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Abstract

Green computing is becoming a very hot topic. To achieve environmentally

responsible use of computers and related resources, improving energy effi-

ciency of computing is very crucial. Power capping techniques provides the

possibilities of energy saving for computing devices. As the name implies,

power capping refers to the practice of limiting the instantaneous power draw

a computing device. It is widely used to fulfill power constraints and save en-

ergy. What’s more, they are also widely used for power budget management

and thermal control for data centers and computing devices.

Three very typical power capping techniques are presented in this the-

sis. They are: Dynamic Voltage and Frequency Scaling(DVFS), Idle Cycle

Injection(ICI), and Clock Cycle Modulation(CCM). To have a systematic un-

derstanding of these three power capping techniques and their energy saving

potential, I decided to gather run time data during the execution of bench-

marks with each power capping technique. I recorded the power trace, the

energy consumption and the execution time of each chosen benchmark with

each power capping technique. Then, these real runtime data are analyzed

to give a view of the characteristics of different power capping techniques.

The comparison of their energy efficiency is particularly stressed out. I also

investigated the reason of their different behavior and tried to conclude them

generally.

From the data gathered, I found that DVFS, ICI and CCM are with

very different features and they have different effects on the total energy

consumption of the workload. After analysis and comparison, I concluded

that DVFS is the only power capping technique provide the possibility of

energy saving. ICI doesn’t have significant influence on the total energy

consumption of a workload. Using CCM will consume more energy.

However, due to the different control features of them, they are suitable

for different applications. To further investigate their usage, I studied the

related works using these three power capping techniques, then summarized

the methods and mechanisms according to different applications. For each

power capping technique, I summarized its advantages and discussed its pos-

sible future works for better utilization.



This work is able to provide a clear comparison of DVFS, ICI and CCM

and give a hint for the future development of power management systems to

achieve the the best use of different power capping techniques with better

energy efficiency. Researchers could consider the characteristics of different

power capping techniques, select the most appropriate ones according to their

situations. Companies in IT industry can replicate the methods mentioned

in this work to gather data about their workload, find their own best power

capping configuration and benefit from it.

This thesis is structured as follows:

• Chapter 1 gives some background knowledge of the power capping tech-

niques. I presented the challenges regarding to power and energy using

in different areas of computer science and how to use power capping

techniques to cope with them. I gave a typical example of industry use

of power capping and state the reason to chose to focus specially on

power capping technologies of processors. The three different technolo-

gies analyzed in this work are also introduced in this chapter.

• In chapter 2, the methods used in this work will be described in detail

including the system environment, the benchmarks, the measurements

and the statistic method, and how to apply power capping with the

help of different tools.

• Chapter 3 presents the results of the experiments. The data are ana-

lyzed and evaluated. From the data, I extracted and summarized the

features of different power capping techniques and drew the conclusion

systematically.

• In chapter 4, existing solutions from different researches and industrial

applications are analyzed with respect to the experiment results. I

stressed out how to exploit the advantages of all the power capping

techniques and tried to look into the future improvement of them. A

state-of-art energy saving solution is presented as an example of using

power capping techniques to improve energy efficiency of computing.

• Chapter 5 concludes the work and its limitations to give a direction of

how to improve this work to have more general results.
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Chapter 1

Introduction

In this chapter, the background knowledge of the work is introduced. To

understand the industrial usage of power capping, I investigated the chal-

lenges for achieving energy efficiency in warehouse-scale data centers, high

performance computing devices and mobile devices. Power capping tech-

niques can be applied in different ways to cope with these challenges. With

a real life example, the reason to focus on the case of single server is stated.

With statistics of power and energy consumption of a single server, I decided

to emphasize improving energy efficiency of the processor. In the last sec-

tion of this chapter, three power capping techniques for the processor will

be introduced in details. Qualitative comparison between the power capping

techniques will be made. Assumptions are proposed, and they need to be

verified by the data of the experiments.

1.1 Research background and motivations

Energy Conservation is unquestionably of great importance to all of us, since

we rely on energy for everything we do every single day. Energy supplies are

limited and energy production is not always using renewable resources. A

large portion of the energy we use is derived from fossil fuel.

According to the report[1] issued by EPA (Environmental Protection

Agency), servers and data centers consumed 61 billion kWh in 2006. Accord-

ing to the prediction of the report, the energy consumption should be double

by now. The amount of energy consumed by mobile and desktop computing

equipment is definitely not negligible[2]. Globally, 488 million smart-phones,
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which have capabilities similar to computers, were sold in 2011, up from 174

million in 2009. From 2005 to 2009, the proportion of primary household

computers that were laptops doubled, rising from 22% to 44%. More than

14% of primary household computers were used 10 hours or more a day in

2009. With the increasing energy consumption year by year, IT industry is

at the forefront of the growing and highly intense public debate over power

consumption and carbon footprints. Recognition of the importance of power

and energy in the field of computing systems has never been greater. Energy

efficiency means using less energy to accomplish the same task. Increasing

energy efficiency of computing is beneficial in many ways.

From the point of view of the IT companies, energy costs have begun to

eclipse the cost of physical hardware[3]. Reducing energy bill is a great way to

lower operating costs and increase a company’s bottom line. Energy savings

return on investment, can add up very quickly. To maintain a healthy and

sustainable development of IT technology, a company must find ways to use

energy wisely. Improving energy efficiency of computing devices is therefore

a very meaningful area to research on.

Power capping attracted a lot of research efforts as a widely adopted

method for power allocation. There are some researches[4][5] aimed at pro-

moting energy efficiency with power capping techniques. Experiments[6] had

been done to prove DVFS (A power capping technique) can improve energy

efficiency of processor, but there exist few research mentioned and compared

the energy efficiency of other techniques such as idle cycle injection and clock

modulation. Therefore, we wanted to gather real data of using these tech-

niques, compare their performance, try to figure out their characteristics and

analyze their usage systematically.

According to many previous researches[7][8], running at the maximum

computing capacity or race-to-idle is the best strategy to achieve better en-

ergy efficiency. However, the processors are always evolving, it is not neces-

sarily true that race-to-idle is always the best. It will be meaningful to verify

this conclusion under the latest hardware and computing architecture.

1.2 Different challenges and solutions

Energy efficiency and power management are always very crucial topics no

matter for warehouse-scale data centers, high performance computing device

or mobile devices. For different situation, power capping can be applied in
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different manners to cope with their specific challenges.

Power management and energy efficiency is a challenge for modern enter-

prise data centers and cloud computing systems. Companies continue to in-

crease computing capabilities to meet their growing business requirements[9].

Warehouse-scale datacenters host popular online services such as searching,

social networking, webmail, video streaming, online maps, automatic trans-

lation, big-data analytics, and storage platforms. In the past ten years, op-

erators have scaled the capabilities of cloud services by building larger data

centers that can host tens to hundreds of thousands of multi-core servers[10].

However, the greatest immediate concerns about high-density servers are

their power requirements[11]. Data centers require large amounts of power

but the power budgets are always limited. Therefore, most of modern com-

puting centers have to leverage power capping on individual machines and

use a central power management system to enforce power constraints. In

economic point of view, electronic bills have become a significant expense

for today’s data centers. Therefore, the energy efficiency of a computing

center influences its cost directly. Power capping techniques can be used to

increase their energy efficiency. Modern data centers operating under cloud

computing model are hosting a variety of applications. For workloads that

are not constrained by processor performance(e.g., I/O-intensive workload,

memory-intensive workload), it is possible to throttle back the server pro-

cessor without affecting overall performance. Therefore, energy efficiency is

increased and cost of production is reduced.

Power provisioning and energy consumption become major challenges also

in the field of high performance computing (HPC). Computer scientists across

the globe are working towards creating the first exascale supercomputer[12].

However, energy consumption is likely to prove a major barrier to achieving

this. Simon McIntosh-Smith of the University of Bristol, UK, reported at

the workshop[13] that the average power consumption of the top ten pow-

erful HPC systems has increased five times over the last five years, while

the average power consumption of the top 500 powerful HPC systems has

increased more than three times over the same period. Energy costs over

the lifetime of an HPC installation are in the range of the acquisition costs.

Ignoring power consumption as a design constraint will result in a HPC sys-

tem with high operational costs and diminished reliability, which translates

into lost productivity. At the same time, reduction of power for HPC system

is very likely to influence the performance of the machine. For this reason,
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there are many researches[14][15][16] about trade-off between performance

and power consumption of HPC systems according to different application

purpose and environment. In these researches, power capping methods are

mentioned, experiment and measurement are made to find a good trade-off

configuration.

Looking at mobile, battery-powered devices, energy has always been ex-

tremely crucial since it directly determines battery life. Battery life is one

of the most important issues for customers buying a new mobile handset.

Nowadays mobile devices are becoming more powerful by each generation.

Music and video players, built-in GPS receivers, high data rate for Internet

connection, and high resolution cameras are just a few examples. To support

these functions, mobile devices are becoming more energy demanding but

at the same time, customers ask for longer operational time. Battery life

is the weakest point of smart-phones. According to a battery satisfaction

survey[17], only 34.3% of the sample questioned is sufficiently satisfied or

satisfied with the battery life of their smart-phones. To cope with this issue,

energy saving applications and systems are proposed[18]. According to the

usage pattern and runtime information, the mobile device can automatically

adjust the power draw due to the processor to reduce the energy consump-

tion. For example, when an application does not need to run at the highest

performance, the processor may reduce the frequency and voltage so as to

reduce the power consumption. Other components (e.g., LCD, Memory) can

be power-capped too with the goal of extending battery life.

