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Abstract

The aim of the present thesis is the description and the assessment of a damage
identification method based on recursive Bayesian filters. Its main goal is the
ability of detecting the damage indexes associated to any given structure, or in
other words, estimating the actual local stiffness of the system, given a certain
number of observations. Other two main objectives are to guarantee a reduced
computational cost and the coupling with a commercial FE code. These require-
ments allow the method to be presented as a conceptual strategy that can be
applied to a large variety of applications purposes and to any type of FE formu-
lation. Since the main drawback of any identification method based on standard
recursive filters is the excessive computational time, two solutions are adopted: a
model order reduction and an improved filtering strategy, that uses a re-sampling
technique and a modified particle filter. The model order reduction is obtained
through a Galerkin-based projection of the original full model into a sub-space.
The bases used to perform the projections corresponds to the so-called Proper
Orthogonal Modes, calculated applying the Proper Orthogonal Decomposition in
its snapshot-based version. The formulation is arranged in a way that it does not
depend on which is the FE model used to discretize the structure and how it has
been implemented, but only on some damage indexes and on the stiffness matri-
ces of appropriate reference structures. Moreover, a dual estimation of reduced
states and parameters, together with the update of the subspace, allows to track
both the dynamic evolution of the system and the damage parameters. In order
to assess the aforementioned identification procedure, the estimation strategy is
applied to a thin plate. It is shown that the filter is able to identify and localize
the damage even using a very reduced system. Finally, a proposal for a smart
embedded data acquisition system, that could be used in coupling with the iden-
tification strategy, is presented. The choice of MEMS type accelerometers allow
to make the system applicable to lightweight and small structures.





Sommario

Negli ultimi anni, grazie allo sviluppo di nuove tecnologie, una crescente atten-
zione è stata posta sul tema delle cosiddette città intelligenti. In questo senso, in
ogni campo dell’ingegneria, si è osservato un crescente interesse per lo sviluppo
di sistemi e metodologie di monitoraggio, inteso come il controllo e l’osservazione
della realtà attraverso una rete di sensori. Il monitoraggio strutturale si riferisce
a tutte quelle procedure che consentano di ricavare infromazioni sullo stato di un
certo sistema meccanico o strutturale. Gli scopi principali sono la rilevazione, la
localizzazione e l’identificazione del danno, nonchè, in alcuni casi, la stima della
vita residua della struttura stessa. Dal punto di vista metodologico, tre sono i
passi da seguire: innanzitutto lo stato del sistema viene osservato per un certo
periodo di tempo attraverso una rete di sensori; successivamente, è necessario
scegliere quei parametri che permettano di identificare il danno; infine gli stessi
vengono stimati attraverso un appropriato modello matematico.
I primi tentativi atti a sviluppare un sistema di monitoraggio strutturale furono
fatti nell’ambito dell’ingegneria petrolifera e delle piattaforme off-shore. Suc-
cessivamente le prime vere applicazioni su larga scala riguardarono solamente un
limitato numero di infrastrutture, in particolare ponti, dove il costo di un sistema
di monitoraggio poteva essere giustificato dall’importanza dell’opera e dalla pos-
sibilità di ridurre gli elevati costi di manutenzione, grazie ad un miglioramento
della gestione. Solamente in anni recenti e grazie al rapido sviluppo di sensori
e reti di dati a basso costo e di dimensioni ridotte, le pratiche del monitoraggio
strutturale si sono diffuse anche in altri campi quali le applicazioni aeronautiche
e le opere civili di importanza non strategica. Parallelamente all’aspetto tecnico,
sono stati presentati nuovi metodi matematici di identificazione che si sono affi-
ancati a quelli tradizionali. I più utilizzati sono quelli basati sul confronto delle
frequenze, della forma dei modi, degli spostamenti o di altri parametri modali.
Lo scopo di questa tesi è l’utilizzo e l’applicazione di un nuovo metodo di identi-
ficazione strutturale basato sui filtri ricorsivi Bayesiani. Lo scopo finale è quello
di riuscire a comprendere se in una certa struttura si sia verificata una variazione
delle caratteristiche di rigidezza e quantificare questa variazione. In altri termini,
a partire da un certo numero di misurazioni, si vuole risalire alle caratteristiche
del sistema e quindi stimare l’evoluzione dei parametri di danno.



Il metodo proposto risponde ad altri due requisiti. Innanzitutto il costo com-
putazionale deve essere ridotto, in modo tale da poter effettuare l’identificazione
in tempo reale o quasi reale. In secondo luogo, la formulazione del modello deve
essere svolta in modo tale che dipenda solamente dai parametri di danno da sti-
mare e non da come è stato costruito il modello agli elementi finiti. In questo
modo la procedura può rappresentare una strategia teoricamente applicabile a
qualsiasi tipo di struttura. Dal momento che lo svantaggio principale dei filtri
Bayesiani è correlato al tempo di elaborazione dei dati, due tecniche sono state
utilizzate al fine di ridurre il costo computazionale: innanzitutto è stato applicato
un metodo di riduzione del modello, al fine di diminuire il numero dei gradi di
libertà necessari per descrivere esaustivamente lo stato del sistema; in secondo
luogo, si sono utilizzati metodi di ricampionamento e una versione modificata
di un filtro particellare. La riduzione del modello è stata effettuata proiettando
lo spazio completo in cui il sistema strutturale evolve in un sottospazio di di-
mensioni inferiori. La base necessaria per effettuare la proiezione alla Galerkin
viene calcolata utilizzando la decomposizione ortogonale propria (POD) che con-
sente di ottenere i modi propri che minimizzano in modo ottimale l’errore dovuto
all’approssimazione.
La tesi si sviluppa su due piani: uno teorico, l’altro applicativo.
La prima parte riguarda l’introduzione e spiegazione dei metodi di riduzione del
modello, con particolare riferimento alla POD. Successivamente viene ampia-
mente spiegato il concetto di stima, di inferenza Bayesiana e dei relativi metodi
risolutivi, in particolare il filtro di Kalman, il filtro di Kalman esteso, adottato
nel caso di problemi non lineari, e il filtro particellare. Dopo aver accennato ad
ulteriori concetti quali la stima duale e la stima di modelli ridotti, la prima parte
si conclude con la spiegazione dell’algoritmo che verrà in seguito utilizzato per
la fase di simulazione, e che permette la stima duale del modello ridotto e dei
parametri di danno con aggiornamento del sottospazio.
La seconda parte riguarda la valutazione degli algoritmi esposti in precedenza
nell’applicazione ad una semplice struttura di riferimento: una piastra semplice-
mente appoggiata caricata con una forza sinusoidale, con o senza danno. At-
traverso il confronto della risposta strutturale nei casi di modello completo e
ridotto si dimostra che il metodo di riduzione del modello può approssimare
adeguatamente il problema anche utilizzando un esiguo numero di gradi di lib-
ertà residui. Successivamente il funzionamento del filtro ricorsivo viene valutato
verificandone la capacità di stimare i parametri di danno, note un certo numero
di misurazioni delle rotazioni nei nodi. Il comportamento del metodo di stima
viene valutato assumendo varie differenti ipotesi: la dimensione del modello ri-
dotto, le incertezze associate alle misurazioni e al modello, il numero di sensori e
le condizioni iniziali.



Si descrive infine una proposta di sviluppo di un sistema di acquisizione dei
dati che possa essere applicato al monitoraggio di strutture leggere e di piccole
dimensioni, nonchè con costi ridotti. La soluzione proposta prevede l’utilizzo
di accelerometri MEMS e di un linguaggio di programmazione commerciale che
permetta la massima flessibilità.





Chapter 1

Introduction

In recent years, due to the growing development of the information technology
and electronic engineering, the concept of smart city is starting to play a key
role in the modern society. In these terms, in every field of engineering a newly
interest in system monitoring, meant as the control and observation of the reality
through a network of sensing devices, has been revived. Structural Health Moni-
toring (SHM) represents the direct application of the aforementioned concept to
mechanical and structural fields. SHM could be referred to all those procedures
that can provide information about the state of a certain mechanical or structural
system. The main goals of SHM can be summarized as follows:

• load detection;

• damage detection;

• damage localization;

• damage identification;

• remaining lifetime prognosis.

Regarding the method needed to reach the latter goals, any strategy should always
deal with basically three conceptual stages [7]:

1. The system state is observed through periodically spaced measurements
collected for a certain period of time. We can refer to long-time observations
when the user is interested in slow variations of the system, such as those
induced by corrosion and erosion phenomena or short-time observations
when impacts or high-frequency events have to be investigated.

2. A certain number of features or indexes are chosen in order to identify the
damage, i.e. any variation in the geometric or material characteristics of
the system that can affect its behavior. The sources of damage basically
depend both on the types of material and on structure of the system, for
instance delamination and debonding for composite materials [8].
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3. The measured data is analyzed and elaborated in order to identify the dam-
age. This step could be performed either using on-line or off-line procedures.

In Figure 1.1 a conceptual block diagram representation of the SHM paradigm is
shown.

Figure 1.1: Block diagram representation of a SHM system [1]

The first efforts to try to develop some SHM systems were made by the oil
industry during the 1980s in off-shore structures. The first large-scale applica-
tions in civil engineering were strategic infrastructures (WASHMS Hong Kong
[9]) and bridges [10] where the investments were justified by the relevant social
costs of a possible failure. It has been shown that a continuous control of the
behavior of an infrastructure represents not only a way to understand and check
the actual reliability of the system, but can also lead to a smarter management of
the maintenance programs and hence to an effective decrease in overall lifetime
costs [1]. Thanks to the development of off-the-shelf electronic devices and the
reduction of cost of both the sensors [11] and the network systems [12], smart
and cheap SHM systems can be now adopted for a wider range of structure and
problems, such as aeronautical or low-scale civil applications.
Over the last years, several procedures and methods [13] have been developed in
order to detect and estimate the structural damage. Some of these are natural
frequency-based methods [14], mode shape-based methods [15], curvature/strain
mode shape-based methods [16] or other modal parameters based methods [17].
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Inverse methods, defined as procedures that allow to localize and detect damage
using measured data, can be classified into two main groups [18]: sensitivity-type
models and direct updating methods. While the first ones regards the estimation
of some model parameters of the structure through the minimization of a penalty
function, the second ones leads to a direct changing of the stiffness or mass matrix
of a FE model, such that the measurement data are fitted.
The concepts of Bayesian estimation have been recently applied to system and
damage identification of structural system. Some researchers have focused on the
estimation of the parameters of simple mechanical systems or non-linear consti-
tutive laws of materials. The identification of hysteretic mechanical models has
been performed either through the unscented Kalman filter [19] or the extended
Kalman filter [20]. Other works regard the estimation of the most likely structural
model that guarantees the best accordance with the experimental data by using
some Bayesian probabilistic frameworks [21, 22]. An other approach is the detec-
tion and localization of damage through the calculation of the probability that a
certain set of model stiffness parameters is under a certain threshold [23, 24].
The aim of the present work is the assessment of a damage identification method
based on recursive Bayesian filters. The algorithm is a modified version of the
one proposed in [25]. The main goal of this identification method is the ability
of detecting the damage indexes associated to any given structure, or in other
words, estimating the actual local stiffness of the system, given a certain number
of observations. Other two main objectives are to guarantee a reduced computa-
tional cost, such that the estimation could be performed in an on-line or nearly
on-line way, and the coupling with a commercial state-of-the-art Finite Element
(FE) code. These requirements allow the method to be presented as a conceptual
strategy that could be applied to a large variety of applications purposes and to
any type of FE discretization of the structure. Since the main drawback of any
identification method based on standard recursive filters is exactly represented
by the excessive computational time, two solutions will be adopted:

• a model order reduction that allows to reduce the dimensionality of the
system, still maintaining a proper level of information;

• an improved particle filtering strategy, that uses a re-sampling technique
and a modified particle filter.

The model order reduction will be obtained through a Galerkin projection of the
original full model into a sub-space. The bases used to perform the projections
corresponds to the so-called Proper Orthogonal Modes (POM), calculated apply-
ing the Proper Orthogonal Decomposition (POD) in its snapshot-based version.
Regarding the use of a commercial code in order to generate the structural model,
the formulation will be arranged in a way that it does not depend on which is the
model used to discretize the structure and how it has been implemented. Rather,
the model depends only on some damage indexes associated to a certain number



22 Introduction

of regions in which the structure is divided to and the definition of some appro-
priate reference structures. Therefore, in order to be able to estimate both the
dynamical evolution of the system and the damage parameters, a dual estimation
of reduced states and parameters, together with the update of the subspace, will
be employed. In order to assess the aforementioned identification procedure, the
identification strategy will be applied to a simple thin plate. It will be shown
that the filter is able to identify and localize the damage even using a very re-
duced system. For instance, the behavior of a 10×10 elements thin plate, having
726 degrees of freedom, is very well approximated by a reduced model with only
three degrees of freedom. Finally, a proposal for a smart embedded data acquisi-
tion system, that could be used in couple with the identification strategy, will be
presented. Since we wanted the system to be applicable even to light and small
structures, the main requirements were a low cost, lightweight and tiny sizes of
the devices and a flexible deployment and control of the acquired data. For these
reasons, both a Micro Electro-Mechanical Systems (MEMS) type accelerometer
and a commercial Labview programming interface will be chosen.

1.1 Outline of the thesis

The thesis is divided into two main parts: first of all a theoretical explanation of
the identification procedure is given, then the results of a simulated benchmark
analysis are shown.
Chapter 2 regards the theoretical framework of the model order reduction method
and its different implementation strategies. A particular attention is paid to the
Proper Orthogonal Decomposition (POD), that will be used in the simulations.
Its basic formulation is explained showing that the optimal projection needed to
reduce the original space is the one that minimize the overall error of the relative
approximation. Moreover, the projecting bases calculated are called Proper Or-
thogonal Modes (POM). Afterwards, a brief review of the two methods used to
perform POD are described: the Principal Component Analysis (PCA) and the
Singular Value Decomposition (SVD). Since the latter one will be used, a concep-
tual interpretation is given and the link between POD and SVD is underlined.
Later a energy-based methodology that allows to choice the appropriate order
of the reduced system is explained. Finally the Galerkin projection-based for-
mulation of the structural dynamical equation is furnished, as well as its related
errors. At the end the physical interpretation of the POMs is given, considering
some basic loading conditions.
Chapter 3 deals with the explanation of the recursive Bayesian filter concept. A
first look at the general estimation problem formulation is given, explaining the
meaning of state of a system. Then, the process and measurement models are
defined: while the first one is needed to describe the evolution of the system over
time, the latter one relates the state and the measurements collected through a
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network of sensors. The concept of Bayesian inference is furnished, explaining the
three basic steps of any estimation procedure: definition of the initial conditions,
prediction stage and update stage. An optimal solution of the estimation problem
is the Kalman filter (KF): for completeness, its demonstration and the related
procedure is here reported. Whenever the model could be no more considered as
linear, a sub-optimal method is required: hence, a linearization is necessary and
the extended Kalman filter (EKF) can be applied. When the linearization is not
a viable solution, a new strategy should be used: here the concept of Particle
filtering (PF) and re-sampling procedures are introduced.
Chapter 4 collects the concepts previously explained, by introducing the final
framework that will be used in the simulations. The notions of dual estimation
and reduced model estimation are required since both the dynamical evolution
of the system and the damage parameters will be estimated. Finally the Hy-
brid extended Kalman particle filter (HEKPF) is explained: the idea is to use
a Kalman filter to speed up the particle filter algorithm by updating the sam-
ples considering the actual observations. Gathering all the latter concepts into a
unique estimation scheme, the dual estimation of reduced states and parameters
with subspace updating algorithm (EK-PF-KF) is described. The final step is
the application of this procedure to the structural problem, implementing a new
way of building the process model such that a commercial FE code can be used.
In chapter 5 a benchmark analysis has been shown, applying the procedure to a
simply supported thin plate subjected to a smooth force, considering both the
cases of an undamaged and damaged structure. The assessment of the model
order reduction is given, showing that even a very reduced model can catch the
main behavior of the full model. It is then proved that, chosen a certain level of
information retained, the damaged structure requires a higher number of degrees
of freedom with respect to the undamaged case. The convergence and stability
of the POMs with respect to the number of snapshots that have been selected is
shown as well. Afterwards, the capability of the filter of detecting and estimat-
ing the damage parameters, given a certain number of rotational observations, is
shown. Its sensitivity with respect to the choice of the model size, the measure-
ment noise, the process noise, the initial conditions, the number of sensors and
the convergence of the POMs over time are discussed. Finally, it is shown that
the operation of the damage identification procedure is guaranteed for systems
with large number of degrees of freedom as well.
In chapter 6 a proposal for an embedded SHM data acquisition system is given.
The choice of MEMS accelerometers and a ready-to-use commercial program-
ming language is made in order to develop a very low cost system. Finally, some
considerations about the optimal placement of the accelerometers are given.
Chapter 7 deals with some concluding remarks and possible future developments
and researches.





Chapter 2

Model Order Reduction

2.1 Overview

Let us first of all consider a generic structure subjected to a set of variable forces
and boundary conditions. The Principle of Virtual Work states that the work
done by externally applied forces is equal to the sum of the work done by inertial,
dissipative and internal forces for any virtual displacement, i.e. for any small mo-
tion that satisfies compatibility and essential boundary conditions. Moreover, in
order the problem to be manageable, the structure can be discretized through the
application of the Finite Element Method (FEM). Applying this latter procedure
to the aforementioned theorem, we are lead to the dynamical equation of a given
structural problem:

Mü(t) + Du̇(t) + Ku(t) = F(t) (2.1)

where u(t) is the vector that contains the kinematic quantities, either displace-
ments or rotations, at a certain instant t and associated to each node of the
structure, M is the mass matrix, D is the damping matrix, K is the stiffness ma-
trix, F is the vector of the external applied forces. The notations ü(t) and u̇(t)
stand for respectively the first and second derivative of vector u(t) with respect
to t. The dimension of the problem depends directly on the type and number of
elements that have been used to space-discretize the system itself.
One of the goals of the present work is the description of a procedure that can
work in real-time or near real-time: despite the use of a powerful and fast filtering
scheme and of a simple geometry, since we want the system to be effective even for
other and more complicated type of structures, a model reduction is performed.
Model reduction, sometimes also called model order reduction (MOR), refers to
all those mathematical methods that allow to reduce the dimensionality of a com-
plex high-dimension model into another simplified model. Any method used to
perform the reduction should:

• minimize the error between the full and reduced order models;
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• maintain an acceptable level of information;

• describe exhaustively the behavior of the system.

This reduction is usually obtained through the projection of the original space,
in which the mechanical system can evolve by means of u(t), u̇(t) and ü(t), onto
a new lower order subspace, trying to lose the less possible information. For
instance, considering a dynamic problem, equation (2.1) will become:

Mrv̈(t) + Drv̇(t) + Krv(t) = Fr(t) (2.2)

where u ∈ Rn with n being the dimension of the full model (i.e. the number of
degrees of freedom for a FE model) and v ∈ Rl with l << n being the dimension
of the reduced model; of course, similarly, M,D,K ∈ Rn×n and Mr,Dr,Kr ∈
Rl×l. Since v is an approximate solution that leads to a certain grade of error
with respect to the exact solution u of the problem, the main aim of all the
reduction methods is to find an optimal subspace such that the approximation is
still acceptable.
The most famous projection method is based on the Krylov sub-spaces [26], which
led to several algorithms, such as Arnoldi, Lanczos, Conjugate gradient ones.
Two types of procedures are used nowadays:

• proper orthogonal decomposition based methods (POD);

• proper generalized decomposition based methods (PGD);

• moment matching based methods.

The proper generalized decomposition consists in building up the solution of a
full order problem as a sum of tensorial product of functions defined in some
sub-spaces with reduced dimension [27, 28].
Regarding the latter ones, having redefined equation (2.1) in a state-space form
in terms of its state matrices A,B,C,D (related to matrices M, C and K [29])
and its transfer function H(s), the general idea is basically to impose the first l
moments of H(s) to be equal to those of the reduced order transfer function in
a certain set of points sk. Since any direct calculation is numerically unstable
[30], the calculation is made by using an iterative procedure based on Krylov
sub-spaces.
In the present work, the model reduction will be performed using the so-called
singular value decomposition that can be considered as a POD based method.
As it will be explained in details in the following sections, the steps performed to
reduce the model can be summarized as follows:

1. selection of a certain ensemble of data;

2. calculation of the proper orthogonal modes (POM) of the structure through
a POD-based method;
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3. projection of the model in a new low-dimension subspace.

