
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Biomedica

Towards a Triplet Extraction Tool for

Next Generation Biomedical Ontologies

Relatore: Prof. Stefano BONACINA

Tesi di Laurea di:

Andrea CONDORELLI Matr. 786630

Anno Accademico 2012 - 2013

Table of contents

Table of contents .. I

Figure List .. III

Table List .. VI

Sommario ... VII
Introduzione, Background e Scopi ...VII
Metodi .. IX
Risultati .. XIII
Discussione ... XIV
Conclusioni.. XV

Abstract .. XXI
Introduction, Background and objectives ... XXI
Methods ... XXIII
Results .. XXVII
Discussion .. XXVIII
Conclusions ... XXIX

1. Introduction .. 1

2. Background ... 4
2.1 Ontology subject matter ... 4

2.1.1 Introduction to ontologies ..4
2.1.2 Some examples of biomedical ontologies ..7
2.1.3 Description Logic, First Order Logic and Web Ontology Language9
2.1.4 Ontologies and Semantics .. 12
2.1.5 Ontology development .. 15
2.1.6 Ontology mapping task ... 16

2.2 Element of Natural Language Processing ... 24

3. Methods ... 25
3.1 An approach to Triplet Extraction .. 25

3.1.1 Elements of English Linguistic ... 26
3.1.2 Exploiting Natural Language: how our approach processes a text to extract an
Enriched Phrase .. 30
3.1.3 Algorithm overview ... 33
3.1.4 Grammatical patterns to create Enriched Phrases... 36

3.2 Deterministic Triplet Extraction Approach Design and Development 41
3.2.1 Deterministic Triplet Extraction Approach Design and Development 41

3.3 The design of a Graphical User Interface for the Triplet Extraction Tool 43
3.4 The implementation of the system ... 44

3.4.1 The Java programming language .. 44
3.4.2 Application Program Interfaces used ... 44

3.5 Designing Tests for a Triplet Extraction Tool ... 44

4. Results ... 48
4.1 Deterministic Triplet Extraction Approach implementation 48

II

4.1.1 Algorithm implementation: classes and methods ... 48
4.1.2 Workflow of Deterministic Triplet Extraction Tool .. 55
4.1.3 Performances .. 58

4.2 Graphical User Interface implementation .. 59

5. Discussion ... 72

6. Conclusions .. 79

Appendix A .. 80

Appendix B .. 88

7. References ..113

Acknowledgement ...120

III

Figure List

Fig. 1. Unified Medical Language System semantic network [47]. Every line means an

"is_a" relation from the bottom of the Figure to the top (e.g. "Pathologic

Function" is a "Biologic Function"). .. 3

Fig. 2. Ontology extracted from the text: ”The kidneys are essential in the urinary

system and also serve homeostatic functions such as the regulation of electrolytes,

maintenance of acid–base balance, and regulation of blood pressure. They serve

the body as a natural filter of the blood, and remove wastes, which are diverted to

the urinary bladder.”. Rectangles represent concepts while arrows represent

relation among them. .. 4

Fig. 3. The decidability problem for a Formal System. ... 7

Fig. 4. Triplet and clause structure. ... 25

Fig. 5. Triplets extracted from the sentence: “Cancer can be managed with removal of

the kidney, or nephrectomy.”. ... 26

Fig. 6. Structures of English Linguistic: every element is composed by a combination

of smaller one (e.g. a clause is composed by a combination of phrases and word).

 .. 24

Fig. 7. Verb types and their minimal structure. .. 27

Fig. 8. a) Tokenizer and b)Part Of Speech tagger with their inputs and output. 30

Fig. 9. Input and outputs of a Chunker, a tool to extract phrases from a text. It

requires the text itself, the list of words (output of fig. 7 a) and the list of Part Of

Speech tags (output of fig. 7 b). .. 31

Fig. 10. Input and outputs of a Parser, a tool to extract Parser-tree from a text. It

requires the text, the list of words (output of fig. 7 a), the list of Part Of Speech

tags (output of fig. 7 b), and the list of phrases (output of fig. 8). 32

Fig. 11. Example of a Parser-tree structure for the sentence “The doctor visited the

patient”. ... 30

Fig. 12. Input and output of an Enriched Chunker. It requires the text, the list of

words (output of fig. 7 a), the list of Part Of Speech tags (output of fig. 7 b), and

the list of phrases (output of fig. 8). ... 33

Fig. 13. Steps to create Enriched Phrases ... 33

IV

Fig. 14. Deterministic Triplet Extraction Tool Class Diagram. ... 51

Fig. 15. Sequence diagram method calls inside LogAnaliz, Enriched Phrase and triplet

classes. ... 56

Fig. 16. Activity diagram of the system. .. 57

Fig. 17. Sequence diagram from the user point of view. “User” label means the user is

using the application software, “GUI” is the Graphical User Interface class and

LogAnaliz is the class which processes the text. ... 60

Fig. 18. The workflow to extract triplets from a text using the Graphical User

Interface. ... 62

Fig. 19. The Graphical User interface allows the user to write the text after he/she

has selected the “Insert text” option in “File” menu. ... 63

Fig. 20. The user has insert the text "The kidneys are essential in the urinary system

and also serve homeostatic functions such as the regulation of electrolytes,

maintenance of acid–base balance, and regulation of blood pressure (via

maintaining salt and water balance). They serve the body as a natural filter of the

blood, and remove wastes, which are diverted to the urinary bladder." in our

simulation. .. 63

Fig. 21. The Graphical User Interface sends a message box to confirm the user he/she

has successfully inserted the text. .. 63

Fig. 22. The user can not select “Triplet extraction from text” option until he/she has

inserted a text. .. 64

Fig. 23. The system shows a message box to confirm the occurred extraction. 64

Fig. 24. The system does not allow the user to visualize an ontology until any triplet

has been extracted. ... 64

Fig. 25. Output when the “View extracted triplets as text” option is selected (fig. 23).

 .. 65

Fig. 26. Graph output from the text "The kidneys are essential in the urinary system

and also serve homeostatic functions such as the regulation of electrolytes,

maintenance of acid–base balance, and regulation of blood pressure (via

maintaining salt and water balance). They serve the body as a natural filter of the

blood, and remove wastes, which are diverted to the urinary bladder.". 66

V

Fig. 27. How the GUI allows the user to select the concept for the “View extracted

triplets about a concept as a Graph” option from “View” menu. 67

Fig. 28. The system immediately informs the user if the inserted concept name (fig.

26) leads to an empty graph. .. 67

Fig. 29. How the GUI allows the user to select the concept for the “View extracted

triplets about a concept as a Graph” option from “View” menu. 67

Fig. 30. Graph linked to the concept “waste” (Figure 27) generated from the text "The

kidneys are essential in the urinary system and also serve homeostatic functions

such as the regulation of electrolytes, maintenance of acid–base balance, and

regulation of blood pressure (via maintaining salt and water balance). They serve

the body as a natural filter of the blood, and remove wastes, which are diverted to

the urinary bladder.. 68

 Fig. 31. First five triplets (Figure 29) extracted from the text "The kidneys are

essential in the urinary system and also serve homeostatic functions such as the

regulation of electrolytes, maintenance of acid–base balance, and regulation of

blood pressure (via maintaining salt and water balance). They serve the body as a

natural filter of the blood, and remove wastes, which are diverted to the urinary

bladder.". ... 69

Fig. 32. The "save" phase opens a dialog box .. 70

Fig. 33. Software screenshot, exiting the software. .. 70

Fig. 34. The user can select "Clear" option from "File" menu to reset the software

application. .. 70

Fig. 35. Saved ontology in “RDF/XML” format. .. 71

Fig. 36. Saved ontology in Turtle format (.ttl). ... 71

Fig. 37. Output for the input text: "“The kidneys are essential in the urinary system and

also serve homeostatic functions such as the regulation of electrolytes,

maintenance of acid–base balance, and regulation of blood pressure (via

maintaining salt and water balance). They serve the body as a natural filter of the

blood, and remove wastes, which are diverted to the urinary bladder.”" 85

VI

Table List

Table 1. Ontology Web Language version, their decidability and based-on logic. 12

Table 2. Existing mapping algorithms and their performances. .. 19

Table 3. Envisaged output for Deterministic Triplet Extraction Tool implementation.

 .. 41

Table 4. Texts for testing DeTET performances. .. 46

Table 5. The list of methods for every developed class, with a short description of its

utility. For every method are specifed both the types of the inputs and the type of

the output. ArrayList<type> means an ArrayList of “type”-elements (e.g.

ArrayList<String> means an ArrayList of Strings). .. 53

Table 6. Performance of Deterministic Triplet Extraction Tool with texts from Table 4.

 .. 58

Table 7. Summary of Deterministic Triplet Extraction Tool performances. 59

Table 8. Results for tool speed tests. ... 59

Table 9. Review of papers on ontologies subject matters. .. 89

 VII

Sommario

Introduzione, Background e Scopi

Lo scopo del lavoro è stato quello di sviluppare un applicativo software per creare

automaticamente ontologie in ambito biomedico a partire da un testo - di ambito

biomedico - in linguaggio naturale. Le ontologie in ambito biomedico sono fondamentali

per favorire la condivisione delle conoscenza tra gruppi di ricerca differenti.

In ambito informatico, un’ontologia è una rappresentazione formale di conoscenza

attraverso un elenco di “statement” o triplette [18]: ogni tripletta è formata da due concetti,

detti Domino e Range, e dalla Relazione che li lega (e.g. “Il Rene”, Dominio, “è un”,

Relazione, “Organo”, Range). L’insieme delle triplette di un’ontologia costituisce

l’universo dell’ontologia, che deve essere coerente con se stesso (pena la creazione di

ontologie inconsistenti), ma potrebbe contenere informazioni non condivisibili da un

osservatore esterno [18]. Bisogna sottolineare questo aspetto, che è abbastanza contro

intuitivo: ogni tripletta è considerata vera in quanto tale, anche se le informazioni che

contiene non sono corrette (non è “compito” dell’ontologia verificare se le triplette inserite

sono corrette o meno, ma dello sviluppatore dell’ontologia) [18]. Ad esempio in

un’ontologia potrebbe essere presente lo statement “Il cuore” “è formato da” “quattro

ventricoli”: nell’universo di questa ontologia, questo statement è “grammaticalmente”

corretto, palesemente contro la realtà; qualora fosse presente però un secondo statement

che afferma che “Il cuore” “è formato da” “due ventricoli”, dovendo essere entrambi veri,

avremmo un’ontologia inconsistente. Abbiamo precedentemente usato la parola “formale”,

relativamente alla definizione di ontologia, proprio perché ogni ontologia è basata su una

logica formale [15]. Una delle caratteristiche principali delle ontologie, infatti, è quella di

permettere azioni di “reasoning” (ragionamento): ogni ontologia è in grado (quasi) sempre

di indicare se a partire dall’universo dell’ontologia sia possibile implicare una determinata

conclusione [15]. Il “quasi” tra parentesi è legato alla specifica logica usata in

un’ontologia: esistono infatti logiche “decidable”, ossia che sono sempre in grado di dire

se una conclusione sia implicabile o meno a partire da una serie di statement in un numero

finito di operazioni, o “semi-decidable”, ossia in grado di implicare sempre una

conclusione solamente quando implicabile in un numero finito di operazioni [14]. Logiche

 VIII

che non sono “decidable” non assicurano la convergenza della risposta in un numero finito

di iterazioni: viene di solito usata come logica la Logica Descrittiva in quanto essa è

“decidable”. Questo problema è noto come “decidability problem” [14]. Le ontologie

possono essere usate in molteplici modi: uno di questi è aggiungere le capacità espressive e

computazionali di una logica formale a una base strutturata di informazioni [16]. In questo

modo, l’ontologia è in grado di “creare conoscenza”, nel senso che è in grado di creare

nuove triplette che nessuno ha esplicitamente aggiunto nel suo “universo” (e.g. a partire

dagli statement “Il cuore” “fa parte” “del corpo” e “I ventricoli” “fanno parte” “del

cuore”, qualora “fare parte” sia una relazione “transitiva”, l’ontologia è in grado di

affermare che “I ventricoli” “fanno parte” “del corpo”) [31]. Un altro modo molto comune

di utilizzare le ontologie è quello di usarle come classificazione di domini: ad esempio, al

posto di usare un’etichetta arbitraria per indicare una specifica malattia, un medico può

considerare l’uso del “International Classification of Diseases” (ICD9) [22]. Inoltre, è

possibile associare i concetti ai relativi sintagmi (i.e. un sintagma è un gruppo di parole

riferito a un solo concetto principale) [14]: per permettere la cosiddetta “ricerca

semantica”. Un’ultima possibilità offerta dalle ontologie è la rappresentazione grafica

del loro universo: ogni ontologia può essere considerata un grafo e per questo, i suoi

concetti possono essere rappresentati come nodi collegati da frecce che rappresentano le

relazioni tra di essi.

Fino ad oggi, la quasi totalità dei motori di ricerca su internet esegue “ricerche a

identità”: digitando il termine da cercare, il motore non fa altro che estrapolare tutti i

risultati che contengono esattamente quella stringa (con approcci più o meno raffinati). Per

cui, se volessi cercare tutte le informazioni relative a una malattia, dovrei semplicemente

inserire il nome della stessa in un motore di ricerca. In questo modo, però, avrei la certezza

di non trovare tutte le informazioni disponibili: altri ricercatori potrebbero riferirsi alla

stessa malattia con diciture (stringhe) diverse. Anche usando la lista dei possibili sinonimi

perderei molti articoli: un qualsiasi scrittore può riferirsi a un concetto senza citarlo

esplicitamente. Se però fossi in grado di cercare tutti gli articoli relativi al “concetto” in

una base di dati “annotata” (i.e. una base di dati in cui a ogni testo sono associati i vari

concetti), questa ricerca andrebbe a buon fine: esistono vari annotatori biomedici che

eseguono il compito molto bene [1]. E’ proprio per questo motivo che in campo biomedico

sta aumentando la popolarità delle ontologie (e.g. la “Gene Ontology” [20] è un’ontologia

 IX

comunemente usata dai genetisti per trovare tutte le informazione a disposizione relative a

uno specifico gene). Per lo stesso motivo, possiamo affermare che le ontologie facilitino la

“interoperabilità” tra basi di conoscenza eterogenee: non importa quale etichetta venga

usata da due centri di studio per riferirsi alla stessa patologia finché la stessa etichetta è

associata allo stesso concetto, che è intrinsecamente univoco. Qualora questi due centri

usassero due ontologie diversi non sarebbe comunque un problema [81]: è infatti possibile

“mappare” ontologie diverse (i.e. con “mappare” ci si riferisce all’operazione di

riconoscimento di concetti equivalenti in ontologie diverse) [12]; l’operazione di

“mapping” viene eseguita da una serie di strumenti semi-automatici: per quanto

attualmente questi strumenti mostrino evidenti limiti (molto spesso sono più semi-manuali

che semi-automatici), le relazioni di equivalenza tra ontologie diverse sono spesso

disponibili sul web (e.g. lo Unified Medical Language System UMLS [7] contiene un

metatesauro basato su più di 160 dizionari e sorgenti già mappate tra di loro).

Un punto di debolezza delle ontologie è costituito dalla loro creazione. La

creazione di ontologie è un lavoro lungo e complesso, che richiede sia conoscenze relative

al dominio da modellare che abilità informatiche e conoscenza della Logica Descrittiva

[35]. Inoltre, non esiste nessun approccio universale alla costruzione di ontologie: esso

viene ancora eseguito manualmente in base alle abilità dei singoli sviluppatori [82]. Non

esistono ancora strumenti di supporto consolidati e standard per il design di un’ontologia,

come potrebbe essere il diagramma entità-relazione usato nel mondo delle basi di dati.

Il nostro scopo è stato quello di progettare e implementare uno strumento che,

sfruttando l’elaborazione del linguaggio naturale, fosse in grado di estrarre

automaticamente triplette da testi in lingua inglese.

Metodi

Per progettare il sistema abbiamo approfondito lo studio della linguistica Inglese per

comprendere in che modo venissero formate frasi grammaticalmente corrette e per

comprendere quali tipologie di informazioni fosse possibile ottenere studiando la struttura

della frase [54]. Abbiamo quindi approfondito le tematiche legate allo studio del “Natural

Language Processing” (elaborazione del linguaggio naturale, NLP) [53]: abbiamo cercato

di capire quali strumenti avessimo a disposizione per poter estrapolare tutta l’informazione

presente in una frase scritta in lingua inglese. Abbiamo inoltre approfondito le tematiche

 X

legate alle ontologie per comprendere come strutturare correttamente l’informazione

estratta [27].

Il sistema è stato progettato e realizzato secondo il modello a cascata, ma con

ritorni, tipico dell’Ingegneria del Software [61]. Il nostro strumento è stato sviluppato con

il linguaggio di programmazione Java e usando alcune “Application Program Interface”

(API) disponibili: per implementare alcuni strumenti per l’elaborazione del linguaggio

naturale è stato usato OpenNLP [64], per disegnare i grafi Jung2 [65], per salvare le

ontologie in file di formato corretto è stato usato Jena [66], per implementare l’interfaccia

grafica Jswing.

Oltre a fornire lo strumento per l’estrazione di tripletta a partire da un testo

biomedico, abbiamo anche progettato un’Interfaccia Grafica che supporti l’utente

durante le operazioni di inserimento del testo, di estrazione di triplette, di visualizzazione

del contenuto e di salvataggio del contenuto su file. Lo strumento è stato pensato per due

diversi tipi di utenti: il primo è lo specialista che ha bisogno di costruire ontologie per

rappresentare la conoscenza degli ambiti di suo interesse. Il secondo è l’utente non medico

che vuole sfruttare lo strumento per visualizzare le informazioni relative a un argomento

biomedico attraverso il grafo dell’ontologia estratta dal testo. Per questo motivo, abbiamo

disegnato dei test per valutare le performance in differenti situazioni. Per valutare il

funzionamento da utente specialista, abbiamo testato il nostro applicativo software con 10

abstract presi da PubMed [32]. Per valutare il funzionamento da utente comune, abbiamo

scelto 9 porzioni di testo scaricato da Wikipedia [67] relativo a argomenti biomedicali (e.g.

“The kidneys”). L’elenco dei testi è visibile in Tabella 1. Abbiamo deciso di calcolare la

precisione del nostro strumento, definita come il rapporto tra le triplette corrette rispetto al

numero totale di triplette estratte.

Abbiamo chiamato questo strumento “Deterministic Triplet Extraction Tool”

(DeTET). La parola “Deterministic” indica che l’approccio è “rule-based” (i.e. creare una

serie di regole da seguire). E’ stata scelta la lingua inglese per una ragione specifica:

l’inglese è una lingua con una struttura della frase estremamente rigida e caratterizzata da

relativamente poche eccezioni [54]. L’unità linguistica di base è la parola: gruppi di parole

creano sintagmi (“phrase” in inglese), gruppi di sintagmi creano una struttura che non ha

un corrispettivo in italiano detta “clause”. Gruppi di “clause” creano frasi, gruppi di frasi

creano testi (o più in generale “discourse”) [54].

Tabella 1. Elenco dei testi da usare per valutare le performance del sistema.

Core concept Title Reference
Number of

sentences

1 Trauma Introduction

http://en.wikipedi

a.org/wiki/Traum

a_(medicine)

30

2 Radiography Introduction

http://en.wikipedi

a.org/wiki/Radio

graphy

11

3 Pneumonia Signs and Symptoms

http://en.wikipedi

a.org/wiki/Pneu

monia

12

4 The human body Introduction

http://en.wikipedi

a.org/wiki/Huma

n_anatomy

10

5 Thrombotic Event
Risk of a Thrombotic Event after the 6-

Week Postpartum Period

The New

England Journal

Of Medicine [68]

8

6 Test NP Lists

4

7 The kidneys Introduction

http://en.wikipedi

a.org/wiki/Kidne

y

17

8 Pneumonia Introduction

http://en.wikipedi

a.org/wiki/Pneu

monia

11

9
Deep Brain

Stimulation
Introduction

http://en.wikipedi

a.org/wiki/Deep_

Brain_Stimulatio

n

23

10 Kidney abstract

Determination of relative Notch1 and

gamma-secretase-related gene expression

in puromycin-treated microdissected rat

kidneys.

PubMed [69] 9

11 Kidney abstract

Chronic Kidney Disease and the Risks of

Death, Cardiovascular Events, and

Hospitalization

PubMed [70] 9

12 Kidney abstract
Association of chronic kidney graft

failure with recipient blood pressure.
PubMed [71] 12

13 Kidney abstract PKD1 gene and its protein PubMed [72] 7

14 Kidney abstract
Acute Kidney Injury, Mortality, Length of

Stay, and Costs in Hospitalized Patients
PubMed [73] 8

15
Deep Brain

Stimulation
Deep Brain Stimulation PubMed [74] 8

16
Deep Brain

Stimulation
Deep brain stimulation PubMed [75] 12

17
Deep Brain

Stimulation

Deep brain stimulation for intractable

chronic cluster headache: proposals for

patient selection.

PubMed [76] 6

18
Deep Brain

Stimulation

Deep brain stimulation and cluster

headache
PubMed [77] 8

19 Deep Brain

Stimulation

Asymmetric pallidal neuronal activity in

patients with cervical dystonia.
PubMed [78] 14

http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation

 XII

L’aspetto più interessante è che le “clause” hanno una struttura simile alle triplette,

detta struttura Soggetto-Verbo-Oggetto (SVO) [57]. La struttura SVO può variare o

arricchirsi in base al tipo di verbo (e.g. i verbi “ditransitive” come “to give” hanno bisogno

di due oggetti per formare “clause” grammaticamente); esistono solamente sei tipi diversi

di verbo [57]: è quindi possibile creare regole specifiche per affrontare ogni situazione.

Poiché la “clause” è composta da sintagmi e non esistendo ancora “analizzatori” di

“clause” implementati, il nostro lavoro è incentrato sul sintagma inglese: un sintagma è un

gruppo di parole costituito da una “head word” e da una serie di “pre-modification” e

“post-modification”. Mentre la “head word” è obbligatoria, le “modification” possono

essere arbitrariamente tolte o aggiunte senza che la frase diventi grammaticamente non

corretta (e.g. “The injured chest” è un sintagma, la cui parola principale è “chest”:

togliendo “injured” il sintagma mantiene comunque una sua completezza, togliendo

“chest” no); esistono cinque tipi di sintagmi che prendono il nome dal tipo (in inglese “Part

Of Speech tag”) della head word: “Noun Phrase”, “Verb Phrase”, “Prepositional Phrase”,

“Conjunction Phrase”, “Adverbial Phrase” e “Adjective Phrase” [56]. Esistono vari

strument per raggruppare le parole di un testo in sintagmi: essi sono chiamati “chunker”

[80]. Poichè una “clause” è composto da sintagmi, dovremo sviluppare uno strumento che

associ uno o più sintagmi al ruolo di soggetto di una “clause”, uno o più sintagmi al ruolo

di verbo e uno o più sintagmi al ruolo di oggetto. Facendo questo, lo strumento ha di fatto

estratto la tripletta relativa a quella “clause”. Usando un chunker però ci troviamo ad

affrontare un problema: alcuni elementi della frase vengono ignorati dal chunker, come le

virgole e le congiunzioni.

Il nostro applicativo software non considera solo i sintagmi, ma considera anche

virgole e congiunzioni, elementi che facilitano l’estrazione di statement dal testo perché

aiutano il sistema a ricostruire la struttura della frase. Abbiamo deciso di chiamare questa

struttura “Sintagma Arricchito” e lo strumento che serve per estrarlo “Enriched Chunker”.

Il sistema considera quindi come “sintagmi” anche le virgole (creando dei “Sintagmi

Arricchiti” di tipo “,-type”) e le congiunzioni (creando dei “Sintagmi Arricchiti” di tipo

“AndOr-type”).

 XIII

Risultati

I risultati del presente lavoro sono sia implementativi che di prove di collaudi di quanto

realizzato.

In Figura 1 viene mostrato l’intero processo da seguire per estrarre triplette a partire

da un testo medico inserito. In Figura 2 è rappresentato il diagramma delle classi relativo al

software implementato. La classe “Phrase” è la classe che corrisponde ai Sintagmi

Arricchiti presentati prima. La classe “Triplet” è una classe usata per contenere le triplette

estratte: un’ontologia nel nostro sistema è una ArrayList di “Triplet”. La classe “GUI” è

quella che permette, tramite interfaccia grafica, l’interazione utente sistema. La classe

LogAnaliz è la classe che esegue tutto il lavoro: essa infatti crea e popola le varie strutture

(ArrayList<Triplet> e ArrayList<Phrase>), viene chiamata dalla classe GUI per elaborare

il testo, permette il salvataggio e il caricamento di ontologie. In Figura 3 viene mostrato il

diagramma delle sequenze dal punto di vista dell’utente che sta utilizzando l’applicativo

software. Nella Figura 3 sono indicati tutti i passi per l’estrazione di triplette a partire da un

qualsiasi testo. In Figura 4 è mostrato il grafo estratto dal testo “The kidneys are essential

in the urinary system and also serve homeostatic functions such as the regulation of

electrolytes, maintenance of acid–base balance, and regulation of blood pressure (via

maintaining salt and water balance). They serve the body as a natural filter of the

blood, and remove wastes, which are diverted to the urinary bladder.”. In Figura 5 sono

mostrate le triplette estratte dallo stesso testo della Figura 4.

Le performance sono state valutate sia su testi medici generici (i.e. presi da Wikipedia

[19]) che su testi medici specialistici (i.e. presi da PubMed [18]). In Tabella 2 sono

mostrati alcuni risultati sintetici. Nella Tabella 3 sono riportati i risultati relativi al tempo

di calcolo.

Il sistema implementato permette l’estrazione automatica di un’ontologia a partire da un

testo (Figura 4).

 XIV

Tabella 2. Performance dell'applicativo software sviluppato.

Metric Value

Mean extracted triplets for sentence 2,237

Mean precision 0,885

Total extracted triplets 478,000

Total input sentences 219,000

Total correct triplets 428,000

Total mean (Total correct triplets / Total extracted triplets) 0,895

Total computation time 56,631 s

Tabella 3. Tempi di calcolo dell'applicativo software sviluppato.

Sentences # Triplets extracted Time elapsed (s)

161 308 3,425

401 770 4,718

710 1.340 5,717

4686 8.844 23,957

9372 17.688 44,619

Discussione

Seguendo le fasi di sviluppo di un sistema software [61], il nostro sistema è stato

progettato e sviluppato.

I test condotti hanno dimostrato che lo strumento ottiene buoni risultati sia con

testi specialistici medici (i.e. scaricati da PubMed) che con testi non specialistici medici

(i.e. scaricati da Wikipedia). Il tempo di calcolo richiesto è incoraggiante: un lavoro simile

[80] ha richiesto circa 30 secondi per estrarre 160 triplette da 100 frasi (non è stato

possibile elaborare le stesse frasi, in quanto non fornite dagli autori). Il sistema permette

all’utente di memorizzare le ontologie create su file con due formati standard “RDF/XML”

[1] o “Turtle”[1]. Le performance del sistema però sono fortemente influenzate dalla

qualità del testo fornito dall’utente: se esso contiene errori grammaticali o concettuali, il

sistema commetterà degli errori inevitabili e non correggibili. Oltretutto alcuni strumenti

che il “Deterministic Triplet Extraction Tool” (DeTET) utilizza, come il “chunker”,

commettono a volte errori che portano a commetterne altri in cascata. La gestione delle

frasi complesse rimane un punto debole dell’applicativo software: frasi con particolari

strutture potrebbero portare ad errori di estrazione. Un’altra situazione che causa problemi

è l’utilizzo di formulazioni grammaticalmente corrette ma non frequenti: ad esempio il

 XV

pronome “which” solitamente si riferisce alla “Noun Phrase” più vicina ma non c’è

nessuna regola grammaticale che renda questo uso obbligatorio.

Il sistema è stato pensato e progettato per essere rivolto a varie tipologie di utenti.

Tuttavia una fase di valutazione della usabilità non è ancora stata svolta.

