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Abstract

During the past years, the advent of digital audio content has drastically

increased the size of available music collections. Music streaming services

provide a huge amount of music content to users, much more than they can

concretely listen to in an entire lifetime. Classical meta-information, such

as the artist and the title of songs, have been used for years. Today they are

not enough to navigate such vast collections. Therefore, it is important to

develop specific approaches that allow high-level music content description.

Music Information Retrieval (MIR) is the research field that deals with

the retrieval of useful information from music content. Information can

provide different levels of abstraction, from a higher level to a lower level.

In this work we propose an approach for music high-level description and

music retrieval, that we named Contextual-related semantic model. Classical

semantic representation models such as ontologies only provide categorical

approaches for defining relations (e.g. happy is synonym for joyful, happy is

antonym for sad). On the other hand, actual dimensional description models

map on a unique semantic space also concepts that are not in a semantic

relation. Our method defines different semantic contexts and dimensional

semantic relations between music descriptors belonging to the same context.

Our model has been integrated in Janas[1], a music search engine based

on semantic textual queries. In order to test the scalability of our model, we

implemented an automatic content-based method to expand the dataset.

The retrieval performances of our model have been compared with two

other approaches: the one originally used by Janas, that combines emo-

tional and non-emotional description of music, and the Latent Semantic

Indexing approach [2], a very common model for music recommendation ap-

plications. The system has been tested by 30 subjects. The obtained results

are promising and our Contextual-related semantic model outperformed the

other approaches.
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Sommario

Negli ultimi anni l’introduzione di contenuti audio digitali ha cambiato dras-

ticamente le dimensioni delle librerie musicali. Diversi servizi di streaming

musicale forniscono enormi quantità di contenuti musicali all’utente, molto

più grandi di quanto potrebbe realmente ascoltare nell’arco della sua vita.

In ambito musicale per anni sono state utilizzate delle meta-informazioni

classiche, come l’artista o il titolo di una canzone. Oggi tutto ciò non è più

abbastanza per navigare librerie cos̀ı vaste. E’ importante quindi svilup-

pare degli approcci specifici che consentano una descrizione di alto livello

del contenuto musicale.

Il Music Information Retrieval (MIR) è l’ambito di ricerca si occupa di

recuperare informazioni utili a partire dal contenuto musicale. In questa

tesi proponiamo un approccio per la descrizione musicale di alto livello, che

abbiamo chiamato Contextual-related semantic model.

I modelli di rappresentazione classici, come ad esempio le ontologie, for-

niscono solamente un approccio categorico per definire delle relazioni se-

mantiche (e.g. contento è sinonimo di felice, contento è contrario di triste).

D’altro canto, i modelli di rappresentazione di tipo dimensionale mappano

su un unico piano semantico anche concetti che non sono in relazione se-

mantica fra loro. Il nostro metodo definisce dei contesti semantici e delle

relazioni semantiche dimensionali tra descrittori musicali che appartengono

allo stesso contesto.

Il nostro modello è stato integrato in Janas[1], un motore di ricerca basato

su query semantiche testuali. Inoltre, abbiamo implementato un metodo

content-based automatico per espandere il dataset e per verificare la scal-

abità del nostro modello.

Le prestazioni del nostro modello sono state confrontate con quelle di due

altri approcci: quello originariamente utilizzato da Janas, che combina una

descrizione emotiva con una descrizione non emotiva, ed un approccio di tipo

Latent Semantic Indexing [2], un modello molto comune per applicazioni di

raccomandazione musicale. Il sistema è stato testato da 30 soggetti. I
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risultati ottenuti sono promettenti e il nostro Contextual-related semantic

model ha ottenuto prestazioni migliori rispetto agli altri approcci.
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Chapter 1

Introduction

Over the centuries of human history, music has always been present in the

society and it is an important constituent of everyday life. Music is rich in

content and expressivity, and when a person engages with it, different mental

processes are involved. We especially enjoy this form of art for its ability to

induce emotions. In fact, composers and interpreters explicitly declare their

goal to communicate their sentiments and convey certain feelings through

their music.

During the last two decades the introduction of digital audio formats and

the advent of the Internet allowed the distribution of enormous amount of

music items. In the initial stage of the digital music revolution, peer-to-peer

networks allowed the exchange of music files, then online music stores such

as iTunes1 started to offer downloads and other services like internet radio.

Thereafter, the advent of the Web 2.0 encouraged the creation of online

communities and the simplification of the interaction between musicians and

listeners, greatly facilitating the distribution of music content. Nowadays,

the availability of music streaming services such as Deezer2 and Spotify3

allows to easily access a huge amount of music content, like have been never

happened before in the human history.

These phenomena transformed the experience of the listening to music.

Nevertheless, it is difficult to orient in massive collections of digital contents.

Scientific community and music industry are working to build new systems

that can help in organizing, recommend, browse and retrieve music. For

their realization it is crucial to figure out how to effectively represent the

music content. Some meta-information such as the artist, the track title or

1iTunes, http://www.apple.com/itunes/
2Deezer, http://www.deezer.com/
3Spotify, https://www.spotify.com/
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6 Chapter 1. Introduction

the release year have been used for decades in the music industry in order

to organize music. Unfortunately, these aspects do not properly describe

the music content, thus they are not relevant in order to reach and listen

to music without knowing any prior information about it. On the other

hand, it is important to investigate how users understand and describe mu-

sic contents. For example, people may want to search music according to

a specific mood (e.g. calm, fun) [6]. They could even be interested in ex-

ploiting other non-emotional elements, such as timbral characteristics (e.g.

smooth, harsh) or rhythmic cues (e.g. flowing, fast) of the music piece. In

order to bridge the semantic gap between the music content and the user de-

scription it is necessary a collaboration among different research areas such

as signal processing, statistical modeling, machine learning, neuro-science,

music cognition and musicology [7].

Music Information Retrieval (MIR) is an emerging interdisciplinary re-

search field that investigates the possibility to automatically understand,

organize and retrieve music by analyzing the information that music itself

provides. Music information can be described hierarchically from a lower

level of abstraction, related to audio content, to a higher level of abstraction,

related to the human perception of music. These elements are generally re-

ferred as features or descriptors. Low-level features (LLF) are content-based

descriptors directly extracted from the audio signal. They provide an ob-

jective description by measuring some energetic and spectral characteristics

of a sound, but they lack of semantics. Mid-level features (MLF) introduce

a first level of semantics by combining LLF with musicological knowledge.

They refer to structural music components such as melody, tempo and har-

mony. High-level features (HLF) bring a higher level of abstraction ??,

making them easily comprehensible to people. They describe cognitive as-

pects of music, such as the emotion perception related to a music piece or

the genre.

The first MIR systems and the most of commercial systems today are

based on a context-based approach, in which high-level and mid-level fea-

tures are generally annotated by hand. Unfortunately, this type of anno-

tation is oftentimes unable to adequately capture a useful description of

a musical content, due to the constantly growing amount of available mu-

sic and the high subjectivity of annotations. In the last years, aside the

context-based approach some content-based paradigms have been emerg-

ing. Content-based approaches extracts information from the audio signal.

The majority of conent-based systems use LLF. However, given its low level

of abstraction, this method tends to produce semantically poor descrip-

tors. Nowadays, some MIR systems combines context- and content-based



7

approaches based on LLF, MLF and HLF in order to obtain a semantically

meaningful description of music content. In Chapter 2 we provide a review

of applications based on both context- and content-based approaches.

In this thesis we particularly focus on high-level descriptors. There are

two possible approaches for high-level music description: categorical and di-

mensional. The categorical approach assumes that music can be described

by a limited number of universal descriptors. For example, categorical de-

scriptors can represent emotional states (e.g. sweet, joyful, anxious, etc.),

musical genre (e.g. Rock, Pop, Jazz, etc.) or structural factors (e.g. hard,

dynamic, slow, etc.). This assumption is intuitive but at the same time it

lacks in expressiveness. In fact, this approach is not able to quantify the

pertinence of a term to the music content. The dimensional approach copes

with this problem by defining music descriptors on a continuous domain.

For example, in the dimensional approach that consider a weight scale from

0 to 1, a song can be associated to the descriptor 0.8 happy.

Emotion perception is one of the most salient features that human beings

experience in every moment of their lives and its relation with music has al-

ways fascinated people. Music Emotion Recognition (MER) is the discipline

of MIR that investigates the possibility to automatically conceptualize and

model emotions perceived from music. It is very complex to computationally

determine the affective content of a music piece. In fact, the perception and

interpretation of emotions related to a song is strictly personal, hence the

semantic descriptions of emotions are highly subjective. In the specific case

of emotion-related descriptors, the most celebrated dimensional model is the

Valence-Arousal (V-A) two-dimensional space [8]. It is based on the idea

that all emotional states can be expressed through two descriptors: Valence,

related to the degree of pleasantness, and Arousal, concerning to the energy

of the emotion. For the purposes of MER, songs can be mapped in the

V-A space as points corresponding to the emotion perceived from the music

content. It is interesting to notice that in the last few years, emotion-based

music retrieval has received increasing attention in both academia and in-

dustry applications. For example, Stereomood4 is a music streaming service

that generates music playlist tailored to the user’s mood.

Since the high-level description paradigm is increasingly adopted in sev-

eral applications, it is reasonable to exploit a high-level interactions between

users and systems. In the last few years new technological paradigms are

emerging in this field. In particular, many applications allow people to

express their requests as most intuitively as possible. Natural Language

4Stereomood, https://www.stereomood.com/
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Processing (NLP) is a field of computer science, artificial intelligence, and

linguistics concerned with the interactions between computers and human

language. An example of NLP applications is Watson5, a computer system

developed by IBM that is capable of answering questions posed in natural

language.

The purpose of this thesis is to define a music search engine that is content-

based, that uses an interaction scheme based on a high-level of abstraction,

and that defines HLF in a dimensional space. Similar approaches are pre-

sented in the literature. The most common approach for multimedia index-

ing and retrieval is the Latent Semantic Indexing [2]. However, this approach

does not consider semantic relation between descriptors defined by humans,

since they are estimated by analyzing their co-occurences in music annota-

tion. In [9] the authors built a music search engine that considers emotional

descriptors modeled in the V-A plane by considering the ANEW dataset

[10], and bipolar non-emotional descriptors. This approach suffers from

some drawbacks. In fact, the model maps on a unique semantic space also

concepts that are not in a semantic relation.

The final goal consists in overcoming this issue. We present an innovative

model for semantic description of music, that we named Contextual-related

Semantic Model. It makes use of a music-specific approach that defines

three musical context for music description: a) perceived emotion, b) tim-

bre description and c) dynamicity. We defined a list of 40 common adjec-

tives used for describing music facets and then we assigned them to these

contexts through a survey. Furthermore, we built a vector space model

by estimating the semantic similarity between the terms. The system de-

scribes music with high-level features and annotates music pieces with a

content-based approach, making it interactive and flexible to high amount

of digital items. We address the issue of music searching with our content-

based approach that considers natural language queries. We compare the

performances of our model with the performances of other two semantic de-

scription approaches, a common co-occurrences method and a the approach

proposed in [9].

The thesis is organized in 6 chapters. In Chapter 2 we present an overview

of the state of the art for Music Information Retrieval and Music Emotion

Recognition. Chapter 3 provides the theoretical background needed for the

implementation of our project, including machine learning, information re-

trieval, audio features, emotion models and natural language processing. In

Chapter 4 we describe the implementation details of our model and its inte-

5IBM Watson, http://www.ibmwatson.com/
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gration in a search engine. Experimental results are presented in Chapter 5.

In Chapter 6 we define our conclusions and we analyze future applications.
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Chapter 2

State of the Art

In this chapter we review the state of the art for Music Information Retrieval

research field. We first show how digital music content is semantically de-

scribed and we provide a list of application for retrieving and recommending

music that make use of high-level descriptors. In the second part we describe

Music Emotion Recognition, introducing models and applications developed

for automatically organize and retrieve music by their affective content.

2.1 Music Description

During the analog era, music producers and distributors used meta-information

such artist, title and genre meta-information for organizing their recording

catalogs. Nowadays, music content has increasingly become digital and per-

sonal collections have grown enormously. In this scenario, users may want to

retrieve and discover music without having any prior information about it,

thus new methods for music description are needed. High-level description

of music is a feasible solution, since it carries a great semantic significance for

human listeners. On the other hand, high-level description introduces a high

degree of subjectivity. An experiment on a heterogeneous subset of popu-

lation [11] demonstrated that the description of a music piece is strongly

influenced by demographic and musical background of the listener.

High-level descriptors can be used for music organizing, retrieving or

browsing. In the following paragraphs we review three paradigms used for

music description both from a theoretical and an applicative point of view:

a) Social tagging, b) the Semantic Web and c) Ontologies.

11
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2.1.1 Social Tagging

In the last decade the Internet has evolved in the so-called Web 2.0. A promi-

nent characteristics of Web 2.0 is the diffusion of social platforms where users

contribute to build communities interested on a specific topic. These com-

munities permit the creation and exchange of member-generated content.

One of their main focuses is social tagging, a practice that consists in collab-

oratively categorizing digital items by annotating them with free-text labels

called tags. Unlike traditional keyword systems, where terms are selected

from a vocabulary, tags are words that describe relevant facets of music with

no restrictions on their make up. For example, the music track Born to Run

by Bruce Springsteen can be described as a classic rock song, released in

the 1970s, performed by a male vocalist, which may be perceived as happy.

A social tagging platform could represent this item with a set of tags T :

T = {classic rock, 1970s, male vocalist, happy} (2.1)

The set of tags defined by multiple users constitutes a Folksonomy [12] (a

portmanteau of the words folk and taxonomy). The collaboration between

users permits to ponder different opinions and reflect the overall perception

of a resource, building what has been defined as the wisdom of crowd [13].

The incentives and motivations that encourage people to tag resources are

disparate [14, 15], such as the facilitation of personal retrieval, the discov-

ery of new similar resources, the sharing of personal tastes and opinions,

and the contribution to the community knowledge. Since the generation of

tags is uncontrolled, they are affected by various drawbacks, such as irrel-

evance, noisiness, bias to a personal representation of the items, malicious

generation, usage of synonym terms [16].

One of the main services for music tagging is Last.fm1. This popular

platform is used by more than 50 million of users that have built an unstruc-

tured vocabulary of free-text tags for annotating millions of songs. Last.fm

provide useful information of how people describe music content. Various

researchers have used annotations extracted from this social tagging plat-

forms for building music browsing and retrieving applications. For example,

in [17] the authors developed a mobile music player application for browsing

music by tags (such as genre, years or other descriptors).

In social tagging platforms it is common that songs by few highly popular

artists receive much more annotations than songs by the rest of artists (long

tail distribution). This leads to recommendation and retrieving issues, since

1Last.fm, http://www.last.fm/
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popular songs are more likely to be retrieved. Celma [18] developed a rec-

ommendation system that explores the music popularity curve by exploiting

similarity on tags and audio content.

Social tags require manual annotation. This process is not scalable for

large music collections. Different techniques have been proposed in order

to automatically annotate music (autotagging). For example, Turnbull et

al.[19] developed a content-based system that annotates novel tracks with

semantically meaningful words. The system can be used for retrieving rele-

vant tracks from a database of unlabeled audio content, given a text-based

query. Autotagging also addresses the long tail distribution issue, since it

annotate popular songs as well as unpopular ones.

A folksonomy does not define any semantic relation between tags. This

implies that, given a user request, a folksonomy-based system is not able to

retrieve songs that are annotated with tags with similar semantics. Latent

Semantic Indexing (LSI) is a popular technique that estimates interconnec-

tions between tags by analyzing their co-occurrences. Several studies have

been undertaken in this direction[20, 21, 22, 23]. Furthermore, in [24] the au-

thors compared a folksonomy-based LSI search engine with classical search

engines and they observed similar performances. In this work, we compare

our model with a solution based on LSI.

Nevertheless, LSI does not exploit the actual tags semantics. In the next

sections we introduce the Semantic Web and ontologies, two approaches that

are used to model the semantics of high-level description.

2.1.2 Semantic Web

The Semantic Web, sometimes referred also as Linked Data Web, represents

the next major evolution of Web 2.0. It aims to provide a common frame-

work that allows data to be shared and reused across application, enterprise

and community boundaries [25]. Berners-Lee introduced this concept in [26],

outlining the possibility to create a web of data that can be processed by

machines. The basic goal of Semantic Web is to publish structured data in

order for them to be easily used and combined with other similar data. It

consists primarily of three technical standards:

• the Resource Description Framework (RDF) that specifies how to store

and represent information

• SPARQL (SPARQL Protocol and RDF Query Language) that indi-

cates how to query data across various systems
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• the Web Ontology Language (OWL), a knowledge representation lan-

guage that enable to define concepts

Exploiting Semantic Web for music description is very appealing, in fact

having a common, structured, interlinked format to describe all the web

knowledge about music could facilitate the gathering of information: a dis-

tributed and democratic knowledge environment can act as a data hub for

many music-related applications and data sources.

