
Politecnico di Milano

Dipartimento di Elettronica, Informazione e Bioingegneria

LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

ISAAC � Integrated System Application and

Authorization Co-design

Thesis by

Diego Martinoia

Student ID

783081

Advisor: Prof. Matteo Pradella (Politecnico di Milano)

Co-advisor: Prof. Riccardo Sisto (Politecnico di Torino)

Co-advisor: Prof. Lenore D. Zuck (University of Illinois at Chicago)

A.A. 2012 � 2013

i

At the end of an era, it is hard to look back and identify all the peoples who

helped along the way. My family, my friends, my colleagues and my compan-

ions of venture: their e�ects on me were often so interlaced that it is almost

impossible to single out the individual sources of inspiration and motivation.

And it is not just the peoples: my luggage is full of memories of places, tastes,

sights and ideas1 that shaped me up to this day.

Everything and everyone I have met on my path, and also a few I have never

met, left something to me. I am really bad at remembering names, so I will

not list anyone: if you reading this are one of my muses, you will know. And

if you think you are not, believe me, you still are.

DM

�Homo sum,

humani nihil

a me alienum puto�

1Smells are missing from the list on purpose, as my nose is really bad at perceiving them.

ii

Abstract

The use of formal methods for system design and system property veri�-

cation is a topic of great interest in those application area where strong

security and reliability guarantees are required. Their goal is to proof

mathematically that if the system e�ectively re�ects the model used,

then the system will possess speci�c properties of interest.

These guarantees are often based on the assumption that, in general,

the inputs o�ered by the users of the system are reliable and legitimate.

In other words, during the design phase of the application part of the

system, the risk related to malevolent behaviors of the users is often ig-

nored. For these reason, the application part of the system is usually

backed up by an authorization part in charge of the access control as-

pects, i.e. determine and regulate who is allowed to do what within the

system.

Unfortunately, the commonly followed practice is to overlook the as-

pects related to authorization security until the end of the design of the

application part of the system. This introduces the risk that integrating

the two subsystems may be hard, ine�cient or even dangerous.

Another aspect of the topic is the fact that, often, the formal design

of systems is developed in a top-down fashion: starting from a very ab-

stract model of the system, the model gets re�ned step-by-step, adding

an increasing number of details, until a su�cient degree of concreteness

is reached.

Albeit the literature o�ers a number of approaches to both the prob-

lems of the management of access control and the veri�cation of system

properties during the re�nement steps, no method was found capable of

o�ering an e�cient solution to both problems simultaneously.

iii

This thesis introduces ISAAC, a theoretical framework for the integrated

co-design of the application and authorization parts of a system. ISAAC

allows to model a system at any level of abstraction, designing simul-

taneously the components related to the application and authorization

parts, to help verify the absence of circular dependencies among the sys-

tem interfaces, and to formally verify that the re�nements of the model

of the system do not introduce inconsistency.

Additionally, a case study modeling the functioning of an hospital as

a system is presented. The case study focuses on the subsystem related

to the management of personal and medical data of the patients, and

veri�es that the introduction of the possibility for inter-ward consulting

is implementable in a correct way, i.e. without invalidating the expected

behavior of the system.

In conclusion, the original contributions of this work are:

• O�ering a theoretical methodology for system design capable to in-

clude the authorization aspects of access control since the beginning

of the design phase of the application part of the system.

• O�ering a theoretical methodology for the formal veri�cation of the

consistency of the re�nement steps of a model a system.

• Testing ISAAC in a real-world case study, related to the modeling

of a subsystem of an hospital system.

iv

Ampio estratto

L'utilizzo di metodi formali per la progettazione di sistemi e veri�ca delle

loro proprietà è un tema di grande interesse in quegli ambiti applicativi

dove sono richieste forti garanzie di sicurezza ed a�dabilità. Il loro scopo

è quello di dimostrare matematicamente che, qualora il sistema rispecchi

il modello utilizzato, esso possiederà determinate proprietà di interesse.

Purtroppo però queste garanzie sono legate al funzionamento del siste-

ma supponendo che, in generale, gli ingressi ricevuti dai suoi utenti siano

tutti legittimi ed a�dabili. In altre parole, solitamente, non viene con-

siderato, durante la progettazione della parte applicativa del sistema, il

rischio che gli utenti abbiano comportamenti illegittimi. Per questo mo-

tivo, alla parte applicativa di un sistema viene solitamente a�ancata una

parte di controllo degli accessi, il cui scopo è di determinare e regolare

chi può fare cosa all'interno del sistema.

Sfortunamente, la pratica spesso seguita è di trascurare gli aspetti di

sicurezza, intesa riguardo al comportamento degli utenti e non alle ga-

ranzie contro gli incidenti imprevisti, �no a valle della progettazione della

parte applicativa del sistema, correndo così il rischio che l'inserimento del

sottosistema dedicato al controllo degli accessi sia di�cile, ine�cace o ad-

dirittura dannoso.

In aggiunta a questo, spesso la progettazione formale dei sistemi av-

viene per gradi e ra�namenti successivi: partendo da un modello molto

astratto del sistema, si procede via via aggiungendo un numero sempre

maggiore di dettagli, �no ad arrivare a un livello di concretezza su�cien-

te per lo scopo pre�ssato.

Sebbene esistano, in letteratura, molti approcci sia al problema della

gestione del controllo degli accessi che alla veri�ca delle proprietà del

sistema attraverso i suoi ra�namenti modellistici, non è stata trovata

v

nessuna metodologia in grado di o�rire simultaneamente una soluzione

e�cace ad entrambi gli aspetti.

In questa tesi viene presentata ISAAC, una metodologia teorica di ap-

proccio alla progettazione integrata delle parti di applicazione e controllo

degli accessi di un sistema. ISAAC consente di modellare rigorosamente

un sistema ad un qualsiasi livello di astrazione, progettando congiunta-

mente sia le componenti legate agli scopi applicativi che quelle legate alla

sicurezza, veri�care l'assenza di dipendenze circolari tra le interfacce del

sistema, e veri�care formalmente che eventuali ra�namenti del modello

del sistema siano tali da non introdurre inconsistenze.

Viene inoltre presentato un caso di studio che modelizza il funzionamen-

to di una parte di una struttura ospedaliera, in particolare quella legata

alla gestione dei dati personali e delle terapie dei pazienti, e che veri�ca

che l'introduzione di consulenze mediche tra i vari reparti è realizzabile

in modo corretto, cioè senza invalidare il comportamento previsto dal

modello di base che non prevede consulenze.

In sintesi, i contributi originali sono:

• Fornire una metodologia teorica per la progettazione di sistemi

che includa gli aspetti di sicurezza del controllo degli accessi �n

dall'origine della progettazione della parte applicativa del sistema.

• Fornire una metodologia teorica per la veri�ca formale della consi-

stenza dei passi di ra�namento del modello del sistema.

• Testare ISAAC in un caso d'uso del mondo reale, in particolare nella

modellizzazione di un sotto-sistema di una struttura ospedaliera.

Dopo l'introduzione, nel Capitolo 2 vegonono illustrati il contesto dei

metodi formali, le idee che hanno portato alla realizzazione di ISAAC e lo

stato dell'arte per quanto riguarda gli approcci formali alla progettazione

ed al ra�namento dei modelli di sistema.

vi

Nel Capitolo 3, viene introdotta la struttura di un modello di sistema

all'interno di ISAAC, descrivendone in dettaglio i moduli che lo compon-

gono. Viene successivamente mostrato come sia possibile veri�care, in

certi casi, l'assenza di dipendenze circolari tra le interfacce del sistema.

Il tutto viene illustrato utilizzando un esempio di sistema sempli�cato di

gestione di �le di sistema ispirato al modello Unix.

Il Capitolo 4 è dedicato alla speci�ca di un passo di ra�namento all'in-

terno di ISAAC, alla de�nizione di correttezza del ra�namento e alla

descrizione di come veri�carla. Viene ripreso, come esempio esplicativo,

il sistema di gestione di �le di sistema introdotto nel capitolo precedente.

Il caso d'uso è esposto nel Capitolo 5. Viene mostrato come sia possibile

usare ISAAC in scenari reali per veri�care, con relativa semplicità, la

correttezza di un ra�namento di sistema, nel caso speci�co inteso come

un'aggiunta di funzionalità.

Il tutto viene in�ne seguito dal Capitolo 6, contenente le conclusioni e le

possibili direzioni di sviluppo futuro.

Contents

1 Introduction 1

2 Background and related works 5

2.1 Background . 6

2.2 The idea behind ISAAC . 8

2.3 Related works . 10

3 One-level mode in ISAAC 11

3.1 One-level modeling . 12

3.1.1 Domains set . 15

3.1.2 Users set . 16

3.1.3 Application data . 16

3.1.4 Authorization data . 17

3.1.5 Interactions and actions 18

3.1.6 Semantics functions . 21

3.1.7 Additional aspects . 26

3.2 One-level reasoning . 29

3.2.1 Call graph computation 30

3.2.2 Call graph loops analysis 33

4 Two-levels mode in ISAAC 36

4.1 Two-levels modeling . 37

vii

CONTENTS viii

4.1.1 State-mapping function 37

4.1.2 Action-mapping function 42

4.1.3 Query-mapping function 43

4.2 Two-levels reasoning . 46

4.2.1 Action-mapping preservation 46

4.2.2 Action-mapping veri�cation example 47

4.2.3 Query-mapping preservation 50

4.2.4 Query-mapping veri�cation example 51

5 Case study: hospital scenario 55

5.1 Informal descriptions . 57

5.1.1 Wards . 57

5.1.2 Patients . 58

5.1.3 Therapies . 58

5.1.4 Exams . 58

5.1.5 Check-ups . 59

5.1.6 Nurses . 59

5.1.7 Doctors . 59

5.2 Basic model . 60

5.2.1 Domains . 60

5.2.2 Users . 61

5.2.3 Application data . 62

5.2.4 Authorization data . 63

5.2.5 Commands . 63

5.2.6 Queries . 64

5.2.7 Transition function . 66

5.2.8 Interpretation function 68

5.3 Re�ned model . 76

5.3.1 Application data . 76

5.3.2 Commands . 76

CONTENTS ix

5.3.3 Queries . 77

5.3.4 Transition function . 78

5.3.5 Interpretation function 79

5.4 Pairing elements . 82

5.4.1 State-mapping function 82

5.4.2 Action-mapping function 83

5.4.3 Query-mapping function 83

5.5 Proof of correctness . 85

5.5.1 Action-mapping preservation 85

5.5.2 Query-mapping preservation 86

5.6 Conclusions . 88

6 Conclusions 89

Bibliography 92

List of Figures 95

Appendix A Simple �le system manager - basic model 97

Appendix B Simple �le system manager - re�ned model 102

Introduction 1

Formal methods for system design have been around for a long time. Formal

methods are mathematical techniques for the speci�cation, design and veri-

�cation of systems. Their main goal is to analyze the design of a system,

not necessarily a computer system, and to verify in a mathematically rigorous

way whether the proposed solution is correct, before starting its implemen-

tation. It is commonly recognized that the cost to �x an error in a system

increases by orders of magnitude according to how late the bug is detected

in the system life-cycle, but a thorough veri�cation of a design is a long and

expensive activity, which is often overlooked to give precedence to other fac-

tors, such as time-to-market. The usual compromise adopted in the industry

is to use testing techniques, such as model checking or unit testing, instead of

formal veri�cation, to detect �aws in the design. The main advantage of these

techniques is that they can be performed automatically by the machine, and

therefore executed in a reasonably fast time. Unfortunately, �program testing

can be used to show the presence of bugs, but never to show their absence!�1

i.e. no matter how vast the coverage of a testing system is, it cannot guaran-

1E. W. Dijkstra, 1970

1

tee the correctness of the solution in exam. Additionally, when talking about

computer systems, the digital nature of the technology makes it so that the

interpolation of results, commonly accepted for analog systems, is meaning-

less: if a bridge can withstand 100 Mg of load, it is reasonable to assume it

can also withstand lighter loads; if an input parser performs correctly on a 100

character long string, there is no guarantee it will work also with a shorter

one, or even with an empty or �null� one.

In general, formal veri�cation is used almost only in the design of critical

systems, either where human lives or huge �nancial capitals are at stake dur-

ing the implementation and execution phases, such as in the aerospace sector,

in chip design or in the automotive and transportation sector. In most of the

application cases, it is considered important to verify that the system is be-

having correctly when operated correctly from its users: while it is normally

the case that safety constraints consider also incorrect or dangerous inputs, a

stronger emphasis is put on the correct elaboration of the inputs, rather than

on whether the users are doing the right thing.

Nonetheless, one of the critical aspects of any system is access control, i.e.

who is authorized to do what. While it is common to associate access control

with information management systems, access control is actually a core issue

in any kind of system, also non computer-based ones. Over the course of the

years, a number of access control systems have been formally described and

tested, such as Access Matrices, Role-Based Access Control or Bell-La Padula

Access Control and their variants. These examples are application agnostic,

in the sense that they can easily be adapted to �t in any kind of application

that requires some sort of access control management. While their structure

has been proved to be correct and safe when left by themselves, it is easy to

imagine that plugging one access control systems in an existing application �in

2

the wrong way� could lead to bugs, information leaks or security vulnerabilities.

The goal of this work is to try and propose a novel formal method frame-

work for the co-design of applications and their access control systems. This

work focuses on both the speci�cation of a joint model of the whole system,

composed by the application and access control elements, at a given level of

abstraction, and the veri�cation of the correctness of a single re�nement step

from a more abstract to a more concrete model. At the single level of ab-

straction, the framework describes the system as a combination of mutable

and immutable elements, usually represented by mathematical entities such as

sets and higher order functions, while the correctness of the re�nement step is

de�ned as the combination of how the interfaces of the system are translated

and how the system states are mapped from the higher level of abstraction to

the more concrete one.

In summary, the main advantages of the proposed framework are:

• The framework is general purpose: it can be applied to any kind of

system, not just computer-based ones.

• The framework assists, at the single level of abstraction, with the veri�-

cation of deadlocks between interfaces calls using parametric graphs.

• The framework o�ers the possibility to specify the system for any general

state or for partially or totally speci�ed states. This is useful when

knowledge about the state is necessary to prove system properties, or to

limit the veri�cation to speci�c states.

• The framework is designed to work during re�nement steps of the system

model, but can also be used to verify the correctness of the mapping of

two di�erent systems. This is useful, for example, when a system has to

be replaced and it is necessary to prove that the new one will o�er the

same behavior of the old one.

3

• The framework is designed to be easy to implement in automated veri-

�cation systems, to let the machine help with the tedious details of the

proofs.

4

Background and related works 2

This chapter illustrates brie�y the background in the research related to for-

mal methods applied to system design and access control systems.

In the �rst section, the reader is given background knowledge about what

formal methods are, what access control systems are and how these two topics

are related in the literature.

The second section explains the ideas that led to the development of ISAAC,

starting from considerations related to the current research trends.

The third section o�ers a quick overview of related works in the state of the

art on the topics of access control and system model re�nement.

5

2.1. Background

2.1 Background

Giving a precise de�nition of Formal Methods (FM's) is hard: they come in

many �avors and are used in many application �elds, and their research and

evolution are in continuous change. Borrowing the de�nition from [1], one

can imagine formal methods as �all notations having a precise mathematical

de�nition of both their syntax and semantics [...] that allow for describing and

reasoning about the behavior of systems in a formal manner �. Formal methods

can roughly be divided in two main categories: notation techniques and analy-

sis techniques. The former are those methods used to describe a system, such

as Petri nets [2], temporal logic [3] or more industry-oriented tools such as Z [4]

or B [5]. The latter, on the other hand, are used to reason about and, possibly,

prove properties of a system. Examples in this category are model checking

techniques, such as SPIN [6], and automated theorem provers, such as PVS [7].

One of the false myths about formal methods is that no one uses them: formal

methods are nowadays used extensively in all those areas that require strong

security and correctness guarantees, both in the computer science �eld and

outside of it. In particular, formal methods are becoming a major topic in the

�eld of system security, with a strong focus on the sub-topic of access control.

