
POLITECNICO DI MILANO
Corso di Laurea in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

Algorithms for Finding Leader-Follower
Equilibrium with Multiple Followers

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Relatore: Ing. Nicola Gatti
Correlatore: Ing. Stefano Coniglio

Tesi di Laurea di
Stefano Conti, matricola 736590

Anno Accademico 2012-2013

Contents

Sommario 7

1 Introduction 13

2 Security problems 17
2.1 Non-cooperative games . 18

2.1.1 Pursuit-evasion games 18
2.2 Commitment . 19

2.2.1 Limitations of commitment 22

3 Security Games 25
3.1 Problem description and notation 25
3.2 Compact form representation 29
3.3 Bayesian extension . 31
3.4 Complexity . 33

4 Algorithms 35
4.1 Multiple-LPs . 35

4.1.1 The MULTI-LP algorithm 35
4.2 RUGGED . 36

4.2.1 The algorithm . 37
4.2.2 CoreLP . 38
4.2.3 Defender Oracle and Attacker Oracle 39

4.3 DOBSS . 40
4.3.1 MIQP . 41
4.3.2 Bayesian extension and DOBSS 43

4.4 HBGS and HBSA . 45
4.4.1 The tree structures . 46
4.4.2 Removing unfeasible actions 47
4.4.3 Bounds . 47
4.4.4 HBGS algorithm . 48

1

4.4.5 HBSA . 49
4.4.6 Quality bounds . 51

4.5 ERASER . 51
4.6 ORIGAMI . 52
4.7 Porter-Nudelman-Shoham’s algorithm 54
4.8 Nash equilibrium MIP . 55
4.9 Nash LCP and Lemke-Howson algorithm 56

4.9.1 Randomizing over Lemke-Howson paths 60
4.10 Leadership with correlated followers 61

5 Real world applications 63
5.1 ARMOR . 63
5.2 GUARDS . 65
5.3 IRIS . 67

6 Multi-follower games 69
6.1 Problem analysis . 69

6.1.1 Payoffs structure . 70
6.1.2 Compliance . 71

6.2 Mathematical formulation . 72
6.3 Security games with two attackers 74

6.3.1 LPFP: Leader Pure Followers Pure 75
6.3.2 LPFM: Leader Pure Followers Mixed 77
6.3.3 LMFP: Leader Mixed Followers Pure 84
6.3.4 LMFM: Leader Mixed Followers Mixed 89

6.4 Polymatrix security games with two attackers 93
6.4.1 Polymatrix LPFP . 94
6.4.2 Polymatrix LMFP . 95
6.4.3 Polymatrix LPFM . 97
6.4.4 Polymatrix LMFM . 100

6.5 Experimental results . 102

Bibliography 113

2

List of Figures

2.1 An instance of inspection game. 21

3.1 Security game in normal form. 29
3.2 Compact form representation of the security game described

in figure 3.1. 30

6.1 An example of multi-follower game. 71
6.2 An example of infeasible game. 85
6.4 An example of a game admitting a LMFP equilibrium. 85
6.3 Plots showing how the utilities of the followers in game in

Figure 6.2 change by varying the leader strategy, once fixed
the followers’ pure strategies. The upper plots shows the
utility of the first follower while the lower plots shows the
utility of the second follower. The left plots shows assume
the other follower playing his first pure strategy while the
right plots assume that the other followers play his second
pure strategy. The red line represents the utility the player
gets when he plays his first action, while the blue line is the
utility he gets by playing his second action. We note that the
followers’ preferences do not change for any mixed strategy
the leader can commit to. 86

6.5 Plots showing how the followers’ utilities change with respect
to leader strategy in game 6.4. The region highlighted is the
only feasible region of the leader strategy domain. 87

6.6 The left plot shows the relative frequency of LPFP-feasible
instances compared to the theoretical probability. The right
plot shows how the LPFP solution value grows with the
number of players’ actions, in RandomGame instances. 103

6.7 The left plot shows the defender objective in BidirectionalLEG
instances while the right figure show the same result over
CovariantGame instances. 104

3

6.8 The left plot shows the relative frequency of feasible instances
in polymatrix uniform random games. The right plot shows
the distribution of the objective values. 104

6.9 Figure (a) shows the solution times of LPFM MULTI-
MINLP algorithm applied on RandomGame instances. Figure
(b) shows the performance of the same algorithm over
CovariantGame instances. 105

6.10 On the left figure we show the performance of MULTI-LCP
with correlated equilibrium as upper bound. On the right
figure the upper bound used is the best leader’s payoff in the
followers subgame. Both the experiments were conducted over
RandomGame instances. 106

6.11 (a) Performance of LPFM MULTI-MINLP with minimization
of leader’s utility. (b) Performance of single MINLP
formulation with maximization of leader’s utility. (c)
Performance of single MINLP in polymatrix games. All these
experiments were conducted over RandomGame instances. . . 107

6.12 (a) Performance of LPFM MULTI-MINLP with minimization
of leader’s utility. (b) Performance of single MINLP
formulation with maximization of leader’s utility. (c)
Performance of single MINLP in polymatrix games. All these
experiments were conducted over RandomGame instances. . . 108

6.13 Solution times of LMFP algorithms. 109

4

List of Tables

3.1 Table of symbols. 26

6.1 Calculated theoretical probability of having a LPFP-feasible
multifollower game depending on the number of actions per
player, supposing followers having the same number of actions. 76

5

6

Abstract

The problem of ensuring security in crowded areas as well as areas of
economic or political relevance has become a matter of growing interest in
the last few years. The limited amount of resources i.e. money, personnel
and equipment, makes it prohibitive to provide a complete coverage of the
threatened targets at all the time, hence an efficient resource allocation policy
is needed. Moreover, any potential attacker would be able to observe the
defender’s strategy before choosing a target in order to exploit any potential
weakness.

A new branch of Game Theory, namely Security Games, has been
successfully applied to these multiagent problems in the last decade, as a
way to calculate an optimal defense policy. In this work we provide the state
of the art of Security Games describing issues and theories at the basis of the
algorithms which are the core of most advanced security software. A critical
assumption of those algorithms is the hypothesis that only a single attacker
could decide to attack a structure at the same time, then, in the second
part of the work, we drop this assumption allowing the existence of multiple
concurrent attackers. Under this general assumption we analyze different
scenarios in which defender and attackers are allowed or not to play mixed
strategies by providing an analysis of the difficulty of finding an optimal
solution in the different cases.

7

8

Sommario

Negli ultimi anni il problema di garantire la sicurezza di luoghi affollati
o importanti dal punto di vista politico o economico è molto cresciuta.
Questi luoghi sono costantemente esposti alla minaccia di organizzazioni
terroristiche o di persone imprevedibili e pericolose o al contrabbando di
armi e droghe. Garantire la sicurezza di questi luoghi spesso richiede
cospicui investimenti, in termini di personale qualificato e mezzi sofisticati.
Questi costi rendono economicamente meno efficienti queste infrastrutture,
per esempio stadi, porti, aeroporti o stazioni ferroviarie, che devono quindi
scaricare i costi direttamente sugli utenti o sull’intera comunità, riducendo
inoltre la massima capacità di flusso della struttura. Il più delle volte è quindi
impossibile garantire in ogni istante una protezione completa dell’intera area,
poiché costi e ritardi risulterebbero insostenibili.

Diventa dunque necessario elaborare una politica di allocazione delle
risorse che garantisca adeguati standard di sicurezza pur riducendo al
minimo i costi. Tuttavia, l’allocazione di un numero limitato di risorse su
un’area estesa o un perimetro può introdurre debolezze critiche nel sistema
di sicurezza che il più delle volte un eventuale aggressore può scoprire
semplicemente osservando il sistema dall’esterno, senza ricorrere a strumenti
d’indagine costosi e rischiosi.

Un approccio scientifico a questo tipo di problemi ci viene fornito da
un nuovo ramo della Teoria dei Giochi, sviluppatosi negli ultimi anni, i
security games, il cui scopo è quello di calcolare la strategia di difesa
ottima in scenari multiagente nei quali un difensore debba proteggere diversi
bersagli dall’aggressione di uno o più attaccanti. Nella prima parte di
questo lavoro ci occuperemo di fornire una dettagliata sintesi dello stato
dell’arte dei security games, analizzandone la storia e i problemi e le teorie
che stanno alla base degli algoritmi che costituiscono il cuore dei principali
sistemi informatici progettati per difendere strutture reali, come per esempio
l’aeroporto internazionale di Los Angeles.

9

Tutti gli algoritmi finora proposti, però, si fondano sull’ipotesi che un
solo aggressore possa agire nello stesso momento, applicando l’equilibrio
di Stackelberg come concetto di soluzione. Nella seconda parte del lavoro
estenderemo il concetto di security game al caso multifollower, ovvero il caso
in cui più di un attaccante possa agire contemporaneamente, proponendo
diversi approcci risolutivi a seconda che i giocatori possano o meno giocare
in strategie miste e a seconda che gli attaccanti tendano o meno a collaborare
con il leader. Infine, nell’ultima parte del lavoro, eseguiremo un’analisi delle
prestazioni degli algoritmi proposti, eseguiti su istanze di giochi random.

10

12

Chapter 1

Introduction

“Leadership is the art of getting someone else to do something you want done
because he wants to do it.”

Dwight D. Eisenhower

The problem of ensuring security in crowded areas as well as areas of
economic or political relevance has become a matter of growing interest in
the last few years. These scenarios are often large in scale such as coasts and
ports [2], airports [35, 36], urban road networks [19], transportation networks
[40] and petroleum or electricity distribution systems [7]. The critical areas
of these systems often correspond to large vulnerable infrastructures whose
disruption would deteriorate the whole system’s performance, causing a large
loss of money for each hour of disservice. This, combined with the fact that
an attack to these infrastructures would potentially result in a large number
of dead and wounded, makes necessary the investment of large amounts of
money to provide an adequate level of security to vulnerable areas. The
budget for this purpose is often limited, while to protect these areas, many
different security activities must be performed, depending on the domain,
for example canine patrols, passenger screening, traffic checkpoints etc. The
limited amount of resources i.e. money, personnel and equipment, makes
it prohibitive to provide a complete coverage of the threatened areas at all
the time, hence an efficient resource allocation policy is needed. However,
deterministic scheduling of resource allocations would allow a hypothetical
attacker to observe the defender strategy and possibly exploit any predictable
pattern in it, in order to launch a better planned attack.

A randomized scheduling is therefore needed to prevent pattern
predictions but a uniform randomization strategy would not take into
account neither the different values of each area nor the intelligent behavior

of the attacker. Conventional risk analysis consists on calculating a fixed
probability distribution over the targets, applying, for example, the Threat
Vulnerability and Consequence (TVC) model [22]. In this type of analysis
the allocation of resources in defense of the targets is weighted on the value of
the target, its vulnerability and the probability of being attacked. However
even these methods fail to model the rational behavior of the aggressor, thus
reducing the efficiency of the solution for the defender. In fact, the attacker
is supposed to be able to observe the defender strategy and he would choose
to attack the target that maximizes his own expected utility function, so, in
order to discourage the aggressor from attack, the target with the maximum
utility should have an utility lower than the attacker’s costs. In most cases,
considering the vulnerability of the targets and the relatively low costs for
the attacker, this would mean an unaffordable investment of resources for
the defender.

Game Theory provides some attractive techniques to optimally solve
these multiagent problems, finding an optimal unpredictable resource
allocation strategy, by taking into account both the different value of each
target and the rational and adaptive behavior of the aggressor. Solution
concepts such as Nash equilibrium and Stackelberg equilibrium has been
found appropriate to determine an optimal defender strategy in security
domains thanks to the relative ease of modeling a real world scenario with a
two-player game and the quality of the solution provided.

The main problem when trying to apply Game Theory to security
problems is the large size of typical real-world problems. In fact the size of
the action space of the defender grows combinatorially with the number of
the targets to protect and the resources available, making necessary the study
of more efficient algorithms. The large size makes also difficult to create the
game matrix, for example when payoffs are periodically manually entered by
a user, also introducing solution inefficiencies due to potential human errors.
Finally, most of the real-world scenarios present hard scheduling constraints
making the problem far more difficult to solve.

In the first part of this work we describe the nature of security problems
and the Stackelberg equilibrium solution concept, then we present a summary
of the most efficient algorithms recently designed to deal with these problems
and some real-world applications of these algorithms.

• Chapter 2: we introduce some Game Theory concepts necessary
to understand the following of this work, focusing in particular on
commitment.

14

• Chapter 3: we present a mathematical formulation of the leader-
follower problem affording also Bayesian extension and compact form
representation. At the end of the chapter we briefly address the
complexity issue.

• Chapter 4: we describe the details of the algorithms proposed in
recent years for solving complex real world security problems. Later
in the chapter we also describe the most famous algorithms for Nash
equilibrium calculation because it will be used as part of multi-follower
equilibrium, when the leader plays in pure strategies.

• Chapter 5: we describe the most relevant examples of the application
of security games to real world large-scale problems, which rely on the
algorithm described in the previous chapter.

• Chapter 6: we analyze how the problem changes when the defender
has to deal with more than one single attacker and we propose some
algorithms to calculate an optimal defender strategy. We start with
formulating some hypothesis about the multi-follower scenario such as
players’ behavior and payoffs’ structure. We then analyze four different
problems according to whether the players are allowed to play in mixed
strategies or not. Finally we restrict the multi-follower scenario to
polymatrix games analyzing how the problem formulation changes. In
the last part of the work we provide an analysis of the performance
of the proposed multi-follower algorithms over uniform random game
instances.

15

16

Chapter 2

Security problems

Security problems concern a wide range of very different scenarios with
heterogeneous security activities, spacing from computer network security
to border patrolling. However, an issue common to all the security problems
is the resource allocation task [21]. For example an agent tasked to protect
a urban road network aims to find the allocation of the minimum number of
road checkpoints that provides the maximum level of protection [19], while an
agent responsible for patrolling a perimeter tries to minimize the probability
of intrusion as well as the number of agents deployed [3].

In all these problems it is important to find the right compromise between
the costs of the system and the level of security provided. In more critical
scenarios, such as national security scenarios, the level of security is fixed and
the task of the planners is to minimize the number of resources needed to
satisfy those requirements. In less critical scenarios, instead, when security is
important but its price has to be small compared to the economical relevance
of the activity to protect, the number of resources is limited and the task is
to optimally allocate them to provide the highest level of security possible.
Optimization gets growing importance as the cost of the single resource
grows, as in the missile ballistic defense scenario [6], as well as the complexity
of the system increases, such as in the FAMS domain [40]. In this work we
focus the attention on the latter type of problem, which is harder to solve
and then more interesting to study.

The peculiarity of security problems compared to classical optimization
problems is the rational behavior of the attacker. This means that the
attacker reasons not only about the value of the targets or the risk associated
to them, but he’s also able to reason about the defender’s expected behavior.
Knowing this, the defender can reason about the strategy that the attacker
would probably adopt, in order to maximize his own expected utility.

17

2.1 Non-cooperative games

The class of non-cooperative games, introduced by Nash [30] in 1950, includes
a wide range of problems where two or more self-interested agents act
independently pursuing their own interests. This means that the agents
only try to maximize their own utility regardless of the payoffs obtained by
the other players. Sometimes this implies some kind of collaboration between
players which is however the result of two (or more than two) players’ selfish
behavior and it cannot be enforced in no other way than changing some of
the payoffs of the game. The world is full of examples of this kind of games
making Nash’s Theory at the center of many disciplines, from Economy to
Social Science.

2.1.1 Pursuit-evasion games

A more specific family of non-cooperative games, called pursuit-evasion
games, was described by Isaacs [17] in 1965. In these games, two players,
generally called patroller and evader, compete to maximize their own utility:
the evader tries to minimize the probability of detection, while the patroller
is tasked to capture the evader. In the first formulation this game model has
been largely applied to differential games with continuous time and variables,
such as missile avoidance in air and naval combat [17] . Later, in 1976,
Parsons presented a discrete version of pursuit-evasion games, where the
players move in turn over a graph [33]. This family of games covers a wide
range of different problems which can be roughly classified on the basis of
the mobility of the players, as follows:

• search games with mobile patroller and immobile evader. In this game
model the patroller inspects the environment, searching the evader,
which cannot move from his cache. This model is useful when the evader
finds difficulties while moving in the world, while the patroller has a
significantly higher mobility. One example of a real-world application of
this game model in security scenarios is the scheduling of bomb-sniffing
canine patrols at Los Angeles International Airport (LAX) [35] when
dealing with fixed bombs.

• ambush games with immobile patroller and mobile evader. In this
model the evader tries to attack one or more targets by moving over
a graph, while the patroller allocates his immobile resources over some
arcs or nodes of the graph. This model is useful when the patroller
cannot move his resources frequently, due, for example, to the costs in

18

terms of money or time. Two examples of real-world applications in
security problems are ARMOR, which schedules road checkpoints at
LAX [35] and RUGGED project which is still at an embryonic stage
[19].

• hider-seeker games and infiltration games with mobile patroller and
mobile evader. In these models the evader tries to reach a target
protected by a mobile patroller. These models are widely used especially
in perimeter patrolling and intrusion detection. One example of real-
world application of the hider-seeker game model is IRIS [40] which
is tasked to schedule Federal Air Marshals (FAMS) patrols onboard of
U.S. flights in order to deter hijackers and terrorists. An example of
application of the infiltration game model is, again, the scheduling of
canine patrols in ARMOR [35] when facing suicide bombers or other
mobile aggressors.

2.2 Commitment

The classical formulation of these game models assumes the players to plan
their strategies simultaneously. Under this assumption, the best-known
solution concept is Nash equilibrium [30].

Definition 1 (Nash equilibrium). A Nash equilibrium is a strategy such that,
if played by all the players, no one gets advantage by defecting individually
from that strategy.

However, in most of the real-world security problems, the aggressor is
supposed to observe the strategy of the defender before choosing his attack
strategy. Moreover, in most of the cases the aggressor is able to collect
all necessary information from public sources, without the need of resorting
to costly or illegal means [7], making useless, or at least less effective, any
attempt to hide the defense policy. At first glance this appear to be a great
advantage for the attacker, which can accurately plan his strategy to achieve
the best result for himself. Actually, by definition, if the attacker observes the
defender playing the Nash equilibrium, he will play Nash equilibrium too and
the defender is not damaged by the attacker ability to observe. However there
could be more than one Nash equilibrium, hence the problem of choosing the
equilibrium with the highest expected reward arises. Moreover, in general-
sum games, supposed the ability of the attacker to observe, even the best
Nash equilibrium may not be the optimal solution concept, thus making
the defender needing more resources to improve his expected utility up to

19

the levels required by the application domain. Despite these unfavorable
settings, the ability of the attacker to observe can be read as the ability
of the defender to commit to a strategy, without altering the nature of the
problem, making possible the application of better solution concepts.

The advantage of commitment ability has been shown for the first time
by Heinrich Freiherr von Stackelberg (1934) who applied it to the Cournot’s
duopoly model [42]. In this model two firms have to plan an optimal
production policy by taking into account the other firm’s production policy
as well as the market demand. In particular, while Cournot assumed two
firms which choose their production quantities simultaneously, Stackelberg
showed that if an incumbent company, named leader, has to change its
production policy as another company, the follower, entries in the market,
she would take advantage on committing to a certain production quantity,
such that the best response of the follower would maximize the leader’s
profit. The optimal strategy to commit to is called Stackelberg equilibrium
or leader-follower equilibrium. However the equilibrium concept proposed
by Stackelberg was defined only in pure strategies. This is not good for
security problems in general, because if the defender allocates its resources
deterministically, under the common assumption of limited resources, the
aggressor can safely attack one of the unprotected targets, or the target with
the best expected payoff in general.

The advantage of committing to mixed strategies was first shown by
Maschler [28] in 1966, who applied it to inspection games which are a
modified version of search games. The application of Stackelberg equilibrium
concept to security games has started to receive significantly more attention
since, in 2004, von Stengel and Zamir [43] demonstrated not only that a
leader-follower equilibrium always exists, although under certain restrictions,
but also that committing to mixed strategies in two-players games never
hurts the leader. In fact, the leader is always allowed to commit to a Nash
equilibrium mixed strategy, which always exists, thus making the leader-
follower equilibrium never worse than the best Nash equilibrium of the game.
Hence the following proposition:

Proposition 1. In a leader-follower two-player game the utility obtained by
leader in the best Nash equilibrium represents a lower bound for the value of
the leader-follower equilibrium.

For example consider a simple instance of inspection game where an
inspector (the leader) can choose if to inspect (I) or not (N), while the
inspectee can choose if to act legally (l) or to cheat (c). The payoff matrix
of this game is shown in Table 2.1. When the inspectee acts legally, the

20

inspector has to pay a cost for the inspection, while he pays nothing if he
decides to not inspect. As we can see by observing the first column, the
inspectee is not affected by the inspector strategy when he decide to act
legally. However, if the inspector decides to never inspect, the inspectee
would have an incentive to cheat and the inspector would be damaged from
this. So, the inspector should decide to inspect, sometimes, in order to
dissuade the inspectee from cheating and to partially repay the costs of the
other vain inspections as well as the costs of undetected cheating.

a b

A
4

3

1

−3

B
4

−3

−1

−4

Figure 2.1: An instance of inspection game.

This game has only one Nash equilibrium in mixed strategies where the
inspector decides to inspect with probability 1

10 and the inspectee cheats
with probability 1

4 . In this equilibrium the expected utility for the inspector
is −2 while the expected utility of the inspectee is 1. It is interesting to note
that in this equilibrium, although the inspectee sometimes cheats, damaging
the inspector, his utility is exactly the same he would get by acting always
legally, which could seem to be a slightly irrational behavior. Anyway if
he would do so, the inspector would be induced to never inspect. From this
absence of coordination comes the will of the inspectee to cheat even without
a direct utility improvement for him.

Now let us see how the outcome of this game would be improved for the
inspector by giving him the ability to commit. Immediately we note that
the inspector, now the leader, could improve his utility by committing to
a strategy where he always inspects. In this case the inspectee, that now
is the follower, would prefer to always act legally. In this leader-follower
equilibrium the expected utility of the leader is −1, which is better than
the value of the Nash equilibrium calculated before. Moreover we can see
that if the leader commits to a mixed strategy he could further improve his
utility. For example if he commits to a mixed strategy where he inspects with
probability 0.99, he would get an expected utility of −0.99, while the follower
still prefers to act always legally. In general we observe that the leader can
change his strategy until the follower is not induced to cheat. This limit
strategy is I = 1

10 , which in this case coincides with the Nash equilibrium
strategy, although this is not true in general. The great difference between

21

this Stackelberg equilibrium and the Nash equilibrium calculated before is
that now the follower will never choose to cheat, because he would obtain
a lower utility. Actually in this strategy the follower is indifferent between
l and c, but he still chooses to always act legally. In fact, if the follower
decides to cheat with a certain probability, he would not take advantage
from it while the leader would result damaged. However, if the leader plays
I ≥ 1

10 + ε, with ε arbitrarily small, the follower is induced to always act
legally, while the expected utility of the leader substantially does not change.
This property is known as compliance, and it is the basis of the commitment
theory [28], providing stability to Stackelberg equilibrium.

