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Abstract

Nowadays Heart Failure (HF) is considered the leading cause of repeated
hospitalisations in patients aged over 65. The resulting longitudinal dataset
and its analyses are consequently becoming of a great interest for clinicians
and statisticians worldwide. We analysed HF data collected from the admin-
istrative databank of an Italian regional district (Lombardia), concentrating
our study on the days elapsed from one admission to the next for each pa-
tient in our dataset. The aim behind this project is to identify groups of
patients, conjecturing that the variables in our study, the time segments
between two consecutive hospitalisations, are Weibull distributed in each
hidden cluster. Therefore, the comprehensive distribution for each variable
results in a Weibull Mixture Model. From this assumption we developed a
survival analysis in order to estimate, through a proportional hazards model,
the corresponding hazard function for the proposed model and to obtain the
desired clusters. We find that the selected dataset, a good representative
of the complete population, can be categorized into three clusters, corre-
sponding to “healthy”, “sick” and “terminally ill” patients. Furthermore, we
attempted a reconstruction of the patient-specific hazard function, adding a
frailty parameter to the considered model.



Sommario

Ai nostri giorni lo scompenso cardiaco (HF) è considerato la causa princi-
pale delle numerose ospedalizzazioni in pazienti di età oltre i 65 anni. I dati
longitudinali che si ottengono e le analisi condotte sugli stessi, stanno diven-
tando di grande interesse per i clinici e gli statistici. In questa tesi vengono
analizzati dati sullo scompenso cardiaco provenienti dalla banca dati ammi-
nistrativa di regione Lombardia. Ai pazienti presi in considerazione, è stato
diagnosticato lo scompenso cardiaco e questa diagnosi può essere ricavata da
precise codifiche presenti in tale banca dati (si vedano i Capitoli 1 e 2). Solo
i pazienti dimessi dopo la prima ospedalizzazione entro la fine del 2006 sono
stati presi in considerazione ai fine dello studio, che ha avuto una durata
di 5 anni, fino al 31 Dicembre 2010. In questa tesi, i pazienti con più di 5
ospedalizzazioni sono stati esclusi dalle analisi, in quanto tale riduzione del
dataset permette una più agevole analisi dei dati, senza causare per questo
una considerevole perdita di informazioni.

Uno dei principali scopi di questa tesi, è quello di identificare gruppi di
pazienti. Le variabili prese in considerazione per ottenere i risultati sperati,
sono variabili temporali caratteristiche dei dati longitudinali, che nel nostro
caso corrispondono ai giorni che intercorrono tra una ospedalizzazione e la
successiva. Chiameremo queste variabili intertempi, e verranno indicate co-
me Tih, dove i rappresenta l’i-esimo paziente, e h è la corrispondente h-esima
ospedalizzazione. Per identificare i gruppi di pazienti tra quelli in analisi,
abbiamo ipotizzato che gli intertempi corrispondenti a ciascuna ospedalizza-
zione, ovvero T1, T2, T3, T4 e T5, siano distribuiti secondo misture di Weibull.
Questo risultato è chiaro se si immagina di conoscere i gruppi di pazienti
che vogliamo identificare. In particolare, ipotizzando che ogni intertempo
proprio di un gruppo di pazienti sia una variabile casuale distribuita secondo
una legge Weibull, risulta evidente che la rispettiva variabile casuale globale
è distribuita seconda la mistura delle Weibull delle variabili nei gruppi con-
siderati. Fissando il numero di gruppi di pazienti pari a K = 3, il modello
risultante per ciascun intertempo Th è della forma:
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f(th) =
K∑
k=1

πkf(th;λkh, γkh)

dove

f(th;λkh, γkh) =
γkh
λγkhkh

tγkh−1h exp(−(th/λkh)
γkh).

Secondo il modello appena riportato, Th ha funzione densità fT (·) che è, come
già detto, una mistura di Weibull: πk sono i pesi di ciascuna misturante,
pari alla numerosità del cluster corrispondente, e f(th;λkh, γkh) è la funzione
densità della variabile aleatoria Tkh, ovvero l’intertempo tra la h-esima e la
(h+ 1)-esima ospedalizzazione per i pazienti del cluster k.

Partendo da questa assunzione, è stata condotta un’analisi di sopravvi-
venza per stimare, attraverso il modello proportional hazards model (PHM),
la funzione di hazard, rischio di ri-ospedalizzazione, di ciascun gruppo e per
ottenere quindi i cluster di pazienti. L’analisi è stata condotta avvalendo-
ci del software R [26], con cui abbiamo eseguito tutte le analisi discusse
in questa tesi. In particolare, è stato utilizzato il pacchetto mixPHM [16],
che stima i parametri della densità di ciascun intertempo, permettendo la
ricostruzione della relativa funzione di hazard, e assegna ciascun paziente
ad uno dei cluster ottenuti: una volta stimata la divisione in gruppi, viene
aggiornata la stima dei parametri e vengono riassegnati i pazienti ai nuovi
cluster, ripetendo il procedimento in modo ciclico fino a che una qualche
condizione di iterazione non sia più soddisfatta. L’algoritmo utilizzato per
raggiungere questo risultato è l’algoritmo EM, un algoritmo iterativo che
permette di ottenere la classificazione desiderata. Applicando questo mo-
dello alla popolazione in analisi, che può essere considerata rappresentativa
della popolazione globale, dai risultati appare evidente che vi sono tre distin-
ti gruppi di pazienti: pazienti “sani”, pazienti “malati” o pazienti “terminali”.
Le etichette che abbiamo assegnato a ciascun cluster sono il risultato di
una dettagliata analisi delle caratteristiche di ciascun gruppo ottenuto. In
particolare, dalle analisi è emerso che è possibile identificare un gruppo di
pazienti caratterizzato da un indice di mortalità molto alto, in cui i pazienti
che ne fanno parte hanno, complessivamente, poche, ma frequenti, ospe-
dalizzazioni. Queste caratteristiche ci hanno portato a identificare questo
cluster con il gruppo dei pazienti “terminali”, ovvero pazienti in uno stadio
della malattia molto avanzato. Il cluster identificato con i pazienti “sani”, ad
una analisi descrittiva, mostra proprietà opposte a quelle del primo gruppo:
i pazienti che fanno parte di questo cluster rimangono (quasi) tutti vivi fi-
no alla fine del tempo di osservazione, con un risultante indice di mortalità
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molto basso. I pazienti di questo cluster hanno poche ospedalizzazioni, regi-
strate, l’una dall’altra, a distanza di lunghi archi temporali. L’ultimo cluster
ha proprietà comuni agli altri due, ed è, per questo, stato identificato come
il gruppo dei pazienti “malati”. In questo cluster sono presenti tutti quei
pazienti la cui malattia non può più essere considerata allo stadio iniziale,
ma neppure mostrano le caratteristiche proprie di pazienti allo stadio finale.
Tutte queste considerazioni sono discusse approfonditamente nel Capitolo 3.

Identificati i gruppi in cui è possibile suddividere il dataset in analisi, il
secondo scopo della tesi è stato quello di ricostruire, per ciascun paziente,
le funzioni di rischio di ri-ospedalizzazione su tutto l’arco temporale dello
studio. Il modello utilizzato per ottenere questo risultato è un modello non
parametrico, facente parte della classe dei Frailty Models. Questi sono una
naturale estensione del modello non parametrico di Cox [7], in cui viene
introdotto un parametro, detto frailty, utile a stimare l’eterogeneità tra i
soggetti in analisi. Il pacchetto utilizzato per questo scopo è il frailtypack
[29]. Il pacchetto stima in modo non parametrico la baseline hazard function
del modello: questa è la funzione di rischio che rappresenta l’andamento della
popolazione in analisi. Per differenziare ciascun paziente e ottenere la sua
specifica curva di rischio, il modello calcola la hazard function del paziente
i come segue:

hij(t|vi) = h0(t)viexp(β
′zij)

vi
i.i.d.∼ log −Normal(0, σ2)

dove h0(t), come già detto, è la baseline hazard function; vi rappresenta il ter-
mine di frailty inserito nel modello, variabile aleatoria tempo-indipendente
che segue la distribuzione log-Normale; β è il vettore dei coefficienti del ter-
mine regressivo del modello e viene stimato dall’algoritmo; zij è la matrice
delle covariate introdotte nel modello, sulla base delle quali valutare il ter-
mine regressivo. Come viene spiegato dettagliatamente nel Capitolo 4, le
covariate che abbiamo inserito nel modello sono sia tempo-dipendenti, che
costanti. Questo modello è stato applicato su ciascuno dei cluster trovati
con il metodo di clustering adottato nella prima fase dell’analisi del data-
set. I risultati, ottenuti con la ricostruzione funzionale e paziente-specifica
della funzione di rischio, confermano le ipotesi fatte sui gruppi preceden-
temente identificati. L’andamento che si ottiene rispecchia perfettamente
quelle che sono le caratteristiche dei tre gruppi: nel dettaglio, le funzioni
di rischio dei pazienti classificati come “terminali” hanno valori maggiori nei
primi anni di osservazione, e raggiungono la soglia della probabilità nulla di
ri-ospedalizzazione entro la fine dello studio. Inoltre la variabilità stimata

iii



tra questi pazienti risulta molto bassa, un dato che rispecchia perfettamente
le proprietà intrinseche dei pazienti di questo tipo. Per quanto riguarda le
funzioni di rischio di ri-ospedalizzazione dei pazienti “sani”, queste hanno
una forma funzionale speculare a quella ottenuta per i pazienti “terminali”,
ancora una volta un segno chiaro della differenza tra i pazienti che com-
pongono questi due cluster. Tali pazienti hanno valori alti di probabilità di
ri-ospedalizzazione solo verso la fine dello studio, quando l’incertezza del-
la stima si fa maggiore, a causa della perdita di informazioni dovuta al
censuramento degli intertempi (tutti i pazienti che sono vivi alla fine dello
studio, hanno i corrispondenti intertempi TiHi

censurati, con Hi il numero di
ospedalizzazioni del paziente i). Infine, come prima, per i pazienti “malati”
otteniamo funzioni di rischio che hanno proprietà di entrambi gli altri grup-
pi: tali funzioni hanno valori molto bassi verso la fine dello studio e valori
più alti nei mesi iniziali, ma si distinguono dal cluster dei pazienti “terminali”
in quanto il loro andamento funzionale non risulta monotono decrescente,
proprietà attribuibile alle funzioni di rischio ottenute per l’altro gruppo di
pazienti.

In conclusione, dalle analisi effettuate sul dataset originale, ne deducia-
mo che è possibile trovare e distinguere gruppi di pazienti con caratteristiche
predominanti e differenti: riconoscere cluster diversi di pazienti e valutar-
ne il rischio di una nuova ospedalizzazione permette di tracciare, a livello
temporale, l’evoluzione della malattia di un paziente affetto da scompenso
cardiaco. In particolare, nel Capitolo 5, abbiamo sviluppato un’ulteriore
analisi, eliminando, di volta in volta, i pazienti deceduti, al fine di avere
delle stime di rischio meno sensibili ai pazienti terminali, e più affidabili
per quanto riguarda la maggioranza dei pazienti con questa patologia. La
possibilità di identificare gli stadi della malattia basandosi sulle conoscenze
pregresse e sulla storia di ciascun paziente, consentirebbe di dare al medico
uno strumento aggiuntivo per pianificare eventuali visite preventive, e agli
ospedali il modo di programmare la disponibilità al ricovero di nuovi pazienti
sulla base della domanda prevista. Un tale progresso nel sistema di diagnosi
dello scompenso cardiaco, permetterebbe un servizio migliore alla comunità
e un miglioramento nell’approccio alla cura della malattia. Nel Capitolo 6,
sono riassunti i risultati ottenuti e discussi i possibili sviluppi futuri.
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Chapter 1

Introduction

This thesis is the result of several analyses on a dataset concerning patients
diagnosed with heart failure (HF) or chronic heart failure. One of the first
aim behind this thesis, is to find, within the analysed dataset, groups of
patients with distinctive characteristics, which could help clinicians monitor
their disease evolution. Furthermore, we want to evaluate the increment in
the risk of a new event, i.e. a new hospitalisation, for patients that were,
in their past history, admitted several times for HF. At last, computing
patient-specific hazard functions could allow to estimate the probability of
a new hospitalisation for a single individual, based on the information col-
lected before and during the study.

In this introduction we summarize the characteristics of heart failure dis-
ease, and give a brief and basic explanation of the kind of data we will be
working with throughout the rest of the thesis (see Section 1.1, Section 1.2
and Section 1.3). In the following chapters we will discuss the theory behind
the models we applied and the results obtained. In particular, in Chapter 2
we present the dataset we worked on, outlining the way data were collected,
its properties and describing covariates that are to be considered for the the-
sis purposes and that will play a fundamental role for the computation of the
proposed models. In Chapter 3, we present the theory behind mixPHM pack-
age, the properties of the considered model and, consequently, the transfor-
mations that are to be done to our dataset in order to be able to estimate the
parameters of the desired model. Moreover, we present the results obtained
when running the package with our data: we show the result of the clustering
method, based on the idea that the underlying distribution of times to the
next hospitalisation is a Weibull Mixture Model (see Section 3.1). The model
distinguishes three groups among considered patients, whose properties will
be widely discussed in Section 3.3. In Chapter 4, we present a methodology
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Heart Failure

to attempt a patient-specific hazard reconstruction through non-parametric
models: the theory, the use of frailtypack package, the manipulation of
data and the obtained results, are presented in chapter’s sections. Deeper
analyses are then conducted in Chapter 5, where we apply, once more, the
previously discussed models, and corresponding algorithms, over a precisely
conjectured group of patients, selected from our dataset. Finally, in Chap-
ter 6, we go through the obtained results and analyse the overall outcome,
reviewing the conclusions discussed in previous chapters and concluding on
further developments.

1.1 Heart Failure
Heart failure is a term conjectured to identify a physiological state in which
the result is a lack of blood flow to the body. Often clinicians refer to heart
failure as chronic heart failure, as to identify patients symptomatic of a long
duration disease. Chronic heart failure can be caused by multiple factors:
rheumatic heart disease, valve disorder, diastolic/systolic dysfunction, car-
diomyopathy, hypertension; moreover, heart failure is diagnosed through a
variety of signs, like increased rate of breathing, pulmonary edema, pleural
effusion, nocturia, peripheral edema and more [10]. Professor Packer defined
it as ‘a complex clinical syndrome characterised by abnormalities of left ven-
tricular function and neurohumoral regulation, which are accompanied by
effort intolerance, fluid retention and reduced longevity’ [21]. Despite the
great amount of medical literature that have been published to define and
label HF and chronic HF, up to these days there is not a common man-
ner to identify and diagnose this disease. Nevertheless, this is, in spite of
newer medical techniques adopted to improve patients’ condition, the lead-
ing cause of hospitalisation in elderly subjects. People affected by heart
failure are estimated to be 23 million worldwide.

There exist several codes to identify and label patient’s condition as
HF. We analysed patients records extracted from the project “Utilisation of
Regional Health Service databases for evaluating epidemiology, short- and
medium-term outcome, and process indexes in patients hospitalised for heart
failure”. To consider, within the study case, the majority of HF patients,
admissions diagnosed in Major Diagnostic Category (MDC) 01 - Nervous
System, 04 - Respiratory System and 05 - Circulatory System, that happened
in the Northern Italy regional district of Lombardia, have been included. To
identify HF patients, a list of ICD-9-CM codes has been created as the union
of codes from “Heart failure mortality rate” by AHRQ-IQI [12] and from
CSM-HCC Model Category 80 [25, 24]. Based on these categories, a dataset
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Survival Data

of patients diagnosed with heart failure has been created. The resulting
dataset is made of longitudinal data (see Section 1.2) and its properties are
widely discussed in Chapter 2.

1.2 Survival Data
Survival data are a particular category of statistical data, which describe
the time to some event: in our case, data represent the time to the next
hospitalisation. As for their nature, survival data are positive real valued
variables having a continuous distribution [11]. To collect this kind of data,
it is necessary to identify a starting point, t = 0, common to every individual
in the study case, from which times to the next event are measured. As we
will later show, for each patient in our dataset we fixed the starting time
point to be equal to the time of first admission, which is an event common
to every patient, since they all experienced it in order to fit in our study
case.

Recalling that our dataset is made of patients diagnosed with chronic
heart failure, they are to be considered as high-risk patients, who naturally
experience frequent events, i.e. hospitalisations. Our patients are followed
along five years, and the collection of records from each patient give rise to
a particular structure of the survival data, which earns them the name of
longitudinal data. These are to be considered as trajectories of a stochastic
process. In particular, the resulting data represents the life history of a
single individual, who can experience the same event (hospitalisation for HF)
several times. When dealing with longitudinal data, we can hypothesise that
patients’ hospitalisations are independent. As a result, the transition times
between two events will be an increasing sequence of independent random
times, and we will allow only the last survival time to be censored. Censored
times means that we have partial information on a patient. As in most of
the study cases in literature, if a patient is alive at the end of the study time
period, we do not know her/his complete lifetime, since it exceeds the time
of observation. For this reason, we follow the individual i over the interval
(0;Ci), where Ci is the censoring time for patient i and it is a fixed random
time. Events (new hospitalisations) happen within this time interval, and the
corresponding time is Tih, where i = 1, . . . , n and h = 1, . . . , Hi. Notice that,
for the inner nature of the disease, Hi, i.e. the number of hospitalisations
along the observed lifetime of patient i, is a random variable. Patients
move through these Hi states, called Sih: the sequence of states, proper
to each patient i, represents the increasing number of events the individual
experienced. Moreover, we need to know the transition type from one state
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Working with big data

to the next. Referring to Ui as the lifetime span of patient i, and ci the
observed censoring time, the last survival time is TiHi

= min(Ui, ci), and the
corresponding transition type is DiHi

= I{TiHi
= Ui}. DiHi

is then equal to
1 if the patient died within the time of observation and it is equal to 0 if the
last patient’s transition time is a censoring.

Throughout this thesis project, we will discuss survival times’ distribu-
tions in terms of the hazard function, which is defined as the probability
of the next event (say a new hospitalisation) within a short interval, con-
ditionally on the fact that it was not yet happened at the beginning of the
considered time interval. In our case, this means that the hazard function
is computed as the probability of a patient, or a group of patients, to expe-
rience the (h + 1)-th hospitalisation in the time interval ∆t → 0, knowing
that at the considered time point t the number of admissions was equal
to h. Properties of the hazard function will be furthermore discussed in
Section 3.1.