Conclusioni

In questo lavoro di laurea abbiamo modellato, progettato e implementato uno strumento

per estrarre automaticamente triplette da testo fruttando l’elaborazione del linguaggio

naturale: lo abbiamo chiamato Deterministic Triplet Extraction Tool (DeTET). E’ stato

creato un contenitore per organizzare le informazioni grammaticali estraibili da una frase

inglese: lo abbiamo chiamato Sintagma Arricchito. A partire da questo, è stato sviluppato

un applicato software e un’interfaccia grafica per permettere il suo utilizzo. In questo

modo, abbiamo contribuito alla soluzione del problema della generazione di ontologie

biomediche in modo automatico.

Nonostante i risultati ottenuti siano incoraggianti, rimangono problematiche aperte di

miglioramento delle performance e di usabilità del sistema. Tali problematiche potranno

essere affrontate in futuri sviluppi della ricerca.

 XVI

Figura 1. Interfaccia Grafica implementata: passi per estrarre triplette a partire da un testo.

 XVII

Figura 2. Diagramma delle classi del programma software implementato. Mostra come è fatto il sistema.

 XVIII

Figura 3. Diagramma delle sequenze dell'applicativo software sviluppato. Mostra come funzioni il software.

 XIX

Figura 4. Come il sistema mostra il grafo estratto dal testo "The kidneys are essential in the urinary system and also serve

homeostatic functions such as the regulation of electrolytes, maintenance of acid–base balance, and regulation of blood pressure (via

maintaining salt and water balance). They serve the body as a natural filter of the blood, and remove wastes, which are diverted to the

urinary bladder.".

 XX

Figura 5. Come il sistema mostra le triplette estratte a partire dal testo "The kidneys are essential in the

urinary system and also serve homeostatic functions such as the regulation of electrolytes, maintenance of

acid–base balance, and regulation of blood pressure (via maintaining salt and water balance). They serve the

body as a natural filter of the blood, and remove wastes, which are diverted to the urinary bladder.". Il

simbolo “==>” serve per dividere il Dominio dalla Relazione e la Relazione dal Range (e.g. nella tripletta

“The Kidney ==> are essential in ==> the urinary system”, “The Kidney” è il Dominio, “are essential in” è

la Relazione e “the urinary system” è il Range).

 XXI

Abstract

Introduction, Background and objectives

The object of this work is the design, the model and the implementation of a software system

for creating biomedical ontologies automatically starting from texts in Natural Language.

Furthermore, we designed and developed a Graphical User Interface to facilitate the use of the

system. Ontologies in biomedical domains are used for organizing biological concepts and

representing relationships among them [3].

In Computer Science, an ontology is a formal representation of knowledge as a set of

concepts connected by relations and properties to denote things [2]. When a property links two

different concepts, we call this link “Relation”. Two concepts linked together by a relation form a

triplets (a.k.a. statement): first concept is called Domain and last concept is called Range (we will

use “Domain + Relation + Range” layout to write statements). When the knowledge of a domain is

represented with this declarative formalism, the set of objects that can be represented is called the

universe [15]: the ontology does not consider concepts outside its universe, and every statement

belonging to the universe is to considered true by the ontology. The point is an ontology could

contain wrong pieces of information from an external point of view (e.g. the statement “Men + are

not + mortal” is wrong), but it would consider them true a priori: its task is to decide if a conclusion

is impliable from previously stored statements or not; its task is not to decide if a stored statement is

true or not. The only check ontology does on stored statements is the consistency check (i.e. it

checks if there are not contradictory statements). We have used the word “formal” to describe what

is an ontology because every ontology is based on some kind of formal logic like the First Order

Logic (FOL) [23] or some sub-Logic derived from it (e.g. Description Logic DL) [23]. Every logic

has a “resoner” tool: a “reasoner” is used to establish if a specific conclusion is impliable from the

knowledge stored in the ontology. Thus, the question our logic system would like to answer is

“Does some selected axioms imply a specific theorem?”: this kind of question is linked to the

“Decidability problem” [25]. An axiom is a valid statement (i.e. it is considered true). The system

could replies in three different ways: “Yes” , “No” , or just not terminate (it means the system does

not know the answer). The point we do not know is how many loops the system needs to give an

output: until we do not see the output, we can not establish if the process will terminate or not. If

the system always replies to every answer within a finite number of loop, it is called “decidable”. If

the system always replies within a finite number of loop to every answer when the answer is “Yes”,

 XXII

it is called “semi-decidable”. Otherwise is called “undecidable”. Ontologies use the Description

Logic because it is a decidable logic.

Biomedical ontologies can be used to serve integration of clinical data [11]: biomedical

researchers have a growing need to integrate data deriving from different disciplines at different

granularity levels [11]. This implies that medical terminology becomes affected by an increasing

concern with matters of consistency (i.e. no contradictions) [11]. By providing a common structure

and terminology, the use of biomedical ontology aims at providing a single data source for review:

“furthermore, the use of such a common vocabulary promises benefits of less redundant data and

easier opportunities for longitudinal studies and meta-analyses and for ensuring consistency of

data across the lifetime of the patient and from one healthcare institution to the next.” [11]. The use

of biomedical ontologies promises significant rewards, for example for clinical decision support,

because they improve the information retrieval process [11]. Furthermore, biomedical ontologies

allow the user to semantic search [29] and process [31] biomedical contents based on the meaning

that this contents have to humans. Semantic search is defined as a information retrieval process

that exploits somehow domain knowledge [29]. Domain knowledge can be formalized through an

ontology; thus, if we store the knowledge through an ontology, lot of problems of traditional search

scenario, such as synonymy (i.e. same concept can be expressed with several words) and word

acceptance (i.e. same word can have several meanings), do not exist: in a single ontology, every

concept must be unique and have only one “mean” (the concept itself is its meaning). One example

of knowledge processing is the work of Rubin et al. to demonstrate the capabilities of logical

deduction in a clinical scenario [31]: they created a system to infer about the consequences of

penetrating injuries. They created a knowledge model of the chest, and the heart anatomy and

physiology. Then they used a domain-independent classifier to infer ischemic regions of the heart as

well as anatomic spaces containing ectopic blood after a penetrating injury. Given a set of anatomic

structures that are directly injured by a projectile, they wanted to create a reasoning application that

deduces secondary injuries (regions of myocardium that will be ischemic if a coronary artery is

injured, and propagation of injury as bleeding occurs into damaged anatomic compartments that

surround the heart). They applied this reasoning service to try to infer the effects of some injuries

and the results were confirmed by a physician: “Our results suggest that inferring the consequences

of penetrating injury can be formalized as a classification task. There are benefits in using OWL as

a representation language.” [31]. Ontologies offer to enhance extracting information service: if a

user want to extract some tags from a text, he/she must read and find out best concepts to describe

what he/she just reads [16]. This is avoidable thanks to an “annotator”: it is a tool which can

 XXIII

automatically assigns concept from an external ontology to a text the open biomedical annotator

[1]).

 Several different approaches to ontologies development have been carried out [35]. All

these approaches follow three steps:

1. Searching for a exhaustive set of terms

2. Organizing the terms into a taxonomy of classes

3. Choose which of the taxonomy display in the ontology

Ontology creators usually use two possible approaches based upon the direction of ontology

construction; in bottom-up approach they start with some descriptions of the domain and obtain a

classification [35], while in top-down one, they start with an a priori abstract view of the domain

itself [35]. The real problem is every ontology is an handmade product, created from a team of

experts (domain experts and IT experts): “Although ontologies have been proposed as an important

and natural means of representing real world knowledge for the development of database designs,

most ontology creation is not carried out systematically.” [36]. In addition, nevertheless the large

number of existing ontologies, there is no state-of-art methodology for building them. We can make

a comparison with database development field, where the conceptual modeling of every database

follows standardized steps, such as the creation of an Entity-Relationship (E–R) model. Once every

step has been followed, the creation of a database is almost automatic. In the ontologies subject

matter does not exist any similar tool to E-R model or a standardized workflow: thus any team of

experts will use their own approach. However, some best-practice tutorials exist ([37] or [38]).

 The aim of this work has been to design and develop a tool to exploit natural language texts

to automatically extract triplets.

Methods

To develop our system, we have analyzed English Linguistic to increase our understanding on how

sentences are built and to understand which pieces of information can be mined exploiting linguistic

knowledge. Furthermore, we have deepened the Natural Language Processing to establish what

tools are the best fit for our system. In the end, we have studied the ontologies subject matter to

understand how to store extracted pieces of information.

Our system has been developed using the Software Engineering waterfall model with returns

[61]. Our system has been developed using Java programming language and uses some available

Application Program Interface (API): OpenNLP [64] has been used to implement Natural Language

Processing tools, Jung2 has been used to draw graphs, Jena [66] has been used to save ontologies on

external files and to load these. The Graphical User Interface has been developed using Jswing.

 XXIV

 We envisage our system will be used by two different kind of users: biomedical researchers

and consumers, as a graph representation (with not more than 15-20 nodes) is clearer and better

understandable than a similar length text. Researchers could also use our system to create an

ontology because creating an ontology by hand is pretty hard. It could provide a easy way to create

ontologies from a selected text: the user is “responsible” for the correctness of the text, because our

system itself cannot be aware of incorrect knowledge inside an input text (as a first

implementation).

To text the performance of the system, we have selected some texts from two main sources:

Wikipedia texts [67] and PubMed/Medline [32] abstracts.

First source is compatible with a non technical user who would like to increase the knowledge

about a medical topic. Thus, his/her source will not be a technical one: probably, he/she will use

Wikipedia [67]. We have selected the introduction of six common and less common topics:

Trauma, Radiography, Pneumonia, The human body, The kidneys and Deep Brain Stimulation. We

have added also the “Signs and Symptoms” paragraph of Pneumonia topics, also found on

Wikipedia. Every text has been download at 02-19-2014. Second source is composed by abstracts

of some papers: this source try to simulate the general practitioner who would like to increase

his/her knowledge about a specialist topic to improve his/her care quality. Ten abstracts has been

downloaded from PubMed/Medline [32] and one from New England Journal of Medicine.

PubMed’s ones are splitted this way: five of them are related to “Kidney” while other five are

related to “Deep Brain Stimulation”. We have chosen the “Deep Brain Stimulation” topic because it

is a specialist topic which could be looked for by non specialist clinician. The NEJM’s one is

related to Thrombotic Event (see the appendix A for more accurate references). A last text has been

created to test Noun Phrase lists: it contains some artificially created sentences to evaluate the

performances with lists. In Table_a 1 there is the resume of test texts: the test corpus contains 219

sentences.

Our approach is based on the fact that English Linguistic follows precise rules: a clause

minimal structure is de facto fixed. For this reason we called our tool “Deterministic”: it follows a

rule-based approach. Thus, the system will extract the clause structures and then it will convert

them in ontology statements. We based our approach on some free available Natural Language

Processing (NLP) tools. We chose English language because the English linguistic is very rigid and

because the sentence has a Subject Verb Object (SVO) structure: the SVO structure is quite similar

to an ontology triplet. In English, the word is the smallest unit; words are grouped in phrases;

phrases are grouped in clauses which are grouped in sentences; a group of sentences composes the

discourse. Phrases and clauses are related with our work. A phrase is a sequence of at least one

 XXV

word. Every phrase has only one main word, called head word: it is a lexical item which is central

to the phrase in the sense that some crucial information would be missing without it. The Part-Of-

Speech tag of the head word implies the phrase type, but not every word class can originate a

phrase: only five different kinds of phrase exist Noun Phrase (NP), Verb Phrase (VP), Adjective

Phrase (AdvP), Adverbial Phrase (AdvP), and Prepositional Phrase (PP). Clauses are unit of

syntactic construction formed by phrases” [57]. They contain always at least one Verb Phrase (VP)

normally preceded by a subject element and followed by any elements needed to make the clause

grammatically complete (the aforementioned SVO structure). Thus we have to design and develop a

tool to automatically find every Subject, Verb and Object of a given clause: this way it would also

have extracted the ontology triplet. Because of the clause is composed by phrases, we have to work

at the phrase level: the Natural Language Processing tool to extract phrases from sentences is called

chunker. A chunker only extract phrases from sentences: this way it discards some elements, such

as commas and conjunction. For this reason, we decided to design a new structure to store

grammatical information: commas become “,”-type Phrase and conjunctions become “AndOr”-type

Phrase. This way, the phrase punctuation is included into the grammatical structure. Furthermore

some Phrases are merged together and other are erased, edited or moved. We called this structure

“Enriched Phrases” and we called the tool to extract them “Enriched Chunker”.

 XXVI

Table_a 1. Texts for testing DeTET performances.

Core concept Title Reference
Number of

sentences

1 Trauma Introduction

http://en.wikipedi

a.org/wiki/Traum

a_(medicine)

30

2 Radiography Introduction

http://en.wikipedi

a.org/wiki/Radio

graphy

11

3 Pneumonia Signs and Symptoms

http://en.wikipedi

a.org/wiki/Pneu

monia

12

4 The human body Introduction

http://en.wikipedi

a.org/wiki/Huma

n_anatomy

10

5 Thrombotic Event
Risk of a Thrombotic Event after the 6-

Week Postpartum Period

The New

England Journal

Of Medicine [68]

8

6 Test NP Lists

4

7 The kidneys Introduction

http://en.wikipedi

a.org/wiki/Kidne

y

17

8 Pneumonia Introduction

http://en.wikipedi

a.org/wiki/Pneu

monia

11

9
Deep Brain

Stimulation
Introduction

http://en.wikipedi

a.org/wiki/Deep_

Brain_Stimulatio

n

23

10 Kidney abstract

Determination of relative Notch1 and

gamma-secretase-related gene expression

in puromycin-treated microdissected rat

kidneys.

PubMed [69] 9

11 Kidney abstract

Chronic Kidney Disease and the Risks of

Death, Cardiovascular Events, and

Hospitalization

PubMed [70] 9

12 Kidney abstract
Association of chronic kidney graft

failure with recipient blood pressure.
PubMed [71] 12

13 Kidney abstract PKD1 gene and its protein PubMed [72] 7

14 Kidney abstract
Acute Kidney Injury, Mortality, Length of

Stay, and Costs in Hospitalized Patients
PubMed [73] 8

15
Deep Brain

Stimulation
Deep Brain Stimulation PubMed [74] 8

16
Deep Brain

Stimulation
Deep brain stimulation PubMed [75] 12

17
Deep Brain

Stimulation

Deep brain stimulation for intractable

chronic cluster headache: proposals for

patient selection.

PubMed [76] 6

18
Deep Brain

Stimulation

Deep brain stimulation and cluster

headache
PubMed [77] 8

19 Deep Brain

Stimulation

Asymmetric pallidal neuronal activity in

patients with cervical dystonia.
PubMed [78] 14

http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation

 XXVII

Results

We have implemented our approach using Java programming language; we have also

developed a User Graphic Interface (GUI) to allow the user to use the implemented tool as

a standalone software; the GUI has been implemented using Java programming language,

too.

Figure 1_a shows how to extract triplets from a text using our application software:

1. The user selects “File” menu and “Insert text” option to insert the text inside the

system.

2. The user selects “Triplets” menu and “Triplet extraction from text” option to

extract triplets from the previously inserted text.

3. User selects one view option from the “View” menu to display extracted triplets

4. User selects “Save” option from “File” menu to save the ontology. The user has

two choices, “Save as RDF/XML file” and “Save as Turtle file”: this way he/she

can choose the format of the output ontology.

Figure_a 2 shows the class diagram of the implemented system. Figure_a 3 shows the

every step to extract triplets from text. Figure_a 4 shows the graph extracted from the text:

“The kidneys are essential in the urinary system and also serve homeostatic functions such

as the regulation of electrolytes, maintenance of acid–base balance, and regulation of

blood pressure (via maintaining salt and water balance). They serve the body as a natural

filter of the blood, and remove wastes, which are diverted to the urinary bladder.”.

Figure_a 5 shows the triplets extracted to build the Figure 4 graph.

 Performances have been evaluated on Table_a 1 texts. Table_a 2 shows a summary

of global performance. Table_a 3 shows the evaluation of DeTET speed, using texts

composed by random sentences from Table_a 1 texts.

 XXVIII

Table_a 2. Summary of Deterministic Triplet Extraction Tool performances.

Metric Value

Mean extracted triplets for sentence 2,237

Mean precision 0,885

Total extracted triplets 478

Total input sentences 219

Total correct triplets 428

Total mean (Total correct triplets / Total extracted triplets) 0,895

Total computation time 56,631 s

Table_a 3. Results for tool speed tests.

Sentences # Triplets extracted Time elapsed (s)

161 308 3,425

401 770 4,718

710 1.340 5,717

4686 8.844 23,957

9372 17.688 44,619

Discussion

We have developed the Deterministic Triplet Extraction Tool (DeTET) following every

waterfall model step [61].

The results in extracting triplets from testing texts (Table_a 1) are encouraging

(Table_a 2): the system scores a mean precision of almost 90%. DeTET seems to be a

very fast tool: the processing time was calculated on the command line version of DeTET,

not on the GUI-version. It is quicker than similar systems: for example Rusu et al. [80],

performed an extraction of 168 triplets from 100 sentences in 29,5 seconds. Authors did

not specify the sentences, thus a run with same inputs in our system is not possible.

However, in almost the same time (23,95 seconds) DeTET extracts 8.844 triplets from

4686 sentences (Table 8).

DeTET has some weakness. First, if the sentence contains any grammatical or

linguistic error, DeTET will make mistakes: this kind of issue is unavoidable. Second, if

the text contains any kind of conceptual mistake, DeTET will not notice it and will make

mistakes. Furthermore, DeTET has some problem in processing complex structure

sentences and phrases such as the embedding phrases, which means some phrases that

contain other phrases (e.g. the NP “the kidney damaged by alcohol” contains also a VP,

“damaged”). This kind of issue is very hard to manage, because NLP tools often make

 XXIX

mistakes in processing embedding phrase: for example, often an embedded verb phrase is

considered as a standalone phrase.

There are some open issues we have not completely deal with. For example, String

Similarity issue. We have proposed an easy approach to the problem because a deeper

approach lead to another project. Also we have avoided statement with same Domain and

Range (e.g. “Cells generate theirself”): this kind of situation could lead not only to more

precise results, but also requires to much time to be implemented. Also an improved

pronoun management approach could lead to enhanced results.

As part of the future work we plan to enhance graph visualization too, allowing

user to interact with graph nodes.

Conclusions

We presented an approach to Next Generation of Biomedical Ontologies, and the

implementation of a software tool for extracting triplets from biomedical texts, we called

Deterministic Triplet Extraction Tool (DeTET). It exploits Natural Language Processing

techniques to extract structured pieces of information from natural language digital texts.

We have developed new structure to store grammatical information from a sentence we

called Enriched Phrase. It has been developed as a standalone Java tool with a clear and

user-friendly Graphic User Interface. We performed some investigation tests, obtaining

around 90% correct extracted triplets and low computation time (less than a couple of

seconds for a page-length text). Thanks to that, Deterministic Triplet Extraction Tool

seems to be the essential step to solve ontology automatic generation issue.

 XXX

Figure_a 1. The workflow to extract triplets from a text using the Graphical User Interface.

 XXXI

Figure_a 2. Class diagram of implemented system.

 XXXII

Figure_a 3. Sequence diagram of implemented system. “User” label means the user is using the application software, “GUI” is the Graphical User Interface class and

LogAnaliz is the class which processes the text.

 XXXIII

Figure_a 4. Graph output from the text "The kidneys are essential in the urinary system and also serve homeostatic functions such as the

regulation of electrolytes, maintenance of acid–base balance, and regulation of blood pressure (via maintaining salt and water balance). They serve

the body as a natural filter of the blood, and remove wastes, which are diverted to the urinary bladder.".

 XXXIV

Figure_a 5. Output when the “View extracted triplets as text” option is selected. The “==>” symbol is used

to separate elements of a triplet (e.g. “The kidneys ==> remove ==> wastes” is the same as the triplet “The

kidneys + remove + waste”).

 1

1. Introduction

Nowadays, the range of available biomedical data is huge and it is expanding quickly.

This spread means that researchers have to face the effective extraction of the needed data

from the large amounts of biomedical data available. To this end, biomedical researchers

have started to use ontologies and terminologies to organize and to append meta-tag to

their data for better searching and retrieving [1]. In Computer Science, an ontology is a

formal representation of knowledge as a set of concepts connected by relations and

properties to denote things [2]. Thus, ontologies in biomedical domains are used for

organizing biological concepts and representing relationships among them [3]. Major

results include the Gene Ontology (GO) [4], the Foundational Model of Anatomy (FMA)

[5] and the Unified Medical Language System (UMLS) [6]. The GO [4] is an ontology

used by geneticists to find every piece of available information about a specific gene. FMA

[5] is an upper level ontology, which means it contains general concepts to be used by

other ontologies: its main topic is the anatomy and thus every ontology about the human

body could use FMA as the main source of knowledge about anatomy. UMLS is a “set of

files and software that brings together many health and biomedical vocabularies and

standards to enable interoperability between computer systems.” [7] .

The main issue researchers are facing is the semantic interoperability: what does

happen if one researcher uses concepts from an ontology to append tags to his research and

another researcher uses similar concepts from different ontologies to search the work of the

first researcher? Ontology-based applications, in order to achieve semantic interoperability,

need to ‘‘harmonize” the ontology they use [8]. In literature this problem is referred to as

the ontology mapping (or alignment) problem and concerns the discovering of equivalent

concepts belonging to different ontologies [9]: this way researchers can reach a consistent

semantic interoperability.

An ontology is for giving semantic meaning to stored digital data: this way

information is not only the label used to describe it, but also becomes a concept which can

be semantically retrieved; thus if two hospitals have two different names for the same kind

of information (e.g. two different names for the same disease), but this piece of

information is also linked with its meaning this two units can share the same knowledge

 2

once semantic interoperability has been reached. Semantic information can add artificial

intelligence features to biomedical knowledge base (e.g. the skill to imply new statements

from previous stored statements, thus to create new pieces of knowledge from available

one).

An ontology can be viewed as a Tree-like structure where the concepts are the

nodes and the relations between them are labeled edges. The graph visualization of an

ontology is one of the clearer way to visualize some pieces of information about a subject.

For example Figure 1 shows “a structured description of core biomedical knowledge

consisting of well defined semantic types and relationships between them”[10] . It is from

UMLS [6] and called the UMLS Semantic Network, we will come back on this topic in

the Background. The Figure 1 has to be read from top to down: the nodes represent

concepts, the lines represent “is a” relationships from the lower node to the higher (e.g.

“Anatomical Abnormality” “is a” “Anatomical Structure”), the arrows represent non-

hierarchical relationship (e.g. “Finding” “evaluation of” “Biologic Function”).

Biomedical ontologies can be used to serve integration of clinical data [11]:

biomedical researchers have a growing need to integrate data deriving from different

disciplines at different granularity levels [11]. This implies that medical terminology

becomes affected by an increasing concern with matters of consistency (i.e. no

contradictions) [11]. By providing a common structure and terminology, the use of

biomedical ontology aims at providing a single data source for review: “furthermore, the

use of such a common vocabulary promises benefits of less redundant data and easier

opportunities for longitudinal studies and meta-analyses and for ensuring consistency of

data across the lifetime of the patient and from one healthcare institution to the next.”

[11]. The use of biomedical ontologies promises significant rewards, for example for

clinical decision support, because they improve the information retrieval process [11].

Nowadays, almost every biomedical ontology is created by hand: domain experts build an

handmade ontology for their own purposes. Ontology creation is an hard and time

consuming task, which requires lot of human intensive work: it is still easier to use some

already created ontologies than create an ontology for a specific purpose. This way, we run

into the biggest issue of ontology subject matter: if the pieces of knowledge we need are

split in two ontologies, it is possible to merge them but it is quite hard.

 3

Fig. 1. Unified Medical Language System semantic network [6]. Every line means an "is_a" relation

from the bottom of the Figure to the top (e.g. "Pathologic Function" is a "Biologic Function").

At present, an algorithm for ontologies mapping which perform well in every

medical domain and which is really automatic has not been created yet: every algorithm

scores good results with some ontologies but has very bad one with others (e.g. an

algorithm could work well mapping human-anatomy-specific ontologies and not so well in

mapping mouse-anatomy-specific ontologies); for example Khan and Keet [12] tested

some algorithms in mapping foundational ontologies (also known as upper level

ontologies, a foundational ontology is an ontology which describes very general and not-

domain-specific concepts): these algorithms found less than a third of all the available

alignments among them.

The object of this work is the design, the model and the implementation of a

software system for creating biomedical ontologies automatically starting from text in

Natural Language. It is based on extraction of triplets from texts; a triplet is composed by

two different concepts (Domain and Range) linked together by a Relation: “Domain +

Relation + Range”. In a sentence the Domain could be the Subject, the Relation could be

the Verb and the Range could be the Object. Furthermore, we designed and developed a

Graphical User Interface to facilitate the use of the system.

 4

2. Background

In this paragraph, ontologies subject matter and natural language processing are described.

2.1 Ontology subject matter

A natural model is a simplified description of some aspects of reality: it is used to

understand, to structure or to predict parts of the real world. An ontology in Information

Technology is the attempt to create a natural model of a part of the real world. It is a

machine-processable specification of the topic with a formally defined meaning. Thus the

word “ontology” refers to a formal representation of knowledge. In the following

paragraphs, we present ontologies subject matter and their formal logic. We are also

expand some concepts view in the Introduction chapter, such as what is an ontology, what

does mean adding semantic to data, how an ontology is usually created and what is the

ontologies mapping. Last subparagraph presents some remarkable biomedical ontologies (

GO [4], FMA[5] and Unified Medical Language System UMLS [13]).

2.1.1 Introduction to ontologies

The word “ontology” derives from ancient Greek and means the study of being [14].

Parmenides was among the first to propose an ontological characterization of the

fundamental nature of reality [14]. For Plato, the ontologies should be derived from some

observations of reality [14]; Aristotle developed ten categories to classify all things that

may exist, with some subcategories to further specify each of them [14] .Thus ontologies

can be used to describe, classify and structure pieces of knowledge about a main topic.

One of the fittest definition of ontology is the one proposed by Gruber in 1993:

ontologies are “explicit specification of a shared conceptualization” [15]. The phrase

“explicit specification” refers to the logic layer under the ontologies subject matter; the

“conceptualization” describes the main role of an ontology, to create an abstract model of

some phenomenon of the world; the word “shared” point out the aim of ontologies: they

must be a way to share knowledge; an ontology captures consensual knowledge: it is not

restricted to some individual, but accepted by a large group [16].

As previously reported in Information Technology (IT) the word “ontology” refers

to a formal representation of knowledge constituted by a set of concepts and their

 5

properties. Properties could link couples of concepts together or could be referred to a

single concept (e.g. Apoptosis is the process of programmed cell death [17]: every cell

destroy itself physiologically; thus a cell can be modeled as an item which has the relation

“destroy” with itself). When a property links two different concepts, we call this link

“Relation”. Two concepts linked together by a relation form a triplets (a.k.a. statement):

first concept is called Domain and last concept is called Range (we will use “Domain +

Relation + Range” layout to write statements). Thus an ontology is a set of rules to store

and structure knowledge about a topic: it contains concepts and properties organized in

statements and individuals; an individual is a instantiation of a concept (e.g. “Andrea” is a

“person”, is not a concept) [18]. Since the knowledge has been represented and stored, it

can be processed through logical operations such as logical deductions [18]. Logical

deduction relies on a set of domain-independent rules to create new statements starting

from stored ones: they are domain-independent in the sense they provided template-like

ways for inferring knowledge in which the placeholders could be substituted by domain

concepts. For example, a property is transitive if: if A is related to B through a transitive

property and B is related to C trough same transitive property, then A is always related to

C trough same transitive property, where A, B and C are concepts. Transitivity could be

encoded as this set of rules:

If

A R1 B

B R1 C

and if

R1 is transitive

then

A R1 C

where

A,B,C are concepts;

R1 is a property (or Relation).

An easy example is a user who wants to extract knowledge both from FMA [5] and GO

[4]: he/she wants to study the Craniofacial dysostosis, a syndrome caused by the gene

FGFR2 and characterized by early fusion of the bones of the skull and face; he/she would

like to extract the name of every bone next to a malformed one. In FMA [5] exists spatial

 6

relations such as “next to” or “close to”: to allow the user to extract the whole information,

the name of the bones from GO [4] has to be mapped to the name of the same bones inside

FMA: this way

if the bone “A” is next to bone “B” (information from FMA [5])

if the bonce “C” is malformed (information from GO [4])

if bone “A” is the same bone as bone “C” (mapping between FMA [5] and GO [4])

then the bone “B” is next to a malformed bone (implied statement from statements

of both ontologies).

