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Abstract
Articular cartilage is a multiphasic biological material characterized by complex mechanical
properties. The solid phase is composed of a soft matrix reinforced by a three-dimensional
network of collagen fibres and is particularly challenging to model as it exhibits non-linear
anisotropic inhomogeneous viscoelastic response. In this work, a constitutive relation that
accounts for these features was developed, while the fluid phase and related phenomena (i.e.
poroelasticity) were disregarded. The model was developed in the framework of finite elas-
ticity, as articular cartilage typically exhibits large deformations under physiological load.
The elastic strain energy potential was defined as the superposition of an isotropic term asso-
ciated with the ground matrix and an anisotropic term related to the collagen reinforcement.
The fibre network was modelled in statistical terms using a probability density function from
the literature, that provides at each point the probability of finding a fibre oriented in a given
direction. The information about a single direction was enclosed into a so-called structure
tensor, which was then integrated over the unit sphere to get its directional average, weighted
by the probability distribution. Collagen fibres carry the load only when they are stretched.
Hence, the contribution of compressed fibres to the average structure tensor was suitably
modified to include the information about their distribution without influencing the strain
energy potential. The intrinsic viscoelastic response was modelled adding a quasi-linear vis-
coelastic formulation for the collagen fibres, while the matrix was assumed to be elastic.
This approach generates an overall non-linear viscoelastic response for the tissue, which is
observed in experimental tests. The constitutive equations were linearised to derive the cor-
responding elasticity tensor and the model was implemented into a finite element analysis
program that allows the definition of custom user subroutines. The averaging integrals where
computed using the method of spherical designs, in which the result is approximated by a
suitable sum over the unit sphere. The evolution equations were integrated using an effi-
cient numerical scheme from the literature. In the last part of the work three representative
numerical examples, based on published experimental data, where analysed with the aim of
checking the physical response of the model. The results of these tests indicate that the model
is capable of predicting the response of articular cartilage under tensile load both in terms of
local stress and deformation and in terms of viscoelastic behaviour. Moreover, they suggest
that the model is also able to account for the fibre contribution in compression, whereas at
the current state it is not suitable for the analysis of the time-dependent response of the tissue
in such configuration due to the important role of fluid-related viscoelasticity, not included
in the model. The main outcomes of this work are the definition of a very general consti-
tutive model, that can serve as a framework for further enhancements, and in particular the
innovative definition of the contribution of compressed fibres to the structure tensor.
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Sommario

La cartilagine articolare (CA) è un strato relativamente sottile di tessuto connettivo che rico-

pre le superfici di contatto delle ossa nelle articolazioni. Le sue funzioni principali sono la

riduzione dell’attrito e la trasmissione del carico, ma allo stesso tempo agisce come ammor-

tizzatore e distribuisce i carichi su una superficie relativamente ampia prevenendo pericolose

concentrazioni di sforzo.

La CA viene facilmente danneggiata in seguito a traumi o semplicemente a causa dell’usura

nel tempo. Un’area lesionata viene solitamente sostituita da tessuto cicatriziale perché la CA

fatica a rigenerarsi: le cellule non sono libere di migrare nella zona danneggiata e la man-

canza di vascolarizzazione ne rallenta il metabolismo. L’artrosi, una malattia cronica che

causa una perdita progressiva di tessuto cartilagineo, è divenuta la più alta spesa sanitaria

negli Stati Uniti anche a causa dell’invecchiamento della popolazione [8]. Le procedure cli-

niche adottate comunemente vanno dal trattamento conservativo alla rimozione chirurgica di

tessuto danneggiato, ma a lungo termine è solitamente necessario applicare una protesi [16].

Negli ultimi anni è stato proposto di utilizzare tessuto ingegnerizzato cresciuto in laboratorio.

Sebbene promettente, questa soluzione richiede che CA ingegnerizzata e naturale abbiano le

stesse proprietà meccaniche per evitare la comparsa di carichi non fisiologici potenzialmente

pericolosi per il tessuto sano che circonda l’impianto. Per assicurarsi che questo avvenga, è

necessario affiancare alle analisi sperimentali modelli costitutivi come quello presentato in

questo lavoro. Data la complessità della CA infatti i test sperimentali non sono da soli suffi-

cienti per lo studio della relazione tra struttura e funzione [29].

Dal punto di vista meccanico la CA è un materiale poroso composto da una matrice solida

rinforzata da collagene e da una fase liquida. Il movimento del fluido interstiziale attraver-

so la matrice porosa causa dissipazione d’energia. Tale fenomeno, definito viscoelasticità

estrinseca, è solitamente trascurabile in tensione [35]. Questo lavoro si concentra sulla fase

solida della CA e di conseguenza la fase liquida viene trascurata, sebbene influenzi il com-
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SOMMARIO 2

portamento del tessuto in compressione. Il collagene è organizzato in una complessa rete

tridimensionale di fibre. Il comportamento del tessuto è determinato non solo dalle proprietà

meccaniche di tali fibre ma anche dalla loro disposizione [37]. In particolare si individuano

tre zone principali lungo lo spessore della CA: superficiale, centrale e profonda [40]. Nel-

la prima le fibre sono disposte in prevalenza parallelamente alla superficie articolare; nella

zona intermedia la distribuzione è casuale; nella zona profonda le fibre sono principalmen-

te perpendicolari all’interfaccia con l’osso sottostante. Il collagene è responsabile anche di

quella che viene definita viscoelasticità intrinseca (chiamata semplicemente viscoelasticità

nel seguito), la quale determina il comportamento tempo-dipendente del tessuto in trazione.

Numerosi modelli analitici e numerici sono stati proposti per la CA. Le elevate deformazioni

a cui è sottoposto il tessuto sotto carichi fisiologici rende in primo luogo necessaria una trat-

tazione in grandi deformazioni [9] [32]. La fase solida è stata modellata sia come continuo

[31] sia a partire dai costituenti [9] [32]. In generale il secondo approccio garantisce una

migliore rappresentazione del rinforzo fibroso e del suo contributo. Similmente la viscoela-

sticità delle fibre di collagene è stata modellata con formulazioni lineari [57], quasi-lineari

[26] e non lineari [43]. In particolare la formulazione quasi-lineare rappresenta una scelta

comune in letteratura per i tessuti biologici con rinforzati da collagene [21] [62] e specifica-

mente per la CA [32].

In questo contesto il presente lavoro ha come obiettivo generale la definizione di un mo-

dello costitutivo di tipo continuo per la fase solida della CA che sia in grado di riprodur-

ne le proprietà anisotrope e non omogenee e le caratteristiche tempo-dipendenti, che possa

essere integrato con modelli per la fase liquida. I tre obiettivi specifici sono la definizio-

ne di una quantità strutturale che tenga conto della distribuzione del collagene nel tessuto,

l’introduzione di formulazione viscoelastica valida intorno all’equilibrio termodinamico e

l’implementazione del corrispondente modello numerico.

Modello costitutivo

I tessuti biologici rinforzati da collagene possono essere trattati con una formulazione basata

sugli invarianti della deformazione e sulla sovrapposizione di un potenziale isotropo associa-

to alla matrice e uno trasversalmente isotropo associato alle fibre. Le fibre vengono suddivise

in famiglie e le informazioni sulla direzione di ciascuna di esse vengono racchiuse in un co-
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siddetto tensore strutturale [25]. Tuttavia la complessa rete tridimensionale di collagene che

caratterizza la CA può essere modellata più efficacemente come un’unica famiglia di fibre

statisticamente distribuita intorno ad un asse polare. A questo scopo è stato proposto in [13]

di ridefinire il tensore strutturale calcolandone una media direzionale sulla sfera unitaria,

approccio adottato in questo lavoro.

Il tensore tensore strutturale assume la seguente espressione:

H =
1

4π

∫ 2π

0

∫ π

0

ρ(Θ)M(Θ,Φ)⊗M(Θ,Φ) sin Θ dΘ dΦ =
1

4π

∫
S2

ρ(M)A(M) dS

dove A(M) = M⊗M è il contributo al tensore strutturale associato alla direzione M e ρ

è la funzione di probabilità che caratterizza la distribuzione di fibre nella configurazione a

riposo. In accordo con [13] è stata scelta una distribuzione trasversalmente isotropa attorno

al proprio asse polare, sufficiente a rappresentare la disposizione delle fibre nelle tre zone in

cui viene suddivisa la CA.

La configurazione iniziale è stata considerata priva di sforzi e il tessuto incomprimibile. Que-

st’ipotesi rende necessaria la definizione della sola parte deviatorica del potenziale, in quanto

la parte volumetrica è determinata a partire dalle condizioni al contorno. Il potenziale devia-

torico è determinato da un contributo legato alla matrice e da uno legato alle fibre. In accordo

con molti lavori in letteratura [24] [13] [1], la matrice è stata rappresentata per semplicità co-

me materiale neo-hookeano isotropo. Il potenziale delle fibre è invece stato suddiviso in un

contributo isotropo che tiene conto delle diverse proprietà meccaniche rispetto alla matrice,

ed uno anisotropo che rappresenta le proprietà trasversalmente isotrope delle fibre. Per il

primo è stato nuovamente scelto un modello neo-hookeano con parametri diversi da quelli

della matrice; il secondo incorpora le informazioni sulle fibre attraverso il tensore strutturale

definito in precedenza:

Ψ̄∞fa(C̄,H) =
1

2
cfa(H : C̄− 1)2 =

1

2
cfa(Ī4 − 1)2

dove cfa è una costante, C̄ è la parte deviatorica tensore di deformazione di Cauchy-Green e

Ī4 è un invariante di tale tensore e rappresenta l’allungamento medio delle fibre nel punto in

cui il potenziale viene calcolato.

La scelta di un legame quadratico ha lo scopo di replicare un fenomeno tipico dei tessu-

ti biologici definito reclutamento: le fibre di collagene sono ondulate a riposo e il carico

necessario a distenderle è trascurabile rispetto a quello che trasmettono una volta orientate



SOMMARIO 4

nella direzione della sollecitazione. Questo si traduce in un incremento di pendenza nella

curva carico-deformazione che può essere modellato efficacemente per mezzo di un legame

non-lineare. In particolare è riportato in letteratura che un polinomio di secondo ordine è in

generale sufficiente a riprodurre il comportamento del tessuto in casi d interesse, come ad

esempio quello della cartilagine ingegnerizzata, la quale non presenta forti non linearità in

grandi deformazioni [51].

Infine è stato ipotizzato che le fibre siano in grado di sostenere carichi solamente in ten-

sione, in accordo con la letteratura [34] [13] [9]. Di conseguenza le fibre contribuiscono al

potenziale solamente quando la deformazione nella direzione del loro asse è positiva e il

tensore strutturale deve essere modificato in modo da escludere le fibre in compressione.

Sotto carichi fisiologici la variazione di rigidezza attraverso lo spessore del tessuto genera

un complesso stato di deformazione e implica che in ogni punto alcune fibre siano tese ed

altre compresse. Ad ogni iterazione è dunque necessario controllare l’allungamento in ogni

direzione e ricalcolare l’integrale sulla sfera unitaria. Il contributo al tensore strutturale nella

direzione delle fibre compresse deve essere tale da generare un allungamento unitario nello

stato di deformazione corrente. In questo modo il corrispondente contributo all’energia ri-

sulta nullo. Ciò implica che questo contributo non possa essere definito a priori, ma debba

essere legato al tensore di deformazione. La definizione del contributo del tensore strutturale

associato ad ogni specifica direzione è stata modificata come segue:

A =


1
3
C̄−1 if λ̄2

M ≤ 1

M⊗M if λ̄2
M > 1

dove λ̄2
M rappresenta l’allungamento in direzione M. L’approccio qui descritto è equivalente

ad integrare il tensore strutturale su un’area efficace della sfera unitaria che racchiude sola-

mente le fibre tese e a pesare il valore ottenuto per la deformazione con la frazione volume

volumetrica di fibre tese. Il vantaggio sta nel fatto che non è necessario ricalcolare la su-

perficie di integrazione e che tutta l’informazione è racchiusa nel tensore strutturale senza

necessità di agire sulla definizione della deformazione.

La risposta viscoelastica è stata modellata attraverso il concetto delle variabili interne, i.e.

come sovrapposizione di una risposta elastica all’equilibrio e di un certo numero di processi

viscosi transienti. Si è ipotizzato che la viscoelasticità sia legata soltanto alla parte deviatorica
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della deformazione in accordo con la letteratura [25]. Inoltre nel modello solo le fibre di

collagene sono viscoelastiche, mentre i proteoglicani sono elastici. Questa scelta si basa

sull’evidenza sperimentale che la CA mostra un marcato comportamento viscoelastico anche

in tensione, dove il contributo del fluido e dei proteglicani è trascurabile [34]. In accordo

con le ipotesi riportate, ed esprimendo il contributo viscoso in funzione di quello elastico

all’equilibrio, la forma completa del potenziale deviatorico è la seguente

Ψ̄ = Ψ̄g(C̄) + (1 +
m∑
α=1

β∞α )[Ψ̄∞fi (C̄) + Ψ̄∞fa(C̄,H)]

dove Ψ̄g e Ψ̄∞fi rappresentano il contributo neo-hookean legato rispettivamente a matrice e

fibre, mentre le costanti adimensionali β∞α ∈ [0,∞) legano la rappresentazione elastica e

quella viscosa. Tale approccio è valido intorno all’equilibrio termodinamico. La relazione

sopra riportata estende la viscoelasticità lineare al campo delle grandi deformazioni tenendo

conto della legame non lineare tra sforzo e deformazione. Ciascun elemento della somma-

toria corrisponde nel caso lineare al contributo di un singolo elemento in un modello di

Maxwell generalizzato. In questo modo si tiene conto del fatto che il rilassamento non av-

viene in un unico istante ma in un intervallo di tempo. È possibile definire tanti processi

di rilassamento quanti necessari per riprodurre accuratamente il comportamento di un ma-

teriale. In questo lavoro sono stati definiti tre elementi, essendo riportato in letteratura che

questo è sufficiente per approssimare correttamente il comportamento della CA [35] [58]. La

relazione usata per le fibre di collagene è di tipo quasi-lineare. Questo implica che in un test

di rilassamento degli sforzi la funzione di rilassamento (ovvero lo sforzo normalizzato sullo

sforzo massimo al termine della rampa di carico) è indipendente dal livello di deformazione

applicato. Sperimentalmente è stato dimostrato che questo non avviene nel caso della CA

[2]. Tuttavia, la sovrapposizione di una matrice elastica e di un rinforzo viscoelastico quasi-

lineare genera un comportamento tempo-dipendente globalmente non lineare per il tessuto,

come già indicato in [62]. A bassi livelli di deformazione, dove la risposta è dominata dalla

matrice, l’effetto viscoso è limitato. Quest’ultimo aumenta progressivamente verso livelli di

deformazione maggiori dove più fibre sono attive e il carico è sostenuto prevalentemente

dalle fibre di collagene.
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Implementazione numerica

Data la complessità di geometrie, proprietà del tessuto e condizioni di carico, non è in ge-

nerale possibile calcolare una soluzione analitica per il modello qui presentato ed è perciò

necessario introdurre dei metodi di soluzione numerici. Il metodo degli Elementi Finiti ha

dimostrato di essere particolarmente efficace nella modellazione di tessuti biologici ed è co-

munemente utilizzato in letteratura. Il legame costitutivo è stato dunque implementato in

linguaggio FORTRAN e aggiunto come subroutine in un software di simulazione tramite il

quale è poi stata eseguita l’analisi ad Elementi Finiti.

La soluzione delle equazioni costitutive viene calcolata in configurazione deformata. Sono

dunque state derivate le corrispondenti espressioni per il tensore strutturale e per gli sforzi

generati dalla particolare espressione scelta per il potenziale. Inoltre la soluzione del sistema

di equazioni differenziali che governa il modello viene calcolata applicando metodi numerici

iterativi e risolvendo una sequenza di problemi lineari. Dato che il modello opera nel campo

delle grandi deformazioni, questo ha richiesto la linearizzazione del legame tra sforzo e de-

formazione e la definizione del corrispondente tensore di elasticità. Inoltre la deformazione

viene ricalcolata ad ogni iterazione, perciò il numero e la direzione delle fibre tese (i.e. at-

tive) può variare durante il processo di riduzione dell’errore, andando di fatto a modificare

la soluzione esatta. Questo aumenta il tempo di calcolo e può causare problemi di conver-

genza. Per questa ragione il valore dell’allungamento calcolato all’istante precedente è stato

utilizzato durante tutte le iterazioni, assumendo che le variazioni di tempo e carico siano

sufficientemente piccole da rendere la differenza trascurabile.

Il tensore strutturale viene integrato sfruttando un efficiente algoritmo suggerito in [9], ba-

sato sul cosiddetto t-design, che definisce il sottoinsieme di punti sulla sfera unitaria in cui

l’integrale viene valutato. Il numero e la posizione dei punti cambia in funzione del grado

di precisione richiesto che è a sua volta funzione della distribuzione scelta per rappresentare

le fibre. Una serie di test numerici di compressione sono stati utilizzati per determinare il

minimo grado t che garantisce convergenza. È infatti importante limitare l’ordine di integra-

zione in quanto un suo aumento incrementa sensibilmente la dimensione del problema e la

quantità di memoria richiesta alla macchina su cui è eseguita l’analisi.

L’algoritmo di discretizzazione dell’integrale di convoluzione che definisce il contributo vi-

scoso e di aggiornamento di sforzi e tensore elastico è basato su un approccio consolidato in

letteratura per la viscoelasticità in grandi deformazioni [60] [21] [14].

Il modello è stato implementato secondo un approccio variazionale misto, che definisce ap-
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prossimazioni separate per pressione e deformazione volumetrica evitando di incorrere in

problemi numerici causati dall’ipotesi di incomprimibilità. Inoltre l’applicazione del metodo

dei lagrangiani aumentati garantisce che il processo di soluzione venga iterato finché l’ipotesi

di incomprimibilità non è correttamente rispettata.

