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1 Abstract
The main objective of the present work is to analyze the opposing effects of
thermal-transpiration flow and Poiseuille flow in a narrow conduit like the
one employed in a Knudsen compressor or Knudsen pump. We will first in-
troduce the basics about the Boltzmann equation (definition, brief physical
intepretation, applicability, main issues, etc.). Then, the models used to de-
scribe the problem at hand, namely ES-Model and BKW-Model (also known
as BGK-Model), will be explained alongside with all the information needed
to apply them (simplifications deriving from the geometry of the domain
and spherical simmetry of the collision operator). Thereafter, the setting of
the problem will be detailed: what a Knudsen pump is and the particular
kind of Knudsen pump we will deal with (basically one formed by two par-
allel plates and two tanks). The two kinds of flows that are to be found in
the conduit of this pump will be then pointed out: the Poiseuille flow (well
know from the fluid dynamics) and the more subtle thermal-transpiration
(or thermal-creep) flow. Eventually, the problem will be solved by apply-
ing an asymptotical expansion: zeroth-oder solution, first-order solution and
second-order solution. The zeroth-order solution has been analytically found.
The first-order solution will be numerically computed after the application
of a factorization and of the model equations. The second-order solution will
not be explicitly computed but its analysis will lead to the characterization
of the macroscopic quantities. Then, the unsteady case of flow between two
tanks linked by a thin conduit will be considered. The final chapter will be
dedicated to the data obtained and to the conclusions. The data obtained for
the adimensionalized mass-flow rate are thought of as being more accurate
than those previously available for the specific cases under consideration.
The data obtained in case of accommodation coefficient different from 1 and
in the unsteady case have not been computed before.
Keywords: Boltzmann Equation; ES-Model; BKW-Model; BGK-Model;

Knudsen compressor; Thermal Transpiration; Numerical Kernel

Sommario
L’obiettivo principale di questo lavoro è quello di analizzare gli effetti con-

trastanti del flusso di traspirazione termica e del flusso di Poiseuille in un
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2 CHAPTER 1

condotto sottile come quello usato nella pompa di Knudsen. Come prima
cosa verrà introdotta l’equazione di Boltzmann (definizione, breve descrizione
fisica, applicabilità, principali problemi che presenta, etc.). In seguito ver-
ranno presentati i modelli usati per risolvere il nostro problema (Modello ES,
Modello BKW, detto anche Modello BGK) assieme alle informazioni neces-
sarie alla loro implementazione (semplificazioni derivanti dalla geometria del
problema e dalla proprietà di simmetria sferica caratterizzante l’integrale
collisionale). Successivamente, si presenterà il problema da risolvere: verrà
spiegato che cos’è una pompa di Knudsen in generale e verrà presentato il
funzionamento di quella che dovrà essere trattata (è una pompa formata da
due piastre parallele e due serbatoi). Verranno evidenziati i due tipi di flusso
che si incontrano in questo tipo di problemi: il flusso di Poiseuille (già noto
dalla fluidodinamica) e quello meno evidente di traspirazione termica. Infine,
il problema verra risolto applicando un’espansione asintotica: soluzione di or-
dine zero, soluzione di ordine uno e soluzione di ordine due. La soluzione di
ordine zero è stata ricavata in modo analitico. La soluzione di ordine uno sarà
trovata numericamente grazie all’applicazione di una fattorizzazione e delle
equazioni modello. La soluzione di ordine due non viene calcolata ma la sua
analisi porterà alla caratterizzazione delle quantità macroscopiche. Verrà poi
considerato il caso di flusso instazionario tra due serbatoi connessi attraverso
un condotto sottile. L’ultimo capitolo sarà dedicato ai dati ottenuti ed alle
conclusioni. I dati ottenuti per il flusso di massa per unità di tempo adimen-
sionalizzato sono considerati più accurati di quelli ottenuti precedentemente
per i specifici casi in considerazione. I dati ottenuti in caso di coefficiente di
accomodamento diverso da 1 e nel caso instazionario non sono stati ricavati
precedentemente.
Keywords: Equazione di Boltzmann; Modello ES; Modello BKW; Modello

BGK; Pompa di Knudsen; Traspirazione Termica; Numerical Kernel



2 Introduction to the Boltzmann
Equation

2.1 Overview
“The first main open problem is to prove that positive, classical solutions of the Maxwell-
Boltzmann equation corresponding to specified initial conditions and boundary conditions
exist and are unique.” [1]

This first introductory part is meant as a brief explanation of the Boltz-
mann equation. It goes without saying that neither a chapter nor a single
book could ever be enough to introduce the Boltzmann equation both rigor-
ously and completely. We’ll just go through the formulation of the equation
with its boundary conditions and then go on to analyze the model equations
by explaining only what is strictly necessary to understand the main results
of the present work. Broadly speaking, a problem is said to be well posed
when the main equations and the boundary conditions have been specified,
the boundary conditions are compatible with the equations and the solution
has been proved to exist and be unique under the aforementioned boundary
conditions. In the case of the Boltzmann equation, the proof of existence
and uniqueness is not an easy task. Furthermore, were the two properties
of uniqueness and existence are verified, there would still be the problem
of finding an analytical solution. We will see in the next chapter that the
use of model equations combined with a couple of clever tricks will greatly
simplify the main problem of this paper and the existence and uniqueness of
the solution will be dealt with quite easily. This brief introduction, though
being not sufficiently detailed to reveal the meanders of the Boltzmann equa-
tion, should be just enough complete to cast some light on the basis upon
which the kinetic theory stands and to explain the main results that will be
useful later on in this paper. Other important aspects be illustrated on a
need-to-know basis in the next chapter.

2.2 The Kinetic Theory for a Monoatomic Gas
“Maxwell’s kinetic theory is a consequence neither of classical mechanics nor of the axioms
of probability theory. Though it is motivated by a masterly and suggestive combination of
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4 CHAPTER 2

mechanical and stochastic ideas, it is an independent model of a gas. As such it is to be
respected and studied mathematically. The proof of the model lies in its product. The two
models of a dissipative fluid that have proved their value again and again are the Navier-
Stokes theory of linearly viscous fluids and Maxwell’s kinetic theory. [...] Each involves
a special kind of non-linearity that seems somehow to reflect much, though by not means
all, of the phenomena seen in natural fluids.” [1]

The following explanation, scarce as it may seem at a first glance, should
introduce the kinetic theory in the case of a monoatomic gas that has just one
species, that is to say a simple gas. The main reference of this section is an
enlightening book by Truesdell and Muncaster that step by step introduces
this theory [1]. Basically, the kinetic theory of gases is a mathematical model
in which the gas is envisaged as a collection of molecules that are subject to
external forces, collide one with the other and impinge upon surfaces whose
behavior has also to be modeled. Each molecule occupies a given position
in the three-dimensional space domain and has a certain velocity at a given
time. However, instead of following the motion of every single molecule, we
will suppose that all the molecules are randomly distributed according to a
specific rule. This rule is the molecular density F . Let us proceed by defining
F . We first introduce the three main variables:

• t ∈ T, a one-dimensional Euclidean space;

• x ∈ X, a three-dimensional Euclidean space;

• v ∈ V, a three-dimensional Euclidean space.

t is the time, x is the coordinate in the three-dimensional space domain
and v is the velocity. F = F (t, x, v) and

´
U

´
B F (t, x, v)dxdv, with B ∈ X

and U ∈ V, is interpreted as the expected number of molecules in B with
velocities in U at the timet. The number density is defined by the formula
n =

´
V F (t, x, v)dv. Pay attention to the fact that the velocity domain is

the whole space V, in fact we want to find the expected number of molecules
per unit point in a certain point at a fixed time including the molecules of
any velocity whatever. Accordingly, we can conclude that the function v 7→
F (t,x,v)
n(t,x) is a probability density over V. m is the constant bearing the unit of
mass. We define the mass density ρas ρ = mn. Furthermore, the expectation
g(t, x) of a function g = g(t, x, v) is defined as g ≡ 1

n

´
V F (t, x, v)g(t, x, v)dv.

We proceed by defining the following fields:

• gross velocity field u ≡ v (the random velocity c is defined as c = v−u),

• pressure tensor field M ≡ ρc⊗ c,

• pressure deviator field P ≡M − 1
3(trM)I,
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• energy flux vector q ≡ 1
2ρc

2c,

and the following scalars:

• pressure p = 1
3c

2,

• expected random kinetic energy (interpreted as the energetic) ε = 1
2c

2.

To quote Truesdell, “The entire purpose of the kinetic theory is to relate the
13 scalar fields ρ, uk,Mpm and qr to various circumstances of the kinetic gas.”
So far, we have defined only the quality we want to find but we haven’t

specified how to determine F . The earliest kinetic theorists tried to solve
the problem by assuming that F has certain properties in some given con-
ditions. Also Maxwell, at first, tried to do the same. The theory derived
by Maxwell following this fashion is called by Truesdell first kinetic theory.
However, the theory that we wish to introduce in this basic chapter is named
Maxwell’s second kinetic theory. The axiom laid down by Maxwell that
we are about to explain is the first necessary step to justify the Maxwell-
Boltzmann Integro-Differential Equation. We know that there are two kind
of forces that modify the trajectory of the particles in our domain: a body
forceb, which is an extrinsic force per unit mass, and a mutual force due to
the collisions of the molecules. Analytical dynamics would require us to treat
the two forces together by summing them up whereas Maxwell’s assumption
was that the two forces be considered separately: the body force is treated as
Newtonian mechanics would require while the mutual force is approximated
with a stochastic model. This assumption yields a model that is neither
coherent with the laws of dynamics nor completely suitable to be described
by purely statistical methods. Let us now take into consideration only the
body force b. As Truesdell shows, we can easily find the trajectory of every
single particle and define an operator dependent upon s, called retrogressor,
whose effect on the function defining the trajectory is that of retrieving the
position and velocity of the particle s units of time before the actual time t.
Analogously, we could define the transform Rs dependent upon s, also called
retrogressor, whose effect if that of evaluating the value of a given function
s units of time before the actual time t by going back along the trajectory.
The trajectory considered by omitting the term related to the mutual inter-
action of the particles is called the extrinsic trajectory, and, if there were no
mutual interaction, the extrinsic trajectory would coincide with the actual
trajectory of each particle. Therefore, we can say that all the expectations
remain unchanged along the trajectory. We require that
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F (t, x, v) = Rt−t0F (t, x, v) (2.1)

for some fixed time t0and for every t, x and v. A dynamically coherent
approach would require us to sum the effect of collisions to the right hand
side of this equation. Let us take, for instance, the case of elastic and in-
elastic collisions: the collision follows certain rules and its effect are given by
adding a force to the right hand side. Generally, an impact would disrupt
the smoothness of the trajectory. In Maxwell’s model, the mutual forces be-
tween particles are thought to “appear and disappear instantly at (t,x,v) at a
rate that depends on some specified way on F”. The operator specifying this
rate is called collision operator and denoted by C. The effect of collisions
have to be “accumulated”. By doing so we may state Maxwell’s Equation of
Evolution:

F (t, x, v) = Rt−t0F (t, x, v) +
ˆ t

t0

Rt−s(CF )(t, x, v)ds (2.2)

Even though much could be said about the agreement between this theory
and fluid mechanics, we go on and spend a few words on the dynamics of
encounters. Whatever be the molecules constituting the body of gas that
we are to describe, the encounters are always taken to be binary. This is
somewhat coherent with the assumption that the gas under consideration is
rarefied. A binary encounter is supposed to be subject to conservation of
energy and momentum. The mutual forces may have an infinite range in
space of may be forces instantly exerted during a collision.

v + v? = v′ + v′? (2.3)

v2 + v2
? = v + v′?

2 (2.4)
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Figure 2.1: Velocities of Two Colliding Molecules

Let us introduce the notion of summational invariant. A real-valued func-
tion C on V × V satisfying the condition C(v, v?) = C(v′, v′?) for all (v, v?)
and (v′, v′?) related through the conservation laws is called a collisional in-
variant. Analogously, a real-valued function S on V such that S(v)+S(v?) =
S(v′) +S(v′?) for all (v, v?) and (v′, v′?) related through the conservation laws
is called a summational invariant. The subspace of summational invariants
has dimension 5 as stated by the Boltzmann-Gronwall Theorem on Summa-
tional Invariants (whose proof can be found in the aforementioned book): A
measurable function S over V is a summational invariant if and only if it is
an affine combination of momentum and energy: S(v) = αv2 + µ · v + β, α
and β being scalars and µ a vector.
A further definition needs mentioning, as it will be useful later on. The

elements of the basis of the space of the summational invariants are called
principal invariants Iα.

Iα ≡


1 α = 0,
vα α = 1, 2, 3,
v2 α = 4.