Since still few platforms have switched to Semantic Web, this powerful

idea has remained largely unrealized. Some music retrieval systems that are

based on this paradigm have been implemented. For example, in [27, 28] the

authors combined Semantic Web data with users’ listening habits extracted

from social media to create a music recommendation system. Other re-

searchers attempted to exploit information from DBPedia 2[29, 30], a project

aiming to extract semantically structured content from Wikipedia.

2.1.3 Ontologies

In computer science and information science, an ontology is a structural

framework for organizing information and representing knowledge as a set

of concepts. It also provides a shared vocabulary in order to denote the

types, properties and relations of those concepts [31].

Various ontology languages have been developed in the last decades.

WordNet [32] is a popular lexical database for English language that groups

words into sets of synonyms and records multiple semantic relations between

them. Despite it was initially developed as a database, it can be interpreted

and used as a lexical ontology for knowledge representation [32].

Exploiting the properties of an ontology could be very useful in order to

enrich the semantic description of items, in particular by analyzing the rela-

tions between conceptual categories. In the musical field, the most popular

ontology is the Music Ontology3, that provides a model for publishing struc-

tured music-related data on the Semantic Web. Other researchers defined

other music-based ontologies for music recommendation [33, 34, 35].

Like ontologies, our model represents concepts and their relations but at

the same time it also provides a numeric degree of semantic relatedness.

Further details of our model are presented in Chapter 4.

2DBPedia, http://dbpedia.org/About
3Music Ontology, http://musicontology.com/
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2.1.4 Music Semantic Retrieval

Classical music retrieval systems are based on a keyword search. In the

last few years, various systems have been proposed in order to exploit the

semantic description of the user request [36].

One of the first attempts was implemented by Slaney more than a decade

ago [37], in which he developed a retrieval model based on a probabilistic

representation of both acoustic features and semantic description. In [38]

the authors created a system of Gaussian Mixture Models of tracks for mu-

sic retrieval based on semantic description queries. In order to overcome

the lack of music collection semantically labeled, they collected annotations

for 500 tracks for capturing semantic association between music and words.

This dataset, named CAL500, is currently available online4. A more recent

attempt has been made in [9], where the authors developed a search en-

gine based on semantic query. They defined emotional descriptors, mapped

in the V-A plane (see section 3.4) and non-emotional descriptors, defined

in a bipolar way. A natural language processing tool parses the user se-

mantic query and the search engines retrieves music content with a similar

description.

The model implemented in this work partially makes use of the system

proposed in [9], and we aim at comparing its performances when different

semantic models are considered.

2.2 Music Emotion Recognition

The relationship between music and emotions has been studied by psycholo-

gists for decades, well before the widespread availability of music recording.

The research problems faced by psychologists include whether the everyday

emotions are the same as emotions that are perceived in music, whether

music represents or induces emotions, how musical, personal and situational

factors affect emotion perception, and how we should conceptualize mu-

sic emotion. From a psychological perspective, emotions are often divided

into three categories: expressed emotions, perceived emotions and felt emo-

tions[4]. Expressed emotions are referred to the emotions that the composer

and the performer try to express to the listener, while perceived and felt

emotions refer to the affective response of the listener. In particular, per-

ceived emotion refers to the emotion expressed in music, while felt emotion

is related to the individual emotional response. Felt emotions are especially

4CAL500 Dataset, http://cosmal.ucsd.edu/cal/
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complicated to interpret because they depend on an interplay between mu-

sical, personal and situational factors. For this reason, MER has mainly

focused on perceived emotions.

Engineering point of view of the problem dates back only to the 2000s

[4]. We aim at developing a computational model of music emotion and

facilitating emotion-based music retrieval and organization.

In this chapter a) we analyze how people describe emotions, b) we dis-

cuss different computational approaches that have been proposed in order

to qualify and quantify emotions related to music, and finally c) we show

various retrieval applications based on this paradigm.

2.2.1 Emotion Description

In the study of emotion conceptualization, researchers oftentimes utilize

people’s verbal reports of emotion responses. This approach suffers from

the imperfect relationship between emotions and the affective terms that

denote emotions, introducing a bias connected to the way in which people

describe and communicate their feelings. This issue is called ambiguity, or

fuzziness, and it is a characteristic of natural language categories in general,

with a specific highlight whit emotions. As claimed by J.A. Russell[8],

“a human being usually is able to recognize emotional state but

has difficulties with its proper defining”.

In [39] the authors developed a communicative theory of emotions from

a cognitive point of view. They assumed that emotions have a two-fold

communicative function: externally, amongst members of the species, and

internally, within the brain, in order to bypass complex inferences. Their

theory defines a small set of terms related to basic signals that can set up

characteristic emotional modes within the organism, roughly corresponding

to happiness, sadness, fear, anger and disgust. These basic emotions have

no internal semantics, since they cannot be analyzed into anything more

basic. They assume that each emotional signal is associated with a specific

physiological pattern, implying that the organism is prepared to act in cer-

tain ways and to communicate emotional signals to others. Their theory

considers that the mental architecture consists in a hierarchy of separate

modules processing in parallel: an emotion can be set up by a cognitive

evaluation occurring at any level in this hierarchy; in particular, each mod-

ule is connected to one of the basic modes. From this theory, basic emotion

words cannot be analyzed semantically because they denote primitive sub-

jective experiences (they are experienced without the experience knowing
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their cause). All other words associated to complex emotions have a highly

specific propositional content that is strictly related to their experience, thus

they are found combining a basic term in a context that captures this con-

tent. The theory specifies that the most important concepts about semantic

of emotional words are the intensity, the emotion relations, the distinction

between caused and causatives emotions, the emotional goal and the intrin-

sic composition of complex emotions.

Moreover, the semantic structure of emotion terms in different languages

appears to be universal. A research compared English, Chinese and Japanese

speaking subjects and found that they share similar semantic structure with

respect to fifteen common emotion terms [40].

2.2.2 Emotion Computational Model

Automatic emotion recognition in music needs a computational model in

order to represent emotion data. Two types of approaches have been pro-

posed, a) the categorical description and b) the parametric model. In the

next sections we describe their characteristics.

2.2.2.1 Categorical Representation

Categorical representation considers that humans experience emotions as

limited universal categories. Nevertheless, different researchers have come

up with different sets of basic emotions.

One of the first researches in this field was undertaken by Hevner in 1936.

She initially used 66 adjectives related to affective description of music,

which were arranged into eight clusters [41] (figure 2.1). In a more recent

study, Zenter et al. [42] defined a set of 146 terms for representing moods,

founding that their interpretation varies between genres of music.

The Music Information Research Evaluation eXchange (MIREX), a com-

munity based framework for formally evaluating MIR systems, uses the five

mood clusters shown in table 2.1 in order to evaluate automatic music mood

classification algorithms [43].

Hobbs and Gordon described a process for defining a list of most frequent

words about cognition and emotion from a computational linguistic point

of view [44]. They considered WordNet, an ontology that contains tens of

thousands of synsets referring to highly specific categories, from which they

developed a lexicon of emotions, further divided in 33 categories. Another

attempt to computationally map emotions to their linguistic expressions

starting from WordNet was undertaken by Strapparava and Valitutti [45].
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Figure 2.1: Hevner Adjective Clusters

Cluster Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured

Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding

Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

Table 2.1: Mood clusters and adjectives used in the MIREX Audio Mood Classification

task
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Using information coming from the lexicon and the semantic relations be-

tween synsets, they developed a linguistic resource for lexical representation

of affective knowledge named WordNet-Affect.

However, the categorical approach uses a limited emotion vocabulary.

Furthermore, these approach does not consider the intensity of emotions

and the relations among emotion terms. These limitations are overcome by

parametric approaches.

2.2.2.2 Parametric Representation

While the categorical approach focuses mainly on the characteristics that

distinguish emotions from one another, parametric models assume that emo-

tions can be represented effectively with a multi-dimensional metric.

Russell proposed to organize emotion descriptors by means of low-dimensional

models [8]. In his work he introduced the two-dimensional Valence-Arousal

(V-A) space, where emotions are represented as points on a plane with two

independent axes: Arousal, that represent the intensity of an emotion, and

Valence, that indicates an evaluation of polarity (ranging from positive to

negative emotions). In section 3.4 we provide a more detailed overview of

this approach.

Other researches asserted that three dimensions are needed to describe

emotions [46, 47], but there is no agreement about the semantic nature

of the third component, which has been defined as tension, kinetics and

dominance. Fontaine et al. [48] proposed a four-dimensional space that

includes: evaluation-pleasantness, potency-control, activation-arousal and

unpredictability-surprise. Nevertheless, additional dimensions increase the

cognitive load for annotating emotions.

Bradley et al. collected the Affective Norms for English Words (ANEW),

which consists of a set of 1034 words annotated with values of pleasure

(valence), arousal and dominance (dominant/submissive nature of the emo-

tion). [10].

2.2.3 Implementations

In the MER field several researches have been undertaken in order to recog-

nize the emotions perceived from a music piece and different methods have

been proposed, both from a context-based and a content-based perspective.

Context-based MER applications Various attempts have been made

in order to obtain the affective description of music content with a context-
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based approach. For example, the online music guide AllMusic 5 used pro-

fessionals to annotate their music database with high-quality emotion tags.

Since manual labeling is a time consuming task, a recent approach con-

sists in using collaborative online games to collect affective annotations, for

example MajorMiner [49], Listen Game [50] and TagATune [51]. Other

researchers collected music mood annotations by exploiting social tagging

platforms [52, 53, 54].

Context-based MER systems are not scalable, thus a content-based ap-

proach for emotion recognition is preferable.

Content-based MER applications Several music emotion recognition

applications are based on a content-based approach. However, the relation-

ship between acoustic facets and emotion perception of a listener is still far

from well understood [55]. The performance of conventional methods that

exploit only the low-level audio features seems to have reached a limit. The

MIREX audio mood classification task is a contest for music emotion recog-

nition algorithms that aims to classify emotions in five clusters: passionate,

rollicking, literate, humorous and aggressive. Despite various low-level au-

dio features and their combinations have been used, the best classification

systems of 20136 obtained an accuracy of 69%.

In order to overcome this issue, other researchers exploited content-based

methods that consider also high-level features. For example in [56, 57, 58, 59]

the authors developed different systems employing both audio features and

lyrics analysis, while Bischoff et al.[52] combined social tag information from

Last.fm and audio content-based analysis for mood classification.

In this work we used a content-based approach on both emotional-related

and non emotional-related descriptors, and we consider a computational

model for defining the semantic relations among descriptors.

5AllMusic, http://www.allmusic.com/
6MIREX 2013 Mood Classification Results, http://www.music-ir.org/nema_out/

mirex2013/results/act/mood_report/index.html
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Theoretical Background

In this chapter we present the theoretical background needed for the de-

velopment of our work. We analyze the machine learning tools used in the

development of our system, then we provide an overview on information

retrieval, audio features, music emotion models and natural language pro-

cessing.

3.1 Machine Learning Systems

Machine Learning is a research field that aims at developing systems capable

of acquiring and integrating the knowledge automatically. The capability of

the systems to learn from experience while looking for patterns in the data

allows continuous adjustments in order to self-improve and thereby exhibit

efficiency and effectiveness. There is a wide variety of machine learning tasks

and successful applications, such as optical character recognition or genetic

algorithms.

Machine learning algorithms can be divided in supervised and unsuper-

vised learning. Supervised learning algorithms are trained on labeled exam-

ples (input and output of the system are shown) and attempt to generalize

a mapping from inputs to outputs. Unsupervised learning algorithms oper-

ate on unlabeled examples (the output is unknown) and aim at discovering

patterns in the data.

3.1.1 Regression Models

Given a training set composed by N pairs, related to the input and the

output of the system:

(xi, yi), i ∈ {1, ..., N} (3.1)

21
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where xi is a 1 × P feature vector and yi is the real value to predict, a

regressor r(·) is defined as the function that minimizes the error ε between

the expected and the predicted values. A typical measure for the prediction

error is the mean squared error (MSE).

Regression analysis belongs to supervised learning algorithms and it is

widely used for prediction and forecasting. Many techniques have been pro-

posed in order to implement regression analysis, including linear regression,

ordinary least squares,and non-parametric regression.

In general a regressor is estimated by two steps: during the training phase,

the training set is used to estimate a regression function, while in the test

phase a test set is used to estimate its performances by comparing the output

with the correct outcome. The block diagram of a generic regression model

is shown in figure 3.1.

Figure 3.1: Block diagram of training and test phases for a supervised regression prob-

lem

3.1.2 Neural Networks

A neural network is a multi-stage regression or classification model based on

nonlinear functions [60]. It is typically represented by a network diagram,

that consists of the input stage composed by X, the output stage composed
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by Y , and the hidden layers in-between input and output that are composed

by the so-called derived features Z. The most widely used architecture for

neural network is composed by one single hidden layer, as shown in figure

3.2. Each node of the network is referred as neuron.

X1 

Xp 

XP 

Z1 

Zm-1 

Zm 

ZM 

Y1 

YK 

…
  

…
  

…
  

…
  

…
  

Figure 3.2: Single hidden layer neural network

The derived features Zm are created from linear combinations of the in-

puts X:

Zm = σ(α0 + αTmX), with m = 1, ...,M (3.2)

where:

• αm ∈ RP are the weights relative to the neuron Zm,

• X ∈ RP is a single input sample

• P is the number of feature of the input

• α0m is the bias for the intercept

• M is the amount of neurons in the hidden layer

• σ(·) is is the so-called activation function
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The activation function is traditionally chosen to be the Sigmoid function:

σ(v) = 1/(1 + e−v). (3.3)

Each output node Yk is modeled as a function of linear combinations of the

hidden neurons Z:

Tk = β0k + βkZ, with k = 1, ...,K,

fk(x) = gk(T ), with k = 1, ...,K,
(3.4)

where:

• T = (T1, T2, ..., TK) is the linear combination of the hidden neurons

• βk ∈ RM are the weights associated to the output Yk

• K is the number of outputs

• β0k is the bias for the intercept

• fk(·) is the prediction of the output

• gk(·) is the transformation

Possible choices for gk(·) are the Identity function gk(T ) = Tk, or the Sigmoid

function again, applied to the k-th linear combination gk(T ) = σ(Tk).

Given a training set (xi, yi), the purpose of a regression based on neural

network is to minimize the sum-of-squared errors:

R(θ) ≡
N∑
i=1

Ri(θ) =
N∑
i=1

K∑
k=1

(yik − fk(xi))2, (3.5)

where:

• θ is the complete set of weights: {α0m, α1, ..., αM} ∪ {β0k, β1, ..., βK}

• fk(xi) is the prediction of the k-th output for xi

The optimal weights in θ are computed by means of the back-propagation

algorithm, that consists in an implementation of the gradient descent. After

assigning a random values to all the weights, the algorithms involves two

steps:

1. a forward stage, in which the hidden layer Z and output Y are com-

puted



3.2. Multimedia Information Retrieval 25

2. a backward stage, in which the prediction error is computed and then

used for correcting the weights

Forward and backward steps are repeated for a certain amount of iterations,

before approaching the global minimum, in order to avoid the model to be

overfitted to the training set. The algorithm computes the prediction error

for each step, and then it uses it for computing the partial derivative of

R(θ):

∂Ri
∂βkm

=− 2(yik − fk(xi))g′k(βTk zi)zmi,

∂Ri
∂αml

=−
K∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkmσ′(αTmxi)xil.
(3.6)

The gradient descent update at the (r + 1)-th iteration is formalized as:

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

,

α
(r+1)
ml = α

(r)
ml − γr

N∑
i=1

∂Ri

∂α
(r)
ml

,

(3.7)

where γr is the learning rate, a constant chosen in order to minimize the

error function.

Moreover, a weight decay term can be added to the error function in order

to prevent the model from overfitting:

R(θ) + λJ(θ), (3.8)

where

• J(θ) =
∑

k‖βk‖2+
∑

m‖αm‖2 is a penalty function that works as a

limiter for the size of weights

• λ ≥ 0 is a tuning parameter

In this work we use neural network for annotating new songs in the da-

taset, as described in Chapter 5.

3.2 Multimedia Information Retrieval

Multimedia Information Retrieval is a research discipline that deals with

the representation, storage, organization of, and access to multimedia items.
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It aims at automatically extracting meaningful information from sources of

various nature, in order to satisfy the user information need. Differently from

data retrieval, information retrieval uses unstructured queries for producing

a ranking of relevant results. An information retrieval model (IRM) can be

defined as:

IRM =< D, Q, R(qi, dj) >, (3.9)

where:

• D is the set of documents in the collection: they could be text files,

audio files, videos, pictures, etc.