Risultati

Il modello è stato utilizzato per riprodurre dei test sperimentali di rilassamento dello sforzo in

tensione e compressione descritti in [35]. I risultati mostrano un’asimmetria tra le due prove,

dovuta al maggior contributo del collagene in trazione e in accordo con evidenze sperimen-

tali. Per quanto riguarda la trazione, la previsione del modello è in perfetto accordo con i dati

riportati in [35] sia per quanto riguarda i valori di sforzo che l’evoluzione del rilassamento,

come mostrato in figura 1a. In compressione invece il modello produce un valore di sforzo al-

l’equilibrio leggermente maggiore di quanto misurato sperimentalmente, mentre sottostima

la componente viscosa che nei dati sperimentali tiene conto anche del contributo del fluido. I

risultati indicano comunque che il contributo delle fibre in compressione non può essere tra-

scurato. Tale contributo appare tuttavia sovrastimato nel modello, il che può essere attribuito

almeno in parte alla distribuzione scelta per rappresentare il collagene. Essa infatti definisce

una zona superficiale (in cui le fibre sono attivate in compressione dall’effetto di Poisson) più

spessa di quella che si osserva nel tessuto reale. Una prova di rilassamento caratterizzata da

una deformazione applicata maggiore dimostra invece la non linearità viscoelastica del mo-

dello. In figura 1b la funzione di rilassamento cambia al variare dello spostamento massimo

applicato, mentre la risposta viscoelastica lineare è per definizione indipendente dal livello

di deformazione.

Un secondo test analizza l’effetto delle fibre sotto carico di compressione. I risultati mo-

strano innanzi tutto un andamento quadratico dello sforzo che può essere addebitato ad un

sostanziale contributo delle fibre, dato che se il ruolo della matrice fosse predominante l’an-

damento sarebbe simile a quello di un materiale neo-hookeano. Il fatto che i risultati siano

in accordo con test sperimentali simili [44] rinforza l’idea che il contributo del collagene in

compressione non sia trascurabile. La non omogeneità della distribuzione lungo lo spesso-

re, rappresentata dal tensore strutturale, genera inoltre una deformazione non omogenea del

campione. I risultati, riportati in Figura 2, mostrano che nonostante la superficie articolare

(superiore) non sia vincolata nella direzione radiale, le fibre disposte parallelamente ad es-
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Figura 1: (a) Confronto tra le previsioni del modello e dati sperimentali riportati in [35] per una
prova di rilassamento degli sforzi in trazione. I risultati sono espressi in sforzo nominale assiale vs
tempo. (b) Effetto del livello di deformazione sulla funzione di rilassamento degli sforzi.

sa ne impediscono la deformazione radiale, che si concentra quindi nella parte inferiore in

accordo con [11] per poi azzerarsi in corrispondenza del substrato osseo. Un confronto tra

primo e il secondo sforzo principale mostra inoltre che a causa delle rotazioni indotte dalla

deformazione sulle fibre, il tessuto perde la proprietà di isotropia trasversale locale garantita

nella configurazione iniziale dalla particolare distribuzione scelta per il collagene.

Figura 2: Distribuzione di primo, secondo e terzo sforzo principale di Cauchy in provino cilindrico
di cartilagine sotto compressione non confinata in corrispondenza dello spostamento u = 0.35mm.
La superficie superiore è quella articolare, mentre quella inferiore è attaccata ad un substrato osseo
rigido.

Un ultimo test basato su prove sperimentali di carico e scarico in compressione descritte

in [44] analizza l’effetto della frequenza di carico sul modello. Nonostante le costanti vi-

scoelastiche siano state modificate nel tentativo di compensare l’assenza del fluido, l’area

di isteresi è minore di quella registrata sperimentalmente. I risultati sono migliori alla fre-

quenza di carico maggiore dato che il fluido non ha il tempo di spostarsi nel tessuto. Allo

stesso modo la funzione di rilassamento, sebbene sia adattata in questo esempio alla rappre-

sentazione di evoluzioni più rapide nel tempo, non riesce a riprodurre l’influenza del diverso
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comportamento del fluido a diverse frequenze di carico. Tuttavia si comporta correttamen-

te relativamente alle costanti viscoelastiche imposte e genera minor isteresi a frequenza di

carico maggiore, andamento qualitativamente in accordo con i risultati riportati in [44].

Discussione e conclusioni

Il tensore strutturale generalizzato introdotto in questo lavoro estende il campo di applica-

bilità di quello proposto in [13] alla modellazione di tessuti con proprietà meccaniche non

omogenee e privi di direzioni preferenziali per il rinforzo fibroso e rappresenta un contri-

buto innovativo nello studio di questa classe di tessuti biologici. Il rovescio della medaglia

è rappresentato da un aumento del costo computazionale del modello dovuto alla necessità

di ripetere l’integrazione in ogni punto del tessuto ad ogni istante temporale. L’aumento di

complessità è tuttavia necessario nel caso della CA e può essere richiesto in altre applica-

zioni per ottenere previsioni più accurate. Data la generalità dell’approccio proposto infatti

la CA rappresenta solo una delle possibili applicazioni del modello, che è compatibile con

qualunque espressione per il potenziale elastico che tenga conto della presenza di un tensore

strutturale e con qualunque distribuzione di fibre, sia essa un’espressione analitica o un insie-

me di valori tabulati da prove sperimentali. A tal proposito si sottolinea che nel caso specifico

di questo lavoro i parametri costitutivi sono stati stimati a partire dai risultati di test speri-

mentali sulla CA ma non sono basati su misurazioni dirette; allo stesso modo la distribuzione

proposta per il collagene riproduce solo qualitativamente quella osservata sperimentalmente.

Le ultime osservazioni unitamente alla mancanza della fase liquida implicano che una com-

parazione quantitativa diretta dei risultati con dati sperimentali non è possibile. Tuttavia il

modello produce un comportamento fisicamente corretto per la fase solida della CA e risul-

tati qualitativamente in accordo con le previsioni teoriche e la letteratura. In particolare esso

è in grado di riprodurre la risposta del tessuto a un carico di trazione sia in termini di sforzi

e deformazioni locali che in termini di comportamento viscoelastico; il contributo delle fi-

bre può essere riprodotto anche in compressione, mentre allo stato attuale il comportamento

tempo-dipendente non può essere correttamente simulato in tale configurazione. I risultati

dei test numerici indicano anche che il modello è in grado di riprodurre il comportamento

viscoelastico non lineare osservato per la CA.

Dal punto di vista numerico il modello sfrutta efficienti algoritmi dalla letteratura. Tuttavia il

fatto che il tensore strutturale sia implementato come funzione della deformazione all’istante
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precedente richiede la definizione di un alto numero di variabili in memoria, il che si traduce

in un rallentamento nel calcolo della soluzione e in una possibile limitazione sulla dimen-

sione massima del problema qualora l’analisi venga effettuata su un normale PC. Inoltre si è

osservata una diminuzione nell’ordine di convergenza dell’algoritmo numerico di soluzione

nel caso di carichi di compressione relativamente elevati, fenomeno che può essere attribuito

alle instabilità generate dal progressivo collasso delle fibre in compressione.

Il modello presenta alcune limitazioni e necessita di ulteriori sviluppi. Dal lato modellistico

un possibile miglioramento è rappresentato dall’uso di dati sperimentali per la definizione

dei parametri costitutivi e della distribuzione del collagene. Dal lato computazionale la deri-

vazione di una linearizzazione che tenga conto esplicitamente della dipendenza del tensore

strutturale dalla deformazione migliorerebbe le prestazioni del modello. Ultimo è più impor-

tante sviluppo è rappresentato dall’introduzione di una formulazione dei fenomeni poroela-

stici generati dalla presenza di fluido interstiziale che renda il modello adatto a descrivere il

comportamento della CA in compressione.



Chapter 1

Introduction

Articular cartilage is introduced in this chapter. After a brief overview of its characteristics

and functions, the clinical problems that represent the motivation for this work are presented.

The mechanical properties of the tissue are described with focus on those included in the

model developed in the following chapters. A review of constitutive models for articular

cartilage from the literature leads to the definition of the objectives of this work.

1.1 Problem background

Cartilage is a soft connective tissue found in different areas of the bodies of humans and

other animals, such as joints, nose and ear, bronchial tubes, rib cage and intervertebral discs.

Cartilage is composed of specialized cells called chondrocytes that produce a large amount of

extracellular matrix (ECM). They are bound in spaces called lacunae with up to eight chon-

drocytes per lacuna. Since cartilage is an avascular tissue, the cells are supplied by diffusion,

which is improved by the pumping effect of compressive physiological loads. ECM is made

of collagen fibres, proteoglycans and elastin fibres, which will be described with respect to

their mechanical properties in section 1.2. The relative amounts of these three components

determines the classification of cartilage in three families: elastic cartilage, hyaline cartilage

and fibrocartilage.

Articular cartilage (AC) is a relatively thin layer (≈ 1− 3mm) of hyaline cartilage covering

articulating surfaces of bones. Its main functions are reducing the friction and transmitting

the load between bones in contact. It also distributes external loads over a relatively large

surface, thus preventing potentially dangerous stress concentration. In addition, it acts as a

damper and dissipates energy under dynamic loads.

11
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Figure 1.1: Representation of articular cartilage in the knee joint. Adapted from [42].

Damage and degeneration of AC are a major problem that affects millions of people in the

world. Cartilage structure and functions can easily be harmed as a result of traumatic events

(e.g. sport accidents), post-traumatic events (e.g. previous joint injuries) or simply wear and

tear over time.

Arthritis, a degenerative condition that causes progressive loss of cartilage thickness and

integrity, is now the leading cause of chronic disability and the highest medical cost in the

United States due to increasing ageing of the population. It affects about 50 million people in

the United States only, with an approximate cost of 130 billion dollars per year [8]. Around

the world approximately 250 million people suffer from osteoarthritis of the knee [63].

Though AC damage is not life threatening, it does strongly affect the quality of life causing

pain, swellings, strong barriers to mobility and severe restrictions to the patient’s activities.

AC damage is difficult to heal: chondrocytes, bound in lacunae, cannot migrate to damaged

areas; moreover, the lack of blood supply and the slow metabolic activity of the cells makes

natural repair response slow and insufficient. As a result, the damaged portion is often re-

placed by fibrocartilage scar tissue. This is clearly visible in Figure 1.2, which shows two

pictures taken with a fibre-optic camera during an arthroscopy procedure. Cartilage repair

procedures developed by surgeons and scientists in the last decade range from conservative

treatments (e.g. physical therapy or intra-articular injections) to removal of damaged tissue

with open surgery, but ultimately a total joint replacement is usually needed [30] [16]. Bio-

engineering techniques have been proposed to grow tissue engineered AC in vitro and use it

to repair or replace the damaged tissue in vivo.

For this solution to be effective the engineered tissue should replicate AC explants’ me-

chanical properties. However, they are not only the result of the properties of the single

constituents, but also of their organization and mutual interaction. Hence, growing the right
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Figure 1.2: Severe articular cartilage damage on a medial femoral condyle (left) and ineffective
formation of scar tissue in a damaged area (right).

components in the right proportions does not guarantee that the final product will be AC

tissue [7]. On the other hand a mismatch with the properties of physiological tissue would

generate abnormal and potentially dangerous loads on the cells surrounding the implant.

Hence, it is important to develop experimental and numerical tools to compare the properties

of engineered and natural AC. Experimental studies alone cannot capture the contribution

of each constituent to the macroscopic properties of the tissue. In this scenario, the develop-

ment of constitutive models, such as the one described in this work, plays an important role in

better understanding structure-function relations: structural models account for composition

and structure of the tissue and reproduce the load carrying mechanism of each constituent,

increasing the predictive potential compared with other approaches. For a detailed review

of the potential of continuum mechanics in understanding the mechanics of clinical applica-

tions, the reader is referred to [29].

1.2 Mechanical properties of articular cartilage

AC is a biphasic material composed of a solid porous matrix saturated with interstitial fluid.

The porous matrix consists of collagen, mainly type II, proteoglycans and extracellular ma-

trix (describing other proteins).

Collagen accounts for about 60–70% of dry weight and it is arranged in a network of fibres

[38]. Density and orientation of these fibres and the cross links between them influence

primarily the tensile and shear modulus of AC, but they are involved in the compressive

response as well [4].

Approximately 30% of the dry weight is composed of proteoglycans, which are complex

macromolecules consisting of a ‘core protein’ linked to specific polysaccharides called gly-

cosaminoglycans [38]. Proteoglycans influence primarily the compressive response, as the
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glycosaminoglycan links in solution form negatively charged ions that cause the solid matrix

to swell and resist compression.

Interstitial fluid accounts for 70–85% of the total wet weight [38]. The movement of the fluid

through the porous matrix under external compressive loads causes a drag force between the

two phases and consequently significant energy dissipation. This flow-dependent viscoelastic

behaviour is typically negligible in tension [35].

The present work focuses on the mechanical behaviour of the solid phase of the tissue, which

is described in more detail below with focus on the role of the fibre reinforcement. On the

other hand fluid-related phenomena are disregarded.

AC exhibits strong tension-compression asymmetry in experimental tests [54] [34], which is

explained by the selective role of the constituents in the two loading configurations.

In particular, the tensile stiffness is highly strain dependent, and it is determined mainly by

collagen. In the unloaded configuration collagen fibres are wavy. Hence, for small deforma-

tions they realign in the direction of the load rather than stretch, and consequently they do

not bear load. For larger deformations, the external load has to stretch the fibres, generating

higher tensile stress due to the higher stiffness of collagen compared to the soft matrix [66].

This phenomenon, known as fibres engagement, is common for soft biological tissues with

collagen reinforcement [29] and determines a global non-linear response and the presence of

a toe-region in the stress-strain curve.

AC exhibits also a strongly anisotropic and inhomogeneous response under physiological

load, which can be related to the complex organization of the three-dimensional collagen

network. Recent works [37] have shown that the macroscopic response of cartilage cannot

be directly related to the mechanical properties of the individual fibrils at microscale, but that

the tissue strength depends on their arrangement at higher levels. Fibres in immature AC are

mostly oriented parallel to the articular surface throughout the depth, but tissue growth and

remodelling causes the pattern of the fibres to change with age [61] [49]. In mature AC, the

distribution of collagen fibres becomes highly anisotropic and depth-dependent. In particular

three main layers can be identified, which are commonly referred to as superficial, middle

and deep zone [40]. These layers differ in terms of fibres thickness, density and orientation

leading to depth-dependent mechanical properties for the tissue. The superficial zone is the

thinnest one and is characterized by high density of small diameter collagen fibres mostly
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arranged in parallel to the articular surface, enhancing in-plane mechanical properties. In the

middle zone the fibres are thicker and oriented randomly. Hence, the mechanical response of

this layer is approximately isotropic. In the deep zone the fibres are characterized by largest

diameter and are arranged mostly perpendicularly to the subchondral bone. A plane known

as tidemark divides the deep zone from a calcified area that is sometimes described as the

fourth layer of the tissue and constitutes a transition layer between AC and subchondral bone.

The depth-dependent orientation of the fibrous reinforcement is illustrated in Figure 1.3.

Figure 1.3: Representation of the AC layers and fibre orientations through the thickness.

Intrinsic viscoelasticity (referred to as viscoelasticity hereafter) has been shown to have a

significant influence on the transient behaviour of AC in experimental studies [26] [27].

In particular, AC exhibits a viscoelastic response also in tensile testing [34] [67], where

fluid pressure is negligible and the contribution from the proteoglycans matrix is likely low

because of its small tensile stiffness compared to that of the fibrillar matrix. Hence, these

results indicate the dominant role of collagen for the observed viscoelastic properties in

tensile testing and more in general suggest the importance of collagen fibres in the transient

response of the tissue. Moreover, the viscoelastic shear modulus of AC has been reported to

increase with collagen cross-links [34].

On the other hand, the viscoelasticity of proteoglycans is not well documented and has any-

way a minor role in tension, as stated above, and also in compression, where the transient

response is dominated by flow-dependent viscoelasticity [35].

Relaxation tests have shown that AC exhibits a non-linear viscoelastic behaviour in tension

[2], i.e. a dependence of the time evolution on the value of the displacement applied and kept

constant during the test.
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1.3 Constitutive modelling of articular cartilage

A constitutive model of the solid phase of AC should be able to reproduce tension-compression

asymmetry, depth dependent mechanical properties, intrinsic viscoelasticity and finite mul-

tidimensional strains that characterize the response of the tissue to typical load in vivo.

Firstly, these requirements suggest the use of anisotropic finite deformation (i.e. non-linear)

constitutive equations, which are in fact used in most models found in the literature, e.g. [32]

[9] [47]. Another common assumption is that collagen fibres have zero compressive mod-

ulus and carry the load only in tension [34] [32] [9] [47]. Moreover, fibre engagement has

been modelled both implicitly, through a non-linear expression for the potential energy, and

explicitly by mean of an engagement function [1].

The fibre reinforcement in soft biological tissues has often been modelled by means of the so-

called superposition method, in which the potential is the linear combination of an isotropic

term describing the non-fibrous matrix and one or more anisotropic terms associated with

each family of fibres, whose directional information is represented through the definition of

a so-called structure tensor.

While this method is effective for tissues where a finite number of families of fibres can be

identified (e.g. one family for tendon and ligaments [62] and two families for the adventitial

layer of blood vessels [23]), it cannot capture the complexity of the fibre arrangement in AC.

Attempts have been made to adapt this approach by defining a framework of secondary fibre

directions on top of the one defined by the principal fibre directions [31].

A better approach to describe the complex fibre arrangement of AC is to treat the compos-

ite material in statistical terms, i.e. defining a probability distribution density function that

provides at each material point the probability of finding a fibre oriented in a given direction

[33].

Gasser et al. [13] proposed to account for fibres with statistical orientation by calculating

the directional average of the structure tensor. For tissues in which families of fibres can be

identified, it is sufficient to perform only one integration to define a scalar parameter that

accounts for fibre dispersion about the preferred orientation of a specific family. In turn, the

degree of dispersion is used to modulate the level of response, assuming that if the tissue is

stretched in the preferential direction of a family, all the fibres in that family undergo tension

and therefore bear load. This approach was for AC by Pierce [46], who introduced a discrete



CHAPTER 1. INTRODUCTION 17

real fibre distribution extracted from the imaging method described in [36].

An alternative constituent-based approach has been adopted for AC in several works, e.g.

