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Abstract in lingua italiana

Il campo della ottica non lineare si è sviluppato velocemente negli ultimi 50
anni, grazie anche alla scoperta di innovative tecniche di Phase Matching
come il Quasi-Phase Matching (QPM). Gli Optical Parametric Oscillators
(OPOs) sono il risultato di questo percorso e sono destinati a integrare
le ordinarie sorgenti di luce laser, grazie alla loro versatilità e tunabilità.
Questo progetto di tesi si propone di illustrare la realizzazione di un Ultrafast
Optical Parametric Oscillator accordabile tra 1000nm e 1400nm: partendo
dalla progettazione della cavità, passando attraverso la costruzione della
sorgente fino ad arrivare alla sua applicazione. Questo progetto ha come
principale motivazione quella di realizzare una sorgente accordabile nel
visibile per misure di fotoluminescenza risolte in tempo. La progettazione
di tale sorgente è stata realizzata in collaborazione con il gruppo di ricerca
universitario della Heriot-Watt University di Edinburgo, specializzato nella
realizzazione di Ultrafast Optical Parametric Oscillators. Al fine di apprendere
tecniche di realizzazione e di costruzione di questo tipo di sorgente sono stato
ospite presso il loro gruppo di ricerca per un breve periodo, collaborando
direttamante con uno studente di dottorato del gruppo di ricerca di Derryck
T. Reid. La sorgente è stata completamente realizzata nel polo di ricerca
Center for Nanoscience and Technology (CNST) presso l’Istituto Italiano di
Tecnologia (IIT).
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Abstract

The field of nonlinear optics has grown rapidly over the last 50 years, thanks
to the discovery of innovative techniques of Phase Matching such as Quasi-
Phase Matching (QPM). The Optical Parametric Oscillators (OPOs) are
the result of this trend and are intended to supplement the ordinary laser
light sources, due to their versatility and tunability. This thesis project
aims to illustrate the implementation of an Ultrafast Optical Parametric
Oscillator tunable from 1000nm to 1400nm: starting from the design of the
cavity, passing through the construction of the source until its application.
This project has as its main motivation to realize a source tunable in the
visible for time-resolved photoluminescence measurements. The design of this
source has been realized in collaboration with a research group of the Heriot-
Watt University in Edinburgh, specialized in the production of Ultrafast
Optical Parametric Oscillators. In order to learn the techniques of design
and construction of this type of source I visited as a guest their research
center for a short time, working directly with a PhD student in the research
group of Derryck T. Reid. The source has been fully implemented in the
Center for Nanoscience and Technology (CNST) at the Italian Institute of
Technology (IIT).
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Chapter 1

Theoretical Foundations

In this chapter the origin and the meaning of the principal non-linear phe-
nomena of second order will be discussed, with particular focus on those that
are involved in the realization of the Optical Parametric Oscillator (OPO).

1.1 Pulse Theory and Description

Let us start from Maxwell’s equations:

∇ ·D = ρ (1.1)

∇ ·B = 0 (1.2)

∇×E = −∂B
∂t

(1.3)

∇×B = µ0

(
J +

∂D
∂t

)
(1.4)

where E is the electric field vector, D is the electric displacement vector, H
is the magnetic field vector and B is the magnetic induction vector. The
quantities ρ and J are respectively the volume charge density and the electric
current density of any external charges (not including any polarization
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induced charges and currents). Furthermore it is important to remember the
constitutive relations that link together the electric and magnetic field with
their respective polarization and magnetization vectors:

D = ε0E + P (1.5)

B = µ0H + M (1.6)

In the following we will consider always media with negligible magnetization
(M ∼= 0) as in the case of paramagnetic and diamagnetic materials. We will
also assume that there are no free charges (ρ = 0) and currents (J = 0). In
this case the equations simplify to:

∇ ·D = 0 (1.7)

∇ ·B = 0 (1.8)

∇×E = −∂B
∂t

(1.9)

∇×B = µ0
∂D
∂t

(1.10)

Taking the curl of both sides of Equation 1.9, we obtain:

∇×∇×E = − ∂

∂t
(∇×B) = −µ0

∂2D
∂t2

(1.11)

Recalling that for a vector ν applies ∇×∇× ν = ∇ (∇ · ν)−∇2ν, we obtain
the wave equation:

∇2E = µ0ε0
∂2E
∂t2

+ µ0
∂2P
∂t2

(1.12)

remembering Equation 1.5 and Equation 1.7.
Equation 1.12 is a vector equation. We first make the scalar approx-

imation2, by considering a linearly polarized pulse propagating in the z
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direction and considering only one component E of the electric field vector:

∂2E

∂z2
+∇2

TE = µ0ε0
∂2E

∂t2
+ µ0

∂2P

∂t2
(1.13)

where ∇2
TE = ∂2E

∂x2
+ ∂2E

∂y2
is the so-called transverse Laplacian operator. We

further make the plane wave approximation2, by assuming a plane wave
and neglecting any transverse variation of the electric field:

∂2E

∂z2
− 1

c2
0

∂2E

∂t2
= µ0

∂2P

∂t2
(1.14)

where c0 = 1√
ε0µ0

is the speed of light in vacuum. Equation 1.14 already
allows a first physical insight into the propagation of an electro-magnetic
wave into a medium with polarization P . The polarization is on the right
hand side of the equation, thus acts as a driving term for the electric field,
modifying it during propagation.

Let us now consider a plane wave of the form:

E(z, t) = A1(z, t)cos [ω0t− k0z + φ(z, t)] (1.15)

where A1 is the field envelope (a real function), ω0 is the carrier frequency

Figure 1.1: The real component of the electric field representing a Gaussian
pulse with 10fs duration at λ0 = 0.8µm. The dashed line represents the
envelope function that is modulated by the underlying carrier wave, shown
in red.
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and k0 = ω0
c(ω0) = ω0n(ω0)

c0
is the wave-number in vacuum. It is often more

convenient to rewrite Equation 1.15 as:

E(z, t) = Re {A(z, t)exp [i (ω0t− k0z)]} (1.16)

where A(z, t) is the complex field envelope. In the following we will avoid
the expression Re {...} and write the electric field as:

E(z, t) = A(z, t)exp [i (ω0t− k0z)] (1.17)

It is however important to remember that the electric field is always a real
quantity. Note that an alternative expression for Equation 1.16 is:

E(z, t) =
1

2
{A(z, t)exp [i (ω0t− k0z)] +A∗(z, t)exp [−i (ω0t− k0z)]} =

1

2
{A(z, t)exp [i (ω0t− k0z)] + c.c.}

(1.18)

Similarly, the polarization can be written as2:

P (z, t) = p(z, t)exp [i (ω0t− kpz)] (1.19)

where we have assumed for generality that the wave-vector of the polarization
kp is different from that of the field k0. The polarization is a function of the
incident electric field and can be decomposed in the sum of a linear (PL) and
a non-linear (PNL) component:

P (z, t) = PL(z, t) + PNL(z, t) (1.20)

For the remainder of this section we will consider only the linear component:

P (z, t) = PL(z, t) = pL(z, t) [i (ω0t− k0z)] (1.21)

and solve the equation:
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∂2E

∂z2
− 1

c2
0

∂2E

∂t2
= µ0

∂2PL
∂t2

(1.22)

Eq. 1.22 is more easily solved in the frequency domain, by introducing the
Fourier transform:

Ẽ(z, ω) = F [E(z, t)] =

∫ +∞

−∞
E(z, t)exp (−iωt) dt (1.23)

It can be shown that the Fourier transform of E and PL are2:

Ẽ(z, ω) = Ã(z, ω − ω0)exp (−ik0z) (1.24)

P̃L(z, ω) = p̃L(z, ω − ω0)exp (−ik0z) (1.25)

where Ã(z, ω) = F [A(z, t)]. By taking the Fourier transform of Eq. 1.22 and
recalling the derivative rule for the Fourier transform2:

F
[
dnF (t)

dtn

]
= (iω)n F̃ (ω) (1.26)

we obtain:

∂2Ẽ

∂z2
+
ω2

c2
0

Ẽ = −µ0ω
2P̃L (1.27)

It is possible to express the derivatives with respect to the longitudinal
propagation coordinate z as follows:

∂Ẽ

∂z
=

(
∂Ã

∂z
− ik0Ã

)
exp (−ik0z) (1.28)

∂2Ẽ

∂z2
=

(
∂2Ã

∂z2
− 2ik0

∂Ã

∂z
− k2

0Ã

)
exp (−ik0z) (1.29)

By plugging Eq. 1.29 into Eq. 1.27 we obtain:

∂2Ã

∂z2
− 2ik0

∂Ã

∂z
− k2

0Ã+
ω2

c2
0

Ã = −µ0ω
2p̃L (1.30)
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Using now the Slowly Varying Envelope Approximation (SVEA)2,
which consists in assuming that ∂2Ã

∂z2
<< k0

∂Ã
∂z , this corresponds to neglecting

variations of the envelope over propagation lengths of the order of the wave-
length and breaks down only for extreme focusing (down to the diffraction
limit). With this assumption it can be written that:

− 2ik0
∂Ã

∂z
− k2

0Ã+
ω2

c2
0

Ã = −µ0ω
2p̃L (1.31)

To continue, an expression of p̃L (ω) is needed. Just recalling that for a
monochromatic wave:

P̃L (ω) = ε0χ
(1) (ω) Ẽ (ω) (1.32)

where χ(1) (ω) is the linear (first-order) dielectric susceptibility. By recalling
the definition of linear refractive index nL(ω) =

√(
1 + χ(1) (ω)

)
, we obtain:

p̃L(ω) = ε0
[
n2
L(ω)− 1

]
Ã(ω) (1.33)

We finally obtain:

− 2ik0
∂Ã

∂z
− k2

0Ã+
ω2

c2
0

Ã = −µ0ε0ω
2
[
n2
L(ω)− 1

]
Ã = −ω

2

c2
0

[
n2
L(ω)− 1

]
Ã

(1.34)
which simplifies to:

2ik0
∂Ã

∂z
=
[
k2 (ω)− k2

0

]
Ã (1.35)

with k(ω) = ω
c0
n(ω). In a dispersive medium, the refractive index is a function

of frequency, and the wave-vector thus becomes a nonlinear function of ω. It
is possible to write that2:

k2 (ω)− k2
0 = [k (ω)− k0] [k (ω) + k0] ∼= 2k0 [k (ω)− k0] (1.36)

By a Taylor expansion of k(ω) around ω0:
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k(ω) = k0+

(
dk

dω

)
ω0

(ω − ω0)+
1

2

(
d2k

dω2

)
ω0

(ω − ω0)2+
1

6

(
d3k

dω3

)
ω0

(ω − ω0)3+...

(1.37)
Usually an expansion up to the third order (or to the second order for
moderate pulse bandwidths) is sufficient. By substituting Eq. 1.36 and Eq.
1.37 into Eq. 1.35, we obtain:

i
∂Ã (ω − ω0)

∂z
∼= k′0 (ω − ω0) Ã+

1

2
k′′0 (ω − ω0)2 Ã+

1

6
k′′′0 (ω − ω0)3 Ã (1.38)

where k′0 =
(
dk
dω

)
ω0

= 1
vg0

, vg0 is the group velocity of the carrier frequency;

k′′0 =
(
d2k
dω2

)
ω0

= GVD is known as Group Velocity Dispersion (GVD)

and k′′′0 =
(
d3k
dω3

)
ω0

= TOD is the Third Order Dispersion (TOD). It is
possible now to transform Eq. 1.38 back to the time domain. From Eq. 1.26
the following rule can be derived2:

F−1
[
ωnF̃ (ω)

]
= (−i)n d

nF (t)

dtn
(1.39)

Obtaining:

∂A(z, t)

∂z
+

1

vg0

∂A

∂t
− i

2
k′′0
∂2A

∂t2
+

1

6
k′′′0

∂3A

∂t3
= 0 (1.40)

Eq. 1.40 can be simplified by changing to a temporal frame of reference
moving with the group velocity of the carrier wave: z′ = z, τ = t − z

vg0
,

obtaining:

∂

∂t
=

∂

∂z′
∂z′

∂t
+

∂

∂τ

∂τ

∂t
=

∂

∂τ
∂n

∂tn
=

∂n

∂τn

∂

∂z
=

∂

∂z′
∂z′

∂z
+

∂

∂τ

∂τ

∂z
=

∂

∂z
− 1

vg0

∂

∂τ

(1.41)
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In this new frame of reference Eq. 1.40 becomes:

∂A

∂z′
− i

2
k′′0
∂2A

∂τ2
+

1

6
k′′′0

∂3A

∂τ3
= 0 (1.42)

In the case, often satisfied in practice, in which one can assume k′′′0 ∼= 0, Eq.
1.42 further simplifies to:

∂A

∂z′
− i

2
k′′0
∂2A

∂τ2
= 0 (1.43)

Eq. 1.43, also known as the parabolic equation, captures the main physics of
linear propagation of ultrashort pulses in dispersive media. Let us study the
propagation of a pulse, with a known envelope at z = 0, A(0, t) = A0(t).

Starting with the simplified case of a non-dispersive medium, in which the
refractive index is constant with frequency: n(ω) = n(ω0) = const. In this
case k(ω) = ω

c0
n(ω0) is a linear function of frequency, and k′′0 = 0. We then

have: ∂A(z,τ)
∂z = 0 which gives A(L, τ) = const = A0(τ) = A0

(
t− L

vg0

)
. We

thus have a pulse that moves with the group velocity of the carrier frequency
(so that its peak position shifts linearly with time) but maintains its shape
unaltered. Note that, strictly speaking, only the vacuum is a non-dispersive
medium. The spectrum of the pulse after propagation acquires a linear phase:

Ã (L, ω) = Ã (0, ω) exp

(
−i L
vg0

ω

)
= Ã (0, ω) exp (−iτg0ω) (1.44)

where τg0 = L
vg0

is called the group delay of the carrier frequency, and is the
delay of the pulse envelope upon propagation in a non-dispersive medium.

Turning now to a dispersive medium; Eq. 1.43 can be solved by taking a
Fourier transform with respect to time:

∂Ã (z, ω)

∂z
+
i

2
ω2k′′0Ã = 0 (1.45)

Note that now we are working in the so-called base band2, i.e. with the
envelope A which is a slowly varying function of time. Eq. 1.45 can be easily
solved by separation of variables:
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Ã (L, ω) = Ã (0, ω) exp

(
− i

2
D2ω

2

)
(1.46)

where it has been defined D2 = k′′0L as the second order dispersion (or
Group Delay Dispersion, GDD)2. It should be noted that, since the
phase shift induced by propagation through a length L can be expressed as
φ(ω) = k(ω)L, one can write D2 =

(
d2φ
dω2

)
ω0

. Now going back to the time
domain:

A (L, t) =
1

2π

∫ +∞

−∞
Ã (0, ω) exp

(
− i

2
D2ω

2

)
exp (iωt) dω (1.47)

Eq. 1.46 can be numerically solved for any input pulse; it is possible to
see that the effect of propagation in a dispersive medium is to add to the
spectrum a quadratic phase2. An analytical solution of 1.47 is possible
only in the special case of a Gaussian pulse shape:

A0 (τ) = A0exp

(
− τ2

2τ2
p

)
(1.48)

This pulse shape, although it does not realistically represent many ultrashort
laser pulses, is amenable to analytical calculation, because the Fourier trans-
form of a Gaussian function is also Gaussian. The parameter τp defines the
pulse duration; for an ultrashort pulse, in particular, one usually specifies
the intensity Full Width at Half Maximum (FWHM), which is given by:

τFWHM =
√

2ln (2)τp (1.49)

By recalling that:

F
[
exp

(
−at2

)]
=

√
π

a
exp

(
−ω

2

4a

)
(1.50)

And putting a = 1/2τ2
p we obtain:
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Ã0 (ω) =
√

2πτpA0exp

(
−
τ2
pω

2

2

)
(1.51)

and, after propagation:

Ã (L, ω) =
√

2πτpA0exp

[
−
τ2
p

2
ω2

(
1 + i

D2

τ2
p

)]
(1.52)

Transforming back to the time domain, we obtain:

A (L, τ) =
A0τp√
τ2
p + iD2

exp

[
− τ2

2
(
τ2
p + iD2

)] =

A0τp√
τ2
p + iD2

exp

(
− τ2

2τ2
out

)
exp [iφ (τ)]

(1.53)

where:

τ2
out = τ2

p +
D2

2

τ2
p

= τ2
p

[
1 +

(
D2

τ2
p

)2
]

(1.54)

and:

φ (τ) =
D2τ

2

2
(
τ4
p +D2

2

) (1.55)

By recalling that D2 = k′′0L and defining a "dispersion length" LD =
τ2p
k′′0
,

Eq. 1.54 can be rewritten as:

τout = τp

√
1 +

(
L

LD

)2

(1.56)

Eq. 1.56 already allows a physical insight into the mechanism of dispersive
pulse broadening. For short propagation lengths, L << LD, the pulse-width
remains basically unchanged upon propagation, while for long propagation,
L >> LD, a linear broadening with distance appears, τout =

τp
LD
L.
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Note that the temporal spreading of the Gaussian pulse due to dispersion
has the same expression as the spatial spreading of a Gaussian beam due to
diffraction2:

w (z) = w0

√
1 +

(
z

zR

)2

(1.57)

where the Rayleigh range, defined as zR =
nπw2

0
λ , plays a similar role to the

dispersion length LD.
Let’s now consider the time-dependent temporal phase. By recalling that

the ultrashort pulse is written as:

E (z, τ) = |A (z, τ)| exp [i (ω0τ − k0z + φ (τ))] (1.58)

The instantaneous pulse frequency becomes:

ωi (τ) = ω0 +
dφ

dτ
= ω0 +

2D2

2
(
τ4
p +D2

2

) (1.59)

The frequency is thus not constant, but displays a linear temporal variation,
or "chirp". In particular, for D2 > 0, the frequency increases with time
(“positive chirp” or “up-chirp”), while for D2 < 0, the frequency decreases
with time (“negative chirp” or “down-chirp”).

