the ground topography. Concerning the

temporal scale, eruptions can last even for several days. While the spatial and tempo-

ral scales involved in the eruptions are really large, thus requiring the computational

domain to be large and the computation to be long enough, the characteristic lengths

and times of the physical phenomena that have to be reproduced can be very small. As

an example, large explosive eruptions are characterized by highly efficients fragmen-

tation processes that produce particulate of few micrometers in diameter. Moreover,

characteristic time scales of such particles are of the order of fractions of a second.

In conclusion, the efficient simulation of realistic eruptive scenarios still represents a

challenge for computational fluid dynamics.

Numerical models also have to be robust enough to reproduce supersonic and sub-

sonic regimes that coexist during an explosive eruption. In fact, it has been proven that

the erupted multiphase mixture, under some conditions at the vent, can be accelerated

up to supersonic speeds, generating shock waves inside the flow. At the same time, the

pyroclastic flows, that form after the collapse of the volcanic column, are stratified by

gravity and almost subsonic and granular regimes can be observed [16, 147].

The last difficulty in the mathematical and numerical approach to the study of vol-

canic phenomena is related to the rigorous model verification and validation, which

is perhaps impossible [99]. The validation of numerical results against empirical ob-

servation of well-documented eruptions, together with the congruence of numerical

benchmarks with experimental and theoretical results are at present the only available

instruments to asses the “empirical adequacy” [99] of models to simulate eruptive sce-

narios.

Several examples of numerical simulation of volcanic processes can be found in

the literature. Typically, the numerical approach applied to solve the pseudogas or the

multiphase flow equations is based on low order finite volume schemes [97, 98, 104].

Moreover, simplified conditions are assumed (i.e. cylindrical symmetry, point source,

steady state conditions [125, 144, 146]) and simplified models are introduced with the

aim to focus on well-defined phenomena, e.g. highlighting the key roles of environmen-

tal atmospheric conditions [57], large-eddy turbulence [127], vent overpressure [97],

boundary layer processes [35] and ash deposition [70].

In the first part of this work, different approaches to the mathematical modeling

of multiphase gas–particle flows are reviewed and the instruments that allow to select

the most appropriate multiphase model in the framework of volcanological application

are introduced. In particular, the multiphase conservation equations based on the two-

fluid model and the pseudogas model are described in detail for a mixture of a gaseous

phase and N classes of solid particles, together with appropriate closure relationships.

The dimensional analysis of the multiphase gas–particle equations is presented, with

application to significant regimes, representative of different application areas.

In the second part of the thesis, two distinct approaches are presented and inves-

tigated for the numerical approximation of multiphase conservation laws. First, the
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numerical discretization of the multiphase gas–particle equations based on the finite

volume method is presented. The finite volume method is derived from the conser-

vative formulation of the balance laws and guarantees that the conservation properties

of the continuous formulation are satisfied by the discrete formulation. The approach

proposed in [42, 91] is described and an original extension of the IMF algorithm to

achieve full second order accuracy in space and time is presented. Furthermore, fully

multidimensional advection fluxes are introduced, following [83], in the framework of

the model proposed in [42, 91].

It is well known that achieving higher order of accuracy in the finite volume frame-

work implies an increasing computational cost related to the extension of the computa-

tional stencil, in particular when a parallel implementation has to be employed. As an

alternative, a novel discontinuous Galerkin approach is proposed for the discretization

of the multiphase gas–particle equations. Discontinuous Galerkin methods can be inter-

preted as an extension of finite volume methods to arbitrary order of accuracy. Unlike

finite volume methods, in discontinuous Galerkin methods the increasing of accuracy

is achieved by increasing the order of the polynomial approximation locally on each

control volume, without extending the computational stencil. In addition, in this work

the discontinuous Galerkin approximation for multiphase equations is coupled for the

first time with a p-adaptivity algorithm, that allows to reduce the computational cost

while maintaining the accuracy of the numerical approximation. Appropriate flux lim-

iting and slope limiting techniques, originally introduced in the framework of scalar

and linear equations, are applied to the proposed discontinuous Galerkin approxima-

tion of the multiphase flow equations. The present work represents the first attempt to

apply discontinuous Galerkin methods to multiphase gas–particle equations with drag

and heat exchange interphase coupling.

The system of ordinary differential equations resulting from the spatial discretiza-

tion by either finite volume or discontinuous Galerkin scheme can be solved by means

of explicit or implicit time advancing schemes with different orders of accuracy. In

both cases, however, an implicit treatment of the interphase coupling terms in the mul-

tiphase flow equations is needed to guarantee the physical coupling of the phases also

at the discrete level. In the implicit approach, an iterative solver based on an approxi-

mate Newton method and on the implicit multifield (IMF) method is applied, in order

to solve the non linear coupling between the equations [42, 63]. A second order semi-

implicit extension of the original implicit scheme introduced in [42] is proposed. In the

explicit approach, a linearization of the interphase terms is proposed, in order to partly

decouple the multiphase equations.

In the third part of the work, the finite volume numerical model is validated against

experimental results at the laboratory scale, as well as empirical laws and numerical

results presented in the literature both in the supersonic and subsonic regimes that can

be observed in realistic volcanic scenarios. In particular, the numerical schemes is ap-

plied to reproduce supersonic jets, see i.e. [19], and density currents in two dimensions.

Analogously, a validation of the discontinuous Galerkin numerical model is carried out

in the one dimensional case against significant benchmark test cases, in order to assess

the accuracy of the scheme, the capability of limiting techniques to prevent the for-

mation of spurious oscillations in the numerical solution and the performances of the

p-adaptive approach.
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Finally, the finite volume numerical method is applied to the simulation of multi-

phase underexpanded jets on the volcanic scale. The aim of the investigation is to as-

sess the importance of the non equilibrium regime between the gas phase and the solid

phase in supersonic jets. Moreover, the interactions between solid particles and shock

waves in underexpanded jets are analyzed by means of characteristic time scales. The

comparison between the characteristic time scales of the multiphase jet allows to split a

given granulometric structure in finer particles, i.e. small particles that are coupled with

the gas phase and cannot influence the shock wave structure in the underexpanded jet,

and coarser particles, i.e. particles that modify the internal shock wave pattern of the jet.

On the basis of the results of the analysis, an hybrid pseudogas-multiphase approach

is proposed, in which fine particles and the gaseous phase are described as a unique

pseudogas phase and coarse particles are grouped together into a unique representative

class of solid particles with average properties. Numerical simulations for monodis-

perse, bidisperse and polydisperse flows support the validity of the hybrid approach in

the underexpanded jet regimes. The proposed approach allows to reduce drastically the

computational cost of the multiphase flow simulation.

6



CHAPTER2

Mathematical modeling of multiphase dusty flows

MULTIPHASE flow is the motion of a continuous medium in which more than

one physical state of matter is present. Multiphase flows can be classified

according to the state of the different phases. Therefore, we refer to gas/solid

flows (e.g. gas–particle flows or fluidized beds), liquid/solid flows (e.g. slurry flows or

sediment transport), or liquid/gas flows (e.g. aerosols, bubbly or cavitating flows) and

so on. Moreover, two general categories of multiphase flow can be identified, namely

dispersed flows and separated flows [15]. Dispersed flows are those in which one phase

consists of finite and discrete elements, such as droplets in a gas or bubbles in a liquid,

distributed in a connected volume of the continuous phase. The discrete elements are

not connected. In dispersed multiphase flows, the evolution of the interface between

the phases is considered of secondary importance. On the other hand, in a separated

flow, the two phases are divided by a line of contact. This means that in a separated

flow it is possible to pass from one point to another in the same phase by remaining

in the same medium. In both dispersed and separated flows, those cases in which the

components are well mixed above the molecular level are excluded. Consequently, the

flow has some level of phase separation at a scale well above the molecular level.

The focus of this work is on multiphase gas–particle flows, a type of dispersed flow

which involves a gas with suspended solid particles. Examples of multiphase gas–

particle flows can be found in industrial devices such as in the exhaust products of solid

propellant rockets, in the combustion of coal in fossil fuel power systems or in cyclonic

separation devices that are used to remove particulates from an air stream. Multiphase

gas–particle flows are also a common feature of our environment and can be found for

example in explosive volcanic eruptions and in the cometary atmosphere.

When particle–particle and particle–wall interactions are much more important than

the forces due to the interstitial gas, multiphase gas–particle flows are known as gran-
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ular flows. If the particles become motionless, the problem reduces to flow through a

porous medium, in which the viscous force on the particle surface is the primary mech-

anism affecting the gas flow. Even though granular flows and flows through porous

media can be formally considered as multiphase gas–particle flows, their treatment

goes beyond the scope of this work.

In this chapter, we introduce the fundamental quantities that describe multiphase

gas–particle flows. In the second part, a review of different approaches to the mathe-

matical modeling of multiphase gas–particle flows is presented, with special attention

to the application regimes. In the present work, the Eulerian approach is adopted and

the conservation equations for a mixture of a gaseous phase and N classes of solid

particles are described in details. The mathematical model is completed by a set of clo-

sure relationships. In the last part, the dimensional analysis of the multiphase equations

is presented to get insight into the fundamental properties of the system. Finally, the

dimensional analysis is applied to study a few significant regimes.

2.1 Fundamental definitions

To describe multiphase gas–particle flows, some fundamental quantities should be in-

troduced. We consider a multiphase gas–solid system in which the solid phase is a

granular material that is dispersed in the gaseous phase. The solid material is finely

divided into small separate grains in such a way that the volume of each grain is small

in comparison to the total volume of the solid. The volume fraction ǫs of the phase s is

defined as [30]

ǫs = lim
V→V0

Vs

V
, (2.1)

where Vs is the volume occupied by the phase s in the total volume V . V0 is the limiting

volume, defined as the volume in which flow properties do not vary significantly from

point to point [15]. Indeed the volume fraction can not be defined at a point. By

definition, the sum of the volume fractions must be unity, i.e.,

N∑

s=1

ǫs = 1. (2.2)

The bulk density, or macroscopic density, of the phase s is the mass of the phase s per

unit volume of mixture, that is [30]

ρ̄s = lim
V→V0

Ms

V
, (2.3)

where Ms is mass of the phase s in the volume V . The bulk density can be computed

from the material, or microscopic density, ρs as

ρ̄s = ǫsρs. (2.4)

2.1.1 Particle properties

Solid particles are incompressible and are supposed to maintain their original size. In

the most general case, the solid phase is composed by a continuous distribution of
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particles; however, here we suppose that particles can be classified into N classes,

denoted by the subscript s = 1, . . . , N . Each class is characterized by the values of

diameter ds, microscopic density ρs, specific heat cp,s, thermal conductivity ks and

viscosity µs. The state of the solid phase s is described by its volume fraction ǫs,
velocity vs and total specific energy Es (or as an alternative specific enthalpy hs or

temperature Ts), defined at each point x ∈ R
3 and time t ∈ R

+.

2.1.2 Gas phase properties

The gas phase is considered as compressible and inert, i.e. not chemically reactive, and

it obeys the ideal gas law. The gas phase can be composed of M different chemical

components, such as water vapor H2O, carbon dioxide CO2, oxygen O2, hydrogen

H2 and atmospheric air, considered as a single chemical component. In the following

sections we indicate with the subscript g the gas phase and with l = 1, . . . ,M the

chemical components. We denote with yl the mass fraction of the l-th gas chemical

component, that is

yl =
Ml

Mgas

=
Ml∑M
l=1 Ml

. (2.5)

It results that
M∑

l=1

yl = 1. (2.6)

Each component is characterized by its specific heat at constant pressure cp,l and con-

stant volume cv,l, whereas thermal conductivities kg and viscosities µg are supposed to

be equal for all the gas species. The state of the gas phase is described by its volume

fraction ǫg, density ρg, pressure Pg, velocity vg and total specific energy Eg (or as an

alternative specific enthalpy hg or temperature Tg), defined at each point x ∈ R
3 and

time t ∈ R
+.

2.1.3 Mixture properties

The multiphase mixture has certain mixture properties that can be evaluated from the

properties of each phase. As an example, the mixture density is defined as the sum of

the bulk densities, that is

ρmix = ǫgρg +
N∑

s=1

ǫsρs. (2.7)

Analogously, given the quantities Qg and Qs, for all s = 1, . . . , N , the correspond-

ing mixture quantity Qmix can be computed as mass-weighted average of the phases’

properties, that is

ρmixQmix = ǫgρgQg +
N∑

s=1

ǫsρsQs. (2.8)
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2.1.4 The particulate loading

The particulate loading, or mass loading, is defined as the mass density ratio of the

dispersed solid phase to that of the carrier gaseous phase [30], that is

β =
ǫsρs
ǫgρg

. (2.9)

We can introduce also the density ratio

η =
ρs
ρg

(2.10)

which is usually greater that 1000 for gas/solid flows [30]. Using these parameters it is

possible to estimate the average distance L between the individual particles of the solid

phase. An estimate of this distance is given by [30]

L

ds
=

(
π

3

1 + κ

κ

) 1

3

(2.11)

where κ = β/η. The value of this parameter allows to understand whether the particles

can be treated as isolated, i.e. L ≫ ds, or whether interactions between particles can

not be neglected, i.e. L ∼ 1. In conclusion, the particulate loading allows to understand

which is the appropriate multiphase flow model to be used to solve a specific problem.

2.1.5 The Stokes number

The Stokes number can be defined as the ratio between the particle response time and

the fluid characteristic time [30, 86]:

St =
τs
t̄

(2.12)

where τs = ρsd2s
18µg

and t̄ is based on the characteristic length L̄ and the characteristic

velocity Ū of the system, that is t̄ = L̄/Ū . The Stokes number allows to characterize

the degree of coupling between the different phases. As the particulate loading, the

Stokes number helps to select the correct modeling approach.

2.2 Mathematical modeling of multiphase gas–particle flows

The volume fraction occupied by the solid phase, the particulate mass loading and

the Stokes number introduced in the previous section are the critical parameters that

determine the level of interaction between the phases and allow to distinguish between

different modeling approaches [15, 37].

Three types of models are usually adopted for the description of dispersed gas–

particle flows: trajectory models, two-fluid models and mixture models.

Trajectory models are also known as discrete or Lagrangian models. The motion

of the dispersed phase is assessed by tracking either the motion of the actual particles

or the motion of larger, representative particles through the flow field. The effects of

the flow around each of the particles are included into assumed drag, lift and moment

forces acting on and altering the trajectory of those particles.
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Trajectory models consider a one-way coupling between the phases, that is the car-

rier phase has a dominant effect on the dynamics of the dispersed phase, which in turn

can not influence the dynamics of the carrier phase [15, 33]. The solution is obtained

by solving a single phase flow for the continuous phase and applying this flow field

into the equations of motion for the particles to compute their trajectory. The funda-

mental assumptions made in this kind of model are that the dispersed phase occupies a

low volume fraction and that the particle mass loading is small. Indeed, this approach

is valid in very dilute flows, where particle–particle interactions and the effects of the

particle volume fraction on the gas phase are negligible. As the concentration of the

dispersed phase increases, more complex phenomena can arise both in the continuous

phase flow and the dispersed phase motions and a two-way coupling should be mod-

eled. Trajectory models are appropriate for the description of sprays, coal and liquid

fuel combustion, but they cannot be applied when the second phase volume fraction is

not negligible, e.g. fluidized beds or liquid/liquid mixtures. Finally, since the parti-

cle trajectories are computed individually, the number of particles that can be actually

simulated with a Lagrangian model is usually limited by computational resources.

The alternative approach, the two-fluid model, is also known as continuum or Eulerian-

Eulerian model. The dispersed particles are treated mathematically as a continuous

phase, interpenetrating and interacting with the gas phase [3, 30]. Conservation equa-

tions are introduced for each considered phase. These equations include interaction

terms modeling the exchange of mass, momentum and energy between the two phases,

accounting for the back influence that the dispersed phase has on the carrier phase

dynamics (two-way coupling). The model is closed by providing constitutive relations

obtained from empirical information or by application of kinetic theory. Essentially, the

two-fluid model neglects the discrete nature of the dispersed phase and approximates

its effects on the continuous phase.

In this approach, averaging methods are needed to characterize the properties of the

dispersed phase [30]. In particular, the averaging process is based on the underlying hy-

pothesis that there exists an infinitesimal volume of dimension V0 such that V0 is much

smaller than the typical distance over which the phase properties vary significantly, but

much larger than the size of the individual phase elements. These conditions are nec-

essary to define derivatives of the flow properties and to guarantee that the averaging

volume contains representative samples of each of the components. However, it is not

always possible to define the averaging volume V0. In particular, this approach is valid

when a large number of small particles is considered. A significant advantage of the

Eulerian approach is that the equations for both phases have the same form, so the same

solution techniques can be used for each phase. Applications of the two-fluid model

include particle suspensions and fluidized beds.

In mixture models, or homogeneous equilibrium models, equations that are gen-

eralizations of single-phase ones are postulated. As proposed in [21] and [86], the

two-phase mixture is regarded as a single phase with modified properties. It is assumed

that the velocity and the temperature are equal for all the phases. For example, when

one phase is finely dispersed in another phase generating large interfacial area, this as-

sumption is often valid. The resulting equations resemble those for a pseudofluid with

mixture properties and an equation of state which links the phases to obtain these ther-

modynamic mixture properties is needed. The mixture model is preferable if there is a
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wide distribution of the dispersed fine particles, i.e. if the particles vary in size and the

largest particles do not separate from the primary flow field, because it is less compu-

tationally expensive than the full Eulerian model.

The choice of the most appropriate model depends on the applications considered.

In general, we need to determine the flow regime of the multiphase system that we want

to describe in order to select properly the appropriate multiphase model. In general, for

very dilute flows containing large particles the Lagrangian model is appropriate. On

the contrary, when the particle volume fraction increases, mixture or Eulerian models

should be used.

In order to identify the appropriate multiphase model, in addition to the particle

volume fraction, also the particulate loading β should be considered. Depending on the

particulate loading, the degree of interactions between different phases can be divided

into three categories. For very low loading, the coupling between the phases is one-

way, i.e. the continuous phase influences the particles via drag force and turbulence,

but the particles have no influence on the fluid. The mixture, the Lagrangian and the

Eulerian model can all handle this type of regime correctly, but the mixture and the

Lagrangian models are less expensive.

For high loading, the two-way coupling between gas and particles plus their in-

fluence on the pressure and viscous stresses has to be described (four-way coupling).

Usually, only the Eulerian model can handle this type of problem correctly, although

recently also Lagrangian models have been extended to include particle–particle inter-

actions [139, 148].

For intermediate loading, the coupling is two-way, that is the particles influence the

fluid flow by means of reduction of momentum and turbulence. In this case, to choose

between the Lagrangian, the mixture and the Eulerian models we need to look at the

Stokes number St. When the Stokes number is much lower than one, the particles will

follow the flow closely and any of the three models can be applied. In most cases the

mixture model is used due to the lower computational cost. On the other hand, when

the Stokes number is larger than one, particles dynamics decouples from gas dynamics

and trajectory models or Eulerian models should be used.

In this work the focus is on gas–particle flows in which mechanical and thermal

equilibrium between different phases can not be assumed, so that mixture models are in

general not valid. Moreover, this work is not restricted to the analysis of dilute regimes:

since the number of solid particles could become large, discrete particle-tracking ap-

proaches could become computationally too much expensive. Thus, in this work the

Eulerian-Eulerian two-fluid or multifluid approach will be adopted to describe multi-

phase gas–particle flows, in order to be able to handle the widest range of physical

phenomena.

2.3 Conservation equations

The averaging approach is adopted to derive the conservation equations for each phase

that compose the mixture. Variables are averaged over a region that is large compared

with the particle spacing but smaller than the flow domain, as discussed in the previous
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section. The Eulerian approach leads to a model that is composed by a set of coupled

partial differential equations for the independent variables ρg, Pg, yl, ǫs, vs, Es (or hs,

or Ts), with s = g, 1, . . . , N and l = 1, . . . ,M .

2.3.1 Conservation of mass

The mass conservation equations for the gas phase g, the s-th solid phase and the l-th
gas chemical component are

∂

∂t
(ǫgρg) +∇ · (ǫgρgvg) = 0, (2.13a)

∂

∂t
(ǫsρs) +∇ · (ǫsρsvs) = 0, (2.13b)

∂

∂t
(ǫlρlyl) +∇ · (ǫlρlylvg) = 0, (2.13c)

for all s = 1, . . . , N and l = 1, . . . ,M . The first term on the left side accounts for the

rate of mass accumulation per unit volume and the second term is the net rate of advec-

tive mass flux. The last equation, in particular, represents the species conservation for

the gas phase in terms of mass fractions yl. All types of mass transfer between different

phases are neglected, e.g. chemical reactions, phase changes, fragmentation and aggre-

gation, sedimentation processes, and pure transport equations for each component of

the mixture are obtained.

2.3.2 Conservation of momentum

The momentum balance equations for the gas phase and the s-th solid phase, for all

s = 1, . . . , N with p 6= s, can be written as

∂

∂t
(ǫgρgvg) +∇ · (ǫgρgvgvg) = −∇Pg +∇ · Tg + ǫgρgg + Dg, (2.14a)

∂

∂t
(ǫsρsvs) +∇ · (ǫsρsvsvs) = ∇ · Ts + ǫsρsg + Ds. (2.14b)

In the left-hand-side we can recognize the accumulation and advection terms, whereas

the right-hand-side of the two equations accounts for viscous effects, gravitational force

and drag forces between the phases. Tg and Ts are the stress tensors and Ds represents

the total drag force acting on the phase s. Finally, g is the gravitational acceleration.

Pressure gradient is included only in the gas momentum equation, whereas granular

pressure effects are neglected in the particle momentum equation [69, 115].
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2.3.3 Conservation of energy

The energy balance equations for the gas phase and the solid phases are written in terms

of total energy [15, 30], for all s = 1, . . . , N :

∂

∂t
(ǫgρgEg) +∇ · (ǫgρgEgvg) = −∇ · (Pgvg) +∇ · (Tg · vg)

+∇ · (kgeǫg∇Tg) + ǫgρgg · vg + Dg · vg + Qg, (2.15a)

∂

∂t
(ǫsρsEs) +∇ · (ǫsρsEsvs) = ∇ · (Ts · vs) +∇ · (ksǫs∇Ts)

+ ǫsρsg · vs + Ds · vs + Qs, (2.15b)

where kge is the effective thermal conductivity of the gas phase, Qg and Qs is the heat

transferred from the surrounding phases to the phases g and s, respectively. Diffusive

transport is expressed in the form of Fourier law.

For the gas phase, the reversible rate of energy change due to compression or expan-

sion has been taken into account, since it is important in transient, compressible flows.

The viscous dissipation and the work done by the gravitational and the drag forces are

included in the energy balance equations, even if in volcanological applications they

could be neglected, as discussed in Section 2.6.

The energy balance can also be written in terms of the specific enthalpies hg, hs, for

all s = 1, . . . , N :

∂

∂t
(ǫgρghg) +∇ · (ǫgρghgvg) = ǫg

(
∂Pg

∂t
+ vg · ∇Pg

)
+∇ · (Tg · vg)

+∇ · (kgeǫg∇Tg) + ǫgρgg · vg + Dg · vg + Qg, (2.16a)

∂

∂t
(ǫsρshs) +∇ · (ǫsρshsvs) = ∇ · (Ts · vs) +∇ · (ksǫs∇Ts)

+ ǫsρsg · vs + Ds · vs + Qs. (2.16b)

The first term on the right-hand-side of Equation (2.16a) accounts for the expansion

and compression of the gas phase. In general, enthalpies conservation equations are

preferred when reactions and phase transitions are introduced in the multiphase model.

2.3.4 Mathematical model in cylindrical coordinates

In the previous sections, the mathematical model describing the dynamics of multi-

phase gas–particle flows has been presented referring to a Cartesian coordinate system

(x, y, z). However, in the application of the model to phenomena that have some sym-

metry about the longitudinal axis, it is often useful to write and solve it using cylindrical

coordinates, i.e. (r, ϕ, z) where r is the radial distance, ϕ is the angular position and

z is the symmetry axis. In this presentation, the cylindrical axis coincides with the

Cartesian z-axis and the correspondence between cylindrical and Cartesian coordinate

systems is given by
x = r cosϕ

y = r sinϕ.
(2.17)

Equations (2.13a), (2.13b), (2.13c), (2.14a), (2.14b), (2.15a) and (2.15b) can be written

in cylindrical coordinates by appling differential operators in the new coordinate sys-
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tem. The divergence operator in cylindrical coordinates applied to the vectorial function

f = (fr, fϕ, fz)
T is defined as

∇r · f =
1

r

∂(rfr)

∂r
+

1

r

∂fϕ
∂ϕ

+
∂fz
∂z

. (2.18)

Analogously, the gradient of the scalar function f is defined as

∇rf =




∂f

∂r

1

r

∂f

∂ϕ

∂f

∂z




. (2.19)

In the hypothesis of axisymmeric flow in R
3, the derivative along the axial coordinate

is assumed to be null, i.e. ∂
∂ϕ

= 0, and the spatial dimension of the problem is reduced

by one.

2.4 Constitutive equations

The mathematical model presented in the previous section is completed by a set of

closure relationships.

2.4.1 Volumetric and mass fraction closures

The averaging operation applied to derive the balance equations for the multiphase

flow leads to the introduction of new field variables, the volume fractions ǫs for all

s = g, 1, . . . , N , which are assumed to be continuous functions of space and time.

Volumetric and mass fractions closures represent the fact that phases are treated as

interpenetrating continua and by definition it results that

0 ≤ ǫg ≤ 1, 0 ≤ ǫs ≤ 1, (2.20a)

ǫg +
N∑

s=1

ǫs = 1. (2.20b)

2.4.2 Equations of state

The gas phase is compressible and we suppose that the relation between the thermody-

namic quantities is given by the ideal gas law:

ρg =
Pg

RgTg

, (2.21)

where Rg is the specific gas constant of the mixture of gaseous components:

Rg =
R

Mmol

. (2.22)
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Here, R is the universal gas constant, which is equal to 8.314 J/K·mol, and Mmol

is the molar mass of the gaseous mixture. Particulate solid phases are considered as

incompressible, consequently their microscopic density is constant

ρs = const, ∀ s = 1 . . . N, (2.23)

and an equation of state for the solid phase is not needed. The total energy per unit

mass (or total specific energy) of the phase s is defined as

Es = es +
1

2
|vs|2 (2.24)

where es is the specific internal energy

es = cv,s(Ts)Ts. (2.25)

The coefficient cv,s is the specific heat at constant volume, which is a function of tem-

perature for the gaseous components and approximately a constant for the solid phases.

Analogously, the specific enthalpy is related to the temperature by

hs = cp,s(Ts)Ts (2.26)

where coefficient cp,s is the specific heat at constant pressure. For solid particles, we

assume that cp,s = cv,s, whereas for the gas phase it results that cp,g = cv,g + Rg. For

the gas phase, using Equation (2.21), the total specific energy is computed as

Eg =
Pg

(γg − 1)ρg
+

1

2
|vg|2 (2.27)

where γg is the heat capacity ratio for the gas phase, that is

γg =
cp,g
cv,g

. (2.28)

Due to their minor dependence on temperature, the specific heats for particles cp,s are

assumed to be constant and to correspond to average values. The specific heat of the

gas phase depends on temperature and it is computed as a function of the specific heats

of the M chemical components:

cp,g(Tg) =
M∑

l=1

ylCp,l(Tg). (2.29)

Finally, the speed of sound waves of the gas is defined as

c =

√
γ
Pg

ρg
. (2.30)

2.4.3 Stress tensors

The gas phase stress tensor is divided into a viscous component τ g,µ and a turbulent

component τ g,t. It takes the following form:

Tg = τ g,µ + τ g,t. (2.31)

16



2.4. Constitutive equations

The viscous tensor is given by

τ g,µ = ǫgµg

(
∇vg +∇vT

g − 2

3
(∇ · vg)I

)
. (2.32)

The turbulent term is modeled by adopting a turbulent subgrid scale model and fol-

lowing the Large Eddy Simulation (LES) approach. An eddy turbulent viscosity µg,t is

introduced:

τ g,t = ǫgµg,t

(
∇vg +∇vT

g

)
. (2.33)

Different expressions for the turbulent viscosity µg,t have been introduced in the litera-

ture. The simplest one is the Smagorinsky model [122]

µg,t = l2ρg

[
2 tr

(
τ g,µ · τ g,µ

(ǫgµg)2

)]1/2
, (2.34)

where l represents the subgrid length scale of turbulent motions and is a parameter for

the model. More complex models have been proposed later, such as the Germano dy-

namic model [48], the localized dynamic model [76] or the dynamic global-coefficient

model [149].