1.3 Working with big data

«How big must big data be?»
«Statisticians were very helpful in the past, because in the past
collecting data was so difficult, so time consuming, so costly. So
statisticians told us that if we have any population and we want
to understand that population, if we do a random sample of 1200
of them, we can understand the entire population. And that is a
really good short-cut, to just do a sample. But we can not, with
just this sample, go into details or answer questions after we have
collected the sample. It is very different if we collect all of the
data. That is what the power of big data is. [. . . ] It is not the
absolute number that counts. It is the relative number, relative
to the question that we have at hand, relative to the population I
want to study.»

I Big Data Secondo Viktor Mayer-Schönberger.
Interviw to V. Mayer-Schönberger by F. Pedrocchi. [18]

The dataset we will be working on, represents the northern Italy popula-
tion diagnosed with heart failure (see previous section), whose first admission
ended within the year 2006. We follow and record their admissions history
up to December 31st, 2010. In particular, the selected dataset takes into
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account for those patients that had a maximum of five hospitalisations dur-
ing the observation time (see Section 2.1 for details). This choice permits
us to group patients in the study case, according to their total number of
hospitalisations Hi: many of the analytical results, presented in this the-
sis, were obtained considering each patient within the corresponding group,
based on the number of observed admissions. Furthermore, we will compute
many of the results conditionally on the number of hospitalisations a patient
experienced. The resulting dataset, as we will later discuss (see Chapter 2),
is made of 13785 patients, corresponding to 27392 records. For each event
of patient i, we collect all the information available from the SDO (hospital
discharge papers). For this reason, the obvious consequence is a difficulty in
manipulating the dataset: each time we will try to fit our data to a conjec-
tured model, we will need to adjust the dataset format to the most suitable
one for our intents, and, moreover, we will need to select among all informa-
tion, those useful for the proposed analyses. In Appendix B, we present the
code used to generate and compute all the results discussed in Chapters 2,
3, 4 and 5. R software [26] was used to develop all the analyses, and we
took advantage of several of its packages in order to compute the desired
algorithms. These will be presented in the following chapters.
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Chapter 2

The Dataset

Today the role of healthcare databases in the study of health and disease
conditions in defined populations has become fundamental, thanks to the
great availability of these data. Every time a patient is being admitted to
a hospital, this event gets registered in the administrative database, along
with several information concerning the sex of the patient, the age and other
significant details. For this thesis project we used a dataset collected from
the major project called “Utilisation of Regional Health Service databases
for evaluating epidemiology, short and medium term outcome, and process
indexes in patients hospitalized for heart failure”. This dataset collects hos-
pitalisations’ information from patients affected by chronic Heart Failure
(HF) in the regional district of Regione Lombardia, Italy. Data include all
patients whose first discharge happened within 2006 and their disease evo-
lution is followed up to December 31st, 2010, covering an overall time of
five years. Information on potential death events, happened before the end
of the study, were obtained from the admissions database to the National
Registry of deaths. Patients are included in our database if they show a HF
code in any of the six diagnosis fields of the SDO (Scheda di Dismissione
Ospedaliera, i.e. hospital discharge paper). The comprehensive number of
patients in the study is 15856, equivalent to 36949 records. Moreover, other
restrictions were applied to the dataset: patients younger than 18 years, to-
gether with those patients who were admitted and discharged the same day
or whose records contained errors, were removed from the dataset, leading
to a final number of 15298 patients and 35224 records.
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2.1 Selection criteria for the observation units
What is of central importance when analysing an administrative database,
is to properly select the most suitable observation units in order to obtain
a correct and more robust interpretation of the results. The criteria chosen
for the study will affect the outcome of any study, leading to different - but
not divergent - images of the diseases.

Patients in our dataset have all at least one hospitalisation. There are
three possible events after their first hospitalisation: they could die, while
they are still in hospital or once they have been discharged - but we will
consider no difference between these two cases - they could have no other
admissions or they could have a new hospitalisation event. We decided to
set the maximum number of consecutive hospitalisations for each patient
to be equal to five. This is because, analysing the dataset made out of
the population with a maximum of five hospitalisations over the study time
period, we are indeed analysing the 94.41% of the complete dataset, see
Figure 2.1. Also, as we can see from Figure 2.2, increasing the maximum
number of admissions from four to five gives us the last significant expansion
of the dataset we are about to analyse.

Figure 2.1: Percentage of the dataset analysed when fixing a maximum number of hos-
pitalisations: the blue line is the 95% line, the red line highlights the point
where we set a maximum of five hospitalisations.

After the very first analysis, we decided also to consider in our dataset
just patients who didn’t experienced any shock during the five years of obser-
vation. A circulatory shock is a life-threatening medical condition character-
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Figure 2.2: Percentage of variation between two consecutive maximum hospitalisations
numbers. The blue line is the 2% line, the red line highlights the point where
we set a maximum of five hospitalisations.

ized by low blood pressure, rapid heartbeat and poor end-organ perfusion.
We chose to exclude these patients from our study because their behaviour is
thoroughly unlike the one of the majority of patients in this trial. The most
evident difference can be seen in the mortality rate, as these patients show a
higher rate value compared to that of the complete dataset - 84.12% against
44.46%. Moreover, the number of patients with this medical condition in
the initial dataset is equal to 724 (equivalent to 4.73% of the collected data).

As a result of all these choices, the dataset reduces to 13785 patients,
equivalent to 27392 events. This is the observation units collection on which
we will conduct our analysis.

2.2 Analysed features
Between all the information collected from the record of a patient admission,
we selected some of these to conduct our analysis with regard to specific fac-
tors. Every patient is identified by an encrypted ID code, so that we can
follow her/his admissions history. For each hospitalisation we collect the age
at the date of admission, the sex of the patient, dates of admission, discharge
and, if applicable, death. We have a boolean variable stating whether the pa-
tient died before the end of the study period or not. Five other information
for each patient are collected: these are all boolean variables which, for each
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patient’s admission, state whether a specific condition or treatment is appli-
cable. Then we merged all the information collected for each specific variable
in such a way that it will be equal to 1 throughout the patient’s history if, in
at least one admission, the variable is equal to 1. First of all, we collect the
information regarding the circulatory shock. As we already discussed, this
induced us to draw a distinction between two groups of patients, i.e. those
who do have at least one shock event in their hospitalisation history, during
the time of analysis, and those who don’t. Another variable of interest for
our study is the boolean variable “CABG”, Coronary Artery Bypass Surgery,
commonly known as heart bypass surgery. “CABG” is a surgical procedure
performed to relieve angina, chest pain caused by insufficient oxygen supply,
and to reduce the risk of death from coronary artery disease. The other
three boolean variables are “PTCA”, “ICD” and “STENT”. “PTCA” stands
for Percutaneous Transluminal Coronary Angioplasty, commonly known as
coronary angioplasty, and it is a non-surgical procedure used to treat the
abnormal narrowed coronary arteries of the heart found in coronary heart
disease. This type of clinical presentation is often caused by the build up of
the cholesterol-laden plaques. “ICD”, Implantable Cardioverter-Defibrillator,
is a small battery-powered electrical impulse generator that is implanted in
patients who are at risk of sudden cardiac death due to ventricular fibril-
lation and ventricular tachycardia. This device include electrode wire that
pass through a vein to the right chambers of the heart, usually lodging in the
apex of the right ventricle. “STENT” corresponds to the surgical procedure
of placing a surgical device called stent, which is a mesh tube inserted into a
natural passage in the body to prevent or counteract a disease-induced flow
constriction. These are all the variables we will be using during our analysis
of the dataset and in the attempt to reconstruct the patient-specific hazard
functions (see Chapter 4).

2.3 Descriptive analysis of the dataset
We want here to give an explanatory description of the characteristics of
this dataset. First of all we recall that we selected 13785 patients, each
with a maximum of five hospitalisations and no shock events during the
observation time of this study. The dataset is distributed over the five
hospitalisations as expected: as we can see from Figure 2.3, there are very
few patients, compared to the other groups, that have five hospitalisations
and the maximum number of patients localises in the first three groups,
corresponding to those patients who have a maximum of one, two or three
admissions. This is probably due to two main causes: patients who are at the
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early stages of their disease, over the examined time window experience few
events, while, on the other hand, there are those patients who are at the end
of their disease evolution and die during one of their first hospitalisations.
These two opposing conditions merge together giving the results we see
in Figure 2.3. The observed trend of the number of patients’ function is
monotonically decreasing, representing the behaviour outlined.

Figure 2.3: Number of patients for each maximum number of hospitalisations. Each pa-
tient is counted just in the group corresponding to her/his maximum number
of hospitalisations.

It is important to analyse the death index of our dataset. The mortality
rate is equal to 42.15%, and as we recall from Section 2.1, this percentage
has diminished compared to the one of the original dataset (44.46%). This is
because firstly we shrank the dataset to those patients who have a maximum
number of hospitalisations equal to five, which slightly reduces the mortality
rate to 44.11%. Moreover, we do not consider those patients who experienced
a shock event during at least one of their admissions. These patients have a
high mortality rate and this leads to the major reduction in the percentage.
As a matter of fact, we can see from Table 2.1 that we are really diminishing
the mortality rate in each of the considered groups of patients, resulting in
the reduced overall percentage. Of course the reduction of the mortality
rate is considerably higher in the very first hospitalisations, as patients who
experienced at least one shock happen to have a mean number of admissions
equal to 1.94. Hence we obtained from the tests of equal proportions that
there is a significant difference between these two groups, with or without
shock-patients, only in the first three cases. When we consider a maximum
number of hospitalisations equal to four or five, the number of patients with
at least one shock is not influential over the equivalent dataset.
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Max With Shock Without Shock p-value
1 44.48% 42.85% 0.03389
2 43.28% 41.39% 0.0466
3 43.59% 41.10% 0.0516
4 43.88% 41.06% 0.1006
5 47.88% 45.35% 0.2016

Table 2.1: Mortality rate table. First column shows mortality rates for each maximum
number of hospitalisations for the dataset with patients who experienced a
shock. Second column shows mortality rates for each maximum number of
admissions for the dataset without patients who experienced a shock. Third
column shows p-values for the null hypothesis that the proportions from the
two groups are the same.

Another interesting feature of our dataset is the patients’ age. As said at
the very beginning of this chapter, patients younger than 18 years, being it
their age at the first admission, were not included in the study. This way, the
minimum age is 18 while the maximum is 103 years. Over the five groups,
patients with the same number of events, there is a modest difference in the
distribution of the patients’ ages, as we can see from Figure 2.4. In par-
ticular, the mean value for the age variable over the whole dataset is equal
to µ = 75.77 years, with a standard deviation equal to σ = 12.69 years,
while, if we divide all patients according to the maximum number of admis-
sions, we find that the second group is the one resembling the most to the
complete dataset (p− value = 0.6348, obtained with a Kruskal-Wallis rank
sum test). For all the other groups there is evidence to state that the age
distribution is different compared to that of the whole dataset. This result
is probably due to the distribution of patients over the five groups: actually
the mean number of hospitalisations for the complete dataset is equal to
1.987, implying that the equivalence to the entire dataset can only be find
in the second group. Despite this difference between the groups and the to-
tal dataset, nevertheless we can consider the mean and standard deviation
of the complete dataset as representative of all the groups.

For these reasons it is very fascinating to look at the histogram of the
age variable (see Figure 2.5). Before the most frequent class, the frequency
increment has an exponential trend while, after that, it decreases rapidly
showing the expected trend due to the ageing of the patients and the con-
sequent rise of the mortality rate, resulting in an obvious reduction of the
number of observation units that could have the specific characteristics re-
quired by our study trial. This result is perfectly consistent with what is
today well known in HF epidemiology studies. In fact, we can find in lit-
erature that the average age of patients with this kind of disease is around
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75 years, and that this pathology is the leading cause of hospitalisation in
people older than 65 [15].

Figure 2.4: Age boxplot: the first one is the boxplot of the age variable for our dataset,
the others are the boxplots for the same variable but in the five groups.

Figure 2.5: Histogram of patients’ age at first hospitalisation from the complete dataset.

Another relevant factor in this analysis is the sex of the observation units
[22]. First of all, it is important to state that our dataset is slightly unbal-
anced between the two genders, with 46.2% of men and 53.8% of women. In
medical literature we find that there are significant differences between men
and women affected by chronic HF, mostly because of the main causes that
led to this pathology in the two kind of subjects. Moreover, it seems that
women manifested with heart failure at older age than men, a trend that can
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also be find in our dataset (see Figure 2.6). Conducting a Wilcoxon test over
our dataset, we obtained evidence in support of the alternative hypothesis
that men’s mean age is smaller then that of women (p−value < 2.2×10−16).
Another relevant equivalence between what is well known in cardiology lit-
erature and our analyses, is that women appeared to undergo less surgery
interventions, as we find that between the patients who had “ICD”, 83.2% of
them were men and similar statistics are find for the other factors: 76.17%
of units with “CABG” are of male gender as the 67.93% of patients who
underwent “PTCA”.

Finally we would like to briefly discuss the mortality rate in the two
genders. Men and women have around 10% difference in the mortality rate
(37.15% vs 46.43%), but still in conformity with the mortality rate of our
dataset. This result is probably the outcome of the discard of patients
who had a circulatory shock, as there is a higher percentage of men who
experienced this kind of pathology.

Figure 2.6: Histogram of age for female and male gender from complete dataset.
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Chapter 3

Patients clustering

In our analysis we used the R package mixPHM [16]. The package fits multiple
variable mixtures of various parametric proportional hazards models using
an EM-Algorithm. It was originally implemented for the study of dwell-
time-based sessions clustering with incomplete data [17]. The underlying
model is a proper model for our dataset as it allows missing data in the
maximum likelihood equation for a mixture model. In particular, the authors
solved this issue introducing in the model a “prior” probability estimated by
the corresponding relative frequency. This way we are able to estimate
the likelihood for the model (E-step) and then compute the M-step: the
package allows for several possibilities of achieving the maximisation step
for the classification of our data. Moreover, we see a strong evidence in the
correlation between “survival times” in medical statistics and “dwell times” in
web usage mining, and for this reason we apply the same methodology to our
dataset. We used this package in order to get a clustering of our observation
units based on the time elapsed between two consecutive events.
Before the discussion on the method and its results, we need to make some
basic assumptions on our dataset: we will consider the time intervals between
two consecutive events to be independent and will hypothesize that they are
Weibull distributed with different parameters over the resulting clusters.

3.1 The model: Weibull Mixtures and Propor-
tional Hazards Models

Survival analysis deals with the duration times until some event occurs,
where in our study the new event corresponds to a new admission. The
analysed survival times in our model are the times between two hospitali-
sations, meaning that for each patient we have a maximum of five possible
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time intervals: between the first and the second admission, between the
second and the third, and so on, up to the fifth hospitalisation where the
following event is the end of the study. Of course there are patients who
have less than five admissions: for these patients the subsequent event could
be the decease or the end of the study, if they survive. This said, from now
on we will refer to the variable “hospitalisation time” as the time interval
between two successive events and will denote it as Th, with h = 1, . . . , H,
where H = 5. For example, the time of the second hospitalisation will be
the survival time between the second and the third admissions. As already
stated, we assume for each survival time between two events to follow a
Weibull distribution with density function f(t) = γ/λγ tγ−1exp(−(t/λ)γ),
where λ is the scale parameter and γ the shape parameter. Notice that the
model presuppose that we know the number K of clusters in which we will
try to split our dataset. We will choose K = 3, but will come back to this
choice and its reasons in Section 3.2. In addition, as we are stating that each
time segment is Weibull distributed, each different hospitalisation time has
its own parameters, which are different from the parameters of the previous
and the following Th and from one cluster to the other. This means that
the model for this kind of conjecture is a Weibull Mixture Model, such that
for each hospitalisation time the resulting mixture density has the following
form:

f(th) =
K∑
k=1

πkf(th;λkh, γkh), (3.1)

where

f(th;λkh, γkh) =
γkh
λγkhkh

tγkh−1h exp(−(th/λkh)
γkh). (3.2)

th is a possible realisation for the h-th hospitalisation time Th, ∀h = 1, . . . , H,
and πk > 0 are the mixing proportions that satisfy the condition

∑K
k=1 πk = 1.

This way the parameters of the Weibull mixture model are 2(K ×H) +K,
corresponding to K weights πk for k = 1, . . . , K, K × H scale parameters
λkh for k = 1, . . . , K and h = 1, . . . , H, and K × H shape parameters γkh
for k = 1, . . . , K and h = 1, . . . , H. Hence the model’s parameters are of the
following form:

Λ =

λ1,1 . . . λ1,H
... . . . ...

λK,1 . . . λK,H

 (3.3)
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where λkh, for k = 1, . . . , K and h = 1, . . . , H, is the scale parameter for the
h-th hospitalisation time Th in the k -th cluster;

Γ =

γ1,1 . . . γ1,H
... . . . ...

γK,1 . . . γK,H

 (3.4)

where γkh, for k = 1, . . . , K and h = 1, . . . , H, is the shape parameter for
the h-th hospitalisation time Th in the k -th cluster, and

Π =
(
π1 . . . πK

)
(3.5)

where πk, for k = 1, . . . , K, is the weight parameter for the k -th cluster.

We herein recall that a hazard function for any distribution with density
function f and cumulative function F is computed as the ratio between the
density function and the survival function, h(t) = f(t)/(1 − F (t)). The
resulting hazard function from this model choice on our dataset for the h-th
hospitalisation time Th in the k -th cluster is of the following form:

h(th;λkh, γkh) =
γkh
λγkhkh

tγkh−1h (3.6)

Moreover, in [17], the authors of mixPHM package took advantage in their
model from an important class of models in the survival analysis: propor-
tional hazards models (PHMs). In Appendix A the reader can find a brief
summary of the origin of this class of models for survival data. The main
idea behind these kind of models is that the hazard function h(t) is equal to
the product of a baseline hazard function h0(t) and a factor quantifying the
influence of some predictors. In our model we are not interested in adding,
at this stage of our analysis, any kind of covariates, as we want to obtain a
clustering method of our data based uniquely on the hospitalisation times
we acquire from the admissions’ data of each patient. For this reason we set
the covariates vector equal to the unit vector 1. Notice that this procedure
is also suggested by the authors for situations like ours. This way the hazard
function in our study project becomes of the form:

h(th|k;1) = γkht
γkh−1
h exp(1β(k,h)) (3.7)

As a result of this new interpretation of the model, the scale parameter be-
comes of the form λkh = [exp(β(k,h))]−1.

We now come to the resolution of the problem of missing data. We deal
in our dataset with right-censored data, as not all our patients die before
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the end of the study, leading to a natural right censoring for their survival
times. Moreover, as a comparison between survival times and dwell times,
all of our patients visit the first “state”, corresponding to the hospitalisation
time between the first and the second admissions. But not all of them
visit the other “states”, as already seen in previous chapter. In order to
overcome the missing data problem and the consequent limitation of the
EM-algorithm used in the clustering process, the authors introduced into
the model the probability τh(i|k) that a patient i, knowing that she/he is in
the k -th cluster, is admitted h times. This way, in addition to the parameters
of the Weibull mixture model, the package will estimate these probabilities
too, for an overall number of parameters equal to 2(K×H)+K+(K×H) =
3(K×H)+K. Using these probabilities we are able to compute the likelihood
for patient i being in cluster k for each hospitalisation time h individually:
if the h-th hospitalisation was not reached by the i -th patient we compute
the likelihood as 1 − τh(i|k), and we therefore multiply, where applicable,
the known likelihood value by τh(i|k).

