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Riassunto

Gli attuali compilatori evitano analisi che richiedono algoritmi ad alta

complessità. Al fine di permettere una veloce compilazione alcune delle

ottimizzazioni possibili grazie a queste più costose analisi vengono sac-

rificate. Per esempio nelle GCC Developer Guidelines è espressamente

vietata l’introduzione di algoritmi di complessità quadratica o peggiore

in aggiunta ai necessari già presenti. Al contrario i software per l’analisi

statica e per la verifica formale del codice sono in grado di generare

informazioni di alta precisione al costo di algoritmi di complessità mag-

giore. In questa tesi descriviamo come poter ottenere un compilatore

che sia in grado di migliorare alcuni aspetti della compilazione facendo

uso delle informazioni esterne provenienti da strumenti per la verifica

formale e l’analisi del codice. Abbiamo focalizzato l’attenzione sull’uso

di queste informazioni sia per migliorare le già esistenti ottimizzazioni

del codice, sia per ridurre il costo nel garantire che il codice sia esente

da vulnerabilità di sicurezza di tipologia buffer overflow. Il nostro pro-

getto Aruna è stato sviluppato usando l’infrastruttura LLVM e si propone

come target programmi scritti in C. Inserendo annotazioni nel codice

sorgente, Aruna utilizza gli invarianti forniti da tool esterni permetten-

done la propagazione successiva sino al back-end del compilatore al fine

di migliorare il processo di compilazione. Questo lavoro ha lo scopo di

realizzare il pezzo mancante fra gli attuali compilatori e gli strumenti di

analisi esterni. Proprio per questo il framework Aruna è stato sviluppato

in maniera modulare in modo da permetterne un utilizzo futuro con an-

notazioni provenienti da diversi tipi di tool esterni e per ottimizzazioni

diverse in aggiunta a quelle trattate in questo scritto.



Abstract

Current compilers typically avoid high-complexity analysis algorithms.

For the sake of a fast complication they eschew high-precision analy-

sis that may compromise optimizations. For instance, the GCC Devel-

oper guidelines prohibits the introduction of even quadratic algorithms

into the compiler code. However, current static analyzers and formal

verification tools are able to produce high-precision informations using

high-complexity algorithms. In this work we focus on how the infor-

mations manually provided by the developer, by crowd source formal

verification or by static formal verification tools can be used to help the

compilation process. The work described in this thesis aims at obtaining

a compiler that performs optimizations based on high-precision analy-

sis obtained with tools for static analysis and formal verification. Our

framework Aruna is a project whose goal is to obtain this for C pro-

grams compiled using the LLVM infrastructure. Aruna is built on top

of the LLVM architecture and can be useful to software developers as it

will improve performance while significantly enhancing security. Using

source instrumentation, Aruna augments a given program with exter-

nally supplied assertions. Subsequently, a modified front-end of LLVM

propagates these invariants to the optimization back-end. We therefore

view our approach as providing a crucial piece that is missing from cur-

rent production compilers. The framework modularity ensures a future

use with external annotations coming from different tools and for differ-

ent improvements on the back-end side.





Chapter 1

Introduction

Many programming tools can help the programmer during the appli-

cation development. Among them there are tools used to test program

correctness, tools for program safety and tools for code optimization and

transformation.

During the transformation of the source code into a target language

compilers enable the code generated to work more efficient and use

fewer resources. In addition they can also be used to enable program

safety by inserting run-time checks to avoid common security flaws. Cur-

rent compilers typically avoid high-complexity analysis algorithms. For

the sake of a fast complication they eschew high-precision analysis that

may compromise optimizations. For instance, the GCC Developer guide-

lines prohibits the introduction of even quadratic algorithms into the

compiler code [15].

Formal verification tools can be helpful in proving the correctness of

software expressed as source code. They allows to verify that the source

code complies with a provided formal specification. These tools imple-

ment powerful analysis that can compute information automatically from

the source code of a program, allowing the programmer to verify that

the code satisfies a formal specification. This in turn, enables program

verification faster and less risky than code review. Much research was

done in program analysis in order to obtain formal proof of program be-

haviors. Unlike analysis implemented in compilers, this kind of analysis

has a high time and space complexity.

Programmers often insert runtime checks in their programs and build

assertion enabled version of their projects. This version is tested at run-

time and programmers expect the behavior of the program to comply

with the properties specified in those assertions before the code will be



removed in production.

In this work we focus on how the informations manually provided

by the developer, by crowd source formal verification or by static for-

mal verification tools can be used to help the compilation process. The

work described aims at obtaining a compiler that performs optimizations

based on high-precision analysis obtained with tools for static analysis

and formal verification.

Our framework Aruna 1 is a project whose goal is to obtain this for C

programs compiled using the LLVM infrastructure. Aruna is built on top

of the LLVM architecture and can be useful to software developers as it

will improve performance while significantly enhancing security. Using

source instrumentation, Aruna augments a given program with exter-

nally supplied assertions. Subsequently, a modified front-end of LLVM

propagates these invariants to the optimization back-end. We therefore

view our approach as providing a crucial piece that is missing from cur-

rent production compilers. The modularity of the framework ensures a

future use with external annotations coming from different tools and for

different improvements on the back-end side.

Thesis Organization. The dissertation is organized as follows:

We describe what we mean for annotated code, its major sources and

some of the basic compiler concepts needed to understand the design

choices of this work in Chapter 2.

The overview of the infrastructure that enables the propagation of as-

sertions and their use is described Chapter 3.

Chapter 4 describes in detail the framework implementation.

With respect to the normal LLVM infrastructure, in Chapter 5 we present

an evaluation of this work.

Chapter 6 discusses the limitations and future work, and we conclude in

Chapter 7.

1Aruna is the Charioteer of the Sun in Hindu Mythology as well as a DC Comics

shapeshifter. The name was chosen to reflect the various shapes of annotations that will

be processed by the tool.
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Chapter 2

Background

Annotated code contains useful information that is often ignored by com-

pilers. These information may came from programmers, automatic an-

alyzers or crowd source tools. When these annotations are written in

a standard annotation language compilers may be instrumented to take

advantage of them. However this information needs to be propagated

inside the existing compiler architecture so that the back-end can make

use of them.

In this chapter we introduce the basic concepts underlying the rest of

this thesis. We will give a general overview of what we mean by program

annotation and the different sources of annotated code. We present a

taxonomy where the sources differs by the way they are generated in

Section 2.2. In Sections 2.2.1, 2.2.2 and 2.2.3 we inspect real world

sources of annotations. The main task of Aruna is the propagation of the

information inside the annotations to the back-end optimization passes,

where they can be used. This is the reason why in Section 2.4 we briefly

cover the necessary concepts of a compiler architecture that motivate

the design choices during the implementation of Aruna . To conclude

the background chapter in Section 2.4.2 we cover the building blocks of

Low Level Virtual Machine (LLVM) on top of which which our framework

is built.

2.1 Annotated Code

Programs may contain useful information that is often ignored by mod-

ern compilers. This information may be there as preprocessor directives,

for code debugging, for code documentation and organization or may be

the result of the analysis of an external tool. In general program anno-



tation refers to annotation either in Source Code (SC) or Intermediate

Representation (IR) with additional informations that does not affect the

semantic of the program. Usually these annotations are inserted as com-

ments, pragmas or special functions in the program SC or as metadata

information in the program IR.

2.2 Sources of annotated code

There are several sources of annotations that can be used to improve

compiler optimizations. We choose to classify them by the way they are

generated:

• Manually Generated : this kind of annotations requires the pro-

grammer to specify the information inside the program SC.

The programmer is responsible for the correctness of the informa-

tion contained in each specified annotation.

• Automatically Generated : this kind of annotations comes from anal-

ysis programs and does not require any human effort during the

generation of the annotated code. They can be generated both

inside the program SC or IR.

The correctness of the information contained in each annotation

relies on the correctness of the program analysis and its imple-

mentation.

• Crowd Generated : this last kind of generation is somewhat in be-

tween manual and automatic generation but does not require any

effort from the programmer. It relies on humans generating for-

mal proved annotations by means of software tools. Therefore the

program annotation is crowdsourced. These tools may not directly

expose the program to the user, for example they may show an

equivalent model with a different representation.

The correctness of the information contained in the annotation re-

lies on the correctness of the tool used by the crowd of human

annotators.

Real example of annotations are the ones coming from the programmer

itself, Crowd Source Formal Verification (CSFV) and program analyzers

based on abstract interpretation and lazy abstraction. In the next sub-

sections we are going to give some examples of program annotation and

their corresponding annotated code.
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2.2.1 Programmer’s annotation

Developer’s annotation are usually inserted in the code in order to sup-

port the software design and to test the correct program behavior.

Common annotations that can be used to improve optimizations are the

ones coming from the design by contract paradigm, debug functions and

preprocessor directives. We will see them in detail in the following sub-

sections.

Design by contract

Software designers commonly define formal, precise and verifiable in-

terface specifications for software components, which extend the ordi-

nary definition of abstract data types with preconditions, postconditions

and invariants. In languages such as Eiffel [16] it is part of the design

process and required in the implementation.

Listing 2.1 presents a trivial C example showing a precondition that

can be used to remove an if-else statement.

Listing 2.1: Precondition useful for optimization

1 /*@
2 requires x > y;
3 requires y > 0;
4 */
5 int foo(int x, int y){
6 if ( x > 0 ){
7 return x+y;
8 }
9 else {

10 return -1;
11 }
12 }

Assertions

An assertion is a predicate (a statement containing a boolean expres-

sion) placed in a program to indicate that the developer believes the

predicate to hold when control reaches this location. An assertion that

evaluates to false at run-time typically causes execution to abort. Usu-

ally, developers expect the behavior of the program to comply with the

properties specified in those assertions, so that code can be removed in

production. The correct execution of the program relies on these prop-

erties, therefore they may be used to improve code optimizations.
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In Listing 2.2 we present a trivial C example showing an assertion

that can be used to remove an if-else statement.

Listing 2.2: Assertion useful for optimization

1 int foo(int x, int y){
2 assert( (x > y) && (y > 0) );
3 if ( x > 0 ){
4 return x+y;
5 }
6 else {
7 return -1;
8 }
9 }

Pragmas

The #pragma directive is the method specified by the C standard for

providing additional information to the compiler, beyond what is con-

veyed in the language itself. The basic form of a pragma is showed in

Listing 2.3.