The stress tensor of the s-th particulate phase is described in terms of a viscous com-

ponent τ s,µ and a Coulombic repulsive component τ s,c. The tensor can be expressed

by

Ts = τ s,µ + τ s,c, ∀ s = 1, . . . , N, (2.35)

where the viscous tensor is

τ s,µ = ǫsµs

[
∇vs +∇vT

s − 2

3
(∇ · vs)I

]
, (2.36)

and the Coulombic component is given by

τ s,c = −τs,cI. (2.37)

The Coulombic coefficient τs,c is defined implicitly through its gradient by

∇τs,c = G(ǫs)∇ǫs, G(ǫs) = 10−aǫs+b, (2.38)

with a < 0. G(ǫs) is the solid elastic modulus able to account for repulsive forces when

high values of particle volume fraction are reached in the mixture [49, 50].

It can be observed that the Coulombic component of the solid stress tensor plays the

role that the pressure gradient has in the gas momentum equation. This is the reason

why the Coulombic term τs,c is often called solid pressure. This term has to be specified

in order to ensure that void fraction does not become unphysically small. This solid

pressure term is then specified as an arbitrary function of solid volume fraction that

becomes very large when the solid fraction approaches the packed-bed void fraction.

An alternative approach, which avoids the need to specify a solid pressure function, is

to treat the granular media as an incompressible fluid at a certain critical void fraction.

With this method, the solid pressure has to be computed as a function of the granular

temperature of the solid phase [132].
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Concerning the solid viscosity value, semi-empirical correlations based on experi-

mental works and on kinetic theory studies can be adopted [51]. As an example, it is

possible to assume that

µs = cs, (2.39)

with cs ∈ [0.5, 2.0] Pa·s, where larger values apply to coarser particles.

2.4.4 Effective conductivity

The effective gas conductivity is determined through the turbulent Prandtl number Prt
as

kge = kg + kgt, kgt =
cp,g µg,t

Prt
. (2.40)

Here, the turbulent gas conductivity quantifies the conduction enhancement due to tur-

bulence.

2.4.5 Drag forces

The drag force that the solid dispersed particles exert on the gas phase can be computed

by superimposing the contributions from different classes of particles. Moreover, it is

well known that the drag force is proportional to the difference between the velocities

of the two considered phases. Thus, the drag force acting on the gas phase can be

defined as

Dg =
N∑

s=1

Dg,s(vs − vg). (2.41)

Analogously, the drag force acting on a selected particle class is given by the sum of

the drag force exerted by the gas phase and the drag force exerted by other particles,

that is

Ds = Ds,g(vg − vs) +
N∑

p=1

Ds,p(vp − vs). (2.42)

The interphase exchange coefficients Dg,s and Ds,p are derived from semi-empirical

correlations.

Gas–particle drag coefficients

Different expressions for the interphase exchange coefficient between gas and particles

can be found in the literature. In [141], the following expression, valid in dilute regimes,

i.e. ǫg > 0.8, has been proposed:

Dg,s =
3

4
Cd,s

ǫgǫsρg|vs − vg|
ds

ǫ−2.7
g , ∀ s = 1, . . . , N, (2.43)

with [118]

Cd,s =





24

Res

[
1 + 0.15Re0.687s

]
, if Res < 1000,

0.44, if Res ≥ 1000,

(2.44)
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where the particle Reynolds number is defined as

Res =
ǫgρgds|vs − vg|

µg

. (2.45)

In the dense regime, for ǫg < 0.8, the drag expression by [40] can be used:

Dg,s = 150
ǫ2sµg

ǫgd2s
+ 1.75

ǫsρg|vs − vg|
ds

, ∀ s = 1, . . . , N, (2.46)

By definition it results that Dg,s = Ds,g.

This two expressions have been widely validated by experiments. However, the two

asymptotic regimes do not analytically match at ǫg = 0.8, so that other continuous

formulations have been proposed. However, in this work we will only deal with dilute

regimes and will not investigate in detail the effect of the drag coefficient formulation.

Particle–particle drag coefficient

To define the particle–particle interphase coefficient, in [130] the following semi-empirical

correlation is proposed:

Dp,s = Fp,sα(1 + e)ρsǫsρpǫp
(ds + dp)

2

ρsd3s + ρpd3p
|vp − vs|, ∀ s = 1 . . . N, p 6= s, (2.47)

where α is an empirical coefficient accounting for non-head-on collisions, e is the resti-

tution coefficient for a collision and Fp,s is a complex function of the volume fraction

of the two phases and of the maximum volume fraction of a random closely packed

mixture ǫp,s:

Fp,s =
3ǫ

1/3
p,s + (ǫs + ǫp)

1/3

2
(
ǫ
1/3
p,s − (ǫs + ǫp)1/3

) . (2.48)

In order to define ǫp,s, the following quantities are introduced:

a =

(
ds
dp

)1/2

, with ds ≤ dp,

Xs =
ǫs

ǫs + ǫp
,

(2.49)

and Φs = 0.63, representing the solid volume fraction at maximum packing in a single

particle system for the s-th phase. Then we define

ǫp,s =





[(Φs − Φp) + (1− a)(1− Φs)Φp]
[Φs + (1− Φp)Φs]

Φs

Xs + Φp,

if Xs ≤
Φs

Φs + (1− Φs)Φp

,

(1− a)[Φs + (1− Φs)Φp](1−Xs) + Φs,

if Xs ≥
Φs

Φs + (1− Φs)Φp

.

(2.50)

By definition it results that Dp,s = Ds,p.
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The empirical expressions for gas–particle and particle–particle drag coefficient re-

ported in this section as an example deal with uniform, smooth, hard spherical particles.

More complex drag definitions, starting from the original proposal by [100], have been

proposed in the literature accounting for rough, non-spherical or soft particles. As an

example, soft spherical particles have been considered in [31]; effects of Van der Waals

interactions in dense regimes have been described in [62]; finally, several drag models

have been proposed for non spherical particles, e.g. [87, 88, 136, 140] Finally, it may

be necessary to explicitly account for the effect of particle interactions on the gas–solid

interaction force. For example, the averaging required to approximate the particles as

a granular continuum renders the hydrodynamic equations incapable of resolving the

wake dominated flow near the particles that under certain favorable conditions cause

the particles to form clusters. The effect of such aggregates can be explicitly accounted

for in the fluid–solid interaction constitutive relation. In any case, all the mathemati-

cal and numerical issues presented in this work do not depend on the drag expressions

introduced in the model.

2.4.6 Heat transfer

The heat transfer between different phases is given by the product of a transfer coef-

ficient Qs and a driving force, which is the temperature difference between the two

phases. The heat transferred from the solid phase to the gas phase is

Qg =
N∑

s=1

Qs(Ts − Tg). (2.51)

Analogously, for solid particles the heat transfer term is given by

Qs = Qs(Tg − Ts). (2.52)

The heat transfer term between different classes of solid particles can been neglected,

if we assume not to be closed to the granular regime.

The coefficient Qs represents the volumetric interphase heat transfer coefficient

which can be computed as the product of the specific exchange area and the fluid-

particle heat transfer coefficient written in terms of an empirical expression for the

Nusselt number Nus [60], that is:

Qs = Nus
6kgǫs
d2s

, (2.53a)

Nus =
(
2 + 5ǫ2s

)(
1 + 0.7Re0.2s Pr1/3

)
+
(
0.13 + 1.2ǫ2sRe0.7s Pr1/3

)
, (2.53b)

with

Pr =
cp,gµg

kg
, (2.54)

where kg is the thermal conductivity of the gas phase. Other expressions for the Nusselt

number have been proposed in the literature, e.g. [46, 107, 143].

2.5 Pseudogas model approximation

As discussed in Section 2.2, when the ratio between the particle response time scale, i.e.

the particle relaxation time τs, and the system characteristic time scale t̄ is small, the
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multiphase mixture can be described using a mixture model, that is by describing the

dynamics of a unique phase, called pseudogas or dusty gas, with averaged properties.

Suppose that the mixture composed by the gas phase g and one class of solid parti-

cles s satisfies the pseudogas hypothesis. Then, if we indicate with the subscript ps the

properties of the pseudogas, the mixture model takes the following form:

∂

∂t
(ρps) +∇ · (ρpsvps) = 0, (2.55a)

∂

∂t
(ρpsvps) +∇ · (ρpsvpsvps) = −∇Pps +∇ · Tps + ρpsg, (2.55b)

∂

∂t
(ρpsEps) +∇ · (ρpsEpsvps) = −∇ · (Ppsvps) +∇ · (kps∇Tps). (2.55c)

By definition, the mixture model is derived from multiphase gas–particle equations by

assuming that
vps = vg = vs,

Tps = Tg = Ts.
(2.56)

Moreover, the pseudogas density is defined by relation (2.7), whereas the mixture total

energy is defined by relation (2.8). The pseudogas pressure is computed by means of

a modified equation of state, that accounts for the presence of solid particles in the gas

phase:

Pps = ρpsRpsTps (2.57)

where

Rps =
R

Mps

≃ Rg

1 + β
(2.58)

and Mps is the molar mass of the pseudogas mixture. Appropriate corrections have

to be introduced also for the thermodynamic coefficients of the gas phase that appear

in the constitutive equations, i.e. gas kinematic viscosity νps and specific heats cv,ps,
cp,ps. They can be adjusted by means of the particulate loading β, defined in (2.9), as

proposed by [86]:

νps =
νg

1 + β
=

µg

ρg(1 + β)
, (2.59a)

cv,ps =
cv,g + βcv,s

1 + β
, (2.59b)

cp,ps =
cp,g + βcp,s

1 + β
, (2.59c)

γps =
cp,g + βcp,s
cv,g + βcv,s

. (2.59d)

For dilute mixture the dynamic viscosity µps and the conductivity kps of the pseudogas

can be approximated with the one of the pure gas [86, 145], that is

µps ≃ µg, (2.60a)

kps ≃ kg. (2.60b)

In general, however, as proposed in [17, 145], the pseudogas dynamic viscosity can be

corrected with a factor proportional to the particle loading that accounts for the effects

21



Chapter 2. Mathematical modeling of multiphase dusty flows

of particle–particle collisions. In the present work, following [145], the pseudogas

dynamic viscosity is computed as:

µps = µg(1 + β)2. (2.61)

Finally, according to [15, 86], the mixture speed of sound is computed as follows

cmix =

√√√√γgRgTg

1 + β cp,s
cp,g

(1 + β)
(
1 + β cv,s

cv,g

) . (2.62)

A simplified expression can be derived for high values of particulate loading, i.e. β ≫
1, typical of gas–particle flows:

cmix =

√
RgTg

1 + β
. (2.63)

Relation (2.62) highlights how the presence of solid particle causes the speed of sound

waves to decrease with respect to the pure gas speed of sound.

The extension of the pseudogas model to a mixture with more than one classes of

solid particles is straightforward.

2.6 Dimensional analysis

The objective of dimensional analysis is to get insight into the fundamental properties

of a complex system. The equations are rescaled in order to assess the relative impor-

tance of each term. Through this analysis, non-dimensional parameters are derived to

quantify the relative importance of the various physical phenomena that are considered

in the model. The comparison between these parameters allows to understand the phys-

ical mechanisms that dominate in a complex situation, to check the plausibility of the

mathematical model and to identify possible simplifications [80].

In thermo-fluid dynamics, the dimension of any physical quantity can be expressed

in terms of four independent fundamental dimensions: mass M, length L, time T and

temperature Θ, as shown in Table 2.1. However, this is not the only possible choice. In

this work, the set of independent dimensions is given by length L, velocity U, density

ρ and temperature Θ, where velocity and density will play the role of time and mass

respectively. Adopting this approach, the following fundamental quantities, character-

izing the initial and boundary conditions of the system, are introduced

• L̄ = characteristic length,

• Ū = characteristic velocity,

• ρ̄ = characteristic density,

• Θ̄ = characteristic temperature.

and the following non-dimensional quantities are defined

• non-dimensional length x̃ =
x

L̄
,
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• non-dimensional velocity ṽ =
v

Ū
,

• non-dimensional density ρ̃ =
ρ

ρ̄
,

• non-dimensional temperature Θ̃ =
T

Θ̄
.

Secondary non-dimensional quantities can be derived by products of the fundamental

ones, e.g.

• non-dimensional time t̃ = t
Ū

L̄
,

• non-dimensional pressure P̃g =
Pg

ρ̄c̄2
, where c̄ is the speed of sound in the fluid,

• non-dimensional total energy Ẽ =
E

cpΘ̄
.

2.6.1 Dimensionless form of the equations

Let us consider the Equations (2.13a), (2.13b), (2.14a), (2.14b), (2.15a), (2.15b) for the

gas phase g and only one solid phase s:

∂

∂t
(ǫgρg) +∇ · (ǫgρgvg) = 0, (2.64a)

∂

∂t
(ǫsρs) +∇ · (ǫsρsvs) = 0, (2.64b)

∂

∂t
(ǫgρgvg) +∇ · (ǫgρgvgvg) = −∇Pg +∇ · Tg + ǫgρgg +Dg,s(vs − vg) (2.64c)

∂

∂t
(ǫsρsvs) +∇ · (ǫsρsvsvs) = ∇ · Ts + ǫsρsg +Ds,g(vg − vs) (2.64d)

∂

∂t
(ǫgρgEg) +∇ · (ǫgρgEgvg) = −∇ · (Pgvg) +∇ · (Tg · vg) +∇ · (kgeǫg∇Tg)

+ ǫgρgg · vg +Dg,s(vs − vg) · vg +Qs(Ts − Tg), (2.64e)

∂

∂t
(ǫsρsEs) +∇ · (ǫsρsEsvs) = ∇ · (Ts · vs) +∇ · (kseǫs∇Ts) + ǫsρsg · vs

+Ds,g(vg − vs) · vs +Qs(Tg − Ts). (2.64f)

Introducing the non-dimensional quantities in the Equation (2.64a) we obtain the non-

dimensional continuity equation for the gas phase:

∂

∂t̃
(ǫgρ̃g) + ∇̃ · (ǫgρ̃gṽg) = 0. (2.65)

In the same way, the non-dimensional mass conservation equation for solid particles is

derived from Equation (2.64b), obtaining

∂

∂t̃
(ǫsρ̃s) + ∇̃ · (ǫsρ̃sṽs) = 0. (2.66)
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In order to derive the non-dimensional form of the momentum equations, the non-

dimensional stress tensor is defined as

T̃g =
TgL̄

µgŪ
. (2.67)

Starting from Equation (2.64c), we obtain

∂

∂t̃
(ǫgρ̃gṽg) + ∇̃ · (ǫgρ̃gṽgṽg) = − 1

Ma2
∇̃P̃g +

1

Reg
∇̃ · T̃g

+
1

Fr2
ǫgρ̃gk +

1

St
(ṽs − ṽg)

(2.68)

where k = g

|g|
and the non-dimensional parameters Mach number Ma, Reynolds num-

ber Re, Froude number Fr and Stokes number St are defined in Table 2.2. Analo-

gously, the non-dimensional form of the momentum equation for the solid phase (2.64d)

is derived:

∂

∂t̃
(ǫsρ̃sṽs) + ∇̃ · (ǫsρ̃sṽsṽs) =

1

Res
∇̃ · T̃s

+
1

Fr2
ǫsρ̃sk +

1

St
(ṽg − ṽs).

(2.69)

Introducing the non-dimensional variables in the Equation (2.64e), we obtain:

∂

∂t̃
(ǫgρ̃gẼg) + ∇̃ · (ǫgρ̃gẼgṽg) = − Ec

Ma
∇̃ · (P̃gṽg) +

Ec

Reg
∇̃ · (T̃g · ṽg)

+
1

Peg
∇̃ · (ǫg∇̃T̃g) +

Ec

Fr2
ǫgρ̃gk · ṽg +

Ec

St
(ṽs − ṽg) · ṽg

+
Nug

Peg
(T̃s − T̃g).

(2.70)

The non-dimensional parameters, i.e. Eckert number Ec, Péclet number Pe and Nus-

selt number Nu, are defined in Table 2.2. Analogously, we derive the non-dimensional

form of the energy conservation equation for solid particles (2.64f):

∂

∂t̃
(ǫsρ̃sẼs) + ∇̃ · (ǫsρ̃sẼsṽs) =

Ec

Res
∇̃ · (T̃s · ṽs) +

1

Pes
∇̃ · (ǫs∇̃T̃s)

+
Ec

Fr2
ǫsρ̃sk · ṽs +

Ec

St
(ṽg − ṽs) · ṽs +

Nus

Pes
(T̃g − T̃s).

(2.71)
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Quantity Symbol Dimension

Mass m M

Length x L

Time t T

Temperature T Θ

Volume fraction ǫ 1

Density ρ ML−3

Velocity v LT−1

Pressure P ML−1T−2

Gravity g LT−2

Stress tensor T ML−1T−2

Drag coefficient Dg,s ML−3T−1

Total specific energy Etot L2T−2

Thermal conductivity k MLT−3
Θ

−1

Heat trasfer coefficient Qs ML−1T−3
Θ

−1

Viscosity µ ML−1T−1

Specific heat cp L2T−2
Θ

−1

Table 2.1: Dimensional form of the main physical quantities

We can now summarize the non-dimensional form of the multiphase gas–particle model,

where the symbol ˜ has been removed for the sake of simplicity:

∂

∂t
(ǫgρg) +∇ · (ǫgρgvg) = 0 (2.72a)

∂

∂t
(ǫsρs) +∇ · (ǫsρsvs) = 0 (2.72b)

∂

∂t
(ǫgρgvg) +∇ · (ǫgρgvgvg) = − 1

Ma2
∇Pg +

1

Reg
∇ · Tg

+
1

Fr2
ǫgρgk +

1

St
(vs − vg) (2.72c)

∂

∂t
(ǫsρsvs) +∇ · (ǫsρsvsvs) =

1

Res
∇ · Ts +

1

Fr2
ǫsρsk +

1

St
(vg − vs) (2.72d)

∂

∂t
(ǫgρgEg) +∇ · (ǫgρgEgvg) = − Ec

Ma
∇ · (Pgvg) +

Ec

Reg
∇ · (Tg · vg)

+
1

Peg
∇ · (ǫg∇Tg) +

Ec

Fr2
ǫgρgk · vg +

Ec

St
(vs − vg) · vg

+
Nug

Peg
(Ts − Tg) (2.72e)

∂

∂t
(ǫsρsEs) +∇ · (ǫsρsEsvs) =

Ec

Res
∇ · (Ts · vs) +

1

Pes
∇ · (ǫs∇Ts)

+
Ec

Fr2
ǫsρsk · vs +

Ec

St
(vg − vs) · vs +

Nus

Pes
(Tg − Ts). (2.72f)
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Non-dimensional number Definition

Reynolds number Re =
ρ̄Ū L̄

µ

Mach number Ma =
Ū

c̄

Froude number Fr =
Ū√
gL̄

Stokes number St =
ρ̄Ū

Dg,sL̄

Péclet number Pe =
Ū L̄ρ̄cp

k

Eckert number Ec =
Ū2

cpΘ̄

Nusselt number Nu =
QsL̄

2

k

Table 2.2: Definition of non-dimensional parameters.

2.6.2 Physical meaning of the non-dimensional parameters

The non-dimensional parameters allow to identify different physical regimes that can

arise for the gas–particle mixture, as discussed in [7].

The Reynolds number is defined as the ratio of inertial forces and viscous forces.

When Re → ∞, the viscous forces are negligible and the flow can be approximated as

inviscid. In fluid dynamics, this hypothesis allows to reduce the Navier-Stokes system

of equations to the Euler equations. On the other hand, when Re ≪ 1, inertial and

advective forces are small compared to the viscous forces and the Stokes equations can

provide an accurate solution to the problem.

The Froude number represents the ratio between inertial and gravitational forces.

When Fr → ∞, i.e. the velocity of the flow is high, the gravitational force cannot

influence the dynamics of the flow and can be neglected. As the the velocity decreases,

gravity starts playing a significant role in the dynamics of the fluid by accelerating it

downward.

The Mach number compares the flow velocity with the speed of sound in the medium.

It allows to understand the importance of the compressibility effects in the flow. When

Ma → 0, the fluid can be approximated as incompressible. Moreover, the Mach num-

ber allows to distinguish between different flow regimes, i.e. subsonic (Ma < 1),

transonic Ma ∼ 1 and supersonic Ma > 1.

The dynamics of a particle suspended in a fluid flow is described by the Stokes num-

ber. It compares the drag force acting on the particles with the inertial forces. When the

Stokes number decreases, i.e. St → 0, the friction between the two phases is large and

particles follow the fluid streamlines closely. When the Stokes number is small, the gas

phase and the solid phase dynamics are coupled and could be approximated as a unique
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medium with average properties. On the contrary, as the Stokes number increases, the

dispersed phase can manifest significant non-equilibrium phenomena.

The Eckert number is defined as the ratio between the kinetic energy and the en-

thalpy and it is used to characterize dissipation. For small Eckert numbers, the effects

of pressure changes on the energy balance of the system can be neglected with respect

to conduction and convection phenomena.

The Péclet number represents the ratio between advection and the thermal diffusion

(conduction). When the flow velocity is very high (Pe → ∞), the time scale of the

thermal diffusion process is much bigger than the transport time scale, thus the heat

diffusion can be neglected.

Finally, the Nusselt number compares the convective heat transfer with the conduc-

tive heat transfer (diffusion). When the Nusselt number is large, thermal diffusion is

negligible with respect to the heat transfer between gas and particles.

2.6.3 Application of dimensional analysis to significant test cases

The value of the non-dimensional parameters introduced in the previous section has to

be computed using the characteristic quantities and the physical coefficients typical of

the application we are interested in. In this section we are going to apply the dimen-

sional analysis to study a few significant regimes, representative of different application

areas of this kind of multiphase models.

Volcanic jet

During an explosive volcanic eruption, a mixture of gas and solid particles is ejected

from the volcanic vent into the atmosphere. The multiphase equations (2.13a), (2.13b),

(2.14a), (2.14b), (2.15a), (2.15b) can be used to describe the jet that forms in the first

stages of the eruption and the non-dimensional form of the equations allows to better

understand the main processes that take place in this geophysical phenomena.

The only length that can influence the jet dynamics is the exit diameter, i.e. the

vent diameter L̄ = Dv. The characteristic velocity of the jet is the exit velocity of the

mixture, that is Ū = |vv,mix|. Analogously, the characteristic density is equal to the

exit mixture density, ρ̄ = ρv,mix, whereas the characteristic temperature is given by the

difference between the exit mixture temperature and the atmospheric temperature, that

is Θ̄ = |Tv,mix − Tatm|. Due to the complexity of the physical problem, the introduced

variables cannot always be quantified exactly by means of experimental data. Thus,

in the computation of the non-dimensional parameters only the approximate order of

magnitude will be introduced. In particular we refer to [45, 91, 93, 134] for the values

of the volcanological parameters, that are shown in Tables 2.3 and 2.4.

From the value of the computed non-dimensional parameters in Table 2.5 it is pos-

sible to observe that the Reynolds numbers are much larger than 1, so that the viscous

effects in the momentum equations are negligible with respect to the inertial forces for

both the gas and the particles. Analogously, the values of the Péclet numbers demon-

strate that the conductive heat transfer is negligible with respect to other heat transfer

processes. Consequently, the viscous terms in the momentum equations, the diffusion

and the viscous dissipation terms in the energy equations can be neglected in the con-

sidered regime. For these regimes, the gas can be considered inviscid. Furthermore,

the gravitational force plays a secondary role in the jet dynamics (Fr > 1), due to
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Parameter Reference value Unit

ǫs 10−2

ǫg 1

ds 10−4 m

µg 10−5 Pa·s
µs 10−2 Pa·s
Dg,s 103 kg/m3·s
cp,g 103 J/Kg·K
cp,s 103 J/Kg·K
kg 10−3 W/m·K
ks 1 W/m·K
Qs 106 W/m3·K
c̄ 102 m/s

Table 2.3: Approximate order of magnitude of physical parameters for volcanological applications

Quantity Reference value Unit

L̄ 10 m

Ū 102 m/s

Θ̄ 103 K

ρ̄ 10 kg/m3

Table 2.4: Characteristic quantities for the volcanic jet test case

the high velocity of the mixture in the vertical direction. In particular, the work done

by the gravitational force can be neglected in the energy balance equations. The order

of magnitude of the Mach number is one, so the gas phase cannot be approximated

as incompressible. Compressibility effects are important in the jet test problem and a

transonic regime can be expected. Finally, we can observe that both the Stokes number

and the ratio between the Péclet number and the Nusselt number are of the order of 0.1.

They are not so small to justify the hypothesis of equilibrium between different phases.

Consequently, the work done by the drag force may have some effect on the thermody-

namics of the volcanic jet, although it would be negligible compared to the interphase

heat exchange. It is possible to conclude that, in the jet dynamics, non-equilibrium

effects between gas and solid particles can arise and that the pressure, advection and

interphase exchange terms influence the global behavior of the jet.

Pyroclastic density current

On the long time scale, after the volcanic jet has expanded into the atmosphere, the

volcanic column can collapse under the effect of gravitational forces. The collapsing

mixture feeds a pyroclastic density current that flows along the volcanic flank.

To characterize the process of the density current, we need to introduce the char-

acteristic length. In volcanological applications, it can be approximate with the height

from which the mixture is collapsing, i.e. the height of the collapsing volcanic column

Hc. The characteristic velocity is not easy to define. It can be roughly approximated

with the velocity that a fluid reaches when falling from an height Hc under gravitational
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Parameter Reference value

Reg 109

Res 106

Ma 1

Fr 10

Ec 10−2

Peg 1010

Pes 107

St 10−1

Nug 1011

Nus 108

Table 2.5: Non-dimensional parameters for the volcanic jet test case

acceleration, Ū =
√
2g′Hc, where g′ is the reduced gravity, i.e.

g′ =

∣∣∣∣
ρmix − ρatm

ρatm
g

∣∣∣∣ . (2.73)

As in the previous test case, the characteristic density is the density of the mixture,

i.e. ρ̄ = ρmix and the characteristic temperature is the difference between the mixture

and the atmospheric temperature, i.e. Θ̄ = |Tmix − Tatm|. As in the previous section,

we refer to [45, 91, 93, 134] to obtain the approximate order of magnitude of physical

parameters, see Tables 2.3 and 2.6.