Access control refers to �any method or mechanism by which the access to and

by entities of the system is regulated � [8]. In particular, system administrators

usually de�ne a policy which states who can do what in the system, and every

request made by the users is submitted to a policy decision point (PDP), which

interprets the current policy against the request and the user who made it, and

decides whether to grant the request or deny it. The expressiveness of the lan-

guage used to de�ne the policy a�ects not only the possibilities available to

the system administrator to combine di�erent rights, but also the possibility

for policies to be veri�ed automatically, both from the PDP at the time of

the requests and from the system designer during the design of the system.

6

2.1. Background

As usual, the more expressive a policy language is, the harder it is to verify

it automatically and the higher is the risk to introduce inconsistency. The

system consisting of the authorization policy, the PDP and the interfaces to

query and modify the current policy is usually referred to as an access control

system (ACS).

A number of works in the �eld of access control systems have been dedi-

cated to quantifying, in absolute or relative terms, the expressive power of

ACS's [9, 10, 11]. While it is important to know whether an ACS is expressive

enough to implement a given abstract policy, there is no guarantee that raw

expressive power alone will make it easy for the ACS to be integrated in the

rest of the system it is guarding, nor that it will fully preserve the host system

functionality. In other words, the fact that an ACS, when analyzed by itself,

has been proven strong in terms of expressiveness and safety, means nothing

once you actually have to plug it in the application system which it has to

guard. Too often the security of the system is taken in consideration only at

the end of the implementation, and the risk of purchasing commercial-grade,

o�-the-shelf security tools and just plugging them into an existing system hop-

ing it works is a common scenario, which usually leads to more or less serious

problems.

7

2.2. The idea behind ISAAC

2.2 The idea behind ISAAC

Starting from these consideration, a di�erent trend of research has stem: com-

paring access control systems not by their raw expressive power, but rather

by their �t towards the speci�c application they need to be implemented into.

From this perspective, being expressive enough is a necessary condition, but

not the only metric taken in consideration. Other common metrics include,

for example, ease of integration, ease of property veri�cation, scalability, and

safety. One of the theories adopting this approach is the so called Access Con-

trol Evalutation Framework [12], which was also implemented as a tool within

PVS by the author [13]. While ACEF was presenting an innovative approach

to the problem, its goal was still the one of verifying the validity of candidate

ACS's against an application system, i.e. after the application system design

was �nished. Unfortunately, this made ACEF still prone to the integration

phase issues discussed before when used in real-world scenarios.

From the previous experience with ACEF, ISAAC was designed with three

main goals in mind:

• Making the design of application and authorization systems integrated,

in order to minimize the risk of integration issues and forcing the system

designer to consider security since the beginning.

• O�ering an incremental approach to system design, i.e. re�nement, and

o�ering the tools to verify the consistency of the re�nements.

• Being designed in such a way to be general purpose and easy to imple-

ment inside automated veri�cation systems.

Most of the structure of ACEF was borrowed in ISAAC, but the meaning be-

hind the elements of the models have been radically changed, with the goal

of creating a perspective in line with the design principles mentioned. Other

8

2.2. The idea behind ISAAC

elements were created anew, starting from the previous experience with au-

tomated veri�cation systems, in order to facilitate future works towards the

automation of ISAAC.

9

2.3. Related works

2.3 Related works

Most of the recent proposal for access control system languages either impose

some sort of restrictions on the implementation of access control policies or

are not considering the co-design of application and authorization as a cru-

cial issue. Two notable exceptions are the works of Bertino et Al. [11] and

of Crampton and Morriset [14]. In particular, the latter abstracts an access

control system to its essential properties and is able to de�ne a language that

is almost completely free of restrictions. It is interesting to note that, albeit

the end results are di�erent, there are a number of similarities between the

work of Crampton and Morriset and ISAAC, such as the distinction between

authorization and application queries and the explicit de�nition of evaluation

functions as a key element of the analysis. Nonetheless, their work focuses on

the analysis of a single instance of system model, limiting the possibility to

apply their method to the design of big and complicated systems, as it does

not o�er tools for an incremental approach to the design of the system.

The need for tools for incremental re�nement veri�cation, on the other hand,

is a well studied problem approached in many di�erent ways by many di�erent

authors. Notable examples of this are the techniques of model driven engineer-

ing [15], model transformation [16], re�nement calculus [17, 18] and re�nement

for components and object systems [19].

The goal of ISAAC is to bring together these two aspects of generic system

application and security co-design and system model re�nement, in a such a

way that the formal approach does not get too cumbersome to the point of

being an obstacle to its application. None of the surveyed approaches shared

this same dual goal, either focusing on the former or latter aspect only.

10

One-level mode in ISAAC 3

ISAAC is designed to work in two di�erent modes: one-level modeling and two-

levels modeling. In one-level modeling the system is represented at a single

level of abstraction: there is a unique model of the system and the reasoning

focuses on �nding design �aws related to the presence of circular dependencies

between the system interfaces.

In the he �rst section of this chapter the content of a one-level model is il-

lustrated in detail, explaining the meaning and the structure of all its compo-

nents.

The second section explains how reasoning is carried out to analyze the pres-

ence of circular dependencies between the system interfaces.

11

3.1. One-level modeling

3.1 One-level modeling

When approaching the way ISAAC models system, there are a few things

to remember in order to understand the design decisions taken. First of all,

ISAAC has been designed with the goal of being as general as possible. The

trade-o� for this kind of comprehensiveness is a slightly large number of ele-

ments that must be speci�ed in the model. Additionally, since formal proofs

can be tedious in their details and many in numbers, ISAAC was designed

trying to make it easy to reproduce the methodology within formal proving

systems available o�-the-shelf. For this purpose, ISAAC requires the model to

be self-contained: all the elements of the system must be in the model, and

no outside information must be provided. This, apparently strong, constraint

guarantees that the behavior of all the sources of information is known in de-

tail, so that this knowledge can be used to carry out the veri�cation operations.

The elements of a system model in ISAAC can be split in two categories:

the mutable elements and the immutable elements. The mutable elements are

those data structure that may change their content during the execution of the

system. The set of all the mutable elements is called the state of the system.

The set of all possible states will be indicated by the symbol S, and it contains

any possible combination of values of the mutable elements. There are three

categories of mutable elements in any ISAAC model:

• The users set contains the list of all the active user ID's currently in the

system. It is indicated by the symbol U.

• The application data structures set is the set of all those data structure

containing information related to the functioning of the system with

respect to its goal. It is indicated by the symbol X.

• The authorization data structures set is the set of all those data structure

containing information related to the authorization policy of the system.

12

3.1. One-level modeling

It is indicated by the symbol A.

The sharp separation between application and authorization data comes from

the idea that, when co-designing the authorization and application parts of

your system, it is desirable to have separate structures for the two: albeit it

is possible to store both kind of information in the same structures, doing so

would increase the complexity of the information management, increasing the

risk of bugs.

The set of active users is shared between application and authorization data.

Albeit it is possible to formally model systems that do not interact with users,

ISAAC focuses on those systems that require access control capabilities, and

users are therefore included as a standard element in any ISAAC model. The

list of the users of the system is intuitively shared between the authorization

and application part, i.e. the users (more speci�cally, their ID's) are the same

when referred by the application data structures and the authorization data

structures.

In addition to the state, a system is described also by its immutable elements.

These elements describe the behavior, the capabilities and the interfaces of

the system with the outer world. Immutable elements can, in theory, change

during the life-cycle of the system, such as for the need of adding a new fea-

ture, but they are supposed to stay constant during the normal execution of

the system. Changing an immutable elements must be thought of as a radi-

cal, structural change which compromises the validity of all the proofs carried

out on the model so far, as modifying one of the immutable elements is e�ec-

tively equivalent to creating a new system. In ISAAC there are six immutable

elements:

• The domains set, indicated by the symbol D. It speci�es all the data

types used in the system. These can be natural numbers, enumerations,

13

3.1. One-level modeling

ID's or anything required. It is important to note that no piece of infor-

mation of a type not in the domains set can exist in the system model.

• The commands set, indicated by the symbol C. Commands are those

interfaces of the system that may modify its state. As for methods in

object oriented programming, their goal is to prevent direct access to the

inner state and control how it is manipulated.

• The queries set, indicated by the symbol Q. Queries are those interfaces

of the system that are guaranteed to not modify its state, and which

return a value. As for properties in object oriented programming, their

goal is to prevent direct access to the inner state and control how it is

accessed. The queries set is the disjoint union of two subsets: application

and authorization queries.

� The application queries set, indicated byQX, contains all the queries

that can be performed by the users of the system. These may also

relate to the authorization policy, but are distinct from authoriza-

tion queries.

� The authorization queries set, indicated by the symbol QA, contains

one query for each command or application query in the system. It

contains queries that must be imagined as performed internally by

the system and are not accessible by its users.

• The transition function, indicated by the symbol T. Its goal is to contain

the semantics of all the system commands, and de�ne how they are

performed.

• The interpretation function, indicated by the symbol I. Its goal is to

contain the semantics of all the system queries, and de�ne how they are

performed.

A visual representation of a system model is given in �gure 3.1. After pre-

14

3.1. One-level modeling

A U X

QA QXD

T

I

C

Q

Figure 3.1: System model in ISAAC

senting in an informal way the elements of a ISAAC one-level model, the

remainder of this section gives a detailed description and formalization of each

of them. To facilitate comprehension, Appendix A and Appendix B contain

the complete speci�cation of an example scenario related to the modeling of

a simpli�ed �le system manager, which will be used as a reference in this and

in the next chapter. In this narrative, each �le has an owner, and users have

the possibility to read or write (no execute) a �le. There is no possibility to

create a �le: writing to a non-existing �le will simply fail. Only the owner

of a �le can read or write it. The authorization policy is speci�ed using an

access matrix, i.e. a set of <subject, object, right> triplets. In our example

there are two users and two �les: Alice, owner of �le p, and Bob, owner of �le

q. The model must also consider the content of each �le. Trying to read a

non-existing �le will return a default failure value.

3.1.1 Domains set

De�nition 1 The domains set D is a non-empty set of sets, containing at least

the sets UIDs, which contains all the possible user ID's, and the set BOOLs,

which contains the two boolean values.

The domains set contains the data types used in the model.

15

3.1. One-level modeling

In addition to the user ID's and the boolean values, the domains set also

contains all the sets of all the data types that are present in the model: the

�attened version of the domains set contains all the possible values that any

non-composed �eld of information in the model may assume at any given time

during the execution. The set of domains contains only the data types that

model information regarding the mutable elements of the state, i.e. it does not

contain the queries or commands types.

In our example, D is de�ned as follows:

D = {UIDs,BOOLs,FIDs,FCs,AUTHs}

where UIDs (User ID's) contains the set of all non-empty strings of alphabetic

character, BOOLs is the {TRUE, FALSE} set, FIDs (File ID's) contains the

set of all the valid absolute �le paths, FCs (File Contents) contains all the

binary strings and AUTHs (Authorizations) contains the �read� and �write�

constants representing the authorization rights.

3.1.2 Users set

De�nition 2 The users set U contains the user ID's of all the active users of

the system, i.e. those capable of issuing commands or queries in the current

state.

U ⊆ D.UIDs, as the latter contains all the possible user ID's.

In our example, U is de�ned as follows:

U = {Alice,Bob}

3.1.3 Application data

De�nition 3 The application data structures set X contains all those data

structure related to application-speci�c information.

16

3.1. One-level modeling

These vary according to the speci�cation of the system modeled, and therefore

cannot be formalized precisely in the general case.

One important thing to notice is that application data structures are part of

the state of the model, and as such they can only contain data. The procedures

to alter and access them should be included in the commands and application

queries sections. As for all the data in the model, the data types contained in

the application data structure must also appear in the domains set.

In our example, the application data structures are composed of: the set of

the �les present in the system, which is a subset of D.FIDs, a function from

the �les to their contents and a function from the �les to their owners. Note

that it is possible to make the co-domain of the content function either the

totality of D.FCs, or to model in the application data structure also a set of

the current available contents, a subset of D.FCs, and make that the target

co-domain. As usual, there is more than one option. In this example, the �rst

option is preferred.

X = {FILES,CONTENT,OWNER}

where:

FILES ⊆ D.FIDs = {p, q}

CONTENT : FILES→ D.FCs = {(p, 0), (q, 1)}

OWNER : FILES→ U = {(p,Alice), (q,Bob)}

3.1.4 Authorization data

De�nition 4 The authorization data structures set A contains all those data

structure related the current authorization policy of the system.

Their structure depends on the access control system used, and therefore cannot

be formalized precisely in the general case.

17

3.1. One-level modeling

As for application data structures, authorization data structures are just in-

formation containers that can be modi�ed and interpreted only by using the

associated commands and authorization queries, and their data types must

also appear in the domains section. Authorization data structures may also be

absent from the model, in the case of immutable authorization policies. In this

case, all the information regarding the authorization policy will be contained

in the interpretation function.

In our example, the chosen access control system will be an access matrix,

i.e. a set of <subject, object, right> tuples that specify the rights of each

user.

A = {M}

where:

M = {

〈Alice, p, read〉,

〈Alice, p, write〉,

〈Bob, q, read〉,

〈Bob, q, write〉

}

3.1.5 Interactions and actions

De�nition 5 An interaction is either a command or an application query.

In other words, interactions are something that can be issued by an active user

of the system.

Commands compose, together with application queries, the interfaces of the

system accessible from the active users of the system. The intuitive di�erence

between the two is that application queries represent questions asked to the

18

3.1. One-level modeling

system regarding its inner state, and as such they are guaranteed to not modify

the state, while commands represent interfaces that are used to manipulate or

alter the state of the system.

De�nition 6 An action is either an interaction or an authorization query.

In other words, actions are anything that can be issued within the system either

from users or from the system itself.

Authorization queries, on the other hand, cannot be issued by the users, but

are special queries issued by the system, in response to an user issuing an

interaction, used to verify whether the user possesses the required rights.

3.1.5.1 Commands

De�nition 7 The commands set C contains the list of all the available com-

mands of the model.

Commands are those interaction that may alter the state of the model when

executed.

Neither queries nor commands contain any semantics by themselves: the Q and

C elements of the model merely contain de�nitions and type structures. They

can be thought as equivalent as empty function prototypes, the semantics of

which is speci�ed by the transition and interpretation functions.

De�nition 8 A command c is de�ned as:

c = 〈n, P 〉

where:

n is the name of the command,

P = P1 × · · · × Pj is the set of parameters space from which j parameters of

the command are drawn (P1, . . . , Pj ∈ D)

In our example, the only available command is the command to write a �le:

C = {〈write,D.FIDs× D.FCs〉}

19

3.1. One-level modeling

3.1.5.2 Queries

De�nition 9 The queries set Q contains the list of all the available queries

of the model, both application and authorization ones.

Queries are those actions that are guaranteed not to alter the state of the model

when executed.

Queries are of two disjoint types: application and authorization queries. Appli-

cation queries are all those queries that can be issued by the users of the system.

Authorization queries are inner queries, which cannot be issued from the users,

used by the system to answer the authorization requests. There exist one

authorization query for each application query and command. Authorization

queries always return boolean values. In principle, application queries could

be de�ned in such a way to return only boolean answers without reducing their

expressive power: advanced ones, such as counting all the users which satisfy

a given property, may be performed by sweeping the boolean query over each

single user. Albeit this approach simpli�es the de�nition of the methodology,

it feels very distant from what happens in practice, where application queries

may return any type of data. To allow the possibility of generic return types,

the returned value type must also be speci�ed in their de�nition.

De�nition 10 An application query qx is de�ned as:

qx = 〈n, P,R〉

where:

n is the name of the query,

P = P1 × . . . × Pk is the set of parameter space from which the query's k

parameters are drawn (P1 . . . , Pk ∈ D),

R ∈ D is the query's return type

De�nition 11 An authorization query qa is de�ned as:

qa = 〈n, P 〉 where: n is the name of the authorization query

20

3.1. One-level modeling

P = P1 × . . . × Pk is the set of parameter space from which the query's k

parameters are drawn (P1 . . . , Pk ∈ D)

In our example, the only available application query is the query to read a �le

content. There are also two authorization queries, one for each command or

application query.