Figure 1.2: A 10fs pulse (a) before and (b) after positive dispersive broaden-
ing. Longer blue frequencies are delayed relative to the shorter red frequencies.
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To understand this behaviour, let’s recall that: D2 ∝ d
dω

dk
dω = d

dω

(
1

vg(ω)

)
so that D2 > 0 means that vg decreases with frequency (and viceversa for
D2 < 0). For D2 > 0, therefore, the higher frequencies (blue components of
the spectrum) will move at lower speed with respect to the lower frequencies
(red components of the spectrum) and get delayed. The pulse thus acquires
an up-chirp. The opposite holds for the case of a down-chirp.

To further understand this point, let’s express the laser pulse like an
inverse Fourier transform (or Fourier integral)2:

E (t) =
1

2π

∫ +∞

−∞

∣∣∣Ẽ (ω)
∣∣∣ exp [−iφ (ω)] exp (iωt) dω (1.60)

Let us now slice from the pulse spectrum a narrow interval of frequencies
around a given frequency ω̄:

Eω̄ (t) =
1

2π

∫ ω̄+∆ω

ω̄−∆ω

∣∣∣Ẽ (ω)
∣∣∣ exp [−iφ (ω)] exp (iωt) dω (1.61)

By expanding φ (ω) around ω̄ it is possible to write that:

Eω̄ (t) =
1

2π
exp (−iω̄t)

∫ ω̄+∆ω

ω̄−∆ω

∣∣∣Ẽ (ω)
∣∣∣ exp [−iφ (ω̄)− i

(
dφ

dω

)
ω̄

(ω − ω̄)

]
exp [i (ω − ω̄) t] dω =

1

2π
exp [i (ω̄t− φ (ω̄))]

∫ ω̄+∆ω

ω̄−∆ω

∣∣∣Ẽ (ω)
∣∣∣ exp [i (ω − ω̄)

(
t−

(
dφ

dω

)
ω̄

)]
dω

(1.62)

One can easily see that the r.h.s. of the equation is non-vanishing only when
the argument of the exponential is zero, i.e. when:

t = τg (ω̄) =

(
dφ

dω

)
ω̄

The group delay τg is thus the relative arrival time of a given frequency
wave-packet within the pulse. By a Taylor expansion of the spectral phase:
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φ (ω) =φ (ω0) +

(
dφ

dω

)
ω0

(ω − ω0) +
1

2

(
d2φ

dω2

)
ω0

(ω − ω0)2 +
1

6

(
d3φ

dω3

)
ω0

(ω − ω0)3 + ... =

φ (ω0) + τg0 (ω − ω0) +
1

2
D2 (ω − ω0)2 +

1

6
D3 (ω − ω0)3 + ...

(1.63)

where D3 =
(
d3φ
dω3

)
ω0

is called third-order dispersion (TOD). One can
thus write:

τg (ω) =
dφ (ω)

dω
= τg0 +D2 (ω − ω0) +

1

2
D3 (ω − ω0)2 + ... (1.64)

Eq. 1.64 shows that for D2 = D3 = 0 all the frequency components of the
pulse arrive simultaneously, so that it is called Transform-Limited (TL), while
in all other cases the different frequency components arrive at different times
and the pulse becomes chirped. In particular, if the D2 term is dominant
(quadratic chirp) then the group delay varies linearly with frequency, meaning
that the instantaneous frequency is sweeped within the pulse envelope (from
red to blue for positive chirp and from blue to red for negative chirp).

1.2 Elements of Non-Linear Optics

Starting with the equation:

∂2E

∂z2
− 1

c2
0

∂2E

∂t2
= µ0

∂2PL
∂t2

+ µ0
∂2PNL
∂t2

(1.65)

where:

PNL (z, t) = pNL (z, t) exp [i (ω0t− kpz)] (1.66)

having emphasized that the wave-number kp of the nonlinear polarization at
ω0 is different from that of the electric field. The second derivative of the
nonlinear polarization can be expressed as:
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∂2PNL
∂t2

=

(
∂2pNL
∂t2

+ 2iω0
∂pNL
∂t
− ω2

0pNL

)
exp [i (ω0t− kpz)] (1.67)

Now making the approximation that the envelope pNL varies slowly over the
timescale of an optical cycle2, so that:

∂2pNL
∂t2

, ω0
∂pNL
∂t

<< ω2
0pNL (1.68)

Equation 1.67 then becomes:

∂2PNL
∂t2

∼= −ω2
0pNLexp [i (ω0t− kpz)] (1.69)

By plugging 1.69 into Eq. 1.65 and solving it in the same way it was reported
in the previous section, we obtain2:

− 2ik0
∂A

∂z
− 2

ik0

vg0

∂A

∂t
− k0k

′′
0

∂2A

∂t2
= −µ0ω

2
0pNLexp [−i∆kz] (1.70)

where ∆k = kp− k0 is the so-called "wave-vector mismatch" between the
nonlinear polarization and the field. Eq. 1.70, recalling that ω0/k0 = c0/n (ω0),
can be rewritten as:

∂A

∂z
+

1

vg0

∂A

∂t
− i

2
k′′0
∂2A

∂t2
= −iµ0ω0c0

2n0
pNLexp [−i∆kz] (1.71)

In this work we will focus on the second order non-linear optics, the most
significant process involved in the Optical Parametric Oscillator behavior.

1.2.1 Nonlinear susceptibility

When light propagates through a material the electrons and atoms within it
react to the electromagnetic fields of the wave, producing a change in the
spatial and temporal distribution of electrical charges. The field causes small
displacements of the valance electrons from their normal orbits, perturbations
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which create electric dipoles that are manifested as the electric polarization
of the medium. For small field strengths (such as an unfocused, low energy
laser beam) this electric polarization P (ω) is proportional to the electric
field strength E (ω), expressed as:

P (ω) = ε0χ
(1)E (ω) (1.72)

For intense electric fields a nonlinear polarization of the medium takes place,
described as a power series expansion of Equation 1.72 and often written as:

P (ω) = ε0

[
χ(1)E (ω) + χ(2)E2 (ω) + χ(3)E3 (ω) + ...

]
(1.73)

where χ(2) and χ(3) are the second-order and third-order nonlinear suscepti-
bilities respectively.

Optical field interactions involving the χ(2) non-linearity are phase-only,
with no photon energy being absorbed into the medium. This makes χ(2)

nonlinear processes appealing as they require no cooling and can be highly ef-
ficient. While all transparent materials display first- and third-order nonlinear
susceptibility, second-order effects are only observed in non-centrosymmetric
crystals2. Such nonlinear crystals can be used in power-scalable processes
that are limited only by the material properties of the crystal, such as the
damage threshold, hygroscopicity and photo-refraction.

The second-order nonlinear susceptibility can be exploited to produce
a number of nonlinear interactions. A formal derivation of these processes
will be given in the next section; however a more general outline will be
given first here. The most common application of the χ(2) non-linearity is to
facilitate frequency mixing between two electromagnetic waves to produce
an interfering field E, given by:

E (t) =
1

2

[
A1e

i(ω1t−k1z) +A2e
i(ω2t−k2z) + c.c.

]
(1.74)

By plugging Eq. 1.74 in PNL = ε0χ
(2)E2 (t), we obtain:
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PNL =
ε0χ

(2)

4

(
A2

1e
i(2ω1t−k1z) +A2

2e
i(2ω2t−k2z) + c.c.

)
+
ε0χ

(2)

4

(
2A1A2e

i[(ω1+ω2)t−(k1+k2)z] + c.c.
)

+
ε0χ

(2)

4

(
2A∗1A2e

i[(ω2−ω1)t−(k2−k1)z] + c.c.
)

+
ε0χ

(2)

4
(2A1A

∗
1 + 2A2A

∗
2)

(1.75)

Exiting the non-linear medium there are the following fields:

• the incident fields at ω1 and ω2

• the second-harmonic generation of the two fields: 2ω1 and 2ω2 (SHG)

• the sum-frequency generation: ω1 + ω2 (SFG)

• the difference-frequency generation: ω2 − ω1 (DFG or OPA)

• the DC polarization component known as electro-optic rectification
(EOR), a process exploited in the field of terahertz generation

Which of these phenomena will be efficient is selected by thePhase-Matching
Condition:

∆k = kp − k0

1.2.2 Second Order Non-Linear Optics

Three-Wave Mixing

Let’s consider the superposition of three fields, at frequencies ω1, ω2 and ω3:

E (z, t) =
1

2
A1 (z, t) exp [i (ω1t− k1z)]

+
1

2
A2 (z, t) exp [i (ω2t− k2z)]

+
1

2
A3 (z, t) exp [i (ω3t− k3z)] +

1

2
c.c.

(1.76)
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satisfying the condition:

ω1 + ω2 = ω3 (1.77)

impinging on a medium with a second order nonlinear response:

PNL (z, t) = ε0χ
(2)E2 (z, t) (1.78)

Such a situation is known as "nonlinear second-order parametric in-
teraction" and corresponds to an exchange of energy between the three
fields by means of the second order non-linearity. The nonlinear polarization
will contain three components at frequencies ω1, ω2 and ω3. Given by2:

P 1
NL (z, t) =

ε0χ
(2)

2
A∗2A3exp {i [(ω3 − ω2) t− (k3 − k2) z]}+ c.c.

P 2
NL (z, t) =

ε0χ
(2)

2
A∗1A3exp {i [(ω3 − ω1) t− (k3 − k1) z]}+ c.c.

P 3
NL (z, t) =

ε0χ
(2)

2
A1A2exp {i [(ω1 + ω2) t− (k1 + k2) z]}+ c.c.

(1.79)

Obviously there are other terms on PNL at different frequencies, such as for
example 2ω1, 2ω2. . . Here we consider only the terms at ω1, ω2 and ω3 by
assuming that only the interaction between these three fields is efficient, due
to the phase-matching condition. It is possible then to derive from Eq. 1.71
the following three equations2 for the fields at ω1, ω2 and ω3:

∂A1

∂z
+

1

vg1

∂A1

∂t
− i

2
k′′1
∂2A1

∂t2
= −iµ0ε0c0ω1

2n1
deffA

∗
2A3exp [−i (k3 − k2 − k1) z]

(1.80)

∂A2

∂z
+

1

vg2

∂A2

∂t
− i

2
k′′2
∂2A2

∂t2
= −iµ0ε0c0ω2

2n2
deffA

∗
1A3exp [−i (k3 − k2 − k1) z]

(1.81)
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∂A3

∂z
+

1

vg3

∂A3

∂t
− i

2
k′′3
∂2A3

∂t2
= −iµ0ε0c0ω3

2n3
deffA1A2exp [−i (k1 + k2 − k3) z]

(1.82)
In the following the "wave-vector mismatch" will be defined as: ∆k =

k3−k1−k2, and the nonlinear interaction coefficient as deff = χ(2)

2 . The three
equations are coupled nonlinear partial differential equations, and in general
not amenable to an analytic solution and must be treated numerically. A
first simplification, that captures the main physics of parametric interaction,
consists in neglecting the GVD terms, i.e. putting k′′i = 0. This is justified by
considering that the three interacting pulses are propagating at very different
group velocities vgi 2. The effects of this group velocity difference are much
more relevant than those of group velocity dispersion between the different
frequency components of a single pulse. The coupled equations then become:

∂A1

∂z
+

1

vg1

∂A1

∂t
= −iκ1A

∗
2A3exp [−i∆kz] (1.83)

∂A2

∂z
+

1

vg2

∂A2

∂t
= −iκ2A

∗
1A3exp [−i∆kz] (1.84)

∂A3

∂z
+

1

vg3

∂A3

∂t
= −iκ3A1A2exp [i∆kz] (1.85)

with the nonlinear coupling constants defined as: κi =
ωideff
2c0ni

. They can
be simplified by moving to a frame of reference translating with the group
velocity of the pump pulse: t′ = t− z

vg3
. The equations then become:

∂A1

∂z
+ δ13

∂A1

∂t
= −iκ1A

∗
2A3exp [−i∆kz] (1.86)

∂A2

∂z
+ δ23

∂A2

∂t
= −iκ2A

∗
1A3exp [−i∆kz] (1.87)

∂A3

∂z
= −iκ3A1A2exp [i∆kz] (1.88)
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where δi3 = 1
vgi
− 1

vg3
i=1,2 is the Group Velocity Mismatch (GVM)2

between ω2/ω1 and ω3. These are nonlinear coupled PDEs that can be solved
numerically. To get some physical insight, let’s start by making the following
approximations2:

1. Quasi-monochromatic waves, i.e. ∂
∂t = 0

2. Low emptying of the beam at ω3, i.e. the conversion efficiencies are so
low that A3

∼= A30 = const.

The coupled equations in this case become:

∂A1

∂z
= −iκ1A30A

∗
2exp [−i∆kz] (1.89)

∂A2

∂z
= −iκ2A30A

∗
1exp [−i∆kz] (1.90)

In the OPA section these coupled equations are solved analytically for both
cases of mismatch (∆k 6= 0) and perfect phase-matching (∆k = 0).

1.2.3 Phase-Matching

Satisfying the condition ∆k = kp − k0 = 0 is known as phase-matching.
The traditional method to achieve phase-matching is through the use of the
birefringence of a nonlinear crystal such as lithium niobate (LiNbO3), and is
commonly referred to as birefringent phase-matching.

Birefringent Phase-matching

For interactions among three waves there are two possible birefringent phase-
matching conditions. In Type I phase-matching the two longer wavelengths
have the same polarization3, perpendicular to that of the shorter generated
wavelength, such as:

oo→ e

ee→ o
(1.91)
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This phase-matching is common in second harmonic generation. Using ∆k =

k3−k2−k1 and ki = 2πn(λi)
λi

it can be seen that the phasematching condition
for Type I SHG is given by2:

∆k = 2π

[
n
o(e)
2ω

λ2ω
− n

e(o)
ω

λω
− n

e(o)
ω

λω

]
= 0 (1.92)

This is only possible in materials where no(e)2ω = 2n
e(o)
ω , a condition that can

be met in many crystals but is highly limited by the exact dispersion relation
of the material, as shown in Figure 1.3. Fortunately some degree of tunability
in the phase-matching condition can be achieved by adjusting the angle of
the crystal relative to the propagation direction. Light polarized in the plane
containing the optic axis and the direction of propagation will experience an
angle-dependent refractive index that varies between ne and no. The correct
angle necessary for satisfying Equation 1.92 can be found by adjusting the
crystal angle from normal incidence or by cutting the crystal so that the new
normal interface becomes the phase-matching angle.