The computed non-dimensional parameters for the pyroclastic current test case are

shown in Table 2.7. As in the jet test case, it is possible to observe how viscous ef-

fects in the momentum equations, as well as diffusive and viscous dissipation temrs in

the energy equations, are negligible with respect to advection (Re, Pe ≫ 1). How-

ever, we expect that these terms will become relevant in the boundary layer, where the

velocities approaches zero and the characteristic length is the roughness of the solid

boundary. Gravitational force is important and influences the dynamics of the density

current (Fr ≃ 1): it tends to stratify the mixture into layers with decreasing density

moving away from the boundary layer. At the same time, the work done by the grav-

itational force can be neglected if we assume that the density current is moving in the

horizontal direction mainly, i.e. v · k ≃ 0. The Mach number is of the order of one

and compressibility effects are not negligible, due to the presence of solid particles that

reduce the speed of sound in the mixture. We observe how the Stokes number and

the ratio between the Péclet number and the Nusselt number are of the order of 10−3.

These values, which are representative of the large scale dynamics of the density cur-

rent, imply that the solid phase tends to approach equilibrium with the gas phase in the

horizontal direction, i.e. v · i ≃ Ū . In the vertical direction, where v · k ≪ Ū , the cou-

pling between gas and particles is governed by small scale dynamics and turbulence.

Finally, in the density current regime, the work done by the drag force is comparable to

the heat exchange between different phases, thus it can not be neglected.

Laboratory experiments on multiphase gas–particle jets

Supersonic and high speed free jets of particle-laden gas are of great interest for a

number of practical problems, e.g. solid propellant rocket engines in space technology
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Quantity Reference value Units

L̄ 103 m

Ū 102 m/s

Θ̄ 102 K

ρ̄ 10 kg/m3

Table 2.6: Characteristic quantities for the pyroclastic density current test case

Parameter Reference value

Reg 1011

Res 108

Ma 1

Fr 1

Ec 10−1

Peg 1012

Pes 109

St 10−3

Nug 1015

Nus 1012

Table 2.7: Non-dimensional parameters for the pyroclastic density current test case

or for two-phase combustion systems. Detailed experiments have been carried out to

give further insight into the multiphase flow behaviour, see e.g. [84, 124].

The test facility employed in the laboratory to reproduce multiphase jets is typically

composed by a high pressure chamber which includes a mixing chamber connected

to the particle feeding system in order to ensure good mixing of the particles with

the gas flow. A variable speed screw feeder is used to adjust the particle mass flow

rate. The high pressure chamber is connected to a low pressure chamber through a

converging nozzle. A vacuum pump is used to maintain a steady state pressure on

the low pressure side. Optical devices and methods are used to collect measurements

during the experiments, e.g. shadowgraph or schlieren method to study the free jet

structure, lased light sheet method to study the particle-laden region and laser-Doppler

anemometer to measure the particle velocity at the nozzle exit.

To carry out the dimensional analysis of the laboratory multiphase jet, we refer to

the experimental setup described and adopted in [124]. Here, the exit diameter of the

nozzle is 3 mm and the low pressure chamber has a inner diameter of 300 mm. The

pressure in the low pressure chamber is equal to 104 Pa. Solid particles have a diam-

eter of the order of 10 µm and density equal to 2500 kg/m3. The particle volumetric

concentration is low, of the order of 10−4. The gas and solid exit velocities are equal

to the sonic speed of the pure gas, whereas the gas exit pressure is 30 times the low

chamber pressure. A summary of the experimental parameter values is reported in Ta-

ble 2.8. The characteristic scales of the phenomena are reported in Table 2.9, whereas

the resulting non dimensional parameter are shown in Table 2.10. It can be observed

that advection is dominant with respect to viscous effects and gravitational forces, even

in spite of the small spatial scale. Compressibility effects cannot be neglected. The

Stokes number and the ratio between the Péclet and the Nusselt number are large, thus

meaning the dynamics of solid particles is strongly decoupled from the the dynamics
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2.6. Dimensional analysis

Parameter Reference value Unit

ǫs 10−4

ǫg 1

ds 10−5 m

µg 10−5 Pa·s
µs 10−2 Pa·s
Dg,s 102 kg/m3·s
cp,g 103 J/Kg·K
cp,s 103 J/Kg·K
kg 10−3 W/m·K
ks 1 W/m·K
Qs 105 W/m3·K
c̄ 102 m/s

Table 2.8: Experimental parameters for the multiphase jet on the laboratory scale.

Quantity Reference value Units

L̄ 10−3 m

Ū 102 m/s

Θ̄ 1 K

ρ̄ 1 kg/m3

Table 2.9: Characteristic quantities for the multiphase jet on the laboratory scale.

of the gas phase, as observed also in [124]. Finally, the viscous dissipation term and the

work done by the drag force are comparable to the heat exchange term in the energy

balance equations, thus they have an important role in the thermodynamics of the jet.

By comparing the results obtained for the jet on the laboratory scale in Table 2.10 to

the ones obtained on the volcanic scale in Table 2.5, it is possible to assess that the

experimental setup and the nozzle conditions proposed in [124] are not appropriate to

reproduce the main thermodynamic processes that take place in the volcanic jet.

Parameter Reference value

Reg 104

Res 10
Ma 1
Fr 103

Ec 10
Peg 105

Pes 102

St 103

Nug 102

Nus 10−2

Table 2.10: Non-dimensional parameters for the multiphase jet on the laboratory scale.
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CHAPTER3

Spatial discretization by finite volume methods

FINITE volume method (FVM) is a spatial discretization technique which is de-

rived from the integral form of the general conservation law. The finite volume

method is based on cell-averaged values, which are usually the most fundamen-

tal quantities in fluid dynamics. This property distinguishes the FVM from the finite

difference and the finite element methods, where the main quantities are the local func-

tion values at the mesh points. FVM is one of the most widely applied methods in fluid

dynamics, due to its generality and conceptual simplicity. With respect to other dis-

cretization approaches, FVM has the fundamental property that a locally conservative

discretization is achieved automatically, through the direct discretization of the integral

form of the conservation law.

The first step in the FVM is the tassellation of the computational domain into a

collection of non overlapping control volumes that completely cover the domain. Let

Th denote the tassellation of the domain Ω ⊂ R
d, with d = 1, 2, 3. The control volumes,

denoted with K, are such that
⋃

K∈Th
K = Ω. The intersection between two distinct

control volumes can be either an edge e or else a set of measure at most d − 2. In

this work, we assume that the mesh is conforming, i.e. each edge e is shared by only

two distinct control volumes. We denote with hK a length scale associated with each

control volume K, e.g. hK = diam(K), and with h a length scale associated with the

tassellation Th, e.g. h = maxK∈Th hK .

Even if the FVM can be applied on an arbitrary mesh, in this work only Cartesian

meshes, i.e. built up by Cartesian producty of intervals in the x−, y− and z− directions,

will be considered. We enumerate by i = 1, . . . , Nx, j = 1, . . . , Ny and k = 1, . . . , Nz

the intervals in the x−, y− and z− directions, respectively. Finally, we denote by Kijk
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Chapter 3. Spatial discretization by finite volume methods

the grid cell with position i, j, k, defined as:

Kijk =
[
xi− 1

2

, xi+ 1

2

]
×

[
yj− 1

2

, yj+ 1

2

]
×

[
zk− 1

2

, zk+ 1

2

]
. (3.1)

The center of each control volume Kijk is the point (xi, yj, zk), whereas xi+ 1

2

, yj+ 1

2

and

zk+ 1

2

denote the cell faces.

The finite volume approach assumes a piecewise constant solution representation in

each control volume, with value equal to the cell average. We indicate with u(t)|K the

average value of the quantity u(x, t) on the cell K, which is defined as:

u(t)|K =
1

|K|

∫

K

u(x, t)dx. (3.2)

On the tassellation Th, we introduce the space of piecewise constants V 0
h , i.e.

V 0
h =

{
v : v(x) · χK ∈ P0(K), ∀K ∈ Th

}
(3.3)

where χK is the characteristic function on K and P0(K) is the space of constant poly-

nomials on the control volume K.

The finite volume approximation is then obtained from the integral form of the equa-

tion, by integrating the differential equation over appropriate control volumes and ap-

plying the divergence theorem.

In this chapter, the finite volume approximation is presented for scalar conserva-

tion laws. The extension to systems of conservation laws is then introduced both on a

colocated and on a staggered mesh arrangement. In the second part, a review on dif-

ferent numerical fluxes and flux limiting techniques that can be adopted is presented

for scalar equations and systems of conservation laws. Finally, some details on the im-

plementation of the finite volume discretization of multiphase gas–particle equations in

the Pyroclastic Dispersal Analysis Code (PDAC) [42] are described.

3.1 General formulation

Let us consider the scalar conservation equation

∂u

∂t
+∇ · f(u) = s(u, t), (3.4)

where u(x, t) : Rd × [0, T ] → R is the conserved variable, f(u) : R → R
d is the flux

vector and s(u, t) : R× [0, T ] → R is the source function.

3.1.1 Weak solution and entropy solution

It is well known that, if a function is discontinuous, it cannot be the solution of a partial

differential equation in the conventional case, because derivatives are not defined at the

discontinuity. Instead, the solution is required to satisfy a family of related integral

equations. Multiplying the conservation law (3.4) in the homogeneous case by a test

function ϕ ∈ C1
0(R

d × [0,∞]) and integrating over Rd × [0,∞], we obtain
∫ ∞

0

∫

Rd

[
u
∂ϕ

∂t
+ f(u) · ∇ϕ

]
dxdt+

∫

Rd

u0ϕ(x, 0)dx = 0, (3.5)
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3.1. General formulation

with u0 = u(x, 0) ∈ L∞(Rd × [0,∞]). Unlike the differential form (3.4), the integral

form can be satisfied by piecewise continuous functions. If u ∈ L∞(Rd × [0,∞])
and u satisfies the integral equation (3.5) for all ϕ ∈ C1

0(R
d × [0,∞]), then u is a

weak solution of the conservation law. It can be shown that there exists at least one

weak solution to (3.5) if the flux function f(u) is at least Lipschitz continuous [78].

Differentiable weak solutions are also solutions of the partial differential equation (3.4)

and are uniquely determined by the initial data. However, the class of weak solutions

is too large to guarantee uniqueness of solutions. An important class of solutions are

piecewise classical solutions with discontinuities separating the smooth regions. In

this case, the solution is a weak solution if and only if the following jump condition

(Rankine-Hugoniot condition) across the discontinuity surface S is satisfied [4,52,77]:

c JuK · nS = Jf(u)K · nS (3.6)

where nS is the unit vector normal to the discontinuity surface S, JqK represents the

jump of the quantity q across the discontinuity surface when following the streamline

and c is defined as the discontinuity propagation speed. Various form of discontinuities

are physically possible: shocks, where all the flow variables undergo a discontinuous

variation, contact discontinuities and vortex sheets, also called slip lines, across which

density and tangential velocity may be discontinuous, although pressure and normal

velocity remain continuous.

The Rankine-Hugoniot conditions are not sufficient to identify a unique weak so-

lution, since they are not able to distinguish between positive and negative entropy

variations across the discontinuity. Consequently, additional conditions must be intro-

duced in order to single out one solution, i.e. the entropy weak solution, within the

class of weak solutions [78]. A condition has to be imposed in order to ensure that

the solutions of the inviscid problem are indeed limits, for vanishing viscosity, of the

real fluid behaviour and that entropy does not unphysically decrease, thus violating the

second principle of thermodynamics [4, 77, 78].

3.1.2 Spatial finite volume (semi) discretization

To obtain the finite volume approximation for Equation (3.4), formally polynomials of

degree zero are chosen as test functions, e.g.

ϕ(x, t) =

{
1 if (x, t) ∈ K × [t1, t2]

0 otherwise.
(3.7)

Notice that ϕ does not belong to the space C1
0 , but it can be approximated arbitrarily

well by a smoothed-out version. Multiplying Equation (3.4) by ϕ and integrating on

the domain we obtain:
∫

K

∂u

∂t
dx+

∫

K

∇ · f(u) dx =

∫

K

s(u, t) dx (3.8)

and integrating by parts the flux term:

d

dt

∫

K

u dx+

∫

∂K

f(u) · n dx =

∫

K

s(u, t) dx, (3.9)
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Chapter 3. Spatial discretization by finite volume methods

The semi-discrete finite volume approximation of Equation (3.4) using a piecewise

solution representation in space is obtained by applying the definition (3.2). We look

for an approximate solution uh(x, t) ∈ V 0
h , which is defined on the computational mesh

Th by means of its mean values uK(t) = uh(x, t)|K , for all the control volumes K ∈ Th.

The degrees of freedom of the approximate solution are computed by integrating in time

the following ordinary differential equation

d

dt
uK(t) +

1

|K|

∫

∂K

f(u) · n dx =
1

|K|

∫

K

s(u) dx, (3.10)

with initial data

uK(0) =
1

|K|

∫

K

u0(x) dx. (3.11)

To complete the finite volume discretization of Equation (3.10), appropriate numerical

approximation to the volume integral and to the boundary integral terms should be

introduced.

The volumetric source term is integrated by means of a Gauss numerical quadrature

rule on the control volume K, that is
∫

K

s(u, t) dx ≃
∑

m∈IK

ωm s(u(xm), t), (3.12)

where the coefficients ωm and the points xm ∈ IK are the weights and the quadra-

ture points, respectively, of the integration rule on K. The values of the function u
on the quadrature points have to be appropriately reconstructed by using interpolation

techniques. As an example, if the second-order accurate midpoint integration rule is

adopted, the approximate integral is computed as the product between the cell volume

and the source function evaluated at the control volume center, where the variable is

assumed to be equal to its mean value on K, that is
∫

K

s(u, t) dx ≃ s(uK , t)|K| = sK(t)|K|. (3.13)

Analogously, the boundary integrals are computed by means of a numerical quadrature

rule on the edge e.

The use of piecewise constant functions on the control volumes K renders the nu-

merical solution multivalued on the cell interfaces e, thus making the definition of a

single valued flux at these interfaces ambiguous. The true flux has to be replaced by a

numerical flux function f̃ . Given the control volume K and its edge e, here we indicate

with Ke the control volume that shares with K the edge e, i.e. e = K ∩Ke, and with

ne the vector normal to e, pointing from K to Ke. The numerical flux function can now

be defined as ∫

e

f(u) · ne dx ≃ f̃(uK , uKe
,ne), (3.14)

where uK and uKe
are appropriate reconstructions of the function u on the edge e of

the control volume K and Ke, respectively. The numerical flux is assumed to satisfy

two fundamental properties:

• conservation

f̃(u, v,n) = −f̃(v, u,−n); (3.15)
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3.2. Extension to systems of conservation laws

• consistency

f̃(u, u,n) =

∫

e

f(u) · n dx. (3.16)

Under these hypothesis, the Lax-Wendroff theorem [81] guarantees that, when the nu-

merical solution of the conservative scheme converges, it will converge to a solution

of the continuous equations that satisfies the Rankine-Hugoniot relations in presence

of discontinuities [66]. The final finite volume approximation of the problem (3.4) is

given by
d

dt
uK(t) +

1

|K|
∑

e∈∂K

f̃(uK , uKe
,ne) =

1

|K|

∫

K

s(u, t) dx. (3.17)

The system (3.17) allows to update in time the values of the mean quantities uK(t) in

all the control volumes. It can be solved with a variety of explicit and implicit time

integration methods, that will be presented in Chapter 5.

3.2 Extension to systems of conservation laws

Let us consider the system of M conservation equations

∂U

∂t
+∇ · F(U) = S(U, t), (3.18)

where U(x, t) : Rd× [0, T ] → R
M is the vector of conserved variables, F(U) : RM →

R
M × R

d is the flux function and S(U, t) : RM × [0, T ] → R
M is the vector source

function.

The finite volume scheme introduced in the previous section can be extended to

systems of conservation laws by following two alternative approaches, the colocated

method and the staggered method, depending on the arrangement of the dependent

variables.

3.2.1 Colocated finite-volume scheme

In the colocated mesh arrangement all the unknowns and all fluid properties are identi-

fied with the values in the center of the computational cell K. In particular, the velocity

components are located with the scalar variables at the cell centers, as shown in Figure

3.1.

We consider the system of conservation laws (3.18) and the tassellation Th on the

computational domain Ω. As in the previous section, each scalar equation that com-

poses the system (3.18) is integrated over the control volume K
∫

K

∂U

∂t
dx+

∫

K

∇ · F(U) dx =

∫

K

S(U, t) dx (3.19)

and the flux term is integrated by parts:

d

dt

∫

K

U dx+

∫

∂K

F(U) · n dx =

∫

K

S(U, t) dx (3.20)

We introduce the space of piecewise constant vectorial function V0
h on the tassellation

Th, i.e.

V0
h =

{
V ∈ R

M : V (i) ∈ V 0
h , ∀i = 1, . . . ,M

}
. (3.21)
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Figure 3.1: Sketch of the colocated mesh arrangement on a two dimensional Cartesian mesh. Both scalar

variables and velocity components are defined at the cell center.

The mean value of the vector function U(x, t) over the control volume K is the vector

UK(t) whose components are the mean values of the components U (i) of U, for all

i = 1, . . . ,M . The semi-discrete finite volume approximation of equations (3.18) using

a piecewise solution representation in space, that is Uh(t) ∈ V0
h, with initial data

UK(0) =
1

|K|

∫

K

U0(x)dx, (3.22)

is given by the following system of ordinary differential equations

d

dt
UK(t) +

1

|K|

∫

∂K

F(U) · n dx =

∫

K

S(U, t) dx. (3.23)

The system (3.23) allows to update in time the values of the mean quantities UK(t) in

all the control volumes.

To approximate the volume and boundary integrals, the same steps introduced in

the previous section can be adopted for each component of the system (3.23), i.e. see

Equations (3.12) and (3.14). The final finite volume approximation of the system (3.18)

on a colocated mesh is given by

d

dt
UK(t) +

1

|K|
∑

e∈∂K

F̃(UK ,UKe
,ne) =

1

|K|

∫

K

S(U, t). (3.24)

Colocated methods have some advantages, in particular when unstructured or non-

orthogonal grids are used. First, all variables are defined at the same locations, hence

there is only one set of control volumes; furthermore, the advection term can be evalu-

ated in the same way for all the variables. This kind of arrangement allows for a simple

treatment of complex geometries and the straightforward application of multigrid tech-

niques.

However, some disadvantages must be highlighted. The main drawback of the colo-

cated mesh scheme is that, in the incompressible limit, a decoupling between the ve-

locity and the pressure is generated [103]. This difficulty can be solved either using
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3.3. Numerical fluxes

appropriate interpolation strategies [68, 105, 111] or introducing a staggered arrange-

ment of the variables on the computational mesh [64].

Another difficulty is related to the dispersion of linear waves. If we consider a simple

advection equation, it is well known (see e.g. [36] for a complete analysis) that colo-

cated schemes are not able to resolve wave phase-speed and group velocity correctly

at all wave numbers. In particular, let us consider as an example the one-dimensional

case advection equation: the least well-resolved wave on a grid with length ∆x has

wavelength 2∆x and wave number k = π/∆x. While in the continuous problem the

phase speed and the group velocity are independent on the wave number (nondispersive

waves), the discrete dispersion relation shows that both the discrete phase speed and the

discrete group velocity depend on k, thus meaning that the numerical solution consists

of dispersive waves. Moreover, the least well-resolved wave travels with phase speed

equal to zero, thus introducing a considerable source of errors and numerical noise

in the approximate solution. This problem can be solved either by adding numerical

dissipation to the method or by adopting a staggered approach.

3.2.2 Staggered finite-volume scheme

In the staggered-mesh arrangement the velocity degrees of freedom are distributed on

the cell faces e ∈ ∂K, whereas the pressure and other scalar quantities are defined at

the cell centers, as shown in Figure 3.2. This feature, introduced in [64], results in fully

coupled velocity and pressure fields.

In a Cartesian mesh, the pressure and all other scalar variables are located in the

center of each control volume. The velocity components u, v and w are shifted in the

x−, y− and z− directions, respectively. For each velocity component, a shifted control

volume has to be introduced, too.

The equations are then formally integrated over the respective control volumes.

Thus, conservation equations for scalar quantities, e.g. density and energy, are dis-

cretized on the volume centered on the point (xi, yj, zk), that is Kijk, while the x−mo-

mentum conservation is integrated over the volume centered on the location of u, that

is Ki+ 1

2
jk with center (xi+ 1

2

, yj, zk). Similarly, y−momentum and z−momentum equa-

tions are expressed for the volumes centered on the location of v and w, respectively.

Staggered-mesh arrangements have been successfully applied to a variety of systems

of conservation laws, see e.g. [11, 58].

3.3 Numerical fluxes

3.3.1 Central schemes

The space-centred algorithms were historically the first to be derived. They are uniquely

defined for linear equations, but many variants can be introduced for non-linear fluxes,

even in one dimension. Among centred schemes, the most widely used are the Lax-

Friedrichs and the Lax-Wendroff numerical fluxes.

The Lax-Friedrichs flux is a first-order centred scheme defined as

f̃(uK , uKe
,ne) =

1

2
[f(uKe

) · ne + f(uK) · ne − a (uKe
− uK)] (3.25)
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Figure 3.2: Sketch of the staggered mesh arrangement on a two dimensional Cartesian mesh. Scalar vari-

ables are defined at the cell center, whereas velocity component are defined at the cell faces. Staggered

control volumes are introduced for the momentum equations.

where a = |K|/∆t, where ∆t is the time-step. An improvement of the Lax-Friedrichs

flux is obtained by replacing the value a with a locally determined value a = λe, where

λe = max

(∣∣∣∣
∂f

∂u
(uK) · ne

∣∣∣∣,
∣∣∣∣
∂f

∂u
(uKe

) · ne

∣∣∣∣
)
. (3.26)

The resulting method is the Rusanov’s method, or Local Lax-Friedrichs method [116].

The extension to systems of conservation laws is straightforward. The numerical

flux is computed as

F̃(UK ,UKe
,ne) =

1

2
[F(UKe

) · ne + F(UK) · ne − a (UKe
−UK)] (3.27)

where a = |K|/∆t, where ∆t is the time-step. In the Rusanov’s method, the coefficient

a is replaced by a = λ, where

λ = max

(∣∣∣∣eig
(
∂F

∂U
(UKe

) · ne

) ∣∣∣∣,
∣∣∣∣eig

(
∂F

∂U
(UK) · ne

) ∣∣∣∣
)
. (3.28)

Here, ∂F
∂U

represents the Jacobian matrix and eig are its eigenvalues.

A second order extension of the Lax-Friedrichs method is the Lax-Wendroff scheme.

The Lax-Wendroff method differs from the Lax-Friedrichs method only for the defini-

tion of the coefficient a, which is given, for a scalar equation, by a = λ2
e∆t/h, with

λe =
∂f

∂u

(
uK + uKe

2

)
· ne. (3.29)

The extension to systems of conservation laws is done in the same way as for the Lax-

Friedrichs flux. The Lax-Wendroff flux is second-order accurate and yields much better

approximations on smooth solutions than first order methods„ but fails near disconti-

nuities, where oscillations are generated. A flux-limiting technique can be adopted to

guarantee the monotonicity of the scheme, as discussed in Section 3.4.
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3.3. Numerical fluxes

3.3.2 Upwind schemes

The family of upwind schemes is directed towards the introduction of the physical

properties of the flow equations into the discretized formulation. Constructing schemes

which take into account the essential physical properties of the equations is aimed at

preventing the creation of unwanted oscillations that appear in second-order central

schemes.

Upwind methods are very simple to formulate for scalar advection equations, that

is f(u) = au, in which name they are also known as donor-cell upwind methods. The

first order upwind flux through the edge e = K ∩Ke is given by

f̃(uK , uKe
,ne) = (a · ne)

+uK + (a · ne)
−uKe

(3.30)

where (a ·ne)
+ = max(a ·ne, 0) and (a ·ne)

− = min(a ·ne, 0) indicate the positive and

the negative parts of the velocity, respectively. The numerical flux is essentially com-

puted by solving a Riemann problem across e, whose solution consists of a single wave

carrying the jump in u between the neighboring two grid cells, propagating at speed

(a ·ne). A first order correction to the donor-cell upwind method is the corner-transport

upwind method [28], which includes the so-called transverse fluxes by considering the

proper wave propagation speed a through the edge and not only the normal component.

Several extensions of the basic donor-cell upwind method have been proposed in the

literature to obtain second order accuracy and to account for systems of advection equa-

tions [28, 83, 117].

3.3.3 Numerical fluxes for system of conservation laws

In the discretization process of systems of conservation laws the introduction of the

proper wave propagation speed is usually performed according to two main approaches.

In the first approach, physical properties are accounted for by introducing information

on the sign of the eigenvalues of the Jacobian matrix of the flux function, whereby the

flux terms are split and discretized directionally according to the sign of the associ-

ated propagation speeds. This leads to the flux vector splitting methods. The second

approach, referred to as flux difference splitting method or Godunov-type method, is

based on the solution of the local Riemann problem at the interface e.

Flux vector splitting methods have been originally proposed for the system of Euler

equations, in which the flux function can be written as an homogeneous function of the

vector U, that is F(U) = A(U)U. Under this hypothesis, the numerical flux can be

computed by applying the Steger-Warming splitting

F̃(UK ,UKe
,ne) = A+(UK ,ne)UK +A−(UKe

,ne)UKe
(3.31)

with

A+ = RΛ+R−1 (3.32a)

A− = RΛ−R−1 (3.32b)

where the matrices Λ+ and Λ− contains the positive and negative eigenvalues of A(U,n) =
A(U)·n, respectively, and R is the matrix containing the right eigenvectors of A(U,n).
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The Godunov method [53] is obtained by solving the Riemann problem between the

states UK and UKe
in order to determine the flux through e. It is defined as

F̃(UK ,UKe
,ne) = F(URiemann(0)) · ne. (3.33)

where URiemann (ξ/t), with ξ = x·ne, is the similarity solution of the Riemann problem

evaluated at ξ/t = 0. The exact solution of the Riemann problem is often computa-

tionally expensive, depending on the complexity of the equation of state and the flux

function, in particular in the multidimensional case. Thus, numerical fluxes based on

approximations of the solution of the Riemann problem have been proposed, i.e. the

HLL-type Riemann solver [38, 65, 135], the Roe-type Riemann solver [113, 114] and

the Osher-type Riemann solver [39, 101].

The Roe method is based on the exact solution of an approximate Riemann problem.

The approximate problem results from replacing the original non-linear conservation

law (3.4) by a linearized equation with constant coefficients, given by the so called Roe

matrix, and the initial data of the exact problem [113].

The approximate Riemann problem across the edge e is defined as

∂U

∂t
+ Â(Ue,UKe

,ne)
∂U

∂ξ
= 0 (3.34)

with ξ = x · ne and initial data U0(ξ) = UK for ξ < 0 and U0(ξ) = UKe
for ξ ≥ 0.

The Roe matrix Â(ue, uKe
,ne) is computed from a linearization of the flux function

such that

• Â(U,V,n) is diagonalizable with real eigenvalues;

• Â(U,U,n) = A(U,n) =
d∑

i=1

∂Fi

∂U
ni;

• Â(U,V,n)(U−V) = F(U) · ne − F(V) · ne

Finally, the numerical flux is computed as

F̃(UK ,UKe
,ne) = F(UK) · ne + Â+(UK ,UKe

,ne)(UKe
−UK)

= F(UKe
) · ne − Â−(UK ,UKe

,ne)(UKe
−UK),

(3.35)

with

Â+ = RΛ+R−1 (3.36a)

Â− = RΛ−R−1 (3.36b)

where the matrices Λ+ and Λ− contains the positive and negative eigenvalues of Â,

respectively, and R is the matrix containing the right eigenvectors. In an alternative

approach, proposed in [114], the computation of the average Jacobian matrix is not

required.
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3.4. Flux-limiting techniques

3.4 Flux-limiting techniques

Flux-limiting techniques are used to avoid spurious oscillations that would occur with

high-order spatial discretization near shocks or sharp gradients in the solution. These

techniques are based on the computation of numerical fluxes using both an algorithm

guaranteed not to violate the maximum principle (low order flux) and an algorithm

that is formally of high accuracy in the smooth portions of the solution (high order

fluxes). The final numerical flux is then constructed as weighted average of these two

fluxes. The weighting is performed in a manner which ensures that the high order fluxes

are used to the greatest extent possible without introducing unphysical values into the

solution. This procedure is referred to as flux-correction or flux-limiting.

