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Abstract

Modern software-intensive systems usually consist of a set of components
which interact to achieve their functionalities. Often those systems are part of a
family of product variants, also called Software Product Line (SPL). Variability
in an SPL is commonly captured by features, i.e. functions or components that
may or may not be present. Although reusing features leads to lower costs and
shorter time in the SPL development process, it also adds complexity to the
design task.

In order to cope with that complexity, an intuitive, yet precise way to design
those systems is required. Recent work proposes an SPL scenario-based speci-
�cation where each feature is associated to a set of Modal Sequence Diagrams
(MSD) specifying its behavioral aspects, allowing us to obtain the speci�cation
of a product by composing that of its constituent features.

However inconsistencies may be introduced. If they remain undetected, some
product could turn out to be unrealizable, leading to costly iterations in the later
development. Thus it is important to ensure that each product is implementable,
beforehand.

This thesis presents a technique to automatically check the consistency of
an SPL speci�cation as a whole, instead of performing a separate check on
each product. We exploit the fact that if variants are similar, the state graphs
induced by each product's speci�cation are also likely to be similar. Given an SPL
speci�cation we derive a global state graph representing all possible executions
of all possible products in any environment. In such a graph we maintain a link
between a given execution and the features needed to trigger it. This information
is then used to determine which products are realizable.

We evaluate the applicability and e�ciency of our approach, achieving ben-
e�ts over performing individual checking of each variant separately. We also
compare our technique with an alternative incremental approach, optimized to
be on-the-�y, i.e. exploring only parts of the state space. We discover that the
latter still performs better when more of those graph portions can be avoided.
We expect that remarkable results could be achieved by making our technique
on-the-�y.



Sommario

I sistemi software-intensive spesso consistono di un insieme di componenti che
interagiscono per adempiere funzionalità complesse. Talvolta essi sono parte di
una famiglia di prodotti simili, detta Software Product Line (SPL). Le di�erenze
e le caratteristiche comuni tra ogni variante possono essere espresse da feature,
cioè funzionalità o componenti facenti parte o meno del prodotto. Sebbene il
riutilizzo di feature porti a una riduzione di costi e tempi nel processo di sviluppo
di SPL, esso aggiunge maggiore complessità al design.

Per far fronte a tale complessità, un recente lavoro propone una speci�ca SPL
basata su scenari in cui, ad ogni feature, viene associato un insieme di Modal
Sequence Diagram (MSD) che ne descrive il comportamento, permettendo di
ottenere la speci�ca di un prodotto come combinazione delle speci�che delle
feature che lo compongono.

Tuttavia le eventuali inconsistenze nelle speci�che, se non tempestivamen-
te rilevate, portano a costose iterazioni nella fase di sviluppo di prodotti non
realizzabili. È dunque importante veri�carne anticipatamente la consistenza.

Questa tesi presenta una tecnica per la veri�ca automatica della consistenza
di un'intera speci�ca SPL, alternativa all'esecuzione di veri�che individuali su
ogni prodotto. Sfruttando il fatto che le speci�che di singole varianti generano
state-graph simili, deriviamo uno state-graph globale da una speci�ca SPL, che
rappresenta tutte le possibili esecuzioni per tutti i possibili prodotti. In questa
fase viene mantenuto un legame tra un'esecuzione e le feature necessarie ad
attivarla. Tali informazioni vengono successivamente utilizzate per determinare i
prodotti realizzabili.

Vengono valutate l'applicabilità e le prestazioni del nostro approccio, otte-
nendo vantaggi rispetto alla veri�ca consecutiva di ogni variante. In aggiunta ci
confrontiamo con un approccio incrementale, ottimizzato per essere on-the-�y,
ovvero per esplorare solo alcune parti dello state-graph. Scopriamo che quest'ul-
timo metodo risulta più e�ciente quando molte porzioni del grafo possono essere
evitate. Riteniamo che notevoli risultati potrebbero essere raggiunti rendendo la
nostra tecnica on-the-�y.



Sommario esteso

I moderni sistemi software-intensive sono tipicamente costituiti da un insieme di
componenti che interagiscono al �ne di adempiere funzionalità complesse. Spesso
tali sistemi sono parte di una famiglia di prodotti, ovvero un insieme di varianti
di prodotto anche chiamata Software Product Line (SPL). Le di�erenze e le
caratteristiche comuni tra ogni variante possono essere espresse da feature, cioè
funzionalità o componenti facenti parte o meno del prodotto. Diversi prodotti
della famiglia possono essere gestiti come diverse combinazioni di queste feature.
Sebbene il riutilizzo di feature porti a una riduzione di costi e tempi nel processo
di sviluppo di SPL, esso aggiunge maggiore complessità al design.

Per far fronte a tale complessità, è necessario adottare un metodo che sia in-
tuitivo, ma anche preciso, per la speci�ca di SPL. Un recente lavoro propone una
speci�ca SPL basata su scenari in cui ogni feature viene associata ad un insieme
di Modal Sequence Diagram (MSD). Questi ultimi rappresentano un'estensione
degli UML sequence diagram e permettono di descrivere gli aspetti comporta-
mentali di ciascuna feature separatamente, gestendo la speci�ca di ogni prodotto
come combinazione delle speci�che delle feature che lo compongono.

Tuttavia se le eventuali inconsistenze nelle speci�che non vengono tempesti-
vamente rilevate, qualche prodotto nella SPL potrebbe rivelarsi irrealizzabile solo
in fase di sviluppo, portando a costose iterazioni. È dunque importante veri�care
la consistenza delle speci�che in maniera preventiva.

Recentemente abbiamo proposto un approccio di tipo game-based per veri�-
care la consistenza di speci�che SPL. La veri�ca di realizzabilità di un prodotto
puó essere e�ettuata a partire dallo state-graph indotto dall'insieme di MSD che
descrivono gli aspetti comportamentali dello stesso. Sfruttando il fatto che per
varianti simili tali state-graph sono molto probabilmente simili, abbiamo sviluppa-
to una tecnica per ottenerli in maniera incrementale, utilizzando di volta in volta
le informazioni recuperate durante le veri�che precedenti. Un limite di questo
approccio è che la sua e�cienza dipende dall'ordine in cui le speci�che di ogni
singola variante sono derivate ed è perciò soggetta a grandi variazioni.

Partendo dalla stessa intuizione, questa tesi presenta una tecnica per la veri-
�ca automatica della consistenza di un'intera speci�ca SPL, alternativa all'ese-
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cuzione di una veri�ca indipendente su ogni variante. Data una speci�ca SPL,
deriviamo uno state-graph globale, rappresentante tutte le possibili esecuzioni di
tutti i prodotti della SPL con qualsiasi ambiente, nel quale viene mantenuto un
collegamento tra una data esecuzione e le feature necessarie ad attivarla. Ta-
li informazioni vengono successivamente utilizzate per determinare l'insieme dei
prodotti realizzabili.

L'approccio viene implementato in ScenarioTools, una suite di strumenti che
supporta la creazione di speci�che SPL e la veri�ca della loro realizzabilità. La
nostra estensione permette di ottenere l'insieme di prodotti realizzabili data una
speci�ca SPL e di visualizzare lo state-graph globale utilizzato durante il processo.

L'applicabilità dell'approccio viene valutata su diversi casi pratici, al �ne di
veri�carne la capacità di riconoscere la non realizzabilità di alcuni prodotti, date
speci�che SPL parzialmente inconsistenti. Valutiamo anche l'e�cienza del no-
stro metodo confrontandolo con quello basato sulla veri�ca consecutiva di ogni
singolo prodotto, ottenendo notevoli bene�ci sia sul numero di stati esplorati
che sul tempo impiegato. E�ettuiamo un confronto anche con l'approccio incre-
mentale precedentemente menzionato, che è ottimizzato per essere on-the-�y,
ovvero permette di esplorare solo parzialmente lo state-space indotto dalla spe-
ci�ca evitando alcuni percorsi alternativi. Scopriamo che quest'ultimo risulta più
e�ciente quando molte porzioni del grafo possono essere evitate. Sulla base dei
test e�ettuati, ci aspettiamo che risultati ancora più signi�cativi potranno essere
ottenuti rendendo la nostra tecnica on-the-�y.



Chapter 1

Introduction

The relationship between software and our life is becoming more and more tight.
Many of our daily activities critically depend on software-intensive systems, i.e.
systems where software contributes to the design, construction, deployment, and
evolution of the system as a whole [IEEE-Std-1471-2000]. We can retrieve those
systems in pretty much all sectors and activities such as banking, communica-
tions, transportation and medicine.

In order to ful�ll user needs, mostly every software development organization
looks for new ways to improve its performance. That is not only about produc-
tivity. Before increasing the operational e�ciency, a primarily important aspect
is eliminating ine�ciencies within the development process itself, i.e. in the set
of steps that leads from the general informal requirements to the executable code
ful�lling those requirements.

One of the major issues in the development of a software product is that
very often informal requirements are ambiguous and sometimes even con�icting.
Thus engineers usually express user requirements more formally as a speci�cation.
While requirements describe what the purpose of the system is, a speci�cation
describes the set of allowed behaviors of a system [Abadi et Al. 1989] in order to
ful�ll the requirements. A speci�cation is a more technical representation of user
needs, but still close to users intuition. This latter characteristic is fundamental to
understand if the speci�cation is an adequate description of the real-life problem.
A speci�cation with which users happen to be comfortable with is the one based
on scenarios [Wiedenhaupt et Al. 1998] i.e. connected sequences of events or
actions taken that should or should not occur within the system under certain
circumstances.

One peculiarity of the systems we are considering is that they are reactive. A
reactive system is commonly de�ned as the one that "keeps an ongoing relation-
ship with its environment" [Harel and Pnueli 1985]. Environment events cannot
be controlled by the system. They are intended as stimuli to which the system
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will react. Systems having no control over environment actions are called open
systems.

UML sequence diagrams [OMG UML 2011] are a popular example of scenario-
based speci�cation used to describe reactive systems. They represent interactions
between di�erent components in a system and its environment in form of mes-
sages exchanged in a particular order. Sequence diagrams are often not expressive
enought to represent the whole complexity of software systems. They emphasize
synchronous message passing and, consequently, they are not particularly e�ec-
tive in describing concurrent activities. Moreover, even in the context of open
reactive systems, one may at least make some assumption on the behavior of the
environment. In UML sequence diagrams this is not possible.

To cope with those limitations we use Modal Sequence Diagrams (MSD) in
our approach. MSDs are an interesting language for scenario-based speci�ca-
tions that extends UML sequence diagrams to describe sequences of messages
that may, must, or must not occur in a system, allowing a distinction between
possible and necessary behavior [Harel and Maoz 2008]. An MSD speci�cation
typically contains a set of MSDs that specify the requirements of the system,
also called requirement MSDs. However, also assumption MSDs can be included,
allowing engineers to make assumptions on the environment's behaviour. Besides
specifying what a system must, may or may not do, such an extended MSD spec-
i�cation is also able to assume how the environment reacts to system events.

Given the typical complexity of software requirements, inconsistencies be-
tween scenarios represent a common risk. If a speci�cation happens to be incon-
sistent, no system will be able to realize it and, as stated in [Abadi et Al. 1989]
a speci�cation is useless if it cannot be realized by any concrete implementation.
Unfortunately very often inconsistencies are detected only later in the develop-
ment process, leading to costly iterations. To increase the e�ciency of a software
development process, it is necessary to avoid the useless e�ort of designing and
implementing products provided with an inconsistent speci�cation. The problem
of automatically constructing a system model from a consistent speci�cation is
known as synthesis. It performs a constructive proof that the speci�cation is
implementable, and that the product is realizable. This method has many con-
siderable advantages. First, in case the speci�cation is not consistent, no time
is wasted in the implementation of an unrealizable product. On the other hand,
if it is consistent, we can avoid an extensive veri�cation in the �nal phase of the
development process, since the correctness of the implementation with respect
to the speci�cation is inherently given. Finally, it can drive the development of
a software product through the synthesis of a controller, i.e. a strategy that
the system can follow to satisfy the speci�cation regardless of the actions of the
environment.

Adopting synthesis could be particularly convenient when the system com-



plexity grows and the probability of con�icting requirements, thus inconsistent
speci�cation, increases. One example is when not only a single system, but rather
di�erent variants of the same system are developed. Systems in which variabil-
ity plays such a preminent role, are known as variability-intensive systems. A
particular class of variability-intensive systems, those in which variability is sys-
tematically planned, are Software Product Lines (SPLs). Di�erent products in a
SPL, also referred to as a family of products, can be considered variants if they
share a set of common characteristics, but also di�er in at least one missing or
added chunk of functionality. Commonalities and variabilities between products
are typically expressed in terms of features. Many de�nitions of the term feature
exist [Classen et Al 2008]. In the rest of the thesis we stick with the de�nition in
[Kang et al. 1990] for which a feature is a a prominent or distinctive user-visible
aspect, quality or characteristic of a software system or systems.

In the context of a product line, given a set of features, a product can be
represented as a feature combination, in the same way in which similar, yet
di�erent lego structures can be build using di�erent subsets of the same set of
bricks. Among all the possible combinations, only some of them are legal. To
specify valid products, one commonly uses Feature Diagrams (FDs), a graphical
representation of a product line by means of nodes, representing features, and
edges, representing constrainst on the possible feature combinations.

The goal of Software Product Line Engineering (SPLE) is to consider all the
variants together throughout the whole development process, exploiting com-
monalities between di�erent products by systematically reusing them. This ap-
proach has many advantages. First, it leads to an e�ective reduction of devel-
opment costs and time to market, since commonalities are only developed once.
A second key advantage of SPLE and reuse, is that commonalities are tested in
di�erent situations and products, supporting fault detection and a consequent
enhancement in the quality of the SPL as a whole after error correction. Fi-
nally, customer satisfaction is a natural consequence of the advantages above.
Nevertheless, variability introduces an additional dimension of possible con�icts
in requirements, given potential dependencies and incompatibilities created when
combining requirements related to individual features. Usually those con�icts are
almost impossible to identify for engineers.

Designing a scenario-based speci�cation for an SPL and automatically check-
ing its consistency is a major challenge in SPLE and has not yet been deeply
explored. That is the challenge that this thesis intends to undertake.

Inspired from [Greenyer et al. 2011] we adopt a scenario-based speci�cation
for SPLs, which consists of MSDs and FDs. In that method, the individual be-
havior of each feature in the FD is speci�ed as a set of MSDs. The overall MSD
speci�cation for a particular variant of the product line can be achieved by com-
posing the MSDs associated to its features. In other words the MSD speci�cation



of a product is the union of the MSDs specifying its constituent features. More-
over MSDs are particularly suitable to describe a feature by extending behavioural
aspects of existing similar features.

Given an SPL speci�cation we want to identify which products, i.e. combina-
tions of features, have a consistent speci�cation and for each of them, synthesize
a controller that realizes its speci�cation. Not many approaches exist for the
realizability checking of SPLs.

Intuituitively, it could be performed by a separate synthesis for each individual
product. Although correct, this is a sub-optimal approach since it does not take
any advantage of variability and commonalities between products.

An alternative to the individual synthesis is the method developed by
[Greenyer et al. 2011] and based on Featured Transition Systems (FTSs). FTSs
are a recent formalism for modeling the behavior of a set of products. They
consist in a directed graph in which nodes are the states of the interaction
between the system and the environment, whereas transitions express a system
or an environment event and are labelled with constraints over a set of features
from an attached FD. That way a product can execute the transition only when
its consisting features satisfy the associated constraints. However applying model
checking to check the consistency of an SPL scenario-based speci�cation has a
few drawbacks and sometimes it returns false negatives.

To cope with those limitations we recently proposed an incremental synthe-
sis approach [Greenyer et Al. 2013] handling the problem with a game-based
technique. There we view the realizability-checking problem as the problem of
�nding a strategy in an in�nite game played by the system against the envi-
ronment. Our technique consists of an extension of the algorithm for solving
Büchi games which are games requiring to in�nitely often reach a state with
given characteristics. Given an SPL speci�cation, we �rst derive similar prod-
ucts from the FD iteratively by exploiting common features. Then we synthesize
each product speci�cation taking advantage of the outcome of similar, already
synthesized ones. The e�ciency of this method depends on the order in which
products are synthesized and is thus subject to large variations. Often only slight
improvements are achieved with respect to synthesizing each variant individually.
Besides, even if commonalities between products are exploited by systematically
synthesizing controllers based on similar ones, again one synthesis per product is
performed.

This thesis proposes an alternative, more radical approach to the synthesis of
similar products in an SPL, with the goal to increase the e�ciency even more.
We still handle the problem of checking the realizability of a given speci�cation
as a two-player game between the system and the environment, which has to be
won by the system. Besides, we synthesize the whole SPL speci�cation, i.e. all
products, in one synthesis. Commonalities between products are exploited at a



deeper level to reduce the synthesis e�ort.
The principles of our approach are given in Figure 1.1 and explained in the

following.

SPL specificationSPL specification

FD

MSD

FGGFGG

FTS

Valid products

Realizable productsRealizable products

Synthesis

Exploring all possible 
executions

Figure 1.1: Schema of the synthesis approach for Software Product Lines.

First from an SPL speci�cation, we build an extension of Büchi-Game au-
tomaton, which is a representation of all possible executions of the system with
any environment for all possible products. The extension, also called Featured
Game Graph (FGG) throughout the thesis, is born from the observation that if
products in an SPL are similar, their corresponding Büchi-Game automata are
very likely to share states and transitions. A major di�erence between our exten-
sion and a Büchi-Game automaton is that it maintains a link between a given
execution and the features needed to trigger that execution. The information is
stored into transitions in the automaton, consequently corresponding not only to
a possible system or environment event given a particular state, but also to the
particular subset of features in the SPL for which the event is admissible.



Then we design an algorithm that determines which products have a consis-
tent speci�cation. This algorithm makes use of the information regarding features
contained in the automaton. During the process, transitions labeled with features
that are not part of the product we are considering are simply ignored.

In addition to the consistency checking, the algorithm also synthesizes an
FTS, to concisely represent a global controller of the set of realizable products.
The di�erence between an FTS and an FGG is that the latter also contains
possible executions for unrealizable products.

From this FTS one can, for example, extract a controller for a given consistent
product, or even generate code with implemented variability. However, this is
not in the scope of this thesis.

Our technique is implemented in the ScenarioTools tool suite 1, a collection
of Eclipse-based tools which support the modeling, simulation and synthesis of
MSD speci�cations.

1.1 Running example

Throughout this thesis, we use a simple running example which is inspired by
[Fantechi and Gnesi 2008] and consists in a family of simpli�ed vending machines.
We will commonly refer to this example as the Vending Machine example.

In its basic form the vending machine takes a coin, returns change, dispenses
a cup and then prepares tea by pouring sugar, hot water and tea powder into the
cup. In such a scenario we identify three main interacting entities:

� the person, e.g. a student, who inserts a coin into the vending machine to
activate it;

� a (general) dispenser responsible for dispensing cups, returning change and
pouring sugar, tea powder and hot water;

� the central controller which controls the whole system and interacts with
the dispenser, giving it instructions on what to do. We generally refer to
that central controller as machine.

The general requirements for this system are informally listed below.

� A vending machine is activated by a coin. After the student pays, the
dispenser should return some change.

1ScenarioTools http://scenariotools.org



� When change is returned, a cup is dispensed. The presence of the cup is
noticed by a sensor which we consider part of the same machine entity, for
simplicity.

� Tea should be prepared if and only if the sensor senses that a cup is already
in the dispenser.

� Preparing tea implies pouring sugar, tea powder and hot water into the
cup. We are not interested in the order in which those ingredients are
served.

A number of variants of this basic machine can also be considered. In this
work we examine the following variability.

� Pouring sugar is optional. It could also be poured by hand.

� Vending machines could only serve tea, without also dispensing cups.

