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Sommario

I dati geospaziali stanno cambiando sempre più il modo in cui interagiamo

con il mondo. In particolare, comportano notevoli trasformazioni nel modo in

cui viaggiamo, prendiamo decisioni e pensiamo nuovi prodotti. Il loro uso in

campo applicativo è straordinariamente vario: spazia da divertimento e “so-

cial” (come twitter o foursquare) a studi ambientali e urbanistici.

Un settore emergente di particolare interesse per l’uso dei dati geospaziali

è quello dello “urban metabolism”. Il termine “urban metabolism” esprime

la necessità di pensare ad una città nello stesso modo in cui si pensa ad un

organismo vivente: una realtà complessa, composta dall’interazione di svari-

ate sottocomponenti. L’analisi di una città richiede l’integrazione di diversi

indici di salute come flussi d’acqua, materiali ed indicatori socio-economici.

L’integrazione di concetti cosı̀ eterogenei, insieme alla volontà di non risol-

vere il problema sviluppando modelli specifici ad un’unica situazione, è un

obiettivo molto ambizioso, che richiede ricerca e sviluppo di nuove tecnolo-

gie. Al fine di contribuire a questo scopo, nell’ADVIS lab di Chicago abbiamo

sviluppato GIVA, una piattaforma che permette ad utenti esperti di analizzare

dati geospaziali in modo trasparente rispetto alle eterogeneità che li caratter-

izzano. Il fine di questa tesi è progettare e sviluppare le tecnologie necessarie

allo sviluppo del cuore di tale sistema.

In particolare, il mio lavoro si concentra sul potenziamento di algoritmi di

“ontology matching” per migliorarne l’efficacia nell’identificazione di similitu-

dini fra ontologie di dati georeferenziati. L’obiettivo finale è quello di svilup-

pare tecniche che permettano di identificare una relazione qualsiasi fra i con-

cetti rappresentati da dati georeferenziati: che essa sia di similitudine, inclu-

sione o quant’altro. Per il momento ci concentriamo sul primo passo, ossia

l’identificazione di corrispondenze fra entità simili.
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Da un punto di vista tecnico, procediamo in due diverse fasi. La prima fase

consiste nello sviluppo di una misura di similitudine per le istanze di ontologie

di dati georeferenziati. La seconda fase consiste nella sua integrazione in un

algoritmo di “ontology matching”.

Se vogliamo confrontare diversi dataset dobbiamo prima ridurli ad una

rappresentazione comune. Per questo motivo creiamo una griglia sopra lo

spazio che vogliamo analizzare: discretizziamo lo spazio partizionandolo in

un insieme di celle. Ad ogni cella assegnamo un valore ottenuto considerando

le istanze in essa contenuta. Le singole istanze possono essere trattate in modo

diverso, in base al concetto che rappresentano. Al fine di trovare il numero

ottimo di celle per rappresentare il dataset in analisi abbiamo sviluppato una

tecnica che coinvolge l’uso dell’autocorrelazione spaziale (l’indice di Moran).

Per finire, confrontiamo le strutture dati cosı̀ ottenute utilizzando l’indice di

correlazione di Pearson.

La misura di similitudine descritta viene successivamente integrata in un

algoritmo sintattico di “ontology matching”, in modo da potenziarlo e renderlo

più efficace nell’accoppiamento di ontologie di dati georeferenziati. Test su

numerosi dataset dimostrano l’efficacia del nostro approccio. In particolare la

metodologia descritta permette di trattare il “MAUP problem”, che consiste

nell’analisi di dati provenienti da unità amministrative di diversa natura (ad

esempio province e regioni), e confrontare dati raccolti a diverse risoluzioni.

Per concludere, discutiamo diversi possibili sviluppi futuri, soppesando ac-

curatamente pregi e difetti di ogni soluzione alternativa.





Summary

In this work we present a technique to improve the capability of the current

data management systems to deal with geospatial data. In particular, we focus

on enhancing ontology matching algorithms in order to make them more ef-

fective when identifying similarities between geospatial ontologies.

This work is meant to define the core techniques for creating a framework ca-

pable of identifying any kind of relationships between geospatial datasets.

We proceed following two steps: first, we define similarity measures for com-

paring the instances of geospatial ontologies; second, we integrate the result

into a matcher.

To compare the datasets we create a tessellation to reduce them to a common

format. Maximizing the spatial autocorrelation among the cells we are able to

identify the tessellation that best expresses the degree of clustering of the data.

Finally, Person’s R is used as similarity measure to compare the distributions.

We propose a few different ways to integrate the obtained similarity measure

into an ontology matching algorithm.

We show the effectiveness of each of the used techniques with tests performed

both on synthetic and real datasets. We also suggests how to compare datasets

collected in different places in different time intervals. Our approach allows to

address the MAUP problem and to integrate datasets having different resolu-

tions.
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Chapter 1

Introduction

1.1 Motivation

Geospatial data are changing the way we look at the world. In particular, they

involve two major transformations in how we do two things: make decisions

and manage data [56]. geospatial data are also becoming increasingly important

to improve the effectiveness of an application. The uses of such information

are really diverse one to the other, ranging from everyday life to environmental

studies. This diversity together with the complexity that involve the study

of geospatial data requires new mechanisms to perform their integration and

analysis.

Urban metabolism is an emerging field that well expresses the need and

the issues involved by the integration of geospatial data [27]. Urban metabolism

makes an attempt to put together not only the flows of water into a city, ma-

terials and nutrients, but also social, health and economic indicators [27]. This

huge amount of data requires technologies to support their integration [12]. The

main issue when dealing with geospatial data lies on their intrinsic heterogene-

ity. geospatial data presents heterogeneities in: format, resolution, spatial and
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temporal representation, shape, and unit of measure. Designing a framework

to deal with all these problems is incredibly complex, and requires great efforts

in scientific research.

In the ADVIS Lab1 we recently designed our framework called GIVA [12].

Given georeferenced datasets, GIVA addresses the problem of accessing them

simultaneously and of establishing mappings between the underlying con-

cepts, using automatic methods [12]. In my thesis, we aim at setting up the

basics for the implementation of the core matching engine of such a system.

We focus on two points: first, formalizing the problems that involve the inte-

gration of geospatial data; second, describing a very general way to address

the problems.

1.2 Research Challenge

The first great problem we addressed is about the contextualization of our

work with respect to the ocean of the publications related to the same subject.

The problem of managing geospatial data is huge, and many researchers are

doing several attempts to solve it. Therefore, we began by identifying the

weaknesses of the current systems looking for areas where we could contribute.

First, we analyzed the most common systems for managing geospatial data,

such as PostGIS [47] and QGIS2 for understanding the limits of the spatial

databases. Then, we looked at the technologies used by semantic storage sys-

tems for geospatial data. Considering the state of the art, we noticed that there

are no studies about how to effectively matching georeferenced datasets. A lot

of work has been done on improving the performances of storage systems, but

those techniques lacks in consistency, when dealing with highly heterogeneous

1http://www.cs.uic.edu/Advis
2http://www.qgis.org/
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dataset.

Therefore, the second problem we addressed is the classification of the pos-

sible heterogeneities in geospatial data. We identified several sources of hetero-

geneity: resolution, format, time and spatial representation, units of measure

and so on. In Chapter 3, we provide a detailed description of those hetero-

geneities. In Chapter 4, starting the most simple situation and adding hetero-

geneities step by step, we are going to discuss techniques to identify similarities

between georeferenced datasets.

1.3 Results

The result we obtained is setting up the basics for developing a system capable

of identifying strong relationships between the concepts represented by geo-

referenced datasets. In this work we design a very general way to compare

geospatial datasets addressing the problems of their heterogeneity in unit of

measure, resolution and format. We also suggest how to compare datasets

temporally and spatially disjoint. In this way, we laid the foundations for de-

veloping technologies to deal with more complex use cases.

1.4 Document Structure

This document is organized as follows. Chapter 2 contains a brief introduction

to the technologies used in this thesis and also a discussion about the different

approaches used in related works. Chapter 3 presents a detailed description

of the problem and clarifies how we want to contribute. In Chapter 4 we start

with an overview about the method we want to use to solve the problem, and

then we provide a detailed description of the involved techniques. Chapter 5

3



contains both experiments to show the effectiveness of the used techniques and

the description of the implementation in GIVA [12] and AM [14]. Finally, Chap-

ter 6 summarizes the obtained results and discuss possible ways to continue

with the work.
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Chapter 2

State of the art

2.1 Semantic Web

The Semantic Web has been defined from the Semantic Web community [33] as

“the extension of the World Wide Web that enables people to share content

beyond the boundaries of applications and websites”. The vision of the Se-

mantic Web is the one of an intelligent web, where data are semantically rich

and computers are capable of reasoning and analyzing those data. In the past,

it has been considered in different ways: a “Web of Data”, a “Utopic Vision”

or also as a “natural paradigm shift” from the current status of the web [33].

The reason why the Semantic Web is often referred to as a “Web of Data”

is simply because it is mainly concerned with data. Figure 2.1 shows the stack

of the formats and technologies that enable the Semantic Web. Notice that

the bottom half of the figure is strictly related to data. Syntax, ontologies,

data interchange formats and querying languages are the core elements of the

Semantic Web. This gives us an idea of the importance of processing and

managing data.

The Semantic Web has also been described as a “Utopic Vision”. The rea-
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Figure 2.1: Stack of the semantic web (http://www.w3.org/).

son is that researchers in this field often deal with very hard problem. An

intelligent web requires semantic richness and very general approaches, that

are really difficult goals to achieve. Despite its complications, it is true that the

web is getting more and more semantic and intelligent, as it is described by

the Semantic Web.

The most important aspect of the Semantic Web is that it has inspired and

engaged many people to create innovative semantic technologies and applica-

tions [33]. Quoting Tim Berners-Lee:

I have a dream for the Web [in which computers] become capable

of analyzing all the data on the Web - the content, links, and trans-

actions between people and computers. A “Semantic Web”, which

6
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makes this possible, has yet to emerge, but when it does, the day-

to-day mechanisms of trade, bureaucracy and our daily lives will be

handled by machines talking to machines. The “intelligent agents”

people have touted for ages will finally materialize1.

The term “Semantic Web” is often used to refer to the formats and technolo-

gies that enable it [33]. The collection and storage of semantic data are enabled

by technologies that provide a representation of concepts in a given knowl-

edge domain. The structuring of the information is fundamental for obtaining

datasets semantically rich and easily exploitable by diverse applications. These

technologies are formalized as W3C standards. The Semantic Web Stack, de-

picted in Figure 2.1, illustrates the components of the Semantic Web. The

overall architecture can be summarized as follows [42]:

• XML is a markup language that provides a syntax for the content of semi-

structured documents. XML does not provide any semantic to its content,

and it is not a necessary technology for the Semantic Web. Another,

very used, format expressing data is Turtle (Terse RDF Triple Language2).

Despite the fact it has not been formally standardized yet, Turtle is de-

facto the standard syntax language of the Semantic Web.

• RDF3 is a standard model for conceptual description and the representa-

tion of information in the Web [36]. It is based upon the idea of making

statements about resources in the form of triples: subject-predicate-object.

It extends the linked structure of the Web using URIs to identify all the

three mentioned elements. This allows structured and semi-structured

1Berners-Lee, Tim: The next web, at http://www.ted.com/
2http://www.w3.org/TR/turtle/
3http://www.w3.org/RDF/
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data to be put together, exposed and shared. It can be represented in

very different ways.

• RDF properties represent relationships between resources. However, RDF

provides no mechanisms for describing these properties. RDFs4 extends

RDF and its vocabulary for describing properties and classes of the triples,

with semantics for generalized-hierarchies.

• OWL5 provides additional vocabulary along with a formal semantics.

It introduces relations between classes, cardinality, equality, enumerated

classes, richer typing and characteristics of properties.

• SPARQL6 is a query language for semantic web data sources. SPARQL

can be used to express queries whether the data is stored natively as RDF

or viewed as RDF using a wrapper.