2.2 POD
The concept of POD were first introduced by Kosambi (1943, [31]), Loeve (1941,
[32]), Karhunen (1946, [33]), Pougachev (1953, [34]) and Obukhov (1954, [35]).
The POD was developed in different formulations among different fields of re-
search; it is called Principal Component Analysis (PCA) in statistical math-
ematics (Jolliffe, 1986, [36]), Karhunen-Loeve Decomposition (KLD) in signal
processing and Singular Value Decomposition in mechanical engineering (Mees,
Rapp & Jennings, 1987, [37]).
The main idea of the POD is to find a subspace approximating a given set of
data in an optimal least-squares sense [38, 39, 40].
Consider the vector u(t) as the state evolution defined in the time interval
0 ≤ t ≤ T and obtained either through experimental data or as a solution of the
full model. We want to find an appropriate orthogonal projection Πl : V → Vl

of the data space V, such that the following L2 norm is minimized:

J(Πl) =

∫ T

0

||u(t)−Πlv(t)||22 dt (2.3)

with Πl ∈ Rn×l s.t. ΠlΠ
T
l = I. In other words, the aim is to find the appropri-

ate l-sized sub-space that approximates the original complete space: the task is
reached minimizing the error between these ones.
In order to find the solution of the problem, we first need to introduce the corre-
lation matrix K ∈ Rn×n as [41]:

K =

∫ T

0

u(t)u(t)T dt (2.4)

It can be prooved that K is a symmetric positive semi-definite matrix and there-
fore its eigenvalues are real and nonnegative.
The POD states then that the optimal subspace Vl representing the data is given
by:

Vl = span{φi, ...,φl} (2.5)

The vectors φk are called either Proper Orthogonal Modes or POD Modes and
they are defined as the eigenvectors of K, i.e. the solution of the associated
eigenvalue problem (further details in [42]):

Kφi = λiφi (2.6)

Considering real applications, the dimension n of the space can be very large,
therefore the calculation of the correlation matrixK can become computationally
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inapplicable. In order to overcome the problem, a new method has been proposed
by Sirovich [43]: the snapshot version of POD consists of a simplified solution of
the previous eigenvalue problem by solving only a m×m system, with m < n.
First of all, we have to build the snapshot matrix, by collecting a certain number
m of states in an evenly spaced time interval. The integral used in equation (2.4)
to calculate the correlation matrix can be therefore approximated through:

K =

Nsnap∑
i=1

u(ti)u(ti)
T (2.7)

Let us now define the snapshot matrix:

U = (u(ti), ...,u(tNsnap)) ∈ Rn×Nsnap (2.8)

Using the vectorial form, the correlation matrix can be simply written as K =
UUT , however K is still defined in Rn×n. At this point, it is important to notice
that the non-zero eigenvalues associated to UUT and the ones for UTU are the
same; this trick is useful because now it is possible to switch to a side simpler
eigenvalue formulation and thus reduce the computational cost:(

UTU
)
ψi = λiψi (2.9)

where UTU ∈ RNsnap×Nsnap and Nsnap � n.
Denoting r = rank(UTU), the first r POMs can be calculated in the following
way:

φi =
1√
λi
Uψi, i = 1, ..., r (2.10)

In order to sum up the previous procedure, we can say that the POD is a method
used to project a certain model onto a lower order sub-space built using the
eigenvectors associated to the correlation matrix calculated from the set of given
data.
As the theoretical explanation of POD has been presented, the final step is the
calculation of the optimal orthogonal basis that solves the problem. Several dif-
ferent methods exists: the most used ones are the Principal Component Analysis
(PCA), the Singular Value Decomposition (SVD) and the Karhunen-Loeve De-
composition (KLD). In [44] and [45] the equivalence of all these methods was
shown.
In the following paragraphs a brief review of the first two procedures will be
given.
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2.2.1 PCA

The PCA is a statistical method that allows to condensate big amounts of data
into few principal components; it was proposed by Pearson (1901, [46]) and de-
veloped by Hotelling (1933, [47]).
It is important to point out that a generic given set of data consists of a large
number of interrelated variables, so the basic idea of the procedure is to build
a new set of data that consists of ordered uncorrelated variables, obtained by
looking for those derived variables that preserve most of the information [36]. In
these terms, the method could be even seen as an optimization problem, such as
either a variance maximization or least-mean-square problem.
Let u ∈ Rn be a random vector, as defined previously, and y1, y2, ..., yn ∈ R be
the principal components, defined as follows:

y1 =
n∑
i=1

αi1ui = αT1 u (2.11)

with α1 = (α11, α21, ..., αn1)T is a constant vector and the variance of y1 is:

σ2
y1

= αT1 Σuα1 (2.12)

Σu ∈ Rn×n is the semi-definite covariance matrix of the random vector u, defined
as (E(u) is the expectation of u):

Σu = E[(u− E[u])(u− E[u])T ] (2.13)

As previously explained, since the aim is to maximize the variation of the values,
we seek for that value of α1 for which the variance σ2

y1
is maximum, assuming

αT1α1 = 1. The normalization condition is needed, otherwise the stand-alone
optimization problem would be indeterminate.
In order to solve this contrained problem, we use the method of Lagrange multi-
pliers:

L(α1, λ1) = αT1 Σuα1 + λ1(1−αT1α1) (2.14)

The derivative with respect to α1 is then calculated and enforced to zero, obtain-
ing:

Σuα1 = λ1α1 (2.15)

The latter equation is then a simple eigenvalue problem, where λ1 and α1 are
respectively the eigenvalue and the corresponding eigenvector of the matrix Σu.
Since the variance should be as large as possible, then the maximum eigenvalue
is chosen.
Avoiding the case of a zero value eigenvalue, that would lead to consider u no
more as a random vector, but as a constant vector, we can procede to the cal-
culation of α2, in order to find the second principal component. The procedure
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is basically the same used for the first one, even if a further condition should be
enforced in order for second component to be uncorrelated with respect to the
first component:

αT2α1 = 0 (2.16)

Extending the technique to any principal component, we find that the i -th princi-
pal component of u is yi = αTi u where αi is the i -th eigenvector of the covariance
matrix of u and the variance of yi is the i -th eigenvalue of Σu. Furthermore, the
maximization process is done in a way that all the principal components and the
respective variables are ordered following the eigenvalue arrangement.
Once all the α coefficients are given, it can easily be proved that the random
variable u can be expressed as a linear combination of the principal components:

u =
n∑
i=1

αiyi (2.17)

Comparing this equation with the POD, it is straightforward to understand that
the orthonormal basis of the POD has been found and corresponds to the eigen-
vectors of the covariance matrix of the random vector u. In other words the PCA
is simply a method used to find the basis that satisfy the POD requirements.
The Karhunen-Loeve Decomposition [33] extends the PCA to the case of infinite-
dimensional spaces, such as the space of continuous-time functions [44].

2.2.2 SVD

First of all, a brief theoretical explanation and definition of the SVD will be given;
in the next paragraph the link between SVD and POD will be shown.
Consider the matrix A ∈ Rm×n; it can be proved that there exist two orthogonal
matrices V ∈ Rm×m and W ∈ Rn×n such that:

A = VΣWT (2.18)

with Σ ∈ Rm×n defined as a pseudo-diagonal matrix, with:

Σii = σi (2.19)

wherein {σi}min(m,n)
i=1 are called singular values of A and they are ordered decreas-

ingly. In the same way, the columns vi ∈ Rm and wi ∈ Rn of the matrices V and
W are respectively the left and right singular vectors of A.
The decomposition provides useful information about the matrix A [44]:

• σ2
i are the eigenvalues of AAT and ATA;

• Awi = σivi and ATwi = σiwi, so vi and wi are eigenvectors of ATA and
AAT ;
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• the rank of A is equal to the r index of the smallest non-zero singular value;

• being Vr = [v1 · · ·vr] and Wr = [w1 · · ·wr] the singular vectors associated
to the non-zero singular values and Vm−r = [vr+1 · · ·vm] and Wn−r =
[wr+1 · · ·wn] the singular vectors associated to the zero singular vectors,
then A = σ1v1wT

1 + ...+ σrvrwT
r =

∑r
i=1 σiviw

T
i .

As it will be explained later on for the POD, the SVD can be applied to optimiza-
tion problems. The aim is to minimize the 2-norm ||A−X||2, where X ∈ Rm×n

and rank(X) = k < r = rank(A). As explained in [41], using the Schmidt-
Eckart-Young-Mirsky theorem, it is possible to say that the matrix X such that
the quantity:

||A−X||2 = σk+1(A) (2.20)

is minimum, with σk(A) > σk+1(A), is:

X =
k∑
i=1

σiviwT
i (2.21)

Interpretation of SVD The SVD of A provides useful information about
the oriented energy of the matrix itself [48]:

1. the energy associated to the columns of A is equal to the energy in its
singular spectrum σ2

1, ..., σ
2
min(m,n)

:

En(A) = ||A||2F =
n∑
i=1

m∑
i=1

x2
ij =

min(m,n)∑
k=1

σ2
k (2.22)

2. the oriented energy of a vector sequence:

Enk(A) =
m∑
i=1

(eTk ai)
2 (2.23)

is maximum at each left singular vector direction [49].

This means that the oriented energy in the direction of the k -th left singular
vector is equal to square of the k -th singular value. As it will be explained in the
following section, the POMs are equal to the left singular vectors and therefore
it is possible to conclude that they represent the optimal set of bases in terms of
energy content; in other words, it does not exist another set of vectors that can
retain more energy per each mode [48].
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2.2.3 POD and SVD

The SVD can be used to perform the POD and hence reduce the model. Let
us first of all recall the snapshot matrix U defined in (2.8); let us retrieve from
the previous paragraph the eigenvalues associated to the correlation matrix K =
UUT of U and order them decreasingly:

λ1 ≥ ... ≥ λr > λr+1 = ... = λn = 0 (2.24)

If we recall the SVD pattern (2.18), we can replace all the matrices and parameters
defined for this specific case [41]:

A = U

σi =
√
λi

V = Φ

The equation (2.10) then becomes:

φi =
1

σi
Uvi, i = 1, ..., r (2.25)

Define Φ = [Φ1,Φ2] with Φ1 and Φ2 being respectively the collections of the
eigenvectors associated to the first r non-zero eigenvalues λ1, λ2 ≥ ... ≥ λr and
to the remaining ones λr+1, λr+2 ≥ ... ≥ λn. From equation (2.9), the problem
can be written as an eigenvalues formulation:

UTUΦ = ΦΛ (2.26)

where Λ is a diagonal matrix whose principal components are the eigenvalues of
K. According to the eigenvalue formulation and the equivalences shown before,
the singular values of U are equal to the square roots of the eigenvalues of UUT

and UTU. Moreover, the left and right singular vectors of U are the eigenvectors
of UUT and UTU respectively.
Multiplying the equation by ΦT and recalling the definition of matrix Σ from the
previous paragraph, we get [44]:

[Φ1,Φ2]TUTU[Φ1,Φ2] =

[
Σ2
r 0

0 0

]
(2.27)

Having definedW1 = UTΦ1Σr
−1 it is straightforward to prove thatW T

1 W1 = 1
and therefore the columns of W1 are mutually orthogonal. It follows that there
exists n-r vectors which are orthonormal with respect to both each other and the
columns of W1. Let us store these n-r vectors into a new orthonormal matrix
W2 and calculate the following expression:

W TUTΦ =

[
W T

1 U
TΦ1 W T

1 U
TΦ2

W T
2 U

TΦ1 W T
2 U

TΦ2

]
(2.28)
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Thanks to simple algebraic considerations, (2.28) becomes:

W TUTΦ =

[
Σ2
r 0

0 0

]
(2.29)

and therefore:
UT = W

[
Σ2
r 0

0 0

]
ΦT (2.30)

Transposing the previous equation, we get the SVD formulation:

U = Φ

[
Σ2
r 0

0 0

]
W T (2.31)

Comparing (2.31) with (2.18) the link between POD and SVD is displayed.
The two methods basically leads to the same results, but, since the snapshot-
based POD requires the calculation of the eigenspectrum of the correlation ma-
trix K, its condition number is cond(K) = cond(U)2 > cond(U) and thus it can
lead to computational issues [41]. High values of condition number means that
for a small variation of the input data, i.e. the snapshot matrix, a large variation
in the POMs obtained can occur.
It is interesting to point out that naming the columns of

[
Σ2
r 0

0 0

]
W T as d1,d2, ...,dn,

it follows:
ui = Φdi

From the previous equations it is possible to see that the r+ 1, ..., n components
of each column di are equal to zero if the r+1, ..., n singular values ofUT are zero;
therefore the samples can be represented using only the first r singular vectors.
It can be proved that the basis chosen using the SVD is the optimal one, that is
the error due to the decrease of the space order is as small as possible [44]. The
error of all samples is defined as:

ε2(l) =

Nsnap∑
i=1

||ui − ui(l)||2 = ||UTφn−1||2r (2.32)

The optimal basis vectors is the one that minimize the error:

min ε2(l) =
m∑

j=l+1

φTj UUTφTj s.t. φ
T
i φj = δij (2.33)

where δij is the Kronecker delta defined as follows:

δij =

{
0, if i 6= j

1, if i = j
(2.34)
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Applying the Lagrangian method to solve the extreme value problem, we lead to
[44]:

UUTφn−1P = φn−1PΛ (2.35)

whereP is an appropriate orthogonal matrix. Suppose to collect φn−1P in matrix,
the expression is identical to (2.26) and then the SVD provides excatly the optimal
subspace.
The error due to the truncation of the POD basis can be actually estimated with
the formula:

ε2(l) = tr((UTφn−1P)TUTφn−1P) = tr(Λ) (2.36)

In the following section more details on this topic will be given.

2.2.4 Choice of dimension l

A critical point of all the reduction methods is the choice of the new sub-space
size l; this parameter determines whether a method is usable in terms of accu-
racy and computational cost. Moreover, the most important issue is the level of
information retained into the residual data furnished by the subspace, such that
it can be possible to decide if the approximation is "good" and acceptable.
A first hint on this topic can be found in equation (2.36) where an estimation of
the overall error associated to the reduction of order is given; nevertheless, ε2(l)
is an a posteriori information and it cannot be used to determine l.
A general idea to overcome the problem is to employ the 2-norm (also called
Frobenius norm) of matrix U defined as:

||U||F =

√√√√ n∑
i=1

λi(U) (2.37)

wherein λi(U) are the eigenvalues of the correlation matrix. The error associated
to the projection onto the sub-space is:

||U− ΠlU||F =

√√√√ l∑
i=1

λi(U) (2.38)

Therefore the relative error, sometimes even called relative information content
I(l) [50], is:

I(l) = 1− εr(l) =
||U− ΠlU||2F
||U||2F

=

∑l
i=1 λi(U)∑n
i=1 λi(U)

(2.39)

Remembering that the singular values are σi =
√
λi, then:

I(l) =

∑l
i=1 σ

2
i∑n

i=1 σ
2
i

(2.40)
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This means that if the required grade of information given by the projected sub-
space were a percentage p, then l should be chosen such that I(l) ≥ p

100
. This type

of criterion can be even seen as an energy-based method, in fact the Frobenius
norm represents an index of the energy of the vector sequence collected in the
matrix U and therefore I(l) is the portion of the total energy captured by the
first l POMs. For example, the total energy of a mechanical system (2.1) is:

E =
1

2
uTKu +

1

2
üTMü (2.41)

Similarly, if the model is reduced, we get:

Er =
1

2
vTKrv +

1

2
v̈TMrv̈ (2.42)

Moreover, in a dynamical system, large eigenvalues are always associated to large
perturbations of the system itself. The approach based on the use of the eigen-
values is supported by the idea that the smaller are the values of the eigenvalues,
the less is their influence on the behavior of the dynamic system.
There is another important remark: the POMs optimally approximate a certain
set of data in a least-squares sense, but they are not built in order to optimally
approximate the dynamics that generate that data. For example, in some types
of dynamic systems, there could be low-energy POMs associated to very effective
phenomena [42]; in those cases, other approaches are required.

2.3 Projection
Once the orthogonal bases have been calculated, the full model can be projected
onto the sub-space. Let us retrieve the aforementioned notation, the time history
which describes the evolution of the dynamic system can be written as a linear
combination of vectors defined in full n dimensional space:

u(t) = y1(t)φ1 + ...+ yn(t)φn =
n∑
i=1

φiyi = Φy (2.43)

where u(t),y(t) ∈ Rn and Φ ∈ Rn×n.
In order to decrease the computational cost, the state vector can be even ex-
pressed through a linear combination of a sub-space, whose size l is smaller than
n:

ul(t) ≈ αl1(t)φ1 + ...+ αll(t)φl =
l∑

i=1

φiαli = Φlα (2.44)

where ul(t) ∈ Rn, α(t) ∈ Rl and Φl ∈ Rn×l collects only the first l columns of Φ.
In this manner, we have defined the projection of the system using the optimal
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basis found through the POD. αi and yi are called generalized coordinates and
ul(t) reduced state vectors. Since the projection used is supposed to be a linear
operator, the derivatives of the state vector can be expressed in the same way:

u̇l(t) ≈ α̇l1(t)φ1 + ...+ α̇ll(t)φl =
l∑

i=1

φiα̇li = Φlα̇ (2.45)

ül(t) ≈ α̈l1(t)φ1 + ...+ α̈ll(t)φl =
l∑

i=1

φiα̈li = Φlα̈ (2.46)

2.3.1 Model equation

Let us replace the expression of the reduced state vector into equation (2.1),
having then:

MΦlα̈(t) + DΦlα̇(t) + KΦlα(t) ≈ F(t) (2.47)

Of course the equation cannot be used because of the error introduced by choosing
a dimension l < n. A residual function has to be introduced:

MΦlα̈(t) + DΦlα̇(t) + KΦlα(t)− F(t) = r(t) (2.48)

At this stage, since r(t) makes the problem undefined, we need an additional
equation, that is the orthogonality between the residual and a test basis W ∈
Rn×l:

WT r(t) = 0 (2.49)

Left-multiplying the dynamical equation by WT we get the so-called Petrov-
Galerkin projection-based formulation of the problem:

WTMΦlα̈(t) + WTDΦlα̇(t) + WTKΦlα(t)−WTF(t) = WT r(t) = 0 (2.50)

If we suppose W = Φl, this procedure is simply called Galerkin projection and
leads to the final formulation:

ΦT
l MΦlα̈(t) + ΦT

l DΦlα̇(t) + ΦT
l KΦlα(t)−ΦT

l F(t) = 0 (2.51)

and finally, redefining the reduced state matrices of the system, we get:

Mlα̈(t) + Dlα̇(t) + Klα(t) = Fl(t) (2.52)

The error due to the reduction of the model is:

εr(t) = u(t)−Φlα(t) (2.53)

Using the Galerkin projection previously described, the error can be decomposed
into two orthogonal components:

εr(t) = ε⊥(t) + ε‖(t) (2.54)
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Figure 2.1: POD projection error
Figure adapted from [2]

In Figure 2.1 the projection and the respective errors are shown in a simple
geometrical analogy (with α⊥(t) = ΦlΦ

T
l u(t)). The figure helps to understand

why a discrepancy arises when the model is reduced: in this case a 3 dimensional
full model system is reduced in a 2 dimensional reduced model system, therefore
the full state evolution u(t) is projected onto it.

2.3.2 Initial conditions

Suppose that the initial conditions applied to the full system are:

u(t0) = u0 ∈ Rn (2.55)

The reduced initial conditions are still obtained projecting the equation in the
subspace:

Φlα(0)− u0 ≈ r0 ∈ Rl (2.56)

WTΦlα(0)−WTu0 = WT r0 = 0

α(0) = (WTΦl)
−1WTu0

Since a Galerkin projection has been used and the basis is orthonormal, the final
result is:

α(0) = (ΦT
l Φl)

−1ΦT
l u0 = ΦT

l u0
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2.4 Physical interpretation of POMs
Several papers have been written on trying to find a physical interpretation of
the POMs or at least link them with the vibration eigenmodes associated to the
system. First of all, it is important to emphasize the fact that from a theoretical
point of view POMs and eigenmodes could not be compared because of their
different nature: the POMs are linked to the evolution of the system and origi-
nates and depends from that certain set of data chosen and, hence, on how the
structure is loaded, while the eigenmodes are related to the system itself and to
its free vibration, that is a generic and ideal state. For all these reasons it is
somehow impossible to find a theoretical correlation between them two.
Nevertheless, some remarkable conclusion can be said in case of some particular
cases and later on they are summarized for the case of a mechanical dynamic
system.