3.2 Using the package
In order to use package mixPHM, we had to build a times matrix suitable
for the package requests. To compute the mixture hazards model and the
clustering of our observation units, as explained in previous section, we used
the package function phmclust. It allows, as valid argument, a matrix of
dimension n×H, where the matrix elements are survival times. “NA” values
are allowed, too.

In order to compute the required survival times we decided that, for each
patient, her/his first survival time started at calendar date corresponding to
their first admission, even if there are several patients whose first hospital-
isation started before January 1st, 2006. For this reason the overall study
period is equal to 1931 days, corresponding to 5 years (from the beginning
of 2006 to the end of 2010) and few months (the ones before 2006). Our
survival times are then computed as follows: the realisation t1(i) for first
hospitalisation time T1 of patient i is computed as the days elapsed from the
date of the first admission to the date of next event, which can be a new
hospitalisation, the death of the patient, or the end of the study (December
31st, 2010). If the patient died after the first admission or experienced no
other hospitalisations, her/his following survival times are marked as “NA”. If
the patient has another hospitalisation event after the first one, her/his next
survival time, corresponding to realisation t2(i), is determined as the elapsed

17



Using the package

days between the second admission date and the following event, and then
the computing procedure repeats for the remaining hospitalisation times T3,
T4 and T5. Remark that for the last hospitalisation time variable T5, the
last events are of two kinds only: a unit can die after its last hospitalisation
or can survive until the end of the study. No other events are allowed, as we
decided to consider the population with a maximum of five hospitalisations
over the study time period.

Following this procedure, we are able to build the survival times matrix
necessary to use package mixPHM. Our matrix will then be made of n = 13785
rows, one for each patient in our study trial, and H = 5 columns, one for
each possible hospitalisation. It is very important to remember that in our
dataset every patient has the first hospitalisation, as if, in a comparison with
the dwell-times problem, every user would visit a specific page, for example
the “home page” of a particular website. This is a situation which is not
so far from being a good approximation of what happens in reality, and for
this reason our dataset is suitable to be studied by means of the proposed
model. All the other matrix columns will have some values equal to “NA”, in
such a way that the number of “NA” found in each column will increase from
the second to the last column, according to the characteristics of the dataset.

There are other arguments requested by function phmclust in order to
compute the hazard mixture model and to obtain the desired clusters. Here
we will discuss only the three most relevant ones. First of all we need to
state the number of clusters in which we want to split our dataset, which
can be done by setting the value of argument K. As already declared, we
set K = 3 in order to divide our units into three natural groups: “healthy”,
“sick” and “terminally ill” patients. Notice that every patient in our dataset
enters because her/his first hospitalisation ended within 2006, but, as for any
disease, the diagnosis can be done at very early stages or at final ones. This is
why we expect to obtain three clusters with this algorithm, and we presume
they will exactly represent the natural groups previously highlighted.

Another important parameter to be set in order to correctly compute
the algorithm, is the underlying distribution of the hazard function h(t).
The phmclust function allows for different distributions: Weibull, Expo-
nential and Rayleigh. To verify that our survival times real distribution is
better fitted, among all the possibilities, by a Weibull distribution, we com-
puted the algorithm and the clusters for each of the possible distributions.
Here we discuss the results obtained with the fit of Weibull and Exponential
distributions, which were the most suitable ones. These two distributions
have a strong connection: when we set the shape parameter of the Weibull
distribution equal to 1, it corresponds to the Exponential distribution. In
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order to understand why we decided to consider the survival times Weibull
distributed, we take as example the third cluster obtained running the algo-
rithm firstly imposing the Weibull distribution, then the Exponential distri-
bution (see Figure 3.1). First of all notice that variables T4 and T5 have too
many observations with “NA” values, a characteristic that excludes the pos-
sibility of making any kind of considerations about their distribution. For
this reason we took into account only the first three hospitalisation times,
T1, T2 and T3. From the examined figure, we can truly appreciate the cor-
rectness of the Weibull distribution fitting the empirical distribution of the
hospitalisation times from our dataset. In particular, using the Exponential
distribution, we lose the ability to estimate the right tails of empirical dis-
tributions, corresponding to censored observations. This characteristic can
be better appreciated if we look at the distribution of the first hospitalisa-
tion time T1 in the provided example (see Figure 3.2): if we use the Weibull
distribution, the algorithm perfectly approximates the shape of the corre-
sponding empirical distribution, whilst the Exponential distribution fails to
estimate the right tail.

Finally we imposed no proportional restrictions to our model, setting
the phmclust argument method equal to separate. This way we force our
model to take into account for no covariates in the proposed proportional
hazards model. The corresponding model is the one reported in (3.7).
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(a) Weibull distribution for survival times in the third cluster.

(b) Exponential distribution for survival times in the third cluster.

Figure 3.1: Comparison between the use of Weibull or Exponential distribution. First
row shows the histograms of estimated survival times for each hospitalisation
time variable obtained when computing the algorithm under the hypotheses
that empirical survival times are Weibull or Exponential distributed. Second
row shows corresponding histograms of empirical survival times from the
units which have been assigned to the third cluster under these conditions.

20



Analysis of the results

Figure 3.2: Comparison between the goodness of fit for the empirical distribution using a
Weibull or Exponential distribution. These plots are the same from Figure 3.1
in the first column.

3.3 Analysis of the results
Once we run phmclust function, several values are returned for the utility
of the user. The most important for our analysis are: the estimated shape
and scale parameters, λ̂kh and γ̂kh for k = 1, . . . , 3 and h = 1, . . . , 5, and
the final deterministic assignment of all observations to the most suitable
cluster k, with k = 1, . . . , 3. Here we report the results we obtained for the
model parameters:

Λ̂ =

 331.24877 670.59967 315.22627 331.22789 272.83983
176.20118 33.28450 1565.97558 239.28680 1.67868
1696.36323 144.98267 84.64472 2.70787 2.70787

 (3.8)

Γ̂ =

 0.86552 1.01331 0.77148 0.76640 0.68695
0.66403 0.96890 10.92267 4.28698 3.46154
16.48662 1.29069 1.99473 5.9754 5.91754

 (3.9)

Once we obtained the estimated parameters and the corresponding di-
vision of all patients into three clusters, we should first of all analyse the
cluster-profiles shown in Figure 3.3. From this plot we can promptly see
that the first cluster is some sort of mean of the other two clusters, as all
the mean values of survival time for each hospitalisation time variable Th in
this cluster fall into the interval [350; 700], being this the central band of all
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the possible mean values from the analysed dataset. Notice that this cluster
has only two values grater then the other two clusters, for T3 and T5. We
will show, while analysing in deep the results, that this result is the natural
consequence of the particular characteristics of second and third clusters.
Having said that, we are already able, at this very early stage of our analy-
sis, to appreciate that the second cluster is the one with the lowest values in
the first two survival time variables, skimming the lower bound value of zero
for the mean survival time of the second variable T2. On the other hand,
the third cluster reaches the highest mean value of the whole dataset in the
very first survival time variable, approaching the upper bound of 1931 days
with a mean survival time value of 1634.903 for T1. The shown peculiarities
of the three clusters are already anticipating the very deep nature of the
obtained groups: in a first attempt to give them names, the first cluster
would be that of “sick” patients, the second one of “terminally ill” patients
and the last one that of “healthy” subjects. We will try to appreciate the
characteristics of each cluster in the following subsections.

Figure 3.3: Cluster-Profiles: Mean survival time for each variable Th, h = 1, . . . , 5, and
for each cluster k, K = 1, . . . , 3.

3.3.1 First cluster: “sick” patients

First of all we need to take a deeper look into the first cluster. This is the
most numerous one, with a total of 5885 patients corresponding to 42.69%
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of the dataset. In this cluster, there is the same number of men and women.
In Figure 3.4 and Figure 3.5 we can see the age distribution from patients
in the first cluster. In this cluster, as for the total dataset, we find that
the mean age is coherent with what is reported on medical journals, being
it equal to µ1 = 74.35 years with standard deviation σ1 = 11.95 years.
Conducting a Wilcoxon test to compare the total dataset age distribution
and the age distribution of this cluster, we obtain a strong evidence in favour
of the alternative hypothesis that the cluster’s age distribution is shifted to
the left of that of the total dataset (p − value = 3.238 × 10−4 imposing as
alternative hypothesis that the true location shift is less than -1, the first
value for which we obtain a significant p− value).

Figure 3.4: Age histogram for patients in the first cluster.

There is a very interesting feature of this cluster, which can be appre-
ciated in Figure 3.6: all patients who were identified as being part of this
cluster have at least two consecutive hospitalisations. This is relevant in our
analysis because it is showing that this cluster is formed by “sick” units, as
their mortality rate (34.15%) is close to that of the complete dataset, but
they all have the characteristic of living longer throughout the study time
window. As we can see from Figure 3.7, the percentage of patients who died
during the h-th admission is an increasing function, asymptotically going to
the 50% value, with a monotonic trend except for the forth hospitalisation
time T4, which slightly diverges from the functional behaviour. This is ex-
actly what we would expect from a general analysis of a complete dataset
of patients affected by chronic heart failure and this is why we consider this
first cluster the “mean” cluster, as it represents the trend of the complete
dataset.
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Figure 3.5: Age histogram for men (on the left) and women (on the right) in the first
cluster.

Figure 3.6: Percentage of patients in the first cluster who have only one hospitalisation
over the study time period, or just two admissions, or three and so on. It is
of a great importance to notice that in this first cluster no patients have just
one admission, but they all have at least two.

3.3.2 Second cluster: “terminally ill” patients

Analysing the second cluster, which is the 28.91% of complete dataset, what
is immediately evident is that this cluster represents and is constituted al-
most only by “terminally ill” patients. This is clear if we take a look at
the mortality rate of subjects belonging in the group and at its distribu-
tion through the five hospitalisation time variables. The mortality rate of
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Figure 3.7: Percentage of patients in the first cluster who died during their first hospital-
isation over the study time period, or during their second one, or third and
so on.

the cluster is equal to 92.87%, considerably higher than the mortality rate of
the complete dataset (see Section 2.3). Moreover, as we can see in Figure 3.8,
in the first two hospitalisation time variables all patients die, meaning that
they had just one or two admissions not because they are healthy subjects,
but because they are at the terminal stage of their disease. In particular,
those who have just one or two hospitalisations cover the 92.72% of the
cluster’s units.

Figure 3.8: Percentage of patients in the second cluster who died during their first hos-
pitalisation over the study time period, or during their second one, or third
and so on.
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Now that we convinced ourselves that patients in this cluster correspond
to “terminally ill” ones, it is even more interesting to analyse the distribution
of patients’ age. As a matter of fact, we can see from Figure 3.9 that the
population of this cluster is older than that of the complete dataset. A strong
evidence to confirm this idea can be found examining the mean age of this
cluster, equal to µ2 = 82.14years with standard deviation σ2 = 10.28years.
The Wilcoxon test, comparing the age distribution of the complete dataset
and the second cluster, gave strong evidence (p − value = 4.568 × 10−6)
in favour of the alternative hypothesis that the true location shift is greater
than -5, being this the first value for which we obtained a significant p−value.
This means that, being the population of the cluster significantly older than
what it would be for a general chronic HF dataset, the natural consequence
is that the mortality rate increases compared to that of the complete dataset.

Figure 3.9: Age histogram for patients in the second cluster. It is clear that this popula-
tion is considerably older compared to the population of the complete dataset
(see Figure 2.5).

In this cluster women are more than men, as it is in the complete dataset.
In particular, 60.5% of the unites are of female gender and 94.73% out
of these died within the first two admissions. The high mortality rate of
women in this cluster, compared to that of men (equal to 90.04%), is even
more evident and has a natural explanation if we look at Figure 3.10, where
we can see from the age distribution of men and women that women are
considerably older than man in this group. Actually, the mean value for the
women’s age is µ2F = 84.36 years while that for men is µ2M = 78.76 years.
The related 90% Wilcoxon test shows evidence (p − value = 1.409 × 10−6)
in favour of the alternative hypothesis that the true location shift for men’s
age distribution compared to that of women is less than -4, being this the
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first value to return a corresponding significant p− value. Not only we see
that men are younger, but also that, into this cluster, units of male gender
preserve some of the characteristics of the complete dataset, although they
have a higher mortality rate.

Figure 3.10: Age histogram for men (on the left side) and women (on the right side) in
the second cluster.

3.3.3 Third cluster: “healthy” patients

Finally we need to take a deep look into the last cluster and, as said, we
expect it to be the cluster of “healthy” patients. In order to do so, first of
all we need to analyse the very basic characteristics of this cluster and com-
pare them with the same characteristics of the complete dataset and of the
other clusters. Cluster number three is the 28.4% of the entire dataset, with
3915 units being assigned to it. Out of these, 99 died before the end of the
study time period, a number equivalent to 2.53% of the population in this
group. We find immediate proof to what we were expecting: subjects in this
cluster are the ones that are healthier than the ones assigned to the other
clusters, as the very majority of them remains alive during all five years
of observation. From this very first analysis we are already able to state
that this is, indeed, the cluster of “healthy” patients. In order to reinforce
this statement, we need, first of all, to look at Figure 3.11, where is shown
the percentage of patients who died during their h-th hospitalisation. The
function is an increasing function, starting from very low values (percentage
of dead patients for T1 is equal to 0.31%) and asymptotically reaching the
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upper bound 33.33%. This trend is even more indicative of the healthiness
of the subjects in this cluster if we compare it with Figure 3.12. As we can
see, the majority of patients (90.22%) in this third group have only one hos-
pitalisation and, as already discussed, just few of them died. The remaining
9.78% of the cluster is distributed between the other hospitalisation time
variables, in such a way that the high values of the mortality rate obtained
for T3, T4 and T5 and reported in Figure 3.11, are completely insignificant to
the understanding of the cluster’s characteristics. Moreover, we can say that
the representative units of this cluster are those experiencing only the first
hospitalisation, corresponding to variable T1, during the study time period.

Figure 3.11: Percentage of patients in the third cluster who died during their first hos-
pitalisation over the study time period, or during their second one, or third
and so on.

At this point, it becomes relevant to see if, together with the character-
istic of being constituted by patients in their first disease stage, this cluster
also has the peculiarity that the mean age of its units is lower than that of
the complete dataset and of the rest of the clusters. As expected, we obtain
that for this cluster µ3 = 71.42 years, which is a considerably lower mean
age than that of the complete dataset. The corresponding Wilcoxon test
gives evidence (p−value = 1.536×10−7) for the alternative hypothesis that
the true location shift of the cluster’s age distribution compared to that of
the complete dataset is less than -3, being this the first value to return a cor-
responding significant p− value. Moreover, the mean value is considerably
lower than that of the second cluster, being it the “terminally ill” patients
cluster (p− value = 4.535× 10−5 for the corresponding Wilcoxon test with
true location shift less than -9, the first value for which we obtained a sig-
nificant p− value). This result can also be seen trough the age histogram of
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Figure 3.12: Percentage of patients in the third cluster who have only one hospitalisation
over the study time period, or just two admissions, or three and so on.

the third cluster (see Figure 3.13), compared to that of the complete dataset
(see Figure 2.5).

Finally, we want to extend our analysis to the comprehension of the gen-
der distribution in this third cluster. Remember that, as we already said
in Section 2.3, women happened to present with heart failure at older age
than men. Here we find the same result, with an even more interesting out-
come: mean age for women (µ3F = 75.71 years) is perfectly matching what
is expected to be for the average of patients with this disease (Wilcoxon test
to compare women age of this cluster and age of complete dataset gives no
evidence for the alternative hypothesis that true location shift is not equal
to 0, p − value = 0.56); on the other hand, for men the mean age is con-
siderably lower than what expected, being it equal to µ3M = 66.65 years
(Wilcoxon test for the comparison between men and women age gives evi-
dence, p− value = 1.219× 10−7, in favour of the alternative hypothesis that
the true location shift is less than -7, being this the first value for which the
test results in a significant p− value). This characteristic behaviour of men
age distribution in this cluster reflects what is known in medical literature
and can also be appreciated through the age histogram for the two genders in
Figure 3.14. As for the complete dataset, there are more women than men,
this being the reason why the overall mean age is equal to µ3 = 71.42 years,
with a higher standard deviation σ3 = 13.49.
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Figure 3.13: Age histogram for patients in the third cluster.

Figure 3.14: Age histogram for men (on the left side) and women (on the right side) in
the third cluster.
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3.4 Survival analysis and comparison between
the three groups:
Kaplan-Meier estimator

To give a more refined estimate and explanation of the behaviour of patients
in the obtained clusters, we took advantage of the Kaplan-Meier estimator
in order to conduct a survival analysis for each cluster and to compare the
results.

3.4.1 Definition and properties

The Kaplan-Meier estimator, also known as the product-limit (PL) estimator
[14], was introduced by E. L. Kaplan and P. Meier to compute the estimate
of a population probability of surviving beyond t, i.e. P (t) = P(T > t),
where T is the survival time variable for the population. The main idea
which stimulated this theoretical approach is that the reduced-sample (RS)
estimate of the same survival probability function is not suitable enough
when we deal with right-censored data, like in most of medical datasets.

To define the Kaplan-Meier estimator, first of all we need to divide
the observation time (0; t) into several disjoint intervals, namely (0;u1),
(u1;u2), . . . , (uk−1; t). To identify these intervals, there are mainly two strate-
gies: first, one can determine uj in such a way that only one observation
unit “dies” in the corresponding interval (uj−1;uj); second, the same strat-
egy can be applied with “loss” events, imposing that only one observation
is “lost” in the interval (uj−1;uj). In this section we talk about “death” and
“loss” as two possible conditions for the observation units, where in general
they do not strictly relate to the literal meaning. In our study instead, the
death of a unit corresponds to the actual death of our patient, while the loss
represent the censored subject, for whom we have no information regarding
her/his death event as she/he survives beyond December 31st, 2010. Re-
member that one can always choose a different method to determine the
intervals (uj−1;uj), with the insight of using the correct approximation for
the resulting estimator.

