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Sommario 
 

Quando un’onda elettromagnetica attraversa l’atmosfera, ampiezza e fase subiscono rapide variazioni 

causate dal repentino cambiamento delle disomogeneità del mezzo. Questo fenomeno è definito 

Scintillazione ed è legato alle fluttuazioni di piccola scala dell’indice di rifrazione che sono solite 

avvenire in ogni regione dell’atmosfera. Sebbene esse non siano singolarmente di grande intensità, 

possono avere un effetto cumulativo per lunghe distanze. E’ quindi necessario stimare variazioni di 

ampiezza e fase indipendentemente dalla geometria e dalle caratteristiche elettromagnetiche del 

collegamento. 

Lo scopo del lavoro è di predire tali variazioni statistiche introdotte dalla troposfera, utilizzando un 

approccio basato su un’onda sferica incidente su uno strato di turbolenza che si trova in una posizione 

qualsiasi del collegamento. Si analizzeranno in parallelo le configurazioni 2D e 3D e il conseguente 

errore introdotto dalla riduzione dimensionale. Verranno studiati due metodi: analitico e numerico. Il 

primo è basato sul calcolo integrale della varianza di ampiezza e fase del segnale valido solo in 

condizione di debole dispersione, mentre il secondo è basato sul cosiddetto Spit Step Fourier 

Algorithm (SSF) e si applica in qualsiasi condizione di dispersione. 

 

Parole chiave: spettro delle turbolenze, onda sferica, distribuzione della turbolenza a strato, 3D/2D, 

Varianze di log-ampiezza e fase, Parabolic Wave Equation (PWE), Split Step Fourier Algorithm 

(SSF), regimi di Fresnel e Fraunhofer,   
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Introduction 
        When an electromagnetic wave passes through the atmosphere, amplitude and phase suffer fast 

fluctuations caused by inhomogeneity of the medium: this phenomenon is called Scintillation. It is 

related to small-scale turbulent fluctuations of the refractive index that are likely to develop in any 

region of the atmosphere. Even though these perturbations may be small in magnitude, they can have a 

significant cumulative effect at long distances. It is therefore necessary to estimate amplitude and 

phase fluctuations whatever the geometry and the radio-electric characteristics of the link. 

For frequencies below 3GHz, ionospheric scintillation is significant while at Ka-band frequencies, 

scintillation primarily originates in the troposphere. It limits the performances of electromagnetic 

systems (GNSS systems in L band, earth-satellite telecommunication links, satellite to satellite link in 

occultation geometry, space-borne Synthetic Aperture Radar…). 

So far mainly configurations considering an incident plane wave illuminating a turbulent medium have 

been taken into account, with first works based on stars’ twinkling due to the inhomogeneity of the 

atmosphere [1] and recently [2][3][4]. Unfortunately this is not a correct approach if the turbulence is 

near the source because plane wave is only an approximation valid at long ranges.  

        The object of the work is to predict statistical variations of the electromagnetic signal in 

troposphere using the more precise approach for an incident spherical wave and any position of the 

perturbations.  We analyse in parallel 3D and 2D modelling and the consequent error due to 

dimensional reduction. This is done because, although 3D is the real case, 2D is really useful to drop 

computational cost of numerical simulations. The dimensional reduction is classically used but its 

effects have been quantified for the plane wave formalism only. The exercise is performed using 

analytical and numerical methods and convergence of the approaches is studied. The first one is based 

on integral calculations for the statistical variances of the phenomenon valid for weak scattering only; 

the second one is based on the split step algorithm (see illustration in Fig.0.1) and it is applied for 

whatever the scattering condition. Both theories are presented in details with the assumptions taken 

into account for our situation. 

      In Chapter 1 we introduce the propagating random medium, i.e. the troposphere, and the statistical 

part of the refractive index which leads to the formulation of the spectrum of the turbulence.  

      In Chapter 2 analytical formulations will be derived for log-amplitude and phase variances of a 

signal propagating through perturbations localized in a thick layer between transmitter and receiver. 

They are studied with respect to the frequency, the path length and the dimension of the eddies, and 

with respect to the configuration, 2D or 3D.  

      In Chapter 3 we present a comparison with the results found so far about the incident plane wave, 

adding comments of our formulations of the previous chapter. 
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      In Chapter 4 starting from Parabolic Wave Equation (PWE) we develop our model based on the 

Split Step Fourier algorithm (SSF) and spherical phase screens scheme (3D PWE-2D MPS and 2D 

PWE-1D MPS). 

    In Chapter 5 we show our numerical simulations, comparing the analyses of the previous chapters. 

    Finally we summarize the conclusions of our work, giving some perspectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.1: Communication system between a Satellite and an Earth station with propagation in a random media (troposphere). On the 
left side the scheme of the classical studies based on plane wave, on the right our scheme based on spherical wave, which is more 

correct when the turbulence is close to the emitter [30]. 
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Chapter 1 

 

Description of the propagation medium 
 

       Propagation  of satellite signals through a  large striated  region  presents  the  problem of radio-

wave  propagation through  a  thick  medium  composed of random  fluctuations  in the  index  of 

refraction.  The wave firstly suffers random phase perturbations due to variations in the phase velocity 

within the medium.  These  phase  variations in  the  propagating  wavefront  introduce  small  random  

changes in  the  direction of propagation  of  the  wave.  Thus portions of the initial wavefront now 

propagate in different directions relative to other portions. As the wave  propagates  further,  

diffraction or angular  scattering  causes  constructive  and  destructive  interference  which  introduces  

fluctuations  in  amplitude  as well as phase. This is what we define as scintillation. These time-varying 

amplitude and phase fluctuations represent an undesired complex modulation of the carrier. 

 In this section we propose an introduction as the base of the work, showing the cause of scintillation 

in the medium of our interest, i.e. the troposphere. 

1.1 Long term variations of the refractive index in the troposphere 

 
Figure 1.1:Vertical structure of the atmosphere 

 
       Troposphere is the region of the atmosphere spreading from the ground up to an altitude of 7 to 

14km (Fig.1.1), depending on the latitude and the meteorological conditions. This is the place where 

the atmospheric phenomena involve the water cycle (cloud, rain, fog, snow). 
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From an electromagnetic point of view, the troposphere is a pure dielectric medium (electric 

conductivity  σ=0, magnetic permeability µ=µo and imaginary part of the dielectric constant ε’’ 

negligible with respect to the real part ε’) except for the shortest wavelengths, i.e. centimetric and 

millimetric, for which it can be more or less absorbing.  

In the troposphere, temperature, humidity and pressure vary horizontally and vertically, generating 

variations of the air refractive index. The average vertical variations of the tropospheric refractive 

index are described by the large scale effect: 

 

                                                                         
                                                              (1.1) 

 

where n is refractive index at an altitude h(km), no is the refractive index at sea level and B is given by 

Booker’s formula: 

 

                                                    
                         [ ]              (1.2) 

 

where Ro=6400 km  is the Earth radius,  ( ) is the variation of atmospheric pressure 

(temperature) with height (mbars/m and °C/m, respectively). 

As no is very close to 1 (no≈1) et Bh<<1, the equation (1.1) becomes: 

 

                                                                   n(h) = no + B×h                                                      (1.3) 

 

and the tropospheric refractive index n(h) remains very close to unity (it is about 1.0003 close to the 

surface of the Earth). Nevertheless, its vertical gradient impacts the electromagnetic wave propagation. 

Therefore, it has become customary to use the refractivity N: 

  

       N = (n-1).106                                                                (1.4) 

 

which can be approximated by:  
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where  p is the atmospheric pressure (hPa), e is the partial pressure of water vapour (hPa), T the 

temperature (K). 

At the tropopause (about 15km in temperate latitudes), N is about 40, down from over 300 at the 

surface. The relative differences resulting from humidity variations are much stronger near the surface. 

This explains why scintillation generally originates in the lower levels of the troposphere. Even when 

turbulence does occur in the upper levels of the atmosphere, the relative differences in refractive index 

between adjacent air masses are insignificant compared with that seen near the surface in the 

atmospheric boundary layer. 

The atmosphere is generally stratified into parallel layers by temperature and humidity differences. 

Turbulence within a layer will generate very little scintillation because the air is fairly well mixed 

within the layer and refractive differences are small. However, at the boundaries between layers, 

turbulence can mix air masses with very different characteristics. This phenomenon allows scintillation 

to be modelled to a first approximation as occurring in a thin layer or layers, with the rest of the 

propagation path assumed to be scintillation free [5].  

Tropospheric scintillation can occur under several distinct circumstances. Turbulence in the lower 

troposphere can cause random mixing between air masses, resulting in dry scintillation (also referred 

to as clear air scintillation). Note that “dry” in this context does not mean that water vapour is not 

present; there is always a finite amount of water vapour in the troposphere. Rather, “dry” merely 

means that the air is not saturated by water vapour. When water vapour saturation does occur, clouds 

are formed. As the clouds pass through the propagation path, scintillation can occur at the boundary 

between the cloud and the clear atmosphere. Since this involves air which is saturated by water vapour, 

this is called wet (or moist) air scintillation [6]. Given the right conditions, cloud droplets condense to 

produce rain within the propagation path. Variations in rainfall within the propagation path cause 

signal variations which constitute another source of scintillation [7]. 

Regardless of the cause, scintillation-induced signal variations generally have a period of a few 

seconds. This distinguishes scintillation from slow-fading rain attenuation events which have periods 

of several minutes [8]. Also, in contrast to rain fading, it should be noted that scintillation is not a loss 

process. The scintillation variations cause both enhancement and attenuation of the propagating signal, 

but the average signal level remains unchanged. Scintillation may occur simultaneously with rain 

attenuation, but the two effects are caused by different mechanisms [9]. Clear-air scintillation is the 

result of turbulent mixing in the troposphere, while rain attenuation is caused by the absorption and 

scattering of electromagnetic energy by liquid raindrops. 

Therefore, spatial-temporal variations of the refractive index are complex and cannot be known from a 

deterministic point of view, so we introduce a statistical description of the medium. 
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1.2 Spectral description of the small scale fluctuations of the refractive index  

      The refractive index  is commonly described by a stochastic function of the position 

 and time t.  is classically decomposed as: 

 

                                                                                                                      (1.6) 

 

where  is the average component responsible for the large scale refraction effects and  the 

random turbulent component.  

 

 

Figure 1.2: Amplitude scintillations of a satellite signal at12.5 GHz received at Louvain (Belgium)[10]                  

The fast fluctuation, at small scale, of  lead to fast fluctuation of the signal around its average 

value: this is tropospheric scintillation phenomenon illustrated in Fig.1.2. 

