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Abstract

This thesis deals with the stability and robustness analysis of an Event-Based
(EB) realisation of an industrial controller. After a short introduction in which
the main concepts are presented, the Event-Based Control paradigm is ex-
plained, and the main technological and application-related motivations that
support the development of event-based control systems are given. A brief lit-
erature review is in order to present the main topics on which research has
been concentrating to date, and the progresses achieved. Motivations for EB
control are then reconsidered and further explained; EB realisations are then
compared to their counterparts in continuous time and in discrete time; this
evidences some open problems in EB control theory and allows to trace some
possible research directions.

The first topic to be addressed in this thesis is the stability analysis. The
mathematical preliminaries are presented, and a set of hypotheses is given which
lead the EB realisation to be very close to its fixed-rate counterpart, still pre-
serving all of the advantages illustrated so far. After some preliminary results,
the EB realisation reveals its (induced) switching nature, allowing to prove a
sufficient stability criterion under arbitrary switching; the analysis is concluded
with a corollary and some remarks.

The robustness analysis is the second topic addressed in this thesis; in par-
ticular, we will study the robustness of the stability with respect to parametric
uncertainties in the process model. A short description of the uncertainty (de-
picting its causes, how it is modeled and how –and even if– can be counteracted)
is given; robustness is given in terms of regions in which a controller tuned on
the nominal process ensures stability even with a perturbed process. The anal-
ysis is concluded with the choice of a triggering rule for the event-generation
mechanism.

To strengthen the theoretical results, simulation examples are provided that
prove that the EB loop is stable and has some advantages over its fixed-rate
counterpart.

In the end, besides the already mentioned research directions, some possible
improvements to this work are proposed.
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Sommario

Questa tesi tratta l’analisi di stabilità e di robustezza di un controllore indus-
triale realizzato a eventi. Dopo una breve introduzione in cui vengono presen-
tati i concetti principali, viene spiegato il paradigma del Controllo a Eventi, e
vengono fornite le principali motivazioni tecnologiche e applicative a supporto
dello sviluppo di sistemi di controllo a eventi. Una breve ricerca in letteratura
è d’obbligo per presentare i principali argomenti sui quali ad oggi si è concen-
trata la ricerca, e i progressi ottenuti sinora. Le motivazioni del controllo a
eventi vengono quindi riprese e ulteriormente spiegate; la realizzazione a eventi
è poi messa a confronto con le controparti a tempo continuo e a tempo dis-
creto; questo mette in evidenza alcuni problemi aperti nella teoria del controllo
a eventi e consente di tracciare alcune possibile direzioni di ricerca.

Il primo argomento ad essere affrontato in questa tesi è l’analisi di sta-
bilità. Vengono presentati i preliminari matematici, e viene fornito un insieme
di ipotesi che porta la realizzazione a eventi ad essere molto simile alla sua con-
troparte a passo fisso, pur mantenendo tutti i vantaggi illustrati sinora. Dopo
alcuni risultati preliminari, la realizzazione a eventi rivela la sua natura switch-
ing (indotta), permettendo di dimostrare un criterio sufficiente di stabilità sotto
switching arbitrario; l’analisi si conclude con un corollario e alcune osservazioni.

L’analisi di robustezza è il secondo argomento affrontato in questa tesi; in
particolare, studieremo la robustezza della stabilità rispetto a incertezze para-
metriche nel modello del processo. Viene data una breve descrizione dell’incer-
tezza (le sue cause, come viene modellata e come –e se– può essere contrastata);
la robustezza è espressa in termini di regioni entro le quali un controllore tarato
sul processo nominale assicura la stabilità anche con un processo perturbato.
L’analisi si conclude con la scelta di una regola di triggering per il meccanismo
di generazione degli eventi.

Per rinforzare i risultati teorici, vengono forniti esempi di simulazioni che
provano come l’anello di controllo a eventi sia stabile e possieda alcuni vantaggi
rispetto alla sua controparte a passo fisso.

Infine, oltre alle già menzionate direzioni di ricerca, vengono proposti alcuni
possibili miglioramenti a questo lavoro.
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Introduction

Nowadays, digital technology is an indispensable component in many control
systems. Digital feedback controllers sample, transmit measurements and com-
pute control action periodically and at constant step; in literature, this control
paradigm has been labeled in various manners, such as ‘time-triggered’, ‘fixed-
rate’ or ‘sampled-data’ control. The major reason for the widespread of this
paradigm is the existence of a powerful and well established theory which al-
lows to directly design the controller, both in a linear and a non-linear context.
However, the theory of sampled-data systems hides some practical –and not
negligible– issues.

Limits of time-triggered control emerge, for example, when considering a
networked control system. In such a plant, sensor, controller and actuator are
linked via, e.g., field buses, Local Area Networks, ATM networks, and so on; an
important parameter for performance is the network load, and thus it is clear
that transmitting data packets at a constant step, when the system behaves
properly, increases the load and degrades the performances of the control loop.

Periodic control may be undesirable in some situations due to its conser-
vative nature. Periodic control system, indeed, require to select the sampling
period before the model is deployed; one has to ensure that this period is ade-
quate against a wide range of uncertainties. As a consequence, sampling period
may be chose shorter than necessary; consider, for example, a fixed-rate con-
troller implemented on a CPU running concurrent tasks. Computing a control
action that brings no improvement to the process is clearly a waste of compu-
tational resources; this (useless) control action, moreover, will be actuated by
an appropriate device, increasing its wear without any reasonable profit.

To get over these disadvantages, in the last decade a novel control paradigm
has been proposed, the Event-Based (EB) Control, also called ‘Event-Triggered
Control’, ‘Asynchronous Control’, ‘Aperiodic Control’. It can be referred as a
way to acquire measurements, take decisions and/or apply actions ‘only when
needed’, that is, when a significant event has occurred (such as the arrival of a
data packet to a node of the network, a measured variable exceeding a prescribed
threshold, and so on). EB Control gained popularity specially in relation to
the growth of networked wired (and wireless) control systems, which raise the
importance of explicitly addressing energy, computation and communication
constraints when designing feedback control loops.

11
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This policy is expected to bring some advantages with respect to the Fixed-
Rate case, particularly in presence of battery-operated devices (which typically
are the sensors) which communicate via a network of some sort. The main
advantages could be summarized as follows:

� Reduction of communications: As transmissions of the measured variables
occur only when necessary, Event-Based control reduces network load,
lowering the chances of packet losses and communication delays;

� Reduction of sensor’s battery consumption: In the majority of cases, a
sensor is not fed by the electrical network, but operates on battery power.
Lowering the number of transmissions means reducing the sensor energy
consumption and thus extending the device’s battery life;

� Reduction of actuator wear: As control action takes place only when
needed instead at a fixed rate, Event-Based control may prolong the ac-
tuator’s life.

Besides, EB Control is closer to the human nature as a controller, that is: when
a human performs manual control, his behavior is event-triggered rather than
time-triggered, in the sense that a control action will take place only when the
output has deviated ‘enough’ from the desired set point.

EB Control went in and out of fashion throughout the years. One of the
reasons is that it lacks of a unified theory as powerful as the one for the Fixed
Rate case; nonetheless, many works have been produced on the matter. Many
authors have presented modifications of well-know controller structures (such as
PID) to get event-based realisations with advantages in terms of CPU compu-
tational load and/or transmission rates. Stability and robust stability criteria,
under a wide variety of hypotheses, have been researched; many authors dealt
with these topics by exploiting state-feedback control which produces good re-
sults but, as we know, it is hardly applicable in practical cases, as the state of
a process may be unknown or not (fully) measurable. This problem has been
counteracted mainly in two ways: by introducing state observers, or, as other
authors do, choosing instead output-feedback control.

There is another main reason why time-triggered control still dominates.
From a control point of view, it is frequently assumed that a possible real-time
implementation will be able to guarantee a deterministic sampling interval; this
is, in fact, not always true. Determinism is in fact not always assured because
of a number of implementation issues impossible to discuss here, but typically
related either to the “general-purpose” (i.e. not real-time specific) design of the
part of the used architecture, or –even if a real-time specific design approach
is taken– to the unavoidable detriment to determinism induced by advanced
microprocessor features like for example caching and pipelining. No doubt such
features exhibit enough positive effects to justify their use (e.g., in terms of
computational efficiency), but the mentioned problems often remain.
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From a real-time point of view, instead, it is generally assumed that control
loops are always periodic, with fixed period and hard deadlines. It should
be obvious that event-based control loops are aperiodic; moreover, in a large
number of cases, deadlines are soft rather than hard; this prevents from using
all of the theory of rate monotonic scheduling and its extensions.

Recently [1] provided a simple (sufficient) stability condition for a pro-
cess controlled by an event-based realisation of a PID. The theorem presented
therein relied on a Zero Order Holder to actuate the control action; as a result,
the state matrix of the overall system resulted to be poorly manageable. We
conjecture that replacing the Zero Order Holder with an Impulse Holder will
simplify the structure of the matrix, thus leading to a new proof of the the-
orem, under (hopefully) more simple hypotheses. This, in conjunction with a
robustness analysis, is the task of the present work; it is important to point
out that the main focus of this work is on autotuning, so both the stability
condition and the robustness bounds will be formulated in terms that are easily
applicable in an autotuning context.

This work is structured as follows:

� Chapter 1 provides a detailed insight on EB control; here it is examined
what EB Control is, the application-related motivations of an EB real-
isation are provided and finally a review of literature works shows the
progresses achieved so far and the major research lines on the matter;

� Chapter 2 revisits and further develops the scenario sketched out so far, es-
tablishing a methodologically grounded relationship between control syn-
thesis techniques of industrial interest (such as PID autotuning) and EB
controller realisation. The chapter is concluded with a short (and surely
not exhaustive) list of possible research directions;

� Chapter 3 reports the main result of this work on stability. First, the
mathematical framework is established, providing the notation, the pre-
liminary results and the general hypotheses which constitute the context
of application of this work. Then, following the choice of the more suit-
able discretisation step and the construction of the state matrix of the EB
system, a simple (sufficient) stability theorem is proved. The Chapter is
concluded with a corollary and some remarks;

� Chapter 4 devises the robustness analysis which, for the sake of clarity, is
carried out in a restricted scope. Bounds on uncertainty are given in terms
of robustness regions. At the end of the Chapter, having given stability
and robustness criteria effective under arbitrary switching, a triggering
rule is presented;

� Chapter 5 reports some simulation examples, which strengthen the theo-
retical results obtained so far;
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� Chapter 6 summarizes the major contributes of this work, furthermore
envisaging some points worthy of future research.



Chapter 1

Background and related work

This chapter provides some background material on event-based control, ev-
idences the application-related motivations for event-based controller realisa-
tions, and synthetically describes – by means of a review of related work in the
literature – the major research lines on the matter.

1.1 Event-based control

Consider a control loop with a Continuous-Time (CT) process, and suppose
that a continuous-time feedback controller was synthesised, that adheres to
some desired specifications. To realise that controller digitally, one needs to (i)
acquire a sample of the controlled variable, (ii) compute the control signal, and
(iii) send that signal to a convenient holder, that finally governs the actuator.
To this end, two routes can be followed:

1. perform the actions (i) to (iii) above periodically and synchronously, which
is called here a Fixed-Rate (FR) realisation of the continuous-time con-
troller,

2. or perform the same actions “only when needed” (for the moment, what-
ever this means), which results in an Event-Based (EB) realisation of the
same controller.

The typical and general scheme for an EB control loop is shown in Figure 1.1,
where the main elements that can be recognised are outlined below.

1. The Plant, that is assumed to be described by a continuous-time dynamic
system—in the context of this work, SISO (Single-Input, Single-Output).

2. The Sensing event generator, that generalises the idea of “sampler”, and is
devoted to acquiring a value y(tk) of the controlled variable y(t) when this
is deemed necessary, for example (but in principle not necessarily) because

15
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Control signal
computation

(controller)

Control input
generator

(actuator)

Plant
Sensing event

generator

(sensor)

Network

w(th) u(th)

d(t)

u(t) y(t)

y(tk)y(tk)

Figure 1.1: Event-based control loop.

the present value of y(t) differs in magnitude from the last acquired one
y(tk−1) by more than a prescribed threshold.

