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Abstract

This thesis work presents an approach to aerodynamic optimization of
harmonically deforming morphing thin-airfoils. The frequency domain Küss-
ner and Schwarz unsteady aerodynamic theory is extended to compute aero-
dynamic forces and power using a piecewise cubic representation of the cam-
berline displacements, since this general formulation is able to model a wide
range of shapes.

To compute the inertial and elastic contributions to the actuation power,
the airfoil is treated as an Euler-Bernoulli beam, and mass and stiffness
matrices are computed with a Ritz-Galerkin approach, using hermitian finite
elements as shape functions.

Optimizations are performed with both genetic algorithms and sequen-
tial quadratic programming methods. Single-objective optimizations are per-
formed on the aerodynamic moment. Multi-objective optimization are car-
ried out to minimize the aerodynamic moment and the power (aerodynamic
power or actuation power). Every optimization takes into account a lift
constraint. Results are computed at different reduced frequencies.
Key words: optimization, morphing airfoils, unsteady aerodynamics





Sommario

In questa tesi è presentato un approccio per l’ottimizzazione aerodinamica
di un profilo sottile morphing in grado di deformarsi armonicamente. Il
modello di aerodinamica instazionaria nel dominio della frequenza di Küssner
e Schwarz viene esteso per calcolare la potenza e le azioni aerodinamiche nel
caso di una rappresentazione per mezzo di una spline cubica degli spostamenti
della linea media, poiché questa formulazione è in grado di modellizzare un’
ampia gamma di forme.

Per calcolare i contributi inerziale ed elastico alla potenza di attuazione
totale, il profilo viene trattato come una trave di Eulero-Bernoulli e le ma-
trici di massa e rigidezza sono calcolate utilizzando un approccio alla Ritz-
Galerkin, scegliendo come funzioni di forma gli elementi finiti hermitiani.

Le ottimizzazioni sono svolte sia con un algoritmo genetico, sia con l’ap-
proccio sequential quadratic programming. Si eseguono ottimizzazioni mono-
obiettivo sul momento aerodinamico, mentre le ottimizzazioni multi-obiettivo
sono effettuate usando come obiettivi il momento aerodinamico e la potenza
(aerodinamica o totale di attuazione). Ogni ottimizzazione prende in con-
siderazione un vincolo sulla portanza. I risultati vengono calcolati a diverse
frequenze ridotte.
Parole Chiave: ottimizzazione, aerodinamica instazionaria, profili morph-
ing
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INTRODUCTION AND STATE OF
THE ART

The introduction of new material technologies in structural application, such
as adaptive materials, opens the door to the possibility of changing the shape
of an aerodynamic surface in a smooth fashion by means of the application
of distributed actuation forces. These morphing capabilities can be exploited
to achieve multiple functions in both fixed wing and rotary wing aircrafts.
Morphing wings or blades may lead to improvements in performances, ma-
neuverability, aerodynamic and aeroelastic features, hence the research in
this field is currently being conducted extensively.

The helicopter main rotor performance enhancement is object of several
researches, because of its strong influence on the overall rotorcraft perfor-
mance in hover, forward flight, vibrations and noise emission and so on.
One difficult aspect in the design of rotor blades is that they are subject
to a wide range of different aerodynamic conditions depending on their az-
imuthal position and the flight speed, hence it may be hard to choose project
specifications that are an effective compromise between all the different re-
quirements. The main rotor blades reconfiguration during the flight can be
used in this sense to adapt to various conditions, in order to increase the
payload, fuel efficiency, range, maximum speed and altitude, and also reduce
the vibrations and noise more efficiently when compared to rotor blades with
a fixed geometry.

One of the key aspects faced by modern helicopter design is vibration re-
duction. Helicopters are susceptible to extensive vibration because of various
reasons: the unsteady aerodynamics acting on the rotor disk, nonlinear in-
ertial couplings of rotating blades, complex rotor-fuselage interaction effects,
and so on. This high level of vibration limits the helicopter performance, re-
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duces structural life and increases maintenance costs. Furthermore it lowers
the flight quality of passengers and crew. Therefore the need for vibration
reduction is crucial. Morphing blades, constructed with adaptive materials,
could be exploited to actively reduce the level of vibrations at a wide range of
flying conditions, in order to improve all the aforementioned performances.

As said before, the main rotor dynamic behaviour plays a major role in the
overall helicopter flight dynamics and maneuverability. Morphing technolo-
gies could support or replace traditional helicopter control systems in order
to improve the main rotor dynamics, saving flight control energy, expanding
the operating envelope and also to being used to trim the rotorcraft.

Active control systems could employ morphing actuators to implement
gust alleviation system, useful to improve aeroelastic blade response and the
overall flight quality.

In forward flight adaptive blades could also be used to move the dynamic
stall effects to higher flight speed, enhancing the helicopter maximum cruise
speed.

Last but not least morphing technologies could be able to reduce the
required flight power by optimizing the blades shape not only in a single
project condition, but adapting to a wider range of flight conditions, leading
to a energy save. For this purpose the actuation system is essential not being
too energy consuming in order to have a positive net earning.

The aim of this work is on finding a simple harmonic aerodynamic model
for deforming airfoils suitable for a preliminary optimization of the defor-
mation of a morphing airfoil, in order to enhance some useful performance,
such as the the reduction of the oscillatory load, while maintaining a rea-
sonable level of required actuation power. Another goal is to investigate the
aforementioned optimization problem to provide the basis for further works,
which may focus on more accurate, complete and extended morphing blade
design and optimization. Since this work is not intended to produce a design
tool for morphing airfoils, simplicity will often be preferred to accuracy.

Some results are also obtained with a flapped airfoil, which represents
a more classical, albeit non widely used in rotorcraft applications, way of
changing the mean-line camber of an airfoil.

Aerodynamics
In order to enforce the optimization problem nimbly a simple model is to be
chosen to describe the oscillating airfoil aerodynamics. The assumption of a
thin airfoil harmonically oscillating and deforming with small constant ampli-
tudes in a potential flow allows the adoption of a linearized two-dimensional
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framework, where the airfoil can be seen as an aerodynamically equivalent
mean line.

Non stationary linearized aerodynamic forces were firstly computed by
Theodorsen in [22] and [23] and by Küssner and Schwarz in [15], and followed
by several studies. Hence, there are different theories that could be used to
develop a proper aerodynamic model of a flexible airfoil.

Classical unsteady aerodynamic studies usually deal with the problem of
an airfoil subject to pitch, plunge and flaps movements, while a morphing
airfoil is capable of a continuous regular deformation. Recent works, like
the one from Johnston et al. [13], extend the unsteady thin airfoil theory
to analyze the aerodynamic characteristics of a deforming airfoil, which is
defined in that case by two quadratic curves with arbitrary coefficients.

The choice in this work is to adopt Küssner and Schwarz original model
[15], where an integral representation in complex form is employed for com-
puting the pressure distribution on the airfoil. The theory will be extended
in order to take into account also the morphing movement of the mean line,
represented with a piecewise cubic polynomial.

Aeroelasticity
The concept of morphing structures must be dealt with very carefully. If the
structure is stiff, it will require a large amount of energy to be deformed.
Therefore a more flexible construction, allowing deformations at reasonable
power costs, is desirable. However, this increased flexibility may cause the
deterioration of the aeroelastic behaviour, leading morphing structures to be
more sensitive to instability problems resulting from the interaction with the
fluid flow over the structure.

The literature has extensively covered the subject of the aeroelasticity
of elastically supported rigid airfoils and classical aeroelastic problems (e.g.
[1], [9]), while only a few more recent studies have been done on flexible
airfoils and their implication in flutter. Currently, problems of elastic air-
foils aeroelasticity are often related to the realization of lightweight wing
structures made of advanced composite materials in order to improve their
aerodynamic and aeroelastic performances, since they are highly flexible.

For instance Murua, Palacios and Peirò in [16] analyzed the aeroelasticity
of a compliant airfoil using an oscillating potential aerodynamic model and
considering the airfoil as a flexible beam, providing a simple way to predict
“camber flutter” and helping identifying its dominant physical mechanisms.

Drazumeric et al. in [8] studied the aeroelastic stability of a rigid airfoil-
shaped leading edge, and a flexible thin laminated composite plate confor-
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mally attached to its trailing edge.
Although in this work the aeroelastic problem is not discussed, it is im-

portant to remember the essential role that it plays in the overall blade
behaviour, therefore it must be taken into account as soon as possible in the
design of a morphing blade, possibly including it in the optimization process.

Aerodynamic Optimization
A lot of work has been performed in the past years in the field of aerody-
namic optimization. Several studies tried to optimize the shape of various
aerodynamic surfaces, not only in the aeronautical field, in order to improve
certain performance. These have been carried out with the employment of
different aerodynamic models, from simple potential based models to RANS
simulations. Some of those studies have been applied also on adaptive aero-
dynamic surfaces, using steady aerodynamics (for example [20], [21], [17],
[10] to cite some).

Although steady aerodynamics can be a good model for some aeronau-
tical applications, it is not certainly a suitable model for rotorcrafts blades,
whose aerodynamic environment is highly unsteady. Furthermore, unsteadi-
ness, if taken into account, can be exploited during the optimization process
in order to obtain better solutions with respect to the one obtained with
a steady model applied to an unsteady case. Non-stationary aerodynamic
shape optimization are more difficult to find in literature, although in the
recent years some studies have been done in this field (e.g. [25]).

In this framework this thesis wants to introduce a simple way to perform
unsteady aerodynamic optimizations, developed in the frequency domain,
that can be a starting step for further more accurate works.

Structure of this work
This work is divided in five chapters, each one being about a specific topic.
• In chapter 1 a suitable aerodynamic model is discussed, starting from

Küssner and Schwarz unsteady thin-airfoils theory firstly appeared in
[15]. An approach to compute the pressure distribution, lift, aerody-
namic moment and power is described in detail. Both flapped airfoil
and a morphing airfoil are taken into account. Tests and comparisons
are made to verify the goodness and the convergence of the method.

• In order to compute the global actuation power for a morphing airfoil,
also elastic and inertial contribution must be considered. Chapter 2
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is about this subject. The goal is to find a simple way to compute
the blade structural properties and use them to obtain the actuation
power.

• Chapter 3 gives some general descriptions of the optimization problem
and of the algorithm used to solve it. Then each specific optimiza-
tion performed is justified and illustrated. Also some simple analytical
optimal results are computed.

• In chapter 4 are displayed and described all the major results of the
different optimizations performed.

• Chapter 5 takes stock of the accomplishments and proposes some fur-
ther developments.





CHAPTER 1

AERODYNAMIC MODEL

The problem of the aerodynamics of a section of a morphing blade can be
modeled as a thin airfoil oscillating and deforming in a two-dimensional in-
compressible flow. A simple and fast model to obtain the unsteady aerody-
namic loads, suitable for such a problem, is the Küssner and Schwarz general
theory ([15]). This is an alternative approach to the Theodorsen theory for
oscillating thin airfoils described in [22] and extended in [23].

As the thin airfoil theory is a linearized theory, solutions can be super-
posed to obtain another solution. So the motion of the airfoil can be divided
into a mean motion and a perturbation. The mean motion is a rectilinear
uniform translation of speed U with respect to the fluid at rest at infinity.
Then, a simple-harmonic oscillation of small (infinitesimal) amplitude is su-
perposed. Therefore the thickness, the mean camber and the mean angle of
attack are then neglected,as their effect can be added later superposing their
steady-state solutions.

1.1 General Küssner and Schwarz theory
Within the framework described above the airfoil can be represented as a
straight line aligned with the x axis of the reference frame. The origin is
placed at the mid-chord point, and the z axis is perpendicular to the chord
and directed toward the upper side of the airfoil. So the chord goes from
[−b, b] and the asymptotic air velocity U is aligned with the x axis and has
the same direction.

It is possible to represent the perturbation velocity of a periodic move-
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ment of the airfoil, with frequency ω, as

v(x, t) = f(x)ej(ωt+ϕ(x)) (1.1)

where f(x) is the amplitude and ϕ(x) the phase of the perturbation, both
depending on the position. It is useful to perform the change of variables
x = b cos θ, so that θ = π at the leading edge and θ = 0 at the trailing edge,
so

v(θ, t) = f(θ)ej(ωt+ϕ(θ)) (1.2)

Now the function v(θ, t) can be expressed as a Fourier series with respect
to the spatial variable

v(θ, t) = −Uejωt
(
P0 + 2

∞∑
n=1

Pn cosnθ
)

(1.3)

where the series coefficients Pn ∈ C, called upwash coefficient, are

Pn = − 1
πUejωt

∫ π

0
v(θ, t) cosnθ dθ = − 1

πU

∫ π

0
f(θ)ejϕ(θ) cosnθ dθ (1.4)

Following the method provided in [9, Chapter13], it is possible to compute
the difference of pressure coefficient between the lower and the upper sides
of a thin airfoil. Küssner and Schwarz proved that it can be expressed as a
Fourier series

∆Cp(θ, t) = Cplower − Cpupper = ejωt
(

4a0 tan θ2 + 8
∞∑
n=1

an sinnθ
)

(1.5)

with the an coefficient that can be expressed as function of the upwash coef-
ficients

a0 = C(k)(P0 + P1)− P1 (1.6)

an = Pn + jk

2 (Pn−1 − Pn+1) (1.7)

k is the reduced frequency k = ωb
U

and C(k) ∈ C is the Theodorsen function,
defined for the first time in [22]:

C(k) = K1(jk)
K1(jk) +K0(jk) = F (k) + jG(k) (1.8)

which is expressed in terms of the modified Bessel functions of the second
kind of order zero (K0) and one (K1).
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1.1.1 Computation of forces
Knowing the ∆Cp it is possible to compute the global forces acting on the
airfoil. The lift (2D, so its dimensions are

[
N
m

]
) is equal to

L(t) = 1
2ρU

2
∫ b

−b
∆Cp(x, t) dx (1.9)

Since we only know ∆Cp(θ, t), it is necessary to perform the aforementioned
change of variable

L(t) = 1
2ρU

2b
∫ π

0
∆Cp(θ, t) sin θ dθ (1.10)

Exploiting the fact that∫ π

0
sinnθ sinmθ dθ =

0 if m 6= n
π
2 −

sin 2nπ
4n if m = n

(1.11)

∫ π

0
tan θ2 sin θ dθ = π (1.12)

it is possible to see that

L(t) = 1
2ρU

24bπ(a0 + a1)ejωt (1.13)

L(t) = 1
2ρU

2(2b)2π(C(k)(P0 + P1) + jk

2 (P0 − P2))ejωt (1.14)

This result is very interesting because shows that the lift depends only on
the first three upwash coefficients, independently from the kind of airfoil
movement.

The moment about a generic point x0 (2D, positive nose-up) is equal to

M0(t) = −1
2ρU

2
∫ b

−b
(x− x0)∆Cp(x, t) dx (1.15)

Using the usual coordinate transformation, calling x̃0 = x0/b

M0(t) = −1
2ρU

2b2
∫ π

0
(cos θ − x̃0)∆Cp(θ, t) sin θ dθ (1.16)

M0(t) =− 1
2ρU

2b2
(

4a0

∫ π

0

1
2 tan θ2 sin 2θ dθ+

+ 8
∞∑
n=1

an

∫ π

0

1
2 sin 2θ sinnθ dθ

)
ejωt + bx̃0L(t)

(1.17)
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Exploiting the fact that∫ π

0
tan θ2 sin 2θ dθ = −π (1.18)

it is possible to show that

M0(t) = 1
2ρU

2b22π (a0 − a2 + 2x̃0(a0 + a1)) ejωt (1.19)

Expressing the an in terms of the upwash coefficients, it results

M0(t) =1
2ρU

2b22π
(

(1 + 2x̃0)(C(k)(P0 + P1)− P1)+

+ 2x̃0

(
P1 + jk

2 (P0 − P2)
)
− P2 −

jk

4 (P1 − P3)
)
ejωt

(1.20)

As for the lift, the aerodynamic moment depends only on a limited number
of upwash coefficients, as depends only on the first four, independently from
the airfoil motion and the point x̃0. Using as a reference point for the aero-
dynamic moment the quarter chord point, i.e. x̃0 = −1/2, equation 1.20 can
be simplified in

Mc/4(t) = −1
2ρU

2b22π
(
P1 + P2 + jk

2

(
P0 − P2 + P1 − P3

2

))
ejωt (1.21)

In this case the effect of the Theodorsen function is null as already verified
by [22].

1.1.2 Computation of power
It is possible to compute the global instantaneous bi-dimensional power re-
quired to activate the system, i.e. to perform the perturbation movements

W (t) = 1
2ρU

2
∫ b

−b
∆Cp(x, t)v′(x, t) dx (1.22)

where v′(x, t) is the speed of the airfoil with respect to the uniformly trans-
lating reference frame, namely the perturbation speed of the airfoil

v′(x, t) = ∂z

∂t
= ż (1.23)

The computation of the power for the specific cases will be described in the
next section.
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1.2 Moving airfoil
If we consider an airfoil moving with the following law

z(x, t) = g(x)ejωt (1.24)

the speed of each point of the airfoil chord is

v(x, t) = dz

dt
= ∂z

∂t
+ ∂z

∂x

∂x

∂t
= ∂z

∂t
+ U

∂z

∂x
(1.25)

v(x, t) = (jωg(x) + Ug′(x))ejωt (1.26)

Using the reduced frequency k and applying the transformation x = b cos θ

v(x, t) = U

b
(jkg(x) + bg′(x))ejωt (1.27)

v(θ, t) = U

b
(jkg(θ) + bg′(θ) dθ

dx
)ejωt (1.28)

v(θ, t) = U

b
(jkg(θ)− 1

sin θg
′(θ))ejωt (1.29)

Hence

f(θ)ejϕ(θ) = U

b
(jkg(θ)− 1

sin θg
′(θ)) (1.30)

that is a convenient form for the computation of the upwash coefficient in
eq. 1.4.

1.2.1 Rigidly moving airfoil
Exploiting the linearity of the thin airfoils theory, it is now possible to com-
pute the upwash coefficients independently for each different movement of
the airfoil. Then each solution can be superposed to describe the desired
motion of the airfoil. The following movements are considered here: a verti-
cal translation, a pitch rotation, a flap rotation and a rotation of both flap
and trim tab.