2.4.1 Free-vibration case

Let us consider an undamped and unforced dynamic linear system:

Mü + Ku = 0 (2.57)

In the ideal case of a mass matrix proportional to the identity matrix and an
infinite number of snapshots, then [51]:

• the proper orthogonal modes are equal to the eigenmodes;

• the first Nsnap right singular vectors are the normalized time combination
of the modes.

Therefore, if we still consider a mass matrix proportional to the identity matrix,
but a finite number of samples Nsnap, we can conclude that the POMs converge
to the eigenmodes; if the mass matrix is not proportional to the identity matrix,
the convergence is no more fulfilled. Nevertheless still a link between them holds,
in fact, replacing u = M−1/2q and multiplying by M−1/2, the equation (2.57)
becomes:

q̈ + M−1/2KM−1/2q = 0 (2.58)
In this way, we have obtained a system where the previous ideal hypothesis
holds: then, the POMs converge to the eigenmodes of this auxiliary system and
it is possible to go back to the original eigenmodes through the simple operator
M−1/2. Let us now consider instead a damped unforced dynamic system:

Mü + Du̇ + Ku = 0 (2.59)

Since u→ 0 for t→∞ due to the damping effect, it can be proved that the set of
POMs is no more converging to the eigenmodes. However, if the damping causes
little effects on the system and the number of samples Nsnap is large enough, the
POMs are still a good approximation of the eigenmodes.
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2.4.2 Forced case

The system considered is:

Mü + Ku = Fsin(ωt) (2.60)

The previous properties still hold, but a new ausiliary system has to be found.
A new snapshot matrix U′ ∈ Rn×(Nsnap+1) will collect Nsnap components taken
from the original system response and a new component equal to the harmonic
response of the system. The first POM ofU′ is related to the eigenmodes through
[52]:

φi = F
i∑
j

πiπ
T
i

(ω2
i − ω2)µi

(2.61)

where πi and ωi are respectively the i -th eigenmode and eigenvalue of the original
system and µi is an appropriate constant described in [53]. Again if the mass
matrix is proportional to the identity matrix, the first Nsnap components of the
remaining POMs are simply the eigenmodes of the original system.
More important results can be underlined when we consider only the part of the
response that is synchronous with the excitation [52]:

• one single POM is able to retrieve all the information;

• that single POM can be calculated using an analytical expression, simply
knowing the eigenmodes and eignevalues of the original system without
calculate the evolution of the system:

φ1 =
f
∑n

j
πiπ

T
i

(ω2
i−ω2)µi

||f
∑n

j
πiπT

i

(ω2
i−ω2)µi

||L2

(2.62)

• whenever the angular velocity ω of the load is close to an eigenvalue of the
system, the POM is proportional to the relative eigenmode and thus equal
to the resonant shape.

Let us now consider an undamped system subjected to a random excitation:

Mü + Ku = F(t) (2.63)

If the modal frequencies of the system are distinct, the modal correlation matrix
defined as a snapshot matrix of Nsnap generalized coordinate vectors is diagonal
and the elements are the mean-squared values of the coordinates. If the system is
damped but the damping term does not play an important role on the solution,
it can be proved that, for a large value of Nsnap, the correlation matrix has
predominant diagonal elements. Since that correlation matrix is diagonal, the
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POMs of the system converge to the eigenmodes of the system [54].
It is interesting to point out that the latter result is valid only in the case of
a convergent Fourier transform: for instance, if we consider a non-zero mean
excitation, such as a constant force, the response will be constant and the first
POM will catch exactly that configuration even if it can not be considered as
an eigenmode [54]. The same problem arises whenever the number of snapshots
is so small that the mean is not zero due to the numerical approximation. The
simplest way to overcome this problem is to subtract the mean from the response
values.

2.5 Summary
In the present chapter, the basic concepts about the model order reduction have
been presented.
First of all a brief review of the most used methods has been described, then we
focused on the Proper Orthogonal Decomposition explaining in details its math-
ematical meaning. The formulation of the optimization formulation associated
to POD has been shown, describing then the two most famous procedure that
allow to solve that problem: Principal Component Analysis and Singular Value
Decomposition. Later, we dealt with the error associated to the reduction of
the model and consequently a way to chose its appropriate reduced dimension
l. Once the theoretical construct of the proper orthogonal modes have been dis-
played, it has been shown how to use the latter ones in order to project the full
model space into the reduced model subspace. At the end, a review of the most
recent findings on the physical interpretation of the POMs has been presented.
The following chapter will introduce the Bayesian Recursive filters: the model
order reduction will be then applied to the latter ones, leading then to a faster
estimation procedure.



Chapter 3

Recursive Bayesian Filters

3.1 Introduction

Bayesian inference can be referred to the family of all those methods that allow
to estimate the probability distribution of some beliefs, known a certain set of
available observations and the link between them two.
A wide variety of possible applications of this concept has been presented in
the past in different research fields: economics [55, 56], robotics [57], biology [58],
medicine [59], computer science [60], decision theory [61] etc.. In the present work
we are interested in the application of these concept to the structural damage
identification and localization [62, 63, 64, 65].
First of all a theorethical review of the problem is presented, then the concepts
of Kalman filter and Particle filter will be introduced.

3.2 The estimation problem

First of all let us introduce the general estimation problem and details of its
basic components. We will first deal with the theoretical formulation and only in
a second moment it will be applied to the specific case of structural applications.
Given a certain system, the first conceptual step is to reproduce it through a
mathematical model: for this reason, a certain set of random variables should be
chosen in order to describe exhaustively the system itself. The choice of these
variables depends directly on the model used: for instance, considering a dynamic
structural problem, a reasonable choice could be the displacements or rotations
at each node of the FEM model. All these random variables are collected into
the so-called state vector x(t) ∈ Rn. Similarly, the measurements available are
collected in an other random variable y(t) ∈ RNobs . Practically, since for a real
model the solution of the estimation problem in an analytical form is not feasible,
the evolution of the system over time is described in a discrete way. From now
on, the notation xk and yk will respectively stand for x(tk) and y(tk), where tk
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is a certain time instant; the index k ∈ N is defined in [1, N ], where N is the
number of intervals in which the time is discretized.
The next steps are:

1. the description of the evolution of the system over time;

2. the description of the relationship between the state and measurement vec-
tors.

These goals are respectively fulfilled through the so-called process model and
measurement model.

1. Process model
The evolution of a system within the generic time interval [tk−1 tk] can be
written in the following way:

xk = fk(xk−1,wk) (3.1)

The functional fk allows to relate the state of the system at the previous
instants tk−1 with the one at the actual tk. The latter function derives
basically from the time discretization model exploited: for instance, as it
will be explained in Table 4.4, in the structural case a Newmark integration
scheme can be used.
Considering the particular case of a linear system, the same model can be
rearranged as follows:

xk = Fkxk−1 + wk (3.2)

In this case Fk ∈ Rn×n is a matrix called transition matrix. This nota-
tion is called state-space rapresentation and it has been developed to make
the problems tractable and basically adopted for every kind of estimation
problem. wk is called process noise and its covariance Wk matrix is defined
as:

Wk = E[(wk − E[wk])(wk − E[wk])
T ] (3.3)

Considering the particular case of a zero-mean white process noise, the
elements of Wk become:

W ij
k =

{
σ2
wi

= E[(wi − E[wi])
2], for i = j

0, for i 6= j
(3.4)

and its auto-correlation matrix is equal to the identity matrix.
The process noise takes into account all the uncertainties deriving from the
discretization procedure.

2. Measurement model
Another important equation required to use the filter is:

yk = hk(xk,vk) (3.5)
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The functional hk relates the observations and the state vector at the actual
time instant tk.
Whenever hk is linear, equation (3.5) becomes:

yk = Hkxk + vk (3.6)

As it will be later explained, considering the specific application presented
in this work, the matrix Hk is a boolean matrix whom elements are 1 or 0
arranged in a way that:

yik = xjk + vjk (3.7)

where j = 1, ..., n is the index of the observed degree of freedom that cor-
responds to the i-th element of the observation vector, with i = 1, ..., Nobs.
In the same way presented before for the process model, even in this case an
appropriate noise vk, called measurement noise, is considered. Intuitively,
the noise level is defined as the level below which a signal cannot reliably be
detected and the fluctuations due to uncertainties are too large compared
to the signal itself. From a physical point of view, it reproduces the un-
certainties related to the measurement system and could be due to several
different effects [66]:

• degradation of signals due to the physical medium of the communica-
tion devices;

• random electrical noise related to sensors and electrical circuits;
• quality of the measurement devices;
• environmental noise.

The level of vk can be lowered either improving the data acquisition sys-
tem or using some filtering procedures, such as signal averaging [67]. Its
covariance matrix is Vk defined as:

Vk = E[(vk − E[vk])(vk − E[vk])T ] (3.8)

Considering the particular case of a zero-mean white process noise, the
elements of matrix Vk become:

V ij
k =

{
σ2
vi

= E[(vi − E[vi])
2], for i = j

0, for i 6= j
(3.9)

and its auto-correlation matrix is equal to the identity matrix.

Table 3.1 summarizes what has been explained so far, linking in a block diagram
the concepts of model and measurement processes. In this figure z−1I is the
Z-transform of the function:

δ[n− 1] =

{
1, if n = 1

0, if n 6= 0
(3.10)
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The notation z−1I represents a time shifting from time instant tk+1 to tk; in other
words xk+1 → xk.

wk vk

x0 Σ z−1I xk hk(xk) Σ yk

fk(xk)

Initialization︷︸︸︷ Process model︷ ︸︸ ︷ Measurement model︷ ︸︸ ︷

Figure 3.1: Block diagram representation of a discrete-time dynamical system
Figure adapted from [3]

3.3 Bayesian Inference
Let us recall the main goal of Bayesian inference: we want to estimate the state
vector of the system xk at time instant tk, given a certain set of available mea-
surements yj at time instants t1, ..., tk.
Before going ahead with the explanation of the procedure, some topics on Bayesian
statistics should be recalled. Considering two events D and H, the conditional
probability of event H, given that the event D is occurring, is defined as:

P (H|D) =
P (H ∩D)

P (D)
(3.11)

Suppose now the events H and D are respectively the occurrence of a certain
hypothesis and of an evidence, i.e. a certain set of data. The Bayes’ rule [68]
states that the conditional probability of H given D is:

P (H|D) =
P (D|H) · P (H)

P (D)
(3.12)

The conditional probability P (H|D) is called posterior probability, while P (H)
is named prior probability because it is associated to the occurrence of H before
D is available. P (D|H) is the likelihood, namely the compatibility of D with the
hypothesis H and P (D) is the so-called marginal likelihood, that is a neutral fac-
tor with respect to different choices of H. Considering the notations used in this
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case, the hypothesis H and the evidence D refers respectively to the occurrence
of the state vector xk and the observations yk.
Having defined the Bayes’ rule and linked the estimation problem within the
Bayesian frame, one last theorem should be recalled. Consider a stochastic pro-
cess in which the random variables f1, f2 and f3 are defined. Suppose then that
the conditional probability distribution of future states of those random variables
depend only on the present state and not on the sequence of previous events [69].
The Chapman-Kolmogorov equation [70] allow to find the conditional probability
distribution:

p(f3|f1) =

∫ +∞

−∞
p(f3|f2)p(f2|f1)df2 (3.13)

Let us now go back to our estimation problem: the basic idea is to estimate
the expected value E[xk|y1:k] of the random variable x at each time instant tk,
given a set of observed data y1, ...,yk. Since we want xk to be estimated not
only as conditioned by the observations but also by the previous states of the
state vector, we are basically dealing with the estimation of the evolution of the
random variable x in a recursive way. The problem can be even described in a
more complete way as follows [71]:

1. the initial state of the system, or rather the probability density function
(from now on pdf) of the state vector p(x0|y0) = p(x0), is known and does
not depend on any observation;

2. in the prediction stage the conditional pdf of the state vector xk at time
tk is predicted, given the past observations, i.e. the data available until
the previous instant tk−1; recalling equation (3.13), the sought pdf can be
calculated using the Chapman-Kolmogorov equation:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.14)

where the probabilistic model of p(xk|xk−1) is basically defined by the pro-
cess model and the respective noise.

3. in the update stage, the pdf of xk at time tk is updated taking into account
the last available observations yk at time tk; the pdf p(xk|y1:k) can be
calculated by recalling the Bayes’ rule (eq. (3.12)):

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.15)

where the denominator is a constant and can be evaluated using the Chapman-
Kolmogorov equation (eq. (3.13)):

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dyk (3.16)
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Therefore, in order to summarize the latter scheme, it is possible to conclude
that the estimation problem is basically a recursive procedure where the density
function of the state is first of all estimated knowing the previous probability,
then it is modified in order to take account of the new information available.
This formulation of the problem is merely conceptual, in fact considering gen-
eral non-linear problems the integral in eq. (3.14) can not be analytically solved
and hence some approximated procedures are required. On the other hand, un-
der some specific hypotheses, such as linearity of the state space equation and
uncorrelated white Gaussian noises, a solution can be found. In 1960, Kalman
[72, 73, 74] introduced a method that allows to calculate that solution of the
problem in an optimal way and under the aforementioned hypotheses.

3.3.1 Optimal estimate: Kalman filter

The basic assumption of the Kalman filter (KF) is to suppose the posterior pdf at
every step to be Gaussian; therefore, the pdf can be always expressed through its
mean and covariance as p(xk) = N{E[xk], (xk − E[xk])(xk − E[xk])T}. Summa-
rizing, the Kalman filter represents an optimal solution of the estimation problem
if the following hypotheses hold true:

• the posterior density is Gaussian at each step;

• the process and measurement noises wk and vk are white, uncorrelated and
Gaussian;

• fk is a linear function;

• hk is a linear function.

As proved in [75], if p(xk−1|y1:k−1) is Gaussian and the latter assumptions are
verified, then p(xk|xk−1) is Gaussian as well; the direct consequence is that the
calculation of the Chapman-Kolmogorov integral can be always performed.
In order to achieve this goal, it can be proved that the problem can be even
handled as an optimization problem [3, 76], where the appropriate loss function
is:

Jk = tr
{
E[(x̂k − xk)(x̂k − xk)T ]

}
(3.17)

where xk is referred to the actual true state vector at time tk, while the main
goal is to find its estimation x̂k. In these terms, the solution is represented by
that estimated state vector x̂k for which the mean-square error Jk is minimum.
In order to find the optimal estimation, the following theorems have to be used
[77, 78, 79]:

• if the stochastic processes xk and yk are jointly Gaussian, then the optimum
estimate such that Jk is minimum is the conditional mean estimator x̂k =
E[xk|y1, ...,yk];
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• if xk and yk are stochastic processes of zero means, then they are jointly
Gaussian;

• if the optimal estimate is a linear function of the observations, then x̂k is
the orthogonal projection of xk onto the space spanned by the observations.

Let us consider a measurement yk at time tk and suppose an a priori estimation
x̂−k is available. Practically, x̂−k is the estimation obtained in the prediction stage,
using the aforementioned process model (eq. (3.2)):

x̂−k = Fkx̂k−1 (3.18)

i.e. the estimated state vector at time tk, given the estimated state vector at time
tk−1.
Then a better estimate of the state at time tk can be expressed as a function of
both the measurements and the a priori estimation:

x̂k = G1
kx̂
−
k + Gkŷk (3.19)

where Gk and G1
k are appropriate matrices. In order to find them, using the pre-

vious statements, the solution of the minimization problem described in equation
(3.17) can be found by simply imposing:

E[(xk − x̂k)yTi ] = 0 for i = 1, ..., k − 1 (3.20)

and replacing the expression of equations (3.5) and (3.19), we get:

E[(xk −G1
kx̂
−
k −GkHkxk −Gkwk)yTi ] = 0 for i = 1, ..., k − 1 (3.21)

Let us suppose the process and measurement noises are uncorrelated, then:

E[wkyTi ] = 0 for i = 1, ..., k − 1 (3.22)

Collecting all the previous equations and rearranging the elements, we get:

(I−GkHk −G1
k)E[xkyTi ] = 0 for i = 1, ..., k − 1 (3.23)

For arbitrary variables, the expression holds true whenever:

I−GkHk −G1
k = 0 (3.24)

At this point we have then a link betweenG1
k andGk, that makes equation (3.19)

become:
x̂k = x̂−k + Gk(yk −Hkx̂−k ) (3.25)

The matrix Gk is called Kalman gain and it allows us to relate the previous
state and observation with the actual estimate of the state itself. Practically, the
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prediction is updated taking into account its respective error, i.e. the difference
between the observed and predicted values.
The next step is basically to find an appropriate expression of Gk. Using the
aforementioned theorems, it can be stated that:

E[(xk − x̂k)yTk ] = 0 (3.26)

and therefore:
E[(xk − x̂k)ŷTk ] = 0 (3.27)

where ŷk is an estimate of yk given the previous measurements. Define the so
called innovations process:

ỹk = yk − ŷk = yk −Hkx̂−k (3.28)

Therefore, subracting equations (3.26) and (3.27), we get:

E[(xk − x̂k)ỹTk ] = 0 (3.29)

Using (3.28) and (3.25), the latter equation becomes:

E[[(I−GkHk)x̃−k −Gkvk](Hkx̃−k + vk)] = 0 (3.30)

where vk is the measurement noise and x̃−k = x−k − x̂−k is the state vector error.
Since the measurement noise is independent of the vector state, it is possible to
expand the expression:

(I−GkHk)E[x̂−k x̂
−T

k ]HT
k −GkE[vkvTk ] = 0 (3.31)

where it has been considered that E[x̂−k vTk ] = E[vkx̂−
T

k ] = 0. Let us now define
the covariance matrices:

P−k = E[(xk − x̂k)(xk − x̂k)T ] = E[x̃−k x̃
−
k
T

] (3.32)

where x̃k = xk − x̂k is the state error vector.
Using the latter definition into the previous equation, we get:

(I−GkHk)P−kH
T
k −GkWk = 0 (3.33)

This equation can be therefore solved to find the Kalman gain:

Gk = P−kH
T
k (HkP−kH

T
k + Wk)

−1 (3.34)

where Wk is the covariance matrix of the process noise previously defined (eq.
(3.3)).
Once the Kalman gain is obtained, there is one last stage to complete the de-
scription of the estimation procedure: the covariance matrix associated to the
estimation error has to be predicted at a given time tk.
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Table 3.1: Kalman Filter algorithm (KF)

1. Initialization (tk = t0)
x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

2. Recursive computation (tk = t1, ..., tN)

(a) Prediction stage
x̂−k = Fkx̂−k−1

P−k = FkPk−1FTk + Wk

(b) Updating stage

Gk = P−kH
T
k (HkP−kH

T
k + Vk)

−1

x̂k = x̂−k + Gk(yk −Hkx̂−k )

Pk = P−k −GkHkP−k

Actually, the covariance matrix has to be modified twice within each step:

1. The covariance matrix P−k is predicted knowing the covariance matrix at
the previous step tk−1.
As previously explained, the process model is:

x̂−k = Fkx̂−k−1 (3.35)

The a priori estimation error is then:

x̃−k = xk − x̂−k = Fkx̃−k−1 + wk−1 (3.36)

Knowing that E[wkx̃Tk−1] = 0 and using equations (3.32) and (3.36) we get:

P−k = FkPk−1FTk + Vk (3.37)

2. The predicted covariance matrix P−k is updated, considering the state esti-
mation at that step.
Using equations (3.25) and (3.32) we get:

Pk = (I−GkHk)P−k (I−GkHk)
T + GkE[vkvTk ]GT

k (3.38)

Expanding the latter equation and replacing the definition of Kalman gain
(eq. (3.34)) we have:

Pk = P−k −GkHkP−k (3.39)
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At this point, all the phases and components of the Kalman filter has been
explained, and therefore a brief schematic summary of the overall procedure is
shown in Table 3.1.
As previously explained, the Kalman filter is an optimal solution of the estimation
problem only if the model is linear. As it will be shown in the next section,
whenever this hypothesis does not hold true, the Extended Kalman Filter (EKF)
can be used.