Listing 2.3: Basic Pragma Form

1 #pragma token-string

The #pragma directives offer a way for each compiler to offer machine-

and operating system-specific features while retaining overall compati-

bility with the C, Objective-C and C++ languages. For instance GCC

has some function-specific option pragmas [22] and loop-specific prag-

mas [23]. An interesting set of pragmas that are currently supported by

LLVM are the Open Multi-Processing (OpenMP) pragmas. OpenMP uses

a portable, scalable model that gives programmers a simple and flexible

interface for developing parallel applications for platforms ranging from

the standard desktop computer to the supercomputer. The example in

Listing 2.4 shows a section of code that is meant to run in parallel and

is marked accordingly with a preprocessor directive that will cause the

threads to form before the section is executed.

Listing 2.4: OpenMP Pragma Example

1 ...
2 const int N = 1000;
3 int i, array[N];
4

5 #pragma omp parallel for
6 for (i = 0; i < N; i++)
7 array[i] = i * 3;
8 ...

Currently the definition of new pragmas inside LLVM is cumbersome

as mentioned in An experimental framework for Pragma handling in

6



Clang [24]. This is why in our implementation we will use an alternative

way to propagate the annotations without the use of pragmas.

2.2.2 Crowd Source Formal Verification

Nowadays crowd-sourcing problems that are hard to analyze seems to

be a promising idea. Many interesting applications [1] such as Open-

StreetMap and Recaptcha rely on volunteer work to solve complex anal-

ysis.

An example of crowd annotation generation is CSFV [9], a program

that seeks to make formal program verification more cost-effective by

reducing the skill set required for verification. An automated game-

level builder transforms the program verification models into compelling

games. The CSFV annotation process is shown in Figure 2.1.

Figure 2.1: Crowd source formal verification

A particular game instance is a function of the program verification tool,

the property to be verified and the program being verified. Each game

instance is released to the crowd, either via the Web or through internal

domain distribution. Game solutions collected in this way are then used

to populate a database.

A reverse mapping is done to insert back into a program annotations

sufficient to allow a verification tool to make progress toward verifying

a specific program property.

The process of rigorously analyzing software to detect flaws that

make programs vulnerable to exploitation requires highly skilled engi-

neers with extensive training and experience. This makes the verifica-

tion process costly and relatively slow. An example of a real world ap-
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plication of CSFV is the Verigames game collection [25]. Verigames seeks

to replace the intensive work done by the domain experts by greatly

decreasing the skill required to do Formal Verification, and therefore al-

low more people (who do not need to be domain experts) to perform the

analysis in a more efficient manner. By creating fun and engaging games

that represent the underlying mathematical concepts, they empower the

non-experts to effectively do the work of the formal verification experts

simply by playing and completing the game objectives.

Figure 2.2: Verigames

For instance in the game Xylem [26] the player is an experienced

botanist with the goal of identifying and cataloging Miraflora’s plant life

using skills in observation and problem-solving. The player has to in-

sert information about the growth phase of flower species that are true

in every growth phase shown in the game instance. An example of a

particular game instance is shown in Figure 2.3.

Figure 2.3: Xylem Game Instance
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Here the the number of flowers of the two specimens are related by a

particular equation. The player may notice that the growth of the flower

follows a sum of arithmetic progression terms Sn = n
2(2a1+(n−1)∗d) and

submit it as shown in Figure 2.4.

Figure 2.4: Xylem Game Solution

Eventually a feedback about the quality of his solution is shown to the

player that gets his reward in terms of game points as in Figure 2.5.

Figure 2.5: Xylem Game Feedback

9



2.2.3 Program Analyzers

Program analyzers automatically analyze the behavior of programs. They

are able to generate informations that can be automatically inserted in

the program SC or IR. Different program analysis, such as weakest pre-

condition calculus and value analysis, can be helpful both for testing the

correctness of a program and for optimizing it. In addition, these tools

can aid developers debugging.

The input program is usually parsed using a custom-built front end

that performs pointer analysis, heap modeling, slicing, constant folding

and numerous simplifications to construct a Control Flow Graph (CFG)

model of the program. Program analyzers may exploit different theories

in order to accomplish the task of verifying a certain property or obtain-

ing a certain information. The two main theories on which the most of

the program analyzers are based are Abstract Interpretation and Lazy

Abstraction. In the next subsections follows a brief description of them.

Abstract Interpretation

Abstract Interpretation is a theory of sound approximation of the se-

mantics of computer programs, based on monotonic functions over or-

dered sets (such as lattices). It can be viewed as a partial execution of

a computer program which gains information about its control-flow and

data-flow without performing all the calculations. Symbolic Execution, a

specific case of Abstract Interpretation, analyze a program to determine

what inputs cause each part of a program to execute. An interpreter

follows the program, assuming symbolic values for inputs rather than

obtaining actual inputs as normal execution of the program would. It

thus arrives at expressions in terms of those symbols for expressions

and variables in the program, and constraints in terms of those symbols

for the possible outcomes of each conditional branch.

Lazy Abstraction

Lazy abstraction is a theory based on the abstract-check-refine paradigm.

It consist of three phases: build an abstract model, then check the de-

sired property, and if the check fails, refine the model and start over.

10



It basically cycles through the following loop:

1. Abstraction a finites et of predicates is chosen, and an abstract

model of the given program is built automatically as a finite or

push-down automaton whose states represent truth assignments

for the chosen predicates.

2. Verification The abstract model is checked automatically for the

desired property. If the abstract model is error-free, then so is

the original program (the correctness proof ends) otherwise, an

abstract counterexample is produced automatically which demon-

strates the property violation.

3. Counterexample-Driven Refinement : It is checked automatically if

the abstract counterexample corresponds to a concrete counterex-

ample in the original program. If so, then a program error has been

found (then the program proven incorrect) otherwise, the chosen

set of predicates does not contain enough information for proving

program correctness and new predicates must be added.

4. Loop-Back : go to step 1.

Lazy abstraction continuously builds and refines a single abstract model

on demand, driven by the model checker, so that different parts of the

model may exhibit different degrees of precision, namely just enough to

verify the desired property.

C program verification tools such as BLAST [29], Frama-C [28], F-Soft [27]

are based on these theories and employ SMT solvers to produce precise

(inductive) invariants. In Chapter 3 we will describe Aruna , a frame-

work that uses the invariants coming from Frama-C Value Analysis (that

relies on Symbolic Execution) in order to improve the compilation pro-

cess.

2.3 Annotation Languages

By annotation languages we mean program behavioral specification lan-

guages. An annotation language should be able to express a wide range

of functional properties.

As an example Java has a syntax [31] for declaring annotation types, a

syntax for annotating declarations, APIs for reading annotations, a class

file representation for annotations and an annotation processing tool.
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As we said before, these annotations do not directly affect program se-

mantics, but they do affect the way programs are treated by tools and

libraries, which can in turn affect the semantics of the running program.

Annotations can be read from source files, class files, or reflectively at

run time. When Java source code is compiled, annotations can be pro-

cessed by compiler plugins called annotation processors. Processors can

produce informational messages or create additional Java source files or

resources, which in turn may be compiled and processed, and also mod-

ify the annotated code itself. The JVM or other programs can look for

the metadata to determine how to interact with the program elements

or change their behavior.

Annotation languages can be generally classified by their purposes:

• Organization Languages: they can be used by the programmers

to better organize a code base. For example the #pragma mark

directives in Objective-C is useful in helping the XCode IDE in or-

ganizing the class methods. When the programmer has an applica-

tion with classes with more the ten method definitions, it is a very

good idea to use #pragma mark directives so that the code looks

neater and more organized.

• Syntactic Languages: they can be used to mark some portion of the

source code in order to help the syntactic checks and reduce pro-

grammer’s errors. An example can be the Java annotations @Dep-

recated, @Override and @SuppressWarnings.

• Specification Languages: they can be used to specify properties

about the code. Specification languages are generally not directly

executed. They are meant to describe the what, not the how. Usu-

ally there is a broad range of annotations that can be specified

with those languages. For instance the ANSI/ISO C Specification

Language (ACSL) language supports in-function annotations (as-

sertions, loop invariants, ghost code, ...), function annotations (pre-

conditions and postconditions) and global annotations (predicates,

logic functions, type and global invariants, ...).

• Specific Application Languages: they are less general and are used

to annotate the code so as to help a specific program analyzer or

verification tool.

Standard annotation languages such as the ACSL [13] for C and the Java

Modeling Language (JML) [18] for Java are widely used during software
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development. In addition annotation languages offer a standard infor-

mation representation that can be also used by program analyzers both

as an input to verify properties and as an output to insert additional in-

formation in the code. The use of a standard annotation language in our

framework makes it easier to support a broad range of annotations by

means of a well defined specification. Since Aruna targets C programs

it will rely on the ACSL language as an interface for the input invariants

coming from external analyzers.

2.4 Compiler Architecture

A typical compiler structure is composed of two subsystems, the front-

end and the back-end. This structure is shown in Figure 2.6.

The intermediate representation is independent of the specific source or

machine languages and acts as an interface between the front-end and

back-end.

Figure 2.6: Typical compiler structure

The major advantage of this split is that it is easier to design back-ends

that are independent of input source language and vice-versa for front

ends with respect to machine properties: suppose there are N target

source languages and M target machines. This approach allows for N +

M (front-end , back-end) pairs instead of N × M whole compilers for

every (source language, machine) pair. The goal of our framework is to

exploit the same principle to be more general and reusable as possible

between different annotation sources and back-end optimizations. The

choice of a standard annotation language discussed in Section 2.3 will

act as an interface, as the IR does between the back-end and the front-

end. The goal of our framework will be to be the bridge between the

annotation in the SC and IR used in the back-end. The detail about the

propagation architecture is shown in Chapter 3.

While reading this dissertation you will find lots of C SC to LLVM IR

examples. The basic LLVM IR concepts are highlighted in Section 2.4.1.

Section 2.4.2 describes the basic modules of the LLVM architecture used

in our framework.
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2.4.1 Static Single Assignment Form

The Static Single Assignment (SSA) form [19] is a property of an interme-

diate representation, where each variable is assigned exactly once. Ex-

isting variables in the original IR are split into multiple variables. These

new variables typically indicated by the original name with a subscript

in textbooks [17], so that every definition gets its own version. However,

as we will see in later code examples, in LLVM they usually take the

name of the operation that is performed. This form usually simplifies

data-flow analysis and program optimizations and reduces the space and

time complexity needed while following def-use chains.

In Listings 2.5, 2.6 and 2.7 follow a simple example of code translated

into SSA form.