1.3 Power capping on single machine

In the case of mobile devices or single HPC device, we need to power cap

the components of a single device. For data centers, Power capping can

be applied at different levels[19][20] such as single machine level, computing

cluster level and computing center level. In the case of data centers, power

capping on single server is very important because power capping is a key

element for implementing power shifting[21], which is the dynamic setting

of power budgets for individual servers such that a global power cap for the

cluster is maintained.

To have a better understanding of industrial usage of power capping for

data centers, we can take the Cisco Unified Computing System[22] for in-

stance. The entire system consists of power cap groups. A power cap group
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is a collection of servers that share a common power allocation or budget,

which is then applied in a dynamic manner to servers within the group.

Power cap groups follow a simple set of rules:

• All servers within a single chassis are part of the same power cap group.

There can be multiple chassis in a single power cap group.

• The chassis within a given power cap group do not have to be physically

contiguous. All chassis in a power cap group do not have to be connected to

the same distribution circuits.

• There is a special server (single point of management) managing the to-

tal power budget and dividing the power budget to all the power cap groups.

• Within each power cap group, machines are with different relative pri-

orities set by the service team.

The system structure is shown in figure 1.1.

Figure 1.1: Cisco Power Cap Group
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From the single point of management, total power budget is divided and

power cap is applied at at group level. Then, the service team sets rela-

tive priority within power group. The last step is power capping in single

machines level according to their priorities.

With this example, we can understand that if we trace down the power

capping method for computing centers, power capping on single machine

is basic for implementation. Therefore, we decided investigate the power

capping of single machine and focus on power capping in component level.

1.4 Importance of the processor

The processor is one of the greatest power consumers of a computing device.

In many common configurations, the processor is responsible for one third of

the power a server consumes[23] as is shown in figure 1.2.

Figure 1.2: Statistic of Server Power Use

The processor also indirectly drives the power consumption of other server

components. A busy processor naturally increases the workload of both the

memory and peripherals. The heat generated by the increased workload

makes the cooling system work harder. Naturally, from the point of view

of energy, the processor is usually the component that consumes the most

significant portion of the total energy.

In this work, I will focus on the most important component for of energy

and power consumption: the processor. I will analyze three well-known power
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capping technologies for processors which are DVFS, idle cycle injection and

clock cycle modulation.

1.5 Power capping techniques

The processor can make use of different power capping techniques to manage

its power. With power capping techniques, CPU power can be guaranteed

under a certain value for all operating conditions.

Power capping techniques are not only used to manage power, they are

also used for thermal control. Thermal control is crucial to real-time systems

as excessive processor temperature can cause system failure, performance

degradation due to hardware throttling or even permanent damage[24]. Be-

ing aware of the importance of thermal control, different solutions[25][26]

using power capping techniques are proposed by researchers.

Power capping can reduce CPU’s power consumption. However, power

capping is not always saving energy[27]. In other words, processors working

with less power are not always more energy efficient. From the definition of

power and energy, we know they are strictly related with each other. If CPU

power can be reduced properly without heavy influence on performance, the

energy consumed by the processor can be saved. Therefore, the key point

is to find the most suitable power capping technique with the right power

restriction level.

1.5.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling is a power management technique in

computer architecture where the voltage used in a component is increased

or decreased, the frequency of a microprocessor can also be automatically

adjusted ”on the fly”, depending upon circumstances. Dynamic voltage scal-

ing to increase voltage is known as overvolting; dynamic voltage scaling to

decrease voltage is known as undervolting. The voltage required for stable

operation is determined by the frequency at which the circuit is clocked, and

can be reduced if the frequency is also reduced. Therefore, the voltage and

frequency are usually scaled together. DVFS can be used to reduce the active

power or reduce the heat generated by the chip.

The general power model[28] of a CPU core with DVFS is:

Pcore = CfV 2 + Pstatic
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where C is the capacitance of the transistor gates, f is the operating fre-

quency and V is the supply voltage. The decrease of V can lead to a signif-

icant reduction in power consumption because of the quadratic relationship

shown above. Pstatic consists of various leakage currents. To simplify, we use:

Pcore = Pdynamic + Pstatic

to present power consumption of a single core. DVFS reduces Pdynamic part

of Pcore.

Processors nowadays are mostly multi-core. Therefore, power consump-

tion of the entire CPU package should consider all the cores, also other com-

ponents other than the cores (e.g., cache). Therefore, the power consumption

model of the CPU package become:

Ppackage =
n∑

i=1

Pcoren + Puncore

Ppackage =
n∑

i=1

{Pdynamicn + Pstaticn}+ Puncore

where n is the number of cores, Puncorestands for the power consumed by

uncore component.This power model will be used for analyzing the behavior

of DVFS in chapter 4.

In principle, DVFS for a processor can be performed at various levels of

granularity[29] :

• Per-chip DVFS, as shown in figure 1.3a , uses the same power delivery

network to reach every core, and consequently, binds each core to the same

DVFS schedule.

• Per-core DVFS, illustrated in figure 1.3b, uses a separate voltage reg-

ulator for each core and therefore allows every core to have an independent

DVFS schedule.

• Cluster-level DVFS, shown in figure 1.3c, uses multiple of on-chip regu-

lators to drive a set of DVFS domains, or clusters, so that one or more cores

are associated with each cluster.
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(a) Per-chip DVFS (b) Per-core DVFS (c) Per-cluster DVFS

Figure 1.3: DVFS Levels

For each frequency island, one voltage regulator is required. Per-core

and cluster-level DVFS require more than one regulator. Due to the scales

involved, it is essential for all of these regulators to be located on-chip. How-

ever, on-chip regulators now still incur significant space and power overhead

by introducing large inductors and capacitors. Therefore, the majority of

commercial processors now provide only per-chip DVFS.

DVFS can lead to significant reduction in the energy required for a com-

putation, particularly for memory-bound workloads. Weiser et al. were the

first to propose the use of DVFS to reduce the energy consumption of com-

puter processors.[30]

Other researches[31][32] has attempted to leverage DVFS as a means to

improve energy efficiency by lowering the CPU frequency to get a lower

running power. But apparently, energy can be saved only if the power con-

sumption is reduced enough to cover the extra time it takes to run the work-

load at the lower frequency. With the decreasing of operating frequency,

the ratio between dynamic power, static power uncore power is also chang-

ing. When dynamic power is only a very little portion of the entire CPU

power consumption, DVFS will give shrinking potential for saving energy[7].

Therefore, the key point to use this technique for better energy efficiency is

to find the configuration where Ppackage0 × T0 > Ppackage × T . Ppackage0 is the

power consumption of package without any DVFS. T0 is the execution time

accordingly. Ppackage and T are the values after DVFS.
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1.5.2 Idle Cycle Injection

Idle cycle injection is a scheduler-level mechanism to force idle the processor

during its execution time.

This technique is implemented by setting the processor into C-states.

CPU operating states (C-states) are the capability of an idle processor to

turn off unused components to save power. When a processor runs in the C0

state it is working. A processor running in any other C-state is idle. Higher

C-state numbers represent deeper CPU sleep states with more components

shut down and longer wake up time. Table 1.1 gives an overview of the most

common C-states.

Mode Name Definition

C0 Active Operational state. CPU fully turned on.

C1 Auto-halt Stop CPU main internal clocks via software.

Bus interface unit and APIC keep running at

full speed.

C2 Stop-clock Stop CPU main internal clocks via hardware.

Maintain all software-visible states, but may

take longer to wake up through interrupts.

C3 Deep-sleep Stop all CPU internal clocks. The processor

does not need to keep its cache coherent, but

maintains other states.

Table 1.1: C-states

Setting the processor into C-states for a certain percentage of its exe-

cution time can reduce average power draw and result in cooler but longer

execution[33]. Therefore, force idling of the CPU can be used to avoid over-

heating. This power capping technique provides fine-grained per-thread pol-

icy control which allows user to target specific workloads. For instance, the

user can target only key heat-producing workloads. As a result, idle cycle

injection is the choice of several recently proposed thermal control systems

such as ThermOS[34] and Dimetrodon[25].

This technique is relatively new and few research mentioned the energy

efficiency of it. Not difficult to tell, CPU in idle status consumes less power.
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However, the force idling of CPU will lead to longer execution time of a task,

which may increase the total energy needed for complete the task. Therefore,

if idle cycle injection can save energy become an interesting question.

1.5.3 Clock Cycle Modulation

Clock Cycle Modulation is a modulation technique that conforms the width

of the clock pulse, formally the pulse duration, based on modulator signal

information. Its main use is to allow the control of the power supplied to

electrical devices.

The phrase ’clock duty cycle’ does not refer to the actual duty cycle of the

clock signal. Instead it refers to the time period during which the clock signal

is allowed to drive the processor chip. By using the stop clock mechanism to

control how often the processor is clocked, processor power consumption can

be modulated.

Clock duty cycle is expressed in percentage. It describes the proportion

of ’on’ time to the regular interval or ’period’ of time. It can be understood

as the percentage of active clock signal of the CPU. Lower duty cycle usually

corresponds to lower power, because clock is off for longer time. The average

value of voltage and current fed to the load is controlled by turning the switch

between supply and load on and off at a fast pace. The longer the switch is

on compared to the off periods, the higher the power supplied to the load is.