3.3.2 Suboptimal estimate: Extended Kalman Filter

One of the main assumptions of the Kalman filter is the linearity of the functions
fk(xk−1,wk−1) and hk(xk−1,vk−1). In mechanical systems, the source of non-
linearity could be due to the material constitutive law, loading or geometric
effects. In Section 4.2.1, we will show that even the dual estimation problems are
non-linear because some bi-linear terms arise. If the system is not linear but the
pdf of the state vector at time tk−1 is Gaussian, then it is no more possible to
prove that the pdf at the following step tk is still Gaussian. The Kalman filter
is no more an optimal solution of the Bayesian inference and a new procedure
should be used.

Table 3.2: Extended Kalman Filter algorithm (EKF)

1. Initialization (tk = t0)
x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

2. Recursive computation (tk = t1, ..., tN)

(a) Prediction stage
Fk = ∇xfk(x)|x=xk−1

Hk = ∇xhk(x)|x=xk−1

x̂−k = Fkx̂−k−1

P−k = FkPk−1FTk + Wk

(b) Updating stage

Gk = P−kH
T
k (HkP−kH

T
k + Vk)

−1

x̂k = x̂−k + Gkyk − hkx̂−k
Pk = P−k −GkHkP−k
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In order to cope with the problem, the basic idea is to linearize the sys-
tem through a truncated Taylor expansion of the functions fk(xk−1,wk−1) and
hk(xk−1,vk−1) centered at the point xk [80]. The new transition and measure-
ment matrices can be straightforwardly calculated as the Jacobian matrix of fx
and hk as:

Fk =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xN... . . . ...

∂fN (x)
∂x1

· · · ∂fN (x)
∂xN


x=xk−1

= ∇xfk(x)|x=xk−1
(3.40)

Hk =


∂h1(x)
∂x1

· · · ∂h1(x)
∂xN... . . . ...

∂hN (x)
∂x1

· · · ∂hN (x)
∂xN


x=xk

= ∇xhk(x)|x=xk
(3.41)

where the notation ∇x represents the gradient of a certain function with respect
to the elements of a given vector x. It is important to point out that, since the
method relies on a truncated approximation of the system, the algorithm can no
more be considered as an optimal solution of the problem. As a consequence,
the matrix Pk does not represent the true covariance of the estimate, but tends
to understimate it. The main drawback of the EKF is that a linearization error
is always introduced as the difference between the nonlinear functions and their
tangential approximations. This error is not always negligible: it has been shown
that in some severe nonlinear systems a biased or even divergent estimation can
arise [81, 82, 83]. Some modified EKF algorithms have been developed in order to
take into account the errors [84]; on the other hand the use of second-order EKF
is prevented due to the high computational cost [85]. Whenever these remedies
are not sufficient different methods, such as Unscented Kalman filters [86] or
Particle filters, can be used.

3.4 Particle Filter
As previously explained, the Kalman filter is considered an optimal solution of
the estimation problem only when a certain set of assumptions holds true. The
extended version can be used for non-linear problems, but, since it is basically
based on an approximation, it fails in two cases [87]:

• the linearization is not enough accurate;

• the process model cannot be written in an explicit form or the calculation
of the Jacobian matrix is too computationally expensive.

Regarding this last issue, the implementation of the EKF can become very dif-
ficult whenever a non-holonomic model is considered: in this case, in order to
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calculate the Jacobian, one should know if the system is evolving towards a load-
ing or an unloading condition [88, 89, 25]. In order to overcome these issues,
a more general solution has been presented in [90]. According to the different
fields in which it is used, the method is known as particle filtering (PF) [91],
bootstrap filtering [90], condensation algorithm [92], interacting particle approx-
imations [93] and survival of the fittest [94].
Since the main goal of the estimation problem is to find the posterior density
function of the state variables, we will no more try to find an analytical solution
of the Chapman-Kolmogorov equation, but instead we will directly approximate
the posterior density function through the generation of a certain number of sam-
ples and relevant weights. In other words, given the observations from time t0 to
tk, while before we were looking for the conditional probability p(xk|y1:k) of the
vector state xk at time tk, now we concentrare on p(x0:k|y1:k) considering all the
instants at a glance.
It is important to point out that neither the hypothesis on the linearity of the
model nor on the Gaussianity are required. The samples are created using a
Monte Carlo method, therefore, increasing the number of samples, the solution
converges to the optimal Bayesian estimate [95].
According to [96], the wanted pdf can be always expressed as:

p(x0:k|y1:k) =

∫
f(x0:k)p(x0:k|y1:k)dx0:k (3.42)

Consider a set of samples xik with i = 1, ..., Ns generated from the posterior
distribution. The Monte Carlo approximation reads:∫

f(x0:k)p(x0:k|y1:k)dx0:k ≈
1

Ns

Ns∑
i=1

f(xik) (3.43)

The main trick of the method is to use the Dirac delta as function f [97], obtain-
ing:

p(x0:k|y1:k) ≈
1

Ns

Ns∑
i=1

δ(x0:k − xi0:k) (3.44)

According to the law of large numbers (LLN), the higher is the number of samples
Ns, the more accurate is the approximation [95]. In order to reduce the number
of samples needed to still retain a high degree of accuracy, it is possible to use
the so-called importance sampling [96, 98]. In this case the samples are drawn
from an arbitrary chosen distribution π(x0:k|y1:k) called importance function (or
density), such that:

p(x0:k|y1:k) ≈
1

Ns

Ns∑
i=1

ω∗ik δ(x0:k − xi0:k) (3.45)
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where ω∗ik are called importance weights and are equal to [99]:

ω∗ik =
p(y1:k|xi0:k)p(x

i
0:k)

p(y1:k)π(xi0:k|y1:k)
(3.46)

The weights can be recursively calculated using the following expression:

ω∗ik = ω∗ik−1

p(yk|xik)p(xik|xik−1)

π(xik|xi0:k−1,y1:k)
(3.47)

It can be proved that if only the full posterior probability density p(xk|y1:k) is
required, these coefficients become [71]:

ωik =
p(y1:k|xi0:k)p(x

i
0:k)

π(xik|y1:k)
(3.48)

Hence, even the recursive weights formulation (3.47) is modified:

ω∗ik = ω∗ik−1

p(yk|xik)p(xik|xik−1)

π(xik|xik−1,yk)
(3.49)

The weights are then normalized in order to make them independent from the
number of samples used, having then:

ω̃ik =
ωik∑Ns

j=1 ω
j
k

(3.50)

Equation (3.45) then becomes:

p(xk|y1:k) ≈
Ns∑
i=1

ω̃ikδ(x0:k − xi0:k) (3.51)

where, of course [95]:

lim
Ns→∞

{
Ns∑
i=1

ω̃ikδ(x0:k − xi0:k)

}
= p(xk|y1:k) (3.52)

3.4.1 Degeneracy

One of the problems that affects the particle filtering procedures is the degeneracy
of the weights: it has been proved in [100] and shown in [96] that, since the
variance of the importance weights can only increase throughout the iterations,
at a certain step only one weight will be not negligible, while all the other ones
will converge to zero. The direct consequence is that part of the computational
efforts required by the procedure are basically useless because of those negligible
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contributions.
The degeneracy effect can be measured using the effective sample size [101],
theoretically defined as:

Ns,eff =
Ns

1 + σ2
ωk

(3.53)

where σ2
ωk

is the variance of the weights and it is defined as:

σ2
ωk

= E[(ωk − E[ωk])
2] =

1

Ns

Ns∑
i=1

(
ωik −

∑Ns

j=1(ωjk)

Ns

)2

(3.54)

Practically only an approximated version of this index can be calculated:

Ns,eff ≈
1∑Ns

i=1(ωik)
2

(3.55)

The smaller is Ns,eff , the quicker is the degeneracy. In order to overcome this
issue, it is possible to increase the number of samples, choose a suitable im-
portance function such that the variance is minimized or use some resampling
method. These two methods will be explained in Sections 3.4.2 and 3.4.3.

3.4.2 Importance function

Several versions of the distribution π have been proposed. The degeneracy of the
weights can be lowered optimally using the following importance density [96]:

π(xk|xk−1,yk) = p(xk|xik−1,yk) (3.56)

and
ωik = ωik−1

∫
p(yk|xk)p(xk|xik−1)dxk (3.57)

In [96] it has been shown that this particular choice of importance density is the
optimal one, since it makes the variance σ2

ωk
= 0 and hence, recalling equation

(3.53), the degeneracy effect is lowered as well. The major drawbacks of the latter
solution are that, in order to update the weights, it requires the ability of drawing
samples from the respective pdf and to calculate the integral. These tasks can
be performed only in two particular cases, i.e. when xk is a member of a finite
set or the measurement model is linear. Some approximating methods that use
localized linearizations have been proposed [96]. Since they require an additional
computational cost that can overcompensate the choice of an optimal π, usually
a different version of π is used:

π(xk|xk−1,yk) = p(xk|xik−1) (3.58)

and therefore [102]:
ωik = ωik−1p(yk|xik) (3.59)
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Despite the fact this choice is not the optimal one, it guarantees a simple weights
updating, since it requires the evaluation of p(xk|xik−1), which does not depend
on the observations.

3.4.3 Resampling

The basic idea of the resampling methods is to select only those particles to which
is associated an higher probability of occurence and then larger weights. The
easier procedure is the systematic resampling: a new set of samples is created such
that their weights are all equal to ωik = 1/Ns. The m-th sample xmk is duplicated
if the random value ui ∈ [0, 1] lies between the values of the cumulative density
function of (m-1)-th and m-th samples:

find m s.t.
m−1∑
i=1

ωik < ui ≤
m∑
i=1

ωik (3.60)

In order to find m, the systematic re-sampling algorithm [103] is used:

1. a set of Ns samples xik with i = 1, ..., Ns is given;

2. the cumulative density function is calculated by simply sequentially adding
the weights:

F (xmK) =
m∑
i=1

ωik (3.61)

3. generate ui = U [0, 1], where U is the uniform probability distribution on
the interval [0, 1];

4. increase m until F (xmK) ≥ ui;

5. select the sample and the respective weight for the resempled set:{
x̄ik = xmk
ω̄∗ik = 1

Ns

(3.62)

Despite the fact the re-sampling methods reduce the degeneracy problems of
the filter, there is still a drawback called sample impoverishment [71]: since the
samples with high weights are selected many times, the new set of samples will
have many repeated particles. Especially in the case of small process noise, after
a certain number of iterations all samples will converge to a point. For the
extreme case of a zero process noise, the particle filter is not the appropriate
way to estimate static states. In order to overcome sample impoverishment,
several methods based on genetic algorithms have been used, such as evolutionary
particle filter [104] or sequential importance evolutionary particle filter [105].
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Having explained the procedure and the main remarks regarding the particle
filter, the overall algorithm is summarized in Table 3.3.

Table 3.3: Particle filter algorithm (PF)

1. Initialization (tk = t0)
x̂0 = E[x0]

xi0 = x̂0

ωi0 = p(y0|x0)

2. Recursive computation (tk = t1, ..., tN)

(a) Prediction stage (i = 1, ..., Ns)

xik ∼ p(xk|xik−1)

ωik = ωik−1p(yk|xik)

(b) Resampling stage (i = 1, ..., Ns)

ui ∼ U [0, 1]

find m s.t.
m−1∑
i=1

ωik < ui ≤
m∑
i=1

ωik

x̄ik = xmk

ω̄∗ik =
1

Ns

(c) Updating stage

x̂k =
Ns∑
i=1

ω̄ikx̄
i
k

3.5 Summary
In the present chapter, the concept of estimation problem has been explained,
focusing on the description of the process and measurement models, both for
linear and non-linear cases. Moreover, the definitions of process and measurement
noises have been given and their physical interpretation have been discussed.
The Bayesian inference has been presented as a framework used to estimate the
states of a system at a certain time tk, given the observations of that system
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at the previous times tk−1. After the preliminary definitions of Bayes’ rule and
Chapman-Kolmogorov equation have been given, the main steps of the Bayesian
inference have been explained. Two methods can be used to solve the latter
problem: Kalman filter (KF) for linear models, extended Kalman (EKF) filter
for nonlinear models. The mathematical proof of the first one is shown, while
the EKF is presented as a linearization of the KF. Finally the concept of particle
filter is presented, underlining that this method should be used whenever the EKF
is not enough accurate or inapplicable. The problem of degeneracy of samples
is introduced and its remedies are shown, namely the choice of an appropriate
importance function and the resampling technique.
In the next chapter, we will focus on the explanation of the algorithm that will
be used in the damage identification. In Chapter 3 an overview on the basic
concepts of estimation problem and the methods used to perform it has been
presented. Besides, in order to be able to introduce our particular identification
method, some further specific tools are needed and they will be explained in
Chapter 4. These are the concepts of dual estimation, reduced model estimation
hybrid extended Kalman particle filter and dual estimation of reduced states and
parameters with subspace updating for damage identification.





Chapter 4

POD Kalman Observer

4.1 Introduction

The basic objective of the present thesis is the description and assessment of a
particular recursive Bayesian filter used to identify structural damages. Since in
the previous chapter the concepts of estimation problem and recursive Bayesian
filters have been presented in the most general way and for any particular ap-
plication, here we want to specialize a method for our specific task. Section 4.2
collects the explanations of some additional tools that are required in what fol-
lows: dual estimation, reduced model estimation and hybrid extended Kalman
particle filter. In section 4.3 the latter procedures are used in the final version of
the identification algorithm, i.e. the dual estimation of reduced states and param-
eters with subspace updating algorithm. Finally, in Section 4.4 the application
of the latter procedure to the structural case is explained.

4.2 Preliminary tools

As explained in Chapter 1, the damage identification method should be able to
estimate not only the dynamical evolution of the system, but also the damage
parameters associated to the damaged zones. In what follows, a procedure that
allow to modify the filters taking into account both the estimations is explained.
We use here other two procedures that will be applied to speed up the recursive
calculation. The reduced model estimation allow to reduce the number of the
dynamic variables we want to estimate, while an hybrid version of the particle
filter is employed to decrease the number of samples needed.
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4.2.1 Dual estimation

As previously mentioned, we want now to extend the concepts described in the
previous sections to the dual estimation problem.
In other words the method should be able to estimate both the dynamic response
of the system and some parameters of the system itself. In order to achieve this
purpose, the state vector is composed by two different parts [63]:

xk =

[
uk
θk

]
(4.1)

where uk ∈ Rn and θk ∈ RNp collects respectively the dynamical n random
variables that describes the evolution of system and the Np parameters that will
be chosen to estimate.
The concept of process model and measurement model described in the previous
chapter still holds, but due to the different nature of the variables, a more detailed
description should be made.
The process model of the parameters is modified using the following equation:

θk = θk−1 + wθk (4.2)

The basic idea is to allow the parameters to change at each time step, leading to
final estimation values. The noise wθ

k is conceptually different from the process
and measurement noise: since it is a fictitious noise introduced just for sake of
computational reasons, there is any physical meaning and hence it should be
tuned in order for the filter to work properly.
The process model (3.2) is modified in order to take into account equation (4.2),
leading to:

xk =

[
uk
θk

]
= fk(xk−1,θk−1) + wk (4.3)

Regarding the measurement model, equation (3.5) is modified as follows:

yk = Hkxk + vk =

[
Hu
k 0
0 0

] [
uk−1

θk−1

]
+ vk (4.4)

where the boolean matrix Hk is changed in order to take account the fact that
only the dynamic variables can be measured, while the parameters can only be
estimated.
All the other components of the filter maintain the definitions previously given
and their expressions in dual estimation derive straightforwardly from equations
(4.3) and (4.4).
In [62], it has been shown that whatever linear system will lead to a non-linear
dual estimation problem. Let us consider a generic model:

uk = fuk (uk−1,θk−1) + wu
k (4.5)
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Replacing the latter equation and (4.2) into expression (4.3), we get:

xk =

[
fuk (uk−1,θk−1)

θk−1

]
+

[
wu
k

wθk

]
(4.6)

Even considering a simple linear model, there will be always at least one bi-linear
term, consisting in the product between a parameter and a dynamical variable.
Therefore, it is obvious that equation (4.6) can never be written in a linear
appearance, i.e. it can not be found a matrix Fk such that the process model
could be rearranged in form (3.2). For these reasons, in practice, dual estimation
can be performed only with the filters developed for non-linear systems, such as
EKF or PF.

4.2.2 Reduced model estimation

Let us now describe how the model reduction affects the formulation of the filter.
Recalling what has been explained in Chapter 2, all the components of the full
model will be replaced by the components of the reduced model:

uk → ur,k (4.7)

fk(uk−1)→ fr,k(ur,k−1) (4.8)

and of course all the noises will be referred to these new variables.
From equation (4.3), the process model is then:

xr,k =

[
ur,k
θk

]
= fr,k(ur,k−1,θk−1) + wk (4.9)

Regarding the measurement model, since the signals are of course collected in the
full model environment but the state vector lies in the reduced space, equation
(4.4) is modified as follows:

yk = Hu
kLkxr,k + vk (4.10)

The matrix Lk is an appropriate matrix needed to switch from the reduced sub-
space of estimations to the full space of the measurement:

Lk =

[
Φl,k 0
0 0

]
(4.11)

The matrix Φl,k = [φ1,k · · ·φl,k] collects the bases needed to project and reduce
the original full order space. For instance, if the method used to reduce the
system is the POD (see Section 2.2), then Φl,k collects the first l POMs. It is
interesting to note that if the system is not reduced, we have:

Lk =

[
I 0
0 0

]
(4.12)
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Table 4.1: Kalman filter algorithm for sub-space updating

1. Initialization (tk = t0)
Φ̂l,0 = E[Φl,0]

Pss
0 = E[(Φl,0 − E[Φl,0])(Φl,0 − E[Φl,0])T ]

2. Recursive computation (tk = t1, ..., tN)

(a) Prediction stage
Φ̂−l,k = Φ̂l,k−1

Pss,−
k = Pss

k−1 + Wss
k

(b) Updating stage

Gss
k = Pss,−

k Hss
k
T (Hss

k P
i−
k Hss

k
T + Vk)

−1

Φ̂l,k = Φ̂−l,k + Gss
k (yk −Hss

k Φ̂−l,k)

Pss
k = Pss,−

k −Gss
k H

ss
k P

ss,−
k

that leads of course to equation (4.4).
In the case of systems whose characterisctics do not change in time, the measure-
ment and process matrices are stationary and thus they do not depend on the
step k in which are calculated:

Fk = F
Hk = H

}
∀k ∈ [1, N ] (4.13)

On the other hand, considering a non-stationary system, the latter matrices
should be updated at each step. Since also the sub-space has to be modified,
the estimation of Φl,k should be included and a new equation needed to allow
the variation of the sub-space is introduced, as done for the parameters in (4.2),
according to:

Φl,k = Φl,k−1 + wss
k (4.14)

where wss
k is a fictitious zero mean gaussian noise, whose covariance should be

tuned in order to reach the best estimation. Having defined the process model of
the sub-space, the measurement model can be obtained. Using equation (4.10)
it is possible to derive the following expression:

yk = Hu
kΦl,kur,k + vk (4.15)

Rearranging the terms it is possible to lead to:

yk = Hss
k Φl,k + vk = [u1

r,kH
u
k · · · uNr

r,kH
u
k ]Φl,k + vk (4.16)
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where Nr is the the dimension of the reduced system and u1,..,Nr

r,k are the elements
of the reduced vector ur,k. In order for the matricial products to be consistent,
the matrix Φl,k is rearranged as follows:

Φl,k =

φ1,k
...
φl,k

 (4.17)

Since the sub-space process model described in equation (4.14) is basically an
identity transformation, for less than the fictitious noise, and therefore it is linear,
a Kalman filter can be used to estimate Φl,k.
Recalling what has been explained in the present section, Table (4.1) shows the
application of the Kalman filter to the sub-space updating.

4.2.3 Hybrid extended Kalman particle filter

The particle filter described in Section 3.4 presents some disadvantages: since the
filter is not optimal considering the latest observations, a high number of samples
is required to describe the probability distribution and therefore, in some cases,
the computational cost can be high. In [62], a modified version of the particle
filter has been presented in order to speed up the procedure. The basic idea is to
use an extended Kalman filter in order to update the set of samples generated,
taking into account the last observation available. Comparing Tables 4.2 and
3.3, the only difference from the standard Particle filter is the exploitation of a
sample updating stage:

• first of all the particles are generated from the the conditional pdf p(xk|xik−1);

• in order to push the samples towards higher probability zones, they are
modified taking into account the latest observations at time tk, through an
extended Kalman filter;

• finally the re-sampling technique is used, leading to the updating of the
estimated state vector.