 It is a source of perturbations for the electromagnetic systems: it is thus necessary to have a statistical 

description of electromagnetic scintillation (Amplitude and phase variances of the signal) to allow an 

optimal system design. 

Disregarding the large scale refraction effects, =1 so that (1.6) reduces to: 

 

                                                                                                                             (1.7) 

 

Besides, in compliance with various experimental measurements,  is a centred random variable 

< >=0 where < > denotes ensemble average. 

Lastly, under assumptions of stationary (in time) and homogeneous (in space) turbulent random 

medium, the 3D spatial covariance function of the turbulent index  
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reduces to . It is related by 3D Fourier transform to 3D spatial spectrum  

according to: 
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 is the wavenumber associated to the eddy of dimension xl x yl x

zl . Besides, note that the 3D Fourier convention used in (1.8) implies that: 

 

                                                                  
[ ] 

      
(1.9) 

 

For fully developed turbulence,  is classically represented by the Kolmogorov spectrum that 

relies on a description of the turbulence through an inertial cascade illustrated in Fig.1.3. 

As the turbulence spectrum (or simply spectrum, as we will call it hereinafter) is assumed isotropic, 

instead of  it is possible to consider its absolute value .  

 According to Kolmogorov theory, the spectrum is divided in three zones by two important parameters: 

the wavenumbers Kis=2π/l is [rad/m] and Kos=2π/Los [rad/m], where lis[m] and Los[m] are inner and 

outer scales of turbulence respectively.  

These two extreme lengths are important for the angle of diffraction which strictly depends on the size 

of the scatterer: smaller it is, wider the angle. In addition, the inner scale controls the spatial correlation 

for small inter-receiver separations and can alter it mostly if comparable to the Fresnel distance , 

where R is the distance transmitter –receiver and λ  the wavelength. 

A good rule of thumb [11] is that one can ignore dissipation effects when: 

                                                                                                            [m]                            (1.10) 

Since the inner scale is usually less than 1 cm in the troposphere, this distortion should occur only for 

optical links over distances less than 50 m. It should be completely absent for microwave links, which 

have much larger Fresnel lengths. 

By contrast, Los is equivalent to the correlation distance of refractive index fluctuation and it is used 

for the definition of two situations which will be taken into account in this work: 

Fresnel regime if                                                                             [m]                          (1.11) 

Fraunhofer regime if                                                                        [m]                          (1.12) 
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Figure 1.3:Conceptual description of the process of turbulent decay as it proceeds through an energy cascade in which eddies 

subdivide into progressively smaller eddies until they finally disappear [10]. 

In other words, comparing our situation to the physical optics, we are considering a scatterer with 

aperture equal to Los and the ratio  the Fresnel number. Conceptually, its inverse is the number of 

half-period zones in the wavefront amplitude, counted from the centre to the edge of the aperture, as 

seen from the observation point, so that the wavefront phase change by moving from a half-period 

zone to another. Fraunhofer regime is established when the diffraction pattern is viewed at a long 

distance from the diffracting object, in the so called far field zone. On the other hand, the diffraction 

pattern created near the object, in the near field region, is dealt with by Fresnel regime. 

The three regions of the spectrum are shown in Fig.1.4. The abscissa is the value [rad/m], where l is 

the eddy size. They are defined as:  

- Input range (l Los)  

 The energy is introduced into the turbulence in this range of eddy sizes due to the wind shear 

and temperature gradient. The spectrum depends on how the turbulence is created for the 

particular case, and thus there is no general formula describing the turbulence characteristics in 

this range 
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      -   Inertial sub-range (Los>l>l is) 

The kinetic energy of eddies dominates over the dissipation due to viscosity, and the turbulence 

is essentially isotropic. The spectrum is proportional to . Kolmogorov theory. 

 

- Dissipation range (l ≤ lis) 

Here the dissipation of energy due to viscosity dominates over the kinetic energy, and 

therefore, the spectrum is extremely small  

 

For the reasons just exposed, in the first region the spectrum is unknown. In the second one we have:
 
 

 

                                                                                            
                                   [ ],

  
      (1.13) 

 

which is Kolmogorov spectrum.  

 is the turbulent constant structure that accounts for the turbulence strength, and it ranges typically 

between 10-18 m-2/3 (weak turbulence) and 10-12 m-2/3 (strong turbulence). It has been mathematically 

derived by Ishimaru ( [12] app. C) and can be expressed in function of the variance of  [11]: 

                                                                                                   
[ ]

                 
(1.14) 

 

Where variance  because . 

Finally in the third region: 

       
0                                               [ ] 

   
        (1.15)  

 

Los and lis are respectively a few millimetres and some hundreds of meter in the atmosphere. 

 

Von Karman [13] proposed an analytical extension of the Kolmogorov spectrum:   
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Which assigns a reasonable spectral shape for every wave-number, even in the energy input regime 

and it matches to Kolmogorov model in the inertial subrange. 
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Figure 1.4: Normalized representation  /  of the Von Karman spectrum[10] 
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Analytical derivations 
  

         After a brief introduction of the propagating medium, analytical expressions for amplitude and 

phase variances are computed.  The scenario concerns a turbulence limited in a part of the link, where 

scintillations effects take place. This is the so called ‘Layer distribution model’ in contrast with ‘slab 

model’ where the turbulence spreads from the transmitter to the receiver. 

   Practical situation involved the uplink of a satellite communication or a classical terrestrial link, 

when the irregularities are near the point source and the incident wave is spherical. 

We start the discussion introducing random wave equation under weak scattering condition with an 

approximation discovered by Rytov, who was analysing the diffraction of light by sound waves [14], 

later applied by Obukhov to describe the propagation of electromagnetic waves in random media [15]. 

This technique is now known alternatively as the method of smooth perturbations or the Rytov 

approximation, which is widely used to describe line-of-sight propagation in turbulent media when the 

amplitude variations are small [11][16]. The Rytov approximation is fundamentally an enlargement of 

geometrical optics that includes diffraction effects. The essence of this method is to express the field 

strength as the product of the unperturbed field and the exponential of a surrogate function, which must 

be determined. It is a complex function that describes the important influence of diffraction because it 

is derived from the random-wave equation. To solve specific transmission problems one expands the 

surrogate function in powers of dielectric variation δε. Most descriptions of propagation rely on this 

basic solution. Pisereva showed that the variance of logarithmic amplitude variations must be less than 

unity in all situations [17]. 

Rytov condition:                                                                                [Np²]                                (2.1)           

Tatarskii confirmed it with explicit calculations [1] and Pisareva showed that the phase is unbounded 

for the usual case of Fresnel scattering [17]. This condition gives us the flexibility required to 

characterize weak scattering, which is equivalent to the assumption that the beam can be scattered by 

the eddy only once. In the hierarchy of propagation theories researchers are developing, the Rytov 

approximation represents a natural stopping point between geometrical optics and modern theories of 

strong fluctuations: it describes some features of multiple scattering, just as geometrical optics does, on 

the other hand it can describe weak fluctuations in amplitude and intensity – which geometrical optics 

cannot. We shall show that its results reduce to those of geometrical optics when the influential 

12 <χ
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scatterers are concentrated near the ray-path of the unperturbed field. It captures the influence of 

diffraction phenomena. Phase fluctuations appear naturally in the exponent of the Rytov solutions and 

can be very large for most applications.  

Under weak scattering condition, we solve random wave equation getting a function which is 

fundamental for our study because it allows describing how the field is scattered and because it has to 

filter the spectrum of turbulences: we will define it as “weighting function”. With the latter and the 

spectrum defined in the Chapter 1, it will be possible to compute the variances. 

2.1 Variances for the real 3D configurations 

 2.1.1 Variances definition under weak scattering assumption 

            Maxwell equations in a random medium are hard to solve because of the complexity of the 

system deriving from variability of the coefficients involved in the equations. 

They concern: 

 

1) Time domain 

- Wave is monochromatic 

 

- Propagation is in harmonic regime and temporal variations inside the medium are much slower 

than a wave period. It implies that a wave sees constant irregularities 

 

- l is the dimension of the inhomogeneity to the direction of propagation. First theoretical studies 

[18] have been done for plane wave in optical domain where . The medium is supposed to 

vary slowly so that the refractive index is assumed constant on the signal wavelength. This 

assumption allows to suppress the time dependency on Electromagnetic Field in Maxwell’s 

equation. 

 

-  given short time for the wave to cross the medium, perturbation is considered stationary. 

 

2) Spatial domain 

- We use paraxial approximation assuming a wave propagating along the axis so that all the 

energy is diffused forward in a narrow cone [18], neglecting backscattering and power 

absorption by the medium. In Fig.2.1 we show an incident wave diffracted in a limited angle 

[rad], where l is the transverse dimension of a generic scatterer which is at distance L 

from the receiver. Until the diffraction spot  is less than l, diffractive effects are negligible 

λ>>l

l

λϑ =

ϑL
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and only phase is affected. Thus the influence of the medium depends on the average 

dimension of inhomogeneity in relation with the wavelength. This hypothesis is the basis of a 

lot of other approximations like the one driven by Markov which allows parabolic method 

starting from classical wave equation.  

                                        

 
 

3) Phenomena neglected 

- Depolarization effects.  

It has been found experimentally that inhomogeneities of troposphere induce scintillation 

independently from polarization. This point allows us to use a scalar wave equation instead of 

vector one. 

 

- Ground effect.  

Reflection or diffraction phenomena, caused by the terrain, affect the downlink communication, 

but here we want to focus on the effect generated by the tropospheric layer so we neglect them. 

 

- Multi-path.  

Diffusion and diffraction due to obstacles are not considered. 

 

Under these basic assumptions it is possible to derive the calculations.  

In harmonic regime, Maxwell equations referred to Electric and Magnetic fields are:    

 

          ( ) ( )rHirEx
vrvv

0ωµ=∇                                                              (2.2) 

                             ( ) ( )rEirHx r

vvvr
εωε 0−=∇                                                           (2.3) 

Where E and H are respectively electric and magnetic fields, ,  fw π2=  Fm10 x 817 187 8.854 -1-12
0 =ε

L 

ϑ 
l 

Lϑ 
Incident 
wave 

scatterer 

Figure 2. 1:Geometry of diffraction. Until the spot Lϑ < l diffractive effects are negligible 
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and dielectric and permeability constant of the vacuum and finally  the 

dielectric constant of the medium depending on the position. Troposphere is assumed with no free 

charges so implicitly . 