• Q is the set of queries that represent the user need.

• R(qi, dj) is a ranking function that associates a real number to a doc-

ument representation dj with a query qi. Such ranking defines an

ordering among the documents with regard to the query.

The relevance is subjective, dynamic, multifaceted and is not known to

the system prior to the user judgment.

3.2.1 Information Retrieval Models

Retrieval models assign a measure of similarity between a query and a doc-

ument. In general, the more often query and document shares terms1, the

more relevant the document is deemed to be to the query.

A retrieval strategy is an algorithm that takes a query q and a set of

documents d1, ..., dN and then identifies the Similarity Coefficient SC(q, dj)

for each document in the collection.

Every document is represented by a set of keywords called index terms,

that are used to index and summarize the document content:

dj = [w1j , ..., wMj ]
T , (3.10)

where wij represents the weight of the term ti in the document dj .

3.2.2 Vector Space Model

The Vector Space Model (VSM) represents documents and queries as vectors

in the term space. The index term significance is represented by real valued

weights associated to every pair (ti, dj):

wij ≥ 0. (3.11)

1The word term is inherited from text retrieval, but in general it indicates any relevant

feature of the multimedia document.
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Each document is represented by a vector in a M -dimensional space, where

M is the number of index terms:

dj = [w1j , ..., wMj ]
T . (3.12)

Each term is identified by a unit vector pointing in the direction of the i-th

axis:

ti = [0, 0, ..., 1, ..., 0]T . (3.13)

The set of vectors ti, for i = 1, ...,M forms a canonical basis for the Eu-

clidean space RM .

Any document vector dj can be represented by its canonical basis expan-

sion:

dj =
M∑
i=1

wijti. (3.14)

Documents that are close to each other in the vector space are similar to

each other.

The query is also represented by a vector:

q = [w1q, ..., wMq]
T . (3.15)

In figure 3.3 we show an example of Vector Space for three index terms.

Figure 3.3: Vector Space for three index terms

The VSM computes the Similarity Coefficient SC(q,dj) between the

query and each document, and produces a ranked list of documents. There
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are various measures that can be used to assess the similarity between doc-

uments (Euclidean distance, Cosine similarity, inner product, Jaccard simi-

larity, etc.).

Index weights should be made proportional to its importance both in the

document and in the collection. In order to address this issue, a popular

method called term frequency - inverse document frequency is often applied

in text mining. The weights are computed as:

wij = tfij × idfi, (3.16)

where

• tfij is the frequency of the term ti in the document dj

• idfi is the inverse document frequency of term ti

Different strategies have been proposed in order to compute term fre-

quency and inverse document frequency in text collections. This approach

enables the weight wij to increase with the number of occurrences within a

document and with the rarity of the term across the whole corpus.

3.2.3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an indexing and retrieval method that

uses Singular Value Decomposition (SVD) in order to identify patterns in the

relationships between the terms and concepts contained in an unstructured

collection of documents [2]. The basic idea behind LSI consists in assuming

that terms that co-occur in the same context tend to have a similar meaning.

In order to implement LSI, a term-document matrix is constructed. The

same weights wij defined by the VSM for quantifying the relation between

the term ti and the document dj are used:

A = [wij ] = [d1, ...,dn] = [t1, ..., tm]T . (3.17)

Since A is typically a sparse matrix, the first step of LSI consists in find-

ing its low-rank approximation by applying Singular Value Decomposition

(SVD):

A = UΣVT . (3.18)

LSI uses a truncated version of the SVD, keeping only the k largest singular

values and their associated vectors:

Ak = UkΣkV
T
k . (3.19)
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This procedure finds k uncorrelated concepts, where each concept gathers

co-occurrent terms. Documents and terms can be now described as a linear

combination of these concepts and their similarity can be computed in this

new reduced space.

For example, a user query can be represented as a vector in the k-

dimensional concept space as:

qk = (UkΣ
−1
k )Tq. (3.20)

The distance between the query vector and the documents in the reduced

space is proportional to their similarity. LSI can be interpreted as following:

• two documents are similar when they share terms that co-occur in

many other documents

• two terms are similar when they co-occur with many of the same words

This approach is then able to capture term similarity in the k-dimensional

concept space: synonym terms are mapped to the same concept.

3.3 Audio Features

Every sound can be represented by a set of features extracted from the phys-

ical signal. This kind of features are often referred to as Low-level Features

(LLFs) or Audio Features, and they are able to characterize different audio

signals by describing specific acoustic cues.

LLFs can be used in order to measure the energy and the spectral char-

acteristics in the audio signal, or temporal aspects related with tempo and

rhythm. In the following section we illustrate the audio features employed

in this work and summarized in table 3.1, as described in [61].

Low-level

Spectral MFCC, Spectral Centroid, Zero Crossing

Rate, Spectral Skewness, Spectral Flatness,

Spectral Entropy

Mid-level

Rhythmic Tempo

Table 3.1: Low and mid-level features used in this work
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3.3.1 Mel-Frequency Cepstrum Coefficients

Mel-Frequency Cepstrum Coefficients (MFCCs) originated from automatic

speech recognition but then they evolved into one of the standard tech-

niques in most domains of audio retrieval. They are spectral low-level fea-

tures based on the Mel-Frequency scale, a model that considers the human

auditory system’s perception of frequencies.

Mel-Frequency Cepstrum is a representation of the short-term power spec-

trum of a sound, and the coefficients are obtained from the Discrete Cosine

Transform (DCT) of a power spectrum on a nonlinear Mel-Frequency scale

(computed by a mel-filter bank). The mathematical formulation is:

ci =
∑Kc

k=1{log(Ek)cos[i(k − 1
2) π
Kc

]} with 1 ≤ i ≤ Nc, (3.21)

where ci is the i− th MFCC component, Ek is the spectral energy measured

in the critical band of the i − th mel-filter, Nc is the number of mel-filters

and Kc is the amount of cepstral coefficients ci extracted from each frame.

An example of MFCCs related to two songs is shown in figure 3.4.

(a) Bon Jovi - “Livin’ on a Prayer” (b) Eric Clapton - “Kind Hearted Woman”

Figure 3.4: MFCC for two songs, computed with [3]

3.3.2 Spectral Centroid

Spectral Centroid (SC) is defined as the center of gravity of the magnitude

spectrum (first momentum). It determines the point in the spectrum where

most of the energy is concentrated and it is directly correlated with the

dominant frequency of the signal. Given a frame decomposition of the audio

signal, the SC is computed as:

FSC =

∑K
k=1 f(k)Sl(k)∑K
k=1 Sl(k)

, (3.22)
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where Sl(k) is the Magnitude Spectrum at the l − th frame and the k − th
frequency bin, f(k) is the frequency corresponding to k − th bin and K is

the total number of frequency bins. Spectral Centroid can be used to check

whether the magnitude spectrum is dominated by low or high frequency

components. It is often associated with the brightness of the sound.

Spectral Centroids for two sample songs are shown in figure 3.5.

(a) Bon Jovi - “Livin’ on a Prayer” (b) Eric Clapton - “Kind Hearted Woman”

Figure 3.5: Spectral Centroids for two songs, computed with [3]

3.3.3 Zero Crossing Rate

Zero Crossing Rate (ZCR) is defined as the normalized frequency at which

the audio signal s(n) crosses the zero axis, changing from positive to negative

or back. It is formalized as:

FZCR =
1

2

(
N−1∑
n=1

|sgn(s(n))− sgn(s(n− 1))|

)
Fs
N
, (3.23)

where N is the number of samples in s(n) and Fs is the sampling rate. This

measure is associated to the signal noisiness.

3.3.4 Spectral Skewness

Spectral Skewness (SSK) is the third moment of the distribution and it

gives an estimation on the symmetry of the magnitude spectrum values. A

positive value of Spectral Skewness represents an asymmetric concentration

of the spectrum energy on higher frequency bins, while negative coefficients

represent a distribution with a higher concentration on lower frequency bins.

The perfect symmetry corresponds to the zero Spectral Skewness value. It
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is computed as:

FSSK =

∑K
k=1(Sl(k)− FSC)3

KFSS
, (3.24)

where Sl(k) is the Magnitude Spectrum at the l-th frame and the k-th

frequency bin, K is the total number of frequency bins, FSC is the Spectral

Centroid at the l-th frame (eq.3.3.2) and F˙SS is the Spectral Spread at

the l-th frame (second moment of the distribution). We show the Spectral

Skewness of two songs in figure 3.6.

(a) Bon Jovi - “Livin’ on a Prayer” (b) Eric Clapton - “Kind Hearted Woman”

Figure 3.6: Spectral Skewness for two songs, computed with [3]

3.3.5 Spectral Flatness

Spectral Flatness (SFlat) provides a way to measure how much an audio

signal is noisy, estimating the flatness of the magnitude spectrum of the

signal frame. It is calculated by dividing the geometric mean of the power

spectrum by the arithmetic mean of the power spectrum:

FSF lat =

K

√∏K−1
k=0 Sl(k)∑K
k=1 Sl(k)

, (3.25)

where Sl(k) is the Magnitude Spectrum at the l − th frame and the k − th
frequency bin, K is the total number of frequency bins.

The Spectral Flatness related to two sample song is displayed in figure

3.7.

3.3.6 Spectral Entropy

Spectral Entropy (SE) is a measure of the flatness of the magnitude spec-

trum by the application of Shannon’s entropy commonly used in information
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(a) Bon Jovi - “Livin’ on a Prayer” (b) Eric Clapton - “Kind Hearted Woman”

Figure 3.7: Spectral Flatness for two songs, computed with [3]

theory context:

FSE =

∑K
k=1 Sl(k) logSl(k)

logK
, (3.26)

where Sl(k) is the Magnitude Spectrum at the l − th frame and the k − th
frequency bin, K is the total number of frequency bins. A totally flat magni-

tude spectrum corresponds to the maximum uncertainty and the entropy is

maximal. On the other hand, the configuration with the spectrum present-

ing only one very sharp peak and a flat and low background corresponds to

the case with minimum uncertainty, as the output will be entirely governed

by that peak.

In figure 3.8 we show the Spectral Entropy of two songs.

(a) Bon Jovi - “Livin’ on a Prayer” (b) Eric Clapton - “Kind Hearted Woman”

Figure 3.8: Spectral Entropy for two songs, computed with [3]
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3.3.7 Tempo

Tempo is a mid-level feature that represents the speed of a given piece. It

is specified in beats per minute (BPM), i.e., how many beats are played in

a minute. Different techniques for tempo estimation have been proposed,

from simple statistical models based on sound energy to complex comb filter

networks. An example of detected tempo from two songs is shown in figure

3.9.

(a) Bon Jovi - “Livin’ on a Prayer” (b) Eric Clapton - “Kind Hearted Woman”

Figure 3.9: Tempo Detection for two songs, computed with [3]

3.4 Music Emotion Models

Music Emotion Recognition (MER) is the field of MIR that studies how mu-

sic and emotions are connected. As mentioned in Chapter 2, two approaches

have been proposed in order to represent their relationship: the categorical

and the parametric methods.

Categorical methods consider emotions as categories belonging to a lim-

ited number of innate and universal affective experiences. This approach

aims at highlighting the factors that distinguish emotions from one another.

Various categorical methods that describe music with a fixed set of emotion

terms have been proposed, but there is no agreement between the terms

that describe univocally basic emotions.

Parametric methods argue that emotion description can be organized into

low-dimensional models. The most popular model is the Valence-Arousal

(V-A) emotion plane, that defines two basic emotion components [8]. Given

a certain emotion, valence indicates how much the feeling is positive or

negative, while arousal represents its intensity. Operating in a dimensional

space ease the computation of similarity between resources described by
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emotion terms, such as music pieces. Various researchers attempted to map

terms into parametric spaces. The most popular solution has been pro-

posed by Bradley et al.[10], that developed the Affective Norms for English

Words (ANEW), which consists of 2476 affective words labeled in a Valence-

Arousal-Dominance space. A simplified mapping of mood terms into the

V-A space is shown in figure 3.10.

Figure 3.10: The 2D Valence-Arousal emotion plane, with some mood terms approxi-

mately mapped [4]

3.5 Natural Language Processing

Natural Language Processing (NLP) is a branch of artificial intelligence that

aims to develop computational systems able to interact with humans by us-

ing natural language. NLP algorithms are usually based on machine learning

and they cope with various challenges, such as discourse analysis, machine

translation, speech recognition, natural language generation, question an-

swering. In this section we review two basic natural language processing

tools for phrase parsing: part-of-speech taggers and context-free grammars.
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3.5.1 Part-of-Speech Tagging

Parts-of-Speech (POS) are the linguistic categories of words, generally de-

fined by their grammar role in a sentence. English basic parts-of-speech are:

nouns, verbs, adjectives, adverbs, pronouns, conjunctions, prepositions and

interjections.

POS tagging is the process of assigning part-of-speech categories to words

in a corpus. It is a complex task since some words can represent more than

one part of speech (e.g. is building a name or a verb?). POS tagging

represents the first step of a vast number of practical assignments, such as

speech synthesis, parsing and machine translation.

A POS Tagger is a software that automatically analyzes and assigns parts-

of-speech to words in a collection. In general POS tagging algorithms belong

to two different groups: rule-based and stochastic. Rule-based tagging uses

disambiguation rules to infer the POS tag for a term: it starts with a dictio-

nary of possible tags for each word and uses hand-written rules to identify

the correct tag when there is more than one possible tag. Stochastic tagging

assign the most probable tag for each word in a sentence by choosing the

tag sequence that maximizes the following probability:

P (word—tag)× P (tag—previous n tags). (3.27)

POS rules and probabilities are computed or inferred from previously anno-

tated sentence corpus, such as the Penn Treebank [62].

In order to represent a sentence, it is necessary to define some kind of

formal structure of parts-of-speech.

3.5.2 Context-Free Grammars

A group of words within a sentence could act as a single unit, named con-

stituent. Given a certain language, constituents form coherent classes that

behave in similar ways. For example, the most frequently occurring phrase

type is the noun phrase (NP), which has a noun as its head word (i.e. all

words of the sentence are linked to the noun).

A formal grammar consists of a set of rules that indicates the valid syn-

tactical combination among lexical elements. In formal grammar we define

two types of lexical elements:

• terminal symbols, which in general correspond to words

• non-terminal symbols, which consists in the constituents of a language

(e.g. noun phrase, verb phrase, etc.)
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In context-free grammars (CFG) every production rule is of the form:

V → w (3.28)

where V is a single non-terminal symbol, and w is a set of terminals and/or

non-terminals symbols. For example, a noun phrase can be defined in a

CFG with the following rules:

NP → Det Nominal (3.29)

NP → ProperNoun (3.30)

A nominal can be defined as well as:

Nominal→ Noun|Noun Nominal, (3.31)

A determiner (Det) and a Noun could be described by the following rules:

Det→ a; (3.32)

Det→ the; (3.33)

Noun→ flight. (3.34)

The sequence of CFG rules applied to a phrase is commonly represented by

a parse tree 3.11.

Figure 3.11: Parse tree example of a context-free grammar derivation.

CFGs are very useful in order to parse a natural language sentence and

understand its underlying grammar structure: the integration of a CFG in

a search engine allows users to perform semantic queries.
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Chapter 4

Implementation of the

System

The system presented in this thesis is the evolution of Janas [9, 1], a mu-

sic search engine based on textual semantic queries. Janas uses a semantic

model that defines two types of music descriptors, emotion descriptors (ED)

and non-emotion descriptors (NED). This model suffers from various draw-

backs: there is not a unique model for ED and NED, the mapping in the

V-A plane of ED terms defines semantic relations even between terms be-

longing to different semantic planes, and finally it does not relate different

NED among them.

As a review, in this chapter we give a brief description of the overall sys-

tem, including the semantic model implemented in Janas. We also present

a semantic model based on Latent Semantic Indexing (LSI) [2]. Finally, we

illustrate our semantic model, that is named Contextual-related Semantic

Model.

The overall structure of the system is represented in figure 4.1. It is

composed by five main modules:

• the Semantic Description Model, that specifies how to interpret and

represent the semantic description of music pieces

• the Music Content Annotator, that assigns appropriate annotations to

new music items

• the Query Model, that formally represents the user’s requests to the

system

• the Retrieval Model, that identifies the music items that best match

the user’s request

39
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• the Graphical User Interface, that allows users to interact with the

system

•

•

•

 

Figure 4.1: Architecture of the System

The Music Content Annotator, the Query Model and the Retrieval Model

use the Semantic Description Model in order to semantically represent con-

cepts and music content.

In the following sections we illustrate these basic components and we

compare their functioning when the different semantic description models

are used.

4.1 Semantic Description Model

The semantic description model is the core of a search engine based on

semantic queries, and many of the modules in the system depend on this

component. It specifies the relations between terms belonging to the vocab-

ulary and how to use them in order to semantically describe a music piece.