Thus, using both ontologies the system can imply the bone “B” is “next to a malformed

bone”: this statement has not been manually added in any of the two ontologies.

When the knowledge of a domain is represented with this declarative formalism,

the set of objects that can be represented is called the universe [15]: the ontology does not

consider concepts outside its universe, and every statement belonging to the universe is to

considered true by the ontology. The point is an ontology could contain wrong pieces of

information from an external point of view (e.g. the statement “Men + are not + mortal” is

wrong), but it would consider them true a priori: its task is to decide if a conclusion is

impliable from previously stored statements or not; its task is not to decide if a stored

statement is true or not. The only check ontology does on stored statements is the

consistency check (i.e. it checks if there are contradictory statements).

An ontology could be viewed as a graph where the nodes are concepts and the

edges are relations. For example in Figure 2 is shown the ontology created from the text:

”The kidneys are essential in the urinary system and also serve homeostatic functions such

as the regulation of electrolytes, maintenance of acid–base balance, and regulation of

blood pressure. They serve the body as a natural filter of the blood, and remove wastes,

which are diverted to the urinary bladder.”. “The Kidneys” and “wastes” are concepts

linked by the relation “remove”.

 7

2.1.2 Some examples of biomedical ontologies

Biomedical ontologies are widely used by researcher to annotate their data with ontology

terms for better data integration, and to increase the interoperability between data

repositories [19].

 One of the most notable biomedical ontologies is the Gene Ontology (GO) [4]:

“The goal of the Gene Ontology Consortium is to produce a dynamic, controlled

vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein

roles in cells is accumulating and changing.” [4]. It was born in 1998 and it is still

growing: GO is a collaborative project to address the need for consistent descriptions of

gene products in different databases [4]. It describes gene products in terms of their

associated biological processes, cellular components and molecular functions in a species-

independent manner. Thus the main aim of GO is to facilitate data integration and

information retrieval in the Gene domain. It is also used as the standard ontology to

annotate gene subject matter texts. At present, GO mainly focus on three areas: cellular

component, molecular function and biological process. These areas are considered

Fig. 2. Ontology extracted from the text: ”The kidneys are essential in the urinary system

and also serve homeostatic functions such as the regulation of electrolytes, maintenance of

acid–base balance, and regulation of blood pressure. They serve the body as a natural filter of

the blood, and remove wastes, which are diverted to the urinary bladder.”. Rectangles

represent concepts while arrows represent relation among them.

 8

independent each other. The GO contains over 30,000 terms and it is freely downloadable

[20].

 The Foundational Model of Anatomy (FMA) [21] is a upper level ontology about

the anatomy. Upper level ontology means that it “contains information about anatomical

entities, which are independent elements of biomedical reality on which physiological and

disease processes depend, and which, in response to etiological agents, can transform

themselves into pathological entities” [5]. Every biomedical ontology designed to describe

non-anatomical domains must anyway refer to anatomical entities: for this reason FMA [5]

is largely used. FMA concerns with the representation of concepts and relations necessary

for the symbolic representation of the phenotypic structure of the human body in a form

that is both understandable to humans and machine readable. It has been developed and is

being maintained by the Structural Informatics Group at the University of Washington,

Seattle WA. FMA purpose is to serve as a foundational ontology for other biomedical

applications: it is not designed as an end-user application for anatomy students, teachers or

any other particular user group. It is a symbolic representation of the phenotypic structure

of the human body. Over 75,000 anatomical classes ranging from macroscopic to

molecular level are organized in an Aristotelian-type concept hierarchy [5]; it also contains

over 170,000 terms, and over 2.4 million statements from over 227 type of relations [21].

The Unified Medical Language System (UMLS) [7] has been developed by National

Library of Medicine (NLM) since 1986. UMLS aims “to enable interoperability between

computer systems” [7]: if they use different vocabularies for some reason, and both

vocabularies belonging to UMLS, its aim is to give mapping between concepts. It is a

repository of over 160 biomedical vocabularies and sources, and contains over 1,900,000

biomedical terms and 800,000 concepts [6]. Among contained vocabularies, there are the

International Classification of Disease 9 and 10 (ICD9 and ICD10) [22], the Systematic

Nomenclature of Medicine – Clinical Terms (SNOMED-CT), the Medical Subject

Headings (MeSH), and Gene Ontology (GO) [20]. Concepts are linked by relations in

more than 19 millions of statements. UMLS is composed by the UMLS Metathesaurus, the

Semantic Network, and the SPECIALIST Lexicon. Metathesaurus is a repository of inter-

related concepts: it contains every word or phrase of every UMLS vocabulary, grouped by

meaning; every group of words and phrases with the same meaning forms a synonym class

[6]. The Semantic Network contains the relations of every Metathesaurus concept [10].

 9

SPECIALIST Lexicon contains stems and lexical rules to build medical words and multi-

terms medical words [6]. Low layer contains Information Sources Map (ISM): it contains

information about the physical implementation of the data-base: thus it permits UMLS to

answer to user queries.

2.1.3 Description Logic, First Order Logic and Web Ontology Language

Every ontology is built on some kind of formal logic framework, like the First Order Logic

(FOL) [23] or some sub-Logic derived from it (e.g. Description Logic DL) [23]. This is the

reason why an ontology is not a sort of relational database but has far more knowledge

management possibilities [14]. Relational databases are built by the Structured query

language [24]. This language does not offer any kind of logical deduction. A relational

database is composed by linked tables by means of some attribute values [24]. With an

ontology first, is possible to find every disease name in an external disease ontology, such

as UMLS [6]. Then it is possible to use every relations such as “is localized in” and

“afflicts” to discover every concept which is a sub concept of “disease” and which has

these relations with “heart” concept. The rule to express person with cardiac problem

becomes “person which has a disease which is localized in the heart or it afflicts the heart”.

The First Order Logic (FOL) is a kind of mathematical logic [23]: it is a formal

system where formulas of a formal language may be used to represent propositions. The

FOL allows the user deriving some theorems from inference rules and axioms: this

operation is called implication. FOL is composed of three elements: 1- a formal language

to model a part of the natural language, 2 - a semantics to establish if a statement of the

language is true or false, and 3 - a reasoner to determine the validity of theorems. A formal

language is defined by means of a dictionary of symbols (logical symbols, descriptive

symbols, and structural symbols) and a grammar. A grammar is a set of rules to connect

symbols in a “valid” way [25]. To assign semantics to a logical language means to define

an approach for determining whether an argument is valid (if this argument is entailable

from other axioms). A reasoner is used to establish if a theorem is impliable from the

axioms. Thus, the question our logic would like to answer is “Does some selected axioms

imply a specific theorem?”: this kind of question is linked to the “Decidability

problem”[25]. An axiom is a valid statement (i.e. it is considered true). The Decidability

problem is modelled in Figure 3: the "
𝐴

𝑇
" symbol means “Does A imply T ?”. The system

 10

could replies in three different ways: “Yes” , “No” , or just not terminate (it means the

system does not know the answer).

The point we do not know is how many loops the system needs to give an output: until we

do not see the output, we can not establish if the process will terminate or not. If the

system always replies to every answer within a finite number of loop, it is called

“decidable”. If the system always replies within a finite number of loop to every answer

when the answer is “Yes”, it is called “semi-decidable”. Otherwise is called “undecidable”.

A formal system could have two properties to determine its decidability: the “soundness”

and the “completeness ” [25].

A system R is sound if, and only if: if R derives the conclusion 𝜑 from the

statements K, then K entails always (implies) 𝜑.

A system R is (strongly) complete if, and only if: if K entails 𝜑, then R is guaranteed to

derive 𝜑 from K in a finite number of reasoning steps.

Prove if a formal system is complete is an hard task: the (not) completeness of FOL has

been proven by Kurt Gödel in 1929, as part of his PhD thesis [26]. In every mathematical

logic there is a trade-off between expressivity and decidability: the more the logic is

expressive, the less it is “decidable”. Thus, ontology uses a part of FOL, with a smaller

expressivity, called Description Logic (DL): it is a “decidable” logic [27]. Description

Logic (DL) can be identified as a decidable fragment of FOL. In DL, building blocks are

classes, roles and individuals: classes are concepts. Every class could have one or more

roles: roles are relation between one class and itself or between it and other classes.

Individuals are specific instantiation of a class (e.g. if in ontology universe exists a person

Rudy Studer, thus “Rudy Studer” is a instantiation of the class “Person”). Every class can

be combined through symbols: conjunction (⊓), disjunction (⊔) and negation (¬).

Fig. 3. The decidability problem for a Formal System.

 11

DL is different from other logics (like Propositional Logic PL [23]) as its use quantified

variables. There are two quantifier: Existential Quantifier (∃) and Universal Quantifier (∀).

The first quantifier means every class which has some kind of relation with others. The

second quantifier means every class which is linked to another class with a specific

relation or it does not have that relation at all; quantifier can be qualified (the class with

which the relation exist is specified) or unqualified: universal quantifier is always

“qualified”. Thus:

 unqualified existential ∃ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟: means every class which has the relation

“hasExaminer” with at least one other class. For example 𝐸𝑥𝑎𝑚 ⊑

 ∃ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟 means the class Exam is a subclass of every class which has the

relation “hasExaminer” with another class (every exam has at least one examiner);

 qualified existential ∃ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟: means every class which has the

relation “hasExaminer” with the Professor class. For example 𝐸𝑥𝑎𝑚 ⊑

 ∃ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟.Professor means every Exam always has as examiner a Professor

and always has an examiner.

 Qualified universal ∀ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟: means every class which or it

does not have any relation “hasExaminer” or it has this relation with the

“Professor” class. For example 𝐸𝑥𝑎𝑚 ⊑ ∀ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑖𝑛𝑒𝑟.Professor means only

professor could be the examiner of an Exam (but also means every class which

does not have the relation “hasExaminer”, it is a superclass of “Exam” class).

To write DL statements Web Ontology Language (OWL) is commonly used [27].

OWL is a family of knowledge representation languages: they are markup

computer languages for defining ontologies [27]. OWL is characterized by formal

semantics and a lot of different possible serializations (syntaxes) for the Semantic Web: a

serialization is a way to encode a triplets-like information in a machine-readable way (as

ontologies can be represented using tree-like graphs). The simplest serialization is named

“Turtle”: it uses RDF to encode triplets in a machine readable file. RDF is a family of

World Wide Web Consortium (W3C) specifications originally designed as a metadata data

model [18]. It is a formal language: its goal is to enable applications to exchange data on

the web while preserving their original meaning. The base idea of RDF is to store

ontologies as triplets of resources: every resource is identified with a Uniform Resource

Identifier (URI); an URI could be a online resource (identified though a Uniform Resource

 12

Locator URL) or an item, like a person, a event, a concept, not accessible through the web.

It is based on XML for describing structured information: XML is fundamental data format

for data exchange and electronic publishing which is widely in use [28]; it is a Markup

language. The Turtle representation of RDF can easily be processed by machines but it is

no the most commonly used serialization [18]. One reason for this might be that many

programming languages do not offer standard libraries to manage RDF. As of today, the

main syntax for Ontology is the XML-based serialization named “XML/RDF” because

several libraries to process XML language exist [18].

Some different versions of OWL exist as shown in Table 1: the more used is OWL2

DL. They are sorted for expressivity (OWL Full is the most expressive) [27]: the

expressivity of a language is the range of ideas that can be represented in that language

[27].

Table 1. Ontology Web Language version, their decidability and based-on logic.

Language

Name

Decidability Based on

OWL Lite full decidable Description Logic

OWL DL full decidable Description Logic

OWL2 DL full decidable Description Logic

OWL Full semi-decidable First Order Logic

2.1.4 Ontologies and Semantics

Ontologies add semantic meanings to stored strings: this allows computers to intelligently

search [29], combine [30], and process [31] these contents based on the meaning that this

contents have to humans.

Semantic search is defined as a information retrieval process that exploits

somehow domain knowledge [29]. Domain knowledge can be formalized through an

ontology; thus, if we store the knowledge through an ontology, lot of problems of

traditional search scenario, such as synonymy (i.e. same concept can be expressed with

several words) and word acceptance (i.e. same word can have several meanings), do not

exist: in a single ontology, every concept must be unique and have only one “mean” (the

concept itself is its meaning). If we use more than one ontology for our search, we should

 13

have mapped them before merging (we will explain more deeply mapping problems in par.

2.1.6), thus every concept is again unique. If we want to discover every possible

information about a topic, the easier way is to find the best word or short sentence (also

known as circumlocution) to describe this topic, and then search on a Google-like search

engine: the search engine mostly relies on the occurrence of searched words (or similar

one) in documents. This approach has two big problems: synonyms and term acceptances.

If we want to extract every little piece of information about a topic, we have to know every

synonym and every circumlocution to express a term: there is no string similarity between

“heart”, “ticker” and “cardiac pump”. Second issue is more complicated: same word can

have more meanings. If we consider a researcher who is studying the allelic variations in a

gene, the search issue becomes clearer [1]: he/she would like to discover every piece of

information about that gene, such as every clinical trials that have studied diseases related

to that gene, or all the pathways that are affected by that gene. The knowledge needed to

address such questions could be available in some public biomedical resources, such as

articles indexed in PubMed/Medline [32]; the problem is finding that information. Now

consider a user who uses a semantic search approach [29] and needs fundamental

information on organs. he/she inputs the keywords ‘introduction’ and ‘organs’ to his/her

semantic search engine. An ontology lookup tells the system that the term ‘organ’ can have

more meanings: for example, organ could refer to organ pipe or to human organ. It

prompts the user if he/she is looking for information on organs related to anatomy or

music. According to the user’s answer, the system finally retrieves introductory documents

about human organs. It not only returns documents that contain the term ‘introduction’, but

also documents that contain ‘overview’ or ‘fundamentals’; it not only returns document

that contain the term ‘organ’, but also documents that contain “vital part” or “functional

human structure”.

Adding semantic meaning to a data allows to combine more efficiently that data

with an external source. Merging different data sources is called Data-Exchange (or Data

Integration): it is the problem of taking data structured under a source schema and creating

an instance of a target schema that reflects the source data as accurately as possible [30].

Data exchange is used in many tasks that require data to be transferred between

independently created applications: for example, if we want to merge pieces of information

of the same patient created in different hospital we have to merge them somehow. This is

 14

also important for progress in large-scale scientific projects, where data sets are being

produced independently by multiple researchers, and in offering good search quality across

the millions of structured data sources on the World-Wide Web [33]. In Data-Integration

scenario ontologies create great advantages as they provide a shared and common

understanding of a domain that can be communicated across different application systems

[16]. An example of data integration through ontologies is the work proposed by Berges et

al. [34] They proposed the use of formal ontology to achieve the interoperability among

Electronic Health Records (EHRs) from different clinical centers in Spain; their proposal

allows one system to interpret on the fly clinical data sent by another clinical center even

when they use different representations [34]. They proposed a double layer approach: an

upper level ontology which is a canonical representation of EHR statements and some

lower level ontologies, one for each clinical center. Lower level ontologies describe the

particular EHRs data storage structures used by every specific center: a translator module

from SQL language to OWL language has been developed to facilitate the creation of the

lower level ontologies [34].

One example of knowledge processing is the logical deduction (2.1.1). Rubin et al.

demonstrated the capabilities of logical deduction [31]: they created a system to infer about

the consequences of penetrating injuries. They created a knowledge model of the chest,

and the heart anatomy and physiology. Then they used a domain-independent classifier to

infer ischemic regions of the heart as well as anatomic spaces containing ectopic blood

after a penetrating injury. Given a set of anatomic structures that are directly injured by a

projectile, they wanted to create a reasoning application that deduces secondary injuries

(regions of myocardium that will be ischemic if a coronary artery is injured, and

propagation of injury as bleeding occurs into damaged anatomic compartments that

surround the heart). They applied this reasoning service to try to infer the effects of some

injuries and the results were confirmed by a physician: “Our results suggest that inferring

the consequences of penetrating injury can be formalized as a classification task. There are

benefits in using OWL as a representation language.” [31]. Ontologies offer to enhance

extracting information service: if a user want to extract some tags from a text, he/she must

read and find out best concepts to describe what he/she just reads [16]. This is avoidable

thanks to an “annotator”: it is a tool which can automatically assigns concept from an

external ontology to a text the open biomedical annotator [1]).

 15

An annotator is a tool to associate metadata to sentences or phrases (i.e. an

annotator could assign the concept “7088”, which represent the “heart” concept in the

Foundational Model of Anatomy [21], to the sentence “The adult human heart has a mass

of between 250 and 350 grams and is about the size of a fist.”): every author of a paper

chooses some keywords to describe his/her paper content. This kind of metadata is pretty

useless: in fact, freely appending terms from a domain to describe something results in a

“personalized” list of descriptors. A step forward in annotation is to force every author to

use keywords from one standardized ontology of terminology. Last step in annotation

problem is to use automatic annotator: the idea is to create some rules to automatically map

phrases in a text with concept from an “external” ontology. This way, we can select which

external ontology use, or process a large amount of papers with a specific ontology to

extract every paper with some particular concepts. Jonquet et al. proposed the Open

Biomedical Annotator [1] to annotate biomedical texts.

2.1.5 Ontology development

Several different approaches to ontologies development have been carried out [35]. All

these approaches follow three steps:

4. Searching for a exhaustive set of terms

5. Organizing the terms into a taxonomy of classes

6. Choose which of the taxonomy display in the ontology

Ontology creators usually use two possible approaches based upon the direction of

ontology construction; in bottom-up approach they start with some descriptions of the

domain and obtain a classification [35], while in top-down one, they start with an a priori

abstract view of the domain itself [35]. The real problem is every ontology is an handmade

product, created from a team of experts (domain experts and IT experts): “Although

ontologies have been proposed as an important and natural means of representing real

world knowledge for the development of database designs, most ontology creation is not

carried out systematically.” [36]. In addition, nevertheless the large number of existing

ontologies, there is no state-of-art methodology for building them. We can make a

comparison with database development field, where the conceptual modeling of every

database follows standardized steps, such as the creation of an Entity-Relationship (E–R)

model. Once every step has been followed, the creation of a database is almost automatic.

In the ontologies subject matter does not exist any similar tool to E-R model or a

 16

standardized workflow: thus any team of experts will use their own approach. However,

some best-practice tutorials exist ([37] or [38]).

 Protégé and Web Protégé [39] are commonly used ontology editor to build ontologies:

they are user friendly software which can permit anyone to build his/her own ontology. If

the user does not deeply know Description Logic and Ontologies subject matter, he/she can

easily build inconsistent ontologies, or ontologies full of mistakes, without being aware of

that. For example, if you want to say there is an heart inside every human body, you could

use both quantifiers (see 2.1.2 for an explanation on quantifiers):

(1) ℎ𝑢𝑚𝑎𝑛_𝐵𝑜𝑑𝑦 ⊑ ∃𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. ℎ𝑒𝑎𝑟𝑡

or

(2) ℎ𝑢𝑚𝑎𝑛_𝐵𝑜𝑑𝑦 ⊑ ∀𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠. ℎ𝑒𝑎𝑟𝑡

The expression (1) means “ℎ𝑢𝑚𝑎𝑛_𝐵𝑜𝑑𝑦” class is the subclass of every class which has a

“contains” relationship with the “heart” class. The expression (2) means people are

subclass of every class which has an “contains” relationship with the “heart” class or

which not has the “contains” relation at all. Thus in (2) the heart itself is a human body,

because no heart can contains another heart inside it: this kind of sneaky errors are very

common if the user does not deeply know ontologies subject matter from a technical point

of view. Another relevant issue is every ontology has a lot of classes, thus developing an

ontology is a time consuming process: some approaches to speed-up this have been

proposed [40]; these approaches exploit Natural Language Processing-NLP (we will

explain deeply in par. 2.2) to reduce the difficulty of the ontology building process.

2.1.6 Ontology mapping task

With the term “mapping” or “alignment” is meant an algorithm which is able to

(automatically) relate every concept belonging to an ontology with every concept

belonging to another one [41]. The result is given the ontologies Oi and Oj, and the

concepts Ci and Cj , the algorithm creates every triplet

“Ci + Rij + Cj”

where using symbols,

Ci ∈ Oi,

Cj ∈ Oj ,

 Rij ∈ {⊏, ⊐, ≡, ⊥};

thus:

 17

“Ci ⊏ Cj” means “Ci” sub-concept of “Cj” (e.g. femur sub-concept of bone),

“Ci ⊐ Cj” means “Ci” super-concept of “Cj” (e.g. organ super-concept of kidney),

“Ci ≡ Cj” means “Ci” is the same concept of “Cj” (e.g. heart same concept as ticker),

and

“Ci ⊥ Cj” means “Ci” is disjoint with “Cj” (e.g. blood is disjoint with hair).

Nowadays ontologies mapping is essential: ontologies are often developed to model

little domains of the biological science. This leads to greater expressivity in knowledge

representation, but also creates a new problem in information sharing. Software

applications using different ontologies have to face interoperability issues because

relationships between concepts in different ontologies are not explicitly stated.

A state-of-art algorithm for ontology mapping does not exist: researchers are

proposing a lot of mapping algorithms. There are four main issues in almost every

algorithm proposed.

First, every algorithm proposed shows different performances based on the domain

topics: for example an algorithm built to map efficiently couples of foundational

ontologies could score bad results with couple of ontologies about other topics, such as

mouse anatomy [12]. As we already explained, a foundational ontology is an ontology

which describes very general and not-domain-specific concepts [12].

Second, it does not exist any totally automatic algorithm: every algorithm is semi-

automatic in two different ways. Some algorithms such as PROMPT [42] need some

interactions with the user during their executions. Other algorithms require some domain

experts to check if the new relations are correct and if every possible relation has been

established.

Third, almost every algorithm has the same approach: they just calculate similarity

among string with some string similarity metrics [43]. A string similarity metric is a

measure of similarity or dissimilarity (distance) between two text. For example, a good

similarity string metric algorithm have to score high result with “The kidneys” and “The

human kidneys” inputs (because they have the same meaning), and it has to score low

result with “Hearth” and “Heart” inputs (because they have different meanings). A perfect

similarity score metric does not exist, thus the choice of one algorithm rather than another

could change the performance of the mapping algorithm and the similarity score metric

could work very well in some topics and not so well with other topics.

 18

 After a bibliography research, we have reviewed some existing algorithms (Table

2).

Three significant evaluation parameters for mapping algorithms have been used by authors

to test their developed tool: they are precision, Recall and F-measure. They are defined as

follow.

Precision (p) is: 𝑝 =
(#𝑟𝑒𝑙𝑐𝑜𝑟𝑟⊓#𝑟𝑒𝑙𝑡𝑜𝑡)

#𝑟𝑒𝑙𝑡𝑜𝑡
,

where #𝑟𝑒𝑙𝑐𝑜𝑟𝑟 means number of correct relation found, and #𝑟𝑒𝑙𝑡𝑜𝑡 means total relation

found.

Recall (r) is: 𝑟 =
(#𝑟𝑒𝑙𝑐𝑜𝑟𝑟⊓#𝑟𝑒𝑙𝑡𝑜𝑡)

#𝑟𝑒𝑙𝑐𝑜𝑟𝑟
.

F-measure (𝐹𝑀) is: 𝐹𝑀 = 2 ∗
𝑝∗𝑟

𝑝+𝑟
.

In Table 2 this background research is shown.

 19

Table 2. Existing mapping algorithms and their performances.

Algorithm

/ Tool

name

[Ref.]

Algorithm description Test corpus Performance

SURD [41]

A corpus P of text is annotated using the ontologies-to-map 𝑂𝑖 𝑎𝑛𝑑 𝑂𝑗, obtaining

two annotated corpus 𝑃𝑖 𝑎𝑛𝑑 𝑃𝑗 .

The idea is to evaluate how many time a couple of concepts belonging to different

ontologies is used to annotate same phrase.

The evaluation is achieved with the score metric Co-Annotation Ratio: 𝐶𝐴𝑅𝑝𝑞 =

#𝐶𝑝

∗ ∩ #𝐶𝑞
∗

#𝐶𝑝
∗ , where "#𝐶𝑖

∗" means times where 𝐶𝑖
∗ is used to annotate a phrase, and

"#𝐶𝑖
∗ ∩ #𝐶𝑗

∗" means times where both 𝐶𝑖
∗ and 𝐶𝑗

∗ are used to annotate same

phrase.

If 𝐶𝐴𝑅𝑖𝑗 ≥ 0.5 and 𝐶𝐴𝑅𝑗𝑖 < 0.5 , 𝐶𝑖 ⊏ 𝐶𝑗.

If 𝐶𝐴𝑅𝑖𝑗 < 0.5 and 𝐶𝐴𝑅𝑗𝑖 ≥ 0.5, 𝐶𝑖 ⊐ 𝐶𝑗.

If 𝐶𝐴𝑅𝑖𝑗 < 0.5 and 𝐶𝐴𝑅𝑗𝑖 < 0.5 , 𝐶𝑖 ⊥ 𝐶𝑗.

If 𝐶𝐴𝑅𝑖𝑗 ≥ 0.5 and 𝐶𝐴𝑅𝑗𝑖 ≥ 0.5, 𝐶𝑖 ≡ 𝐶𝑗.

SURD has been tested on

two corpus, first from

Gene Regulation Ontology

(GRO

http://www.ebi.ac.uk/Rebh

olz-srv/GRO/GRO.html) ,

second from GENIA

(http://www.medlingmap.o

rg/taxonomy/term/102)

(both available at

http://nlp.sce.ntu.edu.sg/S

URD)

p = 0.866

r = 0.577

FM = 0.693

Marquet et

al. [44]

The algorithm follows four steps:

1. Synonyms acquisition: every concept name of both ontologies is related

with synonyms concept from Unified Medical Language Systems

(UMLS) concept.

2. If two concepts 𝐶1 𝑎𝑛𝑑𝐶2 from different ontologies has same synonyms,

the algorithm creates a relation 𝐶1 "𝑖𝑠_𝑎" 𝐶2

3. The algorithm creates a list of couple of concepts from different

ontologies where one concept name is included in the other one.

4. Starting from the list created at the third step, the system looks for every

couple in some UMLS [7] tables to create new relations.

Four different ontologies

from “Open Biological and

Biomedical Ontologies”

(OBO

http://www.obofoundry.or

g). OBO is a ontologies

web-repository.

It has been created a

“result ontology”,

built mapping the

four ontologies. 131

new relations has

been discovered with

a precision of 100%.

http://www.ebi.ac.uk/Rebholz-srv/GRO/GRO.html
http://www.ebi.ac.uk/Rebholz-srv/GRO/GRO.html
http://www.medlingmap.org/taxonomy/term/102
http://www.medlingmap.org/taxonomy/term/102
http://nlp.sce.ntu.edu.sg/SURD
http://nlp.sce.ntu.edu.sg/SURD
http://www.obofoundry.org/
http://www.obofoundry.org/

 20

Algorithm

/ Tool

name

[Ref.]

Algorithm description Test corpus Performance

BOAT

[45]

The algorithm consider two kind of matching:

- Trivial matches: couple of concepts with same normalized name.

- Non-trivial matches: couple of concepts with same meaning and different

names.

The algorithm follows three steps:

1. Trivial matches discovery: every concept is normalized (e.g. every plural

is converted in singular) and linked to its synonyms; then the algorithm

uses some “exact string matching” algorithms to discover equivalent

concepts.

2. Candidate selection: every concept is represented through a Vector

Space Model (VSM) which contains words used to annotate the concept

itself and parent the concepts (in a graph tree visualization of the

ontology). Then a similarity score is calculated from every couple of

concept as the number of identical element of their VSMs.

3. Non-trivial matches discovery: every couple of concepts which has been

scored a high similarity score at step 2 is processed. Every item of the

VSM is converted in a token: every couple of identical tokens (one for

concept) are erased. Every couple of tokens where one token is equal to

a synonym of other token are erased. If there is no more token, this

couple is considered equivalent.