Now that the structure of the Semantic Web has been outlined, we need

to answer an important question: where does “Ontology Matching Enhanced

with similarity measures for Georeferenced Observations” fits in this context?

The title of this thesis is mainly composed by two components: ontology

matching and georeferenced observations. In Section 2.1.1 and Section 2.1.2 we

discuss data integration and ontology matching, while in Section 2.2 and Sec-

tion 2.2.1 and Section 2.2.2 we discuss the structure and importance of geospa-

tial data and we also introduce datasets of georeferenced observations.

We already discussed the importance of processing and managing data, but

we did not mention the underlying issue: on the web there are a huge amount

of heterogeneous data. Many people upload data on the web using different

4http://www.w3.org/TR/rdf-schema/
5http://www.w3.org/TR/owl-features/
6http://www.w3.org/TR/rdf-sparql-query/
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formats, languages and methods. It is incredibly important, and challenging,

to put this information together, and create a unified view of them. This is the

core enabler of an intelligent web.

2.1.1 Data Integration

The problem of data integration involves combining data coming from multiple

data sources, providing the user with a unified vision of the data and detect-

ing correspondences between similar concepts [39]. Data integration problems

arise even in the simple situation of a unique, centralized databases, and it be-

comes more and more complex up to the extreme case of transient, dynamic,

initially unknown data sources. Several techniques and methods deal with the

problem, is such a way complication is added as the situation becomes more

complex. Figure 2.2 shows an overview of the possible classifications of those

complexities.

In the Semantic Web we deal with a particularly hard situation: data com-

ing from multiple data sources without an a-priori global schema. With respect

to Figure 2.2, we are either in case of P2P data integration or P2P with materi-

alization. A major concern in Data Integration for the Semantic Web is linking

similar concepts.

Linked Data is about using the Web to connect related data that was not

previously linked, or using the Web to lower the barriers to linking data cur-

rently linked using other methods. This introduces a better way to share data

between different people and organizations. Thanks to the LOD7 effort we are

getting closer to what we initially called the “Web of Data”, that is a major

milestone in realizing the Semantic Web vision.

7http://linkeddata.org/
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Figure 2.2: Data Integration complexity.

2.1.2 Ontology Matching

Ontology matching is “the process of determining correspondences between

concepts in two different ontologies (the source and the target)” [66]. We refer

to an ontology matching algorithm as to a matcher [14]. The strength of the

mapping is given by a similarity value, that is a number in the interval [0, 1]

and that is measured considering heterogeneities of three kinds [14]:

• Syntactic heterogeneity (different models).

• Structural heterogeneity (same model, different organization).

• Semantic heterogeneity (same term, different meaning, or same meaning

different terms).
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AgreementMaker (AM) is an example of ontology matching tool [14]. AM is a

software tool that is used to create semantic links between the global ontology

and a local ontology and generate an agreement document, this document is

used by the query processor that maps a query expressed in the terms used in

the global ontology to the local ontologies [14].

Georeferenced datasets are a very particular kind of data to work with. In

Section 2.2 we are going to explore them more deeply.

2.2 Geospatial Data

Using the term geospatial data we refer to datasets having an attribute de-

scribing the geographical feature of their instances. The geographical feature

is the geographical representation of the instance. It can either be explicit, for

instance a point or a shape, or implicit, for instance the name of a state. In this

section we discuss why we are particularly interested in treating geospatial

data, and we see what is their common structure.

2.2.1 The Importance of Geospatial Data

Geospatial data are changing the way we look at the world. A major trans-

formation includes the way we do these two things: make decision and create

maps. In the last few years, concepts of space and technologies, designed to

leverage location information, have made huge advances in both two of these

areas. The past decade has seen a complete change in how people are able to

use and think geography [56].

Nowadays everybody has access to interactive maps, and moving in a big

city easier than in the past. However, the revolution of geospatial data is much

more than just moving from Point A to Point B. Geospatial data are having a

11



major influence in making decisions and analyzing problems using geography.

Consider, for instance, applications such as Yelp and TripAdvisor. Today we can

use them to find the best and the closest restaurants in the neighborhood. That

question can be answered in just a few seconds and we can get directions to

the destination almost immediately [56]. We can consider much more complex

problems than this one. For instance, we might want to predict the impact of

a natural disaster, or analyze the consequences of a business decision. Those

problems requires the use of geography, and the capability of making sense of

geospatial data.

One of the most impressive examples of the importance of geospatial data

in decision making comes from the 1854, when John Snow depicted a cholera

outbreak in London using points to represent the locations of some individual

cases. His study of the distribution of cholera led to the source of the disease:

a contaminated water pump [60]. Figure 2.3 shows the map depicted by John

Snow.

A field in which the management of geospatial data is particularly inter-

esting is urban metabolism. Urban metabolism involves the concurrent use

of huge quantity of data coming from different sources. The idea is that the

“increasing urbanization of human societies combined with intense energy de-

mands of modern economies” [51] requires more powerful methods to study

and analyze the behavior of the urban systems. It involves any kind of data

that, somehow, is helpful in describing the life of a city. For instance, it in-

volves the flow of water into a city, materials and nutrients. However, it is

also related to social, health and economic indicators [27]. Urban metabolism

not only emphasizes the importance of geospatial data, but also well expresses

the need and the challenge represented by their integration. The problem here

goes far beyond than simply identifying similarities between the concepts: we
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Figure 2.3: Clusters of cholera observations by John Snow [60].

need to compare and put together things that are completely different in terms

of representation, format and concept.

2.2.2 The Structure of Geospatial Data

Geospatial data are represented in a variety of different ways. However, what-

ever the data, it begins measuring a location. The most widely used method

for measuring location nowadays is through the GPS. GPS is used to create any

kind of geospatial data.

Using GPS it is possible to record positions of objects. We can put together

sets of single positions to create lines and polygons. The way we represent

spatial data is a fundamental block in GIS. This kind of data are called “vector

data”. The idea behind the name is simply that those data represent geometri-
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Figure 2.4: Vector and raster data [56].

cal figures. The other major data type is raster data.

Geographic image data are called “raster data”, which captures information

by assigning values to cells in a grid. A satellite in space photograph the earth

and assigns values to each grid cell to develop an image. The size of those

grid cells has an impact on the resolution of the final image. Tools like Google

Earth have made imagery of the Earth more accessible than ever. However, in

this work, we are mainly going to deal with “vector data”. The reason why

we consider “vector data” is that the vectorial representation is much more

general. As a matter of fact, it is possible to convert “raster data” to “vector

data” [8].

A very important source for geospatial data in the United States is the U.S.

Census Bureau. At each population census the Census collects data at different

resolutions. In Chapter 4 we will briefly mention about the dataset organized

by administrative units.

From a Semantic Web perspective we are mainly interested in ontologies of

geospatial data. Geospatial ontologies are characterized by three elements:

• Spatial component (geo in Figure 2.5).

• Metadata (tags in Figure 2.5).

• Descriptive attribute (value in Figure 2.5).
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Figure 2.5: Example of geospatial ontology.

Figure 2.5 shows a general example of geospatial ontology extracted from

Open Street Map [24] and converted from the XML/RDF representation to a

tree. In the picture, red nodes are attributes that really exists in open street

map, while the blue node, the descriptive attribute, is added by me. It is very

important for our purpose. The descriptive attribute is not always present in

geospatial data. We are going to call those datasets that have a descriptive

attribute georeferenced datasets. In section 2.2.3 we are going to discuss geo-

referenced datasets and define their relationship with geospatial data. In par-

ticular, in this work we are mainly going to deal with datasets of points, and

not generic shapes. This allows us to focus on the comparison between the

datasets instead of dealing with the fact they are represented in different ways.

However, the described techniques are general enough to be extended to deal

with any kind of shape: a more detailed discussion and the implementation of

this improvement is left as future development.
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Geospatial data can be extended with a temporal feature. The temporal fea-

ture can be represented with really different granularities. For instance, data

could be recorded every second, once a week or once a year. Time adds great

complexity to the problem of the integration of geospatial data. However, the

data represented in geospatial datasets are often time-dependent, and it would

be very unwise to avoid considering time. Dealing with geospatial data is par-

ticularly difficult due to their heterogeneity of their possible shapes and units

of measure, the level of resolution of the data. In this work we focus on how

to use two of the three described features, the geospatial feature and the value,

for our purpose of finding similarities between heterogeneous datasets. Also

metadata are a very important source of information for performing alignment

between different datasets [22].

However, in this work we do not develop any new method to use them in

order to improve our performances in matching geospatial datasets, and thus

we consider them just as simple nodes of the ontology that can be either linked

or not depending on the decision of the matcher.

2.2.3 Geospatial Data and Georeferenced Observations

So far we only discussed geospatial data, but in the title and throughout the

rest of the thesis we refer to georeferenced observations. The reason is because

in this work we are not considering any possible kind of geospatial data. We

just focus on those datasets that have related values, those that are quantifiable.

For instance, we will be discussing datasets about rainfall, population, car

crashes and so on, but we are not going to talk about comparing the shapes of

two roads, or two rivers. Figure 2.6 shows the relationship between geospatial

data and georeferenced observations. Generally we call geospatial data all

the datasets with a geospatial feature. Since also georeferenced observations
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Figure 2.6: Hierarchy of geospatial data.

require a geospatial feature they are a subclass of geospatial data. However,

since they require a further constraint, i.e. an attribute representing a value,

they are a more specific class with respect to geospatial data.

2.3 Related Works

Over the past decade there have been many different attempts to create a stan-

dard semantic representation for geospatial data [4]. In 2003, a W3C Semantic

Web Interest Group created the Basic Geo Vocabulary [4,63] which provided a

way to represent WGS84 points in RDF. This work was further extended in

2007 to obtain an OWL representation of geospatial data [4,64].

A major issue when storing geospatial semantic data is about performances:

without an appropriate indexing a search would require a sequential scan of

every instance in the database. The first geospatial index for Semantic Web
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data was used by Parliament [30], a high-performance triple store designed for

the Semantic Web, in the 2007. There have been developed other triple stores

such as Ontotext’s OWLIM-SE8 and OpenLink Virtuoso9 that supports W3C

Basic Geo Vocabulary. All these systems provide fundamental components in

the evolution of Geospatial Data management, but they do not provide any

feature for integrating them. Other than storing geospatial data, there have

also been interest in developing new techniques for querying them. For in-

stance, Perry proposed an extension of SPARQL to SPARQL-ST for complex

spatio-temporal queries [4,49]. Other more trivial attempts to provide SPARQL

with topological predicates are proposed by Battle and Kolas [4], Xiao, Huang,

and Zhai [70], Zhai, Huang, and Xiao [71]. An interesting approach is described

by Koubarakis and Kyzirakos [32], who propose stSPARQL to extend SPARQL

to includes additional operators for querying RCC [53] relationships and intro-

duces a new syntax for specifying spatial variables [4]. A relevant emerging

standard is Geo-SPARQL [11] from the Open Geospatial Consortium (OGC) 10.

This standard aims to resolve issues in geospatial data representation and ac-

cess [4].

A more recent attempt to describe geospatial data has been done by Salas,

Harth, Norton, Vilches, León, Goodwin, Stadler, Anand, and Harries [58], 2011.

Starting from the observation that “no consense had been achieved for de-

veloping an RDF vocabulary with enough descriptive power to satisfy most

requirements of these datasets”, Salas et al. [58] tried to define a common vo-

cabulary for representing geospatial data exposing different ways to serialize

them enhancing the compatibility with GIS systems. Another interesting ap-

proach to improve the current standard in managing semantic geospatial data

8http://www.ontotext.com/owlim
9http://www.w3.org/2001/sw/wiki/OpenLink_Virtuoso

10http://www.opengeospatial.org/
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comes from Battle and Kolas [4], who tried to update the triple store Parliament

to support GeoSPARQL. In 2012 Kyzirakos, Karpathiotakis, and Koubarakis [35]

presented a new version of the data model stRDF and the query language

stSPARQL. They also implemented a new system called Strabon which imple-

ments those new functionalities.