Considering a vertical translation, positive toward the top (while the
Theodorsen convention is positive toward the bottom)

z(x, t) = hejωt = h̃bejωt (1.31)
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the function g(x) = g(θ) = h̃b, so the velocity of the points of the airfoil is

v(θ, t) = jkUh̃ejωt (1.32)

The upwash coefficients are

Pn = −jk
π

∫ π

0
cosnθ dθ (1.33)

and it results that

P0 = −jkh̃ (1.34)
Pn = 0 for n 6= 0 (1.35)

As a result the total lift and the quarter-chord moment are

L(t) = 1
2ρU

2(2b)2π
(
k2

2 − jkC(k)
)
h̃ejωt (1.36)

Mc/4(t) = 1
2ρU

2b22πk
2

2 h̃e
jωt (1.37)

If we consider a pure rotation with respect to the point xp, positive coun-
terclockwise

z(x, t) = −(x− xp)αejωt (1.38)

the function g(θ) = −b(cos θ − x̃p)αb, so the velocity of the airfoil, with
respect of the spatial variable θ is

v(θ, t) = −U(jk(cos θ − x̃p) + 1)αejωt (1.39)

The upwash coefficients are

Pn = 1
π
α
∫ π

0
(jk(cos θ − x̃p) + 1) cosnθ dθ (1.40)

and it results that

P0 = (1− jkx̃p)α (1.41)

P1 = jk

2 α (1.42)

Pn = 0 for n > 1 (1.43)

Using this coefficients in equation 1.14 it is possible to compute the lift
developed by an airfoil subject to a pitch oscillation

L(t) = 1
2ρU

2(2b)2π
(
C(k)

(
(1− jkx̃p) + jk

2

)
+ jk

2 (1− jkx̃p)
)
αejωt (1.44)
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It is also possible to compute the moment with respect to c/4, i.e. x̃0 = −1/2
using eq. 1.21

Mc/4(t) = −ρU2b2π

(
jk

2 + jk

2

(
(1− jkx̃p) + jk

4

))
αejωt (1.45)

1.2.2 Flap rotation
Let us consider a flap rotating around a hinge placed at the point xF

z(x, t) =

0 if x ≤ xF

−(x− xF )βejωt if x > xF
(1.46)

applying the usual coordinate transformation

z(θ, t) =

0 if θ ≥ θF

−b(cos θ − x̃F )βejωt if θ < θF
(1.47)

with θF = arccos(x̃F ) and x̃F = xF/b. Hence the velocity of the airfoil is

v(θ, t) =

0 if θ ≥ θF

−U(jk(cos θ − x̃F )βejωt if θ < θF
(1.48)

Also in this case it is possible to compute the upwash coefficients

Pn = 1
π
β
∫ θF

0
(jk(cos θ − x̃F ) + 1) cosnθ dθ (1.49)

Pn = 1
π
β
(∫ θF

0
jk cos θ cosnθ dθ +

∫ θF

0
(1− jkx̃F ) cosnθ dθ

)
(1.50)

It results that

P0 =
(
jk

π

√
1− x̃2

F + (1− jkx̃F )θF
π

)
β (1.51)

Pn = jk

π(n2 − 1)

(
nx̃F sinnθF −

√
1− x̃2

F cosnθF
)
β+

+ 1
nπ

(1− jkx̃F ) sinnθF β (1.52)

Unlike the case of a movement involving the whole airfoil, the series is com-
posed by an infinite number of terms, that decay as 1/n and 1/n2. However,
it is useful to remind that only the first three coefficients are important to
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evaluate the lift, and only the first four term if we want to compute also the
moment.

It is important to notice that the term P1 has an indetermination of the
type 0

0 , hence it needs to be computed by a limit operation

P1 →
jk

2π

(sin 2θF
2 + θF

)
(1.53)

The hinge moment is equal to the moment about the hinge point due to
the pressure distribution on the flap surface:

MF (t) = −1
2ρU

2b2
∫ θF

0
(cos θ − x̃F )∆Cp(θ, t) sin θ dθ (1.54)

MF (t) = −1
2ρU

2b2
∫ θF

0
(cos θ− x̃F )

(
4a0 tan θ2 +8

∞∑
n=1

an sinnθ
)

sin θ dθ ejωt

(1.55)
This integral can be solved exploiting the prosthaphaeresis formulae and the
half-angle formulae, ad it results

MF (t) =− 1
2ρU

2b22a0

(
(2 + x̃F )

√
1− x̃2

F − (1 + 2x̃F )θF
)
ejωt+

+ 1
2ρU

2b2
∞∑
n=1

8anx̃F
n2 − 1

(
x̃F sinnθF − n

√
1− x̃2

F cosnθF
)
ejωt+

+ 1
2ρU

2b2
∞∑
n=1

2an

sin
(
(n+ 2)θF

)
n+ 2 −

sin
(
(n− 2)θF

)
n− 2

ejωt
(1.56)

The hinge moment depends on all of the coefficients an, and therefore from
all of the upwash coefficients. Hence, in order to obtain a numerical value of
the hinge moment, the series needs to be truncated.

In this case the first term of the first summation and the second term
of the second summation are undetermined, therefore must be computed
performing a limit operation

lim
n→1

8anx̃F
n2 − 1

(
x̃F sinnθF − n

√
1− x̃2

F cosnθF
)

=

= −8anx̃F
1
2

sin 2θF
2 − θF

 (1.57)

lim
n→2

2an

sin
(
(n+ 2)θF

)
n+ 2 −

sin
(
(n− 2)θF

)
n− 2

 = 2an

sin
(
4θF

)
4 −θF

 (1.58)



1.2 Moving airfoil 15

1.2.3 Flap and trim tab rotation

Let us consider a movement of the type

z(x, t) =


0 if x ≤ xF0

−(x− xF0)β0e
jωt if xF0 < x ≤ xF1

−(x− xF0)β0e
jωt − (x− xF1)β1e

jωt if x > xF1

(1.59)

with xF1 > xF0. With the usual steps the speed can be calculated

v(θ, t) =


0 if θ ≥ θF0

−U(jk(cos θ − x̃F0) + 1)β0e
jωt if θF0 > θ ≥ θF1

−U((jk(cos θ − x̃F0) + 1)β0+
+(jk(cos θ − x̃F1) + 1)β1)ejωt if θ < θF1

(1.60)

with θF0 = arccos(x̃F0) and θF1 = arccos(x̃F1) Exploiting the linearity, since
the velocity distribution is a superposition of the effects of two rotations,
with the second being relative to the first one,it can be seen that the upwash
coefficients related to the flap movement β0 are identical to the ones computed
in the previous section for the variable β. Hence, for the only tab rotation
β1, it is easy to see that the upwash coefficients have the same form as those
already computed for the flap, changing x̃F0 into x̃F1 and θF0 into θF1 . So

P0 =
(
jk

π

√
1− x̃2

F1 + (1− jk x̃F1)θF1

π

)
β1 (1.61)

Pn = jk

π(n2 − 1)

(
n x̃F1 sinn θF1 −

√
1− x̃2

F1 cosn θF1

)
β1+

+ 1
nπ

(1− jk x̃F1) sinn θF1 β1 (1.62)

Also in this case P1 must be computed by a limit like in 1.53.

1.2.4 Deforming airfoil

Using the approach described in section 1.2.3, it is possible to represent a
deforming airfoil as a sequence of NF straight lines each one rotating with
respect to the previous one by a relative angle βi. In this way it is possible
to approximate any shape and any camber variation using a closed form
analytical solution that tends to the exact solution as NF →∞
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1.2.5 Computation of power
As seen in sec. 1.1.2, in order to compute the aerodynamic power it is neces-
sary to know the perturbation velocity v′(x, t). Since we are in a linearized
framework, it is possible to write

v′(x, t) = v′h̃ + v′α + v′β + v′β1 + etc. (1.63)
so we can calculate each member separately starting from the z(x, t) laws
given in the previous sections

v′h̃(x, t) = jωbh̃ejωt = v′h̃(t) (1.64)
v′α(x, t) = −jω(x− xp)αejωt (1.65)

v′β(x, t) =

0 if x ≤ xF

−jω(x− xF )βejωt if x > xF
(1.66)

v′β1(x, t) =

0 if x ≤ xF1

−jω(x− xF1)β1e
jωt if x > xF1

(1.67)

Exploiting the linearity it is possible to compute the power separately for
each degree of freedom

Wh̃(t) = 1
2ρU

2
∫ b

−b
∆Cp(x, t)v′h̃(t) dx =

= 1
2ρU

2
∫ b

−b
∆Cp(x, t) dxv′h̃(t) = L(t)ḣ (1.68)

Wα(t) = 1
2ρU

2
∫ b

−b
∆Cp(x, t)v′α(t) dx =

= 1
2ρU

2
∫ b

−b
−(x− xp)∆Cp(x, t) dx jωαejωt = Mc/4(t)α̇ (1.69)

Wβ(t) = 1
2ρU

2
∫ b

−b
∆Cp(x, t)v′β(t) dx =

= 1
2ρU

2
∫ b

xF
−(x− xF )∆Cp(x, t) dx jωβejωt = MF (t)β̇ (1.70)

Wβ1(t) = 1
2ρU

2
∫ b

−b
∆Cp(x, t)v′β1(t) dx =

= 1
2ρU

2
∫ b

xF1

−(x− xF1)∆Cp(x, t) dx jωβ1e
jωt = MF1(t)β̇1

(1.71)
and so on for other possible flaps. Therefore the total power is

W (t) = L(t)ḣ+Mc/4(t)α̇ +
NF∑
k=1

MFk β̇k (1.72)
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1.2.6 Comparison with Glauert theory
The Küssner and Schwarz theory is to be included in the framework of un-
steady thin airfoils theories. Considering the limit for ω → 0, with ω the
oscillation frequency, leads to the steady case, whose behaviour must be sim-
ilar to the classical thin airfoils theory.

One way to verify the exact convergence of the pressure difference dis-
tribution over the airfoil for the steady case is to compare it to the one
developed by Glauert in [11] and [12] and summarized by Allen in [14]. In
his work Glauert managed to compute the contributions to the difference
of pressure distribution due to the angle of incidence ad the deflections of
serially hinged flaps.

It is necessary to take into account that Glauert’s notation and reference
system is different from the one used in this work. In fact he calls the chord
c = 2b and his airfoil is contained in the interval [0, c], with the origin placed
at the leading edge. Therefore the change of variables needed for the airfoil
to pass to [0, π] is θ = arccos

(
1− 2x

c

)
. The transformed hinge point is then

θ0 = arccos
(
1− 2xGla

F

c

)
= arccos

(
1− 2E

)
(1.73)

with xGla
F = b+ xF and where E = b−xF

c
is the flap-chord ratio

The pressure difference contributions caused by the incidence and the flap
deflection are

∆Cpα =4(1 + cos θ)
sin θ α (1.74)

∆Cpβ =
[4(1 + cos θ)(π − θ0)

π sin θ +
∞∑
n=1

8sinnθ0 sinnθ
nπ

]
β (1.75)

And the contributions of further flaps share the same formula with the first
flap, provided that θ0 and β are the values assumed by each flap. Superpos-
ing every contribution it is possible to obtain the global pressure difference
coefficient

∆Cp = ∆Cpα +
NF∑
k=1

∆Cpβk (1.76)

The result of this theory can be used to verify the exact convergence of
the pressure distribution of the Küssner and Schwarz model adopted in this
work at least for the steady solution. It can be noticed in Figure1.1 that
the two distribution essentially coincide, if the number of terms taken into
account is enough (e.g. NP = 1000). Both the theories show a singularity
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Figure 1.1. Pressure difference distribution, steady case, NP = 1000 with both
flaps deflected

in the pressure at the leading-edge, and both respect the Kutta condition at
the trailing-edge, where the pressure difference is null.

It is noticeable that singularities arise also at the hinge points whenever a
flap deflection is not null. This is related to the fact that each hinge is a point
of non-smoothness in the speed. These discontinuities are the cause of the
relatively high number of terms necessary for the series to converge. In fact
a lower number of terms would cause the pressure difference profile to show
some oscillations especially in the proximity of these points (see the Fourier
series of an impulse for example and Figure 1.2). The forces and the power,
as will be shown in 1.2.7, suffer less this problem because of the integration
operation that smoothens the effect of these essential discontinuities.

1.2.7 Comparison with Theodorsen theory

Since Küssner and Schwarz theory shares the same starting assumptions with
Theodorsen theory, a comparison can be performed to verify its exactness
and convergence of the lift and the moments.

Let us start by examining the classic case of a pitching and plunging
airfoil. The lift associated with both degrees of freedom have already been
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computed in equations 1.36 and 1.44. Superposing the two effects we obtain

L(t) =1
2ρU

2(2b)2π
(k2

2 − jkC(k)
)
h̃+

+
(
C(k)

(
(1− jkx̃p) + jk

2

)
+ jk

2 (1− jkx̃p)
)
α

ejωt (1.77)

With some simple steps and remembering that, with a little abuse of notation,
k2h̃ejωt = −b ḧ

U2 , jkh̃ejωt = ḣ
U
, k2αejωt = − b2

U2 α̈ and jkαejωt = b
U
α̇ it can be

written

L(t) =ρb2π

−ḧ+ Uα̇− bx̃pα̈

+

+ ρUb2πC(k)
−ḣ+ Uα + b

(1
2 − x̃p

)
α̇

 (1.78)

that is the classical formulation of Theodorsen theory for oscillating airfoil,
distinguishing the circulatory contribution, which depends on the Theodorsen
function, and the non-circulatory part.

The same procedure can be applied to the moment, summing up eq. 1.37
and 1.45 we get

Mc/4(t) =ρU2b2π

k2

2 h̃−
(
jk

2 + jk

2

(
(1− jkx̃p) + jk

4

))
α

ejωt (1.79)

covering then the same steps as for the lift, it is possible to write the moment
in the following form

Mc/4(t) = −ρb2π

(
ḧ

2 + Ubα̇ + b2
(

1
8 −

x̃p
2

)
α̈

)
(1.80)

confirming the equality with Theodorsen’ s classical results. It can be no-
ticed that the quarter-chord aerodynamic moment does not depend on the
Theodorsen function.

It is worthwhile to take into account for the comparison also the flaps
deflections and their contribution to the values of the lift and the quarter-
chord moment. Theodorsen expressed them in [23] in the following way:

P = −πρω2b3
(
h̃Ach + αAcα + βAcβ + γAcγ

)
(1.81)

Mα = −πρω2b4
(
h̃Aah + αAaα + βAaβ + γAaγ

)
(1.82)
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where Ach = Rch + jIch, Acα = Rcα + jIcα, etc. The constants are reported
in Appendix B. It is important to notice the difference of notation γ = β1,
and that the moment is referred to the rotation point. This is not a problem
if we consider the quarter-chord point as rotation center, like we have always
done.

Although these movements are associated to an infinite series of upwash
coefficients (see equation 1.51), since the lift and the moment in Küssner and
Schwarz theory depend only on a finite number of upwash coefficients, they
are expected to assume the same value of the ones in Theodorsen’s theory.
This fact can be proved both analytically and numerically, by computing
the values for the same data and checking that the results are the same. In
the first case it can be helpful the employment of a software like Wolfram
Mathematica, because there are long and tedious steps to be carried out and
it can be easy to make little mistakes. It is essential to notice that there
are some differences in sign conventions between the ones used in this work
and Theodorsen’s ones. He considered the airfoil translation and the lift
positive downward, while here plunge movements and lift are taken positive
if upward. In both theories moments and angle are considered positive if
clockwise. This causes the angles contribution to the lift and the plunge
effect on the the moment to have different signs.

The last comparisons left to be made are the hinge moment. Accordingly
to Theodorsen in [23];

Mβ = −πρω2b4
(
h̃Abh + αAbα + βAbβ + γAbγ

)
(1.83)

Mγ = −πρω2b4
(
h̃Adh + αAdα + βAdβ + γAdγ

)
(1.84)

In this case an exact equivalence with Theodorsen theory is not going to
be obtained, as Küssner and Schwarz result (equation 1.56) is composed by
an infinite series that needs to be truncated in order to obtain a numerical
solution. Nevertheless it is possible to numerically prove the convergence for
an increasing number of upwash coefficients kept into account. For a number
NP = 100 of upwash coefficients it is possible to see that the difference
between the two theories stays below the 1% for different combination of
angles with α, β, β1 ∈ [−20, 20] (see Table 1.1).

Plotting the pressure distribution obtained with Küssner and Schwarz
theory for NP = 100, it can be seen (figure 1.2) that it is not as sharp as the
one displayed in figure 1.1 and it is not able to represent the singularities as
in detail. This is due to the number of terms used for the evaluation of the
series, which is not sufficient to render the correct pressure profile. However,
it is sufficient to compute the forces, obtained by integrating the difference of
pressure distribution, an operation that smoothens the effects of singularities,
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Errors [%] [2◦ , 5◦ , 5◦ ] [2◦ ,−5◦ , 5◦ ] [10◦ , 20◦ , 20◦ ] [10◦ ,−20◦ , 20◦ ]
|Mf | 0.01063 0.041356 0.010445 0.038792
phase(Mf ) 0.000142 0.000312 0.000153 0.000483
|Mf1 | 0.037567 0.137011 0.036851 0.128367
phase(Mf1) 0.000745 0.001784 0.000784 0.002330

Table 1.1. Percentage differences between Theodorsen and Küssner and Schwarz
theories, NP = 100, at different configurations [α, β, β1], with k = 0.1

making them less influential. However, for further application, it is possible
to consider a higher number of upwash coefficients (NP = 1000), to have a
good pressure difference representation if necessary, since the computational
cost is very low.
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Figure 1.2. Example of Küssner and Schwarz pressure difference distribution,
NP = 100

1.3 Piecewise cubic mean-line
In order to describe the motion of a deforming airfoil another possibility
is to describe its mean line as a cubic, or more generally as a continuous
piecewise cubic with continuous first derivative, i.e. a cubic spline. Since
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this approach generates a hingeless change in the airfoil camber, it avoids
the creation of singularities in the pressure distribution located at the hinge
points and should guarantee a smaller number of terms for the series to
converge. The smoother shape assumed by the camberline with this method
is also more representative of the deformation of a morphing blade.

A possible way to describe a harmonically oscillating cubic spline is

z(x, t) =


P0(x)ejωt if x < xF0

(P0(x) + P1(x))ejωt if xF0 ≤ x < xF1

(P0(x) + P1(x) + P2(x))ejωt if xF1 ≤ x < xF2

...

(1.85)

where the shape functions are cubic polynomials Pk(x) = Akx
3 + Bkx

2 +
Ckx + Dk, with Ak, Bk, Ck, Dk ∈ R. To obtain a continuous shape it has to
be imposed that Pk(xFk) = Pk+1(xFk) for each k. A more desirable smooth
shape can be achieved by imposing also the continuity of the first derivative
P ′k(xFk) = P ′k+1(xFk), with P ′k(x) = dPk

dx
= 3Akx2 + 2Bkx+ Ck.

It is possible to compute the velocity of the airfoil as usual

v(x, t) =



U
b

(
jkP0(x) + bP ′0(x)

)
ejωt if x < xF0

U
b

[
jk(P0(x) + P1(x)) + b(P ′0(x) + P ′1(x))

]
ejωt if xF0 ≤ x < xF1

U
b

[
jk(P1(x) + P2(x) + P3(x))+

+b(P ′1(x) + P ′2(x) + P ′3(x))
]
ejωt if xF1 ≤ x < xF2

...

(1.86)

Calling vk(x, t) = U
b

(
jkPk(x) + bP ′k(x)

)
ejωt, it can be rewritten as

v(x, t) =


v0(x, t) if x < xF0

v0(x, t) + v1(x, t) if xF0 ≤ x < xF1

v0(x, t) + v1(x, t) + v2(x, t) if xF1 ≤ x < xF2

...

(1.87)

Then, by applying the change of variables x = b cos θ, it is possible to com-
pute the upwash coefficients. This operation will be performed later for each
term, since the general expression can always be built exploiting the linearity
and the superposition of a cubic mean-line solution with cubic flaps.
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1.3.1 Cubic mean-line

A simple model to represent the deformation of an airfoil is to represent its
mean-line as a cubic polynomial. In order to be coherent with the notation
of the case of the airfoil with a flap and a tab, the rotation (i.e. the first
derivative) and the deformation should be referred to a point xp. This means
that the vertical displacement could be written as follows

z(x, t) =
Ā(x− xp

b

)3
+ B̄

(
x− xp
b

)2
+ C̄

(
x− xp
b

)
+ D̄

ejωt (1.88)

In this way it is simple to notice that the C̄ and D̄ coefficients can be con-
nected to the plunge and the pitch rotation movements described in section
1.2 (omitting time dependency)

z(xp) = D̄ = h (1.89)

z′(xp) = C̄

b
= −α (1.90)

therefore

D̄ = bh̃ (1.91)
C̄ = −bα (1.92)

and then, neglecting the quadratic and the cubic terms, it can be recov-
ered the movement of a pitching and plunging airfoil written with the usual
variables

z(x, t) =
[
bh̃− α(x− xp)

]
ejωt. (1.93)

It is possible to expand the powers of the binomials and to collect the
terms with the same polynomial degree in order to obtain a simpler form,
useful for the upwash coefficients computation (temporarily omitting the time
exponential)

z(x) = Ā

b3x
3 +

(
B̄

b2 − 3xp
Ā

b3

)
x2 +

(
C̄

b
− 2xp

B̄

b2 + 3x2
p

Ā

b3

)
x+

+
(
D̄ − xp

C̄

b
+ x2

p

B̄

b2 − x
3
p

Ā

b3

)
(1.94)
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and naming

A = Ā

b3 (1.95)

B = B̄

b2 − 3xp
Ā

b3 (1.96)

C = C̄

b
− 2xp

B̄

b2 + 3x2
p

Ā

b3 (1.97)

D = D̄ − xp
C̄

b
+ x2

p

B̄

b2 − x
3
p

Ā

b3 (1.98)

we obtain

z(x, t) = (Ax3 +Bx2 + Cx+D)ejωt

= P(x)ejωt (1.99)

that is the general cubic shape function described at the beginning of this
section.

