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La filosofia è scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l’universo), ma non si può intendere se prima
non s’impara a intender la lingua, e conoscer i caratteri, ne’ quali è scritto.
Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre
figure geometriche, senza i quali mezi è impossibile a intenderne umanamente
parola; senza questi è un aggirarsi vanamente per un oscuro laberinto.

Galileo Galilei



Abstract

Controlled radical polymerization (CRP) is a process to form polymers by
successive monomers additions. This growing process is mainly made by three
events: propagation, if the next monomer is linearly added to the chain, back-
biting, when the free radical changes its position and a new branch will start
growing perpendicular to the previous one, and termination, if the chain stops
to grow.
We have proposed a model describing the CRP process and offered two differ-
ent approaches for solving it: Partial Differential Equations solutions (PDE)
and stochastic simulation algorithm based on Monte Carlo estimations (MC).
In this work, the model and the two approaches are summarized and their
benefits as well as drawbacks are discussed.
Then, we realize that both the approaches can not explain some particular
experimental results. MC method’s flexibility allows us to modify the model,
varying the hypothesis on which it is built, in order to give an explanation to
those experimental results.

This work has been performed at Basque Center for Applied Mathematics
(BCAM, Bilbao, Spain), under the supervision of prof. Elena Akhmatskaya
from BCAM, prof. Dmitri Sokolovski from University of the Basque Country
(UPV/EHU, Bilbao, Spain) and in close collaboration with prof. J.M. Asua
from Basque Center for Macromolecular Design and Engineering (POLYMAT,
Donostia-San Sebastián, Spain).
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Sommario

Polimerizzazione Radicalica Controllata (CRP) è un processo molto diffuso per
la sintesi di materiali polimerici. Trova applicazione in molti settori industriali,
principalmente nella produzione di materie plastiche.
Questo processo di crescita dei polimeri è costituito da addizioni successive di
monomeri. Tre eventi principali ne caratterizzano l’evoluzione: propagation,
il monomero successivo viene aggiunto linearmente alla catena, backbiting, il
radicale libero cambia la sua posizione ed un nuovo ramo inizierà a crescere per-
pendicolarmente al precedente, e termination, la catena arresta la sua crescita.
In questo lavoro, si propone un modello per descrivere tale processo. Solo in
alcuni casi particolari, è possibile risolvere questo modello tramite soluzioni
analitiche di Equazioni a Derivate Parziali (PDE).
Una tecnica alternativa consiste nell’algoritmo di simulazione stocastica (SSA)
proposto da D. Gillespie [1]. Questo metodo è stato ampiamente utilizzato,
rivisitato e modificato da quando è stato proposto, fino ai giorni nostri.
Il modello ed i due differenti approcci sono descritti in questa tesi, discuten-
done vantaggi e svantaggi.
All’inizio di questo lavoro, il metodo SSA viene utilizzato nella sua versione
originale. Poi, vengono proposte alcune modifiche basate su una dimostrazione
alternativa a quella data da Gillespie. Questa prova conduce allo stesso risul-
tato ottenuto da Gillespie [1], ma rende il metodo SSA più flessibile, permet-
tendo di arricchire l’algoritmo con densità di probabilità generiche.
Questo arricchimento permette di spiegare alcuni comportamenti sperimentali
che i precedenti approcci non sono in grado di giustificare.

Questo lavoro è stato svolto presso il Basque Center for Applied Mathemat-
ics (BCAM, Bilbao, Spagna), sotto la supervisione di prof. Elena Akhmatskaya
(BCAM), prof. Dmitri Sokolovski (University of the Basque Country, UPV/EHU,
Bilbao, Spagna) ed in stretta collaborazione con J.M. Asua (Basque Center
for Macromolecular Design and Engineering, POLYMAT, Donostia-San Se-
bastián, Spagna).
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Chapter 1

Introduction

Controlled Radical Polymerization is a widespread process for the synthesis of
polymeric materials, and it finds application in many industrial fields, primar-
ily in producing plastics [2], [3] and [4].
In this work we propose a model to describe this process. The analytical
solutions of the corresponding Partial Differential Equations (PDE) can be
obtained only for some special cases in this model.
Another useful technique is the basic stochastic simulation algorithm (SSA)
proposed by D. Gillespie [1]. This method has been widely used, revised and
modified since it was introduced [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19] and [20].
At the beginning, we use SSA in its original formulation. Then, we propose
some modifications in the algorithm which lead to the equivalent algorithm
to the one proposed by Gillespie [1], but it also allows us to use the generic
probability density functions.
This enrichment helps us to explain the particular experimental behavior that
both the PDE analytical solutions and the original SSA are not able to justify.
The thesis is organized as follows. In Chapter 2, we explain the chemical pro-
cess that characterizes the reaction of interest.
In Chapter 3, we propose a Markovian model that leads to a pure Poisson
process. The original SSA is used to simulate this Markovian-Poisson process.
Chapter 3 is organized as follows.
In Section 3.1, we introduce a model to describe the analyzed phenomenon.
In Section 3.2, we explain in which cases it is possible to get an analytical
solution for the proposed model and how to obtain it.
In Section 3.3, first we briefly summarize the original SSA proposed by Gille-
spie [1]. Then, we give our alternative formulation and explain how to apply
the SSA in the case under study. Finally, we set and run a simulation to re-
produce the polymerization of Polyvinyl Chloride (PVC).
In Section 3.4, we compare the results provided in Section 3.2 and 3.3, outlin-
ing benefits and drawbacks.
In Chapter 4, we introduce a new player in the considered polymerization: the
freezing agent. Chapter 4 is organized as follows.
In Section 4.1, we explain what the freezing agent is, its chemical effect on
the reaction and also describe the experimental behavior that cannot be re-

1



Chapter 1. Introduction

produced by the previous approaches.
In Section 4.2, we explain how to introduce the freezing agent in the original
SSA algorithm. We can remark that this approach is also not able to give an
accurate description of the desired behavior.
In Chapter 5, we introduce Non-Markovian models and Non-Poisson processes.
Chapter 5 is organized as follows.
In Section 5.1, we propose the first modification to the original SSA. This
first attempt gives the wrong result, but it also gives the idea for the model
proposed in Section 5.2. In this section, we can get the desired behavior, but
some drawbacks of this approach are outlined. Then, in Section 5.3, we can
overcome the drawbacks emerged in Section 5.2 proposing a different model.
In Section 5.4, we explicitly identify non-Markovian and non-Poisson effects
that can characterize the polymers growth. In Section 5.5, we apply these
ideas to the case of interest and demonstrate that such an approach accurately
reproduces the experimental behavior.

2



Chapter 2

Control Radical Polymerization:
the phenomenon

Controlled Radical Polymerization (CRP) is a way to create long molecular
chains that are called polymers. The building unit for this molecules is a
monomer and the linking tool is the so called “free radical”, that is simply an
electron attached to the monomers by electro-magnetic fields.
When the first monomer meets another monomer, the free radical creates a
link between the two monomers and then it moves forward to the head of the
two monomers chain just built.
If this chain meets other monomers, the reaction keeps on and the growth of
the chain produces a linear segment, because the free radical always moves
forward.
But, this is not the end of the story: after the creation of the link between the
chain and a new monomer, the free radical can also move backward inside the
chain. The next monomer will be added where the radical is placed, thus this
is the start of a new branch.
The reaction creates this branched structure, following the free radical move-
ments and it continues until the occurrence of a termination event. An example
for this last event could be the free radical neutralization due to another free
radical.

Thus, the considered polymerization is mainly made by the successive occur-
rence of the following events:

• PROPAGATION: next monomer is linearly added,

• BACKBITING: the radical changes its position and a new branch will
grow perpendicular to the previous one,

• TERMINATION: the chain stops to grow.

From chemical description of the process we know that backbiting can only
occur after at least three previous propagations in any branch.
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Chapter 2. Control Radical Polymerization: the phenomenon

In Figure 2.1 the device where such a chemical reaction can take place is shown.

Figure 2.1: An emulsifier where Controlled Radical Polymerization can take place.

The idea of Figure 2.2 is to show the different branched structures that can
be created by CRP: the molecule on the top is only made by propagations,
because it is a linear segment, whereas the one on the bottom is a result of a
propagation followed by a backbiting, since it is made by two perpendicular
branches.

Figure 2.2: Two different branched structures that can be created by the considered
polymerization [5].
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Chapter 3

Markovian Model

3.1 The model

3.1.1 The hypothesis

Let us define the rates for each event that characterizes the CRP process:

• p is the propagation occurrence rate,

• r is the backbiting occurrence rate,

• q is the termination occurrence rate.

We make these assumptions:

• the rates are constant over time,

• the rates are chain configuration independent.

The idea is that there is such an abundance of monomers to be added that the
rates can be regarded as constant.
These are a very strong hypothesis, in particular for the backbiting rate r,
but they are needed to solve the model through the PDE approach. The MC
approach will allows us to remove these strict assumptions.

3.1.2 The full model

Let us define the model variables:

• {N, n0, .., nN} is the chain configuration, it means that the chain is made
by N branching points and the N + 1 branches are made by n0, .., nN
monomers,

• P ({N, n0, .., nN}; t) is probability to have at time t the configuration
{N, n0, .., nN} and the last branch is still growing,

• Q({N, n0, .., nN}; t) is probability to have at time t the configuration
{N, n0, .., nN} and the chain stops to grow before or at time t.
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The model

We can write down balance equations:

P ({N, n0, .., nN}; t+ dt) = (1− (p+ r + q)dt) P ({N, n0, .., nN}; t)
+ p dt P ({N, n0, .., nN − 1}; t)
+ r dt P ({N − 1, n0, .., nN−1}; t) δ(nN), (3.1)

Q({N, n0, .., nN}; t+dt) = Q({N, n0, .., nN}; t)+qdtP ({N, n0, .., nN}; t). (3.2)

The equation (3.1) means that the probability to reach at time t + dt the
growing configuration {N, n0, .., nN} is equal to the sum of the probabilities
of three disjoint events. Those events are the ones that lead to the previous
event:

• the event to be at time t in the same growing configuration {N, n0, .., nN}
and nothing happens between t and t+ dt,

• the event to be at time t in the growing configuration {N, n0, .., nN − 1},
that is one propagation removed from the considered one {N, n0, .., nN},
and a propagation occurs between t and t+ dt,

• the event to be in time t in the growing configuration {N−1, n0, .., nN−1},
that is one backbiting removed from the considered one {N, n0, .., nN},
and a backbiting occurs between t and t+ dt.

The δ(nN) in equation (3.1) is place to guarantee that the N + 1th branch is
made by zero monomers, because the last backbiting has not occurred yet.

The equation (3.2) means that the probability to have at time t + dt the
arrested configuration {N, n0, .., nN} is equal to the sum of the probabilities of
two disjoint events. Those events are the ones that lead to the previous event:

• the event that the configuration {N, n0, .., nN} is terminated before or at
time t,

• the event to be at time t in the growing configuration {N, n0, .., nN} and
a termination occurs between t and t+ dt.

Then, there are trivial conditions that our density functions have to satisfy:

∑
N∈N

∑
n0∈N

..
∑
nN∈N

[P ({N, n0, .., nN}; t) +Q({N, n0, .., nN}; t)] = 1 ∀t ≥ 0, (3.3)

P ({0, 0}; 0) = 1. (3.4)

The equation (3.3) simply is a normalization condition and the equation (3.4)
means that at time t = 0 the reaction has to start with an empty polymer
structure.
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The Partial Differential Equations approach

3.2 The Partial Differential Equations approach

3.2.1 The special cases

The PDE approach allows us to solve the model only in these cases:

• FIRST BRANCH the linear segment created before the occurrence of the
first event different from propagation (backbiting or termination),

• LAST BRANCH the linear segment that grows after the last backbiting
(if backbiting is not happened yet, the last segment is the first one),

• BACKBITING TERMINATED BRANCHES all the linear segments ter-
minated by a backbiting: we consider all these branches as the same kind
of branch, regardless the position they have through the chain.