Once we selected the desired set of intervals, the algorithm requires to
compute the proportion of items alive after uj−1 and that survive beyond
uj. We will call this proportion pj. Finally the survival probability for the
considered population is equal to the product of pj, ∀j = 1, . . . , k.
Lets call δj and λj the number of deaths and losses, respectively, in the j-th
interval, (uj−1;uj). Being nj the number of items under observation after
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uj−1, the estimate of pj is equal to:

p̂j =
nj − δj
nj

=
n′j
nj
, (3.10)

where n′j is the number of units under observation after the δj deaths. It is
obvious that if an interval contains only losses, the corresponding estimate
for pj is equal to p̂j = 1. The resulting PL estimator is the product of all
the p̂j computed in the different intervals, i.e.:

P̂ (t) =
k∏
j=1

n′j
nj
, (3.11)

where we assumed that u0 = 0 and uk = t, that n′j = nj−δj and that t < t∗,
if t∗ is the greatest observed lifetime and it corresponds to a loss unit. In
the case that one wishes to consider only one death for each interval, then
the corresponding PL estimator is of the form:

P̂ (t) =
∏
r:t′r≤t

N − r
N − r + 1

, (3.12)

where we define t′r as the ordered sample of death or loss times from our
population, such that t′1 ≤ t′2 ≤, . . . ,≤ t′N , N being the number of obser-
vation units at the beginning of the study, i.e. at u0 = 0. We let r run
through those positive integers for which t′r is a time of death, not loss. This
simplified model reduces to the previous one if we suppose to cancel same
factors rising in (3.12) when two successive r values are computed. More-
over it reduces to the reduced-sample estimator if there are no losses in the
observed population, P̂ (t) = n(t)/N .

As a result to this theoretical construction, it is evident that we can
compute P̂ (t) for every available t, hence leading to a step function with
its discontinuities at the times corresponding to the deaths of one or more
patients. The obtained estimator for the survival function is consistent and
slightly biased. It can be considered unbiased if the probability of an inde-
terminate result (when we find t ≥ t∗) is small (for details see [14]).

3.4.2 Comparing Kaplan-Meier estimator for the three
groups

To compute the Kaplan-Meier estimator for our dataset, we took advantage
of function kaplan.meier from package spatstat [2]. This function com-
putes the Kaplan-Meier estimator for all the intervals in which we decided to
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divide the overall time of observation, returning a vector of values, each cor-
responding to the updated estimate of the survival function at that specific
time t.

In our dataset, death events correspond to the death of a patient, while
the losses are equal to those subjects which survive through the observation
time interval and are, for this reason, right-censored. In order to obtain the
intervals out of the period during which we monitored patients, we decided
to set the division points uj at the time when at least one death event
happens. This way we are obtaining a high quality estimate of the survival
function for each time t.

Figure 3.15: Kaplan-Meier estimator function for the three clusters over the five years of
observation.

From Figure 3.15, we can see the trend of the survival function estimated
through the Kaplan-Meier algorithm for the three clusters: “sick”, “termi-
nally ill” or “healthy” patients. First of all it is important to notice that, as
we could have expected from the previous analyses (see Sections 3.3.1, 3.3.2
and 3.3.3), the survival function of the second cluster, corresponding to the
group of “terminally ill” patients, tends to 0 rapidly, reaching after the first
125 days a probability value of surviving equal to 0.5. On the other hand,
“healthy” patients group is characterised by the opposite behaviour, as the
obtained survival function is equal to 1 throughout the first three years of
observation. Moreover, for the third cluster the survival probability function
descends below 0.9 after five years of observation and, when approaching the
censoring time, the expectation of surviving beyond the greatest observed
lifetime diminishes rapidly. Of course the first cluster, “sick” patients, has a
trend which is in between that of the other clusters.
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The results from this analysis are perfectly in line with what we could
have expected, strongly affirming that the second cluster is that group where
the clustering algorithm, used in Section 3.2, collected all patients being
characterized by short lifetime values in the first hospitalisations correspond-
ing to death events. At the same time in the third cluster we gathered pa-
tients with long lifetime values being right-censored, resulting in the trend
just described for the corresponding Kaplan-Meier estimator.

Finally, it could be of some interest to notice that the first cluster, being
a mixture of the other two, has a survival trend which resembles better that
of the “healthy” patients. This behaviour inspired the interest in deepen
the analysis regarding patients surviving after each hospitalisation. This
analysis is carried out in Chapter 5. Moreover, it is relevant to notice that
the used algorithm doesn’t know whether a survival time is censored or not,
i.e. if a patient is alive by the end of the study time period. For this reason,
despite the good clustering quality obtained, we will see in Chapter 5 that
there are some patients who have been misclassified.
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Patient-specific hazard
reconstruction

This thesis aims, among others, to reconstruct the hazard function under
Cox model [7] for each patient in the study trial. This problem represents
a great challenge in statistical literature, and many already confronted with
it. Some examples can be found in articles by Peña and Hollander [23],
Baraldo, Ieva, Paganoni and Vitelli [3] or Rotolo, Munda and Legrand [20].
An equally great amount of R packages has also been created, see [9], [19]
and [1] for examples. Between all the multitude of possibilities, we decided,
in order to evaluate patient-specific hazard functions, to take advantage of
frailtypack package [29]. This package allows to compute Frailty Models,
which are a simple extension of the Cox proportional hazards model [28]. The
difference from the Cox model is in a multiplicative term which adds random
effects in order to estimate the heterogeneity in the studied population. The
package was originally written using Fortran 77, and then implemented for
use in statistical software R. This package depends on survival package
[31], [30].

4.1 The model
Frailty models were firstly introduced to model survival data in 1959 by
R. E. Beard [4]. The term frailty comes from medicine, referring to feeble
people which are characterised by having an increased risk for morbidity
and mortality [8]. As a matter of fact, in frailty models the frailty term is
introduced as a random effect to estimate the mortality risk of an individual
into a population. We will deal, among all possibilities, only with shared
frailty models, as these are best suitable for our dataset. Shared frailty
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models depend on the idea that unities in the same cluster share the same
frailty term: as we are dealing with longitudinal data, for us it will be that
the events concerning the same patient will share the same frailty term. The
shared frailty model is of the form:

hij(t|wi) = h0(t)exp(β
′zij + wi) (4.1)

where h0(t) is the baseline hazard function (see Appendix A), hij(t|wi) is
the hazard function for patient i at time points t corresponding to her/his
j-th hospitalisation, conditionally on the term wi, and zij is the vector of
covariates for patient i during the j-th hospitalisation with β being the fixed
regression coefficient vector. The model (4.1) can also be rewritten as:

hij(t|vi) = h0(t)viexp(β
′zij) (4.2)

where we set vi = exp(wi). This term is called the frailty of patient
i. The values for vi in the model are the actual sampled values from a
density distribution fV . In our model we decided, among all possibilities, to
consider vi, for i = 1, . . . , n, independent and identically distributed from a
log-Normal distribution, i.e.:

vi
i.i.d.∼ log −Normal(µ, σ2), (4.3)

fV (v) =
1

v
√

2πσ2
exp
(
− 1

2σ2
(log v − µ)2

)
. (4.4)

Consequently, the correspondent term wi is a realisation from a Normal
distribution with mean µ and variance σ2. In particular, we chose a zero-
mean Normal distribution for wi, leading to the obvious update in the density
function for the frailty term vi:

fV (v) =
1

v
√

2πσ2
exp
(
− 1

2σ2
(log v)2

)
. (4.5)

This frailty distribution has been largely used for frailty models, al-
though its Laplace transform (used to estimate Kendall’s coefficient of con-
cordance, a measure of dependence for bivariate parallel data) is theoreti-
cally intractable [11]. There are, anyway, approximation methods in order
to estimate the Laplace transform and its derivatives, so that one can, nev-
ertheless, conduct probability evaluations on this model. The correctness
of the log-Normal choice can be seen through values of mean and variance
of variable V , as the variance of corresponding Normal distribution, σ2,
reaches zero. The mean value for the log-Normal distribution derived from
a zero-mean Gaussian is equal to E[V ] = eσ

2/2; the corresponding variance
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is Var [V ] = eσ
2
(eσ

2 − 1). It is clear that when we let σ2 tend to zero, the
results are as follows:

E[V ] = eσ
2/2 → 1; Var [V ] = eσ

2

(eσ
2 − 1)→ 0. (4.6)

The mean value of 1 is the natural restriction usually imposed for other
frailty distributions; when the estimated variance of a population tends
to zero, this means that there is no heterogeneity among subjects under
observation and, as in our situation, in general one wishes to obtain the
homogeneity case as a limit case of the model (remember that the frailty
parameter has been introduced to estimate the heterogeneity between dif-
ferent statistical units).

The shared frailty model is a particular extension of Cox proportional
hazards model, where, as already said, we introduced a random effect param-
eter to quantify the frailty of patients. As they are, in fact, similar to Cox
model, shared frailty models are to be considered non-parametric models,
where the baseline hazard function is completely unspecified. This means
that with this new approach (compared to that in Chapter 3) we are allow-
ing the model to compute and estimate the most suitable hazard function,
without imposing any specific distribution a priori. On the other hand, we
differentiate the hazard function for each patient through the frailty term,
which is a realisation from a fixed distribution (log-Normal in our case),
and over time through the covariate matrix z. Hypothetically, one could let
the covariate matrix be time-dependent, in an effort to estimate changes of
patients’ health through their hospitalisations histories; to build our model,
we decided to let only certain covariates be time-dependent, as we will show
in next section.

4.2 Using the package
frailtypack package computes frailty models for different frailty distri-
butions and different frailty models hypotheses. It depends on package
survival to handle survival times between events and the kind of event
a patient is experiencing. Events are considered as follows: event = 1, when
a patient is experiencing a new hospitalisation or she/he dies; event = 0,
when a patient’s survival time is censored, for she/he doesn’t have new ad-
missions along her/his history nor dies. Survival times are computed as
in Section 3.2. In fact, each survival time corresponds to the time elapsed
between one admission and the following event, whether this is a new hos-
pitalisation, the death of the patient or the end of the study time period.
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The output of function Surv from package survival, is passed to func-
tion frailtyPenal of package frailtypack. The output is used as the left
parameter for a formula object, where on the right we give details of the
grouping method for the shared frailty model, i.e. the IDs of patients in our
dataset, and values for the covariates we want to use to build our model. For
each patient, as stated in Chapter 2, we collected several information: among
all we recall the age of each patient at the time of the considered event and
whether a subject underwent some kind of surgical or non-surgical practice,
like “CABG”, “ICD”, “STENT” and “PTCA”. These are the information that
we will use to compute our model. In particular, we will allow patient’s age
to be time-dependent, as it naturally is, but will rescale it in order to pre-
vent the log-likelihood estimated value to increase dramatically. For what
concerns the other used information, as already explained in Section 2.2,
they only state whether a patient experienced the considered practice or
not during her/his admissions history. Moreover, we will collapse these data
into a unique covariate (for simplicity of notation we will, from now on,
call it surgical) with four possible levels: if a patient underwent no medical
practice, then the covariate will report the value None; on the other hand if
all of the considered practices have been performed, then the corresponding
value is All ; if an Implantable Cardioverter-Defibrillator (“ICD”) was im-
planted in a patient and no other practices were performed, then we will set
surgical = ICD; the last level corresponds to the covariate value of Three,
when a patient experienced at least one practice out of “CABG”, “STENT”
and “PTCA”, but had no “ICD”.

In order to obtain the desired frailty model using function frailtyPenal,
which allows for multiple models computation according to values of certain
parameters, we need to specify several function’s arguments. First of all, to
introduce the frailty term into the Cox model, argument Frailty has to be
equal to TRUE, so that the algorithm estimates the frailty term. Moreover,
we want to compute a shared frailty model, as it is the best model for the
kind of data we are analysing. For this reason we set the other arguments
for model selection (joint and recurrentAG) equal to FALSE. All the other
arguments of frailtyPenal function are used in the estimation process for
the baseline hazard function, which is computed and approximated through
cubic M-splines, as the estimator of h0(t) has no analytical solution [28].

The last, but equally important, argument to be set to compute the
model through frailtyPenal function is RandDist, which gives informa-
tion on what distribution to use for the frailty term. The function allows
for two different solutions: Gamma distribution or log-Normal distribution.
As already discussed, we decided to use the log-Normal distribution for the
frailty parameter in our model.
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On the basis of the analysis conducted on our dataset in Chapter 3,
we decided to manage the analysis in this chapter according to the re-
sults previously obtained. The model and the algorithm we applied to the
dataset to estimate the functional shape and value of the hazard functions
are strictly connected to the value of the data under analysis. In particu-
lar, the model, hence the algorithm, is conjectured in such a way that the
baseline hazard function is constructed through patients’ survival times and
evaluated through all the information from the considered patients. Then
the patient-specific hazard functions are reassembled multiplying the base-
line hazard function with the regression and frailty terms, following the
theoretical model (4.2). For this reason, keeping all patients together would
interfere with our aim to rebuild the less constrained patient-specific func-
tional shape, as the model itself impose to the shape of the hazard function
for each patient to be adaptable to that of the estimated baseline. Splitting
patients into the previously found groups, which have a strong distinctive-
ness, would allow at least to differentiate the baseline hazard functions for
patients that show a completely different hospitalisations history evolution.
Considering this aspect of the model and its consequences, we decided to ap-
ply the proposed shared frailty model to each of the three previously found
groups, not considering patients as if they would come from the same pop-
ulation. Notice that this way, we are allowing the frailty term distribution
to vary among groups, as the distribution’s variance term will be estimated
for each of the considered clusters. As a result, we will have the following
model over the complete dataset, where k is the cluster index:

hij(t|vi; k) = h0(t)viexp(β
′zij); (4.7)

vi
i.i.d.∼ log −Normal(0, σ2

k). (4.8)

4.3 Analysis of the results
Function frailtyPenal from package frailtypack returns as output val-
ues several vectors and matrices to reconstruct the patient-specific hazard
functions in accordance with the desired and specified model. In particular,
a vector of regression terms is returned in output argument linear.pred:
this vector is of length equal to the number of events in the considered group
of patients, i.e. the number of patients plus all of their events next to the
first one, when applicable. The value of each element of linear.pred vec-
tor is equal to the argument of the exponential in the model formula (see

39



Analysis of the results

Equation (4.1)): it is the sum of the regression term β′zij and the frailty
term wi, which is a realisation from the zero-mean Normal distribution. The
regression coefficients are fixed values throughout the dataset (for each event
and for each patient) and the covariates matrix zi corresponds to the record
of patient i, including information on age of the patient at the event date
and practices performed on her/him throughout the observation time (see
previous section). For this reason, zi is a matrix of dimensions j×2, where j
corresponds to the number of hospitalisations of patient i. The same value in
linear.pred can be obtained through arguments coef and frailty.pred,
which contain estimation of regression coefficients and of patients’ frailty
term, respectively.

Another important value returned by function frailtyPenal is a ma-
trix holding the baseline function estimate and its confidence bands. Each
of them is evaluated over 100 time points selected as an equally spaced se-
quence of times starting from t = 0 up to the maximum observed survival
time in the considered dataset. For this reason, the function returns also
a vector with corresponding times where the baseline hazard function was
estimated, argument x1.

With all these information we are able to reconstruct the hazard function
for each patient. The resulting hazard is computed as follows:

ĥi(tl|vi; k) = ĥ0(tl)viexp(β̂
′
zil); (4.9)

zil = zij for tj−th event ≤ tl < t(j+1)−th event; (4.10)

vi
i.i.d.∼ log −Normal(0, σ̂2

k). (4.11)

First of all, in (4.9), we show the estimated hazard function for patient
i, ĥi(tl|vi; k), computed as the product of the estimated baseline hazard
function ĥ0(tl) with the patient-specific frailty term vi and the exponential
of the regression term β̂

′
zil. The hazard function ĥi(tl|vi; k) is computed over

the time points as in the returned value x1. These, as already said, are 100
points over the observation time period, and here we label them as tl, where
l = 1, . . . , 100. Naturally we have t1 = 0 and t100 = max(tobserved). Then
the covariate vector zil corresponds to the vector of covariates for the i-th
patient at time tl, in conformity with (4.10): at each evaluation time point
tl, the covariate value is equal to its value in the corresponding survival time.
While tl is consecutive to the time of j-th event and previous to the next
event time, j = 1, . . . , Hi with Hi being the maximum number of admissions
for patient i, we assume zil = zij. Notice that the time of the (Hi + 1)-th
event for patient i is equal to the date of death or the end of the study.

40



Analysis of the results

Finally, the frailty term for patient i is a realisation from the estimated
distribution log-Normal, which, in our case, is a one parameter distribution.
Parameter σ̂2

k in Equation (4.11), which corresponds to the variance of the
zero-mean Gaussian distribution for term wi in Equation (4.1), is computed
to obtain the realisations for patients in the k-th cluster, where k = 1, 2, 3.

Once we computed the patient-specific hazard functions, it is also of a
great interest to compute the corresponding cumulative hazard functions,
as they could be of some help in the comprehension process of the clusters
characteristics. The theoretical model for the cumulative hazard function is:

Λ(t) =

∫ t

0

h(u) du. (4.12)

From this theoretical model we are able to compute both the cumulative
baseline hazard function and the patient-specific cumulative hazard func-
tions. To compute and estimate these functions on the basis of the ob-
tained baseline hazard function ĥ0(tl) and patient-specific hazard function
ĥi(tl|vi; k), we decided to use a simple trapezoidal rule applied over each pair
of time points from vector x1. We did not use a more refined numerical tech-
nique to estimate the integral in the cumulative hazard definition, because
we do not need a precise estimate of the function, but only the qualitative
approximation for the integral of the considered hazard function. Conse-
quently, the cumulative baseline hazard function and the cumulative hazard
function for patient i are of the following form:

Λ̂0(tl) =

∫ tl

0

ĥ0(u) du ≈
l−1∑
m=1

(tm+1 − tm)

[
ĥ0(tm+1) + ĥ0(tm)

2

]
; (4.13)

Λ̂i(tl|vi) =

∫ tl

0

ĥi(u|vi) du ≈
l−1∑
m=1

(tm+1 − tm)

[
ĥi(tm+1|vi) + ĥi(tm|vi)

2

]
.

(4.14)

In (4.13) and (4.14) are shown the estimates for the cumulative baseline
hazard function and patient i cumulative hazard function, respectively. In
particular, it is important to notice that to compute the value of the cumu-
lative function at any time tl, with l = 1, . . . , 100, we summed the results
obtained with the trapezoidal formula over each time interval [tm; tm+1], with
m = 1, . . . , (l − 1) and l = 1, . . . , 100.

Remembering that, as detailed in Section 3.3, cluster number 1 is “sick”
patients cluster, number 2 is “terminally ill” patients group and that the
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third cluster is the one of “healthy” patients, it is of a great interest to
analyse the resulting baseline hazard function, together with its cumulative,
from each of the mentioned groups.

Figure 4.1: Baseline hazard function and the corresponding cumulative baseline hazard
function for each of the considered clusters.

