
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

On the Development of a Search-Based

Trajectory Planner for an Ackermann Vehicle

in Rough Terrains

AI & R Lab
Artificial Intelligence and Robotics
Laboratory of Politecnico di Milano

MERLIN Lab
MEchatronics and Robotics Laboratory
for INovation of Politecnico di Milano

Relatore: Prof. Matteo Matteucci
Correlatore: Prof. Luca Bascetta

Tesi di Laurea di:
Andrea Conforto, matricola 779840

Anno Accademico 2013-2014

Contents

List of Figures 7

List of Tables 9

Abstract 11

Estratto in lingua italiana 13

Acknowledgements 15

1 Introduction 17

2 State of Art 21

2.1 Introduction . 21

2.2 Historical Notes . 21

2.3 Planning Algorithms Definitions and Libraries 22

2.3.1 State Space and Action Space: preliminary definitions . . 22

2.3.2 Search Based Planning Algorithms 23

2.3.3 SBPL . 24

2.3.4 Random Sampling Algorithms 28

2.3.5 OMPL . 29

2.4 Main Search Based Planning Algorithms 33

2.4.1 A* . 33

2.4.2 Weighted A* . 35

2.4.3 ARA* . 37

2.4.4 ANA* . 41

2.4.5 AD* . 43

2.5 State Lattice . 46

2.6 Lattice Primitives . 53

3 Environments 55

3.1 Introduction . 55

3.1.1 Environment with three state variables (x, y, θ) 56

3.1.2 Environment with four state variables (x, y, θ, v) 60

3.1.3 Environment with five state variables (x, y, θ, v, δ) 62

3.1.4 Environment with five state variables (x, y, θ, v, ω) . . . 63

3.2 Considerations on environment extensions 65

3.3 Correlation between environments and lattice primitives 67

3.4 Considerations on the cost map 67

3.4.1 Obtain terrain maps . 68

3.4.2 From the terrain representation to the cost map 69

4 Vehicle Models and Lattice Primitives 71

4.1 Introduction . 71

4.2 Methods for lattice primitives creation 71

4.3 Ackermann vehicle . 72

4.3.1 Ackermann kinematic model and (x, y, θ)-primitives . . . 74

4.3.2 Actuators dynamics and extended primitives 80

4.3.3 Extended model and LLT index 83

4.4 Creation of primitives for another vehicle type 90

4.4.1 Differential drive vehicle 90

4.4.2 Differential drive model and primitives creation 90

5 Experimental tests 95

5.1 Introduction . 95

5.2 BVP Solvers . 95

5.2.1 ACADO: an open source BVP solver 95

5.2.2 BOCOP: an open source BVP solver 101

5.3 Planner Evaluation . 105

5.3.1 Experimental Setup . 105

5.3.2 Experimental Results 116

6 Integration with ROS 131

6.1 Introduction . 131

6.2 Current system . 131

6.3 Planner node . 132

7 Conclusion and future works 137

Bibliography 139

A Data extracted from tests 143

B User manual 147

B.1 Maps . 147

B.1.1 Map generation . 147

B.1.2 Map creation from DEM 148

B.2 Lattice Primitives . 152

B.2.1 ACADO set up . 152

B.2.2 Bocop set up . 152
B.2.3 Lattice Primitives with Kinematic Model 152
B.2.4 Lattice Primitives considering Actuators Dynamics . . . 155
B.2.5 Lattice Primitives considering LLT 158
B.2.6 Differential Drive model primitives 161