[3] [9] [51]: at each material point the potential associated with the fibres in each direction

is computed and integrated over the unit sphere weighted by a normalized fibre distribution

function. This procedure corresponds to a directional average of the fibre potential. In this

case, the deformation features in the integral, which therefore cannot be calculated a priori.

As a consequence, an analytical use of this potential is impossible.

In particular, Federico and Gasser [9] introduced a three dimensional statistical distribution

function that accounts for both the depth-dependent preferential orientation and the disper-

sion of the fibres. This function was used as an example in this work and is described in detail

in section 3.3. In [9] the numerical evaluation of the integrals is performed using the method

of spherical design, that was adopted for the model presented in the following chapters and

it is discussed in section 3.6.2.

The intrinsic viscoelasticity of collagen fibres has been modelled with linear [57], quasi-

linear [26] and non-linear viscoelastic formulations [43].

One of the first attempts was made by Hayes and Mockros [18], who used a generalized

Kelvin model (a series of Kelvin models). The choice of a linear viscoelastic model is

justified by its simplicity, but it can hardly reproduce the time dependent response of AC.

Moreover, it is only suitable under the assumption of small deformations. The quasi-linear

viscoelastic (QLV) model, originally proposed by Fung [12], is a common choice in the

literature for fibre reinforced tissues [21] [62] and specifically for AC [32]. This approach

preserves the linearity in time but introduces the non-linear relation between stress and strain

typical of highly deformable materials. Hence, it is suitable in the framework of finite defor-

mations. Holzapfel and Gasser [21] developed a time discretisation procedure that eases the

finite element implementation of this model. This method is based on the concept of internal

variables, presented in section 2.5. The derivation for the model developed here is reported

in section 3.6.3. A fully non-linear viscoelastic formulation increases the level of complex-

ity of the model, but it is motivated by experimental evidence of non-linear time dependent

behaviour of the tissue (see section 1.2).

An alternative approach is represented by a constituent-based model in which specific vis-

coelastic parameters are defined for each constituent, as proposed by Vena et al. [62] for lig-

aments. The study showed that a mixture of quasi-linear viscoelastic constituents generates
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a non-linear response for the whole tissue, as it is discussed in more detail in section 3.2.2,

suggesting a possible explanation for the non-linear viscoelastic behaviour of soft biological

tissues as well as a convenient way to model it. This approach was later adopted to model

the specific case of AC [32].

Recently, Gasser [14] developed an invariant-based framework for finite strain viscoelastic-

ity that describes the viscoelastic continuum as the superposition of a Maxwell body and an

elastic body having two independent reference configurations. This formulation coincides

with the standard quasi-linear models when linearised around the thermodynamic equilib-

rium, but it is valid also for configurations away from it.

1.4 Objective

The long-term goal of the present work was to introduce a hyperelastic constitutive model

for the solid phase of AC that accounts for the anisotropic structural arrangement of the

collagen fibres reinforcement and provides a general approach compatible with a viscoelastic

formulation valid away from the thermodynamic equilibrium (e.g. [14]) and ultimately with

the numerical implementation of the fluid-related response of the tissue.

The primary objective was to introduce an invariant-based viscoelastic formulation of the

free-energy function presented in [9], that represents distributed fibres in a continuum sense

and that accounts for their directional characteristics as well as their intrinsic viscoelastic

behaviour. The specific aims are (1) including the three-dimensional information on the fibre

distribution into a purely structural quantity, i.e. a generalized structure tensor similar to the

one in [13] but suitable for AC, (2) incorporating a viscoelastic formulation valid around

the thermodynamic equilibrium and capable of reproducing the non-linear time-dependent

behaviour of the tissue in tension, (3) deriving the corresponding numerical model and im-

plementing an efficient solution procedure.



Chapter 2

Continuum mechanical framework

In this chapter an overview of the main aspects of continuum mechanics at large defor-

mations is provided, as it represents the theoretical foundation of the model developed in

this work. Starting from the definition of basic quantities like strains and stresses, the focus

moves towards the specific case of biological tissues through the concepts of hyperelasticity,

incompressibility and fibre reinforcement, concluding with viscoelasticity at large deforma-

tions. Finally the concept of elasticity tensor is introduced, which is fundamental for the

numerical implementation of the model.

2.1 Motion and deformation gradient

A deformable body, within the framework of 3D Euclidean space R3, can be described as a set

of interacting particles embedded in the domain Ω ∈ R3. Among all possible configurations

assumed by the body during its motion, one is chosen as reference and denoted as Ω0. In this

configuration, every point in the body is uniquely identified by the position vector

X = XIEI I = 1, . . . , 3 (2.1)

where {E1,E2,E3} is the basis of the underlying coordinate system. For simplicity, the

orthogonal cartesian basis is used. The motion of the body to the so-called current configu-

ration Ωϕ can be described as the combination of the motion of all its points

x = xiei i = 1, . . . , 3 (2.2)

19
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where {e1, e2, e3} is the basis of the current configuration. In this work it assumed that the

two sets of base vectors are coincident, i.e. EI ≡ ei, which is convenient since all the possible

motions take place within the Euclidean space.

In the following, capital letters are used to identify entities related to the reference (also

called material or Lagrange) configuration, and small letters for those related to the current

(also called spatial or Eulerian) reference.

The simplification used in the linear theory that the two sets of coordinates XI and xi are

also coincident cannot be used in the context of finite elasticity due to the large displace-

ments involved.

To describe the deformation process locally, a tensor F is introduced which maps a material

line element of the initial configuration dX in the reference configuration, to a line element

dx in the current configuration.

dx = FdX or dxi = FiJdXJ (2.3)

In the equation above F represents a gradient and it is therefore known as deformation gra-

dient. Thus, the components of F are given by the partial derivatives xi,J = ∂xi/∂XJ :

F =
∂xi
∂XJ

ei ⊗ EJ or FiJ =
∂xi
∂XJ

(2.4)

The inverse of the deformation gradient F−1 defines the inverse relation

dX = F−1dx (2.5)

It is now possible to express the transformation of differential surface elements, which is

given by Nanson’s formula (see e.g. [25])

da = nda = JF−TNdA = JF−TdA (2.6)

where J = detF and N and n are the normal vectors corresponding to dA and da, respec-

tively.

The transformation between volume elements, defined as the scalar product of infinitesimal
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surface element and an infinitesimal vector, is immediately given by

dv := dx · dan = FdX · JF−TdAn = JdV (2.7)

which shows that J represent a volume ratio. To exclude self-penetration of the body and

ensure that the deformation gradient is non singular (i.e. invertible), F should then fulfil the

following condition:

J = detF > 0 (2.8)

The deformation gradient F represents the transformation of dX into dx and it includes

the changes in modulus, direction and orientation. However, the deformation is related only

to the change in length of an infinitesimal vector. Hence, the motion can be split into the

sequence of a deformation and a rotation through a polar decomposition:

F = RU with RT = R−1 ; UT = U (2.9)

where the orthogonal tensor R is an isometric transformation that changes only direction and

orientation of a vector and the positive definite symmetric tensor U, defined by the relation

‖dx‖ = ‖UdX‖, is known as the right stretch tensor.

2.2 Strain measures

Unlike displacements, strains are not measurable quantities. They are introduced to simplify

analyses and are based on a concept, allowing many possible definitions. Those presented

in this section represent the most common choices in solid mechanics and are based on the

definition of rotation-independent deformation tensors.

The distance between two sufficiently close points X and Y in the reference configuration

can be expressed as

dX = dεm0 with dε = |Y −X| , m0 =
Y −X

|Y −X|
(2.10)

where dε is a scalar value and m0 is a unit vector (i.e. |m0| = 1).

The deformation gradient F can then be used to compute the corresponding vector dx in

the spatial configuration. In particular the application of F to the unit vector m0 provides a
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measure of the stretch applied in the direction of m0

λm0(X) = F(X)m0 (2.11)

The vector λm0 is the so-called stretch vector and its modulus λ is known as stretch ratio.

The stretch ratio can be used to determine whether during the deformation a line element

was compressed (λ < 1), unstretched (λ = 1) or extended (λ > 1).

It is then possible to define the right Cauchy-Green deformation tensor C through the square

of the stretch ratio:

λ2 = λm0 · λm0 = Fa · Fa = m0 · FTFa = m0 ·Ca (2.12)

C = FTF or CIJ = FiIFiJ (2.13)

Using the properties of U and R, C can be written as

C = FTF = UTRTRU = UTU = U2 (2.14)

which confirms that C is purely a measure of the deformation.

Also, the right Cauchy-Green tensor is symmetric and positive definite ∀x ∈ Ω:

C = FTF = (FTF)T = CT and u ·Cu > 0 ∀u 6= 0 (2.15)

At this point a strain measure can be introduced to evaluate how much a given displace-

ment differs locally from a rigid body displacement. The Green-Lagrange strain tensor E is

derived from the change in the squared lengths:

1

2

[
(λdε)2 − dε2

]
=

1

2

[
(dεm0) · FTF (dεm0)− dε2

]
= dX · EdX (2.16)

E =
1

2

(
FTF− I

)
=

1

2
(C− I) or EIJ =

1

2
(FiIFiJ − δIJ) (2.17)

The Green-Lagrangian strain tensor is a measure of how much C differs from I and therefore

it equals zero when no deformation is acting on the body. Also, given the symmetry of C and

I, E is obviously symmetric.

It should be noted that the tensors C and E operate solely in material reference. Similarly,

a deformation measure can be derived with respect to the spatial configuration. For this
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purpose the inverse stretch vector λ−1
mϕ in the direction of mϕ, for each x ∈ Ωϕ might be

define as:

λ−1
mϕ(x) = F−1(x)mϕ (2.18)

In analogy with the definitions for the reference configuration, the norm λ−1 of the inverse

stretch vector λ−1
mϕ is known as inverse stretch ratio and the unit vector mϕ identifies the

direction of the spatial line element dx, with dx = dε̃mϕ.

The left Cauchy-Green tensor is defined trough the square of the inverse stretch ratio:

λ−2 = λ−1
mϕ · λ−1

mϕ = F−1mϕ · F−1mϕ = mϕ · F−TF−1mϕ = mϕ · b−1mϕ (2.19)

where b is the left Cauchy-Green tensor, given by

b = FFT or bij = FiIFjI (2.20)

As the corresponding tensor in material description, b is symmetric and positive definite

∀xϕ ∈ Ωϕ:

b = FFT = (FTF)T = bT and u · bu > 0 ∀u 6= 0 (2.21)

The most used strain measure in the spatial configuration is the Euler-Almansi tensor e,

which is defined using the change in square length similarly to the Green-Lagrange tensor in

material reference (in fact e is the push-forward of the E). In particular, with the use of 2.19,

the expression of the strain tensor is given by

1

2

[
dε̃2 − (λ−1dε̃)2

]
=

1

2

[
dε̃2 − (dε̃mϕ) · F−TF−1(dε̃mϕ)

]
= dx · edx (2.22)

e =
1

2

(
I− F−TF−1

)
=

1

2

(
I− b−1

)
or eij =

1

2

(
δIJ − F−1

Ii F
−1
Ij

)
(2.23)

2.3 Stress measures

In continuum mechanics, stress is a physical quantity that expresses the internal forces that

neighbouring particles of a continuous material exert on each other. Quantitatively, the stress

is expressed by the traction vector, defined as the traction force F between adjacent parts of

the material across an imaginary separating surface, divided by the area of the surface. The
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infinitesimal force acting on a surface element df can be defined as

df = tda = TdA (2.24)

where t is defined with respect to the spatial configuration and it is known in the literature

as the Cauchy traction vector, while the (pseudo) traction vector T is defined with respect to

the material configuration and it is known as first Piola-Kirchhoff traction vector.

The well-known Cauchy stress theorem postulates the existence of tensor fields σ and P such

that:

t(x,n) = σ(x)n or ti = σijnj (2.25)

T(X,N) = P(X)N or Ti = PiINI (2.26)

where N and n are the normals corresponding to the surface elements dA and da, while

the tensor σ denotes the symmetric Cauchy (or true) stress tensor and P denotes the first

Piola-Kirchhoff (or nominal) stress tensor.

The stress tensors are related by the so-called Piola transformation, given by the substitution

of (2.25) and (2.26) into (2.24) and the use of the Nanson’s formula:

P = JσF−T or PiI = JσijF
−1
Ij (2.27)

Another stress tensor acting on the spatial configuration and often used in computational

mechanics is known as Kirchhoff stress tensor τ and it is defined as

τ = Jσ or τij = Jσij (2.28)

It should be noted that the first Piola-Kirchhoff stress tensor is in general non-symmetric,

which complicates its use in computational mechanics. To overcome this problem, the so-

called second Piola-Kirchhoff stress tensor S has been introduced, computed by performing

the pull-back operation on the spatial tensor τ :

S = F−1τF−T or SIJ = F−1
Ii F

−1
Jj τij (2.29)

The stress tensor S does not have any physical interpretation in terms of surface tractions.

Nevertheless, it is very useful in computational mechanics because it is symmetric and in
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the definition of constitutive relation because it acts on the material reference and it is work

conjugate to the Green-Lagrange strain tensor.

Finally, the second Piola-Kirchhoff stress tensor can be related to the Cauchy stress substi-

tuting (2.28) into 2.29:

S = JF−1σF−T = F−1P = ST or SIJ = JF−1
Ii F

−1
Jj σij = F−1

Ii PiJ = SJI (2.30)

where the use of (2.27) reveals also the relation with the first Piola-Kirchhoff stress tensor

P = FS or PiI = FiJSJI (2.31)

2.4 Hyperelastic materials

A so-called hyperelastic material postulate the existence of a Helmotz free-energy function

Ψ, which is defined per unit reference volume rather than per unit mass. If Ψ is only function

of some strain tensor, the Helmotz free-energy function is referred to as the strain-energy

function and both the terminologies will be use in this work.

A hyperelastic material is defined as a subclass of an elastic material whose response can be

expressed as

P =
∂Ψ(F)

∂F
or σ = J−1∂Ψ(F)

∂F
FT (2.32)

with respect to the material or the spatial configuration respectively.

It is assumed throughout this work that the strain-energy function vanishes in the reference

configuration, i.e. when F = I. Also, the strain-energy function should increase with the de-

formation to guarantee physical behaviour. Thus, the range of admissible functions is limited

by the following two conditions:

Ψ = Ψ(I) = 0; Ψ = Ψ(F) ≥ 0 (2.33)

It follows that the residual stress (i.e. the stress in the undeformed configuration) is assumed

to be zero. The reference configuration is therefore defined as stress-free. The strain energy

function should also be objective, i.e. translations and rotations should not affect the amount

of energy stored in the body. This is represented by the restriction

Ψ(F) = Ψ(QF) (2.34)
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where Q is an orthogonal tensor. Hence, using the polar decomposition (2.9) and choosing

the transpose of the proper orthogonal rotation tensor as a specific case for Q, it is possible

to write

Ψ(F) = Ψ(RTF) = Ψ(RTRU) = Ψ(U) (2.35)

Using (2.14) and (2.32) it is finally possible to write the potential energy and the stress tensor

as a function of C:

Ψ(F) = Ψ(C) ⇒ P =
∂Ψ(C)

∂C

∂C

∂F
= 2F

∂Ψ(C)

∂C
(2.36)

2.4.1 Incompressible hyperelastic materials

Materials that keep the volume constant throughout a motion are characterized by the incom-

pressibility constraint, that can be expressed as

J = detF = 1 or J2 = detC = 1 (2.37)

It is possible to separate the volumetric part and the isochoric part of the free-energy function,

which is convenient when incompressible materials are studied because they show strong

differences between the bulk and the shear behaviour.

To do this, the deformation gradient F is decomposed into

F = (J1/3I)F̄ (2.38)

where (J1/3I) represents the dilatation part and F̄ the distorsional part, so that detF̄ = 1.

The tensor F̄ can be defined as isochoric deformation gradient. Consequently the modified

right and left Cauchy-Green tensors can be defined as

C = FTF = J2/3C̄, C̄ = F̄TF̄ (2.39)

b = FFT = J2/3b̄, b̄ = F̄F̄T (2.40)

The free-energy function can then be written as

Ψ(C) = U(J) + Ψ̄(C̄) (2.41)

where U(J) and Ψ̄(C̄) describe the volumetric and the isochoric contribution to the poten-
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tial, respectively. If a much higher external work is required to generate dilatational than

distorsional changes the material is defined nearly-incompressible. For this class of material

(that include biological tissues) the compressibility effects are small and it is still possible

to use the decoupled form of the potential. It should also be noted that for incompressible

materials it is not necessary to define U(J).

Accordingly, the second Piola-Kirchhoff stress tensor can be computed by mean of the addi-

tive split

S = 2
∂Ψ(C)

∂C
= 2

∂[U(J) + Ψ̄(C̄)]

∂C
= Svol + S̄ (2.42)

It is necessary to compute the derivative of the modified right Cauchy-Green tensor C̄ relative

to C. Given the definition of J2 in (2.37), the introduction of the standard expression for the

derivative of the determinant of a second order tensor leads to

∂J2

∂C
=
∂(det(C))

∂C
= det(C)[C−1]T = J2C−1 (2.43)

which gives

∂J2

∂C
= 2J

∂J

∂C
=⇒ ∂J

∂C
=
J

2
C−1 (2.44)

∂J−2/3

∂C
= −2

3
J−2/3 ∂J

∂C
= −1

3
J−2/3C−1 (2.45)

Hence, the derivative of C̄ relative to C is given by

∂C̄

∂C
=
∂[J−2/3C]

∂C
= J−2/3∂C

∂C
+ C⊗ ∂J−2/3

∂c
= J−2/3

[
I− 1

3
(C⊗C−1)

]
︸ ︷︷ ︸

PT

= J−2/3PT

(2.46)

where I is the fourth order identity tensor, defined as A = I : A (where A is a second order

tensor) and PT defines the projector tensor (with respect to the reference configuration)

P = I− 1
3
(C−1⊗C), which furnishes the deviatoric operator so that [P : (·)] : C = dev(·) :

C = 0.