In Figure 4.1, we can see in the first row of plots the baseline hazard
functions from each cluster and, in the same plots, 95% confidence bands
for the estimated baseline hazard functions. First of all, it is important to
notice that for each group, the confidence bands give us a good feedback
on the correctness of the functional estimation obtained from the applied
algorithm. The only group which is characterised by some noise is the third
one, especially towards the end of the study time period: this is because,
approaching the end of the observed time, the majority of patients in this
cluster have censored survival times and for this reason the probability of a
new hospitalisation is estimated to be rising rapidly, but with great uncer-
tainty. Secondly, we would like to spend some words on the functional shape
of the baseline hazard function of each cluster, in an effort to confront them
on the basis of the conclusions reached in Section 3.3. Let’s firstly take a
look at plots for clusters 2 and 3: these are the two opposite clusters, in
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terms of patients that constitute them, representing the most extreme pa-
tients’ health situations. The baseline hazard function for cluster number 2
is characterised by high risk probability of being re-hospitalised at the very
beginning of the study time period, going below the 0.0005 margin within
the first six months and reaching the zero limit line after 4.65 years (see
Figure 4.2).

Figure 4.2: Baseline hazard function of second cluster. In blue it is highlighted the zero
limit line, reached after 4 years of observation. In red is shown the function’s
point corresponding to the intersection of 0.0005 probability line and the 164
days bar.

This same result can be seen through the cumulative baseline hazard func-
tion of second group, in the second line of plots from Figure 4.1. The cumu-
lative function grows rapidly for the first six months, when the functional
gradient diminishes correspondingly to the baseline hazard function’s trend.
Towards the end of the study, the cumulative baseline hazard function be-
comes constant, as in the matching baseline hazard function it is reached the
zero limit line. Recalling that cluster number 2 is the “terminally ill” patients
cluster, with the highest mortality rate, we then find perfect matching with
the functional shape of the baseline hazard function and its cumulative. At
the end of the study time period the majority of patients in this cluster are
dead. This is the reason leading to the natural estimation of the probability
of re-hospitalisation equal to zero.
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On the other hand, if we analyse the baseline hazard function estimated
for cluster number 3, we can immediately appreciate a specular trend com-
pared to that of the second cluster. We need first of all to remember that
the third cluster is composed of “healthy” patients, with the lowest mortality
rate and the highest number of censored survival times.

Figure 4.3: Baseline hazard function of third cluster. In blue it is highlighted the zero
limit line, from which the function drifts away after 3.5 years of observation.
In red is shown the function’s point corresponding to the intersection of
0.0005 probability line and the 5 years bar.

In Figure 4.3, we can particularly recognise the rising trend after five years
of observation (highlighted through the intersection of the two red lines).
If these patients are the ones surviving throughout the study time period,
their probability of being re-hospitalised, or being censored, grows rapidly
when we reach the observation right limit. In particular it is interesting
to notice that this baseline hazard function values are within a smaller in-
terval compared to that of the second cluster ([1.24 × 10−6; 2.14 × 10−3]
and [2.26 × 10−18; 3.77 × 10−3], respectively). For the first five years of
observation, the estimated baseline hazard function takes particularly low
values, once again because these patients have a zero probability of being
re-hospitalised early after their first admission. The same trend can be ap-
preciated through the cumulative baseline hazard function, see plot in the
second row from Figure 4.1. The cumulative function has a shape that re-
sembles that of the baseline, as for the first four years the baseline assumes
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values which do not modify significantly the computed integral. Like the
baseline hazard function, towards the end of the study time period, the cu-
mulative baseline hazard function’s gradient increases remarkably.

Finally we should observe the first cluster’s baseline hazard function’s
trend. At a first glance it resembles the most to the baseline hazard func-
tion of the second cluster. It reaches the highest values at the very beginning
of the study time period, and diminishes down to the zero limit slowly dur-
ing all the observation window. It has although a lower initial probability of
being re-hospitalised compared to that of the second cluster. Moreover, this
cluster’s baseline hazard function is characterised by a particular decreasing
trend: this result matches what we expected to obtain from the baseline haz-
ard function of patients labelled, in Section 3.3.1, as “sick” patients. They
have at the beginning a high probability of being re-hospitalised, which de-
creases rapidly to an almost constant value of 0.0004. This is until after 2.78
years, when the probability of being re-hospitalised increases once more to
decrease again rapidly after few months. The reason behind this behaviour
is that the majority of these patients dies within the first 1000 days, but
there is a certain number of patients who dies in the last interval of time
(see Figure 4.4).

Figure 4.4: Histogram of the time of death for patients in the first cluster.

We find proof to our hypothesis in Figure 4.5, where we attempted to cluster
dying patients of this group according to their overall survival time. In this
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Figure 4.5: Average linkage dendrogram for distances between dead patients’ survival
time in first cluster.

figure we show the obtained clusters for these patients using an average
linkage hierarchical clustering method [13]. From the resulting dendrogram,
we clearly see that we can split patients into two or three clusters. In order to
explain the baseline hazard function’s trend, it is sufficient to state that there
are two inner groups of patients. Patients are grouped according to their
overall survival time (time elapsed from their first admission to their death)
and we find that they are assigned to one or the other cluster conditionally on
the fact that their overall survival time, Ti =

∑Hi

h=1 Tih, is greater or smaller
than 1278. As a result, we obtained that one of the two groups has a mean
survival time equal to 1539.827. This outcome explains the functional shape
of the baseline hazard function for “sick” patients cluster (see Figure 4.6).
Notice that we are clustering only dying patients. This means that, in
previous chapter analyses, we could not have divided the complete dataset
into four groups because there are not enough differences among patients of
the “sick” cluster to induce us to consider it as two distinctive populations.

Once we analysed the baseline hazard functions for the three groups,
we are ready to compute the patient-specific hazard functions and their
corresponding cumulatives. In Figure 4.8, we show the results from the
estimation of the hazard functions and their cumulatives for patients from
group 1. As already said, the functional shape is strictly similar to that of
the corresponding baseline hazard function in Figure 4.6. In spite of the
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Figure 4.6: Baseline hazard function of first cluster. In blue it is highlighted the zero
limit line, reached only at the end of the study time period. In red is shown
the time point equal to 1278, the minimum observed survival time for the
second group of dead patients within this considered cluster of “sick” patients.

restriction imposed by the model to the functional shape, there is a great
variance that can be appreciate among patients’ hazard functions, especially
through the cumulative hazard functions, a variance that will be further
more investigated in next section.

The same results are found also for the obtained hazard functions for
patients from the second and third clusters (see Figure 4.9 and Figure 4.10,
respectively). Notice that for the third cluster, “healthy” patients cluster,
we can perceive not only a great variance among the resulting function for
each patient, but also that in the cumulative hazard functions it is possible
to identify groups of patients that, towards the end of the study time pe-
riod, have different functional behaviours. This result is perfectly matching
what we already stated when analysing the confidence bands for the base-
line hazard function from cluster number three. The uncertainty found in
analysing the baseline hazard function is now embodied in the functional
variance among patients. Moreover, we will show in Chapter 5 that it is
possible to identify different groups of “healthy” patients according to their
hazard functions (see Section 5.2.3).

On the other hand, patients from the second cluster, “terminally ill”
patients, are characterised by a smaller functional variance, which can be
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seen especially through the hazard functions in Figure 4.9a. Patients from
this cluster share a particular characteristic: the great majority of them dies
within the first year of observation (see Figure 4.7), leading to an obvious
reduction in the possible variance expressed in the functional computation.

Figure 4.7: Histogram of the time of death for patients in the second cluster.
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(a) Patient-specific hazard function.

(b) Patient-specific cumulative hazard function.

Figure 4.8: Hazard function and cumulative hazard function for patients in cluster num-
ber 1. These functions were obtained according to the described procedure,
see Equations (4.9) and (4.14).
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(a) Patient-specific hazard function.

(b) Patient-specific cumulative hazard function.

Figure 4.9: Hazard function and cumulative hazard function for patients in cluster num-
ber 2. These functions were obtained according to the described procedure,
see Equations (4.9) and (4.14).
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(a) Patient-specific hazard function.

(b) Patient-specific cumulative hazard function.

Figure 4.10: Hazard function and cumulative hazard function for patients in cluster num-
ber 3. These functions were obtained according to the described procedure,
see Equations (4.9) and (4.14).
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4.4 Analysis of functional variance within and
between groups

We already showed functional shape diversity among groups due to the dif-
ferences in patients composing the three clusters and leading to the con-
trasting behaviours of the correspondent baseline hazard functions. What is
now interesting to analyse is the variance between groups due to the frailty
term. One of the values returned by function frailtyPenal, that we used
to compute the estimated patient-specific hazard functions for each cluster,
is the estimated variance of the frailty term. It is relevant for our analysis to
look at this output: variance of the frailty term in the three clusters is equal
to 0.08466 for the first group and equal to 0.08482 and 3.9758 for the second
and third groups, respectively. What is remarkable, is that the estimated
variances for clusters 1 and 2, corresponding to “sick” and “terminally ill”
patients, are values similar between them; furthermore they are approaching
the zero limit, which is, as we showed in (4.6), the limit of non-heterogeneity
among patients in the considered population. What we can appreciate from
this result is that, as we already stated, patients from cluster 1 are charac-
terised by a functional trend which resembles that of patients in the second
group, not only for the shape of the baseline hazard function, but also for
the variability within the patients due to the frailty term. Moreover, there
is a very low heterogeneity among patients from clusters 1 and 2, and the
variance that we appreciate in the hazard functions from Figure 4.8 and
Figure 4.9 is mostly due to the combination of the regression and frailty
terms in (4.1). In particular, the variability of patients’ age covariate in
these two clusters is the one mostly responsible for the results in Figure 4.8
and Figure 4.9.

On the contrary, the estimated variance for the frailty term of cluster
number 3 shows that there is a considerably higher heterogeneity within
patients of this group. This peculiarity in the third cluster was already shown
in the baseline hazard function uncertainty towards the end of the study time
period. This characteristic led us to develop an even more detailed analysis
on this group of patients, in an effort to find clusters of patients within the
considered group (see Section 5.2.3).
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Chapter 5

Analysis of patients surviving
after each hospitalisation:
clustering and functional hazard
reconstruction

We showed in previous chapters the analyses over the complete dataset, con-
centrating the study of the distribution of survival times between two events
and the associated event risk, discussing over the theory behind the mod-
els we applied, showing and analysing obtained results. Throughout all the
analyses on the dataset, we found that we could split it into three groups,
each of them identifiable with a certain type of patient: two groups stand for
the extreme cases (“terminally ill” and “healthy” patients) and an in between
group, which shares statistical characteristics with both of the other two.
From an analytical point of view (see Sections 3.3 and 3.4), “sick” patients
cluster is closer to the “healthy” patients one, as it shares with it a lower
mortality rate and a similar trend for the Kaplan-Meier estimator. On the
other hand (see Section 4.3), from a functional point of view, i.e. looking at
the reconstructed patient-specific hazard functions from each group, char-
acteristics of the “sick” patients cluster are more comparable to the shape
and behaviour of the “terminally ill” patients cluster ones. For this reason,
we decided to develop a more refined analysis to reinforce our previous as-
sumptions.

Dying patients have the greatest influence over the considered models, as
it is evident through the dissimilarities between the most extreme clusters we
obtained. At each new hospitalisation, the dataset dimension is reduced by
an amount equal to the number of dead patients at the previous admission.
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This means that the information in the early stages of the observation time
period are richer than those at the end of it, leading to a poorer model
estimate compared to that for the first admissions. Moreover, dying patients
have a great influence on the computed estimates for the hazard models. To
escape these natural limitations, we decided to replicate the same analyses
we showed in Chapters 3 and 4 over particularly conjectured subgroups of
patients from the complete dataset.

5.1 Surviving after the first admission
First of all, we considered the dataset cleared from the early dying patients.
These patients, who died during their first admission, could be patients dy-
ing for different causes other than HF or chronic HF. In particular, patients
affected by chronic heart failures are likely to have several re-hospitalisations,
so we removed from the dataset all patients dying during their first hospital-
isation or before the second one. In so doing, the remaining subjects survive
through their first admission. Still, there are patients who have only one
admission, or just two, or three and so on, up to a maximum of five, but
those having only one hospitalisation happen to be alive at the end of the
study time period.

Once we selected the desired subgroup of patients from the complete
dataset, we applied the already shown models (see Chapter 3 and Chap-
ter 4). We herein report and comment the results, while for the models
theory the reader is referred to previous chapters.

The number of patients that have been removed is equal to 2640 (19.15%
of total dataset), corresponding to the number of dead patients in the com-
plete dataset who had just one hospitalisation. Trying to split the subgroup
into three clusters, as we did for the complete dataset, we obtained the
clusters whose profiles are shown in Figure 5.1.

Comparing this figure to the equivalent one for the complete dataset
(see Figure 3.3) and making our first hypotheses on the behaviour of the
cluster-profiles, especially in the first two survival time variables, it appears
clear that we can identify once again the same groups of patients: “sick”,
“terminally ill” and “healthy”, in the order. We will support this hypothe-
sis through a deep analysis of the composition of the three obtained clus-
ters. Before that, we would like to underline that, while the third cluster
(“healthy” patients) has an almost equal trend to that of the corresponding
cluster from the complete dataset, this characteristic can not be highlighted
for the other two. In particular, once we removed patients dying before
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Figure 5.1: Cluster-Profiles: Mean survival time for each variable Th, h = 1, . . . , 5, and
for each cluster k, K = 1, . . . , 3.

their second hospitalisation, the algorithm seems to associate patients with
a higher surviving time to the “sick” patients cluster, as expected, leaving
the “terminally ill” group with those patients characterised by lower survival
times.

To understand the composition of the three clusters and verify our as-
sumptions, we conducted the same analyses as in Sections 3.3.1, 3.3.2 and
3.3.3.

Properties Cluster 1 Cluster 2 Cluster 3
Cluster Size 2953 (26.50%) 3752 (28.40%) 4440 (39.83%)

Mortality Rate 15.34% 65.81% 5.59%

Table 5.1: Characteristics of clusters: size and mortality rate

From table 5.1, we see that the mortality rate is the first index to ascribe
our characterisation hypothesis of the obtained clusters: the second cluster
is that with the higher mortality rate, while the third group registers the
lowest one. Moreover, as we can see from Figure 5.2a, the algorithm asso-
ciates all patients having just one hospitalisation with the third cluster, a
behaviour that we naturally would relate to that of healthy patients. On
the other hand, patients in the second cluster have the higher mortality
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rate throughout the study time period, and we can appreciate this if we
take a look at Figure 5.2b. In particular, it is interesting to notice that in
correspondence of the second hospitalisation time variable, for the “termi-
nally ill” patients cluster the percentage of patients dying is approximately
equal to 1, a fact that reinforces our believes that this is truly the “termi-
nally ill” patients cluster and that, removing patients who died before their
second hospitalisation, helped us to achieve a clearer identification of the
three clusters and their features. Finally, we find once more the in between
characteristic proper of the first cluster, which earned it the name of “sick”
patients cluster: if we look at Figure 5.2a, the first cluster (green) has al-
most the same distribution of patients as the second one (red), with a peak
at the second hospitalisation time variable T2. On the contrary, if we move
our attention on Figure 5.2b, we see that the first cluster (green), has a
mortality percentage trend that resembles that of the third cluster (blue).

(a) Percentage of patients in each clus-
ter who have only one hospitalisation
over the study time period, or just
two admissions, or three and so on.

(b) Percentage of patients in each cluster
who died during their first hospitali-
sation over the study time period, or
during their second one, or third and
so on.

Figure 5.2

At this stage of the analysis, we are ready to proceed with the functional
part of it. As we did in Chapter 4, we computed function frailtyPenal
separately over the three clusters for the same reasons already discussed in
Section 4.2. In Figure 5.3 we show the results for each of the considered clus-
ters: plots in the first row show the baseline hazard functions and their 95%
confidence bands, while plots in the second row display the corresponding
cumulative baseline hazard functions.

First of all, it is evident that the obtained baseline hazard functions are
consistent with the results from the previous analyses on the three clusters
and that they are comparable to those in Figure 4.1. Once again the con-
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Figure 5.3: Baseline hazard function and the corresponding cumulative baseline hazard
function for each of the considered clusters.

fidence bands give us a good feedback on the correctness of the estimated
λ0(t|k), with k = 1, 2, 3, exception made for the third group (“healthy” pa-
tients), for which we find the same result as in the corresponding group
obtained from the complete dataset: towards the end of the study time pe-
riod the confidence bands show an increase in the estimation uncertainty.
As for the complete dataset, we find that the baseline hazard function esti-
mation for the first group (“sick” patients) resembles much more that of the
second cluster (“terminally ill” patients), being characterised by a higher ini-
tial probability of being re-hospitalised. The first cluster differentiates itself
from the second one for the numerous peaks along the study time period,
which give this function an oscillatory profile. Moreover, this characteristic
reinforces the in between behaviour proper to this cluster. In Figure 5.4 we
show the results obtained when we rebuild the patient-specific hazard func-
tions and corresponding patient-specific cumulative hazard functions, based
on the obtained baseline hazard functions. Of course, the mean trend shown
in these plots its that already discussed for the baseline hazard functions.

From all these analyses, we can now state that removing patients who
died before their second hospitalisation did not change our ability to identify
those groups of patients found when clustering the complete dataset. It

57



Surviving after the h-th hospitalisation

Figure 5.4: Patient-specific hazard functions and corresponding patient-specific cumula-
tive hazard functions for each of the considered clusters.

seems, as a result of this strong characterisation of patients selected for
the subgroup, that this choice led to an even more satisfactory division of
patients into well distinctive clusters.

This said, on the basis of the remarkable results we obtained, two more
ideas have come to our attention: what kind of results could we obtain if
removing step by step all patients dying before their h-th hospitalisation?
Consequently, what is the movement of patients between obtained clusters?
The answers to these questions are stated in the following sections.

5.2 Surviving after the h-th hospitalisation
Once we saw that removing patients dying before their second hospitalisation
is improving the algorithm ability to separate different kind of patients,
we thought of conducting the same analyses over other properly selected
subgroups of patients. In particular, these subgroups are each time selected
as a subset of the previous one, as the subgroup of patients analysed in
the above section was a subgroup of the complete dataset. We will then
consider, as a second subgroup, a subset of patients from the subgroup
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of the complete dataset, and so on. We will call each subgroup Gh, for
h = 1, . . . , 5. Subgroup G1 is the first subset of patients selected from
the complete dataset, whose properties were already discussed in previous
section. Subgroup G2 is a subset of G1, obtained removing from it all those
patients dying before their third hospitalisation. All the other subgroups are
obtained from the previous one, removing each time patients dying before the
next hospitalisation. Subgroup G5 is the last one, which corresponds to the
group of patients who remain alive throughout the study time period and,
in particular, is a subset of all the previous subgroups. We can summarise
properties of the collection of subgroups under analysis as follows:

• Gh+1 ⊂ Gh, ∀h = 1, . . . , 4;

• Gh ⊂ Gtot, where Gtot is the complete dataset;

•
⋃5
h=1Gh = G1;

•
⋂5
h=1Gh = G5.