Q = {QX ∪̇ QA}

where:

QX = {〈read,D.FIDs,FCs〉},

QA = {

〈auth-read,D.FIDs〉,

〈auth-write,D.FIDs× D.FCs〉

}

3.1.6 Semantics functions

De�nition 12 The semantics functions are the transition function T and the

interpretation function I.

The semantics functions specify the semantics of actions: he transition func-

tion speci�es the semantics of commands, the interpretation function speci�es

the semantics of queries.

Semantics functions are de�ned using a simple pseudo-programming language.

This language is algorithmic and has the strong constraint of only possessing

two �ow control statements: `if-then-else� branches and �for-each� loops. The

reason for this constraint is to simplify the approach to one-level reasoning, as

will be illustrated in the next section. It is possible to specify the semantics

functions using any approach, but in that case ISAAC will not be able to

operate in one-level mode, but only in two-levels mode.

Using an algorithmic language to specify the semantics functions implies the

21

3.1. One-level modeling

possibility that an interaction will call other actions upon which its execution

depends. For example, when a user tries to rent a book at a library, he is also

querying the catalog of the library for the presence of such book. To actually

perform an interaction, a user must be entitled not only to the right of the

interaction itself, but also to every other interaction in its closure, i.e. to all

interactions present in the call stack of the execution code.

3.1.6.1 Transition function

De�nition 13 The transition function T speci�es the semantics of the com-

mands:

T : S× C× D.UIDs→ D.BOOLs× D.BOOLs× S

where:

S is the set of all the possible states of the model,

the �rst return value is the authorization success �ag,

the second return value is the semantic success �ag,

the last return value is the state obtained after the issue of the command.

Starting from a system state, a command and the ID of the user issuing the

command, the transition function returns a triplet containing two boolean

values and a system state. The �rst boolean value indicates whether the com-

mand had success according to authorization constraints, i.e. whether the user

had the right to issue the command.

The second boolean value indicates whether the command had success from

the point of view of semantics: for some combination of parameters, certain

commands may be semantically meaningless, such as trying to delete a non-

existing �le. The distinction between authorization and semantic success is

aimed at trying to reduce information leak via covert channels: the transition

function should be designed in such a way that, when the command fails for

authorization reasons, no additional information is provided. In other words,

in all the cases where the authorization return �ag is false, the semantics return

22

3.1. One-level modeling

�ag should always be false. This does not prevent information leak completely,

but forces the designer to think about the issue during the modeling of the

system. The command should be considered as successfully executed if and

only if both the return �ags are true.

The returned state is the new state of the system after the command was is-

sued. Albeit it may seem reasonable that an authorization or semantics failure

should return a non-modi�ed state, this is not strictly enforced: for example,

the state may model also a log facility which registers the failure.

Another important point is that, as the transition function is de�ned over any

possible user ID, it is required to specify what happens when a user ID not

present in the state issues a command. Albeit this is apparently just a notation

issue, due to the fact that it is required that the transition function does not

change during the execution while the set of active users does, it is possible

to give di�erent semantics to the transition function where these cases may be

relevant, for example to model intruders trying to issue commands.

In our example, the transition function may be de�ned as follows:

1 T(s, write(fid, fc), u) = {

2 if (!I(s, auth-write(fid, fc), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, s>;

5 }

6 if (!s.X.FILES.contains(fid)) {

7 //Semantic failure: non-existing file

8 return <TRUE, FALSE, s>;

9 }

10 //Valid request: can write, file exists

11 s.X.CONTENT(fid) = fc;

12 return <TRUE, TRUE, s>;

13 }

23

3.1. One-level modeling

3.1.6.2 Interpretation function

De�nition 14 The interpretation function I speci�es the semantics of the

queries.

I : S×Q× D.UIDs→ D.BOOLs× D.BOOLs× (D ∪ {⊥})

where:

S is the set of all the possible states of the model,

the �rst return value is the authorization success �ag,

the second return value is the semantic success �ag,

the last return value is the result of the query or a default failure value.

The interpretation function is de�ned for both application and authorization

queries. The de�nition and purpose of the interpretation function is very sim-

ilar to the one of the transition function for commands, and the interpretation

function also returns two boolean �ags in addition to the query result. The

meaning of those �ags is the same of those in the transition function: the �rst

one relates to authorization success, the second to semantics success. Also for

the interpretation function, in all the cases where the authorization return �ag

is false, the semantics return �ag should always be false and the returned value

should be ⊥.

The return value can be either the queried datum or a default failure symbol,

indicated by the symbol ⊥. The default failure symbol should be returned

in all and only the cases where either an authorization or semantics failure is

present, and should be distinguished from all the normal data values. In other

words, ⊥ should not appear in the domains set.

The only di�erence between the interpretation function for application and

authorization queries is that the former are de�ned over a generic domain, and

therefore the returned type must match the one of the application query, while

24

3.1. One-level modeling

the latter can only return boolean values.

∀s ∈ S, qx ∈ QX, u ∈ D.UIDs :

type(I(s, qx, u).retValue) = qx.retType

∀s ∈ S, qa ∈ QA, u ∈ D.UIDs :

type(I(s, qa, u).retValue) = D.BOOLs

In our example, the interpretation function may be de�ned as:

1 I(s, read(fid), u) = {

2 if (!I(s, auth-read(fid), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, ⊥>;

5 }

6 if (!s.X.FILES.contains(fid)) {

7 //Semantic failure: non-existing file

8 return <TRUE, FALSE, ⊥>;

9 }

10 //Valid request: can read, file exists

11 return <TRUE, TRUE, s.X.CONTENT(fid)>;

12 }

13

14 I(s, auth-read(fid), u)) = {

15 if (!s.FILES.contains(fid)) {

16 //Non-existing file

17 return FALSE;

18 }

19 //File exists

20 return s.A.M.contains(<u, fid, READ>);

21 }

25

3.1. One-level modeling

22

23 I(s, auth-write(fid, fc), u) = {

24 if (!s.FILES.contains(fid)) {

25 //Non-existing file

26 return FALSE;

27 }

28 //File exists

29 return s.A.M.contains(<u, fid, WRITE>);

30 }

3.1.7 Additional aspects

Now that the structure of a one-level ISAAC model and the purpose of each

of its elements are well de�ned, it is possible to point out a few peculiarities

of this approach.

First of all, it is possible to specify a state of the system either by describing

a state instance or just by de�ning the structure of the state. This allows to

draw conclusion on the properties of the system for either any possible state,

for a completely de�ned state of interest or anything in between, as the state

can also only be partially instantiated.

Another point of interest regards the relationship between data structure and

the interpretation and transition functions: it is rarely the case that any system

of interest has no application data or an empty set of active users, but it is

possible to have a system model with no authorization data structures. This is,

for example, the case for systems where the authorization policy can be directly

derived from the application data structures. For example, the interpretation

function of the example in Appendix A could have been de�ned as:

1 I(s, auth-read(fid), u)) = {

2 if (!s.FILES.contains(fid)) {

3 //Non-existing file

4 return FALSE;

26

3.1. One-level modeling

5 }

6 //File exists

7 return (s.X.OWNER(fid) == u);

8 }

9

10 I(s, auth-write(fid, fc), u) = {

11 if (!s.FILES.contains(fid)) {

12 //Non-existing file

13 return FALSE;

14 }

15 //File exists

16 return (s.X.OWNER(fid) == u);

17 }

The trade-o� is that having authorization data structures, while increasing

the complexity of the state, allows to modify the authorization policy without

modifying the immutable elements of the model, which would invalidate all

the reasoning carried out before the change. Always on the previous example,

should the authorization policy change so that anyone can read �les but only

the owner can write them, it is trivial to modify the access control matrix

in the former case, while it would be necessary to modify the interpretation

function in the latter.

Finally, the nature of the call traces of commands, application queries and

authorization queries is also intriguing. The call trace of a command is never

empty, as it contains at least the respective authorization query, and it may

contain calls to other commands, application queries or authorization queries;

the call trace of an application query is never empty, as it contains at least the

respective authorization query, and it may contain calls to other application

queries or authorization queries, but not to commands. This is because queries

are guaranteed not to modify the state, while commands may. The call trace

of an authorization query may be empty, as it could work directly on the state

27

3.1. One-level modeling

data structures, and it may contain calls exclusively to other authorization

queries, not to commands or application queries. The possibility to call other

authorization queries comes from the desire to avoid code duplication, but it

should always be possible to unfold an authorization query call stack, as their

call stack should never be recursive. This structure hints to the possibility

to analyze some sort of �xed point property of the action call traces. As will

be shown in the next section, this is the main goal of the one-level mode of

ISAAC.

28

3.2. One-level reasoning

3.2 One-level reasoning

Reasoning within one-level models focuses on the veri�cation of circular depen-

dencies among actions. If these circular dependencies are present, they must

be analyzed one-by-one to guarantee that no parameter combination ever trig-

gers an in�nite call stack, which would be equivalent to having an undecidable

situation. The main goal of ISAAC is to work in the two-levels mode which

will be illustrated in the next chapter, but if the semantics functions are speci-

�ed according to the �ow control constraints mentioned before, ISAAC is also

capable to help out with the analysis of one-level models. While not able to

automatically analyze all the scenarios, ISAAC provides a simple method to

check the presence of circular dependencies. It is important to remember that

this method does not guarantee the absence of circular dependencies in all the

scenarios, and can only o�er positive answers, but it can still help for some of

the common cases.

As already mentioned, the execution of an action may rely on other actions.

More speci�cally, commands may call upon other commands, application queries

and authorization queries; application queries may call upon other application

queries and authorization queries; authorization queries may call upon other

authorization queries, but only in an unfoldable way. Therefore, each action

possesses a �closure�, i.e. a list of other actions it relies upon to be executed.

For the purposes of the analysis, it is not necessary to compute the transitive

closure of all the action calls, but is rather necessary to only consider the ac-

tions directly called at the �rst level of depth of the call stack. This is due to

the fact that, in order to analyze the presence of potential in�nite loops, it is

possible to create a direct graph with interactions as nodes and call dependen-

cies as edges. Once the graph is complete, it is possible to analyze the presence

of loops in the graph using standard techniques of graph analysis. If no loops

are present, then the analysis is over. Otherwise, it is required to analyze each

loop individually: if an in�nite loop scenario is present, it must appear as a

29

3.2. One-level reasoning

looping path in the graph. ISAAC o�ers a methodology to detect the common

looping cases, but it is still required to check all the loops manually.

De�nition 15 A call graph is a labeled direct graph where each node repre-

sents an interaction, and each edge from A to B represents a direct call to the

semantic functions of action B in the semantic functions of action A.

The label of an edge identi�es the code path that led to the call.

De�nition 16 The code paths of the semantic function of an action are all

the possible paths that can be followed during the execution of the semantic

function.

Each code path has an associated code path context.

De�nition 17 A code path context is a set of logical conjunctions with vari-

ables bind to the parameters of the semantic functions.

It represents the conditions under which the code path is executed.

3.2.1 Call graph computation

Semantic functions in ISAAC are speci�ed using a simpli�ed programming

language, which only has two kind of �ow control structures: �if-then-else�

branches and �for-each� loops. The reason for this constraint is to be able to

mechanically create the code paths for the call graph of an action. While it is

possible to ignore this constraint, if the semantics functions of the model are

speci�ed using a di�erent language, ISAAC can only be operated in two-levels

mode. To compute the call graph of a model it is necessary to identify, for

each action, all the possible code paths that lead to a return value. These are

�nite in number and can be computed easily according to the following rules:

• For a conditional branch, two code paths are generated: one for when

the �then� branch is executed, one for when the �else� branch is executed.

30

3.2. One-level reasoning

• For a looping construct, two code paths are generated: one for when at

least one item is a valid candidate for the loop and one for when the

selected set is empty.

These code paths are identi�ed by an unique ID composed by the name of

the action they belong to and a progressive number. Each code path has

an associated context, a set of logical conjunction with variables bind to the

parameters of the semantics function.

The pseudo-code of the algorithm for the computation of the call graph is the

as follows:

1 Set<Node> N = C ∪QX;

2 foreach (Node n in N) {

3 n.edges = ∅;

4 foreach (Codepath c in n.codepaths) {

5 foreach (SemanticFunctionCall sfc in c) {

6 Edge e = new Edge(label = c.context);

7 n.edges.add(e);

8 }

9 }

10 }

11 return N;

Suppose to have a model with four commands: A(pa1, pa2), B(pb1), C(pc1,

pc2), D(). For the sake of simplicity, this example disregards authorization

queries and return values, as they are not of interest for the understanding of

the algorithm. The speci�cation of the transition function is as follows:

1 T(s, A(pa1, pa2), u) = {

2 if (pa1 > 0) {

3 foreach (x in pa2) {

4 B(x);

5 }

6 return;

31

3.2. One-level reasoning

7 }

8 else {

9 D();

10 return;

11 }

12 }

13

14 T(s, B(pb1), u) = {

15 if (pb1 < 0) {

16 C(pb1, pb1);

17 return;

18 }

19 else {

20 D();

21 return;

22 }

23 }

24

25 T(s, C(pc1, pc2), u) = {

26 if (pc1 > pc2) {

27 D();

28 return;

29 }

30 else {

31 A(pc1, {pc2});

32 return;

33 }

34 }

35

36 T(s, D(), u) = {

37 return

38 }

32

3.2. One-level reasoning

The code paths of each action possess both an identi�er and a logical conjunc-

tion which indicates the conditions required to activate that path:

• A:

� A1: Context = [pa1 > 0, x ∈ pa2]; Calls = [B(x)]

� A2: Context = [pa1 >, pa2 = ∅]; Calls = []

� A3: Context = [pa1 ≤ 0]; Calls = [D()]

• B:

� B1: Context = [pb1 < 0]; Calls = [C(pb1, pb1)]

� B2: Context = [pb11 ≥ 0]; Calls = [D()]

• C:

� C1: Context = [pc1 > pc2]; Calls = [D()]

� C2: Context = [pc1 ≤ pc2]; Calls = [A(pc1, pc2)]

• D:

� D1: Context = []; Calls = []

The complete call graph of this example model is indicated in �gure 3.2

3.2.2 Call graph loops analysis

Once the call graph of the model is computed, the next step is to analyze the

presence of loops. If the call graph does not present loops, then the analysis

is over and model is guaranteed to not have circular dependencies among in-

teractions. Otherwise, each loop must be analyzed for the presence of in�nite

looping scenarios.

A very important thing to remember is that the simple ISAAC approach is

just a �rst-hand tool that can fail in many instances, and therefore should not

33

3.2. One-level reasoning

A

B

CD

A1

A3

B1

B2

C1

C2

Figure 3.2: Example call graph

be used alone for this task, but rather as a support to the analysis performed

using human insight and domain knowledge of the model.

The analysis of a loop is performed as follows: one of the nodes of the loop

is chosen as the �pivot� of the analysis. The contexts of all the code paths in

the loop are put together as a set of logical conjunctions and all the variable

in the context of the loop are rewritten as a function of the parameters of the

semantic functions of the pivot node. At this point, the logical conjunction of

the loop context is checked for satis�ability: if the context of the loop is unsat-

is�able, then the loop is not an in�nite loop. Otherwise, it must be analyzed

using more sophisticated techniques and human insight. The pseudo-code for

the loop analysis is as follows:

1 LoopContext lc = ∅;

2 foreach (Codepath cp in loop) {

3 lc.add(cp.context);

4 }

5 Node pivot = random(loop.nodes);

6 lc.rewrite(pivot);

7 return AnalyzeSat(lc);

34

3.2. One-level reasoning

Let's take a look at our previous call graph example in �gure 3.2: the only loop

is given by A-B-C-A Suppose A is chosen as the pivot of the analysis. The

next step consists in rewriting the context of the loop, i.e. the conjunction of

the contexts of each code path, so that each variable is derived from the pa-

rameters of A. In our case, the loop is composed by code paths A1, B1, C2 and

again A1. Its full context is [pa1 > 0, x ∈ pa2, pb1 < 0, pc1 ≤ pc2, pa1 > 0,

x ∈ pa2]. Looking at the call trace of the loop, the context can be rewritten

as a function of the parameters of A as [pa1 > 0, x ∈ pa2, x < 0, x ≤ x, x > 0,

x
′ ∈ {x}]. This conjunction is trivially unsatis�able, as it presents both the

conditions x < 0 and x > 0. Therefore, the call graph does not present in�nite

loops.