(2.5)

The next step is the solution of the encounter problem. Truesdell, after
listing a few properties that an encounter is supposed to satisfy, presents
three solutions, the last of which has been found taking into consideration
the “physical process”, quoting Truesdell himself. The leads to the definition
of an encounter operator E. What we want to point out in this meager
explanation is that this operator, which may be defined a priori (given that
it satisfies certain properties), determines v′and v′?once v, v?, r and ζ have
been assigned, r and ζ being respectively the distance and angle used to define
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in radial coordinates the vector whose origin corresponds to the position (x)
of the molecule under consideration, which is considered at rest, and that
points to the point of intersection between the trajectory that the colliding
molecule would have if no mutual forces were present and the plane P, which
we are about to define. The molecule that is about to collide with the one
under consideration has a trajectory which features an asymptote at t = −∞.
P is the plane normal to this asymptote to which x belongs. Actually, in
the case of mutual forces of finite range, the collision occurs only if the
point of intersection lies in a certain portion of the plane P, defined as cross-
sectionS . We say that in the case of infinite-range forces S corresponds to R2.
Furthermore, S may be a function of given parameters, such as the diameter
of the molecules for an hard-sphere model of the gas. m, E, and S are called
Constitutive Quantities of the Kinetic Theory. The force b, which is regarded
as “external rather than constitutive”, to quote Truesdell, is taken to be a
prescribed function of place alone. It is interesting that the focus is shifted
from the two-body problem to the problem of encounter as defined through
the constitutive quantities of the kinetic theory.
Let us point out a few further important hypotheses justifying the defini-

tion of the Maxwell Collision Operator that is about to be introduced:
• At a given place and a given time, the velocities of the molecules collid-

ing are instantly changed. In classical mechanics a number of molecules
interacting have trajectories resulting from all the interactions for all
time. The conversion of velocities if instantaneous and discontinuous.

• The colliding molecules do not occupy the same position but they are
supposedly so close to each other that the molecular density is not a
function of the position.

• The assumption of stochastic independence is the most delicate one:
“Maxwell assumed that the probability density for a pair of molecules
with velocities v1 and v2 at (t, x) was proportional to F (t, x, v1)F (t, x, v2)”,
to quote Truesdell once again. This is what is called “molecular chaos”
and Truesdell himself uses the term “fading memory” between quota-
tion marks to give an idea of what molecular chaos is. This is far from
being a self-contained assumption. This hypothesis has an overwhelm-
ing influence on the problem which is pointed out by Cercignani [2].
Let us focus on the case of hard-sphere molecules (they are modeled as
hard, elastic and perfectly smooth spheres). The Boltzmann equation
is strictly valid in the case in which N → ∞,σ → 0 and Nσ is finite,
where σ is the diameter of the molecules (Boltzmann-Grad limit). The
Boltzmann-Grad assumption is related to the fact that σ → 0 in or-
der for the first assumption to be valid. Cercignani points out that
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we cannot expect every initial state to be a solution of the Boltzmann
equation in the Boltzmann-Grad limit. We need a special initial state
which verifies this assumption. Indeed, we want this assumption to be
verified for all time. Furthermore, it cannot hold everywhere. If it did,
the molecular density would not evolve in time. It has to be verified
only for molecules which are about to collide!

Let us introduce an useful notation for a function g = g(t, x, v):

• g stands for g(t, x, v);

• g? stands for g(t, x, v?);

• g′ stands for g(t, x, v′);

• g′? stands for g(t, x, v′?).

It is high time that we introduced the Collision Operator. There is not a
better way than to use Truesdell’s words.
“According to Maxwell’s picture of a gas, the density of the rate of decrease

of F at (t, x) due to collisions with molecules of velocity v? is proportional
to FF? evaluated at (t, x). On the other hand, molecules of velocity v are
being produced as the result of collisions. Since the equations of analytical
dynamics are invariant under time reversal, the pair of velocities (v, v?) re-
sults as the outcome of a collision between molecules of velocities (v′, v′?) as
determined by the encounter operator E. Thus the density of the rate of
increase of F at (t, x) due to collisions is proportional to F ′F ′?, evaluated at
(t, x). The net rate of increase in the density of molecules with velocity v
by collisions is proportional to the difference F ′F ′? − FF?, weighted by an
appropriate factor to convert it into a molecular density, and the integrated
over all velocities v? and all possible relative positions.”
This factor is the wdS, in which w is the magnitude of the relative velocity

of the approaching molecule. This is justified by the fact that in the time
dt the oncoming molecule travels a distance wdt, and so the volume swept
out in that time by that molecule is (

´
SwdS)dt. We now define the Collision

Operator as follows.

CF ≡
ˆ
V

ˆ
S
w(F ′F ′? − FF?)dSdv? (2.6)

An underlying hypothesis is that of convergence of this operator. We
should eventually stress that this is a definition, and as such it does not
require all the previous analysis to be complete. Even though what has been
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said before might be useful to figure out the applicability of this operator
to describe physical phenomena, this operator has been arbitrarily defined.
That is why we do not expect the results obtained in the kinetic theory
to be the same as those obtained in fluid dynamics. Truesdell dedicated a
chapter and several other sections of his book to this topic, that is to say the
comparison of the results obtained in the two theories.

In order to define the Boltzmann equation, Trusdell defines mild, weak
and strong solutions. We say that H is differentiable along the extrinsic
trajectories if for fixed t, x, and v the function s 7→ RsH(t, x, v) is differ-
entiable. On the space of such functions we define the mild derivative as
follows: DH ≡ − d

ds
RsH|s=0. Analogously, we define the strong derivative as

DH ≡ ∂tH+v ·∂xH+b ·∂vH. Together with the basic properties of the mild
derivative, it is easy to show that DH ≡ DH. A molecular density that is
differentiable along trajectories and satisfies the functional-differential equa-
tion DH = CF is called a mild solution. It can be also derived that on an
extrinsic trajectory such as to make the mapping s 7→ Rt−sCF (t, x, v) con-
tinuous, the equation of evolution is equivalent to the functional-differential
equation DH = CF . On the other hand, a molecular density that is smooth
and satisfies the functional-differential equation DH = CF is called a strong
solution. A mild solution can be promptly proved to be a mild solution but
generally the converse is not the case. In general it might be complex to say
under which restrictions the converse is true. An interesting comment by
Truesdell proves itself really useful to clarify the physical applicability of the
assumption of smoothness: “Whenever we use it [with reference to the equa-
tion of evolution] we shall assume implicitly that F is smooth, even though
to assume outright that it is reflects no physical principle and is in no way
natural in a theory employing ideas associated with probability”. We want
also to point out one more feature of the equation of evolution: it does no
impose any restrictions on the value of F at some fixed time t0. It is from the
definitions of strong derivative, strong solution and collision operator that we
derive the Maxwell-Boltzmann Equation:

DH ≡ ∂tH + v · ∂xH + b · ∂vH =
ˆ
V

ˆ
S
w(F ′F ′?−FF?)dSdv? = CF (2.7)

Truesdell proves also one property that is of overwhelming importance: its
absence would imply a dramatic failure of the whole theory. That property
is the validity of the Principle of Frame-indifference for the collision operator
C: the collision operator C is invariant under rigid changes of framing.
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We now proceed by defining

C̄F ≡
ˆ
V
gCF =

ˆ
V

ˆ
V

ˆ
S

wg(F ′F ′? − FF?)dSdv?dv (2.8)

A major result is the Boltzmann Monotonicity Theorem:

C̄F logF 5 0 (2.9)

for all F ;

C̄F logF = 0 (2.10)

if and only if F = FM ≡ ae−b|v−u|
2 .

Being a molecular density, FM must be positive on an essential domain
and integrable over V; for this conditions to be fulfilled it is necessary that
a > 0 and b > 0. This two inequalities, if verified, imply that FM shall be a
positive, integrable function.
Another major result is Maxwell’s Assertion: CF = 0 if and only if

F = FM . The Maxwellian density has several interesting properties and
is necessary to discuss the problem of Kinetic Equilibrium. The definition
of equilibrium itself requires a detailed discussion: Truesdell uses Wang def-
inition (F = F (x, v) = F (x,−v)) and the proves Maxwell-Boltzmann-Wang
Theorem on Kinetic Equilibrium. The strong relationship between the Gross
Equilibrium (that is to say the equilibrium as defined in fluid dynamics) and
the Kinetic Equilibrium is also an interesting topic that Truesdell deals with.
We just point out that the kinetic equilibrium implies the gross equilibrium
but that the converse if false.
We remark that C̄FS = 0 for all F if S is a summational invariant. The

converse has not been proved to be generally true. In a few special cases also
the converse is verified.
The last point in this section is probably the most meaningful one because

it is necessary to explain why the ES-Model is a good model in a sense. First,
we should introduce the field h, then compare it with the specific entropy
η, then analyze the conditions under which this comparison make sense.
Thereafter, we ought to introduce the flux of h (that is to say s). The next
step would be that of introducing the quantity H ≡

´
B
ρhdV , where B is a
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portion of volume. Soon after, two theorems about the evolution of H would
follow: the Formal Broad H-Theorem and the Formal Narrow H-Theorem.
Then, at that point, a comparison between these theorems and the Clausius-
Duhem inequality and the heath-bath inequality of thermomechanics. After
taking into consideration the boundary conditions, we would finally try to
draw a few conclusions about the relationship between the behavior of H and
the trend to kinetic equilibrium. In the case of formal narrow H-theorem,
we would obtain that its validity is not a sufficient condition for the strict
trend to equilibrium. In fact, even if we could prove that F tends to a given
local Maxwellian, the theorem “gives no clue to the transition from local to
absolute Maxwellian”. The formal broad H-theorem is even more complex to
interpret. The best way to understand all this material is to read to book by
Truesdell. We will deal later on with the H-Theorem in a more concise way.
However, a good understanding of what Truesdell wrote about this subject
may be really useful to grasp the meaning of this much discussed theorem. We
now go on with different matters. Several other topics discussed by Trusdell,
especially the collision operator and the exact solution for moments of order
0 to 3 in the case Maxwellian molecules, in the same book are surely good
to fully understand what is to follow.

2.3 The Kinetic Theory as Developed for
Molecules Different from Hard Spheres

The reference for this section is the already mentioned book by Cercignani [2].
The way in which Cercignani introduces the Boltzmann equation is slightly
different due to a different variable choice used to model the collision. His de-
scription is more general and it encopasses several different kind of molecules
(e.g. those different from hard spheres) and polyatomic molecules. It is
enough to say that in the case of a general monoatomic gas w is substituted
by B(θ, w), where θ is the angle between the unit vector n with origin in the
central point of the molecule and pointing toward the gas and the velocity
v of the molecule approaching the molecule under consideration (the latter
being still considered at rest). The integral has to be performed over the
whole hemisphere B−, which is the hemisphere corresponding to v · n < 0.
We have that

∂P (1)

∂t
+v1 ·

∂P (1)

∂x1
= N

ˆ
R3

ˆ
B−

(P (1)′P (1)
?
′−P (1)P (1)

? )B(θ, w)dv?dθdε (2.11)
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where ε is the angle that, together with θ, identifies n. N is the total
number of molecules in the body of gas under consideration. The notation
has been slightly changed to suit that used so far. P has been used instead
of F : F is a molecular density whereas P is a probability density. In the first
section a different probability density over V was introduced. The function
v 7→ F (t,x,v)

N
is a probability density over (B,V). In fact, N ≡

´
B n(t, x)dx.

The superscript 1 means that P 1 is the probability related to the molecule
under consideration and not to the molecule colliding with the former one.
The same reasoning holds for the subscript 1 for the vectors v1 and x1. The
external force may be added to yield a formula similar to the one previously
explained in the last section. Here, the domain of integration for the velocity
is R3. B(θ, w) acquires a special form in the case of hard-sphere molecules.
After having clarified the difference of notation to show the coherence of the
two models, we can go on to generalize what was claimed in the last section
to be true in the special case of a monoatomic gas. Almost all the theorems
explained and the conclusions drawn in the previous section still hold, after
having substituted the former definition of the collision operator with the
latter. However, there are certain exceptions, like the degree to which ther-
modynamics and kinetic theory yield the same result, the equilibrium and
the H-theorem. Actually, the same results could hold but the author of the
present paper has assumed this not to be the case in general, given that some
of these results where found after the definition of the collision operator in
the gas of a monoatomic gas. A more detailed analysis should be carried out.
What we have to do is to formally introduce the H-theorem. Just for the

sake of generality, we define a bilinear operator C(G,H) as

C(G,H) ≡ 1
2

ˆ
R3

ˆ
B−

(G′H ′?+G′?H
′−GH?−G?H)B(θ, w)dv?dθdε (2.12)

where G and H are any such as to render the integral convergent. This
definitions might appear a sophistication at first but it proves useful for later
developments. We have that

C(G,H) = C(H,G) (2.13)

and

CF = C(F, F ) (2.14)
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The Boltzmann equation may be rewritten as:

∂F

∂t
+ v · ∂F

∂x
= C(F, F ) (2.15)

Let us multiply the two sides of the equation for log f and integrate with
respect to the velocity on the whole domain of the velocity. This is what we
obtain:

∂(nh)
∂t

+ ∂

∂x
· S = Σ (2.16)

where h ≡ 1
n

´
R3 F logFdv, S ≡ m

´
R3 vF logFdv and

Σ ≡ m
´
R3 logFCFdv.