That said, our main interest lies on the integration of geospatial data, that

we did not discuss so far. TELEIOS is an example of project for real-time

monitoring using semantic web and linked data technologies [31]. Its goal is the

effective discovery of knowledge contained in them [34]. A more recent attempt

to browse and make sense of geospatial data coming from different sources is

Sextant [45]. Sextant is a web tool that, quoting its authors: “enables exploration

of linked geospatial data as well as creation, sharing, and collaborative editing

of thematic maps by combining linked geospatial data and other geospatial

information available in standard OGC file formats” [12,45].

It focuses on two tasks: querying different RDF storages and manipulat-

ing geospatial data. In GIVA, we aim at doing something more: We want

to create “a semantic framework that assists domain experts in integrating

highly heterogeneous datasets and in analyzing and visualizing dependencies

among them” [12]. The main difference lies in the semi-automatic integration

of geospatial data. In order to do that, we strongly rely on ontology match-

ing, that is discussed in Section 2.1.2. Our focus is on creating links between

similar concept represented by georeferenced datasets. Isaac, Van Der Meij,

Schlobach, and Wang [25] showed that instance-based matching has excellent

results when applied on general ontologies, just by using simple similarity

measures. Geospatial data are a peculiar type of data to work with, and thus

we need to develop ad hoc measures for comparing them.

In literature it is possible to find several attempts of comparing geospatial
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features, that involve techniques for the comparison between the geographical

features of different datasets. For instance, Dunkars [19] presents a method to

link objects that represent the same real world feature. Walter and Fritsch [65]

also propose a statistical approach for comparing the geospatial features of

heterogeneous geospatial datasets. Duckham and Worboys [18] explore the use

of instance-level (extensional) information within the fusion process through

the classification of the areas composing a raster image. All those works focus

on matching geospatial datasets; however, we are interested only in a partic-

ular class of geospatial datasets: georeferenced datasets. Matching geospatial

features and matching georeferenced datasets are processes that involve differ-

ent techniques. When analyzing geospatial features the focus is on the shape,

while our focus is on the distribution of the dataset.

The result we want to achieve is to develop the core engine for a framework

capable of integrating geospatial data. In order to achieve this result, we need

an effective way to compare geospatial data.
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Chapter 3

Problem Definition

3.1 Goal

Our final goal is to link geospatial ontologies, identifying relationships be-

tween their main concepts. Figure 3.1 qualitatively shows the result we want

to achieve. We proceed working on two paths: first, we would like to link simi-

lar concepts with a high degree of confidence; second, we would like to identify

“strong” relationships (for instance, inclusion) between the related concepts.

Let us suppose, for instance, you have multiple datasets about the same

concept in your data storage system: if you are able to identify those datasets,

you can merge them in a unique one saving space on your disk. An automatic

system to perform this task can significantly improve the efficiency of your

storage. Otherwise, suppose you have two different datasets: one about “rain-

fall” and the other one about “snowfall”. If you are able to understand that

your concepts are both subclasses of a unique class called “precipitation”, you

can add them in order to create a new dataset about precipitation.

The creation of links between the datasets is just the first step: it is the

enabler for analyzing and reasoning about the data. Recalling the stack of the
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Semantic Web in Section 2.1 we are working with its lower part: the data part.

Currently there are no works describing instance-based approaches to ontology

matching algorithm for georeferenced datasets. As discussed in Section 2.1.2

the state-of-the-art systems rely only on structural and syntactical matching to

link datasets. In Section 3.2 we are going to see why these methods are not so

effective in our case. In this work we aim at creating an instance-based method

to match geospatial ontologies. In this way we aim at creating breeding ground

for working on how to identify more complex relationships.

City A

Flu Rainfall

Value Time Location

City B

Value Time Location

Value Time LocationValue Time Location

Precipitation
Influenza

Figure 3.1: Linking geospatial ontology [12].

3.2 Limits of Structural and Syntactical Matching

In Chapter 2 we have discussed geospatial data, Figure 3.2 shows a real ex-

ample of a geospatial ontology. We already said that geospatial ontologies are

characterized by having: a latitude, a longitude, a value and several metadata.

Ontology matching works effectively when comparing ontologies of data rich

of semantic information and using a shared vocabulary.

The structure shown in Picture 3.2, for instance, is not really different from

the ones extracted from flat database tables.
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Since the structure we are dealing with is so simple and predictable, run-

ning a structural matcher between two ontologies of this type is unlikely going

to return a trustworthy alignment. In fact, a structural matcher is probably

just going to boost the matching between the root concepts (even if there is no

real reason to match them). For example, suppose you want to compare two

datasets: the first about rainfall with latitude and longitude as attributes, and

the second about car crashes with latitude and longitude as attributes. Since

rainfall and car crashes have very similar structures, it is possible that a struc-

tural algorithm will match car crashes with rainfall. In this case a syntactical

Figure 3.2: Example of flat geospatial ontology [46].

matcher works better. It allows to identify a link between two concepts if they

have similar names or if they are synonyms (if we suppose the matcher uses

WordNet [43] or similar systems). However, there are situations when the syn-

tactical matcher fails in creating a correspondences between similar concepts.

A matcher, working at syntactical level, would be probably able to link

similar simple attributes. Our problem is that it would fail in matching more

complex concepts. For instance, suppose you are an analyst who wants to

compare a precipitation dataset with a rain f all dataset. During the summer,

when there is no snowfall, reasonably that the two datasets are about the very
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Table 3.1: TYPES OF HETEROGENEITIES

Heterogeneity Examples of Possible Representations
Unit of measure Meters, Centimeters, Inches
Resolution Country, State, County
Time Representation Timestamp, Date, Period
Space Representation Shape, Point, Square
Format SHP, KML, CSV

same concept, and you would like an algorithm to link them.

A standard ontology matching algorithm would not be able to do it. Since

the structure of the datasets is not going to help us to achieve our goals,

and syntactical matching has a limited scope, we decided to proceed with

an instance-based ontology matching approach. The instances of the datasets

exploit more information we can use to improve the current technologies.

In Section 3.3 we are going to explore the main problem related to geospa-

tial data: their heterogeneity.

3.3 Heterogeneity

Dealing with the instances of geospatial datasets provides us with more in-

formation with respect to other datasets, but it involve some drawback. The

problem of geospatial data is that they are inherently highly heterogeneous.

Geospatial data can be represented with different formats, they can have dif-

ferent resolutions, units of measure and so on. Table 3.1 shows a detailed sum-

mary of the kind of heterogeneities we might deal with when using geospatial

data.
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(a) Solar potential by state. (b) Solar potential by county.

Figure 3.3: MAUP problem [56].

3.3.1 Resolution and MAUP Problem

A major pitfall when analyzing geospatial data relates to the resolution of the

data. With the term “resolution” we refer to the scale used to represent the

data. For instance, data organized by county are at a higher resolution with

respect to data represented at state level. A dense dataset of georeferenced

observations has an higher resolution with respect to a the same dataset if

represented by a few points.

Depending on the scale at which you look at a Geographic pattern, you can

derive completely different results from the exact same underlying data [56].

This is called the MAUP [68].

Figure 3.3 shows an example of this problem. The data shown in the picture

are about the solar potential analyzed by state and by county. The problem of

the resolution is related to the representation of the datasets: if you compare

two datasets at different resolutions you need to convert them to an appropri-

ate common representation.
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3.3.2 Datasets Disjoint in Space and Time

Your datasets might be recored in different places and in different time in-

tervals. A possible classification of this kind of heterogeneity is shown in

Figure 3.4. Clearly, the way the datasets are disjoint strongly influences the

techniques you can use to analyze them. In Chapter 4 we will show differ-

Concept 
Overlap

Spatial 
Overlap

No Spatial 
Overlap

Time 
Overlap

No Time 
Overlap

Time 
Overlap

No Time 
Overlap

No 
Concept 
Overlap

Spatial 
Overlap

No Spatial 
Overlap

Time 
Overlap

No Time 
Overlap

Time 
Overlap

No Time 
Overlap

Geospatial 
Data

Figure 3.4: Hierarchy of the possible relations between geospatial datasets.

ent approaches to compare geospatial datasets. Starting from the most simple

case, we try to extend our method to deal with more complex situations.

3.3.3 Uncertainty

Geographic locations can include administrative units like states and counties,

natural areas like forests and lakes that can sometimes be formally defined by

their observable features, and cultural regions with uncertain boundaries like

neighborhoods. Understanding people’s conception of geospatial entities is not

easy. The example shown at Figure 3.5 by Andy Woodruff and Tim Wallace at

http://www.bostonography.com shows how people in Boston perceive of

their city’s neighborhoods. It is obtained using crowdsourcing. It is imprecise,
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and parts of the map are empty. This is a much more faithful representation

of what we can actually know about these types of places than the neat and

tidy borders we can define for administrative units [69]. This picture effectively

Figure 3.5: Neighborhoods boundaries of Boston [69].

gets the reader across the uncertain nature of geospatial data. However, the

conception of the geospatial entities by people is not the only or the major

source of uncertainty. Uncertainty is generated in different steps during the

life of a dataset. Measuring a phenomena generates uncertainty, the placement
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of the sensors to measure a phenomena generates uncertainty, and so on. The

fact that uncertainty is so widespread in geospatial data is not a real problem

for us, and we are not going to discuss this problem. However, we need to be

aware of it.

3.4 Conclusions

To conclude, we want to improve the capability of the current matchers to link

geospatial entities. For this purpose, we proceed by rethinking about how to

build an ontology matching system, so that the analysis of the instances is

included.

In order to do that, we need to address the different heterogeneities that

we might occur when analyzing geospatial data. In Chapter 4, considering the

different types of heterogeneities, we are going to propose a process to solve

this problem.

28



Chapter 4

Problem Solving

4.1 Overview

In this section we provide the reader with an overview of our solution to the

problem. In Subsection 4.1.1 we contextualize our solution and in Subsec-

tion 4.1.2 we describe the design of the system.

4.1.1 Contextualization

We have seen that the problem of integrating geospatial data is very complex

and faceted. For these reason, before to start discussing a solution, we need to

contextualize our approach with respect to the other possibilities. We start by

discussing the differences between semantic data integration” and “instances

integration”. With “semantic data integration” we refer to the integration per-

formed at concept level, while with “instances integration” we refer to the

integration performed at instance level. Considering a data integration termi-

nology, “semantic data integration” is similar to “virtual data integration” and

“instances integration” is similar to “materialized data integration”. In this
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work we want to achieve “semantic data integration”: we want to create links

between similar concepts, not to obtain a unique dataset from heterogeneous

sources. “Instance integration” can be obtained by merging two datasets that

are known to be about the very same concept, however, it is not our main

goal. For our purpose, “instance integration” can be seen merely as a possible

opportunity enabled by the “semantic data integration”.

That said, it does not mean that we are not going to use instances; on the

contrary, as mentioned in Chapter 3, we are going to use an Instance-Based

Approach, that of course involves the use of instances. To conclude, we are

going to use instances to find useful semantic information about the concept

represented by the dataset.

Another major clarification that needs to be done is about the type of

datasets we are going to consider. We already discussed in Chapter 2 the

difference between geospatial data and georeferenced data, and we pointed

out that we are going to deal with georeferenced data. The most common class

of georeferenced datasets is the one of datasets having a point as geograph-

ical feature. For this reason, we are mainly going to deal with “datasets of

points”. However, there are also other very important geospatial datasets that

are represented as shapes: despite we are not going to use them explicitly, we

need to develop an approach that can be easily adapted also to work with such

datasets.

We also said that a major issue that arises in treating geospatial instances

involves their heterogeneity in space and time. In order to deal with this prob-

lem, we start focusing on the most simple possible situation: datasets in the

same area, at the same time. We are also going to suggest possible ways to

extend this approach in time and space, so that we include a wider range of

possible use cases.
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4.1.2 System Design

We aim at enhancing the current architecture of an ontology matching algo-

rithm in order to work better with georeferenced datasets. Figure 4.1 shows

the standard architecture of a matcher.

Figure 4.1: General matcher architecture [14].