3.2.2 The first branch

Let us define the model variables that hold the first branch:

• P f (n0, t) = P ({0, n0}; t) is the probability to have at time t the first
branch made by n0 monomers and it is still growing,

• Qf (n0, t) = Q({0, n0}; t) is the probability to have at time t the first
branch made by n0 monomers and it is terminated by termination before
or at time t,

• Rf (n0, t) is the probability to have at time t the first branch made by n0

monomers and it is terminated by backbiting before or at time t.

In the case of the first segment, we can rewrite the balance equations (3.1),
(3.2) and the conditions (3.3), (3.4):

P f (n0, t+ dt) = (1− (p+ r + q)dt) P f (n0, t) + p dt P f (n0 − 1, t), (3.5)

Qf (n0, t+ dt) = Qf (n0, t) + q dt P f (n0, t), (3.6)

Rf (n0, t+ dt) = Rf (n0, t) + r dt P f (n0, t), (3.7)

∑
n0∈N

[P f (n0, t) +Qf (n0, t) +Rf (n0, t)] = 1 ∀t ≥ 0, (3.8)

P f (0, 0) = 1. (3.9)

The equations (3.5), (3.6) and (3.7) can be rewritten as follows:
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The Partial Differential Equations approach

P f (n0, t+ dt)− P f (n0, t)

dt
= −p [P f (n0, t)−P f (n0−1, t)] −(q+r) P f (n0, t),

(3.10)

Qf (n0, t+ dt)−Qf (n0, t)

dt
= q P f (n0, t), (3.11)

Rf (n0, t+ dt)−Rf (n0, t)

dt
= r P f (n0, t). (3.12)

Now, the next steps are the following:

• take the limit dt→ 0,

• replace n0 by a continuous variable x, assuming n0 � 1,

where the first passage to the limit is taken in order to get partial derivatives
with respect to the time t on the l.h.s. of (3.10), (3.11), (3.12).
The second passage (n0 → x) means that the first segment length n0 is replaced
by a continue variable x.
This step is the critical one of the PDE approach, but it is needed to solve the
PDE system. We make it now, but later we will see all the consequences.
Finally, if we take both the limits, we get from equations (3.10), (3.11), (3.12),
(3.8), (3.9):

∂tP
f (x, t) = − p ∂xP f (x, t) − (q + r) P f (x, t), (3.13)

∂tQ
f (x, t) = q P f (x, t), (3.14)

∂tR
f (x, t) = r P f (x, t), (3.15)

∫ +∞

0

P f (x, t) +Qf (x, t) +Rf (x, t) dx = 1 ∀t ≥ 0, (3.16)

P f (x, 0) = δ(x). (3.17)

Thus, we can get these solutions:

P f (x, t) = δ(x− pt) exp[−(q + r)t], (3.18)

Qf (x, t) =

∫ t

0

qP f (x, t′)dt′ =
q

p
exp[−(q + r)

x

p
] θ(pt− x), (3.19)

Rf (x, t) =

∫ t

0

rP f (x, t′)dt′ =
r

p
exp[−(q + r)

x

p
] θ(pt− x), (3.20)
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The Partial Differential Equations approach

where θ(x) is 1 for x > 0 and 0 otherwise.

Then, we can define:

• N f
P (t) =

∫ +∞
0

P f (x, t)dx is the proportion of still growing first segments
at time t, regardless their length x,

• N f
Q(t) =

∫ +∞
0

Qf (x, t)dx is the proportion of terminated segments before
or at time t (by termination), regardless their length x,

• N f
R(t) =

∫ +∞
0

Rf (x, t)dx is the proportion of terminated segments before
or at time t (by backbiting), regardless their length x.

From condition (3.16), these quantities must satisfy this equation:

N f
P (t) +N f

Q(t) +N f
R(t) = 1 ∀t ≥ 0. (3.21)

We can solve these quantities and we get:

N f
P (t) = exp[−(q + r)t], (3.22)

N f
Q(t) =

q

q + r
(1− exp[−(q + r)t]), (3.23)

N f
R(t) =

r

q + r
(1− exp[−(q + r)t]). (3.24)

It is easy to check that the condition (3.21) is satisfied.

Finally, we can compute the mean lengths of the first segments of each type
at a time t:

xfP (t) =

∫ +∞

0

x
P f (x, t)

N f
P (t)

dx = pt, (3.25)

xfQ(t) =

∫ +∞

0

x
Qf (x, t)

N f
Q(t)

dx =
p

q + r

1− [1 + (q + r)t] exp[−(q + r)t]

1− exp[−(q + r)t]
, (3.26)

xfR(t) =

∫ +∞

0

x
Rf (x, t)

N f
R(t)

dx =
p

q + r

1− [1 + (q + r)t] exp[−(q + r)t]

1− exp[−(q + r)t]
. (3.27)

3.2.3 The last branch

Let us define the model variables that describe the last segment:

• P `(nN , t) =
∑

N∈N
∑

n0∈N ..
∑

nN−1∈N P ({N, n0, .., nN}; t)
is the probability to have at time t the last branch made by nN monomers
and it is still growing,
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The Partial Differential Equations approach

• Q`(nN , t) =
∑

N∈N
∑

n0∈N ..
∑

nN−1∈NQ({N, n0, .., nN}; t)
is the probability to have at time t the last branch made by nN monomers
and the chain is terminated (by termination) before or at time t.

Applying
∑

N∈N
∑

n0∈N ..
∑

nN−1∈N to the balance equations (3.1) and (3.2), we
get:

P `(nN , t+ dt) = (1− (p+ r + q)dt) P `(nN , t)

+ p dt P `(nN − 1, t)

+ r dt δ(nN)
∑
m

P `(m, t), (3.28)

Q`(nN , t+ dt) = Q`(nN , t) + q dt P `(nN , t). (3.29)

The conditions (3.3) and (3.4) are still valid:∑
nN∈N

[P `(nN , t) +Q`(nN , t)] = 1 ∀t ≥ 0, (3.30)

P `(0, 0) = 1. (3.31)

The equations (3.28) and (3.29) can be rewritten as follows:

P `(nN , t+ dt)− P `(nN , t)

dt
=− p [P `(nN , t)− P `(nN − 1, t)]

− (q + r) P `(nN , t)

+ r δ(nN)
∑
m

P `(m, t), (3.32)

Q`(nN , t+ dt)−Q`(nN , t)

dt
= q P `(nN , t). (3.33)

As before, the next steps are:

• take the limit dt→ 0,

• take the limit nN → y,

where the passage to the limit nN → y means that the last segment discrete
length nN is replaced by a continuous variable y: this is the critical point of
the approach.
Thus, we can get these equations from (3.32), (3.33), (3.30) and (3.31):

∂tP
`(y, t) = −p∂yP `(y, t)− (q + r)P `(y, t) + rδ(y)

∫ +∞

0

P `(x, t)dx, (3.34)
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The Partial Differential Equations approach

∂tQ
`(y, t) = q P `(y, t), (3.35)

∫ +∞

0

P `(y, t) +Q`(y, t) dy = 1 ∀t ≥ 0, (3.36)

P `(y, 0) = δ(y). (3.37)

Finally, we get these solutions:

P `(y, t) = δ(y − pt) exp[−(q + r)t] +
r

p
exp

(
−qt− r

p
y

)
θ(pt− y), (3.38)

Q`(y, t) =

∫ t

0

qP `(y, t′)dt′ =

=
1

p
θ(pt− y)

{
(q + r) exp

[
−
(
q + r

p

)
y

]
− r exp

[
−qt− r

p
y

]}
.

(3.39)

The proportions at a given time t for each kind of last branches, regardless
their length, are the following:

N `
P (t) =

∫ +∞

0

P `(y, t)dy = exp[−qt], (3.40)

N `
Q(t) =

∫ +∞

0

Q`(y, t)dy = 1− exp[−qt]. (3.41)

It is trivial that these proportions satisfy the condition belonging from (3.36):

N `
P (t) +N `

Q(t) = 1 ∀t ≥ 0. (3.42)

The mean lengths of the each kind of last branches at time t are:

y`P (t) =

∫ +∞

0

y
P `(y, t)

N `
P (t)

dy =
p

r
[1− exp(−rt)], (3.43)

y`Q(t) =

∫ +∞

0

y
Q`(y, t)

N `
Q(t)

dy =

=

p
r
{exp[−(q + r)t]− exp[−qt]} − p

q+r
{exp[−(q + r)t]− 1}

1− exp[−qt]
. (3.44)
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The Partial Differential Equations approach

3.2.4 The backbiting terminated branches

Let Rbb(n, t) be a measure of the backbiting terminated branches before or at
time t made by n monomers.
Thus, this measure at time t+ dt is made by the measure there was at time t
plus the quantity given by this event: the last segment is still growing at time
t, it is made by n monomers at time t and a backbiting occurs between t and
t+ dt.
So, we can write down this balance equation:

Rbb(n, t+ dt) = Rbb(n, t) + r dt P `(n, t). (3.45)

Equation (3.45) can easily be rewritten as follows:

Rbb(n, t+ dt)−Rbb(n, t)

dt
= r P `(n, t). (3.46)

Taking the two limits dt→ 0 and n→ y, we get:

∂tR
bb(y, t) = r P `(y, t). (3.47)

As before, the passage to the limit n→ y means that the discrete length n goes
to a continue value y: this is the critical point of the approach, as explained
in Section 3.2.2.
Finally, we obtain this solution:

Rbb(y, t) =

∫ t

0

rP `(y, t′)dt′ =

=
r

pq
θ(pt− y)

{
(q + r) exp

[
−
(
q + r

p

)
y

]
− r exp

[
−qt− r

p
y

]}
.

(3.48)

This measure Rbb(y, t) does not integrate to 1 and, in order to deal with prob-
ability density functions, we can normalize it:

Rbb
d (y, t) =

Rbb(y, t)∫ +∞
0

Rbb(y′, t)dy′
=

=

1
p
θ(pt− y)

{
(q + r) exp

[
−
(
q+r
p

)
y
]
− r exp

[
−qt− r

p
y
]}

1− exp (−qt)
.

(3.49)

Thus, we can compute the mean length of the backbiting terminated segments
before or at time t:
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ybbR(t) =

∫ +∞

0

yRbb
d (y, t)dy =

=
p{exp[−(q + r)t]− exp[−qt]} − rp

q+r
{exp[−(q + r)t]− 1}

r{1− exp[−qt]}
. (3.50)
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The Monte Carlo approach

3.3 The Monte Carlo approach

The idea behind this approach is to simulate the evolution of several growing
chains and compute statistics on all the realizations got.
Thus, we have to find a way to sample different realizations of these random
variables:

• Tj := time of the jth event,

• Xj := jth event.

3.3.1 The Gillespie algorithm

Suppose to arrive at the jth event and to know the configuration created by
the first j events and their occurrence times: we want to define the density
distributions that model the next event and the time needed for it, in order to
sample a realization from those probability density function, and to iteratively
keep on the growth of the chain.
A possibility is to use the basic stochastic simulation algorithm (SSA) proposed
by D. Gillespie [1]:

• suppose that the j+1th event could be one among m = m(j+1) different
events,

• let k = 0, ..,m − 1 be the labels of these m possible next events [k =
k(j + 1)],

• let λk be the k-event rate [λk = λk(j + 1)].

The algorithm proposed by Gillespie [1] defines these density distributions:

Tj+1 − Tj ∼ Exp

(
m−1∑
k=0

λk

)
, (3.51)

P (Xj+1 = k) =
λk∑m−1
i=0 λi

∀k = 0, ..,m− 1. (3.52)

The first remark that has to be made is that now the rates λk can depend on
time and chain configuration, because they can be updated after each event
realization. So, the MC approach allow us to remove the hypothesis that the
rates are constant over time and chain configuration independent.
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The Monte Carlo approach

3.3.2 An alternative proof

D. Gillespie gives a proof of this algorithm based on the solution of a ODE
system [1].
We propose an alternative proof, that gives the same results, but it allows us
to make the MC approach very flexible and to have the chance to modify it in
order to make the model more and more realistic, as we will see in Section 4.1.