Solving the system of the two previous equations we get: 

         

              ( ) ( ) 000
2 =−∇∇ rErExx r

vvvv
εεµω                                                    (2.4) 

 

Noting that:  

         ( ) ( ) ( )( )rErErExx
vvvvvv

⋅∇∇+−∇=∇∇ 2

                             (2.5) 

 

And 

  

                              ( ) ( )[ ] 0=⋅∇ rErr

vvrε                                                                   (2.6) 

 

equation (2.4) becomes:  

                        ( ) ( ) ( ) ( ) 000
22 =








⋅

∇
∇−+∇ rErErrE

r

r
r

vvvvvvv

ε
εεεµω

                            
     (2.7)

                         

In term of n: 

                                                  ( ) ( ) ( ) 






 ⋅∇∇=+∇ E
n

n
rErnkrE

vvvvvv
222

0
2

                                                
(2.8) 

 

On the right side of the equation (2.8) polarization effect appears but, as exposed above, in clear sky 

conditions, the depolarization effects are negligible. It leads to the scalar wave equation : 

 

                                                                                                          (2.9) 

 

where  is the wave-number in the vacuum with wave-length,  one of the component of 

the electric-field vector. 

Considering the first order approximation for the refractive index n defined in (1.7): 

 

                                                              n²= (1+n1)²≈1+2n1                                                                                                (2.10) 

 

 the vector wave equation (2.9) reduces to: 

-1
0 Hm 7-10×4πµ = rε

1=rµ

( ) ( ) ( ) 02
0

2 =+∇ rErnkrE

0
0

2

λ
π=k 0λ )(rE
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                                                                                     (2.11) 

 

We solve this equation under Rytov approximation [14]. It consists in expressing the unknown 

solution as the product of the field strength  that would be measured at  in the absence of 

turbulent irregularities with a correction term  so that: 

 

                                                          .               [V/m]              (2.12) 

 

The complex function  is then expanded into a series: 

 

                                                                 
.                                                              (2.13) 

 

Under weak scattering assumption, the first term of the series is sufficient to accurately describe the 

propagation, so that: 

 

                                                             ,                                         [V/m]          (2.14) 

 

with: 

                                             

.                                          (2.15) 

 

where it appears the Green function in free space defined as: 

 

                                                           
                                        [ ]          (2.16) 

 

and =(x,y,z) represent the receiver location and the scattering eddy position from the 

transmitter taken as the origin of the system. In Fig.2.2 we show the geometry of our problem where 

only direct and scattered waves arrive at the receiver, the x axis coincides with the direct path and the 

incident waves to the receiver and to the eddy are spherical. 

From (2.14)- (2.15) the log-amplitude and phase of the signal are given as [10]: 

0)()],(21[)(² 1
2 =++∇ rEtrnkrE o

)(REo R

),( tRψ

),()(),()( tR
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=                      [Np]            (2.17) 

 

                                                                   =                                     [rad]            (2.18) 

 

Where  and are respectively the real and the imaginary part of the complex 

function .   

 

 

Figure 2. 2:Geometry of the scattering problem for spherical wave. Incident waves to the receiver and to the eddy are 

spherical. Line-Of-Side is assumed along x-axis. 

 

A point source should generate an electric-field strength that depends only on the scalar distance from 

transmitter if there are no irregularities in the transmission volume so that for spherical wave 

propagation electric fields arriving at the turbulence and at the receiver are: 

 

                                                                                                                 [V/m]      (2.19) 

 

And 

 

                                                                 .                                             [V/m]      (2.20) 

 

Following the calculations in Appendix A, we finally we get log-amplitude and phase variances for an 

incident spherical wave:  

 

))(/),(ln(),( REtREtR o=χ )],([ 1 tRψℜ

),( tRϕ )],([ 1 tRψℑ

)],([ 1 tRψℜ )],([ 1 tRψℑ

),(1 tRψ
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r

eE
rE

rki

v
v

vv
⋅

= 0
0
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R
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RE
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0
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                                                 [Np²]    (2.21) 

 

 

 

                            [rad²]    (2.22) 

 

Where , are the boundaries of the turbulence, as shown in Fig.2.3. Similar expression were found 

by Wheelon [11] for slab distribution. 

Equation (2.21)-(2.22) can be written in general as: 

                                               
                       

[Np²]

                    

(2.23) 

                                                                      

[rad²]
                      

(2.24) 

Having defined two functions as: 

 

                                                                                                 (2.25) 

 

                                         ( ) ( )
dx

Rk

xRx

x
F

xx

x
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
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2

2
²cos
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(2.26) 

 

Where  is the extension of the turbulence in [m]. These are the so called “weighting 

functions” because, as seen in (2.23)-(2.24), they filter or weight the spectrum shown in the Chapter 1. 

Therefore it is necessary to analyze them, before proceeding with variances computation. It is done in 

the following paragraph. 
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Figure 2. 3: Communication system between two stations with irregularities placed in thick layer in the path, from   x1 to x2, 

distances from the transmitter. 

 

   2.1.2 The weighitng functions  

     As seen in the calculation, functions (2.25)-(2.26) derive from the relation between the direct and 

the scattered waves, which means they depends on the extension of the perturbation, responsible of the 

diffractive effects. However, the main dependency relies on the link distance R and the frequency, 

because their relation with the turbulence indicates if the system works in Fraunhofer of Fresnel 

regime, defined in (1.11)-(1.12). One can notice that phase and log-amplitude weighting functions 

(2.25)-(2.26) are complementary. In fact: 

 

                                                              
+ =1                                                              (2.27) 

 

This is an important property valid for all the configurations (2D/3D) and for all the wave typologies 

(plane, spherical).        

The idea is to solve the integrals finding analytical expressions which describe the behavior of those 

functions with respect to the variation of the eddy dimensions. Derivations are exposed in Appendix B, 

obtaining: 

 

                                                                                                                                             

                                                                                                                                                        (2.28)       
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                                                                                                                                                        (2.29)       

                                                                                                                                                                                                                                                          

 

Where C(x) and S(x) are Fresnel integrals.  

There is no need to study the global behavior of these functions because some assumptions can be 

done according to the regime of work. Hence in the following paragraph, asymptotic formulations for 

the variances will be derived considering the cuts of (2.28)-(2.29) on the spectrum. 

However a simple observation can be done. 

 

Figure 2. 4: Fresnel integrals. C(x) is the green and S(x) the red line. Both oscillate around 0.5 

In Fig.2.5  and , we get the formulations of the weighting functions for slab model 

found by Wheelon [11]. This validates our computations and confirms that the general case is the layer 

model. 

 

Figure 2. 5: Extending a general layer (a) from transmitter to the receiver, we find the slab model (b). This means slab is only 

a particular case of the problem even for spherical wave. 

 

 

 

 

01 →x Rx →2

( )






























































































 −−


















 −+

+






































 −−


















 −

+∆
∆

=

0

2

0

2
2

0

2
1

0

2

0

2
2

0

2
1

2
0

4
sin

2

2
1

2

2
1

4
cos

2

2
1

2

2
1

22

4

1

k

R

k

R

R

x
S

k

R

R

x
S

k

R

k

R

R

x
C

k

R

R

x
C

R

k

R

x

x
RF

κ
π

κ
π

κ

κ
π

κ
π

κ

κ
πκϕ

 



Chapter 2 
 

18 
 

2.2 3D Asymptotic formula 

       At this point we have all the elements to compute the variances: weighting functions and 

spectrum. They are computed for either Fresnel or Fraunhofer regime, because according to the 

parameters involved (frequency, path length, layer thickness..), the physical phenomena can change 

significantly. 

   2.2.1  Fresnel regime in 3D 

         Fresnel regime is established for relation (1.11) or in wave-number domain when  . 

Considering the amplitude, this means that highest values of   , i.e. the smallest eddies, bring the 

main contribution to scintillation. Consequently, in equation (2.21) we do not consider  by Von 

karman model (1.16) but by the simplified Kolmogorov (1.13), integrating it from 0 to infinity. 

Mathematically:      

 

                                                                            

.       [Np²]    (2.30) 

 

 

As function (2.28) is low for the biggest eddies in the ‘input range’, i.e. before , previous relation 

becomes: 

 

 

              [Np²]     (2.31) 

 

                                             

and  are Kolmogorov and Von Karman spectra respectively.  

For phase variance the situation is different, in fact the functions (2.28) start at 1 so that they does not 

filter the spectrum  at low wave-numbers. For this reason we cannot use the Kolmogorov spectrum in 

the calculations and Von karman model  must be applied.  Under this assumptions it is possible 

to drive the analytical derivations. 

Rewrite equations (2.21) as:  
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We have already integrated on x obtaining the weighting function, so we could substitute it to the 

second integral and integrate on , but it is analytically hard. Let’s solve it on  before, with 

Kolmogorov spectrum as already explained. 

Making a change of variable  , we find:  
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        [Np²] (2.33) 

The first integral is tabulated and it is =1.728. So log-amplitude variance in fresnel 

regime is: 

 

 

                                                                                                                                     [Np²]  (2.34)
  

 

 

Where the integral is solved by Hypergeometric functions1. 

Phase variance is more difficult to develop analytically because, as already said, the function (2.28) 

does not filter small wave-numbers so that Von Karman spectrum is more appropriate than 

Kolmogorov’s.  For such a reason it is useful introducing the phase variance for geometrical optics (

), which has been defined by Wheelon[11]: 

           
              [rad²]       (2.35) 
            
 

Substituting Von karman spectrum we get the expression:              

                                                
1 In order to enlighten the computation of the integral, we can make another change of variable 
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                         [rad²]        (2.36)   

 

This is independent of the wave nature, in fact in equation (2.35) there is no weighting function 

because in geometrical optics diffraction effects are neglected. Observing equation (2.35), (2.21) and 

(2.22) one can notice that: 

                                     [rad²]      (2.37) 

 

This is a really useful relation linking amplitude and phase, also valid for plane wave. It is really 

important because it does not depend on the assumption of isotropy and on the paraxial approximation 

[7]. Obviously it is linked to the property of complementarity (2.27). 

Substituting the equation (2.36) and (2.34) in (2.37), phase variance in fresnel regime is:   

 

 

 

                                                                                                                                               [rad²]    (2.38)   

     

 

As expected phase variance depends on Kos, but amplitude does not.  