Having this simpler expression for the motion of the airfoil, it is now
possible to compute its velocity

v(x, t) = U

b

(
jkP(x) + bP ′(x)

)
ejωt

= U

b

[
jk(Ax3 +Bx2 + Cx+D) + b(3Ax2 + 2Bx+ C)

]
ejωt

(1.100)

As usual, it is now required to perform the change of variables x = b cos θ.
Collecting the cosines with the same exponent we obtain

v(θ, t) =U
b

[
jkAb3 cos3 θ + (jkBb2 + 3Ab3) cos2 θ+

+ (jkCb+ 2Bb2) cos θ + (jkD + Cb)
]
ejωt (1.101)

Referring to equation 1.4 it is possible to compute the upwash coefficients

Pn =− jkAb3

πb

∫ π

0
cos3 θ cosnθ dθ − jkBb2 + 3Ab3

πb

∫ π

0
cos2 θ cosnθ dθ+

− jkCb+ 2Bb2

πb

∫ π

0
cos θ cosnθ dθ − jkD + Cb

πb

∫ π

0
cosnθ dθ

(1.102)
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Each integral can be solved by exploiting the trigonometric identities, ob-
taining the following coefficients

P0 = −3b2

2 A− jkb

2 B − C − jk

b
D (1.103)

P1 = −3jkb2

8 A− bB − jk

2 C (1.104)

P2 = −3b2

4 A− jkb

4 B (1.105)

P3 = −jkb
2

8 A (1.106)

Pn = 0 if n > 3 (1.107)

At this point the lift and the aerodynamic moment are easily computable
with the relations 1.14 and 1.21.

The simplified formula for the computation of power used in the flaps
case is no longer valid, so it must be deduced starting from its definition.

W (t) = 1
2ρU

2
∫ b

−b
∆Cp(x, t)v′(x, t) dx (1.108)

with

v′(x, t) = ∂z

∂t
= ż = jωP(x)ejωt (1.109)

Substituting it in the definition of power and passing from x to θ we have

W (t) = 1
2ρU

2bjω
∫ π

0
∆Cp(θ, t)P(θ) sin θ dθ ejωt (1.110)

expressing the ∆Cp as in equation 1.5 and P(x) as described before

W (t) =1
2ρU

2bjω
∫ π

0

(
4a0 tan θ2 + 8

∞∑
n=1

an sinnθ
)

(Ab3 cos3 θ+

+Bb2 cos2 θ + Cb cos θ +D) sin θ dθ ej2ωt (1.111)

once this eight integrals have been computed (see Appendix A), the final
expression of the aerodynamic power is

W (t) =1
2ρU

3jk

4a0π
(
−3b3

8 A+ b2

2 B −
b

2C +D
)

+

+ 8πa1

(
b2

8 B + 1
2D

)
+ 8πa2

(
b3

8 A+ b

4C
)

+

+ 8πa3
b2

8 B + 8πa4
b3

16A
ej2ωt (1.112)
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Because this simple cubic deformation involves the whole mean line of the
airfoil, it can be noticed that there exist a finite number of non-null upwash
coefficients and that the power can be expressed in an exact form, like for
the plunge and pitch movements.

1.3.2 Cubic Flap
Similarly to section 1.2.2, in which a flap rotation to be superposed to a
global airfoil movement has been analyzed, in this section a cubic partial
deformation of the mean-line will be examined. When superposed to the
global cubic deformation, this corresponds to a piecewise cubic solution with
two pieces (see Figure 1.3).

Unlike the conventional flap, this one is not allowed to perform a rotation
around a hinge point, but can only deform with a parabolic and a cubic
terms, because a first derivatives continuity constraint is to be imposed to
obtain the desired smoothness. This can be easily achieved by writing the
vertical displacement in the following way

z(x, t) =


0 if x ≤ xFĀ1

(
x−xF
b

)3
+ B̄1

(
x−xF
b

)2
ejωt if x > xF

(1.113)

expanding the powers we obtain

z(x, t) =

0 if x ≤ xF(
A1x

3 +B1x
2 + C1x+D1

)
ejωt = P1(x)ejωt if x > xF

(1.114)

having named the coefficients:

A1 = Ā1

b3 (1.115)

B1 = −3Ā1

b3 xF + B̄1

b2 (1.116)

C1 = 3Ā1

b3 x
2
F − 2B̄1

b2 xF (1.117)

D1 = −Ā1

b3 x
3
F + B̄1

b2 x
2
F (1.118)

It is also possible to choose to impose the continuity in the second deriva-
tive of the cubic spline, in order to allow a greater regularity in the mean-line
shape, and consequently to obtain a smoother pressure difference, as its dis-
tribution is quite influenced by the curvature of the camberline. This can
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(a) First step: cubic deformation
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(b) Second step: linearly superposed cubic flap

Figure 1.3. Example of cubic polynomial deformation of the airfoil mean-line
and superposition of a cubic flap

be easily accomplished by putting B̄1 = 0. Then the expanded polynomial
parameters are simply:

A1 = Ā1

b3 (1.119)

B1 = −3Ā1

b3 xF (1.120)

C1 = 3Ā1

b3 x
2
F (1.121)

D1 = −Ā1

b3 x
3
F (1.122)
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As shown later, it will be easily imposable also the continuity of the second
derivative, if wanted.

Hence the addition of each section of spline corresponds to the addition
of a single degree of freedom.

Like it has been done so far, it is firstly necessary to compute the velocity
as explained in eq. 1.86 and to apply the usual change of variables, then we
can deal with the upwash coefficients

Pn = − 1
πUejωt

∫ π

0
v(θ, t) cosnθ dθ =

= −jkA1b
3

πb

∫ θF

0
cos3 θ cosnθ dθ+

− jkB1b
2 + 3A1b

3

πb

∫ θF

0
cos2 θ cosnθ dθ+

− jkC1b+ 2B1b
2

πb

∫ θF

0
cos θ cosnθ dθ − jkD1 + C1b

πb

∫ θF

0
cosnθ dθ

(1.123)

with θF = arccos x̃F . The computation of the integrals is required (see
Appendix A). The final solution for the upwash is

Pn =− jkD + bC

πb

sinnθF
n

+

− 1
2
jkbC + 2b2B

πb

(sin(n+ 1)θF
n+ 1 + sin(n− 1)θF

n− 1

)
+

− jkb2B + 3b3A

πb

[sinnθF
2n + 1

4

(sin(n+ 2)θF
n+ 2 + sin(n− 2)θF

n− 2

)]
+

− jkb3A

πb

[3
8

(sin(n+ 1)θF
n+ 1 + sin(n− 1)θF

n− 1

)
+

+ 1
8

(sin(n+ 3)θF
n+ 3 + sin(n− 3)θF

n− 3

)]
(1.124)

except for the following cases, in which some indeterminacies ought to be
examined

P0 =− jkD + bC

πb
θF −

jkbC + 2b2B

πb
sin θF+

− jkb2B + 3b3A

πb

(
θF
2 + 1

4 sin 2θF
)

+

− jkb3A

πb

(3
4 sin θF + sin 3θF

12

)
(1.125)
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P1 =− jkD + bC

πb
sin θF −

1
2
jkbC + 2b2B

πb

(sin 2θF
2 + θF

)
+

− jkb2B + 3b3A

πb

[sin θF
2 + 1

4

(sin 3θF
3 + sin θF

)]
+

− 1
8
jkb3A

πb

(sin 4θF
4 + 2 sin 2θF + 3θF

)
(1.126)

P2 =− jkD + bC

πb

sin 2θF
2 − 1

2
jkbC + 2b2B

πb

(sin 3θF
3 + sin θF

)
+

− jkb2B + 3b3A

πb

[sin 2θF
4 + 1

4

(sin 4θF
4 + θF

)]
+

− jkb3A

πb

[3
8

(sin 3θF
3 + sin θF

)
+ 1

8

(sin 5θF
5 + sin θF

)]
(1.127)

P3 =− jkD + bC

πb

sin 3θF
3 − 1

2
jkbC + 2b2B

πb

(sin 4θF
4 + sin 2θF

2

)
+

− jkb2B + 3b3A

πb

[sin 3θF
6 + 1

4

(sin 5θF
5 + sin θF

)]
+

− jkb3A

πb

[3
8

(sin 4θF
4 + sin 2θF

2

)
+

+ 1
8

(sin 6θF
6 + θF

)]
(1.128)

Now we have all the necessary elements to compute the pressure distribution,
the lift and the aerodynamic moment caused by this particular camberline
shape, as explained in sections 1.1 and 1.1.1. What is still missing is an
equation to compute the aerodynamic power associate with this motion.

W (t) =1
2ρU

2b
∫ π

0
∆Cp(θ, t)ż(θ, t) sin θ dθ =

=1
2ρU

2bjω
∫ θF

0
∆Cp(θ, t)P1(θ) sin θ dθ ejωt

=1
2ρU

2bjω
∫ θF

0

(
4a0 tan θ2 + 8

∞∑
n=1

an sinnθ
)

(A1b
3 cos3 θ+

+B1b
2 cos2 θ + C1b cos θ +D1) sin θ dθ ej2ωt (1.129)

once the solution of the eight integrals is known (see Appendix A), the final
expression of the aerodynamic power associated to the cubic flap movement
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is

W (t) =1
2ρU

3jk4a0

{
D1
(
θF − sin θF

)
+ C1b

(
−θF2 + sin θF −

sin 2θF
4

)
+

+B1b
2
(
θF
2 −

3
4 sin θF −

sin 3θF
12

)
+

+ A1b
3
[

1
2

(
sin 3θF

6 + 3
2 sin θF

)
+

− 1
4

(
3θF
2 + sin 2θF + sin 4θF

8

)]}
ej2ωt+

+ 1
2ρU

3jk8
∞∑
n=1

an

{
D1

1
2

(
sin(n− 1)θF

n− 1 − sin(n+ 1)θF
n+ 1

)
+

+ C1b
1
4

(
sin(n− 2)θF

n− 2 − sin(n+ 2)θF
n+ 2

)
+

+B1b
2
[

1
8

(
sin(n− 3)θF

n− 3 − sin(n+ 3)θF
n+ 3

)
+

+ 1
8

(
sin(n− 1)θF

n− 1 − sin(n+ 1)θF
n+ 1

)]
+

+ A1b
3
[

1
8

(
sin(n− 2)θF

n− 2 − sin(n+ 2)θF
n+ 2

)
+

+ 1
16

(
sin(n− 4)θF

n− 4 − sin(n+ 4)θF
n+ 4

)]}
(1.130)

It must be noticed that there are some undetermined terms in the summation
that need to be treated with limit operations as previously done.

These results are also valid for multiple sequence of flaps, it is sufficient to
replace θF with the one associated with the desired flap. In fact, exploiting
linearity as already done with the trim tab, every upwash contribution can
be computed separately and then superposed to the others in order to get
the global solution.

1.3.3 Comparison with flapped airfoil
A comparison between the two representations of the morphing blade mean-
line deformation, namely the model with flaps and the cubic spline can be
made. One possible way to compare these two models is to choose the coef-
ficients of the cubic polynomial so that the best fitting of the flapped airfoil
shape can be achieved. The fitting can be obtained by solving a least squares
problem.
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To solve the fitting problem it is firstly necessary to write the expressions
of the displacement of the airfoil points both with the flap and the cubic
representations.

zflaps(x, t) =


−(x− xp)αejωt if x ≤ xF0

[−(x− xp)α− (x− xF0)β0]ejωt if xF0 < x ≤ xF1

[−(x− xp)α− (x− xF0)β0+
−(x− xF1)β1]ejωt if x > xF1

(1.131)

zspline(x, t) =

P0(x)ejωt if x ≤ xF0

(P0(x) + P1(x))ejωt if x > xF0

(1.132)

Then a least squares best fitting can be obtained by minimizing the sum of
the squares of the difference between the two different displacement, after
imposing one shape, for example the one with flaps:

Minimize J(p) = 1
2

m∑
j=1

rj(p)2

with rj(p) =
∣∣∣zflaps(xj, t, p̄)− zspline(xj, t,p)

∣∣∣
where p̄ =

{
ᾱ β̄0 β̄1

}
are the imposed angles and p =

{
A B C A1 B1

}
are the minimization variables.

Although the obtained shape is quite close to the starting one, there are
some substantial differences, which imply that the pressure difference distri-
butions and aerodynamic forces are expected to be quite different. First of
all the first one is a regular shape, while the other presents discontinuities in
the first derivative at the hinges which, as previously seen (1.2.6), cause the
creation of singularities in the pressure distribution. This can obviously lead
to some differences in the aerodynamic actions. Secondly, for some shapes
with deflected flaps (Figure 1.4), close to the trailing edge the polynomial
mean-line has a non-negligible difference in the slope (especially if the fit-
ting is performed with a spline only regular up to the first derivative), and,
of course, a different curvature, provoking other differences in the pressure
distribution, which also affect the lift, the moment and the power.

The results obtained from the two different modelizations are nevertheless
compared for some characteristic shapes, in order to see how the small shape
differences affect the aerodynamic of the airfoil. It can be seen in Table
1.2 that for concordant small flap deflections, when the singularities effect
is smaller, the results present very small differences, that increase with the
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flaps deflection, as the singularities effect becomes more relevant. Instead for
opposite deflections, when the aforementioned problems in the fitting arise,
differences get more substantial,but the overall result are still comparable and
have the same order of magnitude, as intuitively expected for qualitatively
similar mean-line shapes.

Percentage difference [10◦ , 10◦ , 10◦ ] [10◦ ,−10◦ , 10◦ ] [10◦ , 10◦ ,−10◦ ]
|L| 8.553908 7.105327 5.676060
|Mc/4| 14.947215 10.634315 0.936460
|W | 14.372477 7.524987 1.026945

Table 1.2. Percentage differences between flapped and spline representations of
the chord, NP = 1000, spline regular up to the second derivative,
two-segment spline, k = 0.5

Percentage difference [10◦ , 10◦ , 10◦ ] [10◦ ,−10◦ , 10◦ ] [10◦ , 10◦ ,−10◦ ]
|L| 0.766836 16.743230 10.752191
|Mc/4| 1.385297 5.105471 7.771373
|W | 1.560068 10.925071 8.788666

Table 1.3. Percentage differences between flapped and spline representations of
the chord, NP = 1000, spline regular up to the first derivative, two-
segment spline, k = 0.5

1.3.4 Convergence
Since Küssner and Schwarz theory results are expressed in terms of an infi-
nite series of upwash coefficients, it is necessary to decide where to truncate
it when computing numerical values. The choice can be performed quite
arbitrarily, depending of the level of accuracy needed and the computational
costs one is willing to pay.

To estimate the convergence is no longer possible to perform a comparison
with other theories analytical results, as did in section 1.2.7, hence another
path has to be chosen.

For instance it is possible to gradually increase the number of upwash
coefficients taken into account for fixed parameter values and compare the
related aerodynamic power values. When the results differences tend to be
small enough for a sufficient change in the number of coefficient, one can stop
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Figure 1.4. Least squares fitting between flapped airfoil and two pieces cubic
spline camberline regular up to the first derivative

and consider the series to be converged. The test is only carried out on the
aerodynamic power because the lift and the moment only depend on a small
finite number of upwash coefficients, so they are not affected by truncation
errors.

NP difference [10◦ , 10◦ , 10◦ ] [10◦ ,−20◦ , 20◦ ] [2◦ ,−5◦ ,−20◦ ]
10− 30 0.000468 0.001856 0.019114
30− 60 0.000000 0.000001 0.000012
60− 100 0.000000 0.000000 0.000000

Table 1.4. Residuals between aerodynamic power truncated at a different num-
ber of upwash coefficients. The spline is a least squares fitting of a
flapped airfoil with the indicated angle amplitudes

It can be seen from Table 1.4 that NP = 100 is a suitable round number
of upwash coefficients for a very good convergence, and is not too computa-
tionally expensive.
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Figure 1.5. Least squares fitting between flapped airfoil and two pieces cubic
spline camberline up to the first derivative, pressure difference, NP =
1000



CHAPTER 2

INERTIAL AND ELASTIC MODELS

The oscillating deformation of the airfoil needs to be actively induced. Hence
some actuators are needed and they must be able to supply the required
forces and power to impose the wanted movement. This power is mainly
composed by three components, dictated by the physics of the problem: the
aerodynamic power, which has been already discussed in Chapter 1, the
elastic component, that arises when the airfoil mean-line is deformed, and
lastly the inertial moment, needed to accelerate the airfoil mass. These two
new components are discussed in this chapter.

2.1 Equation of motion

Since a bi-dimensional airfoil is a slender structural component, in which the
thickness t(x) is much smaller than the chord size, it is possible to consider
it as a deformable mono-dimensional beam that bends to assume the wanted
shape. The Euler-Bernoulli beam model can be used to describe the elastic
behaviour of the airfoil. This model assumes that each beam section remains
plane and orthogonal to the elastic line, coinciding with the mean-line for a
symmetrical airfoil, during any movement.

Since the airfoil shape oscillates in time, its points are also subject to
inertial forces that are opposed to the points acceleration.

It is possible to write the well known equation of motion of the beam in
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a weak form by means of the principle of virtual works (PVW)∫ b

−b
δz′′TEJ(x)z′′ dx = −

∫ b

−b
δzTm(x)z̈ dx+

∫ b

−b
δzTFaero(x) dx+

+
∫ b

−b
δzTFact(x) dx (2.1)

where it has to be noticed that the contribution of rotational inertia of
the beam section has been neglected. Faero(x) is the distributed aerody-
namic chordwise load, namely the pressure difference distribution ∆Pa(x)
and Fact(x) are the distributed actuation forces, EJ(x) is the bending stiff-
ness and m(x) the mass distribution.

2.1.1 Ritz-Galerkin method
The idea here is to utilize a so called Ritz-Galerkin approach, that is based
on the approximation of the weak solution in the form:

z(x, t) =
Nn∑
i=1

Ni(x)ui(t) =
[
N(x)

]
u(t) (2.2)

where Ni(x) are imposed shape functions, that depends only on the position,
and satisfy the essential boundary conditions, while ui are the unknown
free coordinates, that are functions of the time. The separation of variables
principle is hence used. [N(x)] is a matrix of size 1 × Nn, with Nn being
the number of utilized shape functions. To allow the solution to converge
by increasing the number of shape functions, these functions must belong to
a complete basis. This means that they have to be a basis of the function
space that is the space of the problem solutions.

Substituting the approximated expression of the displacement in the equi-
librium equation

δuT
∫ b

−b
[N ]′′TEJ(x)[N ]′′dxu = −δuT

∫ b

−b
[N ]Tm(x)[N ]dx ü+

+ δuT
∫ b

−b
[N ]T∆Pa(x, t) dx+ δuT

∫ b

−b
[N ]TFact(x, t) dx (2.3)

exploiting the arbitrariness of the virtual variation is possible to get to∫ b

−b
[N ]′′TEJ(x)[N ]′′dx︸ ︷︷ ︸

[K]

u = −
∫ b

−b
[N ]Tm(x)[N ]dx︸ ︷︷ ︸

[M ]

ü+

+
∫ b

−b
[N ]T∆Pa(x, t) dx︸ ︷︷ ︸

Qa

+
∫ b

−b
[N ]TFact(x, t) dx︸ ︷︷ ︸

Qact

(2.4)
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that is

[M ]ü + [K]u = Qa(t) + Qact(t) (2.5)

where [M ] is the mass matrix, [K] the stiffness matrix and Qa is the vector
of the generalized forces associated to the aerodynamics, and Qact are the
generalized actuation forces.