We are now ready to conduct the same analyses as in Chapters 3 and 4 over
the subgroups Gh, with h = 2, . . . , 5.

First of all, as we did for the complete dataset and for the first subgroup
G1, we want to take a look at Figure 5.5, showing the cluster-profiles ob-
tained for each subgroup. The similarity of cluster-profiles obtained among
all subgroups is remarkable, despite some, yet very little, value variations
for variables T3, T4 and T5. Also, notice that if we compare the resulting
cluster-profiles for these subgroups to the one obtained for subgroup G1 (see
Figure 5.1), we can appreciate a strong resemblance between all plots. Clus-
ters in green and red, which will later be named “sick” and “terminally ill”,
happen to have the exact same shape in each of the subgroups, meaning
that we are, for each new subgroup, improving the ability of the algorithm
to find distinctive clusters, with well defined properties. For what concerns
the cluster coloured in blue, this is the only one which is equal among plots
in Figure 5.5, but is different from the same cluster obtained from the first
subgroup: for variables T1 and T2 it appears to have the same shape in
every subgroup, including G1, but in the last four subgroups, i.e. once we
removed patients dying before their third hospitalisation, the algorithm se-
lects, in order to build up this cluster, patients who have a maximum of 4
hospitalisations. It is a strong characterisation of this cluster, leading to the
natural belief that this is truly the “healthy” patients cluster: this cluster is
made of patients with the fewer number of hospitalisations, meaning that
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Figure 5.5: Cluster-profiles for subgroups G2, G3, G4 and G5. It is important to notice
the great similarity for the obtained clusters from each subgroup.

they are patients with a lower probability of being re-hospitalised. We will
later show that there are other indexes that will prove and reinforce our
hypotheses, leading us to the conviction that removing a properly selected
group of patients permitted us to identify clusters of patients with strong
inner characterisations. Before we deepen into the analysis of clusters ob-
tained for these subgroups, we think it is important to underline a detail
that can be appreciated at this early stage of the analysis. We already dis-
cussed, in previous section, that removing patients that died before their
second hospitalisation changed the inner configuration of the three clusters,
permitting to obtain clusters with a stronger characterisation. Now, we can
state that, removing patients that died before their third hospitalisation,
reinforced even more the features of each cluster, leading to the final charac-
terisation of them, which has no other considerable changes when we remove
patients dying before their fourth or fifth admission or before the end of the
study time period. We will see that this same conclusion is reached once we
analyse the movement of patients among clusters (see Section 5.3).
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5.2.1 Descriptive analysis of clusters in the subgroups

Through Figure 5.5, we already showed and underlined the similarities among
corresponding clusters obtained in each subgroup. We now show that this
resemblance can also be appreciated thanks to descriptive indexes from ev-
ery cluster and that these will help us define the type of patients assigned
to each cluster by the algorithm, over the subgroups.

We already know from previous analyses (see Chapter 3 and Section 5.1)
that if we ask to the mixPHM algorithm to split our dataset into three clusters,
it divides patients according to the requirements. We then choose a label
for each patient, in order to identify and summarise the general properties
of subjects in a specific cluster. We named them “healthy”, if assigned to
the cluster of patients with the lowest number of hospitalisations and mor-
tality rate, “terminally ill”, if patients are assigned to the cluster having the
highest mortality rate. The last group is labelled as “sick”, and it is a group
showing characteristics of both the other clusters. In Table 5.2 we show the
most important characteristics of each of these clusters, and in particular we
will use these data to study the evolution of clusters every time we remove
patients that died before their h-th admission. The presented indexes in the
table are: the cluster size, to show the dimension of each cluster compared
to the total number of patients in each subgroup, the mortality rate, which
is the most evident clue that enables us to give names to clusters, and the
mean and standard deviation of patients’ age, to show the evolution of its
distribution once we removed dying patients.

First of all, we would like to highlight the trend of the mortality rate index
for each cluster through its evolution from one subgroup to the following.
As we already stated, this index helps us identify the kind of group we are
looking at: the mortality rate of patients in the “healthy” cluster is not only
the lowest, but it also reaches the zero limit once we remove patients dying
before their third admission. On the other hand, patients in the “terminally
ill” cluster have the highest mortality rate in each subgroup, except for
G5, which is the subgroup obtained by removing all dying patients from
the complete dataset. It is of some interest to notice that, because we are
removing dying patients and this cluster collects those patients who are most
likely to die, the corresponding mortality rate index decreases in each smaller
subgroup, together with the cluster size. The last cluster, “sick” patients
cluster, has a mortality rate which is always between the corresponding
values from the “terminally ill” and “healthy” groups. We find, also in this
cluster, the same mortality rate’s trend as in the “terminally ill” cluster: it
diminishes in value from one subgroup to the next. This behaviour finds its
natural explanation in the way we selected patients for each subgroup: every
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Cluster “sick”
Subgroup G2 G3 G4 G5

Cluster Size 2446 2656 2266 2287
Cluster Size (%) 25.64% 30.62% 27.47% 28.68%
Mortality Rate 5.76% 2.75% 0.97% 0%

µ(Age) 71.65 years 71.46 years 71.23 years 71.30 years
sd(Age) 12.06 12.10 13.56 12.12
Cluster “terminally ill”
Subgroup G2 G3 G4 G5

Cluster Size 3151 2136 2048 1792
Cluster Size (%) 33.03% 24.63% 24.83% 22.47%
Mortality Rate 44.91% 29.26% 12.26% 0%

µ(Age) 75.02 years 73.37 years 71.99 years 70.96 years
sd(Age) 11.54 11.57 11.65 11.62
Cluster “healthy”
Subgroup G2 G3 G4 G5

Cluster Size 3942 3881 3934 3896
Cluster Size (%) 41.33% 44.75% 47.70% 48.85%
Mortality Rate 0.20% 0% 0% 0%

µ(Age) 71.26 years 71.99 years 71.27 years 71.24 years
sd(Age) 12.51 13.54 13.51 13.53

Table 5.2: Table of all the properties of clusters “sick”, “terminally ill’ and “healthy”
obtained in each subgroup (G2, G3, G4 and G5).

time, removing dying patients, we are reducing the overall mortality rate of
the subgroup compared to that of the complete dataset. This result reflects
in the gradual reduction of the same index in each cluster (and especially in
the “terminally ill” one).

It is also important to look at patients’ age distribution for each cluster
and its evolution from one subgroup to the next one. As we can see from
Table 5.2, “healthy” and “sick” patients clusters have a similar age distribu-
tion, a fact highlighted by their mean values, which are around the value of
71 years in every subgroup. Moreover, this similarity is also shown through
p-values in Table 5.3, where we carried out a Wilcoxon test with null hy-
pothesis that the distributions of the two considered samples are equal. The
shown results demonstrate that these two clusters’ age variables are equally
distributed over all the considered subgroups. On the contrary, the mean
age values for the “terminally ill” patients cluster are considerably higher
than the corresponding ones in the other two clusters. It is interesting to
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Test “healthy” vs. “sick” “terminally ill” vs. “healthy”
G2 0.92 < 2.2× 10−16

G3 0.61 5.79× 10−7

G4 0.24 0.07
G5 0.34 0.17

Table 5.3: Table of p-values for the Wilcoxon test. First column shows p-values for
the Wilcoxon test testing as null hypothesis if ages from “healthy” and “sick”
patients clusters are equally distributed. Second column shows p-values for
the Wilcoxon test testing as alternative hypothesis if ages from “terminally
ill” patients cluster are different from the ones of “healthy” patients cluster.
We chose to compare the age distribution of “terminally ill” patients with that
of the “healthy” patients because, as shown in the first column, “healthy” and
“sick” clusters’ ages are equally distributed.

notice that, although this initial characteristic, towards the last subgroups
(namely G4 and G5) this cluster is reduced to a group of patients whose
age distribution is comparable to those of the other two groups (see Ta-
ble 5.3). This result finds its natural explanation if we recall that dying
patients in the complete dataset are, as expected, considerably older than
the ones surviving throughout the study time period.

Finally, we come to analyse the size of each cluster. We can notice
that, clusters of “sick” and “healthy” patients are both conservative in the
number of patients from which they are composed, where “sick” patients
cluster covers almost 30% of each subgroup, and “healthy” patients cluster
covers 40% to 50% of subgroups. The remaining portion corresponds to
“terminally ill” patients. It is important to observe that, in this cluster, the
number of patients is always reducing, once more an evident demonstration
that patients assigned to this cluster are those about to die. In Figure 5.6, we
show the trend of the percentage of patients in cluster k, i.e. the evolution
of the percentage of patients in each subgroup assigned to the three clusters.
We followed this evolution from the results obtained when dividing in three
the complete dataset, to the ones obtained for the smaller subgroup, G5.
We also show (black line) the percentage of dying patients over the complete
dataset: for each subgroup, it corresponds to the percentage of patients that
have been removed from the complete dataset to obtain the h-th subgroup
Gh, where h = 1, . . . , 5. We will show, in Section 5.3, that patients who
were selected for a cluster remain in that cluster and that this behaviour is
particularly evident for clusters “healthy” and “terminally ill”.
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Figure 5.6: Evolution of the size percentage of subgroup Gh represented by each cluster.
Trends for “healthy” patients cluster (blue solid line), for “terminally ill”
patients cluster (red dotdashed line) and for “sick” patients cluster (green
dashed line) are shown. We also added a black dotted line to show the
percentage of dead patients in the complete dataset, corresponding to the
percentage reduction of patients to obtain the h-th subgroup Gh.

5.2.2 Patient-specific hazard reconstruction within sub-
groups

Once again, we want to attempt a reconstruction of the patient-specific haz-
ard functions in each cluster obtained from each subgroup. Applying once
more the same techniques presented in Chapter 4, we obtained baseline
hazard functions, corresponding patient-specific hazard functions and their
cumulatives. Herein we discuss the results obtained for the baseline hazard
functions and will only show the obtained patient-specific hazard functions.
In Figures 5.7, 5.8 and 5.9, we show the results obtained for the baseline
hazard functions of each cluster, comparing the output obtained in each sub-
group Gh, where h = 2, . . . , 5. In Figures 5.10, 5.11 and 5.12, we show the
patient-specific hazard functions obtained for patients in each cluster, and
compare these results for all subgroups. We also show, in each figure, the
resulting cumulative hazard functions, corresponding to the estimated base-
line hazard function or to the computed patient-specific hazard functions.
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First of all, we would like to point out, analysing baseline hazard func-
tions’ shapes in Figures 5.7 and 5.9, that these maintain their shape along
the four compared subgroups. Moreover, if we compare these plots to the
ones obtained from the complete dataset and from subgroup G1 (see Fig-
ure 4.1 and Figure 5.3), we can see that removing dying patients at each
hospitalisation is affecting also the functional shape of the estimated baseline
hazard functions. In particular, for “sick” patients cluster we appreciate that
there is a peak (after 1000 days, i.e. after 2 years and 9 months) in the func-
tional shape that persists throughout all subgroups of patients, with a little
variation resulting in the presence of other peaks along the time line. These
peaks are the reflection of the possible moments of re-hospitalisation of pa-
tients, which in every succeeding subgroup result more evident as they are
no longer masked by the presence of dying patients. For what concerns the
“healthy” patients cluster, in this case too we are able to appreciate some dif-
ferences from the results shown in Figure 4.1 and Figure 5.3. The “healthy”
cluster, identified from the complete dataset, had a non-zero mortality rate
and this fact represents the main reason for the variations appreciable among
obtained estimations of the baseline hazard function in each subgroup. The
shy bending we saw in the baseline hazard function’s shape in Figure 4.1
(after 1000 days, i.e. after half the time of observation), becomes more and
more evident in each successive subgroup, with a following increase in the
uncertainty to estimate the baseline hazard function (see the range of possi-
ble values explored by the confidence bands, for example equal to [0; 0.0078]
for the fifth subgroup). It is important, at last, to notice that these vari-
ations in the functional shape of the baseline hazard functions can not be
equally appreciated in the corresponding cumulative baseline hazard func-
tions, which show the general behaviour of the clusters’ re-hospitalisation
hazard. As expected, and as already proved through the descriptive analyses
in the previous section, the cumulative functions do not show any variation
among the considered subgroups for the “healthy” patients cluster.

The estimation for the baseline hazard function of “terminally ill” pa-
tients cluster is the one, as foreseen, that shows the greatest changes among
subgroups. Every time we remove dying patients, the cluster that under-
goes major variations is the “terminally ill” cluster, which is, as seen in
Section 5.2.1 and in previous chapters, the cluster with the higher mortal-
ity rate. We saw, in Figure 4.1, that the estimated hazard function for the
“terminally ill” patients cluster distinguishes itself from the other clusters be-
cause it reaches the 5×10−4 limit within the first 164 days and remains below
it for all the study time period. In particular, at the end of the observation
period, it reaches the zero limit line. Removing patients dying before their
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second or third hospitalisation, introduces a great change in the estimate
of the baseline hazard function, a variation that is even more evident when
we remove also the rest of dying patients. The baseline hazard functions,
for “terminally ill” patients in each considered subgroup, have an initial be-
haviour that matches that obtained for this cluster in the complete dataset.
This trend is maintained until the first half of the study time period, when
the confidence bands show an increase in the uncertainty of the final part.
What is fascinating about the results from subgroups G3, G4 and G5, is that
the baseline hazard function, after 1500 days of observation, increases its
value in such a way that it resembles the functional shape of the “healthy”
patients cluster. Once again, we find that dying patients where masking the
natural behaviour of the other patients forming part of the cluster.

We think it is relevant to show the results obtained once we reconstructed
the patient-specific hazard functions. Patient-specific hazard functions com-
puted for “sick” patients and “terminally ill” patients clusters are compara-
ble to the baseline hazard functions estimated for these clusters in each
subgroup. In particular, we are able to appreciate from Figure 5.10 and
Figure 5.11 the same functional shape as for the baseline hazard functions,
with a little variability among patients within each cluster of each subgroup,
due to the combination of the effects of the covariates and the variability
of the frailty term. This analysis becomes important when we look at the
results of the computed patient-specific hazard functions for the “healthy”
patients cluster: the consequence of removing dying patients, as stated in
Section 5.2.1, is in the ability to identify a cluster of living patients (in fact
this is the cluster with mortality rate equal to zero for G2, G3, G4 and G5).
We already discussed the general behaviour of this cluster in each subgroup,
but it is now relevant to look at the patient-specific results: as we can see
from Figure 5.12, patients identified as “healthy” patients seem to have dif-
ferent behaviours within the same cluster obtained in each subgroup. In
particular, it looks like we could find three different groups of patients that
differentiates one another for their functional values throughout the study
time period. For this reason, we decided to conduct a brief yet very re-
markable analysis, to deeper investigate the characteristics of patients in
the “healthy” patients clusters from each subgroup (see Section 5.2.3).
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(a) Baseline hazard functions and corresponding cumulative baseline
hazard functions in subgroups G2 and G3.

(b) Baseline hazard functions and corresponding cumulative baseline
hazard functions in subgroups G4 and G5.

Figure 5.7: Baseline hazard functions and corresponding cumulative baseline hazard
functions for “sick” patients clusters in subgroups G2, G3, G4 and G5.
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(a) Baseline hazard functions and corresponding cumulative baseline
hazard functions in subgroups G2 and G3.

(b) Baseline hazard functions and corresponding cumulative baseline
hazard functions in subgroups G4 and G5.

Figure 5.8: Baseline hazard functions and corresponding cumulative baseline hazard
functions for “terminally ill” patients clusters in subgroups G2, G3, G4 and
G5.
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(a) Baseline hazard functions and corresponding cumulative baseline
hazard functions in subgroups G2 and G3.

(b) Baseline hazard functions and corresponding cumulative baseline
hazard functions in subgroups G4 and G5.

Figure 5.9: Baseline hazard functions and corresponding cumulative baseline hazard
functions for “healthy” patients clusters in subgroups G2, G3, G4 and G5.
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(a) Patient-specific hazard functions and corresponding cumulative
hazard functions in subgroups G2 and G3.

(b) Patient-specific hazard functions and corresponding cumulative
hazard functions in subgroups G4 and G5.

Figure 5.10: Patient-specific hazard functions and corresponding cumulative hazard
functions for “sick” patients clusters in subgroups G2, G3, G4 and G5.
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(a) Patient-specific hazard functions and corresponding cumulative
hazard functions in subgroups G2 and G3.

(b) Patient-specific hazard functions and corresponding cumulative
hazard functions in subgroups G4 and G5.

Figure 5.11: Patient-specific hazard functions and corresponding cumulative hazard
functions for “terminally ill” patients clusters in subgroups G2, G3, G4 and
G5.
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(a) Patient-specific hazard functions and corresponding cumulative
hazard functions in subgroups G2 and G3.

(b) Patient-specific hazard functions and corresponding cumulative
hazard functions in subgroups G4 and G5.

Figure 5.12: Patient-specific hazard functions and corresponding cumulative hazard
functions for “healthy” patients clusters in subgroups G2, G3, G4 and G5.
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5.2.3 Analysis of “healthy” patients clusters

As we already pointed out, removing patients dying before their third,
fourth, fifth hospitalisation or before the end of the study time period (cor-
respondingly subgroups G2, G3, G4 and G5), we obtained “healthy” patients
clusters with a strong inner characterisation: first of all, these are the clus-
ters made of non-dying patients (with an exception of little importance for
subgroup G2). This means that every time we remove patients dying before
their h-th hospitalisation, we are not really modifying the configuration of
the “healthy” cluster. Nevertheless, the number of patients in this cluster
undergoes slight changes: this is because, as we will discuss in Section 5.3,
patients initially labelled as “sick” patients move between clusters when we
remove dying patients. This is because the clustering algorithm applied is
not always able to distinguish, based on survival times, “sick” patients be-
haviour from that of “healthy” patients. Luckily, the number of patients with
this characteristic does not affect the general behaviour of “healthy” patients
cluster, and is for this reason negligible. Moreover, patients in our dataset
have been selected because they were diagnosed with heart failure. This
means that, in spite of the fact that we labelled these patients as “healthy”
patients, they are suffering from this disease. We could say that they are, dif-
ferently from what we could say for the other clusters, at early stages of their
disease, i.e. that their condition has been diagnosed early in terms of its evo-
lution. Over the five years of observation, we are able to analyse and follow
the evolution of the disease for these patients thanks to multiple admissions.
As said in previous section, observing the behaviour of these patients from a
risk of re-hospitalisation point of view, we clearly came to understand that
these patients have different disease evolution trends within the same cluster
(see Figure 5.12). To deeply study this characteristic of “healthy” clusters,
we decided to conduce a cluster analysis over these patients.