 

      2.2.2 Fraunhofer regime in 3D 

          In Fraunhofer configuration, Fresnel distance is greater than Los which means that ‘Energy 

Input Region’ (from 0 to ) has to be considered in wave-numbers domain even for log-amplitude 

variance. Hence it is necessary using the von Karman spectrum (1.16) for both log-amplitude and 

phase. 

We cannot follow the same approach developed for Fresnel regime because now analytical derivations 

for variances are too difficult. However, considering the definition of Fraunhofer regime (1.12) and 

noticing that in (2.28)-(2.29) the coefficient  actually is the inverse Fresnel number, the two 

weighting functions tend to 0.5, more rapidly for higher value of  Fresnel number. 

So it is possible to solve equations (2.21)-(2.22) substituting 0.5 to the weighting functions: 
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                          [rad²]           (2.40) 

 

Considering Von Karman spectrum (1.16), we obtain the asymptotic expressions of log-amplitude and 

phase variances in Fraunhofer regime: 
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More simply we could have noticed that:    

           

             [Np²]       (2.43)   

 

Where  is the phase for geometrical optics (2.30). 

For the phase variance thanks to equation (2.31): 
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Both functions are independent from the distance transmitter-layer so the variances are always the 

same whatever the position of layer along the link.  

At this point, we have the formulation of the variances and their behaviour according to the relation 

between the system parameters (frequency, path length) and the irregularities of the medium. All the 

comments about the formulas will be explained in Chapter 3, together with the comparison to the plane 

wave approach, commonly used. For the instant we still remain on the analytical formalism, studying 

the effects on the computation of the variances passing from 3D to 2D. 

2.3 Variances definitions for the reduced 2D configuration     

        The 2D reduction is useful to improve computational time for numerical resolution of the problem 

but it can introduce some errors in the calculation of the variances. This means the Rytov 

approximation, Helmholtz equation and the physical scenario are the same as before, so we only 
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discuss about the changes in the formulas avoiding redundancy repeating points already explained. 

Main changes concern the Green function and the incident electric fields, now expressed as: 

 

                                                                                                   
[ ] 

       
(2.45) 
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[V/m]       (2.47) 

 

where  is the first kind, zero order Hankel function. 

Wave equation has to be solved in the vertical plane x-z so that   . 

Assuming high frequency and small scattering angle as usual: 

 

               

 (2.45) becomes:      
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(2.48) 

 

At this point it is useful considering the system of Fig.A.1 for 3D. The cut involves to be projected 

on the vertical plane x-z, as shown in Fig. 2.6.       

As in 3D calculation derived in Appendix A,  so the final expressions for log-amplitude and 

phase variances in two dimensions are: 
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These are new calculations, never been derived. Recently Fabbro and Feral [19] gave a similar 

formulation but for plane wave in a slab distribution. 

Comparing these expressions with the others of the 3D we notice two points: 

- the spectrum is still the same and depends on . 

 

- the reduction affects the weighting functions, in fact now they do not vary along a transverse 

plane but only along an transverse axis with respect to the direction of propagation. Hence the 

weighting functions are . In Fig.2.7 is reported a representation of wavenumber 

space in 2D, under the consideration of the Appendix A, i.e.   as . 

 

 

 

 

 

 

 

 

 

 

 

The integration on the angular distance of the wavenumber from the vertical plane represents a 

‘compression’ of the 3D eddies on that plane. This leads to the error explained in the next paragraph. 
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Figure 2. 6: System for 2D geometry. κ in 3D is projected on x-z plane 

z 

x 
 

 

 

Figure 2.7: As the azimuthal angle 
2

πν = , wavenumber lies along z, transverse to x .Thus the projection of κ is equal to the 

projection of rk  
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2.4 2D asymptotic formulas 

     Now weighting functions depend on the angular distance with respect the transverse axis, so it is 

not trivial to find a complete formula and anyway we are not even interested in it . For this reason we 

directly propose the variances in each regimes. 

 

     2.4.1 Fresnel regime in 2D 

     Physical explanation is the same as 3D, so we proceed in the same way considering a kolmogorov 

model spectrum (1.13) for log-amplitude and Von karman (1.16) for phase variance. 

Starting from log-amplitude variance (2.49) and making the variable change x=Ru, we get: 
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Then, considering Kolmogorov spectrum (1.13) and making another change of variable: 
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where  =1.728. So 2D log-amplitude variance in Fresnel regime is: 
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It means that studying a simplified version 2D of the real case 3D we commit an error ~53%, which is 
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Where the integral is solved by Hypergeometric functions.  

The log-amplitude variance is lower in 2D but the phase is slightly higher than the real 3D, due to the 

coefficients involved. Anyway this error is negligible so that: 

in Fresnel regime, the dimensional reduction has no problem only for the phase variance but for log-

amplitude it is necessary to take always into account a correction factor of 1.86.     

            

   2.4.2 Fraunhofer regime in 2D 

  Even for Fraunhofer regime in 2D the weighting functions reach the asymptotic value 0.5, this will 

lead to same results than for the 3D problem. 
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This means that: 

in Fraunhofer regime, the dimensional reduction has no effect both in log-amplitude and phase so it is 

allowed without problem. 

 

Thus, the main problem comes when the system works in Fresnel regime because the computation of 

the log-amplitude in 2D underestimates the real situation in 3D. In the following chapter we analyse 

this conclusion with other calculations made for plane wave with an eye to the results recently found 

by Fabbro and Feral [19] for the plane wave for turbulence Slab distributed. In addition, observations 

to the formulas of this chapter are presented, comparing them in parallel with plane wave approach 

largely studied by Wheelon[11]. 
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Chapter 3 

 

Comparison between spherical and plane wave approach 
 

           In this section comments of the previous Chapter and comparisons with the studies done in 

literature concerning plane wave are presented. Firstly we examine the differences with the plane wave 

weighting functions found by Wheelon [11], followed by an analysis of the variances for which a 

distinction of 2D and 3D is necessary. For this reason the second paragraph has the structure of 

Chapter 2 for a better comprehension.   

3.1 Differences between plane and spherical weighting functions 

     Authors largely studied scintillation effects by the use of the plane wave, because of the simplicity 

of the formalism allowed when the observer is far from the source as the plane wavefront well 

approximates the spherical wavefront locally at long ranges. 

It is the classical scenario of the optical astronomy when turbulences in troposphere or ionosphere are 

very far from the transmitter (star). In this case several phenomena are notable, as the change of 

apparent position or quivering of a star. In addition, the intensity of a stellar signal changes randomly 

with time. This form of scintillation is called twinkling and is observed even on still nights. 

For these cases amplitude and phase variances are given by [11]: 
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With weighting function defined as: 
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(3.4) 

And equal to: 

 

 

    (3.5) 
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Which are a modified version of the equations found by Wheelon [11] who placed the receiver as the 

origin of the system, as shown in Fig.3.1. In order to compare them with spherical wave results we 

adapted the equations to transmitter’s side. 

As done for spherical wave, extending the layer from the transmitter to the receiver we get: 
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         Figure 3. 1: Communication system receiver based 
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                             (3.8) 

 

 

 

Which are the expressions describing the functions for the slab model [11] replacing R with , as 

show in Fig.3.2. 

 

 

Figure 3. 2: Extending a general layer (a) from transmitter to the receiver, we find the slab model (b) also for plane wave. 

This means slab is only a particular case of the problem. 

As the result is the same as seen in Fig.2.5, we have mathematically proved our assumption: 

 

General case of study is the layer configuration because Slab is only a particular case, independently 

from the wave typology. 

 

A second comparison between spherical and plane weighting functions can be done, considering the 

particular case of the turbulence near the receiver. 

With some simple steps equations (3.5)-(3.6) are equal again to (3.7)-(3.8) but it is not the same for 

spherical wave, in fact (2.28)-(2.29) are not equal to the function of spherical slab model [11]. 

Illustrations in Figg. 3.3 and 3.4: 

The reason is that plane wavefront is always the same whatever the distance transmitter-receiver so 

that for the receiver it doesn’t matter if the transmitter is in the same turbulent medium or if it is far 

from it. In fact the scintillation level depends on the thickness of the layer and on the distance 

turbulence-receiver (3.5)-(3.6). On the contrary, spherical functions (2.28) and (2.29) depend not only 

on the layer thickness and the distance turbulence-receiver but also on the distance transmitter-layer.  

In fact, differently from the plane wave, spherical wavefront is function of the distance. 

Thus, the computation of the scintillation can give different results depending on the type of wave 

considered.  A general change concerns the weighting function with respect to the distance involved. 
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- Dependence on thickness 

Although weighting functions (2.28)-(2.29) and (3.5)-(3.6) are both normalized by , for 

spherical wave only amplitude of the sinusoids depends on it while for plane wave both 

amplitude and oscillation frequency do. Consequently for bigger , variation around the 

asymptote 0.5 gets lower (1/2 1/ * (sin+cos)) but on the other hand, oscillation frequency 

increases only for plane wave weighting function while spherical doesn’t change. 

 

 

Figure 3. 3: When the irregularities are at the receiver (a), for an incident plane wave an equivalent scenario of a slab with 

length equal to the thickness of the layer could be assumed (b) 

 

 

Figure 3. 4: When the irregularities are at the receiver (a), for spherical wave it is not possible to consider an equivalent 

model of slab with length equal to the thickness of the layer (b.) 

- Dependence on R 

First of all, it is useful to remind that R is important because it is related to the Fresnel number. 

Neither plane nor spherical weighting functions are normalized by R so generally they depend 

on it, but when layer gets closer to the receiver spherical function still depends on it but the 

plane one doesn’t. This is why, as seen before, plane weighting functions tends to the slab 

model [11] where R= , but the spherical has not the same property. In the following 

paragraph it is shown what happens to the spherical wave in this scenario, studying directly the 

variances. 
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3.2 Differences between spherical and plane wave variances 

        After having analysed the similarities and differences between plane and spherical weighting 

functions, the consequences on the variances are treated in this paragraph, underlining spherical wave 

results of chapter 2. Here it is necessary to study separately 3D and 2D for the two regimes.  

 

3.2.1  3D 

• Fresnel regime 

   In Fresnel regime log-amplitude variance for plane wave is given by: 

 

         [Np²]          (3.9) 

 

 

Changing again Wheelon result [11] for a transmitter based system. As expected for this regime even 

the log-amplitude variance for plane wave does not depend on the wave-number and .  

Consequently, it is possible to analyse the differences between plane and spherical approaches 

considering a link for different position of the turbulent layer. 

