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Sommario

Quando un’onda elettromagnetica attraversa I'aterasfampiezza e fase subiscono rapide variazioni
causate dal repentino cambiamento delle disomogemel mezzo. Questo fenomeno € definito
Scintillazioneed e legato alle fluttuazioni di piccola scalal’delice di rifrazione che sono solite
avvenire in ogni regione dell’atmosfera. Sebberse a®n siano singolarmente di grande intensita,
possono avere un effetto cumulativo per lungheadimt. E’ quindi necessario stimare variazioni di
ampiezza e fase indipendentemente dalla geometulle caratteristiche elettromagnetiche del
collegamento.

Lo scopo del lavoro € di predire tali variazioratsttiche introdotte dalla troposfera, utilizzango
approccio basato su un’onda sferica incidente sustnato di turbolenza che si trova in una posiion
gualsiasi del collegamento. Si analizzeranno iralfedo le configurazioni 2D e 3D e il conseguente
errore introdotto dalla riduzione dimensionale. rdano studiati due metodi: analitico e numerico. Il
primo €& basato sul calcolo integrale della variadzampiezza e fase del segnale valido solo in
condizione di debole dispersione, mentre il secoedbasato sul cosiddetto Spit Step Fourier

Algorithm (SSF) e si applica in qualsiasi condizat dispersione.

Parole chiave: spettro delle turbolenze, onda sferica, distriboe della turbolenza a strato, 3D/2D,
Varianze di log-ampiezza e fase, Parabolic Waveako (PWE), Split Step Fourier Algorithm

(SSF), regimi di Fresnel e Fraunhofer,



Introduction

When an electromagnetic wave passes thrthgatmosphere, amplitude and phase suffer fast
fluctuations caused by inhomogeneity of the meditims phenomenon is calleScintillation. It is
related to small-scale turbulent fluctuations of tefractive index that are likely to develop inyan
region of the atmosphere. Even though these peatiorts may be small in magnitude, they can have a
significant cumulative effect at long distancesislttherefore necessary to estimate amplitude and
phase fluctuations whatever the geometry and the-electric characteristics of the link.

For frequencies below 3GHz, ionospheric scintitiatis significant while at Ka-band frequencies,
scintillation primarily originates in the tropospbelt limits the performances of electromagnetic
systems (GNSS systems in L band, earth-satelléedexmunication links, satellite to satellite limk
occultation geometry, space-borne Synthetic AperRadar...).

So far mainly configurations considering an incidelane wave illuminating a turbulent medium have
been taken into account, with first works basedstans’ twinkling due to the inhomogeneity of the
atmosphere [1] and recently [2][3][4]. Unfortungtéhis is not a correct approach if the turbuleisce
near the source because plane wave is only anxapm@ton valid at long ranges.

The object of the work is to predict stitel variations of the electromagnetic signal in
troposphere using the more precise approach fon@dent spherical wave and any position of the
perturbations. We analyse in parallel 3D and 2Ddetimg and the consequent error due to
dimensional reduction. This is done because, afthd@D is the real case, 2D is really useful to drop
computational cost of numerical simulations. Themehsional reduction is classically used but its
effects have been quantified for the plane wavenédism only. The exercise is performed using
analytical and numerical methods and convergendleeo@pproaches is studied. The first one is based
on integral calculations for the statistical vades of the phenomenon valid for weak scattering;onl
the second one is based on the split step algorfda® illustration in Fig.0.1) and it is applied fo
whatever the scattering condition. Both theories mresented in details with the assumptions taken
into account for our situation.

In Chapter 1 we introduce the propagatingloam medium, i.e. the troposphere, and the stadistic
part of the refractive index which leads to therfatation of the spectrum of the turbulence.

In Chapter 2 analytical formulations will blerived for log-amplitude and phase variances of a
signal propagating through perturbations localize@ thick layer between transmitter and receiver.
They are studied with respect to the frequency,péth length and the dimension of the eddies, and
with respect to the configuration, 2D or 3D.

In Chapter 3 we present a comparison withréiselts found so far about the incident plane wave

adding comments of our formulations of the previckhapter.



In Chapter 4 starting from Parabolic Wave &mn (PWE) we develop our model based on the
Split Step Fourier algorithm (SSF) and sphericagghscreens scheme (3D PWE-2D MPS and 2D
PWE-1D MPS).

In Chapter 5 we show our numerical simulati@enparing the analyses of the previous chapters.

Finally we summarize the conclusions of ourkygiving some perspectives.
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Chapter 1

Description of the propagation medium

Propagation of satellite signals througlagge striated region presents the problenadib-
wave propagation through a thick medium coredad# random fluctuations in the index of
refraction. The wave firstly suffers random phpsgurbations due to variations in the phase vsloci
within the medium. These phase variations ie fiiopagating wavefront introduce small random
changes in the direction of propagation of th&ve. Thus portions of the initial wavefront now
propagate in different directions relative to otpertions. As the wave propagates further,
diffraction or angular scattering causes comsivtea and destructive interference which idtroes
fluctuations in amplitude as well as phase. Thishat we define as scintillation. These timeyiray
amplitude and phase fluctuations represent an inedesomplex modulation of the carrier.

In this section we propose an introduction adthee of the work, showing the cause of scintilfatio

in the medium of our interest, i.e. the troposphere

1.1 Long term variations of the refractive indexhe troposphere

1
o
N
o
S
P
H
E
R
E

Figure 1.1:Vertical structure of the atmosphere

Troposphere is the region of the atmosphere sprgdbm the ground up to an altitude of 7 to
14km (Fig.1.1), depending on the latitude and tleewrological conditions. This is the place where
the atmospheric phenomena involve the water cybdeid, rain, fog, snow).



Chapter 1

From an electromagnetic point of view, the trop@sphis a pure dielectric medium (electric
conductivity 0=0, magnetic permeability=p, and imaginary part of the dielectric constaiit
negligible with respect to the real pai} except for the shortest wavelengths, i.e. ceetiia and
millimetric, for which it can be more or less aldsiog.

In the troposphere, temperature, humidity and pressary horizontally and vertically, generating
variations of the air refractive index. The averagetical variations of the tropospheric refractive
index are described by the large scale effect:

n(h) = n,(1+Bxh) (1.1)

where n is refractive index at an altitude h(km)isithe refractive index at sea level and B is gilsg

Booker’s formula:

_ 10 dp _ .dT 4
B—ﬁ( 02+30 6dh) ft ] (1.2)

where R=6400 km is the Earth radiusz—l;: %}g ) is the variatioh atmospheric pressure

(temperature) with height (mbars/m and °C/m, rebypely).
As ny is very close to 1 @¥1) et Bh<<1, the equation (1.1) becomes:

n(h) =g+ Bxh (1.3)
and the tropospheric refractive index n(h) remas/ close to unity (it is about 1.0003 close te th
surface of the Earth). Nevertheless, its verticatlgent impacts the electromagnetic wave propagatio
Therefore, it has become customary to use thectefity N:

N = (n-1).10 (1.4)

which can be approximated by:

N 21'6(p+4810Ej (1.5)
T T



Description of the propagation medium

where p is the atmospheric pressure (hPa), eeigé#ntial pressure of water vapour (hPa), T the
temperature (K).

At the tropopause (about 15km in temperate latgyde is about 40, down from over 300 at the
surface. The relative differences resulting frormidity variations are much stronger near the sexfac
This explains why scintillation generally originate the lower levels of the troposphere. Even when
turbulence does occur in the upper levels of theoaphere, the relative differences in refractiviein
between adjacent air masses are insignificant ceedpaith that seen near the surface in the
atmospheric boundary layer.

The atmosphere is generally stratified into pardiigers by temperature and humidity differences.
Turbulence within a layer will generate very litdeintillation because the air is fairly well mixed
within the layer and refractive differences are nmdowever, at the boundaries between layers,
turbulence can mix air masses with very differdrdracteristics. This phenomenon allows scintillatio
to be modelled to a first approximation as occgrin a thin layer or layers, with the rest of the
propagation path assumed to be scintillation fége [

Tropospheric scintillation can occur under seveliatinct circumstances. Turbulence in the lower
troposphere can cause random mixing between aisesasgesulting in dry scintillation (also referred
to as clear air scintillation). Note that “dry” this context does not mean that water vapour is not
present; there is always a finite amount of wat@pour in the troposphere. Rather, “dry” merely
means that the air is not saturated by water vapvhien water vapour saturation does occur, clouds
are formed. As the clouds pass through the promagatth, scintillation can occur at the boundary
between the cloud and the clear atmosphere. Simetolves air which is saturated by water vapour
this is called wet (or moist) air scintillation [8piven the right conditions, cloud droplets corgieto
produce rain within the propagation path. Variasian rainfall within the propagation path cause
signal variations which constitute another sourfcecotillation [7].

Regardless of the cause, scintillation-induced aigrariations generally have a period of a few
seconds. This distinguishes scintillation from siiaging rain attenuation events which have periods
of several minutes [8]. Also, in contrast to raadlihg, it should be noted that scintillation is adbss
process. The scintillation variations cause botiecement and attenuation of the propagating signal
but the average signal level remains unchangedtiiion may occur simultaneously with rain
attenuation, but the two effects are caused beifft mechanisms [9]. Clear-air scintillation ig th
result of turbulent mixing in the troposphere, whikin attenuation is caused by the absorption and
scattering of electromagnetic energy by liquid daops.

Therefore, spatial-temporal variations of the retikee index are complex and cannot be known from a

deterministic point of view, so we introduce aistatal description of the medium.



Chapter 1
1.2 Spectral description of the small scale flubtuns of the refractive index

The refractive indem(?,t) is commonly described @& stochastic function of the position

r= (x y,2) and time t.n(F,t) is classically decomposed as:
n(r.t) =<n, >+n,(r,t) (1.6)

where<n, > is the average component responsible fdatge scale refraction effects anp(?,t) the

random turbulent component.

LOUVAIN-LA-NEUVE, 29 AUGUST 1990,12.5 GHZ
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Figure 1.2: Amplitude scintillations of a satellgégnal at12.5 GHz received at Louvain (Belgium)[10

The fast fluctuation, at small scale, qf(?,t) leadast ffluctuation of the signal around its average

value: this is tropospheric scintillation phenomeiitustrated in Fig.1.2.

It is a source of perturbations for the electronsig systems: it is thus necessary to have sstail
description of electromagnetic scintillation (Anptle and phase variances of the signal) to allow an
optimal system design.

Disregarding the large scale refraction effests, > sethat (1.6) reduces to:
n(r,t)=1+n(r,t) 1.7)

Besides, in compliance with various experimentaammementsnl(F,t) is a centred random variable
<r11(F,t) >=0 where < > denotes ensemble average.

Lastly, under assumptions of stationary (in timed enhomogeneous (in space) turbulent random
medium, the 3D spatial covariance function of tebalent index n,(r,t)n, (r',t) >= B® (r,r',t)

4



Description of the propagation medium

reduces t®:° (r-r') . ltis related by 3D Fourier transfoo8D spatial spectrusff’(ﬁ =K.k, k,)

according to:
(n (.0 ) =B (r =)= [ 5% (RE¥C o (1.8)

27T 21T 21T

wherek = (kx,ky, Z): [I_I_ l—] is the wavenumber associated to the eddy of diroerngx|, x
X y z

[, . Besides, note that the 3D Fourier convention urs€l.8) implies that:
S (k) = (2 [dr. B (e [m]  (L.9)

For fully developed turbulencesle(E) is classicallyregented by the Kolmogorov spectrum that

relies on a description of the turbulence througlinartial cascade illustrated in Fig.1.3.

As the turbulence spectrum (or simply spectrumyaswill call it hereinafter) is assumed isotropic,

instead ofk it is possible to consider its absouaieue||2| =K .

According to Kolmogorov theory, the spectrum igidéd in three zones by two important parameters:
the wavenumbers i&2n/lis [rad/m] and Ks=2n/Los [rad/m], where {[m] and L,{m] are inner and
outer scales of turbulence respectively.

These two extreme lengths are important for theeaafytliffraction which strictly depends on the size
of the scatterer: smaller it is, wider the angheadidition, the inner scale controls the spatialetation

for small inter-receiver separations and can atarostly if comparable to the Fresnel distante®R ,
where R is the distance transmitter —receiver artle wavelength.

A good rule of thumb [11] is that one can ignoresgpation effects when:
JAR> T [m] (1.10)

Since the inner scale is usually less than 1 cthartroposphere, this distortion should occur daty
optical links over distances less than 50 m. lusthde completely absent for microwave links, which
have much larger Fresnel lengths.