2.2.1 Limitations of commitment

As we seen in the previous paragraph Stackelberg equilibrium qualities match
very well to the characteristics of most real-world security problems, making
it the more natural solution concept to this kind of problems. Nevertheless,
there are some conditions under which the advantage of committing no longer
holds and committing could even damage the leader. In this section we
describe three cases which are of interest in the domain of security problems.

• Games with more than two players. Security problems with more than
one attacker can be modeled as games where only the first player,
the defender, has the ability to commit, while the other players play
a simultaneous game. In a strictly competitive game this equals to a
game where the first player induces a certain subgame by committing to
a mixed strategy and the remaining players play according to the Nash
equilibrium solution concept. However, as shown by Zamir and von
Stengel, there are some games, such as team games, where commitment
generally hurts the leader because it allows the followers to cooperate
in order to achieve the best payoff for them. In this case the property
for which the payoff of the leader in the leader-follower equilibrium is
never worse than the payoff in the best Nash equilibrium of the game
is not valid and in general this property no longer holds for games with
more than two players [43].

• Games with irrational adversaries. All the solution concepts of Game
Theory such as Nash equilibrium and Stackelberg equilibrium rely on the
assumption that all the players are rational and selfish. The rationality
of a player strongly relies on the assumption that he perfectly knows his
own payoffs in all the states of the game and he chooses his strategy in
order to maximize his own payoff. Moreover to be able to effectively

22

commit to a strategy the leader must also know the payoffs of the
follower. This concept is known as common knowledge. However,
in real-world security problems this assumptions could be not always
true. The attacker may not always be a rational agent or the players
may be rational but not able to exactly evaluate the payoffs of the
adversary in every state of the game. Both of these conditions result
in a mismatch in the common knowledge damaging the goodness of the
committed strategy. To solve this problem, McKelvey and Palfrey [29]
introduced quantal response model (QR) to effectively predict human
behavior. This model was later adopted in the PROTECT system
to depict rationality imperfections typical of human like reasoning [2],
providing an increased robustness to the solution with respect to the
perfect rationality model.

• Games with uncertain observability. As we said, one assumption on
which Stackelberg equilibrium rely is the common knowledge concept,
according to which both the players are mutually aware of the payoffs
of the opponent. Actually, Stackelberg equilibrium does not need the
follower to know all the payoffs of the leader in all the states of the
game, but he only needs to know his own payoffs and the strategy to
which the leader committed to. Nash equilibrium, instead, needs also
the follower to know all the leader’s payoffs in order to calculate the
equilibrium strategy. This less restrictive condition could be a point
in favor of Stackelberg equilibrium against Nash equilibrium. However,
the whole concept of leader-follower equilibrium relies on the ability
of the follower to observe the leader strategy. In real-world security
problems it may be difficult or costly for the follower to exactly analyze
the leader’s security policy, think for example of the FAMS domain with
undercover Federal Air Marshal deployed on a national scale. In such
situations the leader may prefer to play a simultaneous game according
to the Nash equilibrium solution concept. An algorithm proposed by
Korzhyk, Conitzer and Parr [24] tries to solve this defender’s dilemma
by introducing a Nature node which sets a probability to determine
whether the follower is able to observe the leader’s strategy or not.
Nevertheless, this algorithm actually changes the leader’s committed
strategy that should have again a chance to be observed by the follower.

In the next section we provide a formal definition of Security Games with a
summary of the notation used following in this work. All the problems and
algorithm described rely on the assumption of rational adversaries with the
ability of fully analyzing the defender’s strategy. Finally, in the last section,

23

we extend the problem to games with two followers where the followers are
not able to achieve full coordination.

24

Chapter 3

Security Games

The objective of this section is to provide the definition of mathematical
concepts and notation used hereafter in this work. After the general
description of Stackelberg problems we focus our attention on compact form
representation which allows the application of efficient algorithms, described
in the following section, and then on Bayesian extension, which allows to
deal with problems in which the adversary type is unknown a priori. Finally
we address the problem of computational complexity.

3.1 Problem description and notation

Security games are a special case of pursuit-evasion games where a set of
agents Θ tries to defend a set of targets T from the attacks of a set of agents
Ψ. In literature, most of the problem formulations, assume |Θ| = 1 where the
singleton agent d ∈ Θ is generally called defender or leader, referring to the
solution concept adopted. This assumption, besides fitting most of the real-
world security problems’ needs, makes the problem easier to solve, allowing
the formulation of more efficient algorithms that otherwise, in the case of
multiple competitive defenders, could not be so easily applied. Furthermore,
we note that a single defender agent does not always identify a single
individual in the real-world, but could also refer to a team of heterogeneous
individual with the same interests, coordinated by a single head, for example
police force or a security agency or even a set of security agencies, even
thought animated by a cooperation spirit rather than a competitive one.
In this section we also assume |Ψ| = 1, calling the agent a ∈ Ψ attacker or
follower, in order to describe the general game formulation that underlies all
the literature algorithms later analyzed in this work. The complete notation
used in this work is shown in Table 3.1.

Symbol Definition
d Leader, Defender
a Follower, Attacker
T Set of targets
D Set of defender’s strategies
A Set of attacker’s strategies
S Support: set of pure strategies played with positive

probability
Λ Set of attacker types
Pλ Probability of facing an attacker of type lambda
δ Array representing a defender’s mixed strategy
ρ Array representing a attacker’s mixed strategy
δi Probability assigned to the pure strategy i when the

defender plays the mixed strategy δ
ρj Probability assigned to the pure strategy j when the

attacker plays the mixed strategy ρ
Ud(i, j) Utility that defender gets when he plays i and attacker

plays j
Ua(i, j) Utility that attacker gets when he plays σΘ and defender

plays σΨ

Uλd (i, jλ) Utility that defender gets when he plays i and attacker of
type λ plays j

Uλa (i, jλ) Utility that attacker of type λ gets when he plays i and
defender plays j

Vd Expected utility of the defender when at least one player
plays mixed strategies

Va Expected utility of the attacker when at least one player
plays mixed strategies

S Stackelberg equilibrium (not to be confused with support)
N Nash equilibrium

Table 3.1: Table of symbols.

26

By abstracting the nature of real-world problems, the game can be
generally formulated as a normal form game by identifying D as the set
of the defender’s pure strategies and A as the set of the attacker’s pure
strategies. The outcomes of the game are represented by a bimatrix, where
the single outcome only depends on the strategy adopted by the players.
Here we define Ud(i, j) as the payoff obtained by the defender when playing
the pure strategy i ∈ D while the follower plays j ∈ A and we define Ua(i, j)
as the payoff of the attacker in the same status.

Ud, Ua : D ×A −→ R (3.1)

A defender’s pure strategy generally refers to an allocation of resources
over the set of targets, or sometimes schedules, while each pure strategy of
the attacker corresponds to a single target to attack, which means T = A.
Both attacker and defender are allowed to play mixed strategies, this means
to assign a probability distribution over the set of pure strategies. Here
we call δ a mixed strategy for the defender and ρ a mixed strategy for the
attacker. When playing randomized strategies the outcome of the game is
no longer deterministic, then it has to be expressed as an expected value,
which can be calculated as the sum of the bimatrix payoffs weighted with
the probability distributions:

Vd(δ, ρ) =
∑
i∈D

∑
j∈A

δiρjUd(i, j) (3.2)

Va(δ, ρ) =
∑
i∈D

∑
j∈A

δiρjUa(i, j) (3.3)

Given a strategy of the attacker, the optimal strategy of the defender is
called best response and can be defined as a strategy δ∗ such that:

Vd(δ∗, ρ) ≥ Vd(δ, ρ) ∀δ (3.4)

In the same way the best response of the attacker can be defined as ρ∗ such
that:

Va(δ, ρ∗) ≥ Va(δ, ρ) ∀ρ (3.5)

Both defender and attacker aim to maximize their own utility acting
selfishly. In Game Theory, the most famous solution concept for
simultaneous games is Nash equilibrium, which is a strategy N = {δ∗, ρ∗}
such that both the players play their best response. However, in Security
Games the leader can take advantage of committing to a strategy by playing

27

the Stackelberg equilibrium, which is a refinement of Nash equilibrium
applied to Stackelberg games, that is a strategy such that the expected
utility of the leader is maximized while the follower plays his best response.
In literature there is a distinguish between Strong Stackelberg Equilibrium
(SSE) and Weak Stackelberg Equilibrium (WSE) [5]: the first concept
assumes that the follower is compliant and, in case of indifference, he will
choose the strategy that maximizes the leader’s utility, while the second
concept assumes that the follower will choose the strategy that minimizes
the leader’s utility. As explained in Section 2.2, in security problems it
is reasonable to assume that the follower will break ties in leader’s favor
therefore SSE is generally accepted as the standard solution concept for
security games.

Definition 2 (Strong Stackelberg Equilibrium). a Strong Stackelberg
Equilibrium (SSE) is a strategy S = (δ∗, ρ∗) such that:

• The leader commits to his best response (3.4)

• The follower plays his best response (3.5)

• The follower breaks ties in leader’s favor (3.6)

Vd(δ∗, ρ∗) ≥ Vd(δ∗, ρ) ∀ρ (3.6)

Given this definition, a SSE for security games can be calculated by
solving Problem 1 that is nonlinear.

Problem 1: Leader-Follower equilibrium NLP

max
δ

Vd(δ, ρ∗) (3.7)

s.t. Va(δ, ρ∗) ≥ Va(δ, ρ) ∀ρ (3.8)∑
i∈D

δi = 1 (3.9)∑
j∈A

ρj = 1 (3.10)

δi ≥ 0 ∀i ∈ D (3.11)

ρj ≥ 0 ∀j ∈ A (3.12)

28

3.2 Compact form representation

Most of security games grow combinatorially in the number of the defender’s
resources and the number of targets to be protected. In most of the cases the
payoffs of the matrix in normal form only depend on the value of the attacked
target and on whether or not the target is protected by some defender’s
resources. For example, imagine a situation where the defender can allocate
two resources to protect a set of four targets, say t1, t2, t3, t4 and the
attacker must choose a single target to attack. When hit, each target has a
certain value for the attacker, for example these values could be respectively
{2, 3, 7, 5}, and a certain value for the defender, which is supposed to be
always zero in this example. Each target also assumes a different payoff
for both the attacker and the defender when the attacker attempts to hit it
when it’s covered by the defender. In this example they are supposed to be
{10, 10, 7, 5} for the defender and {0, 0, 1, 2} for the attacker. Given these
hypothesis, the normal form representation of the payoff matrix would be
structured like this:

t1 t2 t3 t4

t1t2
0

10

0

10

5

0

7

0

t1t3
0

10

3

0

1

7

7

0

t2t3
2

0

0

10

1

7

7

0

t1t4
0

10

3

0

5

0

2

5

t2t4
2

0

0

10

5

0

2

5

t3t4
2

0

3

0

1

7

2

5

Figure 3.1: Security game in normal form.

In the first column we have all the possible resources allocations which
correspond to the pure strategies of the defender, while the first row is the list
of the targets, which corresponds to the set of the attacker’s pure strategies.
In all the columns there are two pairs of payoffs repeated for all the defender’s
allocations. The compact representation proposed by [21] allows to exploit
the structure of this type of game by defining for each target a table with four
payoff: one for the defender when the attacked target is covered, U cd(t), and
one when it’s uncovered, Uud (t), one for the attacker when the attacked target

29

is covered, U ca(t), and one when it’s uncovered, Uua (t). Then the compact
representation of the game in the example would be:

t1 Covered Uncovered
Attacker 0 2
Defender 10 0

t2 Covered Uncovered
Attacker 0 3
Defender 10 0

t3 Covered Uncovered
Attacker 1 5
Defender 7 0

t4 Covered Uncovered
Attacker 2 7
Defender 5 0

Figure 3.2: Compact form representation of the security game described in figure 3.1.

By using this representation the number of payoffs is linear with the
number of the targets, regardless of the number of defender’s resources. The
strategy of the leader is no longer represented as a probability distribution
over all the possible resources allocations, but it’s now defined as a coverage
vector C, where each target has a certain probability ct of being protected
and the sum of all the probabilities is equal to the number of defender’s
available resources. Note that the compact representation is equivalent to
the normal form representation, in fact, the probability of a target of being
covered is equal to the sum of the probabilities over all the normal form
allocations which cover that target. With reference to the previous example
the coverage vector C = {ct1 , ct2 , ct3 , ct4} can be expressed in function of the
normal form strategy δ in this way:

ct1 = δ(t1, t2) + δ(t1, t3) + δ(t1, t4) (3.13)

ct2 = δ(t1, t2) + δ(t2, t3) + δ(t2, t4) (3.14)

ct3 = δ(t1, t3) + δ(t2, t3) + δ(t3, t4) (3.15)

ct4 = δ(t1, t4) + δ(t2, t4) + δ(t3, t4) (3.16)

Similarly, the strategy of the attacker is defined by an attack vector :

A = {at : ∀t ∈ T} (3.17)

In order to effectively exploit the compact representation we have to
reformulate the expected payoff of the leader as a function of the coverage
vector and attack vector:

Ud(C,A) =
∑
t∈T

at · (ct · U cd(t) + (1− ct) · Uud (t)) (3.18)

30

More specifically, the defender’s expected payoff when a certain target is
attacked is given by:

Ud(t, C) = ctU
c
d(t) + (1− ct)Uud (t) (3.19)

Similarly, the attacker expected payoff will be:

Ua(t, C) = ctU
c
a(t) + (1− ct)Uua (t) (3.20)

3.3 Bayesian extension

When addressing security problems, in most real-world cases, the defender
has to protect a system against many different types of threat. For example,
in the task of securing passenger flights, the defender may come up against
simple hijackers who wants the aircraft to land in some other airport or, in
the worst case, against motivated terrorists who want the aircraft to crash
over some important location. While in the first case the defender must
consider almost solely the economic loss caused by hijacking, in the second
case he must consider the risk of losing hundreds of human lives.

In Game Theory, the uncertain about the type of a player is commonly
modeled with the concept of Bayesian games, since the Harsanyi’s
formalization [16] in 1967. Unfortunately, computing the optimal mixed
strategy to commit to in Bayesian games has been shown to be NP-hard
in 2006 by Conitzer and Sandholm [9] even for a two-player Stackelberg
game where the leader is restricted to a single type. In their paper they
also provided an algorithm to find the optimal solution by solving a number
of linear programs (see Section Multiple-LPs). However, Paruchuri, Pearce
and Kraus [26] in 2007 insisted on the importance for the security domain
of the computation of the leader-follower equilibrium in Bayesian games
and provided a heuristic algorithm named ASAP (Agent Security with
Approximate Policies). Due to the growing of importance of the application
of these games to real world security domains, in the last years, many
other algorithms have been sequently developed in order to solve Bayesian
Stackelberg Games, see Chapter 4.

In a Bayesian Stackelberg Game the follower is allowed to be of different
types coming out from a set of follower types Λ. A follower of type λ has a
probability Pλ to be chosen from the set. Being Pλ the probability of facing
follower λ we can say that ∑

λ∈Λ

Pλ = 1 (3.21)

31

The utility of the leader depends on the type of the follower he faces in the
game, then it can be represented with a different matrix Uλd for each follower
of type λ. With this assumption the expected utility of the leader when the
follower plays action ρλ can be written as:

Vd(δ, ρλ) =
∑
λ∈Λ

PλVλd (δ, ρλ) (3.22)

where

Vλd (δ, ρλ) =
∑
i∈D

∑
j∈A

δiρ
λ
jU

λ
d (i, jλ) (3.23)

Also the follower gains a different utility depending on his type, then, for each
follower type λ, the follower’s utility can be reperesented using a different
matrix Uλa . Then, for each follower, his utility can be expressed as

Vλa (δ, ρλ) = δiρ
λ
jU

λ
a (i, jλ) (3.24)

The follower is a rational agent, independenlty of his type, then he would
play his best response. Thus, for each follower type, the following constraint
must hold:

Vλa (δ, ρ∗λ) ≥ Vλa (δ, ρλ) (3.25)

By applying these changes to Problem 1 we finally obtain the following NLP:

Problem 2: Bayesian Leader-Follower equilibrium NLP

max
δ

∑
λ∈Λ

PλVλd (δ, jλ) (3.26)

s.t. Vλa (δ, ρ∗λ) ≥ Vλa (δ, ρλ) ∀ρ (3.27)∑
i∈D

δi = 1 (3.28)∑
j∈A

ρj = 1 (3.29)

∑
λ∈Λ

Pλ = 1 (3.30)

δi ≥ 0 ∀i ∈ D (3.31)

ρj ≥ 0 ∀j ∈ A (3.32)

Pλ ≥ 0 ∀λ ∈ Λ (3.33)

32

3.4 Complexity

When addressing a real world security problem it is important to consider
how quickly the solution time increases with the number of targets to
defend, resources to allocate, number of attackers or in general any other
parameter related to the problem domain. In general, when designing a
security assistant software, like any other information system, it is important
to take into account the grade of scalability of the system. For example,
when defending a perimeter, the defender may get new patrollers in order to
enhance the security level or the area to protect may increase in size during
time. Then, some questions arise: would the algorithm be able to find a
solution in a reasonable time even with more possible strategies? How many
targets can be defended using this system before the time needed to find the
optimal strategy becomes too high?

Nash equilibrium is generally considered a valid solution concept in
competitive games, but, as we previously noted, it does not always provide
the best possible outcome and often it does not provide a unique solution.
Moreover, the problem of finding a Nash equilibrium even in two-player
general-sum games has been proven to be PPAD-complete [12]. PPAD

is a class of total-search problems belonging to NP in which a solution is
guaranteed to exist. By Nash existence theorem, in fact, it is known that
a Nash equilibrium in mixed strategies always exists [30], while this is not
true in general for all NP problems. However, as for any other problem
belonging to NP , a polynomial time algorithm to find it is unlikely to exist,
unless P = NP .

Earlier in this work, we discussed about benefits of Stackelberg
equilibrium over Nash equilibrium. Besides those advantages, in the next
section we show how Stackelberg equilibrium in two-player games can be
calculated in polynomial time by solving a certain number of LPs. Yet,
Bayesian Stackelberg problems are NP-HARD as well as the problem of
solving games with more than two players [9] [27]. Below we show how
Bayesian Stackelberg two-player games can be solved more efficiently by
reformulating the original problem or by applying some assumptions over
the the game structure of real world security problems. Finally we face
the multi-follower problem, providing an analysis of the time complexity of
calculating the leader-follower equilibrium both in the general case and by
applying some restrictions to the problem.

33

34

Chapter 4

Algorithms

4.1 Multiple-LPs

Until 2006, game-theoretic researchers, almost ignored games with leadership
commitment. Conitzer and Sandholm proposed Multiple-LPs, sometimes
called MULTI-LP, as one of the first approaches to optimally solve Bayesian
Stackelberg games [9]. In their work, they proposed a linear-time algorithm
to calculate SSE in pure strategies, in a generic multiplayer game. However,
as we told in the previous section, randomization of the defense strategy is
a specific requirement in most of the real world security problems.

The SSE formulation as shown in Problem 1 allows the leader to commit
to mixed strategies but it cannot be solved efficiently due to the nonlinear
objective. The MULTI-LP approach provides an instrument to defender to
calculate the optimal strategy to commit to in polynomial time using linear
programming [9]. The same algorithm can be also applied to Bayesian games
by applying it to the Harsanyi transformation of the problem. However in
this case, the algorithm is not efficient as the size of the problem grows
exponentially in the number of follower types.

4.1.1 The MULTI-LP algorithm

In a leader-follower game, the follower observes the strategy committed by
the defender and chooses a strategy to maximize his own utility by reasoning
on the payoffs of the game. In general, both leader and follower are allowed
to play in mixed strategies. However, once fixed the leader strategy, the
follower’s best response can be supposed to be in pure strategies, thanks
to follower’s compliance (see Section 2.2): if the follower, after leader’s
commitment, is indifferent between two or more strategies, he will always
choose the one that maximizes the leader’s payoff.

35

Even in the case that more than one follower strategy satisfies this
requirement, the leader’s utility would not be affected from an eventual
follower’s randomization between them. Under this assumption, the problem
of finding the best strategy to commit to can be solved by calculating, for
each follower’s pure strategy j, a mixed strategy δ for the leader such that:

• j is best response to δ

• δ is the strategy, under the previous constraints, which maximizes the
leader’s outcome

Then, for each follower’s pure strategy j, the problem to solve Problem 3:

Problem 3: Leader-Follower equilibrium LP

max
δ

∑
i∈D

δiUd(i, j) (4.1)

s.t.
∑
i∈D

δiUa(i, j) ≥ δiUa(i, j′) ∀j′ ∈ A (4.2)∑
i∈A

δi = 1 (4.3)

δi ≥ 0 ∀i ∈ D (4.4)

4.2 RUGGED

Many security problems take place in some kind of network such as urban
road networks, transportation networks or computer networks, making the
problem of ensuring security over a network a concern of growing importance
in the last few years. In these scenarios the aggressor is supposed to observe
the security system before choosing an attack strategy, making ineffective
the classical deterministic resource allocation techniques which predictable
solutions could be exploited by the attacker.

Game Theory provides attractive techniques to solve these problems
by considering the attacker as an intelligent agent which reasons about
defender’s strategy. These games are classified as interdiction games, an
extension of ambush games, where the task of the defender is to allocate
static resources over the edges of the network, trying to maximize his
expected reward, while the attacker has to choose the target with the
maximum expected payoff for himself and the path to cross to reach it.

36

Unfortunately, the huge size of the action space of a real world scenario, for
example a urban city road network, makes often impossible the application of
game-theoretic algorithms due to their computational complexity. In a urban
network security domain, for example, the defender could be the police and
has to choose which streets to control in order to protect some important
locations, while the attacker has to choose a location to attack and which
roads to move through to get there. Hence, the action space of the defender
grows exponentially with the number of his resources and the action space
of the attacker grows exponentially with the size of the network.

RUGGED (Randomization in Urban Graphs by Generating strategies
for Enemy and Defender) is a scalable algorithm proposed by Manish et
al. 2011 [19], to provide an optimal solution to network security games. It
relies on a double oracle column and row generation approach that allows
to find an optimal solution without the need to explore the entire action
space. RUGGED models the game as a zero-sum game, assuming that the
aggressor’s reward is always the opposite of the defender’s reward. Although
this assumption may be too restrictive in situations where the attacker’s
and the defender’s rewards cannot be considered so strongly correlated,
it makes possible to adopt a maximin solution concept, with polynomial
complexity, making possible the application of the algorithm to complex
real world scenarios. The solution provided by maximin is optimal, in fact,
due to von Neumann’s minimax theorem (von Neumann 1927), in two-player
zero-sum games, maximin and minimax strategies coincide both with Nash
equilibrium strategies and with Stackelberg equilibrium strategies [41].