The system works at 5GHz frequency for a distance equal to 15km where a 1km turbulent layer is at a 

position from 0- to 14km from the transmitter. and    so that Fresnel number 

is 0.06. In Fig.3.5 the plots of (3.9) and (2.36) versus x1, distance from transmitter to the layer. 

This figure illustrates a particular characteristic concerning the wave typology, whatever the distances 

involved. In the case of the incident spherical wave, reciprocity of the variance appears clearly because 

of the curve symmetry observed with respect to the mid-distance. In other words an inversion of the 

transmitter and receiver does not change the result. This is why the peak value is when the layer at the 

middle of the path. Variance for incident plane wave does not show the same property; in fact it is a 

decreasing function which leads to a second observation. When the irregularities are close to the 

source it overestimates the spherical log-amplitude variance with a huge error of 140%, which 

decreases until the layer is at the receiver’s side.  

Thus it seems that plane wave is a good approach when the receiver is inside the turbulence but an 

observation has to be done. In Fig.3.6 a system with the same parameters as before is shown, changing 

link to 6 km with the 4km turbulent layer on the receiver (2km from transmitter). 

Differently from the previous case, there is not a complete convergence because the irregularities are 

on the receiver’s side, but layer covers a big part of link. 
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Figure 3. 5:Log-amplitude variances for spherical and plane wave versus x1. Three main cases concern: a)turbulence on the 

transmitter, b) turbulence in the mid-path, c) turbulence on the receiver 

So the overall conclusion is: 

The approximation spherical to plane wave gets better when turbulence is far from the transmitter and 

near the receiver until ratio layer thickness / path length is small, obviously so much better for longest 

link.  

 

Figure 3. 6: Log-amplitude variances for spherical and plane wave versus x1. This time there is no convergence even when 

the turbulence is on the receiver, because the layer is too extended. 

To have a clear idea of these conclusions, in Fig. 3.7 we plotted Von Karman Spectrum (1.16) 

multiplied by ((2.21) and (3.1)), superposed to the plane and spherical log-amplitude weighting 

functions (3.5) and (2.28). As we are in Fresnel regime, the weighting Functions filter it starting from 

values greater than  (yellow vertical line). In this way we are allowed to use the simpler (1.13), 
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which is the descendant slope of the red curve.  This is a graphical explanation for the consideration of 

par.2.2.1. 

The plot is repeated three times, one for each of the main points: 

- Layer next to the transmitter. x1=0m 

- Layer in the middle of the link. x1=7km.  

- Layer next to the receiver. x1=14km 

Cyan and green lines are respectively for plane and spherical wave weighting functions while the black 

one is for their asymptote at 0.5. Red line is the spectrum multiplied by  and normalized on its 

maximum value to have a clear representation. 

Previous observations are verified here. In Fig. 3.7 (a) and (c) spherical weighting function (green line) 

is the same, therefore log-amplitude variances are equal. For the plane wave (cyan line) this is the true, 

in fact in the last figure it is different. It implies reciprocity for spherical but not for plane wave. 

Fig.3.7 (a) and (b) illustrate the overestimation of the plane wave:  it rises before spherical one so that 

it takes more contribution from the spectrum, mainly in the first part where there is more energy. For a 

slab geometry, Wheelon [11] calculated that spherical log-amplitude variance is always 40% less than 

plane one. In our case the error changes according to the position of the turbulent layer. 

Third point to note: in Fig.3.7.b) spherical function rises to 0.5 before than the other figures; this 

means, when the layer is in middle of the link, the variance is the highest. In our case it is about 5 

times greater than first and last case. 

Thus we saw that plane and spherical log-amplitude variances in Fresnel regime have the same 

behaviour with respect to the outer scale, but in general they present some differences. 

Now it is useful to analyse the phase to check if the same observations are still valid. 

As for spherical wave, phase variance is more difficult to develop analytically so by (2.37) phase 

variance for plane wave is: 
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As expected even for plane wave phase variance depends on Kos. With the same approach used for 

log-amplitude, we propose an analysis of the phase variances. 

In Fig.3.8 the comparison between spherical and plane phase variances with respect to the position of 

the layer from the transmitter is shown. Reciprocity can be noted even in the phase because this is a 

characteristic of the wave. This time, plane wave underestimates the spherical one but always unless 

the irregularities are near the receiver. Anyway now the error is about 2% so it is negligible. This 
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effect is linked to the property of complementarity of the phase and log-amplitude weighting functions. 

For the same reason the minimum appears when the layer is in the middle of the link. 

 

 

 

Figure 3. 7: Superposition of spectrum and the log-amplitude weighting functions in Fresnel regime for irregularities  near 

the transmitter (a), in the mid-path (b) and near the receiver (c). In abscissa the value of κ .The spectrum is normalized on its 

maximum value to have a clear representation 

 

In Fig.3.9 again the plots of the superposition of spectrum and weighting functions for the main three 

positions in which layer can be. Differently from log-amplitude, now the weighting functions do not 

filter wavenumbers lower than  (yellow vertical line) so that we must consider the overall spectrum. 

This is a graphical explanation for the consideration of par. 2.2.1. Blue and green lines are respectively 

for plane and spherical wave weighting functions while the black one is for their asymptote at 0.5. Red 

line is the spectrum multiplied by  and normalized on its maximum value to have a clear 

representation. 
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Reciprocity and approximation plane-spherical wave are clear, let’s focus the attention on the different 

values the phase variance can reach. Logical consequence of what said for Fig. 3.8 and for the log-

amplitude, is that when the layer is in middle of the path the phase variance is minima, but an 

observation is necessary. For all the three cases the function starts at 1 then decreases to 0.5, but it does 

that when the spectrum has really low energy. 

 

 

Figure 3. 8: Phase variances for spherical and plane wave versus x1. Thickness is still the same but the turbulence moves 

towards the receiver 

For this reason the phase variance is almost the same whatever the position of the layer along the path. 

In fact the ratio between the maximum and the minimum of Fig. 3.8 is about 1. It is more precise if the 

distance R is greater.  

In conclusion, in our study concerning the spherical wave, it has been demonstrated that: 

 

in Fresnel regime we expect different log-amplitude but the same phase variance according to the 

position of the turbulent layer along the link 
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Figure 3. 9: Superposition of spectrum and the phase weighting functions in Fresnel regime for irregularities near the 

transmitter (a), in the mid-path (b) and near the receiver (c). Spectrum is normalized by its maximum value to have a clear 

representation.  

 

• 3D Fraunhofer  

  

       Fraunhofer regime is exactly the same as for spherical wave, in fact the weighting functions (3.5)-

(3.6) tends to 0.5, more or less rapidly depending on the Fresnel number. 

Graphical example is given in Fig.3.10 illustrating the situation of the previous paragraph but changing 

the Fresnel number to get Fraunhofer regime. Given the same path we modify down to 1m and the 

frequency up to 30GHz, so that Fresnel number is equal to 12.24. Turbulent layer is at 9km from the 

transmitter. 
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The first crossing of the asymptote (black line) is reached by the weighting functions for 

(yellow line), as expected. This means that, differently from Fresnel regime, weighting functions don’t 

filter the values of small wave-numbers, so even the biggest eddies influence the log-amplitude 

variance. After crossed the value 0.5, the functions oscillate and at  they are almost constant. 

Under this observation, log-amplitude and phase variance for Fraunhofer regime are equal to the 

spherical ones: 

 

                                                                                                                          
(3.11) 

    

                                                                     
                                                      

(3.12) 

                                                     

 

 

Figure 3. 10 Superposition of spectrum and the log-amplitude (left) and phase (right) weighting functions with respect to κ, in 
Fraunhofer regime. Spectrum is normalized on its maximum value to have a clear representation. 

 

Consequently: 

in Fraunhofer regime, variances are independent of the turbulent layer position and of the wave 

typology, differently from Fresnel regime. 

Now we have an overall view of the 3D, where the scintillation level can be differently quantified 

regarding not only the relation among frequency, path length and turbulence (Fresnel number) as 

explained in the chapter 2, but also the wave typology. In fact we demonstrated that there are some 

conditions to the use of plane wave.  

In the following paragraph, we examine the 2D to check if the conclusions are the same. 
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 3.2.2 2D  

       The dimensional reduction in the spherical wave led to a big error for the Fresnel regime and 

convergence with the 3D for Fraunhofer regime. The task of this paragraph is to control if something 

changes when a plane wave is considered. 

Considering (3.1)-(3.2) and the observations of par.2.3, 2D variances for plane wave are defined as: 

 

                                                                                                                                             

                                                                                                                                             [Np²]     (3.13) 

 

         

                                                                                                                                               [rad²]   (3.14)    

 

Which have the same dependency on the angle was the spherical wave. Let’s see Fresnel regime first. 

 

• 2D Fresnel  

       With the usual consideration and following the steps to get (2.53)-(2.54), we obtain the asymptotic 

2D variances for Fresnel regime as: 

 

                                                                                                                                                      [Np²]   (3.15) 

 

    

                                                                                                                                 

                                                                                                                                                     [rad²]   (3.16) 

 

In (3.15) we find the factor 1.86 equal for our study of an incident spherical wave to a turbulent layer and 

equal to the study conducted by Fabbro and Feral [19] about an incident plane wave in a slab model. 

Also the phase is slightly higher than the real 3D as in spherical wave. It leads to a general conclusion: 

in Fresnel regime, the dimensional reduction has no problem only for the phase variance but for log-

amplitude it is necessary to take always into account a correction factor of 1.86, whatever the wave 

considered. 

• Fraunhofer regime 

         As expected, once again the weighing function tends rapidly to 0.5 so the variances are still the 

same: 
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(3.17) 

    

                                                                                                         (3.18) 

Considering the overall 2D in both regimes, we get two important results: 

1. Dimensional reduction is independent of the wave typology and distribution of irregularities 

(slab, layer). 

  

2. In Fraunhofer regime the variances have the same value for every wave typology, distribution 

of irregularities and spatial configuration, while in Fresnel regime only the phase has a 

negligible error varying one of these characteristics but the log-amplitude gets different values. 

 

In fact, as said in the first chapter, what really matters is the geometry because the real scenario is still 

the same. 