BOAT has been tested on

some OBO ontologies.

p = 0.98

r = 0.8

FM = 0.88

 OAANN

[46]

The similarity score S among two different concepts is defined as:

𝑆 = 𝑤1 ∗ 𝑠1 + 𝑤2 ∗ 𝑠2 + 𝑤3 ∗ 𝑠3

where 𝑤1 , 𝑤2 and 𝑤3 are weights and 𝑠1, 𝑠2 and 𝑠3 are three different similarity

metrics.

𝑠1 considers difference among the labels,

𝑠2 considers the number of equivalent properties,

and 𝑠3 is the similarity score S among the couple of closer concepts more similar.

The three weights are calculated through a machine learning approach and 𝑤1 +
𝑤2 + 𝑤3 = 1: the training phase is done on 30 couples of equivalent concepts.

OAANN has been tested

with a couple of

ontologies:

BiologicalProcess (13922

concepts) and Pathway

(571 concepts).

p = 0.89

r = 0.85

Number of

discovered relations:

120 (on 139)

Number of correct

discovered relations:

108.

 21

Algorithm

/ Tool

name

[Ref.]

Algorithm description Test corpus Performance

OntoMAS

[47]

OntoMAS uses one ontology (the one with lesser concepts) as base ontology and

maps it with another ontology. It is a multi-agent system: every agent has

assigned one task and does not know what other agents are doing.

OntoMAS creates one Alignment Request Agent (AR) for every concept of base

ontology and one Concept Resource Agents (CR) for every concept of the second

ontology. OntoMAS also creates some String Matching Resource Agents(SMRs)

and some Linguistic Matching Resource Agents (LMRs): they are used by CRs to

interact with every AR. SMRs are used to discover concepts with similar

normalized label while LMRs are used to discover couple of concepts which have

similar synonyms.

Every agent uses a common “knowledge module”, constituted by some external

sources (e.g. Wordnet) and domain specific rules.

One ontology created from

the concepts of HARTI

and one from the concepts

of WikiGoviya.

p = 0.67

r = 0.61

Belhadef et

al. [48]

It is a four stages algorithms to maps concepts of two different ontologies:

1. String normalization (e.g. every upper case to lower case, every hyphen

is deleted, ...)

2. Syntactical verification: Syntactic similarities among concepts are

scored.

3. Structural verification: Structural similarities among concepts are scored.

4. Bidirectional verification: it is done to make a matching in both

directions of the two ontologies in question to eliminate the ambiguity in

the candidates found

No test corpus is specified. Authors does not

make any test on their

algorithm.

Cotterell et

al. [49]

The algorithm starts creating a new graph C from the two ontologies A and B:

every node of C contains a couple of concepts (one belong to A and one to B).

Then the algorithm creates some edges between some nodes of C (it creates an

edge between two nodes if and only if both couples of concepts belonging to A

has some kind of relation in A, and both couples of concepts belonging to B has

some kind of relation in B). Then the algorithm sets a weight for every edge: the

weighted sum of the edges of a node is the node similarity score (thus the

similarity score of contained concepts).

Ontology Alignment

Evaluation Initiative

(OAEI)

In the paper, authors

created several

diagrams to show

their good results.

 22

Algorithm

/ Tool

name

[Ref.]

Algorithm description Test corpus Performance

Nasir et al.

[50]

This algorithm is based on the “cognitive support and visualization for semi-

automatic ontology mapping”(CogZ) to create base mapping relations. CogZ

creates some possible mappings relations as inter-edges between the two

ontologies: the user only has to select right one and to discard others. The authors

adds an Edge Bundling approach to inter-edges.

Edge bundling is the process of distorting the shapes of the edges in a graph to

provide paths that are easier for the human eye to follow. By bundling edges that

have sources and destinations in common regions of the graph, many individual

edges are replace with a smaller set of bundles, “cleaning up” the clutter in the

visual representation. Thus using Edge bundling is easier for the user to confirm

some proposed mapping relations and to discard others: the final outcome is an

expectation of more efficient and effective analytical reasoning, decision-making,

and problem-solving. Edge Bundling is achieved using a spring approach: every

edge is divided in some segments, and then for each couple of edge segments, a

spring is attached between these segments. To each segment is also associated a

virtual electrostatic force. Springs create attractive forces while couples of

electrostatic forces creates repulsive ones: to achieve the best edge bundling, the

system attempts to minimize the forces exerted upon the edge segments due to

the springs and electromagnetic forces.

This approach has been

tested mapping a couple of

ontologies: 24 testers has

been called. 12 has used

only CogZ while 12 has

used CogZ with Edge

Bundling.

This approach

diminished mapping

task time by 75% for

the validation of

proposed alignment.

The time spent for

discovering missing

relations is the same.

The precision was the

same, both achieves

100% (this underlines

the testers had

worked hard).

 23

Algorithm

/ Tool

name

[Ref.]

Algorithm description Test corpus Performance

Anchor-

PROMPT

[51]

Anchor-PROMPT is a tool of PROMPT suite: it treats an ontology as a graph

with concepts as nodes and relations as links. It takes as input a set of anchors: an

anchor is a couple of related concepts, one per ontology to map; anchors can be

defined by the user or by the Anchor-PROMPT itself using lexical matching. The

algorithm analyses the path in the subgraph limited by the anchors to discover

semantically similar concepts: couples of concepts with similar topology receive a

high score. The user can set a maximum path length: the closer is a concept to the

anchor, the more similar meaning they have.

The algorithm has been

tested on two ontologies:

an ontology for describing

organization of the

University of Maryland

(UMD), and an ontology

for describing organization

of Carnegie Mellon

University (CMU). They

have been created by

different developers

independently but they

covered similar topics.

Recall is defined as

the number of

discovered mapping

relations divides the

number of total

discoverable mapping

relations while

precision is the

number of correct

discovered mapping

relations divides the

number of discovered

mapping relations.

The best trade-off

between precision

and recall has been

get with a maximum

path length of 4.

With this setting, the

precision is 65%.

YAM ++

[52]

YAM++ follows a machine learning approach to map two ontologies. YAM++

has three steps:

1. It uses some similarity metric scores to evaluate similarity among every couple

of concepts.

2. It considers topological structure to create more mapping relations.

3. It uses Alcomo to verify relations created in the first two steps. Alcomo is an

available tool (http://web.informatik.uni-mannheim.de/alcomo/) to implement the

global constraint optimization method.

Some Ontology Alignment

Evaluation Initiative

(OAEI) 2011 benchmark

has been used to test

YAM++

YAM++ scores a

precision of among

78% in proposed

texts.

http://web.informatik.uni-mannheim.de/alcomo/

 24

2.2 Element of Natural Language Processing

Natural Language Processing (NLP) is a computerized approach for analyzing untagged

electronic texts [53]. Allen et al. defined NLP as “a theoretically motivated range of

computational techniques for analyzing and representing naturally occurring texts at one

or more levels of linguistic analysis for the purpose of achieving human-like language

processing for a range of tasks or applications” [53]. We have to examine in depth this

definition. First, the notion of “range of computational techniques” is imprecise on

purpose because several different methods to accomplish a particular type of language

analysis exist [53]. Second, with “Naturally occurring texts” authors refer to any kind of

text [53]. Third, “Human-like language processing” underlines NLP tries to duplicate

Human mental approach to understanding the meaning of a text. Fourth, the notion of

“levels of linguistic analysis” refers to the fact that the same text can be analyzed at

different linguistic level [53]. Seven different levels of linguistic analysis exist: 1

Phonology (it is the interpretation of speech sounds), 2 Morphology (it deals with the

componential nature of words, which are composed of morphemes), 3 Lexical (it is the

interpretation of the meaning of individual words), 4 Syntactic (it focuses on analysing the

words in a sentence to uncover the grammatical structure of that sentence), 5 Semantic (it

determines the possible meanings of a sentence by focusing on the interactions among

word-level meanings in the sentence), 6 Discourse (it focuses on the properties of the text

as a whole that convey meaning by making connections between component sentences),

and 7 Pragmatic (it utilizes context over and above the contents of the text to increased the

extracted information from a text) [53]. Humans normally use all of these levels since each

level conveys different types of meaning: thus a “Human-like language processing” must

try to use all of them [53]. So, the goal of NLP is “to accomplish human-like language

processing” [53]. In our work we focus mainly on Lexical, Syntactic and Semantic levels

[53].

 To perform NLP, some approaches exist: Symbolic approaches and Statistical ones

are the more common. Firsts are based on logic, set of rules, or semantic networks, while

seconds are based on machine learning techniques [53].

 25

3. Methods

3.1 An approach to Triplet Extraction

The aim of this paragraph is to describe the approach for the development of a software

application to extract triplets from natural language texts, in English.

As already explained in the Background, a triplet is composed by a Subject, also known as

Domain, a Object, also known as Range, and the Predicate which links them, also known

as Relation (Figure 3): this structure is similar to the clause structure (Figure 3). We will

use this notation to write a statement to express a triplet:

“Domain + Relation + Range”.

Fig. 4. Triplet and clause structure.

Because this structure is very similar to a clause one, the idea behind our approach is to

exploit every piece of linguistic information embedded in every natural language text to

extract triplets. We named our approach “Deterministic Triplet Extraction Approach”

(DeTEA); it is named “Deterministic” because it relies on a rule-based approach; an

example of what we would like to create is as follow:

1. Natural Language text: “Cancer can be managed with removal of the kidney, or

nephrectomy.”

2. Processing of the text

3. Output: extracted triplets (as shown in Figure 3):

Cancer + can be managed with + removal of the kidney

Cancer + can be managed with + nephrectomy

 26

4. Output: semantic network (Figure 5).

Fig. 5. Triplets extracted from the sentence: “Cancer can be managed with removal of the kidney, or

nephrectomy.”.

Thus the first idea behind our approach is we want to find one Verb Phrase (VP) and two

Noun Phrases (NP) because triplets and clauses have similar structures (Figure 3) and in

clauses objects and subjects are Noun Phrases and verbs are Verb Phrases; thus:

1. the VP will be the Relation;

2. first NP will be the Domain: it will be one of the NP on the left to the VP;

3. second NP will be the Range: it will be one of the NP on the right to the VP.

To extract phrases from text, we plan to use Statistical Natural Language Tools.

3.1.1 Elements of English Linguistic
To understand our efforts and our choices, it is important to understand how a sentence is

created and how to gather every piece of grammatical information from it.

A list of the English linguistic structures [54] is shown in Figure 6: words are the

smallest unit; words are grouped in phrases; phrases are grouped in clauses which are

grouped in sentences; a group of sentences composes the discourse. Phrases and clauses

are related with our work.

Fig. 6. Structures of English Linguistic: every element is composed by a combination of smaller one

(e.g. a clause is composed by a combination of phrases and word).

 27

The smallest building block of English language is the word (Figure 6) [55]. Words

can be classified in nine categories, also known as word main classes or Parts Of Speech

(POSs): 1) Noun (N), 2) Verb (VB), 3) Adjective (Adj), 4) Adverb (Adv), 5) Pronoun

(Prn), 6) Determiner (Det), 7) Numeral (Num), 8) Auxiliary (Aux), 9) Preposition (P) and

10) Conjunction (C).

These categories group words together according to particular characteristics which they

share and indicating which labels use from the previous list to use when referring to certain

words.

 A step forward we find the phrase [56]: a phrase is a sequence of at least one word.

Every phrase has only one main word, called head word: it is a lexical item which is

central to the phrase in the sense that some crucial information would be missing without

it; a phrase without an head would seem structurally incomplete (this is the way to discover

which word is the head one). The POS tag of head word implies the phrase type, but not

every word class can originate a phrase. Five different kinds of phrase exist [56]:

1. Noun Phrase (NP)

2. Verb Phrase (VP)

3. Adjective Phrase (AdvP)

4. Adverbial Phrase (AdvP)

5. Prepositional Phrase (PP).

Every kind of phrase is composed by a fixed structure with some mandatory parts and

some non-mandatory ones.

1. The Noun Phrase (NP) is the most complex phrase in English: a grammatically

correct NP starts with a not mandatory determiner, followed by a not mandatory

pre-modification part, followed by the head word which is mandatory and can be

followed by a not mandatory post-modification part. Determiners are only found in

Noun Phrases and they occur only at the beginning of it [54]. A pre-modification

part is almost always composed by one or more Adjectives. Nouns as well as

adjectives can be part of pre-modification. Post-modification is more complex

because both clauses and phrases can be part of it. An head noun can be post-

modified with Prepositional Phrases, relative clauses, some Adverbial Phrases,

that-clauses or comparative clauses. For example, “these large sugary doughnuts

filled with jam and cream” is a complete and correct NP where “these” is the

 28

determiner, “large sugary” is the pre-modification, composed by two adjectives,

“doughnuts” is the head word and “filled with jam and cream” is the post-

modification part, composed by a verb at past participle, a preposition and two

nouns [56].

2. A Verb Phrase (VP) can be simple and consists of just a lexical verb (which may

be a multi-word verb) or it may include one or more auxiliaries up to a maximum

of four. The modal auxiliaries are used to add shades of meaning, such as

obligation (must) or possibilities (might). A verb phrase will not be longer than six

elements, like “might have been being told off”, where “might“ is a modal

auxiliaries, “have been being” is the primary auxiliaries and “told off” is the head

word, a multi-word verb [56].

3. and 4. Adjective Phrase and Adverbial Phrase are not dissimilar in their range of

possibilities for pre- and post-modification. Often, both consist only of the head

word: they both could be enriched with a pre-modification part and a post-

modification part. Head words are often pre-modified by a single adverb, normally

an intensifier, such as “incredibly unconfortable” where “incredibly” is the pre-

modification of the head word “unconfortable”. Very occasionally a AdjP or a

AdvP is post-modified by an adverb, such as “enough” or “indeed”. More typically,

they are post-modified by a Prepositional Phrase [56].

5. A Prepositional Phrase is composed by the head word, a preposition which has to

be accompanied by another element, or prepositional complement. Most typically,

the prepositional complement is a NP or an AdvP [56].

From now on, we will use this notation

{A}xP

to represent the type “xP” of the phrase “A”.

The occurrence of a phrase within another one is referred to as embedding [56]. For

example, consider the phrase {a very serious injury}NP: the pre-modification part is

composed by an AdjP. This is clear if you consider “very” is referred to “serious” and not

to “injury” (as it should be if very is only the premodification of the NP): thus the correct

POS tagging is {a {very serious }AdjP injury}NP. The embedding greatly increase the

complexity of automatic analysis of English. The phrases can also be linked together in

two specific ways: by coordination (the joining together of two linguistic units on an equal

 29

footing) [56] and by apposition (two adjacent phrases of the same type which refers to the

same object) [56]. As we will explain better later, this three kinds of expressions are very

hard to manage for an automatic system and are the main source of its mistakes.

Clauses are unit of syntactic construction formed by phrases” [57]. A verb element

is central to a clause: it contains always at least one Verb Phrase (VP) normally preceded

by a subject element and followed by any elements needed to make the clause

grammatically complete. Every clause must have at least a finite verb: a verb is called

finite if it has a tense and a person. Clauses are made up of a combination of phrases with

the role of clause element. The elements of a clause are: Subject (S), Object (O), Verb (V),

Complement (C) and Adverbial (A). Six types of verb exist [57]:

1. Transitive

2. Intransitive

3. Ditransitive

4. Complex Transitive

5. Copular

6. some few other verb with very peculiar structure.

Every verb type enforces a minimal fixed clause structure (Figure 7): for example, a

Ditransitive verb requires two different Objects with different semantic role.

Every kind of phrase can have any kind of role in the clause. In addition a VP could be

either a Subject (e.g. “To heal is the firs task of a clinician”), a Verb (“The clinician

healed the patient ”) or a Object (“The clinician tried to heal the patient”).

Fig. 7. Verb types and their minimal structure.

 30

Thus, understanding the kind of clause can help us predicting identifying the

structure of the sentence and understanding better the role of a phrase within a sentence.

3.1.2 Exploiting Natural Language: how our approach processes a text to

extract an Enriched Phrase

In this paragraph, we explain which Natural Language Processing (NLP) tools are needed

to design and then implement our Deterministic Triplet Extraction Approach (DeTEA).

One of the bases of Deterministic Triplet Extraction Approach is the idea of Grammatical

Patterns: the combination of Phrase type, Part Of Speech-tags and words used can lead us

to unique group of word with a specific behavior and role inside the sentence.

The more basic NLP tool is a tokenizer (Figure 8): it just splits a sentence in an

array of words (also called tokens). Once a tokenizer has split the sentence in an array of

tokens, we could use this array as the input for a Part Of Speech (POS)-tagger [44]

(Figure 8): POS-tagging is a simple and not time consuming task, but it is not enough to

extract triplets from sentences. For example, let consider the sentence of Figure 5 “Cancer

can be managed with removal of the kidney, or nephrectomy.”. If we append POS-tag to

every word, we obtain:

[Cancer]N [can]VB [be]VB [managed]VB [with]P [removal]N [of]P [the]DET [kidney]N, [or]C

[nephrectomy]N .

POS-Tags are not enough to get the output of Figure 5 from the input text. It would be very

hard trying to extract triplets using only POS-tags: there is a lack of pieces of information.

For example, “can” has the VB tag, but it is a modal: this kind of information is not

obtainable with POS-tags.

Fig. 8. a) Tokenizer and b)Part Of Speech tagger with their inputs and output.

 31

A Chunker [58] (Figure 9) is a tool to merge group of words in Phrases: it uses

both the output of the tokenizer (Figure 8a) and the output of the POS-tagger (Figure 8b) to

create phrases. The chunker output of the input sentence “Cancer can be managed with

removal of the kidney, or nephrectomy.” is:

[Cancer]NP [can be managed]VP [with]PP [removal]NP [of]PP [the kidney]NP

[nephrectomy]NP.

However, Chunker ignores commas and Conjunctions: this pieces of information are used

to link clauses inside a sentence; for example the output for the input text “removal of the

kidney, or nephrectomy.” is

[the kidney]NP [nephrectomy]NP.

Fig. 9. Input and outputs of a Chunker, a tool to extract phrases from a text. It requires the text itself,

the list of words (output of fig. 7 a) and the list of Part Of Speech tags (output of fig. 7 b).

 A Parser [58] (Figure 10) creates linguistic trees: it considers more deeply the

grammatical sentence structure. It uses the outputs of a tokenizer, a POS-tagger and a

chunker.

 32

Fig. 10. Input and outputs of a Parser, a tool to extract Parser-tree from a text. It requires the text, the

list of words (output of fig. 7 a), the list of Part Of Speech tags (output of fig. 7 b), and the list of

phrases (output of fig. 8).

The output of a Parser is called Parser tree (Figure 11): Parsers give us every piece of

information of a sentence.

A Parser creates tree structures where the embedded Phrases are considered both as a

Phrase and as a pre-modification (or post-modification) of another phrase; also

conjunction, coordination, and subordination are displayed through the use of different

level of the tree: coordinated clauses have same level while subordinated ones are closer to

the leaves level.

We decided to design a new structure to store grammatical information (Figure

12): it is richer than a chunking output but is quicker than a parser from a computational

time point of view (as shown in figure 10, a Parser uses the output of a Chunker to create

the Parser-tree: this operation is more complex than just add some element to a Chunker

output). It uses the output of a tokenizer, of a POS-tagger and of a Chunker. It creates

enhanced Phrases where some items hid by Chunker are clearly exposed: commas become

“,”-type Phrase and conjunctions become “AndOr”-type Phrase. This way, the phrase

Fig. 11. Example of a Parser-tree structure for the sentence “The doctor

visited the patient”.

 33

punctuation is included into the grammatical structure. Furthermore some Phrases are

merged together and other are erased, edited or moved. We called this structure “Enriched

Phrases” and we called the tool to extract them “Enriched Chunker”.

Fig. 12. Input and output of an Enriched Chunker. It requires the text, the list of words (output of fig.

7 a), the list of Part Of Speech tags (output of fig. 7 b), and the list of phrases (output of fig. 8).

3.1.3 Algorithm overview

From now on, we will call Deterministic Triplet Extraction Tool (DeTET) the desired

implementation of Deterministic Triplet Extraction Approach. The input for DeTET is a

medical text (e.g. a PubMed abstract, a definition from Unified Medical Language System

UMLS [7],...): every text analyzed by DeTET is supposed to be grammatically correct and

to contain only correct information. DeTET is composed by three different phases: a pre-

processing phase, a triplet extraction phase and a post-processing phase.

 There is a simple cleaning text pre-processing phase: at this point, DeTET removes

some useless items inside the text, as “\n” (escape character to start new line), or

unnecessary white space. Also anything inside between brackets is cleaned (this is done to

avoid the extraction of incorrect triplets).

The next phase is needed to transform every sentence of inserted text in Enriched

Phrases arrays (Figure 13); it starts with the splitting of input text (Figure 13 step 1) in an

array of sentences (Figure 13 step 2): DeTET needs to process sentences one by one to

minimize mistakes spread one sentence to another. Once sentences are splitted (Figure 13

step 3) in an array of sentences, every sentence is “tokenized” (i.e. DeTET puts every word

in a words array, step 3 of Figure 13) and Part-Of-Speech (POS)-tagged (i.e. DeTET

appoints a POS tag to every token, step 4 of Figure 13). In the end, DeTET uses a chunker

to merge group of words in phrases (Figure 13 step 5): the chunker tool needs both the

 34

tokens array and the POS-tags array. Once DeTET has extracted every grammatical

information needed, the creation of Enriched Phrases begins (Figure 13 step 6): using the

rule exposed in the paragraph 3.1.2 every sentence is transformed in an array of Enriched

Phrases.

The second phase is the Triplet Extraction. Starting from Enriched Phrases, DeTET

try to extract as much triplets as possible. Firstly DeTET look for the first VBF, tagged

1VBF: the Domain will be the first NP on the left and the Range the first on the right. This

way, every not VBF could refer to the Domain of 1VBF. Then DeTET looks for every

VBF, VBN, VBG and Such_As. Every triplet also receives a Boolean tag: this tag has

value “true” if that triplet has been extracted from a VBF or 1VBF, and receives a value

“false” otherwise. This tag is used in the last phase of DeTET.

The last phase is the post-processing. We want to increase the meaning of every

triplet to improve the performances. This phase is subdivided in some sub-phases. Firstly,

we want to complete every triplets of “and VP” pattern with the correct Domain. Secondly,

we want to switch every pronoun, “which” and “that” with the Noun it refers to: in the

sentence “The kidneys are bean shaped organs that serve several essential regulatory

roles in vertebrate animals. They are essential in the urinary system.”, “that” and “They”

both refers to “The kidneys”.

Every pronoun and “That” are substituted with the domain of the first previous triplet with

the Boolean set to true. “Which” are substituted with the range of the previous triplet.

Then, every triplets with a list is splitted in the correct amount of triplets. At this point, the

last phase of post-processing starts. DeTET tries to collapse similar range and domain to a

common label: this way, the triplets are more easy to read and to visualize. Single word

similarity is an open issue of NLP. Group of words similarity are harder to manage than

single word similarity: this is due to the exponential complexity of this problem.

In DeTET system, discovering semantic equivalent triplets is useful but not

mandatory: thus we decided to implement an approach with the highest precision

(precision is defined as the number of correct semantic equivalent triplets discovered

divides the number of total semantic equivalent triplets discovered) and acceptable

accuracy (accuracy is defined as the number of total semantic equivalent triplets

discovered divides the number of total existing semantic equivalent triplets);

 35

Fig. 13. Steps to create Enriched Phrases

 36

we said “discovering semantic equivalent triplets is useful but not mandatory” because we

want to collapse string if and only if we are pretty sure they are the same thing and we

accept to not collapse every possible string. For example, we want “Kidneys” “The

Kidneys” and “Other Kidneys” are collapsed while “you” and “your kidney” not. Our

solution is based on the mean of Smith Waterman Gotoh Windowed similarity score [59]

and Soundex [60] one: if the mean is higher than 0.85, the two string are semantically

equivalent. This threshold has been found empirically. Smith Waterman Gotoh algorithm

performs local sequence alignment: instead of looking at the total sequence, the Smith

Waterman Gotoh algorithm compares segments of all possible lengths and optimizes the

similarity measure [59]. Soundex algorithm is a phonetic approach to similarity: two words

are similar if and only if they have similar pronunciation [60].

3.1.4 Grammatical patterns to create Enriched Phrases

Grammatical patterns manageable by the designed system are described as it follows. We

want to point out the Relation is not forced to be just a verb: for example, “father_Of” is

the first relation a student meets in any ontology university class [25]. Furthermore, what

DeTEA would try to do is to extract the Domain and the Range of a relation, not to extract

the Subject and the Object of the sentence: for example, an Adjective could be the Object

(this happens with copular verb). The aim of this pre-processing phase is to make every

Domain the closer NP to VP on the left and the Range the closer one on the right: this way

the triplet extraction will be easier. Furthermore, a single label for every VP is not enough:

the implementation of DeTEA could use several label to tag every kind of verb: when is

used “VP” we mean a generic Verb Phrase, when is used VBF or VBft we means every

Verb Phrase with a finite tense verb as head word; first VBF receives the special tag

1VBF. The other VP tags will be showed at the end of this list.

1) “Noun Phrase + Prepositional Phrase + Noun Phrase” pattern

“[...] the removal of the kidney is necessary”: this sentence is a clear example of a

NP+PP+NP pattern; { the removal }NP { of }PP { the kidney }NP { is }VP { necessary }ADJP.

There are two different NP before the VP, both could be the subject. If we consider “the

removal” as subject, we are missing some kind of information: the triplet “the removal + is

+ necessary” is grammatically correct but not so meaningful. The triplet: “the kidney + is

+ necessary” is grammatically not correct. What DeTET would like to extract is: “the

 37

removal of the kidney + is + necessary” which is both grammatically correct and

meaningful. The rule is: if DeTET finds “NP PP NP” pattern, it will merge those three

phrases in a single NP one; from now on, we will use this layout style: “NP PP NP [...] +

{NP, PP, NP}NP “ means to merge the three phrases in a single one typed NP. The symbol

“!” means not (e.g. “NP !PP” means NP followed by any Phrase that is not a Prepositional

one). If the text of a phrase is specific (e.g. if we want to consider only “such as” and not

every Prepositional Phrase), we will write the text in lower case (thus we will write for

example “NP such as NP”). In the end, “[...]” means any kind of text. Thus the rule for NP

PP NP pattern can be written as:

[...] NP PP NP [...] + {NP, PP, NP}NP

2) “VP + PP” pattern

“Cysts can be managed with removal of the kidney” : this sentence contains a VP+PP

pattern; { Cysts }NP { can be managed }VP { with }PP { removal of the kidney }NP . First,

NP PP NP pattern is applied to “removal of the kidney”. The triplet “cyst + can be

managed + removal of the kidney” is correct but could be improved including “with” in the

relation. Thus, the rule is

[...] VP PP [...] + [...] {VP, PP}VP [..].

3) “Verb Phrase + Adjectives Phrase” pattern

“Kidneys are essential in the urinary system” and “Diseases of the kidneys are diverse”.

This two sentences are useful to understand the VP+AdjP pattern. In the first sentence,

the verb is not the relation between “Kidneys” and “urinary system”, which is the Range

we would like to extract. In the second sentence, “diverse” is the Range of our relation.

We would like to extract: “Kidneys + are essential in + the urinary system” and “Diseases

of the kidneys + are + diverse”. Thus, the rules are:

[...] VP AdjP PP NP + { VP, AdjP, PP }VP NP

VP AdjP !PP + VP {AdjP}NP !PP

4) “Verb Phrase Noun Phrase” as pattern

“Kidneys serve the body as natural filter” : this sentence contains a VP NP as pattern (it

is peculiar with some specific verb like to serve or to act). The triplet “the kidneys + serve

+ the body as natural filter” (once again we use the NP PP NP pattern in “the body as

natural filter”) is grammatically correct but is worse than “the kidneys + serve the body as

+ natural filter”, where the relation is more meaningful. Thus the rule is:

 38

[...] VP NP as NP + {VP, NP, as}VP NP

5) “and Verb Phrase” pattern

Sometimes the subject is not expressed. For example, in the sentence “Kidneys are a

natural filter and are essential in several regulatory roles” there is not a subject next to

“are essential”: the subject is the same of the other verb. Thus the rules to implement and

VP pattern are:

NP1 1VBF NP2 and VBF NP3 + NP1 1VBF NP2 and NP1 VBF NP3

NP1 1VBF NP2, VBF NP3 + NP1 1VBF NP2, NP1 VBF NP3

These rules are implemented during the post-processing phase because during the Enriched

Phrase conversion phase DeTET does not know which is the Subject of a verb.