Our approach consists in using instance-based matching to overcome the

limits of syntactical matchers. Useful information we can extract from georef-

erenced datasets is the distribution of the data over the space. The distribution

of a georeferenced dataset is obtained using three attributes: latitude, longi-

tude and value. Since the distribution feature is not going to be present in

the final alignment, unless it was already present in the initial ontologies, we

decided to explicitly add it to each of the compared ontologies. The distri-

bution attributes added to the ontologies are obviously guaranteed to be the

same entity. For this reason, we create a correspondence between the added

nodes. We decided to assign to the correspondence a similarity measure based

on the similarity of the distributions. For the moment, the process of adding
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a distribution feature can be seen as a post-processing step performed after a

standard ontology alignment. The desired result is shown in Picture 4.2.

Water Gages
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Flow

Time

Distribution
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Data_Recorded
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Longitude

Latitude

Distribution
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15%

Figure 4.2: Addition of distribution.

What we obtain is not a standard ontology alignment for two reasons:

1. We always have a correspondence between the distributes nodes. It is not

possible to link other attributes to them.

2. We need to use an ad-hoc method to obtain the similarity value between

the distribution nodes.

That said, why is that representation appropriate?

First, the obtain alignment provides useful information, that can be further

used for data integration. It is fine to modify the meaning of the alignment

provided that we obtain an improvement.

Second, the obtained alignment can be used as an intermediate step of an

enhanced standard ontology matching system. Under the assumption that

“Datasets with a similar distributions are likely going to be about the same

concept, datasets with dissimilar distributions are unlikely going to be about

the same concept”, we can use the similarity between distributions to obtain a

similarity measure between the root concepts.
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Figure 4.3: Enhanced ontology matching.

An example is shown in figure 4.3. We already discussed the fact that a

structural matcher is not going to behave really well in our case, since our

ontologies are too poor from a structural point of view.

However, when using a structural matcher, an improvement performed on

a link is going to influence also the other links. After an improvement in a

link we obtain a new similarity matrix, and we need to iterate again to identify

the best mappings. For this reason, we can stop considering this approach as

merely a post-processing step.

Figure 4.4 shows the overall architecture of the obtained new ontology

matching algorithm.

4.2 Data Processing

In this section we discuss three major steps we need to process geospatial

data: data extraction, ontology extraction and data translation [12]. We begin

discussing data extraction. Processing geospatial data is a fundamental step

for their integration. Even though in this work we are not going to contribute

with new techniques we describe in detail the once we intend to use.
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Figure 4.4: Enhanced matcher architecture.

Geospatial data, as we can see in Figure 4.5, are represented in different

formats. The geospatial feature in these data formats uses geodetic systems

such as WGS84 and geometric objects (e.g., polygon, polygonal chains and so

on) [12].

However, geospatial data are also often represented in unstructured or

semi-structured formats, for instance web tables or text, and thus they need

an ad-hoc processing. For example, quoting our GIVA paper, “web tables are

primarily constructed using the ¡table¿ tags for a variety of purposes such as,

HTML forms, calendars, page layout, and relational data” [12]. This informa-

tion can be exploited to automatize the process of extraction of metadata. In

many cases web tables are poor in features, and they do not contain easily

extractable metadata and, in order to extract the corresponding feature-rich

tables, we need to first identify the headers (which are sometimes nested) and

then store it, together with the table, in structured file [13]. For this kind of
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With Geographic 
Component

Without Geographic 
Component

Standardized 
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Non-Standardized 
Format

GML SHP KML CSV TSV Table... ...

Figure 4.5: Hierarchy of the formats of geospatial data [12].

extraction we can use machine learning approaches: in GIVA, for instance, we

use a decision tree classifier model (C4.5) [52] using 20 different heuristics (in-

cluding number of columns, rows, font size, and color) and trained on 100 web

tables with geospatial data [12].

Another major problem when processing geospatial data involves data trans-

lation, i.e. the process of translating data from one format to another. Before

we attempt to create geospatial mappings between these data, they need to be

translated into a common spatial data format. Generally we can use GDAL [67]

to convert datasets from a standard format to another. For instance, we can use

GDAL to convert datasets from GML to PostGIS dump format. In this case,

we face with the problem that non-standardized formats require semantic pro-

cessing to identify the appropriate column headers that contain information
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about spatial coordinates, timestamps and values. We decided to simply use

string matching on the attributes in order to identify longitude, latitude and

value. Next in this chapter, we are going to work under the assumption that

those attributes are correctly identified.

Further, data in non-standardized formats may contain implicit geographic

components (e.g., the word “Illinois”) [12]. Special processing and techniques

are required to identify these implicit geographic components. The hierarchical

characteristics of geospatial classification schemes can be modeled using a part-

of or is-a relationship [15]. We can also use methods to extract ontologies from

a variety of formats, including relational tables, XML, and RDF documents

considering a global ontology [17].

So far we only discussed datasets of points, but there are other types datasets

we might be interested in. In particular, we would like to deal with datasets

organized in administrative units. An example of dataset organized in ad-

ministrative units is a dataset containing the amount of population of the U.S.

organized by state.

The reasons why we are interested in administrative units are mainly two:

first, dataset organized this way are very common; second, integrating data

collected by different administrations involves dealing with heterogeneity. It

often happens that those data do not have an explicit geographical feature, and

that they are simply stored by name of the administratie units. An example is

shown in Picture 4.6. We can deal with the problem by mapping the name of

the administratie units to a given table containing pairs (administratie units,

shape), providing the dataset with a geographical feature.
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"name": Illinois, "geometry": { "type": "polygon", "coordinates": 
[ [ [ -87.532331, 39.997776 ], 
[ -87.532542, 39.987462 ], [ -87.532683, 39.977691 ], ...

Annual Precipitation 
average

"name": Michigan, "geometry": { "type": "polygon", 
"coordinates": [ [ [ -88.684434, 48.115785 ], 
[ -88.675628, 48.120444 ], [ -88.676395, 48.124876 ], ...

State

39.2Illinois

32.8Michigan

......

Figure 4.6: How to manage administrative units.

4.3 Distribution Similarity

We need now to describe a way to compute a similarity measure between geo-

referenced datasets. What we ideally want to achieve is to compare geospatial

datasets in the same way we compare words. We want to create a metric that

is for geospatial datasets what Levenshtein Distance is for strings of characters.

We need a very general and computationally inexpensive approach: we are

not going to describe a model to predict the future behavior of the analyzed

phenomena. It would not be really useful for our purpose. We just need a

simple measure to say whether the given datasets are similar or not.

Since we cannot rely on the topology of the geospatial feature, suppose you

are analyzing datasets of points, in order to identify similarities we decided to

focus on the distribution over the space of the instances. Recalling the problem

of time and space heterogeneity, we start working on the simple assumption
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that the two datasets are about the same time interval and the same area. The

basic idea of the approach lies in the simple observation that: if two datasets

have a common pattern in their distributions of values, they likely describe the

same concept; if their distributions are very dissimilar, they unlikely describe

different concepts.

The most common techniques in geostatistics focus on finding trends within

a single dataset. A commonly used technique for analyzing trends in spatial

datasets is spatial autocorrelation, that is a statistic to measure and analyze the

degree of dependency among observations in a geographic space. However,

spatial autocorrelation does not fit to our case, since it does not help in finding

similarities across different datasets [37,38]. To conclude, we decided to build

our own spatial similarity metric relying on a very basic statistical relationship:

correlation.

4.3.1 Tessellation

In order to compare different datasets, we need to first reduce them to a com-

mon representation. We proceed partitioning the space where both datasets lie

in d non-overlapping regions, obtaining a tessellation.

For sake of completeness, here is a formal definition of a tessellation:

Tessellation 1. Let S be a closed subset of Rd, = = {s1, s2, ..., sn} where si is a closed

subset of S, and s
′
i the interior of si. If the elements of = satisfy:

1. s
′
i ∩ s

′
j = ∅ for i 6= j

2.
⋃n

i=1 si = S

then the set = is called a tessellation of S. Property (1) means that the interiors of

the elements of = are disjoint and (2) means that collectively the elements of = fill the

space S [5].
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We briefly discuss the possible types of tessellations we can use. For in-

stance, a type of tessellation that is widely used in artificial intelligence are

Voronoi tessellations. Given a set of points, also called seeds, for each seed

we identify a corresponding region consisting of all points closer to that seed

than to any other [5]. In our case the seed will be the single observation. The

problem with Voronoi diagrams is that they are built on a specific dataset. In

our case we need to compare multiple dataset, and thus this technique does

not suit to our situation. We move on and look at regular tessellation. regular

tessellation are uniform and isohedral tessellations (i.e. those consisting of reg-

ular triangles, squares, or hexagons) [5]. A uniform tessellation is a tessellation

for which the vertices of the tessellation are of the same type [5]. An isohe-

dral tessellation is a monohedral tessellation (in which all the cells are of the

same size and shape) in which the ordered sequence of the number of edges

meeting at the ith corner of a cell is the same for every cell [5]. In short, the

cells are completely interchangeable. Notice that the three regular tessellations

induce different distributional characteristics of Moran’s I. It has been proved

that tessellations of triangles and squares are more appropriate if our main

objective is the investigation of properties of spatial aggregation and rasters,

whereas tessellations of hexagons are more pertinent if we wish to generalize

our results to empirical tessellations [6]. To conclude, it is more appropriate to

use hexagons than squares to investigate the distributional properties of spatial

test statistics in empirical maps.

We define “tessellation dimension” as the number of cells that compose the

tessellation. For instance considering the tessellations in Figure 4.7 we have

TessellationDimension = 36.

Despite the fact we have shown that using tessellation of hexagons is a

better solution for our situation, for sake of simplicity, we proceed using a
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squared tessellation. Squared tessellations are easier to implement and they

can also be used to deal with border line problems with longitude values in

a simpler way (for instance, dealing with datasets are across -150 and +150

degrees of longitude). In short, a squared tessellation allows us to explore

the effectiveness of our approach in an easier way. However, a real world

implementation would better use an hexagon tessellation.

Once we tessellated the space of the datasets, for each of the datasets we

create a new data structure containing a value for each cell in the tessellation

(a float matrix). The value of each cell can be obtained in different ways; for

instance, simply by averaging the observations contained in the cell or com-

puting their sum. The function used to obtain the value of each cell depends

on the analyzed concept. For instance, analyzing rainfall and precipitation we

would use an “average function”, while analyzing car crashes we would use a

“sum function”.

Once we have a uniform data structure containing our georeferenced datasets

we can proceed comparing their distributions.

4.3.2 Correlation as Similarity Measure

The most common measure of relation between two quantities is the Pearson’s

R. There are several benefits in using this metric. The first is that this metric

can be used when quantities (i.e. scores) varies, since the accuracy of this score

increases when data is not normalized [59]. Another benefit is that the Pearson’s

R is the same for any scaling within an attribute. Thus, objects that describe the

same data but use different units of measure can still be used [59]. This allows

us to address the problem of the heterogeneity in units of measures. Pearson’s

R is obtained by dividing the covariance of the two variables by the product of

their standard deviations, that can be simply computed as
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ρX,Y = corr(X, Y) = σX,Y
σX ·σY

In practice, for each cell for each dataset we compute its deviation from the

mean value. For each cell we multiply the result obtained with one dataset

times the result obtained with the other dataset and we sum the resulting

values. Finally, we divide by the multiplication of the standard deviations of

the two tessellated datasets. In formula:

r = ∑n
i=1(X−X̄)(Y−Ȳ)√

∑n
i=1(X−X̄)2

√
∑n

i=1(Y−Ȳ)2

Person’s R returns a value such that −1 ≤ ρX,Y ≤ 1. A negative correlation

is meaningful for geospatial analysis, and it could be used to infer a relation-

ship between the datasets. However, for the moment we are only interested

in similarity, and thus we simply consider negatively correlated datasets as

very dissimilar one to the other. The obtained value can be integrated with

other measures of similarity between the ontologies, such as syntactical sim-

ilarity and so on. It is possible that two completely unrelated concepts are

highly positively correlated: in this case, this approach is going to produce

false positive links. Nevertheless we can integrate this method with other sim-

ilarity measure to address this issue. To conclude, Figure 4.7 shows a complete

overview of the process of finding a similarity measure between georeferenced

data.