� Even if rare, also machines which only distribute cups exist.

In the next chapters we will �rst use the Vending Machine example to describe
the di�erent models employed by our approach. Then also to better illustrate
the approach itself.

1.2 Overview

This thesis is structured as follows.

Chapter 2 gives the essential concepts and de�nitions related to Software Prod-
uct Lines (SPLs) and the models employed by our approach. In particular
we present there Feature Diagrams (FDs), Featured Transition Systems
(FTSs), Modal Sequence Diagrams (MSDs) and a recent approach for
specifying SPLs as a combination of FDs and MDSs.

Chapter 3 illustrates how the models presented in Chapter 2 are used in order
to develop a technique for systematically derive consistent products from
an SPL speci�cation. It details our approach, consisting of an extension of
the algorithm for solving Büchi games, and explains how the presence of
features impacts our algorithms.

Chapter 4 outlines our implementation. It consists of an Eclipse plug-in which
is integrated into ScenarioTools, an Eclipse based tool suite supporting the
modeling, simulation and synthesis of MSD speci�cations. We describe
the general architecture of our plug-in and outline how to actually use our
extension within the tool.



Chapter 5 shows our evaluation results, which cover both applicability and per-
formance. Applicability evaluation is carried out on the Vending Machine
example as well as on an Ambient Intelligence system case study.

Chapter 6 reviews our work, emphasizing contributions and limitations and giv-
ing insight into future developments.

Appendix A is the appendix. It contains the whole SPL speci�cation modeled
for the Ambient Intelligence system case study presented to assess the
applicability of our approach. It also includes the full featured game graph
generated by our technique.



Chapter 2

Foundations

This chapter introduces the fundamental concepts and models used in this thesis.
Section 2.1 presents Software Product Lines (SPLs), a method for the develop-
ment of variability-intensive systems. Also Feature Diagrams (FDs), a common
way to represent SPLs, are introduced there. Section 2.2 discusses Featured
Transition Systems (FTSs), a formalism for describing the behaviour of an SPL.
Next, Section 2.3 covers Modal Sequence Diagrams (MSDs), a scenario-based
formalism for specifying the behavior of systems of components. Last, Section 2.4
describes the SPL speci�cation, a recent model to specify the behaviour of an
SPL as a combination of FDs and MSDs.

2.1 Software Product Lines

This chapter introduces Software Product Line Engineering (SPLE), an emerging
software engineering paradigm dealing with variability-intensive systems.

A product line is a family of goods sharing a common, managed set of char-
acteristics, usually referred as common features or core assets, and satisfying the
needs of a particular market segment.

The invention of the production line is attributed to Henry Ford in the 1910's,
when he conceived the idea of planning beforehand which parts would have been
used in di�erent car types. Thus he designed the Model T platform [Alizon
et Al. 2009], a set of underbody core assets forming a skeleton from which
several Model T models could be realised. The production of those tailored
models was then outsourced to specialized companies. In that moment the way in
which goods were manufactured switched from producing individual handcrafted
goods to producing standard goods in much larger quantities. The Model T
family has been one of the most successful products in automotive history for
two reasons. First sharing manufacturing processes for common components
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e�ectively reduced production costs, enabling a cheaper production for a mass
market. Secondly, each model came with a deep level of customization taking
into account the customers' requirements and giving them what they wanted.
The notion of product line has been anchored in many industries ever since.
Many companies took advantage from a product line approach, such as Airbus,
Dell and even McDonald's.

Unlike for manifacturing industries, the concept of product line in software
engineering is quite anew, but rapidly emerging as a viable and important software
development paradigm [Northrop 2002]. A Software Product Line (SPL) is a
product line in which the set of products is represented by a set of software
applications. [Clements and Northrop 2001] de�ne an SPL as �a set of software-
intensive systems that share a common, managed set of features satisfying the
speci�c needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way �. In this de�nition we can
distinguish two main concepts: variability and reusability.

The de�nition of variability can be ambiguous. In [Pohl et al. 2005] variabili-
ties of an SPL are both �the commonalities and di�erences in the applications in
terms of requirements, architecture, components, and test artefacts�. [Coplien
1999], instead, refers to variabilities as �the variations between [...] products�
of a product line. In this thesis we adopt this second de�nition, considering
variabilities a synonym for di�erences. Commonalities denote common shared
characteristics between products or, as stated in [Coplien 1999], �an assumption
held uniformly across a given set of objects�.

Another key concept is that of reusability. Reuse is achieved by developing a
set of core assets representing the commonalities among all products in a product
line.

Software Product Line Engineering (SPLE) is de�ned as �a paradigm to de-
velop software applications (software-intensive systems and software products)
using platforms and mass customisation� [Pohl et al. 2005]. A platform is any
base of technologies on which other technologies or processes are built. This
de�nition is strictly connected to reuse. By introducing common platforms, car
manufacturers were able to increase their sales meanwhile reducing their produc-
tion costs. This was done to accomplish an increasing demand for personalised
products. �Mass customisation is the large-scale production of goods tailored to
individual customers' needs� [Davis 1987].

The main goal of SPLE is to combine platform and mass customisation to
produce customized products at reasonable cost. In particular we could outline
four key motivations behind the PLE paradigm. These motivations are valid for
PLE in general, then also for SPLE. A more complete list can be found in [Pohl
et al. 2005, Pohl et al. 2001].



(a) cost for developing with and without
PLE

(b) time to market with and without PLE

Figure 2.1: E�ect of PLE on developing costs 2.1(a) and time to market 2.1(b) when
the number of products in the product line increases.

Reduction of development costs Reusing platform artefacts signi�cantly re-
duces cost as the common set of core assets is only developed once. To
be available for developing speci�c products, common artefacts should yet
be created beforehand and this implies an up-front investment. Thus, to
reduce the costs per product, a PLE paradigm is needed to plan reuse me-
thodically. When the number of products in the product line increases the
costs per system adopting this paradigm are signi�cantly lower than devel-
oping each single system independently. This is shown in Figure 2.1(a).

Reduction of time to market A second key advantage in adopting a PLE
paradigm is the shorter time to market. An initial higher time for build-
ing common artifacts should be considered. Figure 2.1(b) illustrates how
reusing platform artefacts reduces development cycles when the number of
goods in the product line is high.

Increased quality Reuse not only leads to economies of scale, but also to an
enhancement of quality. In fact common components are used in di�er-
ent products and tested in di�erent situations supporting fault detection
with a consequent improvement in the quality of the product line as a
whole after error correction. Moreover, �the same design techniques that
lead to good reuse also lead to extensibility and maintainability over time�
[Coplien 1999]. Reuse can be indeed exploited to reduce maintenance ef-
fort by adopting reuse of test procedures for the core assets and possibly
propagating error correction to all the products in the product line in which
the modi�ed component is being used.

Bene�ts for the customer All the motivations presented so far also produce



customers' satisfaction as they allow higher quality products at reasonable,
even lower prices. Furthermore products in a product line generally support
common functionalities (e.g. common user interfaces in case of SPL) and
let customers reduce learning e�ort as well when dealing with a product
derived from the same platform.

To pursue those goals [Pohl et al. 2005] also de�ne a framework to sys-
tematically plan software reuse. We will introduce this framework in the next
section.

2.1.1 The SPLE framework

In order to avoid undesiderable situations in which unmanaged reuse leads to
higher costs and time to market than developing single systems from scratch,
a methodic schema telling how common artefacts should be created and reused
is needed. This section introduces the SPLE framework. Its principles and
de�nitions mainly refers to [Pohl et al. 2005].

Software Development Life Cycles (SDLC) are structures de�ning a detailed
methodology for the successfull development of a software product. Before the
�nal deployment, SDLCs are traditionally composed of four main phases: re-
quirements engineering, design, implementation and testing.

The SPLE framework takes his basic idea from [Weiss and Lai 1999], i.e.
splitting the SDLC into two processes, domain engineering and application en-
gineering, the former planning the development of the reusable core assets and
the latter deriving single product line applications by reusing these common pre-
viously build artefacts. Both processes are compoused of several sub-processes
which consist in an adaptation of the general SDLC main phases. The output
of a sub-process of domain or application engineering is called development arte-
fact. Note that although domain and application engineering have to be achieved
one after the other, there is no mandatory sequential order in which their sub-
processes should be performed, i.e. no mandatory waterfall model [Benington
1983] to be followed. Thus, to streamline the development of the sub-processes
and their activities, any existing software development model is accepted, such
as the spiral model [Boehm 1988] and the iterative and incremental development
[Larman and Basili 2003]. The whole schema is depicted in Figure 2.2.

The domain engineering process is de�ned as follows.

De�nition 2.1. (DOMAIN ENGINEERING)
Domain engineering is the process of software product line engineering in which
the commonality and the variability of the product line are de�ned and realized.



Figure 2.2: Schema of the SPLE framework [Pohl et al. 2005].

It can be seen as a further upstream life cycle which encorporates the concept
of platform as de�ned in Section 2.1. In particular the platform represents the
output of the whole domain engineering process and consists of all the domain
artefacts, i.e. reusable development artefacts created in the sub-processes of
domain engineering.

In the following, we brie�y outline the di�erent tasks of the several domain
sub-processes as well as their domain artefacts.

Product management a starting up phase with a special regard to economic
aspects. It de�nes the scope of the SPL, i.e. what should and should not
be inside the product family. By analyzing the company goals it produces
a product roadmap describing the set of features in the SPL and di�eren-
tiating them into common reusable features and variable features that are
application-speci�c in the sense that they are only part of some product.

Domain Requirement Engineering deals with requirement elicitation and doc-
umentation. It provides both common and variable requirements, i.e. re-
quirements that are common to all applications and requirements that di�er
among several applications. It does not provide the requirement speci�ca-
tion for a particular product as a whole. Its output artefact is the domain



variability model which de�nes commonalities and variabilities as well as
variability dependencies and constraints.

Domain Design is responsible for the reference architecture of both reusable
and application-speci�c components. Its output, the domain architecture,
also de�nes the set of common rules guiding the realization of the di�erent
parts and the way they can be combined to form future applications.

Domain Realization provides the domain realization artefacts, i.e. the de-
tailed design and implementation of reusable software components. Note
that these implementations do not consist of runnable applications. More-
over their interfaces should consider and support many di�erent contexts.

Domain Testing encompasses validation and veri�cation. At this stage there
is no running application to be tested in a traditional way, so testing only
deals with the reusability of components, tested in di�erent situations and
scenarios. Its output, the set of domain test artefacts, focuses on allowing
the large-scale testing reuse in application testing.

Thus, the main di�erence between domain and single system engineering
is that domain artefacts are loosely coupled and related to partial components
rather than speci�c �nal applications. The goal of this �rst process is to allow
reuse in the following application engineering process, de�ned as follows.

De�nition 2.2. (APPLICATION ENGINEERING)
Application engineering is the process of software product line engineering in
which the applications of the product line are built by reusing domain artefacts
and exploiting the product line variability.

By exploiting commonalities and variabilities in the product line during the
development of customer-speci�c applications, it allows mass customization as
de�ned in Section 2.1. Similarly to the domain engineering process, it is divided
into several sub-processes, each producing a set of application artefacts, one for
every speci�c product line application.

Application Requirement Engineering produces the application variability
model that documents variability bindings made for each single applica-
tion. It is derived from the domain variability model, which is given as
input. Possible adapted or newly introduced variants are also documented.
Requirement elicitation is restricted by the already de�ned variability de-
pendencies and constraints.



Application Design deals with the speci�c application architecture, adapting
the structure of �nal products given the domain architecture and following
the common de�ned rules. In this phase stakeholders should consider costs
and e�orts of adapting the structure and compare them to the ones relative
to a development from scratch.

Application Realisation encompasses the implementation of the speci�c ap-
plication by assembling reusable and application-speci�c components in
the application realisation artefacts. Only part of these artefacts has to be
developed. The implementation should yet comply the reusable interfaces
created in the domain realisation artefact, which is given as input.

Application Testing validates and veri�es applications against their speci�ca-
tions by reusing domain test artefacts given as input. This phase produces
the application testing artefacts, which could include some additional tests
for application-speci�c developments.

The main di�erence between application and single-system engineering is that
application artefacts are not created anew but are derived from the platform, the
output of the previous domain engineering process. A planned and systematic
reuse of common core assets allows to complete application artefacts instead
of creating them from scratch. Nevertheless more attention should be paid in
conforming to reusable parts.

2.1.2 Variability modelling

In the context of software product lines engineering the commonality and vari-
ability between products are typically expressed in terms of features.

Many de�nitions of the term feature exist [Classen et Al 2008]. In this work
we see features as an expression of the user's requirements and, according to the
de�nition of [Kang et al. 1990], we consider them as a prominent or distinctive
user-visible aspect, quality, or characteristic of a software system or system. It
generally represents either an optional added chunk of functionality or an aspect
that cross-cut many components. It should be user-visible in the sense that it
should be relevant to both stakeholders and engineers.

A product is a combination of features that describes a member of the product
line. When dealing with a set of features S a product can also be de�ned as
an element of the powerset P(S) which contains all the possible combinations
of features. Among these combinations some are invalid as there may exist
dependencies between the features. For example, two features can exclude each
others, or a feature can require another one. To specify which combinations
are valid, one commonly uses feature diagrams (FD), a family of modelling



languages that were �rst introduced as part of the Feature Oriented Domain
Analysis (FODA) method in 1990 [Kang et al. 1990].

Feature Diagrams

In the following we describe the visual notations used throughout this thesis for
the de�nition of features and their dependencies.

An FD is a combination of nodes and edges organized in a tree-like structure.
The root node is called concept and represents the complete system.

Nodes graphically represent features, which may be classi�ed as either primi-
tive or compound features [Schobbens et al. 2006]. Primitive features are usually
the ones that actually represent a product feature. Therefore enabling a primitive
feature directly in�uences the nature of the derived product. On the contrary
compound features, also called decomposable features, do not generally express
product features by themselves, but are often used for decomposition purpose
only. The selection of a compound feature in�uences the derivable product only
with respect to the primitive features represented by their descendant nodes.

Nodes are related by means of edges. We can distinguish two types of edges:
decomposition and constraint edges [Schobbens et al. 2006].

Decomposition edges hierarchically organize the FD nodes by relating parent
feature with its child sub-features. In other words each relation speci�es how a
parent feature is decomposed into child sub-features. Intuitively a child feature
can be chosen only if its parent is. Three types of decomposition exist:

AND An AND decomposition requires that when a parent feature is chosen,
also all its child features have to.

XOR A XOR decomposition expresses child features as alternatives. Thus ex-
actly one of the child features must be enabled when the feature represented
by its parent is.

OR Within an OR decomposition every possible combination of the child fea-
tures can be chosen, provided that at least one of them is.

In addition to AND, XOR and OR decompositions, optional relations are also
available.

Optional It is also possible to express that a particular child feature may or may
not be chosen. Optional relations are depicted as a solid line with a blank
circle at the end connecting the parent feature to his optional child one.
They can also be used within the other AND, XOR and OR relations.



(a) Decomposition edges

(b) Constraint edges

Figure 2.3: Types of edge in a feature diagram.

Figure 2.3(a) illustrates the graphical notation of the di�erent decomposition
edges. By enabling di�erent features in the tree, di�erent products can be de-
rived.

It may happen that the enabling of some feature is allowed only if another
feature is enabled as well. Two features can also be exclusive. In this case their
combination should be forbidden. When many such constraints exist, decom-
position edges are not su�cient to express all of them. Constraint edges , also
called cross-tree constraint, �ll this gap. There commonly exist two types of
constraint edges:

Dependency If feature A depends on feature B, whenever feature A is selected,
feature B must be selected as well. This relation is depicted as an arrow
from feature A to feature B labelled with a �requires� statement.

Incompatibility If feature A is incompatible with feature B, whenever feature
A is selected, we cannot select feature B. This is modelled by an edge
between feature A to feature B labelled with an �excludes� statement.

Figure 2.3(b) illustrates the graphical notation of the di�erent decomposition
edges.
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Figure 2.4: The FD capturing the set of valid products for the Vending Machine ex-
ample

For the SPL of vending machines introduced in Section 1.1 �ve features can
be readily identi�ed: the sale of tea, the sale of cups, the ability to pour sugar, the
ability to pour water and the ability to pour tea powder. Not every combination
of those features yields to a valid system. For instance, the ability to pour tea
powder makes sense only when considering the sale of tea. The set of products
which are considered valid in the Vending Machine example are captured by the
FD in Figure 2.4. It describes �ve product variants: the sale of tea with or
without sugar, the sale of both cups and tea with or without sugar and, �nally,
the sale of cups alone.

Many di�erent FD notations exist in literature, slightly di�erent from the one
described so far. For example the original [Kang et al. 1990] model dependency
and incompatibility relations by means of textual constraint instead of constraint
edges. Instead of drawing a special edge between features A and B as in 2.3(b),
one could add the textual constraint �A requires B� or �A mutex B� to ex-
press dependency resp. incompatibility between features A and B. [Kang et al.
1998] propose to substitute the tree-like structure with a directed acyclic graph
(DAG) structure allowing more than one parent for the same sub-feature. [Czar-
necki et al. 2005] suggest cardinality-based feature models, in order to represent
products with an arbitrary number of components. We remind the interested
reader to [Schobbens et al. 2006] for a complete survey.



Formal de�nition and semantics of FD

Based on the abstract syntax de�nition due to [Schobbens et al. 2006, Schobbens
et al. 2007], our notation can be formally de�ned as follows.

De�nition 2.3. (FEATURE DIAGRAM)
An FD is a tuple d = (N,P, r, λ,DE,CE), where

� N is the set of features;

� P ⊆ N is the set of primitive features;

� r ∈ N is the root feature. Only r has no parent: ∀n ∈ N.(6 ∃n′ ∈ N.n′ →
n)⇔ n = r;

� λ : N → NT labels each feature with an operator from NT , given
NT = {and, or, xor, opt}.1;

� DE ⊆ N ×N is the set of decomposition edges, which must form a tree
with r as its root;

� CE ⊆ N ×GCT ×N is the set of constraint edges, given
GCT = {requires, excludes}.2;

We de�ne a valid product as follows.

De�nition 2.4. (VALID PRODUCT)
A valid product is any p ⊆ N which

� contains the root: r ∈ p ;

� the meaning of nodes is satis�ed: ∀n ∈ p, with sons s1...sk and λ(n) = opk
then opk(s1 ∈ p, ..., sk ∈ p) must evaluate to true.

� the model must satisfy all graphical constraints: ∀(n1, op2, n2) ∈ CE,
op2 (n1 ∈ p, n2 ∈ p) evaluates to true;

� If s is in the model and s is not the root, one of its parents n must be in
the model too: ∀s ∈ p.s 6= r∃n ∈ p : n→ s.

The semantics of a feature diagram d, notated as [[d]]FD, is a Boolean formula
that describes the set of valid products, i.e. the combination of features that
satisfy the constraints expressed by the FD. Such a combination is actually a
product line.

1NT (Node Type) is the set of decomposition operators
2GCT (Graphical Constraint Type) is the set of types of graphical constraint edges o�ered

by the FD



2.2 Featured Transition Systems

a
In this chapter we present Featured Transition Systems (FTSs) a formal-

ism presented in [Classen et al. 2010, Classen et al. 2011, Classen 2011] as
an extension of Labelled Transition Systems (LTSs) to model the behaviour of
variability-intensive systems.

2.2.1 Syntax and semantics of LTS

One of the more common models used to represent the behaviour of a single
system are Labelled Transition Systems (LTS) [Baier and Katoen 2008, Cordy
et al. 2013]. An LTS is a directed labelled graph in which vertices are states
and edges are transitions between states. Transitions represent the capability
of the system to perform a state change. A set of initial states represents the
possible system con�guration at lauch. Moreover they can be extended with one
or two forms of labelling. Transitions are usually labelled with an action causing
the state change, whereas states can be labelled with atomic propositions, i.e.
assertions that are true in the states labelled with them. Formally, LTS are
de�ned as follows.