6) “Adverbial Phrase” management

AdvP management requires some very specific rules. The AdvP is often ignorable without

any loss in meaning. Thus AdvP is ignored unless:

 It is “when”: “when” and “if” need a more careful rules to avoid some errors, we

will explain them later.

 Is the word before or after a verb: in this case, the AdvP is appended in the VP (e.g.

“Kidneys are not bones ”, “not” is an Adverb and can not be ignored).

7) “such as” pattern

“The kidneys serve homeostatic functions such as the regulation of electrolytes”. “Such

as” is a PP very interesting. What is the meaning of the sentence? The kidneys serve

homeostatic function and one of the homeostatic function is the regulation of electrolytes.

We can change the sentence this way without any loss of meaning “The kidneys serve

homeostatic functions such as ; the regulation of electrolytes is a homeostatic functions”.

This way we have created a new correct triplets which enriches our final performance.

DeTET uses the “Such_As” tag to label the added “is a”. Thus the rule for such as pattern

is:

[...] NP1 such as NP2 + [...] NP1, NP2 {is a}Such_As NP1

As we will see later, also list of NP are processed to improve the performances. The such

as pattern only considers the closer NP on the left as range of “is a” relation, and considers

a single NP or a list of NP as domain: for example, in the sentence “The kidneys serve

regulatory roles and homeostatic functions such as the regulation of electrolytes,

maintenance of acid–base balance, and regulation of blood pressure” , the rule leads to

 39

“homeostatic functions” as NP1 and three different NP2; the sentence become: “The

kidneys serve regulatory roles and homeostatic functions, the regulation of electrolytes is a

homeostatic functions , maintenance of acid–base balance is a homeostatic functions,

regulation of blood pressure is a homeostatic functions” . Thus the extended rules are:

[...] NP1 such as NP2 + [...] NP1, NP2 is a NP1

[...] NP1,..., and NPn such as NP0 + [...] NP1,..., and NPn, NP0 is a NPn

[...] NP0 such as NP1,..., and NPn + [...] NP0, NP1 is a NP0, ..., NPn is a NP0

8) “including” and “involving” pattern

The gerund “including” is often used with the same meaning of “such as”. For example, it

is true in the sentence: ”The kidneys also produce hormones including calcitriol,

erythropoietin, and the enzyme renin.”. Thus the including pattern is similar to such as

one. The gerund could also be used in the middle of a sentence: thus we need more careful

rules; if including is followed by a NP which is followed by a VP with the verb at finite

tense, DeTET moves the including pattern at the end of the sentence.

NP1 including NP2 VPft [...] + NP1 including NP2 VPft [...], NP1 is a NP2

NP1 including NP2 ! VPft [...] + NP1 is a NP2

“Common clinical conditions involving the kidney include the nephritic” . The gerund

“involving” is often used to link a Domain or a Range to a subject matter. Involving is pre-

processed with a similar pattern as including one, but the gerund is substituted with “linked

to”. Thus the involving pattern rules are:

NP1 involving NP2 VPft [...] + NP1 including NP2 VPft [...], NP1 linked to NP2

NP1 involving NP2 ! VPft [...] + NP1 linked to NP2

9) and 10) “if” and “when” patterns

“If” and “when” are pre-processed in a strict way. The part of the sentence with if or when

is erased and the main part have its verb turned into a modal one. As we will see in the

discussion part, conditional statement are impossible to write using the formal logic of

ontologies. Thus the rule to implement that is:

If/when [...] NP1 VP NP2 + If/when [...] NP1 “could be ”+VP NP2

NP1 VP NP2, if/when [...] + NP1 “could be ”+VP NP2

[...] if/when [...], NP1 VP NP2 +[...] if/when [...],NP1 VP NP2

 40

11) Infinitives

Infinitives are tagged with “VBinF”. A VBinF can have several roles within a sentence: it

could be a subject or a object (e.g. “To see is important for the clinician”); it also could be

used as a verb. To manage VBinF, DeTET uses this rules:

NP VBinF NP [...] + NP VBinF NP [...], NP {VBinF}VBF NP [VBinF as

parenthesis]

!NP VBinF NP [...] + {VBinF+NP}NP [...][VBinF as NP complement]

!NP VBinF [...] + {VBinF}NP [...] [VBinF as Subject or Object]

12) Gerundives management

Gerundives are tagged with “VBG”. Gerundives can be used as Verb, as Noun or as

Adjective. To manage VBG, DeTET uses the following rules:

NP VBG NP + NP {VBG}VBF NP [VBG as Relations]

VBG NP VP NP + {VBG NP}NP VP NP [VBG as Subject complement]

NP VP VBG NP + NP VP {VBG NP}NP [VBG as Object complement]

VBG VP NP + {VBG}NP VP NP [VBG as Subject]

13) Past Participles management

Past Participles are tagged with “VBN”. They are quite hard to manage because

sometimes is impossible to understand if they are used as Verb or as Adjectives without a

human understanding of the sentence. The rules for VBN are:

!NP VBN NP [...] + [Subject of the main part] {VBN}VBF NP

NP VBG NP + NP {VBG}VBF NP

14) List merging management

List merging is the last part of text pre-processing. DeTET considers a list as a sequence of

NP (or enriched NP), divided by a comma. If the last two elements of a list are also divided

by a conjunction like “and” or “or”, DeTET merge every NP of the list in a big one

containing them all: every element of the list is separated from others with the text

“DIVIDEDBY”.

During DeTET post-processing this big NP is splitted to create three different triplets as

we will see later. The desired results from this process are shown step by step in Table 3.

 41

Table 3. Envisaged output for Deterministic Triplet Extraction Tool implementation.

 First Text Second Text

Input “Kidneys are also responsible for the

reabsorption of water, glucose, and

amino acids.”

“Cancer can be managed with removal of

the kidney, or nephrectomy.”

Enriched

Phrase

tag

{Kidneys }NP {are also responsible for

}1VBF {the reabsorption of water}NP { },

{ glucose}NP {}, { and }AndOr { amino

acids }NP

{ Cancer }NP { can be managed with }1VBF {

removal of the kidney }NP { },{ or}AndOr {

nephrectomy }NP

List

merging

phase

{Kidneys }NP {are also responsible for

}1VBF {the reabsorption of water

DIVIDEDBY glucose DIVIDEBY

amino acids }NP.

{ Cancer }NP { can be managed with }1VBF {

removal of the kidney DIVIDEBY

nephrectomy }NP

Output 1. Kidneys + are also responsible for +

the reabsorption of water;

2. Kidneys + are also responsible for +

+ the reabsorption of glucose;

3. Kidneys + are also responsible for +

+ the reabsorption of amino acids;

1. Cancer + can be managed with +

removal of the kidney;

2. Cancer + can be managed with +

nephrectomy;

3.2 Deterministic Triplet Extraction Approach Design and

Development

As we have explained in the Introduction or Background, Ontologies creation is still a

bottleneck for a common use of semantic technologies: creating an ontology is an hard

and time consuming task. Ontologies creation relies both on domain knowledge and

Ontologies Web Language (OWL) knowledge: it is very uncommon a clinician has a deep

knowledge about OWL and it is very uncommon a Information Technology specialist has

deep knowledge about some medical domains.

3.2.1 Deterministic Triplet Extraction Approach Design and

Development

Our system has been developed using the Software Engineering waterfall model with

returns [61].

We envisage our system will be used by two different kind of users: biomedical

researchers and consumers, as a graph representation (with not more than 15-20 nodes) is

 42

clearer and better understandable than a similar length text. Researchers could also use our

system to create an ontology because creating an ontology by hand is pretty hard: this way

they will have every semantic features expressed in par. 2.1.4 with a little effort. It could

provide a easy way to create ontologies from a selected text: the user is “responsible” for

the correctness of the text, because our system itself cannot be aware of incorrect

knowledge inside an input text (as a first implementation). It will be available on every

personal computer: it will not require high performance hardware, thus almost every

personal computer could use it. Our system has to be as correct as possible and as fast as

possible: the user would use our system in an everyday work scenario, thus it would not

want to spend to much time waiting for the output. The interaction possibilities among

users and system will be as low as possible: the user will be driven step by step by a clear

Graphic User Interface but the whole process will be as automatic as possible. The user

will only provide the text and choose how to display or save the created ontology. Because

this system is not for Information Technology specialist, the system will be as user friendly

as possible and as easy to use as possible.

Our approach is based on the fact that English Linguistic follows precise rules as

we have reported in par. 3.1.1: a clause minimal structure is de facto fixed. Thus, the

system will extract the clause structures and then it will convert them in ontology

statements. We based our approach on some free available Natural Language Processing

(NLP) tools. The problem is NLP tools are a machine learning tool which requires huge

training sets to perform well and the creation of such structures requires thousands of hours

of work. Thus our approach will rely on the performances of other NLP tools.

 The system will be constituted by an implementation of the Triplet Extraction

Approach we will refer to as Deterministic Triplet Extraction Tool (DeTET), and a clear

Graphical User Interface (GUI). The GUI will allow the user to input the text and to see or

to store the output, while DeTET will do all the work and the user will not even know

DeTET exists. DeTET will be constituted by some NLP tools, such as a chunker and a Part

Of Speech-tagger, by some methods to convert the text in an appropriate structure. It will

also have some methods to extract triplets from the structures and some methods to post-

process the extracted triplets (e.g. mapping task among extracted concepts).

 Both GUI and DeTET will be implemented using Java programming language: the

design of the tests will be deeply explained in par. 3.5.

 43

3.3 The design of a Graphical User Interface for the Triplet

Extraction Tool

We have designed a Graphical User Interface (GUI) to interact and use the Triplet

Extraction Tool. The GUI has to allow the user to insert the input as text and to view the

results. It will offer two different kind of visualization: a user could view the result as a

text composed by triplets or in a graphical way (as a graph where every node is a concept

and every edge is a relation between two nodes, see Figure 5).

 Creating readable graph is a pretty hard task [62]; we decided to offer the user three

different kind of graph visualizations: a user can view all the triplets, or every triplet

related to a concept, or only the first “n” triplets (with “n" a user preselected number). The

relation of triplets to a concept is made with a semantic similarity approach (we will

explain deeply the algorithm of similarity measurement in 3.3.3): if the Domain or the

Range score a high value with a chosen word or group of word, the triplet is shown.

 We have planned to use the Fruchterman-Reingold [63], a force-directed algorithm

for representing the layout. In a force-directed algorithm, every nodes is represented by

steel ring with an electrical charge and every edge is represented by a spring: this way the

system has a lot of forces with different directions and magnitudes. The idea is to minimize

the energy of the system by moving the nodes. In the Fruchterman-Reingold algorithm, the

sum of the force vectors determines which direction a node should move and the step

width (how far a node is moved) is constant. The algorithm go ahead until no more node

movement is needed: at that point, the energy of the system is minimized.

The System also would allow the user to save the triplets as an ontology. We will make

available two different formats for the output file: “RDF/XML” format [25] and “Turtle”

format [25]. “RDF/XML” [25] are a set of rules (or syntax) to express a RDF file in an

XML valid style: it has been defined by World Wide Web Consortium (W3C, the main

consortium of standards for World Wide Web). “Turtle” [25] is another format to express

an ontology, easier to read than “RDF/XML” for a human. In addition, the user could load

output files into the system for representing them.

 44

3.4 The implementation of the system

3.4.1 The Java programming language

Deterministic Triplet Extraction Tool has been developed using Java programming

language. It is object oriented. We have chosen to use Java as programming language

because the majority of NLP tools are already developed as Java tools.

3.4.2 Application Program Interfaces used

An Application Program Interface (API) is similar to C language libraries: it is a list of

classes and methods available to be used by a programmer. The programmer does not

know how a class of an API generates the output: he/she just know how to interact with it

through its methods, what kind of input every method needs, and what he/she has to expect

as output.

There are several API embedded in Java Standard Edition (Java SE) and any programmer

can publish their own API.

DeTET uses the Apache OpenNLP library [64] as NLP tool: the Apache OpenNLP library

is a machine learning based toolkit for the processing of natural language text. It is free,

open source and rich of documentation and tutorial. It uses a machine learning approach to

work: the training set is available with the OpenNLP API itself as an external file.

OpenNLP has been used for the POS-tagging, the chunking and the tokenization (split the

word of a sentence in an array of String). OpenNLP sentencer (a tool to split sentences of a

text in an array of String) score bad results: DeTET uses a simple String.split() to complete

this step.

 DeTET uses JUNG2 API [65]for graphical visualization of extracted triplets. Jung2

is a free API for drawing graph.

 DeTET uses JENA [66] for translating triplets into a RDF/XML ontology.

 The Graphical User Interface (GUI) uses JSwing API, the more common API for

GUI design.

3.5 Designing Tests for a Triplet Extraction Tool

To text the performance of the system, we have selected some texts from two main

sources: Wikipedia texts [67] and PubMed/Medline [32] abstracts.

 45

 First source is compatible with a non technical user who would like to increase the

knowledge about a medical topic. Thus, his/her source will not be a technical one:

probably, he/she will use Wikipedia [67]. We have selected the introduction of six

common and less common topics: Trauma, Radiography, Pneumonia, The human body,

The kidneys and Deep Brain Stimulation. We have added also the “Signs and Symptoms”

paragraph of Pneumonia topics, also found on Wikipedia. Every text has been download at

02-19-2014.

 Second source is composed by abstracts of some papers: this source try to simulate

the general practitioner who would like to increase his/her knowledge about a specialist

topic to improve his/her care quality. Ten abstracts has been downloaded from PubMed

[32] and one from New England Journal of Medicine. PubMed’s ones are splitted this way:

five of them are related to “Kidney” while other five are related to “Deep Brain

Stimulation”. We have chosen the “Deep Brain Stimulation” topic because it is a specialist

topic which could be looked for by non specialist clinician. The NEJM’s one is related to

Thrombotic Event (see the appendix A for more accurate references).

 A last text has been created to test Noun Phrase lists: it contains some artificially

created sentences to evaluate the performances with lists. In Table 4 there is the resume of

test texts: the test corpus contains 219 sentences.

 46

Table 4. Texts for testing DeTET performances.

Core concept Title Reference
Number of

sentences

1 Trauma Introduction

http://en.wikipedi

a.org/wiki/Traum

a_(medicine)

30

2 Radiography Introduction

http://en.wikipedi

a.org/wiki/Radio

graphy

11

3 Pneumonia Signs and Symptoms

http://en.wikipedi

a.org/wiki/Pneu

monia

12

4 The human body Introduction

http://en.wikipedi

a.org/wiki/Huma

n_anatomy

10

5 Thrombotic Event
Risk of a Thrombotic Event after the 6-

Week Postpartum Period

The New

England Journal

Of Medicine [68]

8

6 Test NP Lists

4

7 The kidneys Introduction

http://en.wikipedi

a.org/wiki/Kidne

y

17

8 Pneumonia Introduction

http://en.wikipedi

a.org/wiki/Pneu

monia

11

9
Deep Brain

Stimulation
Introduction

http://en.wikipedi

a.org/wiki/Deep_

Brain_Stimulatio

n

23

10 Kidney abstract

Determination of relative Notch1 and

gamma-secretase-related gene expression

in puromycin-treated microdissected rat

kidneys.

PubMed [69] 9

11 Kidney abstract

Chronic Kidney Disease and the Risks of

Death, Cardiovascular Events, and

Hospitalization

PubMed [70] 9

12 Kidney abstract
Association of chronic kidney graft

failure with recipient blood pressure.
PubMed [71] 12

13 Kidney abstract PKD1 gene and its protein PubMed [72] 7

14 Kidney abstract
Acute Kidney Injury, Mortality, Length of

Stay, and Costs in Hospitalized Patients
PubMed [73] 8

15
Deep Brain

Stimulation
Deep Brain Stimulation PubMed [74] 8

16
Deep Brain

Stimulation
Deep brain stimulation PubMed [75] 12

17
Deep Brain

Stimulation

Deep brain stimulation for intractable

chronic cluster headache: proposals for

patient selection.

PubMed [76] 6

18
Deep Brain

Stimulation

Deep brain stimulation and cluster

headache
PubMed [77] 8

19 Deep Brain

Stimulation

Asymmetric pallidal neuronal activity in

patients with cervical dystonia.
PubMed [78] 14

http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Trauma_(medicine
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Radiography
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Human_anatomy
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Pneumonia
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation
http://en.wikipedia.org/wiki/Deep_Brain_Stimulation

 47

We have used this metrics to evaluate the developed tool:

1) Number of correct triplets: a triplet is correct if and only if the Domain is the

subject (or an enriched version) of the related predicate, the Relation is the

predicate and the Range is the object of it. We do not link the correctness of a

triplet to the meaning preservation: the meaning preservation is a subjective

evaluation.

2) Computation time: we have used “System.nanoTime()” Java embedded method to

calculate a 6 digit precision time as a float-type number. The calculation time

includes also the time to build the graph visualization of every extracted triplet.

3) Precision (p): it is the ratio between correct triplets and total number of them. Is a

float value number included in (0,1) interval.

a. 𝑝 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

4) Number of triplets per sentence: we do not want to evaluate accuracy, because is

not possible (we will come back at this point inside discussion paragraph). Thus we

evaluate the number of triplets extracted for every sentence.

We also evaluated the performance of the global system and of the GUI.

 Performance tests has been done on a 2011 21,5” iMAC (8 GB of RAM, Intel Core

i3 3,06GHz). 500 Gb Hard Disk Serial ATA, Java 7.

 48

4. Results

4.1 Deterministic Triplet Extraction Approach implementation

We have implemented our approach using Java; we have also developed a User Graphic

Interface (GUI) to allow the user to use the implemented tool as a standalone software; the

GUI has been implemented using Java, too.

4.1.1 Algorithm implementation: classes and methods

In this paragraph we show the results of software implementation.

 The “Phrase” class implements the Enriched Phrase object (Figure 14) . It has two

attributes: a String-type attribute to store the text of the Phrase (called text) and a String-

type attribute to store the Enriched Phrase type (called type); for example, in{ the removal

}NP the text is set as “the removal” and the type is set as “NP”. It has just base methods: it

has two get/set methods to read/write attributes and a “stmp()” method to print its content.

It has just two constructor: the generic one (Phrase()) and the complete one (which embeds

the two set methods). The “Phrase” linguistic item is implemented in the OpenNLP API

within the class “Span”: thus, when we refer to “Phrase” class, we will mean Enriched

Phrases while when we want to refer to Phrases linguistic item we will use “Span” label.

 Every extracted triplet is stored in a “Triplet” class (Figure 14): it is similar to

Phrase one. It has only get/set/print methods. It has four attributes: “Domain”, “Range”

and “Relation” are String, while “is_principle” is a boolean tag: it is true if the triplet is

extracted from a verb-finite Phrase, false otherwise.

 The main class of DeTET is LogAnaliz: it does not have any attributes but has

several methods (Figure 14) they are all shown. Both Phrase and Triplet classes use

LogAnaliz.

The main methods is PHanalizzatore: it is the one the GUI calls to make all the work; it

has just one input, the text it has to process. The output of PHanalizzatore is an ArrayList

of extracted triplets. Firstly, PHanalizzatore cleans the text, erasing useless or not-

processable items (e.g. brackets are ignored to avoid some extraction errors, “\n” are

deleted because they just add bugs to DeTET); then it splits the text in an array of

sentences: it processes every sentence one by one to minimize error spreading one sentence

to another. The splitting operation is achieved using a Java Regular Expression (Java

 49

Regex) with the embedded method String.split(Regex). A looping phase starts to process

sentences one by one: we will refer to a single sentence as sentencei which means we are

referring to i-esm sentence. The sentencei is splitted in an array of words using OpenNLP

tokenizator tool (this array is named “tokens”); then PHanalizzatore creates an array of

POS-tag (String) to link every token (word) to its POS-tag using OpenNLP POS-tagging

tool (this array is named “tags”). Then DeTET extracts phrases from the sentence using

“tags” and “tokens” array: it complete this operation using OpenNLP chunking tool; the

phrases are stored using the Span class (thus we will have an array of Spans we will refer

to as “span”). At this point, PHanalizzatore calls “span2phr(Span[], String[], String[])”

methods: it uses very pieces of information obtained at previous step to extract an

ArrayList of Enriched Phrases (thus, the output is ArrayList<Phrase>).

 “span2phr” uses some LogAnaliz methods to look for special grammatical patterns (refer

par. 3.1.4 for a list of implemented grammatical patterns) and returns an ArrayList of

Enriched Phrases. It is implemented as an iterative process where every phrase (Span

class) is processed to create Enriched Phrases (Phrase class). We have implemented two

methods to manage every grammatical pattern (grammatical patterns are explained in par.

3.1.4). First method is called “is_grammatical_pattern_name” (e.g. is_NP_and_PP(int,

Span[], String[], String[])): it uses every array previously created (tokens, tags and span)

and returns a boolean; the “int” input considers the loop number to avoid redundant

checks: it means, every element of span is considered just once. Second method is called

“grammatical_pattern_name” (e.g. NP_and_PP(int, Span[], String[], String[])): it returns

an “int” value. The value is used to set the number of span elements to merge in a single

Enriched Phrase element. For example, the code of “NP_and_PP” method is:

static int NP_and_PP(int pos, Span[] span, String[] tokens, String[] tags)

{

if(is_NP_and_PP(pos, span, tokens, tags))

return pos+2

else

return pos;

}

This way, if there is a NP in position “pos”, if there is also a PP in position “pos+1”, and if

there is also a NP in position “pos+2”, the “is_NP_and_PP” method returns true and the

“NP_and_PP” return “pos+2”: then “span2phr” will merge text contained in span[pos],

span[pos+1] and span [pos+2] in an NP-type Enriched Phrase. To merge the text of some

 50

span elements, span2phr uses a method called “stmp_span (int, int, Span[], String[],

String[])”: first int is the initial span, second int is the final span, Spans array contains the

phrases, first array of strings is “tags” and last is “tokens”. Thus the merged text and its

relative type is added to result ArrayList using ArrayList.add (new Phrase()) method.

Every time PHanalizzatore calls stmp_span(int, int, Span[], String[], String[]), it checks for

commas and Conjunction: they are not part of phrases, thus they are just ignored tokens

between phrases. Every time PHanalizzatore finds these items, it adds them to the

ArrayList<Phrase> in the correct position and with the correct type.

 Now PHanalizzatore calls “fondi_liste2 (ArrayList<Phrase>)” method: it processes

the ArrayList<Phrase> to merge list of NP, as explained in 3.3.2. The output is again an

ArrayList of Enriched Phrases (ArrayList<Phrase>).

 Next method called by PHanalizzatore is “such_and_ing(ArrayList<Phrase>)”: it

has two tasks. First, it has to manage correctly “such_and_ing patterns”. Second, it has to

manage conditional piece of sentences and piece of sentences containing “when”. The

output is again an ArrayList of Enriched Phrases (ArrayList<Phrase>).

 Last method called by PHanalizzatore to post-process Enriched Phrases is

cleaning_time (ArrayList<Phrase>). It has to manage Gerundives, Past Participle and

infinitives verb Phrases. It tries to set the right Phrase type to every non finite verb: for

example, if an infinite tense verb is used as a Subject, then the method changes its type to

“NP”. The output is again an ArrayList of Enriched Phrases (ArrayList<Phrase>).

Next method called by PHanalizzatore is “estrai (ArrayList<Phrase>)”: it is used to

create and store triplets from the ArrayList of Enriched Phrases. Its output is an ArrayList

of Triplets (thus, ArrayList<Triplet>). The extracted Triplets are raw: they have to be

polished by next method, “automappa”.

Last method called by PHanalizzatore is “automappa (ArrayList<Tripletta>)”: it is

a fine tuning of “estrai” method output. It swaps pronouns with corresponding nouns, it

tries to discover semantic equivalent triplets with different labels: it is the last method for

the triplet extraction phase and its output is the same ArrayList of triplets user will see.

“similarity_test(String, String)” is a method of LogAnaliz: it evaluates the

similarity of the two input String as explained in 3.1.3.

 51

Fig. 14. Deterministic Triplet Extraction Tool Class Diagram.

 52

“visualizzatore” is a method of LogAnaliz, called by GUI class: three overloaded

kind of this method exists. All three methods are used to show extracted triplets as graph,

using JUNG2 API. First version of visualizzatore is

“visualizzatore(ArrayList<Tripletta>)”: it shows every triplet as a graph. Second is ”

visualizzatore(ArrayList<Tripletta>, int)”: it shows just first “n” triplets as a graph, where

“n” is the inserted value. Last version of visualizzatore is

“visualizzatore(ArrayList<Tripletta>, String)”: it shows every triplet if and only if the

Domain or the range scores a value greater than 0,85 using the “similarity_test(String,

String)” method.

Last two interesting methods are the loading one and saving one.

“load_onto(String)” is a LogAnaliz method used by the GUI class to load an already stored

ontology; it accepts “RDF/XML” format or “Turtle” one. The output is an ArrayList of

triplets. “salva_onto(ArrayList<Tripletta>, String, String)” is a LogAnaliz method used by

the GUI class to save an ArrayList of triplets as an Ontology: the user can chooses the

format (only “RDF/XML” or “Turtle”).

GUI is a class used as Graphical User Interface: it has been developed using

Jswing, the Java GUI embedded builder. In 4.2 we will show its aspect and how to use it.

In Table 5 every method with a brief description, the input(s) and the output is

shown, sorted by class.

 53

Table 5. The list of methods for every developed class, with a short description of its utility. For every

method are specifed both the types of the inputs and the type of the output. ArrayList<type> means an

ArrayList of “type”-elements (e.g. ArrayList<String> means an ArrayList of Strings).

Method name Input Output Description Class

automappa ArrayList<Triplet> ArrayList<Triplet>

Triplet post-

processing method LogAnaliz

cleaning_time ArrayList<Phrase> ArrayList<Phrase>

Phrase post-

processing method LogAnaliz

elimina

int, int,

ArrayList<Phrase> ArrayList<Phrase>

Phrase post-

processing method LogAnaliz

estrai ArrayList<Phrase> ArrayList<Triplet>

Extraction of Triplets

from Phrases LogAnaliz

fondi_liste2 ArrayList<Phrase> ArrayList<Phrase>

Phrase post-

processing method LogAnaliz

inciso_1

ArrayList<Phrase>,

int boolean

Looking for VBG

inside the Sentence LogAnaliz

inciso_2

ArrayList<Phrase>,

int boolean

Looking for VBN

inside the Sentence LogAnaliz

is_Altough_and_NP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_in_order_PP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_NP_ADVP_and_PP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_NP_and_PP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_one_another

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_PP_and_NP_lista

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_VP_ADVP_PP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_VP_and_ADJP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_VP_and_As

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_VP_and_augADJP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

is_VP_and_PP

int, Span[], String[],

String[] boolean

Grammatical pattern

check LogAnaliz

load_onto String ArrayList<Triplet>

Loading a stored

ontology LogAnaliz

NP_ADVP_and_PP

int, Span[], String[],

String[] int

Grammatical pattern

implementation LogAnaliz

NP_and_PP

int, Span[], String[],

String[] int

Grammatical pattern

implementation LogAnaliz

PHanalizzatore String ArrayList<Triplet>

Main method which

embed almost every

other method LogAnaliz

salva_onto

ArrayList<Triplet>,

String, String void

Saving an ontology

to file LogAnaliz

 54

Method name Input Output Description Class

similarity_test String, String float

Evaluation of

similarity between

two multi word string LogAnaliz

span2phr

Span[], String[],

String[] ArrayList<Phrase>

Extraction of Phrase

from span, tags and

tokens LogAnaliz

Stampa_onto ArrayList<Triplet> String

Converting an

ArrayList of Triplets

in a String LogAnaliz

stmp_span

int, int, Span[],

String[], String[] String

Extract the text inside

some spans LogAnaliz

stmp_span

int, Span[], String[],

String[] String

Extract the text inside

one span LogAnaliz

such_and_ing ArrayList<Phrase> ArrayList<Phrase>

Phrase post-

processing method LogAnaliz

tolto_par String String

Inserted text post-

processing method LogAnaliz

visualizzatore ArrayList<Triplet> void

Graph visualization

of all extracted

Triplets LogAnaliz

visualizzatore

ArrayList<Triplet>,

int void

Graph visualization

of some extracted

Triplets LogAnaliz

visualizzatore

ArrayList<Triplet>,

String void

Graph visualization

of all extracted

Triplets LogAnaliz

VP_ADVP_PP

int, Span[], String[],

String[] int

Grammatical pattern

implementation LogAnaliz

VP_and_ADJP

int, Span[], String[],

String[] int

Grammatical pattern

implementation LogAnaliz

VP_and_As

int, Span[], String[],

String[] int

Grammatical pattern

implementation LogAnaliz

VP_and_augADJP

int, Span[], String[],

String[] int

Grammatical pattern

implementation LogAnaliz

VP_and_PP

int, Span[], String[],

String[] int

Grammatical pattern

implementation LogAnaliz

get_text N/A String

To get the text of the

Phrase Phrase

get_type N/A String

To get the type of the

Phrase Phrase

set_text String void

To set the text of the

Phrase Phrase

set_type String void

To set the type of the

Phrase Phrase

stmp N/A void

To visualize the

Phrase Phrase

get_Dom N/A String

To get the Domain of

the Triplet Triplet

get_Pri N/A boolean

To get the boolean of

the Triplet Triplet

get_Rel N/A String

To get the Relation

of the Triplet Triplet

 55

Method name Input Output Description Class

get_Rng N/A String

To get the Range of

the Triplet Triplet

set_Dom String void

To set the Domain of

the Triplet Triplet

set_Pri boolean void

To set the boolean of

the Triplet Triplet

set_Rel String void

To set the Relation of

the Triplet Triplet

set_Rng String void

To set the Range of

the Triplet Triplet

stmp N/A N/A

To visualize the

Triplet Triplet

4.1.2 Workflow of Deterministic Triplet Extraction Tool

In Figure 15 is summarized the workflow of DeTET from a inner point of view, starting

from a medical text inserted as a string. LogAnaliz receives the text from the Graphical

User Interface and immediately pre-processes the text, erasing pieces of sentence between

brackets. Then LogAnaliz calls “span2phr” method creating an array of Enriched Phrase.