It is then possible to compute

Svol = 2
∂U(J)

∂J

∂J

∂C
= pJC−1 (2.47)
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S̄ = 2
∂Ψ(C̄)

∂C̄

∂C̄

∂C
= J−2/3P : S̃ = J−2/3devS̃ (2.48)

where p = ∂U(J)/∂J is the hydrostatic pressure and S̃ = 2∂Ψ̄/∂C̄ is a (fictitious) iso-

choric second Piola-Kirchhoff stress. Under the hypothesis of incompressibility the hydro-

static pressure is a Lagrange multiplier and can only be determined from the boundary con-

ditions.

The Cauchy stress can be compute through an inverse Piola transformation of (2.42)

σ = J−1χ∗[S] = σvol + σ̄ or σij = J−1FiIFjJSIJ (2.49)

with

σvol = pχ∗[C
−1] = pI (2.50)

σ̄ = J−5/3χ∗[P] : χ∗[S̃] = J−2/3p : σ̃ (2.51)

where p = I− 1
3
(I⊗ I) furnishes the deviatoric operator in the spatial configuration, so that

[p : (·)] : I = 0 and σ̃ = J−1χ∗[S̃] is the (fictitious) isochoric Cauchy stress.

2.4.2 Isotropic hyperelastic materials

A material is considered isotropic if its response in a stress-strain test is the same in all direc-

tion. In other words, a hyperelastic material is isotropic relative to the reference configuration

Ω0 if a motion superimposed on any particularly translated and/or rotated leads to the same

strain-energy function. This condition is guaranteed by the following equality

Ψ(F) = Ψ(FQT) (2.52)

where F is the deformation gradient and Q is an orthogonal tensor, which in turn can be

expressed as a function of the right Cauchy-Green tensor C as

Ψ(C) = Ψ(QFTFQT) = Ψ(QCQT) (2.53)
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According to the representation theorem for invariants, every strain energy function that

possesses this property can be expressed as a set of independent invariants of its argument,

Ψ(C) = Ψ(I1(C), I2(C), I3(C)) (2.54)

where Ia(C), a = 1, 2, 3 are the standard invariants of the right Cauchy-Green tensor

I1 = tr(C), I2 =
1

2

[
(tr(C))2 − tr(C2)

]
, I3 = det(C) (2.55)

Introducing the decoupled form of the potential and the incompressibility assumption (i.e.

I3 = J2 = 1, see (2.37)), the isochoric part of the strain-energy can be written as a function

of the first and the second invariant of the modified right Cauchy-Green tensor

Ψ̄(C̄) = Ψ̄(Ī1(C̄), Ī2(C̄)) (2.56)

The so called neo-Hookean model is the simplest representation of this class of materials

and it extends the Hooke’s law for linear materials to the range of large deformation. The

expression of the isochoric strain-energy function reads

Ψ̄(C̄) = c1(Ī1 − 3) (2.57)

where c1 is a material parameter equal to half of the shear modulus in the reference configu-

ration and Ī1 = tr(C̄) is the first invariant of the modified right Cauchy-Green tensor.

2.4.3 Fibre reinforced hyperelastic materials

Biological tissues are usually composed of a matrix material and one or more families of

fibres that generate strong directional properties and anisotropic mechanical behaviour. It is

assumed that the fibres have single preferred direction, that they are continuously distributed

throughout the material and that they are the only source of anisotropy. Moreover, micro-

mechanical aspects are disregarded.

A material reinforced by one family of fibres typically shows much higher stiffness in the

fibre direction and is isotropic in all the directions orthogonal to the fibres. This symmetry

properties is called transverse isotropy. For this class of materials, the stress at a material
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point depends on the deformation gradient, but also on the direction of the fibres throughout

the material, which can be described in the reference configuration by a unit vector field

a0(X), |a0| = 1. After the deformation, the fibres will have a new preferred direction, de-

fined by a unit vector field a(x), |a| = 1, but also a new length. Hence, the stretch λ defined

in (2.11), that is related to the right Cauchy-Green tensor by (2.13), must also be determined.

The fibre direction in the reference configuration must be included in the expression of the

free energy. In particular, since the sense of a0 is immaterial, the potential is chosen as an

even function of a0 and the second order tensor H, known as structure tensor, is introduced

as an argument:

H = a0 ⊗ a0, Ψ = Ψ(C, a0 ⊗ a0) (2.58)

It should be noted that objectivity is trivially satisfied as the potential is function of quantities

defined with respect to the reference configuration.

It can be shown (e.g. see [25]) that the requirement for transverse isotropy becomes

Ψ(C, a0 ⊗ a0) = Ψ(QCQT,Qa0 ⊗ a0Q
T) (2.59)

Similarly to the case of isotropy, it is also possible to write the potential using a set of

independent invariants, but it is necessary to define two additional invariants in order to fulfil

(2.59) (a complete description is given in [56]):

I4(C, a0) = a0 ·Ca0 = λ2 , I5(C, a0) = a0 ·C2a0 (2.60)

The invariants above describe the properties of the fibres and their interaction with other ma-

terial constituents.

The same approach can be extended to materials with more than one family of fibres by intro-

ducing similar invariants for each family and additional expression describing the anisotropy

generated by the interaction of different families.

2.5 Viscoelasticity at finite deformation

In this section a three-dimensional viscoelasticity framework based on the concept of inter-

nal variables is described, that is suitable for highly deformable materials. This approach is
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convenient for the definition of numerical models using the finite element method and it can

be applied to highly deformable materials for small perturbation away from the equilibrium

state. For these reasons it is commonly used in the literature, e.g. see [52] [20].

Internal variables describe aspects of the internal structure of materials associated with dis-

sipative effects, and they are introduced as phenomenological variables constructed math-

ematically within a macroscopic framework (similarly to the ‘dashpot elements’ in linear

viscoelastic models). They influence strain and stresses, and they are often referred to as his-

tory variables (Γα) since their evolution reflects the history of the deformation. The current

state of a viscoelastic material can then be described by the deformation gradient and the

current values of a set of internal variables (note that strain is independent of past values of

history variables).

In accordance with the previous sections a decoupled representation of the strain-energy

function is used. The change of the potential from the reference to the current configuration

within a isothermal transformation is then given by

Ψ(C,Γ1, . . . ,Γm) = U∞(J) + Ψ̄∞(C̄) +
m∑
α=1

Υα(C̄,Γα) (2.61)

The first two terms, U∞(J) and Ψ̄∞, describe the equilibrium state of the solid. According to

(2.41), they represent the volumetric and the isochoric part of the elastic response as t→∞,

respectively. The additional term represents the ‘dissipative’ viscoelastic contribution.

A common assumption, based on experimental evidence, is that the time-dependent prop-

erties are function only of the isochoric part of the deformation. Thus, the volumetric part

remains fully elastic and can be described with the equation introduced in section 2.4.1. The

viscoelastic behaviour instead is function of the modified right Cauchy-Green tensor C̄ and

it is modelled as the superposition of α = 1, . . . ,m viscoelastic processes, each character-

ized by a particular relaxation time τα ∈ (0,∞), which characterizes the rate of decay of

stress and strain. The condition of non-negative internal dissipation, required by the second

law of thermodynamics, can be enforced using the Coleman-Noll procedure (for a complete

description the reader is referred to [25]), which leads to the following expressions for the
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Second Piola-Kirchhoff stress tensor and the internal dissipation:

S = 2
∂Ψ(C,Γ1, . . . ,Γm)

∂C
= S∞vol + S̄∞ +

m∑
α=1

S̄Vα (2.62)

Dint = −
m∑
α=1

2
∂Υα(C̄,Γα)

∂Γα

:
1

2
Γ̇α ≥ 0 (2.63)

where the tensor variables S̄Vα have been introduced, which represent non-equilibrium stresses.

This quantity is defined in analogy with (2.48)

S̄Vα = J−2/3P : S̃Vα with S̃Vα = 2
∂Υα(C̄,Γα)

∂C̄
(2.64)

where the fictitious non-equilibrium stress S̃Vα is introduced. Based on the equilibrium equa-

tion for a linear viscoelastic solid, the non-equilibrium stresses can be related to the strain-

like quantities Γα resulting in an equivalent expression for the internal dissipation:

S̄Vα = −2
∂Υα(C̄,Γα)

∂Γα

⇒ Dint =
m∑
α=1

S̄Vα :
Γ̇α

2
≥ 0 (2.65)

Additional equations of evolution must be defined in order to satisfy the inequality (2.63)

(i.e. the condition of local entropy production). An extension of the evolution equations for

the linear case leads to
˙̄S
V

α +
S̄Vα
τα

= ˙̄Sα , α = 1, . . . ,m (2.66)

which is valid for a semi-open time interval t ∈ (0, T ]. The values of the internal variables

at initial time t = 0 are assumed to be zero, since a stress-free reference configuration is

considered. The tensor S̄α is the isochoric second Piola-Kirchhoff stress corresponding to the

system related to the α-relaxation process with relaxation time τα ∈ (0,∞). S̄α is defined

according to equation (2.48) as

S̄α = J−2/3P : S̃α (2.67)

where S̃α = 2∂Ψ̄α/∂C̄ is a (fictitious) isochoric second Piola-Kirchhoff stress.

The set of linear equations (2.66) has a physical basis, provides a good approximation of

the behaviour of real materials under large deformation and it is also suitable for efficient

numerical time integration scheme.

Finally, disregarding an instantaneous response at t = 0 the closed form solution of equations
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(2.66) is given by the convolution integrals

S̄Vα =

∫ t=T

t=0

exp

{
−(T − t)

τα

}
˙̄Sα(t) dt (2.68)

The integral (2.68) defines a so-called quasi-linear viscoelastic response: compared to a

standard linear viscoelastic model, the relation between stress and strain becomes non-linear

due to finite deformations but the linearity in the time domain is preserved.

2.6 Elasticity tensor

In order to compute the solution of non-linear problems in finite elasticity, a sequence of

linearised problem is derived using Newton-like techniques, and solved instead. Hence, from

the computational point of view it is important to derive a linearisation of the constitutive

relations defined above.

The non-linear second Piola-Kirchhoff stress tensor S is assumed to be solely a tensor-valued

function of one tensorial variable, in particular the right Cauchy-Green tensor C. A first order

Taylor expansion of S around C then gives

S(C + dC) = S(C) + dS +O(dC) (2.69)

with

dS =
∂S(C)

∂C
: dC = 2

∂S(C)

∂C
:

1

2
dC (2.70)

where

C = 2
∂S(C)

∂C
or CIJKL = 2

∂SIJ
∂CKL

(2.71)

is known as elasticity tensor and represent the derivative of S relative to C and it is therefore

a fourth order tensor. The elasticity tensor relates the work conjugate pairs of stress and strain

tensors, measuring the change of stress resulting from a change in strain.

It should be emphasized that for hyperelastic materials C possesses minor and major sym-

metries. The minor symmetries can be expressed in index form as

CIJKL = CJIKL = CIJLK (2.72)

and they arise from the symmetries of S and C. Therefore they are typical of all elastic
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materials and they do not require the existence of a hyperelastic potential.

On the other hand, the major symmetries hold if a hyperelastic strain-energy functionΨ is de-

fined. Using the definition of the second Piola-Kirchhoff with respect to the potential energy

(2.42) it is possible to write

C = 2
∂

∂C

[
2
∂Ψ(C)

∂C

]
= 4

∂2Ψ(C)

∂C∂C
or CIJKL = 4

∂2Ψ

∂CIJ∂CKL
(2.73)

which directly provides the symmetry relation

C = CT or CIJKL = CKLIJ (2.74)

Due to the symmetries, the elasticity tensor C has only 21 independent components. The ma-

jor symmetries are particularly important from a numerical point of view as they guarantee

the symmetry of the tangent stiffness matrix in a finite element formulation.

The elasticity tensor in spatial reference is computed through an inverse Piola transformation

(sometimes in the literature a normal push-forward operation is used instead):

c = J−1χ∗[C] or cijkl = J−1FiIFjJFkKFlLCIJKL (2.75)

Minor and major symmetries hold also in the spatial reference (the latter only if hyperelastic

potential can be defined).

According to the decoupled definition of the second Piola-Kirchhoff stress tensor (2.42) the

elasticity tensor in material reference can be written as

C = 2
∂Svol(C)

∂C
+ 2

∂S̄(C̄)

∂C̄
= Cvol + C̄ (2.76)

Using arguments introduced in previous sections, a straightforward but lengthy calculation

that for brevity is not reported here (see e.g. [25]) leads to the following expression for

volumetric and isochoric contribution:

Cvol = Jp̃C−1 ⊗C−1 − 2JpIC−1 (2.77)

C̄ = J−4/3P : C̃ : P +
2

3
Tr(J−2/3S̄)P̃− 2

3
(C−1 ⊗ S̄ + S̄⊗C

−1
) (2.78)
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where the scalar function p̃ = p + J(dp/dJ), the referential isochoric (fictitious) elasticity

tensor C̃ = 4∂2Ψ̄/∂C̄2 and the fourth order tensor [IC−1 ]IJKL = 1
2
(C−1

IKC
−1
JL + C−1

ILC
−1
JK) are

introduced. Moreover, the referential trace operator Tr[·] := [·] : C and the referential fourth

order projection tensor P̃ = IC−1 − 1
3
(C−1 ⊗C−1) are utilized.

An inverse Piola transformation of (2.76) gives the definition of the decoupled elasticity

tensor in the spatial configuration

c = J−1χ∗[C] = cvol + c̄ (2.79)

with

Cvol = p̃I⊗ I− 2pI (2.80)

C̄ = J−4/3p : c̃ : p +
2

3
J−2/3tr(σ̃)p− 2

3
[I⊗ σ̄ + σ̄ ⊗ I] (2.81)

where c̃ = J−1χ∗[C̃] is the spatial isochoric (fictitious) elasticity tensor and the spatial trace

operator tr[·] := [·] : I is utilized.

The equations above are compact notations for the material and spatial tensors, but an effi-

cient finite element implementation requires these expressions to be elaborated for a partic-

ular constitutive model.



Chapter 3

Methods

In this chapter the constitutive equations and the relative numerical implementation are de-

scribed. It is assumed that fibres are continuously distributed throughout the material so that

the continuum theory of fibre reinforced composite materials (see section 2.4.3, or [25] for a

complete discussion) is the constitutive theory of choice. The elastic strain energy function

of a material with statistical fibre distribution is obtained from that of a composite material

with a family of perfectly aligned fibres by using a directional average of the structure tensor

(2.58) and suitably modified to account for tension compression asymmetry of collagen fi-

bres. The stress and elasticity tensors are computed as the first and second derivatives of the

elastic potential with respect to a suitable strain measure. A probability distribution function

is also proposed and its use in the model is discussed. Finally, the main aspects of the finite

element implementation are outlined and some illustrative examples are described.

3.1 Structure tensor

Soft tissues with fibre reinforcement are often modelled using the superposition method and

including the directional information of each family of fibres into a structure tensor (see sec-

tion 2.4.3). However, the complex three-dimensional network of collagen that characterizes

AC can be more effectively modelled as one family of fibres statistically distributed around

a polar axis.

To account for such configuration, it was proposed in [13] to define a generalized structure

tensor by calculating the directional average of the structure tensor (2.58). For completeness

and continuity, the derivation of this tensor is reported below, as it represents the foundation

of the one introduced in section 3.2 for the specific case of AC.

36
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Following [13], an orthonormal basis of the Eulerian space R3 is considered. The choice of

the basis is arbitrary, but for sake of simplicity the canonical basis ({ê1, ê3, ê3}) is used. A

generic unit vector M (|M| = 1) can be expressed in polar coordinates as function of the co-

latitude Θ from the polar axis K (without loss of generality K = ê3 is chosen) and longitude

Φ from the ê1 − ê3 plane as

M(Θ,Φ) = sin Θ cos Φ ê1 + sin Θ sin Φ ê2 + cos Θ ê3. (3.1)

where Θ ∈ [0, π] and Φ ∈ [0, 2π] (see Figure 3.1). For each M,−M is also included in the

ranges of the Eulerian angles.

A probability distribution ρ(M) is introduced, that characterizes the distribution of fibres in

the reference configuration Ω0. The distribution is defined such that ρ(M(Θ,Φ)) sin ΘdΘdΦ

represents the number of fibres with orientation in the range [(Θ,Θ +dΘ), (Φ,Φ +dΦ)] (see

Figure 3.1). Moreover, it has to obey the symmetry condition ρ(M) ≡ ρ(−M) and to be

normalized over the unit sphere such that

1

4π

∫
S2

ρ(M(Θ,Φ)) dS =
1

4π

∫ 2π

0

∫ π

0

ρ(Θ,Φ) sin Θ dΘ dΦ = 1 (3.2)

where S2 is the unit sphere and the polar representation of M was used to express the proba-

bility distribution as a function of Θ and Φ.

The directional average of any function f(M) is then given by

〈f〉 =
1

4π

∫
S2

ρ(M)f(M) dS =
1

4π

∫ 2π

0

∫ π

0

ρ(Θ,Φ)f(M(Θ,Φ)) sin Θ dΘ dΦ (3.3)

Due to the symmetry requirement on the density function, only general orthotropic distri-

butions are suitable to represent the fibres. In particular, a transversely isotropic distribution

around the polar axis K = ê3 is chosen, that is sufficient to describe the fibre arrangement

characterizing the three zones of AC (see section 1.2). Hence, the distribution is independent

of the longitude Φ and the normalization condition becomes∫ π

0

ρ(Θ) sin Θ dΘ = 2 (3.4)

Following [13], a (symmetric) generalized structure tensor of second order can then be in-
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e1

e2

e3

Φ

Θ

dΘ M

sin Θ dΦ

Figure 3.1: Representation of the unit sphere and the typical pyramidal element and characterization
of an arbitrary unit direction vector M in polar coordinates. The fibres distribution can be seen as a
smaller pyramidal element whose base is determined by ρ(M) as a fraction of dA = sin ΘdΘdΦ.

troduced, which represents the fibre distribution:

H =
1

4π

∫ 2π

0

∫ π

0

ρ(Θ)M(Θ,Φ)⊗M(Θ,Φ) sin Θ dΘ dΦ =
1

4π

∫
S2

ρ(M)A(M) dS (3.5)

where A(M) = M⊗M is the contribution to the structure tensor associated with direction

M.