4.2.1 The algorithm

RUGGED algorithm consists of three main components: CoreLP, Defender
Oracle (DO), Attacker Oracle (AO). These three functions are executed in
sequence until the optimal solution has been found, as shown in Algorithm 1.
Let’s call D the set of the defender’s pure strategies to take into account and
call A that of the attacker. Each pure strategy i of the defender corresponds
to an allocation of the available resources over the network nodes, while
each attacker pure strategy corresponds to a path from an entry point to a
target. At the beginning of the procedure D and A are initialized to some
random subset of their respective players’ action sets, forming a subgame.
The CoreLP function calculates the maximin mixed-strategy equilibrium
of such subgame. This solution, not optimal in general, is then passed to
the defender oracle which searches a better pure strategy for the defender.

37

The attacker oracle does the same, providing if exists, a best response to the
defender’s strategy found in the subgame equilibrium. If both defender oracle
and attacker oracle are unable to find a best response to the equilibrium
found by CoreLP, the algorithm stops and returns the optimal solution.
Otherwise, if at least one of the two oracles adds a column or a row to the
subgame, a new iteration of the algorithm is performed.

Algorithm 1 Double Oracle
1: initialize(A)
2: initialize(D)
3: repeat
4: (δ, ρ) := CoreLP (D,A)

5: i∗ := DO(ρ)

6: D := D ∪ {i∗}
7: j∗ := AO(δ)

8: A := A ∪ {j∗}
9: until convergence

10: return (δ, ρ)

Proceeding in this way, Algorithm 1 starts by solving a small subgame,
whose size is incremented at each iteration, increasing also the quality of the
solution found from time to time, avoiding the waste of time of considering
all the suboptimal strategies. In the following paragraphs we will see in the
details how these three functions work.

4.2.2 CoreLP

CoreLP is the function tasked to find a maximin mixed strategy equilibrium
in a small subgame. The subgame is extended at each iteration, adding rows
corresponding to pure strategies of D and columns corresponding to pure
strategies of A. Each column is associated with an attack path, with a single
target associated with it. The attacker’s reward, that is always the opposite
of the defender’s reward, corresponds to the value of the target associated
with the path, whereas the defender allocation does not intersect the attacker
path and zero when the defender allocation intersects the attacker path, due
to his capture. To provide a solution of this subgame, CoreLP solves for Nash
equilibrium formulated as a maximin problem, shown below as Problem 4.

38

Problem 4: Nash zero-sum LP

max
V∗d ,δ

V∗d

s.t. V∗d ≤ Vd(δ, j) ∀j ∈ A (4.5)∑
i∈D

δi = 1 (4.6)

δi ∈ [0, 1] ∀i ∈ D (4.7)

This is the typical formulation of a maximin problem, where V∗d is the
expected utility of the defender in the equilibrium. Under the zero-sum
hypothesis it is possible to solve the problem by considering only the defender
expected utility. The objective of the algorithm is to find the defender
mixed strategy δ whose attacker mixed strategy best response maximizes the
defender expected utility. The set of constraints keeps the defender utility
under the utility obtained in each pure strategy of the attacker. This is the
mathematical description of the attacker’s reasoning who tries to maximize
his own utility. The expected utility of the attacker can be expressed as the
sum of the probabilities of being captured, multiplied for the capture penalty
and the probability of a successful attack to the target associated with the
path i, multiplied for the target’s value.

By setting the capture penalty to zero and defining zij as the flag
indicating whether the attacker path is obstructed by the defender’s
allocation, given the zero-sum property, the defender expected utility in each
attacker pure strategy can be defined as:

Vd(δ, j) = −τj ·
∑
i∈D

i(1− zij) (4.8)

where τj is defined as the value of the target associated with the path j.

4.2.3 Defender Oracle and Attacker Oracle

Once a solution of the subgame has been found, its optimality has to be
evaluated by considering the entire action space. The defender oracle is
tasked to evaluate the optimality for the defender’s strategy, while the
attacker oracle evaluates the optimality for the attacker’s strategy. The
defender oracle generates all the possible resource allocations, selecting at
last, the one with the highest expected payoff for the defender. If this
allocation is better than the mixed strategy calculated in the subgame

39

equilibrium provided by CoreLP, then it’s the best response to the attacker’s
strategy and it’s included in D. The attacker oracle does the same for
the attacker’s side, generating all the possible paths and, for each one,
evaluates the attacker’s expected utility against the defender’s strategy in
the equilibrium. If the path with the highest payoff is even better than the
payoff obtained in the equilibrium, then the path is included in A.

Algorithm 2 Defender Oracle
1: V∗d := Vd(δ, ρ)

2: i∗ := null

3: for each i ∈ D \ S(δ) do
4: if Vd(i, ρ) > V∗d then
5: V∗d := Vd(i, ρ)

6: i∗ := i

7: end if
8: end for
9: return i∗

definire supporto di rho S(δ) = {σΘ|δ(σΘ) > 0}

4.3 DOBSS

In most real world security problems the defender must be prepared to
face different types of attacker, from simple robbers up to terrorists. The
Bayesian Stackelberg model combines effectively the uncertainty over the
follower’s type with the leader-follower equilibrium concept, typical of
security games. Unfortunately, the problem of finding an optimal mixed
strategy for the leader in Bayesian Stackelberg game is NP-Hard even for
a two-player game where the leader has only a single type [10]. Multiple-
LPs, converts the Bayesian game into a perfect information normal-form
game using Harsanyi transformation, then solves a large number of linear
programs that is exponential with the number of follower types.

In this section we describe DOBSS, the algorithm at the core of the
ARMOR system. DOBSS, acronym of Decomposed Optimal Bayesian
Stackelberg Solver, is an efficient exact algorithm designed to find an optimal
mixed strategy to commit to in Bayesian Stackelberg games. This method
presents three main advantages:

• it does not require Harsanyi transformation, thus allowing a more
compact representation of the game.

40

• it solves a unique MIP instead of an exponential number of LPs.

• it exploits the advantage of being leader by solving for a Stackelberg
equilibrium rather than a Nash equilibrium.

The Harsanyi transformation converts the Bayesian game into a perfect
information game where the number of the action of the defender is the
same of the Bayesian version of the game but the set of the actions of
the attacker is the cross product of the sets of actions of all the follower
types, causing the problem to explode in size. DOBSS finds the optimal
strategy to commit to in Stackelberg Bayesian games by efficiently solving a
MIP, without the need of the Harsanyi transformation. The key idea behind
DOBSS is that evaluating the leader strategy against a Harsanyi-transformed
follower is equivalent to evaluating it using the matrix of each individual
follower type. Thanks to this problem decomposition, DOBSS procedure
exponentially reduces the problem over the Multiple-LPs approach in the
number of adversary types [34].

Here we present how to construct the MIP, as shown by Paruchuri,
Pierce and Kraus [34], starting from the more intuitive MIQP (mixed-integer
quadratic problem) formulation with a single follower type. Then we extend
the problem in a multi-follower configuration and finally we decompose it
into a MIPas described in [34].

4.3.1 MIQP

The first problem to solve is the follower best response problem. In fact,
before the leader can choose his strategy, he must be aware of the follower
preferences, which will be the constraints to the leader problem. In this
optimization problem the follower tries to maximize his own expected utility
by choosing the strategy ρ that is best response to the fixed leader mixed
strategy δ. Defining the follower’s expected utility as in Equation 3.3 and
fixed a defender mixed strategy δ, the optimization problem of the follower
can be formulated as:

max
a

Va(δ, ρ)

s.t.
∑
j∈A

ρj = 1

ρj ≥ 0 ∀j ∈ A

(4.9)

In this formulation the strategy of the follower is allowed to be mixed,
however, the support of any follower mixed strategy that is best response
to the leader strategy δ is composed by only pure strategies that are best

41

response to δ too. Therefore the optimal follower strategy is a pure strategy
where ρj = 1 in correspondence with the follower’s maximal reward. The
follower’s expected utility when he chooses j can be expressed as:

Va(δ, j) =
∑
i∈D

δiUa(i, j) (4.10)

By applying LP duality and complementary slackness theorems to 4.9 we
obtain the dual problem 4.11.

min
V∗a

V∗a

s.t. V∗a ≥ Va(δ, j) ∀j ∈ A
ρj(V∗a − Va(δ, j)) = 0 ∀j ∈ A

(4.11)

The complementary slackness condition implies that ρj > 0 only where
the follower expected reward is maximal, equal to V∗a . While the follower
tries this way to maximize his own utility, the leader searches for a strategy
to commit to such that the follower’s best response maximizes his expected
utility. Calling ρ∗ the follower’s best response to δ, the leader’s expected
utility when the follower plays his best response is:

Vd(δ, ρ∗) =
∑
j∈A

ρ∗jUd(i, j) (4.12)

Then, the maximization problem for the leader can be formulated as problem
4.13.

max
δ

∑
i∈D

δiVd(δ, ρ∗)

s.t.
∑
i∈D

δi = 1

δi ∈ [0, 1] ∀i ∈ D

(4.13)

The leader solves this problem to find the strategy δ that maximizes his
own utility, assuming that the follower will always play the best response.
In order to add the follower’s best response constraints to this problem, the
two linear programs can be merged to compose the entire MIQP:

42

Problem 5: Leader-follower MIQP

max
δ,ρ,V∗a

Vd(δ, ρ) (4.14)

s.t.
∑
i∈D

δi = 1 (4.15)∑
j∈A

ρj = 1 (4.16)

0 ≤ (V∗a − Va(δ, j)) ≤M(1− ρj) ∀j ∈ A (4.17)

δi ∈ [0, 1] ∀i ∈ D (4.18)

ρj ∈ {0, 1} ∀j ∈ A (4.19)

V∗a ∈ R (4.20)

Here the objective function is quadratic as the leader’s expected utility
is defined as:

Vd(δ, ρ) =
∑
i∈D

∑
j∈A

δiρjUd(i, j) (4.21)

In this problem the follower is allowed to play only pure strategies,
because, as mentioned, any best response in mixed strategies is composed
by pure strategies that are best response too. This assumption simplifies
the complementary slackness condition that here is written, linearized, as
constraint (4.17) in combination with the constraint of the dual follower
problem. In this statement M is a large number and ρj acts as a trigger for
the bound: if j is best response, then ρj = 1 and V∗a = Va(δ, j), otherwise
the constraint does not exist.

4.3.2 Bayesian extension and DOBSS

The previous problem considered only a single follower type. Now we will
show how the problem can be extended to the multi-follower case without
using the Harsanyi transformation. In the Bayesian game the follower is
allowed to be of many different types λ ∈ Λ, each one associated to a different
payoff matrix. The leader and follower payoff matrices associated with each
follower of type λ are denoted by Uλd and Uλa respectively while Pλ indicates
the probability to face a follower of type λ and ρλ is the mixed strategy of
the follower of type λ. The expected utility for the follower of type λ when
he plays j is calculated as:

Vλa (δ, j) =
∑
i∈D

δiU
λ
a (i, j) (4.22)

43

For each follower type, fixed a leader strategy δ independent of the follower
type, we have to solve the following problem:∑

j∈A
ρλj = 1

0 ≤ (Vλ∗a − Vλa (δ, jλ)) ≤ (1− ρλj)M ∀j ∈ A
ρλj ∈ {0, 1} j ∈ A

(4.23)

The leader’s expected utility can be calculated independently for each
follower type, too:

Vλd (δ, ρλ) =
∑
i∈D

∑
j∈A

δiρ
λ
jU

λ
d (i, j) (4.24)

The Bayesian extension to the leader problem simply consists in
weighting the leader’s expected utility against each follower type with the
prior probability of facing a follower of that specific type (Problem 6).

Problem 6: Leader-follower Bayesian MIQP

max
δ,ρ,V∗a

∑
λ∈Λ

PλVλd (δ, ρλ) (4.25)

s.t.
∑
i∈D

δi = 1 (4.26)∑
j∈A

ρλj = 1 ∀λ ∈ Λ (4.27)

0 ≤ (Vλ∗a − Vλa (δ, jλ)) ≤ (1− ρλj)M ∀j ∈ A,∀λ ∈ Λ (4.28)

δi ∈ [0, 1] ∀i ∈ D (4.29)

ρλj ∈ {0, 1} ∀j ∈ A,∀λ ∈ Λ (4.30)

Vλ∗a ∈ R ∀λ ∈ Λ (4.31)

As this problem can be solved independently for each follower type, the
Bayesian game is said to be decomposed. The solution of this problem
is optimal and it’s equivalent to the solution of Problem 7 applied to the
Harsanyi-transformed payoff matrix, as demonstrated in [34]. To obtain the
DOBSS formulation, the quadratic objective function of this MIQP must be
linearized by introducing a new variable

zλij = δiρ
λ
j ∀i ∈ D, j ∈ A (4.32)

Using this new variable, the leader’s expected utility can be expressed as

Vλd (zλ) =
∑
i∈D

∑
j∈A

zλijU
λ
d (i, j) (4.33)

44

Then, the decomposed MIP at the core of DOBSS can be finally written as:

Problem 7: DOBSS

max
ρ,z,V∗

a

∑
λ∈Λ

∑
i∈D

∑
j∈A
PλzλijUλd (i, j) (4.34)

s.t.
∑
i∈D

∑
j∈A

zλij = 1 ∀λ ∈ Λ (4.35)

∑
j∈A

zλij ≤ 1 ∀λ ∈ Λ (4.36)

ρλj ≤
∑
i∈D

zλij ≤ 1 ∀j ∈ A,∀λ ∈ Λ (4.37)∑
j∈A

ρλj = 1 ∀λ ∈ Λ (4.38)

0 ≤ (Vλ∗a − Vλa (δ, jλ)) ≤ (1− ρλj)M ∀j ∈ A,∀λ ∈ Λ (4.39)∑
j∈A

zλij =
∑
j∈A

z1
ij ∀j ∈ A,∀λ ∈ Λ (4.40)

zλij ∈ [0, 1] ∀i ∈ D,∀j ∈ A,∀λ ∈ Λ (4.41)

ρλj ∈ {0, 1} ∀j ∈ A,∀λ ∈ Λ (4.42)

Vλ∗a ∈ R ∀λ ∈ Λ (4.43)

The solution of this linear program, can be shown to be equivalent to
that of 4.25 [34].

4.4 HBGS and HBSA

The problem of calculating the leader-follower equilibrium in general sum
Bayesian Stackelberg games is known to be NP-hard [27] and the fastest
known exact algorithms to solve them, such as DOBSS and Multiple-LPs,
fail to scale up beyond the few tens of actions and types [18]. While
DOBSS solves the Bayesian game by representing it with a MIP, Multiple-
LPs converts the game into a perfect information game, using the Harsanyi
transformation, then solves the exponential number of small linear programs
separately, to find the leader-follower equilibrium of the entire game. Solving
many small linear programs is much simpler than solving a single large MIP.

The key idea behind HBGS (Hierarchical Bayesian solver for General
Stackelberg games) is that Multiple-LPs could outperform DOBSS if it just
was able to solve only a small number of all the linear programs generated
by the Harsanyi transformation, discarding all those that are not essential in
order to find the optimal solution. To make this possible, HBGS organizes

45

the games hierarchically, by using a tree where the root corresponds to the
entire game and each node represents a partition of the game where only
some follower types are present. The algorithm then applies a branch and
bound technique that significantly reduces the number of linear programs to
be solved, by removing all the unfeasible strategies and calculating an upper
bound to the leader expected utility, for all the feasible follower strategies.

The authors also proposed a modified version of HBGS, named HBSA,
which scales up better in the number of pure strategies using a column
generation technique. Finally, both the algorithms support a quality
bound technique which provides a considerable speed up by renouncing to
optimality thus without significant loss in the solution quality.

4.4.1 The tree structures

The Harsanyi transformation converts the Bayesian game into a perfect
information normal form game. In this representation the action space of the
follower corresponds to the Cartesian product of the action spaces of all the
follower types of the Bayesian game. This set can also be represented using
a tree where each leaf corresponds to a column of the Harsanyi transformed
game. Another tree used to organize the game in order to make possible
the application of the branch and bound technique. The root of this tree
contains the entire game complete of all the follower types, while the sons of
each node contain a set of types that is a partition of the set of types of their
father node. Any partitioning strategy produces a valid tree if the following
two conditions are respected:

• the set of the follower types of each sibling must be disjoined from those
of the other siblings.

• the union of the sets of the types of all the siblings must coincide with
the set of the types of their father.

Once the type tree has been constructed, the games are solved by
applying the Algorithm 3 to all its nodes, starting from the leaves to the
root, exploiting the simplifications extracted from the small games to reduce
the size of the bigger ones. The first simplification consists in removing
the unfeasible actions in the lower levels of the tree, propagating the effect
to the higher levels. The second simplification is performed by calculating
an upper bound for each feasible action. This allows to sort the follower
actions in descending order of their upper bound utility, making the traversal
examination to stop when the upper bound becomes lower than the leader
maximum expected utility evaluated so far.

46

4.4.2 Removing unfeasible actions

If a follower action is found to be always worse than some other action,
for any leader mixed strategy, it can be removed from the game, marking
it unfeasible, because the follower would never include that action in his
strategy. Moreover, as shown in [18], the following proposition holds.

Proposition 2. An action marked unfeasible in a node of the type tree can
be marked unfeasible also in all the nodes at higher hierarchical levels.

The result of removing unfeasible actions in a low level node propagates
naturally up in the tree, amplifying the effect on each level, proportionally
to the number of the pure strategies of the follower. In general, in a fully
binary branched tree with depth ω, the removal of a single strategy for a
single follower type causes to remove |A|log2|Λ| pure strategies in the root
node, because ω = log2|Λ|.

4.4.3 Bounds

The second part of the technique adopted by HBGS to reduce the action
space consists of calculating the leader utility upper bound in the feasible
pure strategies of the follower. The follower actions with an upper bound
lower than the leader’s maximum expected utility don’t need to be evaluated.
In fact, the leader would prefer to commit to a different mixed strategy such
that the follower would avoid such bounded actions. In a game restricted to
a single follower type, where Λ = {λ}, the maximum reward that the leader
could obtain when the follower of type λ plays jλ, subject to the follower’s
best response constraint is

Vλd (δ, jλ) ≤
∑
i∈D

δ∗i U
λ
d (i, jλ) ∀δ

where δ∗ is the defender mixed strategy that maximizes the problem. In
other words an upper bound can be defined on the defender’s utility for each
action jλ:

Bλ
j =

∑
i∈D

δ∗i U
λ
d (i, jλ)

In a subgame with |Λ| = {λ1, λ2, ...λn}, the defender expected utility when
the follower plays jΛ = {jλ1 , jλ2 , ..., jλn} is

Vd(δ, jΛ) =
∑
λ∈Λ

PλVλd (δ, jλ)

47

As a bound has been defined for each Vd(δ, jΛ) the bound for the leader
reward when the follower plays a pure strategy jΛ can be expressed as

BΛ
j =

∑
λ∈Λ

PλBλ
j

Algorithm 3 HBGS(Λ, D, AΛ,BΛ,Ud,Ua)

1: (AΛ , BΛ) = initialization(Λ)
2: FT := constructFollowerActionTree(AΛ)
3: A∗ := leaves-of(FT)
4: B∗j := getBounds(j,BΛ) ∀j ∈ A∗

5: sort(A∗,B∗j) // sort j in descending order of B∗j
6: j := [A1

1,A2
1,...,A

|Λ|
1] // left-most leaf

7: r∗ := -inf // current known best solution
8: repeat
9: (feasible,δ,r) := solve(D,j)

10: if feasible then
11: if r > r∗ then
12: r∗ := r

13: δ∗ := δ

14: end if
15: B∗j := r

16: else
17: A∗ := A∗ - {j}
18: end if
19: j := getNextStrategy(j,r∗,AΛ,BΛ)
20: until j == NULL
21: return (δ∗,r∗,A∗,B∗)

4.4.4 HBGS algorithm

HBGS algorithm (Algorithm 3) is executed in the root node. The
initialization function (Algorithm 4) constructs the type tree recursively,
by splitting the set of type of the node according to the partition technique
indicated in the partition function. The recursion of HBGS is executed in
each partition. Finally the results of each partition AΛ and BΛ are joined
together and returned to HBGS.

The follower pure strategies are then sorted in descending order of B∗j , for
each follower type. For all the feasible actions j, the algorithm calculates

48

Algorithm 4 initialization(Λ)
1: AΛ = ∅
2: BΛ = ∅
3: if |Λ| > 1 then
4: {Λ1, ...Λ|Λ|} = partition(Λ)

5: for l = 0→ |Λ| do
6: (δl,rl,AΛl ,BΛl) = HBGS(Λl)
7: AΛ = AΛ ∪AΛl

8: BΛ = BΛ ∪BΛl

9: end for
10: else
11: AΛ = actionsOfType(Λ) // actions of the single follower type
12: end if
13: return (AΛ, BΛ)

the defender mixed strategy δ that maximizes his own payoff, under the
constraint that j remains the best response for the follower, by solving
Problem 3. If it does not exist any δ such that j is the follower best response,
then the action is marked as unfeasible and is subsequently removed from
the set of feasible actions A∗. Otherwise the action’s bound is updated and,
if greater than the leader maximum payoff, it becomes the new maximum
expected reward and δ is set as the leader optimal strategy.

The function getNextStrategy (Algorithm 5) returns the next strategy
to be evaluated. As mentioned, the actions of each follower type are ordered
in descending order of their bound for each subtree. The function explores
the leaves of the follower action tree from left to right so that when the
bound of the next action is lower than r∗ the algorithm stops to examine the
siblings of that action and jumps to the left-most leaf of the upper subtree.
If does not exist any action with a bound greater than the value of the best
known solution, the function returns null and the HBGS algorithm stops,
returning the solution found.

4.4.5 HBSA

Many real world security applications have an exponential sized hard
constrained defender action space. One example of such application is the
FAMS domain, which is later discussed in the section N, where the defender
has the task of protecting flights by planning feasible patrols for onboard air
marshals. IRIS, the system adopted by FAMS for this purpose, is based on
ERASER-C, which is one of the more recent algorithm conceived to solve

49

Algorithm 5 getNextStrategy(j,r∗,AΛ,BΛ)

1: for l = |Λ| to 1 Step -1 do
2: j := indexOf(Aλl , jλl)

3: // Fix the pure strategies of parents: jλk , k < l

4: // Update the pure strategy of type λl: Aλl(j + 1)

5: // Children choose their best pure strategy: Aλk(1), k > l

6: j := [jλ1 , ...jλl−1 , Aλl(j + 1), Aλl+1(1), ...A|Λ|(1)]

7: if r∗ < getBounds(j, BΛ) then
8: return j

9: end if
10: end for
11: return null

large and complex Stackelberg games. Unfortunately, although ERASER-
C works well in international routes, where schedules have typically a single
departure and a single return flight, it does not generally provide the optimal
solution in longer and more complex paths, which are typical of domestic
flights. Moreover, recent results showed that solving Stackelberg games with
general scheduling constraints is NP-hard in general and only in rare cases
it can be solved in polynomial time.