 

After these two chapters in which the attention has been focused on the analytical formalism, in the 

next part we implement our numerical model to check if our discussion is valid. 
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Chapter 4 

 

Numerical model 
 

      In the previous two chapters we largely dealt with the 3D and 2D analytical formulations of the 

scintillation regarding log-amplitude and phase variances for spherical wave (Chapter 2) and 

comparing them to plane wave formalism (Chapter 3). The limit of the derivations is that they are only 

valid for weak scattering. For this reason we want to implement a numerical model valid whatever the 

scattering condition. To do that, the starting point is from the Helmholtz equation in spherical 

coordinates under parabolic approximation, over which the Split-Step Fourier algorithm (SSF) is 

based. It allows considering separately refractive and diffractive effects, modeling the whole turbulent 

layer into a series of sub-layers in which the first effect is gathered into thin screens called Multiple 

Phase Screen (MPS).  

In this context, using a 2D-MPS resolution for the 3D configuration is computationally hard, thus it is 

clear the use of  the dimensional reduction.  

4.1 3D numerical resolution 

          As the Helmholtz equation is the same, it is possible to work on Electric or Magnetic field so we 

define a general field . 

Under the condition of chapter 2, therefore the general random wave equation (2.9) becomes: 

 

                                                                             (4.1) 

Where  denotes the Laplace operator which, in spherical coordinates, is: 

 

                                          
(4.2) 

 

Considering paraxial approximation, i.e. the angle with respect to the direction of propagation r really 

small  so that the transverse Laplacian reduces to: 
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(4.3) 

we have: 

 

                                                       
(4.4) 

 

                                                                   
(4.5) 

 

Once we have defined the equation in our reference system, let’s find a solution using the reduced field 

u: 

                            

                                                                  (4.6) 

 

where  and  . Considering that: 

 

                                                                                  
(4.7) 

         
 

We find the solution: 

 

                                                   
(4.8) 

 

Using parabolic approximation we can consider only the transverse Laplacian instead of the whole 

one, because of small variations are supposed near propagation axis (   and  )
                        

.The standard parabolic wave equation has the disadvantage of being limited to propagation in     

weakly inhomogeneous media at small angles with a preferred direction. This limitation may be 

overcome by expressing the parabolic equation in ray coordinates, neglecting the longitudinal 

diffusion along the rays. Different techniques to treat wider angles have been studied [20]. 

Thus, neglecting the second derivative with respect to r, (4.8) reduces to:
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(4.9)

 

 

And applying the Laplacian transverse (4.3) in (4.9), we obtain: 

 

                          
(4.10) 

 

Defining the 2D Fourier Transform of u with respect to the transverse plane, in this case angular : 

 

                              
    (4.11) 

 

We obtain a simple differential equation depending on r:                  

 

           
(4.12)  

 

Which gives the solution: 

                                                                      (4.13) 

 

Coming back to space domain: 

 

                                                                (4.14) 

              

           

For relation (2.10), the term and the change of phase due to the turbulence can be generally 

written as: 
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Such that equation (4.14) becomes: 

 

            

(4.16)  

 

Which can be compared with solution found in [21] [22]. Experiments for spherical but mostly  

incident Gaussian beam have been conducted in [23] [24] [25]. In fact it is similar to a spherical  

wavefront close. 

to propagation axis for narrow angles. 

(4.16) shows the Split –Step algorithm: 

thanks to 2D Fourier Transform, we manage to divide the problem studying separately refractive and  

diffractive effects. The second exponential term describes the free-space propagation between two  

consecutive screens depending on the square modulus of the wavenumber , while the first  

exponential expresses the refractive effect affecting the phase, due to the change of n depending on the  

turbulent medium. In Fig.4.1 a scheme of the model is proposed. 

 

 

Figure 4. 1: Scheme of the 3D model, 2D Multiple Phase Screen (3D PWE/2D MPS). Wave propagates in free space between 

two consecutive screens then its phase is modified by i-th screen 
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• Screens effect 

          In this model the reduced field propagates through a turbulent medium where the effects of the 

irregularities are expressed by the first exponential. In this way the turbulent layer is divided into sub-

layers, with thickness , whose inohomogeneities are compressed in thin screens perpendicular to the 

propagation axis. 

Considering i-th screen, we can write the relation between and , respectively the field before and 

after the screen, as: 

 

                                                     (4.17) 

 

Where is the value of the phase changed by i-th screen. The phase screen realizations are obtained 

by sampling a phase distribution whose statistical properties match the spectrum imparted by the 

medium as explained in the last paragraph. 

. 

• Free Space 

 Between two screens, u moves in free-space but we must pay attention on the effect of this scheme: 

it is not a classical free-space propagation because also the amplitude varies (in addition to the factor 

1/r of the spherical wave). Once the wave is out of the screen there is a mutual interference in the 

wavefront.
 

 

• Relation between refractive index and phase spectra 

         Due to (4.15), phase screen spectrum is related to the spectrum presented in chapter 1. We want 

to find this relation, which is fundamental for the iterative resolution scheme 3D PWE/ 2D MPS. 

Indeed, it defines the 2D transverse phase spectrum that must be considered to generate random phase 

screen  , as seen in the last paragraph. 

Recalling that < >=0, it follows that is a centred 2D random variable whose 2D spatial 

covariance function  is given by: 

 

                 

(4.18) 

 

Which is expressed with respect to the distances illustrated in Fig.4.3 where: 
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                                                                               (4.19) 

                                                                                                                                              (4.20) 

 

Changing the integration variable to difference w=r2 - r1 and sum 2r=r 2 + r1, equation (4.18) can be 

rewritten: 

                                   

(4.21) 

 

If  is large with respect to the correlation distance of the turbulent refractive index, the integration 

can be extended to infinity so that:  

 

                     
                                  (4.22) 

 

 

 

 

 

 

  

 

 

By 2D Fourier Transform we get the definition of phase spectrum:  

 

       

   (4.23)  

 

Substituting (4.22) in (4.23): 

 

                                   (4.24) 
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Figure 4. 2: Transversal plane defined by the curvilinear axes on which the covariance function depends 
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.  Expressing (4.24) according to the curvilinear axes (3.28)-(3.29), the integral reduces to: 

                                          
(4.25)

 

 

If  is large with respect to the correlation distance of the turbulent refractive index we get [22]: 

 

 

 

 

                                                                                                                                                           (4.26) 

  

and    are respectively the wavenumber  along the direction of propagation and 

modulus of the transverse wavenumber considered so far. For  we consider Von 

karman spectrum (1.16). This is fundamental for the iterative resolution scheme 3D parabolic/2D 

phase screens. Indeed, it defines the 2D transverse spectrum that must be considered to 

generate random phase screen , as seen later in the last paragraph. Successive realizations of 

are then introduced iteratively in the « Split-Step » resolution written in equation (4.16). The 

numerical resolution scheme defined in that way is thus a 3D-PWE/2D-MPS (3D-Parabolic Wave 

Equation/2D-Multiple Phase Screen) iterative scheme. 

4.2 2D numerical resolution           

         Hereby we derive similarly the model for 2D configuration, keeping in mind that the variation 

now is only in the vertical plane described by r and . 

Helmholtz equation is still (4.1), but in this case Laplacian term is: 

 

                                                        

(4.27) 

where is  the Transverse Laplacian in polar coordinates. 

After defining the equation in our reference system, let’s find a solution using the reduced field u: 
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                                                                      (4.28) 

     

where  and  . The transverse Laplacian of u and are related as: 

 

                                                                      
(4.29)     

so that (3.36) becomes: 

 

 

                                             
(4.30)     

 

Neglecting the second derivative with respect to r: 

 

                                                                                              
(4.31)   

            

 

and applying the Fourier Transform with respect to the transverse coordinate , we obtain a simple 

differential equation depending on r: 

 

                                              
(4.32)     

 

It gives the solution: 

                                                     (4.33)     

 

 

Coming back to space domain:  
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Where the turbulent phase screen is 1D and depends only on the azimuthal angle: 

 

                                    
[rad]

            
    (4.35)  

 

Thus the general expression for u is (Fig.4.4): 

 

 

 

                                                                                                                                                           (4.36)  

 

Comparing (4.36) to (4.16) one can note the same expression, considering that in 2D there is no 

dependence on .  

 This means that for the numerical scheme there is no explicit factor involved in the dimensional 

reduction, differently to what we found so far.     

All the other observations concerning the propagation obviously are still valid. Similarly it is necessary 

to derive the spectrum of the phase variation. In such conditions: 
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Figure 4. 3: Scheme of the 2D model, 1D Multiple Phase Screens (2D PWE/ 1D MPS). Wave propagates in free space between two 
consecutive screens then its phase is modified by i-th screen 
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and the dimensional reduction in the plane r-  results in the vertical cross section of the 3D 

propagation medium. Ever since, following the approach developed above for 3D, it comes:  

 

 

 

                                                                                                                                                           (4.38) 

 

Which can be compared to the result found in [19] for plane wave. 

In particular, using Von Karman model (1.16): 

 

                (4.39)  

 

where Γ  is the Gamma function. 

The numerical scheme 2D-PWE/1D-MPS defined by (4.36) allows considering turbulence dependency 

with range through successive realisations of the 1D random phase screen  consistent with . 

For the numerical theme, the spectrum is not 3D but a 2D version deriving from the compression of 

the overall energy of the turbulence in the vertical plane, as expressed in the integration on in 

equation (4.38). 

 All the processes treated in these two paragraphs are continuous obviously,  but the simulator works in 

discrete domain. For this reason we expose some techniques to adapt the screen formulations made so 

far and some conditions for the numerical implementation. 

4.3 Technical aspects for the numerical implementation 

4.3.1 Reduced field realization 

         In compliance with the previous analysis of free-space propagation, phase screens are 

implemented from the beginning of the layer to the receiver: inside the layer both refractive and 

diffractive effects are present while from its end up to the receiver only the last one. Thus, for this last 

part of the link, we considered in equations (4.16) and (4.36). 

The idea is to propagate until the receiver the reduced field taken equal to 1 on every point of the first 

screen. In order to calculate numerically log-amplitude and phase variances we used the well-known 

relations considering the reduced field on the last screen: 
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[rad²]

            
(4.41)     

  
 

 

Actually our simulator works in discrete domain so wavenumbers are, for 3D: 

 

                                                                                                                                    
(4.42)      

                                                                                                                                    
(4.43)   

    

Hence Discrete Fourier Transform (DFT) and its inverse (IDFT) for 2D are (1D is only azimuthal 

angle dependent): 

 

 
(4.44)     

       
 

 
(4.45)      

 

Where ,  and are sampling intervals in angular and wavenumber domain respectively 

and ,
 

.
 
In order to enlighten the computation we use the FFT, assuming N 

and M power of 2. In the Appendix C the explanation of the coefficients used in (4.44) and (4.45) is 

given. 