It is important to note that this method can o�er the guarantee that the

analyzed loop is not an in�nite loop if and only if the analysis yields an un-

satis�ability result. Since it is not known beforehand how deep the recursion

of a call loop is, it is possible that a loop is not in�nite, but just iterates for

a big number of times. ISAAC is only capable to reliably detect all the loops

and their relative code paths, but it will not always be able to answer whether

a loop is in�nite or not. In those cases, is up to the designer to use intuition,

hindsight and more advanced proving techniques to verify the absence of in-

�nite loops. Improvements in the �eld of one-level reasoning are one of the

subjects of future works within ISAAC.

35

Two-levels mode in ISAAC 4

In two-levels mode, ISAAC assists with the veri�cation of the correctness of a

re�nement step of the model of the system: there are two di�erent models of

the system, ideally one at a more abstract level and one re�ning the previous

to a more concrete level, and the goal is to verify whether the more concrete

model correctly implements the more abstract one. The two models are both

instances of a one-level model, and a number of pairing elements are speci�ed.

In the �rst section of the chapter, the pairing elements that bind together

the two models are illustrated in detail.

The second section de�nes what correctness of the re�nement is and shows

how to prove it using the example from the previous chapter.

For both sections, the complete speci�cation of the re�ned level of the example

can be found in Appendix B.

36

4.1. Two-levels modeling

4.1 Two-levels modeling

The rationale behind two-levels mode is that it is often the case that models

are developed in a top-down fashion, starting from a very abstract description

of the system, re�ning the model step-by-step towards a model that is concrete

enough for the purpose at hand. These re�nement steps must be correct, in

the sense that they cannot introduce incoherence between the two levels of

abstraction they pair. Additionally, it is sometimes the case that a system

must be proved as functionally equivalent to another one, for example in the

case of a replacement: albeit counter-intuitively, it is possible to model this

equivalence in the same fashion used to model a re�nement step, by imagining

the old system as the abstract one and the new system as a �re�nement� of

the previous. Two-levels mode o�ers the possibility of formally specifying a

re�nement step in the form of three di�erent elements: the state-mapping

function σ, the action-mapping function α and the query-mapping function

π. A visual representation of a two-levels setting is shown in �gure 4.1. Once

these three functions are properly de�ned, it is possible to check that the two

models and the re�nement are consistent with each other. For the sake of

clarity, this section will be illustrated using the same narrative of the previous

one: a simpli�ed �le system model. The re�nement step in this case is given by

splitting the, previously atomic, read and write operations in a series of �open

�le, do something, close �le� operations, as well as by adding the modeling of

the lock state of the �les. For the sake of notation, the elements of the more

abstract level will be indicated by the subscript 1, while those of the more

concrete one will be indicated by the subscript 2.

4.1.1 State-mapping function

As already mentioned in the previous chapter, the state of a model is de�ned

as the union of the active users set U, the authorization data structures A and

the application data structures X. A model re�nement may operate on any of

37

4.1. Two-levels modeling

A1 U1 X1

A2 U2 X2

QA1 QX2

QA2 QX2

D1

T1

I1

C1

Q1

D2

T2

I2

C2

Q2

σ α
π

Figure 4.1: Two-levels mode

these state elements. For example, it is possible that the re�ned model splits

an abstract user into multiple concrete users, translate an abstract authoriza-

tion policy expressed in logical formulas into a commercial-grade access control

system or represents the application database in a more realistic way. There-

fore, a precise mapping from the more abstract state to the more concrete

state must be de�ned.

De�nition 18 A state-mapping function σ speci�es how the higher level model

states are translated into lower level model states.

σ : S1 → S2

38

4.1. Two-levels modeling

where S1 is the set of states of the higher level model, S2 is the set of states of

the lower level model.

In a re�nement scenario, the lower level concrete model is �the only one ex-

isting�, while the higher level one is an abstraction that the designer made

up to help reasoning. The reasoning during the analysis of the re�nement

�ows from the more abstract model to the more concrete one. Therefore, the

abstract level is the domain of the function, while the concrete level is the co-

domain. After de�ning the state-mapping function for the example narrative,

the remainder of the subsection analyzes the properties that a state-mapping

function should satisfy.

4.1.1.1 Example

In our example, the re�nement of the model alters the state in two ways: it

adds an additional application data element modeling �le lock states and it

adds the rights to �open� and �close� a �le in the authorization data. Since

in the higher level model the �read� and �write� operations were atomic, it is

reasonable to map a higher level state into a lower level state where no �le

is locked. Also, it is reasonable to give �open� and �close� rights in the lower

level model to anyone who could either read or write a �le in the higher level

model. Therefore, the state-mapping function of our example could be de�ned

as follows:

1 σ(s1) = {

2 s2 = new lower level state;

3 //Users are the same

4 s2.U = s1.U;

5 //Read and write rights are the same

6 //Open and close right are derived

7 s2.A = s1.A;

8 foreach (u: s2.U) {

39

4.1. Two-levels modeling

9 if (s2.A.M.contains(<u, f, read>) || s2.A.M.

contains(<u, f, write>)) {

10 s2.A.M.add(<u, f, open>);

11 s2.A.M.add(<u, f, close>);

12 }

13 }

14 //Shared application data are the same

15 s2.X = s1.X;

16 //All files are unlocked

17 s2.X.LOCKED = \emptyset;

18 return s2;

19 }

4.1.1.2 Unique image

The state-mapping function has, so far, always been referred to as a function.

Nonetheless, it is not guaranteed that each state of the higher level model is

mapped in only one lower level state: since the lower level model is, poten-

tially, expressing things in more detail, it is reasonable to assume that two or

more lower level states can equivalently represent the same higher level state.

Therefore, in general, lower level states form a set of equivalence classes with

respect to state-mapping of the higher level states. In other words, there is

an equivalence relation among lower level states that represents the fact that

two or more lower level states can equivalently be used to represent the same

higher level state.

De�nition 19 The state-mapping equivalence relation σeq is an equivalence

relation over the set of lower level states S2.

σeq(p, q) if and only if both p and q can both be used as image for the state-

mapping function for the same higher level state.

De�nition 20 Two lower level states are state-mapping equivalent if and only

40

4.1. Two-levels modeling

if they belong to the same equivalence class for the images of the state-mapping

function, i.e. if and only if they can both represent the state-mapping of the

same higher level state.

It is important to de�ne σ in such a way that each starting state has only one

image, i.e. a representative of each equivalence class is chosen as the image of

the state-mapping function. The choice about which lower level state is picked

as image of a higher level state is an arbitrary choice of the analyst, very similar

to choosing what a default value is. As will be shown later, equivalence classes

of the state-mapping function are also important in terms of correctness.

4.1.1.3 Injectivity

Injectivity of the state-mapping function is another important issue. Con-

sider the case when the state-mapping function is not injective: two di�erent

states of model A become equivalent when mapped in the representation of a

model B. This means that model B is expressing something less than model

A, as it cannot distinguish anymore between the two states. Therefore, if the

state-mapping is not injective, it is likely that what is being performed is not

a re�nement, as a re�nement should have non-decreasing expressive power.

Therefore, in all the �normal� re�nement cases, it is reasonable to admit that

the state-mapping function should be injective.

Nonetheless, when the two-levels mode ISAAC is used to analyze functional

equivalence of two di�erent systems rather than a proper re�nement, it is

possible that the state-mapping function is not injective.

4.1.1.4 Bijectivity

Since the lower level state has, potentially, a cardinality higher than the higher

level state, the state-mapping function may or may not be bijective. Nonethe-

less, this is not a problem, as the reasoning in two-levels mode always �ows

41

4.1. Two-levels modeling

from the higher level to the lower level model, and therefore it is not important

for the state-mapping function to be invertible.

4.1.2 Action-mapping function

After de�ning how to translate a higher level model state in a lower level model

state, it becomes necessary to specify how higher level commands are converted

in lower level commands. This speci�cation is given by the action-mapping

function. Since higher level commands are usually more abstract than lower

level ones, a single higher level command is translated in an ordered sequence

of lower level commands. The mapping can also depend on the current higher

level state, as di�erent situations may require a command to be translated in

di�erent ways, as well as on the user performing the command. Since a higher

level user can be represented by multiple lower level users, it is important also

to specify which lower level user is supposed to be issuing the returned lower

level commands.

De�nition 21 An action-mapping function α is a function translating higher

level commands in a sequence of lower level commands-users pairs.

α : S1 × C1 × D1.UIDs→ (C2 × D2.UIDs)
∗

Once again, the reasoning �ows from higher level models to lower level models.

As for the previous subsection, after de�ning the action-mapping function

for our example narrative, one of the interesting aspects of action-mapping

functions is analyzed.

4.1.2.1 Example

In our example, the higher level model contains the single �write� command,

while the lower level model introduces the �open� and �close� commands. Since

the state-mapping was de�ned such that higher level states always maps in

42

4.1. Two-levels modeling

lower level states where no �le is locked, it is possible to de�ne the action-

mapping function as follows:

1 α(s1, write1(fid, fc), u1) = {

2 result = new List<C2, U2>();

3 //Open the file

4 result.append(<open2(fid), u2(u1)>);

5 //Write the content

6 result.append(<write2(fid, fc), u2(u1)>);

7 //Close the file

8 result.append(<close2(fid), u2(u1)>);

9 return result;

10 }

where user u2(u1) is the lower level version of user u1.

4.1.2.2 State dependence

Albeit it was not the case in the example, it is possible that the result of the

action-mapping function depends on the state where the higher level command

is considered, i.e. the same command must be translated di�erently according

to its context. As a matter of fact, the action-mapping function can be imag-

ined as some sort of context-sensitive grammar. This should not surprise the

reader: ISAAC was designed to allow for a great degree of expressiveness, and

this implies having to work with complex situations.

4.1.3 Query-mapping function

The �nal pairing elements between the models at the two levels of abstraction

is the query-mapping function. As the lower level model is, ideally, the �only

one existing�, it must be possible to answer higher level queries by just looking

at the lower level model. But higher level queries, i.e. interactions that do

not modify the state, may require to alter the lower level state in order to

be answered. For example, consider our narrative: the �read� query at the

43

4.1. Two-levels modeling

higher level must, in the lower level, �open� and �close� the �le. Therefore,

the query-mapping function should not only return an answer to the higher

level query based on the lower level model, but also the lower level state after

the processing of the query, which may or may not have been modi�ed in the

process.

Similarly to what happens when answering queries at a single level of abstrac-

tion, the computation of a query answer may fail for either authorization or

semantics reasons. The query-mapping function must therefore account also

for those scenarios, and provide extra information in addition to just the result

of the computation.

De�nition 22 A query-mapping function π de�nes how to answer higher level

queries as a function of lower level actions.

π : S2 ×Q1 × D1.UIDs→ D2.BOOLs× D2.BOOLs× (�atten(D1) ∪ {⊥})× S2

where:

the �rst boolean return value is the authorization success �ag,

the second boolean return value is the semantics success �ag,

the third return value is the answer of the query,

the �nal return value is the lower level state after the computation of the result.

The de�nition of a query-mapping function is a bit complicated and counter-

intuitive. Its purpose will be clearer in the next subsection, when correctness

of a re�nement step is de�ned.

4.1.3.1 Example

In our example, the higher level model contains the single �read� application

query and the two �auth-read� and �auth-write� authorization queries. One

possible way to de�ne the query-mapping function is:

1 π(s2, read1(fid), u1) = {

2 <authFlag, semFlag, finalState> =

44

4.1. Two-levels modeling

3 T2(s2, open2(fid), u2(u1));

4 if (!(authFlag && semFlag)) {

5 //User failed the open interaction

6 return <authFlag, semFlag, ⊥, finalState>;

7 }

8 <authFlag, semFlag, result> =

9 I2(finalState, read2(fid), u2(u1));

10 if (!(authFlag && semFlag)) {

11 //User failed the read interaction

12 finalState = T2(s2, close2(fid), u2(u1)).STATE;

13 return <authFlag, semFlag, ⊥, finalState>;

14 }

15 <authFlag, semFlag, finalState> =

16 T2(finalState, close2(fid), u2(u1));

17 if (!(authFlag && semFlag)) {

18 //User failed the close interaction

19 return <authFlag, semFlag, ⊥, finalState>;

20 }

21 return <TRUE, TRUE, result, finalState>;

22 }

23

24 π(s2, auth-read1(fid), u1) = {

25 return <I2(s2, auth-read2(fid), u2(u1)), s2>;

26 }

27

28 π(s2, auth-read1(fid, fc), u) = {

29 return <I2(s2, auth-write2(fid), u2(u1)), s2>;

30 }

where user u2(u1) is the lower level version of user u1.

45

4.2. Two-levels reasoning

4.2 Two-levels reasoning

After having presented the structure of the two-levels mode, this section fo-

cuses on what correctness means for a re�nement, and how to verify it.

As shown in the previous section, there are three pairing elements between the

two models: the state-mapping, the action-mapping and the query-mapping

functions. These three elements are independently de�ned, but it is funda-

mental that their independent de�nitions do not introduce inconsistency with

each other. More speci�cally, it is important that the state-mapping works

consistently with both the action-mapping and query-mapping functions, i.e.

the state-mapping preserves both the action-mapping and the query-mapping.

Therefore, correctness is de�ned as the logical conjunction of two independent

sub-properties: action-mapping preservation and query-mapping preservation.

De�nition 23 A two-levels re�nement is correct if and only if both action-

mapping preservation and query-mapping preservation are veri�ed.

4.2.1 Action-mapping preservation

Informally speaking, action-mapping preservation ensures that a higher level

command is really equivalent to its lower level commands sequence counter-

part. But a higher level command is, in general, mapped into an ordered

sequence of lower level commands. In order to de�ne action-mapping preser-

vation, it is required to de�ne a recursive version of the lower level transition

function.

De�nition 24 A recursive transition function T∗ is an extension to a non-

recursive transition function T

T∗ : S× (C× D.UIDs)∗ → S

T∗(s, list) =

 s if list = ∅

T∗(T(s,�rst(list)), rest(list)) otherwise


46

4.2. Two-levels reasoning

s1 s
′
1

s2 s
′
2T∗

2(s2, α(s1, c1, u1))

σ(s1) σ(s
′
1)

T1(s1, c1, u1)

Figure 4.2: Action-mapping preservation: the two paths from s1 to s
′
2 must

be equivalent with respect to state-mapping

De�nition 25 Action-mapping preservation is veri�ed in a two-levels re�ne-

ment if and only if:

∀s : S1, c : C1

σeq(σ(T1(s, c)),T2
∗(σ(s), α(s, c)))

where σeq is the state-mapping equivalence relation.

A graphical representation of the property is shown in �gure 4.2.

4.2.2 Action-mapping veri�cation example

This subsection will illustrate how to verify, in a semi-formal way, action-

mapping preservation for the two-levels scenario presented. With reference to

the notation used in �gure 4.2, it must be proved, for all states, commands

and users, that:

σeq(σ(T1(s1, c1, u1)),T∗
2(σ(s1), α(s1, c1, u1)))

In the speci�c case in analysis, the only available command is the �write�

command. The action-mapping function will return, in all cases, a sequence

47

4.2. Two-levels reasoning

of open-write-close commands from the lower level version of the higher level

user. These information allow, by reducing state-mapping equivalence to state

equality and by ignoring the user element since it is the same on both sides of

the equivalence and it does not interact with the other elements of the goal,

to rewrite our target as:

σ(T1(s1,write(�d, fc))) = T∗
2(σ(s1), 〈open(�d), write(�d, fc), close(fc)〉)

The state-mapping function will return, for every higher level state, a lower

level state with the same users of the higher level state, the same �les and �le

contents, all �les unlocked, the same read-write rights and the possibility to

open and close a �le for each user who could either read or write the �le.