Let λ0 = λ0(j + 1), λ1 = λ1(j + 1), .., λm−1 = λm−1(j + 1) be the rates for the
m different events that can be the j + 1th event.
Once the jth is realized and we know the configuration created by the first j
events and their occurrence times, we can update the previous rates and then
we can assume that they are constant for the j + 1th event.
Let T̂0, T̂1, .., T̂m−1 be the random variables that model the time needed for
each of the m different events that can be the j + 1th event.
The T̂k occurrence rate is equal to λk (∀k = 0, ..,m − 1). Fixing the event
j + 1, we know that the rate λk is constant.
Remembering that the only density distribution with respect to the Lebesgue
measure that has a constant rate of occurrence is the Exponential one, we can
say that:

T̂k ∼ Exp (λk) ∀k = 0, ..,m− 1. (3.53)

Then, in order to choose the j+1th event from the m different possible events,
we can pick the event whose time of occurrence is the shortest.
So, the time needed for the j + 1th event will be the minimum of the random
variables T̂0, T̂1, .., T̂m−1:

Tj+1 − Tj = min
{
T̂0, T̂1, .., T̂m−1

}
. (3.54)

Assuming independence among the random variables T̂0, T̂1, .., T̂m−1, it is easy
to say that:

Tj+1 − Tj ∼ Exp

(
m−1∑
k=0

λk

)
. (3.55)

This can be seen by considering the complementary cumulative distribution
function:

P
(

min
{
T̂0, T̂1, .., T̂m−1

}
> t
)

= P
(
T̂0 > t ∧ · · · ∧ T̂m−1 > t

)
=

m−1∏
k=0

P
(
T̂k > t

)
=

m−1∏
k=0

exp(−tλk) = exp

(
−t

m−1∑
k=0

λk

)
. (3.56)
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Then, we want to define the random variable Xj+1 that models the kind of
the j + 1th event. This Xj+1 can only take values into the set {0, ..,m − 1},
because these are the labels of m different events that can be the j + 1th one.
So, we have to assign the probability P(Xj+1 = k), ∀k = 0, ..,m− 1. From the
previous choice, we can say that:

{Xj+1 = k} ⇔
{
T̂k < T̂i: ∀i = 0, ..,m− 1 ∧ i 6= k

}
. (3.57)

Thus:

P (Xj+1 = k) = P
(
T̂k < T̂i: ∀i = 0, ..,m− 1 ∧ i 6= k

)
. (3.58)

We follow these simple calculations in order to get the desired result:

P (Xj+1 = k) =

= P
(
T̂k < T̂i: ∀i = 0, ..,m− 1 ∧ i 6= k

)
=

∫ +∞

0

P
({
T̂k < T̂i: ∀i = 0, ..,m− 1 ∧ i 6= k

}
∩
{
T̂k = τ

})
dτ

=

∫ +∞

0

P
({
T̂k < T̂i: ∀i = 0, ..,m− 1 ∧ i 6= k

} ∣∣∣{T̂k = τ
})

P
(
T̂k = τ

)
dτ

=

∫ +∞

0

P
({
T̂i > τ : ∀i = 0, ..,m− 1 ∧ i 6= k

} ∣∣∣{T̂k = τ
})

P
(
T̂k = τ

)
dτ

=

∫ +∞

0

P
({
T̂i > τ : ∀i = 0, ..,m− 1 ∧ i 6= k

})
P
(
T̂k = τ

)
dτ

=

∫ +∞

0

m−1∏
i=0
i 6=k

P
(
T̂i > τ

)
P
(
T̂k = τ

)
dτ

=

∫ +∞

0

m−1∏
i=0
i 6=k

exp(−λiτ)λk exp(−λkτ)dτ

=

∫ +∞

0

λk exp

[
−

(
m−1∑
i=0

λi

)
τ

]
dτ

=
λk∑m−1
i=0 λi

∫ +∞

0

(
m−1∑
i=0

λi

)
exp

[
−

(
m−1∑
i=0

λi

)
τ

]
dτ

=
λk∑m−1
i=0 λi

∀k = 0, ..,m− 1. (3.59)
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3.3.3 Our implementation

The idea of this section is to apply the proposed algorithm to the case we wish
to study, in order to computed desired statistics as solution of the proposed
model.
The constant rates and the labels of the events of interest are the following:

• the termination rate is q and its label is 0,

• the propagation rate is p and its label is 1,

• the backbiting rate is r and its label is 2.

We can define the random variables that describe the event and the time
needed for it, when termination, propagation and backbiting can occur:

X =


0 w.p. q

p+r+q

1 w.p. p
p+r+q

2 w.p. r
p+r+q

, (3.60)

T ∼ Exp (p+ r + q) . (3.61)

Then, these are random variables that describe the event and the time needed
for it, when backbiting can not occur:

Xb =

{
0 w.p. q

p+q

1 w.p. p
p+q

, (3.62)

Tb ∼ Exp (p+ q) . (3.63)

We define (x, t) the realization of one chain: it means that the jth element
of vector x is the label of the jth event and the jth element of vector t is the
occurrence time of the jth event. So, Algorithm 1 explains how to get one
chain realization.

In this implementation, we forbid backbiting to be the first event and the event
immediately after a previous backbiting, because we know that these events
are impossible. Then, from chemistry we know that backbiting can only occur
after at least three previous propagations in any branch. Flexibility of the MC
approach allows us to put also this information into the simulations, just in
case we want to do it. As we explain in Algorithm 2, it is enough to draw the
next event and its requested time from Xb and Tb, instead of X and T , if the
three propagations of the branch are not occurred yet.
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Draw a realization xb from Xb and put x[1] = xb;
Draw a realization tb from Tb and put t[1] = tb;
Initialize j = 1;
while x[j] 6= 0 do

Update j ← j + 1;
if x[j − 1] == 1 then

Draw a realization x from X and put x[j] = x;
Draw a realization t from T and put t[j] = t[j − 1] + t;

end
if x[j − 1] == 2 then

Draw a realization xb from Xb and put x[j] = xb;
Draw a realization tb from Tb and put t[j] = t[j − 1] + tb;

end

end

Algorithm 1: Our implementation of the Gillespie algorithm (SSA): how to
get one chain realization. The random variables X, T , Xb and Tb are (3.60),
(3.61), (3.62) and (3.63). The termination label is 0, the propagation label is
1 and the backbiting label is 2.
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3.3.4 PVC simulation

We run the Algorithm 1, in order to mimic the polymerization of Polyvinyl
Chloride (PVC).
PVC is produced by polymerization of the monomer vinyl chloride (VCM), as
shown in Figure 3.1 and Figure 3.2.

Figure 3.1: PVC polymerization [6].

Figure 3.2: PVC polymerization [7].

Thus, a possible resulting shape of PVC is shown in Figure 3.3.

Figure 3.3: A PVC molecule [8].
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The simulations can give the results shown in Figure 3.4. The simulated PVC
molecule is made by the following elements:

• the blue spheres are carbon atoms [C],

• the white spheres are hydrogen atoms [H],

• the green spheres are chlorine atoms [Cl],

• the red sphere is the free radical.

Figure 3.4: A realization of the PVC growing chain.

20



Comparison between PDE and MC approaches

3.4 Comparison between PDE and MC approaches

In this section we compare the two approaches, asking if there is match between
them or if one can give better results.

3.4.1 A case of good match

We can get a very good match between PDE and MC approaches when the
backbiting rate and termination rate are much more smaller then the propa-
gation rate.
In Figure 3.5, we show the terminated first segment probability density func-
tions got from both the approach, when the parameters set is (3.64):

p = 10s−1, r = 0.05s−1, q = 0.1s−1. (3.64)

Figure 3.5: Comparison between the PDE solution Qf (x, t) [�] and the estimations
given by MC approach [�], when the rates are equal to (3.64).

As the pdf obtained from the two approaches are very close, the other quan-
tities of interest are very similar, too.
In this case of good match, we prefer the PDE approach. The reason is that
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the MC approach cost is its computational time, that mostly depends on the
termination rate q. The smaller is q, the bigger is the computational time, but
the better could be the match between the two approaches, if the backbiting
rate r is small too. Thus, it is useless to wait for the estimations given by MC
approach, when it is possible to have an immediate PDE solution.
The drawbacks related to the PDE approach start to be significant when one
of the two rates r or q starts to be bigger. In this last case, it is better use the
MC approach, as explained in Section 3.4.3.

3.4.2 Deficiencies of the MC approach

The first MC deficiency is its computational time: the smaller is the termi-
nation rate q, the bigger is the needed time to complete the simulation, as
explained in Section 3.4.1.

The second drawback of this approach is that the longer is the simulated time,
the worst is the MC estimate for quantities of interest related to propagating
branches.
The reason is that the number or the proportion of propagating branches
decreases to zero with time increasing, because a backbiting or a termination
occurs sooner or later, giving an end to the propagating growth. Thus, MC
estimation fails due to the lack of statistics.
In Figure 3.6, we show the mean length and the proportion of propagating last
branches when the parameters set is (3.64).

Figure 3.6: Mean length and the proportion of propagating last branches with rates
equal to (3.64).

22



Comparison between PDE and MC approaches

3.4.3 Deficiencies of the PDE approach

The problems related to PDE approach are the more significant the bigger are
the rates for backbiting or termination. For example, in this section we use
the parameters set (3.65), in order to show the PDE drawbacks and how the
MC approach can overcomes these deficiencies.

p = 10s−1, r = 2s−1, q = 0.1s−1. (3.65)

The first remark on PDE approach is that to make the branches discrete length
n goes to a continuous value x is an approximation, as explained in Section
3.2.2.
The consequence of this continuous limit is that the most of the times the
PDE solutions are probability density functions with respect to the Lebesque
measure.
Thus, they allow non zero probability to intervals made by non integer values,
because there is a non zero area under PDE solution between two consecutive
integer values. This is clearly impossible because the quantity we are studying
is discrete.
When the backbiting and termination rates are small, as (3.64), this impossible
probability is trivial and we can not see its effects because the approximation
properly works.
Whereas, if r or q start to be bigger, like (3.65), this probability is not negli-
gible and the approximation does not work, producing a significant difference
between MC and PDE solutions.
The benefit from the MC approach is that it only gives non zero mass on the
natural numbers set N, giving the correct description of the branches discrete
length whatever are the rates.
In order to visualize this phenomenon, we show in Figure 3.7 the terminated
first branch pdf when the parameters set is (3.65).
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Figure 3.7: If the rates are equal to (3.65), the PDE solution Qf (x, t) [�] gives non
trivial probability to intervals between two consecutive integer values, whereas the
MC estimations [�] only gives non zero probability to discrete values.
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The second drawback of PDE solution is that it forces unrealistic deterministic
values for propagating branches length. For example, the solution (3.18) means
that at any given time t the propagating first branches length x must be equal
to pt.
The MC estimations give a better description of this length, because they
allows fluctuations and variability, as it must be expected from the real world.
In Figure 3.8, we show the propagating first branches pdf when the rates are
(3.64).

Figure 3.8: The PDE solution P f (x, t) forces the deterministic values x = pt [�],
whereas the MC estimations allows more realistic fluctuations [�]. Here, both ap-
proaches are shown when the rates are (3.64).