For the sake of simplicity, we consider the finite volume approximation of the con-

servation equation for the scalar variable u on the element K:

d

dt
uK +

1

|K|
∑

e∈∂K

f̃(uK , uKe
,ne) = 0, (3.37)

where f̃(uK , uKe
,ne) = f̃e is the numerical flux through the edge e. If we define with

f̃L
e the low order flux and with f̃H

e the high order flux, the the numerical flux can be

split into a low order diffusive flux and a limited antidiffusive flux as follows:

f̃e = f̃L
e + Clim,eãe (3.38)

where the antidiffusive flux is defined as

ãe = f̃H
e − f̃L

e (3.39)

and Clim,e ≥ 0. The computation of the coefficients Clim,e depends on the type of

flux-limiter we want to apply.

3.4.1 Standard flux-limiter

A large number of different definitions for the limiting coefficients has been proposed

in the literature [129]. The coefficient Clim,e is expressed as a function of a parameter

re that represents a measure of the smoothness of the data near the edge e, that is

Clim,e = Clim(re), with

re =
∆ue,upw

∆ue

. (3.40)

Here, ∆ue is the jump of the solution at the interface e and ∆ue,upw is the jump at the

interface on the upwind side of e. Examples of computation of Clim are

• minmod function

Clim(r) = max (0,min (1, r)) ; (3.41)

• superbee

Clim(r) = max (0,min (2r, 1) ,min (r, 2)) ; (3.42)

• van Leer

Clim(r) =
r + |r|
1 + |r| . (3.43)
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Chapter 3. Spatial discretization by finite volume methods

3.4.2 Flux-Corrected Transport algorithm

The theory of Flux-Corrected Transport (FCT) algorithms has been developed in sev-

eral works [12–14, 150] in the framework of finite volume methods. Here, we present

the details of the method proposed in [150]. For each element K ∈ Th:

• compute the low order solution ũK with ãe = 0;

• compute the maximum and minumum allowable mean values umax
K and umin

K from

the upstream neighbouring elements;

• compute P+
K and P−

K as the sum of all antidiffusive fluxes into and away from K,

respectively;

• compute

Q+
K = (umax

K − ũK) |K|, Q−
K =

(
ũK − umin

K

)
|K| (3.44)

• set

R+
K =

{
min

(
1, Q+

K/P
+
K

)
if P+

K > 0,

0 if P+
K = 0,

(3.45)

R−
K =

{
min

(
1, Q−

K/P
−
K

)
if P−

K > 0,

0 if P−
K = 0.

(3.46)

Finally, set for each edge e = K ∩ Ke, with normal vector ne directed from K to

Ke compute

Clim,e =

{
min

(
R+

Ke
, R−

K

)
if ãe ≥ 0

min
(
R−

K , R
+
Ke

)
if ãe < 0

(3.47)

This algorithm allows to compute for each scalar equation i of the system of con-

servation laws the limiting coefficient C
(i)
lim,e. As observed in [85], the results available

in the literature show that FCT allows to obtain excellent solutions for a single scalar

conservation laws, but, when trying to extend the limiting procedure to systems of

equations, no natural extension is available. The advection of each single wave and the

limiting of each equation separately does not always give good results. It is necessary

to introduce an alternative approach, by combining the limiters for all equations of the

system. Many variations can be implemented, however the results strongly depend on

the equations are being solved. In particular, for the Euler system, the minimum of

the limiters obtained for the density and the energy equations is usually adopted. This

choice, proposed in [85], produces acceptable results, although some undershoots for

very strong shocks can be observed.

3.5 PDAC implementation

The present work has been partially devoted to the enhancement of the PDAC model

(Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al. [42]). PDAC is a parallel

code that solves the multiphase flow equations presented in Chapter 2. The original

implementation of the PDAC code was based on a first order donor-cell finite-volume

scheme, extended to second order in each separate spatial direction by adopting the
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3.5. PDAC implementation

one-dimensional MUSCL scheme [129], as is common practice in other multiphase

flow codes, e.g. MFIX in [131, 133]. The resulting numerical method is effective, but

its results still display significant numerical diffusion, especially in multidimensional

simulations, which implies the need for very high spatial resolution and small time

steps to achieve an accurate simulation. One of the objectives of this work has been to

modify the numerical algorithm in order to increase the accuracy in the simulation of

the near-vent decompression dynamics, potentially involving supersonic regimes and

shock waves, and the transient dynamics of turbulent eddies that control, for example,

the atmospheric air entrainment. More specifically, the fully multidimensional Corner

Transport Upwind (CTU) advection scheme [83] is introduced to achieve second order

accuracy in the finite volume spatial discretization, including minmod flux limiting to

avoid the creation of spurious extrema in the solution. We implemented the enhanced

finite volume approximation in the parallel PDAC code in the two dimensional and

three dimensional case. The introduction of the new methods has required the extension

of the computational stencil and the consequent increase of the information exchanged

between different subdomains in the parallel implementation of the code.

Numerical simulations proposed in Chapter 6 and Chapter 8, when not specified

explicitly, are all carried out using the enhanced version of the parallel PDAC code,

i.e. applying the second order Corner Transport Upwind scheme to compute advective

terms.
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CHAPTER4

Spatial discretization by discontinuous Galerkin

methods

THE Discontinuous Galerkin (DG) method has been originally introduced as a

Galerkin approximation of the continuous problem in conservative form in which

discontinuous basis functions are adopted. At the same time, the DG method can

be also interpreted as an extension of finite volume methods to arbitrary order of accu-

racy. In fact, as it happens in the finite volume approach, the discontinuous Galerkin

approach is derived from the conservative form of the balance equations, but the so-

lution is approximated with discontinuous polynomials of degree r on each control

volume K.

Like finite volume methods, DG methods provide discrete conservation laws that

reproduce on each control volume the fundamental physical balances characterizing

the continuous problem. Thus, they both represent a good choice for the approximation

of problems whose solution presents discontinuities, where classical solutions are not

properly defined. However, unlike finite volume methods, with DG methods high order

accuracy can be obtained without extending the computational stencil, thus allowing

for a good scalability on parallel architectures. Moreover, DG schemes allow for an

easy introduction of adaptivity techniques, regarding both the computational mesh and

the degree of the local basis functions on each element of the mesh.

The DG method for the solution of steady state hyperbolic problems was first in-

troduced in [108] for the solution of the neutron transport equation. The application

of DG method to time dependent scalar conservation laws was first proposed in [22],

where explicit forward Euler time stepping is stabilized with a local projection operator

based on the monotonicity preserving projection [82]. The application is refined in [26],

where Runge-Kutta explicit time integration schemes are introduced and extended to
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Chapter 4. Spatial discretization by discontinuous Galerkin methods

systems of equations and multidimensional problems in [23–25, 27]. Finally, the DG

method has been successfully applied to fluid dynamics problems in a great variety of

flow regimes, see e.g. [5, 6].

In this chapter, the discontinuous Galerkin approximation for a general system of

conservation laws is presented. Then, the p-adaptivity algorithm, originally proposed

by Tumolo et al. [137] is described. One of the objectives of the work has been the

implementation of the presented p-adaptive discontinuous Galerkin approximation of

multiphase gas–particle equations in the one dimensional case in a Fortran code, start-

ing from the original code by Tumolo et al. [137].

4.1 Discontinuous Galerkin approximation of conservation laws

We consider as model problem a general system of M nonlinear conservation laws. In

compact notation, the system can be written defining the vector of conserved variables

U and the flux vector F(U):

∂U

∂t
+∇ · F(U) = S(U, t). (4.1)

Here U(x, t) : Rd × [0, T ] → R
M is the vector of conserved variables, F(U) : RM ×

[0, T ] → R
M × R

d is the flux function and S(U, t) : RM × [0, T ] → R
M is the vector

source function. The system of conservation laws may also be written in quasilinear

form:

∂U

∂t
+

d∑

i=1

Ai(U)
∂U

∂xi

= S(U), (4.2)

where the coefficient matrices Ai(U) ∈ R
M ×R

M are the Jacobian matrices of the flux

components Fi, that is

Ai(U) =
∂Fi

∂U
. (4.3)

In this section we give a standard presentation of the DG spatial discretization for

the general system of conservation laws (4.1). As described in Chapter 3, we consider

a Cartesian mesh Th on the domain Ω ⊂ R
d, with d = 1, 2, 3 and we denote with K

the control volumes. Given the control volume K and its edge e ∈ ∂K, here we denote

with Ke the control volume that shares with K the edge e, that is such that e = K∩Ke,

and with ne the vector normal to e, pointing from K to Ke. Notice that, here and in the

following sections, no assumptions on the conformity of the mesh are made and the DG

scheme proposed in this chapter is equally valid for conforming and non conforming

meshes.

We introduce for each element K the nonnegative integer r(K) and the space V r(K) =
P
r(K), that denotes the space of polynomials of degree at most r(K) on the element

K. The space of elements of L∞(Ω) whose restriction on K belongs to V r(K) for all

K ∈ Th is denoted by V r
h . Notice that functions in V r

h can be discontinuous across the

control volume edges e ∈ ∂K. Moreover, observe how the polynomial degree is not

constant on the tassellation, but may change from element to element. We define the

space Vr
h as the the space of vector functions such that their components belong to V r

h .
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4.1. Discontinuous Galerkin approximation of conservation laws

For a given element K ∈ Th, edge e ∈ ∂K, point ξ ∈ e and for any functions ϕ ∈ V r
h

we define

ϕK(ξ) = lim
x→ξ

ϕ(x), with x ∈ K (4.4a)

ϕKe
(ξ) = lim

x→ξ
ϕ(x), with x ∈ Ke. (4.4b)

The extension to vector functions v ∈ Vr
h is straightforward. The average and the jump

of the scalar function ϕ ∈ V r
h across the edge e ∈ ∂K are defined as

{ϕ}(ξ) = 1

2
(ϕK(ξ) + ϕKe

(ξ)) (4.5a)

JϕK(ξ) = ϕK(ξ)ne − ϕKe
(ξ)ne. (4.5b)

Analogously, for a vector function v ∈ Vr
h, the average and the jump are defined as

{v}(ξ) = 1

2
(vK(ξ) + vKe

(ξ)) (4.6a)

JvK(ξ) = vK(ξ) · ne − vKe
(ξ) · ne. (4.6b)

Notice that the jump of a scalar function is a vector parallel to the normal, whereas the

jump of a vector function is a scalar quantity.

Following the standard procedure in the framework of finite element methods, we

introduce a set of polynomial basis functions for the finite dimensional space Vr
h on the

reference element K̂. Concerning the choice of basis functions, two main alternatives

are possible: nodal basis functions and modal basis functions. By using nodal basis

functions, the unknown coefficients can be interpreted as the values of the variable at a

set of grid nodes. On the one–dimensional reference element K̂ = [−1, 1], for ξ ∈ K̂,

{Ln
k(ξ)}rk=1 is the Lagrangian nodal basis, where

Ln
k(ξ) =

r∏

i=0,i 6=k

ξ − xi

xk − xi

(4.7)

where xi are the interpolation nodes (i.e. the Legendre-Gauss-Lobatto points).

In this work, modal basis functions will be adopted [18]. Modal bases provide a

hierarchical representation, where each basis function is associated with a given wave-

length. On the reference element K̂ = [−1, 1], for ξ ∈ K̂, the k-th Legendre (i.e.

modal) basis polynomial, i.e. Lm
k (ξ), is defined by the following recurrence relation:

Lm
k+1 =

2k + 1

k + 1
ξLm

k (ξ)−
k

k + 1
Lm
k−1(ξ), k = 1, 2, . . .

Lm
0 (ξ) = 1,

Lm
1 (ξ) = ξ.

(4.8)

The Legendre polynomials form an orthogonal basis for polynomials on K̂ since

(Lm
p , L

m
q )L2 =

∫ 1

−1

Lm
p (ξ)L

m
q (ξ)dξ =

2

2p+ 1
δpq. (4.9)
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Chapter 4. Spatial discretization by discontinuous Galerkin methods

This orthogonality property of basis functions has important numerical implications in

the Galerkin approximation, since it implies that the mass matrices are diagonal and

gives improved conditioning to the resulting discretization [18]. In particular, we will

use normalized basis functions ϕK,j such that

(ϕK,p, ϕK,q)L2 =

∫

K

ϕK,p(x)ϕK,q(x)dx = |K|δpq. (4.10)

The extension to higher dimension over quadrilateral control volumes is relatively

straightforward. As an example, in the two dimensional case, for (ξ1, ξ2) ∈ K̂, a

hierarchical basis can be constructed by taking tensor products of the Legendre poly-

nomials introduced in the one-dimensional case. Two-dimensional basis functions will

be of the form Lm
k (ξ1)L

m
l (ξ2) for 0 ≤ k, l,≤ r. In the case of systems of conservation

laws, we denote with ϕK,k the k−th basis polynomial, with components ϕ
(i)
K,k = ϕK,k.

We look for an approximation Uh(x, t) ∈ Vr
h of the solution U(x, t) of system

(4.1). For each element K ∈ Th, the discrete degrees of freedom associated with the

numerical solution at time t are denoted by {UK,j(t)}j∈JK
, with JK = {0, . . . , Nr−1}

and Nr = dim(Vr(K)) = (r(K)+1)d. The approximate solution can be reconstructed

locally for all K ∈ Th as

Uh(x, t)
∣∣
K
=

∑

j∈JK

UK,j(t)ϕK,j(x). (4.11)

Here, j is a suitable multi-index relabelling the d-dimensional degrees of freedom in

terms of the one-dimensional ones, i.e. ϕK,j =
∏d

i=1 ϕK,ji
(xi). In order to determine

the degrees of freedom UK,j(t), for all K ∈ Th and j ∈ JK , of the numerical solution

Uh, we multiply each equation of the system by a test function ϕh ∈ Vr
h and we

integrate over control volume K:

d

dt

∫

K

U(x, t)ϕh(x) dx+

∫

K

∇·F(U(x, t))ϕh(x) dx =

∫

K

S(U, t)ϕh(x) dx. (4.12)

By integrating by parts the flux term, we obtain

d

dt

∫

K

U(x, t)ϕh(x) dx−
∫

K

F(U(x, t)) · ∇ϕh(x) dx

+

∫

∂K

(F(U(x, t)) · n)ϕh(x) dx =

∫

K

S(U, t)ϕh(x) dx

(4.13)

As usual in the finite element framework, we introduce as test functions the basis func-

tions ϕK,i, for all i ∈ JK , and we introduce the representation of the approximate

solution (4.11), obtaining

d

dt

∑

j∈JK

UK,j(t)

∫

K

ϕK,j(x)ϕK,i(x) dx−
∫

K

F(Uh) · ∇ϕK,i(x) dx

+

∫

∂K

(F(Uh) · n)ϕK,i(x) dx =

∫

K

S(U, t)ϕK,i(x) dx.

(4.14)
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4.1. Discontinuous Galerkin approximation of conservation laws

Thanks to the orthogonality property (4.10) of the basis functions, we obtain

d

dt
UK,i(t)|K| −

∫

K

F(Uh) · ∇ϕK,i(x) dx

+

∫

∂K

(F(Uh) · n)ϕK,i(x) dx =

∫

K

S(U, t)ϕK,i(x) dx.
(4.15)

All the integrals appearing in the weak formulation are evaluated by means of Gauss

numerical quadrature rules with a number of integration points consistent with the ac-

curacy of the scheme, as introduced in the finite volume framework in Chapter 3.

Concerning the computation of flux terms, a distinction has to be done between

convective and diffusive fluxes. The flux function is then splitted as follow

F(U) = Fc(U) + Fv(U), (4.16)

where Fc(U) is the hyperbolic flux and Fv(U) is the diffusive flux.

The convective flux terms are computed with the same techniques applied in finite

volume schemes, presented in Chapter 3. The flux function F(U) ·ne is in fact replaced

by a numerical flux function F̃(Ue,UKe
,ne) which depends on the internal interface

state UK , on the neighbouring interface state UKe
and on the face orientation ne.

Diffusive fluxes introduce in the equations second-order derivatives, i.e. Fv =
Fv(∇U), that require a special treatment in the DG approximation. Several methods

have been proposed in the literature to deal with diffusion terms in a mathematically

consistent way. The spatial discretization of the viscous term is constructed by resort-

ing to a mixed finite element formulation, as proposed in [5]. Second-order derivatives,

in fact, cannot be approximated directly in a weak formulation using a discontinuous

function space. The gradient of the conservative variables is regarded as an auxiliary

unknown, that is ∇U = R(U). The original system of conservation law is then rifor-

mulated as the following coupled system for the unknowns U and R:

R−∇U = 0, (4.17a)

∂U

∂t
+∇ · Fc(U) +∇ · Fv(U,R) = S(U). (4.17b)

An approximation (Uh,Rh) to the solution (U,R) is sought such that (Uh,Rh) ∈
Vr

h × (Vr
h)

d. Integrating over the control volumes K ∈ Th we get

∫

K

Rϕhdx−
∫

K

∇Uϕhdx = 0 (4.18a)

∫

K

∂U

∂t
ϕhdx+

∫

K

∇ · Fc(U)ϕhdx+

∫

K

∇ · Fv(U,R)ϕhdx

=

∫

K

S(U)ϕhdx (4.18b)
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Method C11 C12 C21 C22

SIPG −CIP
p2

h
0 0 0

NIPG −CIP
p2

h
0 ne 0

BO 0 0 ne 0

Table 4.1: Coefficients corresponding to different DG formulations of diffusive fluxes.

Then, formally integrating by parts, we obtain

∫

K

Rϕhdx+

∫

K

U · ∇ϕhdx−
∫

∂K

(U · n)ϕhdx = 0 (4.19a)

∫

K

∂U

∂t
ϕhdx−

∫

K

Fc(U) · ∇ϕhdx+

∫

∂K

Fc(U) · nϕhdx

−
∫

K

Fv(U,R) · ∇ϕhdx+

∫

∂K

Fv(U,R) · nϕhdx

=

∫

K

S(U)ϕhdx (4.19b)

Finally, appropriate numerical fluxes have to be introduced to approximate the addi-

tional viscous flux terms, i.e. U · n ≃ Ũ and Fv(U,R) · n ≃ F̃v. Depending on

the choice of the numerical flux function, different DG discretization can be derived.

In [6], Bassi and Rebay proposed

Ũ(UK ,UKe
,ne) =

1

2
(UK +UKe

)ne (4.20)

and

F̃v(UK ,RK ,UKe
,RKe

,ne) =
1

2
[Fv(UK ,RK) + Fv(UKe

,RKe
)] · ne (4.21)

for the compressible Navier-Stokes equations. In general, the viscous numerical fluxes

can be expressed as a function of the averages and the jumps across the edge e as follow

F̃v = {R}+ C11JUK +C12JRK (4.22a)

Ũ = {U}+C21JUK + C22JRK. (4.22b)

The free parameters allow to control the stability and accuracy of the scheme [2]. Some

examples are reported in Table 4.1 [8, 112, 142].

4.2 p-adaptivity criterion

The numerical method described in the previous sections can be implemented taking a

constant value for the degree of the polynomials defining the local basis on each ele-

ment. However, our aim is to exploit the great flexibility of the DG spatial discretization

by supplying the method with an automatic criterion to adapt the local number of de-

grees of freedom to the nature of the numerical solution.
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Various approaches for p−adaptivity have been proposed in the literature, see e.g.

[41,47,67,109]. The simple technique we employ was originally proposed in [137] and

relies on the use of orthogonal hierarchical tensor-product basis functions. Consider the

local (to the element K) representation of some dependent variable u(x):

u(x)
∣∣
K
=

∑

j∈JK

uK,jϕK,j(x). (4.23)

If a normalized hierarchical basis is employed, by Parseval’s identity one will have

E tot = ‖Pu‖2 =
∑

j∈JK

u2
K,j (4.24)

where P is the L2 projector onto the local polynomial subspace. Now combining (4.24)

with the hierarchical property of the basis, for any integer p = 1, . . . , r(K)+ 1, we can

define the energy contained in the p-th modal component of u|K for a given element

K ∈ Th as

Ep = u2
K,p. (4.25)

Therefore, for any integer p = 1, . . . , r(K) + 1, the quantity

wp =

√
Ep

E tot
(4.26)

will measure the relative weight of the p-th modal components of u with respect to the

best approximation available for the L2 norm of u. Assuming that u denotes a generic

model variable at the beginning of the computation of a generic time step, the proposed

adaptation criterion can be described as follows:

Given an error tolerance ǫK > 0, for each element K ∈ Th compute wpK . Then

(1) if wr(K) ≥ ǫK , then

(1.a) set r(K) = r(K) + 1

(1.b) set uK,r(K) = 0, exit the loop and go the next element

(2) if instead wr(K) < ǫK , then

(2.a) compute wr(K)−1

(2.b) if wr(K)−1 ≥ ǫK , exit the loop and go the next element

(2.c) else if wr(K)−1 < ǫK , set r(K) = r(K)− 1 and go back to (2.a)

At the beginning of the simulation, all the variables are initialized with the maxi-

mum possible number of local degrees of freedom. The adaptation algorithm then runs

preliminary to any computation in each new time step, including the first.

In order to assess the efficiency gain given by the adaptivity algorithm, the compu-

tational effort reduction is estimated as

∆dof =

∑
K∈Th

(r(K) + 1)d

dim(Th)(rmax + 1)d
(4.27)
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Chapter 4. Spatial discretization by discontinuous Galerkin methods

where dim(Th) is the number of elements in the tassellation and rmax is the maximum

polynomial degree admitted in the computation. As analyzed in detail in [137], the

computational saving achieved by the adaptation algorithm on different benchmark test

cases is in general between 40% and 60%.
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CHAPTER5

Time discretization

FOLLOWING the method of lines, from the spatial discretization of a system of

conservation laws by applying either finite volume of discontinuous Galerkin

schemes, a system of ordinary differential equations is obtained, i.e.

d

dt
U(t) = Lh(U(t)) (5.1)

with initial datum

U(0) = U0. (5.2)

Here U(t) : [0, T ] → R
N and Lh(U) : RN × [0, T ] → R

N . The operator Lh represents

the spatial approximation of the continuous problem

∂U

∂t
+∇ · F(U) = S(U). (5.3)

on the tassellation Th, that is

Lh(U) ≃ −∇ · F(U) + S(U). (5.4)

We introduce a partition of the time interval [0, T ] into NT subintervals [tn, tn+1].
For the sake of simplicity we consider a constant time step ∆t, such that tn = n∆t for

all n = 0, . . . , NT−1. However, in general, the time step can be adapted, i.e. ∆t = ∆tn

in order to satisfy stability restrictions in transient problems. In the following sections,

we denote with Un the approximation of the solution at time tn, i.e. Un ≃ U(tn).

In this chapter, explicit and implicit methods for the approximate solution of systems

of ordinary differential equations are presented. In the second part, time discretizations
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Chapter 5. Time discretization

adopted in this work in the framework of finite volume and discontinuous Galerkin

spatial approximation of the multiphase gas–particle equations are described in details.

One of the objectives of the this work has been the implementation of the second order

time discretization techniques presented in Section 5.3 in the parallel PDAC code and

in the discontinuous Galerkin code.

5.1 Explicit time advancing schemes

In the framework of discontinuous Galerkin approximations, the system (5.1) is usually

solved by means of explicit Strong Stability Preserving (SSP) Runge-Kutta schemes,

as proposed [121]. These methods were designed specifically for solving the ordi-

nary differential equations coming from a semi-discrete, spatial discretization of time

dependent problems, whose dimensions can be very large depending on the spatial dis-

cretization mesh size. Moreover, there are certain stability properties of the original

problem, such as maximum norm stability, which are mainained by certain spatial dis-

cretizations with the first order explicit Euler time discretization that are desirable to

maintain for high order time discretizations as well.

The SSP property guarantees that, if the first order forward Euler discretization of

a semi-discrete scheme is stable under a certain norm, then a SSP high order time

discretization maintains this stability, provided that appropriate restrictions on the time

step value are satisfied.

It has been shown [56] that oscillations and non-linear instability can occur when

a linearly stable but non-SSP method is applied. Thus, when solving problems with

shocks, for which the traditional linear stability analysis is not applicable, the use of

SSP methods is more appropriate.

5.1.1 Forward Euler scheme

By applying the first-order forward finite difference scheme to approximate the time

derivative in (5.1), the forward or explicit Euler time-advancing scheme is obtained:

Un+1 = Un +∆tLh(U
n) (5.5)

The scheme is first-order accurate in time and it is stable, e.g.

‖Un+1‖ ≤ ‖Un‖ (5.6)

with a certain norm, under a suitable time step restriction, which depends on the discrete

operator Lh and the mesh size h, that is

∆t ≤ ∆t0(Lh, h). (5.7)

5.1.2 Runge-Kutta schemes

Runge-Kutta methods are time discretization which can be written in several different

ways. A general Runge-Kutta method with m stages is written in the form:

U(i) =
i−1∑

l=0

αilU
(l) + βil∆tLh(U

(l)) ∀i = 1, . . . ,m

U(0) = Un, U(m) = Un+1.

(5.8)
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5.1. Explicit time advancing schemes

A necessary condition for the Runge-Kutta scheme to be SSP is that all the coefficients

are nonnegative, i.e. αil ≥ 0, βil ≥ 0 [120]. Notice that, under the same hypothesis,

then (5.8) is just a convex combination of Euler forward operators. It can be proved

that, it the forward Euler method (5.5) is stable in the sense of (5.6) under the time step

restriction (5.7), then the Runge-Kutta method with nonnegative coefficients is SSP, i.e.

its solution satisfies the same stability (5.6) under the time step restriction

∆t ≤ c∆t0(Lh, h) (5.9)

with

c = min
i,l

αil

βil

. (5.10)

The coefficient c is called the Courant-Friedrichs-Lewy (CFL) coefficient of the SSP

method. For a fixed number of stages m, the optimal choice of the coefficients αil, βil

is the one that maximizes the order of accuracy and the value of the CFL coefficient.

For m = 2, the optimal second order nonlinear SSP Runge-Kutta scheme is given

by [56, 121]

U(1) = Un +∆tLh(U
n),

Un+1 =
1

2
Un +

1

2
U(1) +

1

2
∆tLh(U

(1)),
(5.11)

with CFL coefficient c = 1. The optimal third order (m = 3) nonlinear SSP Runge-

Kutta scheme is defined as

U(1) = Un +∆tLh(U
n),

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tLh(U

(1)),

Un+1 =
1

3
Un +

2

3
U(2) +

2

3
∆tLh(U

(2)),

(5.12)

with CFL coefficient c = 1.

5.1.3 Slope-limiting techniques

Slope limiting techniques are based on the application of a limiting step (or reconstruc-

tion step) with the use of a non linear local projection operator ΛΠh with the aim to

enforce nonlinear stability of the numerical solution and to prevent spurious oscilla-

tions near discontinuities. If applied to Runge-Kutta schemes, the numerical solution

has to be adjusted at the end of each Runge-Kutta step as follow

U(i) = ΛΠh

(
U(i)

)
. (5.13)

Different slope-limiter operators have been proposed in the literature. A simple slope

limiting operator is introduced in [23, 25, 27] for scalar equations, assuming that spu-

rious oscillations are present in the numerical solution Uh only if they are present in

its linear component U1, which is its L2-projection into the space of piecewise linear

functions. Actually, under this hypothesis, the operator ΛΠh is defined only for piece-

wise linear functions. The limiting is performed on each element K by replacing the
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linear component of the solution, i.e. UK,1, with its limited version Ulim
K,1 using the

differences of the means between adjacent elements. In the one-dimensional case we

obtain

Ulim
i,1 = minmod

(
Ui,1,

Ui+1,0 −Ui,0

h
,
Ui,0 −Ui−1,0

h

)
. (5.14)

If spurious oscillations are present in the linear part of the solution, the higher order part

of the numerical approximation is chopped off, thus reducing the solution accuracy near

discontinuities.