The usage of a specific semantic description model strongly influences the

final retrieval performances, as shown in the result section in Chapter 5.

We compare our Contextual-related Semantic Model with the Janas Se-

mantic Model and the LSI Model. In the following sections we discuss the
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implementation of these three models.

4.1.1 Janas Semantic Model

Janas assumes that music content and music-related concepts can be repre-

sented with both affective and non-affective semantic spaces. For this reason

it defines two types of descriptors for music: emotional descriptors (ED) and

non-emotional descriptors (NED).

4.1.1.1 Emotional Descriptors

According to [8], emotions can be mapped in the two-dimensional Valence-

Arousal (V-A) plane. Its dimensions are: a) Valence, that describes the

positiveness/negativeness of an emotion b) Arousal, that specifies the inten-

sity of an emotion

In the next paragraphs we show how emotional descriptors are used in

order to represent concepts and music content (i.e. songs) in Janas.

Concept Modeling In order to obtain a mapping of emotion concepts

into the V-A plane, the authors exploited the ANEW dataset [10]. It con-

tains a set of emotional-related terms manually tagged by human annotators

in the V-A space. Each term is described with a value of mean and stan-

dard deviation on both Valence and Arousal dimensions. Since ANEW con-

tains also generic terms, the authors decided to intersect the dataset with

Wordnet-affect, a lexical database of emotion terms [45]. In Janas, each

emotional concept cED is represented by a specific term tiED in the dataset

VJ = {happy, sad, angry, ...} and it is modeled with a normal distribution:

cED ∼ N (µV A(tiED),ΣV A(tiED)), (4.1)

where:

• µV A(tiED) = [µV (tiED), µA(tiED)]T is the mean of the distribution of

the term tiED in the V-A plane

• ΣV A(tiED) = diag(σV A(tiED)) = diag([σV (tiED), σA(tiED)]T ) is the

covariance matrix of the distribution of the term tiED in the plane

Music Content Modeling Music content are annotated with emotion

terms into the V-A plane in the same way as emotion concepts. In Janas

the authors considered the dataset MsLite [63], that consists in a set of

songs manually annotated in a 9-point scale both in Valence and Arousal

dimensions.
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In Janas, the authors computed mean and standard deviations of the

annotations for each song dj in the dataset and then they modeled it as a

normal distribution in the V-A plane:

djED ∼ N (µV A(dj),ΣV A(dj)), (4.2)

where:

• µV A(dj) = [µV (dj), µA(dj)]
T is the mean annotated value of Valence

and Arousal related to the song dj

• ΣV A(dj) = diag(σV A(dj)) is the covariance matrix of the distribution

of the song dj in the plane

• σV A(dj) = [σV (dj), σA(dj)]
T is the annotations’ standard deviation of

Valence and Arousal related to the song dj

4.1.1.2 Non-Emotional Descriptors

Since a music piece cannot be described exhaustively by using only emo-

tion terms, the authors included non-emotional facets in order to enrich the

description. They defined a set of bipolar high-level descriptors related to

structural, kineasthetic and judgement features of a music piece, and a mid-

level descriptor related to the tempo of a track. We examine only a subset of

the NED descriptors defined in Janas, in order to consider only descriptors

shared among all the considered semantic models (table 4.1).

Non-emotional high-level descriptors

soft - hard (soft) 1 - 9 (hard)

static - dynamic (static) 1 - 9 (dynamic)

flowing - stuttering (flowing) 1 - 9 (stuttering)

roughness (not rough) 1 - 9 (rough)

Non-emotional mid-level descriptors

tempo (BPM) 30-250

Table 4.1: List of non-emotional descriptors used in Janas

In the following paragraphs we describe how non-emotional descriptors

are represented in Janas.

Concept Modeling In Janas, a non-emotional concept is represented

by the combination of multiple bipolar descriptors. Each non-emotional
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bipolar high-level descriptor (tl − tr) is linearly modeled in a separate one-

dimensional space as tiNED(tl − tr). The authors modeled the mid-level

descriptor of tempo by means of the mapping with beats per minutes de-

scribed in table 4.2. It uses the conventional Italian vocabulary for tempo

of classical music. The tempo descriptor tiNED(tempo) is finally modeled as

a mixed distribution between a normal and a uniform distribution.

Tempo Markings BPM

Adagio 66-76

Andante 76-108

Moderato 108-120

Allegro 120-168

Presto 168-200

Table 4.2: Tempo markings and correspondent ranges of BPM

A concept cNED is finally formalized as:

cNED = {tiNED(tl − tr) ∪ tiNED(tempo)}. (4.3)

Music Content Modeling The authors of Janas set up a survey in order

to annotate the music tracks in the dataset with non-emotional descriptors.

Every song in the dataset dj is modeled as a normal distribution for each

high-level bipolar descriptor (tl − tr):

djNED(tl − tr) ∼ N (µj(tl − tr), σj(tl − tr)), (4.4)

where µj(tl− tr) and σj(tl− tr) are respectively the mean and the standard

deviation values of the bipolar descriptor annotated in the survey

In order to annotate the tempo of songs, the authors used a tempo esti-

mator [64] and modeled the descriptor as a normal distribution with a) mean

µj(tempo), that corresponds to the computed tempo and b) standard devi-

ation σj(tempo), estimated as a fraction of the mean.

The complete non-emotional semantic model for the song dj is defined as

the set:

djNED = {djNED(tl − tr) ∪ djNED(tempo)}. (4.5)

On the whole, each music piece dj in the dataset is modeled by a set that

contains both emotional and non-emotional representations:

dj = {djED ∪ djNED}. (4.6)
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4.1.2 Latent Semantic Indexing Model

We implemented Latent Semantic Indexing (LSI) [2], one of the most used

techniques for multimedia retrieval in commercial applications. LSI is a di-

mensional method that exploits co-occurrences of annotations in songs in

order to infer semantic relations between them. This approach differs from

the one defined in Janas because it initially assumes that all the emotional

and non-emotional concepts are independent, then it estimates their rela-

tions.

In the next paragraphs we explain how concepts and music items are

represented in the LSI model.

Concept Modeling We defined a vocabulary VLSI of 40 suitable terms ti
for describing both emotional and non-emotional facets of music, as shown

in table 4.3. In this model a concept is represented by one or more terms

ti ∈ VLSI and it is formalized with a vector c ∈ R40, for which each element

wi is directly related to the term in ti ∈ VLSI :

c = [w0, ..., wi, ..., w40]
T , (4.7)

with wi ∈ [0, 1]. The value of the element wi is proportional to the weight

of the term ti ∈ VLSI in the concept.

Vocabulary VLSI

Aggressive Dark Hard Serious

Angry Depressed Harsh Slow

Annoyed Dynamic Heavy Smooth

Anxious Exciting Joyful Soft

Boring Fast Light Static

Bright Flowing Nervous Stuttering

Calm Frustrated Quiet Sweet

Carefree Fun Relaxed Tender

Cheerful Funny Rough Tense

Clean Happy Sad Warm

Table 4.3: List of terms in the vocabulary VLSI

Music Content Modeling Music content in the dataset are generally

annotated with multiple terms belonging to the vocabulary VLSI . Each song
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dj is initially described by a vector dj ∈ R40 that has non zero elements in

correspondence of the selected annotation term ti:

dj = [wj,0 = 0, ..., wj,i ≥ 0, ..., wn,40 = 0]T . (4.8)

In general the weight wj,i associated to the relation between the song dj and

the term ti could be binary or continuous in the range [0, 1], allowing the

term to express the degree of descriptiveness of a music piece.

In order to capture the semantic relations between terms in the vocab-

ulary, we build a term-song matrix A by using the vectors defined in the

previous step:

A = [wj,i] = [d1, ...,dJ ], (4.9)

where J is the total number of music content in the dataset. LSI computes

a truncated version of the SVD of A, keeping only the k largest singular

values:

Ak = UkΣkV
T
k . (4.10)

This low-rank approximation of the term-song matrix exploits the co-occurrences

of the tracks annotations and merges terms with similar semantic along the

same dimension. As a consequence of this, similar songs and similar con-

cepts will be near in the reduced space. Each song dj can be represented in

the reduced space as:

d̃j = (UkΣ
−1
k )Tdj (4.11)

In the same way, the representation of the concept C is computed as:

c̃ = Σ−1k VT
k c (4.12)

In the implementation of the LSI model we experimentally decided to

approximate the rank of the matrix A to k = 20.

4.1.3 Contextual-related Semantic Model

The approaches defined in the previous paragraphs raise substantive issues

for the implementation of a music search engine based on semantic queries.

Janas does not define a unique model for ED and NED. In particular, the

semantic model considers the mapping of the terms in the V-A plane pro-

vided in ANEW for describing emotional concepts: this dataset is very rich

and contains more than one thousand English terms, but at the same time

the words were annotated without a specific focus in music. Furthermore,

pairs of terms in the V-A plane have a dimensional relation even if they do

not belong to the same semantic context. On the other hand, the semantic
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model for non-emotional descriptors do not consider the semantic relations

among different NED. The Latent Semantic Indexing model is instead too

simplistic: it just considers the co-occurrences between annotations among

songs, thus it is strongly biased by the way in which songs were annotate.

We developed an innovative music-centric semantic model in order to

overcome these issues, named Contextual-related semantic model. Since we

assume that terms could have different meanings depending on the context

we are considering, we defined three main contexts for describing music

facets:

1. Perceived Emotion, that concerns the concepts able to describe the

mood of a song

2. Timbre Description, that refers to the terms used to describe the

sound characteristics of music

3. Dynamicity, that is related to the dynamic characteristics of a music

piece

We considered the vocabulary VLSI defined in the previous section and we

assigned each of its 40 terms to these three contexts through a survey, de-

scribed in 5.2. The obtained clusters are shown in table 4.4 and they form

the Context Vocabulary VCTX .

In order to quantify the relatedness between pairs of terms belonging

to the same context ψ ∈ Ψ = {1 ⇒ Perceived Emotion , 2 ⇒ Timbre

Description, 3⇒ Dynamicity}, we collected through a second survey (de-

scribed in 5.2) annotations about their semantic similarity between pair of

terms. Given two terms ti, tj ∈ ψ, their semantic similarity sψij is modeled as

the mean similarity value assigned with the survey to the pair (ti, tj), and it

ranges between 0 (when they have opposite meaning) to 1 (when they have

the same meaning):

sψij =
1

Nψ
ij

Nψ
ij∑

n=1

a(n)ψij , (4.13)

where:

• Nψ
ij is the number of annotations for the pair (ti, tj), with ti, tj ∈ ψ

• {a(1)ψij , ..., a(Nψ
ij)

ψ
ij} is the set of gathered annotations for the pair (ti,

tj)

These results are used for creating a vector space model. Given a context

ψ, the semantic similarity matrix Sψ between terms is defined as:

Sψ = [sψij ], (4.14)
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Context Vocabulary VCTX

Perceived Emotion Timbre Description

Aggressive Bright

Angry Clean

Annoyed Dark

Anxious Hard

Boring Harsh

Calm Heavy

Carefree Rough

Cheerful Smooth

Dark Soft

Depressed Warm

Exciting

Frustrated Dynamicity

Fun Calm

Funny Dynamic

Happy Fast

Joyful Flowing

Light Quiet

Nervous Relaxed

Quiet Slow

Relaxed Static

Sad Stuttering

Serious

Sweet

Tender

Tense

Table 4.4: List of terms for each context cluster, obtained with the survey
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where sψij is the semantic similarity of the pair (ti, tj) in the context ψ. We

assume that the semantic similarity is symmetric, thus sψij is equal to sψji.

Concept Modeling In this model a concept is represented as the combi-

nation of one or more terms included in the context vocabulary VCTX . The

terms that describe a concept could belong to more than one context ψ. For

example, a concept that corresponds only to a term ti ∈ ψ is modeled as a

vector in the context ψ:

cψ =

{
[w0 = 0, ..., wi ≥ 0, ..., wN = 0]T if ti ∈ ψ
[w0 = 0, ..., wN = 0]T if ti 6∈ ψ,

(4.15)

This notation allows to express a concept by using multiple terms ti in

more than one context ψ, by assigning to them different weights wψi in the

range [0, 1]. Values of wψi lesser than 0.5 represent semantic dissimilarity

with the term and values greater that 0.5 represent semantic similarity. In

general the concept is represented by three vectors, each related to a different

context in VCTX :

C =


c1 = [w1

0, ..., w
1
i , ..., w

1
N1

]T ψ = 1⇒ Perceived Emotion

c2 = [w2
0, ..., w

2
i , ..., w

2
N2

]T ψ = 2⇒ Timbre Description

c3 = [w3
0, ..., w

3
i , ..., w

3
N3

]T ψ = 3⇒ Dynamicity.

(4.16)

In order to map the concepts to the Contextual-related semantic model, we

multiply each context vector cψ with the corresponding semantic similarity

matrix Sψ:

c̃ψ = Sψcψi . (4.17)

The result of this operation captures the semantic similarity of the non zero

elements of cψ with other terms in VCTX .

The concept C is finally described by the following set of vectors:

C̃ = {c̃1, c̃2, c̃3}. (4.18)

Music Content Modeling Music content in the dataset is annotated

with one or more terms that belong to one or more contexts in VCTX .

Each song dj in the dataset is initially represented by a set of three vectors

Dj = {d1
j , d2

j , d3
j}, each of them related to a specific context. The weights of

each vector assume non zero values in correspondence with the annotation

terms elements:

Dj =


d1
j = [w1

0, ..., w
1
j , ..., w

1
N1

]T ψ = 1⇒ Perceived Emotion

d2
j = [w2

0, ..., w
2
j , ..., w

2
N2

]T ψ = 2⇒ Timbre Description

d3
j = [w3

0, ..., w
3
j , ..., w

3
N3

]T ψ = 3⇒ Dynamicity.

(4.19)
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The song is mapped to the Contextual-related semantic model by multi-

plying each context vector dj
ψ with the related semantic similarity matrix

Sψ:

d̃ψj = Sψdψj . (4.20)

This mapping enriches the song annotation by assigning a weight wψi ≥ 0.5

to the terms ti ∈ ψ that are semantically correlated to the terms in the

annotation.

Eventually, the music content is represented by a set of vectors:

D̃j = {d̃1
j , d̃

2
j , d̃

3
j}. (4.21)

In table 4.5 we summarize the notation for the representation of concepts

and music content for each model.

Concept Modeling

Janas Semantic Model cED, cNED
LSI Model c̃

Contextual-related Semantic Model C̃ = {c̃1, c̃2, c̃3}

Music Content Modeling

Janas Semantic Model djED , djNED
LSI Model d̃j
Contextual-related Semantic Model D̃j = {d̃1

j , d̃
2
j , d̃

3
j}

Table 4.5: Modeling notation for both concept and music content

4.2 Music Content Annotation

Music content in the system must be adequately annotated by using the

descriptors defined by each semantic model. Manual annotation is a very

expensive process because it needs expert human annotators willing to label

a great number of music items. Therefore, a machine learning tool that

partly automatize this process is preferred. We implemented a system for
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automatically annotating each song in the dataset. The annotation system

is based on supervised machine learning techniques that uses a training

dataset. The training set consists in a subset of 240 music excerpts and it

has been obtained with a proper mapping between Janas semantic space

and our model. The annotation procedure is described in Chapter 5. The

basic structure for music content annotation is represented in figure 4.3 and

in the following we describe the mapping between Janas annotations in the

Contextual-related semantic model.

Figure 4.2: Music content annotation architecture

Mapping We experimentally define two metrics in order to map the music

content description from Janas to the Contextual-related semantic model.

The first metric MAPED defines a mapping with emotional annotations

belonging to the V-A plane. Given an affective term ti belonging to the

vocabulary VCTX , we consider its position and its distribution in the V-

A plane by following ANEW specifics. Then we compute the similarity

between the term tj and the annotated track dj in the V-A plane by following

the metric:

SimED(dj , ti) = DKL(Ndj‖Nti) · (1− ‖djV A − tiV A‖1) · sgn(CS(dj , ti)),

(4.22)
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where:

• DKL(·) represents the Kullback-Leibler divergence, intended as a mea-

sure of the difference between two multivariate normal distributions

[65]

• Ndj ,Nti are the multivariate normal distributions on the plane V-A of

the song dj and the term ti

• ‖djV A− tiV A‖1 is the norm-1 distance between the position of the song

dj and the term ti in the V-A plane

• CS(dj , ti) is the cosine similarity between the song dj and the term ti
in the V-A plane

• sgn(·) is the sign function

The track dj is then annotated with the affective terms ti for which the

similarity metric exceed a certain threshold ξED. Since some terms in VCTX
assumed controversial values in the ANEW mapping with the V-A plane,

we manually filtered ambiguous annotations. For example the term smooth

is annotated in the V-A emotion plane with the point (0.395;−0.0025), but

in the musical context this term represents only a timbric characteristic and

does not assume any affective meaning.