B.3 SBPL - our modified planning library 163
B.4 ROS Nodes . 167

B.4.1 Usage - trajectoryPlanner 167

C Vehicle parameters 169

List of Figures

2.1 Communication between planners and environments 24

2.2 Sample of expansion graph with motion primitives 25

2.3 Hierarchy of existing Environment classes of sbpl 26

2.4 Hierarchy of existing Planner classes of sbpl 27

2.5 Relation between Environments and Planners 28

2.6 Components of OMPL . 31

2.7 Map used for the search algorithms examples 33

2.8 Example of A* execution on the previous map 35

2.9 Example of Weighted A* with ǫ = 3 36

2.10 Example of Weighted A* with ǫ = 1 37

2.11 Example of ARA* execution with decreasing inflation factor . . 41

2.12 Example of ANA* algorithm execution 43

2.13 Example of AD* algorithm execution 50

3.1 Examples of θ discretization . 58

3.2 Actions doable in 2D navigation 60

3.3 State growth trend . 66

3.4 Example of construction of the cost map step-by-step 70

4.1 Ackermann steering geometry 73

4.2 Frames used by the Ackermann kinematic model 75

4.3 Examples of primitive composition 78

4.4 Example of excluded area . 78

4.5 Example of bad and good primitives 79

4.6 Example of a trajectory inscribed in a rectangle 80

4.7 Single track model represented graphically 84

4.8 Vehicle representation with its suspended mass 85

4.9 Frames used by differential drive model 91

4.10 Examples of bad and good primitives 93

5.1 (x, y, θ) primitives generation 97

5.2 (x, y, θ, v) primitives generation 99

5.3 (x, y, θ, v, δ) primitives generation 100

5.4 (x, y, θ, v) primitives generation considering LLT 103

5.5 (x, y, θ, v, δ) primitives generation considering LLT 104
5.6 Terrain generated and plotted with the surf Matlab function . . 106
5.7 Terrain generated and plotted with realistic colors 106
5.8 Example of map created with Automatic Terrain Generation . . 107
5.9 Example of map resulting from a DEM of the Sardinia 111
5.10 Real map and cost map of the first test set 114
5.11 Real map and cost map of the second test set 117
5.12 Cost trend for a solution of the first test set 121
5.13 Expansions done in a problem of the first test set 122
5.14 Solution of a problem of the first test set 123
5.15 Cost trend for a solution of the second test set 127
5.16 Expansions done in a problem of the second test set 128
5.17 Solution of a problem of the second test set 129
5.18 Solution of a problem of the second test set on aerial map . . . 130

6.1 Example of communication between ROS nodes 132
6.2 Example of solution refinement 135

List of Tables

5.1 Number of solutions found - first test set 118
5.2 Number of optimal solutions found - first test set 118
5.3 Average cost - first test set . 119
5.4 Average suboptimality - first test set 119
5.5 Average time - first test set . 120
5.6 Planner classification without equality - first test set 120
5.7 Planner classification - first test set 120
5.8 Number of solutions found - second test set 124
5.9 Number of optimal solutions found - second test set 125
5.10 Average costs - second test set 125
5.11 Average suboptimality - second test set 126
5.12 Average time - second test set 126

A.1 Number of solutions found - first test set 143
A.2 Number of solutions not found - first test set 144
A.3 Number of optimal solutions found - first test set 144
A.4 Number of optimal solutions not found - first test set 144
A.5 Average cost - first test set . 144
A.6 Average suboptimality - first test set 145
A.7 Average time - first test set . 145
A.8 Planner classification without equality - first test set 145
A.9 Planner classification - first test set 145
A.10 Number of solutions found - second test set 146
A.11 Number of solutions not found - second test set 146
A.12 Number of optimal solutions found - second test set 146
A.13 Number of optimal solutions not found - second test set 146
A.14 Average costs - second test set 146
A.15 Average suboptimality - second test set 146
A.16 Average time - second test set 146

C.1 Parameters of the ATV . 170

Abstract

In many fields of Robotics and Artificial Intelligence path planning task is really
important. Path planning is the search of a path from a state A to a state
B. If an agent can make a high quality plan, it will execute its work more
easily. Trajectory planning is a specific kind of path planning specialized in
the construction of a trajectory travelable by an autonomous vehicle from a
start configuration of the vehicle to a goal configuration of the vehicle. To
have a high quality plan it is important that the trajectory found is feasible by
the vehicle. If it is unfeasible or it is done without considering kinematic and
dynamic constraints of the vehicle, there are possibilities of collisions or fails in
the execution phase.

The goal of this thesis is the creation of a planner for an autonomous ATV
(All Terrain Vehicle) to be used in exploration missions, integrated with ROS
middleware installed on the vehicle, and, if possible, easy to port to other vehi-
cles, e.g., differential drive vehicles or UAVs (Unmanned Aerial Vehicles). It is
important to consider that terrains traversed by an ATV vehicle can be irregular
and faster path can be more dangerous. Other important aspects to contemplate
are the vehicle constraints and the possibility of overtaking of the vehicle. All
these factors influence the quality of the resulted trajectory because an unsafe or
an unfeasible path planned can lead to a robot break or to a human intervention
(when possible). In our work, we have used and extended the SBPL (Search
Based Planning Library), a planning library that exploits search algorithms to
find an optimal path between two states into a graph. The graph is obtained
by making a discretization on the vehicle state space. We have extended the
library by creating new environments for the planner and good lattice primitives
to reproduce accurately the behavior of the vehicle. Two softwares have been
used to face the latter problem: ACADO and Bocop. Moreover, to take into
account the morphology of the terrain we have developed a method to create a
cost map; we take into account the slopes in the terrain using heights reported
on a DEM (Digital Elevation Model) of the place where the plan is done. Finally
a particular cost function is used, to consider both of the morphology of the
terrain and the time to execute a plan found.