To overcome these limitations new algorithms have been designed
recently, such as ASPEN that uses a column generation technique applied
to SPARS problems [20]. In the SPARS problem the action space of the
defender is composed by all the feasible joint schedules, which correspond
to the sets of schedules that satisfy all the problem’s constraints. The set
of feasible joint schedules is most of the times so large that it’s not even
possible to store it on a conventional hard disk. As an example taken from
FAMS domain, scheduling only 10 air marshals over 100 flights generates
more than 1.7 · 1013 joint schedules. ASPEN is a branch and price method
that does not require to load in memory the entire defender’s action space,
it only selects the strategies useful to find the optimal solution by solving
a master problem and a slave problem alternatively. The master problem
calculates the Strong Stackelberg Equilibrium in the restricted game built
so far, by searching the defender strategy x that maximizes the defender
reward while keeping the attacker play the pure best response. Then the
slave problem is applied to the solved to generate the best column to add
to the game. The best column corresponds to the joint schedule which most
improve the defender’s expected utility and it is determined using the concept
of reduced cost. In fact, as shown by Bertsimas and Tsitsiklis in 1994 [4], the

50

column with the minimum reduced cost improves the objective function the
most. Calculating reduced cost for all the possible joint schedule would be
an inefficient method to determine the best column. For this reason ASPEN
formulates a MCNF (minimum cost network flow problem) to efficiently find
the best column. HBSA includes a Bayesian version of ASPEN able to solve
hard constrained games with multiple follower types that replaces the solve
function of HBGS, maintaining the rest of the branch and bound algorithm
unchanged. This column generation extension makes HBSA to scale well in
the number of the targets as well as the number of follower types.

4.4.6 Quality bounds

As mentioned, HBGS, as well as HBSA, calculates the upper bound of
the defender’s reward for each follower pure strategy. The maximum of
these bounds represents an absolute theoretical bound on the value of the
optimal solution. Moreover, at each step, the algorithm knows the best
solution found so far, which value represents a guaranteed lower bound on
the defender’s reward. Then, when the difference between these two bounds
become enough low, the algorithm stops and returns the current solution,
without any significant quality loss. The tests shown that the speed-up
obtained by using this approximation technique can reduce computational
time of an order of magnitude with only 1% of loss in solution quality [18].

4.5 ERASER

ERASER (Efficient Randomized Allocation of Security Resources) is an
algorithm designed by Kiekintveld et al. [21] to optimally solve security
games in compact form by solving Problem 8. The solution of this MIP
is the optimal coverage vector C that maximizes the defender’s expected
utility U∗d and corresponds to a SSE [21]. The first two constraints allow the
defender to protect multiple targets with a certain probability ct by assigning
all the available m resources, which are considered all of the same type.
The second two constraints force the attacker to play in pure strategies, by
choosing a single target to attack with probability 1. For the defender side,
the optimality of the assignment is obtained by satisfying constraint 4.49.
Last constraint (4.50) forces the attacker to play only the best response to
the defender strategy.

51

Problem 8: ERASER MIP

max
δ

U∗d (4.44)

s.t. ct ∈ [0, 1] ∀t ∈ T (4.45)∑
t∈T

ct ≤ m (4.46)

at ∈ {0, 1} ∀t ∈ T (4.47)∑
t∈T

at = 1 (4.48)

U∗d − Ud(t, C) ≤ (1− at) ·M ∀t ∈ T (4.49)

0 ≤ U∗a − Ua(t, C) ≤ (1− at) ·M ∀t ∈ T (4.50)

4.6 ORIGAMI

In almost all security games the defender gets a greater payoff when the
attacker tries to hit a protected target and the attacker prefers to attack
unprotected targets:

Uud (t) < U cd(t)

Uua (t) > U ca(t)
(4.51)

ORIGAMI algorithm (Optimizing Resources In Games using Maximal
Indifference) [21] exploits this assumption to efficiently solve security games
in compact form, outperforming all the other known algorithms working
under the same hypothesis. The idea behind ORIGAMI comes from three
observations:

• Increasing ct for any target not in the attack set doesn’t affect the
expected payoffs of the players. In fact it only decreases Ua(t, C) leaving
all the other expected payoffs unchanged.

• Adding an additional target to the attack set cannot hurt the defender
due to the SSE assumption.

• Call x the attacker’s expected payoff in the SSE, then ct ≥ x−Uua (t)
Uxa (t)−Uua (t)

for every target with Uua (t) > x. This inequality keeps the attacker
indifferent between all the targets in the attack set.

The algorithm starts with an attack set composed by only the target
with the greatest Uua (t) and goes on by adding targets to the attacking and

52

redistributing defender’s resources in order to maintain the indifference in
the attack set. The algorithm stops when the additional coverage needed
to maintain the indifference is greater than the amount of resources still
available to the defender or when one target is covered with probability 1.
In the first case the defender can distribute remaining probability to the
targets in the attack set to maintain indifference but no more targets can be
added to the attack set. In the second case the attack set is expanded as
much as possible so that for all the targets in the attack set have the same
utility as the U ca(t) of the target covered with probability 1. The ORIGAMI
pseudocode is shown in Algorithm 6.

Algorithm 6 ORIGAMI
1: targets := T sorted by Uua (t)

2: payoff [t] := Uua (t)

3: coverage[t] := 0

4: left := m

5: next := 2

6: covBound := −∞
7: while next ≤ n do
8: addedCov[t] := payoff [next]−Uua (t)

Uca(t)−Uua (t) − coverage[t]
9: if coverage[t] + addedCov[t] ≥ 1 then

10: covBound := max(covBound, U ca(t))

11: end if
12: if covBound > −∞ OR

∑
t∈T addedCov[t] ≤ left then

13: BREAK
14: end if
15: coverage[t]+ = addedCov[t]

16: left− =
∑

t∈T addedCov[t]

17: next++
18: end while
19: ratio[t] := 1

Uua (t)−Uca(t)

20: coverage[t]+ = ratio[t]·left∑
t∈T ratio[t]

21: if coverage[t] ≥ 1 then
22: covBound := max(covBound, U ca(t))

23: end if
24: if covBound > −∞ then
25: coverage[t] := covBound−Uua (t)

Uca(t)−Uua (t)

26: end if
27: return coverage

53

4.7 Porter-Nudelman-Shoham’s algorithm

Up to now we described the most important algorithms relying on
Stackelberg equilibrium solution concept. As we pointed out in Section
2.2.1, Stackelberg equilibrium is not always applicable. In such cases, by its
definition, Nash equilibrium is still the reliable solution concept, neverthless
the difficulty of calculating it.

A simple algorithm, valid in many real world problems, has been proposed
by Porter, Nudelman and Shoham in 2004[37]. At the basis of the PNS
algorithm is the idea that, although calculating Nash equilibrium in a two-
player game is PPAD-complete1, the existence of a Nash equilibrium in a
given support can be verified by solving a feasibility LP. In fact, given a
support for each player, (Sa,Sb), the conditions to check are simple: given
the adversary’s strategy, all strategies in the support of a player must give
an utility equal to the best response utility (4.52) and all strategies which
provide a lower utility must stay out of the support (4.53). The feasibility
problem is shown as Problem 9.

Problem 9: Nash equilibrium Feasibility LP

va =
∑
k∈Ab

ρbkUa(j, k) ∀j ∈ Sa, ∀a, b ∈ Ψ, b 6= a (4.52)

va ≥
∑
k∈Ab

ρbkUa(j, k) ∀j 6∈ Sa, ∀a, b ∈ Ψ, b 6= a (4.53)

∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (4.54)

ρaj ≥ 0 ∀j ∈ Sa, ∀a ∈ Ψ (4.55)

ρaj = 0 ∀j 6∈ Sa, ∀a ∈ Ψ (4.56)

The algorithm (Algorithm 7) is based on a support enumeration
technique, where all possible combinations of variables are generated, sorted
by ascending support size and solved by applying Problem 9. Although the
support size is approximately 4n, in games where |Aa| = |Ab| = n [31],
meaning that PNS has exponential worst-case complexity, an equilibrium
with a small sized support often exists, then, by solving games starting from
small supports generally allows to greatly reduce the number of LPs to be
solved.

1this information was not known at the time that the algorithm has been proposed but
it was well known that computing Nash equilibrium was an hard problem.

54

Algorithm 7 Porter-Nudelman-Shoham’s algorithm (PNS)

1: supportSizes = list of support sizes s = (sa, sb) sorted by, first, |sa − sb|
and then (s1 + s2)

2: for each s ∈ supportSizes do
3: for each Sa ∈ Aa : |Sa| = sa do
4: A′b = {k ∈ Ab : k not cond. dominated, givenSa}
5: if 6 ∃j ∈ Sa cond. dominated, given A′b then
6: for each Sb ∈ A′b : |Sb| = sb do
7: if 6 ∃i ∈ Sa cond. dominated, given Sb then
8: if Problem 9 is satisfable for S = (Sa, Sb) then
9: return the Nash equilibrium

10: end if
11: end if
12: end for
13: end if
14: end for
15: end for

Another technique to reduce the number of problems to be solved is to
remove conditionally strictly dominated actions from the search space.

Definition 3 (Conditionally strictly dominated action). An action i of
player a is conditionally strictly dominated if, given a set of adversary’s
actions Rb ⊆ Ab, ∃i′ ∈ Aa ∀j ∈ Rb : Ua(i, j) < Ua(i

′, j)

By starting from small support sizes, the benefit of pruning conditionally
dominated strategies is amplified because with small supports the conditions
under which a strategy is conditionally dominated can be easily satisfied[37].
The algorithm is complete and in the worst case it returns a Nash equilibrium
after exploring the whole space of supports whose size grows exponentially
with the number of actions.

4.8 Nash equilibrium MIP

Many algorithms have been proposed to calculate Nash equilibria in normal
form games, such as Lemke-Howson, Porter-Nudelman-Shoham, MIP Nash
and none of them appear to be better than others in all situations[38].
However, when maximizing an objective, the MIP Nash formulation
proposed by Sandholm and Conitzer outperforms other algorithms becoming
the best algorithm for our purpose [38].

55

Problem 10: Nash equilibrium MIP

∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (4.57)

uaj =
∑
k∈Ab

ρbkUa(j, k) ∀j ∈ Aa, ∀a, b ∈ Ψ, b 6= a (4.58)

va ≥ uaj ∀j ∈ Aa,∀a ∈ Ψ (4.59)

raj = va − uaj ∀j ∈ Aa,∀a ∈ Ψ (4.60)

ρaj ≤ 1− saj ∀j ∈ Aa,∀a ∈ Ψ (4.61)

raj ≤Msaj ∀j ∈ Aa,∀a ∈ Ψ (4.62)

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (4.63)

ρaj ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ (4.64)

The MIP Nash, Problem 10, is presented as a feasibility problem, where
the only feasible solutions are the Nash equilibria. The followers’ pure
strategies are included into the mixed strategy using the boolean vector
saj , which activates or deactivates the strategy j for each follower a. A pure
strategy j is included into the mixed Nash equilibrium, namely baj = 0, if
no regret raj is associated with that action. A regret raj is defined as the
difference between the utility va obtained playing the best response and the
utility obtained playing strategy j. We note that a regret greater than zero
would induce the player to deviate from that strategy. With this formulation,
the absence of an objective allows us to introduce a custom objective, such
as the maximization of a player’s utility, or the leader’s utility as we will
show in Section 6.3.2.

4.9 Nash LCP and Lemke-Howson algorithm

The problem of calculating a Nash equilibrium in a two-player normal
form game can also be formulated as a Linear Complementary Problem
(LCP)[39]. This formulation (Problem 11) relies on the definition of mutual
best response. By defining va as the expected utility of the player a when
playing his best response to other player’s strategy, it follows that each pure
strategy j of a is allowed to be in the support of his best response only if:∑

k∈Ab

ρbkUa(j, k) = va (4.65)

56

Conversely, a strategy j cannot be included in the support of the best
response of player a if ∑

k∈Ab

ρbkUa(j, k) < va (4.66)

This properties can be obtained by introducing a vector of slack variables
raj for each player a. Slack variables are defined greater than zero and equal
to the gap between the best response’s expected utility and the expected
utility of playing j, which is following reported as constraint 4.67. When a
slack variable is greater than zero, the corresponding pure strategy is not
optimal thus must be excluded from the equilibrium support. This can
be obtained with complementarity constraint 4.71, which states that two
variables ρaj and raj cannot be different from zero at the same time. Given
this property, each couple ρaj and r

a
j such that 4.71 are called complementary

variables. This also implies that when a strategy ρaj is played with non-zero
probability, the complementary slack variable raj must be equal to zero. In
other words a slack variable can measure the regret of playing that strategy
instead of deviating from it which is the same concept of regret also used in
MIP formulation discussed in Section 4.8.
Problem 11: Nash equilibrium LCP

∑
k∈Ab

ρbkUa(j, k) + raj = va ∀j ∈ Aa,∀a, b ∈ Ψ, b 6= a (4.67)

∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (4.68)

ρaj ≥ 0 ∀j ∈ Aa,∀a ∈ Ψ (4.69)

raj ≥ 0 ∀j ∈ Aa,∀a ∈ Ψ (4.70)

ρaj r
a
j = 0 ∀j ∈ Aa,∀a ∈ Ψ (4.71)

This formulation can be solved using Lemke-Howson algorithm (LH). In
order to explain the algorithm details we need to introduce the concept of
strategy labeling [39]. We define the following set of labels:

L = {Li | i ∈
⋃
a∈Ψ

Aa} (4.72)

Where Ψ is defined as the set of players Ψ = {a , b}. A label is defined as
follows:

Definition 4 (Labeled strategy). A mixed strategy ρa of player a has label
Li, we write Li ∈ L(ρa), iff one of the following assertions hold:

57

• i = j such that j ∈ Aa and j /∈ Sa

• i = k such that k ∈ Ab and k is a best response by player b to ρaj

If a strategy contains all possible labels we call it completely labeled [39] or
complementary [13].

Definition 5 (Completely labeled strategy). A strategy ρ = (ρa, ρb) is said
completely labeled if

L(ρa) ∪ L(ρb) ≡ L (4.73)

A completely labeled strategy is a strategy such that, for each pure action
of the two players, defines if the action is in the support, thus being best
response of other player’s strategy, or if the action is not in the support.
Then a completely labeled strategy entirely describes a Nash equilibrium
defined as solution of Problem 11.

Proposition 3. A strategy ρ = (ρa, ρb) is a Nash equilibrium iff is a
completely labeled strategy.

The Lemke-Howson algorithm (Algorithm 8) starts from a basis formed
by only slack variables B = {raj | ∀j ∈ Aa, ∀a ∈ Ψ}, which is a fictitious
completely labeled strategy. This strategy is said fictitious because it is not
a valid strategy as it violates constraint 4.68. After leaving fictitious basis
the algorithm visits a sequence of vertices of the best response polytope (see
[39] for an exaustive graphical exposition) until reaching another completely
labeled strategy which is a Nash equilibrium. This phase is called pivoting.
Starting from constraint 4.67 we can write the initial condition of the system
as follows, where raj are the variables in the basis:

raj = va −
∑
k∈Ab

ρbkUa(j, k) ∀j ∈ Aa, ∀a, b ∈ Ψ, b 6= a (4.74)

At first step, the variable to enter the basis is chosen randomly from
Aa ∪Ab, while the leaving variable the basis during pivoting steps is always
the complementary of the entering variable. Then, in the next steps, the
variable to leave the basis is determined by calculating the minimum ratio
test. In general, the system of equations 4.76 can be rewritten as:

βaj = caj −
∑
k∈Ab

ηbkq
b
k ∀j ∈ Aa,∀a, b ∈ Ψ, b 6= a (4.75)

where variables βaj are the variables in the basis while ηbk are the non-basis
variables. The variables candidated to enter the basis are all the variables ηbk

58

Algorithm 8 Lemke-Howson
1: basis = dummyBasis()
2: enteringV ariable = pickRandomVariable(Aa ∪Ab)
3: repeat
4: leavingV ariable = minimumRatioTest()
5: basis = swap(enteringV ariable,leavingV ariable)
6: if isCompletelyLabeled(basis) then
7: convergence = true
8: else
9: enteringV ariable = complementaryOf(leavingV ariable)

10: end if
11: until convergence
12: return basis

which have non-zero coefficient2 qbk in the equation where the leaving variable
is explicit. For each candidate variable ηbi , equation 4.75 can be rewritten as

βaj = caj − qbi ηbi −
∑

k∈Ab\{i}

ηbkq
b
k ∀j ∈ Aa, ∀a, b ∈ Ψ, b 6= a (4.76)

Over all candidates, the variable to enter the basis is chosen as that where
ratio

caj
qbi

is minimum. In nondegenerate games, the result of minimum ratio
test is always a single variable, however, in degenerate games the ratio could
be minimum for more than one variable. In those cases the solution is to
apply a lexicographic perturbation[31] which, functionally talking, simply
consists in applying an order to the pure actions of the players. In such
way it’s always possible to choose the entering variable deterministically,
ensuring the algorithm to converge in a finite number of steps. The algorithm
terminates when a completely labeled strategy is reached, which can be
written as follows:

∀i ∈ (Aa ∪Ab)∃a ∈ Ψ , βai : βai = ρai ∨ βai = rai (4.77)

In general, LH algorithm converges to equilibrium faster than other
known algorithm such as PNS or MIP. Moreover, by restarting LH from
a Nash equilibrium it is sometimes possible to reach other Nash equilibria.
However it is important to note that, in general, not all the Nash equilibria
of the game are reachable using LH. This limitation is more important if the

2matrices Ua and Ub must have only non-negative values, otherwise a preprocessing
over the matrix is needed before applying Lemke-Howson.

59

aim is to find a Nash equilibrium that maximizes some quantity, in which
case MIP formulation is more convenient.

4.9.1 Randomizing over Lemke-Howson paths

In the previous section we introduced the concept of complementary strategy
emphasizing its equivalence with Nash equilibrium. A strategy is said almost
complementary, instead, if the basis contains one and only one couple of
complementary variables[13]. Then, LH algorithm, during pivoting phase,
starts from the fictitious solution and follows a path of almost complementary
strategies until another complementary strategy is reached. The last reached
basis is a Nash equilibrium. The idea behind Random Restart Lemke-
Howson (rrLH)[13] is the following: considering that restarting LH from
another basis may bring LH to find another equilibrium, if the current path
is taking too long to converge, which in the worst case means an exponentially
long time, it could be useful to restart the algorithm to try a different path.
The algorithm is presented below as Algorithm 9.

Algorithm 9 Lemke-Howson with random restarts (rrLH)
1: cutoff = cutoff0
2: pathToExplore = pickRandomVariable((Aa ∪Ab)\ VisitedPaths)
3: repeat
4: apply pivoting from pathToExplore until cutoff or equilibrium
5: if not equilibrium then
6: if VisitedPaths ≡ (Aa ∪Ab) then
7: increase(cutoff)
8: end if
9: goto step 2

10: end if
11: until convergence
12: return basis

At start, the cutoff is initialized to cutoff0 and a random variable is
chosen to enter the basis. Then, the LH algorithm is executed until the
number of pivoting operations exceeds cutoff or until an equilibrium is
found. If cutoff is passed and there are still paths to explore, LH is restarted
from a random variable not yet explored, if any. When all paths have been
explored and no equilibrium has been found, the list of explored paths is
cleared and the cutoff is increased. Then, the algorithm restarts from one
of the previously interrupted paths until the new cutoff is passed. The
algorithm stops when the first Nash equilibrium is found.

60

4.10 Leadership with correlated followers

Correlated equilibrium solution concept was described by Aumann in 1974
as a way to coordinate players in non-cooperative games [1]. In correlated
games an agent, either external or internal to the game, recommends secretly
to each player which pure strategy to play in the next game. For simplicity
we suppose this agent being the first player, or the defender in security
games and we call him coordinator. The aim of coordinator is to coordinate
other players in order to maximize his own utility, taking into account the
rational behavior of each other player. Then, other players will follow the
given recommendation which is a strategy such that, in absence of knowledge
about others’ recommendations, gives to the player an expected utility not
lower than that he would obtain by playing the Nash equilibrium.

In 2010 von Stengel and Zamir showed the result that the Stackelberg
equilibrium strategy gives to the leader an utility not lower than the utility he
would get in any correlated equilibrium [44]. Then, Conitzer and Korzhyk
showed that in two-player games, when the leader acts as a coordinator,
the problem of finding SSE coincides with the problem finding a correlated
equilibrium in which the incentive constraints of the leader has been removed
and a maximization of the leader’s utility has been introduced [8].

A very general multiplayer formulation of the problem proposed by
Conitzer et Korzhyk in [8] in the form of a linear program, is shown as
Problem 12, rewritten following our notation. First, we define the expected
utility of the player d, namely the coordinator, as:

Vd(p) =
∑
i∈D

∑
j̄∈A

p(i, j̄)Ud(i, j̄) (4.78)

In a n-player game, the strategy p is a n-dimensional matrix where each
element p(i, j̄) represents the joint probability that coordinator and all
other players a ∈ Ψ play respectively i and j̄, which is defined as the
(n − 1)-dimensional vector of coordinated players’ strategies. Being p the
matrix of joint probabilities of all possible players’ strategies, the sum of
its elements must be 1. For each other player a, instead, we define the
expected utility of his each single action j ∈ Aa in a different way. Once
received the coordinator’s recommendation to play j, each player, knowing
the probability matrix p, lacking of knowledge about other players’ actual
recommendations, can only speculate about them. His expected utility of
choosing a generic action j′ ∈ Aa, knowing his recommendation j, can be

61

written using conditional probability as

Va(p, j′, j) =
∑
i∈D

∑
k∈Ψ′

P (i, k|j)Ua(i, j′, k) (4.79)

Where Ψ′ is the set of strategies of coordinated players different from a.
From probability theory we know that

P (i, k|j) =
p(i, j, k)∑

i′∈D

∑
k′∈Ψ′

p(i′, j, k′)
(4.80)

Then we can rewrite expected utility defined in (4.79) as follows:

Vd(p, j′, j) =
∑
i∈D

∑
k∈Ψ′

p(i, j, k)Ua(i, j
′, k)∑

i′∈D

∑
k′∈Ψ′

p(i′, j, k′) (4.81)

In order to make the players following his recommendations, the coordinator
must choose p such that the players have no advantage of playing a different
strategy. This can be expressed with the following set of constraints:

Va(p, j′, j) ≤ Va(p, j, j) ∀a ∈ Ψ, ∀j, j′ ∈ Aa (4.82)

We note that denominator of (4.81) is always positive, then it can be removed
from the constraint (4.82), making it linear, without altering the solution.
Then, the solution of the leadership problem with correlated strategies can
be calculated by solving Problem 12.

Problem 12: Correlated equilibrium LP

max
p

Vd(p) (4.83)

s.t. Va(p, j′, j) ≤ Va(p, j, j) ∀a ∈ Ψ, ∀j, j′ ∈ Aa (4.84)∑
i∈D

∑
j̄∈Ā

p(i, j̄) = 1 (4.85)

p(i, j̄) ≥ 0 ∀i ∈ D, j̄ ∈ Ā (4.86)

As we will show in Section 6.3.2, the solution of this problem in games
with more than two followers playing correlated strategies, provides to the
leader an expected utility not lower than the expected utility obtained in the
Stackelberg equilibrium.