We are using Truesdell’s notation instead of the one introduce by Cercig-
nani or other authors. We will be consistent with this notation throughout
the whole paper unless otherwise specified. Here S is strictly related to the
flux S of the field h introduced by Truesdell. Because of the Boltzmann
monotonicity Theorem, we know that Σ 5 0 for all F and Σ = 0 if and
only if F is a Maxwellian. In the case of space-homogeneous solutions we
have that ∂(nh)

∂t
= Σ ≤ 0. Intuitive reasoning could lead us to conclude that

nh → (nh)|FM for a certain Maxwellian molecular density. Once again, we
fill tempted to draw erroneous conclusions about the trend to equilibrium
but we refrain with difficulty from doing that because we have no grounds
for claiming that. What we do now is to integrate over the whole space
domain mnh, we get that H ≡ m

´
B nhdV . We get that ∂H

∂t
≤
´
∂B S · ndσ,

where n is the inward normal and dσ the normal element on ∂B. The defi-
nition of H given by Cercignani coincides with this one, except for the fact
that it is divided by m. It looks crystal clear that H determines some kind
of irreversibility, which does not contradict the reversibility of the laws of
dynamics. It should be rather regarded as an irreversibility like that of the
entropy η. Indeed, in a special case the which is in some special cases the
entropy η is proportional to h, the constant of proportionality being negative.
This irreversibility, under special boundary conditions and with a few more
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restrictions, will determine a trend towards equilibrium, which is ascribable
to a trend toward an absolute Maxwellian, which might follow an intermedi-
ate state of local Maxwellians. However, the general meaning of this quantity
has not a direct counterpart in thermomechanics. Unfortunately, a sweeping
generalization will not yield satisfactory results whereas the application of
strict boundary conditions will deliver good but sometimes useful results.
At first, by studying this topic, it might seem that the field h is an useless
sophistication. Furthermore, it the case of a polyatomic gas, the H-theorem
has to be dealt with differently! Boltzmann, too, had some trouble trying to
prove it: he erroneously was deceived into thinking that the proof given in
the case of a monoatomic gas could be applied to a polyatomic gas whereas
this is not the case! Soon after, as Cercignani tells us, Lorentz found this
error and Boltzmann found a proof that was right but not satisfactory be-
cause based on the idea that the final state after an encounter be achieved
by a sequence of collisions. Cercignani gives a proof of the H-theorem also
in this general case but the author of the present paper, drove into a state of
despair due to the striking complexity of the interpretation of this theorem,
hasn’t had enough time to go through this proof yet.
The time has come to introduce a further generalization, that of a poly-

atomic gas. “The molecule is a dynamical system, which differs from a point
mass by having a sequence of internal states, which can be identified by a
label, assuming integral values”, as Cercignani himself points out. This in-
ternal state might be one and might be described by the energy E. The fact
that we can use just one state is subject to an hypothesis commented upon by
Cercignani. The most interesting point of this generalization is the distribu-
tion of the energy between the translational and internal degrees of freedom
after a collision. The energy is conserved in the collision. Two assumptions
have to be made: one about the scattering kernel and the other is that “the
redistribution of energy among the various degree of freedom only depends
upon the ratios of the various energy to the total energy”, quoting Cercig-
nani. Then, a distinction between elastic and inelastic collisions should be
made. However, we will use the ES-Model, in which the energy is already
distributed in a given way.

2.4 Boundary Conditions
As far as the boundary conditions are concerned, many models are available,
few of which are physically justifiable. The interaction between the molecules
and the boundary theoretically should be modeled by applying to the surface
of the boundary a model similar to that of the Boltzmann equation, which
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is practically not an achievable aim, due to the complexity of this kind of
interaction: when a molecule impinge upon a surface, it may be absorbed
by the surface itself, give rise to chemical bonds, dissociate, etc. Indeed,
even if we could model this way the boundary, such a precise scheme would
require to know the surface finish, its cleanness and its temperature, which
are data that cannot be measured with the required precision. A detailed
description of possible choices of boundary conditions models is given by
Cercignani. A scattering kernel is used just as in the case of the formulation
of the Boltzmann equation (the definition of scattering kernel is given both
by Truesdell and Cercignani). It should meet certain requirements. We
will use the Maxwell-type boundary conditions omitting a detailed analysis.
This will be enough. The author of the present paper has to admit that has
never read a single paper in which different boundary conditions have been
applied since the beginning of the the study of the Boltzmann equation a
few months ago. As Cercignani points out, this model is the only one that
appeared in literature before the late 1960s. Basically, this model requires
that a fraction of the molecules undergo a specular reflection while the others
are reflected with the Maxwellian distribution of the wall uniformly in any
direction (diffuse-reflection boundary condition). This fraction is determined
by α, named accommodation coefficient. A specular reflection is a kind of
interaction that modifies only the component of velocity that is normal to
the surface, that is, at every point upon a wall:

F (vi) = F (vi − 2[(v − uwall) · n]ni) (2.17)

if (v − uwall) · n > 0

where uwall is the velocity of the wall and n is the unitary vector normal to
the boundary that points toward the gas.
This property implies no shear stress at the boundary. It just prevents the
gas from going past the surface of the boundary. The full expression of the
Maxwell-type boundary condition is:

F (vi) = (1−α)F (vi−2[(v−uwall) ·n]ni) +α
ρw

(πTw) 3
2

exp(−
(vj − uwallj)2

Tw
)

(2.18)

if (v − uwall) · n > 0.
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2.5 Model Equations: the Taming of the
Collision Operator

It goes without saying that it is the collision operator that make the Boltz-
mann equation so complex. “When one is not interested in fine details”,
quoting Cercignani, model equations can be applied. They are equations
that retain the qualitative and average properties of the collision operator
but are in a sense more easy to deal with. We approximate C(F, F ) with
J(F ). The two models used in this paper are the BKW-Model, also called
BGK-Model, and the ES-Model. The first one, proposed by Bathnagar,
Gross and Krook, is largely employed in actual computations. Welander
proposed it independently at about the same time.

J(F ) = ν(ρ, T )(FM(v)− F (v)) (2.19)

where FM = ρ

(2πRTw)
3
2

exp(− (vj−uj)2

2RT ).

FM is the local Maxwellian with the same density ρ, temperature T and
bulk velocity as F . The choice of ρ and T is not obvious. They are to be
chosen in such a way that for any summational invariant S(v) we have that´
R3 S(v)FM(v)dv =

´
R3 S(v)F (v)dv. If this property is satisfied, then FM and

F have the same density, temperature and bulk velocity. Furthermore, mass,
momentum and energy are conserved, that is, for any summational invariant´
R3 S(v)JF (v)dv = 0 (this equivalence between these two properties may be
verified by substituting the principal invariants into the last equation). We
must be careful because a summational invariant as defined bu Truesdell
coincides with a collision invariant as defined by Cercignani. Furthermore,
the Boltzmann monotonicity theorem holds even if we replace C(F ) with
J(F ):

ˆ
R3

(logF (v))J(F )dv 5 0 (2.20)

for all F ;

ˆ
R3

(logF (v))J(F )dv = 0 (2.21)
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if and only if F = FM ≡ ae−b|v−u|
2 .

From the equation
´
R3 S(v)JF (v)dv = 0 we derive a method to check the

error of our computations. In fact, approximations and computational will
yield a result that is not identically zero. The error that we get might be
useful as an estimate of the precision of the results obtained by applying this
model. The same method can be used with the ES-Model. The BKW-Model
has two advantages: “for any given problem one can deduce integral equa-
tions for ρ, v and T that can be solved with moderate effort on a computer”,
quoting Cercignani, and its linearized form is extremely useful. Its disad-
vantage consists in the fact that JF = 0 contains F in both the numerator
and denominator of an exponential, whereas the nonlinearity of the collision
operator is only quadratic.
The main problem of the BKW-Model is that, in order to have a complete

agreement with the Navier-Stokes equations, we should be able to set both
the viscosity µ and the heat conductivity κ but we can modify just one pa-
rameter, that is to say the collision frequency. We cannot assign an arbitrary
value to those two parameters. This fact implies that we cannot set whatever
value we will for the Prandtl number (Pr = µ

cpκ
= γ

γ−1
Rµ
κ
). According to the

BKW-Model, the Prandtl number for a monoatomic gas is 1, whereas its
value according to the kinetic theory is 2

3 , as shown by Trusdell. Therefore,
another model, the so called ES-Model (Ellipsoidal Statistical Model), also
called BGK-Gaussian model, has been proposed. While the BKW-Model is
based upon the relaxation toward local Maxwellians, in the ES-Model the lo-
cal equilibrium Maxwellian is substituted with a Gaussian G (G = G(t, x, v)
in the monoatomic case; G = G(t, x, v, E). In the polyatomic case, a poly-
atomic Maxwellian M = M(t, x, v, E) has to be defined. However, as proved
in this paper, if H(G) = H(f) then f = M . In this model one parame-
ter ν is used in the monoatomic case (−1

2 ≤ ν < 1) and two parameters,
that is to say ν and θ, are used in the polyatomic case (−1

2 ≤ ν < 1 and
0 < ν ≤ 1). In the case of a monoatomic gasν and θ, which are called
relaxation coefficients, reduce to one, which is ν. This is perfectly coherent
with what has been explained by Truesdell, that is to say “The kinetic gas,
insofar as it is a linearly viscous fluid, has bulk viscosity zero”. The bulk
viscosity λ of the book by Truesdell coincides with the second viscosity αµ
used in this paper. An important point is that the Prandtl number is derived
through a Chapman-Enskog expansion at the first order! All these model,
by themselves, do not give any specifications as to how to derive it. The
author cannot refrain from suggesting to read the paper by Pierre Andries,
Patrick Le Tallec, Jean-Philippe Perlat and Benoît Perthame [3] about the
ES-Model that comprises:
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• the proof of the validity of the H-theorem for this model in the monoatomic
case;

• the same proof in the polyatomic case (there’s an additional internal
state, that is the energy);

• the steps that yield the Navier-Stokes system with a polytropic law
for the pressure (P = ρRT = (1 − γ)ρe), viscosity µ = µ(T ), second
viscosity αµ, and thermal conductivity κ = κ(T ).

• a different formulation of the method employing two different distri-
bution functions, one for mass and the other for internal energy (this
reduction cannot be performed in the case of Boltzmann’s quadratic
collision operator).

As far as the second-last point is concerned, for the sake of clarity we rewrite
here Proposition 4.1.

Proposition 4.1: For the Gaussian-BGK model [that is to say the
ES-Model], we obtain in the Chapman-Enskog expansion the Navier-Stokes
system (2) [this is a reference to the system rewritten at the beginning of

the paper] where the viscosity tensor is given by

σij = µ(∂xjui + ∂xiuj − αδijdivu) (2.22)
Moreover the second viscosity coefficient α and Prandtl number

Pr = γ
γ−1

Rµ
κ

are given by

α = (γ − 1)− 1− θ
θ

(1− ν)(5
3 − γ) (2.23)

Pr = 1
1− ν + θν

(2.24)

δ is the additional number of degrees of freedom of the gas related by
γ = δ+5

δ+3 . For a diatomic gas δ = 2 and γ = 1.4. By setting the only
available relaxation coefficient in the monoatomic case and the two relaxation
coefficients in the polyatomic case, we can fix a value for the Prandtl number.
Later on, after having introduce the linearized collision operator, we will
see what the linearized BKW-Model and ES-Model look like. The latter
is a generalization of the former. The aforementioned paper is the key to
understand the ES-Model, which will be heavily employed in the present
work.
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2.6 Adimensionalization and Linearization
The linearized collision operator is defined by Cercignani as

LF = 2
FM

C(FM , F ) (2.25)

Let us consider the Hilbert space of square summable functions endowed
with a scalar product weighted with the Maxwellian function (G,H) =´
R3 ḠHFMdv, where the bar denotes complex conjugation. Here some con-
fusion may arise due to the use of the word “scalar product” used by Cer-
cignani. The definition previously given does not satisfy the properties of
a scalar product. Indeed, it is an inner product, that is to say a particular
Hermitian form. Cercignani uses the term scalar product because, in our
analysis, the functions are defined on a real domain and yield real values. In
this particular case the inner product correspond to the scalar product. L
is symmetric in this space, that is to say (G,LH) = (LG,H). Furthermore,
it is nonpositive, that is to say (H,LH) ≤ 0, where the equality sign holds
if and only if H is a summational invariant. We have now to introduce the
reference book that will be empolyed in the next section. This book, largely
used at Kyoto University, is the book by Professor Yoshio Sone [4]. In the
first sections of the first chapter Sone introduces the concept of linearized adi-
mensionalized equations. He is really precise and the steps are all extremely
detailed. In order to give a form of the adimensionalized linearized Boltz-
mann equation, we have to explain what we mean by adimensionalization.
The body force is assumed to be null.
The first adimensionalized form is basically a rescaled form, obtained by

substituting in the equation the following dimensionless variables:

• t̂ = t/t0;

• x̂ = x/L (where L is the reference length);

• v̂ = v/(2RT0)1/2;

• F̂ = (2RT0)3/2

ρ0
F (where ρ0 is the reference density);

• ρ̂ = ρ/ρ0;

• û = u/(2RT0)1/2;

• T̂ = T/T0;

• p̂ = p/p0 where p is the pressure and p0 = Rρ0T0 the reference pressure;
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• p̂ij = pij/p0.

R is the gas constant kb per unit mass, that is to say R = kb/m.
The macroscopic quantities are expressed in the following ways as functions

of the adimensionalized variables:

• ρ̂ =
´
R3 F̂ dv̂;

• û = 1
ρ̂

´
R3 v̂F̂ dv̂;

• T̂ = 2
3ρ̂

´
R3(v̂j − ûj)2F̂ dv̂;

• p̂ = ρ̂T̂ ;

• p̂ij = 2
´
R3(v̂i − ûi)(v̂j − ûj)F̂ dv̂.

which is the one we assume the body force to be null and express the variables
as perturbations of the equilibrium state.
From now on, a =

√
a2

1 + a2
2 + a2

3, unless otherwise specified. The second
adimensionalized form is given by expressing the variables as perturbations
of an equilibrium state at rest, given by a Maxwellian that is proportional to
E(v) = π−3/2 exp(−v̂2

i ). “At rest” is a specification that is no longer necessary
as long as you define the equilibrium as Wang did. The nondimensional
perturbed variables are chosen in the following way:

• φ = F̂
E
− 1;

• ω = ρ̂− 1;

• τ = T̂ − 1;

• P = p̂− 1;

• Pij = p̂ij − δij.