Several extensions of the original method have been proposed in the literature. The

extension to the multidimensional case is described in [27]. For systems of conser-

vation laws, the limiting can be performed either on the conserved quantities or on the

characteristic variables [24,27]. Finally, a slope-limiting technique acting on high order

solution moments have been proposed in [9].

5.2 Implicit time-advancing schemes

Implicit schemes treat implicitly the operator Lh, thus meaning that it is evaluated on

the solution at time step n+ 1 when computing Un+1. If the operator Lh is non linear,

some iterative algorithm has to be applied to solve the resulting non linear system of

equations, e.g. Newton or quasi-Newton methods [106].

5.2.1 Time averaged implicit scheme

The time averaged implicit method, also known as off-centred Crank-Nicolson scheme

or θ-method, was originally introduced in [29]:

Un+1 − θ∆tLh(U
n+1) = (1− θ)∆Lh(U

n) +Un (5.15)

with parameter θ ∈ [0, 1]. The scheme is unconditionally stable when applied to linear

problems with θ ≥ 1/2 and formally second order accurate with θ = 1/2. In particular,

for θ = 1, the backward or implicit Euler time-advancing scheme is recovered.

Higher orders of accuracy can be achieved by applying Adams-Moulton, Backward

Differentiation Formulas (BDF) or Implicit Runge-Kutta methods [106].

5.3 Time discretization of multiphase gas–particle equations

Let us consider the set of multiphase equations (2.13a), (2.13b), (2.14a), (2.14b), (2.16a)

and (2.16b) and, for the sake of simplicity, let us consider only one class of solid parti-

cles. The system of ordinary differential equations, resulting from the spatial discretiza-

tions introduced in the previous chapters, can be written as

dU

dt
= Lh(U), (5.16)
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5.3. Time discretization of multiphase gas–particle equations

with

U =




ǫgρg

ǫgρgvg

ǫgρgEg

ǫsρs

ǫsρsvs

ǫsρsEs




. (5.17)

or, as an alternative, with

U =




ǫgρg

ǫgρgvg

ǫgρghg

ǫsρs

ǫsρsvs

ǫsρshs




. (5.18)

The operator Lh depends on the adopted spatial discretization. The system (5.16) can

be solved with the explicit and implicit methods introduced in the previous sections.

5.3.1 Semi-implicit scheme for multiphase equations

Let us consider the system (5.16) with the unknows (5.18). The operator Lh(U) is first

split in an implicit and an explicit component as follows

dU

dt
= Lh(U) = Limpl

h (U) + Lexpl
h (U), (5.19)

where Limpl
h (U) and Lexpl

h (U) are the spatial approximations of the following continu-

ous operators

Limpl(U) =




−∇ · (ǫgρgvg)

−ωg∇Pg + ǫgρgg +Dg,s(vs − vg)

Qs(Ts − Tg)

−∇ · (ǫsρsvs)

−ωs∇Pg + ǫsρsg +Dg,s(vg − vs)

Qs(Tg − Ts)




. (5.20)

and

Lexpl(U) =




0

−∇ · (ǫgρgvgvg) +∇ · Tg

−∇ · (ǫgρghgvg) + ǫg

(
∂Pg

∂t
+ vg · ∇Pg

)
+∇ · (kgǫgTg)

0

−∇ · (ǫsρsvsvs) +∇ · Ts

−∇ · (ǫsρshsvs) +∇ · (ksǫsTs)




. (5.21)
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By applying the method (5.15) with time step ∆t to the implicit operator Limpl
h (U) in

system (5.19) we obtain

Un+1 − θ∆t Limpl
h (Un+1) = Un + (1− θ)∆t Limpl

h (Un) + ∆t Lexpl
h (Un). (5.22)

Notice that the implicit term makes the equations nonlinearly coupled through the pres-

sure gradient. Thus, an iterative algorithm has to be applied to compute the solution at

each time step. One example is the implicit multifield (IMF) method, originally intro-

duced in [63] in a version based on the implicit Euler method and extended here to the

time averaged implicit method to increase accuracy. The IMF procedure consists in the

iterative correction of the pressure until mass conservation is satisfied up to a residual.

The iterative algorithm can be syntetized as follows

At each time step n = 0, . . . , NT

(1) compute temperature-dependent coefficients of the gas phase, e.g. viscosity, spe-

cific heat;

(2) compute the interphase coefficients Dg,s and Qs and the explicit terms in (5.19);

(3) solve the coupled continuity and momentum equations iteratively by the approxi-

mate Newton method to update velocity fields, pressure and volumetric fractions;

(4) compute gas mass fractions by solving the linear transport equations;

(5) solve the energy equations, which are linear in the temperatures and decoupled

from the continuity and momentum equations.

Observe that, since the energy equations are solved explicitly after the solution of

the momentum and continuity equations, the temperatures are kept constant during the

iterative procedure. The effect of the temperature variation on the gas pressure and

density are deferred to the next time step computation.

In this work, this implicit time advancing scheme is applied in the framework of the

finite volume spatial discretization presented in Chapter 3.

5.3.2 Explicit scheme for multiphase equations

Let us consider the set of multiphase equations (5.16) with the unknowns (5.17). The

system of ordinary differential equations derived from either a finite volume or a dis-

continuous Galerkin spatial approximation cannot be solved with a fully explicit time

advancing scheme, due to the presence of the interphase coupling terms. As discussed

in [63] and in Section 2.6, drag and heat exchange terms in disperse flows can be large,

because of the physical coupling between the two phases. To guarantee the coupling

among the fields also in the numerical solution, an implicit coupling between gas and

particles fields has to be imposed, i.e. between gas and particles velocities and between

gas and particles energies. This coupling is obtained by treating implicitly the inter-

phase exchange terms.

Let us consider the following decomposition of the operator Lh(U):

dU

dt
= Lh(U) = Limpl

h (U) + Lexpl
h (U), (5.23)
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with

Limpl(U) =




0

Dg,s(vs − vg)

Qs(Ts − Tg)

0

Dg,s(vg − vs)

Qs(Tg − Ts)




. (5.24)

and

Lexpl(U) =




−∇ · (ǫgρgvg)

−∇ · (ǫgρgvgvg)− ωg∇Pg + ǫgρgg +∇ · Tg

−∇ · (ǫgρgEgvg)−∇ · (Pgvg) +∇ · (kgǫgTg)

−∇ · (ǫsρsvs)

−∇ · (ǫsρsvsvs)− ωs∇Pg + ǫsρsg +∇ · Ts

−∇ · (ǫsρsEsvs) +∇ · (kgǫgTg)




. (5.25)

The semi-discrete problem is solved by applying an operator splitting technique, i.e.

Lie-Trotter splitting, and computing an intermediate solution U∗ as follows

dU∗

dt
= Lexpl

h (U∗) (5.26a)

dU

dt
= Limpl

h (U) (5.26b)

This simple operator splitting approach is first order accurate and it is exact when the

operators Lexpl
h and Limpl

h commute. As an alternative, the first order additive splitting

or the second order Strang splitting can be considered [126]. By applying the explicit

Runge-Kutta time advancing scheme (5.8) on the explicit part of problem (5.26a) and

the implicit time advancing scheme (5.15) on the implicit part (5.26b), we obtain the

following fully-discrete problem:

U∗ = U(m) with U(i) =
i−1∑

l=0

αilU
(l) + βil∆t Lh(U

(l)),

U(0) = Un, ∀i = 1, . . . ,m,

Un+1 − θ∆t Limpl
h (Un+1) = U∗ + (1− θ)∆t Limpl

h (U∗).

(5.27)

Notice in (5.24) that, if the interphase coefficients and the gas properties (i.e. viscosity

and specific heat) are considered constant at each time step and they are computed

using the solution at the previous step, the operator Limpl
h is linear with respect to the

velocities and the temperatures, but not with respect to the conserved variables U. In
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this work, the operator Limpl is linearized as follows:

Limpl
L (U) =




0

D∗
g,s

ǫ∗sρ
∗
s

ǫsρsvs −
D∗

g,s

ǫ∗gρ
∗
g

ǫgρgvg

Q∗
s

ǫ∗sρ
∗
sc

∗
v,s

(
ǫsρsEs −

1

2
ǫ∗sρ

∗
s|v∗

s|2
)
− Q∗

s

ǫ∗gρ
∗
gc

∗
v,g

(
ǫgρgEg +

1

2
ǫ∗gρ

∗
g|v∗

g|2
)

0

D∗
g,s

ǫ∗gρ
∗
g

ǫgρgvg −
D∗

g,s

ǫ∗sρ
∗
s

ǫsρsvs

Q∗
s

ǫ∗gρ
∗
gc

∗
v,g

(
ǫgρgEg −

1

2
ǫ∗gρ

∗
g|v∗

g|2
)
− Q∗

s

ǫ∗sρ
∗
sc

∗
v,s

(
ǫsρsEs +

1

2
ǫ∗sρ

∗
s|v∗

s|2
)




.

Observe that in the implicit step (5.26b) of the operator splitting procedure the mo-

mentum equations are decoupled from the energy equations. Moreover, thanks to the

simple linearization approach, the two subsystems for the momentum and the energy

decouple and can be solved without any iterative procedure.

If the set of unknowns (5.18) is considered, the linearization step simplifies as fol-

lows:

Limpl
L (U) =




0

D∗
g,s

ǫ∗sρ
∗
s

ǫsρsvs −
D∗

g,s

ǫ∗gρ
∗
g

ǫgρgvg

Q∗
s

ǫ∗sρ
∗
sc

∗
p,s

ǫsρshs −
Q∗

s

ǫ∗gρ
∗
gc

∗
p,g

ǫgρghg

0

D∗
g,s

ǫ∗gρ
∗
g

ǫgρgvg −
D∗

g,s

ǫ∗sρ
∗
s

ǫsρsvs

Q∗
s

ǫ∗gρ
∗
gc

∗
p,g

ǫgρghg −
Q∗

s

ǫ∗sρ
∗
sc

∗
p,s

ǫsρshs




.

More complex linearized forms for the operator Limpl(U) can be introduced as an

alternative. In this work, however, only the presented expression for Limpl
L (U) will be

tested.
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CHAPTER6

Validation of the finite volume numerical model

IN this chapter, the numerical validation of the Finite Volume approximation of the

multiphase gas–particle conservation equations introduced in Chapter 2 and Chap-

ter 3 is presented. The numerical model presented in Chapter 2 has been originally

implemented in the Pyroclastic Dispersal Analysis Code, a Fortran code developed at

the INGV (Istituto Nazionale di Geofisica e Vulcanologia) of Pisa and has been applied

widely to simulate realistic eruptive scenarios [42–45, 91, 92]. In the present work,

the original Finite Volume method presented in [42] has been improved by introduc-

ing a fully multidimensional second order spatial and time discretization, as described

in Chapters 3 and 5. In the following sections, the improved FV scheme is tested on

a number of classical benchmarks, in order to assess the accuracy in the computation

of multiphase flow in both supersonic and subsonic regimes. The aim is to provide a

further validation of the FV approximation of the multiphase gas–particle equations,

showing that analogous results reported in the literature can be reproduced.

6.1 Supersonic regimes

In supersonic regimes, i.e. Ma > 1, we expect that the conservative formulation of

the multiphase equations will allow to obtain an accurate computation of the shock

wave position and speed. Thus, in this section, we focus on the supersonic jet problem,

for which a discontinuous solution is foreseen, and we check if the numerical method

is able to reproduce correctly the expected dynamics. In particular, we consider the

underexpanded jet test problem. We consider a fluid which is ejected from a nozzle

into the atmosphere. The fluid properties at the inlet are considered constant in time.

Nozzle conditions are underexpanded, that is gas pressure at the inlet is larger than

the ambient one. It has been proven theoretically and experimentally that nozzles with
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Figure 6.1: Sketch of the fluid dynamics in underexpanded jets. The overpressured fluid exits from the

nozzle, expands and accelerates in the atmosphere. Supersonic velocities are reached in the expansion

region (Ma > 1). Expansion waves that forms at the nozzle exit are reflected into compression waves at

the flow boundary. Compression waves coalesce and form a barrel shock and a normal shock wave (Mach

disk). The fluid crosses the normal shock, compresses and decelerates to subsonic speeds (Ma < 1) in

the core of the jet. A slip line divides the slowly moving flow from the surrounding supersonic shell.

supersonic vertical velocity and gas pressure greater than the atmospheric one result in

a rapid expansion and acceleration of the fluid to high Mach numbers, see e.g. [84,98].

A series of expansion waves form at the vent exit (Prandtl-Meyer expansion), which

are reflected as compression waves at the jet flow boundary. The compression waves

coalesce to form a barrel shock and a standing normal shock wave (Mach disk), across

which the vertical velocity is reduced and the pressure in the core of the jet increases.

The fluid that crosses the Mack disk is rapidly compressed and decelerated to subsonic

speeds, as shown in Figure 6.1. Above the Mach disk, the fluid moves slowly in the

core of the jet and it is surrounded by a supersonic moving shell, with a tangential

slip-line, which is eventually torn by turbulence. As discussed in Chapter 2, Reynolds

and Prandtl numbers in the jet problem are large, so viscous term are neglected in the

simulation proposed in the following sections. Comparison of the results obtained with

the viscous and the inviscid model will demonstrate that, in the development of the

jet above the inlet, the dynamics is controlled by inertial, pressure and drag terms (see

results in Section 6.1.3).

In the following sections, the laboratory scale numerical results will be compared

with experimental results and empirical relationships proposed in the literature. On

larger spatial scales, such as the ones of volcanic phenomena, results obtained with the

proposed FV approximation will be compared with numerical results proposed in the

literature and obtained with different numerical approaches. Numerical validation is

carried out for both homogeneous and multiphase test cases.
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6.1.1 Homogeneous jet on laboratory scale

We consider an homogeneous fluid (dry air with standard chemical components), and

we impose underexpanded sonic conditions at the inlet, as shown in Table 6.1. Four dif-

ferent values of the inlet pressure are considered, correspondig to four different values

of the jump in the pressures, i.e. K = Pv

Patm
= 2, 5, 10, 20.

We assume that the problem is axisymmetric and we solve the multiphase equations

in cylindrical coordinates. The computational domain is a box of size 0.1 m ×0.2 m,

whose left side coincides with the axis of the vent. The side and the bottom boundaries

of the axisymmetric domain are impermeable and stress free. Two uniform meshes of

160×320 (∆x = ∆z = 6.25×10−4 m) and 500×1000 (∆x = ∆z = 2×10−4 m) cells

have been employed, with time steps of ∆t = 10−7 s and ∆t = 5×10−8 s, respectively.

Simulations are carried out using a first order Upwind FV spatial discretization and

its second order extension by applying the Corner Transport Upwind method. Time

advancing is done by means of the semi-implicit scheme proposed in Section 5.3.1.

In order to assess the accuracy of the numerical scheme, the height of the Mach disk

forming in the jet is evaluated and compared with the empirical law proposed in [84]

hMa = 0.69Dv Mav
√
γK, (6.1)

which relates the equilibrium position of the normal shock wave with the gas inlet

conditions.

In Figure 6.2, the results obtained in terms of vertical velocity and temperature are

shown for the case K = 5 at time t = 10−3 s, when the Mach disk has reached its

steady state position. The profiles of gas pressure along the axis of the jet are shown

in Figure 6.3 for the four values of K. We observe how the numerical method is able

to reproduce the dynamics of the underexpanded jet and to provide a good estimate of

the position of the Mach disk, that fits with experimental results. In particular, better

estimates are obtained with second order methods, as shown in Figure 6.4.

Numerical simulations have been repeated with different meshes, in order to check

the dependence of the results on the grid resolution. Results in Figures 6.5 and 6.6 show

the axial profiles of gas pressure for K = 5 obtained with ∆x = 1, 0.625, 0.5, 0.25, 0.2
mm with second order FV approximation and the estimates of the Mach disk height,

respectively. We observe that the Mach disk height estimate improves with grid reso-

lution and that the numerical method is able to provide a reliable estimate of the Mach

disk position even with coarse meshes.

Parameter Units

Dv 0.01 m

K 2, 5, 10, 20

Patm 101325 Pa

Tatm 298 K

wv 346 m/s

Tv 298 K

Mav 1.0

Table 6.1: Inlet conditions for the homogeneous underexpanded jet at the laboratory scale.
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Figure 6.2: Homogeneous jet on laboratory scale. Temperature field from 100 to 300 K at t = 10−3

s and isolines of gas vertical velocity [0:50:700] m/s, obtained with K = 5 on a 500 × 1000 mesh.

Comparison between (a) first order upwind FV method and (b) second order FV method with Corner

Transport Upwind scheme for advective fluxes.
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Figure 6.3: Homogeneous jet on laboratory scale. Gas pressure at t = 2 × 10−3 s. Axial profile for

different values of the nozzle overpressure K = 2, 5, 10, 20 computed on a 160×320 mesh. Comparison

between first order upwind FV method (Order 1) and second order FV method with Corner Transport

Upwind scheme for advective fluxes (Order 2).
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Figure 6.4: Homogeneous jet on laboratory scale. Comparison between experimental and numerical re-

sults in terms of Mach disk height hMa for different values of the nozzle overpressure K = 2, 5, 10, 20.

The results obtained by Lewis and Carlson [84] are compared with numerical simulation applying first

order upwind FV method with implicit time advancing scheme (Order 1) and second order Corner Trans-

port Upwind FV method with θ-method time discretization (Order 2).
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Figure 6.5: Homogeneous jet on laboratory scale. Gas pressure at t = 2×10−3 s. Axial profiles obtained

with second order Corner Transport Upwind FV method and θ-method time discretization. Comparison

between different grid resolutions ∆x = 1000, 625, 500, 250, 200 µm.
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Figure 6.6: Homogeneous jet on laboratory scale. Estimate of the Mach disk height hMa obtained with

second order Corner Transport Upwind FV method and θ-method time discretization with different grid

resolution ∆x = 1000, 625, 500, 250, 200 µm. Comparison between numerical results and theoretical

estimate.

6.1.2 Multiphase jet on laboratory scale

When solid particles are added to the gas flow, new phenomena associated to kinetic

and thermal non-equilibrium between the gas and particulate phases arise.

In this section, we consider a mixture of dry air and fine solid particles, with diame-

ter equal to 10 µm and density equal to 2500 kg/m3. Inlet flow parameters correspond

to experimental and simulation conditions investigated by [124]. Gas and particle ve-

locities are both equal to the speed of sound in the pure gas, whereas the overpressure

of the gas phase is K = 31, producing supersonic underexpanded conditions at the

inlet, as described in Table 6.2.

The computational domain is a box of size 0.15 m ×0.225 m and, as in the previous

test cases, the left side coincides with the axis of the vent, whereas the side and the

bottom boundaries of the axisymmetric domain are impermeable and stress free. A

non uniform mesh of 500 × 750 computational cells have been employed, with time

step of ∆t = 2 × 10−8 s. The maximum resolution is imposed above the inlet, where

∆x = ∆z = 10−4 m. We consider different values of particle volume fractions ǫs at

the inlet and we compare numerical results with experimental results in [124].

In Figure 6.7 we report the results of four different simulations of particle laden un-

derexpanded jets with different particle concentrations. The gas phase expands radially

as in the homogeneous case, thus increasing the final jet radius up to three times in

correspondence to the Mach disk location.

On the other hand, as observed in laboratory [124], particles are almost unaffected

by the rapid gas expansion and strongly decoupled from the gas phase, as expected from

the dimensional analysis presented in Section 2.6.3. Particle trajectories remain nearly

vertical, with some radial spreading which is almost independent of particle concen-
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tration. In the expansion region, particles are only slightly and gradually accelerated

by the gas phase (at most by 20 m/s, up to 368 m/s) where the Mach disk is located,

and then slowly decelerated in the subsonic region, but they never reach an equilibrium

condition with the gas phase. However, solid particles tend to deform the Mach disk,

moving it towards the vent and making it as more concave as the particle loading in-

creases. For initial particle volume fraction equal to 0.0005, the normal shock is located

14.5 mm from the inlet and the distance is reduced to 12.2 mm when ǫs = 0.004. More-

over, increasing the particle loading, the expansion, the acceleration and the cooling of

the gas phase are reduced, as shown in Figure 6.8. As regards particle distribution, the

mixture density profile along the jet axis is not affected by the presence of the shock

wave but remains almost constant and displays only a small reduction due to the ra-

dial spreading, that tends to increase with increasing particle loading, as observed also

by [124].

6.1.3 Multiphase jet on volcanic scale

When studying physical processes on the natural scale of volcanic phenomena, it is

not possible, or at least very difficult, to make direct comparisons with measurements

and experimental results. Thus, to validate the numerical model on these spatial scales,

we refer to numerical results on supersonic multiphase jets on the volcanic scale pro-

posed in the literature. Most of them are based on the pseudogas assumption, in which

mechanical and thermal equilibrium are assumed between the gas phase and solid par-

ticles. Under such assumption, Ogden et al. [97] described the eruptive mixture as

an homogeneous pseudogas, characterized by average thermodynamic and rheologic

properties. Two-dimensional numerical simulations of underexpanded volcanic jets

were performed with CFDLib, a computational fluid dynamics library developed at Los

Alamos National Laboratory, that uses a finite volume computational scheme with cell-

centered state variables. CFDLib applies a variation of the Implicit Continuous-fluid

Eulerian (ICE) method, proposed in [1] and [63], and a modified Godunov method [54]

to solve shock waves.

Following [97], numerical simulations presented in this section are performed in

absence of gravity, in order to focus on compressibility effects in the gas phase. Inlet

conditions for numerical simulations are specified in Table 6.3. The mixture is com-

posed by water vapor and solid particles that are injected in a standard atmosphere

composed by dry air. We consider a single solid dispersed phase with particle diameter

equal to 10 µm. Two different inlet pressure ratios of K = 20 (Case A) and K = 5

Parameter Units

Dv 0.003 m

K 31

wv 347 m/s

Tv 300 K

ǫs 0.0005, 0.001, 0.002, 0.004

ds 10 µm

ρs 2500 kg/m3

Table 6.2: Inlet conditions for the multiphase underexpanded jet on laboratory scale.
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Figure 6.7: Multiphase jet on laboratory scale. Isolines of gas vertical velocity [0:50:750] m/s and

logarithm to the base 10 of particle volume fraction from 10−7 to 10−1 at t = 3 × 10−4 s for different

values of initial particle volume fraction: (a) ǫs = 0.0005, (b) ǫs = 0.001, (c) ǫs = 0.002, (d) ǫs =
0.004. Numerical results obtained with second order Corner Transport Upwind FV method and θ-method

time discretization.
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Figure 6.8: Multiphase jet on laboratory scale. Axial profile of gas pressure, mixture density, gas

vertical velocity and gas temperature at t = 3 × 10−4 s. Comparison between homogeneous jet’s

profile (ǫs = 0) and results obtained for different values of initial particle volume fraction: ǫs =
0.0005, 0.001, 0.002, 0.004. Numerical results obtained with second order Corner Transport Upwind

FV method and θ-method time discretization.
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(Case B) are adopted.

In Case A, the computational domain is a box of size 800 m ×2400 m and we use a

uniform 200 × 600 mesh, with ∆x = ∆z = 4 m and a time step ∆t = 10−3 s. Figure

6.9 shows the vertical velocity field of the gas phase and the particle distribution above

the vent after 20 s, when quasi-steady state conditions are reached. The simulation

reproduces the expected behaviour of a supersonic underexpanded jet, displaying the

barrel shock with a convex Mach disk, at about 320 m above the vent, which decelerates

the mixture down to subsonic velocities (see Figure 6.9) and compresses the gas phase,

so that the particle volumetric fraction increases by one order of magnitude across the

discontinuity, as shown in Figure 6.9.

To better analyze the jet dynamics and to quantitatively compare our results with

those by [97], we study the time-averaged vertical profiles along the axis of pressure,

mixture density, gas vertical velocity and gas temperature, shown in Figure 6.10. The

gas phase undergoes a rapid expansion from the initial pressure of 2.02 × 106 Pa to

pressure values below atmospheric pressure. The minimum of the pressure is 9.1× 103

Pa and it is reached at the height of 324m above the vent. The ratio between Mach disk

height and vent radius is 8.1 and the difference with respect to the corresponding result

by [97] is around 1%. Through the normal compression shock, the gas phase returns

to atmospheric value. During the expansion, as expected in supersonic flows, the gas

phase accelerates up to 482 m/s and then through the shock it abruptly decelerates to

a subsonic regime, with a vertical velocity around 33 m/s. During the expansion and

acceleration phase, the gas decreases its temperature down to 1104 K and then warms

up again by about 70 K through the Mach disk. Mixture density decreases by two

orders of magnitude above the vent and then it increases by one order of magnitude

through the shock. The difference in the Mach disk position with respect to the results

reported in [97] is around 4%, whereas the difference in the maximum vertical velocity

is around 2%.

In Case B we consider an inlet pressure ratio of K = 5 and a vent diameter of 20
m (Table 6.3) in order to maintain the sonic conditions at the vent. The computational

domain is a box of size 200 m ×400 m and we use a uniform 200 × 1000 mesh, with

∆x = 1m, ∆z = 0.4 m and a time step ∆t = 5 × 10−5 s. Figure 6.11 shows the

gas vertical velocity and the particle volume fraction when the quasi-steady state con-

figuration of the normal shock is achieved. The two-dimensional jet pattern and shape

closely fit the results presented in Figure 3b by [97] and the results obtained with the

multiphase model are thus in quantitative agreement with the result obtained by [97].

Parameter Case A Case B Units

Dv 80 20 m

K 20 5

wv 150.3 150.3 m/s

Tv 1200 1200 K

ǫs1 0.08784 0.021985

ds1 10 10 µm

ρs1 1000 1000 kg/m3

Table 6.3: Inlet conditions of the inhomogeneous underexpanded jets on volcanic scale.
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Figure 6.9: Multiphase jet on volcanic scale. Case A. Dv = 80 m, K = 20, ǫs = 0.08784. Logarithm to

the base 10 of particle volume fraction from 10−7 to 10−1 and isolines of gas vertical velocity [0:50:450]

m/s. Numerical solution at t = 20 s obtained with second order Corner Transport Upwind FV method

and θ-method time discretization.