4.3.3 Similarity Measure Properties

In this section we briefly discuss whether it is legitimate or not to use Person’s

correlation as a similarity measure, considering the properties of similarity

measures. Recalling the fact that a similarity measure is usually defined as in-

verse measure of a distance metric, it should have the following properties [61]:
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Figure 4.7: Computing a similarity measure for georeferenced datasets.

Similarity Measure 1. Similarity Measure properties:

1. ∃s0 ∈ R : −∞ < sim(x, y) ≤ s0 < +∞, ∀x, y ∈ R

2. sim(x, x) = s0 (sim is reflexive)

3. sim(x, y) = sim(y, x) (sim is symmetric)

4. sim(x, y)sim(y, z) ≤ [sim(x, y)+ sim(y, z)]sim(x, z) (triangle inequality holds)

Pearson’s R takes values on the interval [−1, 1] can easily be transformed

to one taking values on the interval [0, 1], and vice versa. For this purpose we

can use the transformation [3,40]:

[−1, 1]→ [0, 1] : t→ (t + 1)/2

Again, the choice of this transformation depends on the fact that we are search-

ing for similar concepts. A strongly negative correlation would be very inter-

esting when searching for related concepts. Thus, property 1 is respected by

our metric. Also properties 2 and 3 are trivially respected by Person’s R. The
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only property that we cannot respect using correlation is the 4th. Triangle in-

equality does not hold for Pearson’s R, this is the reason why Pearson’s R is

often referred to as a semi-metric. Although similarity measures usually re-

spect the triangular inequality, we can relax this constraint and proceed being

aware of this issue.

4.3.4 Approach Issues

There are three main issues concerning the described approach:

1. Correlation is weak.

2. This method is useful only to find similarities between ontologies in the

same area in the same time interval.

3. The measure of the correlation strongly depends on the dimension of the

tessellation (see Section 5.3.2).

“Correlation does not imply causation” is a commonly used phrase in science

and statistics to emphasize that the correlation is a weak concept. In our case

we are not searching for a strong relationships such as causation, thus it seems

to be fine for our approach. That said, we anyway need to take into account

the fact that correlation is a weak relationship.

The second problem is the strict working hypothesis we are considering:

the fact that we are comparing dataset with temporal and spatial overlap. Of

course, there is no reason why the distribution of the rainfall on a sunny day

should be similar to the distribution of the rainfall on a rainy day; this method

fails when considering different time lapses.

The third problem is that the result strongly depends on the process used

to compute it. The lower the granularity of the tessellation the higher the

43



correlation value, the higher the granularity the better the approximation of

the distribution (see Section 5.3.2 for more details). In Section 4.3.5 we are

going to address this problem.

4.3.5 Tessellation Dimension

In this section we deal with the problem of finding a correct resolution for a

given dataset. In particular, we analyze the data distribution of each of the

datasets in order to find a proper dimension for the tessellation. Our goal is to

identify properties of the dataset that we would like to preserve, and situations

that we would like to avoid. In this way we reduce the set of possible choices

of tessellation dimension to a subset for which the obtained Pearson’s R score

is meaningful.

Oversampling

We define “oversampling” the process of sampling a dataset using a tessella-

tion that is too fine for the given dataset. An example of oversampling is shown

in Figure 4.8. The picture shows the application of two different tessellations to

the same input dataset. “Tessellation 1” clearly fails in representing the given

dataset, while “tessellation 2” gives a qualitatively good representation of the

data. The problem with “tessellation 1” is that we are trying to represent the

data with a tessellation that is finer than the resolution of the dataset. In order

to obtain a good representation of the dataset we would like to identify the

finer tessellation possible that does not involve oversampling.
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Figure 4.8: Example of oversampling.

Spatial Autocorrelation

Spatial autocorrelation is a widely used measure to analyze the degree of de-

pendency among observations in a geographic space. Three commonly used

spatial autocorrelation statistics are: Moran’s I, Geary’s C and Getis’s G.

In order to compute these statistics, we need first to compute a spatial

weights matrix, that represents the the geographic relationship between obser-

vations in a neighborhood. The influence between geographic observations is

usually measured considering a distance measure. In our case, for instance,

considering a contiguity matrix, we suppose that only adjacent cells influence

the the given cell.

Spatial autocorrelation is represented by a value in the interval [−1, 1],

in which a value close to 0 indicates that the distribution of the datasets is

close to random. Spatial autocorrelation that is significantly more positive

than expected from random is an index of high degree of clustering across the
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space, while significant negative spatial autocorrelation indicates that neigh-

boring values are more dissimilar than expected by chance, and suggests a

“chessboard-like” distribution. An example is shown in Figure 4.9. In partic-

Dispersed [-1] Clustered [+1]

Figure 4.9: Spatial autocorrelation (www.arcgis.com/features).

ular we use Moran’s I that is a widely used measure of spatial autocorrelation

developed by Patrick Alfred Pierce Moran [44]. Moran’s I is defined as:

I = N
∑i ∑j wij

∑i ∑j wij(Xi−X̄)(Xj−X̄)

∑i(Xi−X̄)2

where N is the number of spatial units indexed by i and j; X is the variable

of interest; X̄ is the mean of X; and wij is an element of a matrix of spatial

weights [48]. The matrix of spatial weights represents the influence that each

element has on any another element. Following standard convention, here we

exclude “self influence” by assuming that 0 wii = 0 for all i = 1, ...n (so that

W has a zero diagonal). It can be computed in different ways: we decided to

use, due to its simplicity and convenience from a computational point of view,

a k-Nearest Neighbors algorithm (Appendix A provides details about how to

compute a k-Nearest Neighbors Weights matrix).

Best Tessellation Dimension Identification

Oversampling is strictly related to the degree of clustering of the dataset. The

tessellations for which we obtain a high degree of clustering involve a good
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representation of the dataset (for example “tessellation 2”), the tessellations for

which we obtain a low degree of clustering involve a bad representation of

the dataset (for example “tessllation 1”) A high score indicates a high degree

of clustering among the instances, that is in interesting information for who

analyzes the data, and it is a property that we would like to preserve. In

statistics the degree of clustering is measured with spatial autocorrelation. In

particular, we use a measure of spatial autocorrelation called Moran’s I, that is

described in the previous Subsection (4.3.5).

In order to identify the tessellation dimension that better represents the data

we select the tessellation that maximizes the Moran’s I score of the dataset. In

Chapter 5.3.2 we will discuss experiments to further justify this idea.

The process of identifying the best tessellation dimension is very similar to

the one used in incremental spatial autocorrelation in the ArcGIS spatial anal-

ysis tool [57]. The incremental spatial autocorrelation allows to identify the best

distance band, that is the distance within a spatial entity is considered neigh-

bor of another spatial entity. The difference with our approach is that instead

of maximizing on distance band we maximize on the tessellation dimension.

The distance band is related to the way the spatial autocorrelation is computed,

while the tessellation dimension is related to the topology of the dataset.

Best trade-off Point

Since we are studying a trend in a discrete and finite interval, one could just

use a simple maximum function to select the maximum value of the curve.

However there are situations when this is not our best choice.

For instance, considering the examples shown in Figure 4.10, taking the

maximum value would perfectly work for the curve in Figure 4.10b, but it

would involve some issues in the case of Figure 4.10a.
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(a) (b)

Figure 4.10: Curve trends for tessellation dimension.

Considering a monotonically increasing curve, selecting the maximum we

are also taking the maximum tessellation side dimension possible: the result

depends on our choice of the maximum tessellation side dimension and having

a high tessellation dimension is computationally more expensive than having

a low tessellation dimension.

A better way to choose the tessellation dimension would be to select a di-

mension such that the derivative of the curve is “sufficiently” close to zero, we

do not need it to be exactly zero. For instance, in the case in Figure 4.11 we

could use the elbow method [28] to identify the point where the derivative of

the curve significantly change. In this way we are able to identify a tessella-

tion that qualitatively represents well the data. A possible way to find the best

trade-off point on the curve works as follow: for each point on the curve, we

find the one with the maximum distance from the line linking the first and the

last point. Figure 4.11 graphically shows how the distance is computed. We

first project the vector p on b obtaining p̂, and then we take as distance the

norm of difference of p and p̂ [50]. This technique effectively works both in the

case of a monotonic curve and in the case of a curve that is not monotonic.
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Figure 4.11: Finding the best trade-off point on the curve [50].

Once we identified the best tessellation dimension for each of the two

dataset, we compare the datasets using the lower one. In this way we avoid

oversampling in both the datasets, and we select the tessellation dimension

that is less computationally expensive.

4.3.6 Spatial Autocorrelation as Similarity Measure

We already discussed the issues involved by using correlation as similarity

measure, and we already said that the method works only when considering

data about the same concept at the same time in the same place.

We discuss now another possible solution to deal with spatial and temporal

heterogeneities. Basically, our hypothesis is the following: “Considering a suf-

ficiently wide area and a sufficiently wide time interval, a particular concept

has a same spatial autocorrelation score, i.e. degree of clustering, indepen-

dently of where and when it was measured”.

Proving that the previous statement is true is a very hard challenge. In
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Chapter 5 we provide some examples to support this idea. Further considera-

tions are left as future developments.
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Chapter 5

Experiments

5.1 Overview

This chapter contains the results obtained applying my approach and a de-

scription of the tools we produced to show its effectiveness. Next, in this chap-

ter, Section 5.2 describes the results obtained using Moran’s I to identify the

best tessellation dimension. Section 5.3 contains the experiments performed

using the whole approach for comparing georeferenced datasets. Section 5.4

describes GIVA and the integration of my approach for comparing georefer-

enced datasets into AgreementMaker [14]. Finally, Section 5.5 shows the results

obtained using spatial autocorrelation as similarity measure.

5.2 Tessellation Dimension

A major issue about the approach we described in Chapter 4 is the choice of

the tessellation dimension. In this section we perform experiments to study

the trend of the Moran’s I score when the tessellation dimension varies. As

we have seen in Chapter 4 this problem is strictly related with the problem of
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oversampling. We tested our approach on real datasets about precipitation in

Illinois from the National Weather Service.

5.2.1 Implementation

The experiments have been performed using a python script, whose struc-

ture is described in the UML class diagram shown in Figure 5.1. The same

organization is then translated in JavaScript and used for the visualization

tool of GIVA. The dataset is taken from a PostGIS database using the module

PostGISConnection, relying on the psycopg2 library1. A GeoferencedDataset

object is created for the loaded dataset. Starting from the GeoreferencedDataset

object, by using the method tessellate(int tessellationDimension,

TessellationMethod method), we create a new TessellatedDataset

object of a given dimension. The squared tessellation is represented in the

class by a float matrix and by its bounds.

The method computeMoransI(int k) takes the k value as input, used

to compute the spatial weights using k-Nearest Neighbor, and returns the

Moran’s I score. We tested different k in order to see how the trend of the

Moran’s I changes with respect to it. The results are plotted using the matplotlib

library2.

5.2.2 Results

The results obtained analyzing the relationship between Moran’s I and over-

sampling are shown in Figure 5.2.