3. The Control signal computation, that generalises the idea of “time - dis-
cretised controller”, and has the role of computing the control signal to
be sent to the control input generator at the instants th when this is
deemed conveninent, for example because the last received y(tk) and the
presently available reference signal w(th) lead to “large enough” a move-
ment of the actuator with respect to its present position. Note that in
principle the time indexes counting the sensing and the actuation events
may be different and independent, whence the two different subscripts
adopted.

4. The Control input generator, that generalises the idea of “holder”.

5. The Network, over which communications take place, and that can there-
fore introduce time-varying and/or unpredictable delay, and even give
rises to communication losses.

As can be seen, acquiring a sample only when deemed necessary results
in practice in a time-varying sampling time; thus, no discrete-time model (as
commonly intended) is available. Consequently, the FR theory does not hold
(although many authors approach to EB control as an extension of the FR
case), and thus one needs

1. to (re-)assess stability and robustness criteria, performance guarantees
and so forth;

2. and to set up convenient tuning methodologies, or – more practically – to
find suitable ways to apply synthesis rules conceived for CT controllers in
such a way that the EB realisation does not introduce detrimental effects.

Moreover, the FR theory considers essentially (and as far as the main focus
is set on applications, in practice exclusively) the Zero-Order Holder (ZOH)
as the input for the actuator; despite almost all the approaches to EB control
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use a ZOH as input, other kinds of holders, such as the Impulsive Holder (IH),
should be investigated.

It is clear, then, that there is a strong need for a system theory for EB
control, which should answer three basic questions:

� In which situation should information be transmitted?

� Which information should be transmitted?

� How should the control input be generated?

1.2 Application-related motivations

In a nutshell, as should now be clear, EB control consists of replacing the FR
sampler with an event generator, that dictates when a new control signal is
to be computed based on some event triggering rule, in turn requiring some
information on the signals of interest.

An EB controller realisation is thus readily viewed a means to reduce the
communication among sensors, controller and actuator in a loop, by triggering
a communication among said components only after an event has indicated (for
example) that the error has trespassed a tolerable bound.

According to the literature, especially concerning applications and technolo-
gies, three are the major motivations for using EB control:

1. mitigate the network load,

2. reduce the energy consumed for transmissions,

3. reduce the actuator stress.

Given the increasing capabilities of control networks and field buses, the
main technology-related reason seems at present to be the increasing use of
wireless sensors, that quite often operate on battery power.

1.3 Brief literature review

EB control is still a matter for research and draws much interest, as shown
by works like [2] and papers quoted therein; therefore, the literature offers a
wide variety of works on a wide range of topics. It is worth noticing that, as
of the event-generating mechanism, the literature distinguishes between event-
triggered control, where an event is generated at the violation of a certain
condition, and self-triggered control, when the next event is decided at the
previous step.

In [3], the author proposed a modification of the classical PID scheme to
obtain an event-based controller which reduced the CPU utilization with only
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minor degradation on performances; this work has been extended by Durand
et al. [4], which aimed at further reducing the number of samples and CPU
calculations. In [5], tha authors took both the previous works and found new
improvements both in the reduction of sampling/calculations and in perfor-
mances guarantees.

Regarding stability, [6] proposes a novel event-triggering scheme for a non-
linear CT system such that the resulting event-triggered system, controlled
via a non-linear state-feedback, is asymptotically stable (provided that the CT
system is stabilizable). In [7] instead, given an Input-to-State Stable (ISS)
discrete-time system, the event-triggering strategies that stabilizes the system,
both in a linear and a non-linear context, are investigated. The results are
extend also to the self-triggering context. In [8], given a process controlled
via output-feedback and a triggering condition, asymptotic stability by means
of a Linear Matrix Inequality (LMI) is ensured. This result is then extended
to the self-triggering context and to a state-feedback controller with a state
observer. The paper [9] proposed instead an event-based control loop which
adopts a state-feedback approach including a model of the CT system, versus
which the current plant state is evaluated. The authors prove that the approx-
imation between EB and CT can be made arbitrarily tight by a suitable choice
of the threshold parameter of the event generator. In [10] the previous work is
extended by investigating the reference tracking properties of the loop; inciden-
tally, the experimental evaluation shows that the loop is robust versus severe
model uncertainties. Finally, in [11] the case when the plant state measurement
is not available (or, somehow equivalently, a measurement noise is present) is
considered; this forces the authors to quit the state-feedback approach in favor
of an output-based approach, which, coupled with a state observer, is able to
guarantee a stable behavior.

To the author’s knowledge, there exist very few works which deal with
event-based control robust versus model uncertainties, while there exist works
like [12] that study robustness versus network-induced time delays. For an
overview of the wide range of application of the EB strategies, the interested
reader is referred to [13], which presents EB strategies not only in the same
scope illustrated so far, but examines its relevance in other fields, such as the
design of communication protocols in multi-agent systems, the development of
EB estimation techniques and fault diagnosis. In the end, the paper presents
further research directions.

Recently Leva et al. [1] provided a simple (sufficient) stability condition for
an EB realisation of a PID. The authors, in their framework, assumed that any
event could be triggered only on a time instant that is an integer multiple of
a quantum qs; this happens basically because events are triggered by a sensor
which polls the measured variable with step qs, and it is clear that between two
subsequent steps nothing can happen. This framework shows a strong resem-
blance (at least for the underlying hypotheses) with the one adopted in [14],
where this approach was called “Periodic Event-Triggered Control” (or PETC),
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in opposition to the “Continuous Event-Triggered Control” (CETC), where the
measured variable is monitored continuously. With the former strategy, it is
possible to reach a satisfying compromise between the FR realisation and the
EB one, as the event-transmission has now a periodic nature, without sacrific-
ing the benefits deriving from a reduced rate of transmission. Moreover, this
approach is more suited for digital implementation than CETC, which requires
dedicated hardware to detect events.

Besides, the paper [1] showed that there exists a close relationship between
EB control and switching systems. In a discrete-time context, indeed, if the
event-generating mechanism affects the discretisation procedure of the system
we get a different model at every event. This suggests that it is possible to
study an EB realisation with the theory of the switched systems; a survey
on the main problems of switched systems, the progresses achieved and the
open problems is available in [15] and in [16], to which the interested reader is
referred. Regarding the problem of robust control of switching systems, we can
mention [17, 18, 19, 20].

The design of triggering rules (for EB realisations) and switching rules (for
switching systems) is also a widely discussed topic. Though the best result
would be assessing stability under arbitrary switching/regardless of the trigger-
ing rule, there exist in literature many results which also give specific triggering
rule to guarantee asymptotic stability and good error tracking properties.

The already mentioned paper [6], for example, presents a theorem which,
given a (not quadratic) Lyapunov-based triggering rule, ensures the asymptotic
stability of the system and moreover bounds from below the inter-event time.
The authors of the paper [21] claim to have extended this result, leading to
a theorem which guarantees stability and a minimum dwell time under more
general conditions, which allow to consider more general types of Lyapunov
functions, such as quadratic ones.

In [22], two theorems are proposed which guarantee asymptotic stability by
means of LMIs, given a performance requirement and a switching rule expressed
in terms of this requirement. The authors consider both a case in which the
state information is available (thus allowing for state-feedback control) and a
case in which it is not (leading to output-feedback control); in the end, the
robust design problem is addressed.

The paper [14] is mainly focused on quadratic triggering conditions, showing
that some others triggering conditions (based, for example, on state error or
input error) may be written in a quadratic form; in [20], a theorem is stated
whose proof leads to the construction of a switching signal by concatenation.
However, as marked out therein, this concatenation does not provide any hint
to build the aforementioned signal.

Another topic of great interest, in switching systems, is that of stability
under dwell time. In general, given a switched system, asymptotic stability
of each subsystem is not sufficient to prove the asymptotic stability of the
switched system, as the movement of the state could “inflate” (in some norm)
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before decreasing; this is typically due, for example, to a couple of complex
conjugate eigenvalues. However, provided that each subsystem does not switch
before a prescribed amount of time, stability could be ensured. There exist
many results on the relationship between the dynamic matrix spectral radius
and minimum dwell time; for example, it is known that, if Di,τ = eAiτ has
a spectral radius ≥1, then τ is its minimum dwell time. Basing on this, [23]
proposes an algorithm that finds the minimum dwell time by picking τ in an
interval which is progressively narrowed, until the chosen τ makes the spectral
radius greater than one.

This review does not claim to be exhaustive nor to cover all of the possible
topics on EB control; rather, it covers the issues that will be treated in the
remainder of this work.



Chapter 2

Research context and
problems

This chapter re-visits the EB control scenario as sketched out so far, adopting
however the viewpoint that characterises the research path to which this thesis
belongs, that is, establishing a methodologically grounded relationship between
control synthesis techniques of high industrial interest, such as PID autotuning,
and EB controller realisations.

In extreme synthesis, the main idea could be stated as follows. It is well
known how an FR realisation impacts the behavior of a digitally realised con-
troller and modifies the stability, performance and robustness properties of the
loop with respect to the “ideal” ones as stemming from the same loop described
as an entirely CT system. As a consequence, techniques exist to select the sole
additional parameter needed for an FR realisation, i.e., the sampling time. We
would like to establish an analogous framework for the realisation of the same
controllers in EB form.

2.1 Motivations for EB control, revisited

Virtually any controller starts out as the result of some continuous-time (CT)
design. The “traditional” realisation path then relies on discretisation to ob-
tain an FR digital controller, the evolution of which occurs periodically and
is triggered by a sampler. Assuming that the sampling of the controlled vari-
able and the actuation (or “holding”) of the control signal are synchronous, a
strong theory exists – at least in the linear context, that however covers most
applications – to analyse and assess the so obtained (hybrid) control loop.

Limiting thus the scope to the first two reasons, an open problem is that
the physical structure of an EB control loop is not standardised: for example,
the controller might reside in the same hardware device as the sensor or the
actuator, or be separated from both. According to the literature, specifically
that on “networked control”, a particularly common and interesting case is

21
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when the sensor is separated from the other components. This is in fact quite
reasonable in general, as both the actuator device and any possible “central”
computational unit seldom experience power shortage issues. As such, although
different scenarii can be envisaged, the most interesting one, and the sole ad-
dressed herein, is that of an energy-critical sensor connected via a network –
the load of which may be of concern – to a less energy-sensitive control and
actuation equipment. As a further simplification, we here disregard the possi-
bility of faulty or missed communications, which seems a reasonable hypotheses
in applications like process control (contrary e.g. to mobile ones).

As a further consequence, in the addressed scenario it seems quite natural
to have that sensor dictate when transmissions need to occur. In this respect,
the two motivations above are apparently intertwined, yet each one preserves
some peculiarities. For example, network load is related to the number of
transmissions, both from the sensor and towards it if this is possible, while
(critical) energy consumption also depends on the amount of computational
load delegated to the sensor.

Remarks. Although the matter is more technology-oriented than method-
ological, it would be nice to define the cost of a control realisation in terms
of which and how many operations it requires on the part of energy- and/or
communication-critical components. This would imply, as an initial and incom-
plete list, the number of transmissions but also that of measurements made by
a sensor in order to detect when to transmit, the number of possible communi-
cations toward the sensor if this is to be envisaged, the quantity of information
to transmit, and so forth. In the first place this should lead to a reasoned tax-
onomy of EB configurations, and possibly to some clue to select the most suited
one for the problem at hand. More in perspective, if some connection can be es-
tablished between this matter and the system-theoretical analysis dealt with in
the following, the expected cost could become part of an optimised synthesis—
for example, helping choose the thresholds quite inherently required by any
event generator.

2.2 Assessing an EB loop

As a starting point, suppose that a CT controller has been synthesised suc-
cessfully (for the purpose of this manuscript, no matter how) and the resulting
control loop is characterised by convenient stability and/or performance indices
(phase margin, set point step IAE, or whatever is deemed appropriate).

2.2.1 Establishing the counterpart

When FR realisations are considered, the main issue is the selection of the
sampling time Ts, and several criteria for that are available. Taking the CT
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loop as the counterpart for the FR one is thus natural, and the available theory
allows to carry out the analysis quite in depth.