The higher level transition function for the �write� command yields three dif-

ferent behaviors according the state content.

4.2.2.1 Case 1: Write is not authorized

In the case of a higher level write command failing the authorization check,

the returned state is not modi�ed. This rewrites the goal as:

σ(s1) = T∗
2(σ(s1), 〈open(�d), write(�d, fc), close(fc)〉)

Since it is known that the user does not have write permissions, applying

the lower level recursive transition function to the open-write-close sequence

returns di�erent scenarios, according to whether the user had read permissions

to the �le, and has therefore inherited open and close rights, or not, and

according to whether the �le exists or not:

• In the case the user has read permission and the �le exists, the execution

of the sequence locks and then unlocks the �le but does not modify its

content, as there is no write permission. This rewrites the target as

σ(s1) = σ(s1) which is trivially true.

48

4.2. Two-levels reasoning

• The case where the user has read permission but the �le does not exist

is impossible, as the authorization query for read permissions yields a

negative result for non-existing �les.

• In the case the user does not have read permission, the execution of

the sequence does nothing, as the open and close operations are not

permitted. This rewrites the target as σ(s1) = σ(s1) which is trivially

true.

In all the sub-cases action-mapping preservation is veri�ed.

4.2.2.2 Case 2: Write is authorized, �le does not exist

This scenario is simply impossible, as the authorization function for the write

command yields a negative result for non-existing �les.

4.2.2.3 Case 3: Write is authorized, �le exists

In the case of a higher level write command for an existing �le with write

permission, the higher level state returned from the higher level transition

function di�ers from the original only in the updated content of the �le. This

rewrites the goal as:

σ(s1 with X.CONTENT(�d) : fc) =

T∗
2(σ(s1), 〈open(�d), write(�d, fc), close(fc)〉)

The presence of write permissions guarantees the inheritance of open and close

permissions. Therefore, since the �le exists, the execution of the open-write-

close sequence is successful, and it alters the lower level state by modifying it

according to the parameters of the write command. This rewrites the goal as:

σ(s1 with X.CONTENT(�d) : fc) =

σ(s1) with X.CONTENT(�d) : fc

49

4.2. Two-levels reasoning

which is true according to the de�nition of the state-mapping function. There-

fore, action-mapping preservation is veri�ed for all the sub-cases.

4.2.3 Query-mapping preservation

Informally speaking, query-mapping preservation guarantees that the answers

to all the higher level queries of a given higher level state can be inferred by

lower level queries of the equivalent lower level state, and that answering the

query does not alter the lower level state �too much�.

De�nition 26 Query-mapping preservation is veri�ed in a two-levels re�ne-

ment if and only if

∀s1 : S1, q1 : Q1, u1 : D1.UIDs :

I1(s1, q1, u1) = π(σ(s1), q1, u!).RESULT

∧

σeq(σ(s1), π(σ(s1), q1, u1).STATE)

where:

π(σ(s), q, u).RESULT represents the returned success �ags and computed an-

swer,

π(σ(s), q, u).STATE is the returned state after the answer computation,

σeq is the state-mapping equivalence relation.

The �rst part of the conjunction is intuitive: the answer derived in the higher-

state must match the one derived in the correspondent lower level state. The

second part is a bit trickier: the de�nition states that σ(s) must be state-

mapping equivalent to the state obtained after answering the query through

query-mapping.

This constraint is required to guarantee that the behavior of the system is not

a�ected by answering queries. State-mapping equivalence is a softer condition

than requiring the two lower level states to be the same state: think of our

50

4.2. Two-levels reasoning

narrative example: a higher level �read� query issues the �open� and �close�

commands which alter the lower level state. Luckily, the �nal state is exactly

the same as the starting one. Now suppose to add in the lower level model

some sort of logging facility which records the access to the �le: now the

�nal state is di�erent from the starting one, namely for the added content in

the log. But this di�erence does not a�ect the behavior of the system in the

future. In general, the presence of logging facilities introduces extra elements of

complexity. For example, if a logging facility is present, even an atomic �read�

must be treated as a command, and the authorization failures of commands

return states that are not the same as the starting ones. This pattern related

to logging facilities is an element of interest, which should be examined further

in future works.

4.2.4 Query-mapping veri�cation example

This subsection will illustrate how to verify, in a semi-formal way, query-

mapping preservation for the two-levels scenario presented. The higher level

queries available are the �read� application query and the �auth-read� and

�auth-write� authorization queries. In order to verify query-mapping preserva-

tion, it is better to start analyzing authorization queries, as they usually are

simpler than application queries. Both �auth-read� and �auth-write� return

FALSE for non-existing �les and the answer contained in the access control

matrix for existing �les, at both levels of abstraction. The query-mapping

function for the two authorization queries does not alter the lower level state

in order to answer, therefore state-mapping equivalence is guaranteed. The

higher level and lower level interpretation functions are identical for the two

authorization queries and the query-mapping function simply calls the lower

level version. This guarantees state-mapping equivalence, and therefore query-

mapping preservation is veri�ed for authorization queries.

The only available higher level application query is the �read� query. The goal

51

4.2. Two-levels reasoning

to be proved can be rewritten as:

I1(s1, read(�d), u1) = π(σ(s1), read(�d), u1).RESULT

∧

σeq(σ(s1), π(σ(s1), read(�d), u1).STATE)

The higher level interpretation function for the �read� query yields three dif-

ferent behaviors according the state content.

4.2.4.1 Case 1: Read is not authorized

In the case of a higher level read query failing the authorization check, the

goal can be rewritten as:

〈FALSE,FALSE,⊥〉 = π(σ(s1), read(�d), u1).RESULT

∧

σeq(σ(s1), π(σ(s1), read(�d), u1).STATE)

The query-mapping function returns di�erent scenarios, according to whether

the user had write permissions on the �le, and has therefore inherited open

and close rights, or not, and according to whether the �le exists or not:

• In the case the user has write permission and the �le exists, the read

action will fail after opening the �le, returning an authorization failure

result. The returned state is not modi�ed, as the user has the right

to close the �le before completing the query-mapping sequence. This

rewrites the goal as:

〈FALSE,FALSE,⊥〉 = 〈FALSE,FALSE,⊥〉

∧

σeq(σ(s1), σ(s1))

which is trivially true.

52

4.2. Two-levels reasoning

• The case where the user has write permission but the �le does not exist

is impossible, as the authorization query for read permissions yields a

negative result for non-existing �les.

• In the case the user does not have write permission, the open action

will fail, as the open and close operations are not permitted since both

write and read permissions are lacking. This will return an authorization

failure result, allowing to rewrite the goal as:

〈FALSE,FALSE,⊥〉 = 〈FALSE,FALSE,⊥〉

∧

σeq(σ(s1), σ(s1))

which is trivially true.

In all the sub-cases query-mapping preservation is veri�ed.

4.2.4.2 Case 2: Read is authorized, �le does not exist

This scenario is simply impossible, as the authorization function for the write

command yields a negative result for non-existing �les.

4.2.4.3 Case 3: Read is authorized, �le exists

In the case of an existing �le with read rights, the higher level interpretation

function will be successful. The state-mapping function, according to its de�-

nition, will copy the �le content from the higher level to the lower level. The

query-mapping function will successfully complete as all the permissions to

open, read and close the �le are available. Since the open-read-close sequence

is correctly executed, the �nal state is not modi�ed. According to all these

53

4.2. Two-levels reasoning

information, the goal can be rewritten as:

s1.X.CONTENT(�d) = s1.X.CONTENT(�d)

∧

σeq(σ(s1), σ(s1))

which is trivially true. Therefore, query-mapping preservation is veri�ed for

all the sub-cases.

54

Case study: hospital scenario 5

After having presented the various working modes of ISAAC using a simple

narrative example, this chapter explores a more complex case study in order

to demonstrate the usage of ISAAC in a realistic application.

In this chapter the modeling of a part of an hospital system is described. The

domain knowledge on the topic was acquired by interviewing members of the

medical sta�. Since the actual details and procedures may vary a lot from

hospital to hospital, or even from ward to ward within the same hospital, this

case study was developed trying to focus only on the common aspects. This

choice required to abstract away some of the details speci�c to each di�erent

location, but the end result is realistic and generic enough, as con�rmed by

the medical sta�.

Since the goal of this case study is to show the potential of ISAAC in a real

application, it was not necessary to model the entire system of an hospital

structure, i.e. including the payroll system, work insurances, etc., as many

subsystems share more or less the same structures and o�er more or less the

same insights. In order to avoid modeling many similar subsystems, the case

study will focus only on modeling the subsystem related to the relationships

55

among physicians, nurses and patients, with respect to the prescription of ther-

apies and exams.

The �rst section of the chapter will describe informally the various elements

of the system in analysis.

This knowledge will then be applied in the second section of the chapter to

the construction of a �rst model of the system.

In the third section, the model created will be re�ned by introducing the pos-

sibility of inter-ward consultancy.

Finally, a two-levels analysis of the scenario will be performed, demonstrating

the correctness of the re�nement.

One-level analysis will be neglected due to the lack of recursive calls among

interactions in the model.

56

5.1. Informal descriptions

5.1 Informal descriptions

This section describes, informally, the elements of the system in analysis. Some

aspects, such as the possibility for doctors to alter the personal data of pa-

tients, may appear counter-intuitive, while others, such as the assumption

that patients belong to a single ward, may be oversimplifying. The informa-

tion presented was acquired by interviewing actual medical sta�, while the

assumptions made come from the tentative of creating a general model that

may represent the many di�erent policies applied by di�erent hospitals.

5.1.1 Wards

According to the information acquired interviewing the medical sta�, the �rst

relevant element of an hospital system is the division in wards. Wards are

abstract organizations, usually physically separated in di�erent buildings, that

focus on di�erent areas of medicine. For example, in an hospital may be

present the pediatric ward, the oncology ward and the cardiology ward. For

the purposes of the case study, the physical location of wards is not relevant

and will be ignored. Doctors, nurses and patients are all belonging to a ward,

according to their specialization, for the medical sta�, or to the pathology that

caused their admission to the hospital, for the patients.

Wards are an element of separation, in the sense that, normally, a doctor of

ward A cannot modify the data of a patient of ward B. In the case study, the

�rst assumption is that wards represent a partition of the union of the sets

of doctors, nurses and patients, i.e. doctors, nurses and patients all belong to

exactly one ward. This is usually true for the medical sta�, as most of the

medical sta� has at most one specialization, and can be more or less true for

the patients according to the way they are treated in each di�erent hospital.

57

5.1. Informal descriptions

5.1.2 Patients

Patients are the ill peoples that are being taken care of in the hospital. In the

model, patients are assigned to exactly one ward, which is assigned to them

at the time of their admittance in the hospital, according to their pathology.

Patients have associated two information sources. The �rst one, which will be

called �personal data�, contains the personal data of the patients such as, but

not limited to, date of birth, sex, medical history previous to the admittance,

and telephone number. The second one, which will be called �clinic diary�,

contains all the medical information related to exams, therapies and check-ups

performed during the current stay at the hospital. In most of the real hospitals,

the clinic diary only contains the summary of the therapies and is associated

with another document that contains the detailed information regarding doses

and application times etc. This distinction is not relevant to the goal of the

case study and will be ignored.

5.1.3 Therapies

In this case study, the term �therapy� will be used to describe all sort of

prescriptions assigned to a patient, both chemical, i.e. medicines, and of other

nature, such as physiotherapy sessions. Therapies are registered in the clinic

diary of a patient and can only be prescribed by doctors.

5.1.4 Exams

Exams are roughly separable in two categories: laboratory exams, such as

blood or urine tests, and instrumental exams, such as NMR's. This distinction

is very important: in most of the real hospitals, laboratory exams can be

prescribed to patients by both nurses and doctors, while instrumental exams,

being more costly and risky in certain cases, can only be prescribed by doctors.

Exams are registered in the clinic diary of a patient.

58

5.1. Informal descriptions

5.1.5 Check-ups

During their period in the hospital, patients will often get controlled by doc-

tors. The outcome of these check-ups is a fundamental piece of information

and must be registered for future reference. Check-ups outcomes are registered

in the clinic diary of a patient.

5.1.6 Nurses

Nurses are that part of the medical sta� that is assigned to the care of the

patients and to actually executing the prescribed therapies. Nurses cannot,

in general, alter the therapies of a patient, but they can prescribe laboratory

exams. In addition, they can also alter the personal data of a patient. This is

allowed in order to make it easy to keep the personal data always up to date,

since most of them are easily mutable, such as the address or the telephone

number.

5.1.7 Doctors

Doctors are that part of the medical sta� that is in charge of diagnosing the

pathology of a patient and prescribe therapies. They can modify the therapies

of a patient, register check-ups outcomes and prescribe all sort of exams. They

can also modify the personal data of a patient, for the same reason of nurses.

59

5.2. Basic model

5.2 Basic model

This section will present a �rst ISAAC model of the system in analysis. The

�rst draft of the model will impose that doctor and nurses only have access to

the patients of their own wards, i.e. it is impossible for a doctor of ward A to

visit a patient of ward B. This constraint will be softened in the next section,

where the re�nement will introduce the possibility for inter-ward consulting.

5.2.1 Domains

To the goal of the case study, doctors and nurses can be grouped under the

same �sta�� set. Therefore, the data types present in the subsystem in analysis

are:

• WARDs: the ID's of the wards. Can be modeled using the set of natural

numbers.

• STAFFs: the ID's of nurses and doctors. Can be modeled using the set

of natural numbers.

• PATIENTs: the ID's of patients. Can be modeled using the set of natural

numbers.

• PDATAs: the information container ID's of the personal data of a pa-

tient. Can be modeled as the set of natural language strings.

• CDIARYs: the information container ID's of the medical data of a pa-

tient. Can be modeled using the set of natural numbers.

• THERAPYs: the description of a therapy. Can be modeled as the set of

natural language strings.

• EXAMs: the ID's of an exams. Can be modeled using the set of natural

numbers.

60

5.2. Basic model

• CHECKUPs: the outcome of a checkup. Can be modeled as the set of

natural language strings.

• DATEs: a calendar date, used to record start and end date of therapies

or exams. It is a well-formed date string.

A very important thing to notice is that most of the data types are modeled

using the same basic set of natural numbers or strings. This is not a problem,

as the information of each datum is not only in its content, but also in its type.

All these elements, together with the UIDs and BOOLs set, compose the do-

main set of the model. In the scenario in analysis, the users of the system are

the sta� of the hospital, as the case study focuses on the modi�cation of the

personal data and clinic diary of patients. Therefore, UIDs = STAFFs.

D = {

UIDs, BOOLs, WARDs, STAFFs,

PATIENTs, PDATAs, CDIARYs,

THERAPYs, EXAMs, CHECKUPs, DATEs

}

5.2.2 Users

Since the case study is modeling a generic hospital, and not a speci�c instance,

the users set must not be de�ned by describing its elements, but rather by

specifying its structure. In the model, the users of the system are the medical

sta� members.

U ⊆ D.UIDs

D.UIDs = D.STAFFs

61

5.2. Basic model

5.2.3 Application data

The application data must be designed so that it can store the current state of

the system. In particular, it must store the doctors, nurses and patients that

are currently in the hospital. It must also be possible to distinguish between

nurses and doctors.

In addition to the patients and the sta�, the application data must also store

the information regarding personal data and clinic diary of patients. The

former can be represented as a mapping from patients to PDATAs, while

the latter is a mapping from patients to CDIARYs. Application data is also

required to have a mapping from the clinic diaries of patients to the elements

of a clinic diary, i.e. check-ups, exams and therapies. Therapies should have a

start and end date, while exams and check-ups should only register the date

when they were performed.