By contrast, ksis equivalent to the correlation distance of retixee index fluctuation and it is used

for the definition of two situations which will kaken into account in this work:
Fresnel regime if VAR << Los [m] (1.11)
Fraunhofer regime if JAR >> Los [m] (1.12)



Chapter 1

l Energy Input

J Cascading Energy
Redistribution

Turbulence Spectrum

KOS

| |
I I

Y

Figure 1.3:Conceptual description of the procestidfulent decay as it proceeds through an enegggade in which eddies
subdivide into progressively smaller eddies uhgiyt finally disappear [10].
In other words, comparing our situation to the ptglsoptics, we are considering a scatterer with

aperture equal to Los and the rafie Eresnel numberConceptually, its inverse is the number of
Los

half-period zones in the wavefront amplitude, cednfrom the centre to the edge of the aperture, as
seen from the observation point, so that the wamfphase change by moving from a half-period
zone to another. Fraunhofer regime is establishkenwthe diffraction pattern is viewed at a long
distance from the diffracting object, in the sol@afar field zone. On the other hand, the diffraction

pattern created near the object, inrlear fieldregion, is dealt with by Fresnel regime.

The three regions of the spectrum are shown in FigThe abscissa is the vall%g [rad/m], where | is

the eddy size. They are defined as:
- Input range(l =Ly
The energy is introduced into the turbulence is thnge of eddy sizes due to the wind shear
and temperature gradient. The spectrum depends wnth turbulence is created for the

particular case, and thus there is no general flarm@scribing the turbulence characteristics in

this range



Description of the propagation medium

- Inertial sub-rangg(Los>1>1s)
The kinetic energy of eddies dominates over theghtion due to viscosity, and the turbulence

-11/3

is essentially isotropic. The spectrum is propcmaido|E | . Kolmogorov theory.

- Dissipation rang€l < lis)
Here the dissipation of energy due to viscosity mhates over the kinetic energy, and
therefore, the spectrum is extremely small

For the reasons just exposed, in the first redienspectrum is unknown. In the second one we have:

s%° (k|)= s («) = 0033C 2K e 1, (1.13)

which is Kolmogorov spectrum.

C? is the turbulent constant structure that accofartthe turbulence strength, and it ranges typycall

-2/3

between 188 m 213

(weak turbulence) and TOm?? (strong turbulence). It has been mathematically

derived by Ishimaru ( [12] app. C) and can be esged in function of the variancerof  [11]:

2 2

C2 =191} )K2 [m 3] (1.14)

Where variances? =(n?)  because) =0

Finally in the third region:
S (x)=0 mi ] (1.15)

Losand |s are respectively a few millimetres and some huhslod meter in the atmosphere.

Von Karman [13] proposed an analytical extensiothefKolmogorov spectrum:

11/6

S (k)= 0032 (k2 +K2) ] (1)16

Which assigns a reasonable spectral shape for evavg-number, even in the energy input regime

and it matches to Kolmogorov model in the ineiabrange.
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Chapter 2

Analytical derivations

After a brief introduction of the propaigat medium, analytical expressions for amplitude an
phase variances are computed. The scenario coreéungulence limited in a part of the link, where
scintillations effects take place. This is the slbeda’Layer distribution model’ in contrast withlab
model’ where the turbulence spreads from the traento the receiver.

Practical situation involved the uplink of aedhtte communication or a classical terrestriak]in
when the irregularities are near the point sourzkthe incident wave is spherical.
We start the discussion introducing random waveatgn under weak scattering condition with an
approximation discovered by Rytov, who was anatyshe diffraction of light by sound waves [14],
later applied by Obukhov to describe the propagatioelectromagnetic waves in random media [15].
This technique is now known alternatively as the hodtof smooth perturbations or the Rytov
approximation, which is widely used to describelof-sight propagation in turbulent media when the
amplitude variations are small [11][16]. The Rytgpeoximation is fundamentally an enlargement of
geometrical optics that includes diffraction efeecthe essence of this method is to express the field
strength as the product of the unperturbed fieldthaedxponential of a surrogate function, which imus
be determined. It is a complex function that démsithe important influence of diffraction because i
is derived from the random-wave equation. To sojsecHic transmission problems one expands the
surrogate function in powers of dielectric variatiéz. Most descriptions of propagation rely on this
basic solution. Pisereva showed that the variahtegarithmic amplitude variations must be lesstha
unity in all situations [17].

Rytov condition: <)(2> <1 [NpZ (2.1)

Tatarskii confirmed it with explicit calculations [Ahd Pisareva showed that the phase is unbounded
for the usual case of Fresnel scattering [17]. Tdoadition gives us the flexibility required to
characterize weak scattering, which is equivalerthe assumption that the beam can be scattered by
the eddy only once. In the hierarchy of propagatioeories researchers are developing, the Rytov
approximation represents a natural stopping pativeen geometrical optics and modern theories of
strong fluctuations: it describes some featuresufipte scattering, just as geometrical optics does

the other hand it can describe weak fluctuatioremiplitude and intensity — which geometrical optics
cannot. We shall show that its results reduce tmsdéhof geometrical optics when the influential

9



Chapter 2

scatterers are concentrated near the ray-patheolutiperturbed field. It captures the influence of
diffraction phenomena. Phase fluctuations appearait in the exponent of the Rytov solutions and
can be very large for most applications.

Under weak scattering condition, we solve randonvenvaquation getting a function which is

fundamental for our study because it allows deswibhow the field is scattered and because it bas t
filter the spectrum of turbulences: we will defiteas “weighting function”. With the latter and the

spectrum defined in the Chapter 1, it will be pbksto compute the variances.

2.1 Variances for the real 3D configurations

2.1.1 Variances definition under weak scattering assumption
Maxwell equations in a random medium arel harsolve because of the complexity of the

system deriving from variability of the coefficisntvolved in the equations.

They concern:

1) Time domain

- Wave is monochromatic

- Propagation is in harmonic regime and temporalatians inside the medium are much slower

than a wave period. It implies that a wave seestemn irregularities

- lis the dimension of the inhomogeneity to the ctitn of propagation. First theoretical studies
[18] have been done for plane wave in optical domdiere >> 4 . The medium is supposed to
vary slowly so that the refractive index is assunsedstant on the signal wavelength. This
assumption allows to suppress the time dependencilectromagnetic Field in Maxwell’s

equation.
- given short time for the wave to cross the medipenturbation is considered stationary.

2) Spatial domain
- We use paraxial approximation assuming a wave gapay along the axis so that all the
energy is diffused forward in a narrow cone [18gglecting backscattering and power

absorption by the medium. In Fig.2.1 we show amdent wave diffracted in a limited angle

z9=/|]—[rad], where | is the transverse dimension of aegenscatterer which is at distance L

from the receiver. Until the diffraction spdt esk than |, diffractive effects are negligible

10



Analytical derivations
and only phase is affected. Thus the influence ef medium depends on the average
dimension of inhomogeneity in relation with the whangth. This hypothesis is the basis of a
lot of other approximations like the one driven ldarkov which allows parabolic method

starting from classical wave equation.

scatterer

Incident
wave 9

>

LS

A
v

Figure 2. 1:Geometry of diffraction. Until the sigt < | diffractive effects are negligible

3) Phenomena neglected
- Depolarization effects.
It has been found experimentally that inhomogeeitdf troposphere induce scintillation
independently from polarization. This point allows 10 use a scalar wave equation instead of

vector one.

- Ground effect.
Reflection or diffraction phenomena, caused byttreain, affect the downlink communication,

but here we want to focus on the effect generayetid tropospheric layer so we neglect them.

- Multi-path.

Diffusion and diffraction due to obstacles are carisidered.

Under these basic assumptions it is possible toaldre calculations.

In harmonic regime, Maxwell equations referred tediic and Magnetic fields are:

OxE(F) =i, H (F) (2.2)
OxH () = —i e &, E(F) (2.3)

Where E and H are respectively electric and magfietds,w = 27f &, =8.85487817x10 %Fm*

11
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and /g = 47rx10-7Hm™ dielectric and permeability constant of theuwss and finally & the
dielectric constant of the medium depending ongbsition. Troposphere is assumed with no free
charges so implicitly;, =1 .

Solving the system of the two previous equationgete

OXOXE(F) - o o4, E(F) =0 (2.4)
Noting that:
OxOxE(r) = -02E(r) + 0(0 E(r)) (2.5)
And
0de, (F)E()|=0 (2.6)
equation (2.4) becomes:
D2E(F) + a pye (r)é(r—)-u(mj E(r)j:o @7
In term of n:
T°E(r) + znZ(r)E(r):zm[% céj 2.8)

On the right side of the equation (2.8) polarizateffect appears but, as exposed above, in clgar sk

conditions, the depolarization effects are neglaili leads to the scalar wave equation :

02E(r )+ k,n2(r)E(r)=0 (2.9)

where k, =i—” is the wave-number in the vacuum with  wavesth, E(r) one of the component of
0

the electric-field vector.
Considering the first order approximation for tkeéactive index n defined in (1.7):

n2= (1+9%<1+2n, (2.10)

the vector wave equation (2.9) reduces to:
12



Analytical derivations
O2E(r) + k2[1+ 2n,(r,t)]E(r) =0 (2.11)
We solve this equation under Rytov approximatiod].[1t consists in expressing the unknown

solution as the product of the field strengthr thauld be measured a  in the absence of

turbulent irregularities with a correction tegpR,t)  that:
E(R) = E(R,t) = E,(R)e* RV | [V/im] (2.12)

The complex functioy(R,t) is then expanded into a serie
w[RY)=Y i (RY). (2.13)
i=1

Under weak scattering assumption, the first ternthefseries is sufficient to accurately descrite th

propagation, so that:
E(Rt) = E,(Re“®, [vim]  (2.14)

with:

¢ (RY) =-2k2[d°1G® (R D), (1,1) () (2.15)

E.(R)

where it appears the Green function in free spafieetl as:

eiko R_Fl

GgD (ﬁ,?) -
4T|R-r1 |

n* 1 (2.16)

R= (R00)and r =(x,y,z) represent the receiver location arel sbattering eddy position from the

transmitter taken as the origin of the system.imZ=2 we show the geometry of our problem where
only direct and scattered waves arrive at the vecethe x axis coincides with the direct path #mel
incident waves to the receiver and to the eddypherical.

From (2.14)- (2.15) the log-amplitude and phasthefsignal are given as [10]:

13
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X(RY) =In(ER )/

E,(R) =0[4,(R.1)] (Np] (2.17)
¢ (R,t) =00y, (R V)] [rad]  (2.18)

WhereO[y,(R,t)] andd[g,(R,t)] are respectively the real and the inaagipart of the complex

function wl(ﬁ,t) .

X
Transmitter / Receiver

d
<« »

R

Figure 2. 2:Geometry of the scattering problemdpherical wave. Incident waves to the receivertarttie eddy are

spherical. Line-Of-Side is assumed along x-axis.

A point source should generate an electric-fieldragth that depends only on the scalar distanee fro
transmitter if there are no irregularities in th@nsmission volume so that for spherical wave

propagation electric fields arriving at the turlnde and at the receiver are:

Eo(r)= EOﬁj'kqj Vim]  (2.19)
And
ik[R
Eo (F—?) = EoeT
. Vim]  (2.20)

Following the calculations in Appendix A, we finallve get log-amplitude and phase variances for an

incident spherical wave:

14



< y2>%= 4712ij SP (/()/(d/(fsin2 M dx
0 ' Xy 2Rk0
w %o _ 2

< $2 >%° = 477°K> I S (K)dejcosz(%]dx
0 X

by Wheelon [11] for slab distribution.

Equation (2.21)-(2.22) can be written in general as

< x2>°° = 471 Axk? j &S, (K)F,
0

(k)dk

<g2>P= 4ﬂ2AXk§IKSn1 (k)F,(k)dx
0

Having defined two functions as:

AX

£ ()=L lefocosz(dex

2Rk,

X

Analytical derivations

Al (2.21)

[rad?] (2.22)

Where X, X, are the boundaries of the turbulence, asrshoFig.2.3. Similar expression were found

[Np?] (2.23)
[rad?] (2.24)
(2.25)

(2.26)

Where Ax=x, — x, is the extension of the turbulence in [nfhede are the so called “weighting

functions” because, as seen in (2.23)-(2.24), thiey or weight the spectrum shown in the Chagter

Therefore it is necessary to analyze them, befavegeding with variances computation. It is done in

the following paragraph.

15
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Transmitter Receiver

V¥

X 1 Xy

Figure 2. 3: Communication system between twoadstativith irregularities placed in thick layer ingtpath, from x1 to x2,

distances from the transmitter.

2.1.2 The weighitng functions

As seen in the calculation, functions (2.2Z526) derive from the relation between the dired a
the scattered waves, which means they dependsaxtbnsion of the perturbation, responsible of the
diffractive effects. However, the main dependeneljes on the link distance R and the frequency,
because their relation with the turbulence indigaftethe system works in Fraunhofer of Fresnel
regime, defined in (1.11)-(1.12). One can noticat tphase and log-amplitude weighting functions
(2.25)-(2.26) are complementary. In fact:

F, (k) +F,(k)=1 (2.27)
This is an important property valid for all the @ignrations (2D/3D) and for all the wave typologies
(plane, spherical).