3.2 Anisotropic viscoelastic formulation at finite strains

A free energy potential was formulated based on the decoupled form of the potential de-

scribed in section 3.2. The tissue was assumed to be incompressible. This assumption, sup-

ported by the high water content in biological tissue and by experimental evidence, it is

fundamental when the decoupled potential is used to study fibre reinforced composite mate-

rials, in order to avoid non-physical behaviour of the model [19]. Moreover, the traditional

definition of a free energy function, as is adopted here, requires the use of a stress-free refer-

ence configuration.

Firstly, the equilibrium potential is considered (i.e. viscoelasticity is disregarded).

Due to the incompressibility assumption, a function U of the volumetric deformation J (2.41)
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does not need to be defined. Moreover, it is assumed that the isochoric part of the free energy

function can be expressed as the superposition of an isotropic potential Ψ̄∞g related to the

ground matrix and and a potential Ψ̄∞f due to the collagen fibre distribution

Ψ̄∞(C̄,H) = φgΨ̄
∞
g (C̄) + φf Ψ̄

∞
f (C̄,H) (3.6)

where H is defined in accordance with (3.5) and depends on a concentration parameter and

the Cauchy-Green tensor, as will be explained in more details below.

Several works, e.g. [24] [13] [1], model the ground matrix as an incompressible isotropic

neo-Hookean material. Due to the complexity of the composition of AC (see section 1.2),

this might be a too restrictive simplification. Nevertheless, in view of its simplicity, this

assumption is adopted here. Hence the free energy function associated with the matrix reads

Ψ̄∞g (C̄) =
1

2
c0(Ī1 − 3) (3.7)

where c0 denotes the neo-Hookean parameter (i.e. the shear modulus of the matrix) and Ī1 is

the standard definition of the first invariant of C̄

Ī1 = C̄ : I = tr(C̄) (3.8)

The fibre contribution is split into an isotropic contribution, that accounts for the different

‘passive’ mechanical properties with respect to the ground matrix, and an anisotropic contri-

bution that accounts for the transversely isotropic properties of the fibres.

Ψ̄∞f (C̄,H) = Ψ̄∞fi (C̄) + Ψ̄∞fa(C̄,H) (3.9)

For simplicity, the isotropic contribution is modelled as a neo-Hookean material character-

ized by a parameter cfi 6= c0 , i.e.

Ψ̄∞fi (C̄) =
1

2
cfi(Ī1 − 3) (3.10)

As described in section 1.2, collagen fibres are wavy in the reference configuration and the

load required to straighten them can be neglected when compared to the load that they trans-

mit once stretched (i.e. collagen fibres are assumed to transmit load only if stretched beyond

the point where undulations disappear). This phenomenon can be effectively modelled by
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means of a non-linear expression for the potential and such solution was adopted in this work.

It is reported in the literature that a quadratic function may be sufficient to effectively repro-

duce the behaviour of AC in different cases of interest, e.g. immature or engineered cartilage,

that do not exhibit strong non-linearity at large deformations [51]. Hence, the second-order

polynomial form

Ψ̄∞fa(C̄,H) =
1

2
cfaĒ

2 =
1

2
cfa(Ī4 − 1)2 (3.11)

is proposed to particularize the fibre contribution, where cfa > 0 is a stress-like parameter to

be determined from mechanical tests of the tissue and Ī4 denotes an invariant of the symmet-

ric generalized structure tensor (see [56] for a general discussion of invariants of this kind),

defined as

Ī4 = H : C̄ (3.12)

The same invariant can be defined for each component of the structure tensor, i.e

ĪM4 = A : C̄ = (M⊗M) : C̄ = M · C̄M = λ̄2
M (3.13)

where it is clearly shown that the distorsional invariant ĪM4 represents the squared stretch

in the direction M, i.e. the distortional fibre stretch under the hypothesis of perfect bonding

between fibres and matrix. Note that A : I = H : I = 1. Ī4 can be interpreted as an extension

of (3.13) and it is used to define the Green-Lagrange strain-like quantity Ē = H : C̄ − 1,

which characterizes the weighted averaged strain of the fibres at the material point.

Finally, it is assumed that collagen fibres would buckle under the smallest compressive load

(i.e. they are characterized by zero compressive modulus) [34]. This modelling assumption,

common for the representation of soft tissues with fibre reinforcement, is not only based on

physical reasons and experimental evidence, but also essential for stability [22] [13] [9]. It is

therefore assumed that the fibres contribute to the anisotropic potential Ψ̄∞fa only if the strain

in their axial direction is positive, i.e. if ĪM4 > 1.

In biological tissues in which families of fibres can be identified, it is sufficient to check

the preferred orientation assuming that if the fibres in that direction are stretched, then all

the fibres at that point are stretched as well [13], while the dispersion about the polar axis

modulates the level of response. This assumption is not valid for the network of collagen

in AC. Under physiological load, the depth-dependent stiffness of the tissue generates a

complex three-dimensional deformation state such that at each point in the continuum some
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of the fibres are stretched while other are compressed.

This has two important implications: firstly, the stretch must be evaluated in every direction

and the definition (3.5) of the structure tensor H should be modified to include only the con-

tribution of stretched fibres; secondly, at each loading step the integration must be performed

at each material point.

3.2.1 Modified structure tensor

The expression of the structure tensor must be suitably modified so that the contribution

A(M) associated with compressed fibres does not affect the anisotropic fibre contribution.

The idea is that the strain-like quantity Ē in the energy expression should be zero in the

initial configuration Ω0, which is assumed to be stress-free, and also in every configuration

where fibres are either compressed or undeformed. Moreover, when fibres are stretched in

some directions and compressed in others, only the stretched bundles should affect the po-

tential.

A solution often adopted in the literature is the introduction of a Heaviside function that

completely eliminates the contribution of compressed bundles [13] [51] [9], thus defining

an effective volume fraction. This approach is effective when an ensemble fibre potential is

considered, i.e. when the potential associated with each direction is computed independently

and then integrated over the sphere [9], but it leads to non-physical results when used in the

directional average for the structure tensor, as it is shown with an example below. The differ-

ence is that in the former case the step function is directly applied on the energy contribution

making it null, whereas in the latter case it acts on a stretch measure (H : C̄) that should

always be greater than zero.

The contribution to the structure tensor in the direction of compressed fibres should be such

that it generates a unit stretch under the current deformation state. Hence, this contribution

cannot be computed a priori but has to be related to the deformation tensor.

In particular, the definition of the contribution to the structure tensor associated with each

direction M was modified as

A =


1
3
C̄−1 if λ̄2

M ≤ 1

M⊗M if λ̄2
M > 1

(3.14)
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It can be easily showed that the new definition of A(λ̄2
M ≤ 1) fulfils the requirements as

ĪM4 (λ̄2
M ≤ 1) = A : C̄ =

1

3
C̄−1 : C̄ =

1

3
tr(C̄−TC̄) =

1

3
tr(I) = 1

so that the strain-like quantity associated with the considered direction becomes ĒM = 0

and the anisotropic contribution to the potential vanishes for configurations where no fibres

are stretched.

Compared to the use of a step function, the definition introduced above has also the advantage

of ensuring the continuity of the integrand function, which in turn leads to the continuity of

ĪM4 with respect to the stretch λM (see Figure 3.2), and more in general of the averaged

quantity Ī4, e.g. for the initial configuration Ω0:

Ī4(Ω0) = H : C̄ = 〈A(λ̄2M = 1)〉 : C̄ = 1

Ī4(Ω+
0 ) = H : C̄ = 〈[M⊗M](λ̄2M = 1+)〉 : C̄ = 〈λ̄2

M〉 = 1

This is important for the numerical implementation of the model as it improves the stability

and it spares the use of smoothing functions sometimes required for convergence.

0.6 0.8 1 1.2 1.4
0

1

2

λ̄M

ĪM 4

(a) A(λ̄2
M ≤ 1) = 0

0.6 0.8 1 1.2 1.4
0

1

2

λ̄M

ĪM 4

(b) A(λ̄2
M ≤ 1) = 1

3C̄−1

Figure 3.2: If compressed fibres are simply disregarded ĪM4 is not a continuous function of λ̄M
(left). The proposed definition of ĪM4 ensures continuity (right). The dotted lines represent the orig-
inal definition of the structure tensor.

An alternative approach would be to integrate the structure tensor (3.5) over an effective

surface on the unit sphere that includes only stretched fibres and to weight the result for the

strain with the density fraction of stretched fibres:

Eeff =

{[
1

ρt

∫
S2
t

ρ(M)M⊗M dS

]
: C− 1

}
ρt
ρtot

(3.15)

where ρt is the density of stretched fibres and ρtot is the total fibre density, i.e. the result of

the integration of the density function over the unit sphere (in this case 4π).
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It can be shown that the two approaches are equivalent:

E∗ =

{
1

ρtot

[∫
S2
t

ρ(M)M⊗M dS +

∫
S2
c

ρ(M)
1

3
C−1 dS

]}
: C− 1

=

[
1

ρtot

∫
S2
t

ρ(M)M⊗M dS

]
: C +

ρc
ρtot
− 1

=

[
1

ρtot

∫
S2
t

ρ(M)M⊗M dS

]
: C− ρt

ρtot
= Eeff

(3.16)

The definition of the contribution (3.14) has two advantages: it does not require the redef-

inition of the integration surface and it encloses all the information in the structure tensor

without the need to operate on the strain definition.

Example

In order to clearly show the effect of the modified contribution for compressed fibres in the

structure tensor, a simplified example is analysed. Consider the configuration sketched in

Figure 3.3: a cube of incompressible hyperelastic material is constrained in direction x3 and

it is stretched along direction x1. The material is reinforced by a three dimensional network

of fibres, which can be interpreted as the limit case of a distribution in which one third of the

fibres is aligned in the direction of each of the three axes of a Cartesian basis x1, x2, x3. A

first configuration (denoted by ‘A’)is considered, with applied stretch λ1 = λA > 1.

ρ1/3 2/3 1

λ

1/λ̄
1

λ̄

x1 x2 x3

Figure 3.3: Cube of incompressible hyperelastic material reinforced by a three dimensional fibre
network under tension (left); one-dimensional representation of stretch level in the fibres (right).

Given the simple configuration of boundary conditions and loads and the fibres orientation,

the stretches along the Cartesian basis axes represent the principal stretches for the problem.
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Hence, the deformation gradient is simply given by the diagonal matrix:

F =


λ1 0 0

0 λ2 0

0 0 λ3

 (3.17)

Incompressibility prevents volume changes. According to (2.7) this can be expressed as

J = det(F) = λ1λ2λ3 = 1 (3.18)

which immediately leads to the stretch in direction x2

λ2 =
1

λ1λ3

=
1

λA
(3.19)

where λ1 = λA and λ3 = 1 due to the constraint in direction x3.

Assuming perfect bonding between fibres and matrix, the principal stretches can be directly

associated to the fibres in the corresponding direction. The stretch level in the fibres can

therefore be schematically represented as in Figure 3.3. Clearly, only the fibres in direction

x1 are stretched, and therefore they are the only ones that should contribute to the energy,

such that Ψ = f(E1), where E1 = λ2
1 − 1 is a measure of the strain in direction x1, defined

in analogy with Ē.

Using an approach similar to the one described in section 3.1, the averaged squared stretch

(corresponding to H : C̄) is used to compute the fibre contribution to the energy through the

strain measure E = 〈λ2〉 − 1.

The calculations are performed (i) according to the definition of H as in (3.5), (ii) applying

the Heaviside function to eliminate the contribution of the compressed fibres and (iii) modi-

fying H as described above in this section. The results are, respectively:

EA = λ2
A

1

3
+ 1 · 1

3
+

1

λ2
A

1

3
− 1 =

(λ2
A − 1)2

3λ2
A

EH
A = λ2

A

1

3
− 1

E∗A = λ2
A

1

3
+

2

3
− 1 =

λ2
A − 1

3

(3.20)

A second configuration (denoted by ‘B’) is then considered, in which the stretch λ1 is such
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that the strain in direction x1 is k times the corresponding strain in configuration (A) with

k > 1, i.e.

EB
1 = kEA

1 ⇒ λB1 = λB =
√
kλ2

A − k + 1 (3.21)

The energy contribution in this configuration is then expected to be ΨB = f(EB
1 ) = f(kEA

1 ).

Once again the averaged squared stretch is used to compute the energy associated with this

configuration. The results for the three cases defined above are

EB =
kλ2

A − k + 1

3
+

1

3
+

1

3(kλ2
A − k + 1)

− 1 = . . .

=
λ2
Ak

2

λ2
Ak − k + 1

(λ2
A − 1)2

3λ2
A

=
λ2
Ak

2

λ2
B

EA

EH
B =

kλ2
A − k + 1

3
− 1 = k(

λ2
A

3
− 1) +

2

3
(k − 1) = kEH

A −
2

3
(k − 1)

E∗B =
kλ2

A − k + 1

3
− 1

3
= k

λ2
A − 1

3
= kE∗A

(3.22)

The comparison of the results for the two configurations shows that only the modification

described in this work leads to the correct representation of the energy contribution. In par-

ticular the original definition of λ2 is such that the change in the compression of the fibres in

direction x2 (that should not influence the energy) modulates the change of the strain mea-

sure, whereas the introduction of the Heaviside function alters the expected energy contri-

bution with a term related to the change of strain in the stretched fibres direction. Moreover,

it should be noted that the potential defined in (3.11) is a quadratic function of the strain-

like quantity E, so that Ψ(E) = Ψ(|E|). Thus, the introduction of the Heaviside function

results in a clearly non-physical behaviour for all the cases where kλ <
√

3, since the con-

tribution for configuration (B), where the fibres are more stretched, is lower than the one for

configuration (A):

|EH
A | = −EH

A ⇒ |EH
B | = k|EH

A | −
2

3
(k − 1) (3.23)

where 2/3(k − 1) is always positive as k > 1.

Finally, the example confirms that the approach suggested in this work provides the same re-

sults as an effective strain computed through the average of the stretch only over an effective

area on the spherical surface (in this limit case direction x1) and weighted with the density
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fraction of the stretched fibres (in this case 1/3):

Eeff = (λ2 − 1) · 1

3
=
λ2 − 1

3
= E∗A (3.24)

Once again it is emphasized that the problem analysed above is indeed a strong simplification

of the case considered in this work and cannot be directly assumed as a general proof of the

correct behaviour of the model proposed here, but it serves the purpose of clearly showing

the advantages of the chosen approach with respect to other possible solutions.

3.2.2 Viscoelastic contribution

The viscoelastic response was modelled using the concept of internal variables described in

section 2.5, i.e. as the superposition of an elastic equilibrium response and a number of non-

equilibrium viscous processes. Accordingly, it was assumed that viscoelasticity is associated

only with the isochoric part of the deformation, as it is well established in the literature (see

[25] for a complete discussion).

Moreover, since it has been observed also in tensile tests, where fluid pressure is negligible

as well as the contribution from the proteoglycan matrix (see section 1.2), the intrinsic vis-

coelasticity of AC must be mainly determined by the collagen fibres and their cross-links.

Hence, in the current work collagen fibres are considered viscoelastic, but the matrix is elas-

tic similarly to [34].

Finally, following [21] the viscoelastic potentials Ψ̄α were expressed as a function of the

isochoric elastic strain-energy Ψ̄∞, which is responsible for the equilibrium response at t→
∞:

Ψ̄α(C̄) = β∞α Ψ̄∞(C̄) , α = 1, . . . ,m (3.25)

where β∞α ∈ [0,∞) are non-dimensional strain energy factors associated with τα.

In accordance with the assumptions above, the complete form of the isochoric potential en-

ergy reads

Ψ̄ = Ψ̄g(C̄) + (1 +
m∑
α=1

β∞α )[Ψ̄∞fi (C̄) + Ψ̄∞fa(C̄,H)] (3.26)

where the non-dimensional constant β∞α ∈ [0,∞) relates the elastic and the viscous repre-

sentations. It should be noted that this assumption is only valid close to the thermodynamic

equilibrium.
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This relation is immediately extended to the stress tensors, leading to the following rate

equation for the viscous over-stress

˙̄S
V

α +
S̄Vα
τα

= β∞α [ ˙̄S
∞
fi

+ ˙̄S
∞
fa ] = β∞α

˙̄S
∞
f (3.27)

Disregarding an instantaneous stress response at t = 0, the closed form solution of equation

(3.27) is given by the convolution integral [52]

S̄Vα = β∞α

∫ T=t

T=0

exp

{
−(t− T )

τα

}
˙̄S
∞
f dT (3.28)

The integral (3.28) describes the viscous over-stress related to a α-relaxation process with

relaxation time τα ∈ (0,∞), and corresponds to the contribution of a single element in the

generalized Maxwell model, which is the most general representation for the linear case.

This approach takes into account that the relaxation does not occur at a single time, but at a

distribution of times. It is possible to define as many relaxation processes (i.e. spring-dashpot

elements in the Maxwell model) as are necessary to accurately represent the distribution. In

this work three elements were defined, as in many cases this is sufficient to approximate

correctly the time dependent behaviour shown by AC in experimental tests [35] [58].

As explained in section 2.5, the relation (3.28) defines a quasi-linear viscoelastic model,

which implies that in a relaxation test the relaxation function (i.e. stress normalized on the

maximum stress at the end of the loading ramp) is independent of the level of applied de-

formation. Experimental tests on AC have shown that this assumption is not verified [2], in-

dicating that a non-linear viscoelastic model is necessary to fully capture the time evolution

of the mechanical response. However, the superposition of an elastic matrix and a quasi-

linear viscoelastic reinforcement leads to a non-linear viscoelastic response for the tissue, as

was suggested in [62] for a mixture of quasi-linear viscoelastic components characterized by

different relaxation functions.