If we assume the absolute values of all these quantities to be small, their
products may be neglected and we obtain that:

• ω =
´
R3 φEdv̂;

• û =
´
R3 v̂φEdv̂;

• τ̂ = 2
3

´
R3(v̂2

j − 3
2)φEdv̂;

• P = ω + τ ;
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• Pij = 2
´
R3 v̂iv̂jφEdv̂.

Accordingly, the Boltzmann equation is given as

Sh
∂φ

∂t̂
+ v̂i

∂φ

∂x̂i
= 1
k

[L(φ) + J (φ, φ)] (2.26)

L(φ) =
ˆ
R3

ˆ
B−

E?(φ′ + φ′? − φ− φ?)B̂dv?dθdε (2.27)

J (φ, ψ) = 1
2

ˆ
R3

ˆ
B−

E?(φ′ψ′ + φ′?ψ
′
? − φψ − φ?ψ?)B̂dv?dθdε (2.28)

where

• B̂ = B
B0

, B being defined as before and B0 in the following way B0 =
1
ρ2

0

´
R3

´
B− F0F0B(θ, w)dv?dθdε (F0 = ρ0

(2πRT0)
3
2

exp(− v2
j

2RT0
));

• Sh = L

t0(2RT0)
1
2
is named the Strouhal number;

• k =
√
π

2 Kn, Kn being the Knudsen number being defined as Kn = l0
L

(l0 is the mean free path, which is a measure of the distance covered
on average by a molecule before a collision occurs).

Before proceeding, we must point out that the phenomena that fluid dy-
namics is meant to model are those in which the mean free path is small if
compared to the reference length L, which implies a relatively small Knudsen
number. On the contrary, the kinetic theory is thought to be more suitable
to describe the behavior of a rarefied gas, in which case the Knudsen number
is quite big. These two parameters are two of the three similarity parameters
of the Boltzmann equation. Furthermore, it will be useful later to mention
the following two properties:

• 2J (1, φ) = L(φ);
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• EJ (φ, ψ) = Ĉ(Eφ,Eψ), where Ĉ(F̂ , Ĝ) = 1
2

´
R3

´
B−(F̂ ′Ĝ′ + F̂ ′?Ĝ

′
? −

F̂ Ĝ− F̂?Ĝ?)B̂dv?dθdε.

These properties hold also in the case of the model equations we will intro-
duce.
Analogously, also the Maxwell-type boundary condition must undergo the

same procedure and it is to be transformed into the following equations:

E(v)[1+φ(xi, vi, t̂)] = (1−α)E(v̌)[1+φ(xi, v̌i, t̂)]+αE(v)[1+φe(σ̌w, uwi , τw)]
(2.29)

if [(vj − uwj)nj > 0], where

φe = 1
E

1 + ω

π
3
2 (1 + τ) 3

2
exp(−(vj − uj)2

1 + τ
)− 1 (2.30)

σ̌w = −2( π

1 + τw
) 1

2

ˆ
(vj−uwj )nj<0

(vj−uwj)njE(v)[1+φ(xi, vi, t̂)]dv−1 (2.31)

v̌i = vi − 2(vj − uwj)njni (2.32)

τw = Tw
T0
− 1 (2.33)

where Tw is the temperature of the wall.

By neglecting the nonlinear term in the previous equation, we get the
linearized Boltzmann equation:

Sh
∂φ

∂t̂
+ v̂i

∂φ

∂x̂i
= 1
k
L(φ) (2.34)

The same reasoning may be followed in the case of model equations. In
the case of the BKW-Model, we get that all the preceding formulas remain
the same, we just rename them by removing the caps:
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• ω =
´
R3 φEdv;

• ui =
´
R3 viφEdv;

• τ = 2
3

´
R3(v2 − 3

2)φEdv;

• P = ω + τ ;

• Pij = 2
´
R3 vivjφEdv.

The final linearized equation to be solved reads:

Sh
∂φ

∂t
+ vi

∂φ

∂xi
= 1
k

[−φ+ ω + 2viui + (v2 − 3
2)τ ] (2.35)

The Maxwell-type boundary condition for the linearized Boltzmann equa-
tion and for the linearized BKW-Model is the following:

φ(xi, vi, t) = (1− α)(φ(xi, vi − 2(vj − uwj)njni, t) + 4vjuwknjnk)+

+α[σ̌w + 2vjuwj + (v2 − 3
2)τw]

(2.36)

if [(vj − uwj)nj > 0],

where

σ̌w =
√
πuwjnj −

1
2τw − 2

√
π

ˆ
(vj−uwj )nj<0

vjnjφEdv (2.37)

τw = Tw
T0
− 1 (2.38)

where Tw is the temperature of the wall.

In the case of the ES-Model, its linearized form reads [5] (caps have been
removed)

Sh∂φ
∂t

+ vi
∂φ
∂xi

= 1
k
{−φ+ ω + 2viui + (v2

i − 3
2)[(1− η)τtr + ητ ]+

+(E − δ
2)τrel + (1− η)ν[Pijvivj − (ω + τtr)v2]}

(2.39)
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with

• ω =
´
R3

´∞
0 E

δ
2−1φEdEdv;

• ui =
´
R3

´∞
0 viE

δ
2−1φEdEdv;

• τtr = 2
3

´
R3

´∞
0 v2E δ2−1φEdEdv − ω;

• τint = 2
δ

´
R3

´∞
0 E

δ
2φEdEdv − ω;

• τ = 3τtr+δτint
3+δ ;

• τrel = ητ + (1− η)τint;

• Pij ==
´
R3

´∞
0 2vivjE

δ
2−1φEdEdv.

Accordingly, the Maxwell-type boundary condition is (τw = T̂ − 1, where T̂w
equals T̂ evaluated at the wall)

φ(xi, vi, t) = (1− α)φ(xi, vi − 2vjnjni, t)+

+α[2
√
π
´

(vj−uwj )nj<03

´∞
0 vjE

δ
2−1φEdEdv + (v2 − 2 + E − δ

2)τw]
(2.40)

if[(vj − uwj)nj > 0].

2.7 Discontinuity: an Outcome of Gas-Surface
Interaction

So far, solutions of the Boltzmann equation have been assumed to be smooth
or smooth enough to be acted upon by certain operators. Unfortunately, the
solution generally is not smooth at the boundary. The problem of finding a
suitable function space in which to seek the solution present a major concern.
Let us now add one more hypothesis: the problem is stationary. By looking
at the Maxwell-type boundary conditions, we notice that an integral equation
specifies the way in which the impinging particles bounce off the surface.
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In the case of pure specular reflection, the solution on the boundary is
symmetric with respect to some of the three spatial coordinates, that is to
say that it is an even function with respect to those coordinates, which implies
that it is continuous in the origin. The molecular distribution does not vary
with respect to the other spatial coordinate or coordinates. We may say
that, is the molecular density of the impinging particles if smooth, then the
molecular density of the particles leaving the boundary is smooth too. If we
applied an accommodation coefficient without including the second member
of the boundary condition, that is to say F (vi) = (1−α)F (vi−2[(v−uwall) ·
n]ni), (v−uwall) ·n > 0, we would have that a discontinuity would appear in
the origin. The boundary would serve as a mirror that reflects the molecules
after having rescaled the molecular density.
On the other hand, in the case of particles that are emitted with the molec-

ular density of the surface, we might have whatever molecular distribution we
will applied to the impinging molecules, but the molecular distribution of the
molecules directed away from the surface will be always a given Maxwellian.
This behavior implies a discontinuity in the spatial domain in the origin in
the general case.
The discontinuity presents us with a major concern:

What is the functional space in which the solution is to be found?

In order to draw some comparisons between fluid dynamics and kinetic
theory, assumptions have been made by Truesdell as to the asymptotic be-
havior of the molecular density with respect to the velocity, like supposing
that it is a O(vn). Furthermore, we may have discontinuities located in given
portions of the domain. The problem is still different when the problem is
not stationary (though not always). From now on, we will JUST ASSUME
THE FUNCTION TO BE PIECEWISE CONTINUOUS! An informal all-
caps statement is definitely compulsory for such a forceful assumption.
After having ascertained that a discontinuity generally occurs, we have to

know how to treat it in our calculations. Indeed, the finite-difference method
is largely employed to solve the Boltzmann equation, and a discontinuity may
bring about large errors. At first, the author of the present paper thought of
using a dense distribution of grid points close to the boundary. However, that
does not yield good results unless the solutions is smooth enough. If fact,
usually, the solution is shaped like a bell with a peak in the origin in such
a way that a change of the molecular density close to the origin means the
integrals giving the value of the moments greatly vary. This is due to the fact
that the area underlying the molecular density around the origin has a greater
size than the area underlying the lateral slopes away from it. Therefore, even
if the grid points have been densely laid down but, a a small error around
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the origin bring forth a huge error in the evaluation of the moments. The
best thing to do is to use two different points: 0+ and 0−. The molecular
distribution is evaluated on a domain comprising two different points that
are infinitely close to zero. With the addition of a denser distribution for
grid points around zero, the result get much better. This problem was first
encountered by the author when carrying out his first numerical simulation
of the Boltzmann equation. After having discretized the space domain to
apply a finite-difference method, assembling the solving matrix, he couldn’t
get the right number of linearly independent equations. After having added
one more point in which to impose the Boltzmann equation and the boundary
conditions, he obtained a determinate system. We will see later on how the
problem was solved. The author first came to know about this discontinuity
thanks to a fruitful conversation with Professor Kazuo Aoki so this section
has no reference to any books. For what concerns the numerical analysis, it
was Masanari Hattori (PHD student at Kyoto University) who shared with
the author his numerical know-how by explaining him that the best way to
solve the problem was to use these two grid points and what function was
most suitable to dispose the grid points around the origin. The problem to
be solved in this paper is stationary, so we won’t include the time variable.
As far as the internal state E that plays a role in the case of a polyatomic
gas, no discontinuities are present with respect to this variable.

2.8 Similarity Solutions
The reference to this last section comprises Appendixes 2.5, 2.6 and 5 of
the aforementioned book by Sone [4]. A few steps have two be followed to
explain what we mean by similarity solutions.

1. Put f(vi) = O(φ1(vi), φ2(vi), ...), where O is an operator and φn(vi) are
functions of vi. Take the functions φnR(vi) = φn(lijvi), in which likljk =
δij is a three-dimensional orthogonal transformation matrix. The oper-
atorO is said to be isotropic if and only if f(lijvj) = O(φ1R(vi), φ2R(vi), ...).
C(G(vi), H(vi)) = CG,H(vi) and L(F (vi)) = LF (vi) can be proved to
be isotropic operators.

2. A tensor field fi1,i2,...,im(vi) is called spherically symmetric if and only
if fi1,i2,...,im(lijvj) = li1j1li1j2 ...li1jmli2j1li2j2 ...li2jm ...limjmfj1,j2,...,jm(vi).

3. Thanks to the bilinearity of C(G(vi), H(vi)) = CG,H(vi) with respect to
G(vi) and H(vi) and to the linearity of L(F (vi)) = LF (vi) with respect
to F (vi) and two the property of isotropicity of these two operators,
they can be shown to be spherically symmetric.
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4. A tensor field fi1,i2,...,im(vi) is said to be axially symmetric if and only if
it is spherically symmetric lij satisfies the following relation: ai = lijaj.

5. In a few special cases, the number of independent variables may be
reduced by employing the spherical symmetry of the collision operator
and of the linearized collision operator.

6. The approximation of the collision operator in the BKW-Model and
ES-Model are spherically symmetric as well.

In order for a function to be a solution, it must be compatible with the Boltz-
mann equation or the model equation equipped with boundary conditions. If
this happen to be the case, the problem greatly simplifies. We will see later
on the importance of the similarity solutions.



3 The Knudsen Compressor and
Setting of the Problem

3.1 Overview
“In practical applications, slightly rarefied gas flows (gas flows with small Knudsen num-
bers) are often analyzed by the use of the Navier-Stokes equations and the slip boundary
conditions. However, much attention is not paid to the validity of the use of this system.
Furthermore, it is rather surprising that the formulas of the slip conditions derived by
means of the elementary kinetic theory very long time ago are still in use.” [6]

In this chapter, we will go through the theoretical background that will
open the way to the formulation of the problem. The Knudsen compressor
or Knudsen pump is named after Martin Hans Christian Knudsen, a Dan-
ish physicist who passed away around the middle of the twentieth century.
However, its feasibility has been recently verified thanks to recent studies.
The comeback of the Knudsend pump, justified by a number of possible ap-
plications, could be viewed as the practical reason of the present study. The
investigation of its working will be focused on the analysis of the thermal
transpiration effect. The main reference paper that will be used throughout
the first three sections of this chapter is a text by Kazuo Aoki and Shigeru
Takata [6]. Being this paper quite complete, there is no need to be too
specific: we will just summarize a couple of notable results. A detailed de-
scription can be found in the paper and in the reference papers cited therein.
We must be aware of the fact that different notation will be used in the
main papers that will be introduced later in this dissertation. Once again,
Truesdell’s notation will always be employed for the sake of clarity.

3.2 Asymptotic Theory for Small Knudsen
Numbers

First of all, we point out that the Mach number (M = U
a
, where U is the

reference value of the flow speed and a is the reference value of the sound
speed) is proportional to the Reynolds number (Re = µ0UL

ρ0
, where µ0 is the
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reference viscosity) and to the Knudsen number. Note that a0 = (5RT0/3) 1
2 .