The idea is to solve the integrals finding anabjtiexpressions which describe the behavior of those

functions with respect to the variation of the eddyensions. Derivations are exposed in Appendix B,

Lo
L TR (B

obtaining:

F,(x)=R

J (2.28)

&
s

16
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(2.29)

B e
anx| R V&R +H(1—2|;‘1j gjoﬂ_{(l_zsj ;;iﬂsm(fk:ej

Where C(x) and S(x) areresnel integrals

There is no need to study the global behavior esé¢hfunctions because some assumptions can be
done according to the regime of work. Hence infthlewing paragraph, asymptotic formulations for
the variances will be derived considering the cfit®.28)-(2.29) on the spectrum.

However a simple observation can be done.

Figure 2. 4: Fresnel integrals. C(X) is the greemde5(x) the red line. Both oscillate around 0.5

In Fig.2.5 X; - 0 anc&k, - R , we get the formulations of the giing functions for slab model

found by Wheelon [11]. This validates our compwtasi and confirms that the general case is the layer
model.

(a) (b

Ax F=Ax

R

Figure 2. 5: Extending a general layer (a) fromrismitter to the receiver, we find the slab modgl This means slab is only
a particular case of the problem even for spherigale

17
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2.2 3D Asymptotic formula

At this point we have all the elements tanpote the variances: weighting functions and
spectrum. They are computed for either Fresnel raurthofer regime, because according to the
parameters involved (frequency, path length, lah@kness..), the physical phenomena can change

significantly.
2.2.1 Fresnel regime in 3D

2
L 0s

Fresnel regime is established for relafibri1) or in wave-number domain wh?%]% >>

Considering the amplitude, this means that higkiektes of « , i.e. the smallest eddies, bring the
main contribution to scintillation. Consequently,aquation (2.21) we do not consio&fgD (;) by Von

karman model (1.16) but by the simplified Kolmogo(@.13), integrating it from O to infinity.

Mathematically:

Kos w
(X2 =4k, "X | kS, (K)F 2 (k)dk + [ &S, (k) (k)dx
0

Kos

Np?  (2.30)

As function (2.28) is low for the biggest eddiesthe ‘input range’, i.e. befot€ , previous relation

becomes:

(AP = 4772k02 AXIIS KS,(K) F)I(ayer( K)d K = 4n2k02AxI KS,(K) F)I(ayer(K )dK Np  (2.31)

S.(k)and S, (k) are Kolmogorov and Von Karman spectra respsyti

For phase variance the situation is different,aict the functions (2.28) start at 1 so that thegsdaot
filter the spectrum at low wave-numbers. For tieigson we cannot use the Kolmogorov spectrum in
the calculations and Von karman mod|(«) must beieghplUnder this assumptions it is possible

to drive the analytical derivations.

Rewrite equations (2.21) as:

X +AX

+o R
< x?2 3D _ 47'[2k§ ISrC?lD (/()KdK%R I |:l—CO{
0 X

k*Ru(1-u)

0

Hdu [Np?] (2.32)

18
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We have already integrated »imbtaining the weighting function, so we could giibte it to the
second integral and integratexon , but it is anedyiy hard. Let’s solve it om before, with

Kolmogorov spectrum as already explained.

_ _ k*Rull-u) ,
Making a change of varlabteT =t , we find
(6]
X +AX
740 R 5
< x2>%=00337°C?Rk¢ [r[1-cost)lt | [u(t-u)ledu (NP7 (2.33)
0 tg X
R
The first integral is tabulated and ithi_l [1-cos(t)]dt =1.728. So log-amplitude variance in fresnel
0,6
regime is:
X, +AX
1 7 r 5
< x2>*=0563CRk¢ [ [u@t-u)ledu [Np?] (2.34)
%

Where the integral is solved by Hypergeometric fioms'.

Phase variance is more difficult to develop anehjty because, as already said, the function (2.28)
does not filter small wave-numbers so that Von Karrepectrum is more appropriate than
Kolmogorov’s. For such a reason it is useful idtroing the phase variance for geometrical optics (
k,R>>1), which has been defined by Wheelon[11]:

($,°) = 47T2Axk02T/(Sn (k,x)dk [radq  @.35)
0

Substituting Von karman spectrum we get the expyess

Y In order to enlighten the computation of the int#grwe can make another change of variable

1—¢ 1—c 1+c
u= : 1-u=1- = ; c=1-2u
2 2 2
¥ +AX 1_2x1+Ax
R 5 1 R 5
j [u-u)]®dx=— j [1-c?]6dc
A 46 1%
R R

1_2><1+A><

R 5
[ [1-c?l%de
1-2%

1n7
6

(X?)qn = 0.088 C’R °k

21
R
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5

($,2) = 0.782C 2 AxkZK ,° [rad]  (2.36)

This is independent of the wave nature, in fagqnation (2.35) there is no weighting function
because in geometrical optics diffraction effectsreeglected. Observing equation (2.35), (2.21) and
(2.22) one can notice that:

(P2Y+(x?%)=(p¢) [rad?y  (2)37

This is a really useful relation linking amplitué®ad phase, also valid for plane wave. It is really
important because it does not depend on the asgmgdtisotropy and on the paraxial approximation
[7]. Obviously it is linked to the property of colementarity (2.27).

Substituting the equation (2.36) and (2.34) in T2.phase variance in fresnel regime is:

X; +AX

(p2)°%° = (g1~ 072(%‘1} [u - u)]®du

[rad?] (2.38)

T | X =D

As expected phase variance depends on Kos, buttadgtoes not.

2.2.2 Fraunhofer regime in 3D

In Fraunhofer configuration, Fresnel aligte is greater than Los which means that ‘Energy
Input Region’ (from O t&, ) has to be considered imvernumbers domain even for log-amplitude
variance. Hence it is necessary using the von Karspectrum (1.16) for both log-amplitude and
phase.
We cannot follow the same approach developed fesrtgl regime because now analytical derivations
for variances are too difficult. However, considgrithe definition of Fraunhofer regime (1.12) and

noticing that in (2.28)-(2.29) the coeﬁicie\yl@g aally is the inverse Fresnel number, the two
K

weighting functions tend to 0.5, more rapidly faghrer value of Fresnel number.
So it is possible to solve equations (2.21)-(2K2®)stituting 0.5 to the weighting functions

(x2® =272k? _([ kS, (K, X)Axdk (Np?] (2.39)
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Analytical derivations

($?)P = 2772k§.([/(8n1 (k, X)Axdk [rad?] (2.40)

Considering Von Karman spectrum (1.16), we obthgasymptotic expressions of log-amplitude and

phase variances in Fraunhofer regime:

_5
(X*)*® = 0.391Axk“C K ¢ NpZ  (2.4)
3
(9%)°° = 0.391AXk*C2K 2 [rad?]  (2.42)
More simply we could have noticed that:
(x> = 2ﬂ2Axk2TKS (k, X)dk :£<¢2>
X 0 J n K 5 \Po [Np?]  (2.43)
Where<¢§> is the phase for geometrical optics (2.30).
For the phase variance thanks to equation (2.31):
203D — /[ 42\ _ /2 _1 2
@5 =(¢5)-(x >‘§<¢0> . [rad?] (2.44)

Both functions are independent from the distanaasimitter-layer so the variances are always the
same whatever the position of layer along the link.

At this point, we have the formulation of the vagas and their behaviour according to the relation
between the system parameters (frequency, patithleagd the irregularities of the medium. All the
comments about the formulas will be explained ima&@ar 3, together with the comparison to the plane
wave approach, commonly used. For the instant ilgeshain on the analytical formalism, studying

the effects on the computation of the variancesipggrom 3D to 2D.
2.3 Variances definitions for the reduced 2D camfagion

The 2D reduction is useful to improve comapional time for numerical resolution of the preiol
but it can introduce some errors in the calculatmhnthe variances. This means the Rytov

approximation, Helmholtz equation and the physmanario are the same as before, so we only
21
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discuss about the changes in the formulas avoickdgndancy repeating points already explained.

Main changes concern the Green function and thidentelectric fields, now expressed as:

G?®(R) :i—ng[ko|R—r|] mY  (2.45)
E,(r) = EOj'_km Vim]  (2.46)

r
£, (R)- Eo\/‘{ka Vim]  (2.47)

where H ![x] is the first kind, zero order Hankel function.

Wave equation has to be solved in the vertical@baz so thak = (k.k,) r=(x2) n(r.t)=n(xzt).

Assuming high frequency and small scattering aaglasual:

kO|R—F|>>1 R-x>>z

(2.45) becomes:

T 4

i— . ik
el4elk0(R_X)e 0

-1

2(R-x)

G®(RF)O

At this point it is useful considering the systefriF@.A.1 for 3D. The cut involveg to be projected
on the vertical plane x-z, as shown in Fig. 2.6.

As in 3D calculation derived in Appendix A,:g so fineal expressions for log-amplitude and

phase variances in two dimensions are:

o 200 o 2 % ) X(R— X)(KSina))z
< 2 >0 = 27k !dksnl (k) ! d“’x[ S'”{ 2Rk ]dx [Np?] 42)

o0 2 Xy _ . 2
<= o e s 2 lrsnol | 5
5 ! 5 2Rk,
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¥

Figure 2. 6: System for 2D geometryin 3D is projected on x-z plane

These are new calculations, never been deriveder@gcFabbro and Feral [19] gave a similar
formulation but for plane wave in a slab distrilouti
Comparing these expressions with the others oBh&e notice two points:

- the spectrum is still the same and depends on

- the reduction affects the weighting functions, actfnow they do not vary along a transverse
plane but only along an transverse axis with resgethe direction of propagation. Hence the

weighting functions are(,«sinc) . In Fig.2.7 is reported epresentation of wavenumber

space in 2D, under the consideration of the AppeAdi.e. k =k, asv :g :

oy

k.sinw =k sin @

z
¥

Figure 2.7: As the azimuthal angllezf, wavenumber lies along z, transverse to x .Theiptbjection ofK is equal to the
2

projection of K,

The integration on the angular distance of the waxger from the vertical plane represents a

‘compression’ of the 3D eddies on that plane. Téesls to the error explained in the next paragraph.
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2.4 2D asymptotic formulas

Now weighting functions depend on the angdiatance with respect the transverse axis, so it is
not trivial to find a complete formula and anywag are not even interested in it . For this reasen w

directly propose the variances in each regimes.

2.4.1 Fresnel regime in 2D

Physical explanation is the same as 3D, spraeeed in the same way considering a kolmogorov
model spectrum (1.13) for log-amplitude and Vomkan (1.16) for phase variance.
Starting from log-amplitude variance (2.49) and mgkhe variable change x=Ru, we get:

X +AX

+00 2 R . 2 _
< x2>% =27k} [SP (K)de.[dw% R | {1— co{ (Ksma))k Rut u)Hdu [Np?] (2.51)
0 0 Xq 0

R

Then, considering Kolmogorov spectrum (1.13) an&ingaanother change of variable:

Ru(l- u)(« sin w)?
kO

=t

we obtain:

X1+AX

11 7+
< y2>P= 0033§C2R5kfj }1[1 co:{t]dtj' smwsda)j [u(1- u]edu [Np?] (2.52)

046
t R

[EEY

11
6

where j_ [1-cos(t)]dt =1.728. So 2D log-amplitude variance in Fresnel regime is:
0

1270 2 <)(2>
<oh —I sin® adw=
resnel 277-

SPhresnel [N pz] (2 . 53)
186

<)(2> _<)(2>

It means that studying a simplified version 2D tué teal case 3D we commit an error ~53%, which is
not negligible. The same factor was found for shabdel in plane wave formalism and tested by
Fabbro and Feral [19].

For the phase variance we still use the relatiod7(2 obtaining:
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X +AX

5

RK? >
= [u@-u)]°du [rad?] (2.54)

< ¢2 >2P = <¢02> 1- 0387(k—J6

0

T | X ——0

Where the integral is solved by Hypergeometric fioms.

The log-amplitude variance is lower in 2D but theage is slightly higher than the real 3D, due ® th

coefficients involved. Anyway this error is neghig so that:

in Fresnel regime, the dimensional reduction hapratlem only for the phase variance but for log-
amplitude it is necessary to take always into ant@aucorrection factor of 1.86.

2.4.2 Fraunhofer regime in 2D

Even for Fraunhofer regime in 2D the weightingdtions reach the asymptotic value 0.5, this will
lead to same results than for the 3D problem.

-5
3

(x?)?° = 0.391Axk2C2K [Np2 (2,59

0s

(9?)?° = 0.391Axk;CZK 5 [rad’]  2.56)

0s

This means that:
in Fraunhofer regime, the dimensional reduction hasffect both in log-amplitude and phase so it is
allowed without problem.