The mechanism is simple. A signal with 100% duty cycle would deliver

100% of the voltage. It would be like a DC power supply. By applying clock

cycle modulation, the area of active clock signal is decreased as shown in

figure 1.4. The power delivered to the load is reduced.

Figure 1.4: Energy saving of CCM

The total power delivered to the connected load each time, is the area

under the positive state of the signal. By altering the clock cycle, we can

alter the power delivered by the supply. And because the wave form is
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a square wave, the power supplied each time is calculated as: Pdelivered =

Psupplied × ClockCycle
The main use of clock cycle modulation is to allow the control of the

power supplied to electrical devices, especially to inertial loads such as mo-

tors. This technique can be also used to control the power supply of CPU

but it is less mentioned with respect to the previous two techniques. The-

oretically, clock cycle modulation will reduce the CPU power and it might

increase energy efficiency in some degree. However, there are some infor-

mal discussion[35][36] about this technique state that it is hardly useful and

doesn’t provide significant power saving.

1.5.4 Comparison of general features

These three power capping techniques have different features. CCM is the

most easy to be used power capping technique because it can be implemented

by simply writing a register. CCM can only be done separately for each core

but usually it is done chip-wide. CCM is with very little control latency.

To implement DVFS, a special driver control the core frequency is re-

quired. Most of commercial CPUs only provide chip-wide DVFS, but it is

possible to have per-chip DVFS. DVFS is with a little control latency.

ICI is the power capping technique with a more complex mechanism. It

requires software control. It is a fine grained technique which can be applied

to specific threads. It is very flexible. Different strategies can be used for the

implementation of ICI. The control latency of ICI is usually not considered

because the most important index is the percentage of idle time during the

execution.

1.6 Assumptions before experiment

Before the experiments, some assumptions can be made about what can be

expected from experiment data. Race-to-idle[8] is an algorithm to improve

energy efficiency of processor. If this will happen in our experiments, we

may expect that the most energy efficient configuration is always without

any power capping.

Regarding DVFS, there are different opinions about if it saves energy. We

may expect that race-to-idle is the most energy saving solution for DVFS, or
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a task running at a DVFS configuration consumes less energy than running

at the maximum capacity of CPU.

There is no analysis about energy efficiency of using ICI, but CPU in idle

status still consumes energy and using ICI will extend the execution time of

tasks. Therefore, we can consume that race-to-idle is more energy efficient

than using ICI.

For CCM, the majority opinion is that it is not very effective for power

saving and energy saving. We may expect applying CCM to the processor

will consume more energy than without.
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Chapter 2

Setup of the experiments

In this chapter, the set up process of the experiments will be described in

details including the system environment, benchmarks, measurement tools,

statistic methods, repetition and the tools we used to leverage power capping

on the processor.

2.1 System environment

In this work, all experiments were performed on a host equipped with a CPU

of haswell system architecture. The machine is with a quad core (8 threads)

CPU: Intel i7-4770K, and 32 GB of RAM memory. The operating system is

Debian GNU, Linux kernel 3.12.1. The base Board of the machine is made

by ASUSTeK COMPUTER INC, P9D-C Series, Version: Rev 1.xx.

The maximum frequency of CPU is 3.5GHz and the cores provide 15 dif-

ferent frequency levels. I use the configuration of 3.5GHz without any power

capping as our standard configuration. Data gathered under this configura-

tion are used to compare with the data gathered under power capping.

During the experiment, I used model specific registers(MSR), a set of

various control registers for debugging, program execution tracing, computer

performance monitoring, and toggling certain CPU features. Reading and

writing these registers is handled by the rdmsr and wrmsr instructions re-

spectively. As these instructions are privileged, they must be executed by

the operating system. In our work, MSRs were used for power monitoring,

idle cycle injection and clock cycle modulation. On Linux, there is a ker-

nel module called MSR driver to read and write MSRs. The MSR driver is
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not auto-loaded. On the modular kernel, it is necessary to use the following

command: modprobe msr to load it explicitly before use.

More details of the processor can be found in table 2.1.

vendor id GenuineIntel

cpu family 6

model 60

model name Intel(R) Xeon(R) CPU E31270 v3 3.50GHz

voltage 1.8 V

external clock 100 MHz

physical id 0

cache size 8192 KB

siblings 8

cpu cores 4

apicid 5

initial apicid 5

fpu yes

fpu exception yes

cpuid level 13

wp yes

flags fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm

pbe syscall nx pdpe1gb rdtscp lm constant tsc arch perfmon

pebs bts rep good nopl xtopology nonstop tsc aperfmperf ea-

gerfpu pni pclmulqdq dtes64 monitor ds cpl vmx smx est tm2

ssse3 fma cx16 xtpr pdcm pcid sse4 1 sse4 2 x2apic movbe

popcnt tsc deadline timer aes xsave avx f16c rdrand lahf lm

abm ida arat epb xsaveopt pln pts dtherm tpr shadow vnmi

flexpriority ept vpid fsgsbase tsc adjust bmi1 hle avx2 smep

bmi2 erms invpcid rtm

bogomips 6983.67

clflush size 64

cache alignment 64

address sizes 39 bits physical, 48 bits virtual

Table 2.1: Processor information
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2.2 Benchmarks

In this work, I chose to use SPEC CPU2006 as the reference benchmark.

SPEC CPU2006 is SPEC’s industry standardized, CPU-intensive benchmark

suite, stressing a system’s processor, memory subsystem and compiler. SPEC

designed CPU2006 to provide a comparative measure of compute-intensive

performance across the widest practical range of hardware using workloads

developed from real user applications. It is designed to provide performance

measurements that can be used to compare compute-intensive workloads

on different computer systems, SPEC CPU2006 contains two benchmark

suites: CINT2006 for measuring and comparing compute-intensive integer

performance, and CFP2006 for measuring and comparing compute-intensive

floating point performance.

Even though some researchers indicate that SPEC benchmarks doesn’t

represent the real workload of computers since all the benchmarks in the set

are single-thread and very compute intensive, which is not always the case

in real life, we still decide to use this tool because it is the best to stress

the capacity of CPU. In this way, we are able to understand the features of

the three power capping techniques more clearly. To investigate the case of

multiple-thread, we will run multiple instances of benchmarks on CPU to

give a simulation.

To have a more general experiment result, I chose six benchmarks in total,

three integer and three floating point with different programing languages

and applications.

2.2.1 Integer Benchmarks

The three chosen interger benchmarks are: gcc, h264ref and xalancbmk.

• gcc: C Language optimizing compiler. It generates code for an AMD

Opteron processor. The benchmark runs as a compiler with many of its

optimization flags enabled. The input files are 9 preprocessed C code

(.i files), output files are x86-64 assembly code files. It is written in C.

• h264ref: Video Compression. h264ref is a reference implementation of

H.264/AVC (Advanced Video Coding), the latest state-of-the-art video

compression standard. This standard replaces the currently widely

used MPEG-2 standard, and is being applied for applications such as

17



the next-generation DVDs (Blu-ray and HD DVD) and video broad-

casting. h264ref use two different files for input. Both are raw uncom-

pressed video data in YUV-format. The output for the reference run

consists of 6 files includes the encode log from the foreman sequence,

the output log files and binary format files for all inputs are verified at

the end of each run. It is written in C.

• xalancbmk: XSLT processor for transforming XML documents into

HTML, text, or other XML document types. This program is a mod-

ified version of Xalan-C++, an XSLT processor written in a portable

subset of C++ . You use the XSLT language to compose XSL stylesheets.

In structural terms, an XSL stylesheet specifies the transformation of

one tree of nodes (the XML input) into another tree of nodes (the

output or transformation result). This benchmark takes an XML doc-

ument and an XSL Stylesheet as input. The output is an HTML doc-

ument. It is written in C++.

2.2.2 Floating Point Benchmarks

The 3 chosen floating point benchmarks are: bwaves, milc, namd.

• bwaves: Computational Fluid Dynamics. bwaves numerically simulates

blast waves in three dimensional transonic transient laminar viscous

flow. The initial configuration of the blast waves problem consists

of a high pressure and density region at the center of a cubic cell of

a periodic lattice, with low pressure and density elsewhere. Periodic

boundary conditions are applied to the array of cubic cells forming an

infinite network. Initially, the high pressure volume begins to expand

in the radial direction as classical shock waves. At the same time, the

expansion waves move to fill the void at the center of the cubic cell.

When the expanding flow reaches the boundaries, it collides with its

periodic images from other cells, thus creating a complex structure of

interfering nonlinear waves. These processes create a nonlinear damped

periodic system with energy being dissipated in time. Finally, the

system will come to an equilibrium and steady state. The input file

describes the grid size, flow parameters, initial boundary condition and

number of time steps. The three data sets, test, train and ref, differ only

in grid size and number of time steps. The output are 3 files: the L2
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norm of dq vector after final time step, the residual for convergence after

each time step and the cumulative sum of iterations for convergence for

every time step. The benchmark is written in Fortran language.