Then, another PDE problem is that those solutions allow the chain to start
from a backbiting, that is an impossible event.
In fact, the PDE solution Rf (x, t) (3.20) gives non zero probability to back-
biting to be the first event. If the rates set is (3.65), this probability is not
negligible.
Using the MC approach, we can forbid the backbiting to be the first event, as
explained in Algorithm 1. Thus, the MC estimation of this event probability
always is equal to 0, whatever are the rates.
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In order to visualize this difference, we show in Figure 3.9 the backbiting ter-
minated first segments pdf when the rates are (3.65).
An important consequence is that the PDE solution underestimates the mean
length of the backbiting terminated first segment, because it gives non zero
probability to these branches made by zero monomers.
MC mean is bigger than the PDE one, because the MC estimated pdf gives
zero probability to the backbiting terminated first branches made by zero
monomers.
The MC mean is a better estimation of the real value, because the backbiting
terminated first branches made by zero monomers are impossible to be pro-
duced. Thus, their probability must be equal to zero.
It is possible to see this difference in Figure 3.10.

Figure 3.9: If the rates are (3.65), the PDE solution Rf (x, t) [�] gives non trivial
probability to backbiting to be the first event [�], whereas the MC estimations [�]
always give zero probability to this impossible event [•].
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Figure 3.10: The mean length of backbiting terminated first segment, for rates
(3.65).

The last PDE drawback is that this approach allows the impossible occurrence
of two consecutive backbiting.
In fact, the PDE solution Rbb

d (y, t) (3.49) gives non zero probability to this
impossible event. If the rates set is (3.65), this probability is not negligible.
Using the MC approach, we can forbid the occurrence of two consecutive back-
bitings, as explained in Algorithm 1. Thus, the MC estimation of this event
probability always is equal to 0, whatever are the rates.
In order to visualize this difference, we show in Figure 3.11 the backbiting
terminated branches pdf when the rates are (3.65).
An important consequence is that the PDE solution underestimates the mean
length of all backbiting terminated segments, because it gives non zero prob-
ability to these branches made by zero monomers.
MC mean is bigger than the PDE one, because the MC estimated pdf gives zero
probability to all backbiting terminated segments made by zero monomers.
The MC mean is a better estimation of the real value, because the backbiting
terminated branches made by zero monomers are impossible to be produced.
So, their probability must be equal to zero.
It is possible to see this difference in Figure 3.12.

In conclusion, it is interesting to remark that, in the case we put into the
simulation the information that backbiting can occur only after 3 previous
propagation, the difference between PDE and MC approach increases, but
now it is clear why.
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Figure 3.11: If the rates are (3.65), the PDE solution Rbbd (y, t) [�] gives non trivial
probability to the occurrence of two consecutive backbiting [�], whereas the MC
estimations [�] always give zero probability to this impossible event [•].

Figure 3.12: The mean length of all backbiting terminated segments, for rates (3.65).
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Chapter 4

Control Radical Polymerization
with the freezing agent

4.1 The freezing agent

In this section we introduce a new player for the considered polymerization
process: the freezing agent. This freezing agent is another kind of monomer,
that can be added to the growing chain, as the one added by propagation.
The difference is the following: after the addition of the freezing agent the
only possible event is its removal from the chain. Then, the reaction restarts
as before. Thus, the occurrence of the freezing event means that the freezing
agent is added to the chain and then removed.
There is an experimental evidence for the reduction of the polymers branching
fraction with the occurrence of the freezing event. This means that the mean
ratio of the number of backbitings to the number of propagations is decreasing
with the rate f of freezing event, or it is increasing with its mean occurrence:
the Mean Time To Freezing (MTTF = 1/f). A schematic behavior for this
mean ratio is shown in Figure 4.1.
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The freezing agent

Figure 4.1: Schematic behavior of the ratio of backbitings to propagations with
respect to the MTTF .

The objective of the following Sections is to implement a proper MC algorithm,
which potentially can reproduce the effect of MTTF on the mean ratio of the
number of backbitings to the number of propagations.
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4.2 The exponential kernel

The first attempt that can be done is to try to implement the MC approach
explained in Section 3.3. Following Section 3.3.1, we implement the Gillespie
algorithm based on exponential kernel.
We introduce these events: propagation, backbiting, freezing and termination.
In order to make the results more realistic, we allow the occurrence of backbit-
ing only if at least three propagations occur in the current branch, as explained
in Section 3.3.3.

4.2.1 The algorithm

The rates and the labels of each event are the following:

• the termination rate is q and its label is 0,

• the propagation rate is p and its label is 1,

• the freezing rate is f and its label is 2,

• the backbiting rate is r and its label is 3.

We can define the random variables that describe the event and the time
needed for it, when all the events can occur:

X =


0 w.p. q

p+r+f+q

1 w.p. p
p+r+f+q

2 w.p. f
p+r+f+q

3 w.p. r
p+r+f+q

, (4.1)

T ∼ Exp (p+ r + f + q) . (4.2)

Then, these are random variables that describe the event and the time needed
for it, when backbiting can not occur:

Xb =


0 w.p. q

p+f+q

1 w.p. p
p+f+q

2 w.p. f
p+f+q

, (4.3)

Tb ∼ Exp (p+ f + q) . (4.4)

We define (x, t) the realization of one chain: it means that the jth element
of a vector x is the label of the jth event and the jth element of a vector t is
the occurrence time of the jth event. So, Algorithm 2 explains how to get one
chain realization.
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Draw a realization xb from Xb and put x[1] = xb;
Draw a realization tb from Tb and put t[1] = tb;
Initialize the flag for possibility of backbiting B = 0;
Initialize the number of propagations in the current branch nP = 0;
Initialize j = 1;
if x[1] == 1 then

Put nP = 1;
end
while x[j] 6= 0 do

Update j ← j + 1;
if nP < 3 then

Put B = 0;
else

Put B = 1;
end
if B == 1 then

Draw a realization x from X and put x[j] = x;
Draw a realization t from T and put t[j] = t[j − 1] + t;
if x[j] == 3 then

Put nP = 0;
end

else
Draw a realization xb from Xb and put x[j] = xb;
Draw a realization tb from Tb and put t[j] = t[j − 1] + tb;
if x[j] == 1 then

Update nP ← nP + 1;
end

end

end

Algorithm 2: The algorithm to get one chain realization in the exponential
kernel case. The random variables X, T , Xb and Tb are (4.1), (4.2), (4.3) and
(4.4).

4.2.2 The simulations

The simulations can be run following the Algorithm 2 with the fixed parameters
p, r, f and q.
In particular, we run the MC simulation with this set of parameters:

p = 10s−1, r = 0.2s−1, q = 0.01s−1 (4.5)

and the freezing rate f is varying according to the set of values:

f ∈
{

20s−1, 15s−1, 10s−1, 5s−1, 2s−1, 1.25s−1, 1s−1, 0.75s−1, 0.5s−1
}
. (4.6)

So, it is possible to compute the ratio distribution and its mean, for these
different values of MTTF :

32



The exponential kernel

MTTF ∈ {0.05s, 0.07s, 0.1s, 0.2s, 0.5s, 0.8s, 1s, 1.33s, 2s} (4.7)

and to find out if the mean ratio increases when MTTF is big. The results
are shown in Figure 4.2.

Figure 4.2: Constant mean ratio backbiting over propagation in the case of expo-
nential kernel with rates (4.5) and (4.6).

4.2.3 Important remarks

We have to remark that the mean ratio is constant, because its values corre-
sponding to different freezing rates are identical within the error of ∝ 10−4.
If we neglect the backbiting prohibition, this conclusion can be made directly
from the construction of Algorithm 2. Equation (4.1) means that the mean
proportions of backbiting and propagation respectively are ≈ r

p+r+f+q
and

≈ p
p+r+f+q

. Thus, the mean ratio is ≈ r
p

= 0.02, independent from MTTF .

The proposed model is not able to correctly describe the experimental behavior
of the mean ratio. The reason can be found in Section 3.3.2. The implemented
model is based on the hypothesis that the event rates are constant, fixing the
time and the chain configuration realized after each event. This hypothesis
leads to exponential probability density functions and exponential kernel, as
shown in equations (3.53) and (3.55). Thus, the resulting probability of occur-
rence for each kind of event is proportional to its rate, as shown by (3.59). So,
the behavior of the mean ratio has to be constant with respect to the MTTF ,
as explained in the previous paragraph.
In order to reproduce the experimental observations, we can ease the previ-
ous hypothesis and try to nominate probability density functions (pdf) with
non-constant rate of occurrence. This is the objective of the following Sections.

Moreover, there is another reason to think that the exponential distribution
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and its constant rate are not the proper tools to model this phenomenon. In a
process characterized by exponential distribution, the probability of occurring
an event is maximum when the time goes to zero. This property goes against
the intuitive idea that the occurrence probability of a real event approaches to
zero when the time goes to zero. Therefore, the modification to the requested
time pdf could be the following. We can make the pdf equal to zero for t = 0,
increasing for small time and then exponentially decreasing for big time.

Thus, the choice of pdf different from the exponential ones leads to non Poisson
processes, without the memoryless property. Thus, it is reasonable to introduce
non Markovian models, that are not characterized by memoryless properties.
In Chapter 5, we analyze non Markovian models and non Poisson processes.
We can show that the desired behavior of the mean ratio is strongly related to
these non Markovian effects.

We have to stress that we can implement the Gillespie algorithm with a pdf
different from the exponential one for the following reason: as we have found
in Section 3.3.2, the next event is the one that realize the minimum among
the requested times for all the possible events. Thus, we can choose any pdf
from which draw the requested times and simply choose the event that realizes
the minimum time of occurrence. This is the building idea of the algorithms
implemented in the following Sections.
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Chapter 5

Non-Markovian Model

5.1 The gamma kernel

In order to find the right shape for the requested time pdf, we rely on the
following information. On the one hand, an empirically trial could be the fol-
lowing: to make the pdf be equal to zero for t = 0 and increasing for small
times. On the other hand, the behavior of the pdf is well known for large times
and it is an exponential decay.
One pdf that approximates this behavior is the gamma distribution, Gamma(α,β).
Let T be a time needed for a next event with the rate equal to λ and assume
that:

T ∼ Gamma(α, β). (5.1)

Equation (5.1) means that the T pdf is the following:

fT (t) =
βα

Γ(α)
tα−1e−βt for t ∈ [0; +∞) and α, β > 0. (5.2)

The choice of the gamma distribution is an approximation, because the tail
of the distribution is not an exponential decay. It is an exponential decay
multiplied by a polynomial term, as equation (5.2) shows.

An important remark is that the gamma distribution has not a constant rate
of occurrence.
We are looking for the parameters α and β that lead to the desired shape and
behavior of the pdf function.

5.1.1 The parameters

These are simple rules that must be always satisfied:

• the expected value of T must be equal to 1
λ
,

• the parameter α must be bigger or equal to 1, in order to satisfy the
empirical requests.
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Since the expected value of a Gamma pdf with parameters α and β is the
following:

E[T ] =

∫ +∞

0

tfT (t)dt =
α

β
, (5.3)

we can fix a first rule for the parameters α and β:

α

β
=

1

λ
⇒ β = αλ. (5.4)

Then, α = 1, means that the Gamma(1, β) pdf is equal to a Exp(β) pdf, so
our choice is a generalization of the previous exponential implementation.

5.1.2 The resulting pdf

We introduce these events:

• propagation, with rate p,

• backbiting, with rate r,

• freezing, with rate f ,

• termination, with rate q.

Thus, following the criteria from Section 5.1.1, we assign the pdf to the times
required for each event in Table 5.1.

event needed time pdf

propagation Tp ∼ Gamma(α, αp)

backbiting Tr ∼ Gamma(α, αr)

freezing Tf ∼ Gamma(α, αf)

termination Tq ∼ Gamma(α, αq)

Table 5.1: The gamma pdf.

5.1.3 The algorithm

Let the next event be the one that realizes the minimum among the times
needed for all possible events.
Thus, in order to choose the next event, we follow these steps:

1. draw a realization from each pdf that models the time needed for each
possible next event,

2. pick the event that realizes the minimum occurrence time.

Then, we remember that backbiting can only occur after at least three previous
propagations in any branch and the events labels are the following:
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• the termination label is 0,

• the propagation label is 1,

• the freezing label is 2,

• the backbiting label is 3.