Let’s find . Comparing Fourier kernels of (4.16) and (4.44): 
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   (4.49)

    

 

Using the same approach for : 

 

                                                                                                  
      (4.50)

    

                                                               
    (4.51)

    

 

maxθ and are the azimuthal and longitudinal aperture angles respectively, as illustrated in 

Fig.4.5. 

 

 

 

 

 

 

 

 

 

      4.3.2 Criteria for phase screens 

      The application of the MPS propagation code requires that the field and the phase be specified at a 

discrete number of grid points. The number and spacing of these points must satisfy the following 

criteria, adapted from the ones of [26]:  

1) Phase distribution of a screen must adequately represent the actual phase 

2) Wave must propagate without angular aliasing 

3) Edge effects or angular scattering off the end of the grid must be minimal. 

 

1) Phase representation: 

 a) Adequate phase representation is assured if each phase-screen length L is at least 5 to 10 

times as large as the phase correlation distance or equivalently the outer scale: 

 

                                                 [m]             (4.52)
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where [m]is the dimension of the i-th screen. Due to the geometry of the scheme, 

illustrated in Fig.4.6, it is enough applying this condition at the first screen as the others 

increase the dimension with increasing distance. 

 

 

 

b)  At a given distance r, the change in phase from one grid point at  [m] to the next 

should be less than to satisfy the Nyquist sampling theorem. Mathematically: 

 

                                                    [rad]             (4.53)
    

 

where  and . In terms of the distance: 

 

                                                 [m]               (4.54)
  

  
 

between two samples, this constraint can be written: 

                                                          [rad]            (4.55)
   

 

      The variance of the derivative of the phase is related to the phase autocorrelation function [27]: 
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Thus in a mean-square sense, the above limit on the grid spacing may be expressed as: 
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[m]

               

  (4.57)
    

 

In this case it is enough applying the condition for the biggest sample which is the one taken on 

the last screen, the biggest one, as shown in Fig.4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

2) Wave Propagation:  

In order to adequately represent propagation in free space by the use of the Fourier transform 

relationships of (4.16) and (4.36), it is necessary that the various functions involved be 

accurately sampled. To satisfy the Nyquist sampling criterion, the difference in the function: 

 

                                                                          
(4.58)

 

must be less than  when evaluated from one value ofto the previous. Since the values 

are centred on zero, the maximum is in where N is the number of grid points. 

Hence the necessary condition is: 
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which gives for 1D MPS: 
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[ ]

    
(4.60) 

 

and for 2D MPS: 

 

                                   

 
[ ]

    
(4.61) 

 

To find the restrictive condition we have to consider that: 

 

                                                             [m]      (4.62)  

 

So the difference between the reciprocal distances is: 

 

                                                            
[ ]   (4.63) 

 

Clearly, there is no need to apply the condition at each step but it is enough to do that on the 

highest value of (4.63, i.e. for the smallest distance . 

However this condition may be relaxed in practice if the phase spectrum is very small at large 

values of the wavenumber . In that case, the high wavenumber values are cut off by the 

phase power spectrum and small inaccuracies in the phase spectrum are relatively unimportant. 

 

3) Edge Effects: 

Because of the discrete nature of the MPS grid representation, energy leaving one side of the 

grid appears on the other side. As the propagation distance r increases, this effect becomes 

more important. This aliasing must be controlled for a propagation solution to be valid. Since 

the scattering angle is given by: 

                                                                              
(4.64) 
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insure against edge effects it is necessary that the MPS grid size L be greater than r for each 

propagation step. Thus:  

 

                                                               
[m]     (4.65) 

 

This expression may be represented in a mean-square sense using (4.17): 

 

                                                        

[m]    (4.66) 

 

As for condition 1a), it is sufficient to consider the smallest screen, the first one which is placed 

at the shortest distance from the transmitter. 

Often using of guard bands on the edges of the grid is a helpful tool but is not required to 

prevent aliasing. 

 

4.3.3 Screens realization 

      The numerical technique to generate a 1D or 2D phase-screen realization of the MPS propagation 

code was developed at ONERA. The goal is to generate a stationary, random function  

which  represents  the  phase  evaluated  along  the MPS grid, sampled along longitudinal and 

azimuthal angles at steps  and  with n and m representing the n-th and m-th point on the grid.  

After generating a complex White Gaussian Noise (WGN) by the method described in [28] and 

assuming a discrete form of (4.26), the Fourier transform of the phase is defined as [29]: 

                                                     
(4.67) 

 

Where  is the distance from the transmitter, increasing at each iteration c=1,2,..Ns; in other words 
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(4.68)

   

            

 

In this way  is the sum of a sequence of Gaussian variables so its real and imaginary 

parts both have a Gaussian or normal probability distribution.  Since  the  phase  of  an  individual  

phase  screen is a real quantity,  one  may  choose  either  the  real  or  imaginary  part of

calculated in this manner saving computational time. It can be shown [30], [31] that  the  

choice of  , mentioned previously, gives the  phase as  a  stationary  

random  process whose  spectrum is . Note that the spectrum of an individual phase-

screen  realization  is  not  identically  the  desired  PSD; however,  the  average of many realizations is 

indeed . An  alternative  choice of  involving  replacement of the  random  

quantity WGN, with  a  complex  exponential of uniform  phase would  identically  yield 

 for  the  spectrum of every phase- screen realization [32]. In our simulator the IDFT is 

computed without considering the differentials so that, under this assumption and substituting 

(4.67) in (4.68) we create a 2D random phase screen: 

 

                                        

(4.69) 

Where we called the IDFT used by our simulator. 

For 1D screen we use the same steps getting: 

 

                                       

(4.70) 

Now we have all the elements to compute the numerical propagation of a spherical wave through a 

turbulent layer. In the following chapter we present the result of this method compared with the 

analytical expressions found in Chapter 2. 
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Chapter 5 

 

Comparison between analytical and numerical methods 
 

        In the following section we compare the formulas derived analytically in Chapter 2 (2.36) -(2.38), 

(2.41)-(2.42) for 3D and (2.53)-(2.54), (2.55)-(2.56) for 2D with the results found by simulations using 

equations of Chapter 4 ( (4.16) and (4.36) ), only considering spherical wave either in Fraunhofer or 

Fresnel regime. 

5.1 System characteristics 

        In this paragraph we present our results concerning a system working in 15km path with 

frequency varying from 5- to 30GHz, the Fresnel number from 0.1 to 10 and consequently the outer 

scale Los from 1 to 300m. The turbulent layer is 1km wide and it is located for three different 

positions:        

 

a) 0.1km far from the transmitter 

b) 7km far from the transmitter  

c) 0.1km far from the receiver (13.9km from the transmitter) 

It means we chose the main scenarios, i.e. when the irregularities are at the transmitter’s and receiver’s 

side and when they are in the middle of the path, in order to compare these results to the ones of 

Chapter 32.  Inner scale is fixed to 1mm and  is constant and equal to  inside the layer.  

A fundamental parameter is the aperture angle directly related to the dimension of the screens. For this 

reason we decided the height of the first screen and thanks to elevated distance transmitter-receiver 

(narrow angle) it was possible to use paraxial approximation getting the angular aperture. For the first 

screen dimension a value equal to  was enough for our purpose.  

We already discuss about the importance of the number of screens. In our case it was not the same 

along the path: 15 screens inside the layer and 8 from the layer to the receiver. The reason is that a lot 

                                                
2 In chapter 3 cases (a) and (c) considered the layer on the transmitter and on receiver respectively. Here it is 
not possible to use the same value for the first case because of numerical problem so we decide to enhance the 
distance in both cases to be coherent with the discussion. 

2
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2
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of screens are useful to describe signal variations inside the turbulence, in compromise with 

computational time. On the contrary, in the last part of the communication there is no classical free-

space propagation because of the diffraction due to Huygens’ Principle already explained in par.3.2.1. 

The latter is not so strong hence few screens are enough. From transmitter to the turbulence no screen 

is present as here there is free-space propagation. 

A numerical problem was based on dimensional configurations. For 3D we have 1024x1024 points per 

each 2D-screen so that we get smooth curves with few iterations per abscissa value; on the contrary for 

2D we must use 1024 Monte-Carlo repetitions to get a better representation, as the 1D-screens have 

only 1024 points. 

 

 

Figure 5. 1: 2D phase screen on the receiver. It is possible to note the variation of phase and log-amplitude due to the 

irregularities 

 

 

Figure 5. 2: Variation of log-amplitude and phase along the transverse direction on the last 1D screen 

 



Chapter 5 
 

           61 
 

In Fig.5.1 and Fig.5.2 we show the variability of the process. They are one realization on the last 2D 

and 1D phase screens for case b) with a fixed frequency equal to 5GHz, Los 100m. It means Fresnel 

regime with Fresnel number equal to 0.3.  

Fig.5.1 represents the 2D screen where the axes are the vertical and horizontal angular distances from 

the direct path. The variation of phase and amplitude can be noticed for the different colours in a range 

-0.4/+0.3 and +/-0.1 respectively. The independence of the two processes is clear because of the 

different weighting functions involved: for phase even small wavenumbers are important differently 

from log-amplitude. 

Another characteristic is that the variations are not sparse due to modelling of the turbulence in random 

correlated Gaussian noise; zones coloured by red denote dense irregularities. 

On the other hand, in Fig.5.1 variations are defined on the ordinates depending on the transverse 

direction. By this plot, the fast fluctuation of the log-amplitude around the average value are more 

evident.         

5.2 Graphical representations 

       In the figures below three kinds of curves are shown for log-amplitude and phase variances for 3D 

and 2D: 

  

- numerical green), concerning the simulation of the propagation of the reduce field u 

 

- asymptotic Fresnel (black) and Fraunhofer (red), from equations (2.36)-(2.38), (2.41)-(2.42) for 

3D and (2.53)-(2.54), (2.55)-(2.56) for 2D 

 

- full analytical (blue) 

 

The last one is considered because log-amplitude and phase variances computed in Chapter 2 are only 

asymptotic formulas: for Fresnel regime, spectrum was based on Kolmogorov model not the complete 

Von Karman’s while in Fraunhofer regime the weighting functions were approximated to the value 

0.5.  For such a reason, with the help of the simulator, we can plot also the complete analytical curves 

from equations (2.21)-(2.22) for 3D and (2.49)-(2.50) for 2D. 