X = {

WARDS, STAFFS, ISDOCTOR, ISNURSE,

PATIENTS, CDIARYS, GETWARDS, GETPDATA, GETCDIARY,

GETTHERAPYS, EXAMS, ISLABEXAM, ISINSTEXAM,

GETEXAMS, GETCHECKUPS

}

where:

WARDS ⊆ D.WARDs,

STAFFS ⊆ D.STAFFs,

ISDOCTOR : STAFFS→ D.BOOLs,

ISNURSE : STAFFS→ D.BOOLs,

∀s ∈ STAFFS : ISNURSE(s)⊕ ISDOCTOR(s),

PATIENTS ⊆ D.PATIENTs,

CDIARYS ⊆ D.CDIARYs,

GETWARD : PATIENTS ∪ STAFF→WARDS,

62

5.2. Basic model

GETPDATA : PATIENTS→ D.PDATAs,

GETCDIARY : PATIENTS→ CDIARYS,

GETTHERAPYS : CDIARYS→ (D.THERAPYs× D.DATEs× D.DATEs)∗,

EXAMS ⊆ D.EXAMs,

ISLABEXAM : EXAMS→ D.BOOLs,

ISINSTEXAM : EXAMS→ D.BOOLs,

∀e ∈ EXAMS : ISLABEXAM(e)⊕ ISINSTEXAM(e),

GETEXAMS : CDIARYS→ (D.EXAMs× D.DATEs)∗,

GETCHECCKUPS : CDIARYS→ (D.CHECKUPs× D.DATEs)∗,

5.2.4 Authorization data

In order to simplify the case study and to focus the attention of the reader on

the aspects related to the proof of correctness of the system, rather than on

the details of the formalization of commercial grade access control systems, the

case study will approach a logic-based access control system that implements

an immutable authorization policy by neglecting authorization data structures,

a possibility already mentioned in Chapter 3.

5.2.5 Commands

The commands of interest with respect to the subsystem in analysis are related

to the modi�cation of the personal data and the clinic diary of patients. A full

hospital model should also consider the operations related to the admission

and discharge of patients, hiring and �ring of sta�, change of wards of patients

and sta� etc. Since all these extra commands would behave very similarly to

the ones included in the case study and would not bring additional insight, the

case study will ignore them.

More precisely, according to the application data structures described, there

are four commands available to the hospital sta�:

• The command used to modify the personal data of a patient.

63

5.2. Basic model

• The command used to modify the therapies present in the clinic diary of

a patient.

• The command used to modify the exams present in the clinic diary of a

patient.

• The command used to modify the check-ups present in the clinic diary

of a patient.

Therefore, the set of commands can be formalized as:

C = {

〈MODIFYPDATA,D.PATIENTs× D.PDATAs〉,

〈ADDTHERAPY,D.PATIENTs× (D.THERAPYs× D.DATEs× D.DATEs)〉,

〈ADDEXAM,D.PATIENTs× (D.EXAMs× D.DATEs)〉,

〈ADDCHECKUP,D.PATIENTs× (D.CHECKUPs× D.DATEs)〉

}

Note that, for the sake of simplicity, the command to modify personal data

has been designed in such a way to overwrite the previous content of the appli-

cation data structure. This choice was taken in order to reduce the number of

commands available and simplifying the proofs required to demonstrate system

properties.

5.2.6 Queries

The application queries available to the sta� of the hospital are all those needed

to analyze the system state contained in the application data structure. These

64

5.2. Basic model

are:

QX = {

〈ISDOC,D.STAFFs,D.BOOLs〉,

〈ISNURSE,D.STAFFs,D.BOOLs〉,

〈ISLABEXAM,D.EXAMs,D.BOOLs〉,

〈ISINSTEXAM,D.EXAMs,D.BOOLs〉,

〈GETPDATA,D.PATIENTs,D.PDATAs〉,

〈GETWARD,D.PATIENTs ∪ D.STAFFs,D.WARDs〉,

〈GETTHERAPIES,D.PATIENTs, (D.THERAPYs× D.DATEs× D.DATEs)∗〉,

〈GETEXAMS,D.PATIENTs, (D.EXAMs× D.DATEs)∗〉,

〈GETCHECKUPS,D.PATIENTs, (D.CHECKUPs× D.DATEs)∗〉

}

Additionally, the model includes the following authorization queries:

QA = {

Commands:

〈AUTH-MODIFYPDATA,D.PATIENTs× D.PDATAs〉,

〈AUTH-ADDTHERAPY,D.PATIENTs× (D.THERAPYs× D.DATEs× D.DATEs〉,

〈AUTH-ADDEXAM,D.PATIENTs× (D.EXAMs× D.DATEs)〉,

〈AUTH-ADDCHECKUP,D.PATIENTs× (D.CHECKUPs× D.DATEs)〉,

65

5.2. Basic model

App. Queries:

〈AUTH-ISDOC,D.STAFFs〉,

〈AUTH-ISNURSE,D.STAFFs〉,

〈AUTH-ISLABEXAM,D.EXAMs〉,

〈AUTH-ISINSTEXAM,D.EXAMs〉,

〈AUTH-GETPDATA,D.PATIENTs〉,

〈AUTH-GETWARD,D.PATIENTs ∪ D.STAFFs〉,

〈AUTH-GETTHERAPIES,D.PATIENTs〉,

〈AUTH-GETEXAMS,D.PATIENTs〉,

〈AUTH-GETCHECKUPS,D.PATIENTs〉

}

5.2.7 Transition function

The transition function for the speci�ed command is rather simple and intu-

itive:

1 T(s, modifypdata(p, data), u) = {

2 if (!I(s, auth-modifypdata(p, data), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, s>;

5 }

6 if (!s.X.PATIENTS.contains(p)) {

7 //Semantic failure: patient does not exist

8 return <TRUE, FALSE, s>;

9 }

10 //Valid request: can modify, patient exists

11 s.X.GETPDATA(p) = data;

12 return <TRUE, TRUE, s>;

13 }

14

66

5.2. Basic model

15 T(s, addtherapy(p, t), u) = {

16 if (!I(s, auth-addtherapy(p, t), u)) {

17 //Authorization failure

18 return <FALSE, FALSE, s>;

19 }

20 if (!s.X.PATIENTS.contains(p)) {

21 //Semantic failure: patient does not exist

22 return <TRUE, FALSE, s>;

23 }

24 //Valid request: can add therapy, patient exists

25 s.X.GETTHERAPYS(s.X.GETCDIARY(p)).append(t);

26 return <TRUE, TRUE, s>;

27 }

28

29 T(s, addexam(p, e), u) = {

30 if (!I(s, auth-addexam(p, e), u)) {

31 //Authorization failure

32 return <FALSE, FALSE, s>;

33 }

34 if (!s.X.PATIENTS.contains(d)) {

35 //Semantic failure: patient does not exist

36 return <TRUE, FALSE, s>;

37 }

38 //Valid request: can add exam, patient exists

39 s.X.GETEXAMS(s.X.GETCDIARY(p)).append(e);

40 return <TRUE, TRUE, s>;

41 }

42

43 T(s, addcheckup(p, c), u) = {

44 if (!I(s, auth-addtherapy(p, c), u)) {

45 //Authorization failure

46 return <FALSE, FALSE, s>;

47 }

67

5.2. Basic model

48 if (!s.X.PATIENTS.contains(p)) {

49 //Semantic failure: patient does not exist

50 return <TRUE, FALSE, s>;

51 }

52 //Valid request: can add checkup, patient exists

53 s.X.GETCHECKUPS(s.X.GETCDIARY(p)).append(c);

54 return <TRUE, TRUE, s>;

55 }

5.2.8 Interpretation function

The interpretation function for application queries is pretty trivial: it simply

checks the content of the system state and returns it as a result. The interpre-

tation function for authorization queries, on the other hand, depends on the

access control system chosen. In order to simplify the case study and to focus

the attention of the reader on the aspects related to the proof of correctness of

the system, rather than on the details of the formalization of commercial grade

access control systems, the case study will approach a logic-based access con-

trol system that implements an immutable authorization policy by neglecting

authorization data structures, a possibility already mentioned in Chapter 3.

Therefore, the interpretation function for the application queries can be de�ned

as:

1 I(s, isdoc(s), u) = {

2 if (!I(s, auth-isdoc(s), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, ⊥>;

5 }

6 if (!s.X.STAFFS.contains(s)) {

7 //Semantic failure: staff member does not exist

8 return <TRUE, FALSE, ⊥>;

9 }

10 //Valid request: can answer, staff member exists

68

5.2. Basic model

11 return <TRUE, TRUE, s.X.ISDOC(s)>;

12 }

13

14 I(s, isnurse(s), u) = {

15 if (!I(s, auth-isnurse(s), u)) {

16 //Authorization failure

17 return <FALSE, FALSE, ⊥>;

18 }

19 if (!s.X.STAFFS.contains(s)) {

20 //Semantic failure: staff member does not exist

21 return <TRUE, FALSE, ⊥>;

22 }

23 //Valid request: can answer, staff member exists

24 return <TRUE, TRUE, s.X.ISNURSE(s)>;

25 }

26

27 I(s, islabexam(e), u) = {

28 if (!I(s, auth-islabexam(e), u)) {

29 //Authorization failure

30 return <FALSE, FALSE, ⊥>;

31 }

32 if (!s.X.EXAMS.contains(e)) {

33 //Semantic failure: exam does not exist

34 return <TRUE, FALSE, ⊥>;

35 }

36 //Valid request: can answer, exam exists

37 return <TRUE, TRUE, s.X.ISLABEXAM(e)>;

38 }

39

40 I(s, isinsexam(e), u) = {

41 if (!I(s, auth-isinsexam(e), u)) {

42 //Authorization failure

43 return <FALSE, FALSE, ⊥>;

69

5.2. Basic model

44 }

45 if (!s.X.EXAMS.contains(e)) {

46 //Semantic failure: exam does not exist

47 return <TRUE, FALSE, ⊥>;

48 }

49 //Valid request: can answer, exam exists

50 return <TRUE, TRUE, s.X.ISINSEXAM(e)>;

51 }

52

53 I(s, getpdata(p), u) = {

54 if (!I(s, auth-getpdata(p), u)) {

55 //Authorization failure

56 return <FALSE, FALSE, ⊥>;

57 }

58 if (!s.X.PATIENTS.contains(p)) {

59 //Semantic failure: patient does not exist

60 return <TRUE, FALSE, ⊥>;

61 }

62 //Valid request: can answer, patient exists

63 return <TRUE, TRUE, s.X.GETPDATA(p)>;

64 }

65

66 I(s, getward(s), u) = {

67 if (!I(s, auth-getward(s), u)) {

68 //Authorization failure

69 return <FALSE, FALSE, ⊥>;

70 }

71 if (!s.X.PATIENTS.contains(s) && !s.X.STAFFS.contains(s

)) {

72 //Semantic failure: subject does not exist

73 return <TRUE, FALSE, ⊥>;

74 }

75 //Valid request: can answer, subject exists

70

5.2. Basic model

76 return <TRUE, TRUE, s.X.GETWARD(s)>;

77 }

78

79 I(s, gettherapies(p), u) = {

80 if (!I(s, auth-gettherapies(p), u)) {

81 //Authorization failure

82 return <FALSE, FALSE, ⊥>;

83 }

84 if (!s.X.PATIENTS.contains(p)) {

85 //Semantic failure: patient does not exist

86 return <TRUE, FALSE, ⊥>;

87 }

88 //Valid request: can answer, patient exists

89 return <TRUE, TRUE, s.X.GETTHERAPYS(s.X.GETCDIARY(p))>;

90 }

91

92 I(s, getexams(p), u) = {

93 if (!I(s, auth-getexams(p), u)) {

94 //Authorization failure

95 return <FALSE, FALSE, ⊥>;

96 }

97 if (!s.X.PATIENTS.contains(p)) {

98 //Semantic failure: patient does not exist

99 return <TRUE, FALSE, ⊥>;

100 }

101 //Valid request: can answer, patient exists

102 return <TRUE, TRUE, s.X.GETEXAMS(s.X.GETCDIARY(p))>;

103 }

104

105 I(s, getcheckups(p), u) = {

106 if (!I(s, auth-getcheckups(p), u)) {

107 //Authorization failure

108 return <FALSE, FALSE, ⊥>;

71

5.2. Basic model

109 }

110 if (!s.X.PATIENTS.contains(p)) {

111 //Semantic failure: patient does not exist

112 return <TRUE, FALSE, ⊥>;

113 }

114 //Valid request: can answer, patient exists

115 return <TRUE, TRUE, s.X.GETCHECKUPS(s.X.GETCDIARY(p))>;

116 }

Authorization queries, instead, will not access any sort of authorization data

structure, as it has already been mentioned. The de�nition of the interpreta-

tion function for authorization queries for commands is given by:

1 I(s, auth-modifypdata(p, d), u) = {

2 if (!s.X.PATIENTS.contains(p)) {

3 //Patient does not exist

4 return FALSE;

5 }

6 //Patient exists

7 if (!I(s, auth-getward(p), u) || !I(s, auth-getward(u),

u)) {

8 //Cannot verify wards

9 return FALSE;

10 }

11 //Patient exists, can verify wards

12 return I(s, getward(p), u).RESULT == I(s, getward(u), u

))

13 }

14

15 I(s, auth-addtherapy(p, t), u) = {

16 if (!s.X.PATIENTS.contains(p)) {

17 //Patient does not exist

18 return FALSE;

19 }

72

5.2. Basic model

20 //Patient exists

21 return (s.X.GETWARD(p) == s.X.GETWARD(u)) && s.X.

ISDOCTOR(u)

22 }

23

24 I(s, auth-addexam(p, e), u) = {

25 if (!s.X.PATIENTS.contains(p)) {

26 //Patient does not exist

27 return FALSE;

28 }

29 //Patient exists

30 if (s.X.ISLABEXAM(e)) {

31 return s.X.GETWARD(p) == s.X.GETWARD(u)

32 }

33 else {

34 return (s.X.GETWARD(p) == s.X.GETWARD(u)) && s.

X.ISDOCTOR(u)

35 }

36 }

37

38 I(s, auth-addcheckup(p, c), u) = {

39 if (!s.X.PATIENTS.contains(p)) {

40 //Patient does not exist

41 return FALSE;

42 }

43 //Patient exists

44 return (s.X.GETWARD(p) == s.X.GETWARD(u)) && s.X.

ISDOCTOR(u)

45 }

While the interpretation function for authorization queries related to applica-

tion queries is given by:

1 I(s, auth-isdoc(s), u) = {

73

5.2. Basic model

2 return TRUE

3 }

4

5 I(s, auth-isnurse(s), u) = {

6 return TRUE

7 }

8

9 I(s, auth-islabexam(e), u) = {

10 return TRUE

11 }

12

13 I(s, auth-isinsexam(e), u) = {

14 return TRUE

15 }

16

17 I(s, auth-getpdata(p), u) = {

18 if (!s.X.PATIENTS.contains(p)) {

19 //Patient does not exist

20 return FALSE

21 }

22 //Patient exists

23 return s.X.GETWARD(p) == s.X.GETWARD(u)

24 }

25

26 I(s, auth-getward(s), u) = {

27 return TRUE

28 }

29

30 I(s, auth-gettherapies(p), u) = {

31 if (!s.X.PATIENTS.contains(p)) {

32 //Patient does not exist

33 return FALSE

34 }

74

5.2. Basic model

35 //Patient exists

36 return s.X.GETWARD(p) == s.X.GETWARD(u)

37 }

38

39 I(s, auth-getexams(p), u) = {

40 if (!s.X.PATIENTS.contains(p)) {

41 //Patient does not exist

42 return FALSE

43 }

44 //Patient exists

45 return s.X.GETWARD(p) == s.X.GETWARD(u)

46 }

47

48 I(s, auth-getcheckups(p), u) = {

49 if (!s.X.PATIENTS.contains(p)) {

50 //Patient does not exist

51 return FALSE

52 }

53 //Patient exists

54 return s.X.GETWARD(p) == s.X.GETWARD(u)

55 }

75

5.3. Re�ned model

5.3 Re�ned model

This section will present a re�ned model of the system in analysis. The �rst

draft of the model imposed that the medical sta� could only access and modify

data of patients of their own ward. The re�nement introduces the possibility

for sta� members to require a consult with another sta� member over a patient.