Listing 2.5: SSA Example

1 ...
2 x = y * z;
3 y = x + 3;
4 x = y + 4;
5 z = y * 5;
6 x = x + z;
7 ...

Listing 2.6: SSA Example Textbook IR

1 ...
2 x1 = y1 * z1;
3 y2 = x1 + 3;
4 x2 = y2 + 4;
5 z2 = y2 * 5;
6 x3 = x2 + z2;
7 ...

Listing 2.7: SSA Example LLVM IR

1 ...
2 %mul = mul nsw i32 %y, %z
3 %add = add nsw i32 %mul, 3
4 %add1 = add nsw i32 %add, 4
5 %mul2 = mul nsw i32 %add, 5
6 %add3 = add nsw i32 %add1, %mul2
7 ...

Usually compilers first convert the program into an IR SSA form, then

perform the optimization passes and eventually they translate the IR

into machine code.
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2.4.2 LLVM

Since in our implementation we are using program written in C as bench-

marks we choose to target the LLVM Architecture [2] [10]. The LLVM

Project is a collection of modular and reusable compiler tools. In this

work we show how we modified both the LLVM Core and the SAFECode

project (that is built using the LLVM compiler infrastructure) so to re-

duce the trade-off between security and execution time of a compiled

program and improve current compiler optimizations.

Here it follows a brief description of the main LLVM tools and concepts

used in Aruna :

• Clang [14] is C, C++, Objective C and Objective C++ front-end for

the LLVM compiler. It can be use to emit LLVM IR that can be later

used to optimize and compile the code.

• LLVM IR [7] is a SSA based representation that allows many source

languages to be mapped to them. It is the common code represen-

tation used throughout all phases of the LLVM compilation strategy

and acts like an interface between the LLVM Core Passes.

• LLVM Core [20] are a set of libraries that provide a modern source-

independent and target-independent optimizer, along with code

generation support for many CPUs. These libraries are built around

the LLVM IR. Optimizations are implemented as Passes [11] that tra-

verse some portion of a program (such as functions, loops and ba-

sic blocks) to either collect information or transform the program.

• SAFECode [6] project is a memory safety compiler built on top of

LLVM. It is used to prevent the compiled program from having se-

curity flaws so as to protect software from security attacks. Specif-

ically it instruments code with run-time checks to detect memory

safety errors (e.g. buffer overflows) at run-time.
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Chapter 3

Approach

This chapter describes the Aruna framework architecture and some of

its applications showing how the tool can be used to help the compilation

process.

Figure 3.1: Aruna Propagation Framework Architecture

The basic idea behind our approach is to instrument the program

source with annotations. This is done to facilitate the processing of an-

notations by the rest of the compiler toolkit. Figure 3.1 shows the basic

architecture of Aruna . The input to the tool is a C source program and

a list of assertions produced by any static analysis tool. These anno-

tations are expressed in ACSL, a specification language that supports

a wide variety of annotations. A custom CIL-based [30] rewriter visits

each instruction and injects annotations specific to that instruction be-

fore and/or after the instructions, resulting in a C source code annotated

with assertions.

The annotated source is then passed on to Clang, the front-end of

the LLVM compiler, whose role is to translate the C source into LLVM

IR. Aruna augments Clang so to bind the assertions of the C source

into the LLVM IR. Obviously, the annotations should appear in the right

locations and refer to the right variables.



There are several challenges in accomplishing this, including:

• Language Heterogeneity. The annotations are produced for the C

source, and are to be mapped into the LLVM IR so to allow their

use by LLVM. This requires careful manipulation of the assertions.

• Scope Resolution The annotations may appear in a specific scope

and use variables that are alive in a different scope, therefore

scope resolution across different basic blocks in the LLVM IR is

also required.

• Information Preservation. As the compiler performs its passes, the

assertions captured by the annotations need to be modified to re-

flect the changes in the IR. Aruna has to propagate the annotations

so that they always carry all the correct and relevant information.

These challenges are addressed by a Variable Mapping Pass that run

immediately run after the first Clang translation to LLVM IR (we can

see it the final step of the front-end phase). This pass translates the

annotations referring to the source code to annotations referring to the

LLVM IR, so that they can be finally used by the general optimization

framework of LLVM. In Sections 3.3.2 and 3.3.3 we give an overview of

these framework applications.

3.1 Goals and challenges

We seek to demonstrate how the annotations in the source code can be

used during the compilation process and how to achieve better code per-

formances by relying on them. We are not concerned with time of the

compilation process. Of course, the generation of code with annotation

can take time and analysis algorithm can have an high complexity, how-

ever here we are only focusing in taking advantage of already annotated

code (that can come from different sources as seen in Section 2.2).

In order to test our approach we used the formal verification tool for

C programs Frama-C [3]. In particular we use the results of Frama-

C’s Value Analysis [4] plug-in and embedding these results in the source

code. To make our framework more general and highly reusable we are

supporting annotations written in the standard ACSL, so that our back-

end can use also information from different kind of analyses or sources.
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In addition we show how these achievements can be obtained in a real

world state-of-the-art compiler such as LLVM and in some real-world C

programs described in Section 4.1.2. We will see in detail in Chapter 4

how we are facing the challenge of plugging our annotation in the IR in

order to make them useful for optimization Passes.

3.2 Overview

The goal of the Aruna framework is to obtain a compiler that performs

optimizations based on high-precision analysis obtained with tools for

static analysis and formal verification. We are willing to enhance two

aspects of the compilation process: program security and performance.

In the next subsections we present an overview of the approach taken

to address these goals.

3.2.1 Lightweight Run-time Checks Injection

In order to strengthen security, the LLVM SAFECode Project is designed

to prevent pointers from overflowing from one memory object into an-

other by inserting run-time array bounds checks into the program code.

This prevents buffer overflows, one of the major mitre25 [12] vulnerabil-

ities. However, this comes at the cost of a trade-off between security

and code performance. In Section 3.3.2 we show how we used the in-

formation coming from program annotation to reduce the cost of this

trade-off.

3.2.2 Pushing Current Optimizations Forward

For efficiency’s sake, the existing optimizations rely on mostly linear,

rarely quadratic, analysis algorithm. This is especially true with the

advent of just-in-time compilation. For example in the GCC Developer

Wiki [15] there is specified not to add algorithms with quadratic or worse

behavior. Since we are relying on existing additional information that

can be generated by more powerful kind of analysis, we believe that this

information can be used for new optimizations or can improve already

existing ones. We will focus on modifying current LLVM optimizations.
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3.3 Details

In order to evaluate Aruna and to show some its applications we col-

lected some annotated code by means of running the Frama-C [3] ana-

lyzer on some benchmark C programs.

Since the LLVM back-end compilation process is accomplished by a se-

quence of passes iterations, in both the application of our framework

the compilation starts after a first annotation mapping pass that is run

before the normal passes sequence so as to make the annotations mean-

ingful and available to the later compilation passes. The following sub-

sections generally illustrates the basic modules of our two framework

applications and how they are chained together to achieve the desired

improvements.

3.3.1 Annotated Programs Generation

Frama-C has a plug-in called Value analysis [4] that computes variation

domains for variables. This plug-in uses abstract interpretation tech-

niques and it handles a wide spectrum of C constructs. The Frama-C

graphical user interface displays the inferred sets for possible values of

a variable in each point of the analyzed program. This plug-in give us

information about variables before and after the selected line of code.

A custom Frama-C plug-in captures the result from Value analysis plug-

in, log them in a separate file and then reinsert them in the original C

source code as ACSL annotations.

3.3.2 Lightweight SafeCode Pipeline

Since we need to associate each information about index of array ac-

cesses to the correct array access instructions, we created the pipeline

of passes showed in Figure 3.2. Information about the index in array

accesses might allow us to remove the check if the variable is always in

bounds.
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Figure 3.2: Lightweight SafeCode Pipeline

After the memory to register promotion a pass will map the array index

in the source code to the corresponding register in the IR. Then it will

attach a metadata with the information about the range of the register

used for the access (if any) to the instructions used for the access. The

later SafeCode passes are then modified so that these information are

used to the inspect each injection and to decide if the checks are really

needed or not.

3.3.3 LLVM New Optimizations pipeline

In order to push the information in the source code annotations through-

out the compiler architecture, we designed a pipeline of steps that is

showed in Figure 3.3.

Figure 3.3: LLVM new optimizations pipeline

20



The purpose of this pipeline can be summarized in the following steps:

• From source code to IR

The annotations placed in the source code as strings are trans-

lated by clang into the IR as global constant strings. An example

is showed in Listing 3.1.

Listing 3.1: String Annotation Example

1 @.str = private unnamed_addr constant [15 x i8] c"@assert k ==
1\00", align 1

For each instruction Clang inserts a debug information that is later

used during the following pipeline steps.

• Memory to Register

The string declared and defined in the source code is removed af-

ter the memory to register promotion, hence we are justified in

ignoring code size effects of the choice. However, the debug in-

formation is preserved at the same line of code where the strings

were declared and defined, hence we still have additional informa-

tion in the IR ready to be used.

• Mapping Annotation Variables to Registers

The annotations contain information about source code variables,

however at this stage of the pipeline the source code variables

are already associated to SSA registers. Our pass scans the de-

bug information in the IR and performs and update the annotation

variables accordingly to the correct mapping.

• Modified Constant Propagation

We modified the LLVM Constant Propagation Transformation Pass

so it depends on constant information from annotated source code.

• Modified Lazy Value Informations

We modified the LLVM Lazy Value Info Analysis Pass so to consider

constant and range information from the annotated source code.

• Run optimizations dependent on value analysis

We run both Correlated Value Propagation and Jump Threading

since that depend on the modified Lazy Value Info Analysis.

• Other LLVM Optimizations

We strip the all the debug information and run the "normal" LLVM
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optimizations to obtain the optimized code. These later optimiza-

tions can also benefit by the improved modified optimizations and

make more effective changes.

The choice of the passes order is a constraint due to the propagation

of the annotation information throughout the transformation passes. In

Chapter 6 we describe how to remove this constraint.
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Chapter 4

Implementation

The goal of our framework Aruna is to propagate invariants coming from

external annotation sources during the LLVM front-end compilation so

as to make them available to the back-end passes. In order to be ready

for future applications Aruna relies on a ACSL flex/bison parser wrapped

in a C++ driver that can be easily extended to handle complex annota-

tions. Aruna is built on top of the LLVM architecture and can be used

both with the normal LLVM installation or with other projects built on

top of LLVM. This is why we evaluated our framework by using the ex-

ternal information coming from the Frama-C program analyzer both in

the normal LLVM compilation process and in the SafeCode project com-

pilation.