De�nition 2.5. (LABELLED TRANSITION SYSTEM)
A LTS is a tuple lts = (S,Act, trans, I, AP, L), where

� S is a set of states;

� Act is a set of actions;

� trans ⊆ S × Act × S is a set of transitions, with (s1, α, s2) ∈ trans
sometimes noted s1

α−→ s2;

� I ⊆ S is a set of initial states;

� AP is a set of atomic propositions;

� L : S → 2AP is a labelling function.

In the rest of this thesis atomic prepositions are omitted from �gures to avoid
clutter.

An execution (also called run or behaviour) is an in�nite alternate sequence
σ of states and actions. More formally σ = s0α1s1α2... with s0 ∈ I such that
si

αi+1−−→ si+1 for all 0 ≤ i.



A path is an execution from which the information about the transitions
has been removed. For s ∈ S, paths(ts, s) denotes the set of all non-empty
(potentially in�nite) sequences π = s0s1....

The semantics of an LTS, noted [[ts]]LTS, is its set of paths. Formally:

De�nition 2.6. (SEMANTICS OF LTS)
The semantics of a labelled transition system lts is its set of paths,

[[ts]]LTS =
⋃
s0∈I

paths(ts, s0)

The semantic domain of an LTS is thus the power set of the (in�nite) set of
all possible (�nite and in�nite) paths.

2.2.2 Syntax and semantics of FTS

LTSs are a common and well-studied mathematical representations for the be-
haviour of single systems. Thus in the context of SPLs, an LTS is often used to
represent the behaviour of a single product. When moving from single systems
to SPLs, one can model the whole system family by modelling the behaviour of
each product separately with a di�erent LTS. However this sub-optimal approach
does not scale to a large number of variants, because it does not take into con-
sideration commonalities and variabilities between the various instances of the
system. When modelling the behaviour of the whole SPL, a concise formalism is
preferable in order to exploit the similarities between products.

Featured Transition Systems (FTSs) extend the concept of LTS to SPLs by
making features �rst-class concepts of the formalism [Classen 2011]. Before
giving a formal FTS de�nition, let us illustrate its basic workings through an
example. Figures 2.5(a) and 2.5(b) show two conventional LTS modelling the
behaviour of two di�erent variants of a tra�c light controller. The former rep-
resents a basic tra�c light switching between red and green, whereas the latter
shows yellow before switching to red. The SPL containing the two variants can
be documented in an FD as shown in Figure 2.5(c). The ability to show yellow
before red in the second variant can thus be represented by an additional optional
feature Y. To model the behavioural impact of feature Y, additional states and
transitions are required.

FTSs relate system behaviours to features by associating transitions with
Boolean constraints de�ned over a set of features from an attached feature dia-
gram. These constraints, called feature expressions, specify for which combina-
tions of features a given transition is available. They are graphically represented
as a second label displayed next to the action label. The two labels are separated
by a slash.
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Figure 2.5: FTS of the tra�c light controller

A feature expression is formally de�ned as follows.

De�nition 2.7. (FEATURE EXPRESSION)
A feature expression exp de�ned over a set of features F is a total function

exp : P(F )→ {>,⊥}

For a given product p, exp(p) returns > if and only if the features of p satisfy
the constraints expressed by exp. In this case, we say that p satis�es exp. We
denote by [[exp]] ⊆ P(F ) the set of products that satisfy exp and by > the
feature expression such that [[>]] = P(F ) [Cordy et al. 2013].

A product p can execute an FTS transition if and only if its set of features
satis�es the associated constraints.

The FTS shown in Figure 2.5(d), represents the behaviour of both variants
of the tra�c light example in a single and compact model. Transition 1 → 2
is labelled with both an action, yellow, and a feature expression, Y, specifying
that only products containing the �Y� feature can execute it. However additional
features not only add states and transitions, but also remove them. The �Y� fea-
ture removes the 1 → 3 transition in the second variant. In the resulting FTS
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Figure 2.6: FTS of the Vending Machine example

this is done by labelling it with ¬Y. This way only one of the transitions leaving
1 can exist in a product. Features in an FTS can thus be non-monotonic,
i.e. they can remove behaviours [Classen 2011]. In other words, the feature
expression can also mean that a transition is available for all products except for
those including a particular feature. Consider a simpli�ed version of the Vend-
ing Machine example, whose set of valid products is represented by the FD in
Figure 2.6(a). Figures 2.6(c) and 2.6(d) show the impact of removing features
�Cup� and �Tea� from a machine serving both. In consequence, transitions
colored in blue resp. green in the resulting FTS in Figure 2.6(e) are labelled
with a feature expression representing the fact that they only belong to products
without feature �Cup� resp. �Tea�.

As shown in the previous examples, FTSs are LTSs extended with an ad-
ditional labelling function and a feature diagram (FD) that de�nes the set of
features and captures the set of valid products in the SPL [Classen et al. 2011].
Formally, FTSs are de�ned as follows.



De�nition 2.8. (FEATURED TRANSITION SYSTEM)
An FTS is a tuple fts = (S;Act; trans; I;AP ;L; d; γ), where

� S;Act; trans; I;AP ;L are de�ned as in De�nition 2.5;

� d is a feature diagram as de�ned in De�nition 2.3;

� γ : trans→ P(F )→ {>,⊥} is a total function, labelling each transition
with a feature expression, i.e., a Boolean expression over the features.

The FTS formalism allows a scalable and concise modelling of each product
in the SPL. When modelling with FTS the size of a model, measured in number
of elements, increases linearly with the number of features; unlike the number of
products which increases exponentially [Classen 2011].

It is possible to obtain the LTS modelling the behaviour of a particular product
of the SPL by computing the projection of the FTS onto that product. This
operation consists in removing all transitions of the FTS whose feature expression
does not evaluate to true in the product.

De�nition 2.9. (PROJECTION IN FTS)
The projection of an FTS fts to a product p ∈ [[d]], noted fts|p, is the
LTS(S,Act, trans′, I, AP, L) where trans′ = {t ∈ trans|p ∈ [[γ(t)]]}

Diagrams 2.5(a), 2.5(b) can be obtained from the FTS in 2.5(d) with the
projections

(a)fts|{r}, (b)fts|{r,y}

Similarly LTSs in Figures 2.6(b), 2.6(c) and 2.6(d) can be derived from the
FTS in Figure 2.6(e). Each LTS, obtained through projection from an FTS,
represents the behaviour of a particular product of the SPL. Then the semantics
of an FTS, noted [[fts]]FTS is de�ned as a function with domain [[d]]FD that
associates each valid product with the semantics of the projection of the FTS
onto that product.

De�nition 2.10. (SEMANTICS IN FTS)

∀p ∈ [[d]]FD • [[fts]]FTS(p) = [[fts|p]]TS

[Classen et al. 2010]



2.3 Modal Sequence Diagrams

This section describes Modal Sequence Diagrams (MSDs) and their semantics.
The following de�nitions recall the ones from [Greenyer 2011, Harel and Maoz
2008, Maoz 2009, Harel and Marelly 2003].

Modal Sequence Diagrams (MSDs) are a variant of Live Sequence Charts
(LSCs) [Harel and Marelly 2003], a graphical formalism to specify the require-
ments on the interaction between environment and system components.

We consider systems of objects that exchange messages and we call them
object systems. An object system can be described by means of a package
containing classes. Each object is an instance of a class and can both send and
receive messages. Each class can have operations telling what are the types of
message that any object instance of that class can receive. The top of Figure 2.7
shows the package ServeTea containing the classes Student, Machine and
Dispenser with the respective operations.

A message in the MSD is identi�ed by the operation set de�ned by the
class of the receiving object and by the sending and receiving objects. The ob-
jects of the system are subdivided into system objects and environment objects.
The middle of Figure 2.7 presents an example of an object system containing
the environment object stu:Student and two system objects mac:Machine and
dis:Dispenser. Two MSDs are shown at the bottom: PutCup and PrepareTea.
Intuitively, the two MSDs express the following requirements. MSD PutCup spec-
i�es that if the dispenser receives the message change from the student, the stu-
dent can send the message putCup to the Machine. If this happen, the Machine
must send the message sensorOn to the Dispenser. The MSD PrepareTea

speci�es that if the Machine receives the message sensorOn from the Dispenser
it must send the message prepareTea back to the Machine.

We name event the sending or receiving of a message by an object in the
object system. In the following we assume only synchronous messages where the
sending and receiving of a message is considered as a single event. Both system
and environment objects can send and receive messages. An environment event
in an event where the sending object is an environment object. Otherwise the
event is a system event.

A run or execution is an in�nite sequence of messages interchanged between
both system and environment objects.

2.3.1 MSD activation, progress and termination

Every object in the object system that partecipates in the interaction is graphically
represented by a lifeline. Each lifeline in the MSD represents an object. The link
between the former and the represented object is given by the label of the lifeline.
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Figure 2.7: The object system and MSDs with concrete lifelines.

A lifeline is composed of a head containing the label and a stem, a vertical dashed
line reproducing the timeline of the object [OMG UML 2011]. In an MSD the
shape of each head depends on the nature of the object it represents. The head of
a system object is depicted as a rectangle, as the head of the lifeline msc:Machine
in Figure 2.7, whereas the head of an environment object is depicted as a cloud,
as in the case of lifeline stu:Student.

An MSD message, also called diagram message, is represented as an arrow
between the stems of two lifelines. The points on each stem where the arrows
are attached are called locations.

An MSD speci�cation is de�ned by a set of MSDs where each lifeline repre-
sents an object in a given object system and the exchanged messages represent
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Figure 2.8: The possible combinations of temperature and execution kind for an MSD
message.

the interaction between them.
A diagram message is uni�able with an event of the object system i�

1. the sending and receiving lifeline of the diagram message correspond re-
spectively to the sending and receiving object in the object system and

2. the diagram message and the event in the object system refer to the same
operation of the receiving object in the object system.

When an event is uni�able with the �rst message of the MSD, an active
copy of the MSD, also called active MSD, is created. Intuitively the active MSD
progresses as further events occur that are uni�able with subsequent messages
in the run. The progress is captured by the set of passed locations. This set is
called the current cut. The active MSD terminates when the cut reaches the end
of the diagram.

The MSDs interpretation can be either iterative or invariant. In the �rst case
only a single active copy of the same MSD can be created. Therefore the iterative
interpretation does not allow the creation of a second active copy before the �rst
one terminates. Conversely, in the invariant interpretation, multiple copies of
the same MSD are allowed at the same time. In both interpretations, multiple
di�erent MSDs can be active at the same time. In this thesis, we assume an
iterative interpretation.

2.3.2 Message attributes and violations

MSDs are subdivided into existential MSDs and universal MSDs. Existential
MSDs specify sequence of events that must be possible to occur in at least one
run, whereas universal MSDs represent requirements that must be satis�ed by all
occurring sequences of events. Within the scope of this thesis, we only consider
universal MSDs.



MSDs specify not only sequence of events that may occur as in basic se-
quence diagrams, but also events that must or must not occur in a system. This
is expressed by introducing a modality for the exchanged messages. Message at-
tributes encode safety and liveness requirements for the occurring events. Safety
is expressed by a temperature that can be either hot or cold. A hot message is
represented by a red arrow and speci�es that only the corresponding event must
occur and no other events that we expect before or later. Conversely a cold mes-
sage is represented by a blue arrow and speci�es that also some other event in
the referring MSD may happen. Liveness is expressed by an execution kind that
can be either monitored or executed. A monitored message is represented by a
dashed line and speci�es that the corresponding event may be observed whereas
an executed message, represented by a solid line, speci�es that the corresponding
event must eventually happen.

The four possible combinations are summarized in Figure 2.8, whereas the
two MSDs in Figure 2.7 show possible uses for both hot, executed messages and
cold, monitored messages.

While the MSD progresses, when the cut of the active MSD is immediately
before a message, that message is enabled. Therefore an enabled message rep-
resents the next event in the ongoing MSD. The cut also has the same safety
and liveness attributes of the MSDs messages. In particular, the attributes of the
enabled message de�ne the ones of the corresponding cut. For example if the
enabled message is hot and executed the cut that enables the message is also
hot and executed. If more than one message is enabled at the same time the
attributes of the cut are derived as follows. If one of the enabled messages is hot,
the cut is also hot, whereas if all the enabled messages are cold, the cut is cold.
Similarly if one of the enabled messages is executed, the cut is executed, while if
all the enabled messages are monitored, the cut results to be monitored. When
the cut is executed the executed enabled message is also called active message.

Back to the MSDs shown in Figure 2.7, the nature of the cut before each
message is expressed by a dotted blue or red line respectively indicating a cold or
a hot cut. In addition, a label next to the dotted line indicates whether the cut
is cold and monitored (c,m) or hot and executed (h,e) which are the only two
combinations considered in this example. Supposing that the MSD PutCup is
active and messages change and putCup have been sent, sensorOn is enabled.
In this case, since it is an executed message, sensorOn is also active. Its sending
causes the MSD putCup to terminate and, at the same time, it triggers the
creation of the MSD prepareTea.

A safety violation or hot violation occurs when the enabled message is hot,
but another event happens instead which is uni�able with a message in the same
MSD that is not currently enabled. For example, in MSD PutCup there would be
a safety violation if either message change or message putCup was sent instead of
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Figure 2.9: Assumption MSD for the Vending Machine example.

message sensorOn when active. If the same happens when the enabled message
is cold, it is called a cold violation. Safety violations are never allowed and all
the runs in which they occur are never accepted by the MSD. Conversely cold
violations are allowed, but the active copy of the MSD in which they take place
is discarded. A liveness violation occurs when the cut is executed, but the event
uni�able with the active message never happens. Similarly to safety violations,
liveness violations are never allowed. No violation takes place if the same happens
in a monitored cut.

2.3.3 Environment assumptions

Even though environment events are uncontrolled, one may often make assump-
tions on the behavior of the environment [Zave and Jackson 1997]. For instance,
in our Vending Machine example, one could make the assumption that a student
always takes his cup away from the dispenser when his tea is ready.

Environment assumptions can be expressed by assumption MSDs that to-
gether with requirement MSDs form an MSD speci�cation. Assumption MSDs
are used both to describe a possible environment behaviour and to de�ne how
the environment reacts to system events. They are graphically represented by
adding a stereotype annotation �Environment Assumption� in the MSD label.
Figure 2.9 illustrates an assumption MSD for our Vending Machine example. By
this MSD we assume that when the Dispenser releases the cup containing the
tea, the Students picks it up.

Environment events are classi�ed as spontaneous or non-spontaneous events.



Intuitively a non-spontaneous event only occurs as a reaction to other system or
environment events. Otherwise if an event can happen independently from other
events, it is a spontaneous event.

2.3.4 Parameterized and forbidden messages

Further extensions has been made to enrich MSDs and diagram messages. We
focus more particularly on parametrized messages, MSD conditions and forbidden
messages.

Parameterized messages

An MSD can contain messages with parameters. Here we only consider messages
that can carry at most one parameter. Parameterized messages imply the need
for extending uni�ability. A parameterized message is parameter uni�able with
an event of the object system i�

1. the sending and receiving lifeline of the diagram message correspond re-
spectively to the sending and receiving object in the object system and

2. the diagram message and the event in the object system refer to the same
operation of the receiving object in the object system and

3. the parameter of the message carries either an unde�ned value or a value
that equals the one carried by the event.

Back to our Vending Machine example, instead of using the message
releaseCup, as in the assumption MSD in Figure 2.9, we could use a parame-
terized message with a boolean parameter, e.g. releaseCup(true). This way
we could use the same parameterized message with a di�erent parameter value
to express that the cup cannot be taken away. Figure 2.10 shows an MSD with
a parameterized message. It speci�es that after the Dispenser sends message
sensorOn to the Machine, informing that a cup has been put in the Dispenser,
the Machine must send the message releaseCup(false) back to the Dispenser,
indicating that the cup should be blocked.

Conditions

The progress of an MSD can even be decided explicitly by means of MSD con-
ditions, provided with a condition expression and a temperature. The condition
expression is a Boolean-valued expression written in the Object Constraint Lan-
guage (OCL) [OMG OCL 2012].
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Figure 2.10: MSD with a parameterized message for the Vending Machine example.

From a graphical point of view they are represented as hexagons containing
the condition expression. They can cover one or multiple lifelines. The border of
the hexagon may be either blue and dashed or red and solid if the MSD condition
is respectively cold or hot.

As for diagram messages, a condition is enabled when the cut of the active
MSD is immediately before the condition. If the condition spans multiple lifelines
this has to be true for all the lifelines covered. Conditions are evaluated as soon
as they are enabled. In both cold and hot condition cases, if the expression
evaluates to true, the cut of the MSD progresses. If an enabled cold condition
evaluates to false it leads to a cold violation and the active copy of the MSD is
discarded. Instead, if a hot condition valuates to false the MSD is stucked and
cannot progress until the condition valuates to true. Therefore if a hot condition
never evaluates to true, the MSD never progresses leading to a liveness violation.

Forbidden messages

By mean of forbidden messages, we can determine events that should not happen.
In Section 2.3.2 we speci�ed that hot and cold violations will occur if an event
occurs in an executed cut and is uni�able with a message of the same MSD that
is not currently enabled. Besides, sometimes, we would like to indicate that even
events that are not part of the MSD are forbidden to occur while the MSD is
active.

Graphically, forbidden messages are labelled with a �forbidden� stereotype
and speci�ed at the end of the MSD in which they are forbidden to occur after
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Figure 2.11: MSD with a forbidden message for the Vending Machine example.

a cold false condition covering all the lifelines.
Forbidden messages have a temperature, but no execution kind. When a

cold forbidden message is sent during the MSD progression, a cold violation
occurs and the MSD is terminated. Thus a cold forbidden message could be
used for example to express the fact that a certain order of events should be kept
after the event that triggers the particular MSD occurs, except in the case that
the forbidden message is sent anytime after the MSD activation and before his
normal termination. Consider the MSD in Figure 2.11. If the forbidden message
cancelRequest happens after message pay and before message serveTea, for
example after message change, the MSD terminates with a cold violation.

When a hot forbidden message is sent during the MSD progression, a hot
violation occurs instead. As already stated, hot violations are never permitted.
A hot forbidden message is always used to specify that if a certain event happens
meanwhile the MSD progresses, it will lead to a safety problem in the system.

Again in Figure 2.11 if the forbidden message pickUpTea happens before
message serveTea the MSD terminates with a safety violation.

2.3.5 The play out Semantics

The play-out algorithm was originally proposed as an operational interpretation
for universal LSCs [Harel and Marelly 2002, Harel and Marelly 2003, Maoz and
Harel 2006], but it can be extended to universal MSDs.



Figure 2.12: Valid and violating super-steps

To determine which message and object sends after a certain sequence of
events in the object system one could implement a controller. This controller
can be non-deterministic. The basic assumptions of the play-out semantics are
that instead of implementing a controller for the system objects, we just interpret
the MSDs/LSCs, which tells which messages can, must or must not be sent by
system objects given a certain sequence of already happened event [Greenyer
2011].

The system starts listening for the �rst environment event to occur. If this
event is uni�able with the �rst message of an MSD in the MSD speci�cation,
then an active copy of the respective MSD is created as already explained in
Section 2.3.1. As further uni�able events occur, the active copy progresses and
also other MSDs copies could be activated. Normally more than one MSD is
active at the same time and more than one of them is in an executed cut. As a
consequence more than one event is active, i.e. both enabled and executed. The
play-out algorithm chooses between this set of active events non-deterministically
in such a way that the chosen event would not lead to a violation in any other
active MSD. Then it executes this event by ordering the particular responsible
sending object to send the corresponding message. When no more active MSD
in an executed cut is left, the set of possible active messages to send is empty,
thus the algorithm stops sending messages and waits for the next environment
event to occur. Then the process is carried over.