The same can be done for EB realisations, as shown e.g. in [9, 10]. This is a
correct approach, since FR and EB are compared to a common basis, and covers
any issue concerning the quality (lato sensu) of the obtained responses. On the
other hand, however, such an analysis by itself says nothing on the cost-related
questions as stemming from the typical motivations adduced for EB control.
For such purposes, that may prove very relevant, the FR realisation should be
somehow brought into play as a further counterpart.

Remarks. Analysis and assessment methodologies requiring knowledge
of a quite reliable process model and/or of the process state produce neat and
interesting results, as shown by the quoted works, but should be complemented
with synthesis tools “for the EB-specific part” that only require knowledge of
the CT controller and of basic (nominal) properties of the CT loop as forecast
in the tuning—in fact, quite often this exhausts the available information. In
this respect, establishing relationships with FR seems beneficial.

2.2.2 Comparing with FR control

In most works where EB and FR realisations of the same CT controller are
somehow – and more or less explicitly – compared, very few (if any) words are
spent on two relevant issues, namely which discretisation method was adopted
and why, and how the FR sampling time was chosen. The first issue has also to
do with the way the controller state is to be computed, i.e., with the controller
update rule – a matter more relevant in EB than in FR – and is better dealt
with later on, while the second is now briefly considered.

Sampling rate selection for FR

Crudely speaking for brevity, neglecting the Ts issue can impair EB/FR com-
parisons, especially because many FR implementations – also industrial ones,
by the way – tend to oversample quite significantly. As such, the question
to answer is how much a typical FR realisation can be “downsampled” with
respect to typical sampling time selection criteria, so as to avoid biasing the
comparison owing to an excessive penalisation of FR.

Basically, sampling time selection criteria follow three (possibly combined)
reasoning paths, that can be summarised as follows.

1. Proportionality to the cutoff frequency. Assuming that an estimate ω̂c is
available for the closed-loop cutoff frequency ωc, the sampling frequency
2π/Ts is constrained to exceed a multiple of ω̂c. The proportionality factor
ks is typically suggested to be in the range (20, 100) and for which the
author never encountered a such an advised value lower than 10.



24 CHAPTER 2. RESEARCH CONTEXT AND PROBLEMS

2. Phase margin reduction. Since the effect of sampling and holding is quite
well approximated in the Nyquist band by a delay of Ts/2, a phase margin
reduction of 0.5ω̂cTs is to be expected. If also the computation delay is
accounted for, considering that said delay cannot exceed Ts otherwise the
controller is not executing properly, a more pessimistic estimate for the
phase margin reduction is 1.5ω̂cTs. In fact, the organisation and timing
of the read/compute/actuate cycle has an impact on the estimate under
question, but treating the matter in detail would stray from the scope of
this work. As such, it can be assumed “on average” to estimate the phase
margin reduction as ω̂cTs, thereby constraining the sampling time to fulfil
the inequality ω̂cTs < ∆ϕm, where ∆ϕm (in radians) is the accepted phase
margin reduction. Of course also the choice of ∆ϕm could be discussed
extensively, but to give a first-cut figure, a value greater than 0.175 (10◦)
is seldom encountered.

3. Open-loop frequency response attenuation. The magnitude of the open-
loop frequency response L(jω) at the Nyquist frequency ωN = π/Ts in-
dicatively quantifies the amount of measurement noise that can deterio-
rate signal components within the control band due to aliasing. Assuming
(conservatively if the CT controller is sensibly synthesised) that |L(jω)|
rolls off with a −20db/dec slope above the cutoff frequency, a required
attenuation of 20dB – which is not particularly stringent – requires the
Nyquist frequency to be ten times the cutoff, thus the resulting constraint
is similar to that of the first item above with ks = 20.

To present some illustrative figures, a very simple example is now examined.
Consider the FOPDT (First Order Plus Dead Time) process

P (s) = µ
e−sD

1 + sT
, D ≥ 0 (2.1)

in the asymptotically stable case, i.e., T > 0, Also, without loss of generality,
assume for the purpose of this treatise that µ > 0.

Given the above, take as CT controller the PI one

RPI(s) = K

(
1 +

1

sTi

)
(2.2)

and suppose the loop to be in nominal conditions, i.e., the process and the
model used for the tuning coincide.

To synthesise the PI (2.2), employ the well known IMC (Internal Model
Control) tuning rule

Ti = T, K =
T

µ(D + λ)
(2.3)
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where λ is traditionally interpreted as the desired closed-loop dominant time
constant. This yields the (nominal) open-loop transfer function

Ln(s) = RPI(s)P (s) =
e−sD

s(D + λ)
(2.4)

thus a cutoff frequency (and incidentally a phase margin) estimate given by

ω̂c =
1

D + λ
, ϕ̂m =

π

2
− D

D + λ
(2.5)

that in this ideal case are exact, thus avoiding any influence of process/-
model mismatch and – as a related fact – of the particular procedure used
to parametrise (2.1) if it has to be identified.

To further simplify the scenario, take a desired (nominal) phase margin ϕ◦m
as design parameter, which leads to

λ =
ϕ◦m + 1− π/2
π/2− ϕ◦m

D (2.6)

and bringing (2.5) in, to

ω̂c =
1

D

(π
2
− ϕ◦m

)
, ϕ̂m = ϕ◦m. (2.7)

Applying ks-based criteria for selecting Ts, and taking the equality sign for
convenience, gives therefore

Ts =
2πD

ks
(
π
2 − ϕ◦m

) (2.8)

while if the ∆ϕm-based criterion is taken, again with the equality sign and with
angles in radians, the result is

Ts =
D∆ϕm
π
2 − ϕ◦m

(2.9)

Supposing now D = 1 and ϕ◦m = π/4, the ks-based criteria with ks = 20 give
Ts = 0.4, while the ∆ϕm-based one with ∆ϕm = 5◦ yields Ts = 0.1. As such,
a “reasonable Ts as suggested by the CT tuning” can be the average value of
0.25. Supposing furthermore an average situation between a dominant-rational
and a dominant-delay process, i.e. for example T = 1, the resulting Ts is 1/4
of the integral time, and the control signal is computed about 25 times within
the duration of a set point step response, evaluating the settling time as 5/ωc.
For completeness, λ turns out to be about 0.273, and K approximately 0.785.

Although the classical criteria just mentioned were used here with quite
loose constraints, it can be easily observed that there would be still some room
for downsampling. Figure 2.1 shows the closed-loop step response of the con-
sidered nominal system with Ts = 0.25 and Ts = 1. As can be seen, the major
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Figure 2.1: IMC-PI example 1 – Set Point (SP) step responses of the Process
variable (PV) and the Control Signal (CS) with Ts = 0.25 and Ts = 1.

disadvantage of the larger Ts is a not immediate reaction to the set point step
at t = 0.5, while for the rest of the transient the introduced degradation is
definitely acceptable also if compared to those typically observed in EB-centric
works. In particular, moreover, the settling part of the transient (quite expect-
edly) is hardly affected. As a final remark, this simple example backs up an
advice frequently heard (but not so frequently adhered to) in the industry, i.e.,
to “execute the controller about four times in the closed-loop step response rise
time”: according to such a suggestion, 0.25 is quite good a choice.

Incidentally, the example allows to foresee another major advantage of EB,
namely the prompt reaction to disturbances as they generate an event “imme-
diately” (or better, at the time scale of the sensor internal sampling) without
the need to with for the next control sampling.

Remarks. Assuming a CT loop as ultimate reference, both an FR and
an EB realisation deteriorate the control quality. For FR, given the discreti-
sation method, Ts is the independent variable against which the deterioration
(whatever index is chosen) is to be viewed. It would be nice to have something
analogous for EB, to give sense to statements such as “which realisation pro-
vides the lower cost with the same deterioration” (which is again comparing
both FR and EB to CT) but also “how many transmissions can one save with
EB compared to an FR realisation providing the maximum acceptable stabil-
ity degree decrease” (which relates EB and FR more directly), or similar ones.
In any case, a stability analysis of the EB scheme should be made and some
stability criteria should be devised.
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The discretisation method

In the FR case, discretisation can be carried out with several methods (the
“exact” one relying on the sampling transformation z = esTs , where s and z are
respectively the Laplace and Z transform variables, the forward or backward
difference one, the Tustin one, the ZOH – Zero Order Holder - one, and so
forth). Each of said methods has a specific possible impact on the stability
properties of the FR controller and thus of the FR loop, and rigorous methods
are available to analyse the matter.

In the EB case, things are apparently totally different. The controller update
rule replaces the mere discretisation, in the same way as the event triggering
rule replaces periodic sampling. However, whereas periodic sampling only re-
quires to fix Ts and to know the variable to measure, event triggering is a more
articulated process, and according to the literature may require additional in-
formation, such as the set point, or computational burden, such as that for
maintaining a model of the CT loop. Such a model can also be used for control
generation, see [10] for both details on these aspects and a literature review on
the general matter.

At present, this aspect does not seem to have yet received all the attention
it deserves. The most frequently adopted solution is to apply a ZOH policy
between two subsequent control events, possibly adapting the controller pa-
rameters based on the actual time elapsed since the previous one.

Remarks. When a comparison brings an FR counterpart into play,
the discretisation method is to be accounted for. Also, here too it would be
advisable to reduce the need for a process model to a minimum, for example
– in a view to the relevant issue of (auto)tuning, for example – to be able of
exploiting the synthetic information available in that context. Note that the
required information is related to transmission cost, whence a further reason of
interest. Of course, finally, deeper research on the controller update rule is in
order.

2.2.3 Limit cycles

Several EB-related papers deal with the problem of limit cycles. However it
seems that the interplay between the control update and the event triggering
rules has not yet been fully investigated as a source for that phenomenon, which
it apparently is.

Remarks. There seems to be room for further research here, but the
matter is quite complicated, as also in a CT or FR context the determination
of possible limit cycles and their stability properties is not a simple task unless
for almost trivial dynamic structures. Chances are that if the EB paradigm is
brought in, the matter is hardly tractable. However, as sketched out later on,
maybe a proper selection of the triggering rule can allow for an analysis of the
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induced switching system.

2.3 Tuning for an EB realisation

As far as the PI(D) structure is considered, the great majority – not to say,
virtually the totality – of tuning rules are conceived in the CT domain, as even
a short glance at the huge review [24] immediately testifies.

More precisely, said rules invariantly start from some CT process descrip-
tion. This can be parametric (most frequently, a transfer function of structure
decided a priori) or nonparametric (e.g., some characteristic points of a fre-
quency response). In any case, the starting point to obtain such descriptions is
a record of samples of some time-domain response, like a step or a relay one.

Consistently with the idea of a reference CT controller, as in this particular
context complementing the analysis with an FR counterpart does not seem rel-
evant, the most straightforward way to approach (auto)tuning of EB controllers
seems to rely on tuning rules conceived for CT ones. Things are however dif-
ferent when it comes to turn a tuning rule into a tuning procedure, as in this
respect some points need addressing.

The first one is how to manage the experiment—step, relay, or whatever.
Since tuning occurs sparingly, one may think to carry out the operation using
FR, but this requires extra controller/sensor communication, and the sensor
must be capable of that (neglecting the additional consumption). However,
since a process stimulus is applied, even if no information is fed to the sensor,
transmissions are likely to be generated. The problem can then be posed and
tackled of how to obtain the necessary tuning-related information from an EB
sampling. Additionally, the samples’ distances in time themselves may convey
some information, and this too needs studying.

Remarks. A first aspect to study is how to obtain useful tuning in-
formation from EB sampling, relying e.g. to signal reconstructors conceived
specifically for a given stimulus. For example, if relay feedback is used and the
filtering hypothesis of the describing function approach is taken, the signal to
be reconstructed is basically a sine wave with at most a few harmonics, and
similar ideas can be used for other types of experiments. Then, the problem
can be addressed of how a tuning procedure can possibly suggest EB-specific
quantities like thresholds. Notice that in a similar way one could seek clues for
Ts in a view to FR realisation, and although this is far simpler, nonetheless the
autotuning literature is quite silent on that. Having both FR- and EB-related
clues could finally allow for a forecast comparison of the two realisations.
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2.4 Envisaged research directions

According to the previous remarks, we can envisage the following research di-
rections.