Following [62], it is possible to illustrate this effect considering the special case of stress

relaxation under a uniaxial loading condition along the longitudinal direction parallel to the

collagen fibre. At any given time t̄ during the relaxation period it is possible to define the

relaxation ratio as the ratio between the stress at time t̄ and the stress at the end of the

loading ramp, which equals the elastic solution for the limit case of a step load. Expressing

the stress carried by the fibre as a fraction of the stress borne by the matrix dependent on the
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strain level, the total relaxation ratio reads:

R(t̄) =
σ

(t̄)
m + σ

(t̄)
f

σem + σef
=
{
σef = α(ε)σem

}
=

σ
(t̄)
m + σ

(t̄)
f

σem(1 + α(ε))
(3.29)

Having assumed that only the fibres are viscoelastic, it is possible to define different relax-

ation ratios for the components, and in particular to set R
(t̄)
m = 1:

σ(t̄)
m = R(t̄)

m σ
e
m = σem ; σ

(t̄)
f = R

(t̄)
f σ

e
f = R

(t̄)
f α(ε)σem (3.30)

Finally, substituting (3.30) into (3.29), it is possible to write the total relaxation ratio as a

function of the strain:

R(t̄)(ε) =
σem + R

(t̄)
f α(ε)σem

σem(1 + α(ε))
=

1 + R
(t̄)
f α(ε)

1 + α(ε)
(3.31)

which defines a non-linear viscoelastic behaviour.

At low strain levels, where the response is dominated by the matrix, the viscoelastic effect is

low, while it progressively increases to higher strain levels where more fibres are active and

the load is mostly carried by collagen.

3.3 Illustrative fibre distribution

In this section the specific probability function used in this work to describe the distribution

of collagen fibres in AC is introduced.

Following the procedure proposed in [13] [9] the π-periodic von Mises distributions ρ̄(Θ)

centred at Θ = π/2 and Θ = 0 were considered:

ρ̄A

(
Θ;

π

2
, b
)

=
exp[b cos(2Θ− π)]

2πI0(b)
(3.32a)

ρ̄B(Θ; 0, b) =
exp[b cos(2Θ)]

2πI0(b)
(3.32b)

where b > 0 is a concentration parameter describing the dispersion about the polar axis (see

Figure 3.4 ) and I0 denotes the modified Bessel function of the first kind of order zero, given

by

I0(b) =
1

π

∫ π

0

exp(b cos Θ) dΘ (3.33)
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Figure 3.4: Three-dimensional graphical representation of the orientation of collagen fibres based
on the transversely isotropic density functions ρA and ρB . Surface plots are defined by the vector
ρ(Θ)M, where ρ is given by (3.34a) for model (A) and by (3.34b) for model (B). Image reproduced
from [9].

The von Mises distribution is a close approximation to the wrapped normal distribution,

which is the circular analogue of the normal distribution. As b → ∞, it tends to a Dirac

delta distribution with the same centre, so that ρ̄A and ρ̄B represent the limit cases of fibres

randomly oriented in the transverse plane and fibres perfectly aligned in the polar direction,

respectively.

According to the normalization condition (3.4) the expressions

IA ≡
1

2

∫ π

0

ρ̄A(Θ) sin Θ dΘ ≡ 1

2

exp(b)

2
√

2πb

erf(
√

2b)

I0(b)

IB ≡
1

2

∫ π

0

ρ̄B(Θ) sin Θ dΘ ≡ 1

2

exp(−b)
2
√

2πb

erfi(
√

2b)

I0(b)

are defined and used to normalize ρ̄ resulting in

ρA(Θ) =
ρ̄A
IA

= 4

√
b

2π

exp[b(cos(2Θ− π)− 1)]

erf(
√

2b)
(3.34a)

ρB(Θ) =
ρ̄B
IB

= 4

√
b

2π

exp[b(cos(2Θ) + 1)]

erfi(
√

2b)
(3.34b)
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where erfi(x) = −ierf(x) is the imaginary error function [65], the error function itself being

erfi(x) =
2√
π

∫ π

0

exp(−t2) dt

The density functions (3.34) can be interpreted as a projection of the normal distribution onto

the unit sphere [10]. A graphical representation of the density functions (3.34) is provided

in Figure 3.4, in which the surface defined by the apex of the vector ρ(M)M is plotted with

respect to the Eulerian angles Θ and Φ. Note that for both the distributions b→ 0 represents

isotropy.

Due to the symmetry about the polar axis, the density functions (3.34) can also be represented

by means of a two-dimensional plot, which is frequently used in the literature to present his-

tological data, e.g. experimentally determined collagen distributions for planar collagenous

tissues [50].

It is important to note that using this approach it is only necessary to know the orientation of

the fibres in the reference configuration, since the new orientation in the current configuration

is given by the push forward of the reference direction (m = FM).

3.4 Spatial isochoric structure tensor

The solution of the governing equations is computed in an Eulerian setting. Hence, to in-

clude the structure tensor (3.5) in the numerical implementation, it is necessary to derive the

corresponding expression in the spatial reference.

The spatial isochoric fibre direction can be computed as the push-forward of M through the

isochoric deformation (χ̄∗[·]):

m̄ = χ̄∗[M] = J−1/3FM = F̄M (3.35)

Similarly, the spatial isochoric structure tensor related to the fibre bundle in direction M

becomes

ā = χ̄∗[M⊗M] = J−2/3F(M⊗M)FT = F̄(M⊗M)F̄
T

= F̄M⊗ F̄
T
M = m̄⊗ m̄

(3.36)

which in turn leads to the following definition of the spatial isochoric averaged structure
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tensor h̄

h̄ = F̄HF̄
T

=
1

4π

∫
S2

ρ(m̄)ā(m̄) dS (3.37)

The trace of the spatial tensor ā can be related to the stretch in direction M:

tr(ā) := ā : I = (m̄⊗ m̄) : I = m̄ · m̄ = F̄M · F̄M = (F̄
T
F̄) : (M⊗M)

= C̄ : (M⊗M) = ĪM4 (C,M) = λ̄2
M

(3.38)

Hence, the positivity of tr(ā) can be used to check whether a fibre bundle is stretched. More-

over, the Green-Lagrange strain like quantity Ē can be written with respect to the spatial

configuration as

ē = h̄ : I− 1 (3.39)

Thus, in the spatial reference the correct modification of the structure tensor contribution in

direction m̄ is given by

ā∗ = F̄A∗F̄
T

=


1
3
I if tr(ā) ≤ 1

m̄⊗ m̄ if tr(ā) > 1
(3.40)

where the Eulerian contribution for compressed fibre corresponds to the isochoric push-

forward of the Lagrangian contribution:

χ̄∗[C̄
−1

] = F̄C̄
−1

F̄T = F̄(F̄
−1

F̄T)F̄T = I (3.41)

3.5 Cauchy stress tensor and spatial elasticity tensor

Specific expressions for the stress and the elasticity tensors in the spatial configuration must

be derived to compute the numerical solution of the governing equations (see section 2.6).

This can be done introducing the particularized free-energy function defined in section 3.2

into the continuum mechanical framework discussed in chapter 2.

Given the decoupled form of the potential used in this work and the incompressibility as-

sumption, only the isochoric contribution needs to be considered. Moreover, the following

analysis is limited to the equilibrium stress and tangent elasticity tensors, as the viscous con-

tributions can be immediately computed as a function of the elastic results.
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Firstly, the ground matrix is considered. It is convenient to introduce first and second deriva-

tive of the first isochoric invariant relative to the isochoric right Cauchy-Green tensor:

∂Ī1

∂C̄
=
∂(C̄ : I)

∂C̄
= I (3.42)

∂2Ī1

∂C̄2
=
∂(I)

∂C̄
= O (3.43)

According to the definition of σ̄ in (2.51) and the expression of the neo-Hookean potential

(3.7), the isochoric Cauchy stress associated with the matrix is given by

σ̃∞g = 2J−1F

[
∂Ψ̄g

∂C̄

]
FT = 2J−1/3F̄

[c0

2
I
]

F̄T = J−1/3[c0b̄] (3.44)

σ̄∞g = J−2/3p : σ̃∞g = J−1p : [cob̄] (3.45)

where p is the deviatoric operator and b̄ is the isochoric left Cauchy Green tensor defined in

(2.39).

Hence, the contribution to the elasticity tensor can be computed immediately, as the first

term in (2.81), i.e. J−4/3p : c̃ : p, vanishes in accordance with the definition of c̃ and the

result for the second derivative of the potential relative to the isochoric right Cauchy-Green

tensor (3.43), whereas the second and third terms 2
3
J−2/3tr(σ̃)p and 2

3
[I ⊗ σ̄ + σ̄ ⊗ I] are

directly computed from (3.44) and (3.45). These are well known result in the literature, see

for example [39] [13].

The same arguments can be used for the isotropic fibre contribution, which is also modelled

as a neo-Hookean material, simply substituting cfi to c0. Hence, the isochoric Cauchy stress

associated with the isotropic fibre contribution reads

σ̄∞fi = J−1p : [cfib̄] (3.46)

Once again, this expression leads directly to the expression for the elasticity tensor.

Similarly to [64] [9] the anisotropic fibre potential is assumed to be a function solely of

the Green-Lagrange strain like quantity Ē. According to the particularized expression of the

potential (3.11) it is then possible to compute the scalar quantities

ψ′fa =
dΨ̄∞fa
dĒ

= cfaĒ (3.47)
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ψ′′fa =
d2Ψ̄∞fa
dĒ

= cfa (3.48)

Also, it is convenient to report the derivative of Ē with respect to C̄

∂Ē

∂C̄
=
∂(C̄ : H− 1)

∂C̄
= H (3.49)

Using the arguments in section 2.4.1 and the equations (3.47) (3.49)

∂Ψ̄∞fa
∂C̄

=
∂Ψ̄∞fa
∂Ē

∂Ē

∂C̄
= ψ′faH (3.50)

σ̃∞fa = 2ψ′faJ
−1FHFT = 2ψ′faJ

−1/3F̄HF̄
T

= 2ψ′faJ
−1/3h̄ (3.51)

where the spatial isochoric structure tensor h̄ is introduced according to (3.37). Finally, the

isochoric Cauchy stress reads

σ̄∞fa = 2ψ′faJ
−1p : h̄ (3.52)

In order to particularize the expression of the spatial isochoric elasticity tensor, it is only

necessary to particularize the first part of (2.81), i.e. J−4/3p : c̃ : p, as the contributions from

the second and third terms 2
3
J−2/3tr(σ̃)p and 2

3
[I⊗ σ̄+ σ̄⊗ I] can be obtained immediately

by using the results in (3.51) (3.52).

The second derivative of the anisotropic fibre potential relative to C̄ is given by

∂2Ψ̄∞fa
∂C̄2

=
∂[ψ′faH]

∂C̄
=
∂ψ′fa
∂Ē

∂Ē

∂C̄
⊗H + ψ′fa

∂H

∂C̄
= ψ′′faH⊗H (3.53)

where the derivative of the structure tensor H relative to C̄ is assumed to be the null fourth

order tensor O. According to its definition, the structure tensor is indeed dependent on the

isochoric deformation that determines the amount of fibres that contribute to the potential.

Nevertheless, this is the correct assumption based on the numerical implementation of the

model (details are given in section 3.6).

According to the definition c̃∞ = J−1χ∗[4∂
2Ψ̄/∂C̄2], the spatial isochoric (fictitious) elas-

ticity tensor is given by

[c̃]∞ijkl = 4J−1FiIFjJFkKFlL[ψ′′faH⊗H] = 4J1/3F̄iIF̄jJ F̄kKF̄lL[ψ′′faH⊗H]

= 4J1/3[ψ′′fah̄⊗ h̄]
(3.54)
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Hence, the first contribution to the spatial isochoric elasticity tensor becomes

J−4/3p : c̃∞ : p = 4J−1ψ′′fa(p : h̄)⊗ (p : h̄) (3.55)

With the major and minor symmetries of the elasticity tensor (see section 2.6) contributions

accounted for, these relations can be efficiently implemented into a finite element code.

3.6 Numerical implementation

Due to complex geometries, material properties and loading conditions, in general it is not

possible to find an analytical solution for the model presented in the previous sections and

numerical methods are required. In this section the numerical implementation of the model

is analysed, with focus on the assumptions and procedures adopted to solve the equations in

the framework of Finite Element Analysis.

The Finite Element Method has proven to be particularly effective in the modelling of bio-

logical tissues and has been used routinely in the literature. A description of this method is

out of the scope of this work and for a detailed discussion the reader is referred to [69]. The

general purpose finite element package FEAP1 was chosen to perform the analysis since it

allows the use of custom materials through user-defined subroutines and it has been reported

to be effective in modelling soft biological tissues [13] [21] and also specifically AC [9].

3.6.1 Structure tensor

To implement the structure tensor defined in (3.37), it is necessary to evaluate the strain in

all directions for every integration point in each element of the mesh.

The system of non-linear equation representing the problem cannot be solved directly, but

some iterative procedure is required. At each solution step a number of linearised sub-steps

is performed until converged solution is achieved (see section 3.7.2). The deformation is

computed at each sub step, so that the number and location of stretched collagen bundles

might change within the iterations.

This means that on the error reduction path towards a converged solution, the configuration of

stretched fibres (and therefore the associated anisotropic energy contribution) might suddenly

1FEAP-A Finite Element Analysis Program version 8.2. Berkeley, California: R. L. Taylor, 2008
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change, so that the exact solution changes as well. Thus, the iterative method needs to start a

path towards the new solution.

Even if the solution of the previous sub-step (that is used as starting point for the new iterative

process) is likely to be in the so-called region of attraction of the new solution (i.e. to be

close enough to the new solution to prevent that the iterative method converges to a different

solution), every configuration change affects the rate of convergence and multiple changes

might prevent the achievement of a converged solution before the chosen maximum number

of iteration is reached.

Therefore, at each solution step the stretch is kept constant during the Newton iterations. In

particular, the value computed at the previous step is used, assuming that time and load vari-

ations are small enough to make the difference negligible. The check is anyway performed

at each sub-step and the value of ĪM4 computed at the last sub-step (i.e. the one that gives

converged solution) is then use at the next solution step. This approach is not ideal, as it

requires the definition of history variables to store the stretch information when the solution

is updated.

On the other hand, as mentioned in section 3.5, it simplifies the derivation of stress and elas-

ticity tensor. The structure tensor H is not independent of the right Cauchy-Green tensor

C because the deformation determines the number and position of fibres bundles that are

stretched at a particular solution step. However, at each the step n the derivation of the en-

ergy function Ψ is relative to the current deformation state (i.e. C̄n), but the value of Hn−1

of the previous step is used, which is indeed dependent on the deformation up to C̄n−1 but

constant with respect to C̄n.

3.6.2 Spherical integration

Following [9], the structure tensor (3.5) was integrated using a spherical t-design, consisting

of a set of N points on the unit sphere {M(1), . . . ,M(N)} ∈ S2 (i.e. a set of N directions),

such that, as S(S2) = 4π is the surface measure of the unit sphere in R3, the equality

∫
S2

f(M) dS =
4π

N

N∑
α=1

f(A(α)) (3.56)
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holds for polynomials f of degree k ≤ t [17]. Hence, using (3.5) the structure tensor can be

computed as

H =
1

N

N∑
α=1

ρ(M(α))A(α) (3.57)

The degree t required to guarantee the desired precision depends on the form of the proba-

bility density function ρ. Therefore, in the case of the transversely isotropic distribution used

in this work, the integration order is defined by the concentration parameter b, that has a

specific value for each element. In particular t should be increased as b increases, i.e. when

the fibres are more concentrated about the polar axis.

Indeed, it would be possible to define an empirical relation between b and t as in [9] [15] and

to set the order in each element depending on its value of b. In this work though the same

order was used for all the elements, as the corresponding number of points N on the unit

sphere was necessary to initialize the history variables required to store the value of ĪM4 at

each solution step, which are globally defined for all the elements. Numerical compression

experiments were performed increasing t until convergence was achieved and the minimum

sufficient value was found to be t = 21, corresponding to the N = 240 integration points2

plotted in Figure 3.5.

Figure 3.5: Graphical representation of the spherical t-design with t = 21, corresponding to 240
points on the unit sphere.

It should be noted that increasing the order of the spherical integration also increases the

size of the problem and the computational cost: for every additional integration point on the

unit sphere (note that the number of points required for a one-order improvement increases

with t), a total of n × gp new operations are required to compute the structure tensor, and

n × gp new history variables need to be stored, where n is the number of elements in the

2The coordinates of all the points are reported at http://neilsloane.com/sphdesigns/
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mesh and gp is the number of Gauss points for each element. The total number of history

variables allowed in the problem depends on the memory of the machine used for the simula-

tions. Hence, higher integration orders reduce the maximum size (i.e. the maximum number

of nodes) allowed for the problem, which can be a limitation when standard personal com-

puters are used. In this work an optimization algorithm available in FEAP [59] was used for

the numbering of the unknowns, which improves the use of the memory and therefore the

performance of the code and the maximum size allowed.

3.6.3 Numerical integration of the evolution equation

The update algorithm for stress and elasticity tensors follows an approach well established

in the literature for viscoelasticity at finite strain [60] [21] [14]. The main task is the discreti-

sation of the convolution integral (3.28).

It is assumed that at certain times tn and tn+1 all relevant kinematic quantities are given, as

well as the equilibrium isochoric second Piola-Kirchhoff stresses associated with the colla-

gen fibres S̄∞n and S̄∞n+1, uniquely defined by the constitutive equation.

Firstly, the convolution integral (3.28) is split into

β

∫ t=tn

t=0

exp

{
−tn+1 − t

τ

}
˙̄S
∞
f (t) dt+ β

∫ t=tn+1

t=tn

exp

{
−tn+1 − t

τ

}
˙̄S
∞
f (t) dt (3.58)

Secondly, the quantities

∆tn+1 = tn+1 − tn and tn+0.5 = (tn+1 + tn)/2 (3.59)

are introduced, where ∆t is the time increment and tn+0.5 approximates the time variable in

a second-order accurate mid-point integration scheme. Hence, using (3.58) and the standard

property of exponential function

exp{−(∆t+ β)/τ} = exp{−∆t/τ} exp{−β/τ} (3.60)

the viscoelastic overstress at time tn+1 can be written as

S̄Vn+1 =β exp

{
−∆tn+1

τ

}∫ t=tn

t=0

exp

{
−tn − t

τ

}
˙̄S
∞
f (t) dt+

+ β exp

{
−∆tn+1

2τ

}∫ t=tn+1

t=tn

˙̄S
∞
f (t) dt

(3.61)
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Introducing the dimension-less parameter ξn+1 = exp{−∆tn+1/2τ} ,

S̄Vn+1 = ξ2
n+1S̄

V
n + βξn+1(S̄∞fn+1

− S̄∞fn) (3.62)

Finally, (3.62) can be rearranged as

S̄Vn+1 = βξn+1S̄
∞
fn+1

+Hn

Hn = ξ2
n+1S̄

V
n − βξn+1S̄

∞
fn

(3.63)

whereHn is a stress-like tensor storing the history of the problem.