We de�ne step the sending of a message in the play-out algorithm, whereas



a super-step is the set of messages interchanged between when the algorithm
listens for an environment event and when it waits for the next one. In Fig-
ure 2.12 supersteps are depicted as wiggly black lines, whereas clouds represent
the environment events that occur.

It may happen that the algorithm cannot progress because all the active
events are forbidden to occur, since any of them would lead to a safety violation
in another MSD. This problem typically arises when the MSD speci�cation is in-
consistent. Still, the play-out algorithm could even get stuck if the speci�cation
is consistent. The successful termination strictly depends on the order according
which the algorithm chooses the messages to be sent. In the case of a consistent
speci�cation, safety violations can be avoided choosing a proper order of execu-
tion of the active events. The only way to �nd the right order of system events
to execute would be to know in advance which sequence of messages would avoid
a safety violation. Since unfortunately the play-out algorithm cannot look ahead
in his process, hot violations are still possible to occur even if the speci�cation
is consistent.

An enhanced version of the algorithm, called smart play-out, was proposed
by [Harel et al. 2002]. In their work they introduce the ability to look ahead one
super-step. Although the improved algorithm can skip certain bad sequences of
events, it has been proven that even in this case not all the violations can be
bypassed, since the smart play-out can still choose a valid super-step which will
lead to a hot violation in further super-steps. Figure 2.12 represents a set of valid
and violating supersteps which are respectively depicted as green check symbols
and red Xs. Suppose that the algorithm is in its initial state, depicted as a black
dot. The only sequence of super-steps by which the play-out algorithm could
avoid hot violations is the one on the right. However, since the smart play-out
has the ability to only look ahead one super-step, it could also choose to execute
another valid super-step on the left and then inevitably run into a hot violation
in the third super-step. Thus some of the violations can be avoided, but not all
of them.

2.3.6 Satis�ability, consistency and consistent executabil-

ity

We already assumed synchronous messages, i.e. messages where the sending and
receiving is considered as a single event. In order to de�ne MSD satis�ability, one
more assumption is required: although we consider the system to be able to send
as many messages as it needs to before the next environment event happens,
we also have to forbid runs with in�nite sequence of system events. This means
that the system should be faster than the environment when needed, but it also



must �listen� to environment events in�nitely often. Thus a run satis�es an MSD
speci�cation i�:

1. it is accepted by all requirement MSDs in the set or

2. it is not accepted by at least one assumption MSD in the set and

3. it does not contain an in�nite sequence of system events.

A run is accepted by an MSD if neither safety nor liveness violations occurs
in the MSD.

An MSD speci�cation is consistent i� it is possible for the system objects
to react to every possible sequence of environment events so that the resulting
run satis�es the MSD speci�cation.[Greenyer et al. 2011] In this case it is pos-
sible to �nd a controller for the system able to satisfy the MSD speci�cation
when combined with any possible behavior of the environment (respecting the
nonspontaneous events assumption).

So far we have considered that the system can also send messages that are
not currently active. This possibility is not generally accepted from engineers,
since no MSD states that these messages should occur [Greenyer 2011]. A
more restrictive de�nition of a controller named consistently executing controller
�lls this gap. A consistently executing controller is a controller that only sends
messages that correspond to active events. An MSD speci�cation is consistently
executable i� it is possible to �nd a consistently executing controller for the
system that satis�es the MSD speci�cation when combined with any possible
behaviour of the environment, respecting the nonspontaneous events assumption.
In this case we also say that there exists an admissible strategy for the play-out
algorithm.

Consistent executability is a stronger property than consistency. If the play-
out algorithm can satisfy the MSD speci�cation, the speci�cation must be con-
sistent, whereas it could still not be possible to �nd a strategy for an MSD
speci�cation even if the speci�cation is consistent. Besides, the play-out algo-
rithm can always �nd a strategy for an MSD speci�cation that is consistently
executable.

2.4 Formal scenario-based speci�cation of SPLs

Modern software-intensive systems usually consist of a set of components which
interact to allow the achievement of their functionalities. Dealing with variability-
intensive systems adds more complexity, since di�erent interactions of compo-
nents have to be considered. In order to cope with that complexity an intuitive,
yet precise way to design those systems is required.
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Figure 2.13: The SPL speci�cation for our VendingMachine example.

This section presents a scenario-based approach to design product lines re-
cently proposed by [Greenyer et al. 2011]. This model will be referred to as
SPL speci�cation in the rest of this thesis. It provides a precise speci�cation of
the interaction behaviour of components in product lines by combining FDs and
MSDs together.

In an SPL speci�cation each feature in an FD can be associated with a feature
speci�cation consisting of a package containing one or multiple MSDs. A feature
speci�cation describes the behavioural aspects of the single feature independently
from the others.

Figure 2.13 shows the SPL speci�cation for our VendingMachine example.
Note that not all of the MSDs presented in the previous section are included in the



speci�cation. The feature speci�cation for Feature �Tea� represents the ability
to pour tea in a cup and involves the two MSDs �ServeTea� and �PutCup�.
Apart from feature �Tea�, all other features' speci�cations are composed of only
one MSD.

The major advantage of using MSDs when modeling the behaviour of a family
of products, is that the whole MSD speci�cation for a product can be naturally
obtained as the union of the MSD speci�cations of the features comprising the
product. This implies that in a SPL speci�cation the requirement and assumption
MSDs for a given product can be composed by combining the requirement resp.
assumption MSDs speci�ed for its constituent features.

For the VendingMachine example only requirement MSDs are involved. The
whole FD represents a set of 5 valid products. For simplicity consider only
features �VendingMachine�, �Cup� and �Tea� and the three products which
can be derived from them. Consider product {{VendingMachine}{Tea}}. Its
MSD speci�cation is given by the MSDs �Change�, �ServeTea� and �PutCup�.
The �rst MSD speci�es that when the student pays for a product, the machine
returns some change. MSD �ServeTea� speci�es that after the sensor turns
on, meaning that a cup is in the dispenser, the tea can be prepared and poured
into the cup. Finally MSD �PutCup� means that after change is returned, the
student could provide a cup in which his tea should be poured. As a consequence
the sensor of the vending machine turns on. This is because the sensor notices
the presence of the cup that has been put into the dispenser. The union of those
three MSDs forms the MSD speci�cation for the considered product and express
the ability of the vending machine to return change after the students pays for a
tea, then wait for the student to put a cup into the dispenser, turn on the sensor
after noticing the presence of a cup and �nally prepare a tea to be poured into
the cup. Consider now feature �Cup�. Since �Cup� and �Tea� are in an OR
relationship, product {{VendingMachine}{Tea}} can be extended with feature
�Cup�. This feature alone represents the fact that after change is returned,
a cup is put in the dispenser by the machine. Then the sensor, noticing the
presence of a cup in the dispenser, turns on. But when combined with product
{{VendingMachine}{Tea}} this feature contributes to the whole speci�cation
of the vending machine expressing its ability to �rst put a cup in the dispenser
and then pour tea into it. In this case there is no need for the system to wait for
the student putting a cup into the dispenser, because cups are dispensed directly
by the vending machine.

An MSD speci�cation typically also includes the description of an object
system. When dealing with SPL speci�cations, instead of including one for each
feature, only one de�nition of object system can be assumed for all products
and features for simplicity [Greenyer et Al. 2013]. This is done by including
a class diagram and a collaboration diagram in the feature speci�cation of the



root feature. A collaboration diagram is a UML composite structure diagram for
describing instances that collectively accomplish some desired functionality [OMG
UML 2011]. The nodes in this diagram, called roles, represent an object in the
object system and are typed over the classes in the class diagram. Operations
listed for each class correspond to the messages that a role can receive when
interacting with another role. Interactions between roles, i.e their ability to
exchange messages, are represented by edges in the collaboration diagram. A
role can represent a system or an environment object. This is modeled by a
stereotype on the roles and graphically depicted with a rectangle resp. cloud
shape.

In the example in Figure 2.13 those additional diagrams are included in feature
�VendingMachine�. When an object is not part of a particular feature or product
there is simply no interaction with it. For example Student is not part of the
feature speci�cation for �TeaPowder� as this is something only related to putting
some tea powder in the cup when preparing tea and does not involve any possible
interaction with the student who ordered the tea.

The SPL speci�cation provides an intuitive way to derive the behaviour of
each product as the union of the behavioural aspects of its composing features.
Modeling the speci�cation of each feature with a package allows the engineer
to employ the package merge mechanism [OMG UML 2011]. Package merge
consists in merging the contents of one or multiple packages into another pack-
age. In this case it allows packages representing single feature speci�cations to
be merged into a consolidated product speci�cation package, i.e. a package con-
taining all MSDs from each feature speci�cation. All those MSDs can be then
composed to form the MSD speci�cation for the product.

The SPL speci�cation constitues the input of our approach to synthesize
SPLs, as described in the next chapters.



Chapter 3

Featured Synthesis

This chapter presents our approach for synthesizing speci�cations of component
interactions based on a combination of Modal Sequence Diagrams and Feature
Diagrams. The realizability-checking problem can be seen as the problem of
�nding a strategy in an in�nite game played by the system against the environ-
ment. Our technique consists of an extension of the algorithm for solving Büchi
games which are games requiring to in�nitely often reach a state with given
characteristics.

Section 3.1 introduces our general approach and how the presence of features
impacts our algorithms. Section 3.2 explains the algorithm for solving reacha-
bility games for variability-intensive systems and its main subroutines. Finally
the Featured Büchi algorithm extension, which is based on the the Featured
Reachability algorithm, is described in Section 3.3.

3.1 The approach

The problem of checking the realizability of a given speci�cation can be seen as
a two-player game between the system and the environment, which has to be
won by the system.

The game appears in the form of a game graph. A game graph is an LTS in
which every state corresponds to exactly one cut in every MSD that is part of
the speci�cation. The initial state corresponds to no active MSDs. A move from
the system (resp. the environment) in the game models a message sent by the
system (resp. the environment), thereby advancing the cut of one or more MSD
in the speci�cation. Transitions represent one among the admissible moves given
a particular state, i.e. one among the active events in the MSD speci�cation.
They are labelled with the name of the event they represent. Since the system
cannot force environment events to happen, from the system's perspective, his
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transitions are controllable whereas the environment's transitions are seen as
uncontrollable. Given the hypothesis that the system can either send a message
or wait for the next environment message, all transitions leaving a given state
are either controllable or uncontrollable.

A strategy [Maler et Al 1995] is a function that during the course of the
game de�nes which move the system should execute. In other words for each
state in the game graph it restricts the set of admissible moves in order that all
the remaining runs of the system meet certain criteria [Pnueli et Al 1998]. A
strategy is winning if it guarantees that the system wins (according to a given
de�nition of winning) no matter what the environment does [Pnueli et Al 1998].

A product in a SPL is realizable when the speci�cation composed of the
MSDs of its features is consistent. That could be checked on the corresponding
game graph verifying whether a strategy exists for the system to reach a goal
state in�nitely often regardless of what the environment does. A goal state is a
state satisfying the following condition, also called goal condition.

1. no safety violation occurred in any requirement MSD and

2. no active event remains in any active requirement MSD or

3. a safety violation occurred in an assumption MSD or

4. there is at least one active event in an active assumption MSD

Games with a winning condition requiring to in�nitely often visit goal states
are called Büchi games or games with Büchi objectives.

Checking whether products in a SPL are realizable could be done by checking
the consistency of the di�erent speci�cations separately. Our approach repre-
sents an alternative to performing an individual synthesis for each variant. Since
products in an SPL are similar, their game graphs are very likely to share states
and transitions. By exploiting the commonality between products, our technique
provides a way to synthesize all products simultaneously, i.e. by performing only
one synthesis. In order to do that, we need to link di�erent possible behaviours
for the system with the features needed to trigger those behaviours.

We introduce the idea of the featured game graph as an extention of the game
graph. A featured game graph is a game graph in which states still represent
particular cut con�gurations of the set of active MSDs whereas transitions (called
featured transitions hereafter) contain additional information about the features
needed to trigger them. Thus a featured transition not only corresponds to a
move given a particular state, but also the particular subset of features in the SPL
for which the move is admissible. Depending on the features involved, the set of
MSDs which may be activated can change. Also, depending on the product, the



same event may advance the cut of the MSDs in the speci�cation in a di�erent
way. Thus given a state in the featured game graph, di�erent featured transitions
for the same event may lead to di�erent successors. When such a situation
takes place, i.e. every time the same event leads to n di�erent successors, n
featured transitions exiting from the same state are generated, each labeled with
a feature expression representing the combination of features for which the event
advances the cut as in the corresponding target state. Otherwise, when there's
no ambiguity and only one successor exists for the considered event, featured
transitions are labeled with the features corresponding to the newly activated
MSDs. If no new MSD is activated, and the event just advances the cut of
the MSDs that are already active in the source state, the feature expression is a
�True� statement.

Suppose we have a set of two products {{A,B}{A,C}} as represented by the
SPL speci�cation in Figure 3.1(a). The corresponding game graphs are given
in Figure 3.1(b). In this example the event �mA� corresponds to two di�erent
transitions, depending on the product that is considered, i.e. depending on if
either feature B or feature C is present. This information is embedded in the
featured transitions of the featured game graph shown in Figure 3.1(c). by
means of the feature expressions �B∧!C� and �!B∧C�. �A� labels the feature
transition from state 1 to state 2 since the MSD in feature A is activated
by the event �m0�. The other featured transitions are labeled with a �True�

statement.
A featured game graph is a concise representation for all possible execution

scenarios of the system in a SPL. The information contained in the featured game
graph is then used by an extension of the algorithm for solving Büchi games that
determines the set of products having a consistent speci�cation.

Details about how to pursue that target and the major novelties introduced
are discussed in the next sections.
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3.2 Featured Reachability

A reachability game consists of �nding a strategy for the system to eventually
reach a goal state regardless of what the environment does and the uncontrollable
transitions it takes.

Before presenting our extension to solve reachability games when dealing
with variability-intensive systems and featured game graphs, we describe the
fundamental subroutines used by the main algorithm

The rest of the Section is organized as follows. Section 3.2.1 explains how the
semantics for the set of valid products is generated from the FD. That information
is considered when generating successors for a given state in order to avoid the
unnecessary evaluation of featured transitions corresponding to combination of
features that does not respect the contraints imposed by the FD. The technique
to generate successors and featured transitions is illustrated in Section 3.2.2.
The backward propagation step and the computation of the winning condition
are discussed in Section 3.2.3. Finally Section 3.2.4 presents the main algorithm.

3.2.1 Retrieving the FD expression

In order to synthesize the set of valid product variants simultaneously, we need
to derive a concise feature expression representing the product line from the
feature diagram. In particular that expression should represent the semantics
of the FD, i.e. the set of valid product variants or feature combinations that
ful�ll the FD contraints. Those products are not yet the realizable ones, since
inconsistencies that may arise from their speci�cation are not yet considered.
Still, since realizable products are always valid products as well, this formula will
be used during the reachability step to avoid exploring unnecessary transitions
related to not valid products, thus enhancing the algorithm e�ciency.

The algorithm is shown in Algorithm 1. A Boolean formula fd is derived in-
crementally following a top-down exploration of the FD according to the following
rules.

1 Mandatory root. First, since the root is always mandatory, the root feature
is added to the formula (line 1).

2 Parent implies required children. For each feature that is not a leaf in
the FD tree we should state that the presence of that feature in a product
implies the one of its directly required subfeatures. In order to do so we
inspect the constraints imposed by the way the parent feature is decom-
posed into child features, i.e. its decomposition kind. In case it is an AND,
all its mandatory child features are required. A feature is mandatory when



Algorithm 1 FD

1: fd← root;
2: for all feature do
3: if (feature! = leaf) then
4: switch (decompositionKind(feature)) do
5: case AND
6: childDecomposition←

∧
i:childFeaturei!=OPTIONAL

childFeaturei;

7: case OR
8: childDecomposition←

∨
i

childFeaturei;

9: case XOR
10: childDecomposition←

⊕
i

childFeaturei;

11: fd← fd ∧ (feature⇒ childDecomposition);
12: for all childFeature do
13: fd← fd ∧ (childFeature⇒ feature);

return fd;

it is not labelled as optional. We derive the childDecomposition subfor-
mula as the cumulative and of all the mandatory children of the considered
feature. In case of an OR every possible combination of the child features
can be chosen, provided that at least one of them is. If it is a XOR de-
composition one and only one between its child features is required. In
those latter cases the childDecomposition subformula is computed as a
cumulative OR resp. XOR of the feature's children. Once we derive that
subformula, we add to the main formula an implication from the parent
feature to the respective childDecomposition (lines 2-11).

3 Child implies parent. A child feature can be chosen only if its parent is.
For each child feature we add an implication from the child feature to its
parent to the main formula fd (lines 12-13).

The returned formula can be easily translated in Conjunctive Normal Form
(CNF) for readability purpuses. A CNF formula is a conjunction of clauses,
where each clause is a disjunction of literals, and each literal is either a positive
or negative propositional variable.

For the Vending Machine FD in Figure 3.2(a) our technique �rst adds the
root �VendingMachine� to the fd formula. Then it considers the features
directly required by the root. �VendingMachine� can choose �Cup�, �Tea� or
both. The formula �VendingMachine�→(�Cup�∨�Tea�) is added to the main
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Figure 3.2: Retrieving the Boolean formula specifying the valid products from the FD

formula as required by the second rule. Then also �Cup�→�VendingMachine�

and �Tea�→�VendingMachine� are added since a child feature presence implies
its parent's one. The algorithm proceeds in a similar way with the next feature
that is not a leaf, i.e. �Tea�. Here all the child features are required, except
for �Sugar� that is optional. The complete expression for the fd formula and
its equivalent CNF are given in Figure 3.2(b). They represent the set of valid
products derived from the FD in Figure 3.2(a).

3.2.2 Retrieving the set of featured transitions.

This section illustrates our technique to generate successors in a featured game
graph from a SPL speci�cation. A major di�erence with dealing with successors
for standard game graphs is that in the feature extension given a particular
source state, the same admissible action can lead to di�erent successors. This is
because featured transitions should also consider the di�erent set of valid feature
combinations for which the same event is admissible. In other words the same
event could cause di�erent MSDs to be activated thus leading to di�erent cut
con�gurations.