The employment of this type of modified particle filter, called hybrid extended
Kalman particle filter (HEKPF), guarantees a higher accuracy than the standard
particle filter [106]. We should remember, in fact, that the accuracy of the par-
ticle filter is lowered by the non optimal choice of the importance function: as
explained in Section (3.4.2) the Gaussian distribution is the most used distribu-
tion, even if it is not the optimal one. Moreover, in [106] it has been shown that
HEKPF leads to a lower computational cost.
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Table 4.2: Hybrid extended Kalman particle filter algorithm (HEKPF)

1. Initialization (tk = t0)
x̂0 = E[x0]

P0 = E[(x0 − E[x0])(x0 − E[x0])T ]

xi0 = x̂0

ωi0 = p(y0|x0)

2. Recursive computation (tk = t1, ..., tN)

(a) Prediction stage (i = 1, ..., Ns)

xik ∼ p(xk|xik−1)

ωik = ωik−1p(yk|xik)

(b) EKF updating stage (i = 1, ..., Ns)

Pi−
k = FkPi

k−1F
T
k + Wk

Gi
k = Pi−

k HT
k (HkPi−

k HT
k + Vk)

−1

x̂k = x̂i
i−
k + Gi

kyk − hkx̂i−k
Pi
k = Pi−

k −Gi
kHkPi−

k

(c) Resampling stage (i = 1, ..., Ns)

ωik = ωik−1p(yk|xik)

ui ∼ U [0, 1]

find m s.t.
m−1∑
i=1

ωik < ui ≤
m∑
i=1

ωik

x̄ik = xmk

ω̄∗ik =
1

Ns

(d) Updating stage

x̂k =
Ns∑
i=1

ω̄ikx̄
i
k
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4.3 Dual estimation of reduced states and param-
eters with subspace updating

At this point, since all the required computational tools and procedures have
been previously introduced, it is now possible to explain the algorithm that will
be used for damage identification. The method is characterized by the following
features:

• the model order reduction guarantees a low computational cost, since the
number of estimates is reduced (see Section (4.2.2));

• the projection Φl,k needed to perform the model order reduction is updated
taking into account the latest observations, through a Kalman filter (see
Section (4.2.2)); therefore, the basis Φl,k is modified accordingly with the
possible variations of the system;

• the performances of the particle filter employed to estimate the reduced
state vector xk are improved using two remedies:

– an extended Kalman filter pushes the samples towards high probabilty
zones (as explained in Section (4.2.3));

– a resampling method speeds up the procedure (sse Section (3.4.3)).

In summary, the dual estimation of reduced states and parameters with subspace
updating algorithm is shown in Table 4.3.

Table 4.3: EK-PF-KF algorithm

1. Initialization (tk = t0)
x̂r,0 = LT0E[x0]

Pr,0 = LT0E[(x0 − E[x0])(x0 − E[x0])T ]L0

xir,0 = x̂r,0

ωi0 = p(y0|xr,0)

Φ̂l,0 = E[Φl,0]

Pss
0 = E[(Φl,0 − E[Φl,0])(Φl,0 − E[Φl,0])T ]
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1. Recursive computation (tk = t1, ..., tN)

(a) Prediction stage (i = 1, ..., Ns)

xik ∼ p(xk|xik−1)

ωik = ωik−1p(yk|xik)

(b) EKF updating stage (i = 1, ..., Ns)

Pi−
k = FkPi

k−1F
T
k + Wk

Gi
k = Pi−

k HT
k (HkPi−

k HT
k + Vk)

−1

x̂k = x̂i
i−
k + Gi

kyk − hkx̂i−k
Pi
k = Pi−

k −Gi
kHkPi−

k

(c) Resampling stage (i = 1, ..., Ns)

ωik = ωik−1p(yk|xik)

ui ∼ U [0, 1]

find m s.t.
m−1∑
i=1

ωik < ui ≤
m∑
i=1

ωik

x̄ik = xmk

ω̄∗ik =
1

Ns

(d) Updating stage

x̂k =
Ns∑
i=1

ω̄ikx̄
i
k

(e) Subspace prediction and updating stage

Φ−l,k = Φl,k−1

Pss,−
k = Pss

k−1 + Wss
k

Gss
k = Pss,−

k Hss
k
T (Hss

k P
i−
k Hss

k
T + Vk)

−1

Φl,k = Φ−l,k + Gss
k (yk −Hss

k Φ−l,k)

Pss
k = Pss,−

k −Gss
k H

ss
k P

ss,−
k
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4.4 Damage detection and localization

4.4.1 Damage parameters

As the theoretical framework has been explained, the procedure used to detect
and localize the damage in a mechanical system is now introduced.
The structural problem is described by equation (2.1), here recalled for sake of
completeness:

Mü(t) + Du̇(t) + Ku(t) = F(t) (4.18)

where the meaning of the matrices was given in Section 2.1.
In order to be able to assess the damage state of the structure, we need to
introduce some damage parameters into the model. The idea is to divide the
structure in Np (number of parameters) regions and express the complete stiffness
matrix as a linear combination of some appropriate stiffness matrices associated
to those regions. Let us first of all consider a reference "undamaged" structure,
in which all the regions are characterized by a Young modulus E. Then, consider
Np auxiliary structures defined as follows: the i-th structure is characterized
by having a Young modulus Ē on the i-th region, while all the other regions
have the original Young modulus E. In other words, we will have to build Np

different auxiliary structures, such that each of them is identical to the reference
structure, apart from one element. The definition of Ē is purely arbitrary and
can be expressed as:

Ē = (1− κ̄)E (4.19)

where the factor κ̄ can be any number ∈ (0, 1).
Let us now focus on the real damaged structure that has to be identified: each
region will be characterized by its own Young modulus Ei that can be expressed
as a function of the original Young modulus E as follows:

Ei = (1− di)E (4.20)

The coefficients di ∈ [0, 1) are the damage parameters that will be estimated by
the filter.
Define now the stiffness matrices of the aforementioned reference and auxiliary
structures repectively as Kund ∈ RNdof×Ndof and Ki ∈ RNdof×Ndof . Therefore the
stiffness matrix of the real damaged structure is equal to:

K =

Np∑
i=1

Ei
Kund −Ki

E − κ̄E
(4.21)

From equation (4.21) it is straightforward to understand that the choice of κ̄ can
be arbitrary and it is basically delegated to the user; since κ̄ is required only
to somehow normalize the difference (Kund −Ki), its value does not affect the
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results.
Replacing equation (4.20) in (4.21), we get:

K =

Np∑
i=1

E(1− di)
Kund −Ki

E − κ̄E
(4.22)

and hence we lead to the final formulation of the stiffness matrix:

K =

Np∑
i=1

1− di
1− κ̄

(Kund −Ki) (4.23)

In this way, we managed to express the stiffness matrix as a function of the
damage parameters that we want to estimate:

K = K(d1, ..., dNp) (4.24)

and therefore this expression can be applied to the filtering procedure that will
be explained afterwards.
Let us now discuss the reason this type of formulation has been developed and
used and which are its main advantages. It is interesting to point out that,
considering the definition of the stiffness matrix given in equation (4.23), no
internal parameters of the finite element (FE) model are introduced. In other
words, the damage parameters are externally defined and hence we do not need
to estimate any parameter that depend on how each stiffness matrix has been
built. This choice presents two main advantages:

• in order to build the stiffness matrices, the method can be coupled to any
FE commercial code, even if the exact formulation used to build them is
unknown; in other words we do not require to know a parametric version
of the stiffness matrix, but just a numerical one is needed.

• the method is very flexible, in fact, since it is not important how the stiffness
matrix has been built, the type of finite elements and discretization used
does not affect the definition of the damage parameters;

• this strategy could be applied potentially to any type of structure.

At this point, it is now possible to apply the latter concepts to the framework
previously defined in (4.3) and therefore describe the algorithm used to identify
the damage parameters di.
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4.4.2 Procedure description

The state vector is defined as:

x =


u
u̇
ü
d

 (4.25)

where u ∈ RNdof and d is defined as:

d =

 d1

. . .
dNp


is the vector that contains the local stiffness parameters and its size is equal to
the number of regions Np.
For sake of computational cost, the model is reduced using a POD procedure. The
equation (4.23) is projected onto the actual subspace, where Φ ∈ RNdof×l is the
matrix that collects the first l actual proper orthogonal modes of the structure:

ΦTKΦ = ΦT

[
Np∑
i=1

1− di
1− κ̄

(Kund −Ki))

]
Φ (4.26)

i.e.:

Kr =

Np∑
i=1

1− di
1− κ̄

(Kund,r −Ki,r) (4.27)

In the same way, the cinematic components of the state vector are projected as
well, becoming:

xr =


α
α̇
α̈
d

 (4.28)

where α ∈ Rl.
It has been shown in [64] that the operation of a filter is not affected by damping.
On the other hand, the only recommendation required for a damped system is to
have the system continuously excited. Here, for sake of simplicity, an undamped
case is considered; hence, assuming D = 0, the reduced dynamic equation is:

Mrα̈(t) + Krα(t) = Fr(t) (4.29)

Once the system has been described, let us concentrate on the process model:

xr,k = fr,k(xr,k−1) + w (4.30)
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where the process noise w is supposed to be a white gaussian noise.
In order to solve the differential equation 2.1, the Newmark explicit integration
method [107] is used (Table 4.4).

Table 4.4: Newmark explicit integration method

1. Initialization
α0 = α(t0)

α̇0 = α̇(t0)

α̈0 = M−1(−Cα̇0 −K(χk)α0 + F(t0))

2. Recursive computation (k=1,...,N)

(a) Predictor stage

α̃k = αk−1 + ∆tα̇k−1 + ∆t2
(

1

2
− β

)
α̈k−1

˙̃αk = α̇k−1 + ∆t(1− γ)α̈k−1

(b) Explicit integration

α̈k = (M + γ∆tC + β∆t2K(χk))
−1(−C ˙̃αk −K(χk)α̃k + Fk)

(c) Correction stage
α̇k = ˙̃αk + ∆tγα̈k

αk = α̃k + ∆t2βα̈k

Let us now define:

ᾱ =

αα̇
α̈

 (4.31)

The previous expressions are collected all together and rearranged in a matricial
form, obtaining:

ᾱk = f̄(ᾱk−1) = Ak−1ᾱk−1 + Bk−1 (4.32)

where

Ak−1 =

I− β∆t2M−1
k−1Kk−1 ∆tI− β∆t3M−1

k−1Kk−1

−∆tγM−1
k−1Kk−1 I−∆t2γM−1

k−1Kk−1

−M−1
k−1Kk−1 −∆tM−1

k−1Kk−1

· · · (4.33)
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· · ·
∆t2(1/2− β)[I−M−1

k−1Kk−1∆t2β]
(1− γ)dtI−∆t3γ(1/2− β)M−1

k−1Kk−1

−∆t2(1/2− β)M−1
k−1Kk−1


Bk−1 =

∆t2βM−1
k−1Fk

∆tγM−1
k−1Fk

M−1
k−1Fk

 (4.34)

and

Kk−1 = ΦT
k−1

[
Np∑
i=1

1− di,k−1

1− κ̄
(Kund −Ki))

]
Φk−1 =

=

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.35)

Mk−1 = ΦT
k−1MundΦk−1 = Mr

k−1 (4.36)

Fk = ΦT
k−1F

f
k = Frk (4.37)

Equation (4.32), together with dk = dk−1, provides the function fr,k.

xk =

[
ᾱj
dk

]
=

[
A(dk−1)ᾱk−1 + B(dk−1)

dk−1

]
= fr,k(xr,k−1) (4.38)

The three components of ᾱj are:

αk = I− β∆t2[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)αk−1+

+ ∆tI− β∆t3[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)α̇k−1+

+ ∆t2(1/2− β){I− [Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)∆t2β}α̈k−1

(4.39)

α̇k = −γ∆t[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)αk−1+

+ I− γ∆t2[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)α̇k−1+

+ ∆t(1− γ)I−∆t3γ(1/2− β)[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)α̈k−1

(4.40)
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α̈k = −[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)αk−1+

−∆t[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)α̇k−1+

−∆t2(1/2− β)[Mr
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)α̈k−1 (4.41)

The computation of the jacobian matrix of fr,k(x) is required:

Fr,k =


∂fr,1(x)

∂x1
· · · ∂fr,1(x)

∂xn... . . . ...
∂fr,n(x)

∂x1
· · · ∂fr,n(x)

∂xn


x=xk−1

= ∇xfr,k(x)|x=xk−1
(4.42)

The dimension of the state vector is n = 3l+Np, where l is the dimension of the
reduced order model, 3l is required because even the first and second derivatives
are considered in the state vector andNp is the number of the damage parameters,
i.e. the number of the regions in which the structure is divided.
Equations from (4.43) to (4.58) show the elements of the Jacobian matrix Fr,k =
∇xfr,k(x), for the case of only one single POM retained. The selection of only
one POM makes the mass and stiffness matrices scalars and hence simplifies the
exposition.

∂αk
∂αk−1

= 1− β∆t2[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.43)

∂αk
∂α̇k−1

= ∆t− β∆t3[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.44)

∂αk
∂α̈k−1

= ∆t2(1/2− β){1− [M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)∆t2β}

(4.45)
∂αk
∂di,k−1

= ∆t2
Kr
und,k−1 −Kr

i,k−1

1− κ̄
[M r

k−1]−1(βαk−1 + ∆tα̇k−1 + ∆t2(1/2− β)βα̈k−1)

(4.46)
∂α̇k
∂αk−1

= −γ∆t[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.47)

∂α̇k
∂α̇k−1

= 1− γ∆t2[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.48)
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∂α̇k
∂α̈k−1

= ∆t(1− γ)−∆t3γ(1/2− β)[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1)

(4.49)
∂α̇k
∂di,k−1

= γ∆t
Kr
und,k−1 −Kr

i,k−1

1− κ̄
[M r

k−1]−1(αk−1 + ∆tα̇k−1 + ∆t2(1/2− β)βα̈k−1)

(4.50)
∂α̈k
∂αk−1

= −[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.51)

∂α̈k
∂α̇k−1

= −∆t[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.52)

∂α̈k
∂α̈k−1

= −∆t2(1/2− β)[M r
k−1]−1

Np∑
i=1

1− di,k−1

1− κ̄
(Kr

und,k−1 −Kr
i,k−1) (4.53)

∂α̈k
∂χi,k−1

=
Kr
und,k−1 −Kr

i,k−1

1− κ̄
[M r

k−1]−1(αk−1 + ∆tα̇k−1 + ∆t2(1/2− β)βα̈k−1)

(4.54)
∂di,k
∂αk

= 0 (4.55)

∂di,k
∂α̇k

= 0 (4.56)

∂di,k
∂α̈k

= 0 (4.57)

∂di,k
∂di,k−1

= 1 (4.58)

Having specialized all the components of the method for the structural case, we
can now summarize the procedure in Figure 4.1. The process, measurement and
fictitious noises are all supposed to be white zero-mean Gaussian and uncorrelated
to each other. Some further explanations are needed.
First of all, the matrix Lk is equal to:

Lk =


Φl,k

Φl,k

Φl,k

0

 (4.59)

This particular formulation of matrix Lk has been proposed in [25]: each sub-
matrix Φl,k collects the first l POMs considered and basically can project each
dynamic variable. In other words, three concatenated sub-matrices are required
because the state vector is built considering both the reduced dynamic variables
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Pi,−
r,k = Fi−1

r,k Pi−1
r,k−1F

i−1
r,k

T
+ V

Gi
k = Pi,−

r,kL
T
k−1H

T · (HLk−1P
i,−
r,kL

T
k−1H

T + W)−1

xik = xi−1
k + Gi

k(yk −HLk−1xi−1
k )

Pi
r,k = Pi,−

r,k −Gi
kHLk−1P

i,−
r,k

Fi−1
k−1 = Fik−1(xik)
Pi−1
r,k = Pi

r,k

ωik = ωik−1p(yk|xik)
xk =

∑Ns
i=1 ω

i
kx

i
k

Pss,−
k = Pss

k−1 + ωss

Gss
k = Pss,−

k Hss
k
T (Hss

k Pss,−
k Hss

k
T + V)−1

Φl,k = Φ−l,k + Gss
k (yk −Hss

k Φ−l,k)

Pss
k = Pss,−

k −Gss
k Hss

k Pss,−
k

Hss
k−1 = Hss

k (xk)
Pss
k−1 = Pss

k (Φl,k)
Lk−1 = Lk(Φl,k)

Fi−1
k−1 = Fi−1

k (Φl,k)

i = 1, ..., Ns

k = 1, ..., N

Figure 4.1: Flow chart of the procedure used for dual estimation of the reduced
model and sub-space update

αk and their first and second derivatives α̇k and α̈k. Since the damage parameters
are not projected into the reduced sub-space, a null matrix is added. Let us now
consider the measurement model:

yk = HLk−1xk + w (4.60)

The measurement matrix H ∈ RNobs×3Ndof+Np links the Nobs observations and the
full order state vector, that has dimension 3Ndof +Np. Remember that xk is the
reduced state vector: the transformation Lk−1 is required because we want to link
the measurement vector, that lies in the full order space, and the state vector,
that lies in the reduced sub-space and, therefore, xk should be re-projected into
the full space.
In order to evolve the weights ωik, the following multivariate Gaussian distribution
has been used to generate samples from p(yk|xik):

p(yk|xik) =
1√

(2π)n|Pk−1|
exp

{
−1

2
(yk −HLk−1xik)

TP−1
k−1(yk −HLk−1xik)

}
(4.61)
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Regarding the subspace updating stage, the matrix ωss is defined as follows:

ωss =

Wss

Wss

Wss

 (4.62)

where Wss are the covariances of the fictitious noise associated to the subspace.
The repetition of sub-matrices Wss is required in order to take into account the
first and second derivatives of the dynamical variables as well. Finally the matrix
Hss
k is:

Hss
k = [α1

kH
u · · · αlkHu]Φl,k + vk (4.63)

basically following the idea explained in equation (4.16). In equation (4.63), the
matrix Hu is defined in RNobs×Ndof , therefore in order for the matricial products
to be consistent, the matrix Φl,k is defined in Rl·Ndof×1. In other words, the POMs
are concatenated as:

Φl,k =

φ1,k
...
φl,k

 (4.64)

4.5 Summary
In the present chapter the damage identification algorithm has been described in
details.
In Section 4.2 the concepts of dual estimation, reduced order model and hybrid
extended Kalman particle filter has been given. Then in Section 4.3 the algo-
rithm used to perform the dual estimation of reduced states and parameters with
subspace updating has been reviewed. Finally in Section 4.4 all the previous tools
have been used to describe the damage identification procedure. Furthermore,
the damage parameters di have been defined and the formulation of the stiffness
matrix is given: the particular strategy described in Section 4.4.1 allows to release
the estimation method from the finite element formulation used to discretize the
system. Therefore, the method can be easily applied to any type of structure and
type of finite element used.
In Chapter 5 the performances of the damage identification procedure will eval-
uated, performing a benchmark analysis on a simple thin plate.





Chapter 5

Results

5.1 Introduction

In the present chapter the performances of the method described in Table (4.1)
will be investigated and some remarks about the choice and influence of the
settings of the filter will be described.
The structure considered is a simple square plate, whose dimensions are 200 mm×
200 mm and thickness of 5 mm. The material chosen is Aluminum 6061-T6 [108].
Since the forces applied are very low, the material is supposed to always remain
inside the elastic domain. The Young modulus is equal to E = 68.9 MPa and
the density is ρ = 2.5 · 103 kg/m3.
The plate is modeled through the commercial finite element (FE) code Abaqus
(Abaqus/CAE 6.10-1 ©Dassault Systemes, 2010), using the S4R general-purpose
conventional shell elements, that take into account transverse shear deformations.
For further details on the elements, the reader may refer to [109]. This type
of elements is characterized by having 6 degrees of freedom per node, i.e. the
displacements and rotations in the three directions:

u =


ux
uy
uz
ϕx
ϕy
ϕz

 (5.1)
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Figure 5.1: Numbering of regions and points of the structure

Figure 5.2: Boundary conditions and load
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 5.3: Undamaged case - Shapes of the first six natural modes

In Figure 5.1, the numbering of some remarkable points and the regions
in which the structure has been divided are shown. Regarding the bound-
ary conditions, the plate is simply supported at the four corners, such that
u3
z = u6

z = u8
z = u9

z = 0. The plate is subjected to a sinusoidal force applied
to point 1, in the center of the plate and along the direction z:

F(t) =


0
0

Asin(ωt)
0
0
0

 (5.2)
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 5.4: Damaged case - Shapes of the first six natural modes

Figure 5.2 shows the boundary conditions and the load applied. In [110], it
has been shown that the choice of the load does not affect the operation of the
filter, therefore only one type of load will be used here. The load amplitude is
equal to A = 100 N and the angular velocity is ω = 500 rad/s.
Two configurations are used:

1. an undamaged structure characterized by a Young modulus E associated
to all the regions;

2. a damaged structure, characterized by having a Young modulus reduced to
E/2 within region 2 and a Young modulus E in all the other ones.
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In Section 5.2 a benchmark analysis is performed applying the method to the
aforementioned thin plate modeled through a 4-elements discretization, both in
the undamaged and damaged case. The performances of the plate will be evalu-
ated as a function of the number of POMs, the initial conditions, the measurement
noise, the process noise and the number of sensors deployed.
Afterwards, the damage identification method will be applied to the same dam-
aged thin plate, modeled using a more refined mesh (10× 10 elements mesh) and
therefore a higher number of degrees of freedom.