� A first step would be the development of a reasoned taxonomy of EB
configurations with respect to the energy- and/or the communication-
critical components of the control loop. This could help firstly in choosing
the best configuration for the problem at hand, and then in integrating
the expected cost in optimised synthesis techniques;

� When the moment comes for a comparison between an EB and a CT reali-
sation, there will be need for analysis and assessment methodologies which
require only the knowledge of the CT controller and the basic (nominal)
properties of the CT loop as forecast in the tuning;

� Up to now, EB realisations lack some (ideally, one) free tuning param-
eters which enable to tell which realisation provides the lower cost with
the same deterioration (which is comparing both FR and EB to CT) and
to govern the transmission saving given the maximum acceptable deteri-
oration (which is instead comparing EB to FR);

� Another relevant issue is how to extract informations from EB sampling,
which could be difficult as the sampling theorem could be violated. This
opens another issue, i.e. how to turn this informations into EB-specific
parameters like thresholds; if the same is done in the FR context, this
would allow for a forecast comparison of the two realisations;

� Regardless of the presence of the mentioned parameters, stability and
robustness criteria should be devised;

� The need for information of the controller update rule should be reduced
to the minimum, avoiding wherever possible the explicit necessity for a
process model;

� It should be advisable to study what happens when come into play network-
induced delays and packet losses, multi-loop systems, and actuation and
sampling are no more synchronous.

In this work, we will focus in particular on stability and robustness analysis.
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Chapter 3

Stability

This chapter presents the main result regarding stability. The mathematical
framework (which comprises the notation and some well-known properties) is
established; then a set of hypotheses is presented, which lead to a class of event-
based controllers that is very close to the fixed-rate case. Finally, after some
preliminary results, a sufficient stability criterion is presented.

3.1 Notation and preliminaries

In the remainder of this work will be done an extensive use of singular values
and matrix norms. Here are presented all the definitions and the properties
which will be used throughout this thesis.

Given a matrix A and its spectrum ρ(A) = {λi|λiis an eigenvalue of A,∀i},
AH denotes the conjugate transpose of a matrix, AT denotes the transpose of a
matrix and v∗(·) denotes a signal sampled at events. The singular values of a
matrix are then defined as follows.

Definition 1 For a m×n complex matrix A, the square roots of the eigenvalues
of AHA are called singular values of A.

Singular values are collectively indicated with the notation σ(A); they are al-
ways nonnegative scalars, so they can be ordered in descending order: σ1 ≥
σ2 ≥ · · · ≥ σn ≥ 0.

Another useful definition is that of a matrix norm. As there exists a wide
variety of definitions, we will restrict our scope to the induced norms and, in
particular, to the p-norms.

Definition 2 Given vector norms on Kn and Km (K being the real or complex
field), the corresponding induced norm or operator norm in the space of the m×n
matrices is defined as

||A|| = max {||Ax|| : x ∈ Knwith ||x|| = 1}

= sup

{
||Ax||
||x||

: x ∈ Knwith x 6= 0

}
(3.1)
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The operator norm corresponding to the p-norm for vectors is defined as

||A||p = sup
||x||6=0

||Ax||p
||x||p

Of particular interest is the 2-norm, also called Euclidean norm or spectral
norm, which is defined as

||A||2 = σ1(A)

All the p-norms have the important property that for every matrix A ∈ Rm×n
and x ∈ Rn we have ||Ax||p ≤ ||A||p · ||x||p.

Now we can define the condition number of a matrix.

Definition 3 The condition number of matrix A is defined as

κp(A) = ||A||p||A−1||p

where || · ||p denotes any of the p-norms.

For our purposes, it is necessary to introduce the notion of contractivity of
a matrix.

Definition 4 A matrix A is said to be contractive or to be a contraction if
there exists a constant L ≤ 1 such that

||Ax|| ≤ L||x||

In light of the previously stated property of the p-norms, is it immediate to
see that the aforementioned constant L can be identified with the p-norm of a
matrix A; if p=2, then a simple contractivity criterion is to check whether the
greatest singular value of a matrix A is lesser than 1. This fact was already
known (and it’s mentioned, for example, in [25, 26, 27]) and it may seem trivial
to state it, but for the sake of clarity it has been preferred to give a detailed
explanation of all the definitions used from here on.

3.2 General hypotheses

Hypothesis 1 The process under control is described by a linear, time-invariant
(LTI) single-input,single-output (SISO) model{

ẋP (t) = APxP (t) + bPu(t− τ)
y(t) = cPxP (t)

(3.2)

where t is the continuous time, u(t) ∈ R the control signal, y(t) ∈ R the con-
trolled variable xP (t) ∈ RnP the process state vector, AP ∈ RnP×nP , bP ∈
RnP×1, cP ∈ R1×nP constant matrices, and finally τ ∈ R, τ ≥ 0 a constant
delay.
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Note that model 3.2 is strictly proper, without any loss of generality for our
purposes. Furthermore it is supposed to be asymptotically stable, or to have
at most just one pole in the origin.

Hypothesis 2 A continuous-time LTI SISO controller that stabilises the nom-
inal closed-loop system containing model 3.2 is available, and has the form{

ẋR(t) = ARxR(t) + bR(w(t)− y(t))
u(t) = cRxR(t) + dR(w(t)− y(t))

(3.3)

where xR(t) ∈ RnR is the controller state, w(t) ∈ R the reference signal to be
followed by y(t), AR ∈ RnR×nR , bR ∈ RnR×1, cR ∈ R1×nR constant matrices, and
dR ∈ R a constant scalar.

Controller 3.3 can be the result of an (auto)tuning procedure, and encom-
passes direct input/output feedthrough, like, e.g., a PI(D).

Hypothesis 3 Controller 3.3 is realised with digital technology, and computes
the discrete-time control u*(k) at events, which occur at time instants tk counted
by an integer k ∈ N , and in general not evenly spaced in time.

Hypothesis 4 Events are triggered by a single source (that here we assume to
be the sensor).

Hypothesis 5 The time between two events is an integer multiple of a quantum
qs ∈ R, qs > 0.

∀th ≤ tk, tk − th = ς(k, h)qs

According to Hypothesis 4, two quantities can be defined:

� the a priori step duration T s(k) that is decided at the k-th event;

� and the a posteriori step duration T s(k), i.e., the time actually elapsed
from the k-th to the (k + 1)-th event.

In literature, this approach has been called ”Periodic Event-Triggered Con-
trol” (or PETC; see, for example, [14]), in opposition to the ”Continuous Event-
Triggered Control” (CETC), where the event-triggering condition is monitored
continuously. With the former strategy, we are able to reach a satisfying com-
promise, as the event-transmission has now a periodic nature without sacrificing
the benefits deriving from a reduced rate of transmission. Moreover, this ap-
proach is more suited for digital implementation than CETC, which requires
dedicated hardware to detect events.

In practice, events can occur at the termination of T s(k) or earlier, no matter
why. In the former case T s(k) = T s(k), while in the latter T s(k) < T s(k).
Notice that the event generation mechanism is in part reactive and in part
proactive, the timeout being in fact the simplest way to decide when the next
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event has to occur. About this, literature distinguishes between ”self-” and
”event-triggered” (see for example [28]); the results of this work are applicable
in both contexts, however.

Furthermore, Hypothesis 5 is well consistent with the way sensor electronics
is typically designed. Most frequently, in fact, the sensor has a low-power part
that is always active and polls the measured variable at frequency 1/qs. A high-
power part takes conversely care of transmitting ”when deemed necessary”, i.e.,
based on a triggering rule, and is kept off otherwise.

Hypothesis 6 If process 3.2 contains a delay, this can be approximated in the
control-relevant frequency band by a rational transfer function, so that one can
take as nominal continuous-time process model one with rational dynamics only.

Assuming this may seem peculiar, but in fact many (auto)tuning methods
rely on such models, typically obtained via Padé approximations. And even if
the used tuning method is not of this type, in any non-pathological case it is
possible to approximate a delay, within the control band, with simple enough
a rational expression. No doubt this could somehow diminish the generality of
the proposed approach, but nonetheless the variety of the usable tuning rules
is still very large.

Hypothesis 7 There is an upper bound for the time between two subsequent
events, i.e.,

∀k, σ(k) ∈ Σ = 1, . . . , N, 1 ≤ N <∞,

where

σ(k) := ς(k + 1, k).

This is realistic, as for safety reasons all real sensors encompass some ”keep-
alive” timeout, at the end of which an event is triggered unconditionally.

Note that we chose to preserve the notation from [1] for the inter-event time;
this has nothing to do with the one for the singular values.

Hypothesis 8 The control signal is applied only when an event occurs and is
kept zero otherwise, i.e. the control action takes the form

u(t) =
+∞∑

k=−∞
δ(t− tk)(cRxR(tk) + dR(w(tk)− y(tk)))

where δ(t− tk) is the Dirac delta.

This is the so called ’impulse control’, as presented in [2]. In a real case, however,
applying an impulse as control action could be dangerous, so we interpose a low-
pass filter between the controller and the process to smooth the impulse. From
now on we will consider the augmented process model which encompasses the
filter and allows to tune freely the (impulse) controller.
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Figure 3.1: The (scaled) impulsive control follows correctly the ZOH output.

Figure 3.2: The output due to impulsive control diverges if no scaling factor is
applied.
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However, since we replace the Zero Holder with and impulsive actuation, the
latter must be scaled in order to provide the correct output for the controller;
the importance of the scaling factor can be summarized in Figures 3.1 and 3.2.
We will see that the necessity of a scaling factor can be avoided with a suitable
choice of the discretisation step for the controller.

As a final remark, one can notice that if the time constant of the filter is
large enough, i.e. greater than qs, the control action seen by the process can be
well approximated to the one produced by a zero order holder.

Hypothesis 9 When an event is triggered by the sensor, this results in the
computation and actuation of a new control value. The delay between the trig-
gered event and the control actuation is either negligible or known and constant,
so that it can be taken as a part of the process model.

This is the most strict hypothesis among those introduced, but is definitely
realistic in at least two cases, both of interest for process control. The first one
is when sensor, controller and actuator are co-located, and the reason for using
an event-based controller is to reduce the actuator wear. In this case, the delay
between sensor event and actuation is practically negligible. The second case
(more central to this work) is when sensor, controller and actuator commu-
nicate via a network, but the underlying communication protocol is designed
in such a way to practically eliminate packet collisions, that are the primary
source of network-induced (variable) delays. At present not all protocols are ca-
pable of doing that, but a great research effort is being spent on the matter, see
for example [29, 30, 31, 32], and solutions suited for the addressed context are
arising; for example, in [33] a synchronisation scheme is proposed that, thanks
to a novel and completely control-theoretical design, permits to make virtually
any existing communication protocol slotted, thus making communication de-
lays practically invariant. When such solutions will eventually become part of
industrial systems, the hypothesis under question will be safely applicable to
even more real-life cases.
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3.3 Stability under arbitrary switching

In this section, some preliminary considerations will allow to reveal the system’s
switching nature; a sufficient stability criterion, under arbitrary switching, is
then derived. The section is concluded with a corollary and some remarks.

3.3.1 Preliminary results

Before delving into the details of the theorem, we present the two following
lemmas.

Lemma 1 Given a square, invertible matrix A ∈ Rn×n, be σ1 and σn its great-
est and least singular value, respectively. Then

σ1(A−1) = σn(A)−1

Proof.

σ1(A−1) =
√
λ1[(A−1)TA−1] =

√
λ1[(AT )−1A−1] =

=
√
λ1[(AAT )−1] =

√
λ−1
n (AAT ) =

=
√
λn(AAT )

−1
= σn(AT )−1

But for a square, invertible matrix A, transposition doesn’t change singular
values, so σn(AT )−1 = σn(A)−1, thus concluding the proof.�

In light of this result, it is clear that the condition number of a matrix in
the case of a 2-norm is κ2(A) = σ1(A)

σn(A) ; it is worth noticing that, by definition,
κ2 is always greater or equal than 1.