We have now to introduce one of the most delicate aspects of this theory.
Let us focus on the stationary case and diffuse-reflection boundary condition.
We will consider only “slightly” rarefied flows, that is those whose Knudsen
number is “slightly” small. We can differentiate the analysis according to the
Reynolds number. The aforementioned reference paper has a whole chapter
dedicated to this point, which is completely (presuming that a complete
analysis can ever be made) dealt with in the book by Sone. In the case of
Re = O(1) and Ma = O(Kn) (the case of Re � Kn � 1 is first taken
into consideration), the Mach number is pretty small, which implies a slight
deviation of the macroscopic quantities from their reference values, which is
the equilibrium state at rest. Accordingly, these deviations (not the macro-
scopic quantities) can be expanded in power series of k =

√
π

2 Kn, as defined
by Sone [4]. As explained by Sone in the chapter about slightly rarefied gas
of the previously mentioned book, the smaller the mean free path gets, the
more the collision terms plays a dominant role over the other terms, which
means that the velocity of approach of a Maxwellian distribution is faster.
Therefore, the deviation from the equilibrium state at rest is smaller and
the distribution function may be described as a function of the macroscopic
variables. Even though this might appear intuitive at a first glance, it is far
from being banally explainable in a few lines. We just point out that, in the
stationary case, only one correction near the boundary should be applied,
but it will be omitted in the present work. The Stokes system of equation
may be derived and the boundary conditions have to be appended to these
system. What we would get is that a flow is generated that goes from the
colder part to the hotter: this is the thermal creep flow, also called thermal
transpiration. Chapter 5 of the book by Sone is basically dedicated to this
flow, which is somewhat counter-intuitive. An interesting experiment is that
of the radiometer, whose windmill rotates due to the thermal creep flow (its
rotation, in the case of high pressure in the chamber, is due also to natural
convection). The author had a first hand experience of this during an in-
troductory seminar by Professor Shigeru Takata held at Kyoto University.
Broadly speaking, we could give a reason that justifies qualitatively this flow.
If we consider a boundary whose behavior is described by pure Maxwellian
diffusion of the molecules (α = 1 in the Maxwell-type boundary condition),
we get that the molecules leaving the boundary are scattered around uni-
formly whereas those approaching the boundary might have substantially
different velocities. The average speed of the molecules coming from the
hotter region is greater than that of the molecules coming from the colder
one, which gives rise to a thermal creep flow on the boundary. This effect is
restricted to the case of slightly rarefied gas. Otherwise, the Poiseuille flow,
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that is the flow driven by pressure difference, overwhelms the thermal creep
flow. This reasoning is approximate and qualitative but might be a good
argument to justify the presence of this flow in the case of slightly rarefied
gases. Furthermore, there are some related flows. This effect is restricted
to the case of slightly rarefied gas. Otherwise, the Poiseuille flow, that is
the flow driven by pressure difference, overwhelms the thermal creep flow.
This reasoning is approximate and qualitative but might be a good argu-
ment to justify the presence of this flow in the case of slightly rarefied gases.
Furthermore, there are some related flows.

Figure 3.1: Thermal Transpiration

As Kazuo Aoki and Shigeru Takata pointed out, the asymptotic expan-
sion without the proper Knudsen-layer correction “gives the correct overall
bevahior of the gas up to O(Kn2)”. This correction has to be introduced
when the physical quantities near the boundary are required. Given that the
author has not had enough time to study how to apply this correction and
that it does not appear in the formulation of the problem, we will insensi-
tively neglect this correction.
Moreover, the analysis holds as long as the flow is subsonic. As the Knud-

sen number and the Mach number increase, the thermal-transpiration flow
becomes less relevant: it occurs only in the case of slightly rarefied gases
at low Mach numbers. The main results will be given as functions of the
Knudsen number (Kn ∝ Re ×Ma). However, their validity is subject to
small Mach numbers (Ma < 1). We will discuss this hypothesis from an
experimental point of view in section 3.5. This relevance of this hypotheses
lies in the fact that these parameters play a predominant role when results
obtained from the kinetic theory are compared with those obtained through
a fluid-dynamics analysis.
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3.3 The Knudsen Compressor
The Knudsen compressor is a pump whose working is based on the thermal
creep effect (we will focus on what is called first category of Knudsen com-
pressors). In order to make the pump drive fluid in the right direction in the
most efficient way, throughout the last decades several different mechanisms
have been devised. The main idea is that of applying a constant gradient of
temperature through a channel. If this channel, which most of the times is
a straight conduit, were a single tube with constant diameter, the difference
of pressure at its ends should be too large to make it feasible. Therefore, a
cascade structure of alternating tubes has been applied.
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Figure 3.2: Knudsen Compressor

Different kinds of compressors have been ideated and studied:
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• the channel can be bent and the diameter can be kept constant;

• shelves may be introduced;

• the so-called “accommodation pumps” may be used.

3.4 Setting of the Problem

In the present study, we will focus on the behavior of a slightly rarefied gas
between two parallel plates, which constitute a single section of the Knud-
sen pump, without caring about what happens at the junction between two
sections. The main reference paper is a paper by Shigeru Takata, Hitoshi Fu-
nagane and Kazuo Aoki [7]. Once again, we will summarize only the results
needed. Let us state all the hypotheses behind our model:

• We consider a rarefied diatomic gas (Nitrogen gas, δ = 2, ν = −0.50,
η = 0.46, Pr = 0.787) between to extremely long parallel plates D �
L;

• The behavior of the gas can be described using the ES-Model.

• The wall may be modeled with the Maxwell-type boundary condition.

• The channel is so thin that the temperature is uniform in the cross
section. It can be easily proved that the pressure is also constant (see
the aforementioned paper).

• The problem is two-dimensional.

• The imposed pressure gradient a and the temperature gradient β are
small.

In order to solve this problem, an asymptotic expansion will be carried on:
the solution is expanded in a power series of ε = D

L
, where we assume D to

have a unitary value.
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Figure 3.3: Knudsen Pump Conduit

3.5 Applicability of the Hypotheses
The preceding hypotheses plus that of constant gradient of pressure and
tempetarure have been applied to study the flow in a circular straight tube.
Thereafter, the results have been compared to a series of experiments carried
out by Ko Kugimoto, who built an implement made up of several different
thin tubes [5]. The boundary conditions that have been used are those of dif-
fuse reflection (that is to say α = 0 in the Maxwell-type boundary condition).
The results are astonishingly good. The theoretical result perfectly match
the results of the experiments for a good range of Knudsen numbers. This
results show that this hypotheses are suitable to describe flows that are not
as rarefied as one might suppose. In the case of large pressure difference and
uniform temperature, for small Knudsen numbers (Kn ≤ 1) the relative er-
ror is really small whereas it increases steeply (it is around 15% at the most)
for larger Knudsen numbers. However, the accordance is quite surprising. In
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fact, a real wall, in order to be suitable to be modeled with the previously
mentioned boundary condition, must meet certain requirements like that of
smoothness, uniform pressure, etc. Indeed, it goes without saying that the
making of an experiment is an extremely delicate matter, especially when it
comes to deal with quantities that are so sensitive to external parameters as
those we are trying to describe in the present paper.





4 Solution to the Problem and
Numerical Recipes

4.1 Zeroth-order solution

In this chapter, we will go through the procedure used to solve the prob-
lem and we will describe how it has been numerically implemented. Unless
otherwise specified, the problem is considered steady.
By applying an asymptotic expansion ([7] p. 359) to the adimensionalized

ES-Model ([7] pp. 355-359) we get several terms that are to be grouped
according to the exponent of k. The adimensionalization is exactly the same
as that introduced in the previous chapter. We just need to specify the
reference quantities. The reference length in the longitudinal direction is the
diameter of the channel whereas the reference length in the axial direction
is the length of the channel. Other parameters are specified in [7]. The
zeroth-oder equation can be solved ([7] p. 360) by employing a Maxwellian
distribution F̂(0) as it has been defined in the previously mentioned paper
about the validity of the H-theorem for the ES-Model (section about the
case of a polyatomic gas):

F̂(0) = σ(0)(t, x2)Λα

T̂w(x1) 5
2

1
π

3
2
e
−

v2
i

+Ê
T̂w(x1) (4.1)

The solution can be proved to be unique [8] modulo σ(0) = σ(0)(t, x2), which
is the density computed with a zeroth-order approximation. The solution
depends on time and axial coordinate only through this arbitrary function.
A couple of further remarks:

• The gross velocity at the first order is null.

• The density is constant throughout the whole cross section.
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4.2 First-order solution

The first order solution ([7] p 361-362) is the main “actor” playing the major
role in this paper. The function that we get is the following:

v1∂x1F̂(0) + v2∂x2F̂(1) = 1
k
Ĉ(F̂(0), F̂(1)) (4.2)

The solution to this equation can be found in Paper 3 for a different model
equation. A more specific but less general solution is found in Paper 1.
This equation is an inhomogeneous linear equation whose inhomogeneous
term is made up of two different parts: one is a function of the density
and the other of the temperature. We factorize F̂(1) in the following way
F̂(1) = F̂(0)φ and apply the following properties introduced in the section
about the adimensionalized Boltzmann equation (section 1.3), which hold
also for the model equations introduced:

• 2J (1, φ) = L(φ);

• EJ (φ, ψ) = Ĉ(Eφ,Eψ).

Last, we have to rescale the velocity, the internal energy state and the lon-
gitudinal coordinate: c = v/T̂

1
2
w , Y = E

RT0T̂w
and x2 = X2

l
, where l is the

distance between the two plates.
Given that F̂(0) is known, we get a formula in which the linearized collision

operator replaces the original one. Not a single approximation has been done.
They key step is that of factorizing the solution, which is a quite common
trick with these kind of problems. What we finally get is a linear integro-
differential equation with only one unknown, that is to say φ. Because of
the linearity of the problem, the solutions is found to be composed of three
different terms that are to be summed. Each one can be found independently.
Furthermore, one is an arbitrary function that will be omitted. We obtain
the following equation (K(t̂, x1) = K∗T̂

3
2
w (x1)

p̂(0)(t̂,x1)Âc(0)(x1)D , where K∗ is the ratio
between the reference mean free path and D and Âc(0)(x1) is a function
appearing in the ES-Model that is used to define a collision frequency and
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that we take, without any loss of generality, to have always a unitary value):

φ(x2, c) = φP (x2, c1, c2c3, E ; T̂w(x1), ρ̂(0)(x1), K(x1))∂x1 ln p̂+

+φT (x2, c1, c2, c3, E ; T̂w(x1), ρ̂(0)(x1), K(x1))∂x1 ln T̂w
(4.3)

in which φP and φT are the solutions to two certain equation. The final
solution will be

F̂(1)(x2, c) = F̂(0)[φP (x2, c1, c2c3, E ; T̂w(x1), ρ̂(0)(x1), K(x1))∂x1 ln p̂+

+φT (x2, c1, c2, c3, E ; T̂w(x1), ρ̂(0)(x1), K(x1))∂x1 ln T̂w]
(4.4)

K might be a function of time and the partial derivative has been used
because the temperature and the pressure might also be functions of time in
the general case, which we do not take into consideration at the moment.
We can see that φP corresponds to the solution in the case of uniform

pressure gradient (Poiseuille flow), whereas φT to the solution in the case
of uniform temperature gradient along the wall (thermal-transpiration flow).
The biggest problem that we will face trying to solve these two equations is
that the collision term is an operator acting upon an unknown with many
variables, which implies the integration with respect to all of them except
the spatial ones (see the definition of the linearized ES-Model). However, by
applying a similarity solution (the linearized collision operator related to the
ES-Model is spherically symmetric, see section 1.8), we get the solution can
be greatly simplified. This point might is of major importance because by
reducing the number of variables the memory allocatable for every variable
increases and the solution gets more precise. The linearized ES-Model is
further simplified. Neglect of this point would probably lead to results which
are not sufficiently accurate. This is what we get:

φα = c1

cρ
φα(y, c2, cρ, Y, k(x1)) (α = P, T ) (4.5)

cρ = (c2
1 + c2

3) 1
2 (4.6)

c2
∂φα
∂x2

= 2√
π

1
K

[−φα + 2cρuα + 2(1− η)νc2cρΣα] + Iα (4.7)
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uα =
∞̂

−∞

∞̂

0

∞̂

0

c2
ρY

δ
2−1φαẼY dY dcρdc2 (4.8)

Σα = 2
∞̂

−∞

∞̂

0

∞̂

0

c2c
2
ρY

δ
2−1φαẼY dY dcρdc2 (4.9)

IP = −cρ, IT = −cρ(c2
2 + c2

ρ + Y − 5 + δ

2 ) (4.10)

ẼY = Λδπ
− 1

2 exp(−c2
2 − c2

ρ − Y ) (4.11)

Λ−1
δ =

ˆ ∞
0

s
δ
2−1e−sds (4.12)

and the boundary conditions are

φα = 0, (y = ±1
2 , c2 ≶ 0) (4.13)

The boundary conditions are not properly those of the ES-Model in gen-
eral.
By performing an integration, this set of equations can be even more sim-

plified but these are the equations used to perform the first round of computa-
tions. Among the several macroscopic quantities that we may want to derive,
the most important one for our purposes is the adimensionalized mass-flow
rate M̂(1).