Since only small harmonic oscillations are considered, it is now possible
to move to the frequency domain, obtaining, with a little abuse of notation:

−ω2[M ]u + [K]u = Qa(ω) + Qact(ω) (2.6)

2.2 Hermitian finite elements
Having used a Ritz-Galerkin method to approximate the mean-line displace-
ment, it is necessary to choose some shape functions [N ] and their relative
degrees of freedom u. One possible choice is to employ finite elements, espe-
cially hermitian finite elements.

The basic principle of finite elements method (FEM), is to divide the
domain (here the beam) in a collection of subdomains, namely the finite
elements. Then shape functions are defined to interpolate the displacement
on each single element starting from the value of the displacement on every
element nodes, that are the element degrees of freedom, whereas they are null
on the other elements. This means that the support of the shape functions
is compact, i. e. limited in space. A major advantage that results from this
choice is the sparsity of the matrices.

To achieve a solution that possesses C1 smoothness, it is possible to em-
ploy hermitian finite elements, which use hermitian shape functions on the
elements:

Node 1:

N1(ξ) = 1
4(1− ξ)2(2 + ξ)

M1(ξ) = h
8 (1− ξ)2(ξ + 1)

(2.7)

Node 2:

N2(ξ) = 1
4(1 + ξ)2(2− ξ)

M2(ξ) = h
8 (1 + ξ)2(ξ − 1)

(2.8)

where h is the dimension of the element in the physical reference system
x. These functions are defined only on the element, i.e. if ξ ∈ [−1, 1],
where ξ is a transformed dimensionless coordinate of the reference element,
otherwise they are null. As degrees of freedom are considered displacements
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z

ξ−1 1

u1 u2

q1 q2

Figure 2.1. Reference mono-dimensional hermitian finite element

and rotations at the nodes, as shown in figure 2.1. Then the displacement of
a point in the element can be interpolated in the following way

z(ξ) =
[
N1(ξ) M1(ξ) N2(ξ) M2(ξ)

]
u1
q1
u2
q2

 = [N ]eue (2.9)

so that

z(−1) = u1; z(1) = u2; z′(−1) = q1; z′(1) = q2 (2.10)

2.3 Mass and stiffness matrices computation

2.3.1 Mass and bending stiffness distributions
In order to compute [M ] and [K] it is firstly necessary to decide a model for
the mass distribution m(x) and the bending stiffness EJ(x). A simple but
useful model is to consider these quantities respectively proportional to the
thickness of the airfoil t(x) and its cube, namely

m(x) = Cm t(x) (2.11)
EJ(x) = Ce t

3(x) (2.12)

the reason for this choice and the meaning of the constants are discussed in
this section. It is important to notice that the choice of using these models
is only based on the need for simplicity, and not on a limitation on the com-
putational technique adopted, since having used hermitian finite elements
allows to take into account a more precise and local description of the airfoil
structural characteristics.

A possible typical helicopter blade airfoil structure is shown in figure 2.2,
based on the model proposed by Truong et al. in their work [24]. Although a
morphing blade could be made in a quite different way, that will be considered
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as a reference, remembering that the aim of this work is not to optimize a
specific blade and to obtain accurate results but to review how an unsteady
aerodynamic optimization can be carried out.

1

2

3

4

5

6

Figure 2.2. Example of helicopteristic NACA0012 airfoil

Component Material Density [kg/m3] E [GPa]
1 carbon graphite LE wrap 2.79 8.96
2a E-1002 fiberglass 0◦/90◦ 1707 15.7
2b E-1002 fiberglass ±45◦ 1707 11.1
3 tantalum leading edge slug 13683 1.446
4 foam 95.5 0.031
5 foam 191 0.083
6 Fiberite spar 1826.9 15.42

Table 2.1. Material properties of helicopter blade

The goal is to extract a simplified mono-dimensional model for the mass
and bending stiffness distributions that depends on the thickness, starting
from a realistic bi-dimensional airfoil like the one in figure 2.2.

A dimensional analysis on the equation of motion (remembering that the
problem is bi-dimensional, because the airfoil is flat) shows that the mass
distribution m(x) has the dimensions of [kg/m2]. Then it can be seen as the
product between the airfoil mean mass density and its thickness

m(x) = ρst(x) → Cm = ρs (2.13)

Now it is necessary to extract an approximated value of the mean density
from the airfoil constitutive model. It can be done with a weighted average
of the single components densities (values are in table 2.1) using the relative
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surfaces areas as weights.

ρs =
∑
i

ρi
Ai
Atot

(2.14)

The surface covered by each component can be simply estimated from figure
2.2, remembering that precise results are not required in this instance. A
possible value is ρs ' 300 kg/m3.

Regarding the bending stiffness EJ(x), the dimensional analysis shows
that its dimensions are [Nm]. Even though it is not true that the bending
stiffness of a generic cross section of non-isotropic non-homogeneous material
is equal to the product of the Young’s modulus E and the area moment of
inertia J , it is possible to consider this fact as a useful simplification in order
to obtain a raw approximation of EJ(x) as a function of the thickness. The
Young’s modulus has units of pressure [N/m2] and the moment of inertia
of [m3] (it is important to notice that J usually has units of [m4], but it
needs to be taken into account that the airfoil is flat, hence it has no span
dimension).

fiberglass

foam

fiberglass

t(x)

t/20

9
10t

t/20

Figure 2.3. Airfoil simplified cross section

Concerning figure 2.3 and the aforementioned simplification, it is possible
to state that

EJ(x) = EJf (x) + EJc(x) = Ef Jf (x) + Ec Jc(x) (2.15)

Referring again to the figure of the cross section, it is possible to compute
the second moments of area

Jf (x) =

(
t− t/10

)3

12 = Cf t
3(x) (2.16)
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Jc(x) = t3

12 −

(
t− t/10

)3

12 = Cc t
3(x) (2.17)

Then, substituting in eq. 2.15, it can be obtained the final expression of
EJ(x)

EJ(x) = EfCf t
3(x) + EcCc t

3(x) = Es t
3(x) (2.18)

→ Ce = Es

2.3.2 Thickness

One of the typical helicopter blade airfoils is the NACA0012. In this work it
will be used as reference because of its simplicity and its wide employment.
It is a symmetrical airfoil and belongs to the NACA four digits series. Its
maximum percentage thickness is ss = 12 (i.e. NACA00ss). The thickness
distribution of this series of airfoil is standardized and is usually written as

t(x) = zu(x)− zl(x) = 2zt(x) (2.19)
zu(x) = zt(x) (2.20)
zl(x) = −zt(x) (2.21)

with

zt(x) = ss

20
(
t1
√
x+ t2x+ t3x

2 + t4x
3 + t5x

4
)

(2.22)

where x ∈ [0, 1] and the coefficients have the values in table 2.2.

Coefficient Value
t1 +0.2969
t2 −0.1260
t3 −0.3516
t4 +0.2843
t5 −0.1015

Table 2.2. NACA four digits airfoil thickness coefficients

Since the reference system used in this work has the origin in the middle
of the airfoil, the leading edge at x = −b and the trailing edge in x = b
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(x ∈ [−b, b]), the thickness expression must be rewritten in the new variables

zt(x) = ss

202b
(
t1

√
x+ b

2b + t2
x+ b

2b + t3

(
x+ b

2b

)2

+

+t4
(
x+ b

2b

)3

+ t5

(
x+ b

2b

)4)
(2.23)

2.3.3 Integration
Now that all the necessary elements for the computation of the mass and
stiffness matrix are known, it is possible to proceed with the computation of
the matrices of each element e

[M ]e =
∫ b

−b
[N ]Tem(x)[N ]edx = ρs

∫ b

−b
t(x)[N ]Te [N ]edx =

= ρs

∫ b

−b
t(x)


N2

1 N1M1 N1N2 N1M2
M2N1 M2

1 M1N2 M1M2
N2N1 N2M1 N2

2 N2M2
M2N1 M2M1 M2N2 M2

2


e

dx (2.24)

[K]e =
∫ b

−b
[N ]′′Te EJ(x)[N ]′′edx = E

∫ b

−b
t3(x)[N ]′′Te [N ]′′edx =

= E
∫ b

−b
t3(x)


N
′′2
1 N ′′1M

′′
1 N ′′1N

′′
2 N ′′1M

′′
2

M ′′
2N

′′
1 M

′′2
1 M ′′

1N
′′
2 M ′′

1M
′′
2

N ′′2N
′′
1 N ′′2M

′′
1 N

′′2
2 N ′′2M

′′
2

M ′′
2N

′′
1 M ′′

2M
′′
1 M ′′

2N
′′
2 M

′′2
2


e

dx (2.25)

The integrals are defined on the whole airfoil, but, since the finite elements
shape functions are non-null only locally on each single element (compact
support), their integration domain is only on each generic element [x1, x2].
Then the global matrices are built assembling each element matrix.

To compute these integrals it is possible to exploit Gauss numerical in-
tegration method (see [4]). It can be written in the following expression

∫ b

a
f(x)w(x) ≈

g∑
i=0

λif(xi) (2.26)

where xi are the Gauss internal nodes, λi are Gauss weight coefficients and
w(x) is a weight function. If Gauss-Legendre formula is used the integration
interval is [a, b] = [−1, 1], the weight function is w(x) = 1 and the coefficients
for different values of the order g are displayed in tab. 2.3.
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g xi λi

4
±0.9061798459 0.2369268851
±0.5384693101 0.4786286705
0 0.5688888888

5
±0.9324695142 0.1713244924
±0.6612093865 0.3607615730
±0.2386191861 0.4679139346

Table 2.3. Nodes and weights for Gauss-Legendre integration method

It is noticeable that the integration domain of the Gauss-Legendre for-
mula is [−1, 1], while the integrals have to be computed on a generic element
that is defined in [x1, x2]. The passage to the generalized interval can be
performed with an isoparametric transformation :

x = x̃(x2 − x1) + x1 + x2

2 (2.27)

hence the Jacobian of the transformation is

dx

dx̃
= x2 − x1

2 (2.28)

and the integral becomes∫ x2

x1
f(x) dx =

∫ 1

−1
f(x̃)dx

dx̃
dx̃ =

= x2 − x1

2

∫ 1

−1
f

(
x̃(x2 − x1) + x1 + x2

2

)
dx̃ (2.29)

At this point all the means to evaluate the element matrices are known.
The following step is to use these small 4×4 matrices to assemble the global
2(Ne + 1)× 2(Ne + 1) mass and stiffness matrices.

2.3.4 Change of variables
Once the finite elements mass and stiffness matrices are known, one last step
is missing in order to advance to the computation of the power: an interface
between structural coordinates u (FEM degrees of freedom) and aerodynamic
coordinates p (cubic spline parameters) needs to be described.

To perform this operation it is necessary to write 2(Ne+1)×Np transfor-
mation matrix that links the two sets of variables, where Ne is the number of
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elements and Np is the number of the spline parameters. This can be done
by writing 2(Ne + 1) independent equations that equal the expressions of
the displacements and rotations at each node in both the sets of variables,
namely{

ui
qi

}
=
{
z(xi)
z′(xi)

}
=

=
(xi−xpb

)3 (
xi−xp
b

)2 (
xi−xp
b

) (
xi−xF
b

)3
H(xi − xF ) . . .

3(xi−xp)2

b3
2(xi−xp)

b2
1
b

3(xi−xF )2

b3 H(xi − xF ) . . .




Ā
B̄
C̄
Ā1
Ā2
. . .


(2.30)

where H(x − xF ) is the Heaviside step function. Repeating this for all the
nodes and assembling in a single expression it is possible to write

u = [U ]p (2.31)

Finally the matrices can be transformed exploiting the PWV equation, ob-
taining

[M ] = [U ]T [M ]fem[U ] (2.32)
[K] = [U ]T [K]fem[U ] (2.33)

2.4 Power computation
The power involved in the airfoil motion can be computed integrating the
product of the forces and what has been called perturbation speed in section
1.1.2, obtaining an expression similar to the PVW:∫ b

−b
ż′′TEJ(x)z′′ dx = −

∫ b

−b
żTm(x)z̈ dx+

∫ b

−b
żTFaero(x) dx+

+
∫ b

−b
żT∆Pa(x) dx (2.34)

Passing in the frequency domain, this means that the actuation power is

Wact(ω) =jω
∫ b

−b
z′′TEJ(x)z′′ dx− jω3

∫ b

−b
zTm(x)z dx+

− jω
∫ b

−b
zT∆Pa(x) dx (2.35)



2.4 Power computation 45

substituting the expression of the Ritz-Galerkin approximation and the mod-
els for m(x) and EJ(x) discussed in section 2.3.1, it is possible to obtain

Wact(ω) =jωEsuT
∫ b

−b
[N ]′′T t3(x)[N ]′′ dxu+

− jω3ρsuT
∫ b

−b
[N ]T t(x)[N ] dxu+

− jωuT
∫ b

−b
[N ]T∆Pa(x) dx (2.36)

that, with a little abuse of notation, is equal to

Wact(ω) =jωEsuT [K]fem u− jω3ρsuT [M ]fem u+

− jωuT
∫ b

−b
[N ]T∆Pa(x) dx (2.37)

Then the change of variables discussed in section 2.3.4 is applied, so that
every power contribution is expressed as a function of the cubic spline pa-
rameters (like the aerodynamic power computed in sections 1.3.1 and 1.3.2)

Wact(ω) =jωEspT [K] p− jω3ρspT [M ] p+

− jωpT
∫ b

−b
[U ]T [N ]T∆Pa(x) dx (2.38)

Finally it is possible to non-dimensionalize the power like it usually done
with the aerodynamic power, which means dividing it for 1

2ρU
3(2b). This

leads to

CWact(k) = jk
Es
ρU2

pT [K] p
b2 − jk3ρs

ρ

pT [M ] p
b4 − CWa = (2.39)

=CWel
(k)− CWin

(k)− CWa(k) (2.40)

in this way it is possible to highlight two dimensionless parameters that scale
respectively the elastic and the inertial forces with respect to the aerodynam-
ics. These parameters are

Es
ρU2 (2.41)

and
ρs
ρ

. (2.42)





CHAPTER 3

OPTIMIZATION

The aim of this thesis is to optimize the aerodynamics of a morphing blade,
or, in simple words, to obtain its “best” aerodynamic behaviour. But what
does this mean? It means to find an optimal set of project parameters (or
optimization variables) in order to minimize a so called loss function (or
fitness function, objective function) which is the mathematical description of
what has to be optimized.

3.1 What to Optimize
Before starting any optimization it is fundamental to decide which function
(or functions) is to be minimized to achieve the goal, that is to give a precise
definition of what is the desired “best”. In other words a loss function has to
be chosen. In our case it should be a function whose minimum corresponds
to an optimal performance somehow related to the blade aerodynamics.

The main function of a lifting surface is to produce some lift indeed.
Hence, also in this optimization problem, the airfoil should be able to gen-
erate a non-null lift, remembering that it is an oscillatory perturbation in
respect to a reference condition, when using a linearized harmonic model
such as Küssner and Schwarz theory. This can be achieved by imposing a
constraint on the amplitude of the lift coefficient, forcing it to be equal to
an arbitrarily assigned value. It will turn our problem into a constrained
optimization, and the solution will be the set of parameters, among the ones
that satisfy the constraint, which minimizes the objective functions.

This can be physically seen as the same effect as giving a certain cyclic
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pitch control with respect to a steady solution, which causes an oscillation of
the lift amplitude in time (at least in a linearized model), and hence in az-
imuthal position, in order to generate a flapping movement of the blade. The
effect here is not obtained imposing a cyclic pitch angle but rather exploiting
the morphing capabilities of the airfoil. Such an operation is connectible, for
instance, to the one made when a rolling or pitching maneuver is wanted to
start from a hovering condition.

A possible choice of objective function can be the quarter-chord aero-
dynamic moment. It is intuitive to understand that the minimum of the
perturbation moment amplitude is achieved when the blade has no camber
and zero incidence, i.e. when it is not oscillating and does not generate any
lift. However this solution does not make much sense. The introduction of a
constraint on the lift amplitude is able to avoid the optimization algorithm to
converge to this trivial solution. If the moment is maintained as small as pos-
sible for each blade section, it will indeed turn into a reduction of the blade
torsion, relieving its structural load and improving its fatigue behaviour. It
may also decrease the moment at the pitch hinge (if one exists) involving a
smaller actuation effort and reducing the vibrations transmitted to the hub.

It is important to notice that the moment value obtained with Küss-
ner and Schwarz theory is a complex number (even if the time dependency
complex exponential term), so its minimization has no direct meaning. It is
possible instead to choose to minimize its amplitude (or modulus), neglecting
on first instance what happens to its phase.

Another possible function to be optimized could be the aerodynamic
power, as defined in Chapter 1, or rather its amplitude, for the same reason
described for the moment. This power is a fraction of the total actuation
power needed to morph the airfoil, the other major parts being the elastic
and the inertial power. The global actuation power is computed in Chapter
2 and can substitute the aerodynamic power as an objective function. Also
this function needs a constraint to avoid the solution of the optimization to
be trivial.

Once identified these two functions, one may think to combine them in
order to obtain a reduction of the moment without spending too much ac-
tuation power, or, from another point of view minimizing the aerodynamic
power needed to produce a certain lift oscillation keeping at the same time
the quarter-chord moment as small as possible. This leads to the develop-
ment of a multi-objective constrained optimization, which will be described
later in section 3.3.

Since the simple aerodynamic model taken into account is not capable
of predicting flow separations and dynamic stalls it may be useful to impose
some boundary constraint to the optimization variables, which describe the
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shape and the incidence of the airfoil, in order to empirically avoid those
phenomena.

3.2 Optimization Algorithms
There are several optimization techniques among which to choose, depending
on the kind of optimization problem one has to deal with and the accuracy
needed for the results.

Traditional optimization methods can be divided in direct methods and
gradient-based methods. In the former only the objective function and con-
straint values are needed in order to advance in the optimum search, while
gradient-based methods, as their name assert, use the first and second order
derivatives (or some approximation of them) of the objective function and/or
constraints to guide the process.

Gradient-based methods usually converge more quickly since they exploit
the additional information on the derivatives, but they can be less efficient
when applied on non-differentiable or discontinuous problems. Furthermore
they have some features that can be an issue in some circumstances:

• The convergence to an optimal solution depends on the starting solu-
tion (initial guess)

• The majority of gradient-based algorithms are inclined to get stuck
to suboptimal solutions: when non-linearities or complex interaction
among variables cause the search space to have more than one optimal
solution, of which most are local optima having worst objective function
values

• An algorithm efficient in solving one kind of optimization problems
may not be as efficient in solving a different problem, hence traditional
optimization algorithms are designed to solve a specific problem

Evolutionary optimization methods (EO) utilize instead a population
based approach to get to the optimal solution. Every solution belonging
to the population participates in an iteration and evolves in a new popu-
lation in each iteration. Evolutionary algorithms are relatively simpler to
implement than gradient-based methods and do not require derivative infor-
mation. Furthermore they are quite flexible and are applicable to a wide
range of problems. Since evolutionary algorithms use more than one solution
in an iteration, unlike most of classical optimization methods, they are facili-
tated in finding multiple optimal solution, reducing the possibility of getting
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stuck in a local optima. This ability also makes these methods very suitable
for multi-objective optimization.

This premise and the non-linearity of the optimization problem considered
in this work might suggests at first glance that traditional methods are to be
discarded in favour of evolutionary methods. Actually it will be shown that
the careful employment of a performing gradient-based algorithm will allow
some results to be obtained.

A conservative approach could be to first understand the behaviour of
both classical and evolutionary methods when applied on a specific problem,
and then adopting a hybrid procedure, exploiting the best of both techniques
to get the desired results quality. For example one can firstly try out a fast
gradient-based algorithm with different initial guesses in order to realize if
multiple optima exist. If that is the case, a GA method can be used, which
exhibits a more global search capability. Once a region nearby the global
optimum is found, the result can be refined with a classical method started
in that neighbourhood.