In order to assess the importance of viscous effects on the underexpanded jet dynam-

ics, test Case A has been repeated with the viscous multiphase model. A comparison

between the viscous model and the inviscid model results is shown in Figure 6.13. It is

possible to observe that, as expected from dimensional analysis, viscous terms do not

affect the dynamics of the supersonic jet, and only small differences can be seen in the

upper part of the jet.
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Figure 6.10: Multiphase jet on volcanic scale. Case A. Dv = 80 m, K = 20, ǫs = 0.08784. Time-

averaged axial profiles computed over the interval [16, 20] s of gas pressure, mixture density, gas vertical

velocity and gas temperature. Numerical solution obtained with second order Corner Transport Upwind

FV method and θ-method time discretization.
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Figure 6.11: Multiphase jet on volcanic scale. Case B. Dv = 20 m, K = 5, ǫs = 0.021985. Logarithm to

the base 10 of particle volume fraction from 10−7 to 10−1 and isolines of gas vertical velocity [0:50:450]

m/s. Numerical solution at t = 2 s obtained with second order Corner Transport Upwind FV method

and θ-method time discretization.
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Figure 6.12: Multiphase jet on volcanic scale. Case B. Dv = 20 m, K = 5, ǫs = 0.021985. Time-

averaged axial profiles computed over the interval [1.6, 2.0] s of gas pressure, mixture density, gas vertical

velocity and gas temperature. Numerical solution obtained with second order Corner Transport Upwind

FV method and θ-method time discretization.
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Figure 6.13: Multiphase jet on volcanic scale. Case A. Dv = 80 m, K = 20, ǫs = 0.08784. Time-

averaged axial profiles computed over the interval [1.6, 2.0] s of gas pressure, mixture density, gas vertical

velocity and gas temperature. Comparison between the Viscous Model with LES and the Inviscid Model.

Numerical solution obtained with second order Corner Transport Upwind FV method and θ-method time

discretization.
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Figure 6.14: Sketch of the particle-laden gravity current test case. At time t = 0 s the gas–particle

mixture at rest occupies the volume V0. The mixture starts to collapse under gravitational force and

flows along the horizontal solid wall. Here, L represents the front position of the density current.

6.2 Subsonic regimes

To test the FV numerical model in subsonic regimes we consider the density current

test case and the collapsing jet test case.

6.2.1 Particle-driven gravity current

In this section we test the finite volume numerical model on the particle-driven gravity

current problem. We consider a multiphase density current generated from the collaps-

ing of a volume of dense gas–particle mixture, initially at rest [61], as shown in Figure

6.14. Initial conditions on the domain are reported in Table 6.4. The mixture occupies

an initial volume of 500 m ×400 m. The mixture is composed by dry air, with temper-

ature T0 = 300 K and pressure 1.01 · 105 Pa, and a volume fraction of 10−4 of solid

particles, with diameter equal to 100 µm. Viscous terms in the multiphase equations

are not neglected. The computational domain is a box with length 8 km and height 1
km. The compututational mesh is non uniform, and composed by 500 × 110 control

volumes with maximum resolution of 5 m in the vertical direction and a uniform res-

olution of 20 m in the horizontal direction. At time t = 0 s the mixture of gas and

particles starts to collapse under gravity and forms a density current that flows along

the horizontal boundary. Numerical results at time t = 300 s are shown in Figures 6.15,

6.16 and 6.17.

To evaluate the accuracy of the model, we compare numerical results with a simple

one dimensional model, which fits experimental results. For small volume fractions and

almost uniform temperatures, the Boussinesq approximation can be applied to study the

particle-driven gravity current. Following this approach, Halloworth at al. [61] contruct

a simple box model for the motion of the gravity current. If the initial volume of the

mixture is a box with volume V0 = L0H0, with initial solid volume fraction ǫs,0, the
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Parameter Units

L0 500 m

H0 400 m

T0 300 K

P0 101325 Pa

ǫs 0.0001

ds 100 µm

ρs 1000 kg/m3

Table 6.4: Initial conditions for the particle-laden gravity current test case.

evolution of the front of the current, i.e. L, is given by

∫ L/Lmax

0

s1/2
(
1− s5/2

)−1
ds = τ (6.2)

where Lmax is the maximum distance reached by the pure gas current, i.e.

Lmax =

(
5
√
ǫs,0

λ

)2/5

(6.3)

and τ = t
t̄

is the non-dimensional time and the characteristic time t̄ is defined as

t̄ =
Fr

√
gsV0ǫs,0

L
−3/2
max

. (6.4)

Here, the following parameters have been introduced:

λ =
vs√

Fr2gsV 3
0

, (6.5)

where vs is the settling velocity of solid particles, i.e.

vs =
gsd

2
s

18νg
, (6.6)

and gs is the reduced gravity of particles, i.e.

gs =

∣∣∣∣
(ρs − ρatm)

ρatm
g

∣∣∣∣ . (6.7)

Experimentally the Froude number has been estimated at 1.18. The evolution of the run

out of the gravity current as a function of time obtained from Equation 6.2 with Fr =
1.18 and the simulated front position are shown in Figure 6.18. In particular, using the

box model, the expected run out at time t = 300 s is 3320 m. The simulated run out

at t = 300 s is around 3400 m, with an error of less than 3 %. We can conclude that

numerical results on the particle-driven gravity test case obtained with the multiphase

model are consistent with the experimental results.
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Figure 6.15: Particle-driven gravity current test case. Gas velocity magnitude from 0 to 12 m/s and

isolines of logarithm to the base 10 particles volume fraction 1e[-3:-1:-9] at time t = 300 s. Numerical

solution obtained with second order Corner Transport Upwind FV method and θ-method time discretiza-

tion.
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Figure 6.16: Particle-driven gravity current test case. Gas horizontal velocity from −10 to 10 m/s and

isolines of logarithm to the base 10 particles volume fraction 1e[-3:-1:-9] at time t = 300 s. Numerical

solution obtained with second order Corner Transport Upwind FV method and θ-method time discretiza-

tion.
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Figure 6.17: Particle-driven gravity current test case. Gas vertical velocity from −5 to 5 m/s and isolines

of logarithm to the base 10 particles volume fraction 1e[-3:-1:-9] at time t = 300 s. Numerical solution

obtained with second order Corner Transport Upwind FV method and θ-method time discretization.

81



Chapter 6. Validation of the finite volume numerical model

Figure 6.18: Particle-driven gravity current test case. Evolution of the gravity current front position as a

function of time. Non-dimensional scaling law with Fr = 1.18 is compared with numerical results for

different particle diameters, i.e. ds = 100, 200, 300, 400, 500µm.

6.2.2 Collapsing column

We consider a multiphase mixture ejected from a nozzle with subsonic speed, accord-

ing to the conditions described in [90, 104]. The vent pressure is balanced with the

atmospheric pressure and vent conditions are supersonic with respect to the mixture

speed of sound. The mixture is considered inviscid and composed by dry air and solid

particles, with diameter equal to 10 µm. For the vent initial conditions described in Ta-

ble 6.5, the multiphase mixture is expected to collapse under gravitational effects and

to form a density current. We compare the numerical results with the results presented

in [104].

The computational domain is a box with dimensions 3000 m ×3000 m. The com-

putational mesh is composed by 300 × 300 control volumes (∆x = 10 m) and we use

a time step ∆t = 0.01 s. The computation is carried out up to the final time t = 120 s.

Figure 6.19 shows the evolution of the multiphase mixture at different time levels.

At time t = 10 s, the multiphase column has reached its maximum height (about 400 m,

in agreement with [104]) and starts collapsing laterally. After 25 seconds, the mixture

hits the ground, forming the density current and in part flowing towards the jet. At time

t = 55 s the mixture has run 1500 metres from the vent and part of the mixture starts

rising in the atmosphere, forming buoyant plumes that are turned towards the jet by the

entrainment field. In conclusion, the column height and the length of the runout of the

density current are in agreement with the results presented in [104].
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Parameter Units

Dv 100 m

K 1

wv 80 m/s

Tv 1200 K

ǫs 0.01

ds 10 µm

ρs 2300 kg/m3

Table 6.5: Inlet conditions for the collapsing jet test case.

Figure 6.19: Logarithm to the base 10 of particle volume fraction and its isolines 1e[-1:-1:-8] at times

t = 10, 25, 30, 35, 45, 55, 70, 115 s. Numerical solution obtained with second order Corner Transport

Upwind FV method and θ-method time discretization.
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CHAPTER7

Validation of the discontinuous Galerkin numerical

model

IN this chapter, the numerical validation of the Discontinuous Galerkin approxima-

tion of the multiphase gas–particle conservation equations introduced in Chapter

2 and Chapter 4 is presented. The DG scheme with the explicit time advancing

scheme has been tested on a number of one-dimensional classical benchmarks, in or-

der to assess the accuracy in the computation of multiphase flow in both supersonic and

subsonic regimes and to assess the efficiency gain related to the p−adaptivity algorithm.

Furthermore, a comparison with respect to the finite volume approach is presented.

7.1 1D validation in the monophase regime

In this section, we test the discontinuous Galerkin numerical scheme on monophase

benchmarks in order to assess the convergence properties of the scheme and the be-

haviour of the monotonization and p-adaptivity techniques proposed in [110, 137].

These techniques have been applied here for the first time to highly nonlinear, high

Mach number regimes.

7.1.1 Linear advection test case

We consider the simple linear advection equation and we test the convergence proper-

ties of the discontinuous Galerkin numerical model. We consider the domain [a, b] =
[−1, 1] with periodic boundary conditions and the sinusoidal initial datum

c0(x) = sin

(
2π(x− a)

b− a

)
. (7.1)
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NK L2 L∞ Dissipation Dispersion

40 2.6647e-3 3.7512e-3 2.8524e-6 6.9845e-7

80 6.3017e-4 8.9839e-4 1.5454e-7 4.4002e-8

160 1.5329e-4 2.1969e-4 8.9449e-9 2.8049e-9

Order 2.0 2.0

Table 7.1: Linear advection test case. Relative L2 error, relative L∞ error, dissipation and dispersion

errors using DG scheme with P
1 polynomials and different number of control volumes (∆t = 0.001 s).

NK L2 L∞ Dissipation Dispersion

40 1.45e-5 6.4454e-5 2.5682e-13 1.0440e-10

80 1.81e-6 8.1700e-6 8.9067e-16 1.6353e-12

160 2.48e-7 1.1123e-6 3.2110e-18 3.0753e-14

Order 2.9 2.9

Table 7.2: Linear advection test case. Relative L2 error, relative L∞ error, dissipation and dispersion

errors using DG scheme with P
2 polynomials and different number of control volumes (∆t = 0.0001 s).

The advection velocity is u = 1 m/s. The solution is computed until t = 2 s, at which

the exact solution coincides with the initial datum. We consider P1, P2 and P
4 elements

on several computational grids with an increasing number of elements NK . In all the

tests, the relative L2 and L∞ norms are computed, that is ‖u − uh‖L2(Ω)/‖u‖L2(Ω) and

‖u−uh‖L∞(Ω)/‖u‖L∞(Ω), where u is the exact solution. We also compute the following

error measures [110]:

Dissipation error = [σ(u)− σ(uh)]
2 + (ū− ūh)

2, (7.2)

Dispersion error = 2

[
σ(u)σ(uh)−

1

|Ω|

∫

Ω

(u− ū)(uh − ūh)dx

]
(7.3)

where

σ(u) =

√
1

|Ω|

∫

Ω

(u− ū)2dx, ū =
1

|Ω|

∫

Ω

udx. (7.4)

It can be observed in Tables 7.1, 7.2 and 7.3 that the expected orders of accuracy in L2

and L∞ norms are obtained [25, 26].

NK L2 L∞ Dissipation Dispersion

5 3.95e-5 1.93e-4 4.59e-11 7.32e-10

10 1.14e-6 6.48e-6 1.23e-14 6.43e-13

20 3.37e-8 2.08e-7 3.06e-18 4.44e-16

Order 5.1 4.9

Table 7.3: Linear advection test case. Relative L2 error, relative L∞ error, dissipation and dispersion

errors using DG scheme with P
4 polynomials and different number of control volumes (∆t = 0.00001

s).
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7.1.2 SOD test case

We consider the SOD benchmark test for the Euler equations, described in Table 7.4 on

the domain [−1, 1] m, and its solution at time t = 0.4 s. We solve the system of con-

servation equation with the DG scheme and we evaluate the behaviour of the FCT flux

limiting scheme. In this test, the limiting is applied to all the equations and as limiting

coefficient, the minimum between the density and the energy flux limiting coefficients

is selected. To assess the monotonicity properties of the method, the maximum and

minimum values of the density are reported in Table 7.5 for P1 elements. The numerical

solution obtained with DG-NM (non monotonized) and DG-FCT schemes are shown

in Figure 7.1. As it has been verified in [110] for linear problems in the framework

semi-Lagrangian discontinous Galerkin methods, the FCT flux limiting guarantees the

monotonicity of the mean values of the solution.

A comparison between the results obtained with the FV method on a mesh with

160 elements and with DG using P
3 polynomials on a mesh with 40 elements is shown

in Figure 7.2. The errors in the L2 and L∞ norms with respect to the exact solution

are shown in Table 7.6. When using the same number of degrees of freedom, the DG

method results to be more accurate than the FV method.

7.1.3 Shu-Osher test case

We consider the benchmark test proposed in [119] described in Table 7.7. The com-

putational domain is [−5, 5] m and the initial discontinuity is placed at x = −4. The

solution to this problem consists in a shock (Ma = 3) interacting with sine waves in

density. Since the solution has non trivial spatial structure, we consider this problem as

a benchmark on which we can test the efficiency of the p-adaptivity algorithm presented

in Section 4.2.

The domain is [−5, 5] m and the solution is computed at time t = 1.8 s. A reference

solution is computed using P
1 elements on a mesh with NK = 1000 elements. A

numerical solution on a coarse (NK = 200) is computed using p−adaptive elements.

The polynomial degree can vary between 1 and 4. The solution is shown in Figure 7.3.

The adapted polynomial degrees used in the last time step computation are shown in

Figure 7.4, whereas the total number of degrees of freedom used at each time step is

shown in Figure 7.5. Adopting a tolerance of 10−5 in the adaptation algorithm, we are

saving more than 60% of the degrees of freedom.

7.2 1D validation in the multiphase regime

In this section, the DG numerical model is applied to the unsteady non equilibrium

flow of a gas–particle mixture in a shock tube. Numerical results are compared with

Parameter Region 1 Region 2 Units

Pg 1 0.1 Pa

ρg 1 0.125 kg/m3

wg 0 0 m/s

Table 7.4: Initial conditions for the SOD test case.
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Figure 7.1: SOD test case. Comparison between the exact solution (Exact), the non monotone DG

scheme (DG-NM) and the DG scheme with FCT flux limiting (DG-FCT) using P
1 polynomials with

NK = 80 control volumes.

NK Limiter max(ρ)− 1 min(ρ)− 0.125 max(ρ0)− 1 min(ρ0)− 0.125

80 None 7.0710e-3 -2.9843e-2 5.4790e-3 -1.4008e-2

80 FCT 2.1e-5 -7.675e-3 0 0

160 None 5.77e-3 -2.7977e-2 4.682e-3 -1.4078e-2

160 FCT 1.e-6 - 4.893e-3 0 0

Table 7.5: SOD test case. FCT flux limiting properties with P
1 polynomials. Errors on the maximum

and minimum values of the density ρ and on its maximum and minimum mean values ρ0.

Method NK L2 L∞

DG 40 [0.0137, 0.0381, 0.0125] [0.0438, 0.1025, 0.0348]

FV 160 [0.0242, 0.1069, 0.0349] [0.1303, 0.6158, 0.2364]

Table 7.6: SOD test case. Comparison between FV and DG-P3 method. Errors on the mean values of

the three components of the solution.
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Figure 7.2: SOD test case. Comparison between the exact solution (Exact), the solution computed with

DG-P3 and NK = 40 control volumes (DG-P3) and the solution computed with second order FV method

on a mesh with NK = 160 elements.

Parameter Region 1 Region 2 Units

Pg 10.33333 1 Pa

ρg 3.857143 1 + 0.2 sin(5x) kg/m3

wg 2.62939 0 m/s

Table 7.7: Initial conditions for the Shu-Osher test case.
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Figure 7.3: Shu-Osher test case. Evaluation of the p-adaptive algorithm. Comparison between a refer-

ence solution computed with NK = 1000 elements and P
1 polynomials and the solution computed with

the p-adaptive DG scheme with NK = 200 elements and rmax = 4.
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the domain during the last time step computation. Numerical solution computed with the p-adaptive DG

scheme with NK = 200 elements and rmax = 4.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

100

200

300

400

500

600

700

800

900

1000

x [m]

T
ot

al
 D

O
F

Figure 7.5: Shu-Osher test case. Evaluation of the p-adaptive algorithm. Total number of degrees of

freedom adopted during the computation. Numerical solution computed with the p-adaptive DG scheme

with NK = 200 elements and rmax = 4.
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experimental and numerical results reported in the literature.

7.2.1 Sommerfeld experiment

We present the results of some numerical computations performed under the same con-

ditions as Sommerfeld’s experiments [123]. The shock tube is divided into three parts.

The high pressure section of the shock tube is occupied by pure air. The low pressure

section is divided into two parts: the pure air section of length 1.0 m adjacent to the

diaphragm and the region occupied by a gas–particle mixture. Solid particles have a

diameter equal to 27µm, density equal to 2500 kg/m3 and specific heat cp,s = 766
J/Kg·K. Initial conditions for the presented test case are shown in Table 7.8.

At time t = 0 s, after the rupture of the diaphragm, a shock wave forms in the low

pressure air region, while a rarefaction wave propagates in the high pressure section.

As observed in experimental and numerical results in [89,123], the shock wave initiated

in the pure gas region travels with constant speed in the gas phase until it reaches the

particle cloud at time t ≃ 2 ms. Up to this time, the mixture on the right part of the

shock tube remains at rest, whereas the gas dynamics in the left part corresponds to the

solution expected for the classic Euler equations, as shown in Figure 7.6.

At time t = 2 ms, the shock wave starts interacting with the gas–particle mixture.

The deceleration of the gas due to the interaction with the particles results in a com-

pression of the gas, and its pressure away from the shock front raises to values higher

than those in the pure gas. Thus, at x = 0, that is at the boundary of the particle cloud,

the shock wave is partly reflected as compression wave travelling towards the left in the

pure gas, as shown in Figure 7.6. The shock front, travelling through the dusty gas, is

followed by a thick relaxation zone, across which velocity and temperature of the two

phases equilibrate. Thus, the density and the temperature of the gas are not uniform

in the neighborhood of the boundary of the particle cloud, as in the pure gas test case.

Due to the heat capacity and the inertia of the particles, the velocity of the transmitted

shock does not change instantaneously. A transition region develops where the shock

velocity is slowly reduced to its equilibrium value, which corresponds to the speed of

sound in the mixture. The equilibrium shock velocity is determined by the initial shock

strength and the particle loading.

The computations have been performed using the discontinuous Galerkin approxi-

mation with the same polynomial degree on all the elements and for all the variables.

It must be observed that in the solution of the multiphase equations the positivity of

the macroscopic density and of the total energy has to be guaranteed in order to de-

rive positive (and physically meaningful) drag and heat exchange coefficients. When

high order polynomial approximations are adopted, this result is achieved by applying

monotonization techniques, such as FCT flux limiting or minmod slope limiting. Thus,

in the following simulations, either FCT or minmod limiting is always applied.

The solutions obtained with P
1 and P

4 elements and minmod slope limiting at time

t = 10 ms are shown in Figure 7.7 and Figure 7.8, respectively, and compared with a

reference solution obtained with the FV method. It can be observed that the solutions

obtained with the two methods are in agreement as regards the gas phase, whereas the

solid particles solution slightly differs. Those differences are ascribable to the different

treatment of the interphase coupling terms in the two algorithm. In particular, different
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7.2. 1D validation in the multiphase regime

linearization approaches should be tested in the explicit method described in Section

5.3.2.

The limiting properties of the minmod slope limiter and the FCT flux limiter are

shown in Table 7.9. In particular, the FCT flux limiter is applied only to the mass and

energy balance equations of the gas phase. When no monotonization technique is in-

troduced, the numerical solution blows up before the end of the computation. With the

FCT flux limiter, the numerical solution presents small spurious oscillations near the

particle cloud boundary. Finally, the high order minmod slope limiter [9] is able to

guarantee the monotonicity of the numerical solution.

The performances of the p-adaptive algorithm are evaluated by comparing the results

obtained on a mesh with 200 control volumes, using P
4 elements on the whole mesh

and the p-adaptive algorithm, with maximum and minimum polynomial degrees equal

to four and one, respectively. The tolerance is fixed to 2 · 10−3. A reference solution

is computed using P
1 elements on a mesh with NK = 5000. The numerical solutions

are shown in Figure 7.9. The relative errors in L2 norm with respect to the reference

solution are shown in Table 7.10.

The computational effort reduction obtained thanks to the p-adaptive approach is

evaluated with equation 4.27 and is around 54 %. The polynomial degree employed on

the computational mesh during the last time step computation is shown in Figure 7.10.

It can be observed that polynomials of degree one, which is the lowest degree admitted,

are employed in the intervals in which the solution is constant. In the other regions,

polynomials of order at least two are used to approximate the solution. In Figure 7.11,

the total number of degrees of freedom employed in the computation are shown for

each time step. It can be observed that, starting from the initial maximum value of

1000, in few time steps the number if degrees of freedom is reduced to about 400 and

then adjusted as the numerical solution evolves in time.

Parameter Region 1 Region 2 Region 3 Units

Pg 70000 10000 10000 Pa

Tg 280 280 280 K

wg 0 0 0 m/s

ǫs 0 0 0.000019

Ts 280 280 280 K

ws 0 0 0 m/s

Table 7.8: Initial conditions for the Sommerfeld’s shock tube experiment.
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� �
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Figure 7.6: Wave diagram for the Sommerfeld’s shock tube test case. In yellow, indicated with R, the

rarefaction region, C is the contact wave, S the shock wave, RS the reflected shock wave and P the

particle cloud front.

NK Limiter max(ǫgρg)− (ǫgρg)
0

max
min(ǫgρg)− (ǫgρg)

0

min

200 DG-P4 None - -

500 DG-P1 FCT 0 -1.5e-5

200 DG-P4 Minmod 0 0

Table 7.9: Sommerfeld’s shock tube test case. Comparison between the non-monotone DG-P4 scheme,

the DG-P1 scheme with FCT flux limiting on the gas phase variables and the DG-P4 scheme with the

minmod slope limiting techniques proposed by Biswas et al. [9].

Variable DG-P4 DG-P4 adapt

ǫgρg 6.63e-7 6.52e-7

ǫgρgug 1.62e-4 1.59e-4

ǫgρgEg 8.43e-2 8.43e-2

ǫsρs 3.12e-7 2.74e-7

ǫsρsus 6.79e-5 5.99e-5

ǫsρsEs 9.44e-2 8.38e-2

Table 7.10: Sommerfeld’s shock tube test case. Evaluation of the p-adaptive algorithm. Relative errors

in L2 norm with respect to a reference solution computed using DG-P1 with NK = 5000 elements.

Comparison between DG-P4 elements and DG-P4 elements with p-adaptivity.
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Figure 7.7: Sommerfeld’s shock tube test case. Conserved variables at time t = 10 ms. Comparison

between second order FV scheme on a computational mesh with NK = 1000 elements and the DG

scheme using P
1 polynomials and NK = 500 control volumes.
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Figure 7.8: Sommerfeld’s shock tube test case. Conserved variables at time t = 10 ms. Comparison

between the second order FV scheme on a computational mesh with NK = 1000 elements and the DG

scheme using P
4 polynomials and NK = 200 control volumes.
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Figure 7.9: Sommerfeld’s shock tube test case. Conserved variables at time t = 10 ms. Comparison

between a reference solution computed using DG-P1 with NK = 5000 elements (Ref), DG-P4 with

NK = 200 elements (DG-P4) and DG-P4 with p-adaptivity and NK = 200 elements (DG-P4 adapt).
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Figure 7.10: Sommerfeld’s shock tube test case. Evaluation of the p-adaptive algorithm. Polynomial

degrees adopted on the domain during the last time step computation. Numerical solution computed

with the p-adaptive DG scheme with NK = 200 elements and rmax = 4.
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Figure 7.11: Sommerfeld’s shock tube test case. Evaluation of the p-adaptive algorithm. Total number of

degrees of freedom adopted during the computation. Numerical solution computed with the p-adaptive

DG scheme with NK = 200 elements and rmax = 4.
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Figure 7.12: Initial pressure perturbation for the pressure wave test case.

7.3 2D validation in the monophase regime

In this section, we test the discontinuous Galerkin numerical scheme on two-dimensional

monophase test case.

7.3.1 Pressure wave test case

The two-dimensional Euler equations are solved with the discontinuous Galerkin nu-

merical scheme presented in Chapter 4. We consider a rectangular domain [0, L]2, with

L = 1000 m and an initial perturbation of the pressure in the center of the domain, as

shown in Figure 7.12. The solution computed on a 100 × 100 mesh (∆t = 0.5 s) with

polynomials of constant degree equal to 1 is shown in Figure 7.13. The solutions com-

puted on a 50×50 mesh (∆t = 0.5 s) with P
3 elements and with the p-adaptive scheme

and maximum polynomial degree equal to 3 are shown in Figure 7.14 and Figure 7.15,

respectively.

The polynomial degrees employed on the computational mesh during the first and

the last time step computation is shown in Figure 7.16, whereas the fraction of degrees

of freedom employed at each time step is shown in Figure 7.17. We can observe how the

maximum polynomial degree is used in the region of the domain where the solution is

not constant, whereas linear polynomials are employed to approximate almost constant

solutions. As a consequence, in the first time steps only 30 % of the total number of

degrees of freedom are used to approximate the solution. The number of degrees of

freedom increases as the pressure wave expands in the domain.

7.4 2D validation in the multiphase regime

7.4.1 Pressure wave test case

The two-dimensional multiphase Euler equations are solved with the discontinuous

Galerkin numerical scheme presented in Chapter 4. We consider a rectangular domain

[0, L]2, with L = 1000 m and an initial perturbation of the pressure in the center of the
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Figure 7.13: Solution computed at time t = 300 s with P
1 elements on a 100× 100 mesh.
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Figure 7.14: Solution computed at time t = 300 s with P
1 elements on a 50× 50 mesh.
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Figure 7.15: Solution computed at time t = 300 s with the p-adaptive scheme with maximum polynomial

degree equal to 3 on a 50× 50 mesh.

Figure 7.16: Polynomial degrees employed in the first and in the last time step computation.

102



7.4. 2D validation in the multiphase regime

Figure 7.17: Fraction of degrees of freedom actually employed at each time step.

Figure 7.18: Initial pressure perturbation for the multiphase pressure wave test case.

domain, as shown in Figure 7.18. At time t = 0 s, a uniform concentration of particles

(ǫs = 10−4) is considered in the domain. The solution at time t = 1 s is shown in

Figure 7.19.
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Figure 7.19: Solution computed at time t = 1 s with P
1 elements on a 100× 100 mesh.

104



CHAPTER8

Application of the finite volume method to the

analysis of gas–particle non-equilibrium effects on

underexpanded volcanic jets

IN Chapter 6, the dynamics of underexpanded gas–particle jets has been introduced

and reproduced in order to validate the finite volume numerical model. In this

chapter, the dynamics of underexpanded gas–particle jets is analyzed in depth by

means of the multiphase model presented in Chapter 2. In particular, the focus will be

on the non-equilibrium phenomena that take place at the volcanic scale.

The underexpanded multiphase jet problem is representative of phenomena that can

be observed near the source of explosive volcanic eruptions. The explosive character of

an eruption is always associated to the rapid decompression and the consequent abrupt

expansion of gases in the liquid magma that rises from a magma chamber. The mixture

of gases and magma fragments is injected in the atmosphere from the volcanic vent at

high velocity, pressure and temperature [147]. Therefore during explosive eruptions,

in the proximity of the volcanic vent, the erupted multiphase mixture can manifest the

features of supersonic flows. Such initial decompression stage has been hypothesized

by [75, 97, 98, 147] and evidence of it has been found by infrasonic and acoustic mea-

surements, see e.g. [73]. Thus, in explosive volcanic eruptions, phenomena analogous

to the ones described and studied in Chapter 6, i.e. underexpanded jets, can commonly

take place and represent a fundamental process of the phenomenon.