M̂(1) = a2 p̂(0)

T̂
1
2
w

(MP∂x1 ln p̂+MT∂x1 ln T̂w) (4.14)

where a is the distance between the two plates, which is given a unitary
value in our computations
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Mα = Mα(k) =
ˆ a

0
uα(x2, k(x1))dx2 α = P, T (4.15)

Recall that Kn = k
√
π

2 . The utility of this two coefficients, that is MP

and MT , will be showed in chapter 5. The adimensionalized mass-flow rate,
which is an adimensionalized flux,
has been thus defined because the density at the first order ρ(1) is null (it

happens to be so because an arbitrary function φg making up the first order
solution together with φP and φT has been taken to be zero). Being ρ(1) = 0,
ρ = ρ(0) +ρ(2)ε

2 + ..., we have that the density is constant in the cross section
at the first order and the adimensionalized flow-rate is given by the formula
above.

4.3 The Collision Term
The collision term is the most delicate one to treat numerically. The method
employed in this paper is the Numerical Kernel Method, developed by Pro-
fessors Yoshio Sone, Taku Ohwada and Kazuo Aoki [6]. The begin with, the
domain of definition of φα, which can be considered as a three-dimensional
real domain in our case (velocities cρ and c2 and energy state E), needs
discretizing. The discretization process should lead to a non-homogeneous
mesh because around the origin the molecular density is typically increas-
ingly steeper with respect to its three variables. We will see later on how to
choose a suitable spacing for the grid points. We just assume the mesh to be
given:

• I grid points in the direction of the velocity vρ: i1, i2, i3, ..., ip, ..., iI ,
each at a given velocity cρp .

• J grid points in the direction of the velocity v2: j1, j2, j3, ..., jq, ..., jJ ,
each at a given velocity c2q .

• Z grid points in the direction of the energy state Y : z1, z2, z3, ..., zr, ..., zZ ,
each at a given energy state Yr.

Our discretization, among all the possible ones, will yield (I−1)(J−1)(Z−1)
grid points Pp,q,r inside the domain such that Pp,q,r = (vρp , v2q , Yr). We will
have a domain made up of several parallelepipeds with non-uniform faces.
We must apply a cut-off to the domain of φα before discretizing.
Next, we shall choose whatever basis functions we prefer to approximate

the molecular density in the domain of definition exactly as in the case of the
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Finite-Element Method. We will take a Lagrangian polynomial basis of the
second order defined on a three dimensional space. Accordingly, the domain
of definition of the basis function comprises a subdomain of the whole domain
φ made up by the following points: ip−1, ip, ip+1, jq−1, jq, jq+1, zr−1, zr, zr+1.
We need three grid points on each side. The unknowns will be the values of
φα at each grid point. In our case, thanks to the symmetry of the solution,
we have that the integration has to be performed with respect to only three
variables. A three-dimensional array of all the unknowns is to be defined
φp,q,r = φ(cρp , c2q , Er). From now on, whenever these three subscripts will be
specified, α will be omitted for the sake of clarity.

Last, we ought to approximate the linearized ES-Model.

L(φ) = 1
k

[−φp,q,r + 2cρuα + 2(1− η)νc2cρΣα] ∼=
1
k
Lp,q,rφp,q,r (4.16)

where the summation convention used with tensors has to be applied to
these arrays. Lp,q,r equals to the value of the linearized ES-Model evaluated
in the domain ip−1, ip, ip+1, jq−1, jq, jq+1, zr−1, zr, zr+1 for a unitary value of
φp,q,r and the chosen basis functions.

Lp,q,r = 2cρpuα + 2(1− η)νc2qcρpΣα (4.17)

For instance, if we take into consideration the central node of the subdo-
main of definition of the Lagrangian basis, will have that:

uα =
´ ip+1
ip−1

´ jq+1
jq−1

´ zr+1
zr−1

c2
ρpY

δ
2−1
z EY

cρ−cρp+1
cρp−cρp+1

cρ−cρp−1
cρp−cρp−1

×

× c2−c2q+1
c2q−c2q+1

c2−c2q−1
c2q−c2q−1

Y−Yr+1
Yr−Yr+1

Y−Yr−1
Yr−Yr−1

dY dc2dcρ

(4.18)
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Σα = 2
´ ip+1
ip−1

´ jq+1
jq−1

´ zr+1
zr−1

c2qc
2
ρpY

δ
2−1
z EY

cρ−cρp+1
cρp−cρp+1

cρ−cρp−1
cρp−cρp−1

×

× c2−c2q+1
c2q−c2q+1

c2−c2q−1
c2q−c2q−1

Y−Yr+1
Yr−Yr+1

Y−Yr−1
Yr−Yr−1

dY dc2dcρ

(4.19)

EY = Λδπ
− 1

2 exp(−c2
2q − c

2
ρp − Yz) (4.20)

Λ−1
δ =

ˆ ∞
0

s
δ
2−1e−sds (4.21)

For different nodes, the three-dimensional Lagrange polynomial has to be
substituted into the formula. Furthermore, whenever a node is common to
multiple subdomains, the basis functions of different subdomains have to be
taken into consideration. The treatment is more delicate at the boundaries
of the domain.

In the program, there should be a separate module for every integral that
has to be evaluated. All the integrals have been evaluated analytically and
their expression has been substituted into each module. The hypothesis of
diatomic gas makes the integrals analytically solvable. We just mention that
the longest part of the program used to solve the problem is dedicated to
all the cases that need considering. A good check on the accurateness of the
program is that of considering several polynomial functions of c2 and cρ and
to find the

error =
∣∣∣∣∣L(φ)− Lp,q,rφp,q,r

L(φ)

∣∣∣∣∣ (4.22)

of the approximation.
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4.4 Second-order upwind scheme

What we have obtained so far is an equation like the following with homo-
geneous boundary conditions:

c2
∂φα
∂y

= 1
k

[−φα + 2cρuα + 2(1− η)νc2cρΣα] + Iα (4.23)

Given that the problem is symmetric with respect to the plane to which
the two axes x1 and x2 belong, we need only to deal with the lower half of the
domain. Given that the virtual memory allocatable is pretty limited, dealing
with half of the domain will allow for a denser grid. The results yielded by
the dicretization of the whole domain were not acceptable at all. A finite-
difference method has been applied with a second-order upwind scheme. The
solution obtained with a first order-upwind scheme was not satisfactory. The
reference frame that has been used has the origin lying on the lower plate.
The nodes in the longitudinal direction are numbered increasingly x21 , x22 ,...,
x2N (point on the median line),...,x22N . The reason why an upwind scheme
has been employed is that the particles are thought of as spheres traveling
with a given direction whose interaction determine a change of molecular
density for a given range of values of velocity corresponding to that same
direction. Therefore, let us say that c2 > 0 (cρ is always positive), in this
case a second-order backward difference approximates the partial derivative
in the node xi and we would have that

c2D(x2i , x2i−1 , x2i−2 , φ(x2i)p,q,r, φ(x2i−1)p,q,r, φ(x2i−2)p,q,r) =

= 1
k
Lp,q,rφ(xi)p,q,r + Iα(c2, cρ, Y ) ∀c2, cρ, Y

(4.24)

where D is a second-order backward difference. The expression of D can
be easily found by applying a parabolic interpolating polynomial to three
points that are not equally spaced. The necessity of using points that are
not uniformly spaced in the x2 direction is a consequence of the discontinuity
on the boundary. In the same way, if c2 < 0, we would have that

c2D(x2i+2 , x2i+1 , x2i , φ(x2i+2)p,q,r, φ(x2i+1)p,q,r, φ(x2i)p,q,r) =

= 1
k
Lp,q,rφ(xi)p,q,r ∀c2, cρ, Y

(4.25)



CHAPTER 4. SOLUTION TO THE PROBLEM AND NUMERICAL
RECIPES 47

Moreover, if c2 = 0, we would have the following

0 = Lp,q,rφ(xi)p,q,r ∀c2, cρ, Y (4.26)

The unknown is the array φi,p,q,r = φ(xi)p,q,r ∀xc2, cρ, Y .
However, the first two nodes on the lower plate and the last two nodes in

the median line between the two plates need considering separately. As far
as the latter are concerned, the problem is symmetric, therefore:

• On the last point x2N in the median line only the first equation (that
for c2 > 0 is imposed) and the last one (that for c2 = 0) are imposed.
In fact φα(x2N , c2) = φα(x2N ,−c2).

• On the second-last point x2N−1 , all the previous equations have been
imposed, but, in the case of negative c2, we have that φα(x2N−1 , c2) =
φα(x2N+1 ,−c2). This allows to compute a second-order backward dif-
ference for all the points in the lower half part of the domain.

For what concerns the first two nodes, we should spend a few more words.
On the lower boundary we have a discontinuity, so, as already explained
(section 1.7), we have φ(x21 , 0+) as well as φ(x21 , 0−). The equations that we
impose are:

• c2D(x2i+2 , x2i+1 , x2i , φ(x2i+2)p,q,r, φ(x2i+1)p,q,r, φ(x2i)p,q,r) = 1
k
Lp,q,rφ(xi)p,q,r

∀c2, cρ, Y , c2 < 0.

• 0 = Lp,q,rφ(xi)p,q,r ∀c2, cρ, Y , c2 = 0−.

• The boundary condition (φp,q,r(xi1) = 0) has to be imposed on c2 = 0+

and c2 > 0−.

Lastly, on the second point xi2 , we apply the first three equations with a first-
order backward difference formula in the case of positive c2. The mesh should
be denser close to the discontinuity. Furthermore, also the nodes close to the
origin of the three-dimensional domain originated by cρ, c2 and Y should be
denser. A cubic function has been used to determine the spacing of points
on the grid, in such a way as to ensure a dense arrangement of points in the
“hot zone”.
Finally, a matrix A has been assembled. This is a square matrix of size

I × (J + 1) × Z + (N − 1) × I × J × Z (we have φ(x21 , 0+) as well as
φ(x21 , 0−), therefore the nodes discretizing c2 for the first spatial point are
J+1, q = 1, ..., J+1 iff i = 1). The unknown is a vector ψ whose components
are those of the array φi,p,q,r disposed in this way:
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• ψ((p− 1)× (J + 1)× Z + q × Z + r) = φ1,p,q,r.

• ψ(I×(J+1)×Z+(i−1)×I×J×Z+(p−1)×J×Z+(q−1)×Z+r) =
φi,p,q,r, i = 2, ..., N .

The first conditions to be imposed are those on x21 in the case of c2 > 0.
Then all the other conditions on this point and those on the others point
starting from the second going upwards to the one on the median line. The
unknown vector is ψ. The inhomogeneous term b is due to Iα. We get the
final system to be solved:

Aψ = b (4.27)

A is a square matrix and its rows are all linearly independent. That is a
consequence of the fact the discretized problem is well-posed. This proce-
dure is not straightforward because of a lack of reference. Actually, at the
beginning, the author did know know that this was the procedure to follow.
Therefore, what has been explained in the last two chapters is the final result
of a long journey that started from the following question “How can I co-
herently impose the boundary conditions (on the temperature and pressure,
which are macroscopic variables) in a discretized problem?”. The procedure
originally followed was quite different in that the spacing of the grid points,
the order of the scheme and many others things were different, but it lead to
results that were not accurate enough to draw any conclusions. Step by step,
every single change was applied and the program began to take on its actual
form. Anytime the author had a problem, several fruitful conversations with
Masanari Hattori brought about small but essential changes that finally gave
rise to this procedure.

4.5 Solution to the Resolvent System
The whole problem reduces to the solution of a linear system. Usually, when
a finite-difference method is applied, a fixed-point iterative procedure is ad-
visable that does not require the assembly of the matrix because the compu-
tational cost is relatively small. One of the main shortcomings of an iterative
procedure is that the computational time required to have a “good” solution
tends to be really long. Usually computations last several hours or even an
whole day for such problems. The author, driven by a lack of experience in
this field, decided to solve the system. There are two reasons behind this
choice:
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• the solution can be found in just 6 to 8 hours with a sufficiently good
mesh;

• the assembly of the matrix proved itself an extremely propaedeutical
introduction to the problem.

Unfortunately, the side effects of this choice all but negligible: the matrix
that has to be solved has an enormous size. Even if it happens to be a
banded matrix due to the finite-difference method, it is still tough to save.
That is why the author decided to store the matrix in two separate files.
Although, this choice made the resolvent module slightly more complex. At
first, an iterative method seemed preferable, so the author wrote a program
to solve the former system using a biconjugate gradient stabilized method.
Unfortunately, the results obtained were not satisfactory, and so a Lapack
routine to solve linear systems with banded matrices was found to be the best
way to get the solution. These brief chapter, though encapsulated in a few
lines, has presented one of the biggest problems faced to solve this problem:
the size of the data that have to be dealt with. This problem was a big drain
on the author’s time during the present research. A “usual” matrix A was
stored by storing just the coordinates and values of non-zero elements. That
required a couple of files of about 8 Gigabytes each. Strenuous efforts were
made to save as much virtual memory as possible, but it seemed to be never
enough for our purposes. Consider that, in general, the following statements
hold:

• An increase in the number of grid points or in the number of variables
leads inevitably to an increase of the size of the matrix.

• An increase in the order of the problem implies more non-zero diagonal
lines in the matrix.

Those obvious conclusions entail the following question:

“What is the best compromise between order of accuracy, number of
variables and number of grid points?”