Angle tuning introduces walk-off2 in the Poynting vector of the generated
wave which propagates at an angle to the optic axis. Walk-off reduces the
spatial overlap between the interacting waves, lowering efficiency. Another
downside to angle tuning is that ∆k varies rapidly with angle, constraining
the acceptance angle for phase-matching. An alternative to angle tuning is to
utilize the temperature dependence of the refractive indices. In many optical
crystals the rate of change of refractive index temperature is different for the
ordinary and extraordinary indices, allowing for tuning of the birefringence,
however the temperatures required to meet the desired phase-matching
conditions may be inconvenient.

In Type II phase-matching3 the two longer wavelength waves have per-
pendicular polarizations, with the shorter generated wavelength having either
polarization, the orientation of which depends on the nonlinear crystal prop-
erties.
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Figure 1.3: Type I birefringent phase-matching solutions for SHG in lithium
niobate at 25◦C. The horizontal lines indicate those interactions which
simultaneously satisfy the phase-matching and energy conservation conditions
of Equation 1.92. Solutions are obtained for SHG of 0.54µm from 1.08µm
and 1.87µm from 3.74µm.

Notation is given by:

oe→ e

oe→ o
(1.93)

Satisfying ∆k = 0 for Type II phase-matching follows the same method-
ology as for Type I phase-matching, but will not be discussed further here.

Quasi Phase-Matching

An alternative approach to achieving efficient frequency generation in a
second-order nonlinear interaction is the case where ∆k 6= 0, known as quasi
phase-matching4. This process takes advantage of the fact that all χ(2)

materials are dispersive. Again considering the case of three interacting elec-
tromagnetic waves, the relative phase between them after some propagation
distance will accumulate to π, given as:
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∆φ = φ3 − φ2 − φ1 = π (1.94)

The conversion efficiency builds to a maximum over this propagation distance
which is known as the coherence length, given by2:

Lc =
π

∆k
(1.95)

After the waves propagate beyond the coherence length the converted intensity
decreases as the phase-matching condition has changed. In fact the condition
is such that energy is converted from the generated frequencies back into
the fundamental frequency, a process known as back conversion. To prevent
back conversion and increase the efficiency of the forward conversion, a phase
step of π is added to the interacting fields, returning to the phase-matching
condition. Physically this phase step is added by periodically flipping the
polarity of the nonlinear coefficient tensor χ(2)

ijk by the quasi phase-matching
or grating period Λg, given by2:

Λg =
2π

∆k
(1.96)

The quasi phase-matching condition is therefore given by:

∆kqpm = k3 − k2 − k1 −
2π

Λg
= 0 (1.97)

Satisfying this condition can be achieved by varying the length of the grating
period, under the condition that:

Λg =

[
n (λ3)

λ3
− n (λ2)

λ2
− n (λ1)

λ1

]−1

(1.98)

Periodic inversion of the nonlinear polarity of a material is achieved through
the periodic poling technique. Ferro-electric crystals such as KTiOPO4 are
exposed to an intense electric field which alters the position of the ions inside
the unit cell4. Manufacturers can extend this technique across a crystal by
using a patterned electrode to create alternating poled domains with few-
micron-scale grating periods over a crystal length of several centimeters. The
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QPM process allows for efficient frequency conversion in nonlinear materials
where phase-matching is not possible. The relative efficiencies for SHG are
shown in Figure 1.4 as an example2.

Figure 1.4: Quasi phase-matching allows efficient frequency conversion in
non-phase-matched crystals by introducing a π phase shift whenever the
phase mismatch accrues to π.

1.3 Optical Parametric Amplifier (OPA)

The Optical Parametric Amplifier (OPA) is a nonlinear device that exploits
the amplification of a beam called Signal through the use of a second order
nonlinear crystal (χ(2)). Typically there are two beam entering the nonlinear
crystal (the Pump beam at ωp and the Signal at ωs) and there are three
beams exiting the crystal:

• The depleted Pump beam at ωp

• The amplified Signal beam at ωs

• The generated Idler beam at ωi = ωp − ωs (DFG)
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Figure 1.5: OPA schematic of the process. The dimension of the arrows is
proportional to the intensities of the beams.

In Figure 1.5 it’s reported a simple scheme of the process.
Remembering Equations 1.89 and 1.90, replacing ω3 with ωp, ω2 with ωs

and ω1 with ωi, we can start solving the coupled equations for an OPA in
the phase-matched and in the mismatched cases (where ωp > ωs > ωi).

Perfect Phase-Matching: ∆k = 0

In perfect phase-matching conditions Equations 1.89 and 1.90 become:

dA1

dz
= −iκ1A30A

∗
2 (1.99)

Figure 1.6: Corpuscular representation of the OPA process. The excited level
is in dashed lines because is a virtual excited level.
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dA2

dz
= −iκ2A30A

∗
1 (1.100)

By taking the derivative of 1.100 with respect to z:

d2A2

dz2
= −iκ2A30

dA∗1
dz

= κ1κ2 |A30|2A2 (1.101)

By defining: Γ2 = κ1κ2 |A30|2 =
ω1ω2d2eff
4c20n1n2

|A30|2 =
ω1ω2d2eff

2εoc30n1n2n3
I30, we obtain:

d2A2

dz2
− Γ2A2 = 0 (1.102)

The solutions of this equation are:

A2 (z) = C1exp (Γz) + C2exp (−Γz) (1.103)

By using the boundary conditions:

A2 (0) = A20 (1.104)

A1 (0) = 0 (1.105)

which correspond to injecting in the nonlinear crystal a seed at the Signal
frequency but not at the Idler frequency, we obtain:

A2 (z) = A20

(
eΓz + e−Γz

2

)
= A20cosh (Γz) (1.106)

Which, for large values of Γz, becomes:

A2 (z) ∼=
A20

2
eΓz (1.107)

At the output of a crystal with length L, the amplified Signal intensity
becomes:

I2 (L) =
I20

4
e2ΓL (1.108)

The parametric gain is therefore defined as:
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G =
I2 (L)

I20
=

1

4
e2ΓL (1.109)

The Idler beam amplitude can be easily obtained by integrating 1.99 as2:

A1 (z) = −iκ1A30A
∗
20

sinh (Γz)

Γ
(1.110)

and its intensity, in the large gain limit, becomes:

A1 (z) = −iκ1A30A
∗
20

exp (Γz)

2Γ
(1.111)

The idler intensity is then written as:

I1 (L) =
κ1

κ2

n1

n2
I2 (L) =

ω1

ω2
I2 (L) (1.112)

Mis-Matching: ∆k 6= 0

In the case of non-vanishing phase mismatch ∆k, by taking the derivative of
Eq. 1.90 with respect to z we obtain:

d2A2

dz2
= −iκ2A30

(
dA∗1
dz
− i∆kA∗1

)
exp (−i∆kz) (1.113)

which, with the help of 1.89 and its complex conjugate, can be rewritten as:

d2A2

dz2
+ i∆k

dA2

dz
− Γ2A2 = 0 (1.114)

Eq. 1.114 is a second-order linear differential equation, which has solution of
the kind:

A2 (z) = eγz (1.115)

where γ are the solutions of the corresponding characteristic equation:

γ2 + i∆kγ − Γ2 = 0 (1.116)

with the following solutions:
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γ1/2 = −i∆k
2
±

√
Γ2 −

(
∆k

2

)2

= −i∆k
2
± g (1.117)

with g =

√
Γ2 −

(
∆k
2

)2. A generic solution can be written as:

A2 (z) = exp

(
−i∆kz

2

)
[C1exp (gz) + C2exp (−gz)] (1.118)

which, with the boundary conditions A2 (0) = A20, A1 (0) = 0, become2:

A2 (z) = A20exp

(
−i∆kz

2

)[
cosh (gz) +

i∆k

2g
sinh (−gz)

]
(1.119)

The Signal intensity can now be written as:

I2 (z) = I20

[
cosh2 (gz) +

∆k2

4g2
sinh2 (gz)

]
(1.120)

which, after some manipulation2, becomes:

I2 (z) = I20

[
1 +

Γ2

g2
sinh2 (gz)

]
(1.121)

so that the parametric gain can be written as:

G (∆k, L) =
I2 (L)

I20
= 1 +

Γ2

g2
sinh2 (gL) (1.122)

or, in the large gain case gL >> 1:

G (∆k, L) ∼=
Γ2

4g2
e2gL (1.123)

We now calculate the wave-vector mismatch that reduces the parametric
gain to half:
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G (∆k) =
G (0)

2
=

1

2

1

4
exp (2ΓL)

Γ2

4g2
exp (2gz) =

1

2

1

4
exp (2ΓL)

(1.124)

By neglecting the pre-exponential factor in the gain variation2, we get:

2gL ∼= 2ΓL− ln2 (1.125)

To the first order, g can be expanded as: g ∼= Γ− ∆k2

8Γ , resulting in:

∆k = 2 (ln2)
1
2

(
Γ

L

) 1
2

(1.126)

In order to calculate the phase-matching bandwidth for the OPA process,
let us now link the wave-vector mismatch to the frequency variation. Let us
assume that the phase-matching condition is rigorously satisfied for a set of
frequencies ω̄1, ω̄2, ω̄3, with ω̄1 + ω̄2 = ω̄3, so that:

k (ω̄1) + k (ω̄2) = k (ω̄3) (1.127)

We now keep ω3 fixed and vary the Signal frequency: ω2 = ω̄2 + ∆ω. The
Idler frequency will consequently vary as: ω1 = ω̄1 −∆ω. The wave-vector
mismatch will be:

∆k =k (ω̄3)−
(
k (ω̄2) +

∂k

∂ω
|ω̄2∆ω +

1

2

∂2k

∂ω2
|ω̄2∆ω2 + ...

)
−(

k (ω̄1) +
∂k

∂ω
|ω̄1 (−∆ω) +

1

2

∂2k

∂ω2
|ω̄1 (−∆ω)2 + ...

) (1.128)

In 1.128 we have stopped the wave-vector expansion to the second order.
Taking into account 1.127, Eq. 1.128 can be rewritten as:

∆k ∼= −
(

1

vg2
− 1

vg1

)
∆ω − 1

2

(
k′′1 + k′′2

)
∆ω2 (1.129)
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This shows that, to the first order, the wave-vector mismatch is proportional
to the GVM between Signal and Idler pulses: δ12 = 1

vg1
− 1

vg2
, ∆k ∼= δ12∆ω.

The FWHM gain bandwidth, using 1.126, can then be written as:

∆νFWHM =
2 (ln (2))

1
2

π

(
Γ

L

) 1
2 1

|δ12|
(1.130)

Eq. 1.130 shows that, in order to achieve a broad phase matching bandwidth,
the group velocities of Signal and Idler frequencies should be matched (group-
velocity matched OPA). In the case of δ12 = 0, the wave-vector mismatch
must be expanded to the second order in ∆ω, giving:

∆νFWHM =

√
2 (ln (2))

1
4

π

(
Γ

L

) 1
4 1

|k′′1 + k′′2 |
1
2

(1.131)

and is thus inversely proportional to the sum of the GVDs of Signal and
Idler pulses. In both cases the gain bandwidth increases with increasing non-
linearity Γ and decreases for increasing crystal length L, but the dependence
is quite weak.

In order to achieve broadband phase matching, it is therefore necessary
to have δ12 = 0, i.e. to achieve group velocity matching between Signal
and Idler pulses.

1.4 Optical Parametric Oscillator (OPO)

1.4.1 Introduction

The results reported in the previous section indicate that amplification via the
χ(2) non-linearity is possible. Here is achieved through the implementation
of a resonant cavity known as an optical parametric oscillator (OPO) that
enhances the parametric optical amplification, illustrated in Figure 1.7. The
three frequencies of the three interacting waves ω3 > ω2 ≥ ω1 are denoted as
the Pump ωp, Signal ωs and Idler ωi respectively. When the cavity mirrors
are coated such that they are highly reflective at the Signal or Idler frequency
then the cavity is said to be singly-resonant1. If the high reflectivity regions
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extend to both the Signal and Idler waves then the cavity is said to be doubly-
resonant. For the special case where the resonant Signal and Idler frequencies
overlap at half the Pump frequency, the OPO is said to be degenerate5.

Figure 1.7: A simple illustration of a singly-resonant optical parametric
oscillator. The Pump wave is coupled into the nonlinear medium through
a dichroic cavity mirror. The Pump wave is converted into a non-resonant
Idler wave and a resonant Signal wave. The Signal wave can be coupled out
of the resonator with a standard partially-reflective cavity mirror.

As with the case of OPA, both the Signal and Idler waves increase in
intensity as they propagate through the nonlinear crystal. All the equations
of the OPA describe the OPO in terms of a single "round-trip" in the cavity
(one pass through the crystal). The OPO is an optical cavity and, after many
round-trips (many passes through the crystal), the Signal that we encounter
has a narrower band-width and a different intensity (is a balance between
the gain of the crystal and the losses in the cavity) from the one given by
the OPA’s solutions6. The main difference between OPAs and OPOs is that
the last one is not seeded, there isn’t an external Signal to be amplified; in
fact during the first round-trip of the cavity the Signal is generated by the
process of OPG (Optical Parametric Generation), then each round-trip can
be describe by the process of OPA.

Optical parametric oscillators are widely used as highly tunable sources,
limited by the phase-matching conditions of the nonlinear crystal and the
reflective coating of the resonator mirrors. OPOs can be operated both intra-
and extra-cavity, in CW-mode or in a pulsed regime, with pulse durations
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ranging from nanoseconds to femtoseconds1; all depending on the phase-
matching conditions and cavity geometry.

An extra requirement must be satisfied for pulsed operation. The OPO
must be synchronously pumped7, so that the cavity length of the OPO
matches the repetition rate of the Pump laser. This requirement arises due
to the lack of absorption and gain storage in an OPO; the nonlinear gain
process is instantaneous and so the generated electric fields only build up
if a generated pulse coherently overlaps after one round-trip with the next
incident Pump pulse inside the crystal.

1.4.2 A Brief Historical Review

The field of nonlinear optics has developed rapidly since the demonstration
of second harmonic generation in 1961: this experimental demonstration of
nonlinear interaction between intense optical fields and medium has started
the expanding field of nonlinear optics. The progress in this field since 1961
has been described in many reviews and articles8.

In 1965 Wang and Racette8 observed significant parametric gain and
in the same year was demonstrated the first Optical Parametric Oscillator
(OPO) using LiNbO3. The success of the first OPO pushed towards finding
new nonlinear materials; in fact in 1966 was demonstrated the oscillation
for an OPO using a KDP (KH2PO4) crystal8. The following OPOs were
mostly pumped by high peak power pulsed lasers utilizing as nonlinear crystal
LiNbO3 or KDP. The tuning range of these devices increased rapidly from
IR region to the visible region.

Nowadays such optical parametric devices have become sufficiently reliable
for routine and trouble-free operation1. Some 15 years ago Ti:sapphire and
dye lasers were joined by these nonlinear optical devices because of their
tuning range that is now extended in the ultraviolet, visible, near-infrared
and mid-infrared, and for the solid state character and high efficiency1. The
wide tuning range of OPOs has opened up prospects for laser spectroscopy
in otherwise inaccessible spectral regions.

With the coming of the Quasi Phase-Matching (QPM) Technique the ex-
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ploiting of big nonlinear optical gain enhancement, relative to its Birifrangent
Phase-Matching (BPM) counterpart, has revolutionized the design of optical
parametric wavelength-conversion devices (such as OPG, OPA, OPO and
DFG). The discovery of QPM materials such as PPLN (periodically poled
lithium niobate) have been widely reported recently, making these materials
the most versatile nonlinear crystal present at the moment. This versatility is
due to the poling process, which produces a periodic modulation, or grating,
that can be chosen to provide phase-matching of any frequency conversion
process such that the crystal properties can be precisely tailored to the
requirements of the user9.