Algorithm 2 shows our technique to generate successors for a given state
for all possible variants in the productline, i.e. all the possible ways the set of
active MSDs in the source state can progress. Meanwhile the algorithm also
retrieves all the featured transitions exiting from the souce state and labels them
with both the name of the associated event and a Boolean CNF expression
representing a combination of the features triggered by the event. First a set of
the admissible events that can occur given the current state (A(S)) is retrieved
(line 2). Then for each event we consider if it activates any MSD, i.e. if it is
uni�able with the �rst message of any MSD in the whole MSD speci�cation.
NewlyActivatedMSDs is a set containing all the MSDs activated by the event



Algorithm 2 Post(S)

1: FeaturedTrans← ∅;
2: NextEvents← {α|α ∈ A(S)}
3: while (NextEvents 6= ∅) do
4: Take α from NextEvents;
5: NewlyActivatedFeatures[α]← ∅;
6: NewlyActivatedMSDs[α]← {msd|firstMsg(msd) = α};
7: if (NewlyActivatedMSDs = ∅) then
8: FeaturedTrans ← FeaturedTrans ∪ {e = (S, α, S ′, T rue)|S ′ =
Next(S, α, True)};

9: while (NewlyActivatedMSDs 6= ∅) do
10: Take msd from NewlyActivatedMSDs;
11: NewlyActivatedFeatures[α] ← NewlyActivatedFeatures ∪
{f |msd ∈MSDSpecification(f)};

12: PowerSet← 2NewlyActivatedFeatures

13: while (PowerSet 6= ∅) do
14: Take P from PowerSet;
15: if (P ∈ fd) then
16: FeaturedTrans ← FeaturedTrans ∪ {e = (S, α, S ′, P )|S ′ =

Next(S, α, P )};
17: return FeaturedTrans

(line 6). In case this set is empty, the event does not activate any MSD, and
the featured transition is labelled with a True statement, meaning that it can be
explored by any product (lines 7-8). Next(S, α, True) is the state reached from
S when the featured transition labeled with the event α and the feature expression
True is taken. In that case successors are generated like in standard game graphs,
progressing the set of active MSDs in the sourceState. Otherwise from the set
of MSDs just activated, the set of features activated by the event is computed in
NewlyActivatedFeatures (line 11). A feature is activated when one or more of the
MSDs within its MSD speci�cation are activated. Subsequently the powerset of
all the possible combinations of the activated features are retrieved. A featured
transition for each combination in the powerset is generated (lines 12-16) except
for the ones which does not belong to a valid product, that are discarded. This
is done by means of the Boolean formula fd (line 15) explained in Section 3.2.1.
Next(S, α, P ) is the successor of state S reached through the featured transition
labeled with the event α and the feature expression representing theproduct P .
Successors reached by featured transitions labelled with such a combination of
features are generated by adding the set of MSDs just activated to the set of



MSDs resulting from the progress of the ones already active in the source state.
The set of featured transitions is returned as output.
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Figure 3.3 shows the e�ects of the procedure applied to an extract of the
VendingMachine example.

The SPL speci�cation is given in Figure 3.3(a). It speci�es the behavior
for two variants of the product depending on if considering the optional feature
Sugar or not. In this simple example the MSD speci�cation for each feature in
the MSD is composed of only one MSD. Thus for each newly actived MSDs a new
feature will be activated. An extract of the corrensponding game graph is given in
Figure 3.3(b). Let's consider state 1 as a source state. The set of active MSDs

for state 1 is Tea and the cut is right before the event prepareTea. That event
is the only one active and happens to activate 3 di�erent MSDs, Sugar, Water
and TeaPowder, which are added to the NewlyActivatedMSDs set. The set of
corresponding activated features is {S,W,TP} which is the NewlyActivatedFea-
tures set. Then the powerset of the NewlyActivatedFeatures is computed which
is {{∅}; {!S,!W, TP}; {!S, W, !TP}; {S, !W, !TP}; {S, !W, TP}; {S, W,

!TP}; {!S, W, TP}; {S, W, TP}}. It contains all the possible combinations of
the 3 newly activated features. Among those combinations only {!S, W, TP}
and {S, W, TP} are valid. Both W and TP are in fact required by the T feature.
Two featured transitions for the event prepareTea are then explored from the
source state, one for each valid combination among the powerset of the acti-
vated features. The transitions are the ones leading to state 2 and 3 . Now

let's consider state 2 as a source state. The set of active MSDs for state 2
is {Water, TeaPowder} and corresponds to the set of MSDs activated by the
event prepareTea plus the MSDs that where already active in state 1 after
prepareTea is performed. The active MSD Tea terminates when the cut reaches
the end of the diagram after prepareTea happens, thus for state 2 the set of
active MSDs is equal to the set of MSDs activated by prepareTea. The cuts are
right before putWater for MSD Water and right after putTeaPowder for MSD
TeaPowder. putWater and putTeaPowder are the admissible events. Neither
of them activates an MSD. Two featured transitions are thus explored from state
2 , one for each admissible event, and are both labelled with a True statement,
since none of the events triggers a new feature.

3.2.3 Winning condition

This Section presents an extention of the winning condition, an essential concept
used in Büchi games to iterativelly investigate whether for a given state it is
possible to in�nitely often reach a goal state.

In its original form, the winning condition associates each given state with
a winning �ag, specifying if the state results winning or not. The crucial point
of our featured extension is that the boolean win �ag for a state is replaced



by a featured expression identifying the subset of products which is currently
known to be winning. In other words the winning condition does not produce
a True/False statement anymore, but a featured expression representing the
subset of products for which a state is winning. To mark a state as winning
we cannot simply check if it eventually reaches a goal state. We also need to
consider the set of features labelling the path from that state to a goal state,
if reachable, and check if their combination is admitted in at least one valid
product. Then the combination is stored in the Win map entry of the state.

The combination is computed as shown in line 14 of Algorithm 3. γ is the
feature expression representing the set of products for which a given featured
transition (S, α, S ′, γ) can be triggered when event α occurs. GoalProducts
(resp. Win) is the mapping between each state in the featured game graph and
the feature expression telling for which products that state is a goal state (resp.
winning state). GoalProducts(S ′) (resp. Win(S ′)) is the feature expression

telling for which products the target state S' is a goal state (resp. winning
state). The formula distinguishes two cases for which the featured transitions
exiting from the state can be either all controllable or all uncontrollable. We do
not consider featured game graphs in which from the same source state both
controllable and uncontrollable transitions can be chosen.

First note that the formula related to the controllable case in Algorithm 3
can also be written as:

( ∨
(S,α,S′,γ)∈Postc(S)

γ
)
∧

∨
(S,α,S′,γ)∈Postc(S)

(
γ ⇒

(
GoalProducts[S ′] ∨Win[S ′]

))
That alternative formula in case of controllable transitions is easily compa-

rable to the one for the uncontrollable case and let us better distinguish the
di�erences between the two. The meaning of the �rst part of the formula is
that a product can be winning if it can trigger at least one transition. Consider

Figure 3.4(a). For products that does not contain f as a feature, state S' is

not reachable from state S . Thus we can already conclude that S is not a
winning state for the product, without considering the nature of the transition
or if its successors are goal states. The di�erence between the controllable and
the uncontrollable case resides in the second part of the formula.

Let's consider the controllable case �rst. A state can be marked winning if
among all the controllable transitions that a product can execute, at least one
leads to a state that is a winning or a goal state. In other words for at least one
among the featured transitions exiting from a state the following condition should
be veri�ed: if the featured transition can be executed, the successor reached
through that featured transition should be a goal or a winning state. Thus the
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Figure 3.4: Retrieving the winning condition for di�erent products

implication in the formula. In the controllable case the system can choose which
transition to execute for a given product when more than one eventually reaches
a goal state.

Instead in the uncontrollable case a state is winning for a product if whenever
the product can execute the transition, it eventually reaches a goal or a winning
state through that transition. In other words the product must ensure that every
uncontrollable transition that it can trigger leads to a winning or a goal state.

A simple example is given in Figures 3.4(b) and 3.4(c). Both shows state S

reaching a goal state S' and a loosing state S� . With loosing we mean a state
that is neither goal nor winning. The di�erence between the two �gures resides in
the nature of the transitions. Dashed arrows indicates uncontrollable transitions
in the �rst �gure, solid arrows controllable transitions in the latter. Transitions

to S' are triggered by products with feature f, whereas transitions to S�
can only be executed by products with feature h. Consider the powerset of the
two features f and h representing four di�erent products which are {{!f,!h};
{!f,h}; {f,!h}; {f,h}}. As for the case in Figure 3.4(a), product {!f,!h}
cannot be marked as winning since it has no transition leading to a winning state.
In this case it actually has no transition at all. Similarly product {!f,h} has no
transition leading to a winning or a goal state in both cases. Product {f,h}
is winning in the controllable case, since the transition triggered by f leads to a
winning state and one is enough. It is not in the uncontrollable case, since all the
triggered transitions must lead to a winning or goal state and for the transition
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Figure 3.5: Retrieving the winning condition for the VendingMachine example.

triggered by h the condition is not veri�ed. Finally product {f,!h} happens to
be winning in both cases since the transition triggered by f is the only executable
one and reaches a goal state.

If the winning expression for the same state was already computed by a
previous evaluation, that value is considered in the new computation. The value
is updated when the previously computed combination is a subset of the newly
activated one, i.e. if the state happens to be winning for a larger set of products.
In that case the predecessors of the interested state are also marked for re-
evaluation. This is done to allow the condition to be applied not only for the
successors, but also for states reachable in more than one step. In fact we want
a state to be winning for a product if it eventually reaches a goal state, without
considering the number of steps it should take.

Now consider an extract from the featured game graph of our VendingMa-
chine example given in Figure 3.5. In this example only two products or feature
combinations are valid, that are {T, S, W, TP} and {T, !S, W, TP}. Sup-
pose states 0 , 3 and 5 satisfy the goal property. Suppose the algorithm has

already generated the graph and state 5 has just been marked goal. The algo-
rithm then backpropagates to evaluate the winning condition for its predecessors.



Note that goal states are not necessarily winning themselves. The successor of
1 is already a goal state. Win* then considers the label from state 1 to

state 3 that is {S, W, TP}. That combination is checked to be valid with
respect to the fd expression. The winning expression is then updated and also
the predecessor of state 1 is marked for re-evaluation. The winning condition

for state 0 considers the complete path to the goal state 3 by considering
the feature which leads to its successor {T} and the information stored in its
successor about how to reach the actual goal state that makes him winning, that
is {S, W, TP}. The winning expression for state 0 is {T, S, W, TP}. Then

the algorithm continues with his exploration until it reaches the goal state 3 .
The information about how to reach that further goal state is then backpropa-
gated to its predecessors in a similar way until it reaches state 0 . An update
for its winning expression takes place and the state happens to be winning also
for product {T, !S, W, TP}. State 0 results to be winning for all the valid
products.

3.2.4 Featured Reachability

Our approach to solve reachability games is an extension of [David et Al 2009]
and is given in Algorithm 3. Its output is a function that associates to a state
the set of products that can guarantee to reach a goal state from this state.

Roughly it involves an interleaved combination of forward exploration of the
featured game graph (lines 7-12) together with back-propagation of informa-
tion of winning states (lines 13-17). The forward exploration is performed in
a depth-�rst way. The subroutine Post(S) (lines 2, 10) generates all the valid
successors for each source state and labels all featured transitions with a subset
of products for which that transition is admissible. The featured nature of the
game graph represents a �rst novelty for our approach. Those featured transi-
tions are then added to the Waiting pipeline to proceed with the exploration.
The algorithm also marks Visited states once explored (line 8) and adds each
explored transition to the Depend map entry of its target state(line 9). When a
goal state is encountered, the algorithm marks the transitions in its Depend map
for re-evaluation by adding them again to the Waiting pipeline. This is done to
re-evaluate the predecessor states in the backward propagation (lines 11-12) to
determine whether for them reaching a goal state can be guaranteed. By check-
ing the set of already Visited state, featured transitions leading to states that
were already visited previously are analyzed only once by the forward exploration.
Any further examination directly goes into the backward propagation which is
responsible for performing a re-evaluation of the predecessors of a state anytime
the winning condition of that state is updated. The backward propagation for



Algorithm 3 FR(G)

1: V isited← {S0};
2: Waiting ← {e = (S0, α, S

′, γ)|e ∈ Post(S0)};
3: Win← ⊥;
4: Depend[S0]← ∅;
5: while (Waiting 6= ∅) do
6: Take e = (S, α, S ′, γ) from Waiting;
7: if (S ′ /∈ V isited) then
8: V isited← V isited ∪ {S ′};
9: Depend[S]← {e};
10: Waiting ← Waiting ∪ Post(S ′);
11: if (S ′ ∈ G) then
12: Waiting ← Waiting ∪ {e};
13: else
14: Win∗ ← Win[S] ∨

∨
(S,α,S′′,γ)∈Postc(S)

(
γ∧
(
GoalProducts[S ′′] ∨Win[S ′′]

))
∨
( ∨

(S,α,S′′,γ)∈Postu(S)
γ

∧
∧

(S,α,S′′,γ)∈Postu(S)

(
γ ⇒

(
GoalProducts[S ′′] ∨Win[S ′′]

)))
;

15: if ((Win∗ 6⇒ Win[S])) then
16: Waiting ← Waiting ∪Depend[S];
17: Win[S]← Win∗;

return Win

the Featured Reachability algorithm, mostly consists of the winning condition
presented in the previous section.

3.3 Featured Büchi

To check whether an MSD speci�cation is realizable, we have to check if the
system can guarantee that at least one of the goal states must be visited in-
�nitely often by only choosing controllable transitions in the graph. Games with
a winning condition requiring to reach a goal state in�nitely often are called
Büchi games. When this is true for the initial state of the graph, we can derive
a consistently executable controller for the system. As for solving reachability
games, when managing futured game graphs instead of game graphs for each
single product, we need to compute the set of products for which a given state
can reach a goal state in�nitely often. When such a valid combination of features



exists for the initial state, it represents the set of realizable products. If this is
the case, the algorithm can synthesize an FTS, i.e. an automaton representing
the behaviour of a set of products, that is actually a concise representation of
consistenly executable controllers for the set of realizable products.

Our approach to solve Büchi games for product lines is an extension of [David
et Al 2009] and is given in Algorithm 4. It is based on the algorithm for solving
reachability games as explained in the previous section. Initially goal states in
the featured game graph are considered goal states for all the products (line 1).
Win maps a state to the set of valid products for which the state eventually
reaches one of the goal states and is computed by means of the procedure shown
in Algorithm 3 (line 2). Then the algorithm checks whether for some goal state
the set of products for which it is a goal state is a subset of the set of products
for which it is a winning state (possibly none). The set of products for the goal
states for which the condition holds are then updated to the set of products for
which those states are winning. This is because if for a particular product a state
S' is goal but not winning, then it is not sure for states reaching that state to
reach a goal state in�nitely often. If S' is the only goal state they can reach,
then they are winning for a reachability game, since they reach S', but not for
a Büchi game, since S' cannot reach a goal state itself. To compute which
states are winning and for which products given the updated set of goal states
the algorithm back-propagate again each time the Goal map is updated. A new
Win map is computed by calling the reachability procedure again. Note that only
the back-propagation part is executed when calling the procedure within the loop
(lines 3-5). The set of realizable products is returned.

Intuitively, in case after the �rst call to the reachability procedure the Win
map coincides with the Goal map, the algorithm terminates. That can happen
only in case no goal state exists and no valid product is realizable. In fact
otherwise since goal states are initially mapped to a True statement, having the
same combination of products for the Win would mean having a True statement
for the state entry of the Win map and this is not admitted by the winning
condition of the featured reachability procedure. Each winning combination is
checked to be a valid combination with respect to the FD constraints. Then
the maximum set of products for the winning combination is the set of valid
products.

Figure 3.6 shows a modi�cation of the featured game graph in Figure 3.5.
No state in the latter controller happens to be winning, since none of the goal
states is in�nitely reachable. Then a self-transition has been added for state 3 .
Suppose the �rst version of the Win map has already been computed from the
�rst call of the reachability subroutine. The only di�erence with the Win map
computed for the graph in Figure 3.5 is that Win(3) is the subset of all the valid
products instead of a False statement. Then for each goal state in the goal



Algorithm 4 FB

1: G← {(g,>)|g ∈ G};
2: Win← FR(G);
3: while (∃(g, P ) ∈ G|P 6⇒ Win[g]) do
4: G← {(g,Win(g))|g ∈ G};
5: Win← FR(G);

6: return Win[S0]

map it is checked whether they represent also products that are not winning.
The condition holds for all the goal states entries, which are updated. The goal
state 5 is not winning itself. This means that all its predecessors result winning
when the winning condition stands for states eventually reaching a goal states,
but not when the winning condition requires to reach them in�nitely often. In
fact if the goal state does not reach another goal state itself, it may be that its
predecessors cannot reach a goal state in�nitely often. Thus the goal entry for
state 5 is updated with its entry from the win map. Similarly for goal states

0 and 3 . The reachability subroutine is called again to compute a Win map

considering the update information in the Goal map. The update for state 5

is back-propagated until state 0 for which the path to state 5 is nomore
considered, since it does not appear as a goal state. The only realizable product
for the algorithm is the one excluding feature {S}.
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Figure 3.6: Two iterations of the Büchi algorithm applied to the VendingMachine ex-
ample.



Chapter 4

Implementation

This chapter describes the implementation of our technique in the ScenarioTools
tool suite, a collection of Eclipse-based tools which support the modeling, simu-
lation and synthesis of MSD speci�cations. Section 4.1 brie�y introduces Scenar-
iotools. Next, Section 4.2 illustrates the architecture of our extension. Finally,
Section 4.3 gives an overview of how to actually use the extension within the
tool.

4.1 Scenariotools

ScenarioTools1 consists of an Eclipse-based modeling, synthesis and simulation
tool suite for MSD speci�cations developed by the DEEPSE Group, Politecnico
di Milano, Italy, and the Software Engineering Group, University of Paderborn,
Germany. It currently supports the modeling and synthesis of both static and
dynamic software-intensive systems. Static systems are systems made up of
a �xed number of objects, whereas dynamic systems are systems that update
dynamically at runtime and in which the number of components may vary as
well as the communication relationships between them. In the following we
only relate to static systems. For further details about possible applications of
ScenarioTools to dynamic systems we refer the interested reader to [Ghezzi et Al
2012, Greenyer 2011] and the o�cial webpage http://scenariotools.org.

4.1.1 Modeling

Scenariotools supports the modeling of SPL speci�cations as a combination
of MSD speci�cations and FDs. That is done via the Papyrus UML editor in

1ScenarioTools http://scenariotools.org
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Figure 4.1: Overview of the package structure for the VendingMachine example.

Eclipse2. Extensions to Papyrus and UML, as part of ScenarioTools, allow users
to specify temperature and execution kind for a message, as well as to label
MSDs as assumptions within a graphical editor. The ScenarioTools modeling
scheme for static systems consists of a package structure as the one shown in
Figure 4.1 for the VendingMachine example.

The �rst package in the structure is the base package. It consists of a class
diagram together with a collaboration diagram and speci�es the structure of the
system.

The base package is merged by other packages, which tipically contain a set
of MSD schemas representing the behaviour for di�erent features. Figure 4.2
shows the contents of the base package and the behavioural concerns speci�ed
by the package �Tea� from the VendingMachine example.

Eventually, packages are merged by an integrated package. When modeling
an SPL, the integrated package should contain the FD representation, which is
also modeled via a UML extension, inspired by [Possompes et Al 1998]. The
integrated package represents the overall behaviour of the SPL, as the union
of the MSDs contained in the packages it merges. Features are represented by
UML components. Parent features are associated with a port by which one could
specify whether their child features are in an AND, OR, or XOR relationship.
Optionalities may be speci�ed within the dependency connecting a feature with
its child feature through a particular stereotype. Each feature is related to the

2Papyrus http://www.eclipse.org/papyrus/
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Figure 4.2: The contents of the base package and Tea package from the VendingMa-
chine example.

corresponding package specifying the feature's behaviour. The implementation of
the FD in ScenarioTools for the VendingMachine example is given in Figure 4.3.
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Figure 4.3: The implementation of the FD in ScenarioTools for the VendingMachine
example.



Figure 4.4: A screenshot of the ScenarioTools runtime during the simultation of the
VendingMachine example.

4.1.2 Simulation

The simulation of the MSD speci�cation is performed by means of the play-
out algorithm [Harel and Marelly 2002]and integrates into the Eclipse Debug
Framework.

Once the simulation is launched, the user is prompted to an environment
similar to the one shown in Figure 4.4. The Debug View in the top left displays
the active MSDs and objects in the object system. The Variable View in the
top right provides the lifeline bindings. Finally the MessageEvent Selection View
at the bottom presents the list of enabled messages for the current state. The
nature of the message is described by label colors and icons at the left of the
message name. For example in the picture all possible next events are in a hot
and executed cut. At each step the user may choose the next event to perform
by clicking one of the messages in the list.