Thus, we consider the random variables Tp, Tr, Tf and Tq from Table 5.1 and
we implement Algorithm 3, in order to draw a chain realization (x, t). It means
that the jth element of vector x is the label of the jth event and the jth element
of vector t is the occurrence time of the jth event.

Draw a realization tp from Tp, tf from Tf and tq from Tq;
Put t[1] = min {tp, tf , tq};
Put x[1] = label of argmin{tp, tf , tq};
Initialize the flag for possibility of backbiting B = 0;
Initialize the number of propagations in the current branch nP = 0;
Initialize j = 1;
if x[1] == 1 then

Put nP = 1;
end
while x[j] 6= 0 do

Update j ← j + 1;
if nP < 3 then

Put B = 0;
else

Put B = 1;
end
if B == 1 then

Draw a realization tp from Tp, tr from Tr, tf from Tf and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tr, tf , tq};
Put x[j] = label of argmin{tp, tr, tf , tq};
if x[j] == 3 then

Put nP = 0;
end

else
Draw a realization tp from Tp, tf from Tf and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tf , tq};
Put x[j] = label of argmin{tp, tf , tq};
if x[j] == 1 then

Update nP ← nP + 1;
end

end

end

Algorithm 3: The algorithm to get one chain realization in the gamma kernel
case. The random variables Tp, Tr, Tf and Tq are shown in Table 5.1.
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5.1.4 The simulations

The simulations can be run following the Algorithm 3 with the fixed parameters
α, p, r, f and q.
In particular, we choose the set of parameters (4.5) and (4.6). We repeat
simulations for different values of parameter α ≥ 1. The results are shown in
Figure 5.1.

Figure 5.1: Behavior of the ratio of backbitings to propagations with respect to the
MTTF , in the case of gamma kernel with different fixed parameters α ≥ 1 and with
rates (4.5) and (4.6).

The remark that must be made is that the mean ratio is constant with re-
spect to the MTTF for all fixed α ≥ 1. It means that the choice of gamma
distribution does not explain the desired behavior for the mean ratio between
backbiting and propagation events. However, one can observe that the bigger
is α, the smaller is the mean ratio. We give an explanation of this phenomenon
in Section 5.2.1.

The new idea that comes from these last results is that the parameter α linked
to MTTF could explain the not constant behavior of the mean ratio backbiting
over propagation. This is the aim of Section 5.2.

The drawback of the gamma distribution choice is that the tail of the distri-
bution is not an exponential decay. It is an exponential decay multiplied by a
polynomial term, as equation (5.2) shows.
In order to have a pure exponential decay, we can try with the pdf explained
in Section 5.3.
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5.2 The delayed gamma kernel

In this section, we keep in the model the propagation, backbiting and termi-
nation events, but do not consider the freezing agent occurrence. The idea is
try to make the information related to the freezing agent in a way suggested
by the results got in Section 5.1.4, but not directly by its occurrence as one of
the possible events.
In order to reach this aim, we proposed an exploratory simulation in Section
5.2.1 and then the desired simulation in Section 5.2.2.

5.2.1 The exploratory simulation

We keep in the model the propagation, backbiting and termination events.
Following the criteria from Section 5.1.1, we assign in Table 5.2 the pdf to
their times required.

event needed time pdf

propagation Tp ∼ Gamma(α, αp)

backbiting Tr ∼ Gamma(α, αr)

termination Tq ∼ Gamma(α, αq)

Table 5.2: The pdf for the exploratory simulation.

We proposed Algorithm 4 in order to draw one chain realization. The im-
portant remark is that the freezing agent occurrence is not placed into the
algorithm.
We run this simulation with p, r and q values (4.5) and different fixed values
of α ≥ 1. The results are given in Figure 5.2.

Figure 5.2: Behavior of the asymptotic mean ratio of backbiting to propagation with
respect to the parameter α, for the exploratory simulation.
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Draw a realization tp from Tp and tq from Tq;
Put t[1] = min {tp, tq};
Put x[1] = label of argmin{tp, tq};
Initialize the flag for possibility of backbiting B = 0;
Initialize the number of propagations in the current branch nP = 0;
Initialize j = 1;
if x[1] == 1 then

Put nP = 1;
end
while x[j] 6= 0 do

Update j ← j + 1;
if nP < 3 then

Put B = 0;
else

Put B = 1;
end
if B == 1 then

Draw a realization tp from Tp, tr from Tr and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tr, tq};
Put x[j] = label of argmin{tp, tr, tq};
if x[j] == 3 then

Put nP = 0;
end

else
Draw a realization tp from Tp and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tq};
Put x[j] = label of argmin{tp, tq};
if x[j] == 1 then

Update nP ← nP + 1;
end

end

end

Algorithm 4: The algorithm to get one chain realization in the delayed gamma
kernel case. The random variables Tp, Tr and Tq are shown in Table 5.2.
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The decreasing behavior shown in Figure 5.2 is due to the delay introduced
into the model by the parameter α.
In fact, if we fix the pdf average value following (5.4), the bigger is α, the
bigger is the arg-maximum point of the pdf and the delay of the model. The
introduced delay means that the needed times realizations are likely to be
bigger and the reaction is slower. Figure 5.3 shows this behavior.

Figure 5.3: The arg-maximum moving behavior due to parameter α.

Since the effect of the parameter α is the same for all the pdf (see Table 5.2), we
can say that the same delay affects more the rarest event, because it decreases
their competitive probability more than it does for the likely events.
Thus, the bigger delay and parameter α produce more damage for the rarest
event and lead to the smaller ratio between a rare event and a likely one.

In order to visualize this concept, we propose the example shown in Figure 5.4
and in Figure 5.5.
Following the criterion (5.4), we define the rare event pdf as Gamma(α, 2α)
and the likely event pdf as Gamma(α, 5α).
In an empirical way, we define the rare event competitive probability as the
area under the rare event pdf before the not trivial intersection between the
two pdf.
In the same way we define the likely event competitive probability: the area
under the likely event pdf before the not trivial intersection between the two
pdf.
Giving different values to the parameter α, we can see how the two competitive
probabilities depend on this parameter: more precisely, the rare event one
decreases with α increased, whereas the likely one increases.
This is the reason why the bigger is α the smaller is the ratio between a rare
event and a likely one.
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Figure 5.4: The competitive probabilities computed for two different values of pa-
rameter α.

Figure 5.5: The rare event competitive probability as function of α (left) and the
likely event competitive probability as function of α (right).
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5.2.2 The delay effect

An interesting observation is that the mean ratio depends on α without intro-
ducing the freezing agent occurrence.
This could mean that the role of the freezing agent in this phenomenon is in
making the reaction’s evolution slower. In other words, it introduces a certain
delay and thus makes a change in the ratio between backbiting and propaga-
tion.
In order to quantify the delay introduced by the freezing event, one can link
the freezing rate f to the parameter α, i.e. α = α(f).

The function α = α(f) must satisfy these properties:

• α(0) = 1, because if freezing agent occurrence is not introduced into the
model, there is experimental evidence for mean ratio values close to the
ones got from exponential kernel,

• the function has to increase with increasing freezing rate f , because the
ratio behavior is increasing with respect to the MTTF .

Another useful, but not mandatory, property can be that the limit for f → +∞
of function α = α(f) should coincide with the α-value that reproduces the
mean ratio obtained at MTTF equal to 0.
A way to fix this function is to watch the estimations shown in Figure 5.2.
As the set of parameters (4.5) is specified, some possible choices for α = α(f)
are the following (see Figure 5.6):

α1(f) = 0.2exp

(
− 1

f

)
+ 1 (5.5)

α2(f) =

{
− 0.1

200
f 2 + 0.1

5
f + 1 if f ≤ 20s−1

1.2 if f > 20s−1
(5.6)

α3(f) =

{
0.2
20
f + 1 if f ≤ 20s−1

1.2 if f > 20s−1
(5.7)

α4(f) =
0.2

π
arctan(f − 10) + 1.1 (5.8)

Then, we run the simulations following Algorithm 4 using the pdf in Table 5.2
with p, r and q values (4.5).
Again, the freezing agent occurrence is not introduced in the model. Instead,
the values of the parameter α are taken from (5.5), (5.6), (5.7) and (5.8). We
repeat a simulation for each α from (5.5), (5.6), (5.7) and (5.8) computed at
each value of f in (4.6). Thus, we can check the behavior of the mean ratio
with respect to the MTTF corresponding to the rates f (4.6). The results are
shown in Figure 5.7.
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Figure 5.6: The α parameter as a function of f .

Figure 5.7: The behavior of the mean ratio backbiting over propagation with respect
to different functions α = α(f), in the case of delayed gamma kernel.
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5.2.3 The drawbacks

We can get the desired behavior of the mean ratio backbiting over propagation,
but it implies several drawbacks.
The first drawback of the proposed model is that the function α = α(f) changes
if we change the events rates. Also, this function is not unique.
Then, making α a function of f gives more freedom to the model and the
sought behavior is obtained, but it has no physical meaning.
The pdf of the different processes should be independent and with this formu-
lation all pdf depend on f .
Moreover, the last drawback of the gamma distribution choice is its not expo-
nential decaying tail.
In Section 5.3, we try to give a solution to all these problems.
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5.3 The linear exponential kernel

Let T be the requested time for a possible future event with rate λ. Its pdf
has to be equal to zero for t = 0, increasing for small times and exponentially
decreasing for large times. Thus, a resulting simple choice is the following:

fT (t) =

{
kt if 0 ≤ t < b

kbe−τ(t−b) if t ≥ b
for t, b ≥ 0 and k, τ > 0. (5.9)

We are looking for the parameters k, b and τ that lead to the desired behavior
of mean ratio backbiting over propagation.

5.3.1 The parameters

First of all, the pdf must be normalized:∫ +∞

0

fT (t)dt = 1. (5.10)

Then, the expected value of T must be equal to the event mean occurrence
time 1

λ
: ∫ +∞

0

tfT (t)dt =
1

λ
. (5.11)

The equations (5.10) and (5.11) can be rewritten as follow:

k =
2τ

b (τb+ 2)
, (5.12)

b (2λb− 3) τ 2 + 6 (λb− 1) τ + 6λ = 0. (5.13)

Equation (5.13) gives the two solutions:

τ1,2 =
−3 (λb− 1)±

√
9− 3λ2b2

b (2λb− 3)
. (5.14)

In order to avoid complex values, b must range within the interval specified
by:

0 ≤ b ≤
√

3

λ
. (5.15)

In order to close the equations (5.12) and (5.14), we can choose the parameter
b as follow:

b =
d

λ
for 0 ≤ d ≤ 1, (5.16)

where the maximum value for the parameter d is equal to 1 because we have
to satisfy (5.15) and it is reasonable that the introduced linear delay doesn’t
assume bigger values than the mean time 1

λ
.
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We pick from (5.14) the “minus” solution, because it makes τ be bigger than
zero for all 0 ≤ d ≤ 1.
Finally, the pdf parameters are the following:

b(d, λ) =
d

λ
, (5.17)

τ(d, λ) =
λ
(
3d− 3 +

√
9− 3d2

)
d (3− 2d)

, (5.18)

k(d, λ) =
2λ2

(
3d− 3 +

√
9− 3d2

)
d2
(√

9− 3d2 − d+ 3
) . (5.19)

Thus, we say that:

T ∼ Linexp(d, λ), (5.20)

if the T pdf is the following:

fT (t) =

{
k(d, λ)t if 0 ≤ t < b(d, λ)

k(d, λ)b(d, λ)e−τ(d,λ)[t−b(d,λ)] if t ≥ b(d, λ)
, (5.21)

where (5.17), (5.18) and (5.19) give the parameters values.

5.3.2 The resulting pdf

We introduce these events: propagation, with rate p, backbiting, with rate r,
freezing, with rate f , and termination, with rate q.
So, following the criteria from Section 5.3.1, we assign the pdf to the times
required for each event in Table 5.3.

event required time pdf

propagation Tp ∼ Linexp(d, p)

backbiting Tr ∼ Linexp(d, r)

freezing Tf ∼ Linexp(d, f)

termination Tq ∼ Linexp(d, q)

Table 5.3: The linear exponential pdf.