In order to clarify the obtained results we visualize on a map the tessella-

tions obtained with different tessellation dimensions in Figure 5.3. The tessel-

1https://pypi.python.org/pypi/psycopg2
2http://matplotlib.org/
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- GeoreferencedDataset(dataset: list)
- tessellate(tessellationDimension: int, 
method: TessellationMethod)
- getBounds: Bounds

+ data: list<GeoreferencedObservations>
GeoreferencedDataset

- TessellatedDataset(data: float[][], bounds)
- computePearsonCorrelation(dataset: TessellatedDataset): float
- computeMoransI(k: int): float

+ tessellation: float[][]
+ tessellationDimension: int
+ bounds: Bounds

TessellatedDataset

- GeoreferencedObservation(value: float, 
coord: Point)
- getLat: float
- getLon: float
- getValue: float

+ point: Point
+ value: float

GeoreferencedObservation

- Point(lat: float, 
lon: float)
- getLat: float
- getLon: float

+ lat: float
+ lon: float

Point

0..*1

1..*

0..*

tessellate

- Average
- Sum
- Subtract

<<enumeration>>
TessellationMethod

use

- getMax: Point
- getMin: Point

+ max: Point
+ min: Point

Bounds

2

0..*

1 0..*

1

0..*

- getData(datasetName: String): list
+ connection: Connection

PostGISConnection

load data

Figure 5.1: Data structures class diagram.

lation on the left corresponds to the tessellation dimension identified by our

approach (225), the tessellation on the right corresponds to a higher tessellation

dimension (900). Three main observations arise from this visualization. First,

our hypotheses is confirmed: it is true that using the tessellation dimension

that maximizes the Moran’s I we have a qualitatively good representation of

the dataset. Second, a too dense tessellation involves a low Moran’s I value

and results in a qualitatively bad representation of the dataset. Third, the max-

53



Figure 5.2: Moran’s I trend for rainfall dataset

Figure 5.3: Real world example of oversampling

imum value of the Moran’s I converges to the situation in which we have only

one observation per cell.
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5.3 Correlation and Tessellation Dimension

This section contains the results we obtained using correlation as similarity

measure for georeferenced datasets. The experiments focus on showing the

effectiveness of the use of the correlation together with the identification of

the best tessellation dimension, but not yet of the overall effectiveness of the

geospatial ontology matching system. We test our approach with both syn-

thetic and real datasets.

5.3.1 Implementation

The tests have been performed using the same data structures used for testing

the tessellation choice, and are shown in Figure 5.1. The method computePersons

Correlation(TessellatedDataset secondDataset) of the TessellatedDataset

Class returns the correlation value. For the evaluation on the synthetic data we

avoided passing through GeoreferencedDataset, thus we just created ad-

hoc TessellatedDataset objects.

5.3.2 Synthetic Datasets

Figure 5.4 shows a simple graphic of the results obtained computing correla-

tion on synthetic datasets. The synthetic datasets are created in such a way

to represent meaningful use cases, from which we expect a particular behav-

ior a-priori. The tessellation used in the experiment is a squared tessellation

of dimension 5x5. The results are computed on dataset distributed uniformly

over the space and with datasets distributed in a smoother way. This results

are meant to validate both the implementation and the soundness of decision

comparing tessellated georeferenced datasets using correlation. Next section

contains more extensive experiments on real data.
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Figure 5.4: Synthetic examples of correlation as spatial similarity measure.

5.3.3 Real World Datasets

In this section we show the results we obtained applying our approach to

datasets from National Weather Service (NWS). The idea is to show that the

tessellation dimension identified maximizing the Moran’s I allows to obtain a

good value of Pearson’s R. Two different kinds of test have been performed.

The first test consists in computing Moran’s I and Pearson’s R for datasets

that are expected to be highly correlated. In this way it is shown that we are

able to obtain a tessellation dimension for which the two datasets are correctly

highly correlated. From NWS we downloaded datasets about precipitation

in Illinois, Michigan and Indiana during February 2013. For each state we

created two datasets randomly sampling 500 and 5000 instances from the same

source. The two obtained datasets are compared using the approach described

in Section 4.3.2 of Chapter 4, Figure 5.5 shows the results. The datasets come

from the very same dataset, and we expect them to be highly correlated.
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(a) Moran’s I, Illinois (b) Pearson’s R, Illinois

(c) Moran’s I, Michigan (d) Pearson’s R, Michigan

(e) Moran’s I, Indiana (f) Pearson’s R, Indiana

Figure 5.5: Highly correlated datasets about precipitation.
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The results we obtained are:

1. Pearson’s R score strongly depends on the tessellation dimension.

2. Using my approach to find the best tessellation dimension, by consider-

ing Moran’s I curve, the correlation between the two datasets has a very

high score.

The second test consists in computing Moran’s I and Pearson’s R for datasets

that are expected to have a low correlation. In this way we show that my ap-

proach allows to identify a tessellation dimension for which the two datasets

correctly have a low correlation score. From NWS we downloaded datasets

about precipitation in Illinois, Michigan and Indiana during February 2013

and March 2013. In this way, we obtained two datasets for each state. The two

obtained datasets are compared using the approach described in Section 4.3.2

of Chapter 4, Figure 5.6 shows the results. In this case, there is no reason why

precipitation in March should be highly correlated to precipitation in February,

thus, we suppose the two dataset to be lowly correlated.

Results:

1. Pearson’s R score strongly depends on the tessellation dimension.

2. Using my approach to find the best tessellation dimension, by consider-

ing Moran’s I curve, the correlation between the two datasets has a very

low score.

5.3.4 Census Dataset and MAUP Problem

My approach can be used also to deal with the MAUP problem. In order to

show that, in this section we compare datasets at county level with datasets at

state level. The datasets are extracted from the census dataset, from which we
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(a) Morans’s I, Illinois (b) Pearson’s R, Illinois

(c) Morans’s I, Michigan (d) Pearson’s R, Michigan

(e) Morans’s I, Indiana (f) Pearson’s R, Indiana

Figure 5.6: Lowly correlated datasets about precipitation.
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considered three attributes: family median income, household mean income

and workers median earnings. The dataset at county level is simply obtained

using the FIPS code of the counties, while the dataset at state level are obtained

aggregating the values extracted from the counties.

The obtained results are shown in Figure 5.7.

As we have already seen for the precipitation datasets from National Weather

Service (NWS), also in the case of the census dataset we can easily identify tes-

sellation for which we have a high correlation. In this case, however, the curve

representing the Pearson’s R with respect to the tessellation dimension is quiet

disturbed for low tessellation dimensions.

5.4 Tools

In this section we discuss the implementation of the techniques described in

my thesis in AgreementMaker [14] and GIVA [12].

5.4.1 GIVA

GIVA is a “semantic framework that assists domain experts in integrating

highly heterogeneous datasets and in analyzing and visualizing dependen-

cies among them” [12]. GIVA supports different types of users: administrator,

domain expert, and casual user, with different types of access [12].

The administrator has the overall control over the platform, he is in charge

of inserting new datasets in the system. A domain expert is an analyst who

uses our framework for integrating or analyzing data. Finally, the casual user

is someone who uses needs to use our framework but who does not have the

same skills of the domain expert.

There are a lot of GIS systems out there. However, given the complexity
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(a) Morans’s I, family median income (b) Pearson’s R, family median income

(c) Morans’s I, mean income (d) Pearson’s R, mean income

(e) Morans’s I, median earnings (f) Pearson’s R, median earnings

Figure 5.7: Experiments related to the MAUP problem.
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and the technical competences required to build our framework, we were not

able to find similar GIS system with similar capabilities [12]. The visualization

tool has been developed as a Java Dynamic Web Project, in order to provide

the tool as a service available on the web. A servlet on the server side queries

a PostGIS database and passes data, in GeoJSON3 format, to the client side.

GeoJSON data are efficiently imported in JavasScript, thanks to eval()

function, and manipulated using the same classes described in Figure 5.1 (that

we have reimplemented in JavaScript). The data are finally visualized using

OpenLayers library4 for showing the map, and D35 for plotting the Moran’s I

chart.

OpenLayers is an Open Source JavaScript library that makes it easy to put

a dynamic map in any web page. It can display map tiles and markers loaded

from any source. It has been particularly helpful since it allows to plot a given

dataset just by receiving a GeoJSON, without the need of describing how to

draw particular shapes.

D3 is a JavaScript library for manipulating documents based on data. D3

helps you representing data using HTML, SVG and CSS. The emphasis of D3

on web standards gives you the full capabilities of modern browsers without

tying yourself to a proprietary framework, combining powerful visualization

components and a data-driven approach to DOM manipulation. It has been

chosen as main library for visualizing data because of its power and modernity.

Figure 5.8 shows an example of use of the geovisualization tool. In the

example, in particular, two datasets are loaded from the database: the red

dataset is about water gages, while the blue dataset is about rainfall. A specific

3http://geojson.org/
4http://openlayers.org/
5http://d3js.org/
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Figure 5.8: Screenshot of the GIVA’s visualization tool [12].

area in the map is selected and tessellations of a selected dimension are created.

The intensity of the points of the dataset and of the cells of the tessellation is

defined in the following way: the higher the intensity the higher the opacity.

Figure 5.9 shows the component of the framework that allows to visualize how

Figure 5.9: Screenshot of the GIVA’s Moran’s I chart [12].

does the Moran’s I value varies when changing the tessellation dimension. The
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Table 5.1: UNMODIFIED SYNTACTICAL MATCHER.

Source Target Link
Unit Unit 1.0

Value Val 0.819
Longitude Long 0.608
Latitude Lat 0.539

date recorded Precipitation 0.344
Rainfall time 0.049

user selects the dataset he wants to analyze and sets the maximum value for

which computing the Moran’s I.

5.4.2 AgreementMaker

In order to provide an example of how the described techniques can be used

to improve the performances of an ontology matching algorithm, we built a

prototype within AgreementMaker [14] (AM) and we tested it using synthetic

ontologies. The used ontologies are described in Appendix B. In order to ob-

tain dataset of georeferenced observations highly correlated, we sampled two

datasets from the National Weather Service. The idea is to simulate the situa-

tion in which we have two datasets about the same concept.

We modified a syntactical matcher as described in Section 4.1.2 of Chapter 4.

This Matcher compares the source and target ontologies by using string match-

ing techniques on the words that compose their attribute. The results obtained

by the unmodified matcher are show in Table 5.1. In this case precipitation and

rain f all are not even matched, but they are confused with time and data recorder

attributes. We proceed by adding the distribution node.

On the initialization of the matcher the tree defined in the ontology is modi-

fied by adding the distribution node at the same level of longitude, latitude and

value. When the matcher compares the distribution nodes our matcher imposes
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Table 5.2: SYNTACTICAL MATCHER, DISTRIBUTION ADDED.

Source Target Link
Unit Unit 1.0

Distribution Distribution 0.981
Value Val 0.819

Longitude Long 0.608
Latitude Lat 0.539

date recorded Precipitation 0.344
Rainfall time 0.049

as similarity measure the measure obtained by comparing the instances of the

datasets as described in Section 4.3. The obtained result is shown in Table 5.2,

and the differences with the previous table are highlighted in green in the

table.

Finally, we try to use the distribution node to improve the matching be-

tween precipitation and rain f all. After the mapping between the distribution

similarities is added to the Similarity Matrix, we impose as similarity measure

between Precipitation and rain f all the same value of the similarity between

the distribution nodes. The obtained results are shown in Table 5.3. The up-

dated value in the alignment in highlighted in yellow in the table. Notice that

the imposed mapping between rain f all and precipitation influences also other

attributes: data recored and time are now correctly mapped, even if with a low

accuracy.

5.5 Spatial Autocorrelation as Similarity Measure

In Chapter 4 we discussed the fact we might use spatial autocorrelation as a

feature to identify similar concepts. In this section, using the GIVA framework,

we provide some evidence about what discussed. We take our dataset about

precipitation from National Weather Service and we selected data in two dif-
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Table 5.3: ENHANCED INSTANCE-BASED MATCHER

Source Target Link
Unit Unit 1.0

Distribution Distribution 0.922
Rainfall Precipitation 0.922
Value Val 0.819

Longitude Long 0.608
Latitude Lat 0.539

date recorded time 0.102

ferent areas: Illinois and Florida. We sampled one dataset about Florida, and

two datasets about Illinois. The two datasets in the Illinois area are taken at

different times.

In this way we are comparing datasets temporally and spatially disjoint.