4.1.3 Synthesis

ScenarioTools also supports the synthesis of MSDs speci�cations. First the state
space described by the model can be explored. It considers reachable states in
an execution, including states leading to a safety or liveness violation. A state
graph is generated and can be visualized using Graphviz 3. Figure 4.5 shows part
of the state space diagram created for the VendingMachine example during the
synthesis of the product with all the features enabled.

3Graphviz http://www.graphviz.org/



Figure 4.5: Part of a state space diagram explored by the ScenarioTools synthesis for
the VendingMachine example. The graph considers the product with all
features enabled

Each state contains the list of active MSDs in a particular cut and lifeline
bindings. Transitions are labelled by the name of the message that is exchanged.
Uncontrollable transitions are depicted by dashed arrows, controllable transitions
by solid ones.

This state exploration mechanism is used by the synthesis algorithm to �nd
whether a strategy exists for the given speci�cation. The algorithm can either
determine that the product is not realizable or extract a controller ful�lling its
speci�cation.

Visually, this controller appears as a state graph, except for violating states
and transitions leading to them, which are removed.

4.1.4 Con�guring Executable Speci�cations

Both synthesis and simulation in ScenarioTools use the same run-time logic.
This ensures consistent results for both kinds of analysis. In order to perform
the simulation and controller synthesis of MSD speci�cations, it is necessary to
create a concrete object system, also called execution object model, based upon
which the MSDs can then be interpreted. ScenarioTools allows the creation of



Figure 4.6: Overview of the models involved in the execution of MSDs for a static
object system, with static lifeline bindings

the concrete object system through the Eclipse Modeling Framework (EMF) 4.
The EMF is a modeling framework and code generation facility. From a model
speci�cation, called Ecore model, EMF provides tools and runtime support to
produce a set of Java classes for the model. An overview of the process is given
in Figure 4.6. The models involved and their relation are explained below.

System's interaction behavior The MSD speci�cation is modeled as described
in Section 4.1.1.

ECore class model The speci�cation's class diagrams are mapped to a corre-
sponding Ecore class model through a UML-to-Ecore mapping.

Execution object model This model, together with the collaboration diagram
describing the object structure, allows to create an object model.

Role-to-object mapping Lifelines in the MSD speci�cation are mapped to
objects. This mapping is possible when dealing with static systems since
only one execution object model exists and lifelines are not bind dynamically
to objects.

Simulation/synthesis Based on the concrete object model, MSDs can be in-
terpreted for simulation and synthesis.

4Eclipse Modeling Framework http://www.eclipse.org/modeling/emf/



We will guide the user throughout those steps in Section 4.3.

4.2 Architecture

We extended ScenarioTools with the capability to synthesize SPL speci�cations
simultaneously as described in Chapter 3. This section provides a high-level
presentation of the extension and describes how it integrates with the tool.

The featured synthesis approach, also called simultaneous synthesis in the
following to underline his capability of synthesizing an SPL at once, was devel-
oped in Java as an Eclipse plug-in using the Plug-in Development Environment
(PDE) 5.

4.2.1 Inputs and outputs of the simultaneous synthesis

Before describing the structure of our extension we brie�y present its inputs and
outputs. Figure 4.7 represents the plug-in as a black box.

Input The simultaneous synthesis algorithm can be executed from a model �le
generated when creating the execution object model and specifying which models
belong together. Such a model �le is called scenariorunconfiguration and
represents the input of the process.

Output The synthesis run yields two outputs. Right after the end of the
process a pop-up is generated containing the following information:

� General outcome of the synthesis i.e. true if at least one product among
those in the SPL is realizable, false otherwise.

� Number of explored states and transitions.

� Time taken by the algorithm to synthetize the SPL speci�cation in mil-
liseconds.

� Total number of goal and winning states in the featured game graph, i.e.
states which are marked goal or winning for at least one product.

� Number of realizable products and a feature expression representing them.

The process also generates a model �le, namely msdruntime �le, containing the
information needed to generate the featured game graph.

5Plug-in Development Environment http://www.eclipse.org/pde/
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Figure 4.7: The inputs and outputs of the plug-in

4.2.2 Main structure and dependencies

This section presents the main structure of our extension as illustrated in the
class diagram of Figure 4.8. Below we brie�y describe the main classes and their
roles in the process.

SimultaneousProductLineSynthesisAction It contains a run method that
is invoked when the user executes the simultaneous synthesis from the
scenariorunconfiguration model �le. It handles the input �le and
calls the SimultaneousProductLineSynthesisJob.

SimultaneousProductLineSynthesisJob It is the job running in the back-
ground. It starts the algorithm, waits for its completion, then generates
the msdruntime �le and a pop-up containing the outcome of the synthesis.

SimultaneousProductLineSynthesis It represents the fundamental class of
the project. It contains the implementations of the algorithms presented
in Chapter 3. To accomplish those functions it relies on a Java library
for Binary Decision Diagrams(BDD), called JDD, and on the EMF model,
both described in the following.

JDD. A Java BDD library

.
Binary Decision Diagrams (BDD) [Bryant 1992, Andersen 1997, Akers 1978]

are data structures representing a Boolean function. They are widely used in
model checking [Burch et AL 1992], formal veri�cation [Bryant 1995] and opti-
mizing circuit diagrams [Fey et Al 2004]. We adopted BDDs to represent and
manipulate feature expressions in our implementation by including the JDD6 Java
library in our project.

A feature in the feature diagram can be represented by a BDD variable.
The library provides many functions which implement logical operations on BDD

6JDD library http://javaddlib.sourceforge.net/jdd/
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Figure 4.8: The architecture of the plug-in and its main dependencies illustrated by a
UML class diagram.

variables like conjunction, disjunction and negation. They are extensively used in
our plug-in to handle feature expressions, for example when labeling transitions
in the featured game graph, retrieving the set of valid products from the FD
or computing the winning condition. A BDD represents a set of products as
feature combinations in which a feature takes one of three possible values: 1
when its presence is mandatory, 0 when its absence is mandatory, − otherwise.
The order of the features in the feature expression depends on the order in which
their corresponding BDD variable is declared. Coming back to our VendingMa-
chine example, suppose we have four features �Tea�, �Water�, �TeaPowder�,
�Sugar� and four corresponding BDD variables declared in the same order. The
feature expression {111−} corresponds to the CNF formula (�Tea� ∧ �Water� ∧
�TeaPowder� ∧ �Sugar�) ∨ (�Tea� ∧ �Water� ∧ �TeaPowder� ∧ �!Sugar�).
To provide the set of realizable products at the end of the process, the plug-in
translates the BDD encoding this set to a concise CNF formula.

EMF model

.
As explained in Section 4.1.4 the EMF is the framework by which Scenari-

oTools allows the creation of the concrete object system. It consists of a modeling



Figure 4.9: Extension of the existing ECore class model build through EMF.

framework and code generator facility which produces a set of Java classes for a
structured data model speci�cation destribed in XMI.

We bene�ted from the EMF support to model inheritance and extended the
existing ECore class model in ScenarioTools to cope with the featured nature of
transitions and game graph in our approach. Figure 4.9 shows the EMF model
used by our plug-in. Each block in the model corresponds to both a Java class
and Java interface generated by the code generator and enhanced to integrate
with our plug-in. Below we brie�y describe the main blocks.

FeaturedMSDRuntimeState It represents a state in the featured game graph.
It inherits attributes and methods from the MSDRuntimeState which is
the one corresponding to a set of active MSDs in a particular cut in the
standard game graph. Thus it inherits information about currently ac-
tive MSDs and possible safety violations in requirement and assumption
MSDs. In addition it keeps track of the featured transitions exiting from
the state. In a standard game graph only one transition labeled with the
same event could exit from the same state. In the featured case though,
it is possible to have more than one transition labeled with the same event
exiting from the same state. That is because the same event may cause
the set of active cuts of the MSD speci�cation to progress in di�erent
ways, depending on the product which is considered. The set of fea-
tured transitions exiting from the state is represented by a nested map.
At a �rst level we have a mapping between a standard transition and a
feature expression label de�ning a featured transition. Then we map an
event to a set of featured transitions which may be triggered by the event.
To handle featured transitions FeaturedMSDRuntimeState interacts with
TransitionToFeatureExpressionMapEntry and
EventToFeaturedTransitionListMapEntry.
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Figure 4.10: Overview of the diagrams involved in the SPL speci�cation of the Vend-
ingMachine example in the Papyrus editors.

FeaturedMSDRuntimeStateGraph It represents the featured game graph. It
contains methods responsible for exploring the state space from a state by
generating all possible featured successors for all events that may happen
from a state. It also maintains a map between features and BDD variables.

4.3 Using the package

The aim of this section is to give an overview of how to use our plug-in within
ScenarioTools. In order to run a simultaneous synthesis the user needs to model
the SPL speci�cation, generate a concrete object model and eventually run the
synthesis. Those three steps are described in more details in the following.

4.3.1 Modeling

As already described in Section 4.1, modeling a SPL speci�cation consists in
modeling a package overview diagram, class diagram, collaboration diagram and



(a) Specifying that the �prepareTea� message is executed

(b) Specifying that Student represents an environment object

(c) Adding an AND decomposition between feature �Tea� and its child features

Figure 4.11: Some of the stereotypes provided by ScenarioTools

FD, besides modeling MSD speci�cations within some or all of the merged pack-
ages. Figure 4.10 shows the corresponding diagrams of the VendingMachine
example in the Papyrus editors.

ScenarioTools provides a set of stereotypes which allow one to detail the
di�erent components involved in the di�erent diagrams. For example a user
could specify the temperature and execution kind of a message in an MSD
(Figure 4.11(a)), whether a role represents an environment or a system ob-
ject(Figure 4.11(b)), or the decomposition kind for a port in the FD (Fig-
ure 4.11(c)).



(a) The user can generate the concrete object system through the create UML-to-Ecore TGG

interpreter configuration wizard

(b) One of the steps in the automated generation. The user can specify to create a scenario run
con�guration and role-to-object mapping.

(c) The �les created after the transformation.

Figure 4.12: Some of the steps to create a concrete object system



4.3.2 Automated generation of the ECore class model

Once the SPL speci�cation is modeled, the corresponding concrete object system
can be created. ScenarioTools supports the user in this automated generation
through the create UML-to-Ecore TGG interpreter configuration wiz-
ard (see Figure 4.12(a)). First a uml model �le should be selected as the source
of the UML-to-ECore transformation con�guration. Then the user can select a
merging package, usually the integrated package, that will be transformed into
an Ecore package. All the UML packages merged by the selected package will
be merged in this phase. The user can also specify to create an object system
from a collaboration diagram in his model, to automatically create a role-to-
object mapping and whether to create a scenario run con�guration �le, i.e. a
con�guration model specifying which models belong together, as illustrated in
Figure 4.12(b). It is also possible to indicate the folder in which the generated
�les shall be stored. Figure 4.12(c) provides a list of the �les created.

4.3.3 Running the simultaneous synthesis and showing

the featured state graph

After generating the concrete object system it is possible to run the simultaneous
synthesis of the SPL speci�cation. The model �le from which the synthesis can
be executed is the scenario run con�guration (see Figure 4.13(a)).

After the process ends, a pop-up provides information on the number of
explored states and transitions, the time taken for the execution, the number of
realizable products in the SPL and a feature expression representing them. The
results of the simultaneous synthesis on the VendingMachine example are given
in Figure 4.13(b).

The synthesis also produces a msdruntime �le from which it is possible to
generate the corresponding featured game graph as shown in Figure 4.14(a).
Part of the graph for the VendingMachine example is given in Figure 4.14(b).
Transitions are labeled with both the name of the exchanged message and the
bdd expression representing the combinations of features for which the transition
is contemplated. In this phase the bdd expression has not been translated to a
CNF feature expression to avoid clutter. Also note in the graph that from state
2 the same evant �change� can lead to three di�erent states depending on
if only feature �Tea� (10), only feature �Cup�(01) or their combination (11) is
taken into consideration.



(a) Running the simultaneous synthesis from the scenarioruncon�guration �le.

(b) Results are popped up after the process ends.

Figure 4.13: Simultaneous synthesis of the VendingMachine example.



(a) Generation of a pdf �le containing the featured game graph from the msdruntime �le.

(b) Part of the featured game graph.

Figure 4.14: Generating the featured game graph for the VendingMachine example.



4.4 Limitations and perspectives

Our implementation extends ScenarioTools to synthesize a whole SPL speci�ca-
tion at once. Also, an FGG representing a global state graph can be generated,
which maintains a link between a given execution and the features needed to
trigger it.

However a couple of limitations exist. First, our plug-in does support simula-
tion. Although the tool allows one to run the simulation on the SPL speci�cation,
the only target of the process is the product composed of all the feature speci�ca-
tions. One way to solve this drawback would be to let users select the features to
include in the speci�cation. Then, from the FGG, one should be able to extract
the corresponding controller and execute it.

Another minor limitation of our technique is that when generating the fea-
ture expression representing the set of valid products in the FD, it does not
consider cross-tree constraints. This �x should be easily applicable by extending
Algorithm 1 in order to consider the respective constraints.



Chapter 5

Evaluation

In this chapter we evaluate the applicability and the e�ciency of our approach.
First, in Section 5.1 we apply our technique on our Vending Machine example
and an ambient intelligence system case study. Then, in Section 5.2 we assess
the e�ciency of the featured synthesis algorithm against the successive checking
of the individual products, using di�erent technical evaluation examples.

5.1 Applicability Evaluation

As a �rst evaluation, we applied our methodology on our running example. We
modeled the SPL speci�cation given in Section 2.4 in ScenarioTools and checked
the realizability of the SPL through our plug-in. For the Vending Machine case,
the featured synthesis approach successfully identi�es that of all �ve products
are realizable.

We then ran the algorithm on a partially inconsistent speci�cation, to verify
whether our technique was able to identify unrealizable products. This second
example is a simpli�ed version of a use case from the Conviviality and Privacy in
Ambient Intelligent Systems (CoPAInS) project1, an ambient intelligence system
case study developed by the University of Luxembourg. We will refer to it as the
CoPAInS example hereafter.

In the next sections we give an overview of this example, the involved system
and environment objects, its informal requirements and assumptions and �nally
present the outcome of the experiment, showing the ability of the algorithm to
recognize speci�cation inconsistencies.

1CoPAInS project: http://www.fnr.lu/en/Research-Programmes/Research-
Programmes/Projects/Convivialty-and-Privacy-in-Ambient-Intelligence-Systems-CoPAInS
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5.1.1 CoPAInS Overview

Ambient Intelligence (AmI) represents an emerging �eld of research and develop-
ment which aims to provide a new level of assistance and support in people's daily
activities, transforming living and working environments into intelligent spaces. A
particular case of Ambient Intelligence is that of Ambient Assisted Living (AAL),
whose primary goal is to address the needs of people with disabilities and ensure
their health, safety, and well-being, as well as to help them maintain self-su�cient
living. A major challenge for AAL and AmI systems in general, is to preserve both
user's privacy and convivial interactions among humans and devices [Moawad et
Al 2012, Efthymiou et Al 2012], hence the name of the project Conviviality and
Privacy in Ambient Intelligent Systems 2.

In the following, we consider an AAL system product, the Home Care As-
sistant, originally conceived to inquire about privacy and conviviality properties
of Ambient Intelligence systems. We adapt it to show the applicability of our
methodology to SPLs by conceiving two variants, only one of which is realizable.

In its simplied version, the home care assistant works as follows. A patient
is provided with a remote controller, by which a help request can be submitted.
When the patient needs help, he can activate the alarm on his remote controller
by pressing a button. This triggers the alarm activation in the main Home Care
System (HCS). The HCS has a list of contacts to call in case of emergency.
The list is ordered on the basis of the patient's preference and is scanned top
down. The HCS starts contacting the �rst person in the list, asking him for his
availability. Every contact, called helper hereafter, is provided with a smartphone
and a particular app installed, by means of which he can accept or deny the
request. If a user accepts to help, the HCS will wait for the helper to go to
the patient's house. A sensor, installed on the main door will register the helper
entering the room, calling o� the alarm. Otherwise, if the helper is not available,
the HCS will contact the next helper on the list. Optionally, the system could be
implemented to call the ambulance, in case nobody on the list is available. In this
latter case, we expect that the ambulance is also equipped with a smartphone,
allowing the HCS to connect with it the same way it does with other helpers in
the contacts list.

We modeled the Home Care Assistant as a static system in ScenarioTools.
The sketch representing system and environment objects as well as their interac-
tions is given in Figure 5.1. Static systems are systems in which the number of
objects, such as the number of helpers and consequently the number of smart-
phones involved, is �xed. Hence we set the number of helpers in the list of
contacts beforehand. For simplicity, if the ambulance is not involved, we con-
sider that only one helper is in the list. Otherwise, we consider a list composed

2Also note that in french, �copain� is the translation for �buddy�.



r:Remote

p:Patient

hcs:HCS

h:Helper

a:Ambulance

d:DoorSensor

spa1:SP

sph1:SP

env:Environment

Environment Objects

Patient: The person who needs help.  
Helper: The person who replies to the 
help request and possibly provides help 
in case of emergency.
Ambulance: Optionally the last contact 
in the contact list.
Environment: General entity 
representing the fact that the patient is 
helped and healthy again.

System Objects

Remote: Remote controller used by the patient to 
ask for help.
HCS (Home Care System): Main controller that 
captures the request, contacts a list of helpers and 
reacts according to their answer.
SP: Smartphone through which contacts are asked 
for help and reply to a help request.
DoorSensor: A sensor installed on the patient's 
door in order to register whenever a helper arrives.

Figure 5.1: The Object System for the CoPAInS example

of one helper and an ambulance.
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DoorOpened
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ForHelp

Legend:
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<<Feature>>
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Figure 5.2: The FD for the CoPAInS example

For the CoPAInS example, three features can be readily identi�ed: the ability
to register a help request, the ability to call a helper and to react to his reply



and the ability to monitor a door sensor. We also consider the ability to call the
ambulance, when nobody else in the list is available, as a fourth optional feature.
The FD used to capture the valid combinations of those features is shown in
Figure 5.2. It represents two products. The di�erence between the two is given
by the presence of the CallAmbulance feature.

For each of those features we identify system requirements and assumptions
about the environment. They are described informally in Table 5.1.

Table 5.1: Informal requirements and assumptions for the CoPAInS example.

Feature Requirements Assumptions

Patient Asks For Help R1) After the patient asks for
help the alarm is set on and
eventually the patient must be
helped.

A1) We assume that the pa-
tient does not ask for help
twice before the alarm is called
o�.

CallHelper R1) After the alarm is set on,
the HCS sends an help request
to the smartphone of the �rst
helper in the list. The smart-
phone shows the message to its
owner.

A1) We assume that after the
smartphone shows the message
to the helper, either he answers
with his availability or with his
unavailability. Through this as-
sumption, we basically rule out
the scenario in which the helper
does not reply at all.

R2) After the helper reads the
message, he could reply YES or
NO. In the �rst case the smart-
phone tells the HCS that the
�rst helper is available to help.
Otherwise the HCS is informed
that the helper is not available.

CallAmbulance R1) Whenever the last helper
is not able to help, the HCS
sends a request to the ambu-
lance.

A1) The ambulance is always
available to help.

DoorOpened R1,R2) When the helper en-
ters the room, the alarm is set
o�. The same if the ambulace
enters.

A1,A2) We assume that when
the helper replies that he is
available to help, he will even-
tually show up. That is also
true for the ambulance.

A3,A4)When the helper or the
ambulance enter the room, af-
ter the alarm is called o�, the
patient is helped.