In this chapter we are going to present the most interesting details about

the implementation of this work. We are going to explain how the an-

notated code was generated, the different components of the SafeCode

and optimization pipelines and some insights about how the engineering

hurdles where handled.

4.1 Annotated Code Data Collection

Here we present how we are automatically generating some C programs

with annotations to test our approach. The framework can take every

program already annotated (also manually) and trust the additional in-

formation coming from the annotations to improve the existing optimiza-

tions. In our application we rely on the external invariants proven by

Frama-C. In subsection 4.1.2 we present an overview of the benchmark

programs used to evaluate the framework applications.



4.1.1 Frama-C Annotations

Frama-C annotations are only available via the GUI interface. To bring

these information into the source code, we implemented a Frama-C plug-

in to perform the work.

This plug-in visits every assignment and function call instruction in

the AST tree in Frama-C, extracts all variables and queries the value

analysis plug-in for each variable to get the possible values. In this work

we are only interested in constant and range bounds of a variable, we

ignored other information of complex variables such as structs, arrays

or pointers. Since the Clang front-end discards comments, Aruna needs

to use an annotation format that is not removed by Clang. This informa-

tion is inserted as string in ACSL language into the C source code via

a dummy string variable before and/or after the inspected instruction

whenever the information from the Value Analysis plug-in is available.

The variables are specially named so that they do not interfere with

the existing program variables. As the annotations are encoded as as-

signments to special variables, these annotations are propagated to the

LLVM IR by the Clang front-end compiler.

Frama-C merges multiple file into a single file. This will change the

multiple file programs structure and might causes compiling issues of

large programs. In order to handle multiple files programs we log the

value information into a file together with the location and type of in-

structions in original source file and then we inject the dummy string

variable matching the location and type of an instruction stored in the

log file via a custom CIL [21] plugin. Our CIL-based rewriter visits nodes

in the abstract syntax tree of program, and injects the provided annota-

tions as input into the corresponding nodes.

4.1.2 Benchmarks used

In order to evaluate this work we annotated some C programs using

the custom plugin mentioned in Section 4.1.1. Here it follows a short

description of the benchmarks used:

• CoreMark is a benchmark that aims to measure the performance

of CPU used in embedded systems. The code contains implemen-

tations of list processing (find and sort) and matrix manipulation

(common matrix operations) algorithms.
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• SUSAN is a benchmark that implements algorithms based on Small-

est Univalue Segment Assimilating Nucleus. The SUSAN algo-

rithms cover image noise filtering, edge finding and corner finding.

• MxM is a benchmark that computes matrix-matrix products in mul-

tiple different ways.

• Linpack is a benchmark that implements algorithms for vector sum,

vector product, scaling vectors by a constant, matrix factorization,

solving linear systems and random number generation.

• NEC-Matrix is a small benchmark that contains the implementa-

tion scalar product and some multiplication and addition over ma-

trices.

4.2 Pushing the annotations through the CLANG

front-end

The annotations inserted in the code as ACSL comments are ignored

and removed by the clang C front-end. Therefore, in order to keep this

information in the very first stages of the back-end compilation process,

the annotations are inserted in the C program as C strings. This choice

was made because since these strings are just dead code they will be

easily removed during later optimizations, hence it will not affect both

the code size of the output program and its performances.

4.3 The ACSL Parser

To the extent of handling different kinds of annotations and parse them

we wrote an ACSL parser that builds an Abstract Syntax Tree (AST) out

of every annotation string in input. For our purposes we are support-

ing only a small set of annotation, however the grammar can be easily

extended to support a broader variety of ACSL constructs.

4.3.1 ACSL Supported Subset

We are currently supporting preconditions (@requires), postconditions

(@ensures) and assertions (@assert) containing boolean expressions

about variable values. The supported grammar is showed in Appendix

A.
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In Listing 4.1 we present a simple assertion about variable ranges and

constant values:

Listing 4.1: Supported ACSL Example

1 @assert i>=0 && i<=10 assert j==0 assert k==1 || k==2

For the sake of this work this ACSL subset is sufficient, however the

parser can be easily extended to support new annotations coming from

other sources.

4.3.2 Parser Generation

The ACSL parser is an automatically generated using Flex (a scanner

generator) and Bison (a parser generator) tools. The reason to use these

tools is that the code generated by them requires no compile-time de-

pendencies, because they generate fully autonomous source code. In

addition we do not need to rewrite all the ACSL parser but we only need

to modify the files used from these tools to handle new ACSL constructs.

Therefore it will be really easier to augment the parser just by learning

how to use these common tools.

The output from the Flex scanner and Bison parser pair is encapsu-

lated into classes in order to incorporate it into a modern C++ program

as LLVM. Precisely the class that which puts together lexer and parser is

the Driver class. The Driver class is independent from the automatically

generated files and exposes methods to get the AST given as an input a

string, a file or a stream.

4.3.3 The ACSL AST

The diagram of the classes that compose the ACSL AST are shown in

Figure 4.1.

All the classes in the diagram implement the LLVM style Run-Time

Type Information (RTTI) that can be used to runtime check the gener-

ated structure of the AST. In addition the ACSLNode class has a few

methods useful for extracting the list of variables in the parsed annota-

tion and to rename them (we will see in Section 4.4 why we need variable

renaming).
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Figure 4.1: ACSL AST class diagram.

4.4 Mapping Source Code Variables to IR Vari-

ables

During the front-end compilation into LLVM IR every source code vari-

able declaration is associated a memory location. Every later access to

that variable is done via load and store instruction. However if we have a

nested scope with a variable name equal to the variable name in a scope

on top of that the two memory location will get two different names. In

Listings 4.2 and 4.3 we show the issue with a trivial example.
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Listing 4.2: Same Name Different Scope Example

1 int main() {
2 //this will be named %x
3 int x = 0;
4 char * a1 = "@assert x==0";
5 if ( x >= 0 ){
6 //this will be named %x1
7 int x = 1;
8 char * a2 = "@assert x==1";
9 }

10 return x;
11 }

Listing 4.3: Same Name Different Scope Example IR

1 @.str = private unnamed_addr constant [13 x i8] c"@assert x==0\00"
, align 1

2 @.str1 = private unnamed_addr constant [13 x i8] c"@assert x==1\00
", align 1

3 define i32 @main() nounwind ssp uwtable {
4 %1 = alloca i32, align 4
5 %x = alloca i32, align 4
6 %a1 = alloca i8*, align 8
7 %x1 = alloca i32, align 4
8 %a2 = alloca i8*, align 8
9 store i32 0, i32* %1

10 store i32 0, i32* %x, align 4
11 store i8* getelementptr inbounds ([13 x i8]* @.str, i32 0,

i32 0), ...
12 %2 = load i32* %x, align 4
13 %3 = icmp sgt i32 %2, 0
14 br i1 %3, label %4, label %5
15 ; <label>:4 ; preds

= %0
16 store i32 1, i32* %x1, align 4
17 store i8* getelementptr inbounds ([13 x i8]* @.str1, i32

0, i32 0), ...
18 br label %5
19 ; <label>:5 ; preds

= %4, %0
20 %6 = load i32* %x, align 4
21 ret i32 %6
22 }

In order to map the names of the identifiers in our annotations to the

correct names in the IR the ACSLVarMap Pass maps the variable to the

correct name using debug information inserted by Clang in the IR [8] (by

running clang with the -g argument). This pass is useful for every op-

timization that runs before memory to register promotion. In Section

4.4.1 we show how the mapping is done.

The most effective LLVM optimizations run after the PromoteMemory-

ToRegister Pass. This pass promotes memory locations to registers in

SSA Form and inserts φ functions. In order to use the information com-

ing from the annotations the ACSLVarMapAfterM2R Pass maps every

variable to the correct instruction name in the LLVM IR. In Section 4.4.2

we show how the mapping is done.
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4.4.1 ACSL Variable Mapping Pass

The ACSLVarMap Pass implements an algorithm that decodes the debug

information inserted by the front-end and uses them to map the variable

names in the source code to the correct memory locations in the IR. This

algorithm iterates three times over the function body.

Here follows the implementation details of the two loops:

• Naming Instructions Without Names:

Since our implementations relies on instruction names to map vari-

ables in the annotations a first loop assign to unnamed instruction

a fresh unique name.

• Gathering Debug Informations:

To every allocation instruction (resulting in the memory location

of the variable) corresponds a call to the llvm.dbg.declare function.

The signature is void %llvm.dbg.declare(metadata, metadata). This

intrinsic provides information about a local element (e.g., vari-

able): the first argument is metadata holding the allocation for the

variable, the second argument is metadata containing a descrip-

tion of the variable. In Listing 4.4 we show a simple example of

how it is translated simple int x = 0; C statement.

Listing 4.4: llvm.dbg.declare Example

1 %x = alloca i32, align 4
2 store i32 0, i32* %x, align 4, !dbg !19
3 ...
4 call void @llvm.dbg.declare(metadata !{i32* %x}, metadata

!18), !dbg !19
5 ...
6 !18 = metadata !{i32 786688, metadata !5, metadata !"x", ...
7 !19 = metadata !{i32 7, i32 0, metadata !5, null}

In this first loop that iterates over the instructions in every func-

tion, we store in a data structure all the information about:

– Source Code Name

– IR Name

– Source Code Scope

This mapping information will be used in the following loop.

• Collecting and Mapping Annotations:

To every string annotation in the source code corresponds an allo-

cation instruction, then a store with the corresponding string con-
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tent. In Listing 4.5 we show a simple example of how it is trans-

lated a simple char * a = "@assert y==100" C statement.

Listing 4.5: String Annotation Example

1 @.str = private unnamed_addr constant [15 x i8] c"@assert y
==100\00", align 1

2 %a = alloca i8*, align 8
3 ...
4 call void @llvm.dbg.declare(metadata !{i8** %a}, metadata

!22), !dbg !25
5 ...
6 store i8* getelementptr inbounds ([15 x i8]* @.str, i32 0,

i32 0), i8** %a, align 8, !dbg !25

Once we get the string content we parse it using the Driver Class

of the ACSL Parser. On the AST we get the list of the variables in

the annotations calling the getTreeVariables method on the root of

the AST. For every variable we solve the mapping using the data

structure created in the first loop.

In order to get the correct mapping we iteratively try to solve the

variable mapping in the same scope of the annotation, then if we

don’t find a candidate we start over in the outer scope of the cur-

rent one.