The Enriched Phrases class calls some methods to merge list of NP, to pre-process and to

post-process the array of Enriched Phrases. Enriched Phrases class then sends the array of

Enriched Phrases to LogAnaliz, which calls “estrai” method to create triplets from

Enriched Phrases. The created array of triplets calls the “automappa” method itself and

sends the post-processed arrays of triplets back to the Graphical User Interface.

In the appendix A is shown a step-by-step (method by method) output for the input text:

“The kidneys are essential in the urinary system and also serve homeostatic functions such

as the regulation of electrolytes, maintenance of acid–base balance, and regulation of

blood pressure (via maintaining salt and water balance). They serve the body as a natural

filter of the blood, and remove wastes, which are diverted to the urinary bladder.”.

 56

Fig. 15. Sequence diagram method calls inside LogAnaliz, Enriched Phrase and triplet classes.

In Figure 16 the activity diagram of the system is shown. In the activity diagram, we focus

on what happens to the text during DeTET execution. Thus, a text is inserted by a user and

the Graphical User Interface checks the correctness of the text. Then LogAnaliz starts the

text processing phase, extracting an arrays of sentences. From every sentence of the array,

it extracts the array of words, the array of Part Of Speech tags and the array of Phrases.

Using all of these pieces of information, LogAnaliz creates an array of Enriched Phrases.

The Enriched Phrases perform some pre-processing and post post-processing tasks, such as

the list merging and the management of some peculiar situations (see paragraph 3.1.3).

Then LogAnaliz using the polished array of Enriched Phrases, extract an array of triplets.

Then the Triplet class processes the array and send the post-processed array to the

Graphical User Interface.

 57

Fig. 16. Activity diagram of the system.

 58

4.1.3 Performances

Table 6 summarizes the results of the DeTET with texts from Table 4 (par. 3.5).

Table 6. Performance of Deterministic Triplet Extraction Tool with texts from Table 4.

Core concept
Number of

sentences

Correct

triplets

Extracted

triplets

Elapsed

time (s)

Precision:

Correct

triplets /

Extracted

triplets

Number of

triplets for

sentence

1 Trauma 30 62 69 2,92 0,8985 2,3

2 Radiography 11 11 12 2,78 0,9166 1,0909

3 Pneumonia 12 35 38 3,14 0,9210 3,1666

4 The human body 10 18 20 2,87 0,9 2

5
Thrombotic

Event
8 11 14 2,81 0,7857 1,75

6 Test List 4 18 18 2,88 1 4,5

7 The kidneys 17 49 51 3,36 0,9607 3

8 Pneumonia 11 24 27 2,93 0,8888 2,4545

9
Deep Brain

Stimulation
23 37 41 3,41 0,9024 1,7826

10 Kidney abstract 9 20 23 2,99 0,8695 2,5555

11 Kidney abstract 9 22 24 3 0,9166 2,6666

12 Kidney abstract 12 14 14 2,93 1 1,1666

13 Kidney abstract 7 9 12 2,82 0,75 1,7142

14 Kidney abstract 8 13 20 2,78 0,65 2,5

15
Deep Brain

Stimulation
8 16 16 2,99 1 2

16
Deep Brain

Stimulation
12 19 22 3,15 0,8636 1,8333

17
Deep Brain

Stimulation
6 10 11 2,8 0,9091 1,8333

18
Deep Brain

Stimulation
8 13 17 2,94 0,7647 2,125

19
Deep Brain

Stimulation
14 27 29 3,13 0,931 2,0714

There are three tests with 100% precision and three test with less than 80%.

 59

In Table 7 a summary of DeTET global performance is shown.

Table 7. Summary of Deterministic Triplet Extraction Tool performances.

Metric Value

Mean extracted triplets for sentence 2,237

Mean precision 0,885

Total extracted triplets 478

Total input sentences 219

Total correct triplets 428

Total mean (Total correct triplets / Total extracted triplets) 0,895

Total computation time 56,631 s

DeTET scores a mean precision of 0,885 on 478 extracted triplets from 219 sentences.

We have also evaluated DeTET speed, using texts composed by random sentences from

precision test texts. Results are shown in Table 8.

Table 8. Results for tool speed tests.

Sentences # Triplets extracted Time elapsed (s)

161 308 3,425

401 770 4,718

710 1.340 5,717

4686 8.844 23,957

9372 17.688 44,619

4.2 Graphical User Interface implementation

We have developed a GUI to assist the user during DeTET execution.

In Figure 17 we have described the sequence diagram from the user point of view: the user

inserts the text in the GUI, which immediately checks if the inserted text is not a plain text

and confirms the operation through a message box. Then the user selects the “extract”

button from the “Triplets” menu. The GUI sends a message to LogAnaliz to extract

triplets. LogAnaliz calls the method “PHanalizzatore” to extract the triplets and it sends

them back to GUI.

 60

Fig. 17. Sequence diagram from the user point of view. “User” label means the user is using the application software, “GUI” is the Graphical User Interface

class and LogAnaliz is the class which processes the text.

 61

The GUI confirms the occurred extraction with a message box. Then the user can display

the output: he/she selects one option from view menu. The GUI sends this message to

LogAnaliz, which calls the correct version of the “visualizzatore” method which creates

and shows the graph to the user. The user can also save the ontology. he/she sends this

request to the GUI which sends the message to LogAnaliz. LogAnaliz calls “salvaonto”

method and sends a confirm to the user.

In following Figures we show a run of a generic user to extract triplets from the text: “The

kidneys are essential in the urinary system and also serve homeostatic functions such as

the regulation of electrolytes, maintenance of acid–base balance, and regulation of blood

pressure (via maintaining salt and water balance). They serve the body as a natural filter

of the blood, and remove wastes, which are diverted to the urinary bladder.”. The whole

process has been described in fig. 16: we will show screenshot of meaningful steps of fig.

16.

In fig. 18 the whole process is resumed:

5. The user selects “File” menu and “Insert text” option to insert the text inside the

system.

6. The user selects “Triplets” menu and “Triplet extraction from text” option to

extract triplets from the previously inserted text.

7. User selects one view option from the “View” menu to display extracted triplets

8. User selects “Save” option from “File” menu to save the ontology. The user has

two choices, “Save as RDF/XML file” and “Save as Turtle file”: this way he/she

can choose the format of the output ontology.

 62

Fig. 18. The workflow to extract triplets from a text using the Graphical User Interface.

 63

After the user has selected the “Insert text” option (Figure 18 step 1), the GUI allows the

user to insert the text (Figure 19 and Figure 20). The GUI displays a confirmation massage

box after a successful text input (Figure 20).

Fig. 19. The Graphical User interface allows the user to write the text after he/she has selected the

“Insert text” option in “File” menu.

Fig. 20. The user has insert the text "The kidneys are essential in the urinary system and also serve

homeostatic functions such as the regulation of electrolytes, maintenance of acid–base balance, and

regulation of blood pressure (via maintaining salt and water balance). They serve the body as a natural

filter of the blood, and remove wastes, which are diverted to the urinary bladder." in our simulation.

Fig. 21. The Graphical User Interface sends a message box to confirm the user he/she has successfully

inserted the text.

After the text has been successfully inserted, the user can select “Triplet extraction from

text” option from “Triplets” menu (Figure 18 step 2) as advised in Figure 20: the system

tries to prevent users from making mistakes and tries to assist the user. Thus it does not

allow the users to select an option before it can execute the relative task. For this reason,

 64

until the user has not inserted correctly a text, the “Triplet extraction from text” option is

not selectable (Figure 22).

Fig. 22. The user can not select “Triplet extraction from text” option until he/she has inserted a text.

The system shows a message to confirm the occurred extraction and tells the user how

many triplet it has extracted (Figure 23). Until the extraction has not occurred, no view

option is available from “View” menu (Figure 24).

Fig. 23. The system shows a message box to confirm the occurred extraction.

Fig. 24. The system does not allow the user to visualize an ontology until any triplet has been

extracted.

After the occurred extraction (Figure 23), the user can select one option from “View”

menu (Figure 18 step 3). Figure 25 shows the output when the “View extracted triplets as

text” option is selected (Figure 24) while Figure 26 shows the output when the “View

extracted triplets as Graph” option is selected (Figure 24).

 65

Fig. 25. Output when the “View extracted triplets as text” option is selected (fig. 23).

 66

Fig. 26. Graph output from the text "The kidneys are essential in the urinary system and also serve homeostatic functions such as the regulation of electrolytes,

maintenance of acid–base balance, and regulation of blood pressure (via maintaining salt and water balance). They serve the body as a natural filter of the blood,

and remove wastes, which are diverted to the urinary bladder.".

 67

Figure 27 shows how the starting screen changes when the “View extracted triplets about a

concept as a Graph” option is selected. The GUI allows the user to insert the concept name

(Figure 27) and immediately checks if the inserted name leads to an empty graph (Figure

28).

Figure 29 shows how the starting screen changes when the “View only first extracted

triplets as a Graph” option is selected. The GUI allows the user to insert the number of

triplets it has to show, with a default value of 10 (Figure 29).

Fig. 27. How the GUI allows the user to select the concept for the “View extracted triplets about a

concept as a Graph” option from “View” menu.

Fig. 28. The system immediately informs the user if the inserted concept name (fig. 26) leads to an

empty graph.

Fig. 29. How the GUI allows the user to select the concept for the “View extracted triplets about a

concept as a Graph” option from “View” menu.

In Figure 30 the graph generated using “waste” concept in Figure 27 is shown, while in

Figure 31 the graph generated from the first five triplets (Figure 29) is shown.

 68

Fig. 30. Graph linked to the concept “waste” (Figure 27) generated from the text "The kidneys are

essential in the urinary system and also serve homeostatic functions such as the regulation of electrolytes,

maintenance of acid–base balance, and regulation of blood pressure (via maintaining salt and water

balance). They serve the body as a natural filter of the blood, and remove wastes, which are diverted to the

urinary bladder.

 69

 Fig. 31. First five triplets (Figure 29) extracted from the text "The kidneys are essential in the urinary

system and also serve homeostatic functions such as the regulation of electrolytes, maintenance of acid–

base balance, and regulation of blood pressure (via maintaining salt and water balance). They serve the

body as a natural filter of the blood, and remove wastes, which are diverted to the urinary bladder.".

Once the user has viewed the output ontology (step 3 of Figure 18), he/she can save it (step

4 of Figure 18). The GUI supports the user in the saving phase through a standard “dialog

box” (Figure 32). As we have already explained, the user can choose one from two

different format (“RDF/XML” and “Turtle” Figure 18 step 4) to increase created

ontologies reusability.

 70

Fig. 32. The "save" phase opens a dialog box

At the end, the user can exit the program (Figure 33) or just start again using “Clear”

option from “File” menu (Figure 34). The “Clear” option reset the software application,

erasing every store text and every created triplets.

Fig. 33. Software screenshot, exiting the software.

Fig. 34. The user can select "Clear" option from "File" menu to reset the software application.

In Figure 35 the “RDF/XML” ontology (saved as it has been shown in Figure 32 and

reopened through a web browser) is shown, while in Figure 36 is shown the “Turtle”

version of the same file, opened with the Mac Text Edit.

 71

Fig. 35. Saved ontology in “RDF/XML” format.

Fig. 36. Saved ontology in Turtle format (.ttl).

 72

5. Discussion

In this master thesis, a Deterministic Triplet Extraction Tool (DeTET) to automatically

extract triplets from a natural language text and to automatically save these triplets as an

ontology has been designed, developed and implemented. A Graphic User Interface has

been designed, too.

Our approach is totally deterministic: the idea behind DeTET is that Part Of Speech

tags, Phrases and Tokens create unique structures. Pieces of information on one single

NLP level is not enough: for example “Noun Phrase Noun Phrase” could refer to various

situation such as “the kidney, it”, “organs such as kidney”, or “kidney when the situation”;

listed examples clearly have to be processed differently: in the first example “kidney” is

probably an object while “it” is the subject of another relation; in the second “kidney” is a

kind of “organ”; in the third “kidney” is probably an object while the part starting with

“when” has to be deleted as explained in paragraph 3.1.3. Thus, using only Phrase level is

not enough: commas and conjunction are non displayed at Phrase level because they do not

form any kind of Phrase and are not embeddable in any existing Phrase; although we lose

some pieces of information about Verb type (finite or not-finite) and about the role of the

Verb Phrase within the sentence (as we have already explained in the 3.1.1, for example a

Verb Phrase could be the subject of a clause). Using every level of information is enough

to create very specific structure fingerprints which allows DeTET to extract triplets. A

similar work has been proposed by Cimiano et al. [79]: they tried to extract triplets from

text using a statistical approach. The main difference with our system is they only consider

a small list of extractable relations (e.g. “is a”) to create the ontology while we do not have

this restriction.

 The results in extracting triplets from testing texts (Table 6) are encouraging: the

system scores a 100% precision with three different texts, and over 85% precision with

almost every other texts. Only with three texts DeTET scores a precision lower than 80%.

A triplet has been considered correct if:

 the Relation is a finite tense verb

 the Domain is the its subject

 the Range is the its object

Every wrong element switching has been considered an error (e.g. a wrong pronoun to

noun switch, or two different concepts considered as the same one through our similarity

 73

score approach). Every couple of similar concept which are not recognized as the same has

not been considered as an error (this kind of issue does not generate wrong pieces of

information).

DeTET seems to be a very fast tool: the processing time was calculated on the

command line version of DeTET, not on the GUI-version. It is quicker than similar

systems: for example Rusu et al. [80], performed an extraction of 168 triplets from 100

sentences in 29,5 seconds. Authors did not specify the sentences, thus a run with same

inputs in our system is not possible. However, in almost the same time (23,95 seconds)

DeTET extracts 8.844 triplets from 4686 sentences (Table 8). The test on random (and

then, maybe repeated) sentences is meaningful because DeTET does not have memory: the

time to process one sentence is exactly half time to process that sentence two times.

Sources for texts from Table 4 has been chosen accurately to simulate different

scenarios. First possible scenario is a non-technical user who would like to understand

better some topic linked to biomedical subject matter: he/she will probably use some

common source of information, like PubMed [32] or if he/she is not a professional some

source like Wikipedia [67]. Thus we have selected some texts from PubMed and from

Wikipedia about different kinds of biomedical topics, such as “Kidneys” or “Pneumonia”.

In this scenario, the user would use the developed software application just to the graph

visualization capability. Another possible scenario is the general practitioner who would

like to increase his/her knowledge about a specialist topic, such as “Deep Brain

Stimulation”: we have selected five abstracts from PubMed papers about “Deep Brain

Stimulation”. One last possible scenario is a technical user who would like to build an

ontology for some purpose: ontologies are often build using PubMed papers as the main

source of knowledge. Thus we have selected some papers about “Kidney” from PubMed.

We figured two kind of possible users: a consumer user and a medical user. We

have designed the GUI to lead the user in every phase of the process to create an ontology.

To avoid any kind of user mistakes, the GUI dynamically enables and disables menu

options and buttons: step by step, only usable options are enabled. The GUI allows the user

to create an ontology both to store it or just to visualize it: it has been done this way

because some users could use DeTET only for representing knowledge, while others just

need to build ontologies to support other software applications. To increase DeTET

 74

ontologies reusability, we provided the user with the “save” function. Two common

ontology formats are available: “RDF/XML” and “Turtle”.

DeTET has some weakness. First, if the sentence contains any grammatical or

linguistic error, DeTET will make mistakes: this kind of issue is unavoidable. If the text

contains any kind of conceptual mistake, DeTET will not notice it and will make mistakes.

We want to point out that the logical capability (e.g. the skill to implies conclusions from

statements) of an ontology could lead to discover a posteriori this kind of mistakes as we

have explained in par. 2.1.4 . For example the triplets:

 Bone + contains + Cells

 Femur + is_A + Bone

 Femur + not_Contains + Cells

will lead to an inconsistency. Thus a reasoner (the tool to carry out logical deduction from

an ontology as explained in par. 2.1.3), could tell the user that the ontology contains some

errors: the reasoner can not fix the error itself because it does not know which statement is

true outside ontology universe and which is false (in the previous example, it discovers a

contradiction but it does not know if not every bone contains cell, if a femur is not a bone

or if a femur contains cells). A reasoner can not deal with other kind of mistakes (e.g. text

“Ice sets on fire trees” will create the triplet “Ice + sets on fire + trees” which is

grammatically correct and correctly extracted, but contains meaningless information).

DeTET has some problem in processing complex structure sentences and phrases

such as the embedding phrases, which means some phrases that contain other phrases (e.g.

the NP “the kidney damaged by alcohol” contains also a VP, “damaged”). This kind of

issue is very hard to manage, because NLP tools often make mistakes in processing

embedding phrase: for example, often an embedded verb phrase is considered as a

standalone phrase. We tried to solve this problem during post processing phases of

Enriched Phrases: this way DeTET tags Verb Phrase correctly (it is more precise than

DeTET itself without this kind of error handling). Then our Triplet Extraction Tools relies

on other statistical NLP tools issue [13]: when the openNLP confuses one POS with

another, DeTET is not able to fix it. Sometimes an error spreads from one sentence to

another (e.g. when there is a mistake on subject identification on a sentence and the

following one starts with “they”): to minimize error spreading from a sentence to another

DeTET analyses sentence one-by-one, but this solution does not completely avoid this kind

 75

of mistake. To increase the effectiveness of this solution, we implemented some checks

during Enriched Phrases generation (Figure 12), such as commas and conjunctions ones

(DeTET checks if there is a comma or some conjunction inside the Phrases). Some verbs

imply clauses with very peculiar structure: it is very hard to map every exception also

because some exceptions are linked to the verb meaning in that specific phrase; for

example, the verb “to put” can both has an Subject Verb Object Adverbial structure when

it carries the meaning of placing something somewhere (e.g. “The clinician put the needle

in the body”: “in the body” is a compulsory adverbial phrase, without it the sentence is

grammatically incomplete) or just Subject Verb Object structure when it means lead

something by water (e.g. “Terry put the boat in danger”: ”in danger” is a complement of

“the boat” phrase and it is not linked with “Terry”). DeTET preprocesses if-clauses

excluding the if part and processing the main one: this is because description logic can not

consider dynamic statements (a statement which is true if and only if another one is true).

To preserve a piece of the original information, the verb of the main clause is arranged as a

conditional tense. In description logic is possible to create relations chain such as 𝑅𝑎 ∘

 𝑅𝑏 ⊑̇ 𝑅𝑐 (with 𝑅𝑎, 𝑅𝑏 𝑎𝑛𝑑 𝑅𝑐 relations and “∘” relations operator which means “chained

with”) which means if A 𝑅𝑎 B and B 𝑅𝑏 C so A 𝑅𝑐 C (e.g. if "𝑓𝑎𝑡ℎ𝑒𝑟_𝑂𝑓 ∘

 𝑏𝑟𝑜𝑡ℎ𝑒𝑟_𝑂𝑓 ⊑̇ 𝑓𝑎𝑡ℎ𝑒𝑟_𝑂𝑓 “and “A father_Of B” and “B brother_Of C”, so we can

imply “A father_Of C”: this triplet could be generated by the sentence ”If Tom is brother

of Tim, they have same father”); this kind of solution can catch some kind of dynamic, but

needs a higher abstraction than DeTET rules can make and can also lead to a lot of

mistakes, decreasing the precision. DeTET pre-processes also when-clauses in the same

manner: something which happens when something else has just happened means that

something could happen; thus the when-part is not considered and the tense of the main-

part gains a conditional tense.

We are aware that we do not consider the accuracy: it is defined as the number of

extracted items divides the total number of extractable items; we have not considered it on

purpose because it is hard (and arbitrary) to establish the total number of extractable

triplets from a text. We could have set the number of extractable triplets from a text as the

number of triplets a human could extract from the text, but we would have succumbed to

an issue: a human-triplet-extraction is a very abstract process which is deeply related to the

understanding of the text by the extractor. Thus, every different human extractor could find

 76

different triplets from the same text. Instead of accuracy, we have shown the number of

extracted triplets for sentence (t/s) as a metrics to underline how the system has worked

with a input text: DeTET scores an average of 2,3 t/s.

We have tested DeTET with short texts on purpose (at least 30 sentences, see Table

4): we have done this way for some reasons. The main reason is the system does not have

any kind of memory, as we have already seen in Methods: thus, in Symbols

Suppose to have the texts “A” and “B”

Suppose to have the text “C” : C = (A,B) where “,” means append text B to text A

if we call tX the triplets extracted from the text “X” and tX = DeTET(X)

then

tA = DeTET(A), tB = DeTET(B), tC = DeTET(C)

Because of the system does not have memory,

DeTET(C) = tA+ tB

where

“,” means append text B to text A

“+” means add triplets tA to triplets tB.

Because of “automappa” method, which look for similar concepts to collapse on the same

labels, if the text “A” and “B” are about the same topic:

𝑡𝐶 ≅ 𝑡𝐵 + 𝑡𝐴

tC will have same number of triplets as the sum of the number of the triplets of tA and tB.

Thanks to our implementation of similarity metric, which is really conservative (it collapse

concepts only if they score a very high value, does the number of wrong collapsed

concepts is very close to zero), we can state precision on text C is the weighted sum of

precision on texts A and B, using as weight the number of extracted triplet from A and

from B. Thus using longer texts is almost the same as using a lot of shorter one: we have

preferred to use shorter different texts instead of lesser longer texts because performances

of NLP tools and ontologies algorithm often depends on the domain topic.

DeTET tuning followed three approaches: improving number of correct triplets,

increasing the number of extracted triplets and increasing the triplet meaning (e.g. in the

sentence “The removal of the kidney could be necessary” a correct Domain is “The

removal”, a more meaningful Domain is “The removal of the kidney”). First, to improve

number of correct triplets, we implemented some frequent linguistic patterns to extract

 77

right elements of triplets. For example, the verb “to be” has very specific extraction rules

because it is a copular verb with specific grammatical construction. Thus DeTET number

of correct triplets is very high on simple sentence, very close to 100%. DeTET scores

lower performance with peculiar structure sentences. To increase the triplet meaning, we

managed some typical situation where the triplet is correct but the meaning of the original

sentence is not carried out. For example, every pronoun is automatically substituted with

corresponding noun. To extract the most enriched element, we implemented Enriched

Phrase structure. For example, the sentence “Cancer can be managed with removal of the

kidney” generates the triplet {cancer, can be managed with, removal of the kidney} and

not {cancer, can be managed, removal}, which is correct but meaningless. Finally, to

increase the number of extracted triplets we implemented some improvements of DeTET

beyond subject/verb/object identification: for example, every time DeTET finds

“<something> such as <something else>” it creates the triplet “<something else> is_A

<something>”. The addition of this kind of new triplets greatly increase the knowledge

gathered from text to ontology; furthermore, if an element of the triplet is composed by a

list of noun or verb, DeTET automatically splits this triplet in some triplets.

We have deeply studied wrong extracted triplets to understand how to improve

performances. Main sources of mistakes are uncommon use of grammatical construction

but still correct. For example, “which” refers almost always to the closer Noun/Pronoun: it

is still correct if it refers to another Noun/Pronoun in the same sentence. The human reader

can understand what “which” refers to from the general meaning of the sentence, DeTET

has not those human ability. Thus our approach to DeTET implementation has been to

study side-effects in any possible new grammatical pattern or rule before deciding if to

apply it or not. Thus every rule has been implemented if it allows a correct extraction every

time it is applied, or if it manages correctly more common situations and makes mistakes

in rare ones. If a rule is sometimes correct and sometimes not, we tried to avoid the rule

itself: for example, implementation of a “when pattern” to extract both triplets from a

sentence including “when” would have lead to some correct triplets and some incorrect

ones (maybe half and half). We have avoided this situation discarding a priori every part of

sentence containing “when” token (see par. 3.1.3).

There are some open issues we have not completely deal with. For example, String

Similarity issue. We have proposed an easy approach to the problem because a deeper

 78

approach lead to another project. Also we have avoided statement with same Domain and

Range (e.g. “Cells generate theirself”): this kind of situation could lead not only to more

precise results, but also requires to much time to be implemented. Also an improved

pronoun management approach could lead to enhanced results.

As part of the future work we plan to enhance graph visualization too, allowing

user to interact with graph nodes.

 79

6. Conclusions

We presented an approach to Next Generation of Biomedical Ontologies, and the

implementation of a software tool for extracting triplets from biomedical texts, we called

Deterministic Triplet Extraction Tool (DeTET). It exploits Natural Language Processing

techniques to extract structured pieces of information from natural language digital texts.

We have developed new structure to store grammatical information from a sentence we

called Enriched Phrase. It has been developed as a standalone Java tool with a clear and

user-friendly Graphic User Interface. We performed some investigation tests, obtaining

around 90% correct extracted triplets and low computation time (less than a couple of

seconds for a page-length text). Thanks to that, Deterministic Triplet Extraction Tool

seems to be the essential step to solve ontology automatic generation issue. Open issues to

improve its performance on peculiar sentences and to improve graph visualization are the

subjects of our future works.

 80

Appendix A

Starting from the input text “The kidneys are essential in the urinary system and also serve

homeostatic functions such as the regulation of electrolytes, maintenance of acid–base

balance, and regulation of blood pressure (via maintaining salt and water balance). They

serve the body as a natural filter of the blood, and remove wastes, which are diverted to

the urinary bladder.” the outputs of the system are represented as it follows.

Inside ArrayList<Tripletta> PHanalizzatore(String Text).

First loop.