The viscoelastic contribution to the elasticity tensor is then given immediately by the deriva-

tive of the viscous overstress with respect to the isochoric deformation tensor at the same

time

C̄Vn+1 = βξn+1C̄
∞
fn+1

(3.64)

where the derivative of the history term is clearly zero since it depends only on the deforma-

tion up to time tn.

Performing an inverse Piola transformation and introducing the set of superimposed Maxwell

elements defining the generalized Maxwell model, the viscous contribution in terms of Cauchy

stress and spatial elasticity tensor (used in the finite element implementation) reads

σ̄Vn+1 =
3∑

k=1

βkξkn+1σ̄
∞
fn+1

+ hkn

c̄Vn+1 = ξ̄n+1c̄
∞
fn+1

(3.65)

where ξ̄n+1 =
∑3

k=1 β
kξkn+1 and the history term in spatial reference can be written as

hkn = (ξkn+1)2σ̄V
k

n − βkξkn+1σ̄
∞
fn (3.66)

The algorithm used in the finite element implementation of the isochoric potential is reported

in Table 3.1.
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Table 3.1: Finite element implementation of the isochoric potential.

given

isochoric deformation gradient F̄ = J−1/3F

orientation distribution data K, b, ρ =

Model (A)

Model (B)

viscous parameters β(i), τ (i), i ∈ {1 . . . k}
integration order t(b)

time step ∆t

algorithm

load spherical design M(α), α ∈ {1 . . . N}
load history variables ĪM4n−1

, σ̄∞fn−1
, σ̄V

(i)

n−1, i ∈ {1 . . . k}
initialize stress and elasticity tensors σ̄← o, C̄← O

initialize stretched fibres boolean flag = FALSE

DO α = 1, N

compute spatial isochoric fibre direction m̄(α) = F̄M
(α)

compute co-latitude angle Θ(α) = arccos(K ·M(α))

compute orientation density function ρ(α) =

4
√

b
2π

exp[b(cos(2Θ−π)−1)]

erf(√2b)
(A)

4
√

b
2π

exp[b(cos(2Θ)+1)]

erfi(
√

2b)
(B)

IF (ρ(α) > ε) THEN

compute spatial isochoric structure tensor contribution ā(α) = m̄(α) ⊗ m̄(α)

compute stretch in fibre direction Ī4
M = m̄(α) · m̄(α)

IF (Ī4
Mn−1

≤ 1) THEN

modify spatial isochoric structure tensor contribution ā(α) = 1
3I

ELSE

turn on anisotropic contribution to potential flag = TRUE

ENDIF

update spatial isochoric structure tensor h̄ = h̄ + 1
N ρ

(α)ā(α)

ENDIF

ENDO

IF (flag = TRUE) THEN

compute Ψ̄fa contribution to stress and elasticity tensors

σ̄fa = J−12ψ′faP : h̄

C̄fa = J−14ψ′′fa(P : h̄)⊗ (P : h̄) + J−1 4
3ψ
′
fa
Ī4P− 2

3 (I⊗ σ̄fa + σ̄fa ⊗ I)

update stress and elasticity tensor σ̄ ← σ̄ + φf σ̄fa , C̄← C̄+ φf C̄fa

ENDIF

Continued on next page
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Table 3.1: (continued)

add Ψ̄fi contribution to stress and elasticity tensors (neo-hookean)

σ̄ ← σ̄ + φf σ̄fi

C̄← C̄+ φf C̄fi

store elastic fibre contribution σ̄∞f ← σ̄

DO i = 1, k

compute viscous parameters

ξ(i) = exp[−∆t/2τ (i)]

ξ̄ ← ξ̄ + ξ(i)

compute viscous overstress

σ̄V
(i)

= β(i)ξ(i)σ̄ + [(ξ(i))2σ̄V
(i)

n−1 − β(i)ξ(i)σ̄∞fn−1
]

σ̄V ← σ̄V + σ̄V
(i)

ENDDO

compute viscous contribution to elasticity tensor C̄V = ξ̄C̄

update stress and elasticity tensor σ̄ ← σ̄+ σ̄V , C̄← C̄+ C̄
V

add Ψ̄g contribution to stress and elasticity tensors (neo-hookean)

σ̄ ← σ̄ + φgσ̄g

C̄← C̄+ φgC̄g

history update (if converged solution is achieved)

Ī4
M → Ī4

Mn−1

σ̄∞f → σ̄∞fn−1

σ̄V
(i) → σ̄V

(i)

n−1

3.7 Representative numerical examples

Three numerical examples were analysed to demonstrate the physical behaviour of the con-

stitutive relations defined above3. Experimental studies selected from the literature were used

to validate the results. In this section these examples and the solution procedure adopted are

discussed in details.

The probability density function defined in 3.3 was used in the example studies and the

concentration parameter b was changed linearly across the thickness. In a full-thickness

3All the computations were performed on a standard personal computer (Dell optiplex GX790).
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specimen the arrangement of collagen fibres is assumed to vary from nearly aligned per-

pendicular to the bone in deep zone (Model (B), b=5), to randomly distributed in the middle

zone (Model (A/B), b=0) and nearly planar parallel to the articular surface in the superficial

zone (Model (A), b=5). These values were not computed from experimental data but repre-

sent qualitatively the collagen fibre distribution in AC [41]. However, it is important to note

that the generality of the model allows the definition of different distributions, e.g. tabulated

functions based on experimental studies [5] [45].

Elastic constants of matrix and fibres and their volume fractions were also qualitatively es-

timated rather than computed from experimental data; the values used in the examples are

reported in Table 3.2.

The mesh and the collagen distribution data for each element were developed in MATLAB4.

The examples considered are all rotationally symmetric but the whole problem was modelled

as the use of symmetry boundary conditions might suppress the development of instabilities.

Parameters used by (3.6) cg = 0.5 MPa φg = 0.8
cfi = 2 MPa φf = 0.2
cfa= 90 MPa

Table 3.2: Elastic constants (cα) and volume fractions(φα) relative to ground matrix and collagen
fibres.

3.7.1 Incompressibility constraint

As stated above, AC was modelled as an incompressible material. This assumption can cause

numerical problems: when Poisson’s ratio approaches 0.5, the value of the bulk modulus

shoots to infinity determining an overly stiff behaviour of the model. At each integration

point of an element the volume remains almost constant and thus it over-constraints the

kinematically admissible displacement field, resulting in over-constraining of the mesh, also

known as ‘locking’ [28].

A finite element formulation which is free from locking for nearly incompressible material

can be obtained with a mixed variational approach [70] [6]. In FEAP the mixed formulation

elements are based on the Hu-Washizu variational principle [53], which introduces separated

approximations for the pressure and the volumetric deformation (u-p-θ model).

4MATLAB R2012A, THE MATHWORKS, INC.
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For the present study the Q1-P0 element available in FEAP was used, which is a large de-

formation finite element based on the Hu-Washizu variational formulation. It uses linear

shape functions for the deformation field related to the deviatoric kinematical variables and

constant ansatz functions to discretise the pressure and volumetric strain. The volumetric

variables are eliminated on the element level.

Finite elements that are derived from mixed methods have to fulfil the so-called BB-condition

to guarantee the stability of the formulation [68]. The Q1-P0 element does not fulfil this con-

dition in the geometrical linear theory, which implies that it can generate unstable solution

for the pressure under particular loads or boundary conditions. Nevertheless, it has been ob-

served in many practical application that it is robust for finite elasticity problems involving

quasi-incompressible material, and therefore it is commonly used in commercial software.

Enforcing correctly the incompressibility constraint is also crucial to avoid non-physical

behaviour of the model when the decoupled form of the potential is used for fibre reinforced

composites [19].

This can be done using a penalty method. However, the use of large penalty parameters can

make the iterative method unable to converge. On the other hand, if the penalty parameter

value is reduced much in order to achieve convergence of the solution, the constraint is not

sufficiently enforced.

In the following examples, incompressibility was enforced using an augmented Lagrangian

solution strategy based on the Uzawa algorithm [70], which is available in FEAP. If a penalty

value vp is calculated from the equation

vp = K · c(u) (3.67)

where K is a material parameter and c(u) is a constraint to be made close to zero, then the

augmented Lagrangian parameter update is computed as

va = va + augf · vp. (3.68)

where augf is the augmentation factor. At each solution step, after a converged solution is

computed, the update is performed and the solution is computed again. The iteration con-

tinues until incompressibility is enforced up to a given tolerance of accuracy. Using this

solution the value of the penalty parameter has to be just one or two orders of magnitude
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larger than the conventional stiffness terms, instead of the six or seven that are required in

the basic penalty method. This method is computationally expensive and the number of itera-

tions should be kept low. In order to do this, the augmentation factor can be increased as well

as the initial value of the bulk modulus. Numerical tests were performed with configurations

similar to the examples described below and finally two augmentation iterations were used

in the solution procedure.

3.7.2 Solution procedure

As mentioned above, the solution of a non-linear problem cannot be approached directly,

but some iterative procedure is required and the choice of a particular method is problem-

dependent. For the example problems studied in this work the Newton-Raphson method

was used, in which the asymptotic rate of convergence is quadratic. However, the numerical

solution can only approximately be achieved: since finite precision arithmetic is used in all

computer calculations, one can never achieve a better solution than the round-off limit of the

calculations. Hence, it is necessary to set some kind of tolerance on the solution to terminate

the iteration. Every iterative method aims to reduce the residual, which is defined as

R = KT∆U (3.69)

where KT is the stiffness matrix and ∆U is the displacement parameter change. Thus, it is

convenient to define the convergence criteria based on a norm of the residual, or similarly on

a norm of the energy, defined as

‖Ei‖ = (∆Ui ·Ri)
1/2 (3.70)

In FEAP the energy of the first iteration in the current solution step is used as a basis and the

limit is expressed as some tolerance of its norm: ‖Ei‖ = ε‖E0‖, where ε is the tolerance.

Once a criterion is defined it is still necessary to choose an appropriate value for ε. The toler-

ance was chosen at half the machine precision (i.e. ε = 10−8), since quadratic convergence

assure that the next residual (disregarding round-off error) would achieve full precision.

It was observed that the rate the Newton-Raphson method did not achieve quadratic conver-

gence for relatively high level of compressive deformation, so that many iterations were nec-

essary to guarantee the chosen precision. This was not surprising as the progressive buckling
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of the fibres in compression is likely to generate instabilities that in turn make convergence

more difficult to achieve. This idea is supported by the evidence that such problem did not

occur in tension. It would have been possible to use larger tolerance values (as it is often

done when other methods with lower convergence rate are used, e.g. the modified Newton

method). However, the value was not altered because instabilities in the solution may appear

if the convergence tolerance is too large. Moreover, the use of a line search method, which

is sometimes useful to achieve faster convergence when quadratic rate is not assured, did not

provide any significant improvement.

The set of linear algebraic equations resulting from the use of the Newton-Raphson method

was solved for the incremental solution values by mean of an iterative conjugate gradient

solution scheme with diagonal preconditioning. The system of linear equation is written in a

form analogous to (3.69), and once again it is necessary to choose a value for the tolerance.

In this case the norm of the residual is used and the relative error is computed with respect

to the first iteration:

(RTR)
1/2
i ≤ ε(RTR)

1/2
0 (3.71)

where ε is the tolerance, that was chosen at ε = 10−8 (default value in FEAP).

A summary of the solution procedure is given in Figure 3.6

initialize
Newton-Raphson

scheme

initial
configuration
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solution step

compute new
linear system

nonlinear
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linear system

update
augmentation

linear
iteration

converged?
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next
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no

yes

no

yes
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Figure 3.6: Flowchart of the solution procedure adopted for the numerical example.
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3.7.3 Problems specification

In the following, details are given about geometrical characteristics, loading configuration

and structural and viscous parameters chosen for the representative examples, together with

information about the numerical settings for the analyses.

Relaxation tests

Relaxation tests were conducted on cylindrical AC samples of 3.65 mm in diameter and 1.13

mm in thickness. The dimensions were taken from [35] and in accordance with that study,

a layer of subchondral bone was assumed to constrain the radial deformation of the lower

boundary of the AC specimen.

The stepwise relaxation test was conducted both in traction and compression using the same

loading configuration. In particular a ramp displacement of 6.8 µm was prescribed at the ar-

ticular surface with a ramp velocity of 1 µm/s. After the ramp is complete, the displacement

is kept constant until a second ramp, similar to the first one, starts at t = 565s. When the sec-

ond ramp ends, the displacement is again kept constant for about 560 seconds. The interval

allowed for relaxation was estimated from the results shown in [35] and complete relaxation

of the specimen should be observed. Geometry and load are summarized in Figure 3.9.
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Figure 3.7: Geometry and load for the relaxation tests on full thickness specimen with layer of
subchondral bone.

The viscoelastic parameters used in the example were determined by fitting the experimental

relaxation tests reported in [35] and they are given in Table 3.3.

A mesh composed of 20 layers across the thickness of the specimen was defined, for a total

of 20580 nodes. In order to correctly capture the response of the material, which is supposed

to show fast variations during and immediately after the loading ramp, the time steps were

set to 0.2 seconds for the 30 seconds intervals following the start of each loading ramp, to 0.5

for the following 50 seconds intervals and to 1 second for the rest of the test. According to

[35] the specimen was assumed to be glued to the loading platen and the radial displacement
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was constrained at the upper boundary, as well as at the lower boundary due to the layer of

subchondral bone mentioned above.

Tests I and II Test III

Parameters used by (3.65) β∞1 = 0.5 τ1 = 10 s β∞1 = 0.1 τ1 = 0.1 s
β∞2 = 2 τ2 = 100 s β∞2 = 0.5 τ2 = 1.0 s
β∞3 = 0.1 τ3 = 1000 s β∞3 = 1.2 τ3 = 10 s

Table 3.3: Constitutive parameters describing the time-dependent effects of AC, i.e. the constitution
of the generalized Maxwell model.

Unconfined compression of full thickness specimen

This example aims at investigating the stress state within a cylindrical AC specimen of 3.0

mm in diameter and of 1.83 mm in height, with focus on the anisotropic and depth-depending

response due to the fibre reinforcement. According to [11] the full thickness was modelled

and the AC sample was assumed to be attached to a layer of subchondral bone.

A displacement linearly increasing over time from 0 to 0.35 mm in the direction of the

thickness was prescribed at the articular surface. The ramp duration was set to one second.

Geometry and load are summarized in Figure 3.8.
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Figure 3.8: Geometry and load for the unconfined compression of full thickness specimen with
layer of subchondral bone.

The viscoelastic parameters estimated fitting the relaxation tests in [35] were used also in

this example, as reported in Table 3.3.

Given the goal of the test, the number of layers through the thickness was increased to 28,

for a total of 28420 nodes. The radial displacement was constrained at the lower boundary

as the AC sample is attached to the bone, which is assumed to be rigid under the present test

configuration. The time step was set to 0.05 seconds for the first half of the loading ramp

and to 0.01 seconds afterwards to improve convergence, since problems arose in achieving

converged solutions for high level of compression, as mentioned in section 3.7.2.
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Unconfined compression of reduced thickness specimen

The goal of this example is to analyse the non-linear viscoelastic response of the model

(i.e. the dependence of the response on the loading frequency). A cylindrical AC specimen

was tested under unconfined compression. Dimensions are similar to those of the previous

example and were taken from test specimens used in [44]. However, in accordance with that

study, a 0.5 mm thick layer of the deep zone was removed, such that Model (B) with b = 2.85

describes the collagen distribution at the deepest zone of the test specimen.

The sinusoidal loads used in the experimental study were approximated by triangular loads

with the same mean value and the same cycle frequency. Two tests were performed with load-

ing frequencies of 0.1 Hz (i.e. 5 seconds loading ramp plus 5 seconds unloading ramp) and 1

Hz (i.e. 0.5 seconds loading ramp plus 0.5 seconds unloading ramp), respectively. Moreover,

the analysis was conducted under displacement-control (that ensure easier convergence of

the finite element implementation) whereas in the reference experimental tests load-control

was used. Hence, the results reported in [44] were used as input in the simulations to ease the

comparison of the results. Accordingly, in the first test a displacement of 0.366 mm in the

direction of thickness, corresponding to a 20% deformation, was prescribed at the articular

surface, whereas for the second test the displacement was reduced to 0.275 mm, correspond-

ing to a 15% deformation. These values correspond to physiologically relevant AC strains

[44]. Geometry and load are summarized in Figure 3.9.
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Figure 3.9: Geometry and load for the unconfined compression of reduced thickness specimen.

The viscoelastic constants were estimated from the results shown in [44] and are reported in

Table 3.3. Indeed, the experimental results include the effect of fluid flow through the poroe-

lastic matrix, that are not negligible in compression. The comparison with the viscoelastic

parameters used for the relaxation tests immediately reveals that the chosen values are not

suitable to describe the intrinsic viscoelastic behaviour of AC. However, they were meant to

compensate the contribution of fluid flow viscoelasticity (see sections 1.2 and 3.2.2) that is

not explicitly modelled in this work.
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Given the reduced thickness (i.e. the limited range of the distribution parameter b), 20 layers

were defined in the specimen for a total of 20580 nodes. Similarly to the previous example,

for the first test the time steps were set to 0.25 seconds and 0.05 seconds for the lower and

the higher half of each ramp, respectively. For the second test these value were reduced of

an order of magnitude due to the one order increase in the load frequency. According to [44]

unconfined compression was assumed.



Chapter 4

Results

In this chapter the results of the representative numerical tests described in section 3.7.3 are

presented. A qualitative comparison with experimental data from the literature is meant to

demonstrate the physical behaviour of the model, while a quantitative analysis, required to

fully validate the results for each specific case, is out of the objective of this work.