Finally we substitute the correct names in the AST calling the

changeTreeVariableName method. This annotations are then at-

tached as a string acsl_metadata to the corresponding IR instruc-

tions.

4.4.2 Handling Memory to Register Promotion

The LLVM PromoteMemoryToRegister Pass converts allocations to reg-

isters. An allocation is transformed by using iterated dominator fron-

tiers to place φ nodes, then traversing the function in depth-first order

to rewrite loads and stores as appropriate. It also propagates the con-

stant value of declarations immediately followed by a definition (i.e. int

x = 0;).

A simple example of the IR produced after the PromoteMemoryToRegis-

ter Pass is showed in Listings 4.6 and 4.7.
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Listing 4.6: Memory to Register Example

1 int main() {
2

3 int y=100;
4 int x=0;
5

6 char * a1 = "@assert x==0";
7 x = y + 1;
8 char * a2 = "@assert x==101";
9

10 return x;
11 }

Listing 4.7: Memory to Register Example IR

1 ...
2 @.str = private unnamed_addr constant [13 x i8] c"@assert x==0\00"

, align 1
3 @.str1 = private unnamed_addr constant [15 x i8] c"@assert x

==101\00", align 1
4

5 define i32 @main() nounwind ssp uwtable {
6 entry:
7 %add = add nsw i32 100, 1
8 ret i32 %add
9 }

In order to correctly map the identifiers in our annotations to the correct

registers the ACSLVarMapAfterM2R Pass should be run immediately af-

ter the PromoteMemoryToRegister Pass. The implemented algorithm

iterates three times over the function body.

Here follows the implementation details of the four loops:

• Naming Instructions Without Names:

As we have seen before since our implementations relies on in-

struction names to map variables in the annotations a first loop

assign to unnamed instruction a fresh unique name.

• Gathering Debug Informations:

The debug information is similar to the one in Section 4.4.1. The

difference is that in addition to the llv.dbg.declare calls we are also

keeping track of the llvm.dbg.value calls. The signature is void

%llvm.dbg.value(metadata, i64, metadata). This intrinsic provides

information when a user source variable is set to a new value. The

first argument is the new value (wrapped as metadata). The sec-

ond argument is the offset in the user source variable where the

new value is written. The third argument is metadata containing a

description of the user source variable. The example in Listing 4.6

after the PromoteMemoryToRegister Pass with debug information

is showed Listing 4.8.
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Listing 4.8: Debug Information in Memory to Register Example IR

1 ...
2 @.str = private unnamed_addr constant [13 x i8] c"@assert x

==0\00", align 1
3 @.str1 = private unnamed_addr constant [15 x i8] c"@assert x

==101\00", align 1
4

5 define i32 @main() nounwind ssp uwtable {
6 entry:
7 ;these debug information is about y and x
8 call void @llvm.dbg.value(metadata !10, i64 0, metadata

!11), !dbg !12
9 call void @llvm.dbg.value(metadata !2, i64 0, metadata

!13), !dbg !14
10

11 ;this debug info is about the first annotation
12 call void @llvm.dbg.value(metadata !15, i64 0, metadata

!16), !dbg !19
13

14 %add = add nsw i32 100, 1, !dbg !20
15

16 ;this debug information is about x
17 call void @llvm.dbg.value(metadata !{i32 %add}, i64 0,

metadata !13), !dbg !20
18

19 ;this debug info is about the second annotation
20 call void @llvm.dbg.value(metadata !21, i64 0, metadata

!22), !dbg !23
21

22 ret i32 %add, !dbg !32
23 }
24 ...
25 !2 = metadata !{i32 0}
26 ...
27 !10 = metadata !{i32 100}
28 !11 = metadata !{i32 786688, metadata !5, metadata !"y",

metadata !6, i32 3, metadata !9, i32 0, i32 0}
29 !12 = metadata !{i32 3, i32 0, metadata !5, null}
30 !13 = metadata !{i32 786688, metadata !5, metadata !"x",

metadata !6, i32 4, metadata !9, i32 0, i32 0}
31 !14 = metadata !{i32 4, i32 0, metadata !5, null}
32 !15 = metadata !{i8* getelementptr inbounds ([13 x i8]* @.

str, i32 0, i32 0)}
33 ...
34 !21 = metadata !{i8* getelementptr inbounds ([15 x i8]* @.

str1, i32 0, i32 0)}
35 ...

In each iteration of this first loop we store in a data structure all

the information about:

– Source Code Name

– IR Name

– Source Code Scope

– Basic Block

– Line of Code

This mapping information will be used in the third loop.

• Handling φ functions:

Registers associated to φ functions have no debug information (since
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they are not in the original code). However they still are important

because they can be the target name of a variable in our annota-

tions.

In order to handle φ functions we should update the data struc-

ture with other mapping information. The source code name is

obtained by looking at the arguments of the φ function. Then we

add the information in the data structure at the next line of code.

In addition if the source code variable is not redefined in the cur-

rent basic block we push at the beginning of the successors of the

current basic block the information about the analyzed φ function

in the data structure.

• Collecting and Mapping Annotations:

As we can see in Listings 4.6 and 4.7, the allocation and store

instruction that we were able to use before the PromoteMemory-

ToRegister Pass to catch the annotations strings are no longer in

the IR. Fortunately as we can see in Listing 4.8 we still have a

llvm.dbg.value call for each annotation string.

The retrieve annotation will be parsed as in Listing 4.4.1. The

only difference is in the algorithm to get the correct IR name map-

ping. We will search backward (looking for a smaller line number)

if there is a correct mapping information in the same scope and

basic block, if not, we will carry on backward searching in the pre-

decessor to the current basic block until we find a candidate.

4.5 Reducing SafeCode Checks

The LLVM BackendUtil class is modified to instrument the pipeline of

passes to be run before the already existing SafeCode Passes as previ-

ously showed in Figure 3.2. Using a modified version of the ACSLVarMa-

pAfterM2R Pass that we called SafecodeVarMap Pass we where able to

add metadata information to the GetElementPtr (GEP), load and store

instructions. This information can be later used in the later SafeCode

Passes to avoid to check formally proven secure accesses.

4.5.1 Adding information to GEP, LOAD and STORE instruc-
tions

If a variable that is inside an annotation is later used in the same ba-

sic block as an operand of a GEP, LOAD or STORE instruction, to each
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of these instructions will be attached a named acsl_safecode metadata

containing the annotation.

A simple example is showed in Listings 4.9 and 4.10.

Listing 4.9: Array Access Example

1 int main() {
2 int a[10];
3 int i=0;
4 char * a1 = "@assert i==0";
5 for( i = 0 ; i < 10 ; i++ ){
6 char * a2 = "@assert i>=0 && i<10";
7 a[i]=i;
8 }
9 return i;

10 }

Listing 4.10: Array Access Example IR

1 @.str = private unnamed_addr constant [13 x i8] c"@assert i==0\00"
, align 1

2 @.str1 = private unnamed_addr constant [21 x i8] c"@assert i>=0 &&
i<10\00", align 1

3

4 define i32 @main() nounwind ssp uwtable {
5 entry:
6 %a = alloca [10 x i32], align 16
7 call void @llvm.dbg.declare(metadata !{[10 x i32]* %a}, metadata

!10), !dbg !14
8 ...
9 br label %for.cond, !dbg !22

10

11 for.cond: ; preds = %for.
inc, %entry

12 %i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
13 %cmp = icmp slt i32 %i.0, 10, !dbg !22
14 br i1 %cmp, label %for.body, label %for.end, !dbg !22
15

16 for.body: ; preds = %for.
cond

17 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25), !
dbg !27

18 %idxprom = sext i32 %i.0 to i64, !dbg !28
19 %arrayidx = getelementptr inbounds [10 x i32]* %a, i32 0, i64 %

idxprom, !dbg !28
20 store i32 %i.0, i32* %arrayidx, align 4, !dbg !28
21 br label %for.inc, !dbg !29
22

23 for.inc: ; preds = %for.
body

24 %inc = add nsw i32 %i.0, 1, !dbg !22
25 call void @llvm.dbg.value(metadata !{i32 %inc}, i64 0, metadata

!15), !dbg !22
26 br label %for.cond, !dbg !22
27

28 for.end: ; preds = %for.
cond

29 ret i32 %i.0, !dbg !30
30 }

We are supporting accesses to arrays of fixed size created using state-

ments of the type "int array[10];" and "int * array = malloc(10 * sizeof(int));"

of any type.
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In addition, if the index of the access is the result of an expression

(for example "array[i*j+2]"), we are currently propagating the ranges

information to the SSA registers following the annotation in the same

basic block. This is done using simple interval operations described in

Appendix B.

The same is done for array whose size is the result of an expression

(for example "int array[i*j]"). The minimum size coming from the range

information propagation is used. This means that we are not injecting

the check only if the array index is in bound considering the smallest

size.

We are also keeping into account the sign extension of integer types

(SEXT) in order to attach the annotation to the correct GEP, LOAD or

STORE instruction. The sign extension is needed for example when we

are using in 32bit integer to access a 64bit indexed array.

The resulting modified IR code is shown in Listing 4.11.

Listing 4.11: Array Access Example IR After SafecodeVarMap

1 ...
2 %arrayidx = getelementptr inbounds [10 x i32]* %a, i32 0, i64 %

idxprom, !dbg !32, !acsl_safecode !30
3 store i32 %i.0, i32* %arrayidx, align 4, !dbg !32, !acsl_safecode

!30
4 ...
5 !30 = metadata !{metadata !"assert i.0 >= 0 && i.0 < 10\0A"}

In Listing 4.12 we show an example of how, by attaching these meta-

datas to the single accesses, we are be able to instrument with our addi-

tional information also statement with multiple array accesses in a single

line of code.