Estratto in lingua italiana

Il processo di pianificazione è molto importante nell’ambito della Robotica e
dell’Intelligenza Artificiale. Per pianificazione si intende la ricerca di un percorso
da uno stato A a uno stato B. Se un agente riesce a effettuare una pianificazione
di alta qualità, allora sarà molto più semplice effettuare il proprio lavoro. La
pianificazione di traiettoria è un particolare processo di pianificazione che si
occupa di costruire una traiettoria sotto forma di percorso attraversabile da
un veicolo autonomo, partendo da una configurazione iniziale.Per generare un
piano di alta qualità è importante che si considerino tutti gli aspetti e i vincoli
necessari affinché la traiettoria individuata sia effettivamente attuabile. Se non
fosse percorribile, o comunque venisse costruita senza prendere in considerazione
vincoli cinematici e dinamici del robot, la pianificazione fatta potrebbe portare
a collisioni o errori nella fase di esecuzione.

L’obiettivo principale della tesi è la creazione di un pianificatore utilizzabile
su un ATV (All Terrain Vehicle) autonomo principalmente a scopo di missioni
di esplorazione, integrato con il middleware ROS che è installato sul veicolo.
Questo tipo di veicolo ha una cinematica Ackermann e durante la pianificazione
è necessario tenerne conto. Inoltre, se possibile, il pianificatore dovrebbe essere
facilmente portabile ad altre tipologie di veicolo, ad esempio veicoli con cine-
matica differential drive o UAV (Unmanned Aerial Vehicle), come, ad esempio,
droni a quattro rotori. Nel caso di un ATV, è importante considerare che il
terreno attraverso il quale il veicolo può passare non è regolare, quindi percorsi
più brevi o con una velocità di percorrenza elevata possono essere più pericolosi
di altri percorsi. Di conseguenza durante la pianificazione è importante consi-
derare anche i limiti del veicolo, tra cui la possibilità di ribaltamento. Infatti un
percorso non sicuro o non percorribile può portare il robot al danneggiamento
o alla necessità di un intervento umano.

Nel nostro lavoro per costruire un pianificatore efficace, abbiamo utilizzato
ed esteso una libreria chiamata SBPL (Search Based Planning Library) che
affronta i problemi di pianificazione usando degli algoritmi di ricerca in grado
di trovare il percorso ottimo tra due stati di un grafo. Il grafo è ottenuto
attuando una discretizzazione dello spazio degli stati del robot. Noi abbiamo
esteso la libreria creando un nuovo ambiente per la pianificazione e un set di
primitive di moto che riproducano accuratamente il comportamento del veicolo.
Per affrontare quest’ultimo problema sono stati utilizzati due software per la

soluzione di problemi di controllo ottimo: ACADO e Bocop. Le primitive sono
state infatti generate risolvendo il problema di controllo ottimo che porta da
una configurazione del veicolo a un’altra. Inoltre, per tenere in considerazione
la morfologia del terreno è stato utilizzato un metodo particolare per creare
delle mappe di costo che tiene conto dell’altezza o della pendenza del terreno
nei vari punti (la seconda modalità è quella usata in via definitiva) partendo
da una rappresentazione DEM (Digital Elevation Model) del luogo nel quale
la pianificazione avviene. Infine, è stata utilizzata una particolare funzione di
costo per tenere in considerazione sia le caratteristiche del terreno sia il tempo
impiegato per percorrere il percorso trovato.

Durante il lavoro, sono state analizzate due tipologie di veicoli, un veicolo
Ackermann e un veicolo differential drive che utilizzano due modelli cinematici
differenti. Considerando entrambe le tipologie di veicoli è possibile vedere come
la difficoltà di passaggio da un veicolo all’altro non è molto elevata, quindi è
possibile creare vari ambienti per poter pianificare con una vasta scelta di vei-
coli, a patto di generare le primitive di moto opportune. Inoltre utilizzando un
algoritmo di ricerca anytime e dinamico, con i dovuti accorgimenti è possibile
ottenere un pianificatore efficace in grado di ripianificare velocemente un per-
corso se si rilevano ostacoli su quello attuale e inoltre è possibile trovare una
soluzione subottima molto velocemente e mentre il veicolo segue la traiettoria
individuata si può raffinare la soluzione trovata ed eventualmente modificare il
percorso con uno migliore in una fase successiva.