Sentence before cleaning:

The kidneys are essential in the urinary system and also serve homeostatic

functions such as the regulation of electrolytes, maintenance of acid–base balance,

and regulation of blood pressure (via maintaining salt and water balance)

Sentence after cleaning:

The kidneys are essential in the urinary system and also serve homeostatic

functions such as the regulation of electrolytes, maintenance of acid–base balance,

and regulation of blood pressure

Extracted tags:

(The)DT (kidneys)NNS (are)VBP (essential)JJ (in)IN (the)DT (urinary)JJ

(system)NN (and)CC (also)RB (serve)VB (homeostatic)JJ (functions)NNS

(such)JJ (as)IN (the)DT (regulation)NN (of)IN (electrolytes)NNS (,),

(maintenance)NN (of)IN (acid–base)JJ (balance)NN (,), (and)CC

(regulation)NN (of)IN (blood)NN (pressure)NN

Extracted phrases:

(The kidneys)NP

(are)VP

(essential)ADJP

(in)PP

(the urinary system)NP

(also)ADVP

(serve)VP

 81

(homeostatic functions)NP

(such as)PP

(the regulation)NP

(of)PP

(electrolytes)NP

(maintenance)NP

(of)PP

(acid–base balance)NP

(regulation)NP

(of)PP

(blood pressure)NP

Inside ArrayList<Phrase> span2phr(Span[] span, String[] tokens,

String[] tags).

Extracted Enriched Phrases:

(The kidneys)NP

(are essential in)1VBF

(the urinary system)NP

(and)AndOr

(serve)VBF

(homeostatic functions)NP

(homeostatic functions)NP

(such as)PP

(the regulation of electrolytes)NP

(),

(maintenance of acid–base balance)NP

(),

(and)AndOr

(regulation of blood pressure)NP

Closing ArrayList<Phrase> span2phr(Span[] span, String[] tokens,

String[] tags).

Inside ArrayList<Phrase> fondi_liste2(ArrayList<Phrase> p)

 82

(The kidneys)NP

(are essential in)1VBF

(the urinary system)NP

(and)AndOr

(serve)VBF

(homeostatic functions)NP

(homeostatic functions)NP

(such as)PP

(the regulation of electrolytes DIVIDEDBYmaintenance of acid–base balance

DIVIDEDBYregulation of blood pressure)NP

Closing ArrayList<Phrase> fondi_liste2(ArrayList<Phrase> p)

Inside ArrayList<Phrase> such_and_ing(ArrayList<Phrase> p).

(The kidneys)NP

(are essential in)1VBF

(the urinary system)NP

(and)AndOr

(serve)VBF

(homeostatic functions)NP

(homeostatic functions)NP

(is a)Such_As

(the regulation of electrolytes DIVIDEDBYmaintenance of acid–base balance

DIVIDEDBYregulation of blood pressure)NP

Closing ArrayList<Phrase> such_and_ing(ArrayList<Phrase> p).

Inside ArrayList<Phrase> cleaning_time(ArrayList<Phrase> phrases).

(The kidneys)NP

(are essential in)1VBF

(the urinary system)NP

(and)AndOr

(serve)VBF

(homeostatic functions)NP

(homeostatic functions)NP

(is a)Such_As

 83

(the regulation of electrolytes DIVIDEDBYmaintenance of acid–base balance

DIVIDEDBYregulation of blood pressure)NP

Closing ArrayList<Phrase> cleaning_time(ArrayList<Phrase> phrases).

Inside ArrayList<Tripletta> estrai(ArrayList<Phrase> p).

(P)The kidneys + are essential in + the urinary system

(P)The kidneys + serve + homeostatic functions

the regulation of electrolytes DIVIDEDBYmaintenance of acid–base balance

DIVIDEDBYregulation of blood pressure + is a + homeostatic functions

Closing ArrayList<Tripletta> estrai(ArrayList<Phrase> p).

Second loop.

Sentence before cleaning:

They serve the body as a natural filter of the blood, and remove wastes, which are

diverted to the urinary bladder

Sentence after cleaning:

They serve the body as a natural filter of the blood, and remove wastes, which are

diverted to the urinary bladder

Extracted tags:

(They)PRP (serve)VBP (the)DT (body)NN (as)IN (a)DT (natural)JJ (filter)NN

(of)IN (the)DT (blood)NN (,), (and)CC (remove)VB (wastes)NNS (,),

(which)WDT (are)VBP (diverted)VBN (to)TO (the)DT (urinary)JJ

(bladder)NN

Extracted phrases:

(They)NP

(serve)VP

(the body)NP

(as)PP

(a natural filter)NP

(of)PP

(the blood)NP

(remove)VP

(wastes)NP

(which)NP

 84

(are diverted)VP

(to)PP

(the urinary bladder)NP

Inside ArrayList<Phrase> span2phr(Span[] span, String[] tokens,

String[] tags).

Extracted Enriched Phrases:

(They)NP

(serve the body as)1VBF

(a natural filter of the blood)NP

(),

(and)AndOr

(remove)VBF

(wastes)NP

(),

(which)NP

(are diverted to)VBF

(the urinary bladder)NP

Closing ArrayList<Phrase> span2phr(Span[] span, String[] tokens,

String[] tags).

Inside ArrayList<Phrase> fondi_liste2(ArrayList<Phrase> p)

(They)NP

(serve the body as)1VBF

(a natural filter of the blood)NP

(),

(and)AndOr

(remove)VBF

(wastes)NP

(),

(which)NP

(are diverted to)VBF

(the urinary bladder)NP

 85

Closing ArrayList<Phrase> fondi_liste2(ArrayList<Phrase> p)

Inside ArrayList<Phrase> such_and_ing(ArrayList<Phrase> p).

(They)NP

(serve the body as)1VBF

(a natural filter of the blood)NP

(),

(and)AndOr

(remove)VBF

(wastes)NP

(),

(which)NP

(are diverted to)VBF

(the urinary bladder)NP

Closing ArrayList<Phrase> such_and_ing(ArrayList<Phrase> p).

Inside ArrayList<Phrase> cleaning_time(ArrayList<Phrase> phrases).

(They)NP

(serve the body as)1VBF

(a natural filter of the blood)NP

(),

(and)AndOr

(remove)VBF

(wastes)NP

(),

(which)NP

(are diverted to)VBF

(the urinary bladder)NP

Closing ArrayList<Phrase> cleaning_time(ArrayList<Phrase> phrases).

Inside ArrayList<Tripletta> estrai(ArrayList<Phrase> p).

(P)They + serve the body as + a natural filter of the blood

(P)They + remove + wastes

(P)which + are diverted to + the urinary bladder

 86

Closing ArrayList<Tripletta> estrai(ArrayList<Phrase> p).

Loops are over: now it is the time for “ArrayList<Tripletta>

automappa(ArrayList<Tripletta> t)”.

Inside ArrayList<Tripletta> automappa(ArrayList<Tripletta> t).

The kidneys + are essential in + the urinary system

The kidneys + serve + homeostatic functions

The kidneys + serve the body as + a natural filter of the blood

The kidneys + remove + wastes

wastes + are diverted to + the urinary bladder

the regulation of electrolytes + is a + homeostatic functions

maintenance of acid–base balance + is a + homeostatic functions

regulation of blood pressure + is a + homeostatic functions

Closing ArrayList<Tripletta> automappa(ArrayList<Tripletta> t).

Extracted triplets:

The kidneys + are essential in + the urinary system

The kidneys + serve + homeostatic functions

The kidneys + serve the body as + a natural filter of the blood

The kidneys + remove + wastes

wastes + are diverted to + the urinary bladder

the regulation of electrolytes + is a + homeostatic functions

maintenance of acid–base balance + is a + homeostatic functions

regulation of blood pressure + is a + homeostatic functions

Extracted triplets: 8 triplets from 2 sentences

Closing ArrayList<Tripletta> PHanalizzatore(String Text).

Ends in 3.26436 seconds.

In Figure 37 the graph representation of the 8 extracted triplets is shown.

 87

Fig. 37. Output for the input text: "“The kidneys are essential in the urinary system and also serve

homeostatic functions such as the regulation of electrolytes, maintenance of acid–base balance, and

regulation of blood pressure (via maintaining salt and water balance). They serve the body as a

natural filter of the blood, and remove wastes, which are diverted to the urinary bladder.”"

 88

Appendix B

In the appendix B some papers about ontologies subject matters are reviewed (table 9).

With “mapping task” in Table 9 we refer to an algorithm which is able to (automatically)

relate every concept belonging to an ontology with every concept belonging to another one

[41]. The annotation of a text is the task to associate one (or more) concept(s) from an

external ontology to a phrase of a text [1]: the annotation is done through tool called

annotator which uses tools called concept recognizers (Table 9). Protégé is an ontology

editor with a clear Graphical User Interface developed by Stanford. The Systematized

Nomenclature of Medicine - Clinical Terms is a medical terms dictionary.

 89

Table 9. Review of papers on ontologies subject matters.

Title Authors
Complete

reference
Aim Methods Results Utility Query

1

Building a

biomedical

ontology

recommende

r web

service.

Clement

Jonquet,

Mark

Musen,

Nigam

Shah

Jonquet C, Musen

M, Shah N.

Building a

biomedical

ontology

recommender

web service. J

Biomed Inform.

2010;1(Suppl.

1):1–18.

The aim of the

work is the

presentation of

“Biomedical

Ontology

Recommender

web service”:

it is a web

service to find

the best fit

ontology for a

selected text.

Authors have created an ontology from a corpus

of more than 200 ontologies (122 are from

BioPortal, 98 from Unified Medical Language

System UMLS): every ontology has some

mapping relations with other ones. The created

ontology has 4,222,921 concepts and 7,943,757

terms. First step is to annotate the input text with

concepts from the created ontology. Then, using

mapping information, the system creates more

annotations (this step is not mandatory, users can

select to use it or not).

Then a score is calculated for every ontology: the

score is the number of annotations divides by the

number of concepts inside the ontology itself. The

ontology which scores the higher result is elected

as best fit ontology for input text.

Some tests have been executed on a corpus of

three lists of biomedical keywords and three

biomedical texts. A group of expert evaluate the

selected ontology with a scale from 1 (worst fit

ontology) to 5 (best fit ontology).

The system

scored a

mean of

4.41

if the

mapping

relations

are not

used and 4

otherwise.

This work

underlines

the fact that

a lot of

different

ontologies

exist and it

is not easy to

find the best

fit one.

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 90

Title Authors
Complete

reference
Aim Methods Results Utility Query

2

The

ontology life

cycle:

Integrated

tools for

editing,

publishing,

peer review,

and

evolution of

ontologies.

Natalya

Noy,

Tania

Tudorach

e,Csongo

r Nyulas,

Mark

Musen

Noy N,

Tudorache T,

Nyulas C, Musen

M. The ontology

life cycle:

Integrated tools

for editing,

publishing, peer

review, and

evolution of

ontologies.

Proceeding of the

AMIA Annual

Symposium.

2010. p. 552–6.

The aim of the

work is to

present a suite

to support

ontology

during its

whole life

cycle.

The suite is composed by WebProtegè, BioPortal,

BioPortal reference widget and Notes API.

Web Protégé is an online version of Protégé: it

allows more user to work on the same ontology at

the same time.

BioPortal is an ontology web repository: it

allows users to publish and to download

ontologies; it also allows users to send

notification to ontologies creators to suggest a

new concept or to edit an existing one.

BioPortal reference widget is a tool to search

ontologies on BioPortal.

Notes API is a tool to connect directly

WebProtegè with BioPortal: this way ontologies

creators can immediately see the notifications

from users.

BioPortal

satisfies

more than

11.000

users every

month.

Authors

present some

useful tools

to deal with

ontologies

subject

matters

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 91

Title Authors
Complete

reference
Aim Methods Results Utility Query

3 Comparison

of concept

recognizers

for building

the Open

Biomedical

Annotator.

Shah

NH,

Bhatia N,

Jonquet

C, Rubin

D,

Chiang

AP,

Musen M

a

Shah NH, Bhatia

N, Jonquet C,

Rubin D, Chiang

AP, Musen M a.

Comparison of

concept

recognizers for

building the

Open Biomedical

Annotator. BMC

Bioinformatics.

2009 Jan;10

Suppl 9:S14.

The aim of

this work is to

compare two

concepts

recognizers:

the

National

Library of

Medicine’s

MetaMap

(NLM’s

MetaMap) and

the Mgrep.

The task to recognize a given ontology concept in

a text is generally referred to as concept

recognition.

NLM’s MetaMap and Mgrep are concepts

recognizers.

They both were tested with four sets of 200

sentences randomly extracted from:

- ClinicalTrials.gov

(http://www.clinicaltrials.gov)

- Gold Miner http://http//goldminer.arrs.org Gene

Expression

- Omnibus http://www.ncbi.nlm.nih.gov/geo/

- PubMed http://www.ncbi.nlm.nih.gov/pubmed

As external ontology has been used Systematized

Nomenclature of Medicine - Clinical Terms

(Snomed-CT).

The

authors

reported all

the results

as tables

and

diagrams.

Mgrep

scored

always an

higher

precision

than

MetaMap,

which

always

recognizes

more

concepts.

This work

shows the

importance

of concept

recognizer in

knowledge

management

.

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 92

Title Authors
Complete

reference
Aim Methods Results Utility Query

4

Low-cost

ontology

development

Grác M,

Rambous

ek A,

Center N

Grác M,

Rambousek A,

Center N. Low-

cost ontology

development.

Proceeding 6th Int

Glob Wordnet

Conf. 2012;

The aim of

this work is to

show every

step to

develop a

general

purposes non-

English

ontology ,

authors called

Sholva

ontology.

Some tools and sources of knowledge are used:

WordNet ontology: it is a general purposes

ontology created by Princeton and translated in

every European Language tanks to EuroWordNet

project.

ILI (inter lingual index): it is a tool to translate

concepts and to create multilingual dictionary.

VerbaLex: it is a Czech language verb meaning

lexicon developed by the “Faculty of Informatics,

Masaryk University”.

Authors

have

published

 Sholva

ontology:

it will be

used for

machine

translation

tasks,

syntactic

parsing

tasks and

word sense

disambigu

ation tasks.

This work

shows how

hard could

be to create

a non-

English

ontology.

Google

scholar

/

allintitle:

"ontolog

y

develop

ment"

5

The Open

Biomedical

Annotator

Jonquet

C, Shah

N,

Musen M

Jonquet C, Shah

N, Musen M. The

Open Biomedical

Annotator.

Summit on

translational

bioinformatics.

The aim of the

work is to

present

the Open

Biomedical

Annotator

(OBA): it is a

OBA uses a set of predefined biomedical external

ontologies. This set is constituted of every

Unified Medical Language System (UMLS) and

BioPortal ontology.

First OBA chooses the best fit ontology to

annotate as the ontology which creates more

annotations. Then it create some annotations

OBA has

created

174,840,02

7

annotation

s:

18%

The results

of this work

show the

importance

of mapping

task to

extract every

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 93

Title Authors
Complete

reference
Aim Methods Results Utility Query

2009. p. 56–60. web service to

automatically

create

annotations on

biomedical

texts without

asking the user

to provide an

external

ontology.

using Mgrep: it is a concepts recogniser

developed by the National Center for Integrative

Biomedical Informatics. This set of annotations is

enriched using three more tools:

 1.“semantic expansion components”: it creates

more annotations using relations inside selected

ontology.

2.“semantic distance component”: it creates

more annotations using similar concepts inside

selected ontology; similar concepts are closer

concepts in the ontology three-structure.

3.”ontology-mapping component” : it creates

more annotations using relations among selected

ontology and other external ontologies; this tool is

referred to as the “mapping step”.

OBA has been tested on a corpus of 1,050,000

short texts from PubMed, such as papers titles and

papers abstracts.

annotation

s has been

obtained

using

without the

mapping

step, while

others

thanks to

it.

99% of

corpus

texts has

been

annotated

with a

mean of

165

annotation

s for text.

piece of

knowledge.

Furthermore,

OBA is a

free and

available

web service

for

biomedical

researchers.

 94

Title Authors
Complete

reference
Aim Methods Results Utility Query

6 Towards

valid and

reusable

reference

alignments -

ten basic

quality

checks for

ontology

alignments

and their

application

to three

different

reference

data sets

Beisswan

-ger E,

Hahn U

Beisswanger E,

Hahn U. Towards

valid and

reusable

reference

alignments - ten

basic quality

checks for

ontology

alignments and

their application

to three different

reference data

sets. J Biomed

Semantics. 2012

Jan;3 Suppl

1(Suppl 1):S4.

The aim of the

work is to

propose an

assessment

questionnaire

to evaluate

mapping

algorithms.

The authors design a ten-step flowchart to

evaluate a mapping algorithm from every point

of view, such as the implementation point of view

(e.g. does exist an implemented version of the

algorithm?), the implementation results point of

view (e.g. how many non-trivial relations are

discovered?). Every step is a multiple choice

question: every different answer forces the user to

follow one edge which leads him to another

question.

This questionnaire has been tested on three

mapping algorithms: anatomy track reference

alignment (OAEI), Linked Open Data (LOD) and

BRIDGE.

Tests have

shown that

every

question is

useful to

assess a

mapping

algorithm.

This work

underlines

one mapping

algorithm

issue: it is

pretty hard

to find

ready-to-use

mapping

tools for a

specific

domain.

PubMed

/

ontology

alignmen

t[Title/A

bstract]

NOT

"genes"[

MeSH

Terms]

 95

Title Authors
Complete

reference
Aim Methods Results Utility Query

7 The

Biomedical

Resource

Ontology

(BRO) to

enable

resource

discovery in

clinical and

translational

research.

Tenenba

um JD,

Whetzel

PL,

Anderso

n K,

Borrome

o CD,

Dinov

ID,

Gabriel

D, et al.

Tenenbaum JD,

Whetzel PL,

Anderson K,

Borromeo CD,

Dinov ID, Gabriel

D, et al. The

Biomedical

Resource

Ontology (BRO)

to enable

resource

discovery in

clinical and

translational

research. J

Biomed Inform.

2011

Feb;44(1):137–

45.

The aim of the

work is to

present the

design and the

implementatio

n of

Biomedical

Resource

Ontology

version 3.0

(BRO).

BRO is composed by some tools:

1. Biositemaps: a tool to append biomedical tags

to biomedical data; it is also a tag-search engine.

Tags are written in Resource Description

Framework (RDF) format.

2. The Biositemaps Information Model (BIM):

it describes the standard structure of a valid RDF

file.

3. The Biomedical Resource Ontology (BRO):

it is the tag dictionary; users can only chooses

tags to append from this source .

4. Biositemap RDF file generation and back-

end data storage: graphical user interface to

append tags to data.

5. The resource discovery system (RDS) query

tool: web service to retrieve data from

Biositesmap.

 This work

shows the

strength of

the ontology

approach in

information

retrieval

tasks.

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 96

Title Authors
Complete

reference
Aim Methods Results Utility Query

8 Mapping

between the

OBO and

OWL

ontology

languages,

Tirmizi

SH,

Aitken S,

Moreira

D a,

Mungall

C,

Sequeda

J, Shah

NH, et

al.

Tirmizi SH,

Aitken S, Moreira

D a, Mungall C,

Sequeda J, Shah

NH, et al.

Mapping

between the

OBO and OWL

ontology

languages. J

Biomed

Semantics.

BioMed Central

Ltd; 2011 Jan;2

Suppl 1(Suppl

1):S3.

The aim of the

work is to

create the

standard for

the conversion

from Open

Biological and

Biomedical

Ontologies

(OBO) format

to Ontology

Web

Language -

Description

Logic (OWL-

DL) format.

OWL-DL format has more expressivity than

OBO format, thus it is easy to map OBO

ontologies into OWL one.

OBO ontologies have an header with some meta-

data: they will be stored inside an “owl:ontology”

element. Other elements are almost equal, such as

OBO terms and OWL class, OBO name and

“rdfs:label”, OBO comments and

“rdfs:comment”....

The main difference between OBO and OWL is

OBO uses local identifiers while OWL uses

global identifiers (URI and URL). Authors used

information in the OBO header to convert local

identifiers to global ones.

In the end, authors created the

“oboInOwl:Subset” to represent OBO subsets.

Converted

ontologies

has been

validated

thorugh

WonderW

eb OWL

Ontology

Validator,

a World

Wide Web

Consortiu

m (W3C)

tool to

check if an

ontology is

valid.

Authors

present and

implement a

tool to

facilitate

ontologies

interoperabil

ity.

Pubmed

/

ontology

[All

Fields]

AND

mapping[

All

Fields]

AND

("Biome

dicine"[J

ournal]

OR

"biomedi

cine"[All

Fields])

 97

Title Authors
Complete

reference
Aim Methods Results Utility Query

9 Applications

of ontology

design

patterns in

biomedical

ontologies.

Mortense

n JM,

Horridge

M,

Musen M

a, Noy

NF.

Mortensen JM,

Horridge M,

Musen M a, Noy

NF. Applications

of ontology

design patterns

in biomedical

ontologies.

Proceeding of

AMIA Annual

Symposium.

2012. p. 643–52.

The aim of the

work is to

determine the

use and

applicability

of Ontology

design

patterns

(ODPs) in a

case study of

biomedical

ontologies.

They also

verified if

some old

ontologies has

been

developed

thanks to ODP

without

creators

being aware

of using it.

Ontology design patterns (ODPs) are a proposed

solution to facilitate ontology development, and

to help users avoid some of the most frequent

modeling mistakes.

Authors used two different ODP:

“Ontology Design Patterns.org” (ODP-Wiki)

and “The Manchester catalogue of ontology

design patterns for bio-ontologies” (MBOP);

they are both a set of rules expressed in natural

language. Author implemented a software to

check if a specific rule has been used inside an

ontology: they implemented 64 patterns using

Ontology Pre-Processing (OPPL), and 5 patterns

using Java programming language.

The implemented rules has been tested on some

OWL ontologies (Gene Ontology, Foundational

Model of Anatomy, National Cancer Institute

Thesaurus).

Results has been validated by an expert.

Only 5

patterns

has been

identified

inside

ontologies.

This work

underlines

how

ontology

creation is

still an

handmade

process: it

does not

follow any

standardized

rule.

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 98

Title Authors
Complete

reference
Aim Methods Results Utility Query

10 Comparison

of ontology-

based

semantic-

similarity

measures.

Lee W-

N, Shah

N,

Sundlass

K,

Musen M

Lee W-N, Shah

N, Sundlass K,

Musen M.

Comparison of

ontology-based

semantic-

similarity

measures.

Proceeding of the

the AMIA

Symposium.

2008. p. 384–8.

The aim of the

work is to

compare three

different

similarity

measure

metrics.

Semantic-similarity measures quantify concept

similarities in a given ontology.

First algorithm has been presented by Al-Mubaid

et al. : it uses the features of a concept’s location

within a cluster of nodes to modify the shortest

path distance between two concepts.

The similarity measure metrics for two concepts

𝐶1 𝑎𝑛𝑑 𝐶2 is defined as

𝑆𝑒𝑚(𝐶1, 𝐶2) = log((𝑃𝑎𝑡ℎ − 1)𝛼 ∗ (𝐶𝑠𝑝𝑒𝑐)𝛽

+ 𝑘)

where Path is the shortest path length between the

two concepts, k is parameters which models local

topography; Cspec, 𝛼 and 𝛽 are the weighted

contributions of local granularity.

Second algorithm is named Descendant Distance

(DD) proposed by Melton: it measures the clinical

distance between two patients (𝑃𝑎 , 𝑃𝑏) based on

the diseases present in each, and it is analagous to

distances between a pair of diseases. The

generalization of this distance metric is:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶1, 𝐶2) = ∑ 𝑃(𝑉𝑦)

The only

significant,

albeit

weak,

correlation

to experts

evaluation

occurred

with Al-

Mubaid et

al.

algorithm.

This work is

really useful

because it

shows how

weak are

similarity

metrics

algorithm in

a biomedical

domain.

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 99

Title Authors
Complete

reference
Aim Methods Results Utility Query

where 𝑃(𝑉𝑦) =
𝑁𝑜.𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑎𝑡ℎ 𝑛𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑇𝑒𝑟𝑚𝑠
,

and 𝑉𝑦 are nodes among 𝐶1, 𝐶2 in the graph.

Last metrics is named Term Frequency (TF),

proposed by Melton: it uses a concept’s term

frequency in a corpus of text to weight the path

edges within an ontology. The term frequency

came from a clinical data repository of more than

14,000 patients to derive a set of all SNOMED-

CT concepts used. The generalization of this

distance metric is:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶1, 𝐶2) = ∑ 𝑃(𝑉𝑦)

where 𝑃(𝑉𝑦) =
𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑐𝑜𝑛𝑐𝑒𝑝𝑡

𝑀𝑎𝑥.𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑛 𝐶𝑜𝑟𝑝𝑢𝑠
,

 and 𝑉𝑦 are nodes among 𝐶1, 𝐶2 in the graph.

Test corpus is composed by 190 couples from 20

disease names extracted from Systematized

Nomenclature of Medicine Clinical Terms

(SNOMED CT). The assessment of the result has

been done by 25 clinicians with a 7-point Likert

scale of least similar to most similar.

 100

Title Authors
Complete

reference
Aim Methods Results Utility Query

11 Use of

description

logic

classification

to reason

about

consequence

s of

penetrating

injuries.

Rubin

DL,

Dameron

O,

Musen M

Rubin DL,

Dameron O,

Musen M a. Use

of description

logic

classification to

reason about

consequences of

penetrating

injuries.

Proceeding of the

AMIA Annual

Symposium

Proceedings.

2005. p. 649–53.

The aim of the

work is to

demonstrate

the

capabilities of

automated

classification

using the Web

Ontology

Language

(OWL) to

reason about

the

consequences

of penetrating

injuries.

Authors designed an ontology of chest and heart

anatomy describing the heart structure and the

surrounding anatomic compartments, as well as

the perfusion of regions of the heart by branches

of the coronary arteries. They used two

knowledge sources:

- Foundational Model of Anatomy (FMA), for

anatomical pieces of information.

- Foundational Model of Physiology (FMP), for

physiological pieces of information.

The ontology has been imlemented using Protegé.

They extended the base OWL ontology in two

ways to create two different reasoning services:

1.“Cardiac Ischemia Reasoner”: it infers

regions of heart damage secondary to coronary

artery injuries;

2. “Injury Propagation Reasoner”: it infers the

propagation of initial injury caused by bleeding

into breached anatomic compart- ments.

The base OWL ontology was extended to create

these applications by adding class restrictions and

defined classes to represent additional anatomic

and physiological knowledge needed by their

Both

reasoner

has been

validated

by the

clinicians:

they

always

infer

injuries

damage

correctly.

This work

shows how

some of the

semantic

capabilities

of ontologies

we

explained in

par 2.5 can

be used to

create new

knowledge.

PubMed

/

Musen+

M[au]

AND

ontology

[tiab]

 101

Title Authors
Complete

reference
Aim Methods Results Utility Query

application but not available in the FMA and

FMP. Thus, they reused the original knowledge

representation of anatomy and physiology, and

they developed two different reasoning services in

a modular manner.

Some clinician tested the system with some

simulated injuries.

 102

Title Authors
Complete

reference
Aim Methods Results Utility Query

12 Biotea:

RDFizing

PubMed

Central in

support for

the paper as

an interface

to the Web

of Data.

Garcia

Castro

LJ,

McLaug

hlin C,

Garcia

A.

Biotea:

RDFizin

g

PubMed

Central

in

support

for the

paper as

an

interface

to the

Web of

Data.

Garcia Castro LJ,

McLaughlin C,

Garcia A. Biotea:

RDFizing

PubMed Central

in support for

the paper as an

interface to the

Web of Data. J

Biomed

Semantics.

BioMed Central

Ltd; 2013 Apr

15;4(Suppl 1).

The aim of the

work is to

present

authors’

approach to

the generation

of self-

describing

machine-

readable

scholarly

documents.

Authors has created some tools to automatically

encode some pieces of information about a

PubMed paper using Resource Description

Framework (RDF) format.

These pieces of information are both papers meta-

data and annotations created using some external

ontologies.

To extract meta-data authors have used

Bibliographic Ontology (BIBO), Dublin Core

Metadata Initiative (DCMI), Friend of a Friend

(FOAF) and Provenance Ontology (PROV-O).

Annotations has been appended using National

Center for Biomedical Ontology(NCBO)

Annotator.

Authors

have

semanti-

cally

processed

the full-

text, open-

access

subset of

PubMed

Central.

The

enriched

dataset is

available at

http://biote

a.idiginfo.

org/

This work is

an example

of an effort

to

automaticall

y adds

semantic to

dataset and

shows how

this

approach

increase the

retrievability

of contents

on web.