Computing the trend of the Moran’s I score for the different datasets, we no-

ticed that the value of Moran’s I, for a sufficiently high tessellation dimension,

was close to 0.9. Figure 5.10 shows the trend obtained. The yellow curve is

what we obtain plotting water gages, that is used to highlight the difference

with respect to the datasets about precipitation. Two of the curves start de-

creasing after a while, but their maximum value is similar. Those experiments

are not enough to definitely state that spatial autocorrelation is good as simi-

larity measure. However, they enforces our belief that it is a good feature for

comparing geospatial data, and that it worth to be tested in such a way.
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Figure 5.10: Spatial autocorrelation as similarity measure.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Geospatial data are becoming increasingly important in today’s world. They

incredibly improve both the our ability in making decisions and the poten-

tial of our tools. A fundamental step in the evolution of the management of

geospatial data lies in the capability of integrating them, dealing with their

heterogeneities and different representations.

In this work, we proposed an instance-based approach to align geospatial

ontologies. In particular, my work focuses on enhancing ontology matching

algorithms in order to make them more effective when identifying similarities

between ontologies of georeferenced observations. In order to overcome the

limitation of the standard techniques, we decided to go for an instance-based

approach.

The experiments performed on real world datasets show that our method

allows to properly compute Pearson’s R on datasets with different resolutions.

Table 6.1 shows the heterogeneities we were able to address in this work.

We have shown a small prototype of matcher implemented using the described
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Table 6.1: ADDRESSED HETEROGENEITIES

Heterogeneity Addressed using
Unit of Measure Person’s R
Resolution Maximization of Moran’s I
Format GDAL and Data Translation

technologies. We also suggested a way to compare datasets spatially and tem-

porally disjoint using spatial autocorrelation.

6.2 Range

The techniques discussed are very general, and can be also used for other ap-

plications: we developed a similarity measure for georeferenced dataset that

is not only suitable for ontology matching. Different machine learning tech-

niques relies on similarity measure. For example, we could use this measure

to create clusters or similar datasets using a k-means algorithm [41].

Limiting the scope of the concepts we are able to compare we would be able

to use more powerful techniques. As future work, we would like to extend our

approach. For instance, we would like to be able to compare datasets that are

not collected in the same time interval and in the same area.

In order to do that we are currently doing experiments with supervised

learning techniques. We first define an ontology of the concepts we want to

compare, and than we classify the given datasets as member of the one of the

concepts of the ontology. Our hope is that datasets about the same concepts

present common features even tough they are not supposed to be distributed

in the same way.
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6.3 Future Works

This work can be improved along three possible paths: comparing datasets

temporally and spatially disjoint, identifying strong relationships between con-

cepts and better integrating the instance-based matching techniques into a

structural matcher.

6.3.1 Comparing Datasets Disjoint in Space and Time

A possible feature that can be useful for identifying similarities across concepts

in different places is to use spatial autocorrelation.

Our hypothesis is: “considering a sufficiently wide area and a sufficiently

wide time interval, a particular concept has a same spatial autocorrelation

score, i.e. degree of clustering, independently of where and when it was mea-

sured”. However, much work needs to be done to prove the real effectiveness

of this approach.

Issues lies in the fact that spatial autocorrelation is not a reliable measure

for computing the similarity between different datasets, and that this approach

might involve too many false positive matchings.

The problem is that its effectiveness depends on: the width of the selected

area, the number of the instances, the type of phenomena and so on. Further-

more, probably many different phenomena are characterized by a similar spa-

tial autocorrelation, and this involves our method to generate many false pos-

itive matchings even when the other requirements for comparing the datasets

are respected.

Another possible way to deal with this problem, is by relying on metadata.

When they come together with the dataset, metadata are an incredibly useful

source of information. They can be used to identify new features to be used to
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compare datasets in different locations in different time intervals.

6.3.2 Identification of Strong Relationships between Concepts

Similarly to what discussed in the last section, the features obtained by an

instance-based approach, are probably too few to identify strong relationships

between two datasets. Probably our instance-based approach is not enough for

this purpose. Another problem is that it is very unlikely that an unsupervised

approach is enough to find such a relationships. A possibility is to classify the

Precipitation

Rainfall Snowfall

isA isA

Figure 6.1: Precipitation ontology.

dataset as belonging to a given ontology, and then reason on the hierarchy of

the ontology to infer the relationship. For instance, given two datasets (DS1

and DS2) and the ontology depicted in Figure 6.1, we could match each of

the datasets to one of the elements in the ontology. If DS1 is matched with

“Precipitation” and DS2 is matched with “Rainfall”, we can infer the rela-

tion DS2 ⊂ DS1. Otherwise, is DS1 is matched with “Snowfall” and DS2 is

matched with “Rainfall”, we can create the dataset DS3 (about “Precipitation”)

thanks to the relationship DS3 = DS1∪ DS2.
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The problems lies in proving that the used relationships hold in the given

situation. We are doing experiments in this direction using supervised machine

learning techniques, and the results we are obtaining are encouraging.

6.3.3 Instance-based and Structural Matchers Integration

In Chapter 4 we discussed how we can integrate our instance-based similarity

measure for geospatial data into an ontology matching system. We have seen

that it is possible to integrate the instance-based component in two ways: as a

post-processing step to ontology matching, or in a harder way, iterating after

having improved the alignment.

It would be interesting to further explore the effects of the harder approach.

Notice that throughout all the work, we relied on the hypotheses that latitude,

longitude and the values was correctly identified a priori. It would be inter-

esting to use ontology matching to identify these attributes, and include the

whole process in the loop, to iteratively improve each identified link.
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Appendix A

k-Nearest Neighbor Spatial Weights

A spatial weight matrix can be computed using a k-NN algorithm, that is

based on the centroid distances, dij , between each pair of spatial units i and

j [10]. Let centroid distances from each spatial unit i to all units j 6= i be ranked

Figure A.1: Neighbors of the cell number 5, with k = 1

as follows: dij1 ≤ dij2 ≤ ... ≤ dijn . Then for each k = 1, 2...n − 1, the set

Nk(i) = {j(1), j(2), ..., j(k)} contains the k closest units to i (where for simplicity

we ignore ties) [26]. For each given k , the k-NN weight matrix, W , then has

spatial weights of the form [10]:
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wij =

1 j ∈ Nk(i)

0 otherwise

Alternatively, one can consider a symmetric version in which positive weights

are assigned to all ij pairs for which at least one is among the k-NN of the

other [10,26]:

wij =

1 j ∈ Nk(i) ∨ i ∈ Nk(j)

0 otherwise

Figure A.1 shows an example of how neighbors are selected using k-NN.

Given a 3x3 squared tessellation, for examples, the matrix of spatial weights

computed with k = 1 would be:

Given tessellation:

0 1 2

3 4 5

6 7 8

, W =



0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0





Appendix B

OWL Ontologies

1 <?xml version="1.0"?>

2

3 <!-- Precipitation -->

4

5 <!DOCTYPE rdf:RDF [

6 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

7 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

8 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

9 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

10 ]>

11

12 <rdf:RDF

xmlns="http://www.cs.uic.edu/advis/ontologies/precipitation.owl#"

13 xml:base="http://www.cs.uic.edu/Advis/ontologies/precipitation.owl"

14 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

15 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

16 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

17 xmlns:owl="http://www.w3.org/2002/07/owl#">

18

19 <owl:Class rdf:about="#Lat">
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20 <rdfs:label>Lat</rdfs:label>

21 <rdfs:subClassOf>

22 <owl:Class rdf:about="#Precipitation"/>

23 </rdfs:subClassOf>

24 </owl:Class>

25

26 <owl:Class rdf:about="#Long">

27 <rdfs:label>Long</rdfs:label>

28 <rdfs:subClassOf>

29 <owl:Class rdf:about="#Precipitation"/>

30 </rdfs:subClassOf>

31 </owl:Class>

32

33 <owl:Class rdf:about="#Val">

34 <rdfs:label>Val</rdfs:label>

35 <rdfs:subClassOf>

36 <owl:Class rdf:about="#Precipitation"/>

37 </rdfs:subClassOf>

38 </owl:Class>

39

40 <owl:Class rdf:about="#time">

41 <rdfs:label>Time</rdfs:label>

42 <rdfs:subClassOf>

43 <owl:Class rdf:about="#Precipitation"/>

44 </rdfs:subClassOf>

45 </owl:Class>

46

47 <owl:Class rdf:about="#Unit">

48 <rdfs:label>Unit</rdfs:label>

49 <rdfs:subClassOf>

50 <owl:Class rdf:about="#Val"/>

51 </rdfs:subClassOf>

52 </owl:Class>
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53

54 </rdf:RDF>

1 <?xml version="1.0"?>

2

3 <!-- Rainfall -->

4

5 <!DOCTYPE rdf:RDF [

6 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

7 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

8 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

9 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

10 ]>

11

12 <rdf:RDF xmlns="http://www.cs.uic.edu/advis/ontologies/rainfall.owl#"

13 xml:base="http://www.cs.uic.edu/Advis/ontologies/rainfall.owl"

14 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

15 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

16 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

17 xmlns:owl="http://www.w3.org/2002/07/owl#">

18

19 <owl:Class rdf:about="#Latitude">

20 <rdfs:label>Latitude</rdfs:label>

21 <rdfs:subClassOf>

22 <owl:Class rdf:about="#Rainfall"/>

23 </rdfs:subClassOf>

24 </owl:Class>

25

26 <owl:Class rdf:about="#Longitude">

27 <rdfs:label>Longitude</rdfs:label>

28 <rdfs:subClassOf>

29 <owl:Class rdf:about="#Rainfall"/>

30 </rdfs:subClassOf>
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31 </owl:Class>

32

33 <owl:Class rdf:about="#Value">

34 <rdfs:label>Value</rdfs:label>

35 <rdfs:subClassOf>

36 <owl:Class rdf:about="#Rainfall"/>

37 </rdfs:subClassOf>

38 </owl:Class>

39

40 <owl:Class rdf:about="#date_recorded">

41 <rdfs:label>date_recorded</rdfs:label>

42 <rdfs:subClassOf>

43 <owl:Class rdf:about="#Rainfall"/>

44 </rdfs:subClassOf>

45 </owl:Class>

46

47 <owl:Class rdf:about="#Unit">

48 <rdfs:label>Unit</rdfs:label>

49 <rdfs:subClassOf>

50 <owl:Class rdf:about="#Value"/>

51 </rdfs:subClassOf>

52 </owl:Class>

53

54 </rdf:RDF>
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ABSTRACT
The availability of a wide variety of geospatial datasets de-
mands new mechanisms to perform their integrated anal-
ysis and visualization. In this demo paper, we describe
our semantic framework, GIVA, for Geospatial and tempo-
ral data Integration, Visualization, and Analytics. Given a
geographic region and a time interval, GIVA addresses the
problem of accessing simultaneously several datasets and of
establishing mappings between the underlying concepts and
instances, using automatic methods. These methods must
consider several challenges, such as those that arise from het-
erogeneous formats, lack of metadata, and multiple spatial
and temporal data resolutions. A web interface lets users
interact with a map and select datasets to be integrated,
displaying as a result reports where values pertaining to dif-
ferent datasets are compared, analyzed, and visualized.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Query
formulation

Keywords
Spatial databases, GIS, Data integration, User interfaces

1. INTRODUCTION AND MOTIVATION
Spatio-temporal data are a fundamental resource for a

variety of applications including those in public administra-
tion, transportation networks, and environmental studies.
Within environmental studies, a possible scenario entails
the study of two indicators: flu and precipitation to detect
if they are correlated or if, for example, precipitation is a
predictor of flu occurrences. Other scenarios may compare
dependencies between these two indicators in two different
cities. This scenario is depicted in Figure 1.

Several indicators can be studied at the same time and
multiple dependencies considered in the emerging urban

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGSPATIAL’13, Nov 05-08 2013, Orlando, FL, USA
ACM 978-1-4503-2521-9/13/11. http://dx.doi.org/10.1145/2525314.2525324
.

metabolism field [9]. To conduct these studies, vast amounts
of geospatial information must be accessed and integrated
using automatic methods, so that environmental scientists
do not have to manually establish connections among highly
heterogeneous data. We have been considering several sce-
narios motivated by two projects in which we collaborate,
namely BURST (Building Urban Resilience and Sustainabil-
ity)1 and TerraFly [17]. Both projects are intended for ex-
perts in a variety of domains including urban metabolism
and public health (BURST), hydrology and disaster mitiga-
tion (TerraFly), and transportation (BURST and TerraFly).