• milc: Physics / Quantum Chromodynamics (QCD). The MILC Code

is a set of codes developed by the MIMD Lattice Computation (MILC)

collaboration for doing simulations of four dimensional SU(3) lattice

gauge theory on MIMD parallel machines. The code is used for millions

of node hours at DOE and NSF supercomputer centers. The program

generates a gauge field, and is used in lattice gauge theory applications

involving dynamical quarks. Lattice gauge theory involves the study

of some of the fundamental constituents of matter, namely quarks and

gluons. In this area of quantum field theory, traditional perturbative

expansions are not useful. Introducing a discrete lattice of space-time

points is the method of choice. It takes one input file with different

parameters and generate one output file used to verify correctness. It

is written in C.

• namd: Scientific, Structural Biology, Classical Molecular Dynamics

Simulation. s derived from the data layout and inner loop of NAMD,

a parallel program for the simulation of large biomolecular systems.

namd was a winner of a 2002 Gordon Bell award for parallel scalabil-

ity, serial performance is equally important to the over 10,000 users

who have downloaded the program over the past several years. Almost

all of the runtime is spent calculating inter-atomic interactions in a

small set of functions. The input file is a 92224 atom simulation of

apolipoprotein A-I. The output file contains various checksums on the

force calculations. It is written in C++.
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2.3 Measurement, statistic and repetition

At run time, a script named meter will log the power consumption of the

CPU in cores and the whole package every second. Accumulated energy

comsumption of the cores and the package can be gathered by reading the

MSR accordingly[37]:

MSR PP0 ENERGY STATUS and MSR PKG ENERGY STATUS.

The difference between two consecutive reading after one second is the

energy consumed in this second in the unit of Energy Status Units(ESU)[37].

ESU is an unsigned integer represented by MSR RAPL POWER UNIT bit

12:8. Default value is 10000b, indicating energy status unit is in 15.3 micro-

Joules increment. The unit of energy consumed in one second should be

convert to Joule by dividing the ESU. According to the definition of power,

Energy(Joule) = Power(Watt)×Time(s) the power is of the same number

as the energy consumed in one second. The reason to log the power con-

sumption every second is to get the power trace of benchmarks. The total

energy consumed by the task in Joule is the sum of the energy consumed in

each second of runtime.

The results of experiments will be presented graphically. To achieve a

better precision of the tests made, I repeated each test for 10 times. The

result of 10 tests of one benchmark in same configuration will be presented

together with a boxplot or shown as a cluster. I will compare the execution

time, energy consumption, power consumption for the same benchmark in

different configurations.

The performance of a benchmark under a specific configuration is defined

as:

Performance = T0

T

where T is the is running time of benchmark under current configuration

and T0 is the time used when the benchmark is running at the maximum

frequency and no power capping.

To compare the energy efficency of different configurations, the perfor-

mance and energy comsumption of the benchmark will be shown together.

The result of different power capping techniques will also be compared to

give a macro point of view of their difference. The graphs will be explained

in details in Chapter 3.
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2.4 Tools for power capping

In this work, I used different tools to leverage power capping on the processor.

For each power capping technique, I used different tools. In this section, I

will introduce the tools used in details.

2.4.1 DVFS

Dynamic Voltage and Frequency Scaling of a CPU is done by setting it into

different power-performance states. They are also called P-states.

While a device or processor operates, it can be in one of these several

states. P0 is always the highest-performance state while P1 to Pn being

successively lower-performance states with voltage and frequency scaled. The

number of P-states is processor-specific and the implementation differs across

the various types. Usually it is not more than 16.

CPU frequency scaling is implemented in Linux kernel, the infrastruc-

ture is called CPUfreq. Since kernel 3.4 the necessary modules are loaded

automatically.

Starting with Linux kernel 3.9, the new P-state power scaling driver is

used automatically for modern Intel CPUs. An important tip is that when

choosing an appropriate CPUfreq driver, always choose acpi-cpufreq over

p4-clockmod. Because p4-clockmod driver reduces the clock frequency of a

CPU, but no the voltage. Instead, acpi-cpufreq reduces voltage along with

CPU clock frequency.

CPUfreq ”governor” is used to manage the frequency setting of CPU. In

order to set CPU in different P-states by ourselves, I used the ”userspace”

P-state governor because this governor allow the user to decide what specific

speed the processor shall run at.

The command used to set P-states is: cpufreq-set -c $CORE -f $FREQ

where CORE is the index of the core (from 0 to 7) and FREQ is the target

frequency in KHz. An important issue need to be noticed is that the CPU

used for the experiments provides only per-chip DVFS. Therefore, even if it

seems possible to set the cores in different P-states by the command, the real

frequency of cores will be modified only if all the cores are set in the same

P-state.

The processor provide 15 levels of P-states. I ran benchmarks under all

avaliable P-states. The details of the P-states are in the table 2.2.
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P state Frequency

0 3500000KHz

1 3300000KHz

2 3100000KHz

3 2900000KHz

4 2700000KHz

5 2500000KHz

6 2300000KHz

7 2100000KHz

8 2000000KHz

9 1800000KHz

10 1600000KHz

11 1400000KHz

12 1200000KHz

13 1000000KHz

14 800000KHz

Table 2.2: DVFS P-states
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2.4.2 Idle cycle injection

Idle cycle injection is done by set CPU into idle states. CPU operating states

(C-states) is a set of possible idle states when processor to turn off compo-

nents to save power. A processor running in C0 state is working normally.

A processor running in any other C-state is idle. Higher C-state numbers

represent deeper CPU sleep states, more signals and circuits are turned off

and more time the CPU will take to wake up. C-states and P-states can vary

independently of one another.

On modern Intel processors (Nehalem or later), package level C-state

residency is available in MSRs. These MSRs are:

MSR PKG C2 RESIDENCY, MSR PKG C3 RESIDENCY,

MSR PKG C6 RESIDENCY, MSR PKG C7 RESIDENCY .

With the support of these MSRs, Linux kernel developers have created

an Intel PowerClamp driver, which is an experiment with idle injection for

Intel hardware. In our experiment, we used this tool to do the idle cycle

injection.

The reason to choose Intel PowerClamp driver is because it introduced

the method of synchronizing idle injection across all online CPU threads.

It is conceived as such a control system, where the target set point is a

user-selected idle ratio based on power reduction. With this tool, forced and

controllable C-state residency can be achieved with a single simple command.

The PowerClamp driver is registered to the generic thermal layer as a

cooling device. Similar to MSR module, it is necessary to use the following

command: modprobe intel powerclamp to load it before use. The command

used to inject idle time is:

sudo echo $PERCENT > $PATH/cur state

Where PERCENT is the percentage of idle time, and PATH is path of the

cooling device PowerClamp stands for. Usually it is with the form of:

/sys/class/thermal/cooling deviceN

N is the number for PowerClamp cooling device, it will appear only after the

PowerClamp module is loaded.

To have a clear view of the trend, we ran the benchmarks under 9 different

idle ratios which are: 0%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%.
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2.4.3 Clock cycle modulation

Pentium 4, Intel Xeon and Pentium M processors also support software-

controlled clock modulation.[37] The stop-clock duty cycle is controlled by

software through IA32 CLOCK MODULATION MSR. In this work, CCM

is realized by writting this MSR.

In this MSR, bits 0-4 are used to enable software-controlled clock mod-

ulation and to select the clock modulation duty cycle. Bit 4 is the flag to

enable On-Demand Clock Modulation. CCM will be activated only when

the on-demand clock modulation enable flag is set to 1. Bits 1-3 Selects the

degree on-demand clock modulation

The possible configuration of CCM is given in the table 2.3.

Duty Cycle Field Enoding Decimal Presentation Percentage of active clock signal

000B 0 No CCM (100%)

001B 18 12.5% (Default)

010B 20 25.0%

011B 22 37.5%

100B 24 50.0%

101B 26 63.5%

110B 28 75%

111B 30 87.5%

Table 2.3: CCM configurations

I gathered data in all possible configurations listed.

The command to do clock cycle modulation is:

taskset -c $CORE wrmsr -p $CORE 0x19a $LEVEL

where CORE is the core index from 0 to 7, LEVEL is the level of decimal

presentation of the degree of duty cycle modulation. 0x19a is the physical

address of IA32 CLOCK MODULATION MSR.

As we can see from the command, each processor core can modulate to a

programmed duty cycle independently. However, since the experiments for

DVFS and ICI were both done in the scale of the entire processor. To give a

better comparison, I applied CCM for all the four cores .
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Chapter 3

Results evaluation and analysis

In this chapter, the result of the experiments are shown graphically. For each

benchmark, I presented the total energy consumption of every power capping

configuration to find out the most energy efficient one. I also presented the

average power consumption of benchmarks to show the power change with

different configuration of each power capping technique. I analyzed perfor-

mance change according to energy and power change for all the techniques to

find the technique saves more energy or power with least negative influence

on performance. The power trace of benchmarks’ will be logged to emphasis

the features of DVFS, ICI and CCM.

Since the results I got in one power capping technique for different bench-

marks have very similar features, to avoid repeating, for each power capping

technique, I took only one benchmark(gcc) to explain in detail. The results

of different benchmarks for the same test are very similar. After the experi-

ments, I gave a comparison of performance for all the techniques and discuss

the features of them.

To get a more general result, I did more experiments with multi-thread

workload and different operating frequency. Finally, I discussed their advan-

tages and disadvantages under different situations and made a final conclu-

sion.

3.1 Experiment results

The results of the first set of experiments is shown in this section. In this

set of experiments, I ran one instance of a benchmark on the CPU. For
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each power capping configuration, I recorded its execution time, power trace

and calculated its energy consumption. The purpose is to find the most

energy efficient configuration of each technique for a specific workload (the

benchmark) and try to have a general idea of their features.