Actually, the author has not yet found an answer to this question. There-
fore, every single session of computations has been separately considered
to find the best choice: the biggest the Knudsen number gets, the more the
molecular density gets steep, so it is better to increase the number of velocity
grid points. However, if the function gets steeper, the cut-off of its domain
may be changed: it may be “shrunk” because the wings of the molecular
function are closer to the origin. We will partly answer this question in the
next section.
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4.6 Results Obtained
Unsatisfactory: that is all! This procedure was applied to only a small
number of values of the Knudsen number. It was too time-consuming and
the error of approximation of the collision term (see section 3.4) was too
large. The results can be seen in the next chapter. The error of MP and MT

is of the order of the error of approximation of the collision term (see next
chapter), although the trend of this coefficients as functions of the Knudsen
number is good. The “exact” solution is taken to be the one we are about
to show how to compute. The error on the collision term, though relatively
small in the case of MP , spoils completely MT , whose values are significantly
smaller.
Once again, we have to overcome the feeling of grief caused by this overt

failure. There is a way out of the problem: we could drop a variable. As a
consequence, the number of points could be increased up to an acceptable
value! The word “acceptable” refers to the fact the the number of grid points
used so far, large as it may seem, is still too small compared to the number of
points mostly used in this kind of numerical analysis. The procedure through
which we solved the problem, that is to say by solving a linear system, is
much more consuming in terms of virtual memory than an iterative fixed-
point method. Using the same mesh in our procedure would require an
enormous demand of memory for allocation.

4.7 How to Drop a Variable: the BKW-Model
The same solution can be worked out in a different way. We introduce a
marginal velocity distribution Φα ([7] pp. 364-366):

Φα = Λδ

ˆ ∞
0

Y
δ
2−1φα(x2, c1, cρ, Y, k(x2))e−Y dY (4.28)

We write the problem for the marginal velocity distribution and we even-
tually get that the equation for the thermal-transpiration flow is the same
that we would derive by applying the BKW-Model, whereas the molecular
density and the macroscopic quantities related to the Poiseuille flow obtained
by using the ES-Model are the same that we would have by correcting with
a given function of the parameters ν and η and of the coordinate x2 the
data obtained applying the BKW-Model. Moreover, in the general case of a
polyatomic gas whose degree of freedom is δ, δ does not appear any more.
Therefore, the whole program has been changed to solve the modified equa-
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tions with the BKW-Model. Basically, the difference lies in the collision
term, in which the integration has to be performed with respect to just two
variables. The error of approximation of the collision operator is extremely
small.
Furthermore, the same problem has been solved after having applied a

Maxwell-type boundary condition for different values of the accommodation
coefficient α. Also in this case the same similarity solution holds and we have
that the discontinuity at the boundary tends to disappear as α approaches
a unitary value. Therefore, after carrying on all the due computations, we
obtain that the equations to be solved are the same but that the boundary
conditions become:

φα(c2) = (1− α)φα(−c2), (y = ±1
2 , c2 ≶ 0) (4.29)

4.8 Second-Order Solution

So far, the flow has been considered steady. Let us try to remove this hypoth-
esis. Because of the last assumption in section 2.4, the flow of gas expected
to be slow, which means that v̂i is of the order of ε2, and so the reference
time t is taken to be t̂ = L̂/(2RT̂ ) 1

2 ε and the Strouhal number Sh = ε2. Ac-
cordingly, the time derivative appears in the equation to be solved multiplied
by Sh = ε2. Surprisingly, we have that all the results obtained up to now are
still valid in the time-varying case. However, when it comes to solving the
second-order solution, we stumble upon this additional term. Before embark-
ing on new computations, we decide to complete our analysis by finding the
value of the macroscopic quantities at the first order, which does not require
to find the solution of the second-order equation: we have only to through
this equation the conservation of the number of particles. By performing an
integration, we get the following problem to be solved ([7] pp. 362-363):

∂p̂(0)

∂t
+ T̂w

∂M
∂x2

= 0 (4.30)

M = p̂(0)

T̂
1
2
w

D

2 [MP (K)∂x1 ln p̂+MT (K)∂x1 ln T̂w] (4.31)
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K(t̂, x1) = K∗T̂
3
2
w (x1)

p̂(0)(t̂, x1)Âc(0)(x1)D
(4.32)

where K∗ is the ratio between the reference mean free path and D and
Âc(0)(x1) = 1 without loss of generality.

This equation is the diffusion-convection equation for the pressure at the
zeroth order in ε. M is the dimensionless first-order mass flux: M

ρ̂
(2RT̂ ) 1

2 =
D
2Mε + O(ε2), where the reference longitudinal length is taken to be 1 and
M is the original dimensional mass-flow rate.

4.9 Flow between Two Tanks at Different
Pressure

The last problem we are going to deal with is that of a flux driven by a differ-
ence of pressure between two tanks and a constant gradient of temperature
imposed along the thin conduit joining those two tanks. It might be modeled
as follows:

• The thin conduit is a tube just like the ones analyzed in depth in the
latter sections.

• The two tanks are filled with the same fluid as the one inside the linking
tube and closed with a valve, which is a kind of tiny “faucet” that, when
opened, lets the fluid out. The two valves are opened simultaneously.

• Being the tube long and narrow and the two tanks extremely larger,
the effect of the joint are omitted.

• The flow, after it transfers from the tube to tank, as soon as it has
passed the valve, is thought to instantaneously modify the pressure
inside the whole tank, in which the pressure is considered constant.
The tank keeps passing from an equilibrium condition to the next one.

• The temperature of the tank is that of the cross section of the pipe in
contact with the valve.
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Accordingly, the pressure is a function of time and x2, whereas the tem-
perature is a given function of x2 only. The only unknown happens to be the
pressure.

4.9.1 Case of Given Pressure at the Extremities of the
Tube

At first, we consider the case in which the pressure at the extremities of
the tube, that is to say inside the tanks, is given. At the initial time, the
pressure through the tube is thought to be linear. The equations that have
to be used are those of the second-order solution with the coefficients of Mp

and MT previously found. The solution to this highly non-linear equation
does not present us with any problems. First, we substitute the expression
of M into ∂p̂(0)

∂t
+ T̂w

∂M
∂x2

= 0. Second, we discretize it using a second-order
backward finite difference for the time derivative and second-order central
finite difference for the derivative with respect to x2. At the extremities of
the tube, we apply a first order finite-difference approximation. From now
on we will omit the caps. We have that the adimensionalized mass-flow rate
coefficients are functions of K = K(T, p). For a given time tj, where tj is a
point of the uniform time grid (j = 1, ..., T and tj − tj−1 = ∆t, j = 2, ..., T ),
we get this system of equations (we omit the caps):

A(pj)pj = rj (4.33)

in which:
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• pj is a vector such that pji = (x2i , tj), where x2i is a point of the uniform
spatial grid (i = 1, ..., S and xi − xi−1 = ∆x, i = 2, ..., S).

• A(pj) is a matrix such thatA1,1 = 1, AS,S = 1, Ai,i−1 = h
(∆x)2 − g

∆x ,
Ai,i = 3

2∆t + f − 2h
(∆x)2 , Ai,i+1 = g

∆x −
h

(∆x)2 and all the other elements
are 0. f , g and h are thus defined:

f = 1
R2T

1
2

∂MT

∂x

dT

dx
− 3

2MT (dT
dx

)2 1
R2T

3
2

+MT
d2T

dx2
1

R2T
1
2

(4.34)

g = MT

R2T
1
2

dT

dx
− 1

2MP
dT

dx

1
R2T

3
2

+ T
1
2

R2
dMP

dx
(4.35)

h = MP
T

1
2

R2 (4.36)

• rj is a vector such that rji = 2
∆tpi,j−1 − 1

2∆tpi,j−2.

All the element of Aj can be found by analytical derivation (in case of deriva-
tion of the temperature) or numerical integration (in case of the mass-flow
rate coefficients we will employ a finite-difference formula). The data for
the pressure in the preceding time step are used to compute the vector rj.
However, Aj is a function of the pressure through MP and MT . Newton-
Raphson’s method can be promptly applied. In fact, we are looking for p
such that F (pj) = Ajpj − rj = 0. Once the Jacobian of F (pj), that is JF (p),
has been computed, we iteratively solve the following problem:

p
(k)
j = p

(k−1)
j − J−1

F (p(k−1)
j )(A(p(k−1)

j )p(k−1)
j − rj) (4.37)

where k is the counter of the iterations.

The analytical computation of the Jacobian matrix is tedious and the
steps are omitted but, with a little of patience and much care not to make
any mistakes, it is easy to get the result. After a number of iterations has
been carried out, pj is taken to be equal to p(k)

j . As far as the inversion of
the Jacobian matrix is concerned, we know that it is tridiagonal, therefore
a method devised by Emrah Kilic [9] to invert a diagonal matrix by use of
backward continued fractions has been applied.
This procedure is followed for every time step. The pressure in the tanks

before the time in which the valves are opened is thought to be constant and
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to coincide with the pressure of the tanks at the time of the opening of the
valves. This assumption allows us to apply a second-order finite-difference
formula for the time derivative since the beginning of the computation.

4.9.2 Pressure at the Extremities Unknown
In this case, the problem is exactly like the one introduced at the beginning of
the chapter. The pressure at the extremities and through the tube is known
only at the initial time step. The procedure is pretty much the same as
that in the previous subsection. However, the pressure at the extremities is
computed at every time step. It is determined by the pressure at the previous
time step plus a variation that is a function of a parameter m and of the net
mass which has entered the tank. Once again, the mass-flow rate must agree
with the gradients of temperature and pressure at the joints between the
tubes and the tanks.
The evaluation of m is not straightforward. It must be such as to grant

the conservation of mass, that is to say that M flowing through the junction
to the tank must equal M entering the tank and vice versa. Supposedly, the
tanks will go through successive equilibrium states. First of all the dimen-
sional mass-flow rate must be computed:

M = ρ0

(2RT )
1
2
0

D

2 [Mε+O(ε2)] ∼=
ρ0

(2RT0) 1
2

D

2Mε (4.38)

We must pay attention to the fact that the problem is bidimensional and
the dimension of ρ0 is [M

L2 ] and to the fact that the reference longitudinal
length is taken to be unitary according to the previous analysis.
Then, given that the volume of a tank V is constant, we may claim that

Mj = Mj−1 +Mj∆Tj (4.39)

where M is the total mass of fluid inside the tank and Mj and ∆Tj are
respectively the dimensional mass-flow rate and the difference of temperature
at t = tj. Therefore ρtankj ∼= ρtankj−1 + Mj∆Tj

V
. Recall that p = ρRT for a

fluid that can be modeled with kinetic theory, and so

p1,j = ptankjRTj
∼= (ρtankj−1 + Mj∆Tj

V
)RTj = ptankj−1 +mMj∆Tj (4.40)

where Tj andMj are respectively the temperature and the non-dimensional
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mass-flow rate at t = tj and m = ρ0

(2RT0)
1
2

D
2 ε

∆Tj
V
R. The symbol of “approx-

imately equal to” may be substituted by the symbol “equal to” in case of
first-order accuracy. Another way to solve the same problem could have been
that of modeling the tank as a tube with a “huge” distant between the par-
allel plates. The term “huge” refers to the relative size of the tank and the
thinner tube.
One more essential remark has to be made: the direction of the flow

driven by the temperature is directed towards the region of higher tem-
perature whereas the flow driven by he pressure gradient is opposite to the
gradient itself. Therefore, whenever we compute the Poiseuille or thermal-
transpiration flow at the boundary, its direction (which determines its sign)
has to be found.

4.9.3 Single-stage Knudsen Pump
The same program detailed in the previous section has been slightly changed
(the boundary condition on the cold tank on the left side has been changed)
to suit the following problem.

D

L

d

x2

x10

x1

Tw

T1

T0

? ≪ ?
? ≪ ?
?≪ ?

Figure 4.1: Single-stage Knudsen Pump

The pressure on the cold tank is kept constant so has to have a single-stage
Knudsen pump.



5 Data Obtained

5.1 φp and φT computed imposing the
Diffuse-Reflection Boundary Condition

5.1.1 BKW-Model

The plot in this section represent some of the functions φp and φT , where φα is
redefined as φα = EΦα = π−3/2 exp(−v̂2

i )Φα (Φα is the marginal distribution
function), obtained for different values of the Knudsen number Kn at the
boundary and on the median line. The reason behind the rescaling the
function φα lies in the fact that F̂(1) was factorized using the solution F̂(0),
which is proportional to the following Maxwellian function:

Ẽ = 1
π

3
2

−
v̂2
i

+Ê
T̂w(x1) (5.1)

(see the form of the solution in the previous chapter).

In fact, the same procedures could be followed employing the BKW-Model
since the beginning. That would have led to a solution F̂(0) proportional to
E.
Given that the BKW-Model has been applied, the data do not reflect

the diatomic structure of Nitrogen. As predicted in the first chapter, on
the boundary occurs a discontinuity. While going through these data, one
should pay attention to the fact that φT might have negative values, which
does contrast with the definition of molecular density as a positive function.
This can be promptly justified by looking at the solution of the first-order
equation: φP and φT can have negative values as long as the overall formula
of the molecular density yields a positive value.

57
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5.1.1.1 Kn = 10−2

Figure 5.1: φP Lower Side

Figure 5.2: φP Middle
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Figure 5.3: φT Lower Side

Figure 5.4: φT Middle
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5.1.1.2 Kn = 3× 10−2

Figure 5.5: φP Lower Side

Figure 5.6: φP Middle
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Figure 5.7: φT Lower Side

Figure 5.8: φT Middle
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5.1.1.3 Kn = 6× 10−2

Figure 5.9: φP Lower Side

Figure 5.10: φP Middle
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Figure 5.11: φT Lower Side

Figure 5.12: φT Middle
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5.1.1.4 Kn = 10−1

Figure 5.13: φP Lower Side

Figure 5.14: φP Middle
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Figure 5.15: φT Lower Side

Figure 5.16: φT Middle
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5.1.1.5 Kn = 3× 10−1

Figure 5.17: φP Lower Side

Figure 5.18: φT Lower Side
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5.1.1.6 Kn = 8× 10−1

Figure 5.19: φP Lower Side

Figure 5.20: φT Lower Side
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5.1.1.7 Kn = 102

Figure 5.21: φP Lower Side

Figure 5.22: φT Lower Side
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5.1.2 ES-Model

The following plots are those of φP and φT redefined in the following way:
φα = ẼΦα. Indeed, the original functions of the ES-Model are functions
of three variables (c2, cρ and Y ). We will show the marginal distributions
derived from the original functions multiplied by a given Maxwellian.