The delay affects all the possible events. This property is due to the intuitive
idea that the occurrence probability of all the real events approaches to zero
when the time goes to zero. Thus, a delay or a set up time time is needed for
all the possible events. Here, the required delay is modeled by the parameter
d and by the linear part of all events pdf.
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5.3.3 The algorithm

In order to draw different realizations of the growing chains, we implement
Algorithm 5, where the random variables Tp, Tr, Tf and Tq are the ones defined
into Table 5.3.
In order to draw realizations from these linear-exponential random variables,
we have to implement the well known “Inverse Transform Sampling Method”
[21].

Draw a realization tp from Tp, tf from Tf and tq from Tq;
Put t[1] = min {tp, tf , tq};
Put x[1] = label of argmin{tp, tf , tq};
Initialize the flag for possibility of backbiting B = 0;
Initialize the number of propagations in the current branch nP = 0;
Initialize j = 1;
if x[1] == 1 then

Put nP = 1;
end
while x[j] 6= 0 do

Update j ← j + 1;
if nP < 3 then

Put B = 0;
else

Put B = 1;
end
if B == 1 then

Draw a realization tp from Tp, tr from Tr, tf from Tf and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tr, tf , tq};
Put x[j] = label of argmin{tp, tr, tf , tq};
if x[j] == 3 then

Put nP = 0;
end

else
Draw a realization tp from Tp, tf from Tf and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tf , tq};
Put x[j] = label of argmin{tp, tf , tq};
if x[j] == 1 then

Update nP ← nP + 1;
end

end

end

Algorithm 5: The algorithm to get one chain realization in the linear ex-
ponential kernel case. The random variables Tp, Tr, Tf and Tq are shown in
Table 5.3. The termination label is 0, the propagation label is 1, the freezing
label is 2, the backbiting label is 3.
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5.3.4 The simulations

The simulations can be run following the algorithm explained into Section 5.3.3
with the fixed parameters d, p, r, f and q.
In particular, we choose this set of parameters:

p = 10 s−1, r = 0.2 s−1, q = 0.1 s−1. (5.22)

The usual termination rate q = 0.01 s−1 (4.5) makes the simulations very slow,
so we change it into q = 0.1 s−1 (5.22), in order to speed up the computation.

To monitor the behavior of the mean ratio between backbiting and propagation
events with respect to the MTTF , we repeat simulations for different values
of parameter d ∈ [0; 1] and for the values of the freezing rate f from the usual
set (4.6).
The results are shown in Figure 5.8, Figure 5.9 and Figure 5.10.

Figure 5.8: Behavior of the mean ratio with respect to the MTTF , in the case of
linear exponential kernel with rates (5.22), (4.6) and d ∈ [0.1, 1].
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Figure 5.9: Behavior of the mean ratio with respect to the MTTF , in the case of
linear exponential kernel with rates (5.22), (4.6) and d ∈ [0.01, 0.1).

Figure 5.10: Behavior of the mean ratio with respect to the MTTF , in the case of
linear exponential kernel with rates (5.22), (4.6) and d ∈ [0.001, 0.01).

If d ≈ 0.01 we can get the expected behavior, but the mean ratio values are
slightly different from the experimental one obtained with the parameters set
(4.5).
In fact, there is experimental evidence that the mean ratio reaches the value
obtained in the exponential kernel case [Section 4.2] when the MTTF is big.
This asymptotic value is ≈ 0.0186 for the parameter set (4.5). The difference
could be due to the different choice of the parameter set (5.22).
Then, for smaller d values the mean ratio starts to have a behavior close to
the constant one got from the exponential pdf [Section 4.2]. This is because
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the pdf (5.55) satisfies the following limit:

lim
d→0

fT (t) = λ exp (−λt) ∀t ≥ 0. (5.23)

For d→ 0, we can say that Linexp(0, λ) ≈ Exp(λ), as shown in Figure 5.11.

Figure 5.11: The pdf (5.55) behavior when d→ 0.

In the end, in order to test the experimental values of the mean ratio, we run
few longer simulations with the usual parameters set (4.5) and (4.6). We repeat
simulations for different fixed values of parameter d close to 0.01, because it
seems to be a good choice from the previous simulations.
The results are shown in Figure 5.12.

Figure 5.12: Behavior of the mean ratio with respect to the MTTF , in the case of
linear exponential kernel with the usual rates (4.5), (4.6) and d ∈ [0.005, 0.01].

51



The linear exponential kernel

5.3.5 Experimental data

In this subsection we want to fit experimental data. A way to enrich the model
is to assign a different d value to each event required time pdf. So, we assign
these pdf in Table 5.4.

event required time pdf

propagation Tp ∼ Linexp(dp, p)

backbiting Tr ∼ Linexp(dr, r)

freezing Tf ∼ Linexp(df , f)

termination Tq ∼ Linexp(dq, q)

Table 5.4: The linear exponential pdf for experimental data fitting.

We want to calculate the values for all the parameters in Table 5.4, taking
them from the experimental values.

We can compute the rates values as follow:

p = kp[M] = 34300 L mol−1s−1 1 mol L−1 = 34300 s−1, (5.24)

r = kbb = 2500 s−1, (5.25)

q = ktr[CTA] = 1000 s−1. (5.26)

Then, we know that:

• reasonable concentrations of the freezing agent, or CRP agent (CRPA),
range from 5× 10−6 mol L−1 to 10−3 mol L−1,

• the constant k for CRPA is kf = 108 L mol−1 s−1,

thus, the freezing rate f = kf [CRPA] ranges from 5 × 102 s−1 to 105 s−1. In
our simulations, we choose this set of values for f :

f ∈ {100000, 75000, 50000, 25000, 10000, 7500, 5000, 2500, 1000, 750, 500} s−1.
(5.27)

We need to compute the parameters d for each kind of event. We remember
that:

d = bλ, (5.28)

where the parameter b = d
λ

is the border between linear and exponential be-
havior of the pdf (5.9).
We need the values of dp, dr, df and dq, that are the parameters d respectively
for propagation, backbiting, freezing and termination.
In order to compute the different values of d, we can use the parameters val-
ues valid for all reagents concentrations equal to 1 mol L−1: b′p, b

′
r, b

′
f and b′q
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respectively are the borders between linear and exponential behavior of the
propagation, backbiting, freezing and termination pdf for [ ] = 1 mol L−1.
Thus, the d values are:

dp = b′pp = b′pkp[M] = 4× 10−6s 34300L mol−1s−11mol L−1 = 0.1372, (5.29)

dr = b′rr = 3× 10−4s 2500s−1 = 0.75, (5.30)

df = b′ff = b′fkf [CRPA] = 10−9s 108L mol−1s−11mol L−1 = 0.1, (5.31)

dq = b′qq = b′qktr[CTA] = 10−8 s 12900 L mol−1 s−11 mol L−1 = 0.000129.
(5.32)

Table 5.5 shows the resulting parameters set.

event d λ

propagation dp = 0.1372 p = 34300s−1

backbiting dr = 0.75 r = 2500s−1

freezing df = 0.1 f ∈ (5.27)

termination dq = 0.000129 q = 1000s−1

Table 5.5: The resulting set of parameters for experimental data fitting.

Figure 5.13 shows the behavior of the mean ratio between backbiting and
propagation with respect to the Mean Time To Freezing (= 1/f), when we
run the simulations following the algorithm explained into Section 5.3.3, with
pdf from Table 5.4 and parameters set from Table 5.5.

Figure 5.13: The mean ratio behavior with respect to the MTTF , in the case of
linear exponential kernel for experimental data fitting.
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5.3.6 The non-constant rate

The aim of this Section is to remark that, in order to reproduce the experi-
mental observations, we have to ease the hypothesis that the event rates are
constant, fixing the time and the chain configuration realized after each event.
As explained into Section 4.2.3, we have to choose pdf with non-constant rate
of occurrence, as the linear exponential one shown in Section 5.3:

fT (t) =


2λ2(3d−3+

√
9−3d2)

d2(
√
9−3d2−d+3)

t if 0 ≤ t < d
λ

2λ(3d−3+
√
9−3d2)

d(
√
9−3d2−d+3)

exp

[
−λ(3d−3+

√
9−3d2)

d(3−2d)

(
t− d

λ

)]
if t ≥ d

λ

.

(5.33)
In equation (5.33), λ is the reciprocal of the T mean value, but it is not its
constant rate of occurrence! In fact, the T pdf (5.33) does not have a constant
rate of occurrence.
We define the T occurrence rate at time t as the so called “hazard function”,
usually indicated by the symbol hT (t) [22]:

hT (t) := lim
dt→0

P(t < T ≤ t+ dt|T > t)

dt
=

fT (t)

1− FT (t)
, (5.34)

where:

FT (t) := P(T ≤ t). (5.35)

In the case of exponential pdf, T has a constant rate of occurrence equal to λ:

T ∼ Exp(λ) ⇔ hT (t) = λ ∀t ∈ R+. (5.36)

In our case, the T pdf (5.33) means that:

hT (t) =


2λ2(3d−3+

√
9−3d2)t

d2(
√
9−3d2−d+3)−(3d−3+

√
9−3d2)λ2t2

if 0 ≤ t < d
λ

2λ(3d−3+
√
9−3d2)

6d−4d2 if t ≥ d
λ

, (5.37)

that it is a non constant rate of occurrence with respect to time t.
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5.4 Non-Markovian effects in the growth of a polymer
chain

In Section 4.2, we understand that the model based on memoryless exponential
pdf is not able to produce the desired behavior of the mean ratio backbiting
over propagation. The generated Poisson process is not able to correctly re-
produce the evolution of the reaction. This suggests looking at other models
which are not Markovian, as will be done below.
In this section, we want to analyze some non Markovian effects that can affect
the growth of a polymer chain [9].

5.4.1 One event growth process

First, we focus on a process with only one possible event: the linear growth
event in which one monomers is added to the chain. We introduce the random
variable T in order to model the requested time for the next growth event.
We assume that the T probability density function (pdf) is the delayed expo-
nential pdf (5.38): it means that the next event requires a set up time τ , then
it can occur with exponentially decaying probability.

fT (t) =

{
0 if 0 ≤ t < τ

c exp [−c (t− τ)] if t ≥ τ
for τ, c ≥ 0. (5.38)

If T follows the pdf (5.38), we say that:

T ∼ Dexp(c, τ) (5.39)

Let t be a vector that holds each event time occurrence: it means that t[j] is
the time when the jth event occurs.
Let tmax be the maximum time for a simulation: we decide to stop the simu-
lation when an event happens after tmax.
Algorithm 6 explains how to get one realization from the growth process. In
order to draw realizations from this delayed exponential random variable, we
implement the well known “Inverse Transform Sampling Method” [21].

Draw a realization t from T ∼ Dexp(c, 0);
Put t[1] = t;
Initialize j = 1;
while t[j] < tmax do

Update j ← j + 1;
Draw a realization t from T ∼ Dexp(c, τ);
Put t[j] = t[j − 1] + t;

end

Algorithm 6: The algorithm to draw a realization from the one event growth
process.
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In order to monitor the mean number of event with respect to time, we draw
many realizations from the growing process and we compute statistics on the
sample got.
We run the simulations using the following parameters set:

c = 1 s−1 (5.40)

τ ∈ {0 s, 0.5 s, 1 s, 2 s, 3 s, 5 s, 8 s, 10 s} (5.41)

The results are shown in Figure 5.14.

Figure 5.14: Time behavior for the mean number of occurred events, in the one
event growth process with parameters c = 1 s−1 and τ ∈ (5.41).