In this demo, we describe a semantic framework, GIVA,
for Geospatial and temporal data Integration, Visualization,
and Analytics. Using this framework, users can select re-
gions in a map, specify time intervals, and select datasets to
produce reports where values pertaining to different datasets
are compared, analyzed, and visualized.

At the core of GIVA is its capability to deal with data,
metadata, and their heterogeneity, by addressing the fol-
lowing issues: (1) wide variety of formats, both standard-
ized (e.g., GML, KML, Shapefile, MapInfo TAB) and non-
standardized (e.g., HTML tables and flat files); (2) lack of
metadata, which stems in great part from non-standardized
formats; (3) multiple spatial and temporal resolutions, due to
different data acquisition techniques (e.g., surveys for cen-
sus data and sensing methods for precipitation); (4) different
vocabularies and schemas, which are created by diverse or-
ganizations (an example in public administration is that of
land use codes [18]) and is illustrated for the two cities of Fig-
ure 1. In addition, there are overarching issues when dealing
with geospatial data, namely that of uncertainty [15, 19].

2. FRAMEWORK
This section introduces our semantic framework (Figure 2)

and describes briefly its components.

2.1 Data Extraction
Data of interest to geospatial information appears in a

variety of formats, which we represent in the hierarchy of
Figure 3. We refer to the formats approved by OGC2 and
that implement its standards as standardized and the rest
as non-standardized data formats. A geographic component
in these data formats uses geodetic systems such as WGS84
and geometric objects (e.g., polygon, polyline).

However, GIS data that are represented in web tables or
text need special processing. Web tables are primarily con-

1http://www.burst.uic.edu
2http://www.opengeospatial.org/standards/is
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City A

Flu Rainfall

Value Time Location

City B

Value Time Location

Value Time LocationValue Time Location

Precipitation
Influenza

Figure 1: Comparison between two cities. Dashed edges represent concept similarity, dotted edges represent
time or location similarity, and solid thick edges represent correlation between values of different concepts.

structed using the <table> tags for a variety of purposes
such as, HTML forms, calendars, page layout, and relational
data. However, in many cases web tables (even if they origi-
nate from relational databases) are not feature-rich because
they do not contain clearly represented headers. The ex-
traction of the corresponding feature-rich tables entails the
identification of the headers (which are sometimes nested)
and the storage of the table to produce a feature-rich table,
which is stored in a structured file. For this kind of extrac-
tion we use a machine learning approach that encompasses
a decision tree classifier model (C4.5) [16] using 20 different
heuristics (including number of columns, rows, font size, and
color) and trained it on 100 web tables with GIS data.

2.2 Data Translation
Data translation is the process of translating data from

one format to another. Clean abstraction of data formats
and methods to perform data translation are required for
a sound solution to data integration [1]. Thus, before we
attempt to create geospatial mappings between these data,
they are translated into a common spatial data format. One
issue is that non-standardized formats require semantic pro-
cessing to identify the appropriate column headers that con-
tain information about spatial coordinates and time stamps.
We use string matching on the column headers and perform
random sampling on the values to find pattern similarities.
For instance, this ensures that an unclearly named column
header (e.g., Pos) that contains geospatial coordinates (e.g.,
-85.46, 42.32) will be identified as indeed containing spatial
coordinates and its name associated with a correct mean-
ing. Further, data in non-standardized formats may contain
implicit geographic components (e.g., Illinois). Special pro-
cessing and techniques are required to identify these implicit
geographic components as described in Section 2.4.2.
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Figure 2: GIVA framework.
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Figure 3: Hierarchy of spatial data types.

2.3 Ontology Extraction
The hierarchical characteristics of geospatial classification

schemes can be modeled using a part-of or is-a relation-
ship [4]. We have also devised methods to extract ontolo-
gies from a variety of formats, including from relational ta-
bles, XML, and RDF documents and to merge ontologies
using matching and a data exchange approach by consider-
ing a global ontology [5]. This merging method is further
described in Section 2.4.1 but we mention it here because it
is related to recent ontology extraction approaches that use
data exchange, machine learning, and user interaction [11].

2.4 Matching
The semantic integration of geospatial data requires the

identification of correspondences among ontology concepts,
properties, and instances, using syntactic and semantic char-
acteristics of the ontologies, a process called ontology match-
ing or alignment. The output of this process is a set of
mappings. For spatial and temporal data, the spatial and
temporal attributes of the data will also be considered.

2.4.1 Semantic Matching
Ontologies exhibit structural and conceptual heterogene-

ity, which we attribute to data creation by different orga-
nizations. The alignment of these ontologies require the
sophisticated combination of various mechanisms geared to
the identification of various classes of similarities. We use
AgreementMaker [3], which is a proven system for ontology
matching. AgreementMaker is also used for the mapping
of the ontologies that are extracted from relational, XML,
and RDF sources, enabling the mapping of similar concepts
independently of where they appear (e.g., titles of relational
tables, names of properties, or values). Data integration is
achieved by rewriting a query expressed in terms of an ontol-
ogy to another ontology using the established mappings [5].
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AgreementMaker uses machine learning techniques to au-
tomatically change its configuration to maximize precision
and recall [2].

Figure 4: Comparison of values across data sets.

2.4.2 Spatio-Temporal Matching
Two important tasks to be addressed by this component

are described below:
Resolving implicit geographic component. The pro-
cess of assigning apposite geographic coordinates is referred
to as geocoding, and that of identifying a geographic context
is referred to as geoparsing [13]. For instance, geocoding
helps in identifying the word Illinois and assigning its respec-
tive geographic component (e.g., state boundary of Illinois),
if available. However, geospatial ambiguities often exist. For
instance, the Illinois river may refer to the river in the state
of Illinois or to the river of the same name in the state of
Oregon. We implement geoparsing using a Named Entity
Recognition (NER) technique and use semantic mappings
as discussed in Section 2.4.1 for geocoding.
Managing spatial and temporal resolution. Hetero-
geneities in spatial and temporal resolution are introduced
when data are published using different data acquisition
techniques. For instance, precipitation data may be pub-
lished associated with different areas depending on the den-
sity of the placement of the gages or the assumed cover-
age of each of them (e.g., a rectangle in a grid or a circle).
We deal with this integration problem by introducing a new
spatial resolution method that establishes a grid. The inte-
gration is performed by partitioning the space and comput-
ing a weighted average of the values in each of the original
datasets, as illustrated in Figure 4. This produces a new
dataset at a new resolution. Uncertainty increases when
the dimensions of the grid are small in comparison with the
measurement resolution, hence the grid dimensions can be
defined depending on the dataset and the desired level of
uncertainty. Temporal resolution can be resolved similarly.

This technique can be used when considering datasets
about the same concept, for example rainfall or about differ-
ent concepts, for example if the user wants to build a dataset
about precipitation starting from two datasets about rain-
fall and snowfall. In this case, we can merge the datasets
by adding the values of the two original datasets and by in-
troducing an appropriate uncertainty value associated with
this merging. Correlation between the datasets (instances)
(see Figure 4) can assist the semantic matching process.

2.5 Storage Systems and Application
Our framework includes two different types of storage sys-

tems. A Spatial DBMS is used for storing and indexing geo-
graphic data and a Triple Store is used for handling semantic
data and also to store the final alignments. A Hybrid Query
API combines the query functionality of these two systems.
An Application (web or stand-alone) is necessary to com-
municate with the other components of the framework and
for the user interaction. This application also acts as Web
Feature Service (WFS) interface to publish the integrated

Figure 5: GIVA web interface design.

data to the domain stakeholders. For this demonstration,
we develop a web application. The implementation details
are described in Section 3.

2.6 Visualization and Analytics
We consider two components: one for visualization and

the other one to support analytic methods.
The visualization component is fundamental to develop in-

formation processing in the context of different stages of sci-
entific research and decision making. A use-based approach
has long been proven to be an effective way to reinforce
human understanding of abstract data [12]. We implement
both an interactive map and plots for multidimensional visu-
alizations, such as star plots and parallel coordinates graphs,
where users will be able to display one or multiple variables
simultaneously as shown in Figure 5.

The analytics component aims at providing the scientists
with a suite of statistical models for spatial data exploration
and multivariate analysis. We offer libraries for spatial auto-
correlation and spatial regression as well as for factor anal-
ysis. In particular, we implement measures of spatial auto-
correlation, such as Moran’s I and Geary’s C, and libraries
to run OLS regression and spatial lag models. However,
the analytics tool is meant to be an extensible part of the
framework according to the needs of the scientists.

3. IMPLEMENTATION
We use PostGIS, a well-known spatial extension of the

PostgreSQL database system, as our Spatial DBMS and
OWLIM [10], an RDF database management system im-
plemented in Java, as our Triple store. We develop a Hy-
brid Query API in Java to interlink PostGIS and SPARQL
queries. The Data Extraction is developed using WEKA’s [8]
implementation of C4.5 algorithm to train the model and to
extract the feature-rich web tables. The extracted tables
are converted to a tab delimited file. Data translation is
implemented in an XML framework that extends GDAL [7]
to extract geospatial data with proper handling of geodetic
systems. This module also implements the semantic process-
ing techniques described in Section 2.2 to handle flat files
(CSV and TSV). For Ontology Extraction, we use Apache
OpenNLP3 as an NLP toolkit and DBpedia4 to receive sug-
gestions for class names during the ontology construction.
Automatic ontology extraction is a complex task and its
performance depends on the organization of the schemas.

3http://opennlp.apache.org/
4http://dbpedia.org/
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To overcome this issue, we allow users to optionally review
the extracted ontology. The resulting RDF-Schema is used
to generate triples. Semantic Matching is performed using
AgreementMaker [3] and Spatio-temporal Matching uses the
Hybrid Query API and an implementation of a matching
mechanism as described in Section 2.4.2. A web interface is
developed using the latest web technologies, namely AJAX
and jQuery. For visualization and analytics, we use the in-
teractive JavaScript visualization library—D3.js.5

4. RELATED WORK
A mobile application for an urban environment is pre-

sented by Della Valle et al. [6] to answer semantic queries
such as finding the nearest tourist spots. Their data prepa-
ration module handles Point data from several ESRI Shape-
files, which are then manually processed and converted into
an RDF format using PostGIS. These data are used along
with an earlier platform that they developed, which pro-
vides SPARQL end points and a semantic framework with
a reasoner to answer queries.

Urbmet6 is an interactive map application to analyze ur-
ban data. Datasets about energy, material, and population
are processed manually to provide reports for the very spe-
cific purpose of displaying potential spatial patterns that
exist among them. Many similar applications can be found
in OpenCityApps.7 However, each of these applications is
limited to providing visualizations or reports for pre-defined
purposes and does not support data integration.

Middel presents an integrated framework for visualizing
multivariate geodata [14]. The framework stores the spatial
data mapped to uniform grids that cannot be changed and
uses multinomial logistic regression to estimate characteris-
tics of two different attributes for visualization. The draw-
backs with this method are: (1) the possibility of a large
amount of generated gridded data that could drastically re-
duce the performance of the system; (2) the potentially large
addition of uncertainty in the partitioned grids that can im-
pact the quality of the visualization.

In all of the systems we reviewed, there is no process that
automatically integrates heterogeneous datasets. Also, the
heterogeneity that is present in the data formats or metadata
is either not resolved or is resolved manually.

5. CONCLUSIONS
We have introduced GIVA, a semantic framework that

assists domain experts in integrating highly heterogeneous
datasets and in analyzing and visualizing dependencies
among them. The system supports three types of users:
administrator , domain expert, and casual user, with differ-
ent types of access. Given the complexity of the overall
framework—in fact, we could not find any framework whose
overall functionality can be compared in breadth with the
one we propose—it is the case that every component of the
framework offers opportunities for expansion and for im-
provement.
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