As long as the consult is active, the consultant doctor can access and modify

the patient data even if the patient is not of his same ward.

The consulting procedure works as follow: sta� member s1 issues a consulting

request to sta� member s2 for one of his patients. Sta� member s2 can either

reject or accept the request: if rejected, the request is removed and nothing

happens. If accepted, the request becomes an active consulting. This active

consulting exists as long as either s1 or s2 removes it.

For the sake of brevity, the speci�cation of the lower level model will be given

by specifying only the di�erences from the previous model.

5.3.1 Application data

The application data must now be able to store information about consulting

requests and active consulting. Therefore, X now contains two additional sets:

X = {. . . ,CONSREQ,ACTIVECONS}

where:

CONSREQ ⊆ STAFFS× STAFFS× PATIENTS,

ACTIVECONS ⊆ STAFFS× STAFFS× PATIENTS

5.3.2 Commands

The additional commands must allow the sta� members to issue consulting

requests, accept consulting requests and delete both consulting requests and

76

5.3. Re�ned model

active consulting:

C = {. . . ,

〈CREATECONSREQ,D.STAFFs× D.STAFFs× D.PATIENTs〉,

〈ACCEPTCONSREQ,D.STAFFs× D.STAFFs× D.PATIENTs〉,

〈DELETECONS,D.STAFFs× D.STAFFs× D.PATIENTs〉,

}

5.3.3 Queries

Queries must now allow sta� members to retrieve the consulting requests and

active consulting they are involved with, so that they can then be used as

parameters for the consulting commands:

QX = {. . . ,

〈GETCONSREQS,D.STAFFs, (D.STAFFs× D.STAFFs× D.PATIENTs)∗〉,

〈GETACTIVECONS,D.STAFFs, (D.STAFFs× D.STAFFs× D.PATIENTs)∗〉,

}

In addition to those, the model now includes the authorization queries for the

new commands and application queries:

QA = {. . . ,

Commands:

〈AUTH-CREATECONSREQ,D.STAFFs× D.STAFFs× D.PATIENTs〉,

〈AUTH-ACCEPTCONSREQ,D.STAFFs× D.STAFFs× D.PATIENTs〉,

〈AUTH-DELETECONS,D.STAFFs× D.STAFFs× D.PATIENTs〉,

Application queries:

〈GETCONSREQS,D.STAFFs〉,

〈GETACTIVECONS,D.STAFFs〉,

}

77

5.3. Re�ned model

5.3.4 Transition function

The re�ned transition function only di�ers from the previous with respect to

the new commands:

1 T(s, createconsreq(s1, s2, p), u) = {

2 if (!I(s, auth-createconsreq(s1, s2, p), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, s>;

5 }

6 if (!s.X.PATIENTS.contains(p) || !s.X.STAFFS.contains(

s1) || !s.X.STAFFS.contains(s2)) {

7 //Semantic failure: one of the parameter does

not exist

8 return <TRUE, FALSE, s>;

9 }

10 //Valid request: can issue, parameters exist

11 s.X.CONSREQS.add(<s1, s2, p>);

12 return <TRUE, TRUE, s>;

13 }

14

15 T(s, acceptconsreq(s1, s2, p), u) = {

16 if (!I(s, auth-acceptconsreq(s1, s2, p), u)) {

17 //Authorization failure

18 return <FALSE, FALSE, s>;

19 }

20 if (!s.X.CONSREQS.contains(<s1, s2, p>)) {

21 //Semantic failure: the request does not exist

22 return <TRUE, FALSE, s>;

23 }

24 //Valid request: can issue, request exists

25 s.X.CONSREQ.remove(<s1, s2, p>);

26 s.X.ACTIVECONS.add(<s1, s2, p>);

27 return <TRUE, TRUE, s>;

78

5.3. Re�ned model

28 }

29

30 T(s, deletecons(s1, s2, p), u) = {

31 if (!I(s, auth-deletecons(s1, s2, p), u)) {

32 //Authorization failure

33 return <FALSE, FALSE, s>;

34 }

35 if (!s.X.CONSREQS.contains(<s1, s2, p>) || !s.X.

ACTIVEREQS.contains(<s1, s2, p>)) {

36 //Semantic failure: the request does not exist

37 return <TRUE, FALSE, s>;

38 }

39 //Valid request: can issue, request exists

40 s.X.CONSREQ.remove(<s1, s2, p>);

41 s.X.ACTIVECONS.remove(<s1, s2, p>);

42 return <TRUE, TRUE, s>;

43 }

5.3.5 Interpretation function

The re�ned interpretation function for the new application queries is given by:

1 I(s, getconsreq(s), u) = {

2 if (!I(s, auth-getconsreq(s), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, ⊥>;

5 }

6 if (!s.X.STAFFS.contains(s)) {

7 //Semantic failure: staff member does not exist

8 return <TRUE, FALSE, ⊥>;

9 }

10 //Valid request: can answer, staff member exists

11 return <TRUE, TRUE, s.X.CONSREQS.where(s1 == s || s2 ==

s)>;

79

5.3. Re�ned model

12 }

13

14 I(s, getactivecons(s), u) = {

15 if (!I(s, auth-getconsreq(d), u)) {

16 //Authorization failure

17 return <FALSE, FALSE, ⊥>;

18 }

19 if (!s.X.STAFFS.contains(s)) {

20 //Semantic failure: staff member does not exist

21 return <TRUE, FALSE, ⊥>;

22 }

23 //Valid request: can answer, staff member exists

24 return <TRUE, TRUE, s.X.ACTIVECONS.where(s1 == s || s2

== s)>;

25 }

While the interpretation function for the authorization queries of the new

commands is given by:

1 I(s, auth-createconsreq(s1, s2, p), u) = {

2 if (!s.X.STAFFS.contains(s1) || !s.X.STAFFS.contains(s2

) || !s.X.PATIENTS.contains(p)) {

3 //One of the parameters does not exist

4 return FALSE;

5 }

6 //Parameters are valid

7 return u == s1 && s.X.GETWARD(p) == s.X.GETWARD(s1);

8 }

9

10 I(s, auth-accept(s1, s2, p), u) = {

11 if (!s.X.STAFFS.contains(s1) || !s.X.STAFFS.contains(s2

) || !s.X.PATIENTS.contains(p)) {

12 //One of the parameters does not exist

13 return FALSE;

80

5.3. Re�ned model

14 }

15 //Parameters are valid

16 return u == s2;

17 }

18

19 I(s, auth-deleteconsreq(s1, s2, p), u) = {

20 if (!s.X.STAFFS.contains(s1) || !s.X.STAFFS.contains(s2

) || !s.X.PATIENTS.contains(p)) {

21 //One of the parameters does not exist

22 return FALSE;

23 }

24 //Parameters are valid

25 return u == s1 || u == s2;

26 }

Finally, the interpretation function for the authorization queries for the new

application queries is given by:

1 I(s, auth-getconsreq(s), u) = {

2 if (!s.X.STAFFS.contains(s)) {

3 //Staff member does not exist

4 return FALSE

5 }

6 return s == u;

7 }

8

9 I(s, auth-getactivecons(s), u) = {

10 if (!s.X.STAFFS.contains(s)) {

11 //Staff member does not exist

12 return FALSE;

13 }

14 return s == u;

15 }

81

5.4. Pairing elements

5.4 Pairing elements

The de�nition of a two-levels model in ISAAC requires the de�nition of the

three pairing functions: the state-mapping function, the action-mapping func-

tion and the query-mapping function. This section of the case study focuses

on the de�nition of those pairing elements.

5.4.1 State-mapping function

In Chapter 4, the state-mapping function was de�ned as the pairing element

that describes how lower level states can be derived starting from higher level

states:

σ : S1 → S2

In the scenario in analysis, the lower level state expands the higher level state

by adding the possibility to record consulting requests and active consulting.

Since the consulting action is not allowed in the higher level state, a reasonable

mapping simply creates a lower level state with no consulting requests or active

consulting:

1 σ(s1) = {

2 s2 = new lower level state;

3 //Users are the same

4 s2.U = s1.U;

5 //There are no authorization data

6 //Shared application data are the same

7 s2.X = s1.X;

8 //Consulting requests and active consulting sets are

empty

9 s2.X.CONSREQS = ∅;

10 s2.X.ACTIVECONS = ∅;

11 return s2;

12 }

82

5.4. Pairing elements

5.4.2 Action-mapping function

In Chapter 4, the action-mapping function was de�ned as the pairing element

that describes how a higher level command is translated in a series of lower

level commands, specifying which lower level user should execute each of them:

α : S1 × C1 × D1.UIDs→ (C2 × D2.UIDs)
∗

The re�nement described in the scenario in analysis does not alter the way

higher level commands are executed, nor the users executing them: a higher

level command simply calls the respective lower level command with the same

user. Therefore, the action-mapping function for a generic command c1 is

de�ned by:

1 α(s1, c1, u1) = {

2 result = new lower level empty command-user pairs

sequence;

3 result.append(<c2(c1), u2(u1)>);

4 return result;

5 }

where command c2(c1) is the lower level version of command c1, and user

u2(u1) is the lower level version of user u1.

5.4.3 Query-mapping function

In chapter 4, the query-mapping function was de�ned as the pairing element

that describes how to answer a higher level query as a function of lower level

queries, possibly modifying the lower level state:

π : S2 ×Q1 × D1.UIDs→ D2.BOOLs× D2.BOOLs× (�atten(D1) ∪ {⊥})× S2

Similarly to what happens with the action-mapping function, the re�nement

described in the scenario in analysis does not alter the way a higher level

query is answered, and answering higher level queries does not require altering

83

5.4. Pairing elements

the lower level state: a higher level query is answered by simply calling the

interpretation function of the corresponding lower level query. Therefore, the

query-mapping function for a generic query q1 is de�ned by:

1 π(s2, q1, u1) = {

2 return <I2(s2, q2, u2(u1).result, s2>;

3 }

where query q2(q1) is the lower level version of query q1 and user u2(u1) is the

lower level version of user u1.

84

5.5. Proof of correctness

5.5 Proof of correctness

As shown in Chapter 4, two-levels mode reasoning focuses on verifying the

correctness of a re�nement, as speci�ed in de�nition 23. Correctness is a

conjunction of two independent sub-properties: action-mapping preservation

and query-mapping preservation.

5.5.1 Action-mapping preservation

Informally speaking, action-mapping preservation guarantees that higher level

commands and their action-mapped counterparts are really equivalent with re-

spect to state-mapping. The formal de�nition of action-mapping preservation

was given in De�nition 25:

∀s1 : S1, c1 : C1

σeq(σ(T1(s1, c1)),T2
∗(σ(s1), α(s1, c1)))

In order to quickly verify action-mapping preservation for the scenario in anal-

ysis, it is useful to note that the action-mapping function simply calls the

lower level version of the higher level command passed as its parameter. Addi-

tionally, it is possible to simplify state-mapping equivalence to state equality.

Therefore, the action-mapping preservation de�nition can be simpli�ed to:

∀s1 : S1, c1 : C1

σ(T1(s1, c1)) = T2(σ(s1), c2(c1))

where command c2(c1) is the lower level version of command c1.

Recall now that the lower level transition function di�ers from its higher level

counterpart only with respect to lower level-exclusive commands. In other

words, T2(σ(s1), c2(c1)) = T1(σ(s), c1) for any higher level command c1. It is

therefore possible to further simplify the de�nition to:

∀s1 : S1, c1 : C1

σ(T1(s1, c1)) = T1(σ(s1), c1)

85

5.5. Proof of correctness

According to its speci�cation, the state-mapping function behaves like an iden-

tity function for the state with the exclusion of the consulting related elements,

that are set to the empty set in the returned result. Since the higher level tran-

sition function is not dependent on the consulting elements nor alters them, as

they are not part of the higher level state, the speci�c case in analysis makes

it so that the higher level transition function and the state-mapping function

are linearly exchangeable. Therefore, action-mapping preservation is veri�ed.

5.5.2 Query-mapping preservation

Informally speaking, query-mapping preservation guarantees that the answers

to all the higher level queries of a given higher level state can be inferred by

lower level queries of the correspondent lower level state, and that answering

the query does not alter the lower level state �too much�. The formal de�nition

of the query-mapping function was given in de�nition 26:

∀s1 : S1, q1 : Q1, u1 : D1.UIDs :

I1(s1, q1, u1) = π(σ(s1), q1, u1).RESULT

∧

σeq(σ(s1), π(σ(s1), q1, u1).STATE)

In order to quickly verify query-mapping preservation for the scenario in anal-

ysis, it is useful to note that the query-mapping function simply interprets the

lower level version of the higher level query passed as its parameter, and does

not modify the state in its execution. Therefore, the query-mapping preserva-

tion de�nition can be simpli�ed to:

∀s1 : S1, q1 : Q1, u1 : D1.UIDs :

I1(s1, q1, u1) = I2(σ(s1), q2(q1), u2(u1))

∧

σeq(σ(s1), σ(s1))

86

5.5. Proof of correctness

where query q2(q1) is the lower level version of query q1 and u2(u1) is the lower

level version of user u1.

At this point, since σeq is an equivalence relationship, state-mapping equiva-

lence is trivially true. Similarly to what happens for action-mapping preser-

vation, the state-mapping function behaves like an identity function for all

the state elements but the ones related to consulting. The lower level inter-

pretation function and its higher level counterpart are identical with respect

to higher level queries. Therefore, it is possible to state that query-mapping

preservation is also veri�ed, using the same approach used for the proof of

action-mapping preservation.

87

5.6. Conclusions

5.6 Conclusions

This chapter presented a case study based on a real-world hospital scenario.

Albeit some of the elements were simpli�ed and/or treated with a sometimes

only semi-formal approach, for the sake of clarity and readability also for non

specialized users, the case study shows how ISAAC can be applied to real cases

in order to verify the correctness of the system design, and its re�nements, with

respect to both the application and authorization aspects. In particular, the

analysis showed that, following the proposed approach, it is possible to safely

enrich the basic hospital model in order to o�er the possibility for inter-ward

consulting. This analysis may take in place in one of two real-world contexts:

a re�nement of the previous, not yet implemented, system design with the

goal of describing things at a lower level of abstraction, but also in the case

of a modi�cation of the �status quo� of an already implemented system, with

the goal of verifying that the modi�cation will not break the previous policies.

In both cases, ISAAC o�ers a valid option to guarantee the reliability of the

models and of the analysis carried on them.

88

Conclusions 6

This thesis presented ISAAC, a theoretical methodology for the formal co-

design of the application and authorization parts of a system and re�nement

veri�cation. Using the ISAAC approach, it is possible to design robust systems

that are less likely to be a�ected by the usual problems that arise when plug-

ging an access control system into an already completed application system,

as the two parts are integrated since the early design stages. Additionally, it

is possible to proceed in the re�nement of an abstract design in a secure way,

verifying at each re�nement step that no inconsistency has been introduced in

the models.

When modeling a system at a single level of abstraction, ISAAC o�ers the

possibility to check for some simple call loops in the system interfaces. This

approach is based on call graph analysis, and while being able to only o�er

partial answers, it is a starting point for the analysts in charge of detecting

this kind of inconsistencies.

When working on the re�nement of a previous model, ISAAC allows to ef-

89

fectively check that the re�ned model does not introduce inconsistencies with

respect to the older version. This is done analyzing both the way how the

new commands are executed and how the new queries of the system state are

answered. The concept of re�nement can also be applied, counter-intuitively,

to the veri�cation of the functional equivalence of two di�erent systems, by

imagining one as a re�nement of the other.

The way ISAAC is designed presents two additional advantage. First, dis-

tinguishing between authorization and semantic failures forces the system de-

signer to consider the risk of information leak via side channels during the

design of the system. Second, ISAAC has been designed speci�cally with the

goal of being easy to implement in most of the commonly used automated

veri�cation systems, in order to ease the burden of manually verifying system

properties.