In contrast to BPM, QPM allows a combination of propagation direction
and polarizations to be selected that exploit the largest nonlinear coefficient
of the crystal. A further useful consequence of this arrangement is that all
waves propagate collinearly along a crystal axis, thus avoiding the drawbacks
of Poynting vector walk-off and the difficulties inherent in attempting to
compensate for it, such as the use of noncollinear phase-matching.

Summarizing all these differences between OPOs and Lasers10,1:

• Whereas many lasers can be operated with spatially incoherent pump
sources, a parametric oscillator requires relatively high spatial coherence
of its pump. In most cases, a diode-pumped solid-state laser is used.

• No heat is deposited in the nonlinear crystal, unless there is some
parasitic absorption at the pump, signal or idler wavelength. As OPOs
are mostly operated with all wavelengths involved lying well within the
transparency region, there is normally not much heating. Only at fairly
high power levels may a disturbance of the phase-matching conditions
occur. Thermal lensing is usually not significant.

• Whereas the emission wavelength of most lasers can be tuned only
in a narrow range, many parametric oscillators offer the potential for
wavelength tuning with extremely wide tuning ranges. These may span
regions in the visible, near or mid-infrared part of the electromagnetic
spectrum.
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• The parametric amplification process requires phase matching to be
efficient. The phase-matching details also determine the oscillation
wavelength. Wavelength tuning is in most cases achieved by influencing
the phase-matching conditions, e.g. by changing the crystal temperature,
the angular orientation of the crystal (for critical phase matching),
or the poling period (for quasi-phase matching in periodically poled
crystals). Within the phase-matching bandwidth, tuning is also possible
with an intracavity optical filter. The tuning range can be limited either
by restrictions of phase matching, or by the transparency region of the
nonlinear material or by the spectral region with high reflectivity of
the resonator mirrors.

• The parametric amplification occurs only in the direction of the pump
beam (as another consequence of phase matching), which means that a
unidirectional operation in a ring resonator is automatically obtained.

• No energy is stored in the nonlinear crystal. Therefore, the gain is
present only as long as the pump wave is there, and pump fluctuations
directly affect the signal power. The dynamics are therefore different
to laser dynamics.

• Other than the fluorescence of a laser gain medium, parametric fluores-
cence occurs only in the direction of the pump beam. More precisely,
it is observed in those modes which experience parametric gain.

• An idler wave is generated, which carries away the difference between
the generated signal power and the absorbed pump power. (Only in
the rarely used case of degenerate parametric oscillation, is there no
idler wave.) More precisely, the photon energy of the idler wave is the
difference in the photon energies of the pump and signal. The idler
wave plays an essential role in the nonlinear conversion process; when
an OPO is operated in a spectral region with strong idler absorption
in the crystal, the threshold pump power can be much higher, and the
efficiency lower.

• Phase coherence between Signal, Idler and Pump is essential.
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Now let’s analyze OPOs marking the different operating regimes in
four classes, each one referred to a single-pass optical parametric gain pro-
cess. This classification was reported in Solid-State Mid-Infrared Sources of
Ebrahimzadeh, M., Berlin, 2003.

Class A Class B Class C Class D
continuous-
wave ns-pulsed modelocked modelocked

and amplified

Pump pulse
energy 10 mJ 15 nJ 10 µJ

Pump pulse
duration 10 ns 100 fs 200 fs

Peak pump
intensity Ip

0,4 MWcm−2 30 MWcm−2 20 GWcm−2 7 TWcm−2

Crystal
length L 10 mm 10 mm 1 mm 1 mm

ΓL (≡gL if
∆k=0) 0,09 0,77 1,99 37

GI(L) 0,008 0,72 13 3,4 x 1031

Optical
parametric
devices

OPO OPO OPO OPO, OPG,
OPA

Table 1.1: Typical Operating Regimes for Different Classes (A-D) of Single-
Pass Optical Parametric Gain Process1

The table is based on typical experimental values for pump laser and NLO
material parameters in each operating regime. The parametric gain factor ΓL
and single-pass power GI(L) are calculated on the basis of near-degenerate
operation with λS ≈ λI ≈ 2µm. Typical NLO material parameters are
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assumed, and the four operating regimes are distinguished by choice of pump
power, focal geometry, crystal length L, and (for cases B-D) pump pulse
duration. The resulting values of GI(L) range over 33 orders of magnitude,
from low power CW operation (A) to high-energy ultrafast pulsed operation
(D). Usually, the signal and idler output power from an optical parametric
device must build up from spontaneous parametric emission, so that only
the high-energy ultrafast pulsed case (D) has sufficiently high single-pass
power gain GI(L) to enable practical operation as an OPG or an OPA, as in
Table 1.1 respectively. In such a situation, the parametric gain in the other
three operating regimes (CW, Q-switched, and modelocked; cases A, B, and
C, respectively) is typically too small to build up to a significant output
power from spontaneous parametric emission. It is then necessary to adopt
the OPO strategy, with the NLO medium enclosed in an optical cavity to
provide resonant optical feedback at the signal/idler wavelengths.

35



Chapter 2

Design of a Synchronously
Pumped Ultrafast OPO

Figure 2.1: OPO cavity photo during operation. The green light in the cavity
is the second harmonic of the Signal at 1100 nm.
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2.1 Introduction

In this chapter the experimental part that truly covered this thesis is going to
be described. The purpose of this thesis was the construction of a light source
for a TRPL (Time Resolved Photo-Luminescence) lab in the Center for
Nanoscience and Technology (CNST) at the Italian Institute of Technology
(IIT). In this lab there was already a light source, a Ti:sapphire Chameleon II
Ultra made by Coherent that emits 150fs pulses with 80MHz of repetition-
rate at 780nm (the repetition-rate can vary from ±700KHz changing the
wavelength) tunable from 680nm to 1080nm. Using the second harmonic
of the fundamental is possible to cover the range from 340nm to 540nm,
leaving to discover the range from 540nm to 700nm.

The idea was to build up a source with the following specifics:

1. An output tunable from 540nm to 700nm

2. Generating pulses of 2ps duration, to the maximum, at 80Mhz of
Repetition Rate

3. Easy to use

4. Not expensive

5. Enough stable (in terms of spectrum and power) to make TRPL
measurements

For these reasons an OPO was chosen; in fact Optical Parametric Oscillators
are versatile, easily tunable, stable and coherent sources.

It was chosen to pump the OPO with 780nm (where the RR = 80MHz)
and to generate an output between 1000nm and 1400nm, doubling this
output it was possible to obtain the desired range. Because the Pump is
an ultra-fast source the OPO must be synchronous with the repetition-rate
of the Pump laser in order to achieve oscillation inside the cavity: it is an
OPO of Class C, as we can see in the Table 1.1. Getting about the temporal
requirements of the output pulses coming from the OPO, is important to know
the temporal limitations in terms of resolution introduced by the acquisition
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system during a measurement. In this lab the acquisition system has 2ps

of estimated temporal resolution and works at a repetition-rate of 80 MHz.
So the output pulses coming from the OPO would have to be at maximum
of 2ps duration and at 80MHz. Without strict temporal requests it was
decided to build up an OPO with no temporal compression inside/outside
the cavity and with a long non-linear crystal.

In the next chapter the OPO design choices made in order to obtain the
requirements mentioned before will be described.

It’s important to mention that this OPO was built in collaboration with
a Scottish Phd Student expert in OPOs, Richard McCracken, that hosted
me in his university (Heriot-Watt University) in order to gain experience in
the design and in the implementation of OPOs.

2.2 OPO’s Typical Layout

Making a simple scheme of an OPO, this is what we obtain, as the Figure
below shows.

Figure 2.2: OPO scheme.

Entering the OPO cavity there’s only the Pump beam, obtaining as
output three beams: the Signal, the residual Pump and the Idler. In order to
obtain the desired output there must be chosen the right properties of the
cavity: type of crystal, Pump wavelength and cavity design.

Summarizing all the decisions to be taken in order to build the specific
OPO for the desired application, these are the fundamental constituent parts
of the general layout of an OPO:

• Input and Conditioning : choice of the Pump wavelength and of the
optical elements before entering the cavity, in order to obtain the right
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Pump beam properties to exploit the non-linear phenomenon (right
focusing of the Pump on the crystal, isolators, half-wave plates, etc...).

• Cavity : choice of the cavity design (ring cavity or linear cavity) and of
the opto-mechanical parts present in the cavity (mirror mounts and
crystal mount, mirrors’ curvature), choice of the range of reflectance of
the cavity mirrors (singly resonant cavity or doubly resonant cavity),
choice of the type of phase-matching and of the crystal type.

• Output : choice of the Signal wavelength (the output of the cavity) and
of the Output Coupler (OC).

After having fixed the Pump wavelength and the central Signal wavelength,
the choice of the cavity parameters and of the crystal are strictly correlated.
In fact the type of PM (phase-matching) will influence the bandwidth of
the Signal (Output) and also the choice of the range of reflectance of the
cavity mirrors, in order to make the Signal resonant in the cavity. Another
important parameter is the OC: the higher are OC losses, the higher will be
the threshold power of the cavity and the output power.

The importance of the input stage before entering the cavity is crucial:
if the Pump beam is not rightly focused in the crystal there will be a low
conversion efficiency in the non-linear phenomenon and so the threshold
power of the cavity will be increased. If the Pump beam polarization is
not parallel to the right axis of the crystal the Signal won’t experience a
sufficiently high gain in order to overcome the cavity losses.

In Figure 2.3 it is shown a typical layout of an OPO linear cavity, which
contains two plano-concave mirrors for focusing the Signal on the crystal,
one plane end mirror, one OC and the crystal. The OC and one of the two
plano-concave mirrors are positioned on a translator stage in order to control
the stability parameters of the cavity itself. The translation stage on the OC
serves to control the cavity length for matching the RR (repetition rate) of
the Pump, in the case of a synchronously pumped OPO. The translation
stage on the plano-concave mirror serves to control the Signal divergence
after the crystal: the distance between this mirror and the crystal is crucial
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Figure 2.3: OPO general layout. In red is represented the Pump beam and
in brown the Signal beam.

for the cavity stability.
In the next section the choices made about the three constituent parts

of a general OPO layout will be described, in order to built one with the
specifics mentioned in the Introduction section of this chapter.

2.3 Design

The design of an ultrafast OPO has three main stages. First the wavelength
outputs must be chosen for the purpose of the experiment. The potential
wavelength outputs will be constrained by the Pump wavelength, by the
phase-matching properties of the nonlinear crystal and by the wavelength
limitations introduced by the acquisition system parameters. The choice
of the crystal material will depend on the desired center wavelength and
bandwidth(s) of the resonant pulse(s), as well as the type of phase-matching
employed. The thickness of the crystal will impact the gain of the Signal/Idler
pulses and will also affect the intra-cavity dispersion of the OPO. Finally
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the opto-mechanical design of the cavity will play an important role in the
stability and efficiency of the parametric process. Each of these stages must
be considered when designing and constructing an OPO.

Now all the different aspects of the OPO will be considered in detail.

2.3.1 Pump and Signal

For a given Pump wavelength there is a finite number of Signal and Idler
wavelengths that can be generated in a parametric process. The sum of the
Signal and Idler frequencies must always equal the Pump frequency, such
that:

ωp = ωs + ωi (2.1)

or

1

λp
=

1

λs
+

1

λi
(2.2)

This allows the possible Signal and Idler wavelengths to be determined
for a particular Pump wavelength. Taking into account this, let’s consider
the specifics that have been listed in the Introduction section of this chapter:

• The Pump is a Ti:sapphire laser generating 150fs pulses tunable
between 680nm and 1080nm, with maximum average power of 4W and
with a RR = 80MHz ± 700KHz changing the wavelength. At 780nm

the nominal repetition rate is 80MHz.

• The OPO output must be at 80MHz because at 780nm the Pump
source has the maximum output power, around 4W .

• The Signal must be continuously tunable from 1000nm to 1400nm

(Idler from 1761nm to 3545nm), with enough power to guarantee tens
of milliwatts of its second harmonic (500nm - 700nm). In fact the aim
of this OPO is to generate a visible output for TRPL measurements.

The choices that have been taken about Signal and Pump are the follow-
ing:

41



1. Fix the Pump at 780nm where the repetition rate is exactly 80MHz

and the output power is the highest that the source can give.

2. Obtain the tuning of the Signal output working on cavity parameters
and crystal parameters.

Now, having set the output and the input, is important to guarantee this
relationship between them. In the next subsection the choice of the non-linear
crystal and the consequent type of phase-matching will be discussed.

2.3.2 Crystal

Once a Signal wavelength range has been selected, the next step is to select
a non-linear crystal that will allow efficient Signal generation over that range.
The aim is to produce broadband visible outputs, the resonant Signals must
also be broadband. The phase-matching possibilities, as efficient Type I or
Type II birefringent phase-matching, will be limited by the bandwidth of the
pulses. A common solution is to use Type-0 quasi phase-matching11 (QPM)
in order to increase the phase-matching bandwidth without sacrificing gain.
The two common periodically-poled nonlinear crystals used for parametric
generation from a Ti:sapphire laser are lithium niobate (LiNbO3, PPLN) and
potassium titanyl phosphate (KTiOPO4, PPKTP). Table 2.1 lists relevant
material properties of both crystals12,13.

The transmission range of both crystals is sufficiently broad to allow
generation of both the resonant Signal wavelengths in the near-IR. The d33

coefficient of PPLN is almost double that of PPKTP; gain is proportional to
d33
n3 and PPLN provides more gain.

PPLN produces significantly more second-order dispersion in the near-IR
and visible than PPKTP, and also requires heating to work effectively as
PPLN easily suffers from the photo-refractive effect14,15. The photo-refractive
effect is caused by coherent beams of light illuminating a material to produce
an interference pattern of dark and light fringes. Electrons within the light
fringes are excited into the conduction band of the material, where they
flow towards the dark fringes. This leaves electron holes in the light fringes,
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creating an electric field that in turn causes a change in the refractive index
of the material in regions where the field is strongest. A refractive index
grating is formed that follows the pattern of the interference fringes, causing
the incident light to diffract. Ferroelectrics16 such as Lithium Niobate, is
known to suffer severely from photo-refractive damage, particularly at visible
wavelengths.

It was demonstrated experimentally that the Photo-refractive effects in
Lithium Niobate can be alleviated15 by heating the crystal9, doping with
MgO, making the crystal more stoichiometric and making a periodic poling
of the crystal (PPLN)15; PPKTP is much less susceptible to photo-refractive
effects because of its high ionic conductivity which screen any generated bulk
field, and so it can operate at room temperature17.

PPLN PPKTP
Transmission Range (µm) 0.33 - 5.50 0.35 - 4.50

d33 coefficient (pmV ) 25.0 13.7

GDD at 0.8 µm ( fs
2

mm) 478.8 (o) 383.1 (e) 151.6

GDD at 1.1 µm ( fs
2

mm) 74.5 (o) 58.5 (e) 22.1

Requires heating? Y N

Table 2.1: Material properties of PPLN and PPKTP.

The temporal duration of the pulses (about ps pulses) shall not limit the
length of the crystal, so it was decided to use a long non-linear crystal18 of 5
mm. This solution supports higher gain at the expense of bandwidth as Eq.
1.130 and Eq. 1.123 shows. A longer crystal will have an increased gain and
produce more intracavity Signal power, however the group delay walk-off
between the Pump, Signal and Idler will increase leading to less efficient
frequency mixing. The choice of making external doubling of the Signal is
also due to this fact: the frequency mixing inside the cavity are less efficient
with long crystals, so it was decided to have more Signal power inside the
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cavity and doubling it outside the cavity.
It was chosen the PPLN crystal for two reasons:

• Good confirmations of the use of PPLN crystals in near-IR OPOs are
reported in many reviews and articles9,18,19,20.

• Taking the relative number of grating domains and the relative d33

coefficients of each crystal into account, a rough calculation11 suggests
an 8:3 signal gain ratio in favor of PPLN.