5.2 Benchmark analysis
In order to benchmark the method, the most simple discretization of the struc-
ture has been used: since the FE model should be able to allow the deformation
of the structure, the minimum number of elements that can do it is 4. The nodes
are therefore 9 and the number of total degrees of freedom is 54. In the following
subsections, first of all a comparison between the full order model and the reduced
order model will be shown, evaluating the performances of the proper orthogonal
decomposition in terms of the dynamic response. Then, the estimation method
will be tested on the damaged structure, evaluating the ability of tracking both
the unknown damage parameters di and the dynamic evolution of the system.
All the simulations are performed using the Newmark integration scheme de-
scribed in Table 4.4, with β = 1/4 and γ = 1/2. This particular choice of β and
γ guarantees the unconditional stability of the integration method [111]. All the
following simulations are performed using ∆t = 5 · 10−5 s.
The relevant first natural frequencies of the damaged structure using the 4-
elements aforementioned discretization are shown in Table 5.1.

Table 5.1: Natural frequencies of the damaged structure

vibration mode index 1 2 3 4 5 6
natural frequency [Hz] 281 497 500 507 515 649

The relevant first natural frequencies of the undamaged system are shown in
Table 5.2.

Table 5.2: Natural frequencies of the undamaged structure

vibration mode index 1 2 3 4 5 6
natural frequency [Hz] 315 540 540 552 552 695

The natural frequencies of the damaged structure are of course lower than
the ones associated to the undamaged structure, because of the corresponding
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reduction of stiffness at constant mass properties. It is interesting to note that
since the undamaged structure is not only geometrical but also structurally sym-
metrical, then some modes of vibration are symmetrical and therefore the natural
frequencies associated are identical.

5.2.1 Model order reduction

5.2.1.1 Undamaged structure

Let us first of all consider the undamaged structure.
The first step is the calculation of the POMs associated to the structure subjected
to the load previously defined. The POMs are calculated through the proper
orthogonal decomposition described in Section 2.2.3, considering a certain number
of snapshots Nsnap of the dynamic evolution of the system. The choice and
influence of Nsnap on the results will be discussed later on. Once the POMs
and their respective singular values have been found, a first way to look at the
performances of the model order reduction is to calculate the index I(l) defined
in equation (2.39), where l is the number of POMs retained and thus the order
of the reduced model. This index gives a direct information about the energy
accuracy of the reduction, without requiring the comparison of the time histories.

Table 5.3: Undamaged case - I(l)

l I(l)
1 0.981632
2 0.999999
3 ≈ 1

From table 5.3 we can see that for example if the projection onto the subspace
is performed using only one single POM, the level of information retained by the
reduced model is still very high. This is due to the symmetry of the model and
to the type of the load applied, that basically stimulate the first modes. We will
see later on that using 2 POMs a perfect match of the full model is obtained and
therefore the POMs of higher order are basically useless. The level of information
associated to the 3-POMs model is not reported because physically speaking can
be assumed as 1 and it goes beyond the machine epsilon. The choice of Nsnap

depends on the convergence of the POMs: in order to measure this issue, in
Figure 5.5 it is possible to see the evolution of the L2 relative error between the
POM calculated for a certain number of snapshots and the one calculated for 200
snapshots. The corresponding time interval of the training stage is approximately
3 times the fundamental period of vibration of the structure:

t200
train = Nsnap ·∆t = 200 · 5 · 10−5s = 0.01 s ≈ 3 · 1

f1

= 3 · 1

315.3
s (5.3)
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The relative error is calculated as:

εl(Nsnap) =
||φl(Nsnap)− φl(200)||L2

||φl(200)||L2

(5.4)

where the L2 norm of an arbitrary vector v is defined as:

||v||L2 =

√√√√size(v)∑
i=1

|vi| (5.5)

It is interesting to point out that the first two POMs converge very quickly, in fact
just after approximately 40 snapshots considered, the relative error is under 10%.
In [112] it has been shown that the convergence of the POMs depends not only on
the structure, but also on the excitation used. In this case, as it is possible to see
from Figure 5.5, a training time ttrain approximately equal to the fundamental
period of vibration (Nsnap ≈ 60) guarantees an acceptable convergence. The
convergence of the third and fourth POM is not reached or there are continuous
fluctuations over the number of snapshots: in accordance with table 5.3 we can
see that the increase of the number of POMs over l = 2 carries a negligible
fraction of information (or energy). This means that the exploitation of all the
l > 2 POMs is basically useless, since the additional level of information retained
is practically zero. For this reason, from now on, in all the comparisons associated
to the undamaged structure, we will retain only the first two POMs.
Figures 5.6 and 5.7 shows the displacement and rotation maps of the first two
POMs. In other words, the values of one degrees of freedom, for instance the
displacements uz, for each node are selected from the POM and reported to
the figure. Since both the structures, the load and the boundary conditions
are symmetric, only the non-zero components of u are shown: therefore the
displacements ux and uy and rotation ϕz does not appear. For the same reason,
the maps shown are symmetric.
The last remark regards the comparison between the POMs and the natural
modes of the structure: as shown in figure 5.8, the shapes does not perfectly
match. This statement is in accordance with what has been explained in Section
2.4.2, i.e. only if the structure is subjected to a resonant load, the POMs converge
to the relevant natural modes.
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Figure 5.5: Undamaged case - POM convergence εl(Nsnap) =
||φl(Nsnap)−φl(200)||L2

||φl(200)||L2
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Figure 5.6: Undamaged case - POM 1 components maps



5.2 Benchmark analysis 85

width [m]

le
n
gt
h
[m

]

 

 

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

(a) uz

width [m]

le
n
gt
h
[m

]

 

 

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b) ϕx

Figure 5.7: Undamaged case - POM 2 components maps

Let us now compare the time histories of the rotations and displacements
obtained using the full and reduced order models. Since the dynamic evolution of
the degrees of freedom of point 1 is not interesting because it is directly correlated
with the applied load, we focus on a side middle point, i.e. node 2. In this case,
since the structure keeps the symmetry even when it is subjected to the load,
the choice of the node is not important. Having previously discussed about the
convergence of the POMs, in all the simulation we will use Nsnap = 200.
Figures from 5.9 to 5.17 show the evolution of displacement uz and rotation ϕx
in node 2, comparing the results obtained with the full or reduced models with 1
or 2 POMs retained. The index of accuracy for the third POM is so high that it
does not worth the results to be reported in the figures. Considering Figures from
5.9 to 5.14, some remarks can be emphasized. First of all, as previously shown
in Table 5.3, in all the figures the 2-POM order reduction can be considered as
a very good approximation of the full model, in fact both the displacements,
the rotations and their derivatives have been catched very well. Regarding the
1-POM order reduction, it can be stated that only the displacements and the
rotations can fit the real evolution in an acceptable way. This is due to the fact
that the POD is performed using displacements and rotations and therefore the
POMs are based on them. Nevertheless, only the lower frequency of the signal
is reproduced correctly, while the fluctuations associated to the other ones do
not suit the real one. This behavior can be underlined calculating the Fourier
transform z of the signals (figure 5.15): the second peak of the 1-POM signal is
basically wrong, while the first frequency corresponds perfectly. Looking at the
second derivative, the discrepancy regards not only the frequencies, but also the
amplitude, that is lower then the real one; this is basically due to the reduction
of flexibility of the reduced order model. Also in this case, as shown in Figures
5.16 and 5.17, the reduced 1-POM model signal matches only the first frequency.
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Figure 5.8: Undamaged case - Comparison between 1st (red solid line) POM and
1st (blue dashdot line) natural mode
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Figure 5.9: Undamaged case - Point 2 - Displacement uz(t)
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Figure 5.10: Undamaged case - Point 2 - Rotation ϕx(t)
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Figure 5.11: Undamaged case - Point 2 - u̇z(t)
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Figure 5.12: Undamaged case - Point 2 - ϕ̇x(t)
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Figure 5.13: Undamaged case - Point 2 - üz(t)
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Figure 5.14: Undamaged case - Point 2 - ϕ̈x(t)
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Figure 5.15: Undamaged case - Point 2 - z[uz(t)]
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Figure 5.16: Undamaged case - Point 2 - z[u̇z(t)]
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Figure 5.17: Undamaged case - Point 2 - z[üz(t)]
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Let us now consider in Figure 5.18 the relative error between the exact evo-
lution of the system and the reduced ones:

εl(t) =
||ul(t)− u(t)||L2

||u(t)||L2

(5.6)

First of all, it is possible to note that, in accordance with what has been previously
explained, ε1(t) is almost six order of magnitude higher than ε2(t), while there is
not a substantial difference between the latter one and ε3(t). Another important
remark is that the relative error is almost stationary; in order to better explain
this concept, let us consider the cumulative error ε̄l(t), calculated as:

ε̄l(t) =

∫ t

o

εl(τ)dτ (5.7)

In figure 5.19 we can see that the cumulative error ε̄1(t) associated to the first
POM grows over time. It is important to point out that, since the slope of the
cumulative error decreases over time, the accuracy of the approximation increases.
For the same reason, since the cumulative errors ε̄2(t) and ε̄3(t) are already very
low compared to ε̄1(t), the variation of the accuracy over time in these cases is
low.

Figure 5.18: Undamaged case - Relative error - εl(t) =
||ul(t)−u(t)||L2

||u(t)||L2
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Figure 5.19: Undamaged case - Cumulative error - ε̄l(t)

0 0.02 0.04 0.06 0.08 0.1
−5

−4

−3

−2

−1

0

1

2

3

4

t [s]

lo
g[
ǫ
l(t

)]

 

 
l=1
l=2
l=3

5.2.1.2 Damaged structure

Once the performances of the model order reduction method, namely the proper
orthogonal decomposition, have been shown for the undamaged structure, let us
focus on the damage structure defined in 5.1.
Once again, the first step is the calculation of the POMs associated to the struc-
ture subjected to the load previously defined. Similarly to what has been ex-
plained for the undamaged case, we can first of all calculate the level of informa-
tion I(l) retained for each reduced model (Table 5.4).

Table 5.4: Damaged case - I(l)

l I(l)
1 0.980145
2 0.999443
3 0.999999
4 ≈ 1

Comparing Tables 5.4 and 5.3, on equal number of POMs l retained, the level
of information is lower; a direct consequence is that, in order to reach the same
level of information, a larger number of POMs should be used. An explanation
of this behavior has to be searched in the characteristics of the structure: un-
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like the undamaged case, the damaged structure is geometrically non-symmetric;
therefore a higher number of POM shapes are required to reproduce exhaustively
the dynamics of the full model. We will see later on that using 3 POMs a perfect
match of the full model is obtained. The level of information I(l) associated to
the 4-POMs model is not reported because physically speaking it can be assumed
as 1 and it goes beyond the machine epsilon.
As explained in the previous paragraph, the convergence of POMs varying the
number of snapshots Nsnap is shown in Figure 5.20. We can see that the first
POMs converge very quickly, in fact, just after approximately 50 snapshots con-
sidered, the relative error is under 10%. The convergence of the higher POMs
have basically the same behavior noticed for the undamaged structure: since
the additional amount of information brought is negligible, these POMs do not
converge. Clearly, according to what has been previously explained about the
difference between the undamaged and damaged structure, in this case this un-
stable behavior can be seen only for l ≥ 10, while in the undamaged case for
l ≥ 4.
Figures from 5.21 to 5.22 shows the displacement and rotation maps of the first
two POMs. Unlike the undamaged case, since the structure is not symmetric,
also the maps shown are non symmetric.

Figure 5.20: Damaged case - POM convergence εl(Nsnap) =
||φl(Nsnap)−φl(200)||L2

||φl(200)||L2
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Figure 5.21: Damaged case - POM 1 components maps
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Figure 5.22: Damaged case - POM 2 components maps
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Figure 5.23: Damaged case - Comparison between 1st (red solid line) POM and
1st (blue dashdot line) natural mode
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The last remark regards the comparison between the POMs and the natural
modes of the structure: as shown in figure 5.23 and likewise with what has been
shown for the undamaged case, no perfect match exists between them two.
Let us now compare the time histories obtained through the full model and the
reduced models, still considering node 2. Having previously discussed about the
convergence of the POMs, in all the simulation we will use Nsnap = 200.
Figures from 5.24 to 5.33 show the evolution of node 2 comparing the results ob-
tained with the full model and the reduced models with 1, 2 or 3 POMs retained.
Considering figures from 5.24 to 5.30, some remarks can be emphasized. First of
all, as previously shown in table 5.3, in all figures the 3-POM order reduction can
be considered as a very good approximation of the full model, in fact both the
displacements, the rotations and their derivatives has been catched very well.
Regarding the 1-POM order reduction, it can be stated that only the displace-
ments and the rotations can fit the real evolution in an acceptable way; never-
theless only the lower frequency of the signal is reproduced correctly, while the
fluctuations associated to the other ones does not suit the real one. As shown
in the undamaged case and displayed in figures 5.31, 5.32 and 5.33, the l-order
reduced model can reproduce correctly only the first l frequencies of the signal
produced by the full model.
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Figure 5.24: Damaged case - Point 2 - Displacement uz(t)
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Figure 5.25: Damaged case - Point 2 - Displacement uz(t) - Detail of figure 5.24
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Figure 5.26: Damaged case - Point 2 - Rotation ϕx(t)
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Figure 5.27: Damaged case - Point 2 - u̇z(t)

0 0.01 0.02 0.03 0.04 0.05
−0.1

−0.05

0

0.05

0.1

t [s]

u̇
z
[m

/s
]

Node 2

 

 
full
l=1
l=2
l=3



98 Results

Figure 5.28: Damaged case - Point 2 - ϕ̇x(t)
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Figure 5.29: Damaged case - Point 2 - üz(t)
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Figure 5.30: Damaged case - Point 2 - ϕ̈x(t)
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Figure 5.31: Damaged case - Point 2 - z[uz(t)]
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Figure 5.32: Damaged case - Point 2 - z[u̇z(t)]
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Figure 5.33: Damaged case - Point 2 - z[üz(t)]

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

8
x 10

4

f [Hz]

Fr
eq
ue

nc
y
m
ag

ni
tu
de

Node 2

 

 
full
l=1
l=2



5.2 Benchmark analysis 101

Let us now consider in figure 5.34 the relative error between the exact evolution
of the system and the reduced ones as defined in (5.6). First of all, it is possible
to note that, in accordance with what has been previously explained, ε1(t) and
ε2(t) are almost six order of magnitude higher than ε3(t), while there is not
a substantial difference between the latter one and the ε4(t) error. An other
important remark is that the relative error is almost stationary; in order to better
explain this concept, let us consider the cumulative error ε̄l(t), defined in (5.7).
In Figure 5.35 we can see that the cumulative errors ε̄1(t) and ε̄2(t) grows over
time but, since the slope decreases, the accuracy of the approximation increases.
On the other hand, ε̄3(t) and ε̄4(t) are basically constant, hence the accumulation
of error is negligible.

Figure 5.34: Damaged case - Relative error - εl(t) =
||ul(t)−u(t)||L2
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Figure 5.35: Damaged case - Cumulative error - ε̄l(t)
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In order to sum up all the concepts previously explained and compare the
model order reduction of the undamaged and damaged structure, let us consider
the signal of the displacement uz(t) at point 2 and calculate the relative error
between the reduced model and the full model:

ε(l) =
||ul,z − uz||L2

||uz||L2

(5.8)

Figure 5.36 shows the evolution of the error for different choices of l, for the dam-
aged and undamaged case. As previously explained, we can see that the damaged
structure requires a higher number of POMs in order to guarantee the same level
of accuracy.
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Figure 5.36: Damaged case - Point 2 - error uz (red line: damaged, blue line:
undamaged)
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5.2.2 POD Kalman observer

In the previous Section, the performance of the model reduction method have
been evaluated. It is possible to state that the POD can successfully reduce the
dimension of the problem without loosing much information and hence it can be
used in the identification phase.
We can now move on and evaluate the performance of the Bayesian recursive
filter described in Section 4.4. The basic goal of the procedure is to estimate the
damage parameters of the damaged structure described at the beginning of the
present chapter. Since the structure has been divided into four regions, we want
to estimate the four damage parameters di associated to their relevant regions.
It has been previously explained that the damaged structure is characterized by
having a reduced Young modulus E/2 in zone 2 and an original E in all the other
regions. Therefore, the target parameters vector d̄ to be estimated is:

d̄ =


0

0.5
0
0

 (5.9)

where of course the damage in regions 1, 3, 4 is zero because no reduction of
Young modulus and thus stiffness appears. We want now to see how the choice
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of the order l, the levels of measurement and process noises and the number of
observations can affect the estimation of both the damage parameters and the
dynamic evolution of the system. In all the simulation, if not otherwise specified,
the default settings are: l = 3, σv = 10−5, σw = 10−5, d0 = 0. In all the
simulations we will suppose that the only available observations are the rotations
along the x and y directions of nodes 2, 4, 5 and 7. The measurement vector is
therefore:

y(tk) =



ϕ2
x(tk)
ϕ2
y(tk)

ϕ4
x(tk)
ϕ4
y(tk)

ϕ5
x(tk)
ϕ5
y(tk)

ϕ7
x(tk)
ϕ7
y(tk)


(5.10)

where yk ∈ RNobs with Nobs = 8. In a possible application, this choice prevents
to deploy the sensors at the corners and the middle of the plate where the load
is applied. Later on, the effect of the reduction of the number Nobs of degrees of
freedom measured will be shown.

5.2.2.1 Number of POMs

Let us first of all compare the damage parameters estimation obtained using 1, 2
or 3 POMs. As shown in the previous Section, we can expect that the estimation
obtained using one single POM will be not enough accurate and that increasing
the number of POMs the quality of the estimation should grow. All the following
simulations are performed using very low level of noises (< 1% of the signal
amplitude) since in this phase the only aim is to compare the performance of the
filter with different choices of l. Afterwards, a further explanation on the effects
of the level of noises will be given.
Figures 5.37 to 5.39 show the parameter estimation, at varying number of POMs
and hence dimension of the reduced system.
Considering the 1-POM reduced system, the filter is able to detect that there is
a damage in the second region, in fact the estimated d1 is higher than the other
damage indexes. Nevertheless, as shown in the previous section, the accuracy
is too low and therefore the estimated parameters are not acceptable compared
to the target. The estimation obtained considering 2 POMs is better than the
one with 1 POM, but still the damage indexes of the undamaged regions is not
good, since the target values are not completely matched. If we now look at
the 3-POMs system estimation, both the parameters di of the undamaged and
damaged regions are almost perfectly estimated. It is possible to lead to the same
conclusion if the calculation of the relative error between the target parameters
vector and the estimated one is performed; as done in the previous section, the
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relative error is defined as:

ε(l) =
||dl − d̄||L2

||d̄||L2

(5.11)

In figure 5.40, the decrease of the error associated to the increase in the umber l
of POMs retained is shown. As explained in Section 5.2.1, the choice of l depends
on the type of structure, and in this case l = 3 because we are considering the
damaged case.
Regarding the speedup of the damage identification procedure due to the adoption
of a reduced order model, in Table 5.5 the calculation time of the algorithm
described in Table 4.1 is reported.