Thus, the main problem comes when the system worksesnel regime because the computation of
the log-amplitude in 2D underestimates the reabsion in 3D. In the following chapter we analyse
this conclusion with other calculations made fana wave with an eye to the results recently found
by Fabbro and Feral [19] for the plane wave fobtlence Slab distributed. In addition, observations
to the formulas of this chapter are presented, esimg them in parallel with plane wave approach

largely studied by Wheelon[11].
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Chapter 3

Comparison between spherical and plane wave afgproac

In this section comments of the previ@impter and comparisons with the studies done in
literature concerning plane wave are presentedtlfive examine the differences with the plane wave
weighting functions found by Wheelon [11], followbgl an analysis of the variances for which a
distinction of 2D and 3D is necessary. For thisogethe second paragraph has the structure of

Chapter 2 for a better comprehension.
3.1 Differences between plane and spherical weaigttinctions

Authors largely studied scintillation effettg the use of the plane wave, because of the siitypli
of the formalism allowed when the observer is fanf the source as the plane wavefront well
approximates the spherical wavefront locally agloanges.
It is the classical scenario of the optical astragavhen turbulences in troposphere or ionosphere ar
very far from the transmitter (star). In this cas®eral phenomena are notable, as the change of
apparent position aquiveringof a star. In addition, the intensity of a steBggnal changes randomly
with time. This form of scintillation is callevinkling and is observed even on still nights.

For these cases amplitude and phase variancesvarely [11]:

0

0

With weighting function defined as:

o) Xy 2
3D — 2 [ Q3D . o XK ,
<X? > plane™ 4772k0 _!.. Snl (K)MK£S|n (2—|<0de [Np?] (3.1)
<g2>® =472k [ S (ke [ cosd] X [rad?)(3.2)
¢ plane™ OJ. h, (K)k KJ. Co W X

(3.3)
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1 ¢ XK *
=_— 2 34
F, (k) o X1cos [Zko jdx (3.4)
And equal to:
2(p _ 2
F (/():1 1- 2k°2 cog X (R XZ) 1+ Ax sin XK (3.5)
X plane 2|7 Axk K, 2(R-x,) 2k,
2(p _ 2
3 (K):l 1+ 2k02 cod X (R x2) 1+ AX sin Axk (3.6)
plane 2|7 Axk K, 2(R-x,) 2k,

Which are a modified version of the equations fobgdVheelon [11] who placed the receiver as the

origin of the system, as shown in Fig.3.1. In orttecompare them with spherical wave results we
adapted the equations to transmitter’s side.

As done for spherical wave, extending the layemftbe transmitter to the receiver we get:

sin(AXsz
Kk
F layer (K) :% 1- 0 (37)

X plane KZAX
k0

[

Y

Figure 3. 1: Communication system recebaesed
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sin[AXsz

ayer 1

Fyrer () =5 1+% (3.8)
Ko

Which are the expressions describing the functionghe slab model [11] replacing R with |, as
show in Fig.3.2.

(a) o)

| ) I

Figure 3. 2: Extending a general layer (a) fromnsmitter to the receiver, we find the slab modglalso for plane wave.

This means slab is only a particular case of thabpem

As the result is the same as seen in Fig.2.5, we lmathematically proved our assumption:

General case of study is the layer configurationause Slab is only a particular case, independently
from the wave typology.

A second comparison between spherical and planghitveqg functions can be done, considering the
particular case of the turbulence near the receiver

With some simple steps equations (3.5)-(3.6) atekggain to (3.7)-(3.8) but it is not the same for
spherical wave, in fact (2.28)-(2.29) are not equmalthe function of spherical slab model [11].
lllustrations in Figg. 3.3 and 3.4:

The reason is that plane wavefront is always timeesehatever the distance transmitter-receiver so
that for the receiver it doesn’t matter if the samtter is in the same turbulent medium or if ifas
from it. In fact the scintillation level depends dme thickness of the layer and on the distance
turbulence-receiver (3.5)-(3.6). On the contraphesical functions (2.28) and (2.29) depend noyonl
on the layer thickness and the distance turbuleeceiver but also on the distance transmitter-layer
In fact, differently from the plane wave, spheriaavefront is function of the distance.

Thus, the computation of the scintillation can gdifferent results depending on the type of wave

considered. A general change concerns the wegghiimction with respect to the distance involved.
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- Dependence on thickness
Although weighting functions (2.28)-(2.29) and (3(8.6) are both normalized & , for
spherical wave only amplitude of the sinusoids degeon it while for plane wave both
amplitude and oscillation frequency do. Conseqyefdl biggerAx , variation around the

asymptote 0.5 gets lower (2 Ak *(sin+cos)) but on the other hand, oscillation fregzy

increases only for plane wave weighting functionlevepherical doesn’t change.

(b)

: — il
\

Ax

Figure 3. 3: When the irregularities are at the eder (a), for an incident plane wave an equivalergnario of a slab with

length equal to the thickness of the layer coulddmimed (b)

(a) (b)

o

Figure 3. 4. When the irregularities are at the eder (a), for spherical wave it is not possiblecansider an equivalent

model of slab with length equal to the thicknegheflayer (b.)

- Dependence on R

First of all, it is useful to remind that R is impant because it is related to the Fresnel number.
Neither plane nor spherical weighting functions reemalized by R so generally they depend
on it, but when layer gets closer to the receipéesical function still depends on it but the
plane one doesn’t. This is why, as seen beforagpheighting functions tends to the slab
model [11] where Rax , but the spherical has notstirae property. In the following
paragraph it is shown what happens to the sphexaeaé in this scenario, studying directly the

variances.
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3.2 Differences between spherical and plane wakian@es

After having analysed the similarities adifferences between plane and spherical weighting
functions, the consequences on the variances eatett in this paragraph, underlining spherical wave
results of chapter 2. Here it is necessary to stagharately 3D and 2D for the two regimes.

3.2.1 3D

* Fresnel regime

In Fresnel regime log-amplitude variance fomplavave is given by:

11 11

! 11 11
(XY ome = 0307CIKE(R=%) ¢ = (R=x —&x)¢] | NPT (39

plane

Changing again Wheelon result [11] for a transmiti@sed system. As expected for this regime even
the log-amplitude variance for plane wave doesdepiend on the wave-number afd

Consequently, it is possible to analyse the diffees between plane and spherical approaches
considering a link for different position of the'bulent layer.

The system works at 5GHz frequency for a distamgelketo 15km where a 1km turbulent layer is at a

-2
position from 0- to 14km from the transmittel? =10"*m 3  ang, =100m so that Fresnel number

is 0.06. In Fig.3.5 the plots of (3.9) and (2.36)sus x1, distance from transmitter to the layer.

This figure illustrates a particular characteristancerning the wave typology, whatever the distanc
involved. In the case of the incident spherical &aeciprocity of the variance appears clearly heea

of the curve symmetry observed with respect tonti@-distance. In other words an inversion of the
transmitter and receiver does not change the rekik is why the peak value is when the layehat t
middle of the path. Variance for incident plane waoes not show the same property; in fact it is a
decreasing function which leads to a second obsenvaWhen the irregularities are close to the
source it overestimates the spherical log-amplitvdgance with a huge error of 140%, which
decreases until the layer is at the receiver’s.side

Thus it seems that plane wave is a good approa&n e receiver is inside the turbulence but an
observation has to be done. In Fig.3.6 a systeim thhé same parameters as before is shown, changing
link to 6 km with the 4km turbulent layer on theeeser (2km from transmitter).

Differently from the previous case, there is natomplete convergence because the irregularities are
on the receiver’s side, but layer covers a big palink.

31



Chapter 3

w10 SPHERICAL v PLANE LogAmp

T
Plane

Spherical

Logamp wariance [p?

1 1 : :
0 2000 4000 8000 2000 10000 12000 14000
distance txturbulence

Figure 3. 5:Log-amplitude variances for sphericabdgplane wave versus x1. Three main cases conagtmbulence on the
transmitter, b) turbulence in the mid-path, c) tuldnce on the receiver

So the overall conclusion is:

The approximation spherical to plane wave getsabethen turbulence is far from the transmitter and

near the receiver until ratio layer thickness /p#&ngth is small, obviously so much better fogkest

link.

X 10'3 SPHERICAL vs PLANE,LogAmp
5\ T T T T T T T T
| | | | | | |
L | | | | | | Plane
[ | | | | | :
3 e e Spherical | |
| N | | | | | |
| | - | | | | | |
| | [ | | | | |
| | | ~
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oy | | | | L | | | |
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Figure 3. 6: Log-amplitude variances for spheriaald plane wave versus x1. This time there is nuergence even when
the turbulence is on the receiver, because the layteo extended.
To have a clear idea of these conclusions, in Big. we plotted Von Karman Spectrum (1.16)
multiplied by « ((2.21) and (3.1)), superposed to fiane and spherical log-amplitude weighting
functions (3.5) and (2.28). As we are in Fresngime, the weighting Functions filter it startingifin

values greater thaik,; (yellow vertical line). Insthway we are allowed to use the simpler (1.13),
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Comparison between spherical and plane wave approach

which is the descendant slope of the red curves iBha graphical explanation for the consideratbn
par.2.2.1.
The plot is repeated three times, one for eachehtain points:

- Layer next to the transmitter. x1=0m

- Layer in the middle of the link. x1=7km.

- Layer next to the receiver. x1=14km
Cyan and green lines are respectively for planesphérical wave weighting functions while the black
one is for their asymptote at 0.5. Red line is spectrum multiplied byx and normalized on its
maximum value to have a clear representation.
Previous observations are verified here. In Fig.(d8) and (c) spherical weighting function (greme)
is the same, therefore log-amplitude variancegqual. For the plane wave (cyan line) this is the,t
in fact in the last figure it is different. It imipk reciprocity for spherical but not for plane wav
Fig.3.7 (a) and (b) illustrate the overestimatidrihe plane wave: it rises before spherical onéhab
it takes more contribution from the spectrum, mainlthe first part where there is more energy. &or
slab geometry, Wheelon [11] calculated that sphétag-amplitude variance is always 40% less than
plane one. In our case the error changes accotditige position of the turbulent layer.
Third point to note: in Fig.3.7.b) spherical fumctirises to 0.5 before than the other figures; this
means, when the layer is in middle of the link, #agiance is the highest. In our case it is about 5
times greater than first and last case.
Thus we saw that plane and spherical log-amplitudeances in Fresnel regime have the same
behaviour with respect to the outer scale, butinegal they present some differences.
Now it is useful to analyse the phase to checkdéfgame observations are still valid.
As for spherical wave, phase variance is more aliffito develop analytically so by (2.37) phase

variance for plane wave is:

K2 5 ! 1
(P7) hane = (P {1 0393’(?)6 RY(R-x)°® —(R-x —Ax) ¢} [rad?] (3.10)

As expected even for plane wave phase variancendspen Kos. With the same approach used for
log-amplitude, we propose an analysis of the phasances.

In Fig.3.8 the comparison between spherical andepfzhase variances with respect to the position of
the layer from the transmitter is shown. Reciprocién be noted even in the phase because this is a
characteristic of the wave. This time, plane wardarestimates the spherical one but always unless
the irregularities are near the receiver. Anywawrtbe error is about 2% so it is negligible. This
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effect is linked to the property of complementaonfythe phase and log-amplitude weighting functions

For the same reason the minimum appears whenybaeitin the middle of the link.

W Kaman-Logamp wiighl Ln clions FRESHEL . an KarnanLogimp weight funzlions FRESMEL

Flanz
Yoo Kamane
- Spwrieal

Flan=

. Won Raman™ |]
= Sphedcnal

Flans
Vaon Karman™: (]
Spharical

0 Q1 02 03 04 05 06 OT 08 D9 1

Figure 3. 7: Superposition of spectrum and thedogplitude weighting functions in Fresnel regimeifeggularities near
the transmitter (a), in the mid-path (b) and neae teceiver (c). In abscissa the value:of he spectrum is normalized on its

maximum value to have a clear representation

In Fig.3.9 again the plots of the superpositiorsjpéctrum and weighting functions for the main three
positions in which layer can be. Differently fromglamplitude, now the weighting functions do not

filter wavenumbers lower thald,;  (yellow verticald)so that we must consider the overall spectrum.

This is a graphical explanation for the consideratf par. 2.2.1. Blue and green lines are respagti
for plane and spherical wave weighting functionslevthe black one is for their asymptote at 0.5dRe
line is the spectrum multiplied by  and normalized its maximum value to have a clear

representation.
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Reciprocity and approximation plane-spherical waxeclear, let’'s focus the attention on the différe
values the phase variance can reach. Logical caeseg of what said for Fig. 3.8 and for the log-
amplitude, is that when the layer is in middle bé tpath the phase variance is minima, but an
observation is necessary. For all the three caseunction starts at 1 then decreases to 0.5t Hoes

that when the spectrum has really low energy.

x 10° SPHERICAL vs PLANE,Phase
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Figure 3. 8: Phase variances for spherical and plavave versus x1. Thickness is still the samehbutitbulence moves
towards the receiver
For this reason the phase variance is almost tine séhatever the position of the layer along thé pat
In fact the ratio between the maximum and the mummof Fig. 3.8 is about 1. It is more precise & th
distance R is greater.