62

Chapter 5

Real world applications

Security in crowded areas as well as areas of economic or political relevance
has become a matter of growing importance in the last few years. The limited
amount of resources makes impossible to provide a complete coverage of
the threatened areas hence an efficient resource allocation policy is needed.
Deterministic scheduling of resource allocations would allow a hypothetical
attacker to observe the defender strategy and possibly exploit any predictable
pattern in it, in order to launch a better planned attack. A randomized
scheduling is therefore needed to prevent pattern predictions but a uniform
randomization strategy wouldn’t take into account neither the different
values of each area nor the intelligent behaviour of the attacker. Moreover
human brain has proven to be a poor randomizer and the size of the problem
makes the task of manually calculating an optimal solution impossible in
most cases. For all these reasons many governments and security companies
in all the world are interested in developing intelligent software able to
provide optimal resource allocation strategies.

This section summarizes some of the most relevant systems recently
developed that apply Game Theory, in particular Stackelberg Games, to
face security problems in some real world scenarios.

5.1 ARMOR

Los Angeles International Airport (LAX) is the fifth busiest airport in the
United States and serves more than 60 millions passengers per year. In this
huge number of people may be hidden many types of threats: arms or drug
traffickers, active shooters, terrorists, etc. The task of secure LAX space is
given to the LAWA police that performs it by means of different systems
of protection such as road checkpoints, canine patrols, passengers screening

63

and so on. The limited amount of resources makes impossible to ensure a
full security coverage to all sensible areas inside the airport therefore it is
necessary to allocate the available resources in certain areas leaving other
areas uncovered for certain periods of time.

ARMOR (Assistant for Randomized Monitoring over Routes) is a game
theoretical software assistant agent successfully deployed since August 2007
at LAX in order to schedule road checkpoints and canine patrol routes to
provide an optimal unpredictable resource allocation strategy to the LAWA
police [35]. ARMOR is able to take into account the different types of
the attackers and the different effects of an attack in the various areas by
representing the security problem as a two players non-zero-sum Bayesian
Stackelberg Game. The defender action space of the game is the set of all
possible resource allocations over all the airport areas, while the attacker
action space is composed by the set of the areas of the airport. The rewards
in the payoff matrix of the defender indicates how much damaging could be
an attack in a certain area launched by a certain type of attacker while the
payoffs of the attacker matrix contains the rewards obtained by the attacker
launching an attack on the various targets.

ARMOR is composed by two different applications: ARMOR-checkpoint
that allows to schedule the road checkpoints and ARMOR-canine that aids
to plan routes for the canine units patrols. Each application consists of a
user interface, a method to build the game matrices, a game solver and an
interface that shows the solution found by means of a spreadsheet. The
user interface allows the personnel to alter the action space, editing the
number of resources available in a particular timeslot, the timeslot duration
and the number of the days to schedule over. Moreover the user can
add environmental extra information previous stored in a file to give more
flexibility to the system that would otherwise ignore the dynamic changes in
the real world. Then the system builds the Bayesian Game matrices, using
information provided by LAWA to fill the matrices payoffs and solves it by
applying DOBSS algorithm, the fastest solver for this kind of games known so
far. After the game has been solved it is possible to add some constraints to
the solution, like force a checkpoint (or a canine patrol) or forbid a checkpoint
(or a canine patrol) in certain time slots, in order to adapt the solution to
the LAWA exceptional needs. Because adding constraints could deteriorate
significantly the optimality of the solution an alert is shown to the personnel
who can still ignore it.

Before its deploying, ARMOR has been tested in various simulations
that showed that the value of the solution provided by ARMOR is always
greater than the value of a uniform randomized scheduling allowing the police

64

to achieve the same performance using significantly less resources. After
the deployment in August 2007 it has been well received by LAWA police
that, before of ARMOR, used deterministic strategies such as alternation of
checkpoints in different days instead of an unpredictable randomized strategy
as that provided by ARMOR system.

5.2 GUARDS

The United States Transportation Security Administration (TSA) is
responsible for protecting the entire American transportation system which,
among other things, includes over 400 airports and approximately 48000
employees. The extension of ARMOR on a national scale is an unfeasible
task because this system has been designed for a single airport and for specific
security activities such as canine patrols and car checkpoints. Applying this
system to such a large number of airports and security activities would mean
having to make each time substantial changes to the project in order to take
into account the specific characteristics of each airport.

GUARDS (Game-theoretic Unpredictable and Randomly Deployed
Security) is a scheduling assistant software designed to aid TSA to optimally
allocate resources across hundreds of heterogeneous security activities in
order to provide airport protection against different type of threats on a
national scale [36]. To meet these goals GUARDS introduces new a game-
theoretic approach based on Bayesian Stackelberg.Games, named Security
Circumvention Games (SGCs). In this new type of game the defender is
allowed to protect targets with multiple types of security activities at the
same time, while the attacker has the ability to choose the threat in order
to circumvent specific security activities.

The system is distributed over all the airports to better fit the specific
needs of each individual airport. However, as TSA wants to maintain a
common standard of security among all airports, an entirely decentralized
approach would not be an effective solution. For this reason GUARDS
includes a central core that allows to perform two centralized primary tasks:
the first task is a knowledge acquisition process useful to determine standard
matrix payoffs and the second task is to provide to domain experts a detailed
overview of the security level in all the airports. In this configuration each
airport has to ensure the safety of his own space by allocating his own
resources on some security activities. The airport space is subdivided into
a certain number of areas, such as waiting areas, ticket areas, cargo areas,
etc. In each area it is possible to conduct many different types of security
activities. In this way each security activity is composed by the activity

65

type and the area of coverage. In a classical security game the action space
for the defender consists of all distributions of resources over the security
activities making the problem growing combinatorially with the number of
the security activities.

A new technique is introduced with GUARDS allowing to build a more
compact matrix representing the game that, otherwise, would soon become
unsolvable. The compact representation introduced with GUARDS allows to
significantly reduce the defender action space grouping the security activities
that provide coverage to the same area and have the same circumvention
cost. This also preserves the optimality of the solution, in fact, allocating
resources on similar activities, or even distributing a uniform probability
over them, has the same effect on the payoffs. As mentioned, the payoffs
are determined by a knowledge acquisition process. This process consists
of two phases: in the first phase domain experts are asked to provide some
information common to all the airports, such as area definitions, security
activities definitions, etc. In the second phase the individual airports have to
customize this information to create unique game instances, for example by
adding or editing areas or security activities. Each airport is also responsible
to provide additional information to determine the unique payoffs associated
to each area.

In order to easily define standard comparable payoffs in all the airports,
GUARDS system includes a module, which, through a series of quantifiable
questions is able to determine automatically the reward and the penalties
associated to each area. In this way it is also possible to correct biased
payoffs by only editing the mathematical formulas centrally, otherwise, all
the local matrices should have to be correct manually. This process allows to
generate a unique game for each airport. Once the game matrices are ready
the personnel has to specify the number of resources available each day and
the number of days to schedule over. Then the game is complete and the
solution is calculated by the back-end module using DOBSS. The solution
of the game corresponds to an optimal resource allocation scheduling that is
presented to the user by means of a spreadsheet.

The simulation results show that, even for a small number of
security activities, the compact representation requires significantly less
computational time than that required using the standard representation
and the gap grows exponentially with the number of security activities. The
test performed evaluating the quality of the solution confirms that the game-
theoretic approach allows to obtain expected rewards far better that those
obtained with a uniform randomized resource allocation. GUARDS system

66

is currently under evaluation by the TSA and, after the tests, could become
part of the TSA nationwide airport security program.

5.3 IRIS

In the United States tens of thousands of commercial flights serve hundreds
of thousands of passengers everyday, making this air transportation network
a primary target for terrorist aims. The Federal Air Marshal Service
(FAMS), under the supervision of TSA, is the agency tasked of providing
undercover security personnel to ensure protection aboard commercial flights
by detecting or simply deterring potential aggressors. As the resources
available to FAMS are not enough to protect each flight all the times,
FAMS has to choose which flights should be protected and which should not,
reasoning about the value that each flight is believed to have from a terrorist
viewpoint. Each flight assumes a different value for terrorists depending, for
example, on the number of people onboard or on the importance of the areas
overflown along its path. Moreover a flight that is usually marked as a low
risk flight could become a high risk flight after some special event occurs.

Previous systems such as ARMOR were designed to schedule canine
patrols and road checkpoints, where the only constraints were the amount
of available resources. In the FAMS domain instead, other constraints arise
because the resources are intrinsically moved through the transportation
network, meaning not only that during the flight the resources must become
unavailable but also that, after the flight, the resources are located in airports
different from departures, making the problem much more difficult. For these
reasons, the application of Game Theory to this domain presents three main
challenges. First, the huge number of flights per day makes the problem
unsolvable for DOBSS. The second issue is the high amount of user input
required to provide the payoffs for each individual flight. Finally, expressing
these hard scheduling constraints by listing all the valid schedules would
make the strategy space to explode in size.

IRIS (Intelligent Randomization In Scheduling) is a scheduling assistant
software developed for TSA to overcome these challenges, aiding to efficiently
schedule Air Marshal patrols to provide a feasible optimal coverage strategy
to the American air transportation network [40]. In order to exponentially
reduce the action space, IRIS adopts a new game representation, called
compact representation. The compact representation removes redundancies
in the normal form matrix and can be efficiently solved using ERASER-
C algorithm, which has also the capability to represent constraints in a
compact way. However, even with the compact representation, the number

67

of inputs required to describe all the payoffs would be at least in the
tens of thousands, four for each flight. In IRIS this problem is solved by
introducing an attribute-based preference elicitation system based on the
Threat, Vulnerability and Consequence model (TVC). This system applies
a mathematical formula to combine a vector of risk data automatically
obtained from the flight attributes and calculates the payoffs relating to
that flight. With this system, the amount of user inputs required remains
constant as the number of flights increases.

The architecture of IRIS is composed by four main components: an
input module, a back-end module, a display/output module and a project
management module. The input module receives four classes of inputs,
required by the back-end module to construct the Stackelberg Game: the
resource data, which describes the number of FAMS and the subsets of flights
they can cover; the target data which contains all the necessary information
to describe a flight, like departure and destination or the flight number;
the risk data required by the preference elicitation system to calculate the
payoffs of the game; finally some boundary data useful to the user to better
understand the system’s outputs. These inputs are then passed to the
back-end module that processes them with six primary components. The
preprocessing engine combines the target data and the resource data to
produce a set of valid schedules. These schedules are used in combination
with the risk data by the second module to generate the MIP representing
the Stackelberg game. The MIP is then solved using ERASER-C which
solution is used by the fifth component of the back-end module to produce a
randomized schedule. Finally, using this probability distribution, a sample
schedule is generated. The solution produced is finally displayed to the user
with a user-friendly representation in the display/output module.

The project management tool allows to create a project file that stores
the input files, the additional risk data and the various settings for future
uses. IRIS has been tested using real flight data taken from different regions,
comparing the quality of its solution to the ones provided by a uniform
randomized scheduler and a weighted randomized scheduler. The quality
of the solution provided by IRIS is always better than other solutions and
the difference becomes clearer as the size of the action space increases. The
system has been delivered to FAMS and it’s currently under evaluation to
assess the possibility of integrate it into their scheduling system.

68

Chapter 6

Multi-follower games

All the problems and algorithms described so far rely on the assumption
that, at all the time, there is at most one single attacker who plans to
hit the infrastructure protected by the defender. Although this hypothesis
holds good in many situations, in some circumstances it could be reasonable
to suppose that two or more aggressors could plan to attack independently
but simultaneously. For example, in an airport more than one terrorist
organization, with different heads and different aims, could plan to attack
different areas of the airport concurrently. Another situation where it
would be useful, if not necessary, to consider more than one simultaneous
attacker are public demonstrations, such as protests against G8 summits,
where many groups attending the manifestation, act without coordination
in order to achieve their own distinct objectives, some peaceful, some not,
while the task of the police is to preserve vulnerable areas of the city as
well as ensuring the safety of non-violent protesters. Another, even more
interesting real world application, would be in the war against narcotraffic,
for example the Mexican Drug War, where the government tries to suffocate
criminal organizations, while multiple drug cartels fight each other, pursuing
exclusively their own interests.

The aim of the second part of this work is to analyze how the structure
and the complexity of the game change when a second attacker joins the
game. Finally we propose some algorithms to calculate the optimal strategy
for the defender, providing an analysis of their performance.

6.1 Problem analysis

In classical Bayesian security games the payoffs of the defender and the
attacker depend on the type of the latter but only a single attacker is

allowed to play at the same time. However, in some games where the
defender has to deal with attackers of different types, they could be ruled by
different autonomous agents with independent heads. In this case it could
be reasonable to suppose that more than one of the attackers of the different
types could attack simultaneously. The resulting game is a three players
security game. As the nature of the game does not change, the followers are
still supposed to observe the leader strategy before planning the attack. So,
the leader keeps the ability to commit to a strategy as in the single follower
case, while the followers play at the same time with the aim of maximizing
their own utility. As the followers are supposed to play simultaneously,
selfishly and without coordination the followers subgame can be modeled
as a normal form game in which teh followers play according to the Nash
equilibrium solution concept.

6.1.1 Payoffs structure

In two players security games some assumptions on the structure of the
payoffs could be considered valid in general, for example the zero sum
formulation or the compact form simplification, because in a real world
scenario, a high payoff for the attacker would likely correspond to a low payoff
for the defender and vice versa. When trying to apply a simplification on the
payoff structure in a multi-follower game, instead, a question arises naturally:
how would the payoffs change when the followers decide to attack the same
objective? Basically this strongly depends on the application context. To
give a rough idea we only mention the following cases, reasoning on followers
payoffs:

• The followers’ payoff becomes higher in the case that the effects of the
attacks are additive in some way.

• The followers’ payoff becomes lower when only the first attack is possible
or in the case that the followers hinder each other.

• The followers’ payoff does not change.

The same considerations could also affect the leader’s payoffs. In fact, in
the case of a single attack of two follower types he would get one of the two
payoffs, depending on which type of attacker he would deal with. When two
attacks happen at the same time on the same target, instead, the leader’s
payoff would be affected in one of the following ways:

• The leader’s payoff becomes lower than the lowest of the two payoffs
when the effects of the attacks are additive in some way.

70

• The leader’s payoff becomes higher in the case that the followers hinder
each other or in the case that he would capture both the attackers.

• The leader’s payoff is the lowest1 of the payoffs he would get in the case
of a single attack, when only a single attack is possible.

However, all these considerations can be evaluated only by security
experts who design the payoffs matrices by analyzing the players’ utilities in
a real world scenario, in all the different situations so this will not be further
discussed here. Hereinafter in this work, in order to provide a very general
analysis to the problem, we suppose the payoffs to be randomly distributed
according to a uniform distribution.

6.1.2 Compliance

In two players security games, Strong Stackelberg Equilibrium solution
concept relies on the assumption that the follower will always break ties
in leader’s favor, because, as demonstrated by Zamir and Von Stengel [43]
compliance always provides to him better outcomes or at least equal to those
obtained in the Nash equilibrium. In the same article they also showed
how this assumption no longer holds, in general, in games with more than
one follower. However, compliance, in a slightly different form, can still be
considered a valid assumption in multi-follower security games.

Take for example the game shown in Figure 6.1 in which a leader Θ

faces two followers {a, b} ∈ Ψ. In this game the strategy set of the leader is
Ad = {l1, l2}, while the strategy sets of the followers are Aa = {α1, α2} and
Ab = {β1, β2}. Each mixed strategy of the leader induces the followers to
play a different normal form game whose payoffs are calculated as a linear
combination of the payoffs of the followers’ games induced by the leader’s
pure strategies, reported in Table 6.1.2.

l1 β1 β2

α1 0, 9, 6 8, 0, 0
α2 8, 0, 0 0, 6, 9

l2 β1 β2

α1 2, 0, 9 1, 8, 8
α2 1, 7, 7 2, 9, 0

Figure 6.1: An example of multi-follower game.

When the leader commits to l1, the followers play the classic battle of
sexes game, while when he commits to l2 the induced game is a prisoner
dilemma. As in the single follower case, the aim of the leader is to induce the
followers to play the equilibrium that maximizes his own utility. However

1worst case scenario

71

in this case committing to a mixed strategy is not sufficient to force the
followers to play a certain equilibrium. When the leader commits to l1, for
example, the followers’ game, as well known from theory, presents three Nash
equilibria: two stable pure strategies Nash equilibria N 1 = {ρ1

a, ρ
1
b} where

ρ1
a = {α1 = 1, α2 = 0} and ρ1

b = {β1 = 1, β2 = 0} and N 2 = {ρ2
a, ρ

2
b} where

ρ2
a = {α1 = 0, α2 = 1} and ρ2

b = {β1 = 0, β2 = 1} and one unstable mixed
strategies Nash equilibrium N 3 = {ρ3

a, ρ
3
b} where ρ3

a = {α1 = 3
5 , α2 = 2

5}
and ρ3

b = {β1 = 2
5 , β2 = 3

5}. The expected utilities of the leader in both
the pure equilibria is 0, while his expected utility in the mixed equilibrium is
4.16. So, the leader would commit to the strategy l1 only if the followers play
their mixed equilibrium, otherwise he would prefer to commit to l2 where the
unique pure strategies Nash equilibrium would give to him an utility of 1.
However, once he commits, the followers are free to play their best strategy.

In this example, the followers a and b get symmetric payoffs, which give
them an expected utility of 6 in one of the pure equilibria and 9 in the other
and an expected utility of 3.6 in the mixed equilibrium, so if they could
coordinate, they would choose to play one of the pure equilibria because
the expected utility of the worst one is still better than that obtained in
the mixed equilibrium. In this case, as stated by Zamir and Von Stengel
the followers would not take advantage of breaking ties in leader’s favor and
the commitment would not be an advantage for the leader. However in a
scenario where the followers cannot coordinate their strategies, such as the
multi-follower security game scenario, the leader would be able to induce the
followers to play the equilibrium which is best for himself. In fact, when
the leader commits to a strategy, he may also suggest a strategy that each
follower should play. If any follower knows that all the other followers will
play that equilibrium, by definition of Nash equilibrium, no one would take
advantage from being the only one who plays a different strategy.

In this context compliance is still a strong assumption on the basis of
which we can build the multi-follower problem formulation proposed in the
following section. Although in this work we adopt SSE as the more natural
solution concept for multi-follower games, in some case we will analyze how
the problem changes when solving for WSE or when the followers simply
play a Nash equilibrium.

6.2 Mathematical formulation

In this section we propose the most general mathematical formulation of
the multi-follower problem. As in all the Stackelberg games, the leader, or
defender, here indicated with d, must commit to a strategy that maximizes

72

his own utility. As discussed in the previous section, we find reasonable the
hypothesis that the followers, a ∈ Ψ, will break ties in leader’s favor.

Definition 6 (Multifollower Game). A multifollower game is a structure
G = (N,A,U) such that

• N = (d,Ψ) is the set of players where d represents the leader and Ψ is
the set of followers.

• A = Ad×AΨ is the set of players’ actions where Ad is the set of leader’s
actions and AΨ = A1 ×A2 · · · ×A|Ψ| is the set of followers’ actions.

• U = (Ud, UΨ) where Ud : A → R and UΨ : A → R|Ψ| represent the
utilities of all players in each game’s outcome.

Given these hypothesis and definitions we can formulate the objective
function of the maximization problem as follows:

max
δ

∑
i∈D

δiVd(Ψ,Ud(i)) (6.1)

In this formulation we use Ud(i) to indicate a slice of the n-dimensional
matrix indexed by i with n = |Ψ|. Vd is the expected utility obtained by the
leader in the Nash equilibrium of the followers’ subgame generated by the
leader’s commitment. To fit the very general case we can express Vd with
the following recursive function:

Vd(Ψ′,U ′d) =

∑
j∈Aa

ρajVd(Ψ′ \ {a},U ′d(i)) : a ∈ Ψ′, |Ψ′| > 1∑
j∈Aa

ρajU ′d(i) : |Ψ′| = 1
(6.2)

When the set Ψ′ contains more than one follower, the function is recalled
removing an element from the set. When Ψ′ is finally a singleton set,
the function actually calculates the expected utility of the leader using the
payoffs of the array U ′d. After the leader commits to a strategy, the game
becomes a normal form game where the followers play their mutual best
responses. Then, said va the expected utility of the best response of follower
a, by definition, we assert that:

va ≥
∑
i∈D

δiVa(Ψ \ {a},Ua(i, j)) ∀j ∈ Aa, ∀a ∈ Ψ (6.3)

where Ud(i, j) is a (n − 1)−dimensional matrix, indicating the slice of
the payoff matrix of follower a indexed by the pure strategies i and j.

73

Analogously to Vd we define the expected utility of the follower a as:

Va(Ψ′,U ′a) =

∑
j∈Aa

ρajVa(Ψ′ \ {a},U ′a(j)) : a ∈ Ψ′, |Ψ′| > 1∑
j∈Aa

ρajU ′a(j) : |Ψ′| = 1
(6.4)

Condition 6.3 assures that va is greater than or equal to the greatest expected
utility. Finally we can assert that j is in the strategy support of follower a
when j is a best response to the other players’ strategies:

j ∈ Sa =⇒ va =
∑
i∈D

δiVa(Ψ \ {a},Ua(i, j)), ∀j ∈ Aa, ∀a ∈ Aa (6.5)

This comes from the definition of Nash equilibrium, meaning that only
strategies which give an expected utility equal to va are included in the
support Sa. A pure strategy j is in the support of a mixed strategy ρa when
ρaj > 0. The logical proposition 6.5 can be equivalently rewritten as the
following equation:

ρajva −
∑
i∈D

δiρ
a
jVa(Ψ \ {a},Ua(i, j)) = 0 ∀j ∈ Aa, ∀a ∈ Ψ (6.6)

This equation is satisfied when the strategy j is not in the support or when
va corresponds to the best expected utility.

6.3 Security games with two attackers

Now we propose some algorithms to calculate the optimal solution for
security games with more than one follower. We analyze the simplest case
where a defender faces two attackers. Depending on the application scenario
it can be useful distinguish the following four cases:

• All the players can play only pure strategies (LPFP)

• The leader can play only pure strategies while the followers are allowed
to play mixed strategies (LPFM)

• The leader is allowed to play mixed strategies while the followers can
only play pure strategies (LMFP)

• All the players are allowed to play mixed strategies (LMFM)

We propose different algorithms to solve these four problems, providing an
analysis of their performances in terms of solution time and quality of the
solution found.

74

6.3.1 LPFP: Leader Pure Followers Pure

The simplest case is a game where all the players are only allowed to play
pure strategies. We define LPFP as follows:

Definition 7 (LPFP equilibrium). The LPFP equilibrium, if exists, is a
strategy S = (̄i, j̄, k̄) such that:

• N (Gī) = (j̄, k̄) is a Nash equilibrium for the followers’ subgame induced
by leader’s pure strategy ī

• ∀i ∈ D,∃N (Gi) = (j, k) =⇒ Ud(̄i, j̄, k̄) ≥ Ud(i, j, k)

The strategy S can be found by simply enumerating, for each leader
strategy, all the pure Nash equilibria of the related follower subgame and
choosing the one which grants the best utility for the leader, if at least one
equilibrium exists, otherwise the game is declared infeasible. The algorithm
proposed examines one by one all the pure strategies of the players checking
whether they are Nash equilibria for the followers or not. If the strategy is a
Nash equilibrium and the payoff obtained by the leader is better than the best
payoff found so far, the solution is temporarily flagged as optimal. The search
continues until all the strategies have been examined. The computational
complexity of this algorithm is in Ω(|Ad|·|Aa|·|Ab|) and inO(|Ad|2·|Aa|·|Ab|).
If no equilibria are found after every possible follower strategy profile has
been checked, the game is declared infeasible.