Table 5.5: Computational time of the damage identification algorithm

number of POMs retained 1 2 3 4 5
computational time [s] 11.13 23.88 36.16 55.28 61.96

The calculations have been performed using a personal computer Intel Core
i7-3632QM, with 4 Gb of RAM, running Windows 7x64 as operating system.
The algorithm has been implemented the MATLAB R2013a computing environ-
ment. It is straightforward to see that the reduction of the order guarantees an
important decrease in the computational cost. Moreover, these results are even
more remarkable if we consider that the full order model would have 54 degrees
of freedom, leading to an unbearable time. The part of the overall procedure that
require the most computational effort is the calculation of the Jacobian matrix
described in equation (4.42).

Table 5.6: Jacobian matrix calculation time

number of POMs retained 1 2 3 4 5
computational time [s] 5.05 13.14 71.51 510.02 8163.15

While the computational time of the recursive filter increases approximately
linearly with respect to the number of POMs retained, the time required to
obtain the Jacobian matrix increases geometrically (Table 5.6). This behavior is
basically due to the poor performances of the MATLAB programming language
in treating the symbolic calculations. Nevertheless, since the Jacobian matrix is
a preliminary calculation and it is always performed off-line, it does not affect
the overall computational time of the damage identification algorithm.
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Figure 5.37: Parameters di estimation - 1 POM
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Figure 5.38: Parameters di estimation - 2 POMs
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Figure 5.39: Parameters di estimation - 3 POMs
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Figure 5.40: Relative error - ε(l) =
||dl−d̄||L2

||d̄||L2
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Since the 3-POMs reduced order model gives a good approximation and esti-
mation, from now on 3 POMs will be retained.
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5.2.2.2 Initial conditions

Let us now consider how the filter reacts to a variation of the initial guess d0 of the
parameters. The estimation problem can be seen either as a damage identification
or as a system identification, in fact the damage index di can always be related
to the Young modulus Ei, i.e. to the stiffness of that specific region.

Ei = (1− di)E (5.12)

The latter equation can be generalized to a generic local stiffness parameter:

ki = (1− di)k (5.13)

For instance, considering a plate and remembering that the bending stiffness is
D = Eh3

12(1−ν2)
(where h is the thickness and ν is the Poisson’s ratio), the equation

(5.13) can be specialized for that specific case; using equation (5.12), we have:

12(1− ν2)

h3
Di = (1− di)

12(1− ν2)

h3
D (5.14)

Di = (1− di)D (5.15)

Considering the damage identification, from a physical point of view the param-
eter d should always lies in [0, 1) because a generic damage can only produce a
reduction of the stiffness. Imagine now that the aim is the estimation of the stiff-
ness of a structure: in this case the undamaged structure is no more considered as
the initial situation, but it is only a reference system needed to make the method
work properly. The direct consequence is that the initial conditions of the system
are unknown and therefore it is important to see if it is still possible to identify
the parameters whenever the initial guess is not given. Figures 5.41 and 5.42
correspond respectively to the cases with initial conditions equal to Ei(t0) = 3

2
E

and Ei(t0) = 0: the filter is still able to estimate the parameters. The variation
of the initial values of the parameters does not affect the accuracy of the dynamic
evolution estimation.
If the damage parameters of the initial guess are too far from the target damage
parameters, the estimation can lead to instability and divergence: in Figure 5.43
the case of Ei(t0) = 2E is shown.
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Figure 5.41: Parameters di estimation - Ei(t0) = 3
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Figure 5.42: Parameters di estimation - Ei(t0) = 0
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Figure 5.43: Parameters di estimation - Ei(t0) = 2E
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5.2.2.3 Measurement noise

Let us now consider how the dual estimation is affected by the measurement noise
v associated to the observations. As explained in Section 3.2, v is generated as
a white noise with standard deviation σv and covariance matrix:

V = σ2
vI (5.16)

As explained in Section 5.2, since we are assuming that only the rotational de-
grees of freedom are measured, it is required only one single value of σv. On the
other hand, assuming that the measurements come from mixed physical values,
such as both rotations and displacements, different level of noises should be spec-
ified for each type of degree of freedom. It is important to remember that in a
Gaussian distribution the probability in the interval [µ−3σ, µ+3σ] is 0.9973 (µ is
the mean); therefore, since we are considering a zero-mean white Gaussian noise,
almost ≈ 100% of the samples generated assuming a certain σv lie in the interval
[−3σv,+3σv]. All the estimations shown until now have been performed using
a very low level of noise in order to compare the results independently from the
effect of the measurement noise (σv = 10−5). In order to have an intuitive idea of
the magnitude of the measurement noise, it is possible to compare its standard
deviation with the amplitude of the signal. For instance, recalling Figure 5.10,
we can see that the maximum rotation is approximately 1.5 · 10−3 rad and thus
a standard deviation of σv = 10−5 is lower than 1% of its amplitude.
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Let us now compare the estimated and real dynamic evolution at point 3: the
choice of this point is particularly meaningful because neither the load is applied
there nor the observations are collected at it, therefore the error is theoretically
maximized. Considering Figures from 5.44 to 5.46 , it is possible to see that
the estimation is accurate: nevertheless, at the beginning of the estimation, the
estimated damage parameters are far from the target ones, hence also the esti-
mated dynamic evolution is affected by this discrepancy. This behavior can be
explained considering the fact that at a given instant tk the estimated dynamics
is calculated using the reduced stiffness matrix Kr,k = Kr,k(d1, ..., dNp) calculated
at time tk, that depends on the estimated damage parameters at the same in-
stant tk (see equation 4.27). Therefore, until the the parameters have reached
the target values, it looks like the system is stiffer than the real one.

Figure 5.44: Point 3 - ϕx(t) estimation - σv = 1.5 · 10−5
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Figure 5.45: Point 3 - ϕ̇x(t) estimation - σv = 1.5 · 10−5
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Figure 5.46: Point 3 - ϕ̈x(t) estimation - σv = 1.5 · 10−5
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Assume now we consider a measurement noise approximately equal to 10% of the
amplitude, i.e. σv = 1.5 · 10−4. Comparing Figures 5.40 and 5.47, it is possible
to point out that the accuracy of the estimation is not affected so much by the
measurement noise, but the filter requires a larger number of observation steps
tk in order for the parameters to reach the target. Analyzing Figures from 5.48
to 5.50, we can see that the quality of the estimation drops dramatically when
the order of the time derivative increases; despite the fact the amplitude of the
signal is not estimated correctly, the first frequency is catched. Similarly to what
has been previously explained, the estimated evolution requires a certain time in
order to converge to the target time history.

Figure 5.47: Parameters di estimation - σv = 1, 5 · 10−4
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Figure 5.48: Point 3 - ϕx(t) estimation - σv = 1.5 · 10−4
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Figure 5.49: Point 3 - ϕ̇x(t) estimation - σv = 1.5 · 10−4
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Figure 5.50: Point 3 - ϕ̈x(t) estimation - σv = 1.5 · 10−4
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Figure 5.51: Point 3 - z[ϕ̇x(t)] - σv = 1.5 · 10−4
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If we consider the extreme case of a measurement noise variance σv with a mag-
nitude of equal order of the signal, some important remarks can be emphasized.
This case can be basically referred to two eventualities:

• the quality of the measurement system is so poor that the noise produced
hides the real mechanical response of the structure;

• the applied external force is so low that the response can not be detected
by the sensors deployed.

First of all, Figure 5.52 suggests that the filter is not able to estimate the parame-
ters or, in other words, the estimation requires so much time to reach convergence
that is basically useless. Regarding the dynamics of the system (Figures 5.53 to
5.55), despite the fact the amplitude estimated is not accurate for the reasons
previously explained, it seems that the frequency is correctly captured. This be-
havior is due to the fact that the load is supposed to be a given datum both for
the real and the estimated systems. In order to better explain this concept, it is
useful to remember that the Fourier transform of the output signal is equal to
the product of the Fourier transform of the input signal, i.e. the sinusoidal load,
and the Fourier transform of the transfer function. Let us now look at Figure
5.56: the only frequency the filter is able to estimate is the frequency associated
with the applied force:

f =
ω

2π
=

500 rad/s
2π

= 79.6 Hz (5.17)

This frequency is captured because the input signal is known and it has not to
be estimated. Moreover, the other spikes are not fitted because they are related
to the natural frequencies of the structure, therefore it means that the filter is
not estimating the parameters associated to the damaged structure. A further
evidence is that the peaks estimated correspond to the natural frequencies of the
undamaged structure (Table 5.2), therefore the estimated stiffness matrix has not
been correctly updated towards the damaged case.
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Figure 5.52: Parameters di estimation - σv = 1, 5 · 10−3
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Figure 5.53: Point 3 - ϕx(t) estimation - σv = 1.5 · 10−3
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Figure 5.54: Point 3 - ϕ̇x(t) estimation - σv = 1.5 · 10−3
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Figure 5.55: Point 3 - ϕ̈x(t) estimation - σv = 1.5 · 10−3
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Figure 5.56: Point 3 - z[ϕ̇x(t)] - σv = 1.5 · 10−3
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5.2.2.4 Process noise

The next step is to consider the effect of the process noise w on the performance
of the filter. Recalling what has been explained in section 3.2, the process noise
is related to the quality of the model that describes the system considered and
to all the approximations that have been introduced in the procedure. For in-
stance, these approximations could be due to the time and spatial discretization
methods employed, i.e. in this specific case respectively the Newmark integration
scheme and the finite element method. A high process noise takes into account
the high level of uncertainty introduced by the model. Figure 5.57 shows that
considering σw = 10−2, the model quality is so poor that the filter is still able
to reach the convergence but the accuracy is low and the estimates fluctuate in
an unacceptable way. A lower level σw = 10−5 (figure 5.58) corresponds to little
uncertainties, but on the other hand the variation of the parameters over time
is prevented. The result obtained is a very smooth but slow variation of esti-
mates. Recalling Figure 5.10, it is possible to note that the standard deviation
of the process noise σw = 10−5 is approximately 5% of the maximum rotation
(1.5 · 10−3 rad). In other words, since we are assuming a Gaussian distribution,
the probability that the relative error of the simulated response with respect to
real response is under 5% is almost 0.70.
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Figure 5.57: Parameters di estimation - σw = 10−2
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Figure 5.58: Parameters di estimation - σw = 10−5
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5.2.2.5 Number of observations

As shown in equation (5.10), all the results obtained and shown so far refer to the
case in which the measurements are collected from all the four mid-point nodes
(2, 4, 5, 7).
At this point, it could be interesting to analyze whether the filter is able to detect
the damage also for a lower number of sensors. Let us consider three different
cases:

1. the rotations ϕx and ϕy at node 7 are measured;

2. the rotation ϕx at node 7 is measured;

3. the rotation ϕy at node 7 is measured.

From Figure 5.59 it is possible to deduce that the filter is still able to detect the
parameters di, but, comparing with Figure 5.39, the accuracy of the estimation
is somehow worse. The estimation ability is guaranteed also for a low number
of observations, because the structure is very simple. Moreover, since we are
basically only performing a benchmark of the method, the discretization of the
plate is very coarse. For more complicated structures or with a higher number
of elements, it can be shown that the placement of the sensors is a critical point.
Some methods have been developed in order to optimally place a certain number
of sensors, such that the level of information obtained is maximized [113, 110].
Considering Figure 5.60, the estimation is basically similar to the 1-POM case
(Figure 5.37): the measurement is sufficient to detect the damage but it is not
able to numerically evaluate it. The behavior is far worse considering the third
case (Figure 5.61): none of the parameters has been correctly estimated and,
moreover, the location of the damage has not been detected. Nevertheless, the
performance of the filter can be considered still quite good, since actually we are
estimating four parameters using a 3-POMs reduced order model and with only
one observation.
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Figure 5.59: Parameters di estimation - ϕ7
x and ϕ7
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Figure 5.60: Parameters di estimation - ϕ7
x measured
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Figure 5.61: Parameters di estimation - ϕ7
y measured

0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t [s]

d

 

 
d

1

d
2

d
3

d
4

5.2.2.6 POM convergence

In all the simulations performed so far, the system was supposed to be stationary,
i.e. no variations of the full order stiffness and mass matrices were occurring over
time. Consider now the case of a system that could change: for instance an
impact or a fast variation in the stiffness conditions are happening. In this case,
the updating stage of the POMs is fundamental in order to be able to detect and
identify the damage. Let us assume the case in which a variation of the damage
parameter is occurring at time t = 0.25 s, from d2 = 0.5 to d2 = 0.3.
Figure 5.62 shows what would happen assuming that the POMs are not updated
and remain constant over time. As it was expected, a rapid variation of the
damage parameters is evident, but the new parameters are not well estimated.
This is due to the fact that a wrong bases is projecting the full order matrices
in a subspace that is not coherent with the original full order space. In other
words, the bases that we are using are not the optimal ones, i.e. the error is not
optimally minimized. Despite the fact the filter can not identify the right values
of the damage parameters, still the method can detect a whatever variation in the
system and therefore it could be used as a sort of damage alert, warning the user
that something unexpected is occurring to the system. Practically, a warning
condition could be defined as follows:

∃ di for i = 1, ..., Np s.t. |di(tk)− di(tk+s)| > ζ (5.18)
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In other words, the variation of the system is occurring if at least one of the
damage parameters is changing unexpectedly within a certain time interval. Since
the parameter estimation is always affected by uncertainties and fluctuations
due to the measurement and process noises and to the random generation of
the particles, the value of ζ should be tuned such that those aforementioned
fluctuations are not considered as an effect of the system variation. The value of
s should be tuned as well, depending on the type of structure, the time interval
between each step of the procedure and the type of variation is expected to occur.
Consider now the case in which the POMs are updated. As shown in Figure 5.63,
after an interval in which the estimates changes, the damage parameters are
identified correctly. Figure 5.64 shows the convergence of the first three POMs
calculated using the L2 relative error:

ε(t) =
||Φ̂l(t)− Φl(t)||L2

||Φl(t)||L2

(5.19)

It can be stated that the convergence is monotonic and therefore the error asso-
ciated to the POMs decreases over time.

Figure 5.62: Parameters di estimation - Not updated POMs
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Figure 5.63: Parameters di estimation - Updated POMs
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Figure 5.64: POMs convergence - ε(t) =
||Φ̂l(t)−Φl(t)||L2
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5.3 Additional analyses

In the previous section a benchmark analysis has been performed in order to
evaluate the performances of the damage identification algorithm. It has been
therefore used a simple 4 elements square thin plate and the effects on the filter of
the different settings conditions (such as number of POMs, measurement noise,
process noise, etc.) have been compared.
We want now to apply the damage identification strategy to a more accurate FE
model: we consider then the same structure described in Section (5.1) with a
more refined mesh. It has been shown in [114] that the error of the maximum
deflection and bending moment calculated with a 8× 8 elements FE model with
respect to the analytical solution of the simply supported plate is less than 1%.
Therefore, here a 10 × 10 elements discretization is chosen, practically making
the discretization error negligible. The full order model have, then, 100 elements
and 121 nodes: recalling that 6 degrees of freedom are associated to each node,
the overall order of the full model is 726.
The relevant first natural frequencies of the damaged and undamaged structure
are respectively shown in Tables 5.7 and 5.8.

Table 5.7: Natural frequencies of the damaged structure

vibration mode index 1 2 3 4 5 6
natural frequency [Hz] 196.9 415.2 462.5 549.8 1090.1 1242.3

Table 5.8: Natural frequencies of the undamaged structure

vibration mode index 1 2 3 4 5 6
natural frequency [Hz] 219.9 477.3 477.3 597.3 1205.2 1359.8

The 10 × 10 elements model is of course more flexible than the benchmark
model, therefore the relevant natural frequencies are lower (see Tables 5.1 and
5.2).

5.3.1 Model order reduction

Let us not consider the damaged case, as defined in Section 5.1. In Table 5.9 the
level of information I(l) is shown.
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Table 5.9: Damaged case - I(l)

l I(l)
1 0.997208
2 0.999865
3 0.999992
4 0.999998

Comparing Table 5.9 and Table 5.4 we can see that the level of information
retained by the first two POMs in this case is higher than the one of the bench-
mark case. Nevertheless, as it will be shown later on, the higher order modes are
not negligible and they play an effective role on the structural response.
From Figure 5.65 it is possible to underline that even the first two POMs are
sufficient to catch the basic behavior of the displacement uz time history. More-
over, considering the relative L2 error (defined in equation (5.6)), it can be stated
that the solutions found with 3 and 4 POMs are characterized by a non-negligible
error. Comparing Table 5.66 and Table 5.34, it is possible to conclude that the
higher modes can not be neglected, as it was possible in the benchmark case.
This statement can be better understood by looking at the acceleration üz time
history at point 2 (Table 5.67) and its respective Fourier transform (Table 5.68).

Figure 5.65: Damaged case - Point 2 - Displacement uz(t)
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Figure 5.66: Damaged case - Relative error - εl(t) =
||ul(t)−u(t)||L2
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Figure 5.67: Damaged case - Point 2 - üz(t)
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Figure 5.68: Damaged case - Point 2 - z[üz]

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5
x 10

5

f [Hz]

Fr
eq
ue

nc
y
m
ag
ni
tu
de

Node 2

 

 
full
l=1
l=2
l=3
l=4

In order the reduced order model to be able to catch all the frequency peaks
of the full order model a high number of POMs is required. The importance of
the higher order POMs is basically related to the fact that the model is more
flexible and hence more relevant mode configurations are allowed.

5.3.2 POD Kalman observer

Let us now consider the damage identification filter and its application to the
10 × 10 elements FE model. Since the effect of the measurement noise, the
process noise and the initial conditions on the operation of the algorithm has
been already shown, let us consider which is the parameter estimation, given a
certain number of POMs retained. In all these simulations, the same settings
chosen for the benchmark analysis have been used: σv = 10−5, σw = 10−5,
d0 = 0. The observations are the same ones described in equation (5.10).
Tables 5.69 and 5.70 show the estimation of the damage parameters di when
respectively 2 or 3 POMs are used. Unlike in the benchmark case (Table 5.39),
the filter is not able to estimate any damage parameter: this is an expected
result because we are now considering a model with a larger number of degrees
of freedom and therefore the grade of reduction is much higher. Considering
3 POMs, the damage parameter estimation is guaranteed: this is a remarkable
result, since we are able to estimate 4 parameters of a structure with 726 degrees
of freedom, using a state vector of dimension 9.
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Figure 5.69: Parameters di estimation - 2 POMs
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Figure 5.70: Parameters di estimation - 3 POMs
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5.4 Conclusions

First of all, a general description of the structural problem used to evaluate the
performances of the procedure has been given in Section 5.1: a simply supported
thin square plate subjected to a smooth load is considered, both in a undamaged
and damaged case.
In Section 5.2, a benchmark analysis has been performed considering the most
simple discretization of the plate, i.e. a 4-elements FE model. The model or-
der reduction has been exploited (Section 5.2.1) in order to compare the results
obtained using the full and the reduced models, both for the damaged and an
undamaged case. It has been shown that even if the number of POMs retained
is low, i.e. l = 2, the full model evolution is reproduced with a high accuracy.
Considering higher order models, the cumulative error is basically constant over
time. The comparison between the damaged and the undamaged case leads to
conclude that a less symmetrical structure requires a higher number of POMs
in order to reach the same level of accuracy. The convergence of the POMs has
been shown, when a different number of snapshots is retained.
Afterwards, in Section 5.2.2, the procedure described in Figure 4.1 has been evalu-
ated in terms of damage estimation and dynamic tracking. In order to summarize
the results, we can lead to the following conclusions:

• A 1-POM reduced model is able to detect the damage but can not assess it;
higher order models can estimate the damage parameters with increasing
accuracy.

• A little variation of the initial conditions is not detrimental for the estima-
tion: it has been shown that initial conditions that goes from 0 to 1.5 times
the target values of the stiffness are acceptable. Higher initial values leads
to divergence of the estimates.

• The lower is the measurement noise level, the more accurate and fast is
the estimation of the parameters; on the other hand, a variation of the
measurement noise v does not affect so much the dynamic tracking of the
system because the applied load is a given datum for the filter. High levels
of v (standard deviation of the measurement noise σv higher than 10%
of the signal amplitude) prevents the filter from identifying the damage,
because it conceals the real dynamics of the system.

• High levels of process noise induce high fluctuations of the estimated param-
eters; on the other hand, a quick convergence is reached. The estimation
becomes slow but more accurate if the level of w is low.