In conclusion, in our study concerning the sphémaave, it has been demonstrated that:

in Fresnel regime we expect different log-amplitime the same phase variance according to the

position of the turbulent layer along the link
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Figure 3. 9: Superposition of spectrum and the phagighting functions in Fresnel regime for irregiiies near the
transmitter (a), in the mid-path (b) and near tleeeiver (c). Spectrum is normalized by its maximatae to have a clear
representation.

* 3D Fraunhofer

Fraunhofer regime is exactly the same aspberical wave, in fact the weighting function§3
(3.6) tends to 0.5, more or less rapidly dependimghe Fresnel number.
Graphical example is given in Fig.3.10 illustratihg situation of the previous paragraph but chamgi
the Fresnel number to get Fraunhofer regime. Gikkersame path we modify,, down to 1m and the

frequency up to 30GHz, so that Fresnel number isletp 12.24. Turbulent layer is at 9km from the
transmitter.
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Comparison between spherical and plane wave approach
The first crossing of the asymptote (black line)réached by the weighting functions fer<k
(yellow line) as expected. This means that, differently from reesegime, weighting functions don’t
filter the values of small wave-numbers, so evea liggest eddies influence the log-amplitude
variance. After crossed the value 0.5, the funstioscillate and aK , they are almost constant.

Under this observation, log-amplitude and phaseamae for Fraunhofer regime are equal to the
spherical ones:
XY oane = X Yo (3.11)

(B e = (B0, (3.12)

W on Kaman-LogA mp weight. functions, FRAUNHOFER . on Karman-Phase weight.functions, FRAUNHOFER

Plane

e T T

Plane 3
Von Kaman*x |] - Won Kaman* |\
Spherical Spherical

10"

10" |
107 L

107

Figure 3. 10 Superposition of spectrum and the log-amplitudi) ad phase (right) weighting functions with resptox, in
Fraunhofer regime. Spectrum is normalized on itgimam value to have a clear representation.

Consequently:

in Fraunhofer regime, variances are independenthaf turbulent layer position and of the wave
typology, differently from Fresnel regime.

Now we have an overall view of the 3D, where thimtdtation level can be differently quantified
regarding not only the relation among frequencythdangth and turbulence (Fresnel number) as
explained in the chapter 2, but also the wave tygpl In fact we demonstrated that there are some
conditions to the use of plane wave.

In the following paragraph, we examine the 2D teathif the conclusions are the same.
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3.2.22D

The dimensional reduction in the sphericavevled to a big error for the Fresnel regime and
convergence with the 3D for Fraunhofer regime. & of this paragraph is to control if something
changes when a plane wave is considered.

Considering (3.1)-(3.2) and the observations of28y 2D variances for plane wave are defined as:

(X?)oane = 27K J-dKS (/()/(.([da);[1 sm( 2, dx Np? .13)
<¢ >p|ane_27-k2deSSD (K)Kjdw I co Sz(%de [rad2(l314)

Which have the same dependency on the angle waphtiggical wave. Let’'s see Fresnel regime first.

e 2D Fresnd
With the usual consideration and following the stepget (2.53)-(2.54), we obtain the asymptotic

2D variances for Fresnel regime as:

2 5 < y2 53D
< > =< > d 3 —_ plaHQ’resnel
X planefresnel X planefresnel 2 wSIn w= 186 [sz] (315)

K26 . 11 1
<g2> =P\ 1- 021({fj RT(R=%)° —(R-x -Ax)°] [rad?] (3.16)

In (3.15) we find the factor 1.86 equal for ourdstwf an incident spherical wave to a turbulenefegnd
equal to the study conducted by Fabbro and Fe®jldhout an incident plane wave in a slab model.

Also the phase is slightly higher than the reale3Dn spherical wave. It leads to a general commius

in Fresnel regime, the dimensional reduction hasprablem only for the phase variance but for log-

amplitude it is necessary to take always into aot@u correction factor of 1.86, whatever the wave

considered.

e Fraunhofer regime
As expected, once again the weighing fondiends rapidly to 0.5 so the variances aretsidl

same:
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X2 = X oone =X, (3.17)

<¢2>2pllz‘)ane = <¢2>?p’)?ane = <¢2>2|E)h (318)
Considering the overall 2D in both regimes, wetgetimportant results:

1. Dimensional reduction is independent of the wapeltygy and distribution of irregularities

(slab, layer).

2. In Fraunhofer regime the variances have the sanhgeviar every wave typology, distribution

of irregularities and spatial configuration, while Fresnel regime only the phase has a

negligible error varying one of these characteadstbut the log-amplitude gets different values.

In fact, as said in the first chapter, what reailgtters is the geometry because the real scersasidl

the same.

After these two chapters in which the attention basn focused on the analytical formalism, in the

next part we implement our numerical model to chéokir discussion is valid.
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Numerical model

In the previous two chapters we largely death the 3D and 2D analytical formulations of the
scintillation regarding log-amplitude and phase iarazes for spherical wave (Chapter 2) and
comparing them to plane wave formalism (ChapteifBe limit of the derivations is that they are only
valid for weak scattering. For this reason we wantplement a numerical model valid whatever the
scattering condition. To do that, the starting pas from the Helmholtz equation in spherical
coordinates under parabolic approximation, overcWwhihe Split-Step Fourier algorithm (SSF) is
based. It allows considering separately refracting diffractive effects, modeling the whole turbule
layer into a series of sub-layers in which thetfeffect is gathered into thin screens called Nbisti
Phase Screen (MPS).

In this context, using a 2D-MPS resolution for 8i2 configuration is computationally hard, thussit i

clear the use of the dimensional reduction.
4.1 3D numerical resolution

As the Helmholtz equation is the sames fiossible to work on Electric or Magnetic fisld we
define a general field(r)=w

Under the condition of chapter 2, therefore theegalvandom wave equation (2.9) becomes:

02W +kyn?W =0 (4.1)

Where N denotes the Laplace operator which, in sphericatdinates, is:

2
Dzzii[rzi}+ 1 i[sin&i} 1 o (4.2)
r2 or or] r2singdd 06| r?sing og?

Considering paraxial approximation, i.e. the angit respect to the direction of propagation r lyeal

small g 7" so that the transverse Laplacian reduces to:
2
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2 00 & (4.3)
=t .
o 06 0¢°
we have:
1 0[ ,0w] 10%9 1 0%y
D2y== |2 |+ = v =2 4.4
rzar[ c?r}rza2 r? 0g? 4
10 oWl 1
02W=——|r2— [+=- 02y 4.5
r2 af{ ar} 2! (4.5)

Once we have defined the equation in our referegstem, let’s find a solution using the reducettifie

u:

u=—r (4.6)

0w = —0 Zu (4.7)
We find the solution:
eikr azu au. ) eikr 1 ) eikr
r [ar—2+2?ko—kO u] + r r—zm$u+ko n>=—u=0 (4.8)

Using parabolic approximation we can consider dhly transverse Laplacian instead of the whole

L : . 9% au 0%u __ 0%
one, because of small variations are supposed preaagation axis (‘;—2«0_ anda—2 <<a_2
X X X z

.The standard parabolic wave equation has the \hsaage of being limited to propagation in
weakly inhomogeneous media at small angles withredepred direction. This limitation may be
overcome by expressing the parabolic equation W gaordinates, neglecting the longitudinal
diffusion along the rays. Different techniquesreat wider angles have been studied [20].

Thus, neglecting the second derivative with respect (4.8) reduces to:
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26—uik + 1

o r—2D$u+k02(n2—1)u:O (4.9)

And applying the Laplacian transverse (4.3) in Y4vw& obtain:

ur.6,¢) i our.6,¢) i ou(.6.¢) ik
o Ky?  06° +Z<or2 0¢° +7O(n2—1)u(r,6?,¢) (4.10)

Defining the 2D Fourier Transform afwith respect to the transverse plane, in this eaggilad — ¢ :

U (r,kg.kg) = FT{u(r,6,¢)} = (2711)2 I j ur.6.9)e™ "0 dp (4.12)

We obtain a simple differential equation depending:

au(r ko ky) k2 ( ik 3
- U r,kg,k¢)_ 2
2k, r

or 2k, r 2

U(r,ke’k¢)+ik70(n2_1)J(r’k9’k¢) (4.12)

Which gives the solution:

ikOMAr -i{i-lj(kgw;)
e

U(r ko k,)=e* 2 © U (g kg K, ) (4.13)
Coming back to space domain:
i (n2-1) ) S O 9 -
u(r.6,¢)=e" 2 FTl{e e k¢)FT{u(r0,9,¢)}} (4.14)

For relation (2.10), the terngf;l) =n,and the change ofsphdue to the turbulence can be generally

written as:

ro +Ar

p6.9.1) =k, [n($.60,9,1)dS [rad] (4.15)
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Such that equation (4.14) becomes:

_i(r_1 brky
u(r,0,¢9)=e?@?UFT tle i1 )FT {u(ro. 0,2} | (416

Which can be compared with solution found in [222][ Experiments for spherical but mostly
incident Gaussian beam have been conducted i{22B]25]. In fact it is similar to a spherical
wavefront close.

to propagation axis for narrow angles.

(4.16) shows the Split —Step algorithm:

thanks to 2D Fourier Transform, we manage to dittdeproblem studying separately refractive and
diffractive effects. The second exponential terraatides the free-space propagation between two
consecutive screens depending on the square moofullis wavenumbes , while the first
exponential expresses the refractive effect affigdine phase, due to the change of n dependinigeon t

turbulent medium. In Fig.4.1 a scheme of the maglplroposed.

1 2

Free space

Figure 4. ¥ Scheme of the 3D model, 2D Multiple Phase ScrdeiP{®E/2D MPS). Wave propagates in free space betwee

two consecutive screens then its phase is modiijiedh screen
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» Screenseffect
In this model the reduced field propagdteough a turbulent medium where the effectdhef t
irregularities are expressed by the first exporénitn this way the turbulent layer is divided irsob-
layers, with thicknessr , whose inohomogeneitiescarepressed in thin screens perpendicular to the
propagation axis.
Considering i-th screen, we can write the relabefweenu™ and* | respectively the field before and

after the screen, as:
u'(r,6,4) =€ (r,6,9) (4.17)

Where @ is the value of the phase changed by i-tkescrThe phase screen realizations are obtained

by sampling a phase distribution whose statistpalperties match the spectrum imparted by the

medium as explained in the last paragraph.

* Free Space
Between two screeng,moves in free-space but we must pay attentiormereffect of this scheme:
it is not a classical free-space propagation bexaiso the amplitude varies (in addition to thadac
1/r of the spherical wave). Once the wave is outhef screen there is a mutual interference in the

wavefront.