In order to find the right grating periods Λg of the crystal that would
phase-match in the range desired for this thesis, a Matlab code was done for
the calculations. The equations involved in the calculations were:

1

Λg
=
np
λp
− ns
λs
− ni
λi

(2.3)

and Equation 2.2.
In these equations λp, λs, λi are respectively Pump, Signal and Idler

wavelengths; with the same subscript are written the refractive indices. With
these two equations it was possible to find the grating periods of the PPLN
that could phase-match the desired Signal range (1000nm - 1400nm) around
780nm Pump.

Figure 2.4: 5mm PPLN at 80◦C resulting gratings from the Matlab code.
On the x axis there are the Pump wavelengths and on the y axis the Signal
wavelengths. Each line in the figure is referred to a different grating whose
period is written beside.
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After the optimal grating periods for matching the output were found, a
search for PPLN crystals in stock with similar grating periods was carried
out. It was purchased the PPLN crystal from Covesion (Covesion, United
Kingdom), finding one just in stock with the following nine grating periods:
18.50-20.90 µm in 0.30 µm steps. The phase-matching curve is reported
below for a crystal temperature of 110◦C. As you can see with this solution
it is possible to phase-match all the output range, just by increasing the
temperature from the situation in Figure 2.4.

Figure 2.5: Phase-Matching curves for a multiple grating 5 mm long PPLN
crystal at 110 degrees.

Figure 2.5 shows that three gratings cannot phase-match with 780 nm
(18.5 µm, 18.8 µm, 19.1 µm). In order to use the 19.1 µm grating is necessary
a temperature tuning; in fact at 180◦C this is what happens, as Figure 2.6
reports.
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Figure 2.6: Phase-Matching curves for a multiple grating 5 mm long PPLN
crystal at 180 degrees.

The design of the PPLN crystal that was used is shown in Figure 2.7.
The crystal was grown as a multi-grating, allowing the Signal wavelength
to be tuned by moving the crystal in the vertical direction (Y axis), the
Signal beam is propagating in the X direction (5 mm). Another important
requirement of the crystal is the AntiReflection coating on both its facets at
780 nm and from 1000 nm to 1500 nm, in order to avoid losses caused by
reflection at the interfaces.

Figure 2.7: PPLN crystal design.
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2.3.3 Cavity

In this subsection the design calculations that have been made for the cavity
project will be described.

The OPO cavity can be divided in two main parts: the input stage and
the resonator. It’s important to start with the resonator design in order to
obtain the parameters that will serve us to design the right input stage for
the cavity.

Resonator

The OPO was designed as a linear "X" resonator (two curved mirrors of
radius R1 and two end mirrors), as the Figure below shows.

Figure 2.8: OPO cavity resonator in X linear configuration. In green is
represented the non-linear crystal.

Figure 2.8 reports the following resonator’s parameters:

• The distance L1 and L2 between the curved mirrors and the input/out-
put facet of the crystal

• The mirrors’ curvature R1

• The distance L3 between the curved mirrors and the end plane mirrors

The first step in designing a resonator for a synchronously pumped OPO is
to set the cavity length. In fact the OPO resonator length must be equal to
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the Pump Laser cavity length. Knowing the Pump repetition rate (80MHz)
it is possible to evaluate the right cavity length for the OPO:

Lcavity =
c

2RR
(2.4)

and we obtain: Lcavity = 1873.7mm. It’s important to remember that,
at the end of the oscillator stability calculations, L1 + L2 + L3 + L3 +

Lcrystaln (λSignal) = Lcavity.
The second step consists in choosing the radius of curvature of the two

curved mirrors, this choice will influence the resonant Signal spot dimension
inside the crystal. Because the crystal we’ve chosen is a long one, 5mm long,
it is important to have a Signal spot with a Rayleigh Range comparable
with the length of the crystal itself: in this way the Signal is generated in
the cavity for the whole length of the crystal. Excluding short focal lengths
that won’t guarantee enough long Rayleigh Ranges, a good compromise was
R1=100mm (assuming a Signal spot of 1mm before the curved mirror and
n (λSignal) = 2.2, zR = πw2n

λ = 2.1mm).
The third step is to calcuate with the help of a Matlab code the resonator

stability, finding the right lengths L1 and L2 that guarantee a stable cavity.
The theoretical foundations for the Matlab calculations consist in ABCD
matrix theory for stable resonators21 and Gaussian beams.

From the theory, a general resonator can be described with the matrix
formalism as Figure below shows.

Figure 2.9: ABCD matrix representation of a resonator.

In Figure 2.9 M1 =
(
A1 B1
C1 D1

)
is the matrix describing the propagation
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in the resonator from the left plane mirror to the right plane mirror. The
stability of the resonator can be described by its round-trip matrix (Mrt),
that is the resulting matrix from the product of matrix M1 with the matrix
describing the coming back from the right mirror to the left mirror. It can
be shown that the coming back matrix, describing the ray propagation in
the resonator from the right mirror to the left mirror, is equal to21:

M2 =

[
D1 B1

C1 A1

]
(2.5)

and so we can calculate the round-trip matrix as follows:

Mrt =

[
D1 B1

C1 A1

][
A1 B1

C1 D1

]
=

[
2A1D1− 1 2B1D1

2A1C1 2A1D1− 1

]
=

[
A B

C D

]
(2.6)

After having calculated this matrix, it is possible to apply the Stability
Criterion for a resonator. A resonator is stable if for its round-trip matrix
Mrt =

(
A B
C D

)
applies21:

− 1 <

(
A+D

2

)
< 1 (2.7)

Solving this inequality it’s possible to find the stability region in which the
resonator is stable. Generally the stability region is a function of a parameter,
usually the distance between the two curved mirrors of a resonator. The
utility of the stability graph is to find the right distances between the optical
elements in the resonator.

One single-trip in the resonator in Figure 2.8 can be represented by the
sequence of the optical elements in Figure 2.10: where in green is represented
the 5mm long PPLN crystal and the lenses represent the curved mirrors (in
fact f = R1

2 ). The distances shown in Figure 2.10 are set at the right lengths
given by the stability graph. In practice all the distances L1, L2 and L3 were
set to an initial value that would respect Lcavity = L1 + L2 + L3 + L3 +

Lcrystaln (λSignal) = 1873.7. Then these values were cycled in the stability
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Figure 2.10: Optical elements representation of the single-trip.

program using, as a parameter, the distance L2. From the stability graph it
was possible to evaluate the optimal distance L2’ (is the value in the middle
of the stability region), having fixed all the others. The value L2’ given by
the program was then set in this way: L2 must be approximately equal to L1
(is a symmetric resonator), so the new values of L2 (L2”) and of L1 (L1”) will
be L1′′ = L2′′ = L2 + L2′−L2

2 . Taking into account to change L3 in order to
obtain always the same RR. The program was cycled following these steps,
until L2” was equal to the optimal L2’ given by the program. In the Figure
below the stability graph for this resonator is shown.

Figure 2.11: Stability Graph of the OPO resonator.

The stability graph reports that the stability region extends from L2min∼=47.4mm
to L2max∼=53.4mm, with fixed L1=50.37mm. The optimal distance L2 is in
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the middle of this range: L2opt ∼= 50.37mm. With this values it is possible to
calculate the RR of the cavity, which appears to be:

Lcavity = L1 + L2 + L3 + L3 + Lcrystaln (λSignal) = 1873.736mm

which corresponds to a RR of 79.999MHz (Eq. 2.4).
The fourth step, having now fixed the resonator parameters, it is to cal-

culate the beam radius of the Signal inside the resonator. The theory behind
this is the ABCD matrix theory in approximation of perfectly Gaussian
beams21. We are interested in the complex beam parameter of a Gaussian
beam q:

1

q
=

1

R
− i λ

πw2
(2.8)

where R is the radius of curvature of the equiphase surface of the Gaussian
beam and w is the beam radius at 1/e2 of the maximum intensity (also called
beam spot size). It is possible to describe the propagation of a Gaussian
beam with the ABCD propagation matrix in the following way21, through
its complex parameter q:

q2 =
Aq1 +B

Cq1 +D
(2.9)

where q2 is the complex parameter after the propagation of q1 through the
ABCD matrix. We are interested in the beam spot w(z) inside the resonator,
in order to calculate it at a given point z you have to equal the imaginary
parts of Eq. 2.8 and Eq. 2.9. In this way we obtain:

w (z) =

√√√√−λ
π

1

Im
(

1
q(z)

) (2.10)

Just by replacing in Eq. 2.9 the ABCD elements relative to a specified
distance of propagation z̄ inside the resonator we obtain, through Eq. 2.10,
the corresponding value of w(z̄). It’s important to set a starting plane from
which to calculate the beam radius in the resonator. It was chosen one of the
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two plane mirrors, where the starting complex parameter qi was calculated
from the round-trip matrix shown above, just by imposing the cyclicality on
the q parameter itself:

qi =
Aqi +B

Cqi +D
(2.11)

obtaining, remembering that from Eq. 2.6 element A is equal to D in the
Mrt:

qi = i

√
−B1D1

A1C1
(2.12)

which is purely imaginary (plane wavefront). From the value of qi it’s possible
to calculate the starting beam radius wi and the spot behaviour inside the
resonator (the spot was calculated every ∆z = 10−3mm). It was chosen to use,
for the calculations, the central wavelength of the Signal range λ = 1200nm

where the refractive index of PPLN is 2.2. Figure 2.12 reports a symmetric

Figure 2.12: Signal spot size inside the resonator at λ = 1200nm.

behaviour of the spot respect to the center of the resonator, as expected for a
symmetric cavity. There is a tight focusing in the middle of the graph due to
the effect of the curved mirrors that are focusing the beam inside the crystal.

An important parameter inside the resonator is the confocal parameter
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of the Signal beam inside the crystal: this value describes how long the depth
of focus of the Gaussian beam inside the crystal is. The confocal parameter
b is defined as the double of the Rayleigh range zR =

πn(λ)w2
0

λ : the more
the confocal parameter value is close to the length of the crystal, the more
efficient we are in generating Signal in the crystal. The confocal parameter
is equal to:

b =
2πn (λ)w2

0

λ
(2.13)

Just by zooming Figure 2.12, in order to obtain the spot behaviour inside
the crystal, we obtain what the Figure below shows.

Figure 2.13: Signal spot inside the crystal.

Figure 2.13 reports two information:

1. The focal spot it’s in the middle of the crystal, at x ∼= 2.5mm

2. The dimension of the focal spot inside the crystal is w0 = 24µm

Knowing the focal spot of the Signal in the crystal, it’s possible to calculate
the confocal parameter b and compare it with the crystal length:

b = 6.635mm
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It’s close to 5mm, the crystal length. It shows that, recalling the physical
meaning of the confocal parameter, Signal stays focused for all the crystal
length. This situation permits to generate Signal efficiently, exploiting the
parametric process for whole the crystal length.

Having set the value of the confocal parameter of the Signal, now it’s
possible to define the Pump parameters.

Input Stage

The role of the Input Stage design is to calculate the optimal Pump beam
properties (spot dimension, polarization) to have before entering the resonator.
These properties guarantee an efficient generation of the Signal beam through
the non-linear crystal. Then in the Set-Up section these properties will be
translated in specific optical elements.

The first step consists in ensuring that, while focusing the Pump beam
in the crystal, the confocal parameter of the Pump and of the Signal in the
crystal must be the same. This situation guarantees the best mode-matching
of the beams and also guarantees that the interaction between the beams
is all along the crystal length. The confocal parameters’ matching between
Pump and Signal beam is crucial: the more overlap between Signal and Pump
in the crystal, the more Signal is generated in the resonator.

Remembering that the confocal parameter of a Gaussian beam is (Eq.
2.13):

b =
2πn (λ)w2

0 (λ)

λ

From the previous subsection, the confocal parameter of the Signal is set by
the resonator properties to a value of b = 6.635mm. Just by imposing this
value to the Pump confocal parameter it’s possible to find the optimal Pump
beam spot wopt0 (λp). In order to calculate this, in the following are reported
the Pump beam parameters:

• λp = 780nm

• nPPLN (λp) = 2.2
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Replacing this value in the confocal parameter equation, it’s easy to find
that the optimal Pump beam spot is:

wopt0,p =

√
λpb

2πnPPLN (λp)
= 19.35µm

In order to obtain this focal spot for the Pump in the crystal is important
to know:

1. The spot dimension of the Pump exiting the laser, wi,p

2. The focal of the lens that will focus the Pump on the crystal

Knowing these two parameters we can calculate the magnification to make
before the lens in order to obtain in the crystal a wreal0,p as close as possible
to the optimal one wopt0,p .

The Pump spot wi,p exiting the laser was calculted with the Knife-Edge
Technique: it consists in slicing a laser beam with a razor and measuring the
power of the clipped beam as a function of the razor position. The measured
curve is the integral of the marginal distribution, and starts at the total
beam power and decreases monotonically to zero power. 30 points were
collected and were fit in a Gaussian function using a Matlab code. From the
fit the plot in Figure 2.14 was obtained. From the plot it was found that
wi,p = 0.6212mm.

The setting of the lens’ focal was done thinking about avoiding too tight
focusing (it can damage the crystal and requires a too short distance between
crystal and lens, not possible in the resonator geometry) and also too weak
focusing (long focal lengths can’t guarantee enough short confocal parameters
that can match the Signal’s one): a good compromise was to use a lens of
f = 100mm (wf=100mm

∼= 39µm, twice the optimal value).
With these two parameters fixed, a rough calculation was performed in

order to know what the Pump beam dimension must be before the lens.
Knowing from the theory21 that a collimated Gaussian beam of spot w01

generates a spot w02 after a lens of focal f :
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Figure 2.14: Knife-Edge measurement fitting with Matlab.

w02
∼=

λf

πw01
(2.14)

the ∼= symbol is due to the fact that this formula is true when the Rayleigh
Range associated to w01 is much greater than the focal length f of the lens21.
In our case:

zR,1 =
πw2

01

λ

without any magnification before the lens zR,1 ∼= 1554mm >> f . We can
calculate which should be the beam spot (w01) before the lens in order to
obtain in the crystal wopt0,p as it follows, from Eq. 2.14:

w01 =
λf

πwopt0,p

∼= 1.283mm

Knowing w01 and wi,p we can calculate the right magnification to make
before the lens:

M =
w01

wi,p
∼= 2.07

This means that a 2x telescope suits almost perfectly the requirements.
After these rough calculations explained just above a Matlab code, using

ABCD matrices, was done in order to calculate more accurately the Pump
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beam spot in the crystal. The calculations were performed with the same
method adopted in the previous subsection for the Signal spot in the resonator.
This value (wreal0,p ) should be then compared with wopt0,p .

In Figure 2.15 it is represented the Pump beam path with all the optical
elements:

Figure 2.15: Pump beam path.

The elements in Figure 2.15 are:

• f1 and f2, the lenses of the 2x telescope. In the calculation f1 = 50mm

and f2 = 100mm were adopted, separated by a distance L1 = f1+f2 =

150mm.

• f3, the lens focusing the Pump in the crystal. Its value is f3 = 100mm.

• The first curved mirror of the resonator (in gray) through which the
Pump must pass in order to reach the crystal. This Fused Silica mirror
is 6.35mm thick and with a refractive index of 1.45 for the Pump
wavelength.

• The PPLN crystal in green, which is 5mm thick and with a refractive
index of 2.2 for the Pump wavelength.

• Distance L3 is fixed by the resonator stability to ≈ 50.37mm.

• Distance L2 is a parameter that was varied in order to obtain the focal
spot of the Pump beam exactly in the center of the crystal. This value
it was found to be 44.01mm, due to the deviation of the beam caused
by the presence of the curved mirror.
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The following Figure reports the result of the calculations, where the x axis
represents the crystal length.

Figure 2.16: Pump spot size inside the crystal.

Figure 2.16 shows that the spot is perfectly centered in the crystal
(Xfocus

∼= 2.5mm) and the Pump spot dimension is wreal0,p = 19.9µm. The
variation between wreal0,p and wopt0,p is less than 3%.

With this Input Stage configuration Pump and Signal modes are perfectly
matched in the crystal.

2.4 Set-Up

In this section all the optical elements which constitute the OPO will be
described. Just in the same way it was done in the Design section, here it’s
convenient to divide the Set-Up section in two parts: the Input Stage Set-Up
and the Resonator Set-Up.