The MSD specifying Requirement R1) within the PatientAsksForHelp fea-
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Figure 5.3: Two MSDs from the CoPAInS SPL speci�ction.

ture is given in Figure 5.3(a). It represents the general requirement for the Home
Care Assistant and, also, its main goal. The primary objective of an AmI system
is to ensure that whenever a customer needs help and asks for it, he will even-
tually be helped. The absence of Feature CallAmbulance, with its Assumption
A1) saying that the ambulance is always available to help, introduces a liveness
violation of this main goal. Without that assumption, if no helper in the list is
available to help, nobody will �nally assist the patient. One could assume the
same for the helper, but this is not something reasonable in a real-life scenario.
For instance it could happen that everybody is physically unable to help, as being
out of town. Conversely, it is something people would typically expect from an
ambulance. The main di�erence between the ambulance and a helper in our
speci�cation, is that the ambulance is always available to help. We model that
through the assumption MSD in Figure 5.3(b). The whole SPL speci�cation for
the CoPAInS example is given in Appendix A.

As a consequence, the only realizable product in the SPL is the one including
CallAmbulance in its combination of features.

5.1.2 Featured synthesis outcome

After modeling the SPL speci�cation in ScenarioTools, we applied the featured
synthesis on the family of two products. As presented in the previous section,
the product without Feature CallAmbulance is inconsistent. Our technique
successfully recognizes that the only realizable product in the SPL is the one
considering the ambulance in its speci�cation. The outcome of the run is given
in Figure 5.4.

We then generated the FGG explored by the process. An excerpt of the FGG
is shown in Figure 5.5. State 5 represents the step after the helper has read the



Figure 5.4: The featured synthesis outcome for the CoPAInS example.

Figure 5.5: An excerpt of the FGG for the CoPAInS example.

message asking for his availability and before his reply. Two uncontrollable transi-
tions exit from this state. If the helper is available to help no violation occurs. The
helper will eventually help the patient and all the requirements in the speci�ca-
tion will be ful�lled, even for the product not including Feature CallAmbulance.

Otherwise the exploration reaches State 12 . If the helper is unavailable, two
di�erent situations can occur. In case Feature CallAmbulance is included, State
13 is reached. Note that Transition �helpResponse(false)\−−−−1� rep-
resents the helper communicating his unavailability to the HCS when Feature
CallAmbulance is included (1). Even in this case, all requirements are ful�lled,
since the patient will be eventually helped by the ambulance. Instead, when the

ambulance is not considered, State 19 is reached, which is a state without any
outgoing transition, causing a liveness violation in the requirements. During the



backpropagation, as presented in Section 3.2.3, State 19 is labelled as winning
for no product, since it does not reach any goal or winning state. In this case it

does not reach any state at all. Instead, State 13 is winning, since it leads to
a winning state. This is not shown here for brevity, but can be inferred from the

whole FGG, which is given in Appendix A. State 12 is then labelled winning
only for the combination of features including CallAmbulance, since it reaches

a winning state, i.e. State 13 , through a transition which is valid only when
Feature CallAmbulance is considered. Through an additional backpropagating
step, we analyze the winning condition for State 5 . Its successors are State

12 and State 6 , both reachable through uncontrollable transitions. In the
uncontrollable case a state is winning for a product if all outgoing transitions
from the considered state lead to a winning or a goal state for that product.

In the example State 6 is winning for the whole SPL, whereas State 12 is
winning only for the product which includes Feature CallAmbulance. Hence
State 5 ends up winning for the only product for which both successors are
winning, i.e., again, the one considering Feature CallAmbulance. This a�ects
the winning condition of all previous states, until the algorithm reaches the initial
state. Finally the algorithm �nds that only the product including all features is
realizable.

5.2 Performance Evaluation

In this section we assess the bene�ts of the featured synthesis against the suc-
cessive checking of the individual products, also called sub-optimal approach
hereafter. We further compare those results with the ones obtained through our
previous iterative on-the �y approach.

All benchmarks were run on a Windows PC with a 2,4 GHz Intel Core 2 Duo
processor and 4 GB of RAM.

5.2.1 CoPAInS and Vending Machine examples

In this �rst experiment we test the performance of the featured synthesis on both
the CoPAInS and the Vending Machine examples.

We compare 100 synthesis runs of the featured algorithm with the successive
synthesis of each product and the incremental synthesis of [Greenyer et Al. 2013].
Table 5.1(a) and Table 5.1(b) show the results of the comparison respectively
for the CoPAInS and the Vending Machine examples. Each table provides the
number of explored states and the time in milliseconds for each algorithm.



(a) CoPAInS example: 4 features, 2 products.

Algorithm #States avg Time (ms)

Featured Synthesis 20 25
Sub-optimal 35 43
Incremental OTF Synthesis 29 32

(b) Vending Machine example: 6 features, 5 products.

Algorithm #States avg Time (ms)

Featured Synthesis 16 10
Sub-optimal 46 34
Incremental OTF Synthesis 36 20

Table 5.2: Comparison on synthesis times and number of explored states for the fea-
tured synthesis, sub-optimal and incremental OTF synthesis approach.

We observe a noticeable improvement in the number of states explored by
the synthesis. In the CoPAInS case 35 states are visited by the sub-optimal
algorithms. This number decreases to 29 for our previous incremental approach.
Only 20 states are visited by the featured synthesis. This already happens for a
family of two products, when the second product is generated from the �rst one
by just adding a feature to the combination. We also notice that in average 25
ms are taken by the featured synthesis, 32 ms by the incremental and 43 ms by
the sub-optimal approach, which is an insigni�cant improvement.

The same comparison was run on the Vending Machine example and con-
�rmed what we noticed for the CoPAInS case.

Although the realizability checking of both the CoPAInS and Vending Machine
examples takes less than a second, this procedure can be very time-consuming for
larger models. In the following, to further evaluate the bene�t of our featured
synthesis approach, we use some technical examples, which we systematically
extend to create new examples with larger state spaces.

5.2.2 Comparison between featured and sub-optimal syn-

thesis

In this �rst set of technical examples, named the cascading example hereafter,
each SPL speci�cation comes with an FD where each feature has at most two
child features, connected with an OR-relationship. Features with distance i from
the root may exist only if every feature with distance i - 2 in the diagram has
exactly two child features. Each feature is connected with one MSD named
after the feature. The �rst message of an MSD is a cold, monitored message
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Figure 5.6: Cascading example with only one hot executed message per MSD.

and is followed by one hot, executed message. All messages are uni�able with
system events except the �rst message in the MSD of the root feature, which
is an environment message. The �rst message of a child feature MSD is named
like the hot message of its parent's MSD. This way, one activation of an MSD
triggers the activations of its child feature MSDs. The structure of our example
is presented in Figure 5.6.

Based on that example, we compare the performance of the featured synthesis
approach with respect to synthesizing every product independently. We test
examples following the previous scheme, creating SPL speci�cations for 3, 5, 7,
9, 11, 13, and 15 features. The valid combinations of those features respectively
lead to 3, 7, 15, 31, 63, 127, and 255 products, which represents an exponential
increase in the number of products and di�erent reachable combinations of cuts
for each additional feature. We also created a second set of technical examples,
based on a similar pattern. The only di�erence is that we relate a parent feature
with its child sub-features with a XOR-decomposition instead of an OR. In this
latter case the set of SPL speci�cations leads to a signi�cantly lower number of
products. Only 2, 3, 4, 5, 6, 7, 8 products are respectively created.

We repeated each experiment 20 times and computed the average of the syn-
thesis times. Table 5.3 shows how synthesis time increases with respect to the
number of features for our technical example. It provides the parent-child rela-
tionship, the number of features involved, the number of realizable products, and



for each approach the average number of explored states, the average synthesis
time, and �nally the speedup provided by the featured approach.

First, we notice that the bene�ts of the featured synthesis does not directly
depend on the number of features, but rather on the number of their valid
combinations. Cascade examples with 3 to 15 features were generated for both
the XOR and the OR case. We already observe relevant improvements in the
XOR case. The number of states explored and the average realizability checking
time are almost the double when considering each product separately. However
is when dealing with OR-decomposition and a higher number of products that
the gain of the featured synthesis approach becomes remarkable. In the OR
case, when synthesizing 255 products through the featured approach only 573
states are visited, against 22196 with the sub-optimal approach, and the process
is almost 20 times faster (1260 ms against 25161 ms).

We conclude that the featured approach brings more noticeable improvements
when the number of products grows more than linearly with the number of
features.

Our interpretation of this result is that when the number of commonalities
grows, such as in the OR case with respect to the XOR case, also the number of
commonalities in the game graph of each product increases. Thus, exploring a
global game graph instead of a set of di�erent game graphs, allows the process
to collapse common states, i.e. the reachable combinations of cuts, exploring a
lower number of states and, consequently, saving synthesis time.

5.2.3 Comparison between featured and incremental on-

the-�y synthesis

In this section the performance of the featured synthesis is measured against the
incremental on-the-�y synthesis approach.

Before showing the results of our experiments, we intuitively explain the
di�erence between an on-the-�y (OTF) and a not-on-the-�y (NOTF) synthesis.
On-the-�y means that the algorithm only explores parts of the game graph. To
capture the impact that such a di�erence could make in terms of number of
states explored, we refer to the example shown in Figure 5.7.

Such an example consists of two mandatory features, which combined to-
gether form one single product. For simplicity, we do not consider families of
products at this stage. The �rst feature contains one MSD composed of an en-
vironment message, which is cold and monitored, and an hot executed message.
This latter message activates all the three MSDs in the second feature. The
order in which messages m2_1, m2_2 and m2_3 are executed after message
m1, is non-deterministic.



Table 5.3: Synthesis times for the cascading example. Comparison between the fea-
tured synthesis and the sub-optimal approach.

#States Time (ms)
Example kind #Features #Products Feat. N-feat. Feat. N-feat. Speedup

XOR 3 2 4 6 12 12 1
XOR 5 3 6 11 21 34 1.62
XOR 7 4 8 16 29 41 1.41
XOR 9 5 10 22 31 57 1.84
XOR 11 6 12 27 32 77 2.41
XOR 13 7 14 33 38 81 2.13
XOR 15 8 16 39 45 82 1.82

OR 3 3 5 11 12 15 1.25
OR 5 7 11 42 17 45 2.65
OR 7 15 26 158 79 219 2.77
OR 9 31 56 546 138 451 3.27
OR 11 63 111 1718 219 1459 4.88
OR 13 127 243 6060 508 5862 11.54
OR 15 255 573 22196 1260 25161 19.97

A NOTF exploration, such as the one used by our algorithms, explores any
di�erent path of the state space, considering any alternative ordering between
messages which cannot be deterministically sent. For this example, after message
m1, six alternative paths are explored, i.e. all possible orderings of messages
m2_1, m2_2 and m2_3. Those paths all lead to the same state, which, in
this particular case, is the initial state. The resulting game graph is shown in
Figure 5.8(a) .

Conversely, an OTF exploration could walk trough only one path among all
alternatives, avoiding to visit an important part of the game graph which, for such
a contained example, is already almost a half of the total number of states (only
�ve states are visited against nine explored during the NOTF synthesis). For
those reasons OTF algorithms are typically more e�cient that NOTF ones. The
OTF approach is motivated by the semantics of the winning condition calculated
when only controllable transitions are involved, as presented in Section 3.2.3. In
case more than one controllable transition is exiting from a given sourcestate for
the same product, it is enought that only one among those outgoing transitions
leads to a winning or a goal state. Consequently, in case a state is reachable
in�nitely often through di�erent alternative paths, it is enough to explore just
one among those paths to retrieve the winning condition for the start state and
thus investigate on the realizability of the respective speci�cation. Figure 5.8(b)
shows the game graph visited by the OTF exploration.
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Figure 5.7: The speci�cation used to show the di�erence between an OTF and a NOTF
synthesis in terms of number of visited states.

Going more deeply into the OTF theory and explaining the techniques by
which it could be implemented is not in the scope of this thesis. For this purpose,
we remind the interested reader to [David et Al 2009] and [Cassez et Al 2005].

Cascading example with one hot executed message per MSD

We assess the performance of the featured synthesis against our incremental on-
the-�y approach on the same set of technical examples sketched in Figure 5.6.
Again we repeated each experiment 20 times, registered the number of explored
states and computed the average of the synthesis times. The benchmark results
for this second experiment are shown in Table 5.4.

We observe that the featured synthesis approach is still more e�cient in
most of the cases, even if the featured approach is not optimized to be OTF.
Again, only slight improvements were registered by the featured synthesis in the
XOR case, whereas when using an OR decomposition kind, more bene�ts can
be observed. In case of 15 features, the featured approach achieves a speedup
of almost 2. Although the enhancements with respect to the incremental on-
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Figure 5.8: The di�erence between an OTF and a NOTF synthesis in terms of number
of visited states.

the-�y synthesis are not as remarkable as the ones brought by comparing the
featured synthesis with the sub-optimal approach, which reached a speedup of
almost 20, this is still a noticeable result. Furthermore the featured synthesis
still outperforms in the number of states. When checking the realizability of the
255 products in the OR case with 15 features, only 573 against 2718 states are
visited. This is a signi�cant result considering that our algorithm is not on-the-�y.

Cascading example with two hot executed messages per MSD at level
two

Interested about the outcome of our previous experiments, we investigate how
far the featured NOTF methodology could go against an OTF approach. As a
matter of fact, although the featured synthesis allows the realizability checking
to save a lot of states during the exploration, being NOTF it still generates all
possible successors of a given state, thus also paths that could be avoided by an
OTF technique.

In this last experiment we modi�ed the cascade example to intentionally in-



Table 5.4: Synthesis times for the cascading example. Comparison between the fea-
tured NOTF synthesis and the incremental OTF approach.

#States Time (ms)
Example kind #Features #Products NOTF-Feat. OTF-Incr. NOTF-Feat. OTF-Incr. Speedup

XOR 3 2 4 6 12 12 1
XOR 5 3 6 11 21 14 0.67
XOR 7 4 8 16 29 20 0.69
XOR 9 5 10 22 31 25 0.8
XOR 11 6 12 27 32 29 0.9
XOR 13 7 14 33 38 39 1.02
XOR 15 8 16 39 45 46 1.02

OR 3 3 5 10 12 11 0.92
OR 5 7 11 32 17 15 0.88
OR 7 15 26 86 79 96 1.21
OR 9 31 56 218 138 197 1.43
OR 11 63 111 506 219 341 1.56
OR 13 127 243 1190 508 834 1.64
OR 15 255 573 2718 1260 2267 1.8

crease the number of alternative paths that an OTF approach could avoid, to
further stress our featured approach and see until which point it can outperform
the incrementally OTF synthesis. For this purpose, a second hot, executed mes-
sage was added to the MSD in features at level 2. This way MSDs at level 2 are
activated by one cold, monitored message which triggers two hot, executed mes-
sages with the same name. Thus, the activation of an MSD in a feature at level
2 triggers two activations of an MSD for each child feature. Consequently, after
the �rst hot, executed message is sent, the algorithm can non-deterministically
choose between more than one alternative path, where every path is formed by
one among the di�erent ways in which the events belonging to the two activa-
tions could be interleaved. To better explain this concept consider Figure 5.9,
which illustrates the modi�ed structure. Consider the variant with 3 features
composed by CascadeRoot, Cascade2_1 and Cascade2_2. When considering
the product with both children Cascade2_1 and Cascade2_2, after m1 is sent,
the NOTF algorithm explores all the six alternative paths which are:

� {{m2_1}{m2_1}{m2_2}{m2_2}};

� {{m2_1}{m2_2}{m2_1}{m2_2}};

� {{m2_2}{m2_2}{m2_1}{m2_1}};

� {{m2_2}{m2_1}{m2_2}{m2_1}};

� {{m2_1}{m2_2}{m2_2}{m2_1}};
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Figure 5.9: Cascading example with two hot executed messages per MSD for features
at level 2.

� {{m2_2}{m2_1}{m2_1}{m2_2}}.

The OTF algorithm could avoid �ve out of those six paths.
Again, following the modi�ed structure in Figure 5.9, we created SPL speci-

�cations for 3, 5, 7, 9, 11, 13, 15 features, executed both featured synthesis and
incremental OTF synthesis on each speci�cation, repeated each experiment 20
times, registered the number of explored states and computed the average of the
synthesis times. The results for this �nal experiment are shown in Table 5.5.

We observe that the ratio feature-to-MSD remains the same, as well as the
number of products generated. However we obtained signi�cantly di�erent results
than in the previous experiments.

We notice that for 3, 5, 7, and 9 features the featured synthesis still performs
better both on the number of states explored and on synthesis time. Consider
again the case including 3 features. Figures 5.10(a) and 5.10(b) shows the
comparison between the graphs that would be generated by a NOTF resp. OTF
algorithm for the variant involving both child features. As previously noticed,
the OTF approach could avoid �ve out of six paths. Now consider the whole
SLP speci�cation composed of 3 product variants, corresponding to the �rst line
of Table 5.5. Figures 5.10(c) and 5.10(d) show the comparison between the
featured game graph generated by the featured synthesis and the three graphs
generated by the OTF synthesis. We observe that the number of states visited
to check the realizability of the variant formed by all features is the same as the



Table 5.5: Synthesis times for the modi�ed cascading example. Comparison between
the featured NOTF synthesis and the incremental OTF approach.

#States Time (ms)
Example kind #Features #Products NOTF-Feat. OTF-Incr. NOTF-Feat. OTF-Incr. Speedup

OR (2mex lev.2) 3 3 10 14 43 108 2.51
OR (2mex lev.2) 5 7 29 50 197 250 1.27
OR (2mex lev.2) 7 15 83 142 383 450 1.18
OR (2mex lev.2) 9 31 245 374 712 805 1.13
OR (2mex lev.2) 11 63 704 886 1309 1087 0.83
OR (2mex lev.2) 13 127 2108 2126 7388 5237 0.7
OR (2mex lev.2) 15 255 7022 4926 23255 13364 0.57

number used to check the realizability of the set of three variants. Only two
transitions, marked in red in the �gure, are added to the graph. Conversely, even
if exploring only parts of the whole state space for each variant, when considering
all variants the incremental OTF synthesis visits a higher number of states.

However, when the number of avoidable paths grows, as in the case of 15
features, the incremental OTF technique starts performing better, even in the
number of explored states.

Our interpretation of this trend is that as the number of alternative paths
grows, the bene�ts of avoiding the exploration of those paths become more
signi�cant than the reuse of those states for di�erent variants.

5.2.4 Discussion

This section concludes our evaluation summarizing the benchmarks obtained
through our experiments.

Figure 5.11 presents a graphical comparison of the number of states explored
and the synthesis times for the cascading example, when only one hot, executed
message is included in every MSD. The experiment shows remarkable improve-
ments against both the sub-optimal and the Incremental OTF synthesis. In this
latter case the results are particularly valuable given that the featured synthesis
is not optimized to be OTF.

We further investigated the possible bene�ts of the featured synthesis against
the Incremental OTF algorithm through a second set of technical experiments,
enforcing the number of alternative paths in the game graph. For this purpose, we
modi�ed the cascade example adding a second hot, executed message in MSDs at
level 2. As expected this latter experiment revealed that as the number of features
grows, the chance to have di�erent alternative paths in the game graph also
increases. At some point the bene�t given by avoiding a large number of parts
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Figure 5.11: Cascade example with one hot, executed message per MSD. Synthesis
times and number of states explored for the three approaches.

in the graph becomes higher than the advantage of exploiting the commonalities
between the game graphs of each variant. At that point the featured synthesis
approach looses e�ciency against the incremental approach, which is OTF.



Chapter 6

Conclusion and Outlook

This thesis presented a novel approach to check the realizability of scenario-based
Software Product Line (SPL) speci�cations.

For this purpose, we adopted SPL speci�cations [Greenyer 2011], a recent
intuitive, yet precise way to model the behavior of a set of software products
as a combination of Feature Diagrams (FD) [Kang et al. 1990] and Modal
Sequence Diagrams (MSD) [Harel and Maoz 2008, Greenyer 2011]. We gave
a comprehensive overview of the essential concepts related to SPLs and all the
models employed by our approach in Chapter 2.