We chose to cluster patients within the “healthy” patients groups ob-
tained from subgroups G2, G3, G4 and G5 because, as already discussed,
these subgroups are the ones were the clusters characteristics become evi-
dent. We decided to use a hierarchical clustering method to compute and
find the clusters within the patients under analysis. In particular, notice
that from Figure 5.12, it is evident that we can divide patients into three
clusters, based on the shape of the hazard function. Using R functions dist
and hclust, we computed all possible clusters with the considered popu-
lation, repeating this procedure for each subgroup. The distance matrix is
computed as the euclidean distance between hazard functions, as we now
explain. Patients in the dataset are observed during different time intervals,
as they do not have their first admission in the same day. For this reason,
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the computed hazard functions are aligned at the first admission, which is
the t = 0 time for every patient. Then we will observe the patient, hence
compute her/his hazard function, up until the end of the study time pe-
riod (remember that these patients do not die). As a result, patient-specific
hazard functions differ in time length. It follows that, in order to build the
distance matrix, we decided to truncate the hazard functions at the time
corresponding to the last t where we have a functional value for every pa-
tient. The resulting interval of observation of the hazard functions starts at
t = 0 and ends after t = 1451 days, equal to 4 years. Once we truncated
the hazard functions, we computed the euclidean distance matrix between
functions as follows:

dij = d(hi;hj) =

√√√√ M∑
l=1

(
hi(tl)hj(tl)

)
, ∀i 6= j, i, j = 1, . . . Nh, (5.1)

where hi and hj are the hazard functions of patients i and j, tl is the l -
th time point where function frailtyPenal evaluated the hazard functions
(see Section 4.3), M is the last time point where all the hazard functions are
observed (and it is such that M < 100 and tM = 1451), Nh is the number
of patients in the “healthy” cluster obtained for the h-th subgroup.

Once we computed the distance matrix dij for each subgroup Gh, we are
ready to run the hierarchical clustering method to obtain the desired clusters.
The agglomeration method we decided to use is the complete linkage, which
computes the distance between a cluster of objects, let’s call it (UV ), and
any other cluster W as:

d(UV )W = max(dUW , dVW ). (5.2)

We then cut the resulting agglomerative tree in order to obtain three clusters.
We repeated this procedure for each “healthy” patients cluster in subgroups
G2, G3, G4 and G5. In Figure 5.13, we show the clustering results for each
subgroup. It is an extraordinary result to see that the algorithm is able
to find inner clusters within “healthy” patients in each subgroup, selecting
three different clusters of patients. In particular, we see from the obtained
plots that the algorithm, as expected, merges together into one cluster those
functions having the most similar shapes.

At this point of the analysis it becomes interesting to take a look at the
obtained clusters’ properties among subgroups. Remembering that these
are all “healthy” patients, we decided to take into account, in order to un-
derstand which patients were assigned to the inner clusters, several indexes:
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Figure 5.13: Resulting clusters from the hierarchical clustering method used to group
“healthy” patients in each subgroup, G2, G3, G4 and G5.

the mean value of the frailty term estimated when computing the patient-
specific hazard functions (see Section 4.3), the mean value of patients’ age
and the maximum number of hospitalisations for patients in the considered
inner clusters. The results are shown in Table 5.4.

First of all, notice that the size of each inner cluster (i.e. clusters labelled
as 1, 2 and 3 in Table 5.4) is coherent among all subgroups. The first
inner subgroup, namely cluster 1, is the largest cluster, covering up to 98%
of the total “healthy” patients group. This inner cluster is, indeed, the
one representing the mean behaviour of the considered patients. Secondly,
it is interesting to consider the mean value of the frailty term estimated
to compute the hazard functions. As we recall from the proposed model
(see Section 4.1), the frailty term was introduced to allow the model to
evaluate the heterogeneity within the considered group of patients. Here,
we can see that the frailty term represents a crucial role in the computation
and in the clustering of the resulting patient-specific hazard functions. It
permits us, in this considered case, to appreciate the differences between
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Subgroup G2

Cluster 1 2 3
Cluster size 3880 (98.43%) 47 (1.19%) 15 (0.38%)
Mean frailty 0.23 4.56 5.07
Mean age 71.24 years 73.81 years 77.13 years

Max admissions 3 3 4
Subgroup G3

Cluster 1 2 3
Cluster size 3831 (98.71%) 42 (1.08%) 8 (0.21%)
Mean frailty 0.20 4.63 4.94
Mean age 71.24 years 73.26 years 72.13 years

Max admissions 3 3 4
Subgroup G4

Cluster 1 2 3
Cluster size 3881 (98.65%) 45 (1.14%) 8 (0.21%)
Mean frailty 0.23 4.59 4.95
Mean age 71.24 years 73.64 years 72.13 years

Max admissions 3 3 4
Subgroup G5

Cluster 1 2 3
Cluster size 3849 (98.79%) 41 (1.05%) 6 (0.16%)
Mean frailty 0.21 4.65 4.78
Mean age 71.22 years 73 years 70.5 years

Max admissions 3 3 4

Table 5.4: Table of the properties of clusters obtained from “healthy” patients in each
subgroup Gh, for h = 2, . . . , 5.
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Subgroup G2 G3 G4 G5

p-value 4.26× 10−6 0.0216 0.0209 0.1801

Table 5.5: Table of the p-values for the Wilcoxon test, conducted to check whether the
frailty terms from inner clusters 2 and 3 in each subgroup are equally dis-
tributed.

patients and to distinguish them into well separated groups. Moreover, we
see that inner clusters 2 and 3 have similar mean values among subgroups, a
characteristic that is reinforced by the Wilcoxon test conducted over the two
groups of frailty terms to see if they could be considered equally distributed
(see Table 5.5). The term that allows to differentiate from patients in the
inner clusters 2 and 3 is the patients’ age, as we can see from Table 5.4.
Moreover, patients in the inner cluster 3 experience more admissions than
the other patients, with the consequence of a higher estimated risk of being
re-hospitalised. These behaviours can be clearly appreciated in Figure 5.13,
where hazard functions of patients in cluster 3 are coloured in red, cluster 2
in green and cluster 1 in blue, for each subgroup.

5.3 Moving among clusters
We now come to the last, but not least, analysis conducted over subgroups
Gh, for h = 1, . . . , 5. We discussed, in previous sections, all the properties
of clusters obtained each time we removed dying patients and affirmed that
these clusters, with minor exceptions, became more and more well charac-
terised, leading to the idea that each patient is reassigned to the same cluster
of the successive subgroup. To confirm this idea, it is important to analyse
the movement of every patient among clusters.

To conduct this analysis, we took advantage of the ID label assigned to
every patient, in order to be able to trace their movements. We then build a
matrix with 7 columns and as many rows as patients in the complete dataset,
i.e. 13785. We assigned to the first column the IDs of patients, while the
remaining columns are for the clusters’ labels at each step of the reduction
of patients number: second column is for the labels of clusters obtained with
the mixPHM algorithm over the complete dataset Gtot, third column is for the
labels of clusters obtained with the same algorithm applied over subgroup
G1, and so on. If a patient dies, i.e. at a certain point she/he is removed
from the dataset, in the next subgroups her/his label corresponds to “death”.
In Figures 5.14, 5.15 and 5.16 we show the paths traced by patients who were
initially labelled, i.e. from the complete dataset, as “sick”, “terminally ill”
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Figure 5.14: Representation of the movement of patients clustered as “sick”, starting from
the complete dataset, through clusters obtained when running the algorithm
‘mixPHM’ over subgroups G1, G2, G3, G4 and G5.

or “healthy”, respectively. In the shown plots, the coloured points have two
characteristics, helpful to better interpret the movements of patients: their
colour is equal to the colour of the corresponding cluster (blue for “healthy”
cluster, green for “sick” cluster, red for “terminally ill” cluster and black for
dead patients), and their dimension corresponds to the proportion of patients
assigned to the considered cluster. For example, some of the patients in the
“healthy” cluster from the complete dataset Gtot, are then assigned, when
we consider subgroup G1, to the new “healthy” cluster, while part of them
die: the dots shown for subgroup G1 are as big as the proportion of patients
going either to the “healthy” cluster or to the “death” cluster, and, as we
already knew, the proportion of dying patients is minimal (equal to 0.28%
of the initial “healthy” cluster). This rule applies in every figure.

The first thing that is evident from the shown plots is that, as already
discussed, the three clusters have distinctive behaviours: the majority of
patients who where at first assigned to the “terminally ill” cluster died and
were removed from the dataset, while the ones that survived are reassigned
to the new obtained “terminally ill” clusters (notice that, even though there
are patients assigned to the “healthy” cluster when analysing subgroup G1,
these are then pushed back to the “terminally ill” cluster). The “healthy”
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Figure 5.15: Representation of the movement of patients clustered as “terminally ill”,
starting from the complete dataset, through clusters obtained when running
the algorithm ‘mixPHM’ over subgroups G1, G2, G3, G4 and G5.

Figure 5.16: Representation of the movement of patients clustered as “healthy”, starting
from the complete dataset, through clusters obtained when running the
algorithm ‘mixPHM’ over subgroups G1, G2, G3, G4 and G5.
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patients cluster has a specular behaviour, as we see that, apart from an
initial and minor exception, these patients are always classified as “healthy”
patients. This result reinforces, once more, the initial idea that clusters of
“terminally ill” and “healthy” patients have strong characterisations and are,
for this reason, always clearly identified, especially after we removed patients
dying before their third hospitalisation (see Section 5.2). Patients in the
“sick” cluster show, as throughout all the analyses conducted in previous
sections, an in between behaviour that leads to more randomised paths, as
we can see from Figure 5.14. Every time we remove dying patients, we refine
the characteristics of “terminally ill” and “healthy” clusters, but we are not
able to clearly identify specific characteristics for the “sick” patients cluster.
Nevertheless, we can see from the shown plot that the majority of patients
from this cluster moves among “sick”, “terminally ill” or “death” clusters, as
we can see that the points for the “healthy” patients cluster are essentially
of null dimension.
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Conclusions and future
developments

In this thesis we analysed data from patients diagnosed with heart failure
and chronic heart failure, applying several algorithms in order to investigate
on relevant features. Indeed, we found a successful outcome when dividing
patients into several groups, whose characteristics were easily recognised by
means of a descriptive analysis. Furthermore, we extended the analysis to
the functional estimation and reconstruction of patients’ hazard functions.
As already discussed, the obtained results demonstrate a strong capability of
this approach to estimate and recognise the re-hospitalisation process of the
considered population. Moreover, it allows a patient-specific analysis that
can be useful to detect subjects’ behaviour during the time of observation.

When selecting patients to be included in the developed analyses, we
decided to consider subjects with a maximum of five hospitalisations over
the studied time period. Even though we do not expect great changes in
the outcome, it could be of some interest to consider the entire population
and apply the studied algorithms to the most complete dataset. Further-
more, a new dataset, gathering a greater number of patients observed over
a longer time period, is now available: we will apply the techniques used
throughout this thesis over this new population, expecting to obtain more
refined estimations thanks to the enlarged number of patients. This newer
dataset includes more information: in particular, documentation on drugs
taken once dismissed is provided, a data that allows to extend our analyses
to a comparison between estimated re-hospitalisation hazards of patients
and the kind, dosage and frequency of taken drugs. Additionally, we would
like to introduce in our model a stratification of data, distinguishing between
women and men. This would go in the direction of epidemiological litera-
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ture, which shows an existing difference between women and men diagnosed
with heart failure, differences that we also found in our analyses.

At the beginning of the study, we excluded from the considered popula-
tion those patients who had at least once in their hospitalisations history a
circulatory shock. This appeared to be a population with proper features:
nevertheless, these are patients diagnosed with chronic heart failure and we
will need to study and analyse the re-hospitalisation process of these distinct
subjects. Finally, one could discuss over the intra-hospital death index, com-
paring this phenomenon to deaths outside the hospital. This information
could allow for better explanation of groups composition.

Once we refined the estimations obtained in this thesis by means of the
proposed developments, the analysis could be extended to the study of the
changing points in the re-hospitalisation process of each patient. Being
able to understand this specific behaviour could improve the diagnosis of
the disease and the ability of a clinician to follow its evolution. Moreover,
a better understanding of the disease trend from a general point of view,
could allow hospitals to preview the needs of future hospital admissions,
in an effort to improve the efficiency of clinical facilities and, consequently,
collective welfare.
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Appendix A

Proportional Hazards Model

In this appendix we would like to report a brief story of Proportional Haz-
ards Models [5] [6]. These are a class of survival models where the only
effect due to the variation of the value of a covariate under investigation,
is multiplicative with respect to the hazard rate function of an underlying
survival distribution. These models require no specific parametric form for
the survival distribution. Sir David Cox in his first work on these models
[7], considered first of all the problem of evaluating the relation between the
distribution of the time to event data and the variables z1, . . . , zp, where we
store all the measurements which are available from a patient’s history. The
rising model from his conjecture is of the form:

h(t; z) = h0(t)exp(β
′z), (A.1)

where β is the vector of unknown parameters of the regression model and
h0(t) is the resulting hazard function setting z = 0.

The second problem Cox attempted to solve, was the analysis of the
obtained models. In his paper, he outlined the necessity to look for the
consequences of letting the baseline hazard function h0(t) be arbitrary, con-
centrating mostly on the attempt to estimate and compute regression pa-
rameters. The β parameters vector is for this reason estimated through a
maximum likelihood method, computing the partial likelihood rising from
this model. This is of the form:

L(β) =
∏
i:Ci=1

θi∑
j:Tj≥Ti θj

, (A.2)

where θi = exp(ziβ), Ti denotes the observed time (censoring or event time)
for subject i and Ci the indicator whether the corresponding time is an event
or has been censored. The corresponding log partial likelihood is:
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`(β) =
∑
i:Ci=1

β′zi − log
∑

j:Tj≥Ti

θj

 . (A.3)

Using some maximisation algorithm we are now able to determine the esti-
mate of β. Notice that all sorts of generalisations are allowed, using time-
varying covariates and time-varying coefficients as well. Moreover, if for
some reason we can assume that h0(t) has a particular shape rising from the
knowledge of the studied problem nature, then we can replace it with the
desired function. An example is that of the Weibull hazard function, which
leads to the well known “Weibull proportional hazards model”.

It is important to give some kind of physical explanation about the na-
ture of Cox model. As said in his work [7], proportional hazards model is
significant to accelerated life testing. Let s be a “stress” variable and suppose
that the basic physical process of failure is common for different stress levels.
This condition is satisfied when observation units experience only one way of
failure, or at least only a predominant one. Of course, the complexity of this
approach is to come to know the physical problem in order to establish the
correct test conditions and their properties. The hazard function at stress
level s, supposing that the failure process is the same for every s, is of the
form g(s)h0{g(s)t}, where g(s) is a function of s to be determined, such that
g(1) = 1. If we assume that some ageing process proceeds independently
of s, then the model is reduced to g(s)h0(t). Now, setting g(s) = sβ and
z = log s, the resulting hazard model is the same as in equation (A.1).

Finally, for the purpose of research and personal knowledge, we tran-
scribed a passage of the interview to Sir Cox by Nancy Reid [27], where he
describes the background leading to his work and his Proportional Hazards
Model.

Quite a few people - I think particularly of Peter Armitage
and Ed Gehan and Marvin Zelen, and I think there were others
- said they were getting a certain kind of data, censored survival
data, with a lot of explanatory variables. Nobody knew quite
how to handle this sort of data in a reasonably general way, and
there seemed to be dissatisfaction with assuming an underlying
exponential distribution or Weibull distribution modified by some
factor. It seemed that something slightly more general was called
for. Well, in the light of all sorts of things I’d done in stochastic
processes it’s entirely natural to approach this in terms of hazard.
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So the specification of some basic function of the underlying time
scale, multiplied by a factor, that’s sort of immediate and obvi-
ous really. I don’t know whether it’s new to that paper, I think
probably it is, but anyway it’s sort of immediate.

Then the question was how to actually do the statistical anal-
ysis. I wrote down the full likelihood function and was horrified
at it because it’s got exponentials of integrals of products of all
sorts of things, unknown functions and so forth. I was stuck
there for quite a long time - I would think the best part of five
years or maybe even longer. Then suddenly I thought that the
obvious thing to do was to concentrate on the part of the likeli-
hood that actually gave you the information about the regression
coefficients that you were interested in. It was absolutely obvious
how to do that, and so just write down the answer. It occurred
to me while I had a high temperature and was in bed with flu. It
suddenly struck me that you could do this, and then when I felt
better I tried to recover the argument and couldn’t. But I was so
convinced that when I was ill I had done this, that I tried again
and then I saw what it was that I’d done. [. . .]

So that’s the essence of it. It didn’t come from one particular
application, but it came from perceiving, on the advice of others,
that in medical statistics people were getting a certain kind of data
that they didn’t know how to analyse. And I think, though it’s a
long time ago and I don’t remember too clearly, I could conceive
that in industrial reliability and perhaps other fields essentially
the same problems were arising.
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“Whatever works”: The code

There is nowadays a strictly connection between statistical analysis and
computer programming. This thesis project was mostly concentrated on the
analysis element of this connection, although behind all the presented results
there was a necessary large use of the computer power. For this reason, we
think it could be of some interest to present here the major aspects of the
code we wrote to produce the discussed analyses.

We herein also would like to quote a picture that inspired us while writing
the below code, for the quoted sentence apply perfectly to the love and hate
relationship we had during these last months with the computer:

Love, despite what they tell you, does not conquer all, nor
does it even usually last. In the end the romantic aspirations of
our youth are reduced to, whatever works.

Whatever Works, 2009, Woody Allen.