* Relation between refractiveindex and phase spectra
Due to (4.15), phase screen spectrumlaseck to the spectrum presented in chapter 1. W wa
to find this relation, which is fundamental for titerative resolution scheme 3D PWE/ 2D MPS.
Indeed, it defines the 2D transverse phase spedtrabmust be considered to generate random phase

screery(s,¢,t) , as seen in the last paragraph.
Recalling that %ty >=0, it follows thag(6,9,t) is a centred Bandom variable whose 2D spatial

covariance functiorB2° (y,z) =<g(y', ' .t)@(y +y', 2+ Z',t) > is given by:

ro+dt I+ +a +a
B (%.2)=kZ [ dr, [dr,<n,(,, V.2, 0n,(r,, ¥+ ¥, 2+2,t) >=kZ [ dr, [dr,BX(r, -1,,7,2). (4.18)
fo To 0

0

Which is expressed with respect to the distanbestibted in Fig.4.3 where:
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(4.19)
(4.20)

N <<(
I I
= =
S @

Changing the integration variable to differeweer, - r; and sunr=r, + r;, equation (4.18) can be

rewritten:

+Ar Drew/2 SAr
BZ2°(V,2) = k¢ j dw j drB (w, ¥,2) = kZAr j (1—%}83}’ (w, ¥ 2)dw (4.21)

~Ar |w| /2 ~Ar

If Ar is large with respect to the correlation distarof the turbulent refractive index, the integrati

can be extended to infinity so that:

B2°(y,z) = kZAr j B (w,y,z)dw (4.22)

Figure 4. 2: Transversal plane defined by the dinear axes on which the covariance function degend

By 2D Fourier Transform we get the definition ofagle spectrum:

S2° (Ko ko) = K3 oor S| [d6.dp e TIB (wr6.19) | (o)
Substituting (4.22) in (4.23):
S (ky.k,) = yAr TTdegb Ti(ke0tio) j B (w,r6,rg)dw (4.24)
ﬂ) —00—00

With parameters of dual domakty =4¢  akg = ¢, angular wandsers with respecttd and
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@ . Expressing (4.24) according to the curvilineegsa(3.28)-(3.29), the integral reduces to:

kZAr TTdy dz —n(—y+k

i (Ko ks) = (o

I B:° (w, ¥, Z)dw (4.25)

—00

If Ar is large with respect to the correlation distarof the turbulent refractive index we get [22]:

SﬁD(k :o& k¢)
r ’ ’
S;° (Kg.Ky) = 27KG AT > r T

(4.26)

2 (K, . . .
k, and \/(ﬁj + (—"’J are respectively the wavenumbder  along the daecif propagation and
r r

_ k .
modulusk of the transverse wavenumiger — considerdarsbor s3° (k, =0,-% ¢ r¢) we consider Von

karman spectrum (1.16). This is fundamental for iteeative resolution scheme 3D parabolic/2D
phase screens. Indeed, it defines the 2D transwgmsetrumsz® (k,,k;) that must be considered to
generate random phase scrgf@ry,t) , as seen later lasthparagraph. Successive realizations of
¢(6,4,t)are then introduced iteratively in the « Split-Stepesolution written in equation (4.16). The

numerical resolution scheme defined in that wayhiss a 3D-PWE/2D-MPS (3D-Parabolic Wave

Equation/2D-Multiple Phase Screen) iterative scheme
4.2 2D numerical resolution

Hereby we derive similarly the model for 2D configtion, keeping in mind that the variation
now is only in the vertical plane described by d @an

Helmholtz equation is still (4.1), but in this cdssplacian term is:

zaw L L o%w

o2y = L
Tl o o (4.27)
1 0 atp 1 '
02w = — 2 +—02y
Zal’[ al’] r2 T

2
where is 0? =% the Transverse Laplacian in polar coargis

After defining the equation in our reference systtatis find a solution using the reduced field u:
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W
u oikr (4.28)
¥
whereW = W(r,6) andu=u(r,8) . The transverse Laplacian of u'#hd redaeed as:
nzy = & gy (4.29)
Jr
so that (3.36) becomes:
|kr ikr ikr
6 u, ,ou. 1 s €
— +2—iky — ko ]+ D u+ky’n>==u=0 4.30
\/_ or? or ° Jror? T ° \/F ( )
Neglecting the second derivative with respect to r:
Zg—ulk + iDTu +ko?(N2-Hu =0 (4.31)
r r

and applying the Fourier Transform with respecth® transverse coordinate , we obtain a simple

differential equation depending on r:

ou (r,k ik
gr 9):_2k09 U (r.kg.ky) +_( —1)J (r.kg) (4.32)

It gives the solution:

(z_) i
ik " Ypr -

1 1]kg
U(rky)=e 2 e ZKO[“’ " U(ro, k) (4.33)
Coming back to space domain:

w7 et ) an
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Where the turbulent phase screen is 1D and demeng®n the azimuthal angle:

ro+Ar

p(0,t) =k, [m(<,0,t)dé [rad] (4.35)

)

Thus the general expression tois (Fig.4.4):

LN QN %
u(r,8) =e“rFT e 2k°[r° rj FT{u(r,, 6)}

(4.36)

Comparing (4.36) to (4.16) one can note the sanpgesgion, considering that in 2D there is no
dependence an

This means that for the numerical scheme themoigxplicit factor involved in the dimensional
reduction, differently to what we found so far.

All the other observations concerning the propagatibviously are still valid. Similarly it is neesy

to derive the spectrum of the phase variationubthsonditions:

B2°(r,r6) = kg [dk, [dk, S (k, ky)e ™ = B (r,r6,0) (4.37)

i+1

Free space

Incident wave

Figure 4. 3 Scheme of the 2D model, 1D Multiple Phase Scredh®WE/ 1D MPS)Wave propagates in free space betweel
consecutive screens then its phase is modifiedtbgdreen
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and the dimensional reduction in the plane r- tssil the vertical cross section of the 3D

propagation medium. Ever since, following the apgtodeveloped above for 3D, it comes:

Kk
SzD[k =0 6’) +oo
1 r J 2
r 27K S A k, K
Sy (kg) = 27KZAr : === | S;D(kr = 0,79,T¢jdk¢
00 (4.38)
Which can be compared to the result found in [b®]plane wave.
In particular, using Von Karman model (1.16):
2 2 2 2
SlD (kg) — Zlko Al’ x \/7_71— (4/3) 003$§(k_ﬁ+ KOZS)—4/3 ~ MX 005$§ (k_t9+ KOZS)—4/3 (4.39)
¢ r ra1/e) r? r r?

where/ is the Gamma function.

The numerical scheme 2D-PWE/1D-MPS defined by (MaB6éws considering turbulence dependency
with range through successive realisations of heahdom phase screed) consistent gljt(x,)

For the numerical theme, the spectrum is not 3DabRD version deriving from the compression of
the overall energy of the turbulence in the veltigiane, as expressed in the integrationign in
equation (4.38).

All the processes treated in these two paragramhsontinuous obviously, but the simulator warks

discrete domain. For this reason we expose sonhaitpees to adapt the screen formulations made so

far and some conditions for the numerical impleragon.
4.3 Technical aspects for the numerical implemenat

4.3.1 Reduced field realization

In compliance with the previous analysis fcee-space propagation, phase screens are
implemented from the beginning of the layer to tkeeiver: inside the layer both refractive and
diffractive effects are present while from its arglto the receiver only the last one. Thus, fos thst
part of the link, we considered, = 0 in equations (4416 (4.36).

The idea is to propagate until the receiver theiced field taken equal to 1 on every point of tingt f
screen. In order to calculate numerically log-atople and phase variances we used the well-known

relations considering the reduced field on the $asten:

<X2> :Var{20|oglo|u|} [dB?] (4.40)
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[rad?] (4.41)

Actually our simulator works in discrete domaingavenumbers are, for 3D:

. 21T

k =iAk, =—
ig IRKg Hn
2n

ke :*ﬂkﬁg

(4.42)

(4.43)

Hence Discrete Fourier Transform (DFT) and its msee(IDFT) for 2D are (1D is only azimuthal

angle dependent):

M _ 2rm-1)(h-1)

N
DFT{u(r,nag, mag)} =U (1, ink,, hAk¢)=%_[ Z{%T > ulrnasmgle M

m=1

>

i=1

IDFT{U (1, ik, hak, )} = u(r, na6, mag) =

Z|-

{ﬁiu (r,inky, hak, ) ™

h=1

27(m-1)(h-1)

. 2n(n-1)(i-1)
Adle N Ag (4.44)

j 2n(n-1)(i-1)
Dk N Akg (4.45)

WhereAd A¢ andAky,Ak, are sampling intervals in angular andewamber domain respectively

andl<i,n< N ,1<h,m< M. In order to enlighten the computation we use th&,EiSsuming N

and M power of 2. In the Appendix C the explanatidrihe coefficients used in (4.44) and (4.45) is

given.

Let’s find Ak,, Ak, . Comparing Fourier kernels of (4.16)a#@.44).

g, )

e —e N

k

iy (n—l)AH:%

where § =(n-1)A6 . So:

_ 2n (N -1) = 2n
NA&

kmaxg = kNg

(N -2)

max

(4.46)

(4.47)

(4.48)
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Kk
Ak, = —maxe_ o 27 (4.49)
(N - 1) emax
Using the same approach for :
2 2

Kmaxs = —— (M —1) = M -1 4.50
@ MA¢( ) ¢max( ) ( )

Kma 271
Ak, = = (4.51)

’ (M _1) B ¢max

8 max and ¢ .. are the azimuthal and longitudinal aperturelesngespectively, as illustrated in

Fig.4.5.

Figure 4. 4: Aperture angles for our geometry.

4.3.2 Criteria for phase screens

The application of the MPS propagation caatpiires thathe field and the phase be specified at a
discrete numbeof grid points. The number and spacing of thesentpomust satisfy the following
criteria, adapted from the ones of [26]:

1) Phasadlistribution of a screen must adequately repretbenaictual phase

2) Wave must propagate without anguddiasing

3) Edge effects or angular scattering off the ehthe grid must be minimal.

1) Phase representation:
a) Adequate phase representatioagsured if each phase-screen length L is at le&stlD

times adarge as the phase correlation distance or equithglthe outer scale:

L, > 5L, [m] (4.52)
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where L; = 1,62« [m]is the dimension of the i-th screen. Dughe geometry of the scheme,

illustrated in Fig.4.6, it is enough applying thisndition at the first screen as the others

increase the dimension with increasing distance.

i+1

Figure 4. 5: Condition for the screens dimension

b) At a given distance r, the change in phase foamgrid pointay, = r 8, [m]to the next

should be less thalm to satisfy the Nyquist samgliegrem. Mathematically:

0(v,)-o(y.)< 7 [rad] (4.53)

wherey, =r6, andy, =rg, . Interms of the distance:

AYy=Y,-Yy, =rA6 [m] (4.54)

between two samples, this constraiah be written:

X%

The variance of the derivative of the phasesiated to thphase autocorrelation function [27]:

(3])-+2¢

Thus in a mean-square sense, the above limit ogritiespacingAy may be expressed as:

[rad2/m?] (4.56)

y=0
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d’B,(y) 2
7 [m] (4.57)

y=0

Ay <71 -

In this case it is enough applying the conditiontfe biggest sample which is the one taken on

the last screen, the biggest one, as shown in.FFig.4

Figure 4. 6: Nyquist condition. Sample on the &sten is the main problem

2) Wave Propagation:
In order to adequately represent propagation ie gace by the use of the Fourier transform
relationships of (4.16) and (4.36), it is necesstrgt the various functions involved be

accurately sampled. To satisfy the Nyquist sampdmitgrion, the difference in the function:

1 1 1|2
2ty 1 )f (4.58)

UE]
must be less tham  when evaluated from one value td the previous. Since th& values

N
are centred on zero, the maximum isARa = 5 X where Mésrtumber of grid points.

Hence the necessary condition is:

2 2
111 (NK] o1 1-1[N-1Kj <
2k0 I’i_l I’i 2 2kO ri_l I’i 2

which gives for 1D MPS:

(4.59)
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and for 2D MPS:
1 1 4 B}
e h (Np-1) , (Ny -1 [m™] (4.61)
0 e ? max
To find the restrictive condition we have to comsithat:
=t —Ar [m] (4.62)
So the difference between the reciprocal distarsces
Lt

Clearly, there is no need to apply the conditiorath step but it is enough to do that on the
highest value of (4.63, i.e. for the smallest dist, .

However this condition may be relaxed in practiché phase spectrum is very small at large
values of the wavenumber . In that case, the highemamber values are cut off by the

phase power spectrum and small inaccuracies iphlthse spectrum are relatively unimportant.

Edge Effects:
Because of the discrete nature of the MPS gridesgptation, energy leaving one side of the
grid appears on the other side. As the propagatistance r increases, this effect becomes
more important. This aliasing must be controlled dgpropagation solution to be valid. Since
the scattering angle is given by:

d

A3

v = (4.64)

(3]
<(

1
kO

where¢ is the phase at a general screen. Theyeseatfered at an angle travels a distance r

v perpendicular to the direction of propagation afiewpagating a distance r. To adequately
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insure against edge effects it is necessary teaMRS grid size L be greater tham r for each

propagation step. Thus:

r. (0@
L. —i = m 4.65
R T ‘ m]  (4.65)
This expression may be represented in a mean-sqaase using (4.17):
[ ate, ) |
L >+ ‘”2( ) [m] (4.66)
Ko dé =0

As for condition 1a), it is sufficient to considdie smallest screen, the first one which is placed
at the shortest distance from the transmitter.
Often using of guard bands on the edges of the igra helpful tool but is not required to

prevent aliasing.