In Figure 2.17 it is reported a sketch of all the elements present in the
Optical Parametric Oscillator.
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Figure 2.17: OPO’s set-up.

2.4.1 Input Stage Set-Up

The Input Stage is composed by:

• An Half-Wave Plate (HWP)

• An Optical Isolator

• A 2x Telescope

• A focusing lens mounted on a translation stage

The HWP and the isolator are used for rotating the polarization of the Pump
beam. In fact in order to exploit the biggest non-linear coefficient of the
PPLN the Pump must be horizontally polarized (extraordinary axis of the
crystal). The role of the isolator is to avoid back-reflection of the Pump from
the OPO cavity to the Ti:sapphire cavity (Pump Laser). A back-reflection
could cause damages in the Ti:sapphire cavity stopping the mode-locking.
An isolator is made by two polarizers with the axis tilted of 45◦ divided by a
Faraday rotator. Figure 2.18 shows that the light coming from the left to
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the right direction is just rotated in the direction of the polarizer; the light
coming from right to left is rotated from 45◦ to horizontal and so is stopped
by the second polarizer.

Figure 2.18: Typical layout of an Isolator.

The one that was used is a IO-5-780-HP-Free-Space Isolator, 780 nm, �
4.7 mm Max Beam, 40 W Max from Thorlabs (Thorlabs, USA) (2.19).

Figure 2.19: Thorlabs Isolator for 780nm.

The Pump beam exiting the Ti:sapphire is already horizontally polarized.
Figure 2.17 shows that the HWP rotates the Pump polarization to 45◦ in
order to enter with same polarization of the input polarizer of the isolator.
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Then the Pump polarization is rotated by the isolator to horizontal again,
ready for entering the crystal.

All the information about the 2x telescope are expressed in the previous
section; to summarize:

• The first lens f1 has a 50mm focal

• The second lens f2 has a 100mm focal

• The two lenses are divided by L = 150mm, in this way the magnification
M = f2

f1 = 2

Another important issue is that the focusing lens of f = 100mm, whose
role is fully described in the previous section, was mounted on a translation
stage in order to vary the distance between the crystal center and the lens
itself for obtaining the best focus inside the crystal.

2.4.2 Resonator Set-Up

A description of the optical elements inside the resonator, as you can see in
Figure 2.17, is reported:

• Two plano concave half-inch mirrors of R = 100mm, one of which is
mounted on a translator stage

• One plane half-inch end mirror (and two folding mirrors, one on each
arm of the resonator, here not represented for simplicity. Their role is
fully explained in the Alignment Procedure Appendix.)

• One OC (output coupler) at 2,5% of transmission, located on a trans-
lation stage

• The PPLN crystal mounted on a special mount with: a translation
stage working in the three directions and a heating system

All the resonator’s optical elements were put on a 60mm high breadboard
(30x60cm) in order to use small pedestals for the optics, this situation
guarantees a higher stability in terms of mechanical vibrations.
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All the resonator’s mirrors were coated by Layertec (Layertec, Germany)
to be: on the inside resonator face HR (high reflective) in the Signal range
(1000nm− 1400nm) and low reflective in the Pump range (600nm− 900nm),
on the rear side AR (anti reflection) coated at the Pump wavelength (600nm−
900nm). This situation guarantees a SRO (Singly Resonant Oscillator) in
the Signal range, without Pump and Idler powers inside the cavity. The OC
was on the rear side AR coated at the Signal wavelength, to avoid losses in
the extraction.

The two curved mirrors have a special "C" mount in order to make easier
to steer the beam to the folding mirrors with a small angle (6◦ − 7◦). This
configuration avoid the astigmatism of the Signal beam caused by big folding
angles. In Figure below there is a sketch of the mount structure.

Figure 2.20: Curved mirrors’ mount structure.

The PPLN crystal has a special mount, as the one in Figure 2.21. This
mount permits to heat the crystal with a heater and to control the tempera-
ture with a sensor through a hole near the crystal, as in Figure 2.21. The
temperature tuning and control was done using an ITC 503 temperature
controller by Oxford Instruments (Oxford Instruments, USA).
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Figure 2.21: PPLN crystal mount with the resistor on the left in gold color
and the crystal in the center in green color.

As a sensor was used a K-type thermocouple of Chromel/Alumen made
by RS Components (RS Components, USA): 1.5mmx1.0mTypeKMiT/c,
probe temperature range −40◦C to +1100◦C (our working range is from
80◦C to 200◦C).

Figure 2.22: K type thermocouple.

As a heater was used a resistor HS10 100R J made by Arcol (Arcol, UK),
delivering 5.5W to the maximum with a nominal resistance at 25◦C of 100Ω.

Figure 2.23: Resistor picture.
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After having calibrated the sensor, the P.I.D. (Proportional Integral
Derivative) values of the temperature controller were set experimentally in
order to have fast response of reasonable time in respect of the application.

Concluding, the translation stages were mount on:

• One of the two curved mirror in order to obtain the right distance
between it and the crystal.

• The crystal mount for selecting the right grating (translation in the
vertical direction) and for placing the facet of the crystal at the right
distance from the fixed curved mirror (translation in the beam direc-
tion).
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Chapter 3

OPO’s Characterization

In this chapter the characterization of the OPO source is going to be described.
The first section focuses on the possible ways of tuning the output; the second
section offers a real characterization of the output in terms of powers and
wavelengths.

3.1 Output Wavelength Tuning

There are many ways in order to tune the Signal output of an OPO based
on a Periodically Poled Crystal. From the theory it’s possible to understand
that the output of a parametric process is strongly dependent on the phase-
matching conditions, that are strictly correlated to the dispersion curve of
the medium used as non-linear crystal.

The typical way to vary the output is to change the crystal grating period
while keeping unchanged the Pump wavelength and the crystal temperature.
In this way, by changing the crystal grating Λg, we are tuning the Signal

by changing the phase-matching conditions: Λg =
[
n(λ3)
λ3
− n(λ2)

λ2
− n(λ1)

λ1

]−1
.

This is the way used to characterize the output of the OPO described in this
thesis; in the following section will be shown the experimental results.

In other occasions it is important to tune the output while keeping
constant the grating period: single grating crystals. This kind of tuning
permits small and precise variations of the output around the phase-matching
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conditions of the grating in use. In this situation there are three possible
ways to tune the output:

1. Varying the Pump wavelength (keeping temperature and cavity length
constant)

2. Changing the crystal temperature (keeping Pump wavelength and
cavity length constant)

3. Varying the cavity length of the resonator (keeping temperature and
Pump wavelength constant)

In the first case the variation of the Pump wavelength generates a change

in the phase-matching conditions in terms of λ3: Λg =
[
n(λ3)
λ3
− n(λ2)

λ2
− n(λ1)

λ1

]−1
.

The second case exploits the dependance of the refractive index of a
medium by the temperature: n = n (T ). Changing the dispersion curve of a
medium means changing the phase-matching conditions. The dependance of
the refractive index by the temperature is generally weak; in fact in order to
exploit a change in the output there must be a change in the temperature
of about 40◦C. In Figure 3.1 it’s possible to see the effect of a temperature
change of 35◦C in the phase-matching curves. In this case increasing the

Figure 3.1: 5mm long PPLN phase-matching curves for different gratings at
145 Celsius (left) and at 180 Celsius (right).

temperature of the crystal means lowering the phase-matching curve relative
to each grating.
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The third case exploits the overlap of the Pump pulse and of the Signal
pulse in the crystal. By changing the cavity length we are changing the delay
between the Signal and the Pump; in fact the possible variations in the cavity
length of an OPO are proportional to the duration of the pulses: the more
the pulse is long the more we can vary the cavity length ensuring the overlap
between Pump and Signal in the crystal. Generally this tuning method is
useful when chirped pulses are present: varying the round-trip time period of
the Signal means selecting a different wavelength, inside the Signal envelope,
to overlap with the Pump pulse in the crystal. In this way is possible to select
which wavelength, inside the phase-matching bandwidth, will experience the
biggest amplification in the crystal.

3.2 Output Characterization

In this section the experimental characterization of the output of the OPO
source is shown. The characterization measurements were performed on each
grating of the PPLN and consist in:

1. Measuring the Signal output for different Pump powers

2. Collecting the spectrum of the Signal output

3.2.1 Output Signal Power and Spectrum

In order to measure, for each grating of the PPLN, the Signal power and
spectrum, the subsequent procedure was followed:

1. Fixing the Pump at 780nm and the crystal temperature at 110◦C

2. Aligning the cavity with about 100mW of Pump power, a value near
the threshold of the cavity

3. Optimizing the output in terms of Signal measured power, using an
optometer after the OC. The optimization was performed working
on the cavity parameters (cavity length, end mirrors angle, distance
between the lens and the crystal)
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4. Measuring the threshold power of the cavity monitoring the output
with an IR viewer

5. Measuring the output power of the optimized cavity for different Pump
powers

6. Collecting the spectrum of the Signal with 1880mW of Pump power

7. Measuring the depleted Pump power after the crystal in order to know
the conversion efficiency of the parametric process

It is important to measure only the near-IR output of the OPO (1000nm−
1400nm), filtering all the parasitic mixing present in the cavity and filtering
the residual Pump.

Figure 3.2: Possible wavelength mixing phenomena.

Figure 3.2 reports the possible mixing phenomena (SHG and SFG) present
in the cavity. Where p+ i is the SFG between Pump and Idler, 2s is the SHG
of the Signal and p+ s is SFG between Pump and Signal. As you can see
the biggest part of the mixing processes are in the visible, between 450nm

and 750nm. The presence of these parasitic phenomena is due to the high
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gain of the PPLN: in this situation also non phase-matched phenomena can
oscillate in the cavity. An easy way to attenuate these phenomena is to use
cavity mirrors with low reflectance in the visible, that is just what was done
in the OPO cavity described in this thesis.

Anyway was used, before measuring the Signal with the optometer and
with the spectrometer, a Dichroic Mirror reflecting all the wavelengths above
805nm: in this way only the near-IR output of the OPO was measured.

The spectrometer used was a NIRQuest made by Ocean Optics (Ocean
Optics, USA); the spectrometer’s working range is from 900nm to 1700nm.
For the measurements an integration time of 100ms was set.

The Pump power tuning was done with the following steps:

1. Pin = 115mW

2. Pin = 210mW

3. Pin = 320mW

4. Pin = 600mW

5. Pin = 950mW

6. Pin = 1880mW

A Pump power limit was set at 1880mW in order to avoid crystal damages
caused by the intense focused power in the PPLN.

Before starting the analysis of the OPO output for each grating of the
PPLN, is important to remember the phase-matching curves for the crystal
at 110◦C.
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Figure 3.3: Phase-Matching curves for a 5mm PPLN crystal at 110◦C.

From Figure 3.3 it can be found that Signal must be in the following
ranges:

• From 1030nm to 1100nm for the 20.9µm grating

• From 1100nm to 1150nm for the 20.6µm grating

• From 1140nm to 1200nm for the 20.3µm grating

• From 1200nm to 1300nm for the 20.0µm grating

• From 1250nm to 1400nm for the 19.7µm grating

• From 1310nm to 1600nm for the 19.4µm grating

For each grating, as well as the output power and spectrum, also the
following parameters are shown:

• Threshold Power: is defined as the maximum Pump power at which
the Signal output power is zero. Above this value there is enough

70



energy in the resonator to overcome the losses and starts the action
of lasing. The threshold power was measured experimentally with an
IR-viewer. The IR-viewer was set on the output, while increasing the
Pump power. When a flash of light was collected by the viewer the
relative Pump power was assigned to be the threshold. The threshold
is also calculated using a non-linear trend line to fit the collected power
data. In the following is reported only the data fit value.

• Depleted Pump Power: is the residual Pump power after the para-
metric process. From this value is possible to calculate the internal
conversion efficiency (ηint). This last one is defined as the ratio between(
Pp − P depletedp

)
and Pp, where Pp is the Pump power entering the

cavity and P depletedp is the Pump power measured after the parametric
process. This value (ηint) can be seen as an efficiency of the parametric
process. The residual Pump power was measured with Pp = 1880mW .

It is important to remember that the cavity gain is not linear; in fact
the parametric gain in case of perfect phase matching is G = e2ΓL where
Γ2 ≈ ωsIp. The behaviour of the OPO output is expected to be non linear, due
to the fact that the gain process of the resonator is non-linear. A non-linear
behaviour of the Output power against Input power is expected for those
gratings generating lower wavelengths and a more linear behaviour for those
gratings generating higher wavelengths. In general the output characteristic
of a light source is non-linear near low input powers, due to the fact that
there are big losses near the threshold power, and near high input powers,
due to the fact that there are high thermal losses that saturates the output.

20.9 um Grating

The behaviour of the output in Figure 3.4 is strongly non-linear: this grating
is generating, in fact, the highest Signal frequency ωs. The output saturates
rapidly to 43mW .

The calculated parameters for this grating are:

• Threshold with the data fit: P datathr = 68.5mW
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Figure 3.4: Signal power output as a function of the Pump input power for
the 20.9µm grating.

• Depleted Pump power: P depletedp = 150mW

• Internal Conversion Efficiency: ηint = 92%

The relative spectrum is reported below in Figure 3.5.

Figure 3.5: Spectrum of the Signal generated by the 20.9µm grating.
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From Figure 3.5 there is:

• A multi-peak structure with the highest peak at 1064nm.

• A Signal bandwidth of around 50nm.

It is important to notice that the presence of a multi-peak structure,
instead of having a big peak covering all the phase-matching bandwidth, is
probably due to the fluctuations in the bandwidth of the reflectivity curve of
the cavity mirrors (Figure 3.6).

Figure 3.6: Cavity Mirrors’ Reflectivity.

Another possibility may be that the coatings have an overall dispersion
that has big oscillations: several wavelength regions will have the same
dispersion, allowing several narrow-band pulses to propagate with different
center wavelengths. This situation will also be seen for all the other spectra
of the following gratings: strengthening the hypothesis of defects in the
dispersion curve of the cavity mirrors.

20.6 um Grating

The output characteristic is similar to the previous one, due to the high gain
of the medium at high Signal frequencies. In this case the highest extracted
Signal power is 53mW .
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Figure 3.7: Signal power output as a function of the Pump input power for
the 20.6µm grating.

The power parameters of this grating are:

• Threshold with the data fit: P datathr = 69mW

• Depleted Pump power: P depletedp = 190mW

• Internal Conversion Efficiency: ηint = 90%

The spectrum in Figure 3.8 has the following characteristics:

• A multi-peak structure centered at 1125nm with four peaks (1100nm,
1118nm, 1134nm, 1150nm).

• A 50nm bandwidth, as expected from the phase-matching calculations
(Figure 3.3).
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Figure 3.8: Spectrum of the Signal generated by the 20.6µm grating.

20.3 um Grating

Figure 3.9: Signal power output as a function of the Pump input power for
the 20.3µm grating.

The output in this case is more linear than the two previous cases: the
output is not saturating for big Pump powers (according to the fact that the
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Signal frequency is decreasing). In this case the maximum extracted Signal
power is 55mW .

The power parameters for this grating are the subsequent:

• Threshold with the data fit: P datathr = 65.7mW

• Depleted Pump power: P depletedp = 170mW

• Internal Conversion Efficiency: ηint = 91%

The spectrum in Figure 3.10 reports:

• A multi-peak structure with two high peaks on the sides of the band-
width. The peaks are at 1140nm and at 1212nm.

• A Signal bandwidth bigger than 50nm. Perfectly in agreement with
the phase-matching calculations (Figure 3.3).

Figure 3.10: Spectrum of the Signal generated by the 20.3µm grating.
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20.0 um Grating

The output generated by this grating has a non-saturated behaviour, as
expected with decreasing the Signal frequency. The extracted output power,
in this case, arrives to a maximum of 50mW .

Figure 3.11: Signal power output as a function of the Pump input power for
the 20.0µm grating.

The power parameters are listed below:

• Threshold with the data fit: P datathr = 65.4mW

• Depleted Pump power: P depletedp = 200mW

• Internal Conversion Efficiency: ηint = 89%

The spectrum in Figure 3.12 has:

• A two-peaks structure, with peaks at 1236nm and at 1252nm.