5.1.2.1 Kn = 4× 10−1

Figure 5.23: φP Lower Side
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Figure 5.24: φP Middle

Figure 5.25: φT Lower Side
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Figure 5.26: φT Middle

Figure 5.27: φT Lower Side (close-up)

By looking carefully at
the plot on the left
it can be noticed that
there’s the “hollow”
that appears also in
the data obtained by
employing the BKW-
Model.
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5.1.2.2 Kn = 6× 10−1

Figure 5.28: φP Lower Side

Figure 5.29: φP Middle
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Figure 5.30: φT Lower Side

Figure 5.31: φT Middle
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5.2 Gross Velocity (uα1) Profiles computed
imposing the Diffuse-Reflection Boundary
Condition

5.2.1 BKW-Model

Given that the rate of flow per unit area has been computed, we may employ
the term flux. The two fluxes have a given velocity profile which basically
shows what has been previously anticipated: the flows have opposite direc-
tion.

5.2.1.1 uP1
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Figure 5.37: uP1

The velocity exhibits a strange behavior at the boundary. Its profile zigzags
towards the borderline. That is due to the finite-difference method that
“clashes” with the discontinuity. Moreover, in the second picture of this
section one may notice that in the case of Kn = 102 the gross velocity rises
abruptly on the boundary. Such an high value of the Knudsen number causes
the molecular density to get “thinner” around the origin, which means that
the gas is more rarefied. The overall system of particle is less responsive to the
effect of the collisions. As a consequence the gross velocity is more uniform
in the innermost part of the tube and suddenly changes at the boundary to
suit the boundary conditions. This effect does not have anything to do with
our method. It reflects a “true” physical phenomenon. One more noteworthy
remark has to be made: the velocity profile in the case of Kn = 10 is lower
than the profile found for Kn = 1. This counter-intuitive behavior reflects
the presence of a minimum of the mass flow-rate around a unitary value of
the Knudsen number.
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5.2.1.2 uT1
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5.2.2 ES-Model
5.2.2.1 uP1

Figure 5.43: uP1 , Kn = 4× 10−1
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Figure 5.44: uP1 , Kn = 6× 10−1

5.2.2.2 uT1

Figure 5.45: uT1 , Kn = 4× 10−1
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Figure 5.46: uT1 , Kn = 6× 10−1

5.3 φp and φT computed imposing the
Maxwellian-Type Boundary Condition

φα has the same meaning as in section 4.1.1. We will show some of the
outcomes of the computations.

5.3.1 α = 4× 10−1 and Kn = 10−1

Figure 5.47: φP Lower Side
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Figure 5.48: φT Lower Side

5.3.2 α = 2× 10−2 and Kn = 10−1

Figure 5.49: φP Lower Side
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Figure 5.50: φT Lower Side

5.3.3 α = 10−2 and Kn = 10−1

Figure 5.51: φP Lower Side
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Figure 5.52: φP Lower Side

Figure 5.53: φT Lower Side

5.4 MT and MP

We compare now the mass-flow rates obtained. It is noteworthy that there
is a database available online on the personal website of Professor Sone [10]
where data for these two coefficients can be found in the case of flow through
a cylinder and between two parallel plates. However, these data have been
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found by applying only the BKW-Model, which, as already explained, is not
a limiting condition, and diffuse-reflection boundary conditions. The data
found in this paper, as well as those resulting from similar computations
(see for the case of a flow inside a thin cylindrical conduit), are thought to
be slightly more accurate than those found some years ago by Sone because
of the ongoing continuous improvement of computational media. The re-
sults obtained for the Poiseuille flow show good accordance for all Knudsen
numbers. In both this computations and those in [5], as far as the thermal-
transpiration flow is concerned, the relative difference is small for higher
values of the Knudsen number, whereas in case of lower Knudsen numbers
(Kn ≤ 10−1), the relative difference is not negligible any more. Also the com-
putation in case of large Knudsen numbers (Kn ≥ 102) might yield slight
different results.

Kn −MPSone −MP MTSone MT

1× 10−2 9.916 9.91637958588908 0.00335365 0.004060362164873696
3× 10−2 3.6559 3.65603894464242 0.0098094 0.01009631585877536
6× 10−2 2.1004 2.10070954005793 0.0188694 0.01904252863978931
1× 10−1 1.48745 1.48751271803829 0.0297971 0.02993366274276359
2× 10−1 1.04345 1.04354838548154 0.052255 0.05236761848361676
3× 10−1 0.90625 0.906405723990694 0.069765 0.06987919978034930
4× 10−1 0.84395 0.844092217677563 0.08408 0.08419076357268261
6× 10−1 0.79175 0.791904667206507 0.10675 0.106888610183851
7× 10−1 0.7806 0.780728294950862 0.116095 0.116213100798656
8× 10−1 0.7741 0.774241969773390 0.1245 0.124678954963663

1 0.76925 0.769227542192666 0.139182 0.139802239856045
101 0.99505 0.994484098946172 0.33503 0.338602477173270
102 1.4946 1.49643622164889 0.60245 0.609082237673433

Table 5.1: BKW-Model, Mass-Flow Rates

Nevertheless, given that the accuracy of the results hereby obtained is
subject to a relative error on the collision term which worsens the solution
since an integration over the whole cross section is carried out (the last digits
of the given data might be utterly insignificant in physical term), we may
claim that, as far as the results are comparable to those obtained by Sone
(conditions listed above):

• For higher Knudsen numbers, the results given by Sone and those here
obtained show perfect accordance;
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• For lower Knudsen numbers, the results obtained in this paper and in
[5] are likely to be more accurate.

As already explained, the ES-Model implemented in this way (see section
3.7) does not lead to good results. For instance, let us take a look at the
following table.

Kn
−MP MT

BKW-Model* ES-Model BKW-Model ES-Model
4× 10−1 0.780468551 0.848042311029 0.0841907635 0.128770089430
6× 10−1 0.749488889 0.797031291033 0.1068886101 0.149253507377

* The due correction has been applied.
Table 5.2: ES-Model, Mass-Flow Rates

A couple of remarks have to be made:

• Given that the error on the collision term is the same in the two cases,
the relative error on the thermal-transpiration flow i much larger than
that on the Poiseuille flow.

• These data are impressively good if compared to the poor mesh used to
compute them. The author was expecting to obtain much worse data.

• The Prandtl number applied in the correction, corresponding to the
one used in ES-Model by setting the values of its two parameters, is
slightly different from the experimental one (see [5], Chapter 5).

We will now show a comparison between the data obtained with different
values for the accomodation coefficient α. These are the data obtained in
case of α = 0.8.

Kn −MP MT

1× 10−1 1.71594065102258 0.02852942283308928
2× 10−1 1.26792373216702 0.05093826225624633
3× 10−1 1.12907193158461 0.06927613436466019
4× 10−1 1.06638610642821 0.08490972819031831
6× 10−1 1.01555611899100 0.110818132886805
7× 10−1 1.00559961171446 0.121871009084524
8× 10−1 1.00055813625851 0.131971411048076

1 0.998606092280372 0.150681874415117
101 1.32310512304153 0.420133273434314
102 2.04131790611601 0.80987726987361

Table 5.3: BKW-Model, α = 0.8, Mass-Flow Rates



88 CHAPTER 5

The following table show the data obtained in case of α = 0.4.

Kn −MP MT

1× 10−1 2.83892411030098 0.02555419721768168
2× 10−1 2.38190353781178 0.04785734492856788
3× 10−1 2.23923198125151 0.06803290146520063
4× 10−1 2.17578219289462 0.08663895901304167
6× 10−1 2.12830249145230 0.120374576071962
7× 10−1 2.12144360401964 0.135823667620900
8× 10−1 2.11995134946993 0.150666036468581

1 2.12591533382829 0.179283026556779
101 2.78574100573617 0.708484684766731
102 4.41363806160725 1.62552294251066

Table 5.4: BKW-Model, α = 0.4, Mass-Flow Rates

Figure 5.54: MP

The last plot displays a minimum, which accounts for the behavior of the
Poiseuille flow previously showed (subsection 4.2.1.1). The more α is in-
creased, the more the flow grows. This is due to the fact that the imposition
of the temperature on the tube is achieved through the boundary condition.
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Unfortunately, the temperature does not appear in the pure reflection bound-
ary condition (α = 0). Therefore the temperature cannot be enforced on a
given cross section and the problem is not well-posed any more. Accordingly,
also the pressure cannot be imposed, as one can see by going through all the
steps of the solution (see formula (35) of [8]). As a consequence, the smaller
gets α, the harder it becomes to impose a given temperature and the wall
gets more “slippery”, which corresponds to an increasing non-zero right side
of φα at the lower boundary that can be observed in the previous plots. As
far as the Poiseuille flow is concerned, this effect leads to an increase in Mp

(a decrease in −MP ). The plot of uP for Kn = 10−2 is perfectly coherent
with what has just been claimed.
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Figure 5.56: MT

Figure 5.57: MT

The thermal-transpiration flow is an effect of rarefaction, so for small
Knudsen numbers the flow gets smaller. As long as the Knudsen number
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is large enough, the trend of the plots is the same as in the previous case,
whereas a close-up of the plots for small Knudsen numbers exhibits an in-
version in the behavior of the gas, as can be observed in the following plot
of uT for Kn = 10−2.
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Figure 5.58: uT Lower Side

In order to fathom this odd behavior, these further data have been com-
puted for Kn = 10−2.

α −MP MT

0.2 5.06321581092534 0.02409793982331023
0.01 89.2974758176483 0.02725724635982697

Table 5.5: BKW-Model, Kn = 10−2, Mass-Flow Rates

We can definitely affirm that for small Knudsen numbers, the trend of the
thermal-transpiration flow is reversed. However, the introduction about the
thermal-transpiration flow (section 2.2) was based upon the hypothesis of
diffuse-reflection boundary condition. Footnote 7 at page 9 of the aforemen-
tioned book by Sone points out that the analysis carried out fails to hold with
general boundary conditions because some terms cancel out. As a reference,
Sone gives a book by K. Aoki, T. Inamuro, and Y. Onishi [11].
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Therefore, two points should be made clearer by a further detailed analy-
sis: the reason for this reversal of behavior and the location of the point of
intersection between all the curves.
The following are the data of MP with the due correction applied. These

data will be employed for the computation of the second-order solution.

Kn α = 1 α = 0.8 α = 0.4
1× 10−1 1.74139803061821 1.96982596360250 3.09280942288090
2× 10−1 1.17049104177150 1.39486638845698 2.50884619410174
3× 10−1 0.991034161517332 1.21370036911125 2.32386041877815
4× 10−1 0.907563545822542 1.12985743457319 2.23925352103960
6× 10−1 0.834218885969826 1.05787033775432 2.17061671021562
7× 10−1 0.816997625319421 1.04186894208302 2.15771293438820
8× 10−1 0.805977633845879 1.03229380033100 2.15168701354242

1 0.794616073450658 1.02399462353836 2.15130386508628
101 0.997022952071971 1.32564397616733 2.78827985886197
102 1.49669010696147 2.04157179142859 4.41389194691983
Table 5.6: BKW-Model, Mass-Flow Rates

5.5 Second-Order Solution
The following data refer to the problem of a flow between two tanks when

the pressure in unknown (see section 4.9.2). The following parameters have
been set:

• initial pressure gradient a = 0.2;

• constant temperature gradient β = 1.5;

• L = 10−2;

• R = 10−4;

• K∗ = 1;

• m = 2.

All these parameters may be arbitrarily chosen. The following plot show
what we get for three values of α in case of Nitrogen . As time goes on, the
steepness of the curves decreases, which reflects the trends to equilibrium.
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An increase in the accomodation coefficient leads to smaller mass-flow rate
coefficients, and so to a drop in the overall responsiveness of the system.
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Once the effect of a variation of the boundary conditions through α has
been illustrated, we want to conclude with a few simulations of a single-stage
Knudsen pump (see section 4.9.3) just to show a practical application of the
data obtained. Actually, in order to have a good rate of compression, the
difference of temperature between the two tanks should be large. Otherwise,
several stages are to be arranged in series. Given that we will employ just one
stage, we have two choices to attain a satisfactory difference of temperature:
increasing the gradient or lengthening the conduit. We will adopt the second
solution and set the parameters as shown below:

• α = 1;

• initial pressure gradient a = 0;

• constant temperature gradient β = 1.5;

• L = 1;

• R = 10−4;

• m = 1.

Figure 5.63: Kn = 0.1
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Figure 5.64: Kn = 0.5

Figure 5.65: Kn = 10
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Figure 5.66: Kn = 35

The plot of Figure 5.63 does not display the behaviour we expect be-
cause of the low Knudsen number. For such a low value the Poiseuille flow
is predominant over the thermal-transpiration flow: the compressive effect
characteristic of the Knudsen pump proper is reversed. One last point is
worth of mention: the compression ratio is greater at Kn = 10 than at
Kn = 35. The fact that the compression ratio is not a monotone function of
the Knudsen number has already been pointed out before both numerically
and experimentally for gas flowing in circular tubes [5].
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