Google

Scholar

/

allintitle:

ontology

alignmen

t -gene -

genome -

RNA –

protein

http://biotea.idiginfo.org/
http://biotea.idiginfo.org/
http://biotea.idiginfo.org/

 103

Title Authors
Complete

reference
Aim Methods Results Utility Query

13 NCBO

Tech-

nology:

Powering

semantic-

cally aware

applica-

tions.

Whetzel

PL

Whetzel PL.

NCBO

Technology:

Powering

semantically

aware

applications. J

Biomed

Semantics.

BioMed Central

Ltd; 2013 Apr

15;4 Suppl

1(Suppl 1):S8.

The aim of the

work is to

present some

tools

developed by

the National

Center for

Biomedical

Ontology(NC

BO).

These tools are:

- NCBO BioPortal: web repository to publish

ontologies.

- Ontology Web services: web interface to search

published ontologies on BioPortal.

- Widgets services: API to use Ontology Web

services on others websites

- Mapping web services: it allows users to obtain

every available mapping relations about mapped

ontologies published on BioPortal.

- NCBO Annotator Web service: web service to

automatically append annotations to biomedical

texts.

No result

is

presented.

The NCBO

tools are

useful tool to

work in the

ontology

subject

matter.

Google

Scholar

/

allintitle:

ontology

alignmen

t -gene -

genome -

RNA –

protein

 104

Title Authors
Complete

reference
Aim Methods Results Utility Query

14 Semantic

interoperabil

ity of

clinical data.

Berges I,

Bermude

z J.

1. Berges I,

Bermudez J.

Semantic

Interoperability

of Clinical Data.

Proceedings of

the First

International

Workshop on

Model-Driven

Interoperability

ACM. 2010. p.

10–4.

The aim of the

work is to

present a

proposal

which allows

one system to

interpret on

the fly clinical

data sent by

another one

even when

they use

different data

representation.

This approach relies on three components:

1. An ontology that provides –in its upper level–

a canonical representation of EHR statements,

more precisely of medical observations, which

can be then specialized –in the lower level– by

health institutions according to their proprietary

models,

2. A translator module that facilitates the

definition of the lower level of the ontology from

the particular EHRs data storage structures

following a semi-automatic approach: first a

translation process of underlying data structures,

using –whenever possible– information about

properties (functional dependencies, etc.) into

ontology elements described in OWL2, and next,

an edition process where the health system

administrators can define new axioms to adjust

and enrich the result obtained in the semi-

automatic process

3. A mapping module that helps in the task of

defining the links among the terms of the upper

and lower levels of the ontology.

No result

is

presented.

This work

shows a

scenario

where some

issues of

data-base

subject

matter are

solved using

ontologies.

Google

Scholar /

allintitle:

Semantic

clinical

data

 105

Title Authors
Complete

reference
Aim Methods Results Utility Query

15 OWLlink. Liebig T,

Luther

M,

Noppens

O,

Wessel

M.

Liebig T, Luther

M, Noppens O,

Wessel M.

OWLlink.

Semant Web.

2011;1:23–32.

The aim of the

work is to

present

OWLlink

protocol.

OWLlink is an implementation-neutral

protocol for communication between OWL2

components .

No result

is

presented.

OWLlink

API.

Google

Scholar

/

OWLlink

16 The OWL

API : A Java

API for

Working

with OWL 2

Ontologies.

Horridge

M,

Bechhofe

r S.

Horridge M,

Bechhofer S. The

OWL API : A

Java API for

Working with

OWL 2

Ontologies.

OWLED.

2009;2009(Owled

).

The aim of the

work is to

present the

Application

Programming

Interface

(API) OWL

API.

The OWL API consists of a set of interfaces for

inspecting, manipulating and reasoning with

OWL ontologies. The OWL API supports loading

and saving ontologies is a variety of syntaxes. An

ontology is simply viewed as a set of axioms and

annotations.

No result

is

presented.

OWL API. Google

Scholar

/

OWL

API

 106

Title Authors
Complete

reference
Aim Methods Results Utility Query

17 The

OWLlink

API:

Teaching

OWL

Components

a Common

Protocol.

Noppens

O,

Luther

M,

Liebig T.

Noppens O,

Luther M, Liebig

T. The OWLlink

API: Teaching

OWL

Components a

Common

Protocol.

OWLED. 2010;3–

6.

The aim of the

work is to

present the

Application

Programming

Interface

(API)

OWLlink

API.

The OWLlink API is a Java API which

implements every rule of OWLlink protocol.

No result

is

presented.

OWLlink

API.

Google

/

The

OWLlink

API

 107

Title Authors
Complete

reference
Aim Methods Results Utility Query

18 Addressing

Issues in

Foundational

Ontology

Mediation.

Khan Z,

Keet C.

1. Khan Z, Keet

C. Addressing

Issues in

Foundational

Ontology

Mediation.

Proceedings of

the 5th

International

Conference on

Knowledge

Engineering and

Ontology

Development

(KEOD’13).

2013.

The aim of the

work is to

compare the

performances

of seven

mapping

algorithms in

mapping three

foundational

ontologies.

Authors have compared these algorithms: H-

Match, PROMPT, LogMap, YAM++, HotMatch,

Hertuda, Optima.

Two different metrics has been used to evaluate

performances: Accuracy and Found. In symbol:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑗−𝑒𝑠𝑖𝑚 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 =
𝑟𝑎𝑗,𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑟𝑎𝑗,𝑡𝑜𝑡𝑎𝑙

∗ 100

and

𝑭𝒐𝒖𝒏𝒅𝑗−𝑒𝑠𝑖𝑚 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 =
𝑟𝑎𝑗,𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∗ 100,

where 𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 are the relations created by a

group of expert and 𝑟𝑎𝑗,𝑡𝑜𝑡𝑎𝑙is the number of

created relation by the j-esm algorithm.

The ontologies corpus is composed by BFO,

GFO e DOLCE.

LogMap

scores the

best

results:

Accuracy

= 94% and

Found =

40%

This work

shows how

almost every

algorithm

scores bad

results when

used to map

different

ontologies

than the ones

algorithm

creators had

used to

develop the

algorithm

itself.

Google

Scholar

/

protegé

mapping

tool -

gene -rna

- genome

 108

Title Authors
Complete

reference
Aim Methods Results Utility Query

19 The

PROMPT

suite:

interactive

tools for

ontology

merging and

mapping.

Noy NF,

Musen

M.

Noy NF, Musen

M a. The

PROMPT suite:

interactive tools

for ontology

merging and

mapping. Int J

Hum Comput

Stud. 2003

Dec;59(6):983–

1024.

The aim of the

work is to

present the

PROMPT

suite of tool.

PROMPT suite is a Protégé plugin. It is

composed by

1.IPROMPT: it is a tool to semi-automatically

map ontologies. It shows the user some possible

equivalent couples of concepts and the user only

has to confirm or reject every couples.

2.ANCHORPROMPT: it shows some other

possible equivalent couples of concepts than

IPROMPT ones.

3.PROMPTDIFF: it is a tool to notify difference

about some versions of the same ontology.

4.PROMPTFACTOR: it is a tool to create a sub-

ontology selecting some concepts from an

ontology.

No result

is

presented.

PROMPT

suite is

almost a

“plug and

play”

application

software.

The real use

of PROMPT

is not as

easy as the

paper states.

Google

Scholar

/

PROMP

T

ontology

tool

 109

Title Authors
Complete

reference
Aim Methods Results Utility Query

20 JOINT: Java

ontology

integrated

toolkit.

Holanda

O,

Isotani S,

Bittenco

urt II,

Elias E,

Tenório

T.

Holanda O,

Isotani S,

Bittencourt II,

Elias E, Tenório

T. JOINT: Java

ontology

integrated

toolkit. Expert

Syst Appl.

Elsevier Ltd;

2013

Nov;40(16):6469

–77.

The aim of the

work is to

propose a

framework

and a tool for

supporting the

efficient

development

of ontology-

based

applications

through the

integration of

existing

technologies.

The tool is

called JOINT.

JOINT is a Java toolkit to help users in the

creation of ontology-based application software.

The JOINT architecture is based on the layers

pattern where each layer uses only the services of

the layer below. JOINT provides three layers

(modules) for users (mainly developers and

knowledge engineers):

1. an API, for ontology-based application

developers to implement functionalities;

2. a Desktop interface, for knowledge engineers

unfamiliar with programming;

3. plugins on (and for) external tools, to optimize

the work of both users.

JOINT has been tested asking to four couple of

students to implement a programming software

given specific requirements: no student had

expertise in ontologies development. JOINT has

been assigned to two couples to fulfill the

requirements while Jestor/Jena (another API to

implement ontology based software) has been

assigned to other two couples. Results metrics are

the number of lines code written, the time needed

to complete the application software.

Couples

using

JOINT has

been faster

(6 and 7

hours

versus 15

and 18).

All the

couples

wrote

almost the

same

number of

lines.

JOINT is an

useful suite

to develop

ontology

application

software.

Google

Scholar

/

Java

Ontology

tool

 110

Title Authors
Complete

reference
Aim Methods Results Utility Query

21 Consumer

health

concepts that

do not map

to the

UMLS:

where do

they fit?

Keselma

n A,

Smith C,

Divita G.

1. Keselman A,

Smith C, Divita

G. Consumer

health concepts

that do not map

to the UMLS:

where do they

fit? J Am Med

Informatics

Assoc.

2008;15(4):496–

505.

The aim of the

work is to

present a

systematic

approach to

deal with

every common

health term

(CHT) which

does not have

any direct map

to any UMLS

concept.

Any CHT can be in one of the following

categories:

- same label as a UMLS concept and same

meaning (e.g. “pain” and “UMLS:pain”).

- same meaning as a UMLS concept but different

label (e.g. “noisebleed” and “UMLS:epistaxis”)

- same label as UMLS concept but different

meaning (e.g. “leg”

as CHT means the anathomic part from ankle to

hip while in UMLS Methatesaurus is defined as

“the inferior part of the lower extremity between

the KNEE and the ANKLE”).

- does not any UMLS concept with same meaning

(thus it is not mappable inside UMLS).

Authors want to deal with the fourth category:

they create some teams of domain expert to find

the more similar UMLS concepts of every non-

mappable concept and to find the relation

between non-mappable concepts and more similar

UMLS concepts (e.g. “diet pills” is similar to

“UMLS: Weight-Loss Agents”, and the relation

among them is “diet pills” “is more specific than”

“UMLS: Weight-Loss Agents”).

Experts

found 36

non-

mappable

CHT and

thus they

created by

hand

missing

UMLS

concepts

and

relations.

The

mapping

among

biomedical

ontologies

and common

health

vocabularies

could be

very useful

to spread

knowledge

also to non-

domain

expert users.

Paper has

been

downloa

ded from

http://ww

w.consu

merhealt

hvocab.o

rg/

http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/

 111

Title Authors
Complete

reference
Aim Methods Results Utility Query

22 Identifying

consumer-

friendly

display

(CFD)

names for

health

concepts.

Zeng

QT, Tse

T,

Crowell

J, Divita

G, Roth

L,

Browne

AC.

Zeng QT, Tse T,

Crowell J, Divita

G, Roth L,

Browne AC.

Identifying

consumer-

friendly display

(CFD) names for

health concepts.

Proceeding of the

AMIA Annual

Symposium

. 2005 Jan;859–

63.

The aim of the

work is to

present a

systematic

approach to

append to

every Unified

Medical

Language

System

(UMLS)

concept the

best-fit

consumer-

friendly

display (CFD)

names.

Authors created a corpus of common health

terms (CHTs) from 12.5 millions queries on

NLM MedlinePlus®.

Every time more than one CHTs refer to the same

UMLS concept, authors have chosen by hand one

of this list as CFD.

They mapped CHTs to 96.029 UMLS concepts by

hand.

To evaluate the corpus of CFD, authors have

created a questionnaire with 34 fill-in-the-blank

questions, each with four multiple-choice

selections: an answer and three distractors. Each

question, designed to test a person’s ability to

understand a health concept, has two versions:

one using the CFD name of a concept; the other

using either the UMLS preferred term or the most

frequently used alternate name (other than a

lexical variant of the CFD name). Every test had

17 questions with UMLS answers and 17

questions with CFD answers.

Participants (n=10; non-clinician, at least 18

years old, English speaking) were recruited from

the lobbies of the Brigham and Women’s

Testers

have

scored a

mean of

15.6/17 in

the CFD

answers

part and

only 6.0 /

17 in the

UMLS

one.

This work

underlines

how hard is

to map

common

health terms

into

biomedical

ontologies

terms.

Paper has

been

downloa

ded from

http://ww

w.consu

merhealt

hvocab.o

rg/

http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/
http://www.consumerhealthvocab.org/

 112

Title Authors
Complete

reference
Aim Methods Results Utility Query

Hospital. A paired t-test was used for the

hypothesis that the mean score on CFD questions

was greater than that on non-CFD questions.

 113

7. References

1. Jonquet C, Shah N, Musen M. The Open Biomedical Annotator. Proceeding of the
Summit on translational bioinformatics. 2009. p. 56–60.

2. Gruber T. The role of common ontology in achieving sharable, reusable
knowledge bases. KR. 1991;601–2.

3. Tirmizi SH, Aitken S, Moreira D a, Mungall C, Sequeda J, Shah NH, et al. Mapping
between the OBO and OWL ontology languages. J Biomed Semantics. 2011 Jan;2
Suppl 1:S3.

4. Ashburner M, Ball C, Blake J, Botstein D. Gene Ontology: tool for the unification
of biology. Nat Genet. 2000;25(1):25–9.

5. Rosse C, Jr JLVM. A reference ontology for biomedical infortmatics: the
Foundational Model of Anatomy. J Biomed Inform. 2003;36(6):478 – 500.

6. Bodenreider O. The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 2004 Jan 1;32(1):267–70.

7. Medicine USNL of. Unified Medical Language System [Internet]. [cited 2014
Mar 3]. Available from: http://www.nlm.nih.gov/research/umls/

8. Pirró G, Talia D. UFOme: An ontology mapping system with strategy prediction
capabilities. Data Knowl Eng. 2010 May;69(5):444–71.

9. Xueyong L, Quanrui W. The design and analysis of semantic web-based
ontology mapping model. Proceedings of the International Conference on
Educational and Network Technology (ICENT 2010). 2010. p. 75–8.

10. Kashyap V. The UMLS Semantic Network and the Semantic Web. Proceeding of
AMIA Annual Symposium. 2003. p. 351.

11. Smith B, Brochhausen M. Putting biomedical ontologies to work. Methods Inf
Med. 2010 Jan;49(2):135–40.

12. Khan Z, Keet C. Addressing Issues in Foundational Ontology Mediation.
Proceedings of the 5th International Conference on Knowledge Engineering
and Ontology Development (KEOD’13). 2013.

13. Lindberg, DA Humphreys, BL McCray A. Unified Medical Language System.
Methods Inf Med. 1993;32(4):281 – 291.

 114

14. Hitzler P, Krötzsch M, Rudolph S. The quest for Semantic. Foundations of
Semantic Web Technologies. New York: Chapman & Hall/CRC; 2009. p. 1–16.

15. Gruber T. A Translation Approach to Portable Ontology Specifications. Knowl
Acquis. 1993;5(2):199–220.

16. Fensel D, Horrocks I, Harmelen F Van, Mcguinness D. OIL Ontology
Infrastructure to Enable the Semantic Web. Intell Syst IEEE. 2001;16(2):38–45.

17. Jazirehi AR, Nazarian R, Torres-Collado AX, Economou JS. Aberrant apoptotic
machinery confers melanoma dual resistance to BRAF(V600E) inhibitor and
immune effector cells: immunosensitization by a histone deacetylase inhibitor.
Am J Clin Exp Immunol. 2014 Jan;3(1):43–56.

18. Hitzler P, Krötzsch M, Rudolph S. Simple Ontologies in RDF and RDF Schema.
Foundations of Semantic Web Technologies. New York: Chapman & Hall/CRC;
2009. p. 19–72.

19. Jonquet C, Musen M, Shah N. Building a biomedical ontology recommender web
service. J Biomed Inform. 2010;1(Suppl. 1):1–18.

20. Consortium TGO. the Gene Ontology [Internet]. [cited 2014 Mar 3]. Available
from: http://www.geneontology.org

21. University of Washington School of Medicine. Foundational Model of Anatomy
[Internet]. [cited 2014 Mar 5]. Available from:
http://sig.biostr.washington.edu/projects/fm/

22. Word Health Organization. International Classification of Diseases [Internet].
Available from: http://www.who.int/classifications/icd/en/

23. Colombetti, M. Some Properties of Logical Systems. 2013. Lecture notes for the
Knowledge Engineering course. Downloadable from the course’s website,
http://home.dei.polimi.it/colombet/KE/

24. Sumathi S, Esakkirajan. S. Structured Query Language. Fundamentals of
Relational Database Management Systems. New York, New York, USA: Springer;
2007. p. 111–212.

25. Hitzler P, Krotzsch M, Rudolph S. Foundations of semantic web technologies.
New York: Chapman & Hall/CRC; 2011.

26. Wang H. Some facts about Kurt Gödel. J Symb Log. 1981;1(1):653–9.

27. Hitzler P, Krötzsch M, Rudolph S. OWl Formal Semantics. Foundations of
Semantic Web Technologies. New York: Chapman & Hall/CRC; 2009. p. 159–
210.

 115

28. Hitzler P, Krötzsch M, Rudolph S. Extensible Markup Language XML.
Foundations of semantic web technologies. New York: Chapman & Hall/CRC;
2009. p. 353–62.

29. Mangold C. A survey and classification of semantic search approaches. Int J
Metadata, Semant Ontol. 2007;2(1):23–34.

30. Fagin R, Kolaitis PG, Miller RJ, Popa L. Data exchange: semantics and query
answering. Theor Comput Sci. 2005 May;336(1):89–124.

31. Rubin DL, Dameron O, Musen M a. Use of description logic classification to
reason about consequences of penetrating injuries. Proceeding of the AMIA
Annual Symposium. 2005. p. 649–53.

32. National Library of Medicine, National Institutes of Health. PubMed [Internet].
[cited 2014 Feb 2]. Available from: http://www.ncbi.nlm.nih.gov/pubmed

33. Halevy A, Rajaraman A, Ordille J. Data integration: the teenage years.
Proceedings of the 32nd international conference on Very large data bases.
2006. p. 9–16.

34. Berges I, Bermudez J. Semantic Interoperability of Clinical Data. Proceedings of
the First International Workshop on Model-Driven Interoperability ACM. 2010.
p. 10–4.

35. Cristani M, Cuel R. A survey on ontology creation methodologies. Int J Semant
Web Inf Syst. 2005;1(2):49–69.

36. Sugumaran V, Storey VC. Ontologies for conceptual modeling: their creation,
use, and management. Data Knowl Eng. 2002 Sep;42(3):251–71.

37. Noy NF, McGuinnes DL. Ontology Development 101: A Guide to Creating Your
First Ontology [Internet]. [cited 2014 Mar 12]. Available from:
http://protege.stanford.edu/publications/ontology_development/ontology101
-noy-mcguinness.html

38. AI3. A Reference Guide to Ontology Best Practices [Internet]. 2010 [cited 2014
Mar 12]. Available from: http://www.mkbergman.com/911/a-reference-guide-
to-ontology-best-practices/

39. Noy N, Tudorache T, Nyulas C, Musen M. The ontology life cycle: Integrated
tools for editing, publishing, peer review, and evolution of ontologies.
Proceeding of the AMIA Annual Symposium. 2010. p. 552–6.

40. Grác M, Rambousek A, Center N. Low-cost ontology development. Proceeding of
the 6th Int Glob Wordnet Conf. 2012. p. 299-305.

 116

41. Chua W, Kim J. Discovering cross-ontology subsumption relationships by using
ontological annotations on biomedical literature. Proceeding of the ICBO. 2012.
p. 1–5.

42. Noy NF, Musen M a. The PROMPT suite: interactive tools for ontology merging
and mapping. Int J Hum Comput Stud. 2003 Dec;59(6):983–1024.

43. Lee W, Shah N. Comparison of Ontology-based Semantic-Similarity Measures.
AMIA annual symposium. 2008. p. 384–8.

44. Marquet G, Mosser J, Burgun A. A method exploiting syntactic patterns and the
UMLS semantics for aligning biomedical ontologies: the case of OBO disease
ontologies. Int J Med Inform. 2007 Dec;76 Suppl 3:53–61.

45. Chua WWK, Kim J-J. BOAT: automatic alignment of biomedical ontologies using
term informativeness and candidate selection. J Biomed Inform. 2012
Apr;45(2):337–49.

46. Huang J, Dang J, Huhns MN, Zheng WJ. Use artificial neural network to align
biological ontologies. BMC Genomics. 2008 Jan;9(Suppl 2):S16.

47. Rajakaruna G. Agent based Protégé plugin for ontology alignment. Proceeding
of the conference on Industrial and Information Systems (ICIIS) 2012 7th IEEE
International. 2012. p. 1–6.

48. Belhadef H. A New Bidirectional Method for Ontologies Matching. Procedia Eng.
2011 Jan;23:558–64.

49. Cotterell ME, Medina T. A Markov Model for Ontology Alignment. arXiv Prepr
arXiv13045566. 2013 Apr 19;

50. Nasir M, Hoeber O, Evermann J. Supporting Ontology Alignment Tasks with
Edge Bundling. Proceedings of the 13th International Conference on
Knowledge Management and Knowledge Technologies. 2013. p. 11.

51. Noy N, Musen M. Anchor-PROMPT: Using non-local context for semantic
matching. Proceedings of the workshop on Ontologies and Information Sharing
at the International Joint Conference on Artificial Intelligence (IJCAIW). 2001.

52. Ngo D, Bellahsene Z. YAM ++: A multi-strategy based approach for Ontology
matching task. Proceedings of the Knowledge engineering and management:
18th international conference, EKAW 2012 18th, European Knowledge
Acquisition Workshop; 2012. p. 421–5.

53. Allen K, Lancour H, Daily J, Kent A. Natural Language Processing. In: Marcel
Decker, editor. Encyclopedia of library and information science. 2nd ed. 1973.

 117

54. Ballard K. Introduction. The frameworks of English. New York: Palgrave
MacMillan; 2001. p. 3–14.

55. Ballard K. Word classes. The frameworks of English. New York: Palgrave
MacMillan; 2001. p. 15–49.

56. Ballard K. Phrases. The frameworks of English. New York: Palgrave MacMillan;
2001. p. 93–118.

57. Ballard K. Clauses. The frameworks of English. New York: Palgrave MacMillan;
2001. p. 119–45.

58. Sang E. Transforming a Chunker to a Parser. Lang Comput. 2001;37(1):177–88.

59. Chávez A, Orquín A, Dávila H, Gutiérrez Y. UMCC-DLSI: multidimensional
lexical-semantic textual similarity. Proceedings of the First Joint Conference on
Lexical and Computational Semantics. 2012. p. 608–16.

60. Raghavan H, Allan J. Using soundex codes for indexing names in ASR
documents. Proceedings of the Workshop on Interdisciplinary Approaches to
Speech Indexing and Retrieval at HLT-NAACL 2004. 2004. p. 22–7.

61. Boehm B. A view of 20th and 21st century software engineering. Proceedings of
the 28th international conference on Software engineering. 2006. p. 12–29.

62. Bennett C, Ryall J, Spalteholz L, Gooch A. The Aesthetics of Graph Visualization.
Comput Aesthet. 2007;57–64.

63. Noack A. An energy model for visual graph clustering. Graph Draw. 2004;425–
36.

64. The Apache Software Foundation. openNLP [Internet]. Available from:
http://opennlp.apache.org

65. The JUNG Framework Development Team. Java Universal Network/Graph
Framework.

66. Apache Software Foundation. Apache Jena [Internet]. Available from:
https://jena.apache.org

67. Wikipedia [Internet]. Available from: http://en.wikipedia.org

68. Kamel H, Navi BB, Sriram N, Hovsepian D a, Devereux RB, Elkind MS V. Risk of a
Thrombotic Event after the 6-Week Postpartum Period. N Engl J Med. 2014 Feb
13;1–9.

 118

69. Simic D, Simutis F, Euler C, Thurby C, Peden WM, Bunch RT, et al.
Determination of relative Notch1 and gamma-secretase-related gene
expression in puromycin-treated microdissected rat kidneys. Gene Expr. 2013
Jan;16(1):39–47.

70. Go A, Chertow G. Chronic kidney disease and the risks of death, cardiovascular
events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

71. Opelz G, Wujciak T, Ritz E. Association of chronic kidney graft failure with
recipient blood pressure. Kidney Int. 1998;53(1):217–22.

72. Consortium International Polycystic Kidney Disease. Polycystic kidney disease:
the complete structure of the PKD1 gene and its protein. The International
Polycystic Kidney Disease Consortium. Cell. 1995 Apr 21;81(2):289–98.

73. Chertow G, Burdick E. Acute kidney injury, mortality, length of stay, and costs
in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.

74. Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006
Jan;29:229–57.

75. Breit S, Schulz JB, Benabid A-L. Deep brain stimulation. Cell Tissue Res. 2004
Oct;318(1):275–88.

76. Leone M, May A, Franzini A, Broggi G, Dodick D, Rapoport A, et al. Deep brain
stimulation for intractable chronic cluster headache: proposals for patient
selection. Cephalalgia an Int J headache. 2004 Nov;24(11):934–7.

77. Leone M, Franzini A, Felisati G, Mea E, Curone M, Tullo V, et al. Deep brain
stimulation and cluster headache. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin
Neurophysiol. 2005 May;26(Suppl 2):s138–9.

78. Moll CKE, Galindo-Leon E, Sharott A, Gulberti A, Buhmann C, Koeppen JA, et al.
Asymmetric pallidal neuronal activity in patients with cervical dystonia. Front
Syst Neurosci. 2014 Jan;8:15.

79. Cimiano P, Völker J. Text2Onto. Natural language processing and information
systems. Springer B. Berlin; 2005. 227–38.

80. Rusu D, Dali L, Fortuna B. Triplet extraction from sentences. Proceedings of the
10th International Multiconference" Information Society-IS. 2007. p. 8 – 12.

81. Berges I, Bermudez J. Semantic interoperability of clinical data. Proceeding of
MDI ’10 Proceedings of the First International Workshop on Model-Driven
Interoperability. 2010. p. 10–4.

 119

82. Mortensen JM, Horridge M, Musen M a, Noy NF. Applications of ontology design
patterns in biomedical ontologies. Proceeding of AMIA Annual Symposium.
2012. p. 643–52.

 120

Acknowledgement

Vorrei ringraziare il mio relatore, Professor Stefano Bonacina per avermi accompagnato e

sostenuto in questa lunga avventura, per i suoi preziosi consigli e per tutto il tempo che mi

ha sempre dedicato con passione e entusiasmo. Vorrei ringraziarlo di cuore per aver reso

questi mesi di lavoro estremamente interessanti e stimolanti, per le sue critiche precise e

costruttive, per avermi imposto un ordine da seguire, lasciandomi però libero di

esprimermi. Vorrei infine ringraziarlo per aver creduto in me.

Vorrei ringraziare il Professore Francesco Pinciroli per avermi ospitato nel laboratorio, per

essersi sempre interessato al mio lavoro, per tutti quei consigli che hanno contribuito allo

sviluppo finale del mio lavoro, per la passione con la quale fa il suo lavoro e per avermi

fatto scoprire dei posti incredibili all’interno del Politecnico.

Vorrei ringraziare la Professoressa Sara Marceglia per avermi sopportato in laboratorio

nella scrivania di fianco alla sua, per gli articoli che nei mesi mi ha suggerito di leggere,

per l’interesse reale che ha mostrato in quanto stavo facendo.

Vorrei ringraziare Giulia Tanzi per la parte di linguistica inglese, per il supporto che ogni

giorno mi ha saputo dare: senza di lei questo lavoro non sarebbe stato possibile.

Vorrei ringraziare la mia famiglia per essermi stata vicina in questi mesi difficili e per aver

da sempre creduto in me anche quando le evidenze avrebbero suggerito il contrario.

Vorrei infine ringraziare il Professor Rodolfo Fiorini, persona che ha cambiato il mio

modo di vedere le cose. Per quanto il nostro rapporto non sia sempre stato “facile”, non

smetterò mai di ringraziarlo per tutto quello che mi ha dato.

 121