4.3.3 Screens realization

The numerical technique to generate a 1DDopRase-screen realization of the MPS propagation

code was developed at ONERA. The goal is to gemeaxattationary, random functiaginag, mag,t)
which represents the phase evaluated along MRS grid, sampled along longitudinal and
azimuthal angles at steps ang with n and m repteg the n-th and m-th point on the grid.
After generating a complex White Gaussian Noise NWY®y the method described in [28] and

k k
assuming a discrete for@jD (l,—h“’) of (4.26), the Fourierdfarm of the phase is defined as [29]:
rC rC

k Kk
5412)'3(%,&)

o (inky, hak,,t)= Y fo
="

WGN (4.67)

Where r, is the distance from the transmitter, ingirgaat each iteration c¢=1,2,..Ns; in other words

Applying the Inverse Discrete Fourier Transforni8), we obtain:
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(nag, mAg,t) = IDFT {@(inky, hak, ,t)f =
1 Mo 27(n-1)(i-1) j2zr(m—1)(h—1)
> Y ofink, ok, te N e M Ak,Akg

A
D
S

(4.68)

In this way ¢(nA8, mAg,t) is the sum of a sequence of Gaussa@iaies so its real and imaginary
parts both have a Gaussian or normal probabilgtribution. Since the phase of an individual
phase screen is a real quantity, one may chedber the real or imaginary part of

¢(nA6,mAg, t)calculated in this manner saving computational tithean be shown [30], [31] that the

choice of o(iak,,hak,,t) , mentioned previously, gives the phgs@6,mAg,t)as a stationary

k Kk
random process whose spectrunsjg (%,—h“’) . Note thatpgeetrum of an individual phase-

Cc Cc

screen realization is not identically the ices PSD; however, the average of many reatinatis

k
—%) . An alternative choice gfnA8,mAg,t)  involving kegement of the random
"

Cc Cc

k
indeed S;" (%,

guantity WGN, with a complex exponential of umih phase would identically yield

ok
S;D(i,ﬁ) for the spectrum of every phase- screen re@iz$82]. In our simulator the IDFT is
r. r

Cc Cc

computed without considering the differentidis,Ak,  Isatt under this assumption and substituting

(4.67) in (4.68) we create a 2D random phase screen

k k
AnAb,mAg,t) = IDFT, \/ S (%,%)WG Ny Akg |/ AKy (4.69)
C C

Where we calledDFT the IDFT used by our simulator.

For 1D screen we use the same steps getting:

k.
#nab,t) = IDFTS{ 1S2°( r'ﬁ )WGNJAKG} (4.70)

Now we have all the elements to compute the nuralgpiopagation of a spherical wave through a

turbulent layer. In the following chapter we preste result of this method compared with the

analytical expressions found in Chapter 2.
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Chapter 5

Comparison between analytical and numerical methods

In the following section we compare the formulag\dl analytically in Chapter 2 (2.36) -(2.38),
(2.41)-(2.42) for 3D and (2.53)-(2.54), (2.55)-@ %or 2D with the results found by simulationsngsi
equations of Chapter 4 ( (4.16) and (4.36) ), ardgsidering spherical wave either in Fraunhofer or

Fresnel regime.
5.1 System characteristics

In this paragraph we present our resultsceming a system working in 15km path with
frequency varying from 5- to 30GHz, the Fresnel bemfrom 0.1 to 10 and consequently the outer
scale Los from 1 to 300m. The turbulent layer isnlwide and it is located for three different

positions:

a) 0.1km far from the transmitter
b) 7km far from the transmitter
c) 0.1km far from the receiver (13.9km from the trartszm)

It means we chose the main scenarios, i.e. whemrdgularities are at the transmitter’'s and reeggs/

side and when they are in the middle of the pathprider to compare these results to the ones of

2

Chapter 8. Inner scale is fixed to 1mm arg} is constant and equal 10%?m ¢ inside the layer.

A fundamental parameter is the aperture angle ttreslated to the dimension of the screens. Fis th
reason we decided the height of the first screehthanks to elevated distance transmitter-receiver
(narrow angle) it was possible to use paraxial @ppration getting the angular aperture. For thstfir
screen dimension a value equairt(ax(Los,\/ﬁ) was enough for our purpose.

We already discuss about the importance of the marabscreens. In our case it was not the same

along the path: 15 screens inside the layer andrB the layer to the receiver. The reason is tHat a

In chapter 3 cases (a) and (c) considered the layer on the transmitter and on receiver respectively. Here it is
not possible to use the same value for the first case because of numerical problem so we decide to enhance the
distance in both cases to be coherent with the discussion.
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of screens are useful to describe signal variatiorssde the turbulence, in compromise with
computational time. On the contrary, in the lagt & the communication there is no classical free-
space propagation because of the diffraction duduygens’ Principle already explained in par.3.2.1.
The latter is not so strong hence few screensrasagh. From transmitter to the turbulence no screen
is present as here there is free-space propagation.

A numerical problem was based on dimensional candiions. For 3D we have 1024x1024 points per
each 2D-screen so that we get smooth curves withtégations per abscissa value; on the contrary fo
2D we must use 1024 Monte-Carlo repetitions toagbetter representation, as the 1D-screens have
only 1024 points.

2D Phase Screen. LogAmplitude (dB) 2D Phase Screen. Phase (rad)
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Figure 5. 1: 2D phase screen on the receiver. Ipassible to note the variation of phase and logl#ade due to the

irregularities
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Figure 5. 2: Variation of log-amplitude and phaderay the transverse direction on the last 1D screen
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In Fig.5.1 and Fig.5.2 we show the variability bétprocess. They are one realization on the last 2D
and 1D phase screens for case b) with a fixed éecyequal to 5GHz, Los 100m. It means Fresnel
regime with Fresnel number equal to 0.3.

Fig.5.1 represents the 2D screen where the axabeaneertical and horizontal angular distances from
the direct path. The variation of phase and amgiéitcan be noticed for the different colours inregea
-0.4/+0.3 and +/-0.1 respectively. The independeonicéhe two processes is clear because of the
different weighting functions involved: for phaseea small wavenumbers are important differently
from log-amplitude.

Another characteristic is that the variations asegparse due to modelling of the turbulence irdoam
correlated Gaussian noise; zones coloured by nedte@ense irregularities.

On the other hand, in Fig.5.1 variations are defioa the ordinates depending on the transverse
direction. By this plot, the fast fluctuation ofethog-amplitude around the average value are more

evident.
5.2 Graphical representations

In the figures below three kinds of curves shown for log-amplitude and phase varianceSHbr
and 2D:

- numerical green), concerning the simulation ofghepagation of the reduce field

- asymptotic Fresnel (black) and Fraunhofer (redynfequations (2.36)-(2.38), (2.41)-(2.42) for
3D and (2.53)-(2.54), (2.55)-(2.56) for 2D

- full analytical (blue)

The last one is considered because log-amplitudegphase variances computed in Chapter 2 are only
asymptotic formulas: for Fresnel regime, spectruas Wwased on Kolmogorov model not the complete
Von Karman’s while in Fraunhofer regime the weiggtifunctions were approximated to the value
0.5. For such a reason, with the help of the saou) we can plot also the complete analytical esrv
from equations (2.21)-(2.22) for 3D and (2.49)-(®.tor 2D.

This time we want to study the fluctuation of treignces depending on the frequency and outer scale

so the abscissa stands for the Fresnel nugiber xpressed in the previous chapters when it is
LOS

lower than 1 we are in Fresnel regime, otherwiseareein Fraunhofer’s. Log-amplitude variances are
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-5
normalized byc2k2k 2 and phase variancexpy

the distances from the transmitter to the beginaimg) to the end of the turbulent layer.

e Log-amplitude:

a) Transmitter side: R=15km x1=1km x2=2km

Ne 11.1;111*—11 g

c-armnplitude

variance

[€B2]

T T T T T T T
f 2D Numerical

2D aoverall Analytical

2D Asymptotic Fresnel

2D Asympmtic Fraunhofer :

VAR/Lys

b) Mid-distance: R=15km x1=7km x2=8km

s-amplitudes v

arlanas

Normalised 1o

2D Numerical
4 2D owerall Analytical
< 2D Asympiotic Fresnel

< 2D Asymptotic Fraunhofer

62

™
)
]
==
e

Y
¥

Normalised log-amplitude

Valr

ianee < \: [r."‘f;—.']

in order v@ laaclearer representation. x1, x2 are

T
3D Mumerical :
30 overall Analytical

30 Asymptotic Fresnel
jin] Asymptutic Fraunhofer

10°
VAR Lns
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c) Receiver side: R=15km x1=13km x2=14km
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Figure 5. 5: Log-amplitude variances when the lagarear the receiver.

The numerical curves do not match perfectly with thll analytical ones; this is probably due to the
fact that a finite interval has been considereddlzulate numerically the integral in the expressio
(2.21) and (2.49). In 3D the mismatch is more sevAnyway, comparing the numerica curves with

the asymptotical ones we find a validation of owrdel.
Observing the course of the function, it is cldear ¢ffect of the normalization:

- in Fraunhofer side, variance is constant and degpenty on the thickness of the layer, so that

the convergence value is always the same in alfdig

- -in Fresnel side, variance increases exponentiitigarly in log-scale), in fact it is function of

the variablesX,; and ko:

’ 5
k6 S5 FRE
<X2> fresnel - : 5 = k06 K035 ={ v Z]TLij [sz] (51)
k02K053 0s

which is an increasing function, considering arreéasing absciss?li@ with decreasimg and

0s

L... In this regime there are validations of two poiofsour discussion: the error due to the

dimensional reduction from 3D to 2D and the reaifigoof the log-amplitude variance for
spherical wave. For the first point it is clearttB® curves are lower than the 3D ones because

of the factor already mentioned. About the recigyoit can be noticed that case a) and case ¢)
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Comparison between analytical and numerical methods

lead to the same variances and in these typesditaygare also the minimal, while in case b)
when the layer is at mid-path, the variance is @igithis result complies with the observation

exposed in Chapter II.

* Phase
a) Transmitter side: R=15km x1=1km x2=2km

Normalsed phase variance < o > [?‘aa‘z] Normnalised phase variance < lr'i‘g > ['r'fm'z]
e e et Attt it St ke o

20 Numerical

20 overall Analytical

20 Asymptotic Fresnel

3D Mumerical 7
+ 3D overall Analytical
< 3D Asymptotic Fresnel
=D Asymptotic Fraunhokr | |

VAR/Los VAR Los

Figure 5. 6:Phase variances when the layer is near the tranemit

b) Mid-distance: R=15km x1=7km x2=8km

> [."cm'z]

£
20 Numerical

X CEX X o o

________ . l 30 Numerical

E),Q ,,,,,,, * 2D overall Analytical 3D overall Analytical
T 2D Asymptotic Fresnel E 3D Asymptotic Fresnel
T 2D Asymptotic Fraunhofer

3D Asymptotic Fraunhofer

107 10 10 107 ] 10° N 10"
VAR/Los VAR/Lgs

Figure 5. 7: Phase variances when the layer idarniddle of the link.
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Chapter 5

c) Receiver side: R=15km x1=13km x2=14km

Normalised |3]|;|N‘ varianoe < ._"-" i-"m."'j-_ Normahsed ]\|1;|__~u_\, varianoe < ::‘2 = |rmf2J
- i T ma e e T R IR e e e e o
: : 20 Numerical ) ’S?'Q_?""j' per 30 Num erical 5
4 4 20 overall Analytical - 30 overall Analytical a
O 2D Agymptotic Fresnel | - 30 Asymptetic Fresnel
© 20 Asymptotic Fraunhofer | | 30 Asymptetic Fraunhafr

10" 1n° 10’ ' 10° 10
VAR Lne JIARI."ILUH

Figure 5. 8: Phase variances when the layer is rieareceiver

This time the normalization term is the constghtso that the effect is only a translation of thet.plo

- in Fresnel regime variance decreases as:

5 -

5
2 L2w 3_12, 6
<¢ >fresne| kOKOS koko

S5 7
=k{K 3 k¢ [rad (5.2
- in Fraunhofer regime variance is still decreasiagduse of the dependence on:

k§K, (5.3)

%]

Hence phase variance generally decreases withasioige Fresnel number, becoming really low when
Fraunhofer regime is clearly defined.

Here the numerical curve matches the analytichbth configurations.

It is not possible to see the reciprocity of thbespcal wave because for all the three cases \aian
the same both for 2D and 3D, in compliance witheobations in par.2.2.1.2.

The difference between 2D and 3D is barely notileeab in Fig.5.9 we superposed the two numerical
variances for case c) as an example. The erroegtigible so for the phase there is no problem

introducing a dimensional reduction both in Fresarel Fraunhofer regime.
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Comparison between analytical and numerical methods

Normalised 20 vs 2D phage variance < % > [rad?]
w

10 . .

2D

—— 30

R 10° L 4
.
=
.

Yo' | 4

10’ L . . i

10 10° 10

VAR/Lgs

Figure 5. 9: Phase variances for 2D and 3D in cagelhey almost match, so 2D is a good approximatioreal 3D



Conclusion

The aim of the work was to study the skation for an incident spherical wave on a gehera
tropospheric turbulence placed in a limited parthed communication. This is useful for terrestrial
links or satellite uplinks where the irregularitiase near the emitter and it is not possible toswhar
the plane wave approach. On the contrary, greattefivere already made to study scenarios where
turbulence is near the receiver, as for satel@rdink or optical astronomy, always consideringra
wave due to the distances involved.

Firstly log-amplitude and phase variances have bdetived analytically under weak scattering
assumption, examining in detail how they changeelation to different parameters (wavelength, path
length, etc..) and different configuration (3D dp)2 Then we compared our results to the ones
already developed for plane wave finding pointsommon and differences.