3.1.1 DVFS

Figure 3.1 is about the power usage of gcc under different DVFS P-states. X

axis is the frequency in GHz. From left to right, frequencies on X axis are

for different P-states from P0 to P14 as indicated in table 2.2. Y axis is the

average power consumed by gcc in Watt. Green stands for the average power

consumption of the entire CPU package while red stands for only the cores.
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Figure 3.1: gcc DVFS power usage

We can see the power consumption of the package and the cores are both

decreasing. Minimum power consumption is achieved at P-state P14 with

lowest frequency. According to the power model of DVFS we mentioned

before, Ppackage = Pcore + Puncore; Pcore = Pdynamic + Pstatic = CfV 2 + Pstatic.

26



With the decrease of f and V, dynamic power consumed by core is decreased

and total power of package decrease in a similar trend.

Figure 3.2 is about the energy usage of gcc under different DVFS P-states.

X axis is the frequency in GHz from P-state P0 to P14. Y axis is the energy

consumed by gcc in Joule. Green stands for package and red stands for the

cores.
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Figure 3.2: gcc DVFS energy usage

From the graph we can see that the energy consumption for package and the

cores have different trends. For package, the total energy consumption kept

decreasing until the lowest point which is obtained at P7 with frequency of

2.1GHz. Then it went up gradually. For the cores, the energy consumed kept

decreasing with the frequency. The lowest energy consumption is obtained

with P14.

According to my analysis, the reason to lead this result is following:

Energy = Power × Time If power decrease, the time of execution become

longer. For cores, the dynamic power decrease is enough to recover the time
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spend for longer execution. For the package, after P7, static power and un-

core power become much more significant than dynamic power, the power

saved by the reducing dynamic power is not enough to recover the longer

time. Therefore the total power consumed by the package increased.

Figure 3.3 is performance VS. power. X axis is the power in Watt. Y

axis is the performance. 100% performance is achieved at P-state P0, with

the least amount of execution time. Performance at other configuration is

defined as the ration between the minimum execution time in P0 and the

execution time in current configuration.

All the experiment results are listed here in cluster to give a better ap-

proximation. From up to down, each cluster is for a P-state from 0 to 14.

Red stands for the cores, black stands for the package.
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Figure 3.3: gcc DVFS performance to power

We can see clearly that with the growth of power, the performance was

improving. With the increase of power, the performance improvement be-

came less significant.
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Figure 3.4 is the performance VS. energy. X axis is the energy in Joule,

Y axis is the performance. The definition of performance is the same as the

previous graph. Red stands for cores and black for the package.
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Figure 3.4: gcc DVFS performance to energy

Performance VS. Energy has an interesting shape for the total package.

The best energy efficiency point is achieved at P-state P7. We can see that

lowering performance doesn’t always mean saving energy for the CPU pack-

age. If we only consider the cores, running the benchmark at lower perfor-

mance saves energy.
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Figure 3.5 is the power trace of gcc under maximum frequency without

any power capping. gcc has an uniformly fluctuating power trace. The

benchmarks chosen in this work have different power traces with their own

features.
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Figure 3.5: gcc power trace at max frequency
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To have a better view of how DVFS affects the power and execution time,

figure 3.6 shows the power trace of gcc under different DVFS P-states. Figure

3.6a is the power trace at P3 with frequency 2.9 GHz.Figure 3.6b is the power

trace at P7 with frequency 2.1 GHz. Figure 3.6c is the power trace at P11

with 1.4 GHz. Figure 3.6d is the power trace at P14 with 800 MHz.
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(a) Frequency 2.9 GHz
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(b) Frequency 2.1 GHz
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(c) Frequency 1.4 GHz
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Figure 3.6: gcc power trace DVFS

From the graphs, we can see the power trace of gcc became smoother and

longer when CPU frequency and voltage were reduced. DVFS affects power

consumption of cores greatly. At the lowest frequency, the cores consume

very little energy. . From the fact that the gap between power traces for

package and the cores was decreased when applying DVFS, we can infer that

DVFS also reduce the sum of uncore and static power consumption.
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3.1.2 Idle cycle injection

I took gcc as the example benchmark for idle cycle injection. Figure 3.7 is

the graph about the power usage. X axis is the percentage of idle time of the

CPU. Y is the power consumption in Watt. Red stands for cores and green

stands for package. Since all the experiment result are very uniformed, the

color is difficult to see. The group of data with higher power consumption

value is for the complete package.
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Figure 3.7: gcc ICI power usage

we can see that the power is decreasing gradually with little slopes for both

the cores and the whole package. The package power is having a slightly

bigger gradient respect to the cores power.
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Figure 3.8 is the energy consumption graph for gcc ICI. X axis is the

percentage of idle time of the CPU. Y is the energy consumption in Joule.

The group pf data with higher energy consumption is for cores while lower

one is for cores.
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Figure 3.8: gcc ICI energy usage

It is very interesting that for both cores and package, the energy consumption

change is very insignificant. The total energy consumed by the benchmark is

keeping more or less an equilibrium. For the complete package, there is only

a very slight trend of raising. Therefore, I proposed an assumption here, that

is for the same workload, same frequency and voltage configuration, the idle

cycle injection doesn’t affect the total energy consumption of the workload.

To further prove this assumption, I launched more tests. Details of more

tests is given in section 3.2.
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Figure 3.9 is performance VS. power. X axis is the power in Watt. Y

axis is the performance. 100% performance is achieved at max frequency

without any ICI, the least amount of execution time. Performance at other

configuration is defined as the ration between the minimum execution and the

execution time in current configuration. With more percentage of ICI, the

performance is lower. Each cluster of data is from one same configuration.

Red stands for cores, black stands for package.
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Figure 3.9: gcc ICI performance to power

This is another interesting fact about ICI. With the increasing of power, the

performance is growing almost at a linear trend.
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Figure 3.10 is the performance VS. energy. X axis is the energy in Joule,

Y axis is the performance. The definition of performance is the same as the

previous graph. Red stands for cores and black for the package.
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Figure 3.10: gcc ICI performance to power

For ICI, we can see that the each configuration will consume similar amount

of energy. The reason for this is that with more percentage of ICI, the

execution time become longer and the power become less. The product of

them keeps the same. Therefore, to improve a system only for energy efficient

reason, ICI is not the best choice.

Figure 3.11 is the power trace of gcc under maximum frequency without

ICI. Figure 3.12a is the power trace with 10% of idle cycle injection. Figure

3.12b is with 25% of idle time. Figure 3.12c is with 40% and figure 3.12d is

with 50%.
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Figure 3.11: gcc power trace at max frequency without ICI
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(a) 10% idle time
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Figure 3.12: gcc power trace ICI
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From figure 3.12 gcc power trace of ICI, we can see that ICI reduce the

average power consumption of cores and the package. The ratio of average

cores power to average package power was roughly fixed for different percent-

age of idle time. Different from DVFS, the shape of power trace was well

preserved rather than significantly smoothed.

3.1.3 Clock cycle modulation

For clock cycle modulation, I took gcc as example as well. Figure 3.13 is its

power usage. X axis is the percentage of active clock signal as indicated in

table 2.3. Y axis is the power consumed by the benchmark in Watt.
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Figure 3.13: gcc CCM power usage

From the graph, we can see the power consumption is decreasing gradually

for smaller percentage of active clock signal. The cores and the package have

very similar trend.
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Figure 3.14 is gcc CCM energy usage. X axis is the percentage of active

clock signal. Y axis is the energy consumption in Joule. Green is for package,

with higher value than the red for cores.
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Figure 3.14: gcc CCM energy usage

We can see an interesting shape for the energy consumption. The energy

consumed by cores and package are both growing in an exponential fashion.

The total change for the cores is not very significant. At the least percentage

of active clock signal, the energy consumed by the package increase 5 times

more than no CCM. The reason for this result is that with CCM, the time to

complete the workload is increasing exponentially. The energy consumption

with CCM is increasing instead of decreasing. It is obviously not the best

technique to save the energy.
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Figure 3.15 performance vs power. X axis is power in Watt and Y axis is

the performance in percentage. The minimum execution time is achieved at

the highest frequency(3.5GHz) without any CCM. Performance is defined as

the ratio between minimum execution time and the current execution time.

Performance decrease for smaller percentage of active clock signal and each

cluster is for the same configuration. Red stands for cores and black stands

for the package.
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Figure 3.15: gcc CCM performance to power

From the graph, we can see performance increase with power in more or less

an linear fashion for both cores and package.
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Figure 3.16 is the performance vs energy. X axis is energy in Joule and

Y axis is performance defined as before. Performance decrease for smaller

percentage of active clock signal. Each cluster is for a same configuration.

Red stands for cores, black for package.
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Figure 3.16: gcc CCM performance to energy

From the graph, we can see that for both cores and the package, more CCM

will lead to worse performance and more energy consumption at the same

time. We can say that in energy efficient point of view, CCM, especially with

a very small percentage of active clock signal, is very inconvenient.