Each track is characterized by a set of annotations related to emotion

terms:

MAPED : {tj ∈ (VCTX ∩ANEW )|SimED(dj , ti) > ξED}. (4.23)

The second metric MAPNED defines a mapping with the non-emotional

bipolar descriptors (tl − tr)used in Janas. The similarity of the song dj
with the left term tl and the right term tr of the descriptor are respectively

computed as:

Siml
NED(dj , ti) = (1− tl), (4.24)

Simr
NED(dj , ti) = tr. (4.25)

Each track is finally characterized by a set of annotations related to non-

emotional descriptor by following the rule:

MAPNED : {wl|Siml
NED(dj , ti) ≥ ξNED} ∪ {wr|Simr

NED(dj , ti) ≥ ξNED},
(4.26)

where ξNED is the threshold that the similarity metric should exceed. Over-

all, each music content dj in the dataset is annotated with the set of terms

defined by:

MAP = MAPED ∪MAPNED. (4.27)
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They assume a weight equals to their respective similarity metric Sim. For

example, the track “Les Rythmes Digitales - Take A Little Time” has been

mapped with the annotations showed in table 4.6.

Annotation Similarity Weight

Dynamic 0.781

Exciting 0.437

Happy 0.477

Light 0.474

Smooth 0.470

Table 4.6: Mapped annotations from Janas semantic model for the track “Les Rythmes

Digitales - Take A Little Time”

Automatic Annotation In order to test the scalability of our method,

we annotated a subset of 140 tracks through a neural network that uses

the remaining music content in Janas as training set τ̄ . The output of the

regression consists in 140 annotated tracks, creating a complete dataset of

380 songs. Each new song in the dataset is modeled as:

D̂j = {d̂1
j , d̂

2
j , d̂

3
j} with d̂ψj = fψ(x̄j) ∀ψ ∈ Ψ, (4.28)

where:

• fψ(·) is the estimation function defined by the neural network model

for the ψ-th context

• x̄j is the feature vector of the track dj , with j ∈ τ̄

In figure 4.3 we illustrate the structure of the music content annotation.

4.3 Query Model

The system is based on free-text queries, such as “I want a happy song” or

“Please, retrieve an aggressive track”. In order to perform a research on a

certain user request, we define two main modules:

1. a Natural Language Parser, that understands a user request by parsing

the query and by extracting relevant terms for the research

2. a Semantic Query Modeling Tool, that represents the relevant terms

in the semantic models defined in the previous paragraph

The architecture of the query model is represented in figure 4.4. In the

following sections we describe the implementation of these two modules.
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Figure 4.3: Music content annotation
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Figure 4.4: Query model structure

4.3.1 Natural Language Parser

In order to parse the query we employed the Natural Language Toolkit

(NLTK) [66], a Python platform for natural language processing that is

based on WordNet and provides various tools for part-of-speech tagging and

sentence parsing.

The module parses the query for discovering the grammar role of each

term in the request by using a context-free grammar. Only relevant parts-

of-speech (adjectives in the dictionary) are considered.

4.3.2 Semantic Query Modeling

Once the parser extracts relevant terms ti from the user’s request, the system

models them as a formal query according to the selected semantic model.

The query may be referred to one or more terms in the vocabulary, fur-

thermore each term could be characterized by a qualifier that defines the

intensity expressed by that word. In the next paragraphs we describe the

usage of qualifiers in the queries and then we analyze how queries are for-

malized in each of our considered semantic models.
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Qualifiers When people describe concepts or objects by using adjectives,

they usually add qualifiers in order to specify the intensity of the description.

For example, a music piece can be defined as very sad, partly sad, moder-

ately sad, not sad at all, etc. In a text-based search system it is important

to consider qualifiers in the description paradigm. In order to deal with this

type of description, the natural language parser retrieves qualifiers by ana-

lyzing siblings and children of a word in the parse tree and then the query

model assign to each relevant term a weight proportional to the qualifier.

We defined a set of 23 weights Q for common qualifiers (table 4.7) by

following the rating scale defined in [5]. The relevant terms ti in the user

request are directly associated to their corresponding qualifier ρi ∈ Q with

the tuple ri :

ri = (ti, ρi) with i = 1, ..., R , (4.29)

where R is the total number of relevant terms in the request.

Qualifiers’ Set Q
Qualifier Weight Qualifier Weight

a little 0.56 moderately 0.73

average 0.72 not 0.04

completely 1 not at all 0.0

considerably 0.9 partly 0.65

extremely 1 quite 0.59

fairly 0.75 quite a bit 0.91

fully 1 rather 0.78

hardly 0.5 slightly 0.56

highly 0.97 somewhat 0.7

in-between 0.72 very 0.92

mainly 0.85 very much 0.98

medium 0.72

Table 4.7: Qualifiers and mean value weights from [5], re-mapped to our model

In general each relevant term ti in the query is associated to the value of

te qualifier ρi ∈ Q. When a term is not directly associated to a qualifier in

the user’s request, we consider a weight ρi = 0.9, in order to differentiate it

from the case of extremely positive qualifiers.

4.3.2.1 Janas Semantic Query

In order to model the query, Janas initially build two separate representa-

tions, one for the non-emotional and one for the emotional descriptors:
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• if a non-emotional term is present in the list of relevant terms, it is

added to the set ZNED along with its qualifier

• if an emotional term (or a synonym of the term) that appears in

ANEW is also present in the list of relevant terms, it is added to

the set ZED along with its qualifier

Afterwards, the query q is modeled as a set of normal distributions, one

for each non-emotional descriptor in ZNED, plus a multivariate distribution

in the V-A plan if any emotional term is present in ZED:

q =

{
qED ∼ N (µED,ΣED),

qNED ∼ (N (µNED1), σ2NED1
), ...,N (µNED10 , σ

2
NED10

)).
(4.30)

We refer the reader to [9] for further implementation details of Janas.

4.3.2.2 Latent Semantic Indexing Query

In the Latent Semantic Indexing model we initially build a query as a vector

q ∈ R40 in which each relevant term ti extracted by the natural language

parser assumes a weight wi equal to its qualifier ρi ∈ Q :

q = [w1, ..., wi = ρi, ..., w40]
T . (4.31)

For example, the semantic query “I want an angry and very sad song”

that contains the terms ti = angry and tj = sad associated to the qualifier

ρj(very) will be represented by the vector q in which the weights wi and

wj assume the values of the qualifiers qi, qj ∈ Q associated to terms. As

we already mentioned in the previous section, we decided to assign a weight

0.9 to the terms for which there is no associated qualifier. Our example is

represented as:

q = [w0 = 0, ..., wi = ρi, ..., wj = ρj , ..., w40 = 0]T . (4.32)

Finally the query is mapped in the reduced semantic space defined by LSI

as:

q̃k = (UkΣ
−1
k )Tq, (4.33)

where:

• k is the number of dimensions considered in the LSI

• Uk and Σk are the rank-k approximated version of the matrices ob-

tained by applying the SVD on the term-song matrix
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4.3.2.3 Contextual-related Semantic Query

In the Contextual-related semantic model each relevant term in the user’s

request is represented by a set of 3 context query vectors Q = {q1,q2,q3},
one for each valid context ψ ∈ Ψ = {1⇒ Perceived Emotion , 2⇒ Timbre

Description, 3 ⇒ Dynamicity}. Since some terms in the context vocabu-

lary VCTX belongs to more than one context, we developed a procedure that

assigns to each term a probability of being part of the context ψ. We run a

survey where the testers were asked to assign a given term to one or more

contexts in Ψ and then we estimated the probability of the term to belong

to a context as:

p(ti|ψ) =
N(ti, ψ)

N(ti)
, (4.34)

where:

• N(ti, ψ) is the number of time that the testers associated the term ti
to the context ψ ∈ Ψ

• N(ti) is the total number of times that the term ti has been annotated

On the base of this probability, the system is able to model the proba-

bilistic query related to the term ti as:

Qi = {q1
i ,q

2
i ,q

3
i } =

{
p(ti|ψ) · [w0 = 0, ..., wi = ρi, ..., wNψ = 0]T if ti ∈ ψ
0ψ if ti 6∈ ψ,

(4.35)

where:

• ρi is the weight of the qualifier associated to the term ti

• Nψ is the number of terms in the context ψ

• 0ψ is a zero vector of size Nψ

When the user’s request contains T terms, each of them associated to

a qualifiers, the overall query is computed as the sum of the probabilistic

query of each term:

Q = {q1,q2,q3} =
T∑
i=1

Qi = {
N1∑
i=1

q1
i ,

N2∑
i=1

q2
i ,

N3∑
i=1

q3
i }. (4.36)

Once the query Q is built, we project it into the Contextual-related se-

mantic model by multiplying each context query vector qψ with its related

semantic similarity matrices Sψ:

q̃ψ = α · qψ + (1− α) · Sψqψ, (4.37)
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where α is a tuning parameter that assigns a higher weight to the terms spec-

ified in the user query with respect to their semantically related terms. We

experimentally set up the parameter α = 0.25. The final query is modeled

as:

Q̃ = {q̃1, q̃2, q̃3}. (4.38)

Specific Case: Semantic Dissimilarity Qualifiers In the case in which

the user’s request contains a qualifier that expresses a negative correlation

(e.g. I want a song not happy at all), we need to appropriately model the

query.

In a vector space such as the one defined by the Contextual-related se-

mantic model, we can easily measure the similarity between vectors by using

common metrics like the cosine similarity, but computing their dissimilarity

it is not straightforward. However, the Contextual-related model provides us

a simple method for reversing the problem: given that this model assigns a

value from 0 (opposite meaning) to 1 (same meaning) to each pair of adjec-

tives ti, tj , we can compute a semantic dissimilarity matrix in each context

ψ:

Bψ = Jψ − Sψ, (4.39)

where:

• Sψ is the similarity matrix associated to the context ψ, as defined in

section 4.1.3

• Jψ is the all-one matrix, with the same size of Sψ

The element bij of the matrix Bψ assumes a value of 1 when the terms ti
and tj are completely dissimilar (opposite meaning) and a value of 0 when

they have the same semantic (same meaning).

A context query qψ that contains both similarity and dissimilarity quali-

fiers is split into two parts:

qψ = qψSIM + qψDISS , (4.40)

where qψSIM is the similarity-related query and qψDISS is the dissimilarity-

related query.

The the similarity-related query qψSIM is projected in the Contextual-

related semantic model as:

q̃ψSIM = SψqψSIM . (4.41)
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The the dissimilarity-related query qψDISS (in our case the terms associated

to the qualifiers not and not at all) is projected as following:

q̃ψDISS = BψqψDISS . (4.42)

The final query is then modeled as:

Q̃ = {q̃1
SIM + q̃1

DISS , q̃2
SIM + q̃2

DISS , q̃3
SIM + q̃3

DISS}. (4.43)

4.4 Retrieval Model

Once the query has been adequately mapped in the selected model, it is

compared with the semantic representation of music content in the dataset.

The comparison allows to determine which music tracks mainly reflect the

characteristics required by the user. Most similar tracks are sorted in a

rank that constitutes the output of the retrieval system. The structure of

the retrieval model is shown in figure 4.5.

Figure 4.5: Retrieval model structure

In the following paragraphs we describe the ways in which retrieving pro-

cess is performed in the three semantic models.

4.4.1 Janas Retrieval Model

In Janas the authors defined a probabilistic approach that compares each

relevant term t in the user’s request with the a-priori probability of a song

in the dataset, both for emotional and non-emotional descriptors.

The similarity coefficient SC(·) between a query q and a song dj can be

expressed as:

SC(q, dj)J =

 ∏
∀t∈ZED∪ZNED

P (qt|dj) · P (dj)

 1
|ZED∪ZNED |

, (4.44)

where:
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• ZED and ZNED represent the sets of relevant terms in the query that

are associated respectively to emotional and non-emotional descriptors

• |ZED ∪ ZNED| is the total number of terms in the query

• P (qt|dj) is the conditional probability of the term t in the query q to

be associated to the song dj

• P (dj) is the prior probability of the song dj

Both P (qt|dj) and P (dj) are computed by using a Bayesian decision model

[67]. Further computational details are presented in [9].

Once all the similarity coefficients are computed, they are sorted in a

reversed-order list and a rank of songs similar to the query {d1, ..., dN} is

built.

4.4.2 Latent Semantic Indexing Retrieval Model

In the Latent Semantic Indexing model, the retrieving is performed by com-

puting the similarity between the query vector and all the vectors related to

music pieces that were previously mapped in the reduced space defined by

LSI. We decided to use the cosine similarity as similarity metric in order to

compute the similarity coefficients.

Given the query q̃k ∈ Rk and the vector representation of the music

content d̃j ∈ Rk in the k-reduced space defined by LSI, the similarity is

defined as:

SC(q̃k, d̃j)LSI =
q̃Tk d̃j

‖q̃k‖‖d̃j‖
. (4.45)

When the query and the music content have a similar representation, the

similarity coefficient will have a higher value.

Once the similarity among the query and the whole music dataset has

been computed, the system produces a list of tracks {d1, ..., dN} ranked in

decreasing order, with the most relevant tracks at the top of the list.

4.4.3 Contextual-related Semantic Retrieval Model

In order to retrieve the best matching music pieces in the Contextual-related

semantic model, the system computes the similarity between the query Q̃ =

{q̃1, q̃2, q̃3} and the tracks representation D̃j = {d̃1
j , d̃

2
j , d̃

3
j} in every context

defined by the model. Similarly to the LSI query model, the system uses

cosine similarity between query and tracks vector as similarity metric.
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Given the query Q̃ and the representation of the music content D̃j , the

similarity coefficient is defined as the arithmetic mean of the similarity in

every context:

SC(Q̃, D̃j)CTX =
1

3

3∑
ψ=1

SC(Q̃, D̃j)ψ =
1

3

3∑
ψ=1

(q̃ψ)T d̃ψj

‖q̃ψ‖‖d̃ψj ‖
. (4.46)

The similarity coefficients are then sorted in descending order, producing a

rank of music content {d1, ..., dN} similar to the query.

4.5 Graphical User Interface

We developed a graphical interface in Python that acquires a semantic query

from the user and visualizes the results of the ranking module.

The main window contains a search bar, similar to the one used by web

search engines, as shown in 4.6.

Figure 4.6: Music search interface

When the user submits a request, the system computes the ranking list

of relevant songs. A threshold is imposed in order to show only interest-

ing results (we experimentally chose 0.5 for LSI and the Contextual-related

semantic model).

Since the goal of the thesis is to compare the performances of the semantic

models, we display simultaneously the results of the three models (figure

4.7). Each music piece of the ranking list is displayed. showing information

about the title, the artist and the album and allowing to play, stop and

pause the tracks.
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Figure 4.7: Result windows for the three models
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Experimental Results

In this chapter we analyze the performances of the Contextual-related Se-

mantic Model with respect to the original Janas model and the LSI model.

We collected the results through a questionnaire, where the testers were

asked to evaluate the individual performances of each semantic model. In

order to develop our model we initially carried out an online survey for col-

lecting data about the contextual pertinence and the semantic similarity

among the terms defined in section 4.1.3. At the same time, we examined

the scalability of our model by annotating a subset of the original music

collection through a machine learning process based on neural networks.

In the next section we analyze the annotation process, the results collected

through the survey and the evaluation of the system performances obtained

with the questionnaire.

5.1 Dataset Annotation

The original dataset used in Janas was composed by 380 songs excerpts

annotated with both emotional and non-emotional descriptors. In order

to build an initial dataset, we mapped the music content description of a

subset of 240 excerpts from Janas to the Contextual-related semantic model

representation, as described in 4.2.

In order to test the scalability of the system we automatically annotated

the remaining 140 songs in the Contextual-related semantic model using the

content-based approach described in 3.1.2. For the annotation process, rep-

resentative 15 seconds for each song has been considered. The excerpts were

sampled at 44.1 KHz and they have a bit rate of 320kbps. In appendix A we

list the dataset of songs used by the sytem. We used the 240 initial excerpts

to train a neural network (see 3.1.2). We extracted a set of 18 audio features

63
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for each music excerpt in the dataset, as described in 3.3: MFCC (for a total

of 13 components), Spectral Centroid, Zero Crossing Rate, Spectral Skew-

ness, Spectral Flatness and Spectral Entropy. We considered audio frames

of 50 milliseconds in order to compute the selected features. The features

were extracted using the MIRToolbox [3], a Matlab1 toolbox dedicated to the

extraction of musical features from audio files. The features were normalized

in order to have zero mean and unitary standard deviation (Z-Score). The

neural network consisted in:

• one input layer X with P = 18 neurons, where each neuron corre-

sponds to a certain audio feature

• one hidden layer Z with M = 50 neurons, where the number of neurons

was experimentally set up

• one output layer Y with K = 40 neurons, where each neuron corre-

sponds to a certain term defined by the Contextual-related Semantic

Model

We used a Sigmoid function for both the activation function σ(·) and the

transformation gk(·). The back-propagation algorithm was limited to a max-

imum of 800 iterations and the learning rate γr was defined as an adaptive

parameter that updates by following L-BFGS specifics [68]. In order to pre-

vent the model from overfitting, we added a weight decay term to the error

function with a tuning parameter λ = 10−4.