Listing 4.12: Multiple Array Access Example

1 ...
2 char * a1 = "@assert i>=0 && i<=10";
3 char * a2 = "@assert j>=0 && j<=5";
4 array[i] = array[i]+array2[j];
5 ...
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Listing 4.13: Multiple Array Access Example IR

1 ...
2 %array = alloca [10 x i32], align 16
3 %array2 = alloca [5 x i32], align 16
4 %idxprom = sext i32 %i to i64, !dbg !34
5 %arrayidx = getelementptr inbounds [10 x i32]* %array, i32 0, i64

%idxprom, !dbg !34, !acsl_safecode !35
6 %0 = load i32* %arrayidx, align 4, !dbg !34, !acsl_safecode !35
7 %idxprom1 = sext i32 %j to i64, !dbg !34
8 %arrayidx2 = getelementptr inbounds [5 x i32]* %array2, i32 0, i64

%idxprom1, !dbg !34, !acsl_safecode !36
9 %1 = load i32* %arrayidx2, align 4, !dbg !34, !acsl_safecode !36

10 %add = add nsw i32 %0, %1, !dbg !34
11 %idxprom3 = sext i32 %i to i64, !dbg !34
12 %arrayidx4 = getelementptr inbounds [10 x i32]* %array, i32 0, i64

%idxprom3, !dbg !34, !acsl_safecode !35
13 store i32 %add, i32* %arrayidx4, align 4, !dbg !34, !acsl_safecode

!35
14 ...
15 !35 = metadata !{metadata !"assert i >= 0 && i <= 10"}
16 !36 = metadata !{metadata !"assert j >= 0 && j <= 5"}

4.5.2 Modifying SafeCode to use the annotations

Once Aruna has handled the task of propagating the annotation through

the front-end and updating them to the correct IR registers, all we need

is to make use of them has we wish in our application. SafeCode has

two passes that can make use of them, therefore we augmented them so

as to consider the external value analysis information coming from the

annotations. The SafeCode InsertGEPChecks Pass and the visitLoad and

visitStore methods of the InstrumentMemoryAccesses Pass are modified

in a way that every time they are trying to insert checks for an out of

bounds access they will test if there is a metadata containing a variable

range or constant value. If the access using the GEP, LOAD or STORE

instruction is safe (the operand is in the bounds of the array length) we

can avoid to insert the check without loosing security margin.

4.6 Backend Optimizations

In this section we are analyzing existing LLVM optimizations and anal-

ysis and showing how to insert the additional information coming from

the existing annotations inside these Passes. These Passes runs after the

PromoteMemoryToRegister Pass so we need our ACSLVarMapAfterM2R

Pass to be run immediately after it and before the other Passes we mod-

ified. Another approach could also be writing new optimization Passes

from scratch based on these annotations.

Here we focus on the LLVM Simple Constant Propagation Transforma-

tion Pass and the Lazy Value Information Analysis Pass.
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4.6.1 Improving Simple Constant Propagation Transforma-
tion Pass

The Simple Constant Propagation Transformation Pass implements con-

stant propagation and merging. It searches for instructions involving

only constant operands and replaces them with a constant value instead

of an instruction. An example is showed in Listings 4.14 and 4.15.

Listing 4.14: Before Simple Constant Propagation

1 ...
2 add i32 3, 4
3 ...

Listing 4.15: After Simple Constant Propagation

1 ...
2 i32 7
3 ...

Since this pass could make definitions be dead the Dead Instruction

Elimination is usually run after it.

This Pass runs on every function, it first inserts all the instructions in a

work-list, then iterates on each of them and if their operands are con-

stant it change them and propagates them replacing them in all their

uses. A little code snippets is showed in Listing 4.16.

Listing 4.16: Simple Constant Propagation Implementation

1 while (!WorkList.empty()) {
2 Instruction *I = *WorkList.begin();
3 WorkList.erase(WorkList.begin()); // Get an element

from the worklist...
4

5 if (!I->use_empty()) // Don’t muck with
dead instructions...

6 if (Constant *C = ConstantFoldInstruction(I, TD,
TLI)) {

7 // Add all of the users of this
instruction to the worklist, they
might be constant propagatable now...

8 for (Value::use_iterator UI = I->use_begin
(), UE = I->use_end();

9 UI != UE; ++UI)
10 WorkList.insert(cast<Instruction>(*UI));
11

12 // Replace all of the uses of a variable
with uses of the constant.

13 I->replaceAllUsesWith(C);
14

15 // Remove the dead instruction.
16 WorkList.erase(I);
17 I->eraseFromParent();
18 }
19 }

Since we can have some annotations in our code about constant vari-

ables (such as "assert x==7" that the after the mapping could become
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"assert add == 7" ) we modified the implementation in order to improve

the Pass optimization. The general annotation used is shown in Listing

4.17.

Listing 4.17: Constant Annotation Used

1 @assert value == const

After the PromoteMemoryToRegister and ACSLVarMapAfterM2R Pass

every annotation now is about an identifier in SSA form. This means

that we can propagate that value in the current basic block and all the

others reachable from that basic block. We cannot simply propagate

the SSA register in all its uses since the annotation only holds from that

point and in the other basic blocks that come after in the CFG flow.

Therefore we modified the Pass in order to check not only if the instruc-

tion was "constant foldable" but also if there is an annotation asserting

that that instruction has a constant value. As it happens in the original

code the instructions where the value is propagated will be again in-

serted in the work-list to enable other cascading propagations and if the

value gets propagated in all its users it will be removed. In addition our

modified constant propagation also take into account the annotations

about function arguments. If an argument is always used with a certain

constant value also that value can be propagated.

Listing 4.18: Constant Propagation Example

1 #include <stdio.h>
2 int greaterThanZero(int x)
3 {
4 if (x > 0) return 1;
5 return 0;
6 }
7

8 int main()
9 {

10 int i = 0;
11 int j = 10;
12 int k = 0;
13 int z = 0;
14 while (i < j) {
15 k = greaterThanZero(j);
16 char * annotation = "@assert k == 1";
17 z = k + 9;
18 if (k != 1) {
19 printf("this should not be printed");
20 }
21 else {
22 printf("k=%d",k);
23 }
24 i ++;
25 }
26 i += z;
27 return i;
28 }
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In Listing 4.18 we give an example of a simple annotated program.

The Frama-C plugin described in Section 4.2 is able to produce the an-

notation "@assert k == 1". In Listing 4.19 we can see that the normal

constant propagation pass LLVM is not able to propagate any value. In-

stead, as we can see in Listing 4.20, our modified version is able to

propagate the value of k (named %call in the IR) thus enabling both the

propagation of z (named %add in the IR) and the propagation of the if

condition (which is translated in a compare instruction, named %cmp1

in the IR) which is always false. This will trigger the removal of the

branch in a later Simplify CFG pass.

Listing 4.19: Normal Constant Propagation Example

1 ...
2 while.cond: ; preds = %if.end, %

entry
3 %i.0 = phi i32 [ 0, %entry ], [ %inc, %if.end ]
4 %z.0 = phi i32 [ 0, %entry ], [ %add, %if.end ]
5 %cmp = icmp slt i32 %i.0, 10
6 br i1 %cmp, label %while.body, label %while.end
7 while.body: ; preds = %while.cond
8 %call = call i32 @greaterThanZero(i32 10)
9 %add = add nsw i32 %call, 9

10 %cmp1 = icmp ne i32 %call, 1
11 br i1 %cmp1, label %if.then, label %if.else
12

13 if.then: ; preds = %while.body
14 %call2 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds

([27 x i8]* @.str1, i32 0, i32 0))
15 br label %if.end
16

17 if.else: ; preds = %while.body
18 %call3 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds

([5 x i8]* @.str2, i32 0, i32 0), i32 %call)
19 br label %if.end
20 ...

Listing 4.20: Modified Constant Propagation Example

1 ...
2 while.cond: ; preds = %if.end, %

entry
3 %i.0 = phi i32 [ 0, %entry ], [ %inc, %if.end ]
4 %z.0 = phi i32 [ 0, %entry ], [ 10, %if.end ]
5 %cmp = icmp slt i32 %i.0, 10, !dbg !27
6 br i1 %cmp, label %while.body, label %while.end, !dbg !27
7

8 while.body: ; preds = %while.cond
9 br i1 false, label %if.then, label %if.else, !dbg !37

10

11 if.then: ; preds = %while.body
12 %call2 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds

([27 x i8]* @.str1, i32 0, i32 0)), !dbg !38
13 br label %if.end, !dbg !40
14

15 if.else: ; preds = %while.body
16 %call3 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds

([5 x i8]* @.str2, i32 0, i32 0), i32 1), !dbg !41
17 br label %if.end
18

19
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20

21 if.end: ; preds = %if.else, %if.then
22 %inc = add nsw i32 %i.0, 1, !dbg !43
23 br label %while.cond, !dbg !44
24 ...

4.6.2 Improving Lazy Value Information Analysis Pass

The Lazy Value Information Analysis Pass is an interface for lazy com-

putation of value constraint information. It is lazy so it will perform

the analysis only when a dependent Pass will ask for some information

about a value. The analysis is performed on a lattice structure where

every LVILatticeVal type is showed in Listing 4.21.

Listing 4.21: Lattice Information Type

1 enum LatticeValueTy {
2 /// undefined - This Value has no known value yet.
3 undefined
4 /// constant - This Value has a specific constant value.
5 constant,
6 /// notconstant - This Value is known to not have the

specified value.
7 notconstant,
8 /// constantrange - The Value falls within this range.
9 constantrange,

10 /// overdefined - This value is not known to be constant, and
we know that it has a value.

11 overdefined
12 };

This lazy analysis is done by using a cache (LazyValueInfoCache Class)

on which the value information is solved when needed. We store the in-

formation about constant and constantrange lattice values coming from

the annotations in the cache together with the basic block in which they

holds.

When the Pass will be asked the information about a value, the solve-

BlockValue(Value *, BasicBlock *) method that gets called is modified to

search if there is an annotation about that value and uses it to improve

the analysis.

The modified pass uses annotations of the kind shown in Listing 4.22.

Listing 4.22: Value Info Annotation Supported

1 @assert value == const
2 @assert value >= const1 && val <= const2
3 @assert value == const1 || ... || val == constN

The choice to improve this kind of analysis is motivated by the most fre-

quent pass run during the BIND compilation with LLVM. As we can see

in Listing 4.23 the Jump Threading and the Correlated Value Propaga-
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tion are among the most recurrent passes used and they both depend on

the Lazy Value Information Analysis.

Listing 4.23: Most Frequent Passes during BIND compilation

1 31975 *** Simplify the CFG ***
2 31975 *** Combine redundant instructions ***
3 16728 *** Remove unused exception handling info ***
4 16728 *** Promote by reference arguments to scalars ***
5 16728 *** Function Integration/Inlining ***
6 16728 *** Deduce function attributes ***
7 14400 *** Canonicalize natural loops ***
8 12843 *** Loop-Closed SSA Form Pass ***
9 12790 *** ’Correlated Value Propagation’ ***

10 12790 *** SROA ***
11 12790 *** ’Jump Threading’ ***
12 12790 *** Early CSE ***
13 8258 *** Tail Duplication ***
14 ...