It is worthy to remark that the process is a Poisson one in the case τ = 0 s and
the mean number of event is linear with respect to time. Whereas, the bigger
is τ , the more the process is far from the Poisson one and the mean number
of event starts to assume a strong non linear behavior.
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5.4.2 Two competitive events growth process

In this section, we focus on a more complex growth process characterized by
two competitive events. In this process two different event can occur: growth
and bending. The growth event means that one monomer is added to the
chain, whereas the bending event means that the last monomers of the chain
moves to a position perpendicular to the last branch. This growth process
must satisfy the following constraint: the bending event need at least three
previous growth events to occur.

The first model: smooth pdf with implicit constraint

The first model for this process describes the requested time for the next
bending with the random variable T .
Let a be the growth rate and let c be the bending rate, we assume that the
requested time for a growth event is Tg ∼ Exp(a):

fTg(t) = a exp (−at) ∀t ≥ 0, a > 0. (5.42)

Thus, we can write down the pdf for the third growth event requested time
equal to τ :

w3(τ) =

∫ τ

0

dt2

∫ t2

0

dt1fTg(τ − t2)fTg(t2− t1)fTg(t1) = a3
τ 2

2
exp (−aτ). (5.43)

Let τ be the time in which the chain adds three monomers, we assume the
following pdf for a bending requested time equal to t:

fTb(t, τ) = θ(t− τ)c exp [−c (t− τ)] ∀t, τ ≥ 0, c > 0. (5.44)

Then, averaging the delayed pdf for bending (5.44) over all possible delays τ ,
it’s possible to get the pdf for the next bending requested time:

fT (t) =

∫ +∞

0

w3(τ)fTb(t, τ)dτ =

= − a3c

2(a− c)

[
t2 +

2

a− c
t+

2

(a− c)2

]
exp (−at) +

a3c

(a− c)3
exp (−ct).

(5.45)

The cumulative density function (cdf) FT (t) := P(T ≤ t) is the following:

FT (t) =

[
a2c

2(a− c)
t2 +

(
ac

a− c
+

a2c

(a− c)2

)
t+

(
c

a− c
+

ac

(a− c)2
+

a2c

(a− c)3

)]
×

× exp (−at)− a3

(a− c)3
exp (−ct) + 1. (5.46)
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Let t be a vector that holds each bending time occurrence: it means that t[j]
is the time when the jth bending occurs.
Let tmax be the maximum time for a simulation: we decide to stop the simu-
lation when a bending happens after tmax.
Algorithm 7 explains how to get one realization from the growth process.

Draw a realization t from T ∼ fT (t) (5.45);
Put t[1] = t;
Initialize j = 1;
while t[j] < tmax do

Update j ← j + 1;
Draw a realization t from T ∼ fT (t) (5.45);
Put t[j] = t[j − 1] + t;

end

Algorithm 7: The algorithm to draw a realization from the two competitive
events growth process, modeled by a smooth pdf with implicit constraint (5.45).

In order to monitor the mean number of bending with respect to time, we draw
many realizations from the growing process and we compute statistics on the
sample got.

In order to implement Algorithm 7 and to simulate the growth process, we
must be able to draw realizations from the pdf (5.45). The idea is to follow
the Inverse Transform Method [21] explained in Algorithm 8.

Draw a realization u from U ∼ Unif(0, 1);

Put t = F−1T (u);

Algorithm 8: The Inverse Transform Method [21] to get a realization t from
the random variable T : the function F−1T (u) is the inverse of the T cdf.

The cdf (5.46) is not analytically invertible, thus we must use a numeric
method to solve the equation t = F−1T (u). The idea is to see the cdf (5.46) as
a increasing monotonic function and, then, to use the Newton method in order
to have a good approximation of the desired t. Algorithm 9 explains how to
invert the cdf (5.46).
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Choose a value u ∈ (0, 1);
Initialize t = 0;
Initialize the value of the time step ∆ > 0;
Initialize the value of the tolerance ε > 0;
Initialize j = 1;
while u > FT (t) do

Update t = j∆;
Update j ← j + 1;

end
while |FT (t)− u| > ε do

Update t← t− FT (t)−u
fT (t) ;

end

Algorithm 9: The algorithm to compute the value of t = F−1T (u), given the
value of u ∈ (0, 1).

In Figure 5.15 we show the sample drawn with the proposed algorithm. We
compare it with the pdf (5.45) in order to verify the goodness of the sampling
method.

Figure 5.15: Comparison between the sample drawn, the pdf (5.45) and the cdf
(5.46).
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We run the simulations using the following parameters set:

c = 2 s−1, (5.47)

a ∈ {10 s, 7.5 s, 5 s, 2.5 s, 1 s, 0.5 s}. (5.48)

The results are shown in Figure 5.16.

Figure 5.16: Time behavior for the mean number of bendings, in the two competitive
events growth process modeled by a smooth pdf with implicit constraint. The used
set of parameters is c = 2 s−1 and a ∈ (5.48).
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The second model: explicit constraint

The second model for this process describes the requested time for a growth
with the random variable Tg ∼ Exp(a) and the requested time for a bending
with the random variable Tb ∼ Exp(c).
The next event is the one that realizes the minimum among the requested
times for all the possible next events. The process must explicitly fulfill the
constraint that a bending need at least three previous propagation to occur.
Algorithm 10 explains how to get a chain realization (x, t): x[j] is the label of
the jth event (1 for growth, 3 for bending) and t[j] is the time occurrence of
the jth event.

Draw a realization tg from Tg ∼ Exp(a);
Put t[1] = tg;
Put x[1] = 1;
Initialize the flag for possibility of bending B = 0;
Initialize the number of growths in the current branch nG = 1;
Initialize tmax as the maximum time for a simulation;
Initialize j = 1;
while t[j] < tmax do

Update j ← j + 1;
if nG < 3 then

Put B = 0;
else

Put B = 1;
end
if B == 1 then

Draw a realization tg from Tg ∼ Exp(a) and tb from Tb ∼ Exp(c);
Put t[j] = t[j − 1] + min {tg, tb};
Put x[j] = label of argmin{tg, tb};
if x[j] == 3 then

Put nG = 0;
end

else
Draw a realization tg from Tg ∼ Exp(a);
Put t[j] = t[j − 1] + tg;
Put x[j] = 1;
Update nG ← nG + 1;

end

end

Algorithm 10: The algorithm to get one chain realization from the two com-
petitive events growth process, modeled by pdf with explicit constraint.
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We run this simulation using the same parameter set for the previous simula-
tion. The results are shown in Figure 5.17.

Figure 5.17: Time behavior for the mean number of bendings, in the two competitive
events growth process modeled by pdf with explicit constraint. The used set of
parameters is c = 2 s−1 and a ∈ (5.48).
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Comparison

In Figure 5.18, we simply compare the results shown in Figure 5.16 and Fig-
ure 5.17.

Figure 5.18: Comparison between the two stochastic simulations: the colored lines
are the solutions for the first model (smooth pdf with implicit constraint), whereas
the corresponding black dots are the solutions for the second model (explicit con-
straint). The value of c always is equal to 2s−1 and a takes values into (5.48).
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5.5 Releasing delay effect

Controlled Radical Polymerization with a freezing agent is mainly made by
the successive occurrence of the following events:

• propagation, with rate p,

• backbiting, with rate r,

• freezing, with rate f ,

• termination, with rate q.

The occurrence of the freezing event means that the freezing agent is added
to the chain. The chain can add the next monomer if and only if the freezing
agent is released. Thus, it means that, after a freezing event, some delay or
a set up time are needed to restart the reaction. The aim of this section is
to model this delaying phenomenon taking into account the simulations given
by Section 5.4. In this section we understand that the non Poisson properties
of the growing process are the reasons for the increasing behavior shown in
Figure 4.1.

5.5.1 The algorithm

Let the next event be the one that realizes the minimum among the times
needed for all possible events.
Thus, in order to choose the next event, we follow these steps:

1. Draw a realization from each pdf that models the time needed for each
possible next event, following the well known “Inverse Transform Sam-
pling Method” [21].

2. Pick the event that realizes the minimum occurrence time.

The following general rules should be taken into account:

• Backbiting always requires at least 3 previous propagations to occur.

• The termination event ends each chain sampling.

Thus, we consider the random variables Tp, Tr, Tf and Tq: they respectively are
the requested time for a propagation, backbiting, freezing and termination. We
implement Algorithm 11 in order to draw a chain realization (x, t). It means
that the jth element of vector x is the label of the jth event (0 for termination,
1 for propagation, 2 for freezing and 3 for backbiting). The jth element of
vector t is the occurrence time of the jth event.
In order to monitor the behavior of the mean ratio backbiting over propagation
with respect to the MTTF , we draw many chain realizations and we compute
statistics on the sample got.

64



Releasing delay effect

Draw a realization tp from Tp, tf from Tf and tq from Tq;
Put t[1] = min {tp, tf , tq};
Put x[1] = label of argmin{tp, tf , tq};
Initialize the flag for possibility of backbiting B = 0;
Set the constraint C = 3;
Initialize the number of propagations in the current branch nP = 0;
Initialize j = 1;
if x[1] == 1 then

Put nP = 1;
end
while x[j] 6= 0 do

Update j ← j + 1;
if nP < C then

Put B = 0;
else

Put B = 1;
end
if B == 1 then

Draw a realization tp from Tp, tr from Tr, tf from Tf and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tr, tf , tq};
Put x[j] = label of argmin{tp, tr, tf , tq};
if x[j] == 3 then

Put nP = 0;
end

else
Draw a realization tp from Tp, tf from Tf and tq from Tq;
Put t[j] = t[j − 1] + min {tp, tf , tq};
Put x[j] = label of argmin{tp, tf , tq};
if x[j] == 1 then

Update nP ← nP + 1;
end

end

end

Algorithm 11: The algorithm to get one chain realization, in the case of the
kernels with releasing delay effects.
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5.5.2 Set up time after freezing

Let T be the requested time for a possible future event with rate λ. Its pdf
could be the delayed exponential pdf (5.49): it means that the next event
requires a set up time τ , then it can occur with exponentially decaying prob-
ability.

fT (t) =

{
0 if 0 ≤ t < τ

λe−λ(t−τ) if t ≥ τ
for τ, λ ≥ 0. (5.49)

If T follows the pdf (5.49), we say that:

T ∼ Dexp(λ, τ) (5.50)

An important remark is that the T pdf comes back to the pure exponential
Exp(λ) in the case τ = 0.

The occurrence of the freezing event means that the freezing agent is added
to the chain. The reaction can restart if and only if the freezing agent is re-
leased. Thus, it means that, after a freezing event, the set up times and the
parameters τ are strictly bigger than zero.
After the other events occurrence, set up times are not needed, so the param-
eters τ are equal to zero.
So, following this idea, we assign the pdf to the times required for each event
in Table 5.6.

event pdf after freezing pdf after events different from freezing

propagation Tp ∼ Dexp(p, τp) Tp ∼ Dexp(p, 0) = Exp(p)

backbiting Tr ∼ Dexp(r, τr) Tr ∼ Dexp(r, 0) = Exp(r)

freezing Tf ∼ Dexp(f, τf ) Tf ∼ Dexp(f, 0) = Exp(f)

termination Tq ∼ Dexp(q, τq) Tq ∼ Dexp(q, 0) = Exp(q)

Table 5.6: The exponential pdf delayed by freezing event.

Following the rules given in Section 5.5.1, we can implement Algorithm 11
with the pdf from Table 5.6 and the fixed parameters p, r, f , q and τi.
We run the simulations choosing this set of parameters:

p = 10 s−1, r = 0.2 s−1, q = 0.01 s−1, (5.51)

τp = 1 s, τr = 5 s, τf = 1 s, τq = 1 s. (5.52)

We repeat simulations for parameters f from the following set:

f ∈
{

20s−1, 15s−1, 10s−1, 5s−1, 2s−1, 1.25s−1, 1s−1, 0.75s−1, 0.5s−1
}
. (5.53)

In Figure 5.19 we show the behavior of the mean ratio backbiting over propa-
gation with respect to the MTTF (= 1/f).
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Figure 5.19: Behavior of the mean ratio with respect to the MTTF , in the case of
exponential kernel delayed by freezing event.