5.2 Music Semantic Survey

We designed and implemented an online survey called Music Semantic Sur-

vey, in order to collect data about semantic properties of the terms defined

by the Contextual-related Semantic Model. The survey was in English and

it was available online from January 15th to February 16th, 2014. The web

technologies used in order to implement it are HTML, PHP, JavaScript and

CSS. The survey was divided in two parts.

In the first part of the survey we asked people to assign the 40 terms

to the contexts defined by our model. A subset of randomly chosen terms

was proposed to each testers, who selected the contexts in which the terms

assume a meaning (figure 5.1). A total of 135 people took the survey. At

the end of the first part, on average each term was evaluated 68 times.

1MathWorks Matlab, http://www.mathworks.com/products/matlab/
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Figure 5.1: Layout of the first part of the survey

In order to assign each term ti to a certain context ψ ∈ Ψ = {1 ⇒
Perceived Emotion , 2⇒ Timbre Description, 3⇒ Dynamicity}, we first

computed the following ratio:

r(ti, ψ) =
Nψ
ti

Nti

, (5.1)

where Nψ
ti

is the number of times that the testers assigned the term ti to the

context ψ and Nti is the total number of annotations for the term ti. We

assigned the term ti to the context ψ when the ratio exceeds a threshold ξ:

r(ti, ψ) > ξ. (5.2)

We experimentally set up the threshold ξ = 0.7. In table 5.1 we show the

set of terms obtained for each contexts.

In the second part of the survey, 170 people were asked to quantify the

semantic similarity between pairs of terms that they assigned to the same

context. A list of pairs of terms was proposed to each tester, that annotated

the similarity by setting a slider, as shown in figure 5.2. In the second part

of the survey we collected at least three semantic similarity annotations for

each pair of terms.

Figure 5.2: Layout of the second part of the survey

Given a pair of terms (ti, tj) ∈ ψ, the n-th tester annotated their semantic

relation with a value a(n)ψ ∈ [−1, 1], where −1 means complete semantic

dissimilarity, 0 means semantic neutrality and 1 means complete semantic

similarity. We modeled their semantic similarity in the context ψ as the
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Perceived Emotion Timbre Description

Aggressive Bright

Angry Clean

Annoyed Dark

Anxious Hard

Boring Harsh

Calm Heavy

Carefree Rough

Cheerful Smooth

Dark Soft

Depressed Warm

Exciting

Frustrated Dynamicity

Fun Calm

Funny Dynamic

Happy Fast

Joyful Flowing

Light Quiet

Nervous Relaxed

Quiet Slow

Relaxed Static

Sad Stuttering

Serious

Sweet

Tender

Tense

Table 5.1: List of terms for each context, obtained through the survey
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mean of the annotations:

sψij =
1

Nψ
ij

Nψ
ij∑

n=1

a(n)ψij , (5.3)

where:

• Nψ
ij is the number of annotations for the pair (ti, tj), with ti, tj ∈ ψ

• {a(1)ψij , ..., a(Nψ
ij)

ψ
ij} is the set of gathered annotations for the pair

(ti, tj)

The results have been normalized in the range [0, 1] in order to use them in

a vector space model. In appendix B we show the results of the survey.

We observed similar annotation results among English mother tongue

testers and the other participants for both parts of the survey, thus we

believe that the results are not biased by the language knowledge of the

testers.

5.3 Model Evaluation

In order to evaluate the performances of the analyzed semantic models, we

proposed a test to 30 subjects. The complete text of the test is provided in

appendix C. During the test, subjects were left alone. Each subject made

one only test. They were asked to answer to a questionnaire with three

evaluation sections:

• Predefined Query Evaluation

• Models Comparison

• Overall System Evaluation

In order to analyze possible deviations in the results we also collected infor-

mation about how frequently the testers listen to music. 50% of the subjects

have been classified as beginners, since they declared to listen to music less

than three hours a day, 27% of subjects have been classified as experts, since

they affirmed to listen to music more than 3 hours a day, and 23% have

been classified as professionals, since they claimed to work in a field related

to music. In figure 5.3 we show this distribution. In the next paragraphs we

discuss the obtained results for each section of the questionnaire.
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Figure 5.3: Music listening profiles in the test population

5.3.1 Predefined Query Evaluation

Nine predefined queries have been proposed to the subjects. They were

asked to evaluate the playlist generated by the three semantic model for

each query with a rate between 1 and 9, where 5 indicates a neutral mark,

rates higher than 5 indicate a positive evaluation and rates lower than 5

indicate a negative evaluation. The subjects were unaware about which

model produced the playlist that they were evaluating. In the following, we

discuss the subject evaluation for each predefined query. For each model we

show mean, standard deviation and mode of the rates.

I want a highly relaxed and depressed song The evaluation of the

query “I want a highly relaxed and depressed song” is shown in table 5.2.

Our model obtained a mode rate of 8, while the LSI model and the Janas

models respectively obtained a mode rate of 7 and 6. Nevertheless, the

LSI model obtained the best mean rating, but it has been subjected to a

higher standard deviaton. We did not notice any substantial difference in

the evaluation among the subject categories.

I would like to listen to a moderately angry track The evaluation

of the query “I would like to listen to a moderately angry track” is shown

in table 5.3. Our model and the LSI model obtained the same mode rate of

7. The LSI model achieved a mean rate of 6.87, that is slightly higher than
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Mean Std Mode

Janas Semantic Model 5.83 1.51 6

Context-related Semantic Model 6.77 1.14 8

LSI Model 6.9 1.47 7

Table 5.2: Evaluation of the first question for the three semantic models

the mean rate obtained by our model. The original Janas model performed

very bad and obtained an average evaluation of 3.4.

Mean Std Mode

Janas Semantic Model 3.4 1.90 3

Context-related Semantic Model 6.73 1.39 7

LSI Model 6.87 1.50 7

Table 5.3: Evaluation of the second question for the three semantic models

I want a happy and rather exciting music piece The evaluation of

the query “I want a happy and rather exciting music piece” is shown in

table 5.4. Our Contextual-related semantic model outperformed the other

two models. In particular, it obtained a mean rate of 7.07 and a mode rate

of 8. The mean of rates assigned by professionals is 7.43, that is slightly

better than the general mean. The LSI obtained positive results, with a

mean rate of 6.6 and a mode rate of 6. The 57% of the subjects assigned to

the Janas model a negative evaluation. On the overall it obtained a neutral

mode rate and a negative mean rate of 4.3.

Mean Std Mode

Janas Semantic Model 4.3 1.93 5

Context-related Semantic Model 7.07 1.23 8

LSI Model 6.6 1.35 6

Table 5.4: Evaluation of the third question for the three semantic models

Give me a tender and considerably bright song The evaluation of

the query “Give me a tender and considerably bright song” is shown in table

5.5. In this question, our model achieved the best retrieval performances,

obtaining a mode rate equal to 8 and a mean rate of 7.1. The performances

of the LSI model were positive, with a mode rate equal to 7 and a mean



70 Chapter 5. Experimental Results

rate of 6.37. The subjects assigned on the overall a netrual evaluation to

the Janas model .

Mean Std Mode

Janas Semantic Model 5.03 1.3 5

Context-related Semantic Model 7.1 1.18 8

LSI Model 6.37 1.1 7

Table 5.5: Evaluation of the fourth question for the three semantic models

Retrieve a little relaxed, somewhat bright and static song The

evaluation of the query “Retrieve a little relaxed, somewhat bright and static

song” is shown in table 5.6. The LSI and the Janas model obtained a mode

rate equal to 8, while our model achieved only a mode rate equal to 6.

Nevertheless, professionals rated our model with a mode value of 8 and the

LSI model with a mode value of 7. The mean rates of the three models are

very similar.

Mean Std Mode

Janas Semantic Model 6.87 1.38 8

Context-related Semantic Model 6.57 1.79 6

LSI Model 6.63 1.65 8

Table 5.6: Evaluation of the fifth question for the three semantic models

I would like to listen to a dynamic and quite a bit carefree track

The evaluation of the query “I would like to listen to a dynamic and quite a

bit carefree track” is shown in table 5.7. Our model clearly outperformed the

other ones. It obtained an average rate of 7.53 and a mode rate equal to 8. It

is interesting to notice that none of the testers evaluated the performances of

our model with negative rates for this question. The LSI model obtained a

mean rate equal to 6.2 and a mode rate of 6, while the Janas model obtained

a mean rate of 5.83 and a mode rate of 5.

Mean Std Mode

Janas Semantic Model 5.83 1.62 5

Context-related Semantic Model 7.53 1.11 8

LSI Model 6.2 1.27 6

Table 5.7: Evaluation of the sixth question for the three semantic models
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Please give me a hard, slightly aggressive and fast song The evalu-

ation of the query “Please give me a hard, slightly aggressive and fast song”

is shown in table 5.8. Both our model and the Janas model obtained a

mode rate equal to 5, while the LSI model achieved a mode rate of 6. The

Contextual-related semantic model obtained the best mean rate, equal to

5.87.

Mean Std Mode

Janas Semantic Model 5.33 1.32 5

Context-related Semantic Model 5.87 1.50 5

LSI Model 5.83 1.29 6

Table 5.8: Evaluation of the seventh question for the three semantic models

Give me a little frustrated and partly calm song The evaluation

of the query “Give me a little frustrated and partly calm song” is shown

in table 5.9. Our model achieved the best performances for this query,

obtaining a mean rate of 7.07 and a mode rate of 9. In particular, 23.3%

of the subjects evaluated it with the maximum rate. LSI model obtained

a mean rate equal to 5.83 and a mode rate of 6. Janas model performed

badly to this query. In fact, 63.3% of the testers assigned a negative rate to

the retrieval performances obtained with this model. On the overall, Janas

model obtained an average rate of 4.27 and a mode rate equal to 4.

Mean Std Mode

Janas Semantic Model 4.27 1.34 4

Context-related Semantic Model 7.07 1.62 9

LSI Model 5.83 1.23 6

Table 5.9: Evaluation of the eighth question for the three semantic models

Give me a mainly dark, quite flowing and partly nervous track

The evaluation of the query “Give me a mainly dark, quite flowing and

partly nervous track” is shown in table 5.10. This complex query is par-

ticularly interesting because it includes high-level description of emotional,

rhythmical and timbral aspects. We noticed that our model is the only one

that obtained positive mean and mode rates. In particular, 96.67% of the

subjects positively evaluated the performances of the Contextual-related se-

mantic model, while only 36.67% and 53.33% respectively assigned positive

rates to the Janas and LSI models.
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Mean Std Mode

Janas Semantic Model 4.17 1.66 3

Context-related Semantic Model 6.53 1.43 6

LSI Model 4.7 1.42 5

Table 5.10: Evaluation of the ninth question for the three semantic models

5.3.2 Models Comparison

The subjects were asked to try some free-text queries. Finally, they had

to evaluate the overall performances of each of the three models, taking

into consideration the retrieving performances obtained with the predefined

queries and with free-text queries. The results are presented in table 5.11.

Mean Std Mode

Janas Semantic Model 5.03 1.3 5

Context-related Semantic Model 7.1 1.18 8

LSI Model 6.37 1.1 7

Table 5.11: Overall evaluation for the three semantic models

On the overall, the subjects evaluated our model with highest rates. The

mode of the ratings for our model is 8, agreed by 36.66% of the testers.

On the overall, the LSI model obtained positive results, while the original

Janas semantic model has been evaluated on average with neutral rates. It

is interesting to notice that professional subjects preferred our model. In

fact they evaluated our model with an average rate of 7.43, while at the

same time they assigned an average rate of 6.14 to the LSI model and 5.43

to the original Janas semantic model.

5.3.3 Overall System Evaluation

In the last section of the questionnaire the subjects were asked to give an

overall evaluation of the system. The results are reported in table 5.12.

The subjects evaluated positively the overall system, its usefulness and the

possibility to use it in real life, assigning a mode rate equal to 7 to all the

questions.

5.3.4 Result Analysis

The obtained results show that our Contextual-related semantic model clearly

outperformed the original semantic model proposed in [9], that combined ED
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Mean Std Mode

Do you think this system is useful? 7.07 1.46 7

Would you ever use this kind of system? 6.59 1.69 7

Taking into account the results, the idea of se-

mantic research and the implementation, the

functionalities, usefulness and potentials, how

do you evaluate the system in general?

7.34 1.4 7

Table 5.12: Overall evaluation of the system

and NED descriptors. The LSI model obtained positive evaluations for some

predefined queries, but in general the testers preferred the retrieving per-

formances of our model. By defining three different musical contexts, our

Contextual-related semantic model is particularly useful when the user query

contains multiple terms belonging to different contexts. The other models

instead, are not able to distinguish the contexts and they define semantic

relations between terms even if they belong to different contexts.

At the end of the questionnaire, the subjects were asked to express some

considerations. Some testers referred that they found the dataset of the sys-

tem too small, producing similar results to different queries. Other subjects

suggested to add a genre specification, in order to retrieve only songs with

a similar high-level description that belong to the same genre.
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Chapter 6

Conclusions and Future

Developments

In this chapter we review the work presented in the thesis and we provide a

list of possible applications and future developments for this study.

6.1 Conclusions

In this thesis we proposed a new approach for high-level description of music

content. The purpose of the work is to define a music-related semantic model

that represents music description in a dimensional space composed by three

different contexts. The contexts are: perceived emotion, timbre description

and dynamicity. Contrary to the most popular dimensional semantic models

that define descriptor as points in a space, our approach is focused on the

semantic relation between pairs of descriptors belonging to the same con-

text. The semantic relations between descriptors, as well as their contexts

membership, have been manually annotated through an online survey.

Our work belongs to the Music Information Retrieval research field. It

aims at building an effective music search application that allows users to

retrieve music content by semantic description. In order to evaluate the

performances of our model, we integrated it in a music search engine based

on textual queries [9]. The retrieving results of our system have been com-

pared to the results obtained with other two music description approaches,

the approach originally used in [9] (Janas) and a co-occurrence approach

based on Latent Semantic Indexing [2], a popular model for music retrieval.

We conducted an experiment in order to collect ratings of these different

models. Testers evaluated our model as the best one, followed by LSI and

Janas approaches. In particular, our model outperformed the other ones

75
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when complex queries containing multiple terms in different contexts are

requested by the user. In fact, our model is the only one able to map music

descriptors on multiple semantic spaces defined by the contexts. Overall,

the testers appreciated the idea of the system.

We believe that our model can be easily integrated in commercial retrieval

systems that make use of much bigger music collections.

6.2 Future Developments

In this section we present several future developments and applications that

could derive from this work.

6.2.1 Contextual-related Semantic Model Refinement

In this work we defined three music contexts: Perceived Emotion, Timbre

Description and Dynamicity. Each context contains a set of specific terms,

for which we estimated their semantic relations through a survey. In a

future implementation, this innovative approach could be expanded with

the definition of new contexts for music description, such as the Genre and

the Player Performance.

Moreover, several terms in different music contexts may be semantically

related. For example, the affective term Aggressive and the dynamic term

Fast have a semantic relation even if they do not share the same context.

A next development of the model may introduce a formal relation weight

between terms belonging to different contexts.

As a proof of concept, our implementation contained a total of 40 popular

terms for music description. A further improvement of the system consists

in the introduction of new terms in all the contexts.

6.2.2 Dataset Expansion, Semantic Web Integration and So-

cial Tagging

In our work we used a dataset that includes 380 song excerpts of 15 seconds

each. Expanding the size of the dataset may produce more accurate results

for the user. Furthermore, a future development may consist in adding song

meta information by using a music-based Semantic Web service, such as

MusicBrainz 1. This approach could leads to semantically enriched queries,

like: “I want to listen to a happy 1962 jazzy track by John Coltrane recorded

at Van Gelder Studio”. Since our Contextual-related semantic model deals

1MusicBrainz, http://musicbrainz.org/
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with the semantic similarity of music descriptor, it can be also used in order

to enrich the song annotations gathered from a social tagging platform, such

as Last.fm.

6.2.3 User Personalization

High-level description of music carries a great semantic significance, but

at the same time it is highly subjective. A possible improvement consists

in building a description model suited to users, where semantic relations

between terms in different contexts are personalized. With this approach

we obtain a personalized model, biased by the user semantic interpretation

of terms and songs. Nevertheless, a manual personalization process implies

a high cognitive load for the users. Thus, an automatic process that infers

user’s semantic perception should be preferred.