4.6.3 Cascading Effects in other Transformation Passes

The advantage of modifying Analysis Passes is that then every Trans-

formation Pass that depends on it can take advantage of the analysis

improvements in order to perform better optimizations. Here we give

an overview of the two Transformation Passes that depends on the Lazy

Value Information Analysis Pass:

• The first one is the Correlated Value Propagation Transformation

Pass. This pass handles the propagation of φs, selects, memory

access targets, it simplifies compare instructions and switch cases

that never fires. It uses the results from the Lazy Value Information

Pass in order to test constant values.

In Listing 4.24 we show an simple example where correlated value

propagation while analyzing the operands of a Phi node is able to

propagate constant values inside these operands by means of the

modified Lazy Value Info analysis. The normal one will simply left

the IR code as it is in Listing 4.25. As we can see in Listing 4.26

the values are propagated inside y.addr.0.
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Listing 4.24: Correlated Value Propagation Example

1 ...
2 char * annotation1 = "@assert x == 10";
3 if( x > y ){
4 y = x;
5 char * annotation2 = "@assert y == 10";
6 } else {
7 y = x+x;
8 char * annotation3 = "@assert y == 20";
9 }

10 z = y + x;
11 ...

Listing 4.25: Correlated Value Propagation Example IR

1 ...
2 %cmp = icmp sgt i32 %x, %y, !dbg !28
3 br i1 %cmp, label %if.then, label %if.else, !dbg !28
4

5 if.then: ; preds =
%entry

6 br label %if.end, !dbg !35
7

8 if.else: ; preds =
%entry

9 %add = add nsw i32 %x, %x, !dbg !36
10 br label %if.end
11

12 if.end: ; preds =
%if.else, %if.then

13 %y.addr.0 = phi i32 [ %x, %if.then ], [ %add, %if.else ]
14 %add1 = add nsw i32 %y.addr.0, %x, !dbg !42
15 ...

Listing 4.26: Modified Correlated Value Propagation Example

1 ...
2 %cmp = icmp sgt i32 %x, %y, !dbg !27
3 br i1 %cmp, label %if.then, label %if.else, !dbg !27
4

5 if.then: ; preds =
%entry

6 br label %if.end, !dbg !34
7

8 if.else: ; preds =
%entry

9 %add = add nsw i32 %x, %x, !dbg !35
10 br label %if.end
11

12 if.end: ; preds =
%if.else, %if.then

13 %y.addr.0 = phi i32 [ 10, %if.then ], [ 20, %if.else ]
14 %add1 = add nsw i32 %y.addr.0, %x, !dbg !40

• The second one is the Jump Threading Transformation Pass. This

Pass analyzes blocks that have multiple predecessors and multiple

successors. If one or more of the predecessors of the block can

be proven to always jump to one of the successors, it forwards the

edge from the predecessor to the successor by duplicating the con-

tents of the block. A trivial example is showed in Listing 4.27. Here
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the unconditional branch at the end of the first if can be forwarded

to the else side of the second if.

Listing 4.27: Jump Threading Example

1 ...
2 if (...) {
3 ...
4 x = 0;
5 ...
6 }
7 if (x > 0) {
8 ...
9 } else {

10 ...
11 }
12 ...

In addition if a block terminator (the last block instruction) is branch-

ing on a constant, it can simplify the terminator to an unconditional

branch (this can occur due to threading in other blocks). This Pass

uses the analysis to see if it can simplify branches and if there are

value that are known by the Lazy Value Information Pass to be a

constant in a predecessor, it uses that information to try to thread

the current block.

In Listing 4.28 we show a trivial C program example in which sim-

ple annotations can help the compiler during the Jump Threading

optimization.

Listing 4.28: Detailed Jump Threading Example

1 int foo(int x){
2 if(x < 10){
3 if(x > 8) {
4 char * annotation1 ="@assert x==9";
5 x++;
6 char * annotation2 ="@assert x==10";
7 }
8 }
9 if(x == 10){

10 return 0;
11 }
12 return 1;
13 }
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Figure 4.2 shows how the code is translated by the compiler in

the IR after the memory to register promotion. Since the mem-

ory to register promotion pass does not modify the resulting CFG,

the source code program structure is still preserved and easy to

understand from the graph showed below.

Figure 4.2: CFG Before Jump Threading
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Figure 4.3 shows how the normal Jump Threading pass is able to

thread a jump. It optimize the resulting code by removing two

blocks (namely if:end and trivially if:then5 ) and making if.then

block jump to inf:end6 if the branch condition is false.

Figure 4.3: CFG After Jump Threading
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Figure 4.4 shows how our modified Jump Threading Pass is able to

thread an additional jump resulting in more optimized code com-

pared to the normal one. As we can see in the picture below, the

block if.then2 gets removed and the jump from if.then is threaded

to the return block.

Figure 4.4: CFG After Modified Jump Threading
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Chapter 5

Evaluation

Our framework Aruna was tested on five annotated C benchmarks de-

scribed in Section 4.1.2. These benchmarks were annotated automati-

cally using Frama-C and a custom cil-based plugin that injects the ex-

ternal annotations in every benchmark source code. These annotations

were propagated by Aruna during the front-end phases and taken into

account in the modified back-end passes.

To evaluate the uses of Aruna we augmented some back-end passes on

the LLVM and SafeCode architecture and then tested the benchmarks

compiled with the modified version against the normal ones. We both

compared the statistics during the compilation and the runtime benefits

in terms of code and time reduction. In addition for every optimization

we show the results both when they are run immediately after memory

to register promotion and in the proposed pipeline.

In this chapter follows a detailed comparison between the new results

and the ones without the modifications. The results shows that the

Aruna application in reducing the SafeCode checks have a nice impact

both on the executable code size and execution time. In our experi-

ments, the improvements over SafeCode are significant, in some cases

up to two orders of magnitude. Instead, the impact on the modified opti-

mizations side are not enough to motivate the use of the framework but

there is still room for improvements as we will see in Chapter 6.

5.1 SafeCode Checks Reduction Results

Table 5.1 shows the number of checks the normal SafeCode is injecting

in the code compared to the number of checks our modified version is

inserting. As we can see we are able to a pretty high percentage of the



checks in almost all the benchmarks without loosing security margin.

Table 5.1: SAFECODE CHECKS REDUCTION RESULT

SafeCode Checks Reduction Results

Benchmark LOC SafeCode Version # Run-time Checks % Run-time Checks Removed

CoreMark 1831 Normal 309

Modified 241 22.0065%

Susan 1463 Normal 2251

Modified 2008 10.7952%

MxM 373 Normal 123

Modified 102 17.0731%

Linpack 579 Normal 318

Modified 286 10.0630%

NECMatrix 113 Normal 78

Modified 32 58.9744%

Table 5.2 show the impact of the check reduction in terms of code

size. As expected our modified version is always generating smaller

program since we are just avoiding the injection of additional checks.

Table 5.2: SAFECODE EXECUTABLE SIZE REDUCTION RESULT

SafeCode Executable Size Reduction Results

Benchmark SafeCode Version Code Size (bytes) % Code Size Reduction

CoreMark Normal 1319475

Modified 1315271 0.3186%

Susan Normal 1375254

Modified 1366824 0.6130%

MxM Normal 977852

Modified 969324 0.8721%

Linpack Normal 1100586

Modified 1096384 0.3818%

NECMatrix Normal 792426

Modified 788276 0.5237%

Table 5.3 shows the results in terms of execution time of the gener-

ated executable together with the lines of code of the benchmark.
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The values in the Speed-Up column are computed as:

Speed− Up = NormalT ime−ModifiedT ime

NormalT ime

As illustrated by Table 5.3, there is a wide variety in our runtime im-

provement results. This variety is due to several factors. First, not all

checks are eliminated either because Frama-C is not able to produce

assertions for every array access, or because it is not possible to deter-

mine the size of the arrays at compile time, or because our application

does not support certain array accesses yet. In addition, the runtime im-

provements depend on the location of the eliminated checks. If they are

located in portions of code that are not executed very often, then the

runtime improvement is not significant. If, however, they are located

in a portion of the code that is executed often the improvements can

be significantly better, without impairing the program’s safety. The re-

sults were measured on an Ubuntu 12.04 machine, with Intel Xeon CPU

@2.40GHz.

Table 5.3: SAFECODE RUN-TIME REDUCTION RESULT

SafeCode Run-time Reduction Results

Benchmark % Speed-Up LOC

CoreMark 0.3163% 1831

Susan 3.4483% 1463

MxM 12.0531% 373

Linpack 95.9401% 579

NECMatrix 46.6666% 113

Specifically the poor results in the CoreMark benchmarks is due to

the fact that we do not have annotations for the relevant portion of code,

which is the one that is executed most often. The annotations that we

have are about array accesses during initialization, which are executed

only once.

Instead in the NEC-matrix benchmark, functions called only once

from the main functions. At most double nested loops. No command

line arguments required, therefore Frama-C finds correct information

about all the index bounds. On the LLVM end, the size of the arrays is

easy to determine since they are all created as global arrays of a fixed

49



known size

As NEC-matrix benchmark, Linpack Benchmark requires no com-

mand line arguments or user input, Frama-C gives useful information

here if run with option -slevel 1000. The higher the slevel the more

states Frama-C keeps in memory as it is going through the loops. In par-

ticular, the most useful information is that in a function (named daxpy)

which is executed approx. 86% of the time according to the Valgrind [32]

profiler. On the LLVM end, many functions receive the name of the ar-

rays as pointer input parameters, therefore there is no easy way to get

the size of the arrays during the optimization pass. We enumerated the

call sites where the function is called and tried to see if the array being

passed in input to it is allocated via a malloc or in the stack inside the

caller function. In addition, in the source code, parameter values are

computed inside the function call, e.g., foo(a +j*x), where a contains the

starting address of the array. So, if we have annotations about j and x,

we can compute the exact value of the input parameter.

Both Susan and MxM are run with command line arguments, Frama-

C value analysis needs to be given information about the values of those

arguments. If this is done, then the annotations produced are somewhat

good.

5.2 Back-end Optimizations Results

In this section we describe the results of our modified optimizations

compared to normal one in LLVM. First we are going to show how ev-

ery single optimization pass behaves on the input benchmarks, then we

show the results of all the passes chained together in a pipeline and we

present some additional information about the code size and execution

time of the output executables.