The feasibility of the ISAAC approach to system design and re�nement was

tested in a case study that modeled a sub-system of a real-world hospital sce-

nario. In particular, the areas of the hospital system related to patient data

and therapies were modeled. In the �rst instance of the model, only the med-

ical personnel of a ward had access to the patients data of the ward. In a

subsequent re�nement, the model introduced the possibility to request con-

sulting to medical personnel outside the ward of the patient. The case study

showed the correctness of the proposed re�nement, with respect to the de�ni-

tion of re�nement correctness of ISAAC.

With respect to future works, there are three main possible directions of re-

search. The �rst one relates to extending the working possibilities of ISAAC

within one-level mode, both by enhancing the capabilities of the circular de-

pendencies detection algorithm and by o�ering new tools to be applied to the

90

analysis of the one-level models.

Another option for future research is based on the fact that it was noted that

the presence of logging facilities within the system often leads to peculiar be-

haviors, such as the fact that the state is not kept constant after a command

failure and that preservation properties must rely on state-mapping equiva-

lence rather than state equality. It is recommended to further explore this

aspect, in order to o�er a better integration of logging elements in the system

designs, possibly by looking at the work already done on the topic in the �eld

of aspect-oriented programming (AOP) [20].

A �nal suggestion for future research is based to the notion that the semantics

functions of command and queries often tend to have the same abstract struc-

ture, based on �authorization check, semantic check, execution� sequences.

The possibility of the development of a meta-language, using templates for

the automated generation of semantic elements, could greatly help both in

the description of the models and in the subsequent automated veri�cation of

properties, greatly increasing the likelihood of ISAAC becoming an approach

used on the large scale.

91

Bibliography

[1] Stefania Gnesi and Tiziana Margaria. Formal methods for industrial crit-

ical systems: A survey of applications. John Wiley & Sons, 2012.

[2] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York,

Inc., 1985.

[3] E Allen Emerson. Temporal and modal logic. Handbook of Theoretical

Computer Science, Volume B: Formal Models and Sematics, pages 995�

1072, 1990.

[4] J Michael Spivey. The Z notation: a reference manual. International Series

in Computer Science, 1992.

[5] Jean-Raymond Abrial and Jean-Raymond Abrial. The B-book: assigning

programs to meanings. Cambridge University Press, 2005.

[6] Gerard J Holzmann. The SPIN model checker: Primer and reference

manual, volume 1003. Addison-Wesley Reading, 2004.

[7] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype

veri�cation system. In Automated Deductionâ��CADE-11, pages 748�

752. Springer, 1992. URL http://pvs.csl.sri.com.

[8] Messaoud Benantar. Access control systems: security, identity manage-

ment and trust models. Springer, 2006.

92

http://pvs.csl.sri.com

Bibliography

[9] Mahesh V Tripunitara and Ninghui Li. A theory for comparing the ex-

pressive power of access control models. Journal of Computer Security,

15(2):231�272, 2007.

[10] Ninghui Li, John C Mitchell, and William H Winsborough. Beyond proof-

of-compliance: security analysis in trust management. Journal of the

ACM (JACM), 52(3):474�514, 2005.

[11] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A log-

ical framework for reasoning about access control models. ACM Transac-

tions on Information and System Security (TISSEC), 6(1):71�127, 2003.

[12] Timothy L Hinrichs, Diego Martinoia, C Garrison William III, Adam J

Lee, Alessandro Panebianco, and Lenore Zuck. Application-sensitive ac-

cess control evaluation using parameterized expressiveness. In Computer

Security Foundations Symposium (CSF), 2013 IEEE 26th, pages 145�160.

IEEE, 2013.

[13] Diego Martinoia. Proving correctness within an access control evaluation

framework - M.Sc. thesis. 2013.

[14] Jason Crampton and Charles Morisset. Towards a generic formal frame-

work for access control systems. arXiv preprint arXiv:1204.2342, 2012.

[15] Stuart Kent. Model driven engineering. In Integrated formal methods,

pages 286�298. Springer, 2002.

[16] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.

Electronic Notes in Theoretical Computer Science, 152:125�142, 2006.

[17] Ralph-Johan Back. On the correctness of re�nement steps in program

development. Department of Computer Science, University of Helsinki

Helsinki, Finland, 1978.

93

Bibliography

[18] Carroll Morgan. Programming from speci�cations. Prentice-Hall, Inc.,

1990.

[19] Zhenbang Chen, Zhiming Liu, Anders P Ravn, Volker Stolz, and Nai-

jun Zhan. Re�nement and veri�cation in component-based model-driven

design. Science of Computer Programming, 74(4):168�196, 2009.

[20] et Al. Kiczales, Gregor. Aspect-oriented programming. Springer Berlin

Heidelberg, 1997.

94

List of Figures

3.1 System model in ISAAC . 15

3.2 Example call graph . 34

4.1 Two-levels mode . 38

4.2 Action-mapping preservation: the two paths from s1 to s
′
2 must be

equivalent with respect to state-mapping 47

95

Appendices

96

Simple �le system manager - basic model A

Suppose that one wants to model a simpli�ed �le system management: each

�le has an owner, and users have the possibility to read or write (no execute)

a �le. There is no possibility to create a �le: writing to a non-existing �le will

simply fail. Only the owner of a �le can read or write it. The authorization

policy is speci�ed using an access matrix, i.e. a set of <subject, object, right>

triplets. In our example there are two users and two �les: Alice, owner of �le

p, and Bob, owner of �le q. The model must also consider the content of each

�le. Trying to read a non-existing �le returns a default failure symbol.

Domains

The set D is de�ned as follows:

D = {UIDs,BOOLs,FIDs,FCs,AUTHs}

where UIDs (User ID's) contains the set of all non-empty strings of alphabetic

character, BOOLs is the {TRUE, FALSE} set, FIDs (File ID's) contains the

set of all the valid absolute �le paths, FCs (File Contents) contains all the

97

binary strings and AUTHs (Authorizations) contains the �read� and �write�

constants representing the authorization rights.

Users set

In our example, the set U is de�ned as follows:

U = {Alice,Bob}

Application data

In our example, the application data structures are composed of: the set of

the �les present in the system, which is a subset of D.FIDs, a function from

the �les to their contents and a function from the �les to their owners. Note

that it is possible to make the co-domain of the content function either the

totality of D.FCs, or to model in the application data structure also a set of

the current available contents, a subset of D.FCs, and make that the target

co-domain. As usual, there is more than one option. In this example, the �rst

option is preferred.

X = {FILES,CONTENT,OWNER}

where:

FILES ⊆ D.FIDs = {p, q}

CONTENT : FILES→ D.FCs = {(p, 0), (q, 1)}

OWNER : FILES→ U = {(p,Alice), (q,Bob)}

98

Authorization data

In our example, the chosen access control system will be an access matrix, i.e.

a set of <subject, object, right> tuples that specify the rights of each user.

A = {M}

where:

M = {

〈Alice, p, read〉,

〈Alice, p, write〉,

〈Bob, q, read〉,

〈Bob, q, write〉

}

Commands

In our example, the only available command is the command to write a �le.

Therefore, the C set only contains one element.

C = {〈write,D.FIDs× D.FCs〉}

Queries

In our example, the only available application query is the query to read a �le

content. There are also two authorization queries, one for each command or

99

application query.

Q = {QX ∪̇ QA}

where:

QX = {〈read,D.FIDs,FCs〉},

QA = {

〈auth-read,D.FIDs〉,

〈auth-write,D.FIDs× D.FCs〉

}

Transition function

In our example, the transition function may be de�ned as follows:

1 T(s, write(fid, fc), u) = {

2 if (!I(s, auth-write(fid, fc), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, s>;

5 }

6 if (!s.X.FILES.contains(fid)) {

7 //Semantic failure: non-existing file

8 return <TRUE, FALSE, s>;

9 }

10 //Valid request: can write, file exists

11 s.X.CONTENT(fid) = fc;

12 return <TRUE, TRUE, s>;

13 }

Interpretation function

In our example, the interpretation function may be de�ned as:

1 I(s, read(fid), u) = {

2 if (!I(s, auth-read(fid), u)) {

100

3 //Authorization failure

4 return <FALSE, FALSE, ⊥>;

5 }

6 if (!s.X.FILES.contains(fid)) {

7 //Semantic failure: non-existing file

8 return <TRUE, FALSE, ⊥>;

9 }

10 //Valid request: can read, file exists

11 return <TRUE, TRUE, s.X.CONTENT(fid)>;

12 }

13

14 I(s, auth-read(fid), u)) = {

15 if (!s.FILES.contains(fid)) {

16 //Non-existsing file

17 return FALSE;

18 }

19 //File exists

20 return s.A.M.contains(<u, fid, READ>);

21 }

22

23 I(s, auth-write(fid, fc), u) = {

24 if (!s.FILES.contains(fid)) {

25 //Non-existing file

26 return FALSE;

27 }

28 //File exists

29 return s.A.M.contains(<u, fid, WRITE>);

30 }

101

Simple �le system manager - re�ned model B

Let us now re�ne the model described in Appendix A. The previously atomic

�read� and �write� commands will now be modeled as a series of �open, read,

close� and �open, write, close� operations. Additionally, the lock status on a

�le must also be modeled. For the sake of simplicity, there is only one lock

type, i.e. read and write lock are not distinguished. Trying to write into a

locked �le will not do anything, trying to read from a locked �le will return

a binary empty string. As all the reasoning of two-levels mode is carried out

regarding the mapping of the higher level model into the lower-level model,

the instantiation of the lower level model is not performed. The lower-level

states will be derived by using the state-mapping function from the higher

level model.

Domains

The re�nement does not introduce new �le types. Therefore the set D is:

D = {UIDs,BOOLs,FIDs,FCs,AUTHs}

102

where UIDs contains the set of all non-empty strings of alphabetic character,

BOOLs is the {TRUE, FALSE} set, FIDs contains the set of all the valid ab-

solute �le paths and FCs contains all the binary strings. AUTHs now contains

the new �open� and �close� constants.

Users set

The re�nement does not alter the users set construction. As before:

U ⊆ D.UIDs

Application data

Application data must now also model the lock on �les. In order to do so, the

LOCKED set contains a list of �le-user pairs of the currently locked �les.

X = {FILES,CONTENT,OWNER, LOCKED}

where:

FILES ⊆ D.FIDs,

CONTENT : FILES→ D.FCs,

OWNER : FILES→ U,

LOCKED ⊆ FILES× U

Authorization data

For the sake of simplicity, the same access control system of the higher-level

model (access matrix) is used.

A = {M}

where M is a set of <subject, object, right> tuples.

103

Commands

In addition to the previously speci�ed �write� command, the system now also

o�ers the �open� and �close� commands.

C = {〈write,D.FIDs× D.FCs〉, 〈open,D.FIDs〉, 〈close,D.FIDs〉}

Queries

Queries are unchanged by the re�nement, but the model must now also o�er

the authorization queries for the �open� and �close� commands.

Q = {QX ∪QA}

where:

QX = {〈read,D.FIDs,FCs〉},

QA = {

〈auth-read,D.FIDs〉,

〈auth-write,D.FIDs× D.FCs〉,

〈auth-open,D.FIDs〉,

〈auth-close,D.FIDs〉

}

Transition function

The transition function must now also be de�ned for the �open� and �close�

commands:

1 T(s, write(fid, fc), u) = {

2 if (!I(s, auth-write(fid, fc), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, s>;

5 }

6 if (!s.X.FILES.contains(fid)) {

104

7 //Semantic failure: non-existing file

8 return <TRUE, FALSE, s>;

9 }

10 if (!s.X.LOCKED.contains(<fid, u>)) {

11 //Semantic failure: user does not have the

lock

12 return <TRUE, FALSE, s>;

13 }

14 //Valid request: can write, file exists, user has the

lock

15 s.X.CONTENT(fid) = fc;

16 return <TRUE, TRUE, s>;

17 }

18

19 T(s, open(fid), u) = {

20 if (!I(s, auth-open(fid, fc), u)) {

21 //Authorization failure

22 return <FALSE, FALSE, s>;

23 }

24 if (!s.X.FILES.contains(fid)) {

25 //Semantic failure: non-existing file

26 return <TRUE, FALSE, s>;

27 }

28 if (!s.X.LOCKED.contains(<fid, ANY>)) {

29 //Semantic failure: file is locked

30 return <TRUE, FALSE, s>;

31 }

32 //Valid request: can open, file exists, file is

unlocked

33 s.X.LOCKED.add(<fid, u>);

34 return <TRUE, TRUE, s>;

35 }

36

105

37 T(s, close(fid), u) = {

38 if (!I(s, auth-close(fid, fc), u)) {

39 //Authorization failure

40 return <FALSE, FALSE, s>;

41 }

42 if (!s.X.FILES.contains(fid)) {

43 //Semantic failure: non-existing file

44 return <TRUE, FALSE, s>;

45 }

46 if (!s.X.LOCKED.contains(<fid, u>)) {

47 //Semantic failure: user does not have the

lock

48 return <TRUE, FALSE, s>;

49 }

50 //Valid request: can close, file exists, user has the

lock

51 s.X.LOCKED.remove(<fid, u>);

52 return <TRUE, TRUE, s>;

53 }

Interpretation function

The re�nement does not a�ect the interpretation function much. The only

di�erence is that it must be now also speci�ed for the new authorization query

regarding the �open� and �close� commands.

1 I(s, read(fid), u) = {

2 if (!I(s, auth-read(fid), u)) {

3 //Authorization failure

4 return <FALSE, FALSE, ⊥>;

5 }

6 if (!s.X.FILES.contains(fid)) {

7 //Semantic failure: non-existing file

8 return <TRUE, FALSE, ⊥>;

106

9 }

10 if (!s.X.LOCKED.contains(<fid, u>)) {

11 //Semantic failure: user does not have the

lock

12 return <TRUE, FALSE, ⊥>;

13 }

14 //Valid request: can read, file exists

15 return <TRUE, TRUE, s.X.CONTENT(fid)>;

16 }

17

18 I(s, auth-read(fid), u) = {

19 if (!s.FILES.contains(fid)) {

20 //Non-existing file

21 return FALSE;

22 }

23 //File exists

24 return s.A.M.contains(<u, fid, READ>);

25 }

26

27 I(s, auth-write(fid, fc), u) = {

28 if (!s.FILES.contains(fid)) {

29 //Non-existing file

30 return FALSE;

31 }

32 //File exists

33 return s.A.M.contains(<u, fid, WRITE>);

34 }

35

36 I(s, auth-open(fid), u) = {

37 if (!s.FILES.contains(fid)) {

38 //Non-existing file

39 return FALSE;

40 }

107

41 //File exists

42 return s.A.M.contains(<u, fid, OPEN>);

43 }

44

45 I(s, auth-close(fid), u) = {

46 if (!s.FILES.contains(fid)) {

47 //Non-existing file

48 return FALSE;

49 }

50 //File exists

51 return s.A.M.contains(<u, fid, CLOSE>);

52 }

108

	Introduction
	Background and related works
	Background
	The idea behind ISAAC
	Related works

	One-level mode in ISAAC
	One-level modeling
	Domains set
	Users set
	Application data
	Authorization data
	Interactions and actions
	Semantics functions
	Additional aspects

	One-level reasoning
	Call graph computation
	Call graph loops analysis

	Two-levels mode in ISAAC
	Two-levels modeling
	State-mapping function
	Action-mapping function
	Query-mapping function

	Two-levels reasoning
	Action-mapping preservation
	Action-mapping verification example
	Query-mapping preservation
	Query-mapping verification example

	Case study: hospital scenario
	Informal descriptions
	Wards
	Patients
	Therapies
	Exams
	Check-ups
	Nurses
	Doctors

	Basic model
	Domains
	Users
	Application data
	Authorization data
	Commands
	Queries
	Transition function
	Interpretation function

	Refined model
	Application data
	Commands
	Queries
	Transition function
	Interpretation function

	Pairing elements
	State-mapping function
	Action-mapping function
	Query-mapping function

	Proof of correctness
	Action-mapping preservation
	Query-mapping preservation

	Conclusions

	Conclusions
	Bibliography
	List of Figures
	Simple file system manager - basic model
	Simple file system manager - refined model