6.2.4 Speech-driven Query

Emerging technologies aims at facilitating the interaction between comput-

ers and human. New applications like Google Glass2 allow users to express

query by speech for retrieving multimedia information. Future development

of our work may consist in the integration of the system with a speech-driven

query module.

6.2.5 Online Music Streaming

Our system is scalable, since it is based on a content-based approach. There-

fore, it could be easily integrated as a plugin into an online music streaming

service, such as Spotify, in order to provide an alternative music browsing

experience.

6.2.6 Time-varying Description

Our system dealt with song excerpts of 15 second each, that have been

annotated with one or more high-level descriptors, representing the overall

music content. In order to capture the song evolution over time, it could

be interesting to study emotion-related and non emotion-related descriptors

in a time-varying fashion. This could allow users to interrogate the system

with queries like: “Give me a song that is happy for at least 30 second and

then it is anxious for 15 second”.

2Google Glass Project, http://www.google.com/glass/
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Appendix A

List of Songs

In the following part we list the songs in the dataset of the system. The

songs that have been automatically annotated are indicated in bold.

Artist Album Title

1 1 I Can t Believe

1 1 Sweet

10cc For you and i

3 Doors Down The Better Life Be Like That

3 Doors Down The Better Life Duck And Run

Aaron neville Tell it like it is

Abba Arrival Tiger

Abba Voulez-Vous The King Has Lost His

Crown

Abba Voulez-Vous Does Your Mother Know

Abc Poison arrow

AC/DC Back In Black What Do You Do For Money

Honey

AC/DC Back In Black Hells Bells

Ac dc Dirty deeds done dirt

cheap

Ace of Base The Sign Happy Nation

Aerosmith Dude looks like a lady

Aerosmith Nine Lives Taste Of India

Aerosmith Live Bootleg Back In The Saddle

Aerosmith A Little South of Sanity -

Disk 1

Same Old Song And Dance

Aerosmith Nine Lives Pink

Aimee mann Wise up

Air Sexy boy

Al green Sha-la-la make me happy

Alan Jackson Who I Am Let s Get Back To Me And

You

Alan Jackson Who I Am All American Country Boy

Alanis Morissette MTV Unplugged Ironic

Alice cooper Elected

Alice DeeJay Who Needs Guitars Anyway Celebrate Our Love

Alice in chains No excuses

Alicia keys Fallin

All Saints All Saints Never Ever

All Saints All Saints Lady Marmalade

Allman brothers band Melissa

Ani difranco Crime for crime

Andrews sisters Boogie woogie bugle boy

Animals Im crying

Antonio carlos jobim Wave

Aphex twin Come to daddy

Aqua Aquarium Calling You

Aqua Aquarius Cuba Libre

Aqua Aquarium My Oh My
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Aretha franklin Dont play that song

Art tatum Willow weep for me

Ashford and simpson Solid

Association Windy

A tribe called quest Bonita applebum

Backstreet Boys Black Blue Everyone

Backstreet boys As long as you love me

Bad Brains I Against I House Of Suffering

Badly drawn boy All possibilities

Band King harvest has surely

come

Barenaked ladies Its all been done

Barry white Cant get enough of your

love babe

B.b. king Sweet little angel

BBMak Sooner Or Later Love On The Outside

Beatles A Hard Day s Night If I Fell

Beatles Magical Mystery Tour All You Need Is Love

Beatles Beatles For Sale Everybody s Trying To Be

My Baby

Beatles A Hard Day s Night And I Love Her

Beatles Beatles For Sale Rock And Roll Music

Beatles The Long And Winding

Road

Beatles Strawberry fields forever

Bee gees Stayin alive

Ben Folds Five Whatever And Ever Amen Brick

Ben folds five Brick

Billie holiday God bless the child

Billy Joel Piano Man Captain Jack

Billy Joel The Stranger Scenes From an Italian

Restaurant

Billy joel We didnt start the fire

Black sabbath Black sabbath

Blind Melon Blind Melon Holyman

Blink 182 Enema Of The State Dysentery Gary

Blood Sweat Tears Blood Sweat Tears Spinning Wheel

Bloodhound Gang One Fierce Beer Coaster Shut Up

Blue oyster cult Burnin for you

Blur Country house

Bob Dylan Live at Budokan Disc 1 Ballad of a thin man

Bobby womack Womans gotta have it

Bon Jovi New Jersey Living In Sin

Bon Jovi Slippery When Wet Livin On a Prayer

Bonnie tyler Total eclipse of the heart

Boston Boston Foreplay Long Time

Boston More than a feeling

Brad sucks Overreacting

Breeders Cannonball

Bruce springsteen Badlands

Bruce Springsteen Live 1975-1985 disc 3 The Promised Land

Bryan Adams On A Day Like Today Inside Out

Bryan Adams On A Day Like Today Where Angels Fear To Tread

Bryan Adams So Far So Good Cuts Like A Knife

Bryan adams Cuts like a knife

Buddy holly Peggy sue

Buena vista social club El cuarto de tula

Buggles Video killed the radio

star

Busta Rhymes Extinction Level Event -

The Final World Front

Just Give It To Me Raw

Busta Rhymes Anarchy Here We Go Again

Byrds Wasnt born to follow

Cab calloway Minnie the moocher

Cake Perhaps

Cake Fashion Nugget She ll Come Back To Me

Cardigans Lovefool

Carly simon Youre so vain

Charles mingus Mood indigo

Cheap Trick Silver Day Tripper

Cheap Trick Silver - Disc 1 World s Greatest Lover

Chet baker These foolish things
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Chicago Chicago X Gently I ll Wake You

Christina Aguilera Christina Aguilera So Emotional

Christina Aguilera Christina Aguilera I Turn To You

Chumbawamba Tubthumper Amnesia

Chumbawamba Tubthumping

Cilla black Alfie

Clash Lost in the supermarket

Coldplay Clocks

Collective Soul Hints Allegations and

Things Left Unsaid

Breathe

Collective Soul Collective Soul Gel

Collective Soul Hints Allegations and

Things Left Unsaid

Wasting Time

Counting Crows This Desert Life Hanginaround

Counting Crows Across A Wire - Live In

NYC From The Ten Spot

CD 2

Raining In Baltimore

Counting Crows August and Everything Af-

ter

Perfect Blue Buildings

Counting Crows Across A Wire - Live In

NYC From The Ten Spot

CD 2

Round Here

Craig David Born To Do It Last Night

Cream Tales of brave ulysses

Creedence clearwater re-

vival

Travelin band

Creedence Clearwater Re-

vival

Pendulum It s Just A Thought

Creedence Clearwater Re-

vival

Cosmo s Factory Before You Accuse Me

Crosby stills and nash Guinnevere

Cyndi lauper Money changes every-

thing

Cypress Hill IV Dead Men Tell No Tales

Cypress Hill Live at the Fillmore Riot Starter

D’Angelo Voodoo Chicken Grease

Dave Matthews Band Live at Red Rocks 8 15 95

Disc 1

Best Of What s Around

Dave Matthews Band R.E.M.ember Two Things The Song That Jane Likes

De la soul Eye know

Dead kennedys Chemical warfare

Def Leppard Adrenalize I Wanna Touch U

Deftones White Pony Rx Queen

Depeche mode World in my eyes

Depeche Mode People Are People People Are People

Devo Girl u want

Dido Here with me

Dionne warwick Walk on by

Dire straits Money for nothing

Disturbed The Sickness Down With The Sickness

Disturbed The Sickness Voices

Dixie Chicks Wide Open Spaces Never Say Die

Dixie Chicks Wide Open Spaces Give It Up Or Let Me Go

DMX Flesh Of My Flesh Blood Of

My Blood

Bring Your Whole Crew

Don McLean Favorites And Rarities -

Disc 1

American Pie

Donovan Catch the wind

Dr. Dre 00 Forgot About Dre ft Em-

inem

Duran Duran Arena Hungry Like The Wolf

Elvis Presley Elvis Christmas Album I Believe

Eminem My fault

Enya Watermark Orinoco Flow

Erasure Chains of love

Erasure Chorus Joan

Eric Clapton Crossroads 2 Disc 4 Kind hearted woman

Eric Clapton Crossroads 2 Disc 2 Layla

Eric Clapton Unplugged Tears in Heaven

Eric Clapton Unplugged Old Love

Eric clapton Wonderful tonight

Eurythmics Sweet dreams
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Evanescence My immortal

Everclear So Much For The Afterglow I Will Buy You A New Life

Everclear Sparkle And Fade Pale Green Stars

Everlast Whitey Ford Sings the Blues Hot To Death

Everlast Eat At Whitey s I Can t Move

Everlast Whitey Ford Sings the Blues Years

Everything but the Girl Amplified Heart Rollercoaster

Everything but the Girl Amplified Heart Missing

Faith no more Epic

Fatboy Slim You ve Come a Long Way

Baby

Kalifornia

Finger Eleven The Greyest Of Blue Skies Suffocate

Finger Eleven The Greyest Of Blue Skies Famous

Fleetwood Mac The Dance Dreams

Fleetwood mac Say you love me

Flying burrito brothers Break my mind

Foo fighters Big me

Foreigner Agent Provocateur I Want To Know What Love

Is

Franz ferdinand Come on home

Garbage Garbage Only Happy When It Rains

Garth Brooks Ropin The Wind The Lim-

ited Series

Which One Of Them

Garth Brooks The Chase Learning To Live Again

Gary Wright The Dream Weaver Made To Love You

Genesis From Genesis To Revelation

Disky version

In The Wilderness

Genesis Live - The Way We Walk -

Volume One - The Shorts

Jesus He Knows Me

Genesis Cuckoo cocoon

George harrison All things must pass

Green Day Dookie Burnout

Huey Lewis and the News Fore I Never Walk Alone

Ja Rule Venni Vetti Vecci World s Most Dangerous

feat Nemesis

James brown Give it up or turnit a

loose

Jamiroquai Little l

Janet Jackson Rhythm Nation 1814 Someday Is Tonight

Jeff buckley Last goodbye

Jennifer Paige Jennifer Paige Always You

Jennifer Paige Jennifer Paige Between You and Me

Jerry lee lewis Great balls of fire

Jessica Andrews Who Am I Who Am I

Jimi Hendrix Experience Are You Experienced The Wind Cries Mary

Jimi hendrix Highway chile

Joe Cocker Joe Cocker Live When The Night Comes

John cale Pablo picasso

John coltrane Giant steps

John Denver An Evening With John Den-

ver - Disc 2

Take Me Home Country

Roads

John lee hooker Boom boom

Joy division Love will tear us apart

Junior murvin Police and thieves

King crimson Thela hun ginjeet

Keith Sweat Keith Sweat Chocolate Girl

Kenny Loggins Outside from the Redwoods Now And Then

Kraftwerk Spacelab

Kris kristofferson The best of all possible

worlds

La Bouche Sweet Dreams Fallin In Love

Lara Fabian Lara Fabian I am Who I am

Lauryn Hill The Miseducation of Lauryn

Hill

Final Hour

Led Zeppelin In Through The Out Door Carouselambra

Led Zeppelin Led Zeppelin I You Shook Me

Led zeppelin Immigrant song

Leonard cohen Suzanne

Les Rythmes Digitales Darkdancer Take a Little Time

Les Rythmes Digitales Darkdancer Sometimes

Lifehouse No Name Face Sick Cycle Carousel

Lifehouse No Name Face Quasimodo
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Live The Distance To Here Run to the Water

Live Throwing Copper Waitress

LL Cool J mr smith I Shot Ya

LL Cool J G O A T Imagine That

LL Cool J G O A T Back Where I Belong

Lou Bega A Little Bit Of Mambo Mambo Mambo

Lou Bega A Little Bit Of Mambo The Trumpet Part II

Lou reed Walk on the wild side

Louis armstrong Hotter than that

Lynyrd Skynyrd Lyve From Steel Town CD 1 Saturday Night Special

Lynyrd skynyrd Sweet home alabama

Madison Avenue Polyester Embassy Who The Hell Are You Orig-

inal Mix

Marilyn Manson Holy Wood Coma Black

Marilyn Manson The Last Tour On Earth Astonishing Panorama Of

the Endtimes

Marvin Gaye Let s Get It On Let s Get It On

Marvin gaye Whats going on

Me First and the Gimme

Gimmes

Are a Drag Stepping Out

Metallica One

Michael Jackson Off The Wall Rock With You

Michael Jackson Thriller Human Nature

Michael Jackson Off The Wall Working Day And Night

Michael jackson Billie jean

Miles davis Blue in green

Montell Jordan Get It On Tonight let s cuddle up featuring

LOCKDOWN

Moby Porcelain

Modest mouse What people are made of

Montell Jordan This Is How We Do It Down On My Knees

Morrissey Everyday is like sunday

Mudvayne L d 50 Prod

Mudvayne L d 50 Internal Primates Forever

MxPx On The Cover No Brain

Mystikal Let s Get Ready Mystikal Fever

Natalie imbruglia Torn

Neil Diamond Hot August Night - Disc 1 Sweet Caroline

Neil Diamond Hot August Night Disk 2 Canta Libre

Neil Diamond Hot August Night - Disc 1 Shilo

Neil Young Harvest Words Between The Lines

Of Age

New Radicals Maybe You ve Been Brain-

washed Too

Technicolor Lover

New Radicals Maybe You ve Been Brain-

washed Too

I Don t Wanna Die Anymore

Next Welcome II Nextasy Cybersex

Nine Inch Nails The Fragile Right The Big Come Down

Nine inch nails Head like a hole

No doubt Artificial sweetener

No doubt Simple kind of life

Norah jones Dont know why

Oasis Supersonic

Olivia Newton-John Olivia Summer Nights Grease

Our Lady Peace Happiness Is Not A Fish

That You Can Catch

Blister

Papa Roach Infest Broken Home

Paula Abdul Forever Your Girl Opposites Attract

Pennywise Straight Ahead Might Be a Dream

Pennywise Straight Ahead Straight Ahead

Phil Collins But Seriously Heat On The Street

Phil Collins But Seriously I Wish It Would Rain Down

Phil Collins Hello I Must Be Going Thru These Walls

Pink floyd Echoes

Pixies Wave of mutilation

Pj harvey Dry

Placebo Black Market Music Passive Aggressive

Portishead All mine

Primus Jerry was a race car

driver

Queen The Game Save Me

Queen The Works I Go Crazy
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Queen Live Magic Is This The World We Cre-

ated

Queen The Works Is This The World We Cre-

ated

Queen We will rock you

R.E.M. Dead Letter Office Burning Hell

R.E.M. Dead Letter Office Femme Fatale

Radiohead OK Computer No Surprises

Radiohead Karma police

Rage Against the Machine Renegades Microphone Fiend

Rancid and out Come the Wolves As Wicked

Red hot chili peppers Give it away

Richard Marx Repeat Offender Satisfied

Robert johnson Sweet home chicago

Rod Stewart Vagabond Heart Rebel Heart

Rod Stewart Vagabond Heart If Only

Rod Stewart Vagabond Heart Have I Told You Lately

Rolling Stones Tattoo You Worried About You

Roxette Look Sharp Dance Away

Roxette Joyride soul deep

Run-D.M.C. Raising Hell Hit It Run

Sade Love Deluxe Like A Tattoo

Sade Sade LOVERS ROCK LOVERS ROCK

Savage Garden Affirmation The Animal Song

Scorpions World Wide Live Make It Real

Seven Mary Three American Standard Anything

Shakira The one

Shania Twain Come On Over Honey I m Home

Shania Twain The Woman In Me Home Ain t Where His

Heart Is Anymore

Sheryl Crow Live from Central Park There Goes The Neighbor-

hood

Sisqo Unleash The Dragon Unleash The Dragon feat

Beanie Sigel

Smiths How soon is now

Sonic youth Teen age riot

Sonny rollins Strode rode

Soul Asylum Grave Dancers Union Somebody To Shove

Soundgarden Black hole sun

Spencer davis group Gimme some lovin

Spice girls Stop

Spineshank Strictly Diesel Slipper

Spineshank Strictly Diesel While My Guitar Gently

Weeps

Stan getz Corcovado quiet nights

of quiet stars

Steppenwolf Born to be wild

Steve Winwood Back in the High Life Split Decision

Stevie Wonder Songs in the Key of Life Disc

2

Isn t She Lovely

Stevie Wonder Songs in the Key of Life Disc

2

As

Stevie Wonder Songs In The Key Of Life

Disc 1

Sir Duke

Sting Big lie small world

Stone Temple Pilots Tiny Music Songs from the

Vatican Gift Shop

Adhesive

Stranglers Golden brown

Stroke 9 Nasty Little Thoughts One Time

Styx Return To Paradise Disc 2 Fooling Yourself The Angry

Young Man

Styx Return To Paradise Disc 2 Show Me The Way

Styx The Grand Illusion Come Sail Away

Talking heads And she was

The Bangles Different Light Following

The Bee Gees Here At Last Bee Gees Live

Disc Two

Down The Road

The Cardigans Gran Turismo Starter

The Chemical Brothers Surrender Out of Control

The Corrs In Blue Somebody for someone

The Cranberries No Need To Argue Ridiculous Thoughts

The Cranberries No Need To Argue Yeat s Grave
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The Everly Brothers The Fabulous Style of All I Have To Do Is Dream