Existence of a LPFP equilibrium

It’s interesting to note that, although the existence of a LPFP equilibrium is
not guaranteed in general, the probability of LPFP-infeasibility is as lower
as the number of leader’s actions grows.

Proposition 4 (Probability of feasibility of LPFP). Given a multifollower
game G with uniform random payoffs, the probability P (LPFP) of having a
LPFP equilibrium is such that

lim
|Ad|→+∞

P (LPFP) = 1 (6.7)

Proof. The critical element for the existence of a LPFP equilibrium in
a multifollower game is the existence of at least a pure strategy Nash
equilibrium in at least one of the follower subgames. The probability of

75

the non-existence of a pure strategy Nash equilibrium in a m×n two-players
game has been discussed in [15] and is showed to be equal to

1− PN =
K∑
k=0

(−1)k
(
m

k

)(
n

k

)
k!

(mn)k
(6.8)

whereK = min(m,n). If no pure strategy Nash equilibria exist for any leader
strategy, then the game is LPFP-infeasible. The probabilities of having a
pure strategy Nash equilibrium are independent for each subgame, then, the
probability of a game being LPFP-infeasible, is calculated as 6.8 elevated to
the cardinality of the set of leader’s actions:

P (LPFP c) = (1− PN)|Ad| (6.9)

which clearly tends to zero for increasing |Ad|, meaning that P (LPFP) tends
to 1.

In Table 6.1 we reported some probabilities of dealing with a feasible
game instance supposing the followers having the same number of actions,
which is a reasonable hypothesis for most of security games. The payoff are
supposed to be uniformly random distributed. The probabilities P (LPFP)

have been calculated starting from formula 6.8.

|Aa| = 2 3 4 5 6 7 8
|Ad| = 2 0.984 0.954 0.933 0.920 0.911 0.904 0.899

3 0.998 0.990 0.983 0.977 0.973 0.970 0.968
4 1.000 0.998 0.996 0.994 0.992 0.991 0.990
5 1.000 1.000 0.999 0.998 0.998 0.997 0.997
6 1.000 1.000 1.000 0.999 0.999 0.999 0.999
7 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6.1: Calculated theoretical probability of having a LPFP-feasible multifollower game
depending on the number of actions per player, supposing followers having the same number
of actions.

By observing Table 6.1 we note that as the number of defender’s actions
grows, the probability of having a feasible game quickly tends to 1. It’s
interesting to note that, instead, when the number of followers’ actions
is increased, the probability of having a LPFP-feasible instance decreases.
However it has a non-zero limit because, as shown in [15], the probability of
a Nash equilibrium in pure strategies has a limit when |Aa| tends to infinity,
which is:

lim
|Aa|→+∞

PN = 1− 1

e
(6.10)

76

Then, by applying limit 6.10 to 6.7 and fixing the number of leader’s pure
strategies, we obtain the following limit:

lim
|Aa|→+∞

P (LPFP) =
1

e|Ad|
(6.11)

This property is expecially good in security games, because in many
scenarios, for example when the defender randomizes over schedules, the
number of leader’s pure strategies grows exponentially with the number of
targets, whose cardinality is equal to the number of followers’ pure strategies.
Moreover, as later shown in Figure 6.6 on the right, the value of the LPFP
solution in random games with integer utilities ranging from 0 to 100 grows
with the number of players’ actions. By increasing the number of payoffs
and the number of subgames, in fact, the probability of having a good leader
payoff in correspondence of a pure strategy Nash equilibrium of the follower
subgame tends to 1. However, it’s important to note that these properties
are valid only under the hypotesis of uniform random games. In games where
the followers’ interests are in direct conflict, for example, the limits 6.10 and
6.11 tend to zero as the number of players’ actions increases [15].

6.3.2 LPFM: Leader Pure Followers Mixed

The second problem we analyze is a scenario where the leader has to commit
to a pure strategy while the followers play in mixed strategies. To solve this
problem we cannot simply enumerate all the Nash equilibria of the followers’
subgames, for each leader’s pure strategy, as the problem of calculating
a Nash equilibrium in mixed strategies, in a single two players game has
proven to be PPAD-complete. Moreover in this case we need to calculate
the Nash equilibrium which grants to the leader the best possible outcome,
which makes the problem NP-HARD. Then, a better approach would be to
identify and exclude from the leader’s set of strategies those that cannot
be optimal before calculating any mixed Nash equilibrium in the related
followers’ subgame.

For this purpose we propose a MULTI-MINLP branch and bound
algorithm, whose pseudocode is presented as Algorithm 10. This algorithm
allows to find the optimal solution with a considerable speedup by solving
only a small subset of all the followers’ subgames. We also present a single
MINLP formulation and we compare their performance in section 6.5.

77

MULTI-MINLP and MULTI-LCP algorithm

By decomposing the problem into many subproblems generated by leader’s
commitment we can explore three different cases depending on followers’
behavior:

• followers act to maximize leader’s utility (SSE),

• followers act to minimize the leader’s utility (WSE),

• followers simply play a Nash equilibrium.

We note that in all of these cases, the leader’s commitment is aimed at
maximizing his own utility, then the branch and bound algorithm remains
identical in all cases with the only difference of the lower bound calculation.
At first, the algorithm calculates an upper bound on the leader’s expected
utility, for each leader’s pure strategy i. A first upper bound can be
determined by finding the maximum leader payoff in the follower subgame.
Stackelberg equilibrium with correlated followers [8] represents a tighter
upper bound of each strategy, when maximizing leader’s utility, and it can
be found by solving a LP in polynomial time. The proof of feasibility of
correlated equilibrium as a leader-follower upper bound is provided in the
following paragraph. In the case that followers act to minimize the leader’s
utility, instead, for each leader pure strategy an upper bound is obtained
by looking for the pure followers Nash equilibrium with the lowest leader’s
payoff. A tighter upper bound can be obtained using the minimun between
the upper bound just described and a Nash equilibrium calculated using
rrLHin the followers subgame. The leader’s pure strategies are then sorted
with decreasing upper bound. Then, a first sweep is performed calculating
the best pure Nash equilibrium, for each i.

The search stops when the upper bound of the next strategy to evaluate is
lower than the best solution found so far. This modified version of the LPFP
algorithm benefits of the upper bounds already calculated and provides a
cheap instrument to prune some of the strategies before starting to search
for a mixed strategies equilibrium. The next step consists in calculating the
best mixed strategies Nash equilibrium for each i, ordered by descending
upper bound, until the next strategy’s upper bound becomes lower than
the best known lower bound. To find the best mixed Nash equilibrium in
a subgame we use the MINLP reported as Algorithm 6.3.2, obtained from
the MIP Nash [38] algorithm by adding maximization or minimization of the

78

Algorithm 10 Stackelberg equilibrium LPFM
1: for each i ∈ D do
2: UB(i) = correlated2p(G(i)) // or minimumPureNash in the

minimization case
3: end for
4: D = sort(D,UB,descending)
5: LB = −1

6: for each i ∈ D and UB(i) > LB do
7: lb = lowerBoundPure(G(i))
8: if lb > LB then
9: lb = LB

10: end if
11: end for
12: for each i ∈ D and UB(i) > LB do
13: lb = lowerBoundMixed(G(i))
14: if lb > LB then
15: lb = LB

16: end if
17: end for

leader’s expected utility. In the case that followers play any Nash equilibrium
regardless of the leader’s utility, instead, lowerBoundMixed can be calculated
more quickly using Lemke-Howson algorithm (Lemke-Howson 1964) [25].

Leadership with correlated followers as upper bound

As we said, in games with more than two players, committing to a correlated
strategy gives to the leader an expected utility greater than or equal to that
obtained when committing to a mixed strategy.

Proposition 5 (Commitment to correlated strategies as upper bound). In a
multi-follower game, the expected utility of the leader when the followers play
correlated strategies is never worse than the expected utility in the Stackelberg
equilibrium.

Proof. In order to give a proof that when the followers play correlated
strategies the leader’s expected utility is never worse than that in the leader-
follower equilibrium, in games with more than two players, we will show that
exist some games in which, if followers play in correlated strategies, the leader
get better outcomes than those obtained in the Stackelberg equilibrium
but there are no games where leader-follower equilibrium provides better

79

outcomes than those obtained when followers play correlated strategies.
Part 1: The objective function with correlated followers possibly allows
better outcomes than those obtained in the leader-follower equilibrium,
under their respective constraints. Referring to 6.1 and 4.78 we obtain 6.12.

∃G :
∑
i∈D

∑
j̄∈Ā

p(i, j̄)Ud(i, j̄) ≥
∑
i∈D

δiVd(Ψ, Ud(i)) (6.12)

A simple proof of this assertion can be achieved by proving the existence
of a single instance where this condition is valid. Take for example the
case where the followers’ Nash equilibrium, NΨ, composing the Stackelberg
equilibrium is formed by a mixed strategy for the players a and b while the
other followers’ strategies are irrelevant. In particular we suppose that the
support of the NΨ would include the following pure strategies {α1, α1} ∈ Aa,
{β1, β2} ∈ Ab.

{α1, α2, β1, β2} ∈ NΨ a, b ∈ Ψ (6.13)

Now call V̂d the bidimensional matrix of the leader’s payoffs induced by
the leader strategy in the Stackelberg equilibrium and by the strategies of
the followers different from a and b. Suppose that the payoffs of this matrix
are such that:

V̂d(α1, β1) < V̂d(α1, β2) (6.14)

V̂d(α1, β1) < V̂d(α2, β1) (6.15)

V̂d(α2, β2) < V̂d(α1, β2) (6.16)

V̂d(α2, β2) < V̂d(α2, β1) (6.17)

Although this equilibrium is the best solution for the leader in a
Stackelberg game, it could be improved if the leader would have the ability
to coordinate the followers to play only {α2, β1} and {α1, β2}. A mixed Nash
equilibrium does not allow to assign a probability of zero to the combinations
{α1, β1} and {α2, β2} while keeping positive probability over {α2, β1} and
{α1, β2}, in fact, as independent events, the probability of playing each
combination coincides with the product of the probabilities over the followers’
pure strategies.

P (α1, β1) = ρaα1
· ρbβ1

(6.18)

P (α1, β2) = ρaα1
· ρbβ2

(6.19)

P (α2, β1) = ρaα2
· ρbβ1

(6.20)

P (α2, β2) = ρaα2
· ρbβ2

(6.21)

80

The correlated case, instead, allows to assign a probability directly over a
certain combination of pure strategies, thanks to the ability of the leader to
coordinate the followers’ behaviour:

P (α1, β1) = p(α1, β1) (6.22)

P (α1, β2) = p(α1, β2) (6.23)

P (α2, β1) = p(α2, β1) (6.24)

P (α2, β2) = p(α2, β2) (6.25)

Part 2: To provide a complete proof we have to show that does not exist
any game where Stackelberg equilibrium provides better outcomes than
correlated case, or, equivalently, all the feasible solutions of the Stackelberg
problem are also solutions of the correlated problem. Then assume, for the
sake of contradiction, the existence of a game where Stackelberg equilibrium
is actually better than correlated case. In the first part we have already
shown that unconstrained objective function of correlated equilibrium allows
solutions better than the unconstrained objective function of the Stackelberg
optimization problem. Now, we suppose that, in this game, all the correlated
solutions better than the Stackelberg equilibrium are infeasible due to the
constraints of the correlated problem:

∀p : (6.26)∑
i∈D

∑
j̄∈Ā

p(i, j̄)Ud(i, j̄) >
∑
i∈D

δiVd(Ψ, Ud(i)) (6.27)

∃a ∈ Ψ, ∃j, j′ ∈ Aa : Va(p, j′, j) > Va(p, j, j) (6.28)

However, we can easily find that if this condition is satisfied, Stackelberg
equilibrium coincides with committing to correlated strategies. In fact, the
coordinator is allowed to choose p such that

p(i, j̄) = δi
∏
j∈Ā

ρaj j ∈ Aa,S = (δi, j̄) (6.29)

Such strategy is feasible in the correlated problem iff it is feasible in the
Stackelberg problem. In fact, if some player a plays a strategy j with a zero
probability, the correlated constraint 4.82 holds trivially. Otherwise, when all
players play a strategy with positive probability, the best response constraint
of the Nash equilibrium, which is satisfied in the Stackelberg equilibrium, also
satisfies the correlated constraint. This means that the coordinator is always
allowed to coordinate the players to play Stackelberg equilibrium, making it
a lower bound to the correlated problem.

81

In order to use commitment to correlated strategies to determine an
upper bound for each leader strategy we need to apply the correlated problem
to the followers’ subgame corresponding to leader strategy. Then, fixed
the leader strategy the correlated strategy p and players’ utilities will be
bidimensional matrices. The resulting problem is shown below as Problem
13.

Problem 13: Correlated upper bound LP

max
p

∑
j∈Aa

∑
k∈Ab

p(j, k)Ud(j, k) (6.30)

s.t.
∑
k∈Ab

p(j, k)Ua(j′, k) ≤
∑
k∈Ab

p(j, k)Ua(j, k) ∀j, j′ ∈ Aa (6.31)

∑
j∈Aa

p(j, k)Ub(j, k
′) ≤

∑
j∈Aa

p(j, k)Ub(j, k) ∀k, k′ ∈ Ab (6.32)

∑
j∈Aa

∑
k∈Ab

p(j, k) = 1 (6.33)

p(j, k) ≥ 0 ∀j ∈ Aa,∀k ∈ Ab (6.34)

MINLP Nash

In Section 4.8 we described a MIP formulation to calculate Nash equilibrium
as a feasibility problem, allowing the optimization of an arbitrary objective.
To provide a lower bound for the multi-follower equilibrium we need to
maximize (SSE) or minimize (WSE) the leader’s utility, then we add a
nonlinear objective which transforms the original MIP into the MINLP
proposed as Problem 14.

82

Problem 14: Nash MINLP

max
ρ1,ρ2

∑
j∈Aa

∑
k∈Ab

ρajρ
b
kUd(j, k) (6.35)

s.t.
∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (6.36)

uaj =
∑
k∈C

ρbkUa(j, k) ∀j ∈ Aa,∀a ∈ Ψ, b 6= a (6.37)

va ≥ uaj ∀j ∈ Aa,∀a ∈ Ψ (6.38)

raj = va − uaj ∀j ∈ Aa,∀a ∈ Ψ (6.39)

ρaj ≤ 1− saj ∀j ∈ Aa,∀a ∈ Ψ (6.40)

raj ≤Msaj ∀j ∈ Aa,∀a ∈ Ψ (6.41)

saj ∈ {0, 1} ∀j ∈ Aa,∀a ∈ Ψ (6.42)

ρaj ≥ 0 ∀j ∈ Aa,∀a ∈ Ψ (6.43)

(6.44)

Variables zijk and zaij have been introduced in order to relax objective
nonlinearities through nonlinear complementarity constraints 6.50-6.53,
however a nonlinearity is still present in constraint 6.50.

Single MINLP formulation

Another approach to exploit game structure is to formulate the whole LPFM
problem with a single MINLP and solving it using a generic MINLP solver.
In this way a single solver is tasked to perform both branch and bound
on leader’s strategies and computation of followers’ Nash equilibrium. The
MINLP in Problem 15 is obtained starting from MINLP Nash (Problem 14):
the leader strategy δ has been introduced both in the objective calculation
and in the calculation of follower’s utilities uaj .

83

Problem 15: LPFM MINLP

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aa

∑
k∈Ab

zijkUd(i, j, k) (6.45)

s.t.
∑
i∈D

δi = 1 (6.46)∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (6.47)

∑
i∈D

∑
j∈Aa

zaij = 1 ∀a ∈ Ψ (6.48)

∑
i∈D

∑
j∈Aa

∑
k∈Ab

zijk = 1 ∀a, b ∈ Ψ, b 6= a (6.49)

zijk ≥ zijρbk − (1− δi) ∀i ∈ D,∀j ∈ Aa, ∀k ∈ Ab (6.50)

zijk ≤ δi ∀i ∈ D,∀j ∈ Aa, ∀k ∈ Ab (6.51)

zaij ≥ ρaj − (1− δi) ∀i ∈ D,∀j ∈ Aa, ∀a ∈ Ψ (6.52)

zaij ≤ δi ∀i ∈ D,∀j ∈ Aa, ∀a ∈ Ψ (6.53)

uaj =
∑
i∈D

∑
k∈C

zaikUa(i, j, k) ∀j ∈ Aa, ∀a ∈ Ψ, b 6= a (6.54)

va ≥ uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.55)

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.56)

ρaj ≤ 1− saj ∀j ∈ Aa, ∀a ∈ Ψ (6.57)

raj ≤Msaj ∀j ∈ Aa, ∀a ∈ Ψ (6.58)

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (6.59)

ρaj ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ (6.60)

zaij ≥ 0 ∀i ∈ D,∀j ∈ Aa, ∀a ∈ Ψ (6.61)

zijk ≥ 0 ∀i ∈ D,∀j ∈ Aa, ∀k ∈ Ab (6.62)

δi ∈ {0, 1} ∀i ∈ D (6.63)

6.3.3 LMFP: Leader Mixed Followers Pure

In this section we analyze the problem of calculating the optimal mixed
strategy for the leader when the followers are forced to play in pure strategies.
When the leader commits to a mixed strategy, a normal form follower
subgame is generated, whose payoffs correspond to the weighted sum of the
payoffs of the normal form games related to the leader’s pure strategies in

84

the support of the mixed strategy. As known from theory a pure strategies
Nash equilibrium in a normal form game not always exists. Then, also in
LMFP games, being pure strategies Nash equilibrium part of the solution,
a leader-follower equilibrium is not granted to exist. Take for example the
game in Figure 6.2.

l1 β1 β2

α1 3, 3, 6 8, 0, 7
α2 8, 1, 6 2, 6, 3

l2 β1 β2

α1 4, 2, 4 3, 6, 9
α2 7, 0, 7 2, 7, 2

Figure 6.2: An example of infeasible game.

When the leader commits to l1 the followers cannot play a pure Nash
equilibrium. In fact, if the follower a plays α1, we have

Ub(α1, β1) < Ub(α1, β2) (6.64)

which makes the follower b to prefer to play the pure strategy β2. But when
he plays β2, the follower a will prefer to play α2 as

Ua(α1, β2) < Ua(α2, β2) (6.65)

When the follower a plays α2, the other follower will prefer to play β1 because

Ub(α2, β2) < Ub(α2, β1) (6.66)

Finally, if the follower b plays β1, the best response of the follower a would
be α1 as

Ua(α2, β1) < Ua(α1, β1) (6.67)

Then, in the subgame generated when the leader commits to l1, do not exist
two pure strategies which are mutual best responses, which is the necessary
and sufficient condition for the existence of a pure Nash equilibrium.

The same reasoning is also valid when the leader commits to l2. Moreover
we can easily see that in any game generated as a linear combination of these
two games, no pure Nash equilibria exist. In fact also the preferences of
the followers in the second subgame are the same of those described with
inequalities 6.64, 6.65, 6.66 and 6.67. Then, as shown in Figure 6.13, each
mixed leader strategy will generate a subgame in which those preferences
still hold making the LMFP game infeasible. The game presented in Figure
6.4, instead, admits some feasible solutions.

l1 β1 β2

α1 3, 3, 6 8, 0, 7
α2 8, 0, 6 2, 6, 3

l2 β1 β2

α1 4, 0, 4 3, 7, 3
α2 7, 1, 7 2, 6, 8

Figure 6.4: An example of a game admitting a LMFP equilibrium.

85

0 0.2 0.4 0.6 0.8 1

0

1

2

3

δ(l1)

U
1

β1

α1
α2

0 0.2 0.4 0.6 0.8 1

0

2

4

6

δ(l1)

U
1

β2

α1
α2

0 0.2 0.4 0.6 0.8 1

4

6

8

δ(l1)

U
2

α1

β2
β1

0 0.2 0.4 0.6 0.8 1

2

4

6

δ(l1)

U
2

α2

β2
β1

Figure 6.3: Plots showing how the utilities of the followers in game in Figure 6.2 change by varying
the leader strategy, once fixed the followers’ pure strategies. The upper plots shows the utility
of the first follower while the lower plots shows the utility of the second follower. The left plots
shows assume the other follower playing his first pure strategy while the right plots assume that
the other followers play his second pure strategy. The red line represents the utility the player
gets when he plays his first action, while the blue line is the utility he gets by playing his second
action. We note that the followers’ preferences do not change for any mixed strategy the leader
can commit to.

86

In fact, although both the games associated with leader’s pure strategies are
infeasible, there exist some mixed strategies generating subgames where a
pure strategies Nash equilibrium does exist. Figure 6.5 shows that when
the leader commits to a strategy such that 0.25 ≤ δ1 ≤ 0.5, the followers’
strategies α1 and β1 are mutual best responses, while for any other strategy
the game is infeasible. In order to provide a solution concept to this type of
problems we define the optimal solution as the mixed leader strategy which
generates the followers’ subgame that allows the followers’ pure strategies
Nash equilibrium with the highest leader’s payoff. While calculating the

Feasible strategies

0 0.2 0.4 0.6 0.8 1

0

1

2

3

δ(l1)

U
1

β1

α1
α2

0 0.2 0.4 0.6 0.8 1

0

2

4

6

δ(l1)

U
1

β2

α1
α2

Feasible strategies

0 0.2 0.4 0.6 0.8 1

3

4

5

6

7

δ(l1)

U
2

α1

β1
β2

0 0.2 0.4 0.6 0.8 1

4

6

8

δ(l1)

U
2

α2

β1
β2

Figure 6.5: Plots showing how the followers’ utilities change with respect to leader strategy in
game 6.4. The region highlighted is the only feasible region of the leader strategy domain.

followers’ pure strategies Nash equilibrium in a single game once the leader
committed to a mixed strategy is a simple task, the hardness of solving this
problem is due to the infinite number of followers’ subgames that the leader
can generate by committing to a mixed strategy. However, we can look
at the problem from another perspective. In fact, once fixed a pure Nash
equilibrium for the followers, the problem of maximizing the leader’s utility
subject to constraints of this equilibrium is a LP.

In this context, the problem of finding the LMFP Stackelberg equilibrium
is reduced to the solution of a finite number of LPs in the order of |Aa| · |Ab|.

87

For each couple of followers’ strategies, the leader will search a mixed strategy
such that the followers’ strategy profile is a Nash equilibrium and then he
tries to maximize his own utility. Then, fixed the pure followers’ strategies
j̄ and k̄, each LP would be in the form of problem 6.68. To speed up the
convergence of this MULTI-LP, a branch and bound algorithm similar to
that used to solve LPFM can be applied in order to choose which strategy
profiles to analyze and which to exclude. A good enough upper bound for
real world security games could be simply determined by observing the best
possible leader’s payoff for each pure strategy profile of the followers, while
the lower bound can be progressively refined by resolving LP 6.68 for each
profile.