3.2.1 Sequential Quadratic Programming
One of the most effective gradient-based method for nonlinearly constrained
optimization is Sequential Quadratic Programming (SQP). This method rep-
resents the state of the art in nonlinear programming methods and shows
good performances over a large number of test problems.

The essential idea of SQP methods is to model the objective function
at the current main iterate as a quadratic function, approximating the Hes-
sian of the Lagrangian function using a quasi-Newton method, and to use a
quadratic programming minimizer to solve this subproblem in order to find
the new iterate.

A nonlinearly constrained problem can sometimes be solved in less iter-
ations than an unconstrained problem with SQP because the algorithm can
make aware decisions regarding the direction of the search thanks to limits
on the feasible area given by constraints.

The implementation of a SQP algorithm consists mainly in three steps:

• Approximation of the Hessian matrix

• Quadratic programming solution

• Line Search or Thrust Region to decrease the merit function and find
a new iterate point
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Multi-Start Approach

As mentioned in section 3.2, some of the problems of gradient-based opti-
mization methods are that the solution depends on the starting point and
that they tend to get stuck in local optima, especially if one of these local
solutions is the nearest stationarity point to a certain initial guess. This can
be a relevant problem if the shape of the objective function and the approx-
imative location of the solution are not known, that is the initial guess is
chosen randomly.

A simple solution to this problem could be the so called Multi-Start Ap-
proach. It consists in performing several optimizations, starting each one
from a different initial guess, randomly chosen in the space of allowed vari-
ables values.

Although this does not assure the reaching of a global solution, it in-
creases the chance of doing it. Furthermore it helps to clarify if an optimal
solution is actually a global optimum or if there exist other stationary solu-
tions possessing a better fitness value and it can also give a hint about the
complexity of the object function. Thus it is advisable to start any nonlinear
global optimization with such a strategy, in order to get a knowledge about
the loss function and its different local optima.

3.2.2 Genetic Algorithms
Genetic algorithms (GA), as the name suggests, are evolutionary optimiza-
tion methods whose optimization procedure is inspired by the principles of
natural selection and genetics. Their working principle is very different from
most of the traditional optimization techniques. In fact they use stochastic
operators, unlike deterministic operators used in classic methods. Because of
this intrinsic uncertainty, one can not expect this global method to certainly
converge to the global optimum within a finite time, rather it can get close
to it or it can find a good global optimum.

An EO method begins with the random creation of a initial population,
whose individuals have a different combination of design variables values (in
GA these values represent the genotype of the individual) contained within
specified lower and upper boundaries. Traditional Genetic algorithms rep-
resent parameters values in binary strings, to get a pseudo-chromosomal
representation of the genotype. This is not always necessary and variables
real value can be used directly.

After, the value of objective function of each member is evaluated in order
to assign a fitness value to each solution. The fitness can be a value which is
a function of the objective function value or it can be equal to the function
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value itself. If the optimization problem is constrained, a penality is added
to solutions that do not respect constraint (infeasible solutions) in order to
worsen their fitness.

Having introduced the term genotype, also a phenotype of every popula-
tion member ca be defined. It can be seen as the actual observed properties
of the solution, such as the value assumed by the objective functions for a
specific genotype.

Then genetic operators can be applied on the population. A selection
operator selects above-average (better) solutions and puts them in an inter-
mediate mating pool while discarding the worst. These operators are usually
stochastic: this means that better individuals have a larger chance of being
selected.

Once the mating pool is available, cross-over operator is applied to cre-
ate new individuals for the new population: it randomly picks two solutions
(parents) from the mating pool and creates one or more new solutions (chil-
dren) by exchanging some portion of information between the parents. This
operation will not find children solution which are better than their parents
for sure, but, since parents are not just random individuals, but they have
survived a selection, the chance to create above-average solutions is better
than random.

Then a mutation function is applied: it makes small random changes in
the individuals to create mutation children. It provides genetic diversity and
broadens the search space of the algorithm, although it does not imply that
mutation children to be better solutions.

The elitism combines the old population and the newly created individu-
als and chooses to keep better solution from this combined population. Such
operation makes sure that the algorithm has a monotonically non-decreasing
performance.

At this point a new (and hopefully better) population is available and the
process is to be iteratively repeated, emphasizing better population members,
until a termination criterion is satisfied.

3.3 Multi-Objective Optimization
As mentioned in section 3.1, it would be interesting to take into account more
than one objective during the optimization, for example the quarter-chord
moment and the power. This would lead to a multi-objective optimization
problem, in which multiple objective functions are to be optimized simulta-
neously.

This means that, in multi-objective optimization, the objective functions
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constitute a multi dimensional space, or objective space (i.e. the phenotypic
space in GA), in addition to the usual decision variable space, that is the
genotypic space.

Since, generally speaking, the various objective functions do not share
the same stationary solutions, the optimum can not be defined like for the
single-objective optimization any more. A more general definition needs to
be introduced. The term domination is generally used for this purpose. The
domination can be defined in a simple way as follows (taken from [6]):

Definition 1 A solution x(i) is said to dominate the other solution x(j), if
both the following conditions are true:

1. The solution x(i) is no worse than x(j) in all objectives. Thus, the solu-
tions are compared based on their objective function values (or location
of the corresponding points (z(i) and z(j)) on the objective space)

2. The solution x(i) is strictly better than x(j) in at least one objective.

All points that are not dominated by any other member of the popula-
tion are called non-dominated points. These points constitute a front when
viewed in the objective space, therefore they are said to represent a non-
domination front, the Pareto-optimal front (or simply Pareto front) and each
non-dominated decision variable vector is called Pareto-optimal solution.

Between non-dominated solutions there is a trade-off property: a gain in
an objective function happens only if there is a sacrifice in at least another
objective.

These ideas clarify the aim of multi-objective optimizations:

• Find a set of solutions which belong to the Pareto front

• Find a set of solutions whose phenotype is wide enough to represent in
good part the range of the Pareto-optimal front.

Thus, if a user needs only one optimal solution, can apply qualitative and
experience-driven consideration to a wide range of Pareto-optimal solutions
in order to decide which optimal solution suits best the project requirements.

In constrained multi-objective optimization a Pareto-optimal point also
needs to satisfy every constraint and bound, in other words it has to be a
feasible solution. The domination principle has to be revised in order to
handle constraint violation:

Definition 2 A solution x(i) is said to ’constrained-dominate’ the other so-
lution x(j), if any of the following conditions are true:
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1. solution x(i) is feasible and solution x(j) is infeasible

2. solutions x(i) and x(j) are both infeasible, but solution x(i) has a smaller
constraint violation

3. solutions x(i) and x(j) are both feasible, and solution x(i) dominates x(j)

in the usual sense (Definition 1)

A traditional practice is to convert multiple objectives into one single ob-
jective function, usually made up of a weighted sum of the various objectives,
and treat the problem as a single-objective optimization.

Multiple objectives

First objective J1 = f1(x)
Second objective J2 = f2(x)

(3.1)

Single objective J = f1(x) + γf2(x) (3.2)

This is useful if one wants to solve the multi-objective problem with a
classical optimization method, such as a gradient-based one. By varying the
weights and solving the single-objective problem, different Pareto-optimal
solutions can be found in order to reconstruct the actual non-dominated
front. This technique is very simple but it is strongly dependent on the
chosen parametrization, and it is not easy to find a good weight in order to
represent a good range of the Pareto front.

Furthermore, since the various simulations are performed independently,
no information can be used to help the solver in finding the optimal solution
and to speed up the process.

With genetic algorithms this approach is not necessary, because their
features allow the evaluation of each object function separately, then the
fitness of each individual is assigned based on its dominance.

3.3.1 NSGA-II algorithm
Elitist Non-dominated Sorting Genetic Algorithm (or NSGA-II) is a widely
used evolutionary multi-objective optimization algorithm whose goal is to
find multiple Pareto-optimal solutions. A slight variation of NSGA-II is the
multi-objective genetic algorithm implemented in Matlab and is the one used
in this work. As described in [6] and [7], it possesses the following features:

• it uses an elitist principle

• it uses an explicit diversity preserving mechanism

• it emphasizes non-dominated solutions
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The functioning of the algorithm is the following: at each generation the off-
spring population is created with the usual genetic operators starting from
the parent population. After the two populations are combined together in
order to obtain an intermediate population with twice the size. This popula-
tion individuals are classified in non-domination classes: the first is the non-
dominated front, and continues with points from the second non-dominated
front, namely the points which are non-dominated by other individuals if
points from the first Pareto front are not considered, and so on. Then a
normal size population needs to be obtained to proceed in the iterations, so
individuals from the intermediated population are accommodated in the new
population starting from the one belonging to the first non-domination class,
and so on. When only the last slots of the new population are available,
it is possible that the individuals of the currently considered front are more
than the remaining slots. Hence are selected the points which will ensure
major diversity in the new generation. In order to measure the diversity of
the individuals their crowding distance needs to be computed. The crowding
distance of a point is a measure of the space (in the objective space or in the
variables space) around it which is not occupied by other solutions in the
population.

3.4 Analytical Optimization Example
Let us start with the optimization of the quarter-chord moment of an airfoil
with a single flap, subject to a “trim” constraint on the lift coefficient, as
discussed in 3.1. This simple example of optimization can be solved analyt-
ically and be used as a comparison to verify the exact convergence of other
more complex algorithms.

Firstly a loss function is needed. Since the moment is to be minimized,
it can be the Küssner and Schwarz formulation of the moment itself as a
function of the incidence angle α and the flap relative angle β, neglecting the
time complex exponential (obtained with eq. 1.21).

CM(α, β) = Mc/4(α, β)
1
2ρU

2(2b)2 (3.3)

Since the employed aerodynamic model is linear, it can be written as

CM(α, β) = CMα α + CMβ
β =

[
CMα CMβ

] {α
β

}
(3.4)

As said before, this is a complex quantity, so it can not be minimized as
it is, but we should take as loss function J only its modulus, or rather the
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half of its square

J = 1
2 |CM |

2 = 1
2C

H
MCM = 1

2

{
α
β

}T [
CMα

∗

CMβ

∗

] [
CMα CMβ

] {α
β

}
=

= 1
2

{
α
β

}T [
CM

] {α
β

}
(3.5)

Then the constraint function must be written. As said before, we want
to impose the value of the modulus of lift coefficient, obtained with Küssner
and Schwarz theory like the moment (eq. 1.14), that is

|CL|(α, β) = C̄L (3.6)

As will be shown later, it is more convenient to impose the square of the lift
coefficient absolute value

|CL|2(α, β) = C̄2
L (3.7)

Since also the lift coefficient is linear, this expression can be written as{
α
β

}T [
CLα

∗

CLβ
∗

] [
CLα CLβ

] {α
β

}
= C̄2

L (3.8)

or better{
α
β

}T [
CL

] {α
β

}
= C̄2

L (3.9)

with [
CM

]
=
[
CMα

∗CMα CMα

∗CMβ

CMβ

∗CMα CMβ

∗CMβ

]
(3.10)

[
CL

]
=
[
CLα

∗CLα CLα
∗CLβ

CLβ
∗CLα CLβ

∗CLβ

]
(3.11)

To impose the equality constraint the Lagrange multipliers method can
be exploited, obtaining

J = 1
2
(
|CM |2 + λ(|CL|2 − C̄2

L)
)

(3.12)

Since the moment and the lift are linear functions of the optimization
variables, both the loss function and the constraint are quadratic functions,
hence also the Lagrangian is quadratic.
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The stationarity condition of the objective function at the minimum cor-
responds to the nullification of its first variation

δJ = 1
2δ|CM |

2 + 1
2δλ(|CL|2 − C̄2

L)
)

+ 1
2λδ|CL|

2 = 0 (3.13)

It is important to notice that

δ|CM |2 = δ(CH
MCM) = δCH

MCM + CH
MδCM =

= δ

{
α
β

}T [
CMα

∗

CMβ

∗

] [
CMα CMβ

] {α
β

}
+

+
{
α
β

}T [
CMα

∗

CMβ

∗

] [
CMα CMβ

]
δ

{
α
β

}
=

= δ

{
α
β

}T [
CM

] {α
β

}
+ δ

{
α
β

}T [
CM

]T {α
β

}
=

= δ

{
α
β

}T ([
CM

]
+
[
CM

]T){α
β

}
=

= 2δ
{
α
β

}T [
MM

] {α
β

}
(3.14)

Similarly for the lift coefficient we obtain

δ|CL|2 = 2δ
{
α
β

}T ([
CL

]
+
[
CL

]T){α
β

}
=

= 2δ
{
α
β

}T [
ML

] {α
β

}
(3.15)

where
[
MM

]
= 1

2

([
CM

]
+
[
CM

]T)
=

=
[

CMα

∗CMα

1
2(CMα

∗CMβ
+CMα CMβ

∗)
1
2(CMα

∗CMβ
+CMα CMβ

∗) CMβ

∗CMβ

]
(3.16)[

ML
]

= 1
2

([
CL

]
+
[
CL

]T)
=

=
[

CLα
∗CLα

1
2(CLα∗CLβ +CLα CLβ

∗)
1
2(CLα∗CLβ +CLα CLβ

∗) CLβ
∗CLβ

]
(3.17)
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Substituting in the variation of the loss function

δJ = δ

{
α
β

}T [
MM

] {α
β

}
+λδ

{
α
β

}T [
ML

] {α
β

}
+ 1

2δλ(|cL|2− c̄2
L)
)

(3.18)

Exploiting the arbitrariness and the independence of the variables variations,
the following system is obtained

([
MM

]
+ λ

[
ML

])αβ
 = 0

|CL|2 − C̄2
L = 0

(3.19)

It can be noticed that the system’s first equation is an eigenvalue prob-
lem, where the Lagrange multiplier λ is the eigenvalue and the eigenvector
components are the optimization parameters. Eigenvectors are defined up
to a multiplicative constant, and this can be exploited to solve the system:
first the eigenvalue problem is to be solved, obtaining eigenvalues and eigen-
vectors, then the latter can be substituted in the second equation and a
multiplicative constant is computed to satisfy the constraint.

The eigenvalue represents the shape while the constant the amplitude of
the movement of the airfoil.

1. solve the eigenvalue problem, obtaining λi eigenvalues and the associ-
ated γixi, where γi is the multiplicative arbitrary constant. The so-
lution can be found analytically for small problems, but in general it
is better to employ a numerical method able to compute the whole
eigenvector spectrum.

2. substitute the eigenvector in the constraint equation

γ2
i xTi

[
CL

]
xi − C̄2

L = 0 (3.20)

3. solve the former quadratic equation in order to obtain the amplitude
of the eigenvector that satisfy the constraint

γi1,2 = ±

√√√√√ C̄2
L

xTi
[
CL

]
xi

(3.21)

4. repeat for each eigenvector
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Eigenvector Optimum, C̄L = 0.05 [◦] Optimum, C̄L = 1 [◦]

x1 ±
{

0.5191 0.2323
}T

±
{

10.3818 4.6469
}T

x2 ±
{

1.1288 −2.4034
}T

±
{

22.5760 −48.0683
}T

Table 3.1. Analytical optimal solutions for x̃p = −0.5, x̃f = 0.5, k = 0.5

α [deg]

β
 [

d
e

g
]
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Figure 3.1. Contour plot of the object function, with a representation of the
constraint and the optimal solution, for C̄L = 1, k = 0.5

It can be noticed that because of the ± there are two symmetric solution to
the optimum problem. In fact this corresponds to a change of π in the phase
of the oscillation, which is not taken into account in our objective, hence
both solutions are equally admissible. Some test results are reported in tab.
3.1 It has to be notice that only one of the eigenvectors represent an actual
optimal solution, the other being a singularity point in the constraint.

This approach can be used also for bigger problems, where the airfoil
chord is divided nt flaps. The procedure is the same, but the computational
cost will obviously increase, as well as the number of solutions, some of which
present angles that may probably lead to separation, as their values are too
big. To avoid this, it is useful to introduce some bounds constraint to the
optimization variables. This operation, which introduces further nonlinear-
ities, is quite difficult to be carried out analytically, but is practicable in a
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numerical optimization approach (see section 3.5).
One may now think about using this analytical approach to solve also the

optimization of the aerodynamic power. First we need to write the modulus
of the power coefficient, starting as usual from Küssner and Schwarz theory
(1.72) Let us start by noticing that, from a dimensional point of view

CW = W
1
2ρU

32b = Mjωα
1
2ρU

32b = M
1
2ρU

2(2b)2
jωα2b
U

= 2jkCMα (3.22)

Hence, for a flapped airfoil, since the moment is a linear function

CW = 2jk
[
CM CMF

] {α
β

}
= 2jk

{
α
β

}T [
CMα CMFα

CMβ
CMFβ

]{
α
β

}
(3.23)

This expression shows that the power is a quadratic function of the optimiza-
tion variables, so the square of its modulus is a quartic. So it is possible to
realize that the previous steps will not lead to an eigenvalue problem, but
to a nonlinear equation, whose solution is not easily reachable analytically.
Hence this problem will be treated numerically in section 3.6

3.5 Quarter-chord moment numerical optimiza-
tion

The quarter-chord aerodynamic moment optimization problem can be solved
by employing one of the optimization techniques described earlier in section
3.2, even though an analytical solution is available. This is useful when some
boundaries to the optimization variables are introduced. It is also a good
test-problem to verify the convergence of numerical algorithms.

As previously said, the problem can be stated as:

minimize J(x) = |CM(x)|2 (3.24)
subject to f(x) = |CL(x)|2 − C̄2

L = 0, (3.25)
xi ∈ [LB,UB] for i = 1, . . . , nvar (3.26)

where x is the vector of the optimization variables, which could be the an-
gle of incidence and flaps deflections or the cubic spline parameters. LB
and UB are the lower and the upper boundaries assigned to the optimiza-
tion variables. The problem can be solved for two variables (incidence and
flap deflection) in order to verify the convergence of the numerical methods,
comparing the results to the ones obtained analytically in section 3.4.
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The employment of a genetic algorithm may sound redundant for such a
simple problem, but it is a good starting point to adjust the various options
and parameters in order to get a good functioning. However the main em-
ployment of GA in this work is for multi-objective optimization, hence it is
more advisable to tune the method for this purpose.

SQP algorithm is expected to be far faster than GA for a simple quadratic
function like the aerodynamic moment, also because it can efficiently exploit
the constraint to get to the optimum.

3.6 Aerodynamic work numerical optimiza-
tion

Instead of the aerodynamic power, that is null in the steady case since k = 0,
it is possible to try to optimize the aerodynamic work, that has substantially
the same meaning. This optimization does not provide a considerable added
value, but is interesting because can be used to verify the fact that at the
steady case the configuration with flap and tab with deflection β = −β1,
with α being imposed, is able to produce a lift variation with the minimum
work cost.

The problem can be stated as:

minimize J(x) = |Cw(x)|2 (3.27)
subject to f(x) = |CL(x)|2 − C̄2

L = 0, (3.28)
xi ∈ [LB,UB] for i = 1, . . . , nvar (3.29)

A solution can be easily computed with SQP algorithm, and is shown in
figure 3.2. It can be seen that the numerical solutions conforms what was
expected, being β = −β1 at k = 0. Increasing the reduced frequency the two
angles become more and more different because of unsteadiness effects.

3.7 Aerodynamic moment and power numer-
ical optimization

As introduced in section 3.1, it is interesting to perform a multi-objective op-
timization, minimizing simultaneously both the aerodynamic quarter-chord
moment and the aerodynamic power, to obtain a Pareto front containing a
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Figure 3.2. Aerodynamic work optimization with a fixed incidence

sufficient number of trade-off non-dominated solutions.

minimize |CM(x)|2 and |CW (x)|2 (3.30)
subject to f(x) = |CL(x)|2 − C̄2

L = 0, (3.31)
xi ∈ [LB,UB] for i = 1, . . . , nvar (3.32)

Starting from what have been explained in section 3.3, there are two possible
ways of doing this: scalarizing the multiple objective and optimizing a single-
objective function (eq. 3.34) or applying a genetic algorithm directly on the
multi-objective (eq. 3.33) problem.