The figure 3.17 is the power trace of gcc under maximum frequency with-

out CCM. Figure 3.18a is power trace of gcc under CCM with 87.5% of active

clock signal. Figure 3.18b is gcc’s power trace with 63.5% of active clock sig-

nal. Figure 3.18c is with 37.5% of active clock signal. Figure 3.18d is with

12.5% of active clock signal.
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Figure 3.17: gcc power trace at max frequency
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(a) 87.5% of active clock signal
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(b) 63.5% of active clock signal
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(c) 37.5% of active clock signal
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Figure 3.18: gcc power trace CCM
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From the power trace of different CCM configurations, we can see that

the power trace is smoothed, the gap between the trace of cores and the

trace of package become bigger when the percentage of active clock signal

is less. From these graphs, we can understand that clock cycle modulation

has negative effect on power saving for uncore components of the processor.

For uncore components, the energy consumption is significantly increased

with CCM because both execution time and power are increased. It’s a

very important why CCM was not improving the energy efficiency of the

processor.
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3.2 Comparison of different techniques

To have a clear over view of the three different power capping techniques,

comparisons are made between them with respect to power, energy and per-

formance.

3.2.1 Influence on power

Figure 3.19 is the comparison between the three power capping techniques

with respect to their influence on the power of CPU package and cores.

From the figures, we can see that to have the same package power achieved

by DVFS at
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Figure 3.19: Comparison of effect on power
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3.2.2 Influence on energy

In figure 3.20 we can see clearly the different influence on energy consumption

of the power capping techniques. DVFS is the only technique provides the

possibility of energy saving. ICI doesn’t influence the energy consumption

strongly and applying CCM will consume more energy during the execution

time.
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Figure 3.20: Comparison of effect on power

44



3.2.3 Influence on performance

The comparison of different techniques’ effects on power consumption and

performance is in figure 3.21, The X axis is the in Watt. Y axis is the

performance, defined as minimum execution time/ current execution time.

Each cluster of a same color is from the same configuraion. Red stands for

cores of DVFS. Orange stands for package of DVFS. Green is core of ICI.

Blue is package of ICI. Brown is cores of CCM and black is package of CCM.
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Figure 3.21: gcc performance to power comparison

From the graph, we can see for all the techniques, higher power leads

to better performance. Using DVFS consumes the least power to achieve

the same performance respect to others. For only the cores, ICI and CCM

has similar behavior but ICI is slightly better. For the entire package, it is

obvious that ICI overperformed CCM. From the graph we can understand

using DVFS can achieve lower power with the least influence on performance.

ICI is the following, then CCM.
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Figure 3.22 is the comparison with respect to energy consumption and

performance. X axis is energy in Joule, Y axis is the performance. Cluster

with same color belong to the same configuration. Different colors stands

for different techniques for cores or package. The details are the same as

previous graph.
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Figure 3.22: gcc performance to energy comparison

We can see that for DVFS, the energy required to achieve same perfor-

mance as the other two techniques is much lower. For the cores, using DVFS

to lower its performance can save energy. It is also true for the entire package

until a turning point. For ICI, the energy keeps the same for all performance.

For CCM, sacrificing performance increase the energy consumption to finish

the workload. Therefore, we can conclude that for in general, DVFS has the

best energy efficiency. It can finish the workload with the same performance

but less energy. Then ICI is the second with stable energy consumption.

CCM is not suitable for saving energy.
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3.3 Further experiments

From the previous experiments, I concluded that DVFS is the only tech-

nique introduced here that can improve energy efficiency of the processor.

ICI doesn’t have great influence on CPU’s energy efficiency and CCM has

negative effect on energy efficiency.

To complement my experiment results, I decided to launch more tests

with multiple threads and different operating frequencies.

3.3.1 DVFS

From the pervious experiments, I assumed that DVFS can improve the energy

efficiency of the processor and there is a best configuration for energy saving.

From previous test, it’s always P7 or P8. Since we were always running one

single thread benchmark, it was not very convincing. To get more proofs, I

ran multiple instances of gcc on each cores.

Firstly, I run four instances on each core and we found that the most

energy efficient point become P11 or P12. Then I ran eight instances on the

CPU, with two threads for each core. I found the same result. When the CPU

gets busier, using DVFS can significantly decrease the energy consumption.

And when CPU is in less power consuming states, DVFS will be less effective

in energy saving.

To further prove this assumption, I ran eight gcc instances, but with clock

cycle modulation of 12.5% active clock signal. I found that the best energy

saving point changed to P7. Therefore, I concluded that with lower average

power consumption, DVFS become less effective in energy saving.

I did another experiment running 8 gcc threads, with 50% of ICI instead

of CCM. The result is the same. The most energy efficient configuration

change to P9 instead of P11 and P12.
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3.3.2 Idle cycle injection

We did the assumption that, under a specific voltage and frequency, ICI will

not influence significantly the total energy consumed by a workload. We

tried to prove it with more tests.

As we previously introduced, P-states and C-states are independent, they

can vary without influencing each other. To avoid repetition, we will only

list the gcc case as example. Graphs for other benchmarks are also having

very similar features. We omit them here.

Figure 3.23 is the group of graph for gcc ICI in 2.9GHz, DVFS P3 state:
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Figure 3.23: gcc ICI at 2.9GHz

We can see that the total energy consumed with respect to under 3.5GHz

is decreased. For different ICI configuration, the total energy is not changing

too much. Performance vs power still keep a linear growth approximately.

The general feature is very similar with the result under 3.5GHz.
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Figure 3.24 is gcc ICI in 2.0GHz. P8 state.
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Figure 3.24: gcc ICI at 2.0GHz

Under different ICI percentage, the total energy keeps more or less stable

with a slight increase. The general feature is consistent with the previous

test cases.

We also launched the experiment for ICI with 8 instances of gcc running

at the same time, the result is that with multiple thread, ICI still keeps a

relatively stable energy consumption for the same workload.
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3.3.3 Clock cycle modulation

From the data I got from CCM, I found that CCM was not suitable for

energy saving since it increase the power consumption of uncore components

and penalize the execution time too much. However, it might be possible

that when the CPU cores are extremely busy that its power consumption is

much more significant than uncore components, using CCM may save energy.

Therefore, I ran 8 instances of gcc on the CPU to verify our assumption.

However, the result is that even in this case, using CCM still cost more energy

than without.

3.4 Conclusion

From all the experiments, we can conclude the features of DVFS, ICI and

CCM.

Using DVFS to lower the frequency and voltage can save energy when the

CPU is in a very power consuming status. The most energy saving config-

uration change according to the average power consumption of CPU. DVFS

can be used together with ICI and CCM. With more percentage of CPU idle

time or less active clock signal, the most energy efficient configuration is tend

to be with a higher frequency and voltage. To achieve the maximum energy

efficiency, it is necessary to adjust the DVFS configuration according to run-

time information about the workload and power consumption. For mobile

devices, DVFS can be a very effective technique to extend battery life it can

be used properly.

As power capping techniques, DVFS has a big advantage to lower the

power with less influence in performance. It is also the most energy efficient

compare with the others. However, it is less used for thermal control compare

with ICI because in most of the real situation, it can be only used per-chip.

Theoretically, DVFS has some latency when switching to another voltage

and frequency. However in our experiment, from the power trace of DVFS,

we can see the latency was almost not noticeable.

Using idle cycle injection to the entire CPU doesn’t influence the amount

of energy required to finish a task significantly. ICI can not be used as an

energy saving tool for servers or mobile devices.

ICI can be used for thermal control without energy overhead. Since ICI

can have fine grained control (per-thread), it is possible to do ICI only to the
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kind of work will produce significant amount of heat. Therefore, we can say

it is a very ideal tool for thermal control.

Due to the fine grained feature, ICI can be very versatile. It can be

implemented with different strategies and for different use. For example, it

is possible to implement ”smart” power capping using ICI without influencing

execution time of the tasks with higher priority. Due to the same reason, the

ICI strategies can be more different and complicated. In our work, we used

indiscriminate ICI provided by PowerClamp. For ICI with a specific purpose,

a different strategy is required.

Using CCM will increase the energy needed to finish a task. It also

increase the power consumption of uncore components of the CPU.

CCM is used as a thermal control method in Intel CPU. However, using

CCM is with a big energy overhead, and it is very inconvenient to have high

level CCM with very little percentage of active clock signal. Like DVFS,

CCM can be only applied per-chip for most of commercial CPUs. Therefore,

even if CCM is available and can be applied easily to the processor by writing

MSR, it is not recommended as the best power capping technique.

As a power capping technique on CPU, CCM might be not very efficient

as the other ones in terms of energy saving and power capping, but CCM is

with a big variety of use rather than power capping the CPU. It can be used

to encode information for transmission[38], or control of the power supplied

of electronic motors and LED displays[39].
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Chapter 4

Related work of power capping

techniques

DVFS, ICI, CCM, these three power capping techniques were frequently used

and researched. They were used for thermal control, energy saving and power

optimization.

In this chapter, I introduced some existing solutions using these power

capping techniques. Three thermal control solutions using different power

capping techniques will be introduced. I analyzed their energy efficiency

with respect to our experiment results, discuss their advantages and disad-

vantages. From the experiment results, we understood DVFS is the only

technique provide the possibility of energy saving. I also presented different

energy saving solutions for mobile devices, HPC devices and data centers

using DVFS. Regarding to power optimization and allocation of computing

centers, most of existing solution used a central system or stratified system

to manage the power plan, then power capping on every single server. Some

examples is given of typical systems with this architecture. Since ICI is a rel-

atively new technique, few existing solution used it. I explored the possibility

to use ICI for power optimization in computing centers.