Lemma 2 [34, Th. 9] Let A and B be n × n matrices. If 1 ≤ k ≤ i ≤ n and
1 ≤ l ≤ n− i+ 1, then

σi+l−1(A)σn−l+1(B) ≤ σi(AB) ≤ σi−k+1(A)σk(B)

In particular,

σi(A)σn(B) ≤ σi(AB) ≤ σi(A)σ1(B)

and further

σn(A)σn(B) ≤ σn(AB), σ1(AB) ≤ σ1(A)σ1(B)

For the proof of the lemma, refer to [34]. We will be interested in particular to
the last two results.
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3.3.2 Choice of the discretisation step

As pointed out in Hypothesis 8, a wise choice of the discretisation step for the
controller can simplify the robustness analysis and the proof of the theorem.

Given that we are interested in confronting the results obtained with a Zero
Holder (ZOH) with the results of the Impulse actuation (IH) and that, among
all the possible discretisation steps, we focus only on σ(k)q and q, there are
four possible situations. In this section we summarize pros and cons of every
case.

ZOH and step σ(k)q

This situation was analyzed in [1] and was the starting point for this work. The
dynamic matrix of the system is

(A∗P,q)
σ −

(
σ−1∑
h=0

(A∗P,q)
σ−h−1

)
b∗P,qdRcP

(
σ−1∑
h=0

(A∗P,q)
σ−h−1

)
b∗P,qcR

−

(
σ−1∑
h=0

(A∗R,q)
σ−h−1

)
b∗R,qcP (A∗R,q)

σ−1


Leva and Papadopoulos presented a theorem which grants asymptotic stabil-
ity under arbitrary switching under few hypotheses; the great disadvantage is
that this matrix is a function of σ, and one of our goals is to eliminate this
dependence.

ZOH and step q

This approach was not analyzed as we aim to substitute the Zero Holder with
and Impulse Holder; however, for the sake of completeness, the dynamic matrix
is reported below: (A∗P,q)

σ −

(
σ−1∑
h=0

(A∗P,q)
σ−h−1

)
b∗P,qdRcP

(
σ−1∑
h=0

(A∗P,q)
σ−h−1

)
b∗P,qcR

−b∗R,qcP A∗R,q



IH and step σ(k)q

This approach replaces the Zero holder with an impulse actuation; since the
energy of the control action must be preserved, a scaling factor is introduced.
In the ZOH case, the control action was released in a span of time of duration
σ(k)q, while in the IH case the control action is completely released in a step
of duration q; thus the scaling factor is σ(k).
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The dynamic matrix is the following: (A∗P,q)
σ − (A∗P,q)

σ−1b∗P,qdRcPσ(k) (A∗P,q)
σ−1b∗P,qcRσ(k)

−

(
σ−1∑
h=0

(A∗R,q)
σ−h−1

)
b∗R,qcP (A∗R,q)

σ−1


The IH then suppresses the summations in the first row of the matrix, but
leaves unchanged the second row. Although this is the correct way to examine
the problem, the next subsection shows that further simplifications are possible,
provided to accept a non strictly correct treatise of the problem.

IH and step q

According to Hypothesis 3, controller matrices should be discretised at step
σ(k)q, as illustrated in the previous subsection; despite this fact, we choose
to discretise all the matrices (both process and controller) at step q, always
activating the controller at events. This approach may seem inconsistent, but
in the next section it is shown that it has the advantage to produce a state
matrix which does not depend on σ. Moreover, it implies that σ(k) = 1; thus
no scaling factor is needed.

3.3.3 State matrix of the system

Suppose model 3.2 to be an exact description of the process; in presence of a
delay in the continuous-time process, the state can be conveniently augmented
to accomodate its rational approximation, preserving in this way the matrix
notation. Now recall Hypotheses 1, 5 and 8; at the beginning of the k-th event,
the nominal process is described by:{

x∗P (k + 1) = A∗P (T s(k))x∗P (k) + b∗P (T s(k))u∗(k)
y∗(k + 1) = cPx

∗
P (k + 1)

(3.4)

where

A∗P (T s(k)) := eAPT s(k), b∗P (T s(k)) :=

∫ T s(k)

0
e(APT s(k)−ξ)bP dξ (3.5)

Coming to the controller, let it be turned at the beginning of step k into a
discrete-time one by some method of choice, using as discretisation period the
sensor’s sampling time qs. This means computing u∗(k) as the output of the
dynamic system{

x∗R(k) = A∗R,qx
∗
R(k − 1) + b∗R,q(w

∗(k − 1)− y∗(k − 1))

u∗(k) = c∗R,qx
∗
R(k) + d∗R,q(w

∗(k)− y∗(k))
(3.6)

where the mentioned discretisation method provides matrices A∗R,q, b
∗
R,q, c

∗
R,q

and the scalar d∗R,q - we do not explicitly indicate the dependence of those
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functions on the continuous-time matrices to lighten the notation. At the same
instant, the process state and output are related to their values at the beginning
of the previous step by 3.4, with the time indices shifted back by one.

Let us now evaluate both the state of the process and the state of the
controller. At the beginning of the k-th event:

� The state of the process xP is computed at a fixed rate, here assumed
to be equal to the sensor’s sampling time qs:

x∗P (σq) = (A∗P,q)
σx∗P (0) +

σ−1∑
h=0

(A∗P,q)
σ−h−1b∗P,qu(h) =

= (A∗P,q)
σx∗P (0) + (A∗P,q)

σ−1b∗P,qu
∗(0) (3.7)

� the state of the controller xR is computed once, when the event occurs:

x∗R(σq) = A∗R,qx
∗
R(0) + b∗R,q(w

∗(0)− cPx∗P (0))

Putting it all together at step k we have an a posteriori closed-loop discrete-
time system with state vector x∗(k) = [x∗P (k)x∗R(k)]T and dynamic matrix[

A∗P,q
σ −A∗P,q

σ−1b∗P,qd
∗
RcP A∗P,q

σ−1b∗P,qc
∗
R

−b∗RcP A∗R,q

]
which can be further decomposed into[

A∗P,q
σ−1 0

0 I

] [
A∗P,q − b∗P,qd∗RcP b∗P,qc

∗
R

−b∗RcP A∗R,q

]
=

=

[
A∗P,q 0

0 I

]σ−1 [
A∗P,q − b∗P,qd∗RcP b∗P,qc

∗
R

−b∗RcP A∗R,q

]
=

= A∗OL,q
σ−1A∗CL,q

where I denotes the identity matrix of appropriate order, and A∗OL,q, A
∗
CL,q

denote the Open Loop and the Closed Loop matrices sampled at step q, re-
spectively.

Now let us define:

� b∗CL,σi,q =

[
A∗P,q

σi−1b∗P,qd
∗
R

b∗R,q

]
� k = 1 = σ1q, k = 2 = (σ1 + σ2)q, . . . k =

∑k
i=1 σiq;

� A∗CL,σi,q = A∗OL,q
σi−1A∗CL,q;

� x∗(0) = x0;
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� and just for the sake of clarity,
∏n
i=1Ai = AnAn−1 · · ·A2A1

Then, the state of the system at k-th event will be

x∗(k) =

[
k−1∏
i=0

A∗CL,σk−i,q

]
x0 +

k−1∑
i=1

i−1∏
j=0

A∗CL,σk−j ,q

 b∗CL,σk−i,qw(k − 1− i)


+ b∗CL,σk,qw(k − 1)

and the state matrix of the system is

AEB =
k−1∏
i=0

A∗CL,σk−i,q (3.8)

This reveals the system’s switching nature, σ(k) playing the role of the switching
signal; to guarantee stability of the EB system, given the unpredictability of
σ(k), it is required to prove the stability of the system with dynamic matrix
3.8 under arbitrary switching in Σ. A sufficient condition for this is expressed
by the following theorem.

3.3.4 A simple stability theorem

Theorem 1 The system described by the dynamic matrix 3.8 is asymptotically
stable under arbitrary switching in Σ if for each σ(k) both the Open Loop and
Closed Loop matrices are diagonalizable and it holds that |λMAX(A∗CL,q)|κ2(Tq) ≤
κ2(Tσ)−1 and |λMAX(A∗CL,q)|κ2(Tq) < 1, where Tq, Tσ are matrices which diag-
onalize ACL,q, AOL,q respectively.

Proof. By hypothesis:

� ∃Tσ, det(Tσ) 6= 0 | T−1
σ AOL,qTσ = diag(λi) = Dσ, where λi is an eigen-

value of AOL,q;

� ∃Tq, det(Tq) 6= 0 | T−1
q ACL,qTq = diag(ηi) = Dq, where ηi is an eigenvalue

of ACL,q.

Let To = T−1
σ Tq, then 3.8 may be expanded and written as follows:

AEB = TσT
−1
σ (AOL,q)

σk−1TσT
−1
σ TqT

−1
q ACL,qTqT

−1
q Tσ�

��T−1
σ . . .

. . . ��TσT
−1
σ (AOL,q)

σ1−1TσT
−1
σ TqT

−1
q ACL,qTqT

−1
q TσT

−1
σ

= TσD
σk−1
σ ToDqT

−1
o D

σk−1−1
σ ToDqT

−1
o . . . Dσ1−1

σ ToDqT
−1
o T−1

σ

Coming to the singular values, we have, by Lemma 2:

σ1(AEB) ≤ σ1(Tσ)[σ1(Dσ)]
∑k−1
i=0 σi−kσ1(To)

kσ1(Dq)
kσ1(T−1

o )kσ1(T−1
σ )
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Because λMAX(Dσ) = 1 due to the matrix structure and by Lemma 1 we may
write:

σ1(AEB) ≤ σ1(Tσ)

σn(Tσ)

[
σ1(To)

σn(To)

]k
σ1(Dq)

k

By definition of contractivity of a matrix, we want σ1(AEB) to be lesser than

1. Let M = σ1(Tσ)
σn(Tσ) = κ2(Tσ), then it must be:

σ1(Dq)
k <

1

M

[
σn(To)

σ1(To)

]k
Again, by Lemma 2, we may write:

σ1(Dq)
k ≤ 1

M

[
σn(T−1

σ )σn(Tq)

σ1(T−1
σ )σ1(Tq)

]k
=

1

M

[
σn(Tσ)σn(Tq)

σ1(Tσ)σ1(Tq)

]k
=

1

κ2(Tσ)k+1κ2(Tq)k

If we call σ1(Dq) = |λMAX(A∗CL,q)| = a, κ2(Tq) = b and κ2(Tσ) = c, given that

all of these quantities are positive, we have to find when (ab)k ≤ c−(k+1). There
are four possible scenarios:

1. ab < 1, c < 1;

2. ab > 1, c < 1;

3. ab < 1, c > 1;

4. ab > 1, c > 1.

The first two scenarios will never arise, because, as previously stated, c > 1
by its own nature; by hypotheses, we are working in scenario 3. But, in this
case, we have to ensure that the left hand side of the inequality decreases faster
than the right hand side, i.e. ab ≤ 1

c . Having granted it by hypotheses, the
inequality holds, and thus the matrix AEB is contractive. �

It is worth noticing that if ab = |λMAX(A∗CL,q)|κ2(Tq) > 1 the theorem

doesn’t cease to hold at all. Instead, it will hold up to a certain k = k; the
following corollary can then be stated.

Corollary 1 If |λMAX(A∗CL,q)|κ2(Tq) > 1, Theorem 1 still holds, but only up

to greatest k = k such that the following inequality holds:

σ1(Dq)
k ≤ 1

κ2(Tσ)k+1κ2(Tq)k
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3.3.5 Summary and conclusion

In this chapter, by suitably constraining the way the EB controller realisation is
obtained, a sufficient condition for the stability of the switching system induced
by the EB realisation was obtained, and this result is expressed by Theorem
1 and Corollary 1. The proof of Theorem 1 does not rely on a particular
controller structure; thus extensions to other types of controllers with respect to
the most typical “industrial” ones, such as state-feedback ones, could therefore
be envisaged.