In order to �nd inconsistencies that may arise from the speci�cation of a
family of products, we managed the problem of checking the realizability of
an SPL speci�cation as the problem of �nding a strategy in an in�nite game
played by the system against the environment. Our technique consists of an
extension of the algorithm for solving Büchi games [David et Al 2009] which
are games requiring to in�nitely often reach a state with given characteristics.
When applying the original technique on a single product MSD speci�cation, the
game appears in the form of a game graph, a Büchi automaton that accepts
all in�nite sequences of steps that respect the safety and liveness properties of
the MSDs. We exploited the fact that if variants are similar, the game graphs
induced by each product's speci�cation, are also likely to be similar. Thus we
implemented a methodology to derive a featured game graph (FGG), i.e. a
global state graph representing all possible executions of all possible products
with any environment, which maintains a link between a given execution and the
features needed to trigger it. The main contribution of our work, is that using
the information contained in the FGG, our technique provides a way to determine
which products have a consistent speci�cation by means of only one synthesis
instead of performing a separate checking on each product. We presented the
featured synthesis algorithms providing those functionalities in Chapter 3.

We implemented our methodology in ScenarioTools, a collection of Eclipse-
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based tools which support the modeling, simulation and synthesis of SPL speci-
�cations. Our plug-in allows us to run the featured synthesis on an SPL speci�-
cation, as previously modeled in ScenarioTools, to check its realizability. At the
end of the process, our extension provides the set of realizable products in the
SPL speci�cation. It also allows users to generate the corresponding FGG used
throughout the synthesis. We explained the main architecture of our implemen-
tation and provided an overview of its usage in Chapter 4.

We veri�ed the applicability of our approach on two practical case studies,
testing the ability to recognize partially inconsistent speci�cations. We also as-
sessed the e�ciency of the featured synthesis against the successive checking
of the individual products and our previous iterative on-the-�y (OTF) approach
[Greenyer et Al. 2013], using di�erent technical evaluation examples. The exper-
iments showed remarkable improvements against the former, both on number of
states and synthesis times. In some cases our technique performed even 20 times
better than checking each product separately. The comparison with the iterative
OTF synthesis also brought noticeable results. When comparing the algorithms
on a speci�cation from which not many alternative paths in the game graph are
produced, the featured synthesis performed almost 2 times better than the iter-
ative approach in the synthesis time, and over 4 times better in the number of
explored states. However, when many of those alternative paths are introduced
in the graph, the incremental approach starts performing better for speci�cations
with larger state spaces. Our interpretation of the results is that, being OTF,
the latter can avoid those alternative paths. Consequently, it performs better
when avoidable graph paths comprise a number of states that is higher than the
number of states which can be collapsed from the game graphs of each variant.
We dealt with applicability and performance evaluation in Chapter 5.

We identify three possible directions for future work. The �rst concerns a
perspective to overcome a drawback of our plug-in, which does not provide the
simulation for the whole SPL speci�cation. Simulation currently only supports
the execution of a single product's MSD speci�cation via the play-out algorithm
[Harel and Marelly 2002]. Although the tool allows us to run the simulation on
the SPL speci�cation, the only target of the process is the product composed
of all the feature speci�cations. One way to solve this issue would be to let
users select the features to include in the speci�cation, i.e. de�ning the product.
Then, from the FGG, one should be able to extract the corresponding controller
and execute it.

Another minor limitation of our technique is that when generating the fea-
ture expression representing the set of valid products in the FD, it does not
consider cross-tree constraints. This �x should be easily applicable by extending
Algorithm 1 to consider the respective constraints.

The third, major challenge, is to optimize the featured synthesis to be on-the-



�y. Supported by our benchmarks, we believe that impressive results could be
achieved in comparison to the incremental OTF technique, which still represents
the most e�cient alternative for more complex SPL speci�cations.



Appendix A

Whole SPL speci�cation and

FGG for the CoPAInS example

This appendix provides the screenshots of all diagrams modeled in ScenarioTools
to assess the applicability of the featured synthesis on the CoPAInS example.

A.1 SPL speci�cation

Figure A.1: FD representing the valid combinations of features for the CoPAInS SPL.

In the following, the system requirements and environment assumption rep-
resented by each MSD are described informally in the respective caption.
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Figure A.2: PatientAsksForHelp R1) (liveness requirement) After the patient asks
for help the alarm is set on and eventually the patient must be helped.

Figure A.3: PatientAsksForHelp A1) We assume that the patient does not ask for
help twice before the alarm is called o�.



Figure A.4: CallHelper R1) After the alarm is set on, the HCS sends an help request
to the smartphone of the �rst helper in the list. The smartphone shows
the message to its owner.



Figure A.5: CallHelper R2) After the helper reads the message, he could reply YES
or NO. In the �rst case the smartphone tells the HCS that the �rst helper
is available to help. Otherwise the HCS is informed that the helper is not
available.



Figure A.6: CallHelper A1) We assume that after the smartphone shows the message
to the helper, either he answers with his availability or with his unavailabil-
ity. Through this assumption, we basically rule out the scenario in which
the helper does not reply at all.



Figure A.7: CallAmbulance R1) Whenever the last helper is not able to help, the
HCS sends a request to the ambulance.

Figure A.8: CallAmbulance A1) The ambulance is always available to help.



Figure A.9: DoorOpened R1) When the helper enters the room, the alarm is set o�.

Figure A.10: DoorOpened R2) When the ambulance enters the room, the alarm is
set o�.



Figure A.11: DoorOpened A1) We assume that when the helper replies that he is
available to help, he will eventually show up.

Figure A.12: DoorOpened A2) We assume that when the ambulance replies that it
is available to help, he will eventually show up.



Figure A.13: DoorOpened A3) When the helper enters the room, after the alarm is
called o�, the patient is helped.

Figure A.14: DoorOpened A4)When the ambulance enters the room, after the alarm
is called o�, the patient is helped.



A.2 Featured Game Graph

Figure A.15 shows the whole FGG generated by the featured synthesis.

Figure A.15: FGG generated when exploring the state space of the CoPAInS SPL spec-
i�cation.



Bibliography

[Abadi et Al. 1989] Abadi, M., Lamport, L., and Wolper, P. (1989). Realizable
and unrealizable speci�cations of reactive systems. In Automata, languages
and programming (pp. 1-17). Springer Berlin Heidelberg.

[Akers 1978] Akers, S. B. (1978). Binary decision diagrams. Computers, IEEE
Transactions on, 100(6), 509-516.

[Alizon et Al. 2009] Alizon, F., Shooter, S. B., and Simpson, T. W. (2009).
Henry Ford and the Model T: lessons for product platforming and mass
customization. Design Studies, 30(5), 588-605.

[Andersen 1997] Andersen, H. R. (1997). An introduction to binary decision di-
agrams. Lecture notes, available online, IT University of Copenhagen.

[Baier and Katoen 2008] Baier, C., and Katoen, J. P. (2008). Principles of model
checking (Vol. 26202649). Cambridge: MIT press.

[Benington 1983] Benington, H. D. (1983). Production of large computer pro-
grams. Annals of the History of Computing, 5(4), 350-361.

[Boehm 1988] Boehm, B. W. (1988). A spiral model of software development
and enhancement. Computer, 21(5), 61-72.

[Bontemps et Al. 2004] Bontemps, Y., Schobbens, P. Y., and Löding, C. (2004).
Synthesis of open reactive systems from scenario-based speci�cations. Fun-
damenta Informaticae, 62(2), 139-169.

[Bontemps et Al. 2005] Bontemps, Y., Heymans, P., and Schobbens, P. Y.
(2005). From live sequence charts to state machines and back: a guided
tour. Software Engineering, IEEE Transactions on, 31(12), 999-1014.

[Bryant 1992] Bryant, R. E. (1992). Symbolic Boolean manipulation with or-
dered binary-decision diagrams. ACM Computing Surveys (CSUR), 24(3),
293-318.

105



[Bryant 1995] Bryant, R. E. (1995, November). Binary decision diagrams and
beyond: Enabling technologies for formal veri�cation. In Computer-Aided
Design, 1995. ICCAD-95. Digest of Technical Papers., 1995 IEEE/ACM
International Conference on (pp. 236-243). IEEE.

[Burch et AL 1992] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L.,
and Hwang, L. J. (1992). Symbolic model checking: 10< sup> 20</sup>
states and beyond. Information and computation, 98(2), 142-170

[Caire 2012] Caire, P. (2012). Diagram Analysis Report: Use Cases for Convivi-
ality and Privacy in Ambient Intelligent Systems.

[Cassez et Al 2005] Cassez, F., David, A., Fleury, E., Larsen, K. G., and Lime,
D. (2005). E�cient on-the-�y algorithms for the analysis of timed games.
In CONCUR 2005-Concurrency Theory (pp. 66-80). Springer Berlin Heidel-
berg.

[Classen 2011] Classen, A. (2011). Modelling and model checking variability-
intensive systems (Doctoral dissertation, Ph. D. dissertation).

[Classen et Al 2008] Classen, A., Heymans, P., and Schobbens, P. Y. (2008).
What's in a feature: A requirements engineering perspective. In Funda-
mental Approaches to Software Engineering (pp. 16-30). Springer Berlin
Heidelberg.

[Classen et al. 2010] Classen, A., Heymans, P., Schobbens, P. Y., Legay, A.,
and Raskin, J. F. (2010, May). Model checking lots of systems: e�cient
veri�cation of temporal properties in software product lines. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1 (pp. 335-344). ACM.

[Classen et al. 2011] Classen, A., Heymans, P., Schobbens, P. Y., and Legay,
A. (2011, May). Symbolic model checking of software product lines. In
Proceedings of the 33rd International Conference on Software Engineering
(pp. 321-330). ACM.

[Clements and Northrop 2001] Clements, P., and Northrop, L. (2001). Software
Product Lines: Patterns and Practice. Addison Wesley.

[Coplien 1999] Coplien, J. O. (1999). Multi-paradigm Design for C+. Addison-
Wesley.

[Cordy et al. 2013] Cordy, M., Classen, A., Heymans, P., Legay, A., and
Schobbens, P. Y. (2013). Model checking adaptive software with featured



transition systems. In Assurances for Self-Adaptive Systems (pp. 1-29).
Springer Berlin Heidelberg.

[Czarnecki et al. 2005] Czarnecki, K., Helsen, S. and Eisenecker, U. Staged
Con�guration Using Feature Models. Software Process Improvement and
Practice, special issue on Software Variability: Process and Management,
10(2):143 � 169, 2005.

[David et Al 2009] David, A., Behrmann, G., Bulychev, P., Byg, J., Chatain,
T., Larsen, K. G., Pettersson, P., Rasmussen, J. I. , Srba, J. , Yi, W. ,
Joergensen, K. Y. , Lime, D. , Magnin, M. , Roux, O. H. and Traonouez,
L. M. (2009). Tools for Model-Checking Timed Systems. Communicating
Embedded Systems: Software and Design: Formal Methods, 165-225.

[Davis 1987] Stanley, D. M. (1987). Future perfect. Mass.: Addilson-Wesley,
157.

[Efthymiou et Al 2012] Efthymiou, V., Caire, P., and Bikakis, A. (2012). Mod-
eling and evaluating cooperation in multi-context systems using conviviality.
In Proceedings of BNAIC 2012 The 24th Benelux Conference on Arti�cial
Intelligence.

[Fantechi and Gnesi 2008] Fantechi, A., and Gnesi, S. (2008, September). For-
mal modeling for product families engineering. In Software Product Line
Conference, 2008. SPLC'08. 12th International (pp. 193-202). IEEE.

[Fey et Al 2004] Fey, G., Shi, J., and Drechsler, R. (2004, August). BDD circuit
optimization for path delay fault testability. In Digital System Design, 2004.
DSD 2004. Euromicro Symposium on (pp. 168-172). IEEE.

[Ghezzi et Al 2012] Ghezzi, C., Greenyer, J., and Manna, V. P. L. (2012,
June). Synthesizing dynamically updating controllers from changes in
scenario-based speci�cations. In Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2012 ICSE Workshop on (pp. 145-154). IEEE.

[Greenyer 2011] Greenyer, J. Scenario-based design of mechatronic systems,
Ph.D. dissertation, University of Paderborn, Oct. 2011.

[Greenyer et al. 2011] Greenyer, J., Shari�oo, A. M., Cordy, M., and Heymans,
P. (2012, September). E�cient consistency checking of scenario-based
product-line speci�cations. In Requirements Engineering Conference (RE),
2012 20th IEEE International (pp. 161-170). IEEE.



[Greenyer et Al. 2013] Greenyer, J., Brenner, C., Cordy, M., Heymans, P.,
and Gressi, E. (2013, August). Incrementally synthesizing controllers from
scenario-based product line speci�cations. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering (pp. 433-443). ACM.

[Harel and Kugler. 2002] Harel, D., and Kugler, H. (2002). Synthesizing state-
based object systems from LSC speci�cations. International Journal of Foun-
dations of Computer Science, 13(01), 5-51.

[Harel and Marelly 2002] Harel, D. and Marelly, R. Specifying and Executing
Behavioral Requirements: The Play-In/Play-Out Approach. Software and
System Modeling (SoSyM), 2:2003, 2002.

[Harel and Marelly 2003] Harel, D. and Marelly, R. Come, Let's Play: Scenario-
Based Programming Using LSCs and the Play-Engine. Springer-Verlag, Aug.
2003.

[Harel and Maoz 2008] Harel, D. and Maoz, S. Assert and negate revisited:
Modal semantics for UML sequence diagrams. Software and Systems Mod-
eling (SoSyM), 7(2):237�252, May 2008.

[Harel and Pnueli 1985] Harel, D., and Pnueli, A. (1985). On the development
of reactive systems (pp. 477-498). Springer Berlin Heidelberg.

[Harel et al. 2002] Harel, D., Kugler, H., Marelly, R. and Pnueli, A. Smart Play-
Out of Behavioral Requirements, In Proceedings of the 4th International
Conference on Formal Methods in Computer-Aided Design, FMCAD 2002,
Portland, OR, USA, November 6-8, 2002, (pp. 378-398).

[IEEE-Std-1471-2000] Hilliard, R. (2000). Ieee-std-1471-2000 recommended
practice for architectural description of software-intensive systems. IEEE,
http://standards. ieee. org.

[Kang et al. 1990] Kang, K., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson,
A.S. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University, November
1990

[Kang et al. 1998] K. C. Kang, K., Kim, S., Lee, J. and Kim., K. FORM: A
Feature-Oriented Reuse Method. In Annals of Software Engineering 5, pages
143�168, 1998.

[Larman and Basili 2003] Larman, C. and Basili, V. R. (2003). Iterative and in-
cremental developments. a brief history. Computer, 36(6), 47-56.



[Maler et Al 1995] Maler, O., Pnueli, A., and Sifakis, J. (1995, January). On
the synthesis of discrete controllers for timed systems. In STACS 95 (pp.
229-242). Springer Berlin Heidelberg.

[Maoz 2009] Maoz, S. Polymorphic Scenario-Based Speci�cation Models: Se-
mantics and Applications, In Andy Schürr and Bran Selic, editors, Pro-
ceedings of the 12th International Conference on Model Driven Engineer-
ing Languages and Systems, MODELS 2009, Denver, CO, USA, Oct. 4-9,
2009., volume 5795 of Lecture Notes in Computer Science, pages 499�513.
Springer, 2009.

[Maoz and Harel 2006] Maoz, S. and Harel, D. From Multi-Modal Scenarios to
Code: Compiling LSCs into AspectJ. In Proceedings of the 14th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
FSE 2005, Portland, Oregon, USA, November 5-11, 2006, pages 219�230,
2006.

[Moawad et Al 2012] Moawad, A., Efthymiou, V., Caire, P., Nain, G., and Le
Traon, Y. (2012). Introducing conviviality as a new paradigm for interactions
among IT objects. In Proceedings of the Workshop on AI Problems and
Approaches for Intelligent Environments (Vol. 907). CEUR-WS. org.

[Northrop 2002] Northrop, L. M. (2002). SEI's software product line tenets. Soft-
ware, IEEE, 19(4), 32-40.

[OMG OCL 2012] Object Management Group (OMG). OMG Object Constraint
Language (OCL) Version 2.3.1, January 2012.

[OMG UML 2011] Object Management Group (OMG). OMG Uni�ed Modeling
Language TM (OMG UML), Superstructure Version 2.4.1, August 2011.

[Pnueli et Al 1998] Pnueli, A., Asarin, E., Maler, O., and Sifakis, J. (1998).
Controller synthesis for timed automata. In Proc. System Structure and
Control. Elsevier.

[Pohl et al. 2001] Pohl, K., Böckle, G., Clements, P., Obbink, H., and Rombach,
D. (2001). Product Family Development Proceedings Dagstuhl Seminar,
University of Essen, Germany.

[Pohl et al. 2005] Pohl, K., Böckle, G., and Van Der Linden, F. (2005). Software
product line engineering: foundations, principles, and techniques. Springer.

[Possompes et Al 1998] Possompes, T., Dony, C., Huchard, M., and Tiberma-
cine, C. (2011, July). Design of a UML pro�le for feature diagrams and its



tooling implementation. In Proceedings of the Twenty-Third International
Conference on Software Engineering & Knowledge Engineering (pp. 693-
698).

[Schobbens et al. 2006] Schobbens, P.-Y, Heymans, P., Trigaux, J.-C. and Bon-
temps, Y. Feature Diagrams: A Survey and A Formal Semantics. RE'06,
pages 139�148, 2006.

[Schobbens et al. 2007] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., and
Bontemps, Y. Generic semantics of feature diagrams. Computer Networks,
Special Issue on Feature Interactions in Emerging Application Domain,
51(2):456�479, 2007.

[Weiss and Lai 1999] Weiss, D.M. and Lai, C.T.R. (1999). Software Product-
Line Engineering - A Family-Based Software Development Process. Addison-
Wesley, Reading, Massachusetts.

[Wiedenhaupt et Al. 1998] Wiedenhaupt, K., Pohl, K., Jarke, M., and Haumer,
P. (1998). Scenario Usage in System Development: A Report on Current
Practice. IEEE Software, 33-45.

[Zave and Jackson 1997] Zave, P. and Jackson, M. Four dark corners of require-
ments engineering, ACM Trans. Softw. Eng. Methodol., 6(1):1�30, 1997.


	Introduction
	Running example
	Overview

	Foundations
	Software Product Lines
	The SPLE framework
	Variability modelling

	Featured Transition Systems
	Syntax and semantics of LTS
	Syntax and semantics of FTS

	Modal Sequence Diagrams
	MSD activation, progress and termination
	Message attributes and violations
	Environment assumptions
	Parameterized and forbidden messages
	The play out Semantics
	Satisfiability, consistency and consistent executability

	Formal scenario-based specification of SPLs

	Featured Synthesis
	The approach
	Featured Reachability
	Retrieving the FD expression
	Retrieving the set of featured transitions.
	Winning condition
	Featured Reachability

	Featured Büchi

	Implementation
	Scenariotools
	Modeling
	Simulation
	Synthesis
	Configuring Executable Specifications

	Architecture
	Inputs and outputs of the simultaneous synthesis
	Main structure and dependencies

	Using the package
	Modeling
	Automated generation of the ECore class model
	Running the simultaneous synthesis and showing the featured state graph

	Limitations and perspectives

	Evaluation
	Applicability Evaluation
	CoPAInS Overview
	Featured synthesis outcome

	Performance Evaluation
	CoPAInS and Vending Machine examples
	Comparison between featured and sub-optimal synthesis
	Comparison between featured and incremental on-the-fly synthesis
	Discussion


	Conclusion and Outlook
	Whole SPL specification and FGG for the CoPAInS example
	SPL specification
	Featured Game Graph

	Bibliography