At the end of the chapter, I discussed about how to exploit the advantages

and avoid the disadvantages of each power capping technique. For all the

techniques, I discussed their potential improvement with respect to their

shortcomings and look into the future for a better use of them.
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4.1 Thermal control

During the active time, the CPU consumes electrical energy. A Part of en-

ergy loses in the form of heat due to the impedance of the electronic circuits.

A higher power consumption of CPU tends to lead a bigger increase of CPU

temperature. For the same processor, if the average CPU power draw is

decreased, the amount of energy transformed into heat per time unit is de-

crease and its temperature is controlled. Therefore, all the power capping

techniques mentioned in this work can be applied for thermal control of the

processor.

4.1.1 DVFS thermal control

When using DVFS for thermal control, it is possible to decrease not only the

processor’s temperature, but also its energy consumption especially when the

processor is in a very power consuming status.

However, the gross grain control of DVFS may unfairly penalize heteroge-

neous workload. To cope with this drawback, Globally Asynchronous Locally

Synchronous (GALS) architecture[40] is proposed. In GALS architecture, the

chip is split into several frequency islands. Moreover, each frequency island

can be supplied with a different voltage becoming a Voltage and Frequency

Island (VFI). GALS architectures are suitable for fine grain power manage-

ment as the power consumption of the whole platform depends on the supply

voltage and the clock frequency applied to each VFI.

With GALS architecture, nonlinear and asymmetric thermal control us-

ing DVFS [26] is proposed. The proposed strategy implements a chopped

scheme on top of a robust DVFS approach in order to limit the temperature

increase. Firstly, they analyzed the relation between VFI power consumption

of and its thermal aspects. Power-thermal model of the processor is given.

Then, depend upon an internal control law, the system may decide to cool

down after analyzing current thermal situation with information of power

consumption. As a result, the frequency of a VFI goes from one level to

another with a given transition time and dynamics.

To further improve the precision of DVFS thermal control, workload pre-

diction can be added. In the research: Consistent Runtime Thermal Pre-

diction and Control Through Workload Phase Detection [41] described the

mechanism in details. They devised an off-line analysis algorithm that learns
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a set of thermal models as a function of operating frequency and globally de-

fined workload phases. During run time, by using the measurements of the

processors performance counters, they designed a methodology capable of

detecting workload phase transitions and associating them with changes in

thermal behavior. Afterwards, the current workload phase is identified and

the corresponding state-space model is pulled from the lookup-table. Fi-

nally, the system selects the highest operating frequency that does not lead

to thermal violations.

With workload information, thread migration can be used for further im-

provement. In addition to aggregate heat production, there can be significant

temperature variance across different regions of the die, and thus one also

must worry about more localized hot spots at particular portions of the chip.

To cope with this issue, a group of researchers from Princeton University

proposed a thermal control system[42] with thread migration policies man-

aged by the operating system. Knowing information of the workload, the

operating system can migrate the threads to balance heat production of the

processor.

However, even thought there are many researches about workload pre-

diction, most of them are with off-line machine learning. All of them can’t

be always accurate especially for very specific workloads. Without workload

prediction, thread migration requires knowledges about the workload before

execution. In reality, it is not common to have information about the work-

load before execution. Most important of all, fine grain DVFS control of the

processor exist only in research environment. Per cluster DVFS(GALS) and

per core dvfs are not avaliable for commerical CPUs.

4.1.2 ICI thermal control

In the previous chapters, I mentioned several times that ICI is very suitable

for thermal control. The first research using idle cycle injection for thermal

control is Dimetrodon proposed by Harvard University and AMD Research.

Their solution used flexible, per-thread ICI technique. With per-thread con-

trol, hot processes will run with idle cycle injection. At the same time, the

cool processes can run uninterrupted while system-level temperatures are

lowered. They compared their solution to the ones using hardware tech-

niques in a commodity operating system on real hardware under throughput

and latency-sensitive real-world workloads. The result was that Dimetrodon
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was able to reduce CPU temperature with the less influence on execution time

than hardware thermal control solutions using DVFS or CCM. They stated

that Dimetrodon is a complementary system that can be used in conjunction

with DVFS thermal control system. This combination is useful especially

when temperature predictions of machines are inaccurate, or when a data

center experiences uniform temperature increases.

With the idea of using ICI for thermal control, ThermOS[34] was raised

as a complete thermal management system with control strategies. Firstly,

they proposed the thermal model of the processor:

T (k + 1) = aT (k) + bI(k)

where T (k) and T (k + 1) are the temperatures at the k -th and k + 1 -th

sample instants, respectively; I(k) is the idle time between the k -th and k +

1 -th sample instants; while a and b are parameters defining the temperature

behavior. With this model, the system can estimate the current thermal sta-

tus without only relying on sensors. Finally, with a formal feedback control

system, ThermOS apply idle cycle injection to decrease thermal emergencies

according to real time policies (thread priority etc.).

In ThermOS, thread migration is also mentioned. They proposed the

idea of scheduling existing idle tasks as a substitution of ICI. They stated

that the overhead(3 to 30µs) for thread migration is acceptable and does not

compromise the efficiency of ThermOS. With this possibility, it is possible to

implement ICI without actually injecting extra idle cycles in the processing

time.

ICI is a very ideal tool for fine grained thermal control without introduc-

ing big energy overhead. It can be also used together with DVFS without

influence each other. We may expect a wide use of ICI for thermal control

in future.

4.1.3 CCM thermal control

CCM is used as thermal control method for Intel processors with IA-32

architecture[37]. With a simple MSR writing, the active clock signals can

be reduced immediately and the processor temperature can be controlled.

CCM is very easy to use. Therefore, even if CCM is the least energy efficient

technique we introduced, it can be found in most of the commercial pro-

cessors as a mechanism for thermal control. Few recent research mentioned

CCM as a thermal control method.
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4.2 Energy saving

Applying DVFS on the processors properly can be used to improve energy

efficiency of computing devices and data centers. In this section, we will

present different energy saving solutions for mobile devices, HPC devices

and data centers.

4.2.1 Extend battery life for mobile devices

An Energy Conservation DVFS Algorithm for the Android Operating System[43]

is a very typical research for the purpose of extending mobile battery life. In

this research, they mentioned the fact that traditionally, users may choose

to use the lowest CPU frequency for saving energy. However, reducing the

CPU frequency may not always reduce the energy consumption. The lowest

energy consumption usually appears at some operating frequency (optimum

frequency) other than the lowest one supported by the processor. These

statements are consistent with our experiment results. With experiments,

they found that a relationship exists between the optimum frequency and the

memory access behavior which is represented by an index called the memory

access rate (MAR). MAR is defined as the ratio of cache misses number to

the number of instructions executed. A program with a lower MAR (which

tends to be CPU-bound) will have a higher optimum frequency, whereas a

program with a higher MAR (which tends to be memory-bound) will have a

lower optimum frequency. With the experiment data, they built a model for

the relation between MAR and optimum frequency by curve fitting. During

run time, MAR will be obtained and operating frequency can be adjusted

according to their model.

An improvement of the solution mentioned above is Unifying DVFS and

Offlining in Mobile Multicores[44]. They integrated core offlining with DVFS

for multicore mobile phones. They implemented medusa, an offline-aware

frequency scaling governor, in the Linux kernel running on two Galaxy S4

smartphones. From their experiments, they found that running more cores at

low frequency is more energy efficient than activate only one core using high

frequency. During idle state of mobile phone, more cores will be put off-line.

During the execution time of tasks, the system will increase the frequency

of all the on-line cores, once a specific high frequency (calculated from their

power model) is reached, more cores will be activated and the frequency will
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be adjusted.

To efficiently apply energy saving algorithms to mobiles with less delay,

workload prediction can be useful. For a mobile device, workload is more

predictable because it heavily depends on the owner’s habit. Therefore, by

profiling the using behavior and the context, workload prediction can be done

more precisely. Mpower[18] implemented this mechanism for mobile energy

saving and battery life prediction. MPower relies on a system architecture

based on two main components: an Android client logging application run-

ning on the mobile device, and a remote server for the data storage and

the model computation. The application on the mobile device gathers data

related to energy consumption, e.g., battery level, CPU frequency, screen

brightness, and sends them to a remote cloud server. Then, energy saving

advises is sent back to the device and the currently estimated battery lifetime

is shown by the MPower client.

4.2.2 Improve energy efficiency of HPC devices and

data centers

To improve the energy efficiency of a HPC device, a very classical and widely

accepted method is combining DVFS with thread migration. The main idea

is predicting fast and slow threads at runtime and applying DVFS to cores

executing fast threads. Thread Shuffling[45] is one of the researches using

this method for parallel applications. This type of solutions rely on GALS

architecture with multiple voltage frequency islands in the processor. In

their work, meeting point thread characterization is used to identify the crit-

ical thread dynamically during program execution by checking the workload

balance at intermediate points of a parallel section. The thread with higher

criticality usually requires longer execution time. The idea of thread shuffling

is to map threads with similar criticality degrees into the same core through

thread migration and then apply dynamic voltage and frequency scaling to

cores containing non-critical threads.