Concerning possible disturbances, one can notice that their influence on
the stability of the closed-loop system, given its linear (switching) nature, can
only be exerted by inducing a particular switching sequence. Therefore, once
stability is guaranteed under arbitrary switching, it cannot be disrupted by
construction.

The stability analysis part is thus concluded; we now move to robustness.
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Chapter 4

Robustness

Model 3.2 quite obviously will never be an exact description of the process, due
to uncertainties affecting the parameters, unmodeled dynamics and so on. In
this chapter we will investigate the conditions under which a controller, tuned
on the nominal system, assures stability also with the perturbed system.

4.1 Foreword

In Theorem 1, besides the diagonalizability of the matrices, the other hypothe-
ses implicitly define a robustness region for our system. It is clear, indeed, that
any controller (tuned on the nominal system) that succeeds in keeping any pro-
cess affected by uncertainty in this region is robust with respect to asymptotic
stability.

This region could be difficult to define analytically; as such, it could be
more practical to numerically plot it. In the case of an IMC PID, for example,
this region could be plotted in the qs − λ plane, where λ is the only tuning
parameter of the controller.

4.2 Causes of uncertainty

Given a nominal process model P (s, θn), where θn is the parameters vector (in
nominal conditions), we do not have a credible evaluation of variability for this
process, because the model is “wrong”. There are three main reasons for this:

� The process model P (s, θn) is poorer than the real process, in the sense
that it could be under-parameterized, may neglect some dynamics, and
so on;

� Even if we could afford a perfect model of the process, if it comes from
an assembly line parameter variations between a product and another are
inevitable;

45
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� Last, there exists a slow time-variance that does not appear on the con-
troller’s time scale, but becomes important on the long run.

Not all of this causes can be properly counteracted; in particular, uncertainty
due to time-variance is the worst case, and it is little remediable. Unmodeled
dynamics pose a severe problem too, and in this case we can formulate only
bland hypotheses. Parametric uncertainty is for sure the luckiest scenario,
provided that we can formulate the problem in terms of few representative
parameters. If it is not the case, dominating the complexity may become very
challenging.

Note that despite identification methods can provide e.g. confidence interval
on the obtained parameters, it would not be correct to use them to determine
the set for robust control; it is conceptually wrong because telling that, for
example, according to data µ ∈ [µ, µ] with a 95% confidence is just telling how
much the model is incapable of explaining the data. It is, indeed, unrelated
with the time variability of the parameters.

A correct approach to the problem would be, instead, finding some robust-
ness index and expressing it as a function of the nominal data. In this way it is
possible to express the greatest tolerable error, which implies that the controller
tuning will be robust up to a certain bound; moreover, it is a more “extended”
indication than other “punctual” indicator like, e.g., the phase margin or the
gain margin. It is alway possible, however, that finding analytical bound may
be a tough task (even impossible or not practicable); in this case may be more
simple to numerically plot the stability / robustness region. Some examples of
the construction of stability/stabilizing regions could be found in [35], [36] and
in [37] (which uses a generalized Hermite-Biehler Theroem described in [38]).

Once the regions have been found, a population of processes is generated to
test the correctness of the work; processes generated only in the vertices of the
region do not suffice as often said regions are non-convex.

4.3 Modeling the uncertainty

For the sake of simplicity, we will conduct the analysis in a restricted scope.

� Third order process, which encompasses the process itself, a rational ap-
proximation of the delay (we will use a first-order Padé approximation)
and the filter;

� PID controller, tuned on the nominal process through an IMC procedure;

� The (parametric) uncertainty does not change the order of the system nor
the number of the eigenvalues.

Given a process model P (s, θ) in the frequency domain, let (A∗
P,q(θP ), b∗P,q(θP ),

c∗P,q) be its realisation in the state space; the parametric uncertainty affects only
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the state matrix and the input channel, meaning that A∗P,q(θP ) = A∗P,q(θ+ ∆θ)

and b∗P,q(θP ) = b∗P,q(θ + ∆θ).
For a generic state matrix affected by uncertainties, if parameter variations

are not excessive, every element in the matrix can be approximated as

aij(θP ) = aij(θP + ∆θ) ' aij(θP ) +∇θaij |θ ∆θ

and so we may say

A(θP ) = A(θP + ∆θ) ' A(θP ) +A∆

Applying this to ACL,q and AP,q we obtain

ACL,q(θ) ' ACL,q(θ) +ACL,q,∆ (4.1)

AP,q(θ) ' AP,q(θ) +AP,q,∆ (4.2)

The perturbed matrices must then satisfy two kind of bounds; with the first,
we require that their eigenvalues lie in the unitary circle (and are, possibly,
distinct, to allow diagonalization) while the second is the “implicit” bound
stated within Theorem 1.

As pointed out in the previous chapter, there are not trivial relationships
between the eigenvalues of two matrices and those of their sum, unless said
matrices possess some particular feature, like, e.g., symmetry, positive definite-
ness, and so on. Even if we know that the eigenvalues of A(θ) lie inside the
unitary circle, determining the position of the eigenvalues of A∆ does not help
in localizing the eigenvalues of their sum; we must therefore study the matrix
sum as a whole.

Robustness analysis begins from the frequency domain; having the trans-
fer function, it is more convenient to localize the eigenvalues through criteria
which study the coefficient of the characteristic polynomial. Given a polyno-
mial P (z) = anz

n + an−1z
n−1 + · · · + a1z + a0, to check if its roots lie in the

unitary circle one may employ one of the following criteria:

� Ordered coefficients:The roots of a polynomial P (z) lie in the unitary
circle if its coefficients are positive and in descending order, that is: an ≥
an−1 ≥ · · · ≥ a1 ≥ a0 ≥ 0. This is a sufficient condition of simple use;

� Jury Criterion: The Jury Stability Criterion is the discrete-time equiv-
alent of the Routh-Hurwitz Criterion. It requires to build a table from the
coefficients of the characteristic polynomial; by checking some inequali-
ties, it proves that the eigenvalues lie in the unitary circle. It is a necessary
and sufficient condition;

� Gershgorin Circle Theorem: All of the eigenvalues of a matrix A lie
in the union of the closed circles centered on the diagonal elements and
whose radii are the sums of the off-diagonal element on the same row.
This theorem is a sufficient condition which could be useful only if the
centers of the circles would lie in the unitary circle;
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� Bezoutians Matrices: As explained in [39], Bezoutians matrices can
be built starting from the characteristic polynomial. By checking some
properties, like, e.g., rank, positive definiteness, an so on, it is possible to
solve the root localization problem;

� Bauer-Fike Theorem[40]:If µ is an eigenvalue of A + E ∈ Cn×n and
X−1AX = D = diag(λ1, . . . , λn), then

min
λ∈λ(A)

|λ− µ| ≤ κp(X)||E||p

where ||·||p denotes any of the p-norms. This theorem is not very useful, as
the bounds it allows to build are not fully contained in the unitary circle;
however, it allows to draw an important consideration: if the condition
number κ2 is large, slight changes in A can induce large changes in the
eigenvalues;

� Jury-Bezout equations: This is not a theorem or a novel method; it
consists in computing the Jury inequalities and the bezoutian matrix, as
proposed in [41]. The Jury Criterion ensures that the eigenvalues lie in the
unitary circle; by requiring the bezoutian matrix to be positive definite
(by mean of the Sylvester Criterion), we ensure that the eigenvalues are
real and distinct. Even if analytical bounds cannot be computed, it is
still possible to numerically plot the robustness region.

We will use the Observability Canonical Form. Given a transfer function
G(z) in the discrete time, its state space representation is built as follows:

G(z) =
bn−1z

n−1 + bn−2z
n−2 + · · ·+ b0

zn + an−1zn−1 + · · ·+ a0
−→

Aob =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 1
−a0 −a1 · · · · · · −an−1

 , cob =
[

1 0 · · · 0
]

bob =


βn−1

βn−2
...
β0

 =


1 0 · · · 0

an−1 1 · · · 0
... · · · . . . 0
a1 · · · an−1 1


−1

·


bn−1

bn−2
...
b0


As Aob = Aob(θ), we will work with its approximation:

Aob = Aob(θ) ' Aob(θP ) + ∆Aob =
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=


0 · · · 0
...

. . .
...

0 · · · 1

−a0(θP ) · · · −an−1(θP )

+


0 · · · 0
0 · · · 0
...

. . .
...

−∇θa0|θ ∆θ · · · −∇θan−1|θ ∆θ


In next sections the characteristic polynomials of both the Open Loop and
Closed Loop matrices are computed; then the Jury-Bezout criterion is applied
to determine the robustness region. Note that this is quite conservative: by
the Jury-Bezout equations we require that the eigenvalues of a matrix are real,
distinct, and lie in the unitary circle. The diagonalizability hypothesis of the
theorem, instead, is looser, and may allow for couples of complex conjugate
eigenvalues.

The Jury-Bezout equations are computed via the wxMaxima script reported
in Attachment A; it contains a function, jury bezout equations(p,var) which
takes as input the polynomial p and the variable var in which it must be eval-
uated and returns a column vector whose components are, top-down, the n
Jury inequalities and the n Bezout inequalities (i.e., the principal minors of the
bezoutian matrix); both must be posed ≥ 0.

4.4 Process State Matrix

Recall Hypotheses 1, 6 and 8; then the process model in the frequency domain
is

P (s, θP ) = µ
e−sD

1 + sτ

1

sτF + 1

Approximating the delay with Padé rational transfer function, we obtain

P (s, θP ) ' µ
1

1 + sτ

s−D/2
s+D/2

1

sτF + 1
=

=
µs−Dµ/2

s3ττF + s2(DττF /2 + τF + τ) + s(1 +Dτ/2) +DτF /2

Let us now discretise the transfer function; the selected method is Forward
Euler (FE):

FE : s =
z − 1

T

As all matrices are discretised at step q, T=q; note that only Backward Euler
(BE) and the Tustin (TU) methods do preserve stability. However, if stability
could be ensured with FE, it will surely be also with BE and TU.

The discrete transfer function is then

P ∗(z, θP ) =
N∗(z, θP )

D∗(z, θP )
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where

N∗(z, θP ) = z
µ

q
− Dµ

2
− µ

q

D∗(z, θP ) = z3 τF τ

q3
+ z2 qDττF + 2qτ − 6ττF + 2qτF

2q3
+

+ z
q2Dτ − 2qDττF + q2DτF − 4qτ + 6ττF + 2q2 − 4qτF

2q3
+

+
(τF − q)(τ − q)(qD − 2)

2q3

= a3z
3 + a2z

2 + a1z + a0 (4.3)

The state-space model of the open-loop process is then

A∗P,q(θP ) =

 0 1 0
0 0 1
−a0
a3
−a2
a3
−a1
a3



b∗P,q(θP ) =

 0
q2µ
ττF

− q2µ(4ττF−qτF−qτ)
τ2τ2F

 c∗P,q = [1 0 0]

Let A∗P,q(θP ) be the state matrix evaluated in nominal conditions; then

∆A∗P,q =

 0 0 0
0 0 0

∆0 ∆1 ∆2


where

∆0 = −q(τn − q)(τF − q)
2τnτF

(D −Dn) + −q(Dnq − 2)(τF − q)
2τ2
nτF

(τ − τn)

∆1 = q
2τnτF − qτF − qτn

2τnτF
(D −Dn) + q

DnqτF − 4τF + 2q

2τ2
nτF

(τ − τn)

∆2 = −q
2

(D −Dn) +
q

τ2
n

(τ − τn)

The Jury-Bezout equations for the approximated characteristic polynomial
are then computed (via the aforementioned wxMaxima script); the resulting
vector will be a function of the parameters D,µ and τ . To plot the robustness
region, it is sufficient to evaluate the vector within a reasonable set of values
for the parameters and to plot only those values which make positive all of the
components.
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4.5 Closed-Loop State Matrix

Let us now introduce the controller R(s) and close the loop; we are not interested
in finding bounds for the general case, so we will focus our attention on the case
when a tuning method is given. For our purposes, we will choose the IMC tuning
procedure, which is carried out on the nominal system; as P(s) is a third-order
system, at least a PID(s) is required, and is computed as follows.