Problem 16: LMFP LP

max
δ

∑
i∈D

δiUd(i, j̄, k̄) (6.68)

s.t.
∑
i∈D

δiUa(i, j̄, k̄) ≥
∑
i∈D

δiUa(i, j, k̄) (6.69)∑
i∈D

δiUb(i, j̄, k̄) ≥
∑
i∈D

δiUb(i, j̄, k) (6.70)∑
i∈D

δi = 1 (6.71)

δi ≥ 0 (6.72)

Another way to calculate the equilibrium, exploiting the game structure
without solving a LP for each pure followers’ strategy, is to formulate the
problem as the following MIP. We start by defining the followers strategies
ρ1
j and ρ2

k as the probability of playing a certain action, which, being pure
strategies, can be only 0 or 1. The leader strategy, instead, is a probability
distribution over all its possible actions. In this context we define the leader’s
expected utility as the sum of the payoffs corresponding to the followers’
couple of strategies weighted on the leader strategy. The constraint 6.75
allows to consider only the payoffs corresponding to the followers’ chosen
strategies. The remaining constraints 6.78, 6.79 and 6.80 are all needed to
determine ρa and ρb as mutual best responses, such that the followers play
a Nash equilibrium.

88

Problem 17: LMFP MIP

max
δ,ρ1,ρ2

∑
j∈Aa

∑
k∈Ab

udjk (6.73)

s.t. udjk ≤
∑
i∈D

δiUd(i, j, k) ∀j ∈ Aa, ∀k ∈ Ab (6.74)

udjk ≤Mρaj ∀j ∈ Aa,∀k ∈ Ab (6.75)

δi ∈ [0, 1] ∀i ∈ D (6.76)∑
i∈D

δi = 1 (6.77)

uajk ≤
∑
i∈D

δiUa(i, j, k) ∀i ∈ D,∀k ∈ Ab (6.78)

uajk ≥ va −M(2− ρaj − ρbk) ∀j ∈ Aa, k ∈ Ab (6.79)

va ≥
∑
i∈D

δiUa(i, j, k)−M(1− ρaj) ∀j ∈ Aa, k ∈ Ab (6.80)∑
j∈Aa

ρaj = 1 (6.81)

ρaj ∈ {0, 1} ∀σψ1 ∈ Σψ1 (6.82)

6.3.4 LMFM: Leader Mixed Followers Mixed

Finally, we analyze the most general problem, where all the players are
allowed to play in mixed strategies. As known from theory, the problem of
finding a Stackelberg equilibrium in mixed strategies in games with more
than two players is NP-hard [23]. We provide two formulations of this
problem: NLP and MINLP. The first calculates a feasible good solution more
quickly, using a nonlinear optimizer like SNOPT, however the optimality of
the solution provided is not granted. The second formulation allows to always
find the optimal solution in a finite time, using a mixed-integer optimizer
like COUENNE or SCIP, but requires much more time to calculate it. Then,
we provide an analysis on the solution times as well as value of the solution
provided, in order to give the reader an idea of which approach to choose,
depending on the application domain.

LMFM NLP

The formulation of this problem as a NLP can be easily obtained by
restricting the general multi-follower formulation presented at the start of

89

this chapter, to only two followers. The resulting formulation is reported as
Problem 18.
Problem 18: LMFM NLP

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aa

∑
k∈Ab

δiρ
a
jρ
b
kUd(i, j, k) (6.83)

s.t.
∑
i∈D

∑
k∈Ab

va − δiρbkUa(i, j, k) ≥ 0 ∀j ∈ Aa,∀a ∈ Ψ (6.84)

∑
i∈D

∑
k∈Ab

ρajva − δiρajρbkUa(i, j, k) = 0 ∀j ∈ Aa,∀a ∈ Ψ (6.85)

∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (6.86)

va ∈ R ∀a ∈ Ψ (6.87)∑
i∈D

δi = 1 (6.88)

Nevertheless its simplicity this formulation is extremely hard to solve
to optimum due to nonconvex constraint 6.85. Instead, we solve this
problem using SNOPT, a large scale optimizer based on Sequential Quadratic
Programming (SQP) [14]. This optimizer explores feasible solutions trying
to maximize the solution value in a very small time although it is almost
never able to provide the optimal solution to this problem.

A way to improve the value of the best solution found is to exploit the
extreme speed of this optimizer by running the optimization several times,
each time starting from a different random strategy, using the best known
feasible solution as a lower bound to the problem. A good randomization
algorithm is crucial for the success of this method, in fact, a simple uniform
randomization would make the algorithm start always almost from the same
point when increasing the number of players’ strategies. If each single
strategy is chosen using a uniform distribution and then the result is divided
for the sum of all variables, the sum of all the variables will be 1, as required,
but the value of each variable will tend to zero when increasing the number
of actions.

A better way to choose the starting point is to randomize uniformly over
the leader strategy and then calculate the Nash equilibrium in the resulting
followers subgame using MIP Nash or Lemke-Howson. In this way SNOPT
always provides a feasible solution as the starting point is a feasible solution
itself. Moreover, the nonlinear nature of this problem causes the followers’
Nash equilibria to be very different from each other as the leader strategy

90

acts as a parameter in the nonlinear system whose equilibria are all the
feasible solutions to the multi-follower problem. In other words, a small
perturbation on the leader strategy could significantly change the number
and the topology of the followers’ equilibria. In this way SNOPT can explore
different portions of the domain increasing the probability of finding a good
solution. However, with the increasing the number of the players’ actions,
presolving either with MIP Nash or Lemke-Howson becomes too expensive,
while the solution provided remains far from being optimal. Actually, the
best starting point can be easily determined by presolving with LPFP. In a
leader-follower normal form game with uniform random payoffs, the value of
the solution of the LPFP problem tends to LMFM optimum with the number
of players’ actions tending to infinity. In fact, it is intuitive to see that, with
an increasing number of actions of the players, the probability of finding a
good LPFP solution tends to 1. In this way it is no more necessary to rerun
the LMFM_NLP algorithm several times as the first solution provided is
equal to or better than the LPFP solution, which is very close to optimum,
allowing to solve large scale security problems in a small time.

LMFM MINLP

Now we propose another formulation obtained starting from the MINLP
Nash problem 6.3.2 and adding the leader strategy in the calculation of the
followers’ utilities uaj as well as in the objective.

91

Problem 19: LMFM MINLP

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aa

∑
k∈Ab

δiρ
a
jρ
b
kUd(i, j, k) ∀a, b ∈ Ψ, b 6= a (6.89)

s.t.
∑
i∈I

δi = 1 (6.90)∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (6.91)

uaj =
∑
i∈I

∑
k∈Ab

δiρ
b
kUa(i, j, k) ∀j ∈ Aa, ∀a, b ∈ Ψ, b 6= a (6.92)

va ≥ uaj ∀j ∈ Aa,∀a ∈ Ψ (6.93)

raj = va − uaj ∀j ∈ Aa,∀a ∈ Ψ (6.94)

ρaj ≤ 1− saj ∀j ∈ Aa,∀a ∈ Ψ (6.95)

raj ≤Msaj ∀j ∈ Aa,∀a ∈ Ψ (6.96)

saj ∈ {0, 1} ∀j ∈ Aa,∀a ∈ Ψ (6.97)

ρaj ≥ 0 ∀j ∈ Aa,∀a ∈ Ψ (6.98)

δi ≥ 0 ∀i ∈ D (6.99)

(6.100)

This mixed-integer formulation of the multi-follower problem can be
solved to optimum using a mixed-integer optimizer like COUENNE or SCIP.
In order to obtain a faster convergence to the solution we introduce some
additional variables and constraints to the LMFM MINLP:

zaij = δi · ρaj ∀i ∈ D,∀j ∈ Aa, ∀a ∈ Ψ

zijk = zaij · ρbk ∀i ∈ D,∀j ∈ Aa, ∀k ∈ Ab
(6.101)

The variables here introduced represent the joint probabilities that two
pure strategies are in the support of the mixed strategy at the same time.
Because these variables are probabilities too, we need to introduce the
following set of constraints:

0 ≤ zaij ≤ 1 ∀i ∈ D,∀j ∈ Aa,∀a ∈ Ψ (6.102)

0 ≤ zijk ≤ 1 (6.103)∑
i∈D

∑
j∈Aa

zaij = 1 (6.104)

∑
i∈D

∑
j∈Aa

∑
k∈Ab

zaij = 1 (6.105)

92

Finally, we rewrite the problem 19 as the following problem:

Problem 20: LMFM MINLP with z variables

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aa

∑
k∈Ab

zijkUd(i, j, k) (6.106)

s.t.
∑
i∈I

δi = 1 (6.107)

∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ (6.108)

∑
i∈D

∑
j∈Aa

zaij = 1 ∀a ∈ Ψ (6.109)

∑
i∈D

∑
j∈Aa

∑
k∈Ab

zijk = 1 ∀a, b ∈ Ψ, b 6= a (6.110)

uaj =
∑
i∈I

∑
k∈Ab

zbikUa(i, j, k) ∀j ∈ Aa, ∀a, b ∈ Ψ, b 6= a (6.111)

va ≥ uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.112)

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.113)

ρaj ≤ 1− saj ∀j ∈ Aa, ∀a ∈ Ψ (6.114)

raj ≤Msaj ∀j ∈ Aa, ∀a ∈ Ψ (6.115)

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (6.116)

ρaj ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ (6.117)

zaij ≥ 0 ∀i ∈ D, ∀j ∈ Aa, ∀a ∈ Ψ (6.118)

zijk ≥ 0 ∀i ∈ D, ∀j ∈ Aa, ∀k ∈ Ab (6.119)

δi ≥ 0 ∀i ∈ D (6.120)

6.4 Polymatrix security games with two attackers

Normal form multiplayer games are described using a multidimensional
multi-matrix whose size increases exponentially with the number of players.
In some games, however, it could be reasonable to decompose the multiplayer
game into many two-player games. These games are called polymatrix games
or multimatrix games. In these games, each player plays a different two-
player game against each other player. Thanks to such structure, the size
of these games grows quadratically in the number of players’ actions. The
expected utility of each player is calculated as the sum of the utilities he
gets in all the games he plays, then, polymatrix games can suit well to
multi-follower security problems where the outcomes of two players are not
affected by the other players’ behavior.

Papadimitriou et al. recently demonstrated that the problem of finding
a Nash equilibrium in general-sum succinct games, to which the class of
polymatrix games belongs, is PPAD-complete even in two-player games,

93

while under the zero-sum hypothesis the complexity is PPAD for games
with more than two players [11]. Like in the classic leader-follower case, in a
leader-follower polymatrix game the leader first commits to a strategy, then
the followers calculate their best response in the consequent simultaneous
game, however, unlike the previous case, the bimatrix of the followers’ game
is not modulated by the leader strategy, which simply adds a certain outcome
to their expected utility. In this context, the aim of the leader is to commit
to a strategy such that the best response of the followers maximizes his own
utility. The expected utility of the leader, Vd, can be defined as

Vd =
∑
a∈Ψ

∑
i∈D

∑
j∈Aa

δiρ
a
jU

a
d (i, j) (6.121)

where Uad is the payoffs matrix of the leader d against follower a. In the same
way we define, for each follower a ∈ Ψ his expected utility as

Va =
∑
j∈Aa

∑
i∈D

δiρ
b
jU

d
a (i, j) +

∑
j∈Aa

∑
k∈Ab

ρajρ
b
kU

b
a(j, k) (6.122)

where Uda is the payoffs matrix of the follower a playing against the leader
and U ba is his payoffs matrix when playing against other follower. Again, as
done for the previous problem, we propose four formulations, depending on
whether the players are allowed to play in mixed strategies or not.

6.4.1 Polymatrix LPFP

The pure-pure formulation of the problem is very similar to the LPFP
algorithm described before. For each combination of pure strategies, for
each follower we check if a follower can improve his utility by deviating
individually from that strategy. If both the followers benefit in playing that
strategy, it is an equilibrium. If it is the equilibrium that up to now provides
the best utility to the leader, it is temporarily labeled as the leader-follower
solution of the game. Finally, when all the combinations of pure strategies
have been enumerated, the temporary solution is flagged as optimal and the
algorithm ends. If no optimal solution has been found, the game is declared
infeasible. To show an example of application we apply the algorithm to the
problem in Table 6.4.1.

L/F1 α1 α2

l1 3 , 3 8 , 0
l2 8 , 0 2 , 5

L/F2 β1 β2

l1 4 , 0 3 , 7
l2 7 , 1 2 , 6

F1/F2 β1 β2

α1 2 , 1 1 , 3
α2 5 , 8 2 , 3

First, we suppose the players playing (l1, α1, β1) with players’ outcomes being
(7, 5, 1). Such strategy is not an equilibrium as F2 is better to defect to α2,

94

obtaining an utility of 10. Next, the algorithm analyzes (l1, α1, β2). None
of the followers prefers to defect, then this strategy is temporarily flagged
as the leader-follower solution in which the expected payoff of the leader
is 6. The next strategy to analyze is (l1, α2, β1) whose expected outcome
is (12, 5, 2). Again, F2 prefers to defect. Later, proceeding in this order,
the algorithm finds (l2, α2, β1) as a possible leader-follower equilibrium, with
leader’s outcome of 9. Being this solution better than the previous, the best
solution is updated. Finally the algorithm checks (l2, α2, β2) which is not an
equilibrium because F1 is better to play α2.

It is important to note that the solution found is not a Nash equilibrium,
because under that solution concept the leader would prefer to play
(l2, α2, β1) which has an outlook of 12. The time complexity of this
algorithm, fixed the number of players, is polynomial in O(np) where n
is the number of actions of each of the p players.

6.4.2 Polymatrix LMFP

Now we extend the LPFP problem by allowing the leader to play in mixed
strategies. In this way, the leader can possibly obtain a better outcome than
that obtained in pure strategies. For example the value of the LPFP solution
of the game in Table 6.4.1 is 9. This value can be improved by committing
to a mixed strategy such that the followers benefit from staying in a pure
equilibrium, while the leader maximizes his own utility until the followers
are indifferent. Compliance principle will assure that they will not move
away from the equilibrium. As shown for the LMFP multi-follower problem,
a feasible LMFP strategy not always exists. A trivial example of infeasible
problem is shown in table 6.4.2.

L/F1 α1 α2

l1 3 , 0 8 , 0
l2 8 , 0 2 , 0

L/F2 β1 β2

l1 4 , 0 3 , 0
l2 7 , 0 2 , 0

F1/F2 β1 β2

α1 0 , 1 1 , 0
α2 1 , 0 0 , 1

In this game the followers are not affected by the leader strategy, then
an equilibrium of the game can only exist if a Nash equilibrium exists in the
followers’ game. Being the followers’ utilities indifferent to leader strategy
and not existing a pure Nash equilibrium in the followers’ game, a LMFP
equilibrium does not exist. In the game reported in Table 6.4.1, instead, the
leader could commit to a strategy such that the followers will respond with
their pure polymatrix Nash equilibrium (α2, β2). Such strategy is feasible if
both followers are not better to defect.

95

By calculating followers utility using formula 6.122, we find that follower
F1 prefers to stay in the equilibrium only if

u1 = 5 · l2 + 2 ≥ 3 · l1 + 1 (6.123)

This forces the leader to play l2 with a probability of at least 0.25. Follower
F2, instead, will always stay in the equilibrium for any leader strategy.

u2 = 7 · l1 + 6 · l2 + 3 ≥ l2 + 8 (6.124)

The leader would prefer to play l1, which gives to him an higher utility,
however, in order to maintain follower a compliant, he will commit to the
optimal strategy (0.75, 0.25), which gives to him an utility of 9.25.

A mathematical formulation of this problem can be obtained by adapting
the concept of regret to the polymatrix scenario. As done for LMFMMINLP,
we impose that followers’ strategies are part of the equilibrium only if the
associated regret r is zero:

0 ≤ raj ≤M(1− ρaj) ∀a ∈ Ψ,∀j ∈ Aa (6.125)

Then we calculate the regret associated with j-th action as the difference
between best response utility ûa and the payoff uaj obtained by playing ρaj ,
that is

raj = va − uaj ∀a ∈ Ψ,∀j ∈ Aa (6.126)

The best response va of follower a to adversaries’ strategy is simply the
greatest utility obtained in all possible strategy

va ≥ uaj ∀a ∈ Ψ, ∀j ∈ Aa (6.127)

Constraints 6.127 and 6.126 combined implies the non-negativity of regrets.
We define ud as a matrix such that each element is allowed to be greater
than zero only if both followers play the corresponding pure strategy. If the
followers play j-th and k-th strategy respectively, which means ρaj = 1 and
ρbk = 1, then the element udjk is upper bounded by the definition of leader’s
utility 6.121. Under these constraints, which are reported as 6.131 and 6.132,
maximizing the sum of all the elements of ud is the same as calculating the
leader’s utility in the leader-follower equilibrium. The resulting MIP is below
reported as Problem 21.

96

Problem 21: LMFP Polymatrix

max
δ,ρa,ρb

∑
j∈Aa

∑
k∈Ab

udjk (6.128)

s.t.
∑
i∈D

δi = 1 (6.129)

∑
j∈Aa

ρa = 1 ∀a ∈ Ψ (6.130)

udjk ≤
∑
i∈D

δi(U
a
d (i, j) + Ubd(i, k)) +M(2− ρaj − ρbk) ∀j ∈ Aa, ∀k ∈ Ab (6.131)

udjk ≤Mρaj ∀j ∈ Aa, ∀a ∈ Ψ (6.132)

uaj =
∑
i∈D

δiU
d
a (i, j) +

∑
k∈Ab

ρbkU
b
a(j, k) ∀j ∈ Aa, ∀a ∈ Ψ (6.133)

va ≥ uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.134)

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.135)

raj ≤M(1− ρaj) ∀j ∈ Aa, ∀a ∈ Ψ (6.136)

ρaj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (6.137)

δi ≥ 0 ∀i ∈ D (6.138)

6.4.3 Polymatrix LPFM

Now we consider the case in which the followers are allowed to play in
mixed strategies while the leader is restricted to play in pure strategies.
This problem can be formulate both as a single MIP or a MULTI-MIP by
applying a branch-and-bound over leader’s strategies, as done for LPFM in
normal form.

Single MIP

By committing to a pure strategy, the leader simply introduces a constant
offset to the followers’ utilities. Then, the followers, aware of the
commitment, calculate their strategies as mutual best responses. Being the
leader strategy pure, the objective can be linearized by defining for each
follower a auxiliary variables zaij which represent the joint probability that
leader plays pure strategy δi and follower a assigns probability ρaj to action
j. Variables zaij are upper bounded by leader strategy δi (6.141) and lower
bounded by follower’s strategy ρaj only when the leader plays pure strategy
δi(6.140). The followers’ utilities (6.142) and regrets (6.144 and 6.145) are
defined as done in the LMFP problem but now we need to reintroduce binary
variables saj needed to switch strategies on and off. The resulting MIP is
shown as Problem 22.

97

Problem 22: LPFM Polymatrix single MIP

max
δ,ρa,ρb

∑
a∈Ψ

∑
i∈D

∑
j∈Aa

zaijU
a
d (i, j) (6.139)

s.t. zaij ≥ ρaj − (1− δi) ∀i ∈ D,∀j ∈ Aa, ∀a ∈ Ψ (6.140)

zaij ≤ δi ∀i ∈ D,∀j ∈ Aa, ∀a ∈ Ψ (6.141)

uaj =
∑
i∈D

δiU
d
a (i, j) +

∑
k∈Ab

ρbkU
b
a(j, k) ∀j ∈ Aa, ∀a ∈ Ψ (6.142)

va ≥ uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.143)

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.144)

raj ≤Msaj ∀j ∈ Aa, ∀a ∈ Ψ (6.145)

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (6.146)∑
i∈D

δi = 1 (6.147)

∑
j∈Aa

ρa = 1 ∀a ∈ Ψ (6.148)

0 ≤ ρaj ≤ 1− saj ∀j ∈ Aa, ∀a ∈ Ψ (6.149)

δi ≥ 0 ∀i ∈ D (6.150)

MULTI-MIP

The second approach consists in decomposing the whole problem into many
easier subproblems as done for the normal form LPFM problem. Also in this
case we can analyze three different followers’ behaviors:

• The followers mutually try to maximize the leader’s utility.

• The followers mutually try to minimize the leader’s utility.

• The followers simply choose a Nash equilibrium.

The branch-and-bound algorithm is the same of that used in the normal
form case (Algorithm 10) with exception of upper bound and lower bound
calculations as well as subproblems construction. Also in this case, for each
leader’s pure strategy i, we build a problem in which the followers plan their
strategy given the leader’s commitment. Thanks to the polymatrix structure,
in each subproblem the leader’s utility can now be expressed linearly as:

Vd =
∑
a∈Ψ

∑
j∈Aa

ρaU
a
d (j) (6.151)

The two followers’ utility bimatrices can now be reduced to a single bimatrix
(Ûb

a, Û
a
b) in which, to every payoff of the original follower’s game, we add

98

the constant offset introduced by the leader’s commitment:

Ûb
a(j, k) = U ba(j, k) + Uda (i, j) ∀j ∈ Aa,∀k ∈ Ab, ∀a, b ∈ Ψ, a 6= b (6.152)

This bimatrix represents the payoffs of a two-player normal form game
which encloses all the information needed to calculate followers’ equilibrium.
Then, an upper bound for each leader’s pure strategy can be calculated by
replacing objective 6.30 with leader’s utility 6.151 and calculating followers’
mutual best response on (Ûb

a, Û
a
b). By replacing the objective, two additional

variables need to be added to the problem, representing the strategies of the
followers. Being p(j, k) the joint probability of followers playing j and k we
define ρaj for each follower a as the marginal probability of follower a playing
strategy j:

ρaj =
∑
k∈Ab

p(j, k) ∀j ∈ Aa, ∀a ∈ Ψ, a 6= b (6.153)

(6.154)

Because of the objective maximization the equation 6.153 can be relaxed to
an inequality, then the upper bound of each leader’s pure strategy can be
obtained by solving the following LP:

Problem 23: Correlated equilibrium Polymatrix LP

max
p

∑
a∈Ψ

∑
j∈Aa

ρaU
a
d (j) (6.155)

s.t. ρaj ≤
∑
k∈Ab

p(j, k) ∀j ∈ Aa,∀a, b ∈ Ψ, a 6= b (6.156)

∑
k∈Ab

p(j, k)Ûa(j′, k) ≤
∑
k∈Ab

p(j, k)Ûa(j, k) ∀j, j′ ∈ Aa (6.157)

∑
j∈Aa

p(j, k)Ûb(j, k
′) ≤

∑
j∈Aa

p(j, k)Ûb(j, k) ∀k, k′ ∈ Ab (6.158)

∑
j∈Aa

∑
k∈Ab

p(j, k) = 1 (6.159)

p(j, k) ≥ 0 ∀j ∈ Aa, ∀k ∈ Ab (6.160)

After calculating an upper bound for each action, they are sorted in
decreasing order. A first sweep to remove suboptimal strategies is performed
by calculating a lower bound solving for LPFP, once fixed the leader strategy.
Note that solving normal form LPFP on the subproblem followers’ bimatrix,
maximizing 6.151 is indifferent of solving LPFP polymatrix problem with
leader strategy fixed. Finally, each subgame in order, is solved to optimum
until the solution calculated is greater of or equal to next strategy upper

99

bound. To calculate a solution for each subproblem we apply definitions
6.151 and 6.152 to MINLP 6.3.2 thus obtaining the following MIP:

Problem 24: LPFM Polymatrix MIP

max
ρ1,ρ2

∑
a∈Ψ

∑
j∈Aa

ρaU
a
d (j)

s.t.
∑
j∈Aa

ρaj = 1 ∀a ∈ Ψ

uaj =
∑
k∈C

ρbkÛ
b
a(j, k) ∀j ∈ Aa,∀a ∈ Ψ, b 6= a

va ≥ uaj ∀j ∈ Aa, ∀a ∈ Ψ

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ

ρaj ≤ 1− saj ∀j ∈ Aa, ∀a ∈ Ψ

raj ≤Msaj ∀j ∈ Aa, ∀a ∈ Ψ

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ

ρaj ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ

(6.161)

Under the hypothesis that followers act to minimize leader’s utility the
only difference with this formulation is the minimization of the objective.
In the case that followers only care to play any Nash equilibrium, the
subproblem can be solved using both MIP-Nash or Lemke-Howson, but the
second generally provides a quicker convergence.