When we consider energy saving for HPC devices, DRAM power should

be take into account as well as CPU. Actually, DVFS does not have any

direct control over DRAM power. However, memory traffic is related with

processing speed, and processing speed is controlled by DVFS. Consequently,

DVFS can control CPU power as well as DRAM power. Energy-centric DVFS

Controlling Method for Multi-core Platforms[46] proposed this argument and
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their solution: eDVFS aiming at minimizing total energy consumption. They

observed that the energy efficiency of the can be improved further by adjust-

ing CPU frequency according to the degree of contention in shared resources.

Memory traffic is generated by misses in the last-level cache. If memory traf-

fic exceeds a given threshold, decrease CPU frequency. If memory traffic is

under a given threshold, move towards the direction in which the ratio be-

tween current power and Instructions Per Second is reduced. eDVFS reads

the number of instructions, memory traffic and consumed power from perfor-

mance counters in CPU periodically and estimating Instructions Per Second.

The memory traffic threshold is decided during runtime. If the amount of

memory traffic exceeds the threshold, the main memory access latency will

rise sharply. However, this solution requires also information of workload.

Even if the information can be gathered during runtime, there will be a

significant operating latency.

For computing cluster data centers, much research has proposed power

management techniques at two levels: host level and cluster level. At host

level, processor’s power is managed using DVFS, which adjusts the dynamic

power portion of the total power. However, this achieves a limited amount

of energy savings because of the bounded portion of the dynamic power. To

realize more energy savings, algorithms exploiting live migration and con-

solidation can be implemented at cluster level. This allows adjusting the

amount of idle power by keeping few hosts with high utilization and turning

off unused ones. Thus, there is a chance to achieve energy saving by vir-

tual machines (VMs) consolidation using virtualization technologies, which

enable live migration and dynamic configuration of VMs. Virtualization al-

lows agile management and guarantees performance isolation where a VM

is a container of a job. Therefore, consolidation of VMs into few numbers

of physical hosts and turning off unused hosts can achieve energy savings.

Currently, virtualized platforms are used not only for web or commercial

transaction applications but also in grids and HPC clouds that host HPC

applications. The research: Energy Efficient Scheduling of HPC-jobs on Vir-

tualized Clusters Using Host and VM Dynamic Configuration[47] proposed

a dynamic configuration of VM to minimize energy by exploring the num-

ber of core in the multicore processor. However, unused cores can suffer

energy wastage unless completely powered down (repowering may incur new

overhead). Moreover, the frequent migration of VMs degrades the system

performance, so the decision of migration should be taken with awareness of
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its cost and the system dynamism.

4.3 Power optimization and allocation

In todays data centers, precisely controlling server power consumption is an

essential way to avoid system failures caused by power capacity overload or

overheating due to increasingly high server density. Power control needs to

be enforced at three levels: rack enclosure, power distribution unit(PDU),

and the entire data center, due to the physical and contractual power limits

at each level. SHIP[48] is a power capping solution of this architecture. First,

the rack-level power controller adaptively manages the power consumption

of a rack by DVFS of the processors of each server in the rack. Second,

the PDU-level power controller manages the total power consumption of a

PDU by manipulating the power budget of each rack in the PDU. Similar to

the PDU-level controller, the data center-level controller manages the total

power consumption of the entire data center by manipulating the power

budget of each PDU. The power budget of each rack depends on its priority

and utilization. From data center to PDUs, then to the rackets and servers,

the power budget will be divided and distributed into each single server.

After each single server receive its power budget, a common strategy is

executing at the highest performance within the allowance of power budget.

The research: Coordinated Power-Performance Optimization in Manycores[49]

proposed C-3PO, which optimizes the performance of manycore processors

under a power constraint by controlling two software knobs: thread packing,

and dynamic voltage and DVFS. For each program, C-3PO checks whether

the per-core utilization of the previous epoch is below a threshold or not. If

it is below threshold, the number of cores allocated to the program is reduced

by x. Then,C-3PO calculates the surplus power by subtracting the estimated

power consumption from the power budget. Finally, if surplus power is pos-

itive, C-3PO distributes the power consumption to programs by allocating

additional cores or increasing the operating frequency. otherwise the sched-

uler drops the frequency level or decreases the number of allocated cores so

that the power consumption stays within the power cap. In other words,

C-3PO estimates the power needed by programs at runtime. Then salvage

the power budget that is not contributing to performance and redistribute

to programs that would benefit from it.
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4.4 Future work

In this section, how to use different power capping techniques properly ac-

cording to the needs and situations is discussed. For each power capping

technique introduced in this work, there are further improvements can be

done.

From the experiment results, we can understand that proper use of DVFS

will decrease energy consumption of the processor package. To exploit this

advantage, the principles of using DVFS to lower CPU energy consumption

is introduced with a state-of-art system.

4.4.1 Proper use of each power capping technique

For DVFS, to deal with its shortcoming of gross grained control, GALS

architecture should be used. To have per-core DVFS with on chip regulators,

researches[50] had been done. However, most of commercial processors don’t

actually provide it because it is relatively costly. Usually, the researches using

DVFS for thermal control, power control or energy saving are with GALS

architecture. Therefore, to put the research results in use, it is necessary to

integrate per-core DVFS regulators on the processors with a lower cost.

With GALS architecture, using thread migration can further improve

the performance of thermal control or energy saving solutions with DVFS.

Thread migration strategies should be designed specifically for different pur-

poses. To identify the characteristics of a thread, it is possible to analysis

the instructions of it. However, to have a precise thread migration, the in-

formation is required before execution. Therefore, workload profiling and

prediction can be used. Machine learning can be applied to gather workload

information but workload prediction is very difficult. To cope with the un-

certainties, DVFS systems can add feed back loops to adjust their behaviors

at runtime.

Considering power control of data centers or single servers. To have an

optimized division of power budget which maximize the system performance,

power management system should be able to gather information of servers

and allocate power according to the needs. For a single server, to make

the full use of its power budget and achieve best performance, more precise

power model should be proposed for estimating the optimum configuration.

Feedback loops with little overhead can be added to adjust configurations at
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runtime.

ICI is a new power capping technique with a lot of potential for its fine

grained feature and its compatibility with DVFS. Thread migration can be

applied with ICI solutions by scheduling existing idle tasks as a substitution

of injecting extra idle cycles in the processing time. Combining ICI and DVFS

together, smarter solutions can be proposed. For example, a thermal control

system can use DVFS to keep the average temperature of the chip within a

limit then using ICI for further adjustments. A power capping system can

do idle cycle injection to threads with lower priorities instead of using DVFS

for the entire core to guarantee the performance of critical threads. However,

to achieve more precise power capping with ICI, power model of ICI should

be proposed, and feed back control loops can be added.

CCM is provided as a thermal control method for processors. It is the

least energy efficient power capping method but it’s very easy to use and

with little latency. Because of these features, CCM can be useful to deal

with thermal or power emergencies. Under specific conditions, systems can

trigger CCM to protect its hardwares and maintain it’s power consumption

within power budget. However, it is necessary to prevent abusive use of CCM

for computing devices or data centers.

4.4.2 A state-of-art energy saving solution

A system may have different strategies during the execution time of tasks.

In the case of try to reduce production cost, energy saving is with the high-

est priority. Under some circumstances, a system may choose to maximize

performance instead of saving energy. Another strategy can be choosing

a trade off configuration that saves more energy than the maximum per-

formance configuration, but has better performance than the most energy

efficient configuration. Some systems have to follow constraints in power or

performance. Therefore, a strategy and constraint controller is required to

maintain the general rules of the system.

The problem of minimizing energy consumption of real-time tasks is very

challenging task because the totally energy consumption of a task will be

known only after its execution. Therefore, a prediction system to estimate the

most energy efficient operating frequency is required. There is evidence[43]

showing that the optimum operating frequency with best energy efficiency

is related to the memory access rate which is the ratio of the total number
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of data and instruction cache misses to the number of instructions executed.

According to the experiment result of this work, we may also conclude the

the most energy efficient operating frequency is also related with the average

power consumption of one specific CPU. With these information provided, a

mathematical model should be proposed to predict the most energy efficient

operating frequency. After optimum energy efficient frequency prediction,

the system can calculate the target frequency according to the strategy and

constraints of the system and use DVFS controller change the frequencies of

cores.

For CPUs with multiple frequency island, thread migration can be used

to achieve optimum solution for different types of workloads. For example

threads with similar memory access rate can be assigned to the same core.

For periodical tasks, it is possible to apply feedback loops for a more precise

control.

Figure 4.1 is the graphical representation of the state-of-art system pro-

posed.

Figure 4.1: Energy saving system
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Chapter 5

Summary

In this work, three very widely used power capping techniques were intro-

duced: DVFS, ICI and CCM. With experiment data, I compared their gen-

eral features, their energy efficiency, and their effectiveness of power capping

with less performance degradation. I introduced the related works with dif-

ferent techniques for thermal control, energy saving, and power management.

For each technique, I summarized its features and discussed the future works

that could be done to use it more effectively.

The limitation of this work is that all the experiment data are from the

same computer architecture. I launched multiple instances of single thread

benchmarks instead of running a multi-thread program. However, this substi-

tution is not strictly precise. To have a more general and precise conclusion,

the experiments should be repeated with other computer architectures and

with more variety of benchmarks.

This thesis can provide a clear overview power capping techniques and

give advices of how to apply different power capping techniques properly

according to different purposes. And by applying power capping techniques

properly, IT industry will be greener in future.

In future, more experiment and analysis should be done with different

computing architectures and applications to give a more systematic view of

power capping techniques.
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