Let To(s) be the desired closed loop transfer function; it has the form

To(s) =
1

(1 + s
ω c

)(1 + s
10ωc

)

where ωc is the cut frequency of the transfer function, which will be used as
a tuning parameter for the controller. If P1(s) =

N1,P

D1,P
is a minimum phase

transfer function, then the controller R1(s) may be built as

R1(z) =
To,q

1− To,q
D1,P,q

N1,P,q

where To,q and D1,P,q, N1,P,q are transfer functions discretised at step qs. This is

not the case, however; given a non-minimum phase process P1(s) =
NPmpNPnmp

DP
and the previous desired closed loop transfer function To, the PIDIMC(z) is
built as follows:

PIDIMC(z) =
To,q

1− To,q
DP

NPmp

Notice that, in this case, the closed loop transfer function that we actually see
is

Tnmp =
NTNPnmp

DT +NT (NPnmp − 1)

so the non-minimum phase part must be taken in account in the design process.
In an identical manner as shown in the previous section, a state-space model

(A∗CL,q(θP ), b∗CL,q(θP ), c∗CL,q) has been built and the Jury-Bezout inequalities
have been found. Again, instead of analytical bounds, it has been preferred to
compute the robustness region by sweeping the process’ parameters subject to
perturbations.

4.6 The implicit bound

Once ensured that the eigenvalues of the Open Loop and the Closed Loop
matrices are Schur, real and distinct, it remains only to satisfy the bounds

|λMAX(A∗CL,q)|κ2(Tq) ≤
1

κ2(Tσ)
, |λMAX(A∗CL,q)|κ2(Tq) < 1

The main difficulty is the presence of the condition numbers. The problem is
not the condition numbers themselves, but the fact they are referred to the
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diagonalization matrices, thus computing analytical bounds is strongly not rec-
ommended. Instead, given a controller R(z, θn) tuned on the nominal process,
it is more convenient to plot the robustness region by sweeping the values of
the parameters µ, τ,D (taken from reasonable sets).

4.7 Choice of the triggering rule

Once stability and robustness have been ensured under arbitrary switching, one
is free to design the triggering rule that best fits to his needs; in our scope, this
task primarily consists in achieving some requirements on the (a posteriori)
control step duration. Basically, one wants it

� to increase as rapidly as possible towards its allowed maximum if the
sensor triggers no event; to this end, it is employed the “send on delta”
policy, that is: an event is generated only if the controlled variable (polled
at rate 1/qs) differs in magnitude from the last transmitted by more than
a prescribed amount ∆y. This is what we mean with “only when needed”;

� to allow reacting as soon as possible to an event, the minimum reaction
time being qs;

� to avoid event transmissions after the first one triggered by a controlled
variable’s variations.

It is important to recall that, in our framework, both the process and the
controller are discretised at step qs; it may seem reasonable, then, to choose it
as a “small but reasonable” sampling period if it was adopted for a fixed-step
realisation. However, to avoid an excessive event crowding, the lower bound for
σ(k)qs should be chosen at least a decade greater than qs; the upper bound, N,
is instead a reasonable time-out. To achieve this, a subset Σ̃ is defined, with
cardinality Ñ < N so that σ̃1 be greater than 1, σ̃1qs be a ’small but reasonable’
sampling period if adopted for a fixed-rate realisation. For example, a good
choice could be the set Σ̃ = {10, 20, 50, 100, 200, 500}.

The a priori period T s is first initialised to σ̃1qs; then, if a step of a priori
duration σi(k)qs elapses, the next period is set as σi+1(k)qs, until σN is reached.
If conversely a step ends due to a sensor event, the next period is reset to σ̃1qs
and the system is forced to make it elapse. This surely may result in ignoring
some events, but, as previously stated, σ̃1qs is the same step that would be
chosen for a fixed-rate realisation, so the stability of the system is preserved.

The finite state automaton in Figure 4.1 summarizes the selection of the a
priori step duration. In figure, branches labeled with T s = T s are traversed
“by time-out” (i.e., when the a priori step duration elapses); branches labeled
with qs ≤ T s < T s(se), where “se” stands for “sensor event”, are traversed in
the opposite case.
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Figure 4.1: Finite state automaton for the a priori step duration selection (the
time index k is dropped to lighten the notation).

The presented triggering rule can be slightly modified to take into account
the possibility of a set point change after the loop has settled to an equilibrium;
in this case, the a priori step duration is large and a set point variation will not
cause an event until said duration elapses, which may happen long after the
new set point was varied. Such an undesired behaviour can be counteracted
in two ways. The first consists in generating a sensor event corresponding to
the introduction of a new set point; this fully preserve the introduced hypothe-
ses as the reason for sensor-generated events becomes irrelevant, once stability
and robustness have been ensured as done herein. Quite obviously, in this way
we must introduce further communications towards the sensor. The second
possibility is to force one control computation (not a controlled variable mea-
surement) when the set point is modified; this violates Hypothesis 4, as a second
source of events is introduced. Furthermore, the value of the control signal will
be computed with an outdated controlled variable. However, one can assume
that said outdated value is close to the last transmitted one (otherwise some
sensor events would have been triggered), and view the fact as an impulsive
disturbance of moderate entity.

It is worth noticing that, although we granted stability under arbitrary
switching, the automaton structure prevents some system jumps from happen-
ing. This implies that the stability condition may be loosen, so that only the
non contractive jumps are the ones excluded by triggering rule. It is better
to keep in mind, however, that the triggering rule may change due to unpre-
dictable factors, and thus it is convenient to ensure stability for all the possible
system jumps.

Moreover, having ensured asymptotic stability, the only possible source of
limit cycles resides in numerical quantisation effects. This makes it easy to
govern said cycles by acting on the rule parameter(s), like, e.g., the threshold
in the send on delta one.

Finally, one may set Σ = {1, N}, which is consistent with our approach. If
such a choice is adopted, most likely the majority of the control actions will
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be triggered by sensor events rather than time-outs; employing a send on delta
policy means obviously means that control actions will be computed in response
to variations of the controller variable greater than ∆y. Such a situation is
keen to generate larger actuator movements than the ones caused by control
events triggered by timeouts; it is reasonable to conjecture that having some
intermediate a priori step values induces a smoother actuator operation. Of
course, if the actuator wear is not a relevant issue, less intermediate values can
be chosen, without compromising the analysis.



Chapter 5

Simulations examples

This chapter presents a few simulations to show the validity of our approach,
both for stability and robustness. It should be noted that the examples that
follow are just explicative, and are not necessarily referred to physical systems.

5.1 Finding a suitable model

The great advantage of the theorem presented in Section 3.3 is that it does not
rely on a particular structure for the matrices of the process model and the
controller. However, for consistency with the approach illustrated in Chapter
4, we will chose the same canonical realization both for the process and the
controller.

5.1.1 The process model

As said in Chapter 4, the process model takes the following form:

P (s, θP ) = µ
e−sD

1 + sτ

1

sτF + 1

Obviously, both the filter time constant and the discretisation step are constant
parameters, not susceptible to variations.

The choice of the filter time constant is based on the largest a priori step
duration; as we want the exponential decay of the impulsive control action to be
as similar as possible to a constant control action, τF must slow down the decay
until a new event occurs, which can happen at most after σMAXqs expires. At
the end of the transient, there will be an error between the exponential decay
and the ZOH control action which takes the form 1− η; we want this error to
be little, so we impose:

η = 0.2, σMAX = 500 −→ e
−σMAXqs

τF ≥ 1− η −→ τF ≤ −
σMAXqs
ln(1− η)

τF ≤ 896.28 −→ τF = 896

55
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Notice that η is related to the send-on-delta threshold δ, as a smaller η will
generate less events than a larger η.

5.1.2 The controller model

For our purposes, we are interested in two main type of controllers, the PI
and the PID. Both will be tuned according to the IMC procedure, in nominal
conditions; the tuning parameters will be λ for the PI and ωc for the PID, and
they represents the closed loop poles.

The PI controller takes the following form:

PIIMC(s) =
1 + sτn

sµn(λ+Dn)

where λ is the desired closed loop time constant. For the PID, given that we
want a closed loop transfer function

To(s) =
1

(1 + s
ω c

)(1 + s
10ωc

)

in the case of a minimum phase process P the controller may be computed as:

PIDIMC(s) =
To,q

1− To,q
1

Pq

where To,q and Pq denotes the respective transfer functions discretised at step
qs. If, conversely, P is not minimum phase, instead of 1

P there will be DP
NPmp

,

where NPmp denotes the minimum phase part of the process model P. Notice
that, in this case, the closed loop characteristic polynomial will take in account
also the non-minimum phase part. We remind again that the theorem does
not rely on a particular type of controller; the choice of the PID structure is
therefore totally arbitrary.

Finally, we will use the triggering rule presented in Section 4.7, with the set
Σ = {10, 20, 50, 100, 200}

5.1.3 The FR comparison

To prove the advantages in terms of signal tracking and transmission saving,
in the following simulation examples the EB plots are overlapped to the ones
produced by a FR realisation. For the latter, it has been chosen a sampling
rate Ts = 0.1 not to unduly favor the EB realisation. The blue line indicates
the FR realisation, while the red one is the EB realisation.

5.2 First-order delay-free process and PI controller

The first simulation example we present is a very simple one (almost trivial);
P(s) is a first order process without delay and so a PI(s) will suffice to control
this system. The open loop stability region is reported in Figure 5.1.
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Figure 5.1: The stability region is not the whole plane but the area below the
line τ = q/2.

As it can be noticed, this region is not the whole τ − q plane; this is due
to the use of Forward Euler as discretisation method, which does not preserve
stability for every sampling time. From the Jury-Bezout equations we know
that the process will be asymptotically stable with 2τ > q; let’s say then τ = 2
and µ = 1.

In the nominal case, we get the same Jury-Bezout equations in closed loop
(because of the controller choice), the only difference is τ being replaced by the
tuning parameter λ; we can select then q = 0.4 and tune the PI(s) with λ = 2.
The canonical realizations in nominal conditions are then:

A∗P,q = 1− qs
τn

= 0.8, b∗P,q =
µnq

τ
= 0.2, cP = 1

A∗R,q = 1, b∗R,q =
q

µnλ
= 0.2, cR = 1, d∗R =

τn
µnλ

= 1

In this situation, we suppose that the filter is integrated within the controller;
if its time constant has been well tuned, the process will be fed with a constant
control action, and so, for the simulation, we may suppose the presence of a
ZOH.

5.2.1 Stability

Running the simulator yields the results reported in figures 5.2–5.4. The upper
plot shows the set point, the measured variable (both in the fixed rate and in the
event-based case) and two load disturbance steps; moreover, to validate the idea
of non-sensor events expressed in Section 4.7, two ramp-like set point variation
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Figure 5.2: Measured variable, reference (green line) and load disturbances
(purple line).

Figure 5.3: Control signal.

Figure 5.4: Inter-event time. Notice that once reached the steady state, the a
priori step duration quickly reaches its maximum value.
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have been introduced. Each ramp forces the computation of one control action;
the plot shows that this is enough to trigger the sensor-originated necessary
ones. As can be observed, the controlled variable plots are practically identical.

Regarding the control signal plots, it can be seen that the EB realization,
during the transients, needs to update the control action’s value less often
than its FR counterpart; this implies that also the actuator will be used fewer
times, and on the other hand that we will waste less computational resources
to compute and update the control action’s value.

Finally, the lower plot shows the values of Ts, allowing to appreciate the
rate of growth of the step duration, which quickly escalates to its maximum
value once it has been reached a steady state, reducing the needed sensor’s
transmissions. Note that there are more event hauls in response to the set
point variation than to the disturbances.

5.2.2 Robustness

To test the robustness of our controller, we first plot the robustness regions.
Keeping the same controller as in the previous section (i.e. λ = 2 and q = 0.4),
a sweep on the values of τ from 0.1 to 10 (with step 0.01) yields a straight
line starting from τ = 0.2, as reported in Figure 5.5. Obviously this line falls
completely into the region in Figure 5.1 as, for the process alone, once fixed the
sensor sampling time the regions must coincide. In closed loop we have instead
the region reported in Figure 5.6.