5.2.1 Single Optimization Results

Table 5.4 shows that the external annotations have an impact in the

propagation of constant values. These is due to the fact Frama-C Value

Analysis is able to identify much more constant values that the normal

Constant Propagation pass. Almost in every benchmark the constant in-

formation inside the annotation holds only in some blocks of the code

(such as when the annotation is inside an if statement branch) therefore

the information cannot be substituted in all the uses as in the normal

constant propagation. That is why the most of the constant values in

50



the annotations are not killed. However the propagation of these val-

ues is able to have cascading effects in the propagation of other values

in which these substitutions were done. In the NECMatrix benchmark

Frama-C was not able to insert any information about constant values

hence the modified optimization was not able to improve the results.

Table 5.4: CONSTANT PROPAGATION RESULTS

Constant Propagation Results

Benchmark Version #Annot. Substituted #Instr. Killed by Annot. # Instr. Killed

CoreMark Normal 3

Modified 18 0 73

Susan Normal 1

Modified 4 1 15

Linpack Normal 0

Modified 6 0 10

NECMatrix Normal 0

Modified 0 0 0

Table 5.5 shows how both in Susan and Linpack benchmarks the ad-

ditional information in the annotated code is able to trigger the propaga-

tion of phi or comparison instructions. These results are poor, however

they still confirm that these information can be effective in some real

cases.

Table 5.5: CORRELATED VALUE PROPAGATION RESULTS

Correlated Value Propagation Results

Benchmark Version # Phi Prop. # Select Prop. # Cases Rem. # Cmp Simpl.

CoreMark Normal 5 0 0 0

Modified 5 0 0 0

Susan Normal 0 0 0 1

Modified 1 0 0 1

Linpack Normal 0 0 0 0

Modified 2 0 0 0

NECMatrix Normal 0 0 0 0

Modified 0 0 0 0

Table 5.6 shows that the annotations were not able to have an effect

on trading jumps in any of the benchmarks. The modified version is still

conservative and does not perform worse than the modified one. Hence,
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at least there is nothing to loose in trying to use the information inside

the annotations.

Table 5.6: JUMP THREADING RESULTS

Jump Threading Results

Benchmark Version # Jumps Threaded # Terminators Folded

CoreMark Normal 12 1

Modified 12 1

Susan Normal 12 1

Modified 12 1

Linpack Normal 0 0

Modified 0 0

NECMatrix Normal 0 0

Modified 0 0

5.2.2 Optimization Pipeline Results

Since the Constant Propagation pass is the first in our pipeline of passes

the results its result in the pipeline are the same as the one reported in

Table 5.4. However, the results in Table 5.7 shows that the instructions

propagated in Susan and Linpack benchmarks in the previous Table 5.5

are already propagated during the constant propagation pass leaving

the Correlated Value transformation unchanged.

Table 5.7: PIPELINE CORRELATED VALUE PROPAGATION RESULTS

Pipeline Correlated Value Propagation Results

Benchmark Version # Phi Prop. # Select Prop. # Cases Rem. # Cmp Simpl.

CoreMark Normal 5 0 0 0

Modified 5 0 0 0

Susan Normal 0 0 0 0

Modified 0 0 0 0

Linpack Normal 0 0 0 0

Modified 0 0 0 0

NECMatrix Normal 0 0 0 0

Modified 0 0 0 0

The results coming from the modified version of the jump thread-
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ing are not better than the normal one as seen before in Table 5.6. In

addition from these benchmarks the constant propagation in the first

pipeline step seems not to enable better jump threading. The results in

Table 5.8 shows that the results coming from the constant propagation

pass have just a little impact in code size. The additional propagation

of values and the instruction killed reduces the code size of the bench-

marks. The last line of the table is left blank since we have no improve-

ments on the NECMatrix benchmark. The Susan benchmark seems not

to have any improvement, however the resulting IR is different and even

if after the translation in machine code they have the same size the exe-

cutable differ.

Table 5.8: EXECUTABLE SIZE PIPELINE REDUCTION RESULTS

Executable Size Pipeline Reduction Results

Benchmark Version Code Size (bytes) % Code Size Reduction

CoreMark Normal 21,844

Modified 21,733 0.0505%

Susan Normal 37,313

Modified 37,313 0.0000%

Linpack Normal 16,209

Modified 16,214 0.0310%

NECMatrix Normal //

Modified // 0.0000%

The performance results about Susan and Linpack benchmarks were

taken over a 1000 iterations of the executables. Since the Unix time

command seemed to be not reliable we slightly modified the benchmark

logging the execution time at the beginning and the end of the main

function and then averaging the result. To measure CoreMark List and

CoreMark Matrix execution time we rely on the built-in Makefile that

additionally logs the performance of the executables.The last line of the

table is left blank since we have no improvements on the NECMatrix

benchmark. However since the performance improvement is almost

negligible in the benchmarks and the percentage of measurement er-

ror is higher than the performance speed-up we do not show the result

table.

The effectiveness of the modified optimizations is correlated to the
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information on the SCannotations. We inspected the resulting IR code

and we have seen that the modified optimization are too few to make

a real difference and that after all the other LLVM optimizations the

resulting code is almost the same. In particular Function Inlining com-

bined with Interprocedural Sparse Conditional Constant Propagation is

already able to enable the same optimization that the most of the ad-

ditional constant information inserted by the Frama-C Value Analysis

plug-in enables.
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Chapter 6

Future Work

Currently the implementation of the modified optimization passes de-

pends on the order of their execution. This order is a constraint and it

is due to the fact that the we have to guarantee that the informations

in the annotations still hold after the transformation passes changes.

The order may influence also later optimizations and it is not always

guaranteed that the previous optimizations will not disable better later

optimizations. Therefore one of the major drawbacks of our current ap-

proach is that we need a way to propagate the changes in annotations

to remove this constraint.

In Witnessing Program Transformations [5] it is described how we can

use witnesses both to validate the pass transformation and to correctly

propagate invariants inside the code (for example our annotations). By

implementing a transformation witness inside of the modified passes it

will be possible to propagate the changes inside the annotations and

to guarantee the correctness of their informations. This will enable a

broader range of passes that could be modified in order to take advan-

tage of the informations inside the annotations without worrying about

the correctness of the changes in the annotations. These changes are

automatically certified by the theorem prover by checking the witness,

the input and the output program.

In addition to the new optimizations that can take into account the

Value Analysis information it could be interesting to use other kind of

analysis that can be helpful for different optimizations. Our framework

design makes it easy to exploit different kind of analysis since it relies

on a standard annotation language (and the a pass that map this infor-

mation to the IR values) that act as an interface between the back-end

and the different kind of analysis before the front-end.



Eventually merging the achievements from run-time checks removal,

witness generation and optimization improvements we will be able to

build a compiler able to both perform aggressive optimizations and de-

fend code against security flaws.
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Chapter 7

Conclusion

In this thesis we described the concept of program annotation, the differ-

ent sources of annotated code and how nowadays compilers are ignoring

this additional information. We described the approach we followed to

build our framework Aruna , which allows the compiler to take advan-

tage of the annotations to improve different aspects of the compilation

process. Namely, our framework is able to reduce both the trade-off be-

tween security and execution time of a compiled program and to improve

current compiler optimizations. In this work we inspected different ways

to use additional information about variable range values so that the

compilation can be more effective. We presented in detail how our ap-

proach can be useful in a state of the art compiler such as LLVM and

how the framework was built in order to be highly reusable with differ-

ent kind of program annotation sources. We evaluated the effectiveness

of the approach on real world benchmarks using the information coming

from the Frama-C Value Analysis plug-in. We showed how our frame-

work is able to reduce the trade-off between security enforcement and

performances, having impact both on the executable code size and the

execution time by removing SafeCode checks for secure accesses. How-

ever, on the modified optimizations side, we still need to integrate the

framework with the use of transformation witnesses. This will enable the

annotation propagation during the back-end passes making them avail-

able not only at the beginning of the compilation process but through

the whole LLVM passes pipeline. This will allow a broader use of Aruna

inside additional LLVM optimizations so that the slight compilation time

overhead introduced by our framework motivates the use of it.
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Appendix A

ACSL Supported Grammar

<annotation>→ <stmts> END

<stmts>→ <stmt> | <stmts> <stmt>

<stmt>→ TASSERT <expr> | TREQUIRES <expr> | TENSURES <expr>

<expr>→ <ident> | <numeric> | TLPAREN <expr> TRPAREN |

| <expr> TCEQ <expr> | <expr> TCNE <expr> |

| <expr> TCLT <expr> | <expr> TCGT <expr> |

| <expr> TCLE <expr> | <expr> TCGE <expr> |

| <expr> TCANDAND <expr> | <expr> TCOROR <expr>

<ident>→ TIDENTIFIER

<numeric>→ TINTEGER | TDOUBLE | TMINUS TINTEGER |

| TMINUS TDOUBLE
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Appendix B

Interval Algebraic Structure

In this chapter we describe the algebraic structure used to model the

range computation for SSA variables. The underlying set, the contiguous

interval of the possible value for an integer variable, is the set of integers

(positive and negative) pairs NXN.

In Listing B.1 follow a series of range and constant information about

integer variables modeled as intervals:

Listing B.1: Interval Examples

1 i<=0 && i<=1000 -> i in [0,1000]
2 j==-50 -> j in [-50,-50]
3 k==0 || k==1 || k==2 -> k in [0,2]

On this carrier set we define the internal sum and multiplication opera-

tions as follow:

• Interval Sum (+):

∀x, y, w, z ∈ N, [x, y] + [w, z] = [x+ w, y + z]

• Interval Multiplication (*):

∀x, y, w, z ∈ N, [x, y] + [w, z] = [i, j]

where i = min(x∗w, x∗z, y∗w, y∗z) and j = max(x∗w, x∗z, y∗w, y∗z)

Listing B.2 shows how these operations are useful to propagate range

information during SSA assignments in a basic block.
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Listing B.2: Interval Operation Examples

1 suppose holds:
2

3 %i<=0 && %i<=10 -> %i in [0,10]
4 %j==-5 -> %j in [-5,-5]
5 %k<=-2 && %k<=3 -> %k in [-2,3]
6

7 basicblock instructions:
8

9 %add1 = add %i %j -> %add1 in [0,10]+[-5,-5] =
[-5,5]

10 %mul1 = mul %k %i -> %mul1 in [-2,3]*[0,10] =
[-20,30]

11 %mul2 = add 3 5 -> %mul2 in [3,3]*[5,5] = [15,15]
12 %sub1 = sub %add1 %mul2 -> %sub1 in

[-5,5]+([-1,-1]*[15,15]) = [-20,-10]