• A Signal bandwidth of about 20nm.

The bandwidth is smaller than the one expected. This fact is probably due
to the lowering of the reflectivity curve in this frequency range (Figure 3.6)
and/or it can be caused by fluctuations in the dispersion curve of the mirrors.
Both of them generates losses in the spectrum of the Signal.
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Figure 3.12: Spectrum of the Signal generated by the 20.0µm grating.

19.7 um Grating

Figure 3.13: Signal power output as a function of the Pump input power for
the 19.7µm grating.

This grating is the most powerful in terms of output; in fact by pumping
with 2W we can extract about 80mW : twice the previous cases. This fact is
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probably due to the largest phase-matching curve relative to this grating:
there is more energy conversion in a bigger bandwidth.

Figure 3.14: Spectrum of the Signal generated by the 19.7µm grating.

Here are reported the power parameters:

• Threshold with the data fit: P datathr = 85mW

• Depleted Pump power: P depletedp = 110mW

• Internal Conversion Efficiency: ηint = 94%

The spectrum of this grating is reported in Figure 3.14 and manifests:

• A multi-peak structure that extends from 1230nm to 1350nm, centered
at 1303nm. The highest peaks are 1347nm and at 1225nm.

• The Signal bandwidth is around 100nm, in agreement with the calcu-
lations (Figure 3.6).

79



19.4 um Grating

Figure 3.15: Signal power output as a function of the Pump input power for
the the 19.4µm grating.

This grating is the less powerful in terms of output extraction. In fact
the highest power obtained is around 30mW , half the previous cases. This
situation is probably due to two facts:

1. If the temperature of the crystal is a little bit lower than 110◦C the
phase-matching curve tends to have the flexion before 780nm, causing
non efficient parametric conversion. Where the phase-matching curve
is bent, there are greater fluctuations due to temperature variations.

2. The flexion of the phase-matching curve is the result of being near
degeneracy: λs = λi = 2λp = 1560nm. In this situation the phase-
matching bandwidth is the largest possible and short pulses need a
high stability in synchronicity to oscillate. The cavity mirrors have
a reflectivity curve for a Signal in the range between 1000nm and
1450nm, causing big losses for this grating. In fact it was difficult to
make this grating to oscillate.

The relative spectrum is reported in Figure 3.16.
Below are listed the power parameters:

• Threshold with the data fit: P datathr = 110mW
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Figure 3.16: Spectrum of the Signal generated by the 19.4µm grating.

• Depleted Pump power: P depletedp = 200mW

• Internal Conversion Efficiency: ηint = 89%

From the spectrum (Figure 3.16) there is:

• A large bandwidth with multi-peak structure, centered at 1350nm. The
highest peaks are at 1347nn and at 1414nm.

• A Signal bandwidth that extends from 1260nm to 1400nm. The lower
limit of the Signal range is outside the phase-matching calculations; the
most probable explanation of this fact is that the crystal temperature
was a bit lower than 110◦C, lowering the bottom limit of the phase-
matching curve. The upper limit of the Signal range is due to the
reflectivity curve of the mirrors that extends from 1000nm to 1450nm.

It’s important to notice that larger bandwidth are the most affected by
dispersion; in fact the output generated by this grating suffers big losses
caused probably by fluctuations of the dispersion curve of the cavity mirrors.
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In this way only several narrow bands can be synchronous with the Pump
pulse, as Figure 3.16 shows.

82



Chapter 4

Application to Fluorescence
Lifetime Measurements

In this Chapter it is briefly described the use of the OPO source for fluores-
cence lifetime measurements.

Preliminary measurements on photosynthetic samples were performed
using the OPO as the excitation source. In the specific, the measurements
were performed on whole cells of different algae species in order to monitor the
fluorescence lifetime of Photosystem II (PSII) depending on alga’s mutations
and alga’s stress type. For these samples the excitation is around 650nm and
the emission has a peak at 685nm. At room temperature the fluorescence
emitted by the cells is almost exclusively derived from PSII.

The properties of PSII, the experimental set-up of and few preliminary
results are going to be described in the following sections.

4.1 A Brief Introduction on PSII

The most abundant, and arguably most important light harvesting process on
this planet is photosynthesis: the process by which certain organisms convert
light into chemical energy. In higher plants, photosynthesis is a two steps
process consisting in light-dependent and light-independent reactions. The
light-dependent reactions are the first stage of photosynthesis, where light
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and water inputs are converted into the energy carrying molecules adeno-
sine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate
(NADPH), which are subsequently used as in the light-independent reactions
alongside CO2 to produce glucose.

In higher plants, algae and in cyanobacteria the light-dependent reactions
of photosynthesis take place at thylakoids (Figure 4.1), a membrane-bound
compartments within the chloroplast organelles found in leaf cells.

Figure 4.1: Location of thylakoid compartments within the chloroplast or-
ganelles.

The thylakoid membrane separates the thylakoid interior, called lumen,
from the exterior chloroplast space, called stroma. Multiple protein structures
are embedded within the thylakoid membrane (Figure 4.2), and it is within
these structures that the light-dependent reactions take place.

Briefly the steps of the reaction are22:

• A photon is absorbed by photosystem II (PSII)

• The excited electron is transferred to the plastoquinone structure,
thereby oxidising PSII

• PSII is subsequently reduced by the hydrolysis of water present in the

84



Figure 4.2: Thylakoid membrane protein structure involved in the light-
dependent reactions of photosynthesis.

lumen, liberating molecular oxygen to the environment and protons to
the lumen

• The electron is passed along a transfer chain consisting of plastoquinone,
cytochrome and plastocyanin structures, before arriving at photosystem
I (PSI)

• During transfer from plastoquinone to cytochrome, the energy carried
by the electron is used to pump protons from the stroma to the lumen
via a further trans-membrane REDOX reaction

• A photon is absorbed by PSI

• The excited electron is transferred to ferrodoxin, oxidising PSI, where
it is used to reduce NADP+ to NADPH

• PSI is subsequently reduced by the electron originating from PSII

• The proton gradient developed across the thylakoid membrane during
the entire reaction is used by the ATP synthase to convert ADP in the
stroma to ATP

It can be seen that the light-dependent reactions are reliant on the sequential
absorption of two photons.
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Focusing on the PSII structure, there is a reaction center (RC) containing
a chlorophyll (Chl) dimer which performs electron transfer to the adjacently
located structures: plastoquinone in the case of PSII. Owing to its small cross-
section however, the probability of photon absorption by the Chl dimer is very
low. The reaction center is therefore bound to pigment containing cofactors
to increase absorption, with the absorbed energy being transferred to the
reaction center via non radiative processes (eg. FRET), where the energy is
used for charge separation. These additional antenna cofactors are denoted
core antenna complexes and contain beta-carotene and Chl A pigments. In
PSII these antenna cofactors are pigment-protein complexes, called CP43
and CP47. The ensemble of reaction center and inner antennas are known
as the photosystem-core (PS-core). Photosystem-core absorbance is further
increased by association to surrounding outer LHCs, which again harvest
light and transfer energy non-radiatively to the PS-core. The predominant
outer LHCs associated to PSII are denoted LHCII. The outer LHCs contain
mainly the pigments Chl A and Chl B and xanthophylls.

The bond between the outer LHCs and the chlorophylls causes red shift
in absorption for these outer antennas. Their role is to absorb energy in the
red spectrum, in order to further increase the absorbance of the PSII23,24.

4.2 Set-Up and Results

4.2.1 Samples

The experiment was performed on two different types of alga’s cells:

• Haematococcus Pluvialis (HP)

• Chlamydomonas Reinhardtii (CR)

For the HP algae there were three kinds of samples:

1. The control sample (abbreviation "HPverde")

2. The sample held without nutrients (mild stress) (abbreviation "HPverde-
menoN")

86



3. The sample subjected to strong illumination (strong stress) (abbrevia-
tion "HProsso")

HP is an alga that under stress accumulates a carotenoid (astaxanthin) that
has the function of sun screen, thus decreasing the absorption in the UV-blue
part of the solar spectrum25. That is why it is necessary to analyze these
samples in the red part of the spectrum. The idea was to monitor, in function
of the stress applied to the samples during the growth, the variations in the
fluorescence lifetime of the photosynthetic subunits of PSII.

For the CR algae there were two kinds of samples:

1. The wild type sample (control sample) (abbreviation "CRWT")

2. The mutant sample (abbreviation "CRN2")

CR is the typical green alga. Here the aim of the measurement was to monitor,
in function of the mutation, the variations in the fluorescence lifetime of the
photosynthetic subunits of PSII.

It was performed a Time Resolved Photo-Luminescence (TRPL) mea-
surement because the fluorescence lifetimes of the photosynthetic subunits
are indicative of the efficiency of the energy transfer in the PSII. The samples
were flushed into a cuvette through the use of a peristaltic pump: this set-up
guarantees, thanks to the continuous flow of samples, the possibility of in
vivo measurements.

4.2.2 Set-Up

Excitation

The OPO was used to generate a 1300nm output by pumping with 780nm. By
making frequency doubling with a Type I BBO crystal cut for 1200nm, the
excitation pulses at 650nm and at a repetition rate of 80MHz were obtained.
The spectrum of the OPO (previous chapter) is centered at 1300nm when the
19.7µm grating is used. The alignment of the OPO on the 19.7µm grating was
performed, with the help of an IR spectrometer, working on the optimization
of the Signal spectrum around 1300nm. The optimization consists in using
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the cavity length tuning in order to maximize the spectral components of
the Signal around 1300nm; this situation guarantees an efficient SHG. The
Signal exiting the OPO was ≈ 40mW and then, after the BBO crystal and
a narrow filter around 650nm, it was few µW .

Acquisition

The acquisition system is based on a steak camera (Hamamatsu C5680,
Japan) and an imaging spectrograph (Princeton Instruments Acton SP2300i,
USA).

A streak camera is a detection device capable of having both high temporal
resolution (about 2ps) and high spectral resolution (depending also on the
type of grating used before entering the device). The basic operation scheme
of a streak camera is reported in Figure 4.3.

Figure 4.3: Streak Camera schematic of the operation.

Schematically we have these steps:

1. The incident photons are transformed in electrons by the photocathode

2. The generated electrons are accelerated by the accelerating electrode

3. The sweep electrodes deviate the electrons, in the order of arrival, from
top to bottom
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4. The deviated electrons are multiplied by the Multi-Channel Plate
(MCP)

5. The electrons arrive to the phosphor screen which transforms electrons
in photons

6. The light generated by the phosphor screen is captured by a CCD

The intensity of the incident light can be read from the brightness of the
phosphor screen, while time and space from the position of the emitted light
from the phosphor on the screen.

The Hamamatsu C5680 Steak Camera has two types of sweep control
unit:

• Synchroscan

• Slow sweep

Sweep triggering is provided by splitting part of the Pump beam on a
stabilized silicon fast photodiode coupled to variable electronic delays. The
principal difference between the two sweep units is the form of time-varying
voltage applied to the deflection electrodes.

The voltage sweep provided by the Synchroscan unit is sinusoidal with
quasi linear electron deflection being measured around the maximum voltage
gradient. The benefit of such a scheme is that accurate control of the sinu-
soidal frequency effectively eliminates sweep-to-sweep trigger jitter, thereby
obtaining a temporal resolution, on integrated measurements, of 2ps at best.
This high resolution (the resolution it’s always 1% of the temporal window)
comes at the reduction of the usable temporal window to 2ns, due to the
sweep non-linearity.

The Slow Sweep unit provides an approximately linear voltage ramp,
leading to linear electron deflection. The temporal resolution in this modality
is mainly limited by the electronic jitter in the trigger signal from one sweep
to the next. A 50ps plus 1% of the the temporal window adopted for the
measurement resolution is attainable on any integrated measurement. This
modality is used in conjunction with the Pulse-Picker (in order to decrease
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the Repetition Rate of the Pump source) for measurements of time ranges
longer than 2ns.

Before entering the streak camera there is the imaging spectrograph. This
set-up (the sequence of spectrograph and streak camera) permits to convert
the spatial resolution of the streak camera into the spectral resolution. The
spectrograph deflects the different spectral components of the entering light
at different angles. The spectrograph is equipped with two visible and one
near-IR reflecting gratings to provide broadband spectral resolution.

An example of the experimental data collected using the acquisition
set-up is reported in Figure 4.4.

Figure 4.4: Example of data collected using the acquistion set-up.

The vertical axis of the image is the time, while the horizontal one is the
spectrum. It’s possible to select:

1. A time window, in order to monitor the spectrum integrated in the
time interval adopted (colored in green in Figure 4.4).

2. A spectral window, in order to monitor the kinetics integrated in the
spectral range adopted (colored in red in Figure 4.4).
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For the measurements the Synchroscan unit was used because the fluo-
rescence lifetimes to monitor had decay time constants around hundreds of
picoseconds23. The range adopted on the streak camera was a time window
of 2ns, with a time resolution of 20ps (1 % of the time window) at the best. A
50grooves

mm visible reflecting grating was equipped on the spectrograph during
the measurements.

4.2.3 Results

Instrument Response Function (IRF)

Before starting to analyze the data collected during the measurements is
important to discriminate whether the pulses of the excitation line were of
comparable duration with the resolution of the streak camera.

A method capable of giving information about the duration of the pulses
entering an acquisition system in comparison to the time of response of the
acquisition system itself is the Instrument Response Function (IRF). The
IRF is defined as the function describing the system response when it is
excited with a delta pulse (a pulse with temporal duration much shorter than
the time response of the system). Mathematically it is possible to express
the IRF by the use of the convolution product: f (t) = IRF (t)⊗ Pulse (t).
Where f (t) is equal to the IRF when Pulse (t) is a delta pulse. Generally
it’s useful to define the IRF as the FWHM (Full Width at Half Maximum)
of the time response of the system.

The IRF of the streak camera was measured experimentally sending
directly the Pump pulses, whose duration (150fs) is much lower than the
time of response of the instrument, into the streak camera. This method
allows one to estimate an IRF of about 20ps using a 2ns temporal window
for the acquisition.

Using the same temporal window of acquisition, it was performed the
IRF of the streak camera using the scatter, through a cuvette filled with
water, of the excitation pulses coming from the OPO at 650nm. In Figure
4.5 it is reported the system response.

Via software it is possible to fit with a Gaussian function the time depen-
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Figure 4.5: IRF of the streak camera when exposed to the 650nm pulses.

dent function (system response), collected by the streak camera, integrated
in a specific spectral range. From the fit (the white Gaussian function in
Figure 4.5) it was estimated a FWHM of the system response of about 37ps.
This value is greater than the one given by sending directly the Pump pulses
into the streak camera, because the effect of the scatter through the water is
to enlarge the pulse duration. In fact by making the IRF using the scatter
of the Pump pulses, same results for the estimation of the system response
were obtained. Thus ensuring that the duration of the OPO pulses is much
shorter than the time response of the system.

In this case, using a 2ns temporal window and working with the presence
of scatter induced by the samples immersed in water, a resolution of the
system of about 1.9% of the temporal window (generally the best obtainable
resolution is 1% of the temporal window) is obtainable. This resolution seems
reasonable in comparison both to the temporal window adopted and both to
the fluorescence lifetimes to monitor.
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Experimental Results

The fluorescence emission spectra of the algae (CR and HP types) are
reported in Figure 4.6. The spectra are collected from 680nm to 750nm and
are integrated in a time interval starting from the excitation until the end of
the temporal window of acquisition of 2ns. All the spectra have the emission

Figure 4.6: Time resolved emission spectra collected by the streak camera.

peak at 685nm with a broad band of fluorescence. The collected spectra are
not centered at 685nm in order to let the excitation wavelength (650nm)
outside the acquisition range.

In Figure 4.7 it is reported the dependance of the fluorescence emission
of the photosynthetic subunits of PSII on the intensity of the stress applied,
during the growth, to the alga’s cells. The time resolved fluorescence is
normalized to the peak and it is integrated in the spectrum from 680nm to
750nm.