Multiple objectives

First objective J1 = |CM(x)|2

Second objective J2 = |CW (x)|2
(3.33)

Scalarized objective J = AJ1(x) + γBJ2(x) (3.34)

The coefficients A and B = 1 − A, with A,B ∈ [0, 1], have been intro-
duced to try and sweep the whole Pareto front, while γ plays the role of a
weight parameter used to equalize the objective functions order of magni-
tude. Both approaches are supposed to work, but results are not expected
to be the same. Firstly because the scalarized-approach Pareto front points
will strongly depend on the value of γ and the variation pace of A, in other
words will depend on the parametrization, while the genetic-approach front
points will be obtained randomly on the basis of the random population
generation and the also random application of genetic operators. Secondly,
the different algorithms have different strength-points, so GA is expected to
produce a more global front, whereas Multi-Start SQP approach will respect
the constraint more precisely, but not all the initial guesses are expected to
converge to the non-dominated solutions.
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Since the utilized multi-objective optimization algorithm (the Matlab
function gamultiobj) does not handle nonlinear constraints, it is essential to
manually introduce a penalization to the value of the objective functions if
the constraint is not satisfied, or in other words if the solution is non-feasible,
starting from a certain tolerance. One simple way to implement this is to
sum to each objective j the following quantity:

Rj(x) = Vj r(x) for j = 1, . . . , nobj (3.35)

with r(x) = ||CL(x)|2 − |C̄L|2|
|C̄L|2

(3.36)

where Vj is a properly adjusted penalty parameter and r(x) is the error on
the constraint.

3.8 Aerodynamic moment and actuation power
numerical optimization

It is possible to repeat the multi-objective optimization using as second objec-
tive the total actuation power coefficient, computed in equation 2.39 instead
of the sole aerodynamic power, using the piecewise cubic model for the airfoil
camberline.

minimize |CM(x)|2 and |CWact(x)|2 (3.37)
subject to f(x) = |CL(x)|2 − C̄2

L = 0, (3.38)
xi ∈ [LB,UB] for i = 1, . . . , nvar (3.39)

This optimization gives a more global point of view on the actual required
power. Since the three power contributions are differently phased the global
actuation power is not only a simple amplification of the aerodynamic power,
hence the optimal shapes are supposed to be quite different.





CHAPTER 4

RESULTS

4.1 Aerodynamic Moment Optimization
In the following sections the results of the numerical optimizations of the
quarter-chord aerodynamic moment are illustrated. Results are obtained
with different chord modelizations (flaps or cubic spline) and different number
of degrees of freedom.

4.1.1 Airfoil with a single flap
This is the simplest case taken into account, for which an analytical solution
is also available (see section 3.4).

First of all it is reasonable to report some convergence test for both the
SQP and GA methods, using the algorithms implemented respectively in
the functions fmincon and ga in the software Matlab, for different values of
reduced frequency and lift constraint. The geometry of the airfoil is instead
fixed, being the flap hinge set at x̃F = 0.5.

As it can be seen from Figures 4.1 and 4.2, the convergence is good in
every test case, and takes only a small amount of time thanks to the high
efficiency of SQP algorithms in such a problem.

Now it is possible to use the tested methods to obtain the variation of the
optimal solutions with the reduced frequency k. Both symmetrical solutions
can be found by changing the initial guess, or by redundantly employing the
multi-start approach (no local optima exist in the boundaries, as seen in the
contour plot in figure 4.1).
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Figure 4.1. Comparison between analytical and SQP solutions for a single-
flapped airfoil moment optimization, k = 0.5
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Figure 4.2. Comparison between analytical and GA solutions for a single-flapped
airfoil moment optimization, k = 0.5
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Figure 4.3. Variation of the optimal solution with respect to the reduced fre-
quency for a single-flapped airfoil, minimizing the aerodynamic mo-
ment, x̃F = 0.5
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Figure 4.4. Variation of the optimal moment with respect to the reduced fre-
quency for a single-flapped airfoil, x̃F = 0.5

This case is too simple to deduce any general consideration on the be-
haviour of a morphing airfoil and the feasibility of the optimization. It is
nevertheless useful firstly as a test case, secondly because the use of a flap
is the simplest, yet not frequently used in rotor blades, solution to change
the airfoil camber. It is remarkable that optimal angles increase until cer-
tain values of reduced frequencies, then the trend inverts and they start to
decrease. This can possibly be associated with the role played by the circu-
latory and non-circulatory parts of the aerodynamic forces (remember that
the quarter-chord moment do not depend on the Theodorsen function, as
explained in section 1.1.1, but the lift does): the initially higher weight of
the circulatory part decreases until, at a certain value of reduced frequency,
the non-circulatory part becomes more relevant, causing the inversion of the
trend. The frequencies at which the change happens are different for α and
β. It goes without saying that the angles oscillation amplitudes required to
obtain higher lift coefficient oscillations are greater. Lastly, it can be noticed
that the higher the reduced frequency, the larger is the optimal value of the
aerodynamic moment.

Another thing that is interesting to investigate is the behaviour of the
optimal solutions with respect to a translation of the flap hinge. This will
translate into a variation of the flap surface, i.e. of it’s effectiveness. The
hinge coordinate is changed from 50% to the 80% of the chord. It can
be seen from figures 4.5 and 4.6 that, while the optimal moment remains
essentially unchanged, the trend of the angles, especially the flap deflection
β, changes drastically with the position of the flap hinge. It is important to
notice that at a certain frequency (it is clearly visible in figure 4.5, A and
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Figure 4.5. Variation of the optimal solution with respect to the reduced fre-
quency for a single-flapped airfoil, minimizing the aerodynamic mo-
ment at different hinge positions, C̄L = 0.05



4.1 Aerodynamic Moment Optimization 71

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10

−4

m
in

 |
C

M
|2

k

(a) x̃F = 0

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10

−4

m
in

 |
C

M
|2

k

(b) x̃F = 0.2

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10

−4

m
in

 |
C

M
|2

k

(c) x̃F = 0.4

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10

−4

m
in

 |
C

M
|2

k

(d) x̃F = 0.6

Figure 4.6. Variation of the optimum moment with respect to the reduced fre-
quency for a single-flapped airfoil, minimizing the aerodynamic mo-
ment at different hinge positions, C̄L = 0.05

B) the optimal flap deflection becomes null. The leitmotif however is that
bigger flaps require smaller deflection to obtain the optimality.

Results for the other trim condition C̄L = 1 are not shown here, because
are substantially the same, just with a different scale (same eigenvector,
different amplitude in order to fit the new constraint value).

4.1.2 Airfoil with two flaps
The optimization of the moment can be extended to an airfoil with two
serially hinged flaps, taking into account the usual lift constraint.

Firstly it is possible to carry out the analytical computation of the op-
timal solution through the eigenvalue problem, as explained in section 3.4.
Some results are reported in table 4.1. Only real eigenvectors are considered,



72 Results

because complex eigenvectors are connected with a change in the phase of
the airfoil movement, which, although interesting, is not the simplest solu-
tion, so this work is not going to focus on it any further. It can be seen that

C̄L Real Eigenvector x1, [deg] Real Eigenvector x2, [deg]

0.05 ±
{
−0.745 −2.233 4.651

}T
±
{

1.953 −12.213 12.445
}T

1 ±
{
−14.911 −44.6703 93.014

}T
±
{

39.052 −244.3 248.9
}T

Table 4.1. Analytical optimal solutions for x̃p = −0.5, x̃F = 0.4, x̃F1 = 0.6,
k = 0.5

without imposing any boundary the optimal solution for relatively high trim
conditions consists in huge flap deflections, far beyond any reasonable stall
limit. So boundaries are necessarily to be taken into account when using a
numerical method.

Here only SQP solutions on varying of k are displayed, since the algorithm
for such a problem produces more accurate solutions in less time than GA.
It is noticeable in figure 4.7 that the optimal shape assumed by the airfoil is
connectable to the mean line of an autostable airfoil: while one flap is bent
upward, the other goes downward, and vice versa for the other symmetrical
solution. The solution obtained by the numerical method at k = 0.5 and
C̄L = 0.05, that is when boundaries do not intervene, are the same as the
one obtained analytically in eigenvector x2: this in an indicator of good
convergence.

Moreover, in the case with higher trim value, one of the flap deflection
angles saturates to the highest value allowed by the bounds: this happens
because the unbounded optima was beyond the imposed limit. So, while
one flap saturates, the other, in conjunction with the incidence α, adapts
its movement in order to accomplish the optimality condition at each re-
duced frequency k. Verified this, it is possible to concentrate only on the
trim condition C̄L = 0.05 in further moment optimizations, because it is
more interesting to see how the variables act unlimitedly, as boundaries here
are imposed too empirically and do not have any strong physical meaning
that makes them play such an influential role in the optimization process.
Moreover, these big displacements needed to optimize the moment with such
an high lift constraint are expected to easily lead to separations (steady or
dynamic), making these solution not particularly interesting.
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Figure 4.7. Variation of the optimal solution with respect to the reduced fre-
quency for a double-flapped airfoil, minimizing the aerodynamic mo-
ment, x̃F = 0.4, x̃F1 = 0.6
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4.1.3 Cubic mean-line

It is now possible to change the model adopted for the chord deformation
and use a cubic polynomial. The coefficient D is kept null in order to pre-
vent the vertical translation of the whole airfoil (plunge movement), as it
has been done for the flapped airfoil. This leaves three degrees of freedom
as optimization variables. As usual, the solution is computed for different
reduced frequencies and is shown in Figure 4.8.

It is worth to notice that also here the amplitude of optimal oscillations
of the camberline increases at first, then, at a certain reduced frequency
around k = 0.6, it starts to decrease, due probably to the growth of the
non-circulatory effects.

Since the interpretation of the coefficients of the cubic polynomial is not
as immediate as the understanding of the flaps deflection angles, an example
of the appearance of the mean-line is displayed in Figure 4.9. It can be
noticed that the shape is once again similar to a auto stable airfoil (or even
more, because now the mean-line is regular) with two opposite cambers. This
is important because confirms what already noticed for the serially hinged
flaps.
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Figure 4.9. Example of optimal shape for the moment optimization, cubic mean-
line, k = 0.5, C̄L = 0.05

4.1.4 Piecewise Cubic, two pieces
The aerodynamic moment optimization can be repeated for the piecewise
cubic modelization of the chord, starting by considering only two cubic pieces,
regular up to the second derivative, as described in section 1.3.2. In this way
the number of optimization variables increases to four. The optimization is
once again carried out only with SQP method.

This minimization problem is quite awkward, because values assumed by
the moment in nearly optimal conditions are so small that are close to the
numerical method tolerance and because the function is also very flat at that
neighbourhood. Hence it is difficult to obtain accurate results, therefore no
solution is displayed here.

4.2 Aerodynamic Moment and Power Opti-
mization

In the following sections are displayed the results of the numerical multi-
objective optimization of the quarter-chord aerodynamic moment and aero-
dynamic power, with both flap and spline representations of the chord and
different degrees of freedom number.

The simple example of an airfoil with a single flap is not developed because
the number of the variables is too low in order to manage the optimization
of two functions and the constraint satisfaction.
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4.2.1 Airfoil with two flaps
This is the first and simplest multi-objective optimization fulfilled. It is use-
ful, despite the basic model, because it allows to understand the working
principles of the different optimization methods used when facing a multiple
objective problem, namely the direct optimization with a genetic algorithm
(in particular the function gamultiobj implemented in Matlab environment,
a slight variation of NSGA-II procedure) and the scalarization technique com-
bined with SQP (see section 3.3). The computation is repeated for different
reduced frequencies.

The introduction of the aerodynamic power as a new objective in the
optimization problem is expected to reduce the optimal amplitude of the
angles with respect to the moment single-objective minimization, in order to
reduce the power with an optimal combination of angles and hinge moments.

Here are shown the obtained Pareto fronts and the variation in the opti-
mal solutions with the weight A. It can be seen in figure 4.10 that GA and
SQP Pareto fronts are quite similar, confirming the good convergence of both
methods. However, in this particular problem, if the scalarization weight is
properly adjusted, SQP is allowed to produce a more accurate solution, since
the method is able to satisfy the constraint within a better tolerance, due to
its intrinsic features (GA relative maximum error on the constraint is a little
less than 10−2, SQP is able to reach 10−6 without any problem).
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Figure 4.10. Pareto front, two flaps model, k = 0.3, x̃F = 0.4, x̃F1 = 0.6 C̄L =
0.05

As expected, it can be noticed that for small values of A, that is when
the trade-off solution are more power-minimization oriented, angles are kept
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Figure 4.11. Optimal solution with respect to the weight A defined in eq. 3.34,
two flaps model, k = 0.3
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Figure 4.12. Optimal solution with respect to the scalarization weight A, two
flaps model, C̄L = 0.05
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smaller (figure 4.11), while for bigger values they increase visibly, minimizing
mainly the moment. However, the displayed trend varying the parameter A
is not to be considered totally informative, since it also depends on the weight
γ used. The global shape of the mean-line remains the one of an autostable
airfoil, with the two flaps oppositely deflected.

Figures 4.11 and 4.12 are useful to observe the variation of the multi-
objective optimal solution with respect to the reduced frequency k. On the
moment-oriented optimization side (A ≈ 1) happens what has been described
in section 4.1.2: initially the optimal angles start to increase, then, at a
certain frequency, it decreases again. Instead, on the other side (A ≈ 0 and
halfway) it seems that the optima are increasingly bigger with k, even though
at some weight values the trend may tend to decrease starting from certain
frequencies.

4.2.2 Piecewise cubic mean-line
The multi-objective optimization is now repeated with the adoption of the
piecewise cubic model for the airfoil mean-line motion. Initially only two
pieces of cubic are considered. Once again both GA and SQP methods are
used, and only the trim condition C̄L = 0.05 is taken into account.
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Figure 4.13. Pareto front, two-pieces cubic spline model, k = 0.4, x̃F = 0.5,
C̄L = 0.05

Figure 4.13 shows that also this time the two numerical optimization
methods solutions are close enough to assert that the convergence is good.
Obviously the precision of the genetic algorithm continues to be worst than
the one of the gradient-based method, and the accuracy may vary on each
computation due to the randomness of the method. Nevertheless, thanks to
this feature, GA is able to give a more widespread front. Furthermore, it is
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noticeable that the appearance of the Pareto front is comparable to the one
in figure 4.10.

To understand the different optimal displacements of the airfoil at differ-
ent trade-off between the two objectives, in figure 4.14 are plotted the shapes
and the associated pressure difference distributions for the non-dominated so-
lution with minimum power, the one with minimum moment and lastly one
intermediate solution. It is noticeable that the deformations assumed by the
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Figure 4.14. Optimal shapes at different parts of the Pareto front, k = 0.4,
C̄L = 0.05
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airfoil are again smaller if one wants to get to a better power, but now the
general configuration of the airfoil is no longer the one of an autostable airfoil
with a double convexity, but a third change in curvature sign can now be
seen, at least for some solutions in the front (e.g. in figure 4.14a, black and
red lines). In figure 4.14a, blue line, the airfoil deforms with just two curva-
tures, and the forward part remains quite flat, taking only some incidence.
The deformation with two changes in curvature sign is able to keep the pres-
sure distribution really flat (figures 4.14b and 4.14c, black), that, combined
with the small displacements, allows the power to be minimized.

One question may now arise: is this model capable to predict the real
optimal shape of the airfoil or more optimization variables are needed? In
order to answer this question in the following section the computations will
be repeated for cubic splines with an increased number of pieces, and conse-
quently with more design parameters. If the deformation appearance remains
nearly the same, although the increased number of parameters would allow a
more convoluted shape, it means that the parametrization of the mean-line
is thick enough to describe the optimal solution.

Convergence

In order to verify the convergence of the spline mean-line model, as stated
previously, it is possible to compute the non-dominated solutions using firstly
a three pieces cubic spline, then increasing the number of pieces (and vari-
ables) to see if optimal shapes change drastically or remain quite similar.
Some solutions are displayed here in figures 4.15, 4.16, 4.17, 4.18, 4.19.

It can be seen that for three, four and five pieces of spline, although the
convergence of GA becomes more and more delicate, while SQP becomes
slower, the obtained optimal Pareto fronts are very similar (figure 4.16),
which means that the addition of a degree of freedom does not affect the
optimal value of the objective functions so much. Hence, it is possible to
assert that with Nt = 4 there are enough degrees of freedom in order to
represent the correct optimal shape, taking into account that high accuracy
is not needed. It is also noticeable from this figure that increased values of
k correspond to higher optimal values in the objective functions.

Figure 4.15 shows the comparison between some optimal shapes for dif-
ferent number of spline pieces Nt. It is possible to notice that the shapes are
quite similar, and the differences are probably caused by a different conver-
gence of GA, especially for Nt = 5, where convergence is more critical due
to the higher number of variables. Differences are also caused by a slightly
different position in the Pareto front of the solution.

Instead if the number of pieces of the cubic spline is raised too much,
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for example considering eight pieces, the optimization problem becomes bad
conditioned and the obtained optimal shapes start to present local oscillations
that are not intended to exist.

This suggests that a good number of pieces of spline is Nt = 4, where
degrees of freedom are enough to give a good representation of the solution
but are not too much, avoiding convergence numerical problems.

As can be seen from figure 4.17, generally speaking the optimal mean-
line deformations are always constituted by a three cambers shape, but the
particular shape and amplitude of the displacement depends on the reduced
frequency and the position of the solution in the Pareto front: solutions that
minimize mostly the power tend to perform smaller oscillations, keeping also
the pressure difference distribution smaller (see 4.18, 4.19).
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Figure 4.15. Optimal solutions comparison at different Nt
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Figure 4.17. Optimal solutions comparison at different k, Nt = 4
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Figure 4.18. Optimal pressure difference comparison at different k, Nt = 4, real
part
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Figure 4.19. Optimal pressure difference comparison at different k, Nt = 4,
imaginary part
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4.3 Aerodynamic Moment and total Power
Optimization

It is possible to repeat the multi-objective optimization using as the second
objective the total actuation power, computed in equation 2.39, instead of
the sole aerodynamic power, using the piecewise cubic model for the airfoil
camberline in order to have a more physically significative objective. As veri-
fied in section 4.2.2, a number of pieces Nt = 4 is sufficient for the solution to
converge, hence only this number of parameters is taken into account. The
degree of freedom associated to the rigid rotation is initially neglected, to
consider only the power associated to the mean-line deformation. Optimiza-
tions are carried out at different reduced frequencies k, beam densities ρs and
stiffnesses Es, in order to investigate behaviour changes with reference to the
dimensionless parameters Es

ρU2 and ρs
ρ
. Starting data are typical helicopteristic

mean values of ρs = 300 kg/m3 and Es = 0.4GPa, extracted approximately
basing on the discussion in section 2.3.1 and the data in [24]. Other aerody-
namic data are U = 20m/s and ρ = 1.225 kg/m3. Some optimal results are
shown in figures 4.20, 4.21 and 4.22.

Figure 4.27 shows the comparison between the two multi-objective opti-
mization performed: the one with aerodynamic power as objective and the
other with actuation power instead. It is interesting to notice that, while the
overall behaviour remains substantially unchanged, the shapes associated
with a power-oriented optimization with the actuation power as objective
tend to be flatter with respect to the case of the only aerodynamic power
optimization. That is mainly due to the high contribution of the elastic
power, which highly penalizes this objective. The inertial contribution is less
influential, especially at lower reduced frequencies. This consideration un-
derlines the importance of reducing, within reason, the structural stiffness,
to make the deformation process possible with reasonable actuators. The
higher required power values can be seen in the non-dominated fronts in
figure 4.23.

Conversely, the order of magnitude of the optimal aerodynamic quarter-
chord moment and the Pareto-optimal moment-oriented solutions remain
essentially the same, since the aerodynamic moment function is not changed.