6.4.4 Polymatrix LMFM

The general mixed-mixed formulation of leader-follower equilibrium in
polymatrix games can be derived starting from the multi-follower LMFM
problem by modifying the definitions of players’ utilities. The objective
of this problem is to maximize the expected utility of the leader defined
in equation 6.121. Starting from 6.122, for each follower a, we define the
expected utility uaj of each of his actions, given the other players strategy.
The remaining constraints of the following MINLP come unchanged from
the LMFM problem.

100

Problem 25: LMFM Polymatrix MINLP

max
δ,ρa,ρb

∑
i∈D

∑
j∈Aa

δiρ
a
jUd(i, j) +

∑
i∈D

∑
k∈Ab

δiρ
b
kUd(i, k) (6.162)

s.t.
∑
i∈D

δi = 1 (6.163)

∑
j∈Aa

ρa = 1 ∀a ∈ Ψ (6.164)

uaj =
∑
i∈D

δiU
d
a (i, j) +

∑
k∈Ab

ρbkU
b
a(j, k) ∀j ∈ Aa, ∀a ∈ Ψ (6.165)

va ≥ uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.166)

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.167)

raj ≤Msaj ∀j ∈ Aa, ∀a ∈ Ψ (6.168)

ρaj ≤ 1− saj ∀j ∈ Aa, ∀a ∈ Ψ (6.169)

ρaj ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ (6.170)

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (6.171)

δi ≥ 0 ∀i ∈ D (6.172)

Again, as in the LMFM multi-follower problem, the maximization of the
leader’s utility introduces a nonlinear objective, however, in this case all the
constraints are linear. To speed up the convergence, as done for the previous
problem, we introduce for each follower a, for each pure strategy profile (i,j)
of its leader-follower game, a variable zaij to represent the joint probability
that he and the leader choose the pair of actions (i,j).

zaij = δiρ
a
j ∀i ∈ D,∀j ∈ Aa, ∀a ∈ Ψ (6.173)

Being za a matrix of joint probabilities, every of its elements must be
bounded between 0 and 1 and the sum of all its elements must be one.
Although these requirements are yet satisfied having defined constraints
over δ and ρa, those probability constraints over za seem to actually help in
providing a faster convergence. Having specified these redundant constraints
we are now allowed to relax the equality constraint 6.173 by replacing it with
the inequality constraint 6.185, which also implies the non-negativity of zaij .
Putting it all together we obtain the following MINLP:

101

Problem 26: LMFM Polymatrix MINLP with z variables

max
δ,ρ1,ρ2

∑
i∈D

∑
j∈Aa

zaijUd(i, j) +
∑
i∈D

∑
k∈Ab

zbikUd(i, k) (6.174)

s.t.
∑
i∈D

δi = 1 (6.175)

∑
j∈Aa

ρa = 1 ∀a ∈ Ψ (6.176)

∑
i∈D

∑
j∈Aa

zaij = 1 ∀a ∈ Ψ (6.177)

uaj =
∑
i∈D

δiU
d
a (i, j) +

∑
k∈Ab

ρbkU
b
a(j, k) ∀j ∈ Aa,∀a ∈ Ψ (6.178)

va ≥ uaj ∀j ∈ Aa,∀a ∈ Ψ (6.179)

raj = va − uaj ∀j ∈ Aa, ∀a ∈ Ψ (6.180)

raj ≤Msaj ∀j ∈ Aa, ∀a ∈ Ψ (6.181)

ρaj ≤ 1− saj ∀j ∈ Aa, ∀a ∈ Ψ (6.182)

ρaj ≥ 0 ∀j ∈ Aa, ∀a ∈ Ψ (6.183)

saj ∈ {0, 1} ∀j ∈ Aa, ∀a ∈ Ψ (6.184)

δiρ
a
j ≤ zaij ≤ 1 ∀i ∈ D, ∀j ∈ Aa, ∀a ∈ Ψ (6.185)

δi ≥ 0 ∀i ∈ D (6.186)

6.5 Experimental results

In this section we provide some analysis on the performance of the multi-
follower algorithms proposed. All the tests have been executed on a 64 bit,
2.33 GHz Intel(R) Xeon(R) CPU with 16GB of RAM. We used CPLEX
11.0.1 to solve LPs and MIPs, SNOPT 7.2.4 to solve NLPs and SCIP
3.0.0 to solve MINLPs. Multiple-LPs and Multiple-MINLPs algorithms rely
on a branch and bound procedure whose overhead is not considered in this
work as irrelevant if compared to the total time. For the evaluation of the
problems we generated a set of normal form games grouped by dimension.
The dimension of a game is denoted by the number of players’ actions. For
simplicity we suppose all players having the same number of pure strategies.
In most of the experiments, we generated games starting from 5 actions per
player up to 50 actions per player, except for problems exceeding time limit
before and for each dimension we generated 50 games using GAMUT [32]. In
order to keep the analysis as general as possible we generated payoff matrices
as uniform random matrices assuming integer values from 0 to 100. When
a different payoff structure is used we will say it explicitly. Note that in
polymatrix cases, although the payoffs are still limited from 0 to 100, the

102

2 3 4 5 6

0.97

0.98

0.98

0.99

0.99

1

number of actions per player

P
(L

P
F
P

)

Probability of LPFP-feasibility

Theoretical
Experimental

5 10 15 20 25 30 35 40 45 50
0

10
20
30
40
50
60
70
80
90

100

number of actions per player

O
bj

ec
ti

ve

Defender Objective LPFP

Figure 6.6: The left plot shows the relative frequency of LPFP-feasible instances compared to the
theoretical probability. The right plot shows how the LPFP solution value grows with the number
of players’ actions, in RandomGame instances.

leader’s objective will range from 0 to 200 as the sum of the outcomes of two
games. On the x-axis we show the number of actions of the game set, while
the y-axis shows the CPU time on logarithmic scale. A time limit of 3600
seconds has been set for each problem.

In order to entirely depict the whole information about the tests we
chose to represent data series using box plots. Each box gives information
about the sampling distribution of the measured quantity of each set of game
instances. The median is represented with a thick black line while the black
diamond represents the mean value. The gray boxes contains all the samples
between first quartile and third quartile, or, in other words, one half of the
population is contained in the box. Samples with a value too different from
median2 are considered outliers and they are represented with a small circle
outside whiskers range.

In Figure 6.6, on the left, we show the relative frequency of feasible
instances from our experimental results when solving for LPFP, compared
to theoretical probability reported in Table 6.1. In our experiment we set
the same number of strategies to all players, generating 2000 instances per
dimension with uniform random integer payoffs ranging from 0 to 100. On
the right figure we can see how the value of the LPFP solution grows with
respect to the number of strategies while the right image shows the the value
of the LPFP solution.

Although the average solution value tends to the maximum when solving
bigger instances of uniform random games, this behavior is not valid in

2naming q1 the 25th percentile and q3 the 75th percentile, in these plots we consider
outliers all samples whose value is larger than q3+

3
2
(q3−q1) or smaller than q1− 3

2
(q3−q1)

103

5 10 15 20 25 30 35 40 45 50
0

10
20
30
40
50
60
70
80
90

100

number of actions per player

O
bj

ec
ti

ve

LPFP BidirectionalLEG

5 10 15 20 25 30 35 40 45 50
0

10
20
30
40
50
60
70
80
90

100

number of actions per player

O
bj

ec
ti

ve

LPFP CovariantGame

Figure 6.7: The left plot shows the defender objective in BidirectionalLEG instances while the
right figure show the same result over CovariantGame instances.

2 3 4 5 6

0.97

0.98

0.98

0.99

0.99

1

number of actions per player

P
(L

P
F
P

)

Probability of LPFP-feasibility

Polymatrix
Normal Form

5 10 15 20 25 30 35 40 45 50
0

20
40
60
80

100
120
140
160
180
200

number of actions per player

O
bj

ec
ti

ve

Polymatrix LPFP

Figure 6.8: The left plot shows the relative frequency of feasible instances in polymatrix uniform
random games. The right plot shows the distribution of the objective values.

general. In figure 6.7 we show the value of the LPFP equilibrium in games
with different payoff structures. Both these experiments and that in Figure
6.6 on the right were conducted over 50 instances per game dimension. In
Figure 6.8, on the left we see the relative frequency of feasible instances over
uniform random instances in the polymatrix case while on the right we can
see the leaders’ utility. Again, for the feasibility analysis we generated 2000

instances per dimension in order to better extimate the relative frequency of
infeasible instances, while in the objective analysis we generated 50 instances
per dimension.

Figure 6.9 shows the performance of the MULTI-MINLP and MULTI-
LCP algorithms which cover all the three hypotheses about followers’
behaviour in LPFM games, discussed in Section 6.3.2. We generated 50

104

3 4 5 6 7 8 9101112131415161718192021
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

(a) LPFM MULTI-MINLP CORR MAX

3 4 5 6 7 8 9 1011121314151617181920
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LPFM MAX CORR COV

Figure 6.9: Figure (a) shows the solution times of LPFM MULTI-MINLP algorithm applied
on RandomGame instances. Figure (b) shows the performance of the same algorithm over
CovariantGame instances.

instances for each game dimension until 20 actions per player or until the
execution time exceeded the threshold of 3600 seconds. In Figure 6.9.a
we can see the solving times of MULTI-MINLP under the maximization
hypothesis on RandomGame instances. In this experiment the upper bound
was calculated using correlated equilibrium, which is solved in polynomial
time using CPLEX. The core MINLP was solved using SCIP. We note that,
although in the worst cases the branch and bound algorithm requires an
exponential time to find the solution, about half of the instances were solved
efficiently.

The same experiment was repeated on CovariantGame instances whose
result is reported in Figure 6.9.b. As we expected, the advantage of branch
and bound is more evident in games where payoffs follow some kind of
schema, as in the CovariantGame case, where most of the instances were
solved efficiently, while the benefit is less evident but still significant in
RandomGame case. In Figure 6.10, we see how the use of correlated
equilibrium as upper bound is a bad choice when solving MULTI-LCP as
the overhead introduced to compute it is much higher than the time needed
to execute rrLH. In the minimization case of MULTI-MINLP the branch
and bound used is less effective and too many subgames had to be solved
to determine the optimal solution as shown in Figure 6.11.a. The upper
bound used in this experiment was the minimum among the lowest pure
followers’ Nash equilibrium and the rrLHsolution. The LPFM problem with
maximization of leader’s utility has also been solved using a single MINLP
formulation which has been computed with SCIP, whose bad result shown
in Figure 6.11.b.

105

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

(e) LPFM RRLH CORRELATED

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

(f) LPFM RRLH NOCORR

Figure 6.10: On the left figure we show the performance of MULTI-LCP with correlated
equilibrium as upper bound. On the right figure the upper bound used is the best leader’s payoff
in the followers subgame. Both the experiments were conducted over RandomGame instances.

The solutions proposed for the LPFM polymatrix case are a single MIP
and a MULTI-MIP or MULTI-LCP. The performance of the single MIP is
presented in Figure 6.11.c. Although slightly more performant than the
normal form formulation, it is outperformed by the MULTI-MIP polymatrix
formulation, Figure 6.12.a, thus providing the same solution, given the
maximization of leader’s utility. Figure 6.11.c The minimization case was
also able to solve all games up to 50 actions per player within the time limit.
The MULTI-LCP performance are still good as we expected, see Figure
6.12.c.

The performances of LMFP algorithms for the normal form case and for
the polymatrix case are shown in Figure 6.13. For both cases we compared
the performance of the MULTI-LP algorithm against the MIP algorithm.
The LP at the core of the branch and bound are solved using CPLEX as
well as the MIP problem does. We note that the MULTI-LP formulation is
quite faster than the MIP thanks to the branch and bound which allows to
prune infeasible strategies before the corresponding LP has been evaluated.
Moreover the variance of solution times is very low for larger game instances,
which could be an interesting property for some applications. In the bottom
of the figure we can see the same experiments run on polymatrix games,
showing similar results.

Figure ?? shows how SNOPT solving NLP outperforms SCIP solving
MINLP, however SNOPT solutions, while being feasible, are not guaranteed
to be optimal. The MINLP formulation without z variables and redundant
onstraints could not even solve the first 3x3x3 instance, reaching a gap
between primal bound and dual bound of 4.74%. Polymatrix formulation

106

3 4 5 6 7 8 9 1011121314151617181920
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LPFM MULTI-MINLP MIN RRLH

3 4 5 6 7 8 9 10 11 12 13
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LPFM MINLP

3 4 5 6 7 8 910111213141516171819202122232425
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LPFM Polymatrix

Figure 6.11: (a) Performance of LPFM MULTI-MINLP with minimization of leader’s utility. (b)
Performance of single MINLP formulation with maximization of leader’s utility. (c) Performance
of single MINLP in polymatrix games. All these experiments were conducted over RandomGame
instances.

107

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LPFM MAX POLY

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LPFM MIN POLY

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LPFM RRLH POLYMATRIX

Figure 6.12: (a) Performance of LPFM MULTI-MINLP with minimization of leader’s utility. (b)
Performance of single MINLP formulation with maximization of leader’s utility. (c) Performance
of single MINLP in polymatrix games. All these experiments were conducted over RandomGame
instances.

108

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFP MIP

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFP MULTI-LP

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFP Polymatrix

Figure 6.13: Solution times of LMFP algorithms.

109

allows to solve slightly larger games but cannot solve all instances with 10
actions per player without exceeding time limit. LPFM problems are easier
to solve than mixed-mixed case but neither MINLP formulation nor MULTI-
MINLP formulation could solve all instance efficiently. Looking to Figure
?? we note that MULTI-MINLP formulation is some faster than the MINLP
formulation, while polymatrix formulation is slightly better than MULTI-
MINLP. However all formulations fail to solve larger instances. Moreover
we note from center figure that about half of the generated instance could
be solved quite efficiently using MULTI-MINLP, while in the worst case the
computational time grows exponentially. Finally, we analyzed the LMFP
case, for which we provided three polynomial-time formulations. MULTI-
LP formulation and polymatrix formulation allow CPLEX to solve all games
within time limit while MIP formulation

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFM NLP

2 3 4 5 6 7 8
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFM MINLP NLC Z C

3 4 5 6 7 8 9 10
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFM Polymatrix SCIP

110

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFP MIP

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFP MULTI-LP

5 10 15 20 25 30 35 40 45 50
0.001

0.01

0.1

1

10

100

1000

10000

number of actions per player

ti
m

e
[s

]

LMFP Polymatrix

3 4 5 6 7 8100

101

102

103

104

105

106

number of actions per player

no
de

s

NO TITLE

3 4 5 6 7 8100

101

102

103

104

105

106

number of actions per player

it
er

at
io

ns

NO TITLE

3 4 5 6 7 8 9 10100

101

102

103

104

105

106

number of actions per player

it
er

at
io

ns

LMFM Polymatrix SCIP

111

3 4 5 6 7 8 9 10100

101

102

103

104

105

106

number of actions per player

no
de

s

LMFM Polymatrix SCIP

5 10 15 20 25 30 35 40 45 50100

101

102

103

104

105

106

number of actions per player

it
er

at
io

ns

LMFP MIP

5 10 15 20 25 30 35 40 45 50100

101

102

103

104

105

106

number of actions per player

no
de

s

LMFP MIP

112

Bibliography

[1] Robert J. Aumann. Subjectivity and correlation in randomized
strategies. April 1973.

[2] Craig Baldwin, Joseph DiRenzo, Ben Maule, and Garrett Meyer.
Protect – a deployed game theoretic system for strategic security
allocation for the united states coast guard. 2012.

[3] Nicola Basilico, Nicola Gatti, and Federico Villa. Asynchronous multi-
robot patrolling against intrusion in arbitrary topologies. 2010.

[4] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, 2004.

[5] M. Breton, A. Alg, and A. Haurie. Sequential stackelberg equilibria in
two-person games. Optimization Theory and Applications, pages 71–97,
1988.

[6] Gerald Brown and Matthew Carlyle. A two-sided optimization for
theater ballistic missile defense. Annals of Mathematics, pages 745–663,
September-October 2005.

[7] Gerald Brown, Matthew Carlyle, Javier Salmeron, and Kevin Wood.
Defending critical infrastructure. Interfaces, pages 530–544, November-
December 2006.

[8] Vincent Conitzer and Dmytro Korzhyk. Commitment to correlated
strategies. 2011.

[9] Vincent Conitzer and Tuomas Sandholm. Computing optimal strategies
to commit to. EC, June 2006.

[10] Vincent Conitzer and Tuomas Sandholm. Playing games for security:
An efficient exact algorithm for solving bayesian stackelberg games. EC,
June 2006.

113

[11] Constantinos Daskalakis,
Alex Fabrikant, and Christos H. Papadimitriou. The game world is
flat: The complexity of nash equilibria in succint games. Automata,
Languages and Programming, pages 513–524, 2006.

[12] Constantinos Daskalakis, Paul W. Goldberg, and Christos H.
Papadimitriou. The complexity of computing nash equilibrium. 2008.

[13] N. Gatti, G. Patrini, M. Rocco, and T. Sandholm. Combining local
search techniques and path following for bimatrix games. CoRR
abs/1210.4858, 2012.

[14] Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An
sqp algorithm for large-scale constrained optimization. SIAM Journal
on Optimization, Volume 12, pages 979,1006, November 2002.

[15] K. Goldberg, A. J. Goldman, and M. Newman. The probability of an
equilibrium point. JOURNAL OF RESEARCH of the National Bureau
of Standars - B. Mathematical Sciences Vol. 72B, No. 2, 1968.

[16] John C. Harsanyi. Games with incomplete information played by
"bayesian" players i-iii. Management Science, pages 159–182, November
1967.

[17] Rufus Isaacs. Differential Games. Dover Publications, 1965.

[18] Manish Jain, Christopher Kiekintveld, and Milind Tambe. Quality-
bounded solutions for finite bayesian stackelberg games: Scaling up.
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pages 997–1004, May 2011.

[19] Manish Jain, Dmytro Korzhyk, Ondrej Vanek, Vincent Conitzer, Michal
Pechoucek, and Milind Tambe. A double oracle algorihtm for zero-sum
security games on graphs. Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), pages 327–334, May
2011.

[20] Manish Jain and Fernando Ordonez. Security games with arbitrary
schedules: A branch and prize approach. 2010.

[21] Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita,
Fernando Ordonez, and Milind Tambe. Computing optimal randomized
resource allocations for massive security games. Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009), pages
689–696, May 2009.

114

[22] Don N. Kleinmuntz and Henry Willis. Risk-based allocation of resources
to counter terrorism. RAND, 2009.

[23] Dmytro Korzhyk, Vincent Conitzer, and Ronald Parr. Complexity of
computing optimal stackelberg strategies in security resource allocation
games. www.aaai.org, 2010.

[24] Dmytro Korzhyk, Vincent Conitzer, and Ronald Parr. Solving
stackelberg games with uncertain observability. Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2011), pages
XXX–XXX, May 2011.

[25] C.E. Lemke and J. J. T. Howson. Equilibrium points of bimatrix games.
SIAM J APPL MATH, pages 413–423, 1964.

[26] Joshua Letchford and Vincent Conitzer. An efficient heuristic
for security against multiple adversaries in stackelberg games.
www.aaai.org, 2007.

[27] Joshua Letchford and Vincent Conitzer. Computing optimal strategies
to commit to in extensive-form games. June 2010.

[28] Maschler M. A price leadership method for solving the inspector’s non-
constant-sum game. Naval Research Logistic Quarterly, pages 11–33,
2009.

[29] Richard D. McKelvey and Thomas R. Palfrey. Quantal response
equilibria for normal form games. March 1994.

[30] John Nash. Non-cooperative games. Annals of Mathematics, pages
286–295, September 1951.

[31] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani. Algorithmic
game theory. Cambridge University Press, 2007.

[32] Eugene Nudelman, Jennifer Wortman, Yoav Shoham, and Kevin
Leyton-Brown. Run the gamut: A comprehensive approach to
evaluating game-theoretic algorithms. AAMAS, 2004.

[33] T. D. Parsons. Pursuit-evasion in a graph. Springer, 1976.

[34] Praveen Paruchuri, Jonathan P. Pearce, and Sarit Kraus. Playing games
for security: An efficient exact algorithm for solving bayesian stackelberg
games. Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems, 2008, pages XXX–XXX, May 2008.

115

[35] James Pita, Manish Jain, Janusz Marecki, Fernando Ordonez,
Christopher Portway, Milind Tambe, Craig Western, Praveen Paruchuri,
and Sarit Kraus. Deployed armor protection: The application of a game
theoretic model for security at the los angeles international airport.
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), pages 125–132, May 2008.

[36] James Pita, Milind Tambe, Chris Kiekintveld, Shane Cullen, and Erin
Steigerwald. Guards - game theoretic security allocation on a national
scale. Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems - Innovative Applications Tracks (AAMAS 2011), pages XXX–
XXX, May 2011.

[37] R. Porter, E. Nudelman, and Yoav Shoham. Simple search methods for
finding a nash equilibrium. www.aaai.org, 2004.

[38] Tuomas Sandholm, Andrew Gilpin, and Vincent Conitzer. Mixed-
integer protramming methods for finding nash equilibria. 2005.

[39] Yoav Shoam and Kevin Leyton-Brown. Multiagent Systems. 2009.

[40] Jason Tsai, Shyamsunder Rathi, Christopher Kiekintveld, Fernando
Ordonez, and Milind Tambe. Iris - a tool for strategic security allocation
in transportation networks. Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), pages 37–44, May 2009.

[41] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische
Annalen, page 100:295–320, 1927.

[42] H. von Stackelberg. Marktform und Gleichgewitch. Springer, 1934.

[43] Bernhard von Stengel and Shmuel Zamir. Leadership with commitment
to mixed strategies. pages XXX–XXX, February 2004.

[44] Bernhard von Stengel and Shmuel Zamir. Leadership games with convex
strategy sets. Games and Economic Behavior, August 2010.

116