An important remark is that the backbiting set up time τr is bigger than the
others. This is essential in order to reproduce the desired behavior of the mean
ratio.
In order to verify this, we repeat the simulation described above, but we assign
to all the set up times τp, τr, τf and τq the same value equal to 1s. In this case,
we get a constant behavior of the mean ratio, within the error of ∝ 10−5. The
results are shown in Figure 5.20.

Figure 5.20: Constant behavior of the mean ratio with respect to the MTTF , in
the case of delayed exponential kernel with equal set up times τi.
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5.5.3 Linexp pdf after freezing

Let T be the required time for a possible future event with rate λ. We assign
its pdf as follow:

fT (t) =


2λ2(3d−3+

√
9−3d2)

d2(
√
9−3d2−d+3)

t if 0 ≤ t < d
λ

2λ(3d−3+
√
9−3d2)

d(
√
9−3d2−d+3)

exp

[
−λ(3d−3+

√
9−3d2)

d(3−2d)

(
t− d

λ

)]
if t ≥ d

λ

,

(5.54)
Thus, it means that:

T ∼ Linexp(d, λ). (5.55)

An important remark is that the T pdf comes back to the pure exponential
Exp(λ) in the case d = 0. In the case d > 0, the linear behavior for t < d

λ
models the needed delay after a freezing event.

We assume that backbiting is the only event affected by delay if the previous
event is a freezing event. An intuitive justification for this assumption is given
in Section 5.5.2, where we can get the desired behavior if and only if backbiting
is affected by freezing more than the other events.
So, following this idea, we assign the pdf to the times required for each event
in Table 5.7.

event pdf after freezing pdf after events different from freezing

propagation Tp ∼ Linexp(0, p) = Exp(p) Tp ∼ Linexp(0, p) = Exp(p)

backbiting Tr ∼ Linexp(dr, r) Tr ∼ Linexp(0, r) = Exp(r)

freezing Tf ∼ Linexp(0, f) = Exp(f) Tf ∼ Linexp(0, f) = Exp(f)

termination Tq ∼ Linexp(0, q) = Exp(q) Tq ∼ Linexp(0, q) = Exp(q)

Table 5.7: The linear exponential pdf as delay after freezing event.

We run the simulations following the rules given in Algorithm 11 with the pdf
from Table 5.7 and the fixed parameters p, r, f , q and dr.
In particular, we choose this set of parameters:

p = 10 s−1, r = 0.2 s−1, q = 0.01 s−1, (5.56)

dr = 0.1. (5.57)

We repeat simulations for parameters f from the following set:

f ∈
{

20s−1, 15s−1, 10s−1, 5s−1, 2s−1, 1.25s−1, 1s−1, 0.75s−1, 0.5s−1
}
. (5.58)

In Figure 5.21 we show the behavior of the mean ratio backbiting over propa-
gation with respect to the MTTF (= 1/f).
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Figure 5.21: Behavior of the mean ratio with respect to the MTTF , in the case of
linear exponential kernel as delay after freezing event.

5.5.4 Constraint effect

In this section we model the delay after freezing event with the constraint that
backbiting has to satisfy. If the previous event is a freezing event, backbiting
needs a least C = 50 propagations to occurs, otherwise it needs the usual
C = 3 propagations.
In order to avoid compensation effects we assign the pure exponential pdf to
the times required for each event. Thus, the needed time for an event with
rate λ is always modeled by the random variable T ∼ Exp(λ).
We run the simulation following the Algorithm 11 with the pure exponential
pdf, but we change the backbiting constraint as explained before.
We choose this parameters set:

p = 10 s−1, r = 0.2 s−1, q = 0.01 s−1, (5.59)

f ∈
{

20s−1, 15s−1, 10s−1, 5s−1, 2s−1, 1.25s−1, 1s−1, 0.75s−1, 0.5s−1
}
. (5.60)

In Figure 5.22 we show the behavior of the mean ratio backbiting over propa-
gation with respect to the MTTF (= 1/f).
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Figure 5.22: Behavior of the mean ratio with respect to the MTTF , under the
constraint effect.

5.5.5 Important remarks

In this section, we have shown that the desired behavior for the mean ratio is
got if the growth process is characterized by non Markovian and non Poisson
effects. The freezing event introduces in the reaction some delay or a set up
time. This delay is the non Markovian and non Poisson effect that affects the
polymer growth process.
It is worthy to remark that the desired behavior for the mean ratio is got if
the set up time or the delay affects backbiting more than the other events.
In fact, in Section 5.5.2, the backbiting set up time τr is bigger than the set
up times for the other events. In Section 5.5.3, backbiting is the only event
affected by the freezing occurrence. In Section 5.5.4, the freezing occurrence
changes the constraint that backbiting has to satisfy. Again, it means that
freezing changes the prohibition of occurrence for backbiting, but not for the
other events.
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Conclusions

We have studied several mathematical models for Controlled Radical Polymer-
ization. We can divide them in two groups: the models which are Markovian
and non-Markovian.

The Markovian models correctly describe the case of polymerization reaction
without freezing agent.
The Markovian models studied include the Partial Differential Equations (PDE)
approach, explained in Section 3.2, and the original version of the stochastic
simulation algorithm (SSA), summarized in Section 3.3.
The PDE approach produces analytical solutions, but it makes strong assump-
tions, as one needs to approximate the branches discrete length with a con-
tinuous variable. These assumptions lead to certain problems. The solutions
for discrete quantities are probability density functions (pdf) with respect to
the Lebesque measure. The solution for still propagating branches is a delta
function of the length, which forces unrealistic deterministic values. The PDE
solutions also give non zero probability to impossible events, for example, for
the occurrence of backbiting as the first event and the occurrence of two con-
secutive backbitings.
The original SSA proposed by Gillespie, summarized in Section 3.3, can over-
come the problems of PDE approach described above. However, its cost is the
computational time required. A PDE analytical solution gives an immediate
answer to the problem, whereas the estimations given by SSA need time to be
computed.

The Markovian models are not able to correctly reproduce the evolution of
the polymerization reaction if a freezing agent is present. For this reason we
introduced non-Markovian models.
With a small modification of the original SSA method, we can simulate non-
Markovian models and compute their statistics.
As was shown in Section 3.3.2, the original SSA can be reformulated in the
way that the next event is the one that realizes the shortest occurrence time
among all the possible processes.
Thus, we can choose a pdf of any desired shape in order to model the occur-
rence time of a process. Then, it is enough to choose the next event to be the
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process that realizes the shortest occurrence time. This is the basic idea of the
Monte Carlo (MC) approach developed in this thesis.
The just described MC approach is also generic since does not rely on a pdf
of any particular type.
In case of an exponential pdf, the method is equivalent to the original SSA.
The choice of a pdf different from the exponential one leads to non Poisson
processes and non Markovian models, due to the loss of the memoryless prop-
erty of a Markovian evolution.
The tested non Markovian models suggest an explanation of why the evolu-
tion of the polymerization with freezing agent is not properly described by a
Markovian model.
The freezing agent introduces a time delay. As a result, subsequent evolution
of the system depends not only on its current state, but also on its recent
history.
Thus, the delay is a non Markovian and non Poisson effect which affects the
polymerization process in the presence of a freezing agent.

The results are encouraging, but more work is needed. The developed MC
approach, tested on different models, will be used to describe existing ex-
perimental data for Controlled Radical Polymerization. This will be done in
collaboration with J.M. Asua from Basque Center for Macromolecular Design
and Engineering (POLYMAT, Donostia-San Sebastián, Spain).

72



Bibliography

[1] D. Gillespie, Exact stochastic simulation of coupled chemical reactions,
Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340− 2361, 1977.

[2] Y. Reyes, J.M. Asua, Revisiting Chain Transfer to Polymer and Branch-
ing in Controlled Polymerization of Butyl Acrylate, Macromolecular Rapid
Communications, vol. 32, pp. 63− 67, 2011.

[3] D. Konkolewicz, S. Sosnowski, D.R. Dhooge, R. Szymanski, M-F. Reyniers,
G.B. Marin, K. Matyjaszewski, Origin of the Difference between Branching
in Acrylates Polymerization under Controlled and Free Radical Conditions:
A Computational Study of Competitive Processes, Macromolecules, vol. 44,
pp. 8361− 8373, 2011.

[4] N.M. Ahmad, B. Charleux, C. Farcet, C.J. Ferguson, S.G. Gaynor, B.S.
Hawkett, F. Heatley, B. Klumperman, D. Konkolewicz, P.A. Lovell, K.
Matyjaszewski, R. Venkatesh, Chain Transfer to Polymer and Branching
in Controlled Radical Polymerizations of n-Butyl Acrylate, Macromolecular
Rapid Communications, vol. 30, pp. 2002− 2021, 2009.

[5] D. Cuccato, M. Dossi, D. Moscatelli, G. Storti, Quantum Chemical Inves-
tigation of Secondary Reactions in Poly(vinyl chloride) Free-Radical Poly-
merization, Macromolecular Reaction Engineering, no. 6, pp. 330 − 345,
2012.

[6] http://en.wikipedia.org/wiki/Polyvinyl_chloride

[7] http://materialsworld.utep.edu/Modules/polymer/

PolymersIntroductoryContent/WhatisaPolymer/Whatisapolymer.htm

[8] http://chem103csu.wikispaces.com/Polyvinyl+chloride

[9] D. Sokolovski, S. Rusconi, E. Akhmatskaya, J. M. Asua, Non-Markovian
effects in the growth of a polymer chain, February 28, 2014.

[10] A.P.J. Jansen, Monte Carlo simulations of chemical reactions on a surface
with time-dependent reaction-rate constants, Computer Physics Communi-
cations, vol. 86, pp. 1− 12, 1995.

[11] R. Erban, S.J. Chapman, P.K. Maini, A practical guide to stochastic sim-
ulations of reaction-diffusion processes.

73

http://en.wikipedia.org/wiki/Polyvinyl_chloride
http://materialsworld.utep.edu/Modules/polymer/Polymers Introductory Content/What is a Polymer/What is a polymer.htm
http://materialsworld.utep.edu/Modules/polymer/Polymers Introductory Content/What is a Polymer/What is a polymer.htm
http://chem103csu.wikispaces.com/Polyvinyl+chloride


Bibliography

[12] R. Erban, M.B. Flegg, G.A. Papoian, Multiscale stochastic reaction-
diffusion modelling: application to actin dynamics in filopodia, April 8, 2013.

[13] M.B. Flegg, S. Hellander, R. Erban Convergence of methods for coupling
of microscopic and mesoscopic reaction-diffusion simulations, preprint sub-
mitted to Journal of Computational Physics, April 30, 2013.

[14] R. Erban, S.J. Chapman, Stochastic modelling of reaction-diffusion pro-
cesses: algorithms for bimolecular reactions, Physical Biology, vol. 6, 046001
(18pp), 2009.

[15] G. Klingbeil, R. Erban, M. Giles, P.K. Maini, Fat vs. thin threading ap-
proach on GPUs: application to stochastic simulation of chemical reactions,
IEEE TRANSACTIONS ON PARALLEL & DISTRIBUTED SYSTEMS,
vol. X, no. X, May, 2010.

[16] D. Gillespie, Approximate accelerated stochastic simulation of chemically
reacting systems, Journal of Chemical Physics, vol. 115, no. 4, pp. 1716 −
1711, 2001.

[17] D. Gillespie, Stochastic Simulation of Chemical Kinetics, Annual Review
of Physical Chemistry, vol. 58, pp. 35− 55, 2007.

[18] Y. Cao, D. Gillespie, L.R. Petzold, Avoiding negative populations in ex-
plicit Poisson tau-leaping, Journal of Chemical Physics, vol. 123, no. 5, 2005.

[19] Y. Cao, D. Gillespie, L.R. Petzold, Efficient step size selection for the
tau-leaping simulation method, Journal of Chemical Physics, vol. 124, no. 4,
2006.
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