From Figure 4.7 it seems that the kind of stress applied to the cells
influences the fluorescence lifetimes. In fact Figure 4.7 shows that those
forms that are grown under mild stress have shorter fluorescence lifetimes
in comparison to the wild type. This means that the efficiency of energy
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Figure 4.7: HP kinetics.

transfer of the photosynthetic subunits in algae is dependent on the intensity
of the stress applied to the cells. The fluorescence emission seems to be not
influenced by the strong stress applied to cells.

A data fit was performed on these fluorescence measurements, using, as
the theoretical fit function, a biexponential:

PL (t) = PL0 +A1e
− t
τ1 +A2e

− t
τ2

where PL0 is the backround value of PL, A1 and A2 are the amplitudes of the
two exponentials, τ1 and τ2 are the decay constants of the two exponentials.
From the estimation of these parameters it is possible to understand and to
quantify the dependance of the mutation on the efficiency of fluorescence
emission. Here the fitting parameters for these data are reported:

• "HPverde": A1 = 0.2 and τ1 = 123ps; A2 = 0.6 and τ2 = 865ps

• "HPverdemenoN": A1 = 0.1 and τ1 = 10ps; A2 = 0.5 and τ2 = 734ps

• "HProsso": A1 = 0.2 and τ1 = 26ps; A2 = 0.5 and τ2 = 795ps
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The stress applied to the cells influences mostly the fast component of
the fluorescence decay. In fact the control sample has a 10 times greater
decay constant (τ1) than the mild stress type and 5 times greater than the
strong stress type. The slow component of the fluorescence decay seems less
influenced by the intensity of the stress applied to the samples; in fact the
variation in the decay constant is around 15% between the control sample
and the mild stress type. Thus leading that the stress applied to the samples
manifests itself in the short time period of the fluorescence emission.

Knowing that the stress applied to the cells influences the fluorescence, it
is possible to find which kind of genetic mutation could inhibit the occurrence
of stress as inefficiency in the fluorescence emission. From this motivation,
genetically modified cells of algae were studied. The samples reported below
have a specific genetic mutation and the idea was to monitor if this kind of
mutation is responsible of the lowering in the efficiency of PSII.

The dependance of the fluorescence emission of the photosynthetic sub-
units on the mutation of the alga’s cell is shown in Figure 4.8.

Figure 4.8: CR kinetics.

The fluorescence emission seems to be independent from the mutation of
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the alga. Thus ensuring that the mutation is not influencing the efficiency of
energy transfer in PSII. In fact the two fluorescence decays are overlapped
in the acquisition window.

On these data the same method of fitting of the previous ones was applied.
Below the fitting parameters are reported:

• "CRWT": A1 = 0.1 and τ1 = 59ps; A2 = 0.5 and τ2 = 759ps

• "CRN2": A1 = 0.2 and τ1 = 39ps; A2 = 0.5 and τ2 = 664ps

The variation in the fluorescence lifetime, for the predominant slow compo-
nent, in dependence of the mutation is less than 3%. Thus ensuring that
this genetic mutation is not influencing the fluorescence emission of the
photosynthetic subunits in PSII.

For conclusion, these preliminary results show a dependance of PSII
efficiency on the stress level.
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Chapter 5

Conclusions and Future
Perspectives

In this thesis an Ultrafast Optical Parametric Oscillator tunable from 1000nm
to 1400nm for Time Resolved Photoluminescence (TRPL) measurements has
been designed and implemented. In particular the design of the cavity has
been made, then the source has been built and it was finally characterized. As
the conclusion of this project, an application of the source in measurements on
Light Harvesting Complexes of photosystem was performed. At the end of this
work the OPO appears to be functional and usable for TRPL measurements.
The biggest criticality that was found, for this source, it is represented by
the obtainable output power.

The possible improvements here reported are the result of different issues:
power issues, tuning issues, stability issues and versatility issues. We can
divide the issues in two categories:

1. Performance Issues: regarding the demands of stability, power and
tunability in order to make the source reliable for measurements on
samples.

2. Functional Issues: concerning the simplification and the compaction
of the source.

The possible performance improvements to adopt are the following:
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• Enclosing the OPO in order to make it more stable.

• Using a 15 % Output Coupler18 (OC) in order to extract more Signal
power from the cavity for an external SHG.

• Using an internal SHG crystal in the cavity for doubling the Signal.

• Using a Fan-Out non linear crystal, instead of the multi-grating solution.
Thus allowing continuous tunability.

The OPO source is very sensitive to air fluctuations inside the resonator
caused by movements around it. By enclosing the OPO, putting a plexiglass
box around it, a better stability in terms of output power and spectrum can
be achieved. In fact if the cavity length Lcav is:

Lcav = L1nair + Lcrystalncrystal = 1873.7mm

When nair is changing (eg. air fluctuations) also the cavity length is changing.
The synchronicity between Pump repetition rate and Signal repetition rate
is crucial for the OPO operating regime: variations in the cavity length from
the optimal situation cause the cessation of the lasing oscillation.

Changing the 2.5 % OC with a 15 % OC have two effects:

1. Increasing the threshold power of the cavity because we are increasing
the cavity losses.

2. Increasing the output power.

Theoretically the increase factor, from the previous case with the 2.5 % OC,
is proportional to (linear approximation):

M ≈ 15

2.5
= 6

In this way the threshold of the cavity will be about six times greater
than the previous situation, but the output power will increase of the same
factor ensuring more useful power for doubling the Signal exiting the OPO.
Assuming that we have, at most, 50mW of Signal power with the 2.5 %
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OC and assuming that with an external SHG crystal we can obtain 5µW of
second-harmonic (efficiency η = 10−4); with the 15 % OC solution we can
obtain around 300mW of Signal power and 300µW of its second-harmonic.
This solution will increase of a factor 60 the possible SHG obtainable. These
rough calculations exploit that the SHG efficiency increase linearly with the
incident power.

The internal cavity SHG solution would be the best solution in terms
of obtainable power in the visible. In fact having a 2.5 % OC and 50mW

of output power means that inside the cavity we have around 2W of Signal
power. In the approximation of no cavity losses it’s possible to say that
doubling the Signal inside the cavity guarantees, using a SHG crystal with
η = 10−2 (η2W = 2W

50mW η50mW ≈ 100η50mW ), 20mW of its second-harmonic.
This ensuring a 4000 times greater SHG than the actual situation. The cavity
configuration would be the following reported in Figure 5.1.

Figure 5.1: Cavity configuration for a linear cavity OPO with internal SHG.

The cavity in Figure 5.1 has the same structure of the OPO described in
this thesis, with the only difference that there are two extra curved mirrors in
order to focus the Signal into the SHG crystal. It’s important to make an HR
coating for the visible on the second new curved mirror in order to collect all
the second-harmonic without losses after the crystal. There is only one issue
in this new cavity configuration: the visible is generated in both directions
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inside the cavity, while it is possible to collect it only in one direction. This
problem can be solved using a Ring-Cavity configuration.

Using a multi-grating crystal it is possible to have tuning, but not con-
tinuously. This is due to the fact that the variation between two adjacent
gratings is discrete in terms of poling period. An easy way to avoid this
problem is to use a Fan-Out crystal, shown in Figure 5.2.

Figure 5.2: Fan-Out Crystal geometry.

With this crystal geometry, by moving the beam in the lateral direction, a
continuous variation in the grating period can be exploited. In fact the phase-
matching curves, using a 1mm long crystal and using the same conditions of
Pump and Signal range relatively to this thesis, result to be those in Figure
5.3. In this case it is possible to cover all the Signal range continuously.

Figure 5.3: Phase-Matching curves for a 1mm long PPLN with fan-out
grating.
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The functional improvement to adopt is based on the idea of having a
more compact source, which could contain both the resonator and the input
stage on the same breadboard. This condition guarantees an easier way to
control independently both the Chameleon Pump source and the OPO source.
The cavity is in the shape of X arranged on a rectangular breadboard, so
it’s possible to use the two triangular spaces where the beam is not passing.
What should be the final result is reported in Figure 5.4.

Figure 5.4: New configuration of the OPO source.

Figure 5.4 shows that the input stage (HWP, ISO, Telescope and Lens) is
now on the breadboard without interfering with the Signal beam path. With
this configuration the input stage optics are mounted on smaller pedestals
(6.5 cm) than before (12.5 cm), ensuring a better stability. This solution has
been implemented recently, Figure 5.5 shows the result.
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Figure 5.5: Photo of the OPO cavity with the compact solution. In red is
represented the Pump beam while in brown the Signal beam.
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Appendix A

Alignment Procedure

The alignment procedure can be divided in two parts:

• Input Pump beam alignment

• Resonator alignment

The first part consists in aligning all the optical elements present before
entering the resonator, the second part consists in aligning the cavity in
order to obtain lasing.

A.1 Input

As with any alignment procedure it is good practice to ensure the input
beam is traveling parallel to the surface of the optical table at a convenient
height (here 125 mm), and is also traveling along a set of holes in the table
which act as a convenient reference line. This was carried out using a pair
of steering mirrors. It is also good practice to attenuate the Pump beam to
reduce the potential both for damaging the optics as they are inserted into
the beam line and for safety concerns. A sketch of the Input stage is shown
in the Figure A.1.
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Figure A.1: Input Pump beam path before entering the cavity.

The following optical elements are listed in Figure A.1:

• Two steering mirrors

• Two irises (IR1 and IR2)

• An Half-Wave Plate (HWP)

• An optical isolator (ISO)

• A 2x telescope (f1 = 50mm and f2 = 100mm)

• A lens of f = 100mm for focusing the Pump into the crystal

• A 60 mm high Breadboard in gray where the OPO resonator was set

The beam exiting the Pump source was at an height of 120 mm, using the
two steering mirrors a 125 mm height was obtained for the beam: this height
was chosen because all the other optical elements present on the optical table
were at that height. In order to be always aligned and at the right height
two irises were put on the beam path, these elements will be the reference
for aligning all the other optical elements.
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After having put the irises, it was the turn of the HWP and of the ISO.
The first step was to optimize the direction of the ISO polarizers in order
to obtain an horizontal polarization of the Pump after the ISO itself. As it
was mentioned in the Cavity Subsection of the Second Chapter, the Pump
beam exiting the Chameleon source is horizontally polarized and after the
sequence of the HWP and of the ISO must be horizontally polarized again.
In order to obtain one of the two ISO polarizers exactly on the horizontal
direction, the ISO was rotated until the transmitted power was optimized.
This solution is supported by the fact that the Pump beam polarization it
was already horizontal and it was used as a reference while aligning the ISO
polarizers. In this way it was sure that one polarizer of the ISO was at 45◦

and the other was horizontal. Then it is important to set the right angle for
the HWP crystal. In fact, before entering the ISO, a 45◦ precise polarization
of the Pump beam (this is important in order to avoid losses of the Pump
through the ISO) is needed. This was obtained by maximizing the Pump
power after the HWP-ISO sequence while the angle of the HWP was varied
(the ISO has the input polarizer at 45◦ and the output polarizer horizontal).
All these procedures were done taking into account that the beam has to
pass through the irises.

The remaining optical elements were put on the optical table, except the
focusing lens, making sure that the distance between the two lenses of the
telescope was right (150 mm) in order to obtain a collimated beam.

A.2 Resonator

The next step is to align the OPO resonator, taking into account that the
focusing lens of the Input Part must be placed just before putting the crystal
inside the resonator. The figure below shows the resonator’s elements on
their position on the 30x60cm breadboard.

In Figure A.2 M1 is the resonator’s input mirror, M5 is the OC and
M3/M4 are the folding mirrors. After the Input Part alignment is done, the
Pump beam is horizontally polarized and is traveling straight at a height of
125 mm. It was decided to use a 60 mm high BreaBoard in order to avoid
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Figure A.2: Sketch of the resonator geometry in scale, having fixed a 30x60cm
breadboard as the maximum space possible.

the use of high optical mounts that are very unstable; in this way the optical
mounts were 65 mm high, allowing a better stability of the resonator in
terms of mechanical vibrations.

The first step was to position the curved mirror M2, which was mounted
on a translation stage that moved along the direction of the Pump beam. The
height of the mirror mount was adjusted so that Pump beam was incident
with the center of the half-inch mirror optic. The mirror mount assembly
was then secure to the optical bench, leaving sufficient space for the crystal
mount, for the second curved mirror and for the Pump lens assembly. A
piece of white card was placed over mirror M2 and marked with a cross, so
that the Pump beam fell on the center of the cross. This fixed reference was
used to monitor how the Pump beam deviated as each additional element
was added to the beam path.

The second step was to bring the input curved mirror M1 at about the
right position relative to the center of the breadboard. It’s important that the
Pump beam has to pass through the center of both the two curved mirrors.

The third step was to position the Pump focusing lens. The lens had a
focal length of 100 mm and was located on a translation stage. The Pump
beam was blocked while the lens assembly was secured to the optical bench.
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The Pump beam was then unblocked, producing a large spot on the piece
of card attached to mirror M2. If the lens was correctly positioned in the
horizontal and vertical direction relative to the Pump beam then this large
spot was centered on the cross on the white card. The angular alignment of
the lens was not critical; however it is good practice to align it orthogonally
to the Pump beam to reduce losses. While these three steps are in action it
is important to heat the crystal, in order to have it at the right temperature
for the fourth step.

The fourth step was to bring the PPLN crystal into the correct position
relative to the Pump curved mirrors. The crystal was orientated so that
the two end-faces were as orthogonal as possible to the Pump beam. The
translation stages of mirror M2 and of the crystal were then moved until
the distance between the mirrors and the crystal surfaces were respectively
50,37 mm and 50,37 mm. This was achieved by cutting a piece of card to
the correct length and tapering the ends to produce a measurement tool.
Gently placing the card against the surface of the crystal, mirror M1/M2
was slowly brought into place until it touched the card. When the Pump is
unblocked, after having selected a grating form the crystal, visible frequency
doubling of the pump (780 nm) to its second harmonic (390 nm) is observed.
The intensity of the second harmonic beam was increased by moving the
focusing lens translation stage, and provided a good visual approximation
of the position of the focal spot within the crystal. The angle of the crystal
was altered until the Pump reflections from the crystal surfaces straddled
the centers of the curved mirrors.

The final step was to place the resonator’s mirrors M3, M4, M5 and M6
in the correct position. Matlab calculations had determined that the correct
distance required to match the Pump cavity length was 1873 mm. In order to
have a 6◦ angle between the mirror M1/M2 and mirror M3/M4 the optimal
distance was calculated using the theorem of Pythagoras, taking into account
the space available on the breadboard. Mirrors M5 and M6 were then placed
at the right distance from mirrors M3 and M4 respectively. The white card
was removed from mirror M2 and the blue SHG beam steered through the
resonator’s mirrors. A movable iris was then set inside the resonator in order
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to align the coming-back rays from mirrors M5 and M6. The HR coating
for the OPO mirrors and crystal input surface was sufficiently reflective
at 390 nm that the generated SHG was visible for the round trip of the
resonator. The blue beam was steered through the first arm of the resonator
(mirrors M3 and M6), making sure with the movable pinhole that the beam
was overlapping itself during the return trip of this arm. Before making
the same alignment procedure on the other arm of the resonator (mirrors
M4 and M5), it is important to overlap the blue ray coming back from the
first arm with the Pump beam and the crystal reflection on mirror M1: this
situation ensures that the beam is going straight in the resonator and that
is spatially overlapped with the Pump. Now it’s possible to proceed to the
second arm alignment, checking that on mirror M5 the round-trip ray and
the back-reflected ray from the first surface of the crystal are overlapped
(can be monitored by blocking and opening in sequence the first branch of
the resonator). At this point the attenuation was removed from the Pump
beam and the iris was removed from beam line, noticeably increasing the
SHG brightness.

The resonator’s length could now be altered until oscillation occurred. The
lab was darkened and the translation stage attached to M5 was moved. At the
point of resonator’s length synchronicity a flash of color could be observed: a
result of various second harmonics and frequency mixing outputs between the
Pump, Idler and resonant Signal beams. Once the correct resonator’s length
was established and the visible colors generated, the resonator’s alignment
was optimized by moving the beam using mirrors M5 and M6. Optimization
was performed to maximize Signal output power using an optometer.
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