A general understanding of the dynamics of supersonic volcanic jets has been achie-

ved by assuming the mixture to be homogeneous, i.e., by assuming kinetic and thermal

equilibrium between gas and particles [96, 97]. As discussed in Chapter 2, the equilib-

rium assumption is valid only on a restrict range of particle sizes. In this chapter, the
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non-equilibrium effects on underexpanded volcanic jets

focus will be on the analysis of the underexpanded multiphase jet dynamics in the case

of decoupled dynamics between gas and particles.

8.1 Dynamics of underexpanded volcanic jets

In this chapter, we analyse underexpanded gas–particle jets by means of the character-

istic time scales of the multiphase flow, i.e. the particle relaxation time and the Mach

disk formation time.

8.1.1 Particle relaxation time

The relaxation time τs of a particle moving with speed vs in a surrounding fluid, which

is flowing with velocity equal to vg, can be estimated from the particle momentum

equation (2.14b) by assuming all the forces acting on the particle negligible except the

drag force, that is
∂

∂t
(ǫsρsvs) ≃ Dg,s(vg − vs). (8.1)

Following [16, 72, 86], we define the particle relaxation time as

τs =
ǫsρs
Dg,s

. (8.2)

The particle characteristic time can be interpreted as the order of magnitude of the time

needed by the particle to accelerate or decelerate to the surrounding fluid velocity, as

shown in Figure 8.1. In general, after a time interval equal to 5τs, the solution vs of

Equation (8.1) can be considered as constant in time and equal to vg. In an underex-

panded jet, the delay between gas and particles may occur in the rapid expansion above

the vent, where the gas phase accelerates, and across the normal shock, where the gas

velocity is reduced abruptly. As described in [86], an analogous thermal relaxation time

can be defined starting from the energy balance equation (2.15b) and a simple analysis

suggests that the time scale for thermal relaxation has the same order of magnitude as

τs.
For dilute mixtures and low gas–particle Reynolds number, as defined in (2.45), the

particle relaxation time can be computed from (8.2) and (2.43), obtaining

τs ≃
ρsd

2
s

18µg

. (8.3)

8.1.2 Mach disk formation time

The supersonic jet process is characterized by different time scales, as discussed in

[98]. Assuming steady supersonic conditions at the nozzle, the transient dynamics

of the supersonic jet can be described by the formation time of the Mach disk shock

τMa, which represents the time needed by the first wave forming in the jet to reach the

centerline.

An estimate of the Mach disk formation time is obtained by means of geometric

considerations [98], as shown in Figure 8.2. Suppose that c is the speed of shock waves

in air, v = |vmix| is the mixture velocity at the vent. At time τMa, the location of

the normal shock is zMa, whereas the jet head is located at zJ = vτMa. The distance
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Figure 8.1: Interpretation of particle relaxation time. The blue line represents the exact solution of

Equation (8.1), the red line represents its linear approximation around t = 0, the black line is the gas

velocity. The intersection between the red and the black line defines the particle relaxation time. After

t = 5τs, we can assume that vs ≃ vg .

travelled by the shock wave in the time interval τMa is given by zS = cτMa. From the

geometrical analysis shown in Figure 8.2, it results that

D

2
=

√
z2S − (zMa − zJ)2. (8.4)

If we assume that the first air shock and the jet head are near, we can set zMa ≃ zJ and

c = cmix, where cmix is the speed of sound waves in the mixture, obtaining

D

2
= zS = cmixτMa (8.5)

and finally

τMa =
D

2cmix

, (8.6)

where cmix is defined by 2.63.

8.2 Numerical investigation

In this section, the dynamics of underexpanded gas–particle jets at the volcanic scale

is studied numerically and it is analyzed by means of the characteristic time scales

introduced in the previous section. First, the analysis is carried out in the case of a

monodisperse mixture, by considering only one class of solid particles. The analysis

is then extended to the case of bidisperse and polydisperse mixtures. In the follow-

ing numerical tests, the gas phase ejected from the vent is assumed to consist of water

vapor [55], whose fundamental thermodynamic properties are reported in Table 8.1.
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Figure 8.2: Geometrical construction of the Mach disk formation time. Here, D is the nozzle diameter,

c is the speed of sound waves, v is the fluid velocity at the nozzle. zMa is the position of the standing

normal shock wave, zJ is the distance covered by the fluid front at time t and zS is the distance travelled

by the shock wave in the time interval t.

Concerning solid particles, we assume a nonlinear dependence between particle diame-

ter and particle density, ρs = ρs(ds), such as the one proposed in [10] which reproduces

the typical properties of solid particulate ejected during a real volcanic eruption. The

empirical relationship between particle diameter and density is shown in Figure 8.3.

Other particle thermodinamic properties are reported in Table 8.2.

The mixture is ejected from a circular vent in a standard atmosphere. That is, tem-

perature, pressure and density are taken to be stratified and the medium consists of dry

air. The problem is assumed to be axisymmetric, thus the following simulations are

carried out in cylindrical coordinates. Symmetry boundary conditions are imposed on

the left boundary of the computational domain and non reflecting boundary conditions

are imposed on the right and top boundary. On the bottom boundary, no slip condi-

tions are imposed. As shown in Chapter 6, viscous terms have secondary effects on the

dynamics of the supersonic jet, thus they are neglected in the following simulations.

Parameter Symbol Value Units

Viscosity µg 0.000013 Pa·s
Thermal conductivity kg 0.015 W/m·K
Molecular weight Mmol 0.018 kg/mol

Specific gas constant Rg 461.8 J/kg·K
Specific heat cp,g 1800 J/kg·K

Table 8.1: Water vapor properties at temperature T = 373 K.
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8.2.1 Monodisperse mixtures

Let us consider a monodisperse mixture composed by water vapor and one class of

solid particles. Two sets of vent conditions are considered, which differ for the mass

flow rate Mf , defined as

Mf =
πD2

v

4
ρmixwmix, (8.7)

where Dv is the vent diameter, ρmix and wmix are the mixture density and velocity

at the vent, respectively. In Case A, the mass flow rate is of the order of 108 kg/s,

corresponding to a large Plinian volcanic eruption, whereas in Case B the mass flow rate

is of the order of 106 kg/s, corresponding to a relatively small volcanic eruption [94].

The differences in the mass flow rates are due to different vent diameters, i.e. 80 m in

Case A and 20 m in Case B, different vent pressure and different mixture density. In

particular, in Case A the gas pressure and the mixture density are four times the values

imposed in Case B. Vent conditions for Case A and Case B are shown in Table 8.3.

In Case A, the computational domain is a two dimensional box with dimension 800

m × 2400 m divided into 400 × 600 computational cells. The mesh size is ∆x = 4m

with time step ∆t = 10−3 s. The simulation extends up to time t = 20 s. In Case B,

the dimension of the computational domain is 200 m × 400 m divided into 200 × 800

computational cells. The mesh size is not uniform in the two dimensions, i.e. ∆x = 1
m and ∆z = 0.5 m, and the time step is ∆t = 5 · 10−5 s. The simulation extends up to

time t = 2 s. Both in Case A and in Case B, a second order finite volume scheme in

space with the implicit time advancing scheme presented in Section 5.3.1 is adopted to

solve multiphase equations.

For both Case A and Case B, five different simulations are carried out with different

mixture composition, but maintaining the mixture density fixed. Five different classes

of solid particles, with different diameters and densities, are selected. The values of the

volumetric fractions are computed in order to maintain the mixture densities fixed and

are reported in Table 8.3. The mixture compositions for simulations (a)-(e) for Case

A and Case B are reported in Table 8.4 and 8.5, respectively. For each class of solid

particles, the values of the particle loading are shown, together with particle diameters,

densities and volumetric fractions.

For Case A and Case B, the characteristic time scales are shown in Table 8.4 and

Table 8.5, respectively. Since in this work the particle density is assumed to be a func-

tion of the particle diameter, the particle relaxation time can be expressed as a function

of the particle diameter only:

τs ≃
ρs(ds)d

2
s

18µg

, (8.8)

where the gas viscosity is supposed to be constant. On the other hand, the Mach disk

Parameter Symbol Value Units

Viscosity µs 0.5 Pa·s
Thermal conductivity ks 2 W/m·K
Specific heat cp,s 1000 J/kg·K

Table 8.2: Solid particle thermodynamic properties.
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formation time depends only slightly on the mixture composition for large values of

the particle loading, which is assumed to be constant for Case A (βA = 48) and Case

B (βB = 44). Analogously, also the Mach disk formation time can be assumed to

be constant for Cases A and B and equal to 0.37 s and 0.09 s, respectively. Since the

coupling between the particle dynamics and the gas dynamics depends on the difference

in the characteristic time scales of the problem, the Stokes number defined as the ratio

between the particle relaxation time and the Mach disk formation time is computed as

a function of the particle diameter only:

St(ds) =
τs(ds)

τMa

. (8.9)

The functions StA(ds) and StB(ds) are shown in Figure 8.4, together with the refer-

ence value St = 1. Notice that in both Case A and Case B, test cases (a), (b), (c) are

characterized by a value of St lower than one, whereas test cases (d) and (e) correspond

to values of St larger than one.

Numerical results for Case A at time t = 20 s are shown in Figure 8.5. The log-

arithm to the base 10 of the particle volume fractions and the isolines of gas vertical

velocity are plotted for the five test cases, corresponding to the five different particle

sizes considered. Results obtained in cases (a), (b) and (c) are approximately equal.

The mixture expands in the region above the vent up to 350 meters, then compresses

across the normal shock wave. In case (d), the shock wave becomes weaker and finally

it disappears completely in case (e). The total height of the column at t = 20 s slightly

dependent on the class of solid particles: it is around 1500 m in case (a) and it tends

to increase up to 2000 m in case (e). The structure of the lateral vortex that forms in

the highest part of the jet is much more affected by mixture composition: in fact, larger

particles in cases (d) and (e) tend to be ejected outward from the center of the vortex due

to their larger inertia, whereas smaller particles in cases (a), (b) and (c) are uniformily

distributed in the lateral vortex.

In order to understand better what is happening inside the jet, we can look at the

values of the thermodynamic variables on the vertical axis of the jet in Figure 8.6. We

can observe that gas pressure, mixture density, gas velocity and temperature in cases

(a), (b) and (c) are almost identical. Gas pressure decreases from the initial value of

2 · 106 Pa to 104 Pa at 350 m from the vent, where the Mach disk is located. The mix-

ture is compressed through the normal shock and reaches the equilibrium atmospheric

pressure of 105 Pa, that remains almost constant along the upper part of the profile.

Analogously, the mixture density decreases, in the expansion region, from 160 kg/m3

down to 1 kg/m3, then across the shock it reaches the final equilibrium value of 10

kg/m3. The mixture is accelerated in the expansion region from the initial velocity of

150 m/s almost up to 400 m/s. Across the shock, the mixture is slowed down abruptly

to subsonic speeds. Finally, gas temperature decreases from 1200 K to 1150 K in the

expansion stage and then across the shock it increases up to 1180 K. In the upper part

of the jet, temperature tends to decrease gradually, due to the entrainment of cold atmo-

spheric air. In cases (a), (b) and (c) the flow above the Mach disk is unstable, due to the

negative buoyancy of the compressed mixture, which causes negative vertical velocity.

In some cases, this can destabilize the eruptive column causing collapse [97]. The same

behaviour is observed also in the other thermodynamic variables.
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In case (d) the normal shock wave becomes weaker and the maximum value of the

gas velocity reached across the shock decrease to 300 m/s. Analogously, the minimum

values of gas pressure, mixture density and gas temperature increase.

The jet dynamics observed in case (e) (St ≫ 1) is completely different from the

previous test cases. First, no shock wave is forming in the core of the jet. After the

initial expansion, the gas compresses gradually up to atmospheric pressure. The same

smooth behaviour is also observed in the other thermodynamic quantities. Pressure

and mixture density equilibrium values in the upper part of the jet coincide with the

values obtained in the previous test cases. On the contrary, the equilibrium velocity

in the upper part of the jet is equal to the initial velocity at the vent, i.e. 150 m/s.

Analogously, the equilibrium temperature is almost equal to the vent temperature (1190
K) and remains constant along the axis in the upper part of the jet, suggesting that

entrainment processes are less efficient.

In order to understand the behaviour of solid particles in the jet as a function of their

size, the differences between particle and gas velocity and temperature are shown in

Figure 8.7. We observe that, in cases (a) and (b), these differences are negligible along

the vertical axis of the jet. In case (c), small differences are observed near the normal

shock location. In case (d), particles accumulate a delay in the expansion region, which

is of the order of 10 m/s. At 350 meters from the vent, where the gas is abruptly

decelerated through the shock, particles do not decelerate immediately, but need about

50 meters to slow down to the surrounding gas velocity. Across the flow discontinuity,

particles display a maximum velocity jump of 90 m/s. A similar behaviour is observed

in the temperature differences, where particles cool down slower than the gas phase in

the expansion region and need 50 meters to warm up to the gas temperature above the

shock. In case (e), particle dynamics is strongly decoupled from gas dynamics. In the

expansion region, as the gas phase accelerates from 150 to 300 m/s at 200 meters from

the vent, particles reach a maximum velocity delay of 35 m/s, thus meaning that here

they are moving much slower than the gas phase, due to their larger inertia. Above

200 meters, the gas phase starts to decelerate gradually, however particles do not slow

down as fast as the gas phase. At 360 meters from the vent, particles are moving faster

than the gas phase of about 65 m/s. They need more than 200 meters to slow down

to the equilibrium velocity. An analogous behaviour is observed in the temperature

difference.

In order to explain the observed values in terms of the Stokes number St, the nu-

merical results presented for Case A allow to formulate two preliminary hypotheses:

(H1) the Stokes number St defined as the ratio between the particle relaxation time

and the Mach disk formation time is appropriate to describe the particle dynamics

inside the underexpanded multiphase jet;

(H2) the decompression dynamics of the underexpanded multiphase jet is controlled

by the particle Stokes number (St). In particular, for St ≪ 1 the expected struc-

ture of an underexpanded jet, i.e. the formation of the Mach disk, is observed. On

the other hand, for St ≫ 1, the normal shock does not form.

In order to find further arguments in favour of our hypotheses, we repeat the previ-

ous analyses for Case B. In Figure 8.8 the logarithm to the base 10 of particle volume
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fractions and the isolines of the gas vertical velocity are shown at time t = 2 s. In

cases (a), (b) and (c), for which the values of the Stokes number St are 0.002, 0.02
and 0.2 respectively, the Mach disk is clearly observed at 50 meters from the vent. The

volcanic column reaches about 250 meters height. On the other hand, in cases (d) and

(e), that correspond to St = 2 and St = 22 respectively, the Mach disk is not forming.

Moreover, the lateral vortex is collapsing due to the gravitational force. This results

are a first argument in favour of the hypothesis (H2). Looking at the profiles along the

vertical axis of the jet in Figure 8.9 and in Figure 8.10, we observe how in cases (a),

(b) and (c) a strong shock is formed at 50 meters from the vent. Moreover, particles

are coupled with the gas phase and only a strong and localized jump in the difference

between particle and gas velocity is observed in case (c) at the shock location. On the

contrary, in cases (d) and (e) a significant disequilibrium between gas phase and parti-

cles is observed in the expansion region and in the upper part of the volcanic column,

thus supporting the hypothesis (H1).
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Monodisperse jet

Parameter Case A Case B Units

Dv 80 20 m

K 20 5

Patm 101325 101325 Pa

Tatm 298 298 K

wg 150 150 m/s

Pg 2026500 506625 Pa

Tg 1200 1200 K

ρg 3.7 0.92 kg/m3

ws 150 150 m/s

Ts 1200 1200 K

ρmix 161.74 40.50 kg/m3

Mf 1.22·108 1.91·106 kg/s

Table 8.3: Inlet conditions for the monodisperse jet.

Monodisperse jet – Case A

Parameter (a) (b) (c) (d) (e) Units

ds 8 27 95 346 1300 µm

ρs 2500 2500 2052.5 1520.6 977 kg/m3

ǫs 0.063324 0.063324 0.077149 0.104162 0.162391

β 46.2 46.2 46.9 48.3 51.8

cmix 109 109 108 106 103 m/s

τs 0.0007 0.0078 0.0792 0.7783 7.0568 s

τMa 0.36 0.36 0.37 0.37 0.38 s

St 0.0019 0.0212 0.2138 2.0710 18.1518

Table 8.4: Monodisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 ·108
kg/s. Particle properties and characteristic time scales for different values of the particle diameter.

Monodisperse jet – Case B

Parameter (a) (b) (c) (d) (e) Units

ds 4 14 45 161 607 µm

ρs 2500 2500 2359.4 1835 1290.2 kg/m3

ǫs 0.015838 0.015838 0.016779 0.021571 0.030699

β 44.0 44.0 44.0 44.2 44.7

cmix 112 111 111 111 110 m/s

τs 0.0002 0.0021 0.0204 0.2034 2.0315 s

τMa 0.089 0.089 0.089 0.09 0.09 s

St 0.0019 0.0234 0.2276 2.2613 22.4634

Table 8.5: Monodisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Particle properties and characteristic time scales for different values of the particle diameter.
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Figure 8.3: Empirical relationship between particle density ρs and particle diameter ds. This relationship

is assumed in all the simulations proposed in this chapter.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−6

10
−4

10
−2

10
0

10
2

10
4

Particle diameter d
s

r 
=

 τ
s/τ

M
a

 

 

Case A

Case B
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and Case B.

114



8.2. Numerical investigation

� �

��

��

��

��

��

��

��

Figure 8.5: Monodisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22·108
kg/s. Logarithm to the base 10 of particle volume fractions from 10−7 to 10−1 and isolines of gas vertical

velocity [0:50:350] m/s at time t = 20 s. Comparison between different values of particle diameter: (a)

ds = 8 µm, St = 0.0019, (b) ds = 27 µm, St = 0.0212, (c) ds = 95 µm, St = 0.2138, (d) ds = 346
µm, St = 2.071, (e) ds = 1300 µm, St = 18.1518.
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Figure 8.6: Monodisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22·108
kg/s. Time-averaged axial profiles computed over the interval [16, 20] s of gas pressure, mixture density,

gas vertical velocity and gas temperature. Comparison between different values of particle diameter: (a)

ds = 8 µm, St = 0.0019, (b) ds = 27 µm, St = 0.0212, (c) ds = 95 µm, St = 0.2138, (d) ds = 346
µm, St = 2.071, (e) ds = 1300 µm, St = 18.1518.
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Figure 8.7: Monodisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf =
1.22 · 108 kg/s. Time-averaged axial profiles computed over the interval [16, 20] s of the differences

between particle and gas vertical velocity and temperature. Comparison between different values of

particle diameter: (a) ds = 8 µm, St = 0.0019, (b) ds = 27 µm, St = 0.0212, (c) ds = 95 µm,

St = 0.2138, (d) ds = 346 µm, St = 2.071, (e) ds = 1300 µm, St = 18.1518.
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Figure 8.8: Monodisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Logarithm to the base 10 of particle volume fractions from 10−7 to 10−1 and isolines of gas vertical

velocity [0:50:350] m/s at time t = 2 s. Comparison between different values of particle diameter: (a)

ds = 4 µm, St = 0.0019, (b) ds = 14 µm, St = 0.0234, (c) ds = 45 µm, St = 0.2276, (d) ds = 161
µm, St = 2.2613, (e) ds = 607 µm, St = 22.4634.

117



Chapter 8. Application of the finite volume method to the analysis of gas–particle

non-equilibrium effects on underexpanded volcanic jets

10
4

10
5

10
6

0

10

20

30

40

50

60

70

80

90

100

Gas pressure [Pa]

z
 [
m

]

 

 

(a)

(b)

(c)

(d)

(e)

10
0

10
1

0

10

20

30

40

50

60

70

80

90

100

Mixture density [kg/m
3
]

z
 [
m

]

 

 

(a)

(b)

(c)

(d)

(e)

−150 −100 −50 0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Gas vertical velocity [m/s]

z
 [
m

]

 

 

(a)

(b)

(c)

(d)

(e)

1150 1160 1170 1180 1190 1200 1210
0

10

20

30

40

50

60

70

80

90

100

Gas temperature [K]

z
 [
m

]

 

 

(a)

(b)

(c)

(d)

(e)

Figure 8.9: Monodisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Time-averaged axial profiles computed over the interval [1.5, 2] s of gas pressure, mixture density,

gas vertical velocity and gas temperature. Comparison between different values of particle diameter: (a)

ds = 4 µm, St = 0.0019, (b) ds = 14 µm, St = 0.0234, (c) ds = 45 µm, St = 0.2276, (d) ds = 161
µm, St = 2.2613, (e) ds = 607 µm, St = 22.4634.
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Figure 8.10: Monodisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 ·
106 kg/s. Time-averaged axial profiles computed over the interval [1.5, 2] s of the differences between

particle and gas vertical velocity and temperature. Comparison between different values of particle

diameter: (a) ds = 4 µm, St = 0.0019, (b) ds = 14 µm, St = 0.0234, (c) ds = 45 µm, St = 0.2276,

(d) ds = 161 µm, St = 2.2613, (e) ds = 607 µm, St = 22.4634.
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Dusty gas approximation of a monodisperse jet

Numerical experiments carried out in the previous section have shown that, for St <
1, particle dynamics are coupled to gas dynamics. Under this hypothesis, dusty gas

models are valid and can be applied to reproduce the multiphase flow [86]. Thus, we

apply the pseudogas model presented in Section 2.5 to repeat simulations (a), (b) and (c)

for Case A and to compare the results obtained with the dusty model and the multiphase

model. Numerical results obtained with dusty gas model for Case A, test case (b), are

shown in Figures 8.11 and 8.12. Similar results have been obtained for cases (a) and

(c). We can observe that the internal structure of the underexpanded multiphase jet is

reproduced correctly, even if some differences between the multiphase and the dusty

model results can be highlighted. In Figure 8.12 we observe how the dusty model tends

to underestimate the extreme values of the thermodynamic quantities reached across

the normal shock. Moreover, the equilibrium position of the normal shock obtained

with the dusty model is displaced about 50 meters towards the vent. If we compare the

shape of the normal shock obtained with the multiphase model (Figure 8.5b) and the

dusty gas model (Figure 8.11), we observe how in the first case the shock is strongly

concave downwards, whereas in the second case the shock is flattened in its central

part. This difference in the shape of the shock results in the displacement of the Mach

disk observed along the vertical axis of the jet.

Finally, the results obtained with the multiphase and the pseudogas models differ

in the upper part of the jet. First, the height of the jet obtained with the dusty model

is much larger than the one obtained with the multiphase model. Secondly, while the

equilibrium vertical velocity of the mixture at time t = 20 s is small but positive with

the multiphase model, with the dusty model it is negative, thus meaning that the mixture

is already collapsing under gravitational effects. However, it is worth recalling that the

particle Stokes number has been computed based on the underexpanded jet characteris-

tic time while the multiphase coupling in the subsonic plume region may be governed

by a different dynamics, implying a different definition of the Stokes number St.
In summary, for monodisperse mixtures numerical simulations overall justify the

use of the pseudogas approximation for particles with St ≪ 1. Despite some minor

differences, the decompression structure of the volcanic jets is well reproduced by the

dusty gas model.
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Figure 8.11: Monodisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf =
1.22 · 108 kg/s. Isolines of pseudogas vertical velocity [0:50:350] m/s and mixture temperature from

280 to 1200 K at time t = 20 s. Comparison between (a) dusty model results and (b) multiphase model

results for test (b) ds = 27 µm, St = 0.0212.
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Figure 8.12: Monodisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf =
1.22 · 108 kg/s. Time-averaged axial profiles computed over the interval [16, 20] s of gas pressure,

mixture density, mixture vertical velocity and mixture temperature. Comparison between Multiphase

model results and Dusty model results for test (b) ds = 27 µm, St = 0.0212.
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8.2.2 Bidisperse mixtures

Let us consider a bidisperse mixture composed by water vapor and two classes of solid

particles. The same vent conditions for Case A and Case B are considered, see Table

8.3, and the mixture composition is varied by maintaining the mass flow rate constant.

For Case A, three different mixture compositions are considered, as shown in Table

8.6. We consider two classes of solid particles, with diameters equal to 27µm (τs1 =
0.00078) and 1300 µm (τs2 = 7.1 s), respectively. In the three cases, the Mach disk

formation time is almost constant, i.e. τMa ≃ 0.38 s. In test case (a), the volume

fractions of the two classes of solid particles are comparable, i.e. ǫs1 = 0.043755
and ǫs2 = 0.050184. In case (b), the volume fraction of finer particles is reduced

to ǫs1 = 0.0045297, whereas the concentration of coarser particle is increased up to

ǫs2 = 0.15078. Finally, in case (c) the volume fraction of finer particles is much smaller

that the one of of larger particles, i.e. ǫs1 = 0.0001 and ǫs2 = 0.16213. The Stokes

number for the finer particles is equal to 0.02, thus we can assume that the first class of

particles is tightly coupled to the gas phase. Larger particles have Stokes number equal

to 18 and may display a different dynamics with respect to the gas phase.

Numerical results of tests (a), (b) and (c) for Case A are shown in Figure 8.14. We

can observe how in cases (a) and (b) the standard structure of homogeneous underex-

panded jets is observed, with the formation of the normal shock wave at 350 meters

from the vent. The presence of the normal shock and its position can be clearly ob-

served in Figure 8.15, where the axial profiles of thermodynamic quantities are shown.

In case (c), instead, the Mach disk is not forming.

In order to extend the analysis carried out in the previous section for monodisperse

mixtures to bidisperse mixtures, we introduce the dusty gas composed by pure water

vapor and the solid particles s1 (St ≪ 1), that are tightly coupled with the gas phase.

Pseudogas properties can be computed as described in Section 2.5 and they are re-

ported in Table 8.7. In particular, we account for the variation in the density, specific

gas constant and dynamic viscosity (we refer to [145] for the correction of the dynamic

viscosity, somehow accounting for the particle–particle drag). Larger particles s2 are

dispersed in the pseudogas phase, forming a monodispersed mixture. We can now ana-

lyze the bidisperse mixture as a monodisperse mixture, by considering the class of solid

particles s2 moving in a dusty gas with averaged properties. As a result, the Mach disk

formation time remains unchanged, whereas the particle relaxation time τs2,ps varies as

a function of the pseudogas properties (specifically, the pseudogas dynamic viscosity).

In case (a), the particle characteristic time decreases to 0.006 s, in case (b) to 0.32 s and

finally in case (c) it is equal to 6 s, see Table 8.7. Analogously, also the Stokes number

Sts2,ps decreases from the reference value of 18, which refers to particles s2 moving

in the pure gas, as the concentration of particles s1 increases in cases (c), (b) and (a).

The behaviour of Sts2,ps as a function of the dusty gas composition, i.e. ǫ1, is shown

in Figure 8.13. From the results computed in Table 8.7 and for the hypothesis (H2), in

cases (a) and (b) (St < 1) we expect the formation of the normal shock in the jet; on

the contrary, in case (c) (St > 1) we do not expect the formation of the normal shock.

Numerical results shown in Figures 8.14 and 8.15 confirm the validity of the analysis

of bidisperse underexpaded jets based on the expression of St proposed.
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The analysis carried out for test Case A has been repeated for test Case B, with

three different mixture compositions, as shown in Table 8.8. Parameters of the hybrid

pseudogas-multiphase model are reported in Table 8.9. As in Case A, tests (a) and

(b) are characterized by a value of Sts2,ps lower than one for particles s2 moving in

the dusty gas, whereas in case (c) we obtain Sts2,ps = 13.6, as shown in Figure 8.13.

In Figure 8.16 we observe how in cases (a) and (b) the Mach disk is forming at 50

meters from the vent, whereas in case (c) the jet does not present the normal shock.