• The number of measurements affects the estimation in terms of accuracy.
It has been shown that using a 3-POMs reduced model, two measurement
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are sufficient to estimate the damage parameter. Assuming only one mea-
surement is available, some degrees of freedom can retain a higher level of
information. For this reason, depending on the position and type of mea-
surement used, we can either detect the damage or lead to divergence of
the estimation. Nevertheless, one single measurement is never sufficient to
quantify the damage.

• The convergence of the POMs over time is shown to be monotonic and the
effect of the POM updating phase is underlined.

In Section 5.3 the model order reduction method and the damage identification
procedure are applied to a 10 × 10 elements FE model of the damaged plate
described in Section 5.1. Even if the number of degrees of freedom is much higher
than in the benchmark case, it has been shown that the damage parameters can
be still well estimated with a 3-POMs reduced model.



Chapter 6

Structural health monitoring
system

In the previous Chapters, an identification damage procedure has been presented
and tested through a simulated analysis. The first main goal of the method is
of course the estimation of some damage indexes correlated to a certain number
of regions in which the structure has been conceptually divided. Considering
the wide range of system identification methods based on Bayesian recursive fil-
ters that are used nowadays, the most well-established and reliable systems are
off-line procedures. Therefore, the data acquisition and computational steps are
performed in different time intervals. This is due to the high computational cost
of these recursive calculations. In this work, we have used an improved method
proposed in [62], with the aim of dramatically reducing the computational de-
mand and make it an on-line or nearly on-line identification method. As explained
before, in order to reach these objective, both a reduced order model scheme and
a particle filter using a re-sampling technique have been adopted.
In the present Chapter we will focus on the description of the acquisition system
that could be used for a possible experimental implementation of the method,
and could practically lead to its application on a real structure as well.
According to [13], the definition of a data acquisition system should always con-
sider the following conceptual main features:

• the selection of the type of sensors;

• the choice of the optimal number and location of the sensors;

• the definition of an appropriate network that allow to control the sensors,
collect and store the data.

Last but not least, a computational unit should be used to switch on and off the
sensors, control the timing of the acquisition signal and perform the computation
of the identification model.
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In the following Sections we will focus on these topics: first of all, a brief review
about the state of the art will be given; then, the proposed acquisition system
will be described.

6.1 Sensors

In the last few years, as a consequence of the improvements in electronic engi-
neering, a large number of different sensors has been developed: the choice of
the type of sensors depends of course on the type of input data required by the
identification model, and the type of structure to be assessed. Some remark-
able technologies are: fiber optics sensors used to measure strains [115, 116] or
detect defects [117] and delamination [118]; piezoelectric sensors for electrical
impedance-based [119]; elastic wave-based SHM method [120]; magnetostrictive
sensors [121]. The most used and affordable methods are based on acceleration
or rotation signals. Different types of accelerometers are available nowadays: AC
charge-mode piezoelectric, AC voltage mode piezoelectric, DC capacitive or DC
piezoresistive. Despite the traditional accelerometer technologies are very accu-
rate and reliable, due to their weight and sizes, they can be employed only in
structures whose mechanical behavior is not affected by the sensors themselves.
Therefore, they are usually used to assess civil structures, such as bridges [9],
buildings [122] or infrastructures [123].
Consider now lightweight structures, used for example in aeronautical applica-
tions. The deployment of heavy sensors would affect the mechanical response of
the system and hence could not be considered as an efficient method to acquire
data. Because of this problem and due to the fact that traditional high accu-
rate accelerometers could have very high costs per unit, in recent years a new
type of acceleromeetrs have been exploited in SHM systems: the so-called micro
electro-mechanical systems (MEMS). Comparing the MEMS accelerometers with
the conventional ones, some important advantages can be underlined:

• very low price;

• small size (see Figure 6.1);

• very low weight;

• low power consumption;

• multi-chip mounted wafers.

Several types of MEMS are available on the market, depending on the character-
istics required by the applications. Despite the first devices were characterized
by low performance and reliability compared to the conventional ones, nowadays
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Figure 6.1: Size comparison of a MEMS ultra-compact LGA package

commercial off-the-shelf MEMS are approaching those standards. In the appli-
cation presented here and in general in SHM systems, some MEMS that can be
found on the consumer market have been used: the relatively low performances
can be overcome by using a higher number of sensors.
In this particular application, a MEMS inertial 3-axis digital output low voltage
linear accelerometer (LIS3LV02DL [5]) produced by STMicroelectronics could be
used. The device can sense and measure the accelerations through the variation
of capacity: a set of suspended micrometric silicon structures, which are con-
nected to the die at some points, can move towards one of the directions of the
accelerometer axes. Once the base is accelerated, the mass displacements induce
a variation of capacity that is sensed by an appropriate circuit and converted to
a digital signal.
The device is able to measure accelerations with output data rates (ODR) up to
2560 Hz, a device resolution of 15.6 mg and the package size is 4.4x7.5x1.0 mm.
In order to hold also two filtering capacitors and provide the required connec-
tions to the network system through a standard socket, each device is attached
to an adapter board (Figure 6.2 [4]). Considering the extremely small sizes of the
adapter board (30x18 mm) and the maximum frequency bandwidth (ODR/4),
that is the highest frequency signal that can be sampled by the aforementioned
output data rate without the occurrence of aliasing effect, this type of accelerom-
eter can be applied even for extremely stiff and small structures as the one used
for the benchmark analysis. Comparing in fact the first natural frequencies of the
undamaged structure (Table 5.8) with the accelerometer bandwidth, the system
can sense up to the fourth mode of the structure itself.
As it will be explained later on, the communication with the computational unit
(PC) occurs directly through the adapter board pins and a low level data in-
terface. An alternative solution to the adapter board could be the use of an
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Figure 6.2: Adapter board photograph and board layout [4]

evaluation board [124] that allows to obtain ready-to-use data through a USB
communication standard port and a computer user interface. The major draw-
back of this solution is the motherboard and USB connector sizes: moreover, in
some particular cases, the board stiffness could affect the mechanical response of
the monitored structure. A second disadvantage is that the USB communication
protocol is not a flexible solution and does not allow to connect all the devices
through a smart networking scheme.
Once the basic characteristics of the sensor have been described, let us now ex-
plain the digital communication protocol. The device could work either with a
I2C (Inter-Integrated Circuit) or SPI (Serial Peripheral Interface) bus. Despite
the fact SPI requires a larger number of communication lines, thanks to its easier
implementation and faster operation, it is more widespread and hence it will be
here explained.
The SPI is a bi-directional digital interface between the sensor (called slave) and
the acquisition and computational unit (called master). The communication is
based on four signals and thus four wires are required:

• Chip Select (CS) is a digital signal controlled by the SPI master and basi-
cally starts and closes the communication at the beginning and at the end
of each byte;

• Serial Port Clock (SPC) is an output from the master and, using a digital
sequence of evenly spaced time series of 0 and 1 bits, controls the timing of
all the other signals;

• Serial Data Output (SDO) is a master output and provides the register’s
code needed to control and query the device and hence its response;
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• Serial Data Input (SDI) is the output from the slave to the master and
follows the requests given by the SDO.

Further details on the communication sequence between the sensor and the com-
putational unit will be given in Section 6.3.
In Figure 6.3, all the electrical connections the accelerometer requires are shown.
In addition to the four SPI lines previously described, the other connections
represents:

• Data-Ready (RDY/INT) is a signal that goes to 1 whenever all the data
from the three axes accelerations are available;

• GND represents the reference voltage level for all the other pins (0 V power
supply);

• Vdd and VddIO represent the power supplies respectively for the device and
for the input/output communication; their voltage level are referred to the
GND voltage.

Figure 6.3: Scheme of the electrical connections [5]

The two 100µF and 10µF capacitors indicated in Figure 6.3 are the same compo-
nents shown on the adapter board and respectively named as C1 and C2 (Figure
6.2).
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6.2 Optimal Placement
The optimal placement of the sensors is a critical issue in structural health mon-
itoring, because it can lead to important cost saving. In other words, given a
certain number of sensors, an optimal deployment of devices can provide more
information and hence an increased accuracy of the overall identification proce-
dure.
Several methods have been developed in order to achieve the goal, and they can
be grouped into two basic methodologies:

• the sub-optimal methods based on iterative techniques; for example, one of
these methods is the Effective Independence Method [125] which reduces
iteratively the number of sensors by deleting the degrees-of-freedom of a
particular information matrix, leading then to the selection of the only
important sensors;

• classical optimization formulation [126], where an objective function is de-
fined and through a variety of methods the function is optimized.

We recall here and briefly explain an optimal sensor placement method developed
in [6] for the case of thin plates, monitored through a MEMS pattern. Let us
first of all consider an undamaged structure and a damaged structure with the
same geometry of the first one but with an unknown damage (in our case see
Section 5.1). The structures are then discretized in N elements with area Ai.
The basic idea of the optimization scheme is to look for that pattern of sensors
for which the difference ||ϕki− ϕ̂i|| between the rotations ϕi, measured from the
sensors, of the two structures is maximized. ϕki is the rotations vector measured
in the i-th element for a damage located in the k-th element. A discrete density
field xi is defined: the generic xi value is associated to the i -th sensor that is
theoretically deployed at the i -th element. xi assumes value 1 if the i -th sensor
should be placed according to the optimal solution, 0 if not. The definition of
the aformentioned utility function can be therefore given:

f(xi) =
s∑

k=1

αk

∑N
i=1 x

p
i ||ϕki − ϕ̂i||

maxi
[∑N

i=1 x
p
i ||ϕki − ϕ̂i||

] (6.1)

Then, the definition of the optimization problem is:

arg max[f(xi)] subject to
1

A

N∑
i=1

xiAi ≤ N̄ (6.2)

The latter constraint is required in order to take into account the fact that the
number N̄ of sensors deployed can be lower than the number of elements N . The
relevant weights αk takes into account the relevance of each damage contribution
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to the objective function. Practically αk > 1 when a particular zone of the struc-
ture should be monitored with more attention. Since different damage locations
could lead to different amplitudes of the effect on the structural response, each
term of the sum is weighted by the relevant maximum.
In Figure 6.4 the contour plot of the objective function using the formulation
described in equation (6.1) is shown on the left; the figure refers to a flexible
plate where 8 sensors are deployed and assuming the position of the damage is
unknown. The figure on the right shows the discrete density field xi: the black
squares correspond to the positions for which the maximum variation of rotation
can be sensed and hence the 8 sensors should be placed.

Figure 6.4: Optimal placement of 8 MEMS sensors on a flexible plate damaged
in an unknown position [6]

6.3 Data acquisition and network system

Let us now describe the more widespread types of communication networks and
the one we propose for this particular type of application. Considering the per-
manently installed networks, there are basically two types of systems: embedded
sensors inside the materials, such as fiber Bragg grating sensors [127] or piezo-
electric sensors, and surface mounted sensors. The first type of deployment is
characterized by two major drawbacks:

• in recent years, it has been shown in several research works [128, 129, 130,
131] that the embedded sensors can affect the behavior of the structure and,
especially for composite materials, could induce unwanted cracking growth;

• the sensors can not be reached and hence replaced or checked.

Regarding the network, several wireless solutions have been presented in recent
years [12]. Despite its obvious advantages in large structures due to the reducing
of costs in the cable system, considering a possible application for lightweight
structures, two disadvantages can be underlined: the battery life-time and the
weight of the wireless receivers. For these reasons, a surface mounted wired
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system is here proposed.
The sensors could be connected to the data acquisition system through either a
one-to-one connection or with a unique sensor-to-sensor bus. This latter solution
allows to reduce the length of cables and the complexity of the network. As
previously explained, all the signals are controlled by a master, which includes
both an acquisition system, that converts the digital SPI signal in the USB
standard, and a computational unit, such as a consumer PC. We propose here
the use of a commercial device:

• a 32-channel bidirectional digital input/output module (NI 9403 [132]);

• a National Instruments multipurpose chassis able to hold several modules
and convert the signal to a USB standard (NIcDAQ-9178 [133]).

Figure 6.5: Read/write SPI protocol [5]

In Figure 6.5 an example of a read/write SPI protocol is shown. The CS signal
opens and closes the byte communication while the SPC signal sets the timing
at which each bit is created. The RW bit selects the read/write mode, DO(7:0)
bits (corresponding to 1 byte) represents the acceleration data coming from the
device towards the master, AD(5:0) and DI(7:0) bits are respectively the address
of the registers and the register’s values that are sent to the device in order to
select the settings and query the wanted acceleration axis. Some examples of the
purposes of the registers are:

• querying the identification number of the device;

• calibration of the zero acceleration level offset;

• calibration of the system sensitivity, i.e. the proportional coefficient that
links the output values with the real acceleration value;

• on and off device powering;

• selection of the data rate at which the acceleration samples are created;
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• selection of the actual axis x, y or z;

• selection of the acceleration range;

• choosing the bit encoding and representation settings.

In figure 6.6 the scheme of the hypothesized network for multiple accelerometers
is shown.

Sensor 1
CS

SPC
SDO
SDI

Computational
unit (PC)

USB m

Acquisition
system

(NIcDAQ-9178 chassis + NI 9403 module)

Sensor 2
CS

SPC
SDO
SDI

Sensor 3
CS

SPC
SDO
SDI

CS
SPC
SDO
SDO

Master︷ ︸︸ ︷ Slaves︷ ︸︸ ︷

Figure 6.6: Block diagram representation of the master-slave communication
scheme

Figure (6.7) shows the block diagram of the Labview program written to
implement the SPI protocol and the power supply of the 3-axes accelerometer
LIS3LV02DL. Each line in the program represents a wire: the lines on the left
side of the image are the Vdd and VddIO power supplies lines, fed through a
sub-function that creates a constant 1 value digital signal. The lines on the
right represent the SPI communication: the green box at the beginning is a



142 Structural health monitoring system

sub-function that creates the programming variables, the blue boxes are the SPI
read and write sub-functions, implemented following the scheme of Figure 6.5.
The input given to the latter ones are basically the registers previously described:
a sequence of bits are represented through an array of boolean values, where T
(True) and F (False) stand respectively for 1 and 0. Each read function returns
only an 8-bit byte, therefore since a single data is made of 16 bits, two read
function are required for each value of acceleration. For instance, in order to read
the acceleration Ax, two read functions are called: the first one is fed with its
own register and give back the ALOWx byte, the second one is fed with an other
different register and give back the AHIGHx byte. Finally ALOWx and AHIGHx are
concatenated. The large grey box represents a loop: for each iteration, one set of
data is acquired and stored in a given file, indicated by the sub-functions at the
end of each line. The data acquisition and thus the iterations are stopped by a
specific command, depicted as a red button.
Once the acceleration data at each step have been acquired in a binary format,
the values are converted into numerical data. In order to calculate the rotations
using the acceleration signals, two steps are required [134]: a calibration and a
transformation.

1. Calibration: since natural misalignment arises when the sensor is not used,
at the beginning of each measurement phase, a calibration procedure should
be performed in order to compensate them. The misalignments are the an-
gles between the sensor axes and the package axes and are usually related
to the positioning of the silicon die with respect to package substrate. De-
spite the fact in ordinary applications the calibration is not necessary, in
the present application, as we can see from Section 5.2.2, a high accuracy
is required and the signals should be compensated. The sensor is cali-
brated positioning it for approximately 10 s in 6 known stationary positions
and measuring the three accelerations. Using the least-square method, a
calibration matrix X ∈ R3×3 is calculated. Therefore, supposing the ac-
celerometers axes coincide with the structure axes, the raw non-calibrated
accelerations Āx, Āy and Āz are transformed in the calibrated components
of the acceleration Ax, Ay and Az according to:

A = XĀ (6.3)

where

A =

AxAy
Az

 such that
√
A2
x + A2

y + A2
z = 1 (6.4)

where the latter equation is required in order for the accelerations to be
normalized.

2. Transformation: the normalized compensated accelerations A are used to
calculate the rotations ϕx (roll) and ϕy (pitch). In order for the sensitivity
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to be constant over the angles, the following equations should be used:

ϕx = arctan

(
Ay√

A2
x + A2

z

)
(6.5)

ϕy = arctan

(
Ax√

A2
y + A2

z

)
(6.6)

6.4 Summary
In the present chapter a proposal for a structural health monitoring system has
been described. This system could be used to measure the observations required
by the recursive Bayesian filter described in Chapter 4.
The system is characterized by the following features:

• the use of MEMS accelerometers: thanks to their reduced weight and sizes,
they can be deployed in lightweight structures without affecting the struc-
tural response; moreover, their low-cost allow to apply them even when a
high number of sensors is required;

• the number of sensors deployed on the plate can be reduced by adopting
the optimal placement strategy described in Section 6.2;

• the MEMS accelerometers are attached to their adapter board and con-
nected through a wired network; a Labview programming interface is used
to acquire the data through a SPI protocol.
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Figure 6.7: Labview block diagram of the SPI protocol for the 3-axis MEMS
accelerometer LIS3LV02DL
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Chapter 7

Conclusions

The main goal of the present thesis has been the evaluation and application of
a particular recursive Bayesian filter, proposed in [62], to the estimation of the
damage parameters of a certain structure, given some observations. The basic
objectives the filter had to fulfilled were:

• estimate both the dynamical evolution of the system and the damage pa-
rameters, i.e. the local stiffness;

• guarantee an affordable computational cost, such that the system identifi-
cation could be performed in a nearly real-time way;

• make the method independent with respect to the specific FE formulation
used to discretize the structure.

The first target has been achieved by using a dual estimation framework, where
the state vector that describes the system contains both the dynamic variables,
and the damage parameters defined as a function of the ratio between the local
stiffnesses of respectively the damaged and undamaged structures. The second
goal has been fulfilled through the application of a model order reduction per-
formed using the POD and a Galerkin projection of the full space; moreover,
a hybrid extended Kalman particle filter and a resampling technique has been
adopted. At last, a particular formulation of the process model has been used:
the stiffness matrix has been expressed as a linear combination of some appro-
priate reference stiffness matrices, somehow normalized with respect to the local
stiffness parameters.
A benchmark analysis has been presented, applying the algorithm to a simply
supported plate, subjected to a smooth load. The following concluding remarks
can be underlined:

• the proper orthogonal decomposition is able to successfully reduce the
model of either a damaged and an undamaged structure, retaining most
of the information in the first POMs;
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• the higher the degree of symmetry, the less POMs are necessary to reach a
certain accuracy;

• the convergence of the first POMs calculated through the SVD is guaran-
teed;

• the accuracy of the POD approximation increases in time;

• the choice of the number of POMs retained affects the accuracy of the dam-
age estimation, and basically it is in accordance with the results obtained
for the model order reduction; nevertheless, a reduced number of POMs is
sufficient to efficiently estimate the parameters.

• if the initial guess is too far from the target values, the operation of the
filter could be prevented; therefore, in some cases, a preliminary estimation
can be necessary;

• a high measurement noise can prevent the ability of the filter to estimate
the parameters;

• a high process noise introduce a large instability in the filter;

• unless the dimension of the reduced system is very low, i.e. one or two
POMs retained, the number of sensors deployed does not play a crucial role
on the behavior of the filter;

• the convergence of the POMs over time is monotonic, hence the accuracy
increases over time;

• the operation of the filter is guaranteed even for a system with a high
number of degrees of freedom.

To summarize, it can be remarked that the stability and accuracy of the estima-
tion can be guaranteed by an appropriate choice of the filter settings previously
described. For instance, both the number of sensors and above all the size of the
reduced system can be estimated in advance by comparing the full and reduced
order model through a simulation. Regarding the measurement noise, some fil-
tering techniques can be applied to the data in order to reduce it. Hence the only
parameter that can not be tuned a priori is the process model; nevertheless, if
the model used is accurate, this term is very low.
Having said that, we can conclude that the dual estimation of the reduced state
and the damage parameters of a given structure can successfully fulfill the objec-
tives described at the beginning.
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Nevertheless, further research and investigation are of course required. Some
ideas for future investigations are:

• Despite the fact the method could be conceptually applied to any type of
structure, some possible further research topics could regard the assess-
ment of the algorithm when different characteristics of the structure are
considered, such as:

– three dimensional structures;

– boundary conditions;

– loading conditions (impacts);

– non-linear material constitutive relations;

– number of damage parameters to be estimated.

• In the present work an embedded data acquisition system based on MEMS
accelerometers has been proposed. Therefore, this structural health moni-
toring system could be used to validate the algorithm, using real measure-
ments in an experimental set.

• An enhanced ad-hoc structural health monitoring for specific real applica-
tions could be developed.
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