4.1 Relaxation tests

A typical stress relaxation response from the model prediction is shown in Figure 4.1 for

a AC disk subjected to axial tension and compression. The model predicts an asymmetric

tension-compression behaviour, with a stiffer response in tension due to the action of the

collagen fibre reinforcement, in accordance with experimental evidence (see section 1.2).
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Figure 4.1: Simulation of a two-steps relaxation test of a full-thickness specimen of AC in tension
and compression using the model. The results are given as external load vs time.

Figure 4.2 shows a comparison between model prediction and experimental results for the

69
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same tests reported in [35]. In order to ease the comparison, tensile and compressive stresses

shown are the total nominal axial stresses, computed from the external load and the cross

section area of the specimen in the reference configuration. The stress values computed for

the tensile test are similar to those reported in [35], while the compressive stress appears

overestimated. As a consequence, the tension-compression asymmetry is less pronounced

than in [35]. With regard to the time-dependent response, the results for the tensile test are in

very good agreement with the experimental data: after 565 seconds relaxation is completed

and the peak stress is reduced by about 60%. A similar time evolution is predicted for the

compressive test, while experimental data show a higher viscous contribution in this case

due to the effect of fluid flow, not modelled in this work. Moreover, 565 seconds were again

sufficient to reach complete relaxation, but this was not the case in the experimental tests. In

order to get a better fitting the viscous parameters of the collagen fibres could be altered in

the simulation of the compressive test.

0 200 400 600
0

50

100

150

200

time [s]

σ
z

[K
Pa

]

Experimental
Model fit

(a) Tension

0 200 400 600
0

50

100

150

200

time [s]

σ
z

[K
Pa

]

Experimental
Model fit

(b) Compression

Figure 4.2: Comparison between model prediction and experimental data reported in [35] for both
tensile (a) and compressive (b) relaxation tests. The results are given as axial engineering stress vs
time.

Following the assumption that collagen is the only viscoelastic component, the contribution

of the fibres to the time-dependent response in compression is not negligible, in contrast

with what suggested by the numerical model used in [35], described in [34]. Indeed, it seems

more realistic that the compressive time-dependent behaviour is affected by the fibres [9] [4],

since some of them are active under axial tension due to the complex orientation distribution

through the thickness. However, the fibre contribution to the viscoelastic behaviour in com-

pression appears too close to the one computed in tension and is probably overestimated,

which also explains the high values of compressive stress in Figure 4.2.
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In order to test if the model can reproduce the non-linearity of the viscoelastic response of

the tissue, the tensile relaxation test was repeated with a maximum displacement of 45µm,

corresponding to a 4% maximum strain. Figure 4.3a shows the evolution of the axial nominal

stress normalized over the peak value. Relaxation is faster at lower load, demonstrating a

strain-dependent viscous response. This behaviour can be interpreted as an experimental

evidence of non-linear viscoelasticity, since the response of linear viscoelastic materials is

by definition independent of the strain level (see 3.2.2). The same concept is expressed in

Figure 4.3b using the relaxation rate n, i.e. the slope obtained from curve fitting the data

with a single-term power law tn in time (dotted line). Note that the results are presented in

logarithmic scale. A quasi-linear viscoelastic fit (dashed line) based on 0.6% strain predicts

the same rate for the second test, hence it is not suitable for capturing the dependence of rate

on strain. Similar results, with lower relaxation rates at higher maximum displacements are

reported in [48] for ligaments. It is again emphasized that this non-linearity is not explicitly

modelled by means of non-linear viscoelastic constitutive equations, but emerges as the result

of the mixture of structure elements having different time-dependent characteristics. Thus,

the model can effectively account for the viscoelastic non-linearity observed in experimental

tests on AC [2].

0 20 40 60 80 100

0.6

0.8

1

time [s]

σ
z/
σ

m
ax

[]

εz = 0.6%

εz = 4%

(a)

101 102 103
101

102

103

104

time [s]

σ
z

[K
Pa

]

εz = 0.6%

εz = 4%

(b)

Figure 4.3: (a) Time evolution of normalized axial nominal stress for two tensile relaxation tests
with different maximum displacement. (b) A QLV fit (dashed line) based on a power law fit (dotted
line) of the results at low strain cannot reproduce stress relaxation at higher level of strain. The axes
are in logarithmic scale.

The axial stress distribution at the end of the relaxation test is shown in Figure 4.4 for both

tension (a) and compression (b). The complex stress state reveals again tension-compression
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asymmetry. Note that the pattern of radial displacement is different for the two cases, even

if the deformation is small due to the small displacement prescribed on the articular surface.

During the tensile test, the fibres in the superficial zone, radially distributed, buckle due to

the Poisson effect and the negative radial deformation is concentrated in the upper half of the

specimen (note that the upper surface is undeformed as it is glued to the loading platen). On

the other hand, during the compressive test the fibres in the superficial zone are subjected to

positive stretch and try to counteract the effect of the axial displacement. Hence, the radial

deformation is localized in the lower half of the specimen, where the fibres are mostly ori-

ented perpendicularly to the subchondral bone (i.e. in the direction of the compressive load),

and thus buckle and do not restrain the lateral expansion. The radial displacement is again

zero at the lower surface as the deformation is constrained by the subchondral bone).

(a) tensile test (b) compressive test

Figure 4.4: Axial Cauchy stress distribution in deformed specimen at the end of the relaxation test
(t = 1200s) for tension (a) and compression(b).

In relation to the mechanical response of the fibres described above, the overestimation of the

fibre contribution in compression that emerges from Figure 4.2 can be related to the particular

distribution of collagen fibres orientations used in this work. In particular the linear varia-

tion of the polar direction through the thickness leads to equally thick superficial and deep

zones, whereas in harvested specimen the superficial zone is usually thinner. This implies

that there are more fibres lying parallel to the articular surface and acting in compression,

and accordingly less fibres are active in tension in the deep zone.

4.2 Unconfined compression of full thickness specimen

The main goal of this test is the analysis of the effect of the collagen fibres and their

thickness-dependent distribution under compressive load. The axial load required during

compression is plotted in Figure 4.5 against the prescribed compressive displacement on
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the upper surface. The results show a non-linear response with a quadratic trend, which can

clearly be related to the fibre contribution (if the response was dominated by the matrix, the

plot would be similar to that of a neo-Hookean material). Also, they are in good agreement

with experimental results from similar tests [44], which reinforce the idea that fibre contri-

bution in compression should be taken into account. At the final displacement of 0.35 mm,

the compressive load is equal to 49.9 N.
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Figure 4.5: Load vs displacement for the unconfined compression of a full-thickness specimen of
AC.

The Cauchy stress distribution in the deformed specimen is given in Figure 4.6. The struc-

tural inhomogeneity across the thickness, described by the structure tensor H, causes an

inhomogeneous deformation. In accordance with [11], the displacement increases towards

the deep zone and finally decreases at the bottom due to the constraint imposed by the sub-

chondral bone. Even if the upper surface is not constrained in the radial direction, the action

of the fibres, mainly distributed parallel to the articular surface in the superficial zone, limits

the radial displacement, that consequently shows a non-linear profile along the thickness.

The stress distribution confirms that the fibres of the superficial zone distributed in the radial

direction are active in tension.

Moreover, Figure 4.6 shows how the deformation modifies the symmetries of the problem.

In the reference configuration the problem is axial symmetric due to the geometry of the

specimen and the fact that the fibre distribution varies across the thickness but is the same

for all the points lying on the same transversal plane, and that the polar axis of the distribution

does not violate the symmetry. In addition, the material is transversely isotropic as a result

of the local transverse isotropy around the polar axis guaranteed by the chosen probability
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function.

Due to the depth-dependent stiffness of the tissue, under compression the push-forward di-

rection of the polar axis k = FK is rotated with respect to its reference direction K. Hence,

the symmetry axis of the distribution is no longer aligned with the load. This in turn implies

that the pattern of fibres activation and buckling is no longer symmetric with respect to k and

local transverse isotropy is lost.

Nevertheless, the rotational symmetry of geometry, load and boundary conditions forces this

rotation to be axial symmetric across each transverse section and global axial symmetry of

the solution is preserved. In particular this prevents the rotation of the polar axis at each

point lying on the axis of symmetry of the system. Thus, at these points the local transverse

isotropy of the material is conserved during the deformation, as shown by the values of first

and second principal Cauchy stresses in Figure 4.6 (note that the polar axis coincides with

the axis of symmetry of the specimen).

Figure 4.6: Distribution of first, second and third principal Cauchy stresses in a full-thickness cylin-
drical AC specimen under unconfined compression at maximum displacement u = 0.35mm. The
articular surface is the upper surface, and the lower surface is attached to a layer of subchondral
bone.

4.3 Unconfined compression of reduced thickness specimen

This test analyses the effect of loading frequency on the model response. The load versus dis-

placement curves of the specimen are presented in Figure 4.7 at both the loading frequencies

tested. The response has a quadratic trend similar to the one in Figure 4.5. The load values

are lower as the specimen is not radially constrained at the bottom surface. The maximum

loads registered are in the same range as those used in [44] to generate the same values of

maximum displacement in a force-controlled test. In accordance with the reference study,

the material is stiffer at higher loading frequency, while the trend remains quadratic in accor-
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dance with the expression of the free energy. The reverse point of the cycle, where the unload

phase starts, is sharper than in [44]. This is due to the fact that the sinusoidal loading used

in the experiments was approximated imposing a triangular displacement. This also reduces

the hysteresis area, i.e. the area between the loading and the unloading curves, which rep-

resents the energy loss due to viscoelastic dissipation (in regime of elasticity the unloading

curve overlaps the loading curve). Nevertheless, a comparison with the results in [44] reveals

that increasing the value of the viscoelastic parameter associated with the response at 0.1 Hz

was not sufficient to compensate the effect of fluid flow, which is not modelled in this work

and dominates the viscoelastic response at that frequency. Accordingly, changing the relax-

ation times to reproduce short time response of the material is not sufficient to reproduce the

frequency dependent influence of the fluid. However, the results of the computations show

lower hysteresis at higher frequency, in accordance with the values of the viscoelastic pa-

rameters and qualitatively with the curves in [44]. Moreover, the results at 1 Hz are in better

agreement with the experimental study as the cycle is too fast for fluid exudation and AC

starts behaving like an incompressible material.
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Figure 4.7: Load cycle versus displacement for the unconfined compression of a reduced thickness
specimen of AC at two loading frequencies.

Figure 4.8 shows the principal Cauchy stresses distribution in the specimen corresponding

to the maximum displacement in the test at 1 Hz. The largest deformation is at the bottom

surface, which is free to deform radially. This is in accordance with the fact that in the

deep zone most of the fibres are oriented in the direction of the load and buckle, while only

a limited number of fibres can actively counteract the radial deformation. The lower load
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required in this test compared to the one in section 4.2 is reflected in lower negative stresses

than in Figure 4.6. The stress distribution is also sensibly different due to the change in the

boundary conditions.

Figure 4.8: Distribution of the first, second and third principal Cauchy stresses in a cylindrical
AC specimen under unconfined compression. Upper (articular) and lower surfaces are both uncon-
strained in the radial direction.

Using the specimen geometry and the force-displacement curves it is possible to compute the

dynamic modulus, similarly to [44], as the ratio between the Cauchy normal stress, assumed

homogeneous in this context to ease the comparison with the reference results in [44], and

the stretch ratio (σ33 = hF/(h0A0), λ3 = h/h0). While the homogeneity of the normal

stress across the thickness is an oversimplified assumption, the results can be interpreted as

depth-averaged properties of the articular layer.
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Figure 4.9: Dynamic modulus ∂σz

∂λz
versus Cauchy normal stress σz

The incremental dynamic modulus is plotted in figure Figure 4.9 as a function of the Cauchy

normal stress. The results are in agreement with the curves in Figure 4.7 and show that

the dynamic modulus increases at higher loads. Moreover, the increment is higher at higher

frequencies while the starting modulus has similar values. These trends, as well as the range
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of computed values, are in good agreement with [44]. Moreover, the results support the

hypothesis that the non-linear stiffening of collagen fibrils in tension regulates the dynamic

properties in compression [55] through the mechanism described in the previous example.



Chapter 5

Conclusions

The present work developed a non-linear anisotropic viscoelastic constitutive model for AC,

whose characteristics were illustrated by mean of three representative numerical examples.

The first objective was to define a structural quantity that represents the distributed collagen

fibres in a continuum sense and that accounts for their directional characteristics. This was

achieved through the computation of the directional average of the structure tensor at each

material point. The use of averaging integrals it is not affected by the limitations of a finite

number of fibres and on the computational side it does not require to store the information

related to the fibre directions, but only the parameters of the distribution that represent them.

The proposed definition for the structural contribution of compressed fibres effectively ac-

counts for their distribution without influencing the value of the potential, according to the

assumption that only stretched fibres can bear load. To the author’s knowledge, such contri-

bution represents an element of innovation in the study of biological tissues with statistical

fibre orientation.

The generalized structure tensor introduced in this work extends the range of applicability

of the averaged structure tensor presented in [13] to the modelling of tissues with inhomoge-

neous mechanical properties and fibre reinforcements without a preferential direction. The

downside is represented by an increased computational cost of the model: the amount and

direction of fibres that contributes to the structure tensor must be determined at each loading

step, which in turn implies that the averaging integration has to be repeated for each material

point. The increased level of complexity is anyway necessary to model AC, while it could be

required in other applications to get more accurate predictions.

It should be noted that the developed structure representation does not account either for
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shear interactions between matrix and fibres or fibre-fibre interaction due to entanglement,

which can occur when fibre orientation has a statistical distribution. Such contributions are

often disregarded and they would require the definition of additional generalized invariants

to be included in the elastic potential.

The proposed approach is very general: it is compatible with any expression of the elastic

potential that accounts for the presence of a structure tensor as well as any fibre distribution

function, either in an analytical form as a probability density function or in a tabular form

from experimental data. Hence, this work provides the framework for the development of

more complex constitutive models. Moreover, AC represents only one of the possible ap-

plications of the model, which could be applied also to other tissues with statistical fibre

orientation (e.g. the adventitial layer of the arterial walls).

The results of the numerical test show that the model can effectively account for the role of

the fibre reinforcement in the response of AC. It reproduces the inhomogeneous and depth-

dependent mechanical properties of the tissue and it accounts for the contribution of collagen

under compressive load, suggesting that it should not be neglected. The computed deforma-

tion pattern is in agreement with theoretical predictions and experimental results from the

literature.

The second objective was to introduce a formulation of the intrinsic viscoelastic properties

of AC. A quasi-linear viscoelastic relation was chosen for collagen fibres, while the rest of

the solid phase was assumed to be elastic. This is a partial limitation as other constituents

(e.g. proteoglycans) are known to be viscoelastic. However, they play only a secondary role

in the intrinsic time-dependent response.

The results of the numerical tests show that the model can effectively reproduce the response

of AC observed in tension. On the other hand, the attempt to reproduce the viscoelastic

behaviour in compression did not provide acceptable results, suggesting a dominant role of

fluid-related viscoelastic response.

Nevertheless, the results demonstrate the expected frequency-related response, indicating

that the model can be tuned using the viscoelastic parameters to reproduced specific experi-

mental tests. In addition, the relaxation function was found to be strain-dependent, indicating

that the model can reproduce the non-linear viscoelastic nature of the solid phase of AC.

The last goal was to develop a suitable numerical implementation for the model. The expres-
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sion of the structure tensor in the spatial configuration was derived as well as those of the

Cauchy stress and the elasticity tensor. These quantities where included into a finite element

implementation based on efficient numerical schemes from the literature. In particular the

evolution equations where integrated according to [21], while the directional average of the

structure tensor is computed using a spherical design as in [9].

On the other hand, the dependence of the structure tensor on the deformation was disre-

garded in the derivation of the elasticity tensor as the value of the stretch in each direction

(that discriminates between the two definitions for the contribution to the structure tensor) is

taken from the previous solution step. This requires the definition of a high number of history

variables to store the stretch values, which slows the calculation of the solution and can be

a limitation for the maximum size of the problem, especially on regular personal computers.

Moreover, a decrease in the rate of convergence of the solution scheme was experienced for

relatively high compressive load. This can be related to instabilities generated by the pro-

gressive buckling of the fibres in compression, as the problem does not arise in tension.

It should also be noted that the particular choice of the strain energy potential is not based on

experimental data. However, the quadratic function used in this work accounts for the non-

linearity in the stress-strain curve due to fibre engagement and it is reported in the literature

that a second order function can be sufficient to describe cases of interest such as immature

or engineered cartilage. Moreover, it is again emphasized that the generality of the model

allows the use of a function of higher order or of a different class (e.g. exponential) without

the need to modify the implementation of the generalized structure tensor.

Similarly, the proposed fibre distribution density function is not based on experimental data

but can qualitatively reproduce the depth-dependent arrangement of collagen reported in the

literature. A drawback of the chosen distribution, which is based on a dispersion parameter

that varies linearly through the thickness, is that it defines equally thick superficial and deep

zones, whereas histological data indicate that the former should be thinner than the latter.

This is reflected in an overestimation of the fibre contribution in the superficial layer to the

compressive modulus of the tissue.

The last two remarks imply that a direct, quantitative comparison of the results of the model

with published experimental results is not possible. However, the developed constitutive

model for the solid phase of AC demonstrates correct physical behaviour and produces re-
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sults qualitatively in agreement with the literature. In particular, it is capable of predicting the

response of the tissue under tensile load both in terms of local stress and deformation and in

terms of viscoelastic behaviour. The model is also able to account for the fibre contribution in

compression, but at the current state it is not suitable for the analysis of the time-dependent

response of AC in such configuration due to the important role of fluid flow, not included in

the model.

Further enhancements include the use of experimental data for the definition of the expres-

sions for the potential and the fibre distribution, as well as for the choice of the viscoelastic

parameter. On the numerical side, the derivation of a consistent linearisation that accounts for

the dependence of the structure tensor on the deformation would improve the performance

of the model. Finally and most importantly, a formulation of the poroelastic phenomena aris-

ing from the presence of interstitial fluid should be added to the model in order to make it

suitable to describe the time-dependent response of AC in compression.
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