The Human League The Very Best of Heart Like A Wheel

The Police Live Disc One - Orpheum

WBCN Boston Broadcast

Hole In My Life

The Police Live Disc Two - Atlanta

Synchronicity Concert

Walking In Your Footsteps

The Police Live Disc Two - Atlanta

Synchronicity Concert

So Lonely

The Presidents of the

United States of America

unknown Body

The Verve Urban Hymns Weeping Willow

Thelonious monk Epistrophy

Tim McGraw A Place In The Sun Somebody Must Be Prayin

For Me

Tina Turner Tina Live In Europe CD 1 What s Love Got To Do

With It

TLC FanMail Don t Pull Out On Me Yet

Toby Keith How Do You Like Me Now Do I Know You

Todd rundgren Bang the drum all day

Toni Braxton Secrets Come On Over Here

Toni Braxton Toni Braxton I Belong to You

Tool Aenima Stinkfist

Tool Aenima Hooker with a Penis

Tricky Christiansands

U2 All That You Can t Leave

Behind

Elevation

Ugly Kid Joe America s Least Wanted Cats In The Cradle

Ultravox Dancing with tears in my

eyes

Van Halen 98 House of Pain

Wade Hayes Old Enough To Know Bet-

ter

Kentucky Bluebird

Weezer Buddy holly

Wes montgomery Bumpin

Westlife Westlife I Need You

White stripes Hotel yorba

White Zombie Supersexy Swingin Sounds Electric Head Pt Satan in

High Heels Mix

Whitney Houston Whitney Houston Greatest Love Of All

Wu-Tang Clan Wu-Tang Forever Disc 2 Dog Shit

Wu-Tang Clan Enter The Wu-Tang 36

Chambers

WuTang th Chamber Part II

Wu-Tang Clan u-Tang Forever Disc one Reunited

Xzibit Restless Rimz Tirez feat Defari

Goldie Loc Kokane

Xzibit Restless D N A DRUGSNALKAHOL

feat Snoop Dogg
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Appendix B

Semantic Similarity

In the following part we attach the semantic similarity between terms ob-

tained through a survey. The semantic similarity has been defined in the

range [−1, 1], where −1 represent opposite semantic (opposite meaning) and

1 represent same semantic (same meaning). When two terms are semanti-

cally independent, their semantic similarity is 0.

Perceived Emotion

Term 1 Term 2 Semantic Similarity

Aggressive Angry 0.3

Aggressive Annoyed -0.1

Aggressive Anxious 0.32

Aggressive Boring -0.575

Aggressive Calm -0.8

Aggressive Carefree -0.267

Aggressive Cheerful -0.675

Aggressive Dark 0.033

Aggressive Depressed -0.6

Aggressive Exciting 0.2

Aggressive Frustrated 0.375

Aggressive Fun -0.6

Aggressive Funny -0.575

Aggressive Happy -0.35

Aggressive Joyful 0.075

Aggressive Light -0.575

Aggressive Nervous 0.225

Aggressive Quiet -0.967

Aggressive Relaxed -0.933

Aggressive Sad -0.175

Aggressive Serious -0.167

Aggressive Sweet -0.85

Aggressive Tender -0.9

Aggressive Tense 0.2

Angry Annoyed -0.467

Angry Anxious 0.15

Angry Boring -0.375

Angry Calm -0.78

Angry Carefree -0.7

Angry Cheerful -0.575

Angry Dark 0.625

Angry Depressed 0.425

Angry Exciting -0.275
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Angry Frustrated 0.575

Angry Fun -0.75

Angry Funny -0.275

Angry Happy -0.88

Angry Joyful -0.767

Angry Light -0.467

Angry Nervous 0.475

Angry Quiet -0.85

Angry Relaxed -0.5

Angry Sad 0.075

Angry Serious 0.2

Angry Sweet -0.85

Angry Tender -0.825

Angry Tense 0.533

Annoyed Anxious -0.15

Annoyed Boring 0.275

Annoyed Calm -0.133

Annoyed Carefree -0.8

Annoyed Cheerful -0.525

Annoyed Dark -0.45

Annoyed Depressed 0.45

Annoyed Exciting -0.733

Annoyed Frustrated 0.3

Annoyed Fun -0.925

Annoyed Funny -0.78

Annoyed Happy -0.85

Annoyed Joyful -0.825

Annoyed Light -0.567

Annoyed Nervous 0.225

Annoyed Quiet 0.233

Annoyed Relaxed -0.967

Annoyed Sad 0.1

Annoyed Serious 0.1

Annoyed Sweet -0.44

Annoyed Tender -0.333

Annoyed Tense -0.275

Anxious Boring -0.66

Anxious Calm -0.5

Anxious Carefree -0.65

Anxious Cheerful -0.5

Anxious Dark 0.225

Anxious Depressed 0.2

Anxious Exciting -0.8

Anxious Frustrated 0.567

Anxious Fun -0.675

Anxious Funny -0.6

Anxious Happy -0.575

Anxious Joyful -0.2

Anxious Light -0.667

Anxious Nervous 0.725

Anxious Quiet -0.875

Anxious Relaxed -0.675

Anxious Sad -0.133

Anxious Serious -0.067

Anxious Sweet -0.34

Anxious Tender -0.3

Anxious Tense 0.775

Boring Calm 0.167

Boring Carefree -0.6

Boring Cheerful -0.867

Boring Dark 0.467

Boring Depressed -0.05

Boring Exciting -0.5

Boring Frustrated 0.3

Boring Fun -0.925

Boring Funny -0.733

Boring Happy -0.75

Boring Joyful -0.375

Boring Light -0.067

Boring Nervous -0.1

Boring Quiet 0.2

Boring Relaxed -0.35
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Boring Sad 0.1

Boring Serious -0.18

Boring Sweet -0.55

Boring Tender 0.05

Boring Tense -0.6

Calm Carefree 0

Calm Cheerful 0.125

Calm Dark -0.175

Calm Depressed 0.175

Calm Exciting -0.867

Calm Frustrated -0.46

Calm Fun -0.05

Calm Funny 0.02

Calm Happy 0.24

Calm Joyful -0.025

Calm Light 0.325

Calm Nervous -1

Calm Quiet 0.933

Calm Relaxed 0.8

Calm Sad -0.05

Calm Serious 0.225

Calm Sweet 0.425

Calm Tender 0.275

Calm Tense -0.925

Carefree Cheerful 0.375

Carefree Dark -0.7

Carefree Depressed -0.633

Carefree Exciting -0.025

Carefree Frustrated -0.825

Carefree Fun 0.333

Carefree Funny 0.5

Carefree Happy 0.767

Carefree Joyful 0.5

Carefree Light 0.05

Carefree Nervous -0.967

Carefree Quiet 0.25

Carefree Relaxed 0.35

Carefree Sad -0.6

Carefree Serious 0.033

Carefree Sweet 0.52

Carefree Tender -0.033

Carefree Tense -0.85

Cheerful Dark -0.7

Cheerful Depressed -0.85

Cheerful Exciting 0.45

Cheerful Frustrated -0.533

Cheerful Fun 0.52

Cheerful Funny 0.5

Cheerful Happy 0.675

Cheerful Joyful 0.82

Cheerful Light 0.3

Cheerful Nervous -0.4

Cheerful Quiet -0.25

Cheerful Relaxed 0.433

Cheerful Sad -0.75

Cheerful Serious -0.6

Cheerful Sweet 0.5

Cheerful Tender -0.125

Cheerful Tense -0.5

Dark Depressed 0.68

Dark Exciting -0.333

Dark Frustrated 0.125

Dark Fun -0.76

Dark Funny -0.375

Dark Happy -0.9

Dark Joyful -0.725

Dark Light -0.74

Dark Nervous 0.267

Dark Quiet 0.533

Dark Relaxed -0.325

Dark Sad 0.175

Dark Serious 0
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Dark Sweet -0.325

Dark Tender -0.433

Dark Tense 0.25

Depressed Exciting -1

Depressed Frustrated 0.45

Depressed Fun -1

Depressed Funny -0.775

Depressed Happy -0.9

Depressed Joyful -0.9

Depressed Light -0.825

Depressed Nervous 0.1

Depressed Quiet -0.525

Depressed Relaxed -0.05

Depressed Sad 0.725

Depressed Serious -0.15

Depressed Sweet -0.375

Depressed Tender -0.325

Depressed Tense 0.167

Exciting Frustrated -0.42

Exciting Fun 0.5

Exciting Funny 0.4

Exciting Happy 0.5

Exciting Joyful 0.333

Exciting Light 0.033

Exciting Nervous 0.075

Exciting Quiet -0.48

Exciting Relaxed -0.5

Exciting Sad -0.625

Exciting Serious -0.7

Exciting Sweet -0.275

Exciting Tender -0.4

Exciting Tense -0.1

Frustrated Fun -0.725

Frustrated Funny -0.45

Frustrated Happy -0.825

Frustrated Joyful -0.925

Frustrated Light -0.8

Frustrated Nervous 0.64

Frustrated Quiet -0.725

Frustrated Relaxed -0.45

Frustrated Sad 0.367

Frustrated Serious 0.067

Frustrated Sweet -0.867

Frustrated Tender -0.325

Frustrated Tense 0.475

Fun Funny 0.267

Fun Happy 0.625

Fun Joyful 0.675

Fun Light 0.183

Fun Nervous 0.167

Fun Quiet 0.025

Fun Relaxed -0.075

Fun Sad -0.85

Fun Serious -0.9

Fun Sweet 0.18

Fun Tender -0.133

Fun Tense -0.32

Funny Happy 0.325

Funny Joyful 0.575

Funny Light 0.225

Funny Nervous -0.525

Funny Quiet 0.025

Funny Relaxed 0.05

Funny Sad -0.833

Funny Serious -0.875

Funny Sweet 0.45

Funny Tender -0.05

Funny Tense -0.233

Happy Joyful 0.975

Happy Light 0.375

Happy Nervous -0.325

Happy Quiet 0
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Happy Relaxed 0.525

Happy Sad -1

Happy Serious -0.32

Happy Sweet 0.48

Happy Tender 0.3

Happy Tense -0.45

Joyful Light 0.35

Joyful Nervous -0.48

Joyful Quiet -0.125

Joyful Relaxed 0.14

Joyful Sad -0.925

Joyful Serious -0.625

Joyful Sweet 0.433

Joyful Tender 0.633

Joyful Tense -0.85

Light Nervous -0.833

Light Quiet 0.4

Light Relaxed 0.3

Light Sad -0.55

Light Serious -0.625

Light Sweet 0.7

Light Tender 0.3

Light Tense -0.733

Nervous Quiet -0.84

Nervous Relaxed -1

Nervous Sad -0.14

Nervous Serious 0.125

Nervous Sweet -0.567

Nervous Tender -0.625

Nervous Tense -0.033

Quiet Relaxed 0.675

Quiet Sad 0.033

Quiet Serious 0.3

Quiet Sweet 0.48

Quiet Tender 0.4

Quiet Tense -0.52

Relaxed Sad 0.167

Relaxed Serious -0.16

Relaxed Sweet 0.55

Relaxed Tender 0.58

Relaxed Tense -0.667

Sad Serious 0.25

Sad Sweet -0.275

Sad Tender -0.15

Sad Tense 0.133

Serious Sweet -0.35

Serious Tender -0.325

Serious Tense 0.25

Sweet Tender 0.8

Sweet Tense -0.475

Tender Tense -0.15

Timbre Description

Term 1 Term 2 Semantic Similarity

Bright Clean 0.54

Bright Dark -1

Bright Hard -0.1

Bright Harsh -0.667

Bright Heavy -0.867

Bright Rough -0.467

Bright Smooth 0.35

Bright Soft 0.4

Bright Warm -0.025

Clean Dark -0.3

Clean Hard -0.375

Clean Harsh -0.75

Clean Heavy -0.5
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Clean Rough -0.9

Clean Smooth 0.75

Clean Soft 0.5

Clean Warm 0.067

Dark Hard 0.375

Dark Harsh 0.233

Dark Heavy 0.175

Dark Rough 0.2

Dark Smooth -0.325

Dark Soft -0.1

Dark Warm -0.1

Hard Harsh 0.4

Hard Heavy 0.867

Hard Rough 0.475

Hard Smooth -0.675

Hard Soft -1

Hard Warm -0.567

Harsh Heavy 0.167

Harsh Rough 0.725

Harsh Smooth -0.925

Harsh Soft -0.75

Harsh Warm -0.5

Heavy Rough 0.35

Heavy Smooth -0.4

Heavy Soft -0.675

Heavy Warm -0.35

Rough Smooth -0.65

Rough Soft -0.7

Rough Warm -0.625

Smooth Soft 0.6

Smooth Warm 0.575

Soft Warm 0.433

Dynamicity

Term 1 Term 2 Semantic Similarity

Calm Dynamic -0.65

Calm Fast -0.5

Calm Flowing 0.133

Calm Quiet 0.833

Calm Relaxed 0.867

Calm Slow 0.55

Calm Static 0.3

Calm Stuttering -0.7

Dynamic Fast 0.2

Dynamic Flowing 0.3

Dynamic Quiet -0.7

Dynamic Relaxed -0.58

Dynamic Slow -0.675

Dynamic Static -1

Dynamic Stuttering -0.175

Fast Flowing -0.267

Fast Quiet -0.75

Fast Relaxed -0.933

Fast Slow -1

Fast Static -0.78

Fast Stuttering -0.433

Flowing Quiet -0.067

Flowing Relaxed 0.033

Flowing Slow -0.1

Flowing Static -0.85

Flowing Stuttering -0.775

Quiet Relaxed 0.3

Quiet Slow 0.367

Quiet Static 0.65

Quiet Stuttering -0.275

Relaxed Slow 0.575

Relaxed Static 0.1



95

Relaxed Stuttering -0.567

Slow Static 0.467

Slow Stuttering -0.375

Static Stuttering -0.533
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Appendix C

Model Evaluation Test

In the following part we attach the questionnaire used for the evaluation of

the system.

Semantic Models Comparison

What kind of listener are you? Please choose only one answer

Beginner (I listen to music less than three hours a day)

Expert (I listen to music more than three hours a day)

Professional (I listen to music also for reasons related to my job)

Predefined queries

Please test these queries and evaluate the quality of results with a mark in

a 9 point-scale, where 1 means very bad and 9 is the optimum. Quality is

intended as the correspondence of songs results with respect to the query

content. 5 indicates a neutral mark.
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1 2 3

Query (1-9) (1-9) (1-9)

1) I want a highly relaxed and depressed song

2) I would like to listen to a moderately angry track

3) I want a happy and rather exciting music piece

4) Give me a tender and considerably bright song

5) Retrieve a little relaxed, somewhat bright and

static song

6) I would like to listen to a dynamic and quite a

bit carefree track

7) Please give me a hard, slightly aggressive and

fast song

8) Give me a little frustrated and partly calm song

9) Give me a mainly dark, quite flowing and partly

nervous track
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Free-text queries

Please try some free-text queries and do evaluate the performances.

Please consider the attached list of currently available adjectives and quali-

fiers in order to compose the query.

System Evaluation

Please evaluate the overall performances of the three systems:

1 2 3 4 5 6 7 8 9

Model 1

Model 2

Model 3

General Evaluation
1 2 3 4 5 6 7 8 9

Do you think this system is useful? (1:

not at all - 5 can’t really say - 9 : very

useful)

Would you ever use this kind of system?

(1: not at all. 5: I don’t know. 9: Yes,

very often)

Taking into account the results, the

idea of semantic research and the im-

plementation, the functionalities, use-

fulness and potentials, how do you eval-

uate the system in general? (1: very

bad. 5: neutral. 9: very good)

Please indicate optional notes
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Available Adjectives

Aggressive Dark Hard Serious

Angry Depressed Harsh Slow

Annoyed Dynamic Heavy Smooth

Anxious Exciting Joyful Soft

Boring Fast Light Static

Bright Flowing Nervous Stuttering

Calm Frustrated Quiet Sweet

Carefree Fun Relaxed Tender

Cheerful Funny Rough Tense

Clean Happy Sad Warm

Available Qualifiers

a little highly quite

average in-between quite a bit

completely mainly rather

considerably medium slightly

extremely moderately somewhat

fairly not very

fully not at all very much

hardly partly
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