The conclusion is supported by the axial profiles of the thermodinamic quantities along

the jet centerline.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

10
1

10
2

ε
1

r 2 =
 τ

s2
/τ

M
a

 

 

Case A

Case B

Figure 8.13: Bidisperse jet. Stokes number Sts2,ps =
τs2,ps
τMa,ps

as a function of fine particle concentration

ǫs1 for Case A and Case B.
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Bidisperse jet – Case A

Parameter (a) (b) (c) Units

ds1 27 27 27 µm

ρs1 2500 2500 2500 kg/m3

ǫs1 0.043755 0.0045297 0.0001

%wts1 69 7 0.16

ds2 1300 1300 1300 µm

ρs2 977 977 977 kg/m3

ǫs2 0.050184 0.15078 0.16213

%wts2 31 93 99.84

β 48 51 52

cmix 107 103 103 m/s

τMa 0.37 0.38 0.39 s

τs1 0.0078 0.0078 0.0078 s

τs2 7.1 7.1 7.1 s

Sts1 0.021 0.02 0.02

Sts2 18.9 18.2 18.1

Table 8.6: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 · 108
kg/s. Particle properties and characteristic time scales for different mixture composition.

Bidisperse jet – Case A – Hybrid model

Parameter (a) (b) (c) Units

ρps 119 17.0 3.9 kg/m3

Rps 14 99 427 J/kg·K
µps 1.5·10−2 2.8·10−4 1.5·10−5 Pa·s
cp,ps 1023 1171 1739 J/kg·K
ds2 1300 1300 1300 µm

ρs2 977 977 977 kg/m3

ǫs2 0.050184 0.15078 0.16213

βps 0.42 10.2 47.8

cmix,ps 107 103 103 m/s

τMa,ps 0.37 0.38 0.39 s

τs2,ps 0.006 0.32 6.0 s

Sts2,ps 0.016 0.839 15.5

Table 8.7: Bidisperse jet. Hybrid pseudogas-multiphase model. Case A. Dv = 80 m, K = 20, ρmix =
161.74 kg/m3 and Mf = 1.22 · 108 kg/s. Pseudogas properties, particle properties and characteristic

time scales.
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Figure 8.14: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 · 108
kg/s. Logarithm to the base 10 of total particle volume fractions from 10−7 to 10−1 and isolines of gas

vertical velocity [0:50:350] m/s at time t = 20 s. Comparison between different mixture composition:

(a) ǫs1 = 0.043755, ǫs2 = 0.050185, (b) ǫs1 = 0.0045297, ǫs2 = 0.15078, (c) ǫs1 = 0.0001, ǫs2 =
0.16213.
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Figure 8.15: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 · 108
kg/s. Time-averaged axial profiles computed over the interval [16, 20] s of gas pressure, mixture density,

gas vertical velocity and gas temperature. Comparison between different mixture composition: (a) ǫs1 =
0.043755, ǫs2 = 0.050185, (b) ǫs1 = 0.0045297, ǫs2 = 0.15078, (c) ǫs1 = 0.0001, ǫs2 = 0.16213.
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Figure 8.16: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Logarithm to the base 10 of total particle volume fractions from 10−7 to 10−1 and isolines of gas

vertical velocity [0:50:350] m/s at time t = 2 s. Comparison between different mixture composition:

(a) ǫs1 = 0.01, ǫs2 = 0.011316, (b) ǫs1 = 0.006, ǫs2 = 0.019069, (c) ǫs1 = 0.0001, ǫs2 = 0.030505.
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Figure 8.17: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Time-averaged axial profiles computed over the interval [1.5, 2] s of gas pressure, mixture density,

gas vertical velocity and gas temperature. Comparison between different mixture composition: (a) ǫs1 =
0.01, ǫs2 = 0.011316, (b) ǫs1 = 0.006, ǫs2 = 0.019069, (c) ǫs1 = 0.0001, ǫs2 = 0.030505.
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Dusty gas approximation of a bidisperse jet

Numerical simulations for bidisperse mixtures proposed in the previous section have

been repeated adopting the pseudogas approach and introducing an hybrid pseudogas-

multiphase model. The values of the Stokes number St with respect to the pure gas is

used to classify particles. In the following simulations, the class of solid particles si
is included in the pseudogas phase if the value of Stsi is smaller than one, otherwise

multiphase conservation equations for si are solved. In particular, in the simulations

presented in this section particles s1 are included in the dusty gas, whereas particles

s2 are considered as a distinct phase (see the corresponding values of St in Tables 8.6

and 8.8). Consequently, the resulting model is a hybrid pseudogas-multiphase model in

which only two distinct phases are actually solved.

Numerical results for Case A are shown in Figures 8.18, 8.20 and 8.22 and Figures

8.19, 8.21 and 8.23, where a comparison between hybrid pseudogas-multiphase model

and multiphase model results is proposed.

In test case (a) (Figures 8.18 and 8.19), results obtained with the hybrid model are in

agreement with those obtained with the multiphase model in the decompression region.

The profiles of thermodynamic quantities along the vertical axis of the jet are almost

equal, as well as the location of the Mach disk and the jump of thermodynamic vari-

ables through it. As observed in the monodisperse test cases, some differences can be

highlighted in the upper part of the jet, both in the height of the volcanic column and in

the values of the velocity and the temperature.

In test case (b) (Figures 8.20 and 8.21) and test case (c) (Figures 8.22 and 8.23),

both the structure of the decompression region and the values of the thermodynamic

quantities along the axis of the jet are in good agreement and only small differences

are observed in the upper part of the volcanic column. In particular, both the multi-

phase and the hybrid model predict the absence of the normal shock wave inside the

underexpanded jet.

In order to assess the robustness of the proposed approach, the hybrid pseudogas-

multiphase model has been applied to reproduce test (a), (b) and (c) for Case B. As

shown in Figures 8.24, 8.26 and 8.28 and Figures 8.25, 8.27 and 8.29, numerical results

obtained with the two models are in agreement and only small differences are observed

in the thermodynamic quantities in the upper part of the volcanic column.
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Bidisperse jet – Case B

Parameter (a) (b) (c) Units

ds1 14 14 14 µm

ρs1 2500 2500 2500 kg/m3

ǫs1 0.01 0.006 0.0001

%wts1 63 35 0.63

ds2 607 607 607 µm

ρs2 1290.2 1290.2 1290.2 kg/m3

ǫs2 0.011316 0.019069 0.030505

%wts2 37 65 99.37

β 44.2 44.4 44.7

cmix 111 111 111 m/s

τMa 0.09 0.09 0.09 s

τs1 0.002 0.002 0.002 s

τs2 2.0 2.0 2.0 s

Sts1 0.023 0.023 0.023

Sts2 22.6 22.5 22.5

Table 8.8: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106 kg/s.

Particle properties and characteristic time scales for different mixture composition.

Bidisperse jet – Case B – Hybrid model

Parameter (a) (b) (c) Units

ρps 26.5 16.3 1.2 kg/m3

Rps 15.9 25.9 360.2 J/kg·K
µps 1.1·10−2 4.1·10−3 2.1·10−5 Pa·s
cp,ps 1028 1045 1624 J/kg·K
ds2 607 607 607 µm

ρs2 1290.2 1290.2 1290.2 kg/m3

ǫs2 0.011316 0.019069 0.030505

βps 0.56 1.54 34.6

cmix,ps 111 111 111 m/s

τMa,ps 0.09 0.09 0.09 s

τs2,ps 0.0025 0.0064 1.24 s

Sts2,ps 0.027 0.071 13.6

Table 8.9: Bidisperse jet. Hybrid pseudogas-multiphase model. Case B. Dv = 20 m, K = 5, ρmix =
40.5 kg/m3 and Mf = 1.91 · 106 kg/s. Pseudogas properties, particle properties and characteristic time

scales.
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Figure 8.18: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 ·
108 kg/s. Logarithm to the base 10 of particle s2 volume fraction from 10−7 to 10−1 and isolines of

pseudogas vertical velocity [0:50:350] m/s at time t = 20 s. Comparison between (a) hybrid pseudogas-

multiphase model and (b) multiphase model for the test case (a) Sts2,ps = 0.016.
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Figure 8.19: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 · 108
kg/s. Time-averaged axial profiles computed over the interval [16, 20] s of gas pressure, mixture density,

mixture vertical velocity and mixture temperature. Comparison between fully multiphase model results

(Multiphase) and hybrid pseudogas-multiphase model results (Dusty) for test (a) Sts2,ps = 0.016.
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Figure 8.20: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 ·
108 kg/s. Logarithm to the base 10 of particle s2 volume fraction from 10−7 to 10−1 and isolines of

pseudogas vertical velocity [0:50:350] m/s at time t = 20 s. Comparison between (a) hybrid pseudogas-

multiphase model and (b) multiphase model for the test case (b) Sts2,ps = 0.839.
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Figure 8.21: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 · 108
kg/s. Time-averaged axial profiles computed over the interval [16, 20] s of gas pressure, mixture density,

mixture vertical velocity and mixture temperature. Comparison between fully multiphase model results

(Multiphase) and hybrid pseudogas-multiphase model results (Dusty) for test (b) Sts2,ps = 0.839.
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Figure 8.22: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 ·
108 kg/s. Logarithm to the base 10 of particle s2 volume fraction from 10−7 to 10−1 and isolines of

pseudogas vertical velocity [0:50:350] m/s at time t = 20 s. Comparison between (a) hybrid pseudogas-

multiphase model and (b) multiphase model for the test case (c) Sts2,ps = 15.5.
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Figure 8.23: Bidisperse jet. Case A. Dv = 80 m, K = 20, ρmix = 161.74 kg/m3 and Mf = 1.22 · 108
kg/s. Time-averaged axial profiles computed over the interval [16, 20] s of gas pressure, mixture density,

mixture vertical velocity and mixture temperature. Comparison between fully multiphase model results

(Multiphase) and hybrid pseudogas-multiphase model results (Dusty) for test (c) Sts2,ps = 15.5.
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Figure 8.24: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 ·106 kg/s.

Logarithm to the base 10 of particle s2 volume fraction from 10−7 to 10−1 and isolines of pseudogas

vertical velocity [0:50:350] m/s at time t = 2 s. Comparison between (a) hybrid pseudogas-multiphase

model and (b) multiphase model for the test case (a) Sts2,ps = 0.027.
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Figure 8.25: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Time-averaged axial profiles computed over the interval [1.5, 2] s of gas pressure, mixture density,

mixture vertical velocity and mixture temperature. Comparison between fully multiphase model results

(Multiphase) and hybrid pseudogas-multiphase model results (Dusty) for test (a) Sts2,ps = 0.027.
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Figure 8.26: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 ·106 kg/s.

Logarithm to the base 10 of particle s2 volume fraction from 10−7 to 10−1 and isolines of pseudogas

vertical velocity [0:50:350] m/s at time t = 2 s. Comparison between (a) hybrid pseudogas-multiphase

model and (b) multiphase model for the test case (b) Sts2,ps = 0.071.
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Figure 8.27: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Time-averaged axial profiles computed over the interval [1.5, 2] s of gas pressure, mixture density,

mixture vertical velocity and mixture temperature. Comparison between fully multiphase model results

(Multiphase) and hybrid pseudogas-multiphase model results (Dusty) for test (b) Sts2,ps = 0.071.
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Figure 8.28: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 ·106 kg/s.

Logarithm to the base 10 of particle s2 volume fraction from 10−7 to 10−1 and isolines of pseudogas

vertical velocity [0:50:350] m/s at time t = 2 s. Comparison between (a) hybrid pseudogas-multiphase

model and (b) multiphase model for the test case (c) Sts2,ps = 13.6.
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Figure 8.29: Bidisperse jet. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3 and Mf = 1.91 · 106
kg/s. Time-averaged axial profiles computed over the time interval [1.5, 2] s of gas pressure, mixture

density, mixture vertical velocity and mixture temperature. Comparison between fully multiphase model

results (Multiphase) and hybrid pseudogas-multiphase model results (Dusty) for test (c) Sts2,ps = 13.6.
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Effects of particle–particle drag

Numerical results in the previous sections have shown how the analysis based on the

Stokes number allows to investigate the decompression dynamics of underexpanded

volcanic jets when the mixture composition changes. Following the hypothesis (H2),

when the Stokes number of larger particles moving in the dusty gas is smaller than one,

the Mach disk forms inside the jet, causing an abrupt change in the thermodynamic

quantities. On the other hand, when the Stokes number is larger than one, the normal

shock does not form.

Concerning the hypothesis (H1), i.e. the coupling between the gas phase and solid

particles, we now focus on Case B (analogous results hold for Case A). In test cases

(a) and (b), both finer particles s1 and coarser particles s2 have St < 1, thus they are

expected to be tightly coupled with the gas phase. In case (c), fine particles s1 (St < 1)

should be tightly coupled with the gas phase, whereas coarse particles s2 (St > 1) may

display a different behaviour.

In Figure 8.30, the difference between gas and particle velocity is shown for both

particles s1 and s2, in cases (a), (b) and (c). In cases (a) and (b), results are almost

equal. Particles s1 are coupled with the gas phase in the expansion region, where only

a small delay of few meters per second is observed. A strong and localized jump is

observed at the shock location (50 m), where a maximum difference of about 50 m/s

between particles and gas velocity is reached. Above the shock, particles equilibrate to

the gas velocity in few meters.

A similar dynamics is observed for larger particles s2 in cases (a) and (b), even

if a larger delay is reached in the expansion region (almost 20 m/s). Moreover, the

maximum velocity difference through the shock is about 140 m/s. However, also for

particles s2 only few meters are needed to equilibrate to the surrounding gas velocity.

In test case (c), both fine and coarse particles are strongly decoupled from the gas

phase. Particles s2 accumulate a large delay in the expansion region, up to 50 m/s in

the first 15 meters from the vent, where the gas phase is accelerating from 150 to 250
m/s. Then, the gas phase decelerates and particles take almost 100 m to equilibrate

gradually to the gas velocity. Fine particles s1, which are expected to be coupled to the

gas phase, display a maximum delay of 30 m/s at 15 m from the vent, and then grad-

ually equilibrate to the gas velocity. This behaviour suggests that in case (c), where

coarse particles are more abundant and only a small volume fraction of fine particles

is present, particle–particle drag force has a dominant role in the mixture dynamics

with respect to the gas–particle drag. Particle–particle drag effects are partly included

in the pseudogas approximation introduced in the previous section through the cor-

rection on the pseudogas dynamic viscosity. Thus, the pseudogas-multiphase model

describes quite well the decompression dynamics of the bidisperse underexpanded jet

and reproduced correctly the Mach disk formation. However, only a fully multiphase

model is able to reproduce the non-equilibrium dynamics of fine particles ascribable to

the particle–particle drag. Concerning the computed Stokes number, interactions be-

tween different classes of solid particles have been considered only for larger particles

through the correction on the pseudogas dynamic viscosity, but it has been neglected

in the computation of St for fine particles. This approximation may explain the dis-

crepancy between the expected behaviour of fine particles in the jet and the observed

non equilibrium dynamics. An appropriate correction should be indroduced also in
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the computation of the Stokes number for fine particles, when also larger particles are

present in the multiphase mixture. Further investigation is thus needed in order to in-

clude particle–particle interactions in the study of both the mechanical equilibrium of

the gas–particle mixture and the fluid dynamics of multiphase underexpanded jets.
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Figure 8.30: Bidisperse jet. Multiphase model. Case B. Dv = 20 m, K = 5, ρmix = 40.5 kg/m3

and Mf = 1.91 · 106 kg/s. Time-averaged axial profiles computed over the interval [1.5, 2] s of the

differences between particle and gas vertical velocity and temperature. Comparison between different

mixture composition: (a) Sts2,ps = 0.027, (b) Sts2,ps = 0.071, (c) Sts2,ps = 13.6.
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8.2.3 Polydisperse mixtures

In this section we introduce an hybrid pseudogas-multiphase model that allows to

consider a mixture composed by the gaseous phase and N classes of solid particles.

The multiphase model that describes the dynamics of the N + 1 phases is reduced to

pseudogas-multiphase model in which only one pseudogas phase and only one class of

solid particles are simulated.

The initial spectrum of solid particles is partitioned into two subsets with respect to

the particle relaxation time. The relaxation time of each particle class is computed and

compared with the Mach disk formation time by means of the Stokes number St =
τs/τMa. If Sti < 1, the class of solid particles si is classified as fine, otherwise the class

is classified as coarse. As in the previous sections, fine particles are included, together

with the pure gas, into the dusty gas phase. Coarse particles are grouped together into

one single class of solid particles with averaged properties. In particular, following [79],

the average coarse density is computed as:

ρC = (1− yps)

[
∑

s:Sts≥1

ys
ρs

]−1

(8.10)

and the average coarse diameter is computed as:

dC =

[
∑

s:Sts≥1

ys
ρs

][
∑

s:Sts≥1

ys
ρsds

]−1

. (8.11)

Here, ys and yps are the mass fractions of the solid particles and the pseudogas, respec-

tively.

We test the proposed approach on a test case representing a typical Plinian eruption,

for which the total grain size distribution was assumed following Mount St. Helens

1980 data [20]. Initial conditions and eruptive parameters are the same of Case A,

except for mixture composition. Vent conditions are described in Table 8.10. Solid

particle distribution in terms of mass percentage is shown in Figure 8.31. In this test

case, 14 classes of solid particles are considered. In Table 8.11 their properties are

listed. Diameters vary from 2 µm to 16 mm and the corresponding density range is

included between 800 and 2500 kg/m3. The relaxation time and the Stokes number

of each particles moving in the pure water vapor jet (τMa ≃ 0.37 s) is computed.

The first 8 classes of solid particles have Stokes number smaller than one, thus they

will be included, together with water vapor, in the pseudogas phase. The resulting

pseudogas properties are reported in Table 8.12. The remaining 6 classes have Stokes

number larger than one, thus they are included in a unique solid phase, with averaged

properties. The new coarse particle sC has diameter dC equal to 780 µm and density ρC
equal to 1136 kg/m3. Using the pseudogas properties and the coarse particles averaged

properties, the Mach disk formation time in the pseudogas-multiphase mixture remains

almost unchanged, i.e. τMa ≃ 0.37 s. The relaxation time of particles sC moving in the

pseudogas is about 7 · 10−4 s and its Stokes number is 0.0019.

The polydisperse jet is simulated with both the fully multiphase approach and the

hybrid pseudogas-multiphase model. Numerical results are shown in Figure 8.32. The

results obtained with the two models are in qualitative and quantitative results. The
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Figure 8.31: Polydisperse jet. Solid particles distribution. Mass percentage as a function of particle

diameter ds

Mach disk is located at 300 m from the vent and the volcanic column rises in the atmo-

sphere beyond 2500 m. In Figure 8.33 the thermodynamic quantities along the vertical

axis of the jet are shown for the two models. Gas pressure, mixture density and mixture

velocity are in agreement and only a small difference of less than 10 K is observed in

the mixture temperature.

Numerical results obtained with the hybrid pseudogas-multiphase model are consis-

tent with the fully multiphase description and highlight the key effect of the total grain

size distribution on the underexpanded jet. At the same time, the number of phases

that are actually solved decreases from N + 1 to 2, where N is the number of particle

classes, and the computational cost is drastically reduced by a factor of order N . As

an example, to simulate 20 s of eruptions, the fully multiphase model ran for 272 hours

on 16 parallel processors, whereas the hybrid model took only 68 hours on 8 proces-

sors. In conclusion, the hybrid pseudogas-multiphase model can effectly describe the

dynamics of polydisperse underexpanded jets on the volcanic scale while reducing the

computational cost of numerical simulations.
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Polydisperse jet

Parameter Units

Dv 80 m

K 20

Patm 101325 Pa

Tatm 298 K

wg 150 m/s

Pg 2026500 Pa

Tg 1200 K

ρg 3.7 kg/m3

ws 150 m/s

Ts 1200 K

ρmix 160 kg/m3

Mf 1.2·108 kg/s

Table 8.10: Inlet conditions for the polydisperse jet.

Polydisperse jet

Class ds (µm) ρs(kg/m3) ǫs τs (m/s) St

1 2 2500.0 0.0005 1.7 · 10−5 4.7 · 10−5

2 4 2500.0 0.004 7.0 · 10−5 1.9 · 10−4

3 8 2500.0 0.0096 2.8 · 10−4 7.6 · 10−4

4 16 2500.0 0.0127 1.1 · 10−3 3.0 · 10−3

5 31 2500.0 0.01 4.5 · 10−3 1.2 · 10−2

6 63 2224.8 0.0075 1.6 · 10−2 4.3 · 10−2

7 125 1939.8 0.0097 5.6 · 10−2 1.5 · 10−1

8 250 1654.9 0.0073 1.9 · 10−1 5.2 · 10−1

9 500 1369.9 0.0073 6.3 · 10−1 1.7
10 1000 1084.9 0.003 2.0 5.4
11 2000 800.0 0.0018 5.9 1.6 · 101
12 4000 800.0 0.0014 2.3 · 101 6.4 · 101
13 8000 800.0 0.0008 9.4 · 101 2.5 · 102
14 16000 800.0 0.0006 3.8 · 102 1.1 · 103

Table 8.11: Polydisperse jet. Solid particle distribution and properties. The total grain size distribution

is assumed following Mount St. Helens 1980 data [20].
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Polydisperse jet – Hybrid model

Parameter Units

ρps 145.2 kg/m3

Rps 10.9 J/kg·K
µps 0.0537 Pa·s
cp,ps 1018.9 J/kg·K
dC 780 µm

ρC 1136.6 kg/m3

ǫC 0.0149

βC 0.18

cmix,ps 108.7 m/s

τMa,ps 0.37 s

τC,ps 7.1·10−4 s

StC,ps 0.0019

Table 8.12: Polydisperse jet. Pseudogas properties, average coarse particle properties and characteristic

time scales for the hybrid pseudogas-multiphase model.
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Figure 8.32: Polydisperse jet. StC,ps = 0.0019. Comparison between (a) hybrid pseudogas-multiphase

model and (b) fully multiphase model. Logarithm to the base 10 of coarse particle volume fraction from

10−7 to 10−1 and isolines of pseudogas vertical velocity ([0:50:350] m/s) at time t = 20 s.
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Figure 8.33: Polydisperse jet. StC,ps = 0.0019. Time-averaged axial profiles computed over the interval

[15, 20] s of gas pressure, mixture density, mixture vertical velocity and mixture temperature. Compari-

son between fully multiphase model results (Multiphase) and hybrid pseudogas-multiphase model results

(Dusty).
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CHAPTER9

Conclusions

THIS thesis has been devoted to the numerical modeling of multiphase gas–particle

flows. This work has been motivated by the need of developing new and more

accurate numerical tools for the simulation of explosive volcanic eruptions.

However, the developed methodology and techniques are general and can be applied to

the many different multiphase gas–particle flows that can be encountered in geophysi-

cal and industrial applications. In this chapter I summarize the main results achieved.

After a discussion on different approaches to the mathematical modeling of mul-

tiphase gas–particle flows, a model based on the Eulerian approach is presented for

a mixture of a gaseous phase and N classes of solid particles. Appropriate closure

equations are introduced, based on literature review. The dimensional analysis of the

multiphase equations is carried out for significant test problems, both on the volcanic

scale and the laboratory scale. In complex flow regimes, such as those encountered

in natural volcanic phenomena, dimensional analysis is an effective tool to interpret

numerical simulations and to reduce the physical and computational complexity of the

model. The relative importance of different physical phenomena that take place in the

volcanic jet and in the pyroclastic density current have been assessed. In the volcanic jet

problem, we have shown that the ejected multiphase mixture can be well approximated

as inviscid. Gravitational effects and dissipation due to viscous and drag forces are neg-

ligible. Compressibility effects are important and a transonic regime can be expected.

Moreover, the hypothesis of equilibrium between different phases is not always valid

and a fully multiphase mathematical model is needed to investigate the non-equilibrium

dynamics between different phases. After the volcanic column collapse, in the pyro-

clastic current gravitational effects become dominant. When reproducing a multiphase

jet on the laboratory scale, particle dynamics is strongly decoupled from gas dynamics.
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Moreover, viscous dissipation and the work done by the drag force may play a key role

in the thermodynamics of the mixture in specific flow conditions. As a consequence,

the thermodynamics processes that influence the jet dynamics on the laboratory scale

significantly differ from those characterizing the volcanic jet dynamics.

Two distinct numerical approximations of the multiphase flow equations are pre-

sented and validated, based on the finite volume and the discontinuous Galerkin ap-

proach. The proposed finite volume scheme achieves second order accuracy in space

and time and it is validated against experimental and numerical results in both super-

sonic and subsonic regimes. The underexpanded jet problem on the laboratory and

volcanic scale, the particle-laden gravity current and the collapsing jet problem have

been taken as benchmark tests. Supersonic and subsonic regimes are well described

by the finite volume scheme. The multidimensional second order spatial discretization

is essential to accurately capture the shock wave pattern observed in underexpanded

jets and to reduce numerical diffusion. Validation against experiments and comparison

against numerical results is satisfactory.

The alternative p-adaptive discontinuous Galerkin approach allows to achieve higher

accuracy, while keeping a small computational stencil and a relatively limited computa-

tional cost thanks to a p-adaptivity approach, that was originally proposed for subsonic

flows and has been applied here successfully to supersonic problems. In the present

work, the discontinuous Galerkin scheme is applied to solve multiphase gas–particle

equations that accounts for drag and heat exchange coupling between different phases.

Appropriate flux limiting and slope limiting techniques, originally introduced in the

framework of scalar and linear equations, are applied to the proposed discontinuous

Galerkin approximation of the multiphase flow equations. The discontinuous Galerkin

approach has been tested on several benchmark problems in the one-dimensional case.

In particular, monophase and multiphase shock tube test cases have been considered in

order to assess the accuracy, the limiting techniques properties and the computational

efficiency obtained thanks to the p-adaptive approach. We have shown that slope lim-

iting and flux limiting techniques are essential in multiphase shock tube problems to

guarantee the positivity of physical quantities, e.g. volume fractions, and the stability

of the numerical solution. The p-adaptive approach is able to reduce the computa-

tional cost up to 50% by keeping a good accuracy on the numerical solution both in the

monophase and in the multiphase case.

Finally, the finite volume numerical model has been applied to study the effect of

gas–particle non-equilibrium on underexpanded volcanic jets by assuming monodis-

perse, bidisperse and polydisperse mixtures. By means of a scaling analysis based

on particle Stokes numbers, i.e., the ratio between the particle relaxation time and the

Mach disk formation time of the underexpanded jet, we could classify solid particulate

into two categories, namely fine and coarse particles. Fine particles are tightly coupled

with the gas phase and do not modify the structure of the shock wave pattern in the jet.

On the contrary, coarser particles are decoupled from the gas phase and strongly influ-

ence the jet decompression structure, including the intensity, shape and position of the

Mach disk. Depending on the mass ratio between fine (St ≪ 1) and coarse (St ≫ 1)
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particles, the jet flow pattern can dramatically change, leading to the obliteration of the

Mach disk structure. On the basis of the results of the time scale analysis, an hybrid

pseudogas-multiphase model is proposed, in which fine particles and the gas phase are

modeled together as a pseudogas with average thermodynamics properties, whereas

coarse particles are grouped together into a representative class of solid particles with

average properties. Numerical results confirm the validity of the hybrid approach for

the simulation of monodisperse, bidisperse and polydisperse underexpanded jets and

highlight the key effect of the total grain size distribution on the jet phase and on the

overall stability properties of the eruptive column.

The general approach adopted in the model formulation and in the proposed numer-

ical approximations allows, with the support of an appropriate dimensional analysis, to

extend the present work to other geophysical or industrial applications.
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