1 ################################
2 ### Creat ing Proper Matr ices ###
3 ################################
4

5 # The Dataset
6 dat i <− r e ad . t a b l e ( ’ dati2006_over18dateOKlosOK.txt ’ )
7 IDs <− unique ( da t i $ID) # Pat i ent s IDs
8

9 #### Matrix f o r the mixPHM package ####
10

11 dateADM <− a s . Date ( da t i $dateADM)
12 dateDEATH <− a s . Date ( da t i $dateDEATH)
13 dateEND <− a s . Date ( "2010−12−31" )
14

15 ## Maximum columns number
16 maxcol <− max( da t i $adm_number)
17

18 #I n i t i a l i s i n g the matrix
19 times_mixPHM <− matrix (NA, nrow = length ( IDs ) , nco l = maxcol )
20 f o r ( i in 1 : l ength ( IDs ) )
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21 {
22 #Pat ient i admiss ion dates
23 paz_times <− dateADM[ which ( da t i $ID==IDs [ i ] ) ]
24 f o r ( j in 2 : count_col [ i ] )
25 {
26 #ho s p i t a l i s a t i o n l ength= number o f days between two conse cu t i v e

admiss ions
27 times_mixPHM [ i , j−1 ] <− a s . numeric ( d i f f t im e ( paz_times [ j ] ,
28 paz_times [ j−1 ] ,
29 un i t s="days" ) )
30 }
31

32 #l a s t h o s p i t a l i s a t i o n ( censored or death )
33 i f ( ( da t i $DEATH_ind[ which ( da t i $ID==IDs [ i ] ) ] ) [ 1 ]==0) # Censored
34 {
35 times_mixPHM [ i , j ] <− a s . numeric ( d i f f t im e (dateEND ,
36 paz_times [ j ] ,
37 un i t s="days" ) )
38 } e l s e # Death
39 {
40 times_mixPHM [ i , j ] <− a s . numeric ( d i f f t im e (dateDEATH[ which ( da t i $ID==IDs [ i

] ) ] [ 1 ] ,
41 paz_times [ j ] ,
42 un i t s="days" ) )
43 }
44 }
45

46 times_mixPHM <− data . f rame ( IDs , times_mixPHM)
47

48 #### removing pa t i en t s who had at l e a s t one shock .
49 #### removing pa t i en t s who have more than 5 amds.
50 shock <− NULL
51 count_col <− NULL
52 f o r ( i in 1 : l ength ( IDs ) )
53 {
54 shock <− c ( shock , i f e l s e (sum( dat i $SHOCK[ which ( da t i $ID==IDs [ i ] ) ] ) >0, 1 , 0) )
55 count_col <− c ( count_col , dim( da t i [ which ( da t i $ID==IDs [ i ] ) , ] ) [ 1 ] )
56 }
57

58 n <− 5
59 elimino_n <− which ( count_col > n)
60

61 # Se l e c t i n g pa t i e n t s with a maximum of 5 h o s p i t a l i s a t i o n s
62 times5_mixPHM <− a s . matrix (times_mixPHM [−elimino_n , 1 : ( n+1) ] )
63

64 shock <− shock [−elimino_n ]
65 el imino_shock <− which ( shock==1)
66 # Se l e c t i n g pa t i e n t s with no shock
67 times5_mixPHM <− a s . matrix (times5_mixPHM [ −elimino_shock , ] )
68

69 wr i t e . t a b l e (times5_mixPHM , "times5_mixPHM.txt" )
70

71

72 #### Matrix f o r the f r a i l t y p a c k package ####
73 i d . good <− NULL
74 t . s t a r t <− NULL
75 t . s t o p <− NULL
76 time <− NULL
77 event <− NULL
78 enum <− NULL
79 death <− NULL
80 age <− NULL
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81 shock <− NULL
82 cabg <− NULL
83 ptca <− NULL
84 i cd <− NULL
85 s t en t <− NULL
86 f o r ( i in 1 : l ength ( IDs ) )
87 {
88 d a t i . i d <− dat i [ which ( da t i $ID==IDs [ i ] ) , c ( 1 : 9 , 1 5 : 1 9 ) ] #pat i en t i
89 dim. id <− dim( d a t i . i d ) [ 1 ]
90 i f ( dim.id<=5) # pa t i en t s with a maximum of 5 adms
91 {
92 i d . good <− c ( id .good , rep ( d a t i . i d [ 1 ,1 ] , t imes=dim. id ) ) # ID
93 enum <− c (enum , c ( 1 : d im. id ) ) # event number
94 h a s . any <− colSums ( d a t i . i d [ , 10 : 14 ] ) # account ing f o r procedures
95 i f (h a s . any [ 1 ] >0) { shock <− c ( shock , rep (1 , t imes=dim. id ) )
96 } e l s e { shock <− c ( shock , rep (0 , t imes=dim. id ) ) }
97 i f (h a s . any [ 2 ] >0) {cabg <− c ( cabg , rep (1 , t imes=dim. id ) )
98 } e l s e { cabg <− c ( cabg , rep (0 , t imes=dim. id ) ) }
99 i f (h a s . any [ 3 ] >0) {ptca <− c ( ptca , rep (1 , t imes=dim. id ) )

100 } e l s e { ptca <− c ( ptca , rep (0 , t imes=dim. id ) ) }
101 i f (h a s . any [ 4 ] >0) { i cd <− c ( icd , rep (1 , t imes=dim. id ) )
102 } e l s e { i cd <− c ( icd , rep (0 , t imes=dim. id ) ) }
103 i f (h a s . any [ 5 ] >0) { s t en t <− c ( stent , rep (1 , t imes=dim. id ) )
104 } e l s e { s t en t <− c ( stent , rep (0 , t imes=dim. id ) ) }
105 age <− c ( age , rep ( d a t i . i d [ 1 ,2 ] , t imes=dim. id ) ) # Age at f i r s t event
106 i f ( d im. id==1) # only 1 event
107 {
108 i f ( d a t i . i d [ 1 ,9 ]==1) # death
109 {
110 t ime . i d <− a s . numeric ( d i f f t im e ( a s . Date ( d a t i . i d [ 1 ,8 ] ) ,
111 a s . Date ( d a t i . i d [ 1 ,6 ] ) ) )
112 dea th . i d <− 1
113 e v en t . i d <− 1 # Not censured event
114 } e l s e # end o f the study time
115 {
116 t ime . i d <− a s . numeric ( d i f f t im e ( a s . Date ( "2010−12−31" ) ,
117 a s . Date ( d a t i . i d [ 1 ,6 ] ) ) )
118 dea th . i d <− 0
119 e v en t . i d <− 0 # Censured event
120 }
121 } e l s e # more than 1 event
122 {
123 t ime . i d <− NULL
124 e v en t . i d <− NULL
125 dea th . i d <− NULL
126 f o r ( j in 2 : ( d im. id ) ) # days between two conse cu t i v e admiss ions
127 {
128 t ime . i d <− c ( t ime . id , a s . numeric ( d i f f t im e ( a s . Date ( d a t i . i d [ j , 6 ] ) ,
129 a s . Date ( d a t i . i d [ j−1 , 6 ] ) ) )

)
130 e v en t . i d <− c ( event . i d , 1) # Not censured events
131 dea th . i d <− c ( death . id , 0)
132 }
133 i f ( d a t i . i d [ 1 ,9 ]==1) # death
134 {
135 t ime . i d <− c ( t ime . id , a s . numeric ( d i f f t im e ( a s . Date ( d a t i . i d [ 1 ,8 ] ) ,
136 a s . Date ( d a t i . i d [ dim.id , 6 ]

) ) ) )
137 e v en t . i d <− c ( event . i d , 1) # Not censured event
138 dea th . i d <− c ( death . id , 1)
139 } e l s e # end o f the study time
140 {
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141 t ime . i d <− c ( t ime . id , a s . numeric ( d i f f t im e ( a s . Date ( "2010−12−31" ) ,
142 a s . Date ( d a t i . i d [ dim.id , 6 ]

) ) ) )
143 e v en t . i d <− c ( event . i d , 0) # Censured event
144 dea th . i d <− c ( death . id , 0)
145 }
146

147 }
148 t . s t a r t . i d <− 0 # s t a r t i n g time o f event
149 t . s t o p . i d <− NULL # ending time o f event
150 f o r ( j in 1 : ( l ength ( t ime . i d ) ) )
151 {
152 t . s t o p . i d <− c ( t . s t o p . i d , t ime . i d [ j ]+t . s t a r t . i d [ j ] )
153 t . s t a r t . i d <− c ( t . s t a r t . i d , t . s t o p . i d [ j ] )
154 }
155 t . s t a r t <− c ( t . s t a r t , t . s t a r t . i d [ 1 : d im. id ] )
156 t . s t o p <− c ( t . s t op , t . s t o p . i d )
157 time <− c ( time , t ime . i d )
158 event <− c ( event , e v en t . i d )
159 death <− c ( death , d ea th . i d )
160 }
161 }
162

163 #bu i l d ing up the matrix
164 mat <− cbind ( id .good , enum , t . s t a r t , t . s t op , time ,
165 event , death , age , shock , cabg , ptca , icd , s t en t )
166 mat <− a s . data . f rame (mat)
167

168 #removing pa t i e n t s with at l e a s t one shock event
169 mat <− mat [−which (mat$ shock==1) , ]
170

171 groups <− r e ad . t a b l e ( "Weibull_Gruppi.txt " ) [ ,1 ]
172 group <− NULL
173 f o r ( i in 1 : l ength ( unique (mat$ id .good ) ) )
174 {
175 g <− groups [ i ]
176 n <− l ength ( which (mat$ id .good==unique (mat$ id .good ) [ i ] ) )
177 group <− c ( group , rep (g , n ) )
178 }
179

180 category <− NULL #co l l a p s i n g procedure v a r i a b l e s in one .
181 f o r ( i in 1 : dim(mat) [ 1 ] )
182 {
183 i f (mat [ i , 11 ]+mat [ i , 12 ]+mat [ i , 14 ]>=1)
184 {
185 i f (mat [ i , 13 ]>=1)
186 {
187 category <− c ( category , " Al l " )
188 } e l s e {
189 category <− c ( category , "Three" )
190 }
191 } e l s e {
192 i f (mat [ i , 13 ]>=1)
193 {
194 category <− c ( category , " Icd " )
195 } e l s e {
196 category <− c ( category , "None" )
197 }
198 }
199 }
200

201 age_c <− NULL # Age at each event
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202 f o r ( i in 1 : l ength ( unique (mat$ id .good ) ) )
203 {
204 eta <− dat i $age [ which ( da t i $ID==unique (mat$ id .good ) [ i ] ) ]
205 age_c <− c ( age_c , eta )
206 }
207 age_c <− age_c/100 #d iv i d i ng f o r computat ional porpuses
208

209 mat <− cbind (mat , group , category , age_c )
210 mat$age <− mat$age /100 #d iv i d i ng f o r computat ional porpuses
211

212 wr i t e . t a b l e (mat , "mat_time_noshock.txt" )
213

214

215 #####################################################
216 ### mixPHM code ###
217 ### ###
218 ### Note : We w i l l h e r e in show how to use i t ###
219 ### and then conduct f u r t h e r ana ly s e s ###
220 ### only f o r the f i r s t group. ###
221 ### To the othe r s i t a pp l i e s the same way. ###
222 #####################################################
223 l i b r a r y ( ’mixPHM’ ) # ve r s i on 0 . 7 . 0
224

225 # reque s t i ng 3 groups and weibul l−mixture model
226 weibullK <− phmclust ( times5_mixPHM [ ,−1 ] ,
227 K=3,
228 method=" separa t e " ,
229 EMoption=" randomizat ion " )
230

231 wr i t e . t a b l e ( weibul lK$group , "Weibull_Gruppi.txt " )
232

233 groups <− r e ad . t a b l e ( "Weibull_Gruppi.txt " ) [ ,1 ]
234 gruppo1 <− which ( groups==1)
235 gruppo2 <− which ( groups==2)
236 gruppo3 <− which ( groups==3)
237

238 #### Clus te r 1 ####
239 death_cl1 <− death01 [ gruppo1 ]
240 count_cl1 <− count_col [ gruppo1 ]
241 l ength ( death_cl1 ) # sample s i z e
242 sum( death_cl1 )
243 sum( death_cl1 ) / l ength ( death_cl1 ) ∗100 # morta l i ty ra t e
244

245 # number o f pa t i en t s having a maximum number o f adms
246 l ength ( which ( count_cl1==1))
247 l ength ( which ( count_cl1==2))
248 l ength ( which ( count_cl1==3))
249 l ength ( which ( count_cl1==4))
250 l ength ( which ( count_cl1==5))
251

252 # number o f pa t i en t s dying at t h e i r h−th adm
253 l ength ( which ( death_cl1 [ which ( count_cl1==1) ]==1))
254 l ength ( which ( death_cl1 [ which ( count_cl1==2) ]==1))
255 l ength ( which ( death_cl1 [ which ( count_cl1==3) ]==1))
256 l ength ( which ( death_cl1 [ which ( count_cl1==4) ]==1))
257 l ength ( which ( death_cl1 [ which ( count_cl1==5) ]==1))
258

259 # age d i s t r i b u t i o n
260 age_cl1 <− age [ gruppo1 ]
261 minmax0 <− c (min ( age_cl1 [ which ( death_cl1==0) ] ) ,
262 max( age_cl1 [ which ( death_cl1==0) ] ) )
263 minmax1 <− c (min ( age_cl1 [ which ( death_cl1==1) ] ) ,
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264 max( age_cl1 [ which ( death_cl1==1) ] ) )
265 minmax1h <− c (min ( age_cl1 [ which ( count_cl1==1) ] ) ,
266 max( age_cl1 [ which ( count_cl1==1) ] ) )
267 minmax2h <− c (min ( age_cl1 [ which ( count_cl1==2) ] ) ,
268 max( age_cl1 [ which ( count_cl1==2) ] ) )
269 minmax3h <− c (min ( age_cl1 [ which ( count_cl1==3) ] ) ,
270 max( age_cl1 [ which ( count_cl1==3) ] ) )
271 minmax4h <− c (min ( age_cl1 [ which ( count_cl1==4) ] ) ,
272 max( age_cl1 [ which ( count_cl1==4) ] ) )
273 minmax5h <− c (min ( age_cl1 [ which ( count_cl1==5) ] ) ,
274 max( age_cl1 [ which ( count_cl1==5) ] ) )
275

276 mean( age_cl1 )
277 sd ( age_cl1 )
278

279 # Sex d i s t r i b u t i o n
280 sex_cl1 <− sex [ gruppo1 ]
281 l ength ( which ( sex_cl1==1))
282 l ength ( which ( sex_cl1 [ which ( death_cl1==1) ]==1))
283 l ength ( which ( sex_cl1 [ which ( death_cl1==1) ]==2))
284 l ength ( which ( sex_cl1 [ which ( count_cl1==1) ]==1))
285 l ength ( which ( sex_cl1 [ which ( count_cl1==1) ]==2))
286 l ength ( which ( sex_cl1 [ which ( count_cl1==2) ]==1))
287 l ength ( which ( sex_cl1 [ which ( count_cl1==2) ]==2))
288 l ength ( which ( sex_cl1 [ which ( count_cl1==3) ]==1))
289 l ength ( which ( sex_cl1 [ which ( count_cl1==3) ]==2))
290 l ength ( which ( sex_cl1 [ which ( count_cl1==4) ]==1))
291 l ength ( which ( sex_cl1 [ which ( count_cl1==4) ]==2))
292 l ength ( which ( sex_cl1 [ which ( count_cl1==5) ]==1))
293 l ength ( which ( sex_cl1 [ which ( count_cl1==5) ]==2))
294

295 ##########################################
296 ### f r a i l t y p a c k code ###
297 ### ###
298 ### Note : We w i l l h e r e in show how ###
299 ### to use i t only f o r the ###
300 ### f i r s t group. To the o the r s ###
301 ### i t app l i e s the same way. ###
302 ##########################################
303

304 t imes1 <− mat [ which (mat$group==1) , ]
305 t imes2 <− mat [ which (mat$group==2) , ]
306 t imes3 <− mat [ which (mat$group==3) , ]
307

308 ### Clus te r 1 ###
309 hazard.gruppo1 <− f r a i l t yP e n a l ( Surv ( time , event ) ~ c l u s t e r ( id .good ) +
310 a s . f a c t o r ( category ) +
311 age_c ,
312 data=times1 ,
313 Fra i l t y=TRUE,
314 RandDist="LogN" ,
315 n .knots =14,
316 kappa1=100000)
317 hazard.gruppo1 #summary
318 # hazard r e c on s t r u c t i on
319 reg <− hazard.gruppo1 $ l i n e a r . p r e d
320 lam0 <− hazard.gruppo1 $lam [ ,1 ]
321 n <− hazard.gruppo1 $groups
322 t <− hazard.gruppo1 $x1
323 i d s <− unique ( t imes1 $ id .good [ ] )
324 #pat i en t s on the rows
325 #time po in t s on the columns
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326 lam1 <− matrix ( nrow=n , nco l=length ( t ) )
327 f o r ( i in 1 : n)
328 {
329 idx <− which ( t imes1 $ id .good==id s [ i ] )
330 k <− 1
331 f o r ( j in 1 : l ength ( idx ) )
332 {
333 whi le (k<=length ( t ) &&
334 t imes1 $ t . s t a r t [ idx ] [ j ]<=t [ k ] &&
335 t [ k ] <times1$ t . s t o p [ idx ] [ j ] )
336 {
337 lam1 [ i , k ] <− lam0 [ k ] ∗ exp ( reg [ idx ] [ j ] )
338 # lambda0 ( t ) ∗ exp ( f r a i l t y _ i + beta ∗X_i( t ) )
339 k <− k+1
340 }
341 }
342 }
343 quartz ( )
344 matplot ( t , lam1 , type=" l " )
345

346 wr i t e . t a b l e ( lam0 , "Gruppo1_lambda0.txt" )
347 wr i t e . t a b l e ( t , "Gruppo1_timevector.txt " )
348 wr i t e . t a b l e ( lam1 , "Gruppo1_lambdapiccola.txt " )
349

350 ####### Cumulative hazard : t r ap e z o i d a l r u l e ########
351 Lam1 <− lam1 [ ,1 ]
352 Lam0 <− lam0 [ 1 ]
353 new <− ( lam1 [ ,1 ]+lam1 [ ,1+1 ] ) ∗( t [ 1+1 ]−t [ 1 ] )
354 new0 <− ( lam0 [ 1 ]+lam0 [ 1+1 ] ) ∗( t [ 1+1 ]−t [ 1 ] )
355 Lam1 <− cbind (Lam1 , Lam1+new/2)
356 Lam0 <− c (Lam0 , Lam0+new0/2)
357 f o r ( i in 2 : 99 )
358 {
359 new <− ( lam1 [ , i ]+lam1 [ , i+1 ] ) ∗( t [ i+1 ]−t [ i ] )
360 Lam1 <− cbind (Lam1 , new/2 + Lam1 [ , i ] )
361 new0 <− ( lam0 [ i ]+lam0 [ i+1 ] ) ∗( t [ i+1 ]−t [ i ] )
362 Lam0 <− c (Lam0 , new0/2 + Lam0 [ i ] )
363 }
364

365 quartz ( )
366 matplot ( t , Lam1 , type=" l " )
367 wr i t e . t a b l e (Lam1 , "Gruppo1_lambdacumulata.txt" )
368 wr i t e . t a b l e (Lam0 , "Gruppo1_lambda0cumulata.txt" )
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