The weight of the elastic and inertial contribution to the total power can
be displayed also varying the values of mean mass distribution and equivalent
elastic modulus, for example halving or quartering them. It must be remem-
bered that this do not necessarily imply the only decreasing of the airfoil
structural properties, but can be seen as a variation in the flight conditions,
namely U and ρ, because of the power dependency on the dimensionless
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parameters 2.41 and 2.42.
Figure 4.24 is able to display the reduction of the total actuation power

associated with a decrease in the equivalent elastic modulus to Es = 0.1GPa.
It is possible to repeat the optimization now decreasing the beam density to
ρs = 75 kg/m3. The non-dominated phenotype for different reduced frequen-
cies is shown in figure 4.25. It is noticeable that optimal power gets back to
the same order of magnitude as the one with the original data set, signifying
the minor relevance of the inertial power in the global amount.

Shapes obtained with a lower stiffness (Figure 4.28) tend to be flatter
maybe because those particular shapes are able to reduce the actuation power
magnitude exploiting phase differences, since the phase between the three
power contribution is different. Instead, the deflections computed with a
lower density (Figure 4.29) are more similar to the original ones, with some
exceptions that can be attributed to a poorer convergence of the optimization.

It is also possible to decrease or increase simultaneously the values of Es
and ρs to see if there is any substantial change in the resultant solutions.
Figure 4.26 shows the expected reduction and growth in the values of the ac-
tuation power. The obtained optimal deflections are displayed in figure 4.30.
The overall meaning of the results do not change, only specific amplitudes are
slightly different, but the qualitative results remain the same. Quantitative
values are not precise enough to be directly compared because of low con-
vergence precision of GA, parametrization differences in SQP Pareto fronts
and other details, but this is neither the goal of this work.

An interesting aspect that can be deduced from all this optimization
is that the global structure of the mean-line deformation remains basically
the same throughout the different non-dominated solution in a single Pareto
front and at different values of reduced frequencies and dimensionless num-
bers, with a change in this parameters involving only restrained changes in
amplitudes and curvatures. This feature could be exploited, if more accurate
results confirm the trend, for further developments of a morphing airfoil in
an unsteady aerodynamic environment.
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Figure 4.20. Optimal solutions comparison at different k, Nt = 4, ρs =
300 kg/m3 and Es = 0.4GPa
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Figure 4.21. Optimal pressure difference comparison at different k, Nt = 4, ρs =
300 kg/m3 and Es = 0.4GPa, real part
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Figure 4.22. Optimal pressure difference comparison at different k, Nt = 4, ρs =
300 kg/m3 and Es = 0.4GPa, imaginary part
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Figure 4.23. Pareto fronts comparison at different k, Nt = 4, ρs = 300 kg/m3

and Es = 0.4GPa

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0.5

1

·10−4

|CW |2

|C
M
|2

k = 0.3
k = 0.7
k = 1.0

Figure 4.24. Pareto fronts comparison at different k, Nt = 4, ρs = 300 kg/m3

and Es = 0.1GPa
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Figure 4.25. Pareto fronts comparison at different k, Nt = 4, ρs = 75 kg/m3 and
Es = 0.4GPa
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Figure 4.26. Pareto fronts comparison at different k, Nt = 4
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Figure 4.27. Comparison between the aerodynamic power optimization solutions
and the actuation power optimization solutions



4.3 Aerodynamic Moment and total Power Optimization 93

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−5

0

5
·10−2

x

z

power
intermediate
moment

(a) k = 0.3

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−5

0

5
·10−2

x

z

power
intermediate
moment

(b) k = 0.7

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−5

0

5
·10−2

x

z

power
intermediate
moment

(c) k = 1.0

Figure 4.28. Optimal solutions comparison at different k, Nt = 4, ρs =
300 kg/m3 and Es = 0.1GPa
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Figure 4.29. Optimal solutions comparison at different k, Nt = 4, ρs = 75 kg/m3

and Es = 0.4GPa
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Figure 4.30. Optimal solutions comparison at different k, Nt = 4, ρs = 75 kg/m3

and Es = 0.1GPa
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Figure 4.31. Optimal solutions comparison at different k, Nt = 4, ρs =
600 kg/m3 and Es = 0.8GPa



CHAPTER 5

CONCLUSIONS

In this thesis work the problem of an unsteady aerodynamic multi-objective
airfoil optimization has been studied, specifically for harmonic movements,
using simple aerodynamic and structural models.

In particular, Küssner and Schwarz unsteady thin-airfoil theory was used
to compute the pressure difference distribution, the aerodynamic actions and
the aerodynamic power for an airfoil with multiple serially-hinged flaps and
a morphing airfoil whose camberline deformation appearance is described by
a cubic spline.

The airfoil was structurally treated as an Euler-Bernoulli beam. A Ritz-
Galerkin approach combined with hermitian finite elements shape functions
was used to compute mass and stiffness matrices used to evaluate the inertial
and elastic power contributions. For the sake of simplicity, mass and stiffness
distributions were considered proportional respectively to the airfoil thickness
and its cube. An interface between the aerodynamic and the structural
descriptions of the mean-line displacements was then built, only for the case
of the cubic spline motion.

To perform the optimizations, both a gradient-based method (SQP) and
an evolutionary algorithm (GA) were used. For the multiple objectives
optimizations GA was used directly in its multi-objective version, while a
weighted-sum scalarization approach was adopted in order to employ SQP
algorithm. As expected, SQP showed better precision and constraint satis-
faction, while GA was able to give a broader representation of the Pareto
front, hence a more global point of view on the non-dominated solutions,
especially for bigger problems.

One objective of the optimizations was to minimize the quarter-chord
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oscillatory aerodynamic moment, in order to reduce the vibratory torsional
load, while developing an oscillatory lift value imposed as a constraint. Then
a second objective has been added, that is the minimization of the actuation
power needed to perform the deformation of the morphing airfoil. Optimal
shape oscillations have been computed for different reduced frequencies and
various structural properties. Generally speaking, optimal shapes consist in a
three cambers mean-line deformation, whose particular shapes and amplitude
depend on the parameters k, Es

ρU2 and ρs
ρ
and on the position of the solution

on the Pareto front.

5.1 Future developments
Since the aim of this work was only to introduce the problem of an unsteady
harmonic aerodynamic optimization, a lot of further steps can be made to
improve the optimization process. They can be divided mainly in two cate-
gories:

1. Using the same physical models to introduce new elements in the prob-
lem description

2. Using more accurate models

The first sentence means that Küssner and Schwarz theory can be used
to add new elements in the description of the aerodynamics of an airfoil of a
morphing blade, exploiting the superposition of the effects. Fore example the
effects of a sinusoidal gust can be computed (see [9], chapter 13) in order to
simulate the presence of the induced velocity, or an harmonic perturbation of
the asymptotic air speed U can be exploited to consider forward flight with
small advance ratios. In this way the optimization technique could also be
adopted to solve control problems, e.g. minimizing the aerodynamic moment
and the actuation power, with a constraint on the lift (also null), while the
airfoil is subject to air speed and induced velocity perturbations. Compress-
ibility effects can be introduced by scaling the incompressible solution with
the Prandtl-Glauert transformation, if the Mach number is not too high, i.e.
far from transonic conditions.

When facing the problem of the optimization of a real blade, is impor-
tant, as suggested in the introduction, to take into account its aeroelastic
behaviour, and to analyze the speed at which camber-flutter may occur (see
[16]). Aeroelasticity can also be usefully taken into account during the op-
timization process by introducing some structural parameters (for instance
the mass and bending stiffness distributions) as optimization variables, hence
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both aerodynamic and structural-dynamic behaviour are contemporaneously
optimized, taking in consideration their interaction.

It is also possible to introduce a method to consider the phase of the
aerodynamic actions during the optimization, to have an additional control
on the process, useful if aeroelastic effects are going to be investigated.

The second way is about using more accurate models to describe the aero-
dynamic and the elasto-mechanic behaviour of the airfoil. The aerodynamics
description can be improved using for example an unsteady panel method,
even considering the effects of compressibility, maybe with the addition of
a flow separation prediction. Computational Fluid Dynamics (CFD) it is
another possibility for the evaluation of the aerodynamic quantities needed
for the optimization, but maybe is too heavy and would lead to very time-
consuming computations. However, it is certainly suitable for a posteriori
tests for the optimal solutions computed with simpler and lighter models.
Inviscid tests may be carried out solving Euler equations, especially to check
the effects of compressibility on solutions computed with Prandtl-Glauert
transformation and relatively high Mach numbers.

while viscous tests to verify the absence of separations can be performed
with Reynolds-averaged Navier-Stokes equations (RANS) with an appropri-
ate turbulence model.

The last step could consist in applying the knowledge acquired from the
previous analysis to arrange the optimization of an entire blade.





APPENDIX A

KÜSSNER AND SCHWARZ

INTEGRALS COMPUTATION

In this Appendix are reported the steps to compute all of the integrals re-
quired to obtain the solutions for Küssner and Schwarz theory in Chapter
1.

A.1 Integrals on the whole airfoil
Let us start with a simple integral

∫ π

0
cosnθ dθ =

π if n = 0
0 otherwise

(A.1)

The previous integral can be seen as a sub-case of a useful more general
integral, widely used in the work and in some of the following integrals.
Prosthaphaeresis formulae are extensively utilized in this Appendix.

∫ π

0
cosnθ cosmθ dθ = 1

2

∫ π

0

(
cos(n+m)θ + cos(n−m)θ

)
dθ =

= 1
2

[
sin(n+m)θ
n+m

+ sin(n−m)θ
n−m

]π
0

=


π if n,m = 0
π
2 if n = m 6= 0
0 otheriwse

(A.2)
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The following integral is an example of one that can be computed exploiting
the previous∫ π

0
cosnθ cos θ cos 2θ dθ =

= 1
2

∫ π

0
cos 3θ cosnθ dθ + 1

2

∫ π

0
cos θ cosnθ dθ =


π
4 if n = 0
π
4 if n = 3
0 otherwise

(A.3)

Other integrals encountered during the computation of the upwash coeffi-
cients are∫ π

0
cosnθ cos2 θ dθ =

∫ π

0
cosnθ1 + cos 2θ

2 dθ =

= 1
2

∫ π

0
cosnθ dθ + 1

2

∫ π

0
cosnθ cos 2θ dθ =


π
2 if n = 0
π
4 if n = 2
0 otherwise

(A.4)

Using A.2 and A.3 one can compute∫ π

0
cosnθ cos3 θ dθ =

∫ π

0
cosnθ cos θ1 + cos 2θ

2 dθ =

= 1
2

∫ π

0

(
cosnθ cos θ + cosnθ cos θ cos 2θ

)
dθ =


3
8π if n = 1
π
8 if n = 3
0 otherwise

(A.5)

Other integrals arise in the computation of the aerodynamic forces and power,
where also sinusoidal functions are involved. Let us begin by calculating the
more general, useful in other situations∫ π

0
sinnθ sinmθ dθ = 1

2

∫ π

0

(
cos(n−m)θ − cos(n+m)θ

)
dθ =

= 1
2

[
sin(n−m)θ
n−m

− sin(n+m)θ
n+m

]π
0

=


0 if n,m = 0
π
2 if n = m 6= 0
0 if n 6= m

(A.6)

Others are∫ π

0
sinnθ sin θ cos θ dθ = 1

2

∫ π

0
sinnθ sin 2θ dθ =


π
4 if n = 2
0 otherwise

(A.7)
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∫ π

0
sinnθ sin θ cos2 θ dθ = 1

2

∫ π

0
sinnθ sin 2θ cos θ dθ =

= 1
4

∫ π

0
sinnθ

(
sin 3θ + sin θ

)
dθ =


π
8 if n = 1
π
8 if n = 3
0 otherwise

(A.8)

∫ π

0
sinnθ sin θ cos3 θ dθ = 1

2

∫ π

0
sinnθ sin 2θ cos2 θ dθ =

= 1
4

∫ π

0
sinnθ sin 2θ

(
1 + cos 2θ

)
dθ =

= 1
4

∫ π

0
sinnθ sin 2θ dθ + 1

8

∫ π

0
sinnθ sin 4θ dθ =

=


π
8 if n = 2
π
16 if n = 4
0 otherwise

(A.9)

There are also integrals involving a tangent, which need half-angle for-
mulae to be solved

∫ π

0
tan θ2 sin θ dθ =

∫ π

0

1− cos θ
sin θ sin θ dθ =

=
[
θ − sin θ

]π
0

= π (A.10)

∫ π

0
tan θ2 sin θ cos θ dθ =

∫ π

0
(1− cos θ) cos θ dθ =

=
∫ π

0
(cos θ − cos2 θ) dθ = −1

2

∫ π

0
(1 + cos 2θ) dθ = −π2 (A.11)

∫ π

0
tan θ2 sin θ cos2 θ dθ = 1

2

∫ π

0
(1− cos θ)(1 + cos 2θ) dθ =

= 1
2

∫ π

0
(1 + cos 2θ) dθ − 1

2

∫ π

0
cos θ dθ − 1

2

∫ π

0
cos θ cos 2θ dθ =

= π

2 −
1
2

∫ π

0
(cos 3θ + cos θ) dθ = π

2 (A.12)
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∫ π

0
tan θ2 sin θ cos3 θ dθ =

∫ π

0
(cos3 θ − cos4 θ) dθ =

= 1
2

∫ π

0
(1 + cos 2θ) cos θ dθ −

∫ π

0
cos2 θ cos2 θ dθ =

= 1
2

∫ π

0
cos θ dθ + 1

4

∫ π

0
(cos 3θ + cos θ) dθ − 1

4

∫ π

0
(1 + cos 2θ)2 dθ =

= −1
4

∫ π

0
(1 + 2 cos 2θ + cos2 2θ) dθ = −π4 −

1
8

∫ π

0
(1 + cos 4θ) dθ =

= −π4 −
π

8 = −3
8π (A.13)

A.2 Integrals on a portion of airfoil

All the previous integrals need to be computed again with a different integra-
tion domain when they are referred only on a portion of airfoil, for example
when calculating the hinge moment of a flap. This can be seen as a more
general case, in fact preceding results can be obtained imposing θF = π.

Let us start with the integrals for the upwash coefficients:

∫ θF

0
cosnθ dθ =

θF if n = 0
sinnθF
n

otherwise
(A.14)

∫ θF

0
cosnθ cos θ dθ = 1

2

∫ θF

0

(
cos(n+ 1)θ + cos(n− 1)θ

)
dθ =

= 1
2

[
sin(n+ 1)θ
n+ 1 + sin(n− 1)θ

n− 1

]θF
0

=

=


sin θF if n = 0
1
2

(
θF + sin 2θF

2

)
if n = 1

1
2

[
sin(n+1)θF

n+1 + sin(n−1)θF
n−1

]
otherwise

(A.15)



A.2 Integrals on a portion of airfoil 105

∫ θF

0
cosnθ cos2 θ dθ = 1

2

∫ θF

0
cosnθ(1 + cos 2θ) dθ =

= 1
2

∫ θF

0
cosnθ dθ + 1

2

∫ θF

0
cosnθ cos 2θ dθ =

= 1
2

∫ θF

0
cosnθ dθ + 1

4

∫ θF

0
(cos(n+ 2)θ + cos(n− 2)θ) dθ =

=



θF
2 + 1

4 sin 2θF if n = 0
sin 2θF

4 + 1
4

[
sin 4θF

4 + θF

]
if n = 2

sinnθF
2n + 1

4

[
sin(n+2)θF

n+2 + sin(n−2)θF
n−2

]
otherwise

(A.16)

∫ θF

0
cosnθ cos3 θ dθ = 1

2

∫ θF

0
cosnθ cos θ(1 + cos 2θ) dθ =

= 1
2

∫ θF

0

(
cosnθ cos θ + cosnθ cos θ cos 2θ

)
dθ =

= 1
2

∫ θF

0
cosnθ cos θ dθ + 1

4

∫ θF

0
cosnθ cos 3θ dθ+

+ 1
4

∫ θF

0
cosnθ cos θ dθ =

= 3
4

∫ θF

0
cosnθ cos θ dθ + 1

8

∫ θF

0
cos(n+ 3)θ dθ+

+ 1
8

∫ θF

0
cos(n− 3)θ dθ =

=



3
4 sin θF + sin 3θF

12 if n = 0
1
8

(
sin 4θF

4 + 2 sin 2θF + 3θF
)

if n = 1
3
8

(
sin 4θF

4 + sin 2θF
2

)
+ 1

8

(
sin 6θF

6 + θf
)

if n = 3
3
8

(
sin(n+1)θF

n+1 + sin(n−1)θF
n−1

)
+ 1

8

(
sin(n+3)θF

n+3 + sin(n−3)θF
n−3

)
otherwise

(A.17)

Now the integrals involving also a sine:∫ θF

0
sinnθ sin θ dθ = 1

2

∫ θF

0

(
cos(n− 1)θ − cos(n+ 1)θ

)
dθ =

= 1
2

[
sin(n− 1)θ
n− 1 − sin(n+ 1)θ

n+ 1

]θF
0

=

=


0 if n = 0
1
2

(
θF − sin 2θF

2

)
if n = 1

1
2

(
sin(n−1)θF

n−1 − sin(n+1)θF
n+1

)
otherwise

(A.18)
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∫ θF

0
sinnθ sin θ cos θ dθ = 1

2

∫ θF

0
sinnθ sin 2θ dθ =

1
4

∫ θF

0

(
cos(n− 2)θ − cos(n+ 2)θ

)
dθ =

=


0 if n = 0
1
4

(
θF − sin 4θF

4

)
if n = 2

1
4

(
sin(n−2)θF

n−2 − sin(n+2)θF
n+2

)
otherwise

(A.19)

∫ θF

0
sinnθ sin θ cos2 θ dθ = 1

2

∫ θF

0
sinnθ sin 2θ cos θ dθ =

1
4

∫ θF

0
sinnθ

(
sin 3θ − sin θ

)
dθ =

= 1
8

∫ θF

0

(
cos(n− 3)θ − cos(n+ 3)θ

)
dθ + 1

4

∫ θF

0
sinnθ sin θ dθ =

=



0 if n = 0
1
8

(
θF − sin 2θF

2

)
+ 1

8

(
sin 2θF

2 − sin 4θF
4

)
if n = 1

1
8

(
θF − sin 6θF

6

)
+ 1

8

(
sin 2θF

2 − sin 4θF
4

)
if n = 3

1
8

(
sin(n−3)θF

n−3 − sin(n+3)θF
n+3

)
+ 1

8

(
sin(n−1)θF

n−1 − sin(n+1)θF
n+1

)
otherwise

(A.20)

∫ θF

0
sinnθ sin θ cos3 θ dθ = 1

2

∫ θF

0
sinnθ sin 2θ cos2 θ dθ =

1
4

∫ θF

0
sinnθ sin 2θ dθ + 1

4

∫ θF

0
sinnθ sin 2θ cos 2θ dθ =

= 1
8

∫ θF

0

(
cos(n− 2)θ − cos(n+ 2)θ

)
dθ + 1

8

∫ θF

0
sinnθ sin 4θ dθ =

= 1
8

∫ θF

0

(
cos(n− 2)θ − cos(n+ 2)θ

)
dθ+

+ 1
16

∫ θF

0

(
cos(n− 4)θ − cos(n+ 4)θ

)
dθ =

=



0 if n = 0
1
8

(
θF − sin 4θF

4

)
+ 1

16

(
sin 2θF

2 − sin 6θF
6

)
if n = 2

1
16

(
θF − sin 8θF

8

)
+ 1

8

(
sin 2θF

2 − sin 6θF
6

)
if n = 4

1
16

(
sin(n−4)θF

n−4 − sin(n+4)θF
n+4

)
+ 1

8

(
sin(n−2)θF

n−2 − sin(n+2)θF
n+2

)
otherwise

(A.21)
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Lastly it is necessary to compute the integrals with a tangent∫ θF

0
tan θ2 sin θ dθ =

∫ θF

0

1− cos θ
sin θ sin θ dθ =

=
[
θ − sin θ

]θF
0

= θF − sin θF (A.22)

∫ θF

0
tan θ2 sin θ cos θ dθ =

∫ θF

0
(1− cos θ) cos θ dθ =

=
∫ θF

0
(cos θ − cos2 θ) dθ = 1

2

∫ θF

0
(2 cos θ − 1− cos 2θ) dθ =

= sin θF −
θF
2 −

sin 2θF
4 (A.23)

∫ θF

0
tan θ2 sin θ cos2 θ dθ =

∫ θF

0
(1− cos θ) cos2 θ dθ =

=
∫ θF

0
(cos2 θ − cos3 θ) dθ =

= 1
2

∫ θF

0
(1 + cos 2θ) dθ − 1

2

∫ θF

0
(cos θ + cos θ cos 2θ) dθ =

= θF
2 + sin 2θF

4 − sin θF
2 − 1

4

∫ θF

0
(cos 3θ + cos θ) dθ =

= θF
2 −

3 sin θF
4 + sin 2θF

4 − sin 3θF
12 (A.24)

∫ θF

0
tan θ2 sin θ cos3 θ dθ =

∫ θF

0
(1− cos θ) cos3 θ dθ =

=
∫ θF

0
(cos3 θ − cos4 θ) dθ =

= 1
2

∫ θF

0
(1 + cos 2θ) cos θ dθ − 1

4

∫ θF

0
(1 + cos 2θ)2 dθ =

= 1
2

∫ θF

0
cos θ dθ + 1

4

∫ θF

0
(cos 3θ + cos θ) dθ+

− 1
4

∫ θF

0
(1 + 2 cos 2θ + cos2 2θ) =

= sin θF
2 + 1

4

(
sin 3θF

3 + sin θF
)

+

− 1
4

∫ θF

0
(1 + 2 cos 2θ)− 1

8

∫ θF

0
(1 + cos 4θ) =

= −3θF
8 + 3 sin θF

4 − sin 2θF
4 + sin 3θF

12 − sin 4θF
32 (A.25)





APPENDIX B

THEODORSEN COEFFICIENTS

In this Appendix the functions and the geometric constants defined for conve-
nience’s sake by Theodorsen in his works ([22] and [23]) and used in Chapter 1
are reported, neglecting the terms multiplied by l and m, since they are null,
because in this work aerodinamically balanced flaps are not considered, as
they are not able to represent the deformation of a morphing blade.