Figure 5.5: The robustness region in open loop.

Let µ = 1 and τ = 1.5; the simulation results are provided in Figures 5.7 -
5.9.
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Figure 5.6: The robustness region in closed loop.

In Figure 5.7, the measured variable does not present appreciable deviations
from the nominal case; the only remarkable change affects the peaks in response
to the load disturbances. At a closer examination, in fact, it is possible to notice
that they are more pronounced with respect to the nominal case.

Figure 5.7: Measured variable, reference (green line) and load disturbances
(purple line).

In Figure 5.8, the control signal too is very similar to the plot in Figure
5.3, the only remarkable feature being a smoother approach to the steady state
following the ramp-like set point changes. The response to the load disturbances
remains almost unchanged.

Finally, in Figure 5.9 the step duration rate growth has not deviated too
much from the nominal case; it is possible to notice only a slightly greater event
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crowding following the load disturbances. The number of event hauls following
the ramp-like variations has remained almost unchanged.

In the end, we can state that, following an accurate construction of the
robustness regions, a PI controller tuned on the nominal process can ensure
a stable behavior even with a perturbed process, with only minor changes in
performances.

Figure 5.8: Control signal.

Figure 5.9: Inter-event time.

5.3 First order process with delay and PID controller

We now consider a more challenging example; for the sake of simplicity, the
control action is considered again to be constant (following a well-done filter
tuning). Following a sweep on the values of D, τ, q we obtain the stability region
in open loop reported in Figure 5.10. This region does not overlaps with the
positive orthant as we are employing Forward Euler as discretisation method;
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if instead Backward Euler or Tustin were used, the sweep over the parameters’
values would have returned the positive orthant.

Figure 5.10: The stability region in open loop.

Figure 5.11: The stability region in closed loop.
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For the process, we set again µn = 1 and τn = 2 and choose Dn = 0.5; in
Figure 5.11 it is reported the stability region in closed loop. Let the controller
be tuned with ωc = 0.2 and let q = 0.1; the canonical realization of the process
is then:

A∗P,q =

[
0 1

(τ−q)(Dq−2)
2τ − qDτ−4τ+2q

2τ

]
=

[
0 1

−0.72 1.7

]

b∗P,q =

[ qµ
τ

−qµ qDτ−τ+q
τ2

]
=

[
0.2
0.12

]
, cP,q = [1 0]

and that of the controller is:

A∗R,q =

[
0 1

11qωc − 1 2− 11qωc

]
=

[
0 1

−0.78 1.78

]

b∗R,q =

[
9.2

7.976

]
· 10−4, cR,q = [1 0], d∗R,q =

10q2τω2
cD

µ
= 0.004

5.3.1 Stability

Simulating the system in nominal conditions yields results reported in the Fig-
ures 5.12 - 5.14; as can be observed, the plot are not so different from the
previous example.

Figure 5.12: Measured variable, reference (green line) and load disturbances
(purple line).
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Figure 5.13: Control signal.

Figure 5.14: Inter-event time.
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5.3.2 Robustness

Keeping the same controller as in the previous section (i.e. ωc = 0.2 and
q = 0.1), a sweep on the values of D and τ returns the robustness region in
open loop reported in Figure 5.15. The closed loop robustness region is instead
reported in Figure 5.16.

Figure 5.15: The robustness region in open loop.

Figure 5.16: The robustness region in closed loop.

Let’s set the D = 1 and again be µ = 1, τ = 1.5; the simulator yields the
plots reported in Figures 5.17 - 5.19.
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Figure 5.17: Measured variable, reference (green line) and load disturbances
(purple line).

Figure 5.18: Control signal.

Figure 5.19: Inter-event time.
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The plots are somehow more meaningful than their counterpart in the PI
case. In the upper plot, besides the increment of the peaks height (more no-
ticeable here than previously) and, again, the almost unchanged response to
the ramps, the most remarkable feature is the presence of an undershoot, with
the EB realisation, in response to the first load disturbance. Note that the
measured variable in the EB realisation deviates from its FR counterpart also
in response to the second load disturbance. This is an effect most likely due
to the introduction of a derivative action, which amplifies the errors produced
both by model uncertainties and load disturbances.

In the second plot, the control signal of the EB realisation consequently
presents an undershoot in response to the first load disturbance, and deviates
significantly from the FR realisation in response to the second disturbance.
The plots present again a smoother approach to the steady state following the
ramp-like set point variations.

Finally, the different behavior in response to the load disturbances influences
also the transmission rate of the EB realisation. As can be seen, in response to
the first disturbance there is an higher rate of event hauls than in the nominal
case; a slightly higher rate of hauls (always with respect to the nominal case)
is present also in response to the second disturbance.

In the end, we can state that even with a PID, following an accurate con-
struction of the robustness regions, the controller proves to be robust against
model uncertainties, the only secondary effect being the presence of an under-
shoot in response to a load disturbance.
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Chapter 6

Conclusions and future
developments

The subject of this work was the stability and the robustness analysis of an EB
realisation of an industrial controller. Background on the Event-Based (EB)
Control paradigm was first given and reviewed; a detailed insight on its moti-
vations, its advantages with respect to the Fixed Rate (FR) case and the open
problems was presented. Among all the possible research directions illustrated
in Chapter 2, we chose to focus on the search of stability and robustness criteria.

A set of general hypotheses was then given, in accordance with the literature
but also formalising facts that are almost ubiquitously true in the applications;
through some preliminary results, the (induced) switching nature of the con-
trolled process became clear. A sufficient stability theorem, under arbitrary
switching, for the EB realisation of such a controlled process was proven. Al-
though the PID structure i sthe most typically used in the applications, the
proof of the theorem does not rely on this particular type of controller; exten-
sions to, e.g., state-feedback or other type of controllers can then be envisaged.
Incidentally, the theorem proved also that the EB control loop rejects distur-
bances effectively.

The robustness problem was then addressed; contrary to the approach
adopted for stability, the structures of the process and the controller were here
fixed to simplify the analysis. Due to the difficulty to find analytical bounds,
numerical plots of the robustness regions were devised. As both stability and
robustness were assessed under arbitrary switching, the triggering rule that best
fit our needs was then presented. Simulation examples reported prove the cor-
rectness of our idea, evidencing a reduced rate of transmission and actuation
with respect to the FR case.

The present work is, of course, far from being exhaustive. The first issue that
needs to be improved is the stability analysis. We proved a theorem under the
hypothesis that the controller is tuned with constant parameters, but the correct
approach, as specified in Chapter 3.3, requires a time-variant controller; this

69
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will probably lead to a new, more general proof, which preferably encompasses
the one previously presented.

Robustness analysis needs strong improvements, too. Here we presented
only the case of parametric uncertainty, but it is clear that an exhaustive treatise
must comprehend also the case of unstructured uncertainty, because, as stated
in Chapter 4, parametric uncertainty is just a possible situation out of many
(and just the more simple!). To this end, a possible approach consists in finding
an overestimate to the (unknown) uncertainty — for example, see [42].

A third issue is that of the choice of the controller. Although the stability
theorem does not rely on the controller structure, robustness analysis does
so, and therefore a wise choice of the controller may simplify the analysis. It
is important to point out, however, that even robustness analysis should be
carried out in a general context, such that its results can be safely applied
regardless of the controller type.

Finally, in light of the scenario outlined in Section 2.4, some long-term
improvements could be envisaged in order to proceed towards a more complete
treatise:

� according to Hypothesis 9, in our framework actuation and sampling occur
synchronously and there are no packet losses; as stated, not all commu-
nication protocols at present day can offer such guarantees, thus more
research in this direction is recommended, and the same can be said for
multi-loop systems;

� the EB realisation presented in this thesis, in fact, does not solve the
problem of determining a parameter capable of forecasting the transmis-
sion saving with respect to a FR realisation; a candidate could be the
threshold of the send-on-delta policy. It would be advisable also defining
a methodology to turn informations from EB sampling into a value of
threshold;

� if possible, this parameter should be used to compare our EB realisation
with the other existing, so to build a possible taxonomy of EB-realisation
w.r.t energy- and/or communication-critical components.

As a final remark, note that here the CT controller was just taken as fixed. In
fact, such controller would most likely come from a tuning procedure that is far
from being error- and approximation-free. As such, if the required conditions
are not fulfilled, one could well think about “slightly” modifying the controller
so as to impose the situation — another interesting subject for future research.



Appendix A

In this attachment is reported the Maxima script used to compute the Jury-
Bezout equations.

kill(all);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Return a monic polynomial with the same roots of p(var)

*/
monic poly(p,var):=block([pe,pdeg,pem],
pe : expandwrt(p,var),
pdeg : hipow(pe,var),
pem : expandwrt(pe/coeff(pe,var,pdeg),var),
return(pem)

);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Return the list of coefficients in the polynomial p(var)
ordered by decreasing var powers

*/
poly coeffs(p,var):=block([pe,pdeg,coeffs],
pe : expandwrt(p,var),
pdeg : hipow(pe,var),
coeffs : makelist(

coeff(pe,var,pdeg−i),i,0,pdeg
),

return(coeffs)
);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compute "next" row of a Jury table: 1st row is a0...an with the
polynomial written e.g. as a0*zˆn+...+an; nrow starts from 0

*/
next jury row(prevRow,nrow):=block([rl,a0,an,rr,nr],
rl : length(prevRow),
a0 : prevRow[1],
an : prevRow[rl−nrow],
rr : makelist(prevRow[rl−nrow−i],i,0,rl−nrow−1),
for j:1 thru nrow do

rr:append(rr,[0]),

71



72 APPENDIX A

nr : prevRow−an/a0*rr,
return(nr)

);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compute the Jury table of the polynomial p(var)

*/
jury matrix(p,var):=block([coeffs,cl,rr,Jm],
coeffs : poly coeffs(p,var),
cl : length(coeffs),
rr : coeffs,
Jm : matrix(rr),
for i:0 thru cl−2 do (

rr : next jury row(rr,i),
Jm : addrow(Jm,matrix(rr))
),

return(ratsimp(Jm))
);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compute the Bezoutiant matrix of a generic monic polynomial of
degree n, defining its coefficients as a[i], i.e., supposing
(with x as var name) that the polynomial is written as
p(x) = xˆn+a 1xˆ(n−1)...+a n

*/
gen bezoutiant(n):=block([sigma,s,eqs,Bel,B],
sigma : makelist((−1)ˆi*a[i],i,1,n+1),
s : makelist(s[i],i,1,n+1),
eqs : makelist(

sigma[k]
−1/k*(sum(

(−1)ˆ(i−1)*sigma[k−i]*s[i],i,1,k−1
)

+(−1)ˆ(k−1)*s[k]),k,1,n+1
),

Bel : subst(a[n+1]=0,
append([n],

makelist(
rhs(solve(eqs,s)[1][i]),i,1,n+1

)
)

),
B : hankel(Bel),
for i:1 thru length(Bel)−n do (

B : submatrix(length(Bel)−i+1,B,length(Bel)−i+1)
),
return(B)

);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compute the Bezoutiant matrix of the polynomial p(var)

*/
bezoutiant(p,var):=block([mpcs,pdeg,gb,slist,B],
mpcs : poly coeffs(monic poly(p,var),var),
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pdeg : length(mpcs)−1,
gb : gen bezoutiant(pdeg),
slist : makelist(a[i]=mpcs[i+1],i,1,pdeg),
B : factor(subst(slist,gb)),
return(B)

);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compute the principal minors of matrix M

*/
principal minors(M):=block([m,pms],
m : M,
pms : [ratsimp(determinant(m))],
for i:1 thru length(M)−1 do (
m : submatrix(length(m),m,length(m)),
pms : append(pms,[ratsimp(determinant(m))])
),
return(reverse(pms))

);

/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Express the Jury−Bezout equations of the polynomial p(var)

*/
jury bezout equations(p,var):=block([jm,B,jbeqs],
jm : jury matrix(p,var),
B : bezoutiant(p,var),
pmB : principal minors(B),
jbeqs : addrow(col(jm,1),transpose(matrix(pmB))),
return(jbeqs)

);
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