This time we want to study the fluctuation of the variances depending on the frequency and outer scale 

so the abscissa stands for the Fresnel number . As expressed in the previous chapters when it is 

lower than 1 we are in Fresnel regime, otherwise we are in Fraunhofer’s. Log-amplitude variances are 

osL
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normalized by and phase variances by  in order to have a clearer representation. x1, x2 are 

the distances from the transmitter to the beginning and to the end of the turbulent layer. 

 

• Log-amplitude :

 

 

a) Transmitter side: R=15km   x1=1km   x2=2km 

 

Figure 5. 3: Log-amplitude variances when the layer is near the transmitter 

 

b) Mid-distance: R=15km   x1=7km   x2=8km 

 

         

 

Figure 5. 4: Log-amplitude variances when the layer is in the middle of the link 
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c) Receiver side: R=15km   x1=13km   x2=14km 

 

 

Figure 5. 5: Log-amplitude variances when the layer is near the receiver. 

 

The numerical curves do not match perfectly with the full analytical ones; this is probably due to the 

fact that a finite interval has been considered to calculate numerically the integral in the expressions 

(2.21) and (2.49). In 3D the mismatch is more severe. Anyway, comparing the numerica curves with 

the asymptotical ones we find  a validation of our model. 

Observing the course of the function, it is clear the effect of the normalization: 

 

- in Fraunhofer side, variance is constant and depends only on the thickness of the layer, so that 

the convergence value is always the same in all figures. 

 

- -in Fresnel side, variance increases exponentially (linearly in log-scale), in fact it is function of 

the variables and ko: 

 

                                            

 

[Np²]       (5.1)

     

which is an increasing function, considering an increasing abscissa with decreasing and 

. In this regime there are validations of two points of our discussion: the error due to the 

dimensional reduction from 3D to 2D and the reciprocity of the log-amplitude variance for 

spherical wave. For the first point it is clear that 2D curves are lower than the 3D ones because 

of the factor already mentioned. About the reciprocity it can be noticed that case a) and case c) 
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lead to the same variances and in these typesetting they are also the minimal, while in case b) 

when the layer is at mid-path, the variance is higher. This result complies with the observation 

exposed in Chapter II. 

 

• Phase 

a) Transmitter side: R=15km   x1=1km   x2=2km 

 

 

Figure 5. 6: Phase variances when the layer is near the transmitter 

 

b) Mid-distance: R=15km   x1=7km   x2=8km 

 

Figure 5. 7: Phase variances when the layer is in the middle of the link. 
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c) Receiver side: R=15km   x1=13km   x2=14km 

  

Figure 5. 8: Phase variances when the layer is near the receiver 

This time the normalization term is the constant  so that the effect is only a translation of the plot.  

 

- in Fresnel regime variance decreases as: 

 

                                                 
[rad²]       (5.2) 

                       

 

- in Fraunhofer regime variance is still decreasing because of the dependence on: 

 

                                                                                              (5.3)

   

                     

 

Hence phase variance generally decreases with increasing Fresnel number, becoming really low when 

Fraunhofer regime is clearly defined.   

Here the numerical curve matches the analytical in both configurations. 

It is not possible to see the reciprocity of the spherical wave because for all the three cases variance is 

the same both for 2D and 3D, in compliance with observations in par.2.2.1.2. 

The difference between 2D and 3D is barely noticeable so in Fig.5.9  we superposed the two numerical 

variances for case c) as an example. The error is negligible so for the phase there is no problem 

introducing a dimensional reduction both in Fresnel and Fraunhofer regime. 
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Figure 5. 9: Phase variances for 2D and 3D in case c). They almost match, so 2D is a good approximation of real 3D 
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Conclusion 
 

         The aim of the work was to study the scintillation for an incident spherical wave on a general 

tropospheric turbulence placed in a limited part of the communication. This is useful for terrestrial 

links or satellite uplinks where the irregularities are near the emitter and it is not possible to consider 

the plane wave approach. On the contrary, great efforts were already made to study scenarios where 

turbulence is near the receiver, as for satellite downlink or optical astronomy, always considering plane 

wave due to the distances involved. 

Firstly log-amplitude and phase variances have been derived analytically under weak scattering 

assumption, examining in detail how they change in relation to different parameters (wavelength, path 

length, etc..) and different configuration (3D or 2D).  Then we compared our results to the ones 

already developed for plane wave finding points in common and differences. 

After that, we develop a numerical model based on the Parabolic Wave Equation combined with 

Multiple Phase Screens that allows studying scintillation effects whatever the regime. 

Finally we compare the results of the two methods by simulations in order to validate the model.           

As commonly known, when the distance of the link is high, plane wave can be considered to detect the 

field at the receiver. Nevertheless we found out that the main problem does not concern the overall 

distance but the position of the layer along the path: only when it is not so much extended and when it 

is near the receiver the approximation is valid, obviously getting better for high distance transmitter-

receiver. In this case variances are the same, thus simplified model of plane wave is a useful tool. For 

this reason the real case of the spherical wave is overestimated for log-amplitude and underestimated 

for phase for all the other positions of the layer. In slab configuration the difference was quantitatively 

calculated as equal to 40%, but in our condition it is not constant, in fact it decreases with increasing 

distance transmitter-turbulences, starting with the worse value when perturbation is near the source. 

One important property of the spherical wave is the reciprocity, not present in the plane wave. This 

means that assuming two different scenarios where the turbulence is near the transmitter and where it 

is near the receiver, the log-amplitude and phase variances will be same. Actually we noticed that 

reciprocity influences most the log-amplitude than the phase due to the connection between the 

corresponding weighting functions and the spectrum of the fluctuations of refractive index. In fact it 

has high energy for small wavenumbers which are more important for phase weighting function, then 

it decreases rapidly to really small values. Hence, phase variance is considered constant whatever the 

position of the irregularities, log-amplitude variance symmetrical with respect the middle path where it 

is maxima. This point is valid only for Fresnel regime because we saw that in Fraunhofer zone 

variances are always the same for any position of the irregularities, in fact they only depend on the 

thickness of the turbulent layer. 
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The other theme was the analysis of the use of 2D instead of 3D configuration. We found the same 

results of the plane wave: in Fresnel regime for log-amplitude variance the factor 1.86 and for phase 

variance a negligible error, in Fraunhofer regime no changes. It implies that dimensional reduction has 

the same effect independently of the wave considered. 

In conclusion, scintillation has the same effect on phase in both regimes regardless of the spatial 

configuration and the position of the turbulent layer. On the other hand, amplitude variation keeps the 

same behaviour only in Fraunhofer but not in Fresnel regime, where it changes according to these 

characteristics. 

In Fraunhofer regime plane wave is always a good approximation but in Fresnel regime its use is 

restricted only when the irregularities are near the receiver and if the turbulence does not cover a big 

part of the link. 

Some points can implemented in the future. First of all, we have considered a constant value for 2
nC  in 

the spectrum formulation, but actually it varies in dependence on the altitude. So it is possible to divide 

a layer with different values of 2nC  into sublayers with the a constant value and applying our model for 

each of them. 

Anisotropy of the spectrum can be introduced, as we have considered isotropy assumption.  

Lastly other elements in geometry can be treated, as the multipath deriving from the reflections of the 

ground or  the antenna pattern etc. 
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Appendix A 
        Here we show the calculations which lead to the expression of log-amplitude and phase variances 

in 3D scenario for a spherical incident wave. 

From equations (2.15)-(2.18) amplitude and phase are: 

 

                                                       
                             [Np]           (A.1) 

                                                       
                            [rad]           (A.2) 

 

where               

                                                           

                              [ ]         (A.3) 

 

and  

                                                            

.                               [ ]          (A.4) 

 

with , ,   are defined in (2.16), (2.19), (2.20).  

Therefore, 3D log-amplitude variance  is given by: 

 

                                    [Np]           (A.5) 

 

Where is the spectrum of , defined in (2.16) and: 

 

                                                          
                                        (A.6) 

 

Similarly, phase variance  : 

 

                                                              
[rad²]          (A.7) 
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                                        (A.8) 

To evaluate the products  and , we introduce  ,defined as: 

 

                                  

.                             (A.9) 

In such conditions: 

 

                                                                                                          (A.10) 

 

and  

                                                                                                         (A.11) 

 

where * stands for complex conjugate. 

Considering , the x axis as the direct path transmitter/receiver ( ) and assuming 

narrow scattering angles, R-x is greater than transverse dimensions y and z so that (2.16) and (2.19) 

reduce to: 
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Consequently (A.9) becomes: 
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Where the turbulence is limited in the region [ , ] as shown in Fig.2.3. 
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(A.15) 

(A.14) reduces to: 

 

                                                                                                
(A.16) 

 

Defining the square of the wavenumber transverse to the direction of propagation  and 

after a change of variables, it is possible to solve (A.10) and (A.11) as: 
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We introduce the sum and difference coordinates u=x’’ – x’  and 2x=x’’ + x’ , and recalling 

trigonometric formulas: 
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                      (A.23)

        

                                         
                       (A.24) 

 

Reminding of: 

 

                                                                                 
(A.25) 

 

and due to f(x).kx>>1 , we obtain: 

                                                                                                                
 
(A.26) 

            
 (A.27) 

 

                 

(A.28) 

 

So now we can solve the variance expressions: 
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       [rad²] (A.30) 

Passing to spherical coordinates  where  and , as shown in 

Fig.A.1: 
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New formulations are: 

 

         
[Np²]   (A.31)

 

         
[rad²]   (A.32) 

 

Because of the assumption of isotropy it can be considered  instead  so that 

. 

Considering impulse properties, we get log-amplitude and phase variances (2.10): 
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Appendix B  
       Here we want solve the integrals in x variable of (2.25) and (2.26), which lead to the expressions 

of the spherical weighting functions for phase and log-amplitude.  

They are:
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Changing  we have:   
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Using a well-known trigonometric expression: 
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 Changing variable again, in order to obtain the Fresnel integrals: 
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Same for sine function. 

where   and  are the Fresnel Integrals. 

 

We finally reach the solution for a and B as: 
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Appendix C  
NORMALIZATION FACTORS IN DFT AND IDFT 

       In the following appendix we explained where the coefficients used for DFT and IDFT come 

from. 

We show mono-dimensional Fourier transforms which can be extended to 2D: 

 

                                                                                           
(C.1) 

 

                                                   
                                     (C.2) 

 

Assuming (4.42) and substituting (C.1) in (C.2): 

                                                           

                                                                                                                                         
(C.3) 
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So, to make the equality be true, the product . It means one could use this factor in the 

DFT without using any normalization in IDFT; for example. 
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