After that, we develop a numerical model based e RParabolic Wave Equation combined with
Multiple Phase Screens that allows studying séatitiin effects whatever the regime.

Finally we compare the results of the two methogdsiimulations in order to validate the model.

As commonly known, when the distance of the linkigh, plane wave can be considered to detect the
field at the receiver. Nevertheless we found oat the main problem does not concern the overall
distance but the position of the layer along thiéapanly when it is not so much extended and when i
is near the receiver the approximation is validviobsly getting better for high distance transnnitte
receiver. In this case variances are the same siydified model of plane wave is a useful toabr F
this reason the real case of the spherical waweasestimated for log-amplitude and underestimated
for phase for all the other positions of the layerslab configuration the difference was quantidy
calculated as equal to 40%, but in our conditiois ot constant, in fact it decreases with indreas
distance transmitter-turbulences, starting withwioese value when perturbation is near the source.
One important property of the spherical wave is rén@procity, not present in the plane wave. This
means that assuming two different scenarios whegdurbulence is near the transmitter and where it
is near the receiver, the log-amplitude and phasences will be same. Actually we noticed that
reciprocity influences most the log-amplitude thidwe phase due to the connection between the
corresponding weighting functions and the spectaiirthe fluctuations of refractive index. In fact it
has high energy for small wavenumbers which areenmaportant for phase weighting function, then
it decreases rapidly to really small values. Hempt@se variance is considered constant whatever the
position of the irregularities, log-amplitude vart@ symmetrical with respect the middle path wlitere

is maxima. This point is valid only for Fresnel irag because we saw that in Fraunhofer zone
variances are always the same for any positiorhefiregularities, in fact they only depend on the
thickness of the turbulent layer.
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The other theme was the analysis of the use ofridead of 3D configuration. We found the same
results of the plane wave: in Fresnel regime fgrdmplitude variance the factor 1.86 and for phase
variance a negligible error, in Fraunhofer reginsechanges. It implies that dimensional reductios ha
the same effect independently of the wave consitere

In conclusion, scintillation has the same effectpase in both regimes regardless of the spatial
configuration and the position of the turbulentdayOn the other hand, amplitude variation keeps th
same behaviour only in Fraunhofer but not in Fresegime, where it changes according to these
characteristics.

In Fraunhofer regime plane wave is always a goqaragmation but in Fresnel regime its use is
restricted only when the irregularities are near rtaceiver and if the turbulence does not coveiga b
part of the link.

Some points can implemented in the future. Firstlipfwe have considered a constant valueGprin
the spectrum formulation, but actually it varieslependence on the altitude. So it is possiblevidel
a layer with different values oE? into sublayers with the a constant value and apglgur model for

each of them.
Anisotropy of the spectrum can be introduced, atiawee considered isotropy assumption.
Lastly other elements in geometry can be treatedh@ multipath deriving from the reflections oéth

ground or the antenna pattern etc.
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Appendix A

Here we show the calculations which leath®expression of log-amplitude and phase vargnce
in 3D scenario for a spherical incident wave.

From equations (2.15)-(2.18) amplitude and phase ar

x(R1) = -2k2 j d3rn (. 1).ART) [Np] (A.1)
d(R1) =—2K2 [d®rn, .)BRI) [rad] (A.2)
where
AR,r) = D{G” (ﬁ,F)EO—@} mt ] (A.3)
E.(R)
and
B(R,r) = D{GSD (Fe,F)EO—(ﬂ)] ] (A.4)
E(R)

with G*°(R,7),E,(r), E,(r) are defined in (2.16), (2.19), (2.20).

Therefore, 3D log-amplitude varianegyz(R t) >® is given by:

< x? ﬁ,t >°" =4 r.A ﬁ,? r'A ﬁ,?’ <n F,t n F',t >
(R,t) >*™ =4k | d*r.A(R,r)[d°r A(R,r") <n,(r,t)n,(r',t)
=4[ kS (k)D* (k)D*° (k)

[Np] (A.5)
Where Si° (k) is the spectrum af, , defined in (2.16) and:
D® (k) =K? [ d*r.ARNE" . (A.6)
Similarly, phase variancepz(R,t) >*°
<g2(R1t) > =4[d>kSP (K)E® (K)E™ (-k), [rad?] (A.7)

Where
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E®(K) = K [d°r. B(R 1)e*". (A.8)

To evaluate the products® (k)D** (-k)  amd®(k)E®*° (k) , we introdué®(k) nedfas:

-

AP (R) = D® (k) +IE® (K) = K[ drG™ (R,7) =) g (A.9)
E.(R)
In such conditions:
2D (k) = A® (k) + A" (=k) (A.10)
and
2iE 3° (k) = A% (k) - A®®" (=K) (Al

where” stands for complex conjugate.
Consideringk = (k,.k,,k,) , the x axis as the direct path trattenfieceiver R= (R,00) ) and assuming

narrow scattering angles, R-x is greater than w@ise dimensions y and z so that (2.16) and (2.19)

reduce to:

ik, y2+272
e _ glke(R-X) g " * 2(R-x) |[n_1 ] (A 12)
4|R-r|  4m(R-X)

ik R—T|

G® (R,r) =

L y+Z?
ik ko 2+ 47 kX K0 2
E,(F)= Eo‘rf - Eoez - Eoe i
Vi +y? rz (A.13)
Consequently (A.9) becomes:
k2 Xy |k xR |k0y2R ) 'K)ZZR
A (k) = ZTJ. X(R=) de.e"‘yye“(R x dyje“(R g2z (A.14)

Where the turbulence is limited in the regiof [X,, s]slown in Fig.2.3.

Using the relationship:
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Jdu.eiau v’ = ‘/%Ti xg (A.15)

—00

(A.14) reduces to:

X (k2+k )>(R—x)

/\SD(IZ) 0.5ik .[e'k xg 2R dx (A.16)

Defining the square of the wavenumber transverstheodirection of propagatior? = k? +k?  and

after a change of variables, it is possible tos@/A.10) and (A.11) as:

3D _ [ A3D 3D" ik R g ik X(R B X)kr2

D (k) [A (k)+/\ (k)]/2 0.5k,e™ ;([dx Sm(—ZRkO J, (A.17)
3D [y —[A3D (LY _ ASD™ (1L - ikax2 ik, x X(R_ X)kr2

E* (k) = [A® (k) - A (-K)]/2i = 05k e j dxe CO{—szO J (A.18)

For (A.5) and (A.7), the two products have to baleated:

D (k)D*° (- k)‘—z]'zdxj'dx e (X ks sm( I(Zé:o‘)kasin(xi‘(R_X")k’zJ, (A.19)

X X

E® (K)E*® (- k)‘k—gdeIdx g (X )k co{ (2é:0)kr2jco{x(zé:0)k’j (A.20)

X X

We introduce the sum and difference coordinatex” — x' and 2x=x" + x’, and recalling

trigonometric formulas:

D® (D (k) = <o de”_leué"‘* {SIH{MJ_S"‘{MH

A% it 2Rk, 2Rk,
kz %, +1(X) (R— X)kf , (A.212)
——jdx jdué"‘* sm{—j—e
-0 2Rk,
- LR2% i ) Y
£ (B () =" [ax [due [cos{—(R LS ]—sinz(—X(R s ﬂ
x  —f( 2RK, 2Rk,
2 +1(%) 5 (A.22)
=k°j xjduel“k cosZM -
45 i 2RK,

At optical and microwave frequencies, the doubtegrale is negligible, so that:
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D® (k)D*® (-K) = Zx_fdxsmz( (R_X)kfzJSi”[f(x)kx] (A.23)

2Rk, K,
3 e iy - K f [ X(R=x)k? \sin[ f(xk,]
E® (K)E® (-k) = Idxcos( 2Rk X (A.24)

Reminding of:

(A.25)

. _ -1
)

(X_Xo)

and due td(x).k>>1, we obtain:

2[%} =2k, ) (A.26)

X

D (k)D* (-K) ——gTdXS|nZ(>((ZTk())I<’2J2775(kX) 7 (k)| dxsm{(RTl:)krzj (A.27)

3D [ L\=3D/_1L _k_gxz 2 X(R_X)kr2 — 7-ko 2 (R X)kr2
E%® (K)E® (-k) = ; j dxcos (—ZRKO Jzna(kx) a(k,) j dxcos (—ZRko J

(A.28)

So now we can solve the variance expressions:

<> =a] dks []p™ ko (- k)= 4f ks ()5 5(kx>desinz(WJ [Np?] (A.29)
<g>0 =4 07k (e () (- K)= of o s ()75 )fdxcos{x(F;Rkt)kf] [rad?] (A.30)

Passing to spherical coordinat@sv,c) where= [k +kZ =ksinv  kandk cosy , @srsin
Fig.A.1:

72



Figure A. 1:Spherical coordinate system with respect the waveker k

New formulations are:

x(R - x)x?sin?v
2Rk,

© m 2 X
< x2>% =27k [ dkSP ())x* [ dv siny [ dao| dxsin{ Ja(xcosu) [Np?Z (A.31)
0 0 0 X

© m 2 X5
< @2>3P= 27#<§IdKS§1D (K)sz'dvsinv_[da)_[ dxcos?
0 0

0 Xy

(X(R - X)k?sin?v

2RK jd(/( cosv) [rad?] (A.32)

Because of the assumption of isotropy it can be sidemned ‘E‘ instead k so that
5 ()= (K)= 5 ().

Considering impulse properties, we get log-ampétadd phase variances (2.10):

2 53D — of D 2X2 i 1 i >(R_X)K25in2 Vo | 2| D L ; >(R_X)K2
< x> -4n2k0£ KSP (K)K ledxsml/oksinv0 sm{ 2Rk j—4772k0'([ &S, (K)K{ dxsm{ 2Rk j A.33)

D 4722 4D (N 2 f e 1 {R=XK2SIP Vo | _ o 20 2 o canyn f WR-X)k?
<g?> —4n2koj; kS (K)K ;{dxsmvo sy, cos{ 2Rk 0 —4n2koj; &S, (K)/(;fldxcos2 TRk \.34)

where :’_2T which means the interest is based on the transydase because the component along

the direction of propagatiork, =0 s& =« , as shown in Fg2. This can lead to a

misunderstanding since during the discussion isgued implicitly as the transverse wavenumber

not the complete one of Fig.A.1.
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Appendix B

Here we want solve the integrals in x vdgatif (2.25) and (2.26), which lead to the expr@ssi
of the spherical weighting functions for phase mgdamplitude.
They are:

K*X(R-X)

A:Tsinz( o )dx (B.1)
B= j cog (K XR=X) X(i i (B.2)

Changingt = 1—% we have:

x

A:%R | [1—cos(K2R(1;;)(1+t))]dt iR j i cosw)]dt (8.3)

X
R

——RI [L+cos /( “R@- li)a“))]dt 4RJ' [1+cos$)]dt (B.4)

Using a well-known trigonometric expression:

t 2

A——R[2 cos#) J' cos )dt—sm( R) J' sm(K

_2bx O t _2Mx
R

)dt] (B.5)

YR

=1 R[2 ¥ cos@) j cosP)dt sm( j sin(* Zitz )it (B.6)

_2Ax _2Mx

bR

Changing variable again, in order to obtain theskel integrals:

K°Rt*> _m 2 [2k T
=—c c =t dt = dc
4k 2 2k Kk ’R

x
Py}
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(B.7)

V k2R : 2 V&R 0 2 0 ?
2

Same for sine function.
where c(x) = jcos(gfz)df ands(x) = jsin(gfz)df are theFresnel Integrals.
0 0

We finally reach the solution for a and B as:

2 2 2 2
A=1 {1— Zkz"ﬂlc( /K RJCO{K RJ+{ /K RJSiV‘(K R]]} (B.8)
KR 2k, 1T 4K, 2k, T 4K,

2

g=1 R{1+ 21<207T[C( R Jco{KZR] +5{ R Jsin(Ksz]} (8.9)
2 K°R 2k 1T 4k, 2k, 4Ky
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Appendix C
NORMALIZATION FACTORS IN DFT AND IDFT

In the following appendix we explained whene coefficients used for DFT and IDFT come
from.

We show mono-dimensional Fourier transforms whgh lse extended to 2D:

N . 27(n-1)(k-1)
S(kaf ) = az s(nar)e N Ar (C.1)
n=1
N J. 2m(n-1)(k-1)
s(nar)=bY" s(kaf)e N Af (C.2)
k=1

Assuming (4.42) and substituting (C.1) in (C.2):

27T

Af =
NAr (€3)
o) N N o] _j2rn k) 2n(n-t)k-a) N o) o )
nAr )=ab nAr)e N Are N Af =ab nAr )N — = abNsnAr )27 C.4
22 2,y e
So, to make the equality be true, the product ﬁ .dans one could use this factor in the

DFT without using any normalization in IDFT; foraxple.
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