Functions for the computation of the lift

Ach = −1− 2G
k

+ j
2F
k

(B.1)

Acα =a−
(

1
2 − a

)
2G
k

+ 2F
k2 +

+ j
1
k

(
1 + 2G

k
+
(

1
2 − a

)
2F
)

(B.2)

Acβ =T1

π
− T11

2G
2πk + T10

2F
πk2 +

+ j
1
k

(
−T4

π
+ T10

2G
πk

+ T11
2F
2π

)
(B.3)

Acγ =T
d
1
π
− T d11

2G
2πk + T d10

2F
πk2 +

+ j
1
k

(
−T

d
4
π

+ T d10
2G
πk

+ T d11
2F
2π

)
(B.4)
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Functions for the computation of the moment referred to the rotation
point

Aah = a+
(

1
2 + a

)
2G
k

+ j
1
k

(
−
(

1
2 + a

)
2F
)

(B.5)

Aaα =−
(

1
8 + a2

)
+
(

1
4 − a

2
)

2G
k
−
(

1
2 + a

)
2F
k2 +

+ j
1
k

((
1
2 − a

)
−
(

1
2 + a

)
2G
k
−
(

1
4 − a

2
)

2F
)

(B.6)

Aaβ =− 2T13

π
+ T15

πk2 +
(

1
2 + a

)(
T11

2G
2πk − T10

2F
πk2

)
+

+ j
1
k

(
T16

π
−
(

1
2 + a

)(
T10

2G
πk

+ T11
F

π

))
(B.7)

Aaγ =− 2T d13
π

+ T d15
πk2 +

(
1
2 + a

)(
T d11

2G
2πk − T

d
10

2F
πk2

)
+

+ j
1
k

(
T d16
π
−
(

1
2 + a

)(
T d10

2G
πk

+ T d11
F

π

))
(B.8)

Functions for the computation of the first hinge moment

Abh = T1

π
− T12

2G
2πk + jT12

2F
2πk (B.9)

Aba =− 2T13

π
− T12

2π

((
1
2 − a

)
2G
k
− 2F
k2

)
+

+ j
1
k

(
T17

pi
+ T12

2π

(
2G
k

+
(

1
2 − a

)
2F
))

(B.10)

Abb =T3

π2 + T18

k2π2 −
T12

2π

(
T11

2G
2πk − T10

2F
πk2

)
+

+ j
1
k

(
T19

pi2
+ T12

2π

(
T10

2G
πk

+ T11
2F
2π

))
(B.11)
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Abd =Y6

π2 + Y9

π2k2 −
T12

2π

(
T d11

2G
2πk − T

d
10

2F
πk2

)
+

+ j
1
k

(
Y10

π2 + T12

2π

(
T d10

2G
πk

+ T d11
2F
2π

))
(B.12)

Functions for the computation of the second hinge moment

Adh = T d1
π
− T d12

2G
2πk + jT d12

2F
2πk (B.13)

Ada = −2T d13
π
− T d12

2π

((
1
2 − a

)
2G
k
− 2F
k2

)
+

+ j
1
k

(
T d17
pi

+ T d12
2π

(
2G
k

+
(

1
2 − a

)
2F
))

(B.14)

Adb = Y6

π2 + Y17
π2k2 −

T d12
2π

(
T11

2G
2πk − T10

2F
πk2

)
+

+ j
1
k

(
Y18

π2 + T d12
2π

(
T10

2G
πk

+ T11
2F
2π

))
(B.15)

Add = T d3
π2 + T d18

k2π2 −
T d12
2π

(
T d11

2G
2πk − T

d
10

2F
πk2

)
+

+ j
1
k

(
T d19
pi2

+ T d12
2π

(
T d10

2G
πk

+ T d11
2F
2π

))
(B.16)

The T terms are functions of c and d only. When no explicit mention is
made, they are ment to be function of c, otherwise they are labeled with a d
(i.e. T d

...), and it is only necessary to replace the c with a d in the following
constants.

T0 = c
√

1− c2θF − (1− c2)

T1 = −1
3(2 + c2)

√
1− c2 + cθF

T2 = c(1− c2)− (1 + c2)
√

1− c2θF + cθ2
F

T3 = −1
8(1− c2)(5c2 + 4) + 1

4c(7 + 2c2)
√

1− c2θF −
(1

8 + c2
)
θ2
F

T4 = c
√

1− c2 − θF
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T5 = −(1− c2) + 2c
√

1− c2θF − θ2
F

T6 = T2

T7 = 1
8c(7 + 2c2)

√
1− c2 −

(1
8 + c2

)
θF

T8 = −1
3(1− c2)3/2 − cT4

T9 = 1
2

[1
3(1− c2)3/2 + aT4

]

T10 =
√

1− c2 + θF

T11 = (2− c)
√

1− c2 + (1− 2c)θF
T12 = (2 + c)

√
1− c2 − (1 + 2c)θF

T13 = −1
2(T7 + (c− a)T1)

T15 = T4 + T10

T16 = T1 − T8 − (c− a)T4 + 1
2T11

T17 = −2T9 − T1 +
(
a− 1

2

)
T4

T18 = T5 − T4T10

T19 = −1
2T4T11

T21 =
√

1 + c

1− c

The Y terms are functions of both c and d.

Y1 = −
√

1− c2
√

1− d2 − θF0 θF1 +d
√

1− d2 θF0 +
+ c
√

1− c2 θF1 −(d− c)2 logN
Y2 = 2

√
1− d2 θF0 −2(d− c) logN

Y3 = 1
3(c+ 2d)

√
1− c2

√
1− d2 + d θF0 θF1 +

− 1
3(2 + d2)

√
1− d2 θF0 +

− 1
3(1 + 3cd− c2)

√
1− c2 θF1 +1

3(d− c)3 logN
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Y4 = 1
3(d+ 2c)

√
1− c2

√
1− d2 + c θF0 θF1 +

− 1
3(2 + c2)

√
1− c2 θF1 +

− 1
3(1 + 3cd− d2)

√
1− d2 θF0 −

1
3(d− c)3 logN

Y6 = −1
2
√

1− c2
√

1− d2

(
1 + c2

6 + d2

6 + 11cd
12

)
−
(

1
8 + cd

)
θF0 θF1

+ 1
3

[
d

4

(5
2 − d

2
)

+ c(2 + d2)
]√

1− d2 θF0 +

+ 1
3

[
c

4

(5
2 − c

2
)

+ d(2 + c2)
]√

1− c2 θF1 +

+ 1
12(d− c)4 logN

Y9 = Y1 − T4T
d
1 0

Y10 = Y3 − Y4 −
1
2T4T

d
11

Y13 = Y2 + T4T
d
21

Y17 = Y1 − T d
4 T10

Y18 = Y4 − Y3 −
1
2T

d
4 T11

with

N(c, d) =
∣∣∣∣∣1− cd−

√
1− c2

√
1− d2

d− c

∣∣∣∣∣





APPENDICE C

ESTRATTO IN LINGUA ITALIANA

L’ introduzione di nuove tecnologie per materiali di applicazione strutturale,
come per esempio l’uso di materiali adattivi, apre le porte alla possibilità
di realizzare un cambiamento di forma regolare di superfici aerodinamiche,
grazie all’ applicazione di forze di attuazione distribuite. Queste capacità
morphing possono essere sfruttate al fine di assolvere a molteplici funzioni,
sia nell’ambito di velivoli ad ala fissa, sia per velivoli ad ala rotante. Pale o
ali morphing possono portare a miglioramenti di prestazioni, manovrabilità,
caratteristiche aerodinamiche ed aeroelastiche, pertanto la ricerca in questo
settore è attualmente molto attiva.

Il miglioramento delle prestazioni del rotore principale di un elicottero è
oggetto di svariate ricerche, in quanto esso esercita un’ influenza molto alta
sul comportamento globale del mezzo in volo a punto fisso, in volo avanzato,
nell’ambito delle vibrazioni, della manovrabilità, dell’emissione di rumore,
eccetera. Uno degli aspetti cruciali nella progettazione delle pale di un ro-
tore è che sono soggette ad un ampia gamma di condizioni aerodinamiche
differenti, che dipendono dalla posizione azimutale e dalle condizioni di volo,
quindi può risultare difficile scegliere delle specifiche che tengano conto di
questa variabilità e che siano un giusto compromesso tra le varie esigenze.
La variazione di configurazione del rotore principale durante il volo può es-
sere sfruttata in questo ambito per adattarsi alle diverse condizioni, al fine
di migliorare le prestazioni e ridurre effetti indesiderati come le vibrazioni e
il rumore.

Il fine di questo lavoro è quello di sviluppare un semplice modello di aero-
dinamica instazionaria armonica per profili deformabili adatto ad un’ ot-
timizzazione preliminare delle deformazioni del profilo stesso per migliorarne
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alcune prestazioni aerodinamiche. Un secondo obiettivo è l’ investigazione del
suddetto problema di ottimizzazione, per fornire le basi ad ulteriori svilup-
pi, i quali potrebbero concentrarsi su un progetto e una ottimizzazione più
accurati e completi di una pala morphing. Dato che non si desidera fornire
uno strumento di ottimizzazione operativo per un profilo adattivo, spesso la
semplicità verrà preferita all’ accuratezza.

Alcuni risultati sono calcolati anche per profili dotati di flap incernierati
in serie, i quali rappresentano un modo classico, seppur non molto usato in
ambito elicotteristico, di variare la curvatura di un profilo aerodinamico.

Modello aerodinamico

Per implementare il problema di ottimizzazione agilmente, si è scelto di
scegliere un modello semplice e leggero per descrivere l’ aerodinamica asso-
ciata al moto armonico del profilo. Questo può essere visto come un profilo
sottile soggetto a moto armonico con ampiezza costante e sufficientemente
piccola in una corrente a potenziale, bidimensionale e incomprimibile. Ciò
permette di utilizzare una teoria linearizzata, in cui il profilo viene ridotto
alla sua linea media. Grazie alla linearità, è possibile sfruttare il principio di
sovrapposizione degli effetti, sommando soluzioni semplici per ricostruire la
soluzione globale.

Per calcolare le azioni aerodinamiche, viene utilizzato l’approccio di Küss-
ner e Schwarz, il quale si basa sulla rappresentazione in serie di Fourier della
perturbazione di velocità rispetto alla variabile spaziale. La distribuzione
di differenza di pressione ∆Cp sul profilo è calcolata a partire dai coeffici-
enti della serie, chiamati coefficienti di upwash, dai quali si riescono ad ot-
tenere anche la portanza, il momento e la potenza aerodinamica integrando
opportunamente la distribuzione di pressione.

Il moto della linea media viene dapprima rappresentato con dei flap in-
cernierati in serie, il cui movimento armonico si sovrappone a delle oscillazioni
di plunge e pitch. In questo caso si riescono ad ottenere i risultati originali di
Küssner e Schwarz i quali, per verificarne la convergenza, vengono comparati
a quelli della teoria classica di Theodorsen.

Successivamente si descrive il movimento della linea media con una spline
cubica, ovvero con una cubica base a cui si sovrappongono delle ulteriori
deformazioni cubiche a partire da una certa ascissa, ovvero una sorta di flap
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cubico (si veda la Figura C.1).

z(x, t) =


P0(x)ejωt if x < xF0

(P0(x) + P1(x))ejωt if xF0 ≤ x < xF1

(P0(x) + P1(x) + P2(x))ejωt if xF1 ≤ x < xF2

...

(C.1)

Viene sviluppato il calcolo dei coefficienti di upwash e delle azioni aerod-
inamiche anche per questo caso, ne viene fatta una verifica di convergen-
za e vengono confrontate con quelle prodotte dal profilo dotato di flap in
configurazioni analoghe.

−1 −0.5 0 0.5 1
−0.2

−0.1

0

0.1

0.2

x

z

(a) Primo passo: deformazione cubica
globale

−1 −0.5 0 0.5 1
−0.2

−0.1

0

0.1

0.2

x

z

(b) Secondo passo: sovrapposizione lin-
eare del flap cubico

Figura C.1. Esempio di deformazione polinomiale cubica della linea media e
sovrapposizione di un flap cubico

Modello elastico e strutturale

Una volta scelto come modello strutturale per la rappresentazione del profilo
un modello di trave di Eulero-Bernoulli, è possibile scriverne l’equazione di
moto in forma debole per mezzo del Principio dei Lavori Virtuali, trascurando
il contributo inerziale legato alla rotazione delle sezioni.

Gli spostamenti della trave vengono poi approssimati utilizzando un ap-
proccio alla Ritz-Galerkin.

Come funzioni di forma si sceglie di utilizzare degli elementi finiti her-
mitiani, i quali garantiscono una regolarità della soluzione di tipo C1. Una
delle caratteristiche fondamentali degli elementi finiti sta nella suddivisione
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del dominio (ossia la trave) in un insieme di sottodomini, detti elementi.
Vengono definite delle funzioni di forma, le quali interpolano la soluzione su
ciascun elemento a partire dal valore che essa assume sui nodi dell’elemento
stesso, ovvero dai gradi di libertà, mentre queste funzioni sono nulle sugli
altri elementi. Ciò significa che le funzioni di forma sono a supporto com-
patto, da cui ne risulta, come vantaggio, la sparsità delle matrici di massa e
rigidezza.

Per il calcolo di queste matrici è necessario anche stabilire una rappresen-
tazione per la distribuzione di massa e di rigidezza flessionale. Un metodo
semplice ma efficace per lo scopo della tesi è di considerarle rispettivamente
proporzionali allo spessore del profilo e al suo cubo, calcolando una densità
media ρs e un modulo elastico approssimato Es a partire dalle caratteristiche
di un esempio di profilo NACA0012 di applicazione elicotteristica.

m(x) = ρs t(x) (C.2)
EJ(x) = Es t

3(x) (C.3)

Gli integrali per il calcolo delle suddette matrici sono svolti numerica-
mente con il metodo di integrazione di Gauss.

Viene infine realizzata una trasformazione di variabili per generare un’in-
terfaccia tra variabili strutturali (i gradi di libertà degli elementi finiti) e
variabili aerodinamiche (i coefficienti della spline).

Ottimizzazione

Come prima cosa, quando si vuole affrontare un problema di ottimizzazione è
necessario decidere cosa si vuole ottimizzare e, di conseguenza, definire delle
funzioni obiettivo (o funzioni di merito) che descrivano matematicamente
l’obiettivo ricercato.

Può essere interessante scegliere di minimizzare il contributo oscillatorio
di momento aerodinamico che si genera quando si vuole ottenere una certa
oscillazione armonica di portanza per mezzo della variazione di incidenza e
curvatura del profilo. Ciò può essere utile, nell’ottica di una vera pala di
rotore, per ridurre il carico vibratorio sulla pala stessa e trasmesso al mozzo,
al fine di migliorare il comportamento a fatica e il livello di vibrazioni. Il
problema di ottimizzazione può essere quindi scritto come:

minimizzare J(x) = |CM(x)|2 (C.4)
soggetto a f(x) = |CL(x)|2 − C̄2

L = 0, (C.5)
xi ∈ [LB,UB] per i = 1, . . . , nvar (C.6)
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É inoltre possibile pensare di aggiungere un secondo obiettivo, ovvero la
minimizzazione della potenza (aerodinamica o totale di attuazione) richiesta
per la deformazione del profilo. Il problema diventa quindi un’ottimizzazione
multiobiettivo, per cui non si cerca più una sola soluzione ottima ma l’insieme
di soluzioni non dominate appartenenti al fronte di Pareto. Il problema può
essere scritto nel seguente modo:

minimizzare |CM(x)|2 e |CW (x)|2 (C.7)
soggetto a f(x) = |CL(x)|2 − C̄2

L = 0, (C.8)
xi ∈ [LB,UB] per i = 1, . . . , nvar (C.9)

Le ottimizzazioni vengono svolte sia con un metodo gradient-based, ossia
con un algoritmo sequential quadratic programming (SQP), sia con un metodo
evolutivo, in particolare con un algoritmo genetico (GA).

Viene inoltre proposto un metodo analitico di ottimizzazione non vinco-
lata del solo momento aerodinamico, utile per una verifica iniziale di conver-
genza dei metodi numerici.

Risultati

Utilizzando quanto sopra descritto, è possibile ottenere i valori ottimali di
incidenza e deflessione per la minimizzazione del solo momento aerodinamico
nel caso di flap singolo e di flap e tab. Per quest’ultima configurazione
viene condotta anche l’ottimizzazione multiobiettivo che minimizza momento
e potenza aerodinamica. Questi casi più semplici vengono utilizzati anche
per la messa a punto e la verifica di convergenza dei metodi numerici di
ottimizzazione. Tutte le minimizzazioni sono ripetute a diverse frequenze
ridotte.

É poi possibile ripetere queste ottimizzazioni per il modello polinomiale
cubico a tratti di linea media. Per quanto riguarda il caso più interessante,
ovvero quello multiobiettivo, viene realizzato anche una verifica di conver-
genza: si aumenta il numero di tratti di spline (e quindi di variabili) pre-
so in considerazione verificando che le forme ottime ottenute non cambino
molto, accertando che il numero di variabili usato è sufficiente a descrivere
la soluzione.

Infine, mantenendo il numero di tratti di spline risultato dall’analisi di
convergenza, si svolge l’ottimizzazione multiobiettivo bel momento aerodi-
namico e della potenza di attuazione globale, variando, oltre alla frequenza
ridotta, i valori di densità e di modulo elastico equivalente. In generale le
forme ottenute nelle ottimizzazioni multiobiettivo si assestano su curve con
due cambi di segno nella derivata seconda, l’ampiezza e la forma specifica
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della deformazione dipende però dal valore assunto dai parametri adimen-
sionali che caratterizzano il caso (k, ρs

ρ
e Es
ρU2 ) e dal punto del fronte di Pareto

in cui si trova la soluzione.
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