L’elaborato è sviluppato su 7 capitoli. In particolare nel Capitolo 1 è presente
un’introduzione approfondita del lavoro svolto e una descrizione della struttura
del documento; nel Capitolo 2 viene analizzato lo stato dell’arte, quindi cosa
è già stato fatto e può essere utilizzato per raggiungere i nostri obiettivi; nel
Capitolo 3 si analizza il lavoro svolto, ponendo l’attenzione sui vari ambienti
di pianificazione costruiti per le due tipologie di veicoli, dove, con ambienti si
intende un insieme di caratteristiche specifiche utilizzate per la pianificazione,
come, ad esempio, la funzione di costo usata, la funzione euristica, la strut-
tura della mappa dei costi, le discretizzazioni effettuate e le possibilità di un
ambiente rispetto ad altri. Nel Capitolo 4 si analizzano i modelli utilizzati per
simulare i comportamenti dei veicoli presi in considerazione, partendo dal mo-
dello puramente cinematico e integrando altri fattori in modo da simulare un
comportamento accurato del veicolo; questi modelli sono stati usati per gene-
rare le primitive di moto, analizzando anche le diverse modalità di generazione
possibili. Nel Capitolo 5 si presenta il software sviluppato e si considerano i test
fatti per analizzare la qualità delle soluzioni trovate e le prestazioni raggiunte.
Nel Capitolo 6 viene spiegata l’integrazione con l’ambiente ROS, quindi com’è
stato creato e come funziona il nodo che utilizza il pianificatore, mentre nel
Capitolo 7 vengono riportate alcune conclusioni sul lavoro svolto e i possibili
sviluppi futuri per aumentare le funzionalità di quanto fatto fino ad ora.

Acknowledgements

Nonostante la stesura della tesi in lingua inglese, trovo più corretto scrivere
la sezione dei ringraziamenti in italiano. Lo trovo più corretto perché è la mia
lingua madre, la lingua con cui ho comunicato con la maggior parte delle persone
che mi sono state vicine in questo percorso universitario, le stesse persone che
voglio ringraziare in questa sezione. Da dove iniziare? Sicuramente da casa,
un ringraziamento grandissimo a mia madre Milena e a mio padre Marzio che
durante tutti questi anni mi hanno supportato e soprattutto sopportato anche
in periodi in cui ero decisamente intrattabile, sostenendo sempre le mie scelte,
anche in momenti difficili e aiutandomi moralmente a superare le difficoltà.
Un ringraziamento anche a tutti i parenti (nonne, zii, cugini, . . .), che non
cito per evitare ingiustizie nel dimenticare qualcuno erroneamente, che si sono
interessati al proseguimento dei miei studi incoraggiandomi sempre. Inoltre un
grandissimo ringraziamento va a tutti i miei amici e anche in questo caso non li
cito uno ad uno solo per evitare di omettere erroneamente qualche nome (loro
sanno chi sono, non è necessario citarli), per le avventure vissute, le uscite, la
compagnia, tutto insomma; dagli amici con cui ho condiviso il percorso di studi
universitario a quelli con cui ho condiviso il divertimento delle uscite, dagli amici
che magari adesso vedo un po’ meno ma che hanno fatto parte della mia vita
in questi anni agli amici che vedo ancora molto di frequente e che continuano
ad essermi vicini, mando un immenso grazie di cuore a tutti, tutti coloro che
hanno fatto parte della mia vita in questi anni e coloro che ancora ne fanno
parte! Infine, come ultimi, ma non ultimi in ordine di importanza ringrazio il
mio relatore, il Prof. Matteo Matteucci per avermi aiutato nell’impostazione
del lavoro e per avermi dato delle dritte per procedere nel modo migliore e un
ringraziamento al mio correlatore, il Prof. Luca Bascetta per avermi aiutato
durante il lavoro soprattutto nella comprensione dei vari modelli dei veicoli e
delle parti di impostazione dei problemi di controllo ottimo. Nonostante la loro
fitta agenda sono sempre stati disponibili a darmi delle indicazioni per portare
a termine i compiti necessari e per vedere come procedeva l’attività, coprendo
un ruolo fondamentale nella realizzazione di questo lavoro.

Chapter 1

Introduction

“Trinity: I know why you’re here, Neo. I know what you’ve been doing. . . why

you hardly sleep, why you live alone, and why night after night, you sit at your

computer. You’re looking for him. I know because I was once looking for the

same thing. And when he found me, he told me I wasn’t really looking for

him. I was looking for an answer. It’s the question that drives us, Neo. It’s the

question that brought you here. You know the question, just as I did.

Neo: What is the Matrix?

Trinity: The answer is out there, Neo, and it’s looking for you, and it will find

you if you want it to.”

The Matrix

Path planning is a key activity in many fields of Robotics and Artificial
Intelligence. Path planning is the search of a path from a state A to a state
B. If an agent can make a high quality plan, it will execute its work more
easily. Trajectory planning is a specified kind of path planning specialized in the
construction of a trajectory travelable by an autonomous vehicle from a start
configuration of the vehicle to a goal configuration of the vehicle.

The plan creation is important for autonomous vehicles, because a vehicle
can navigate also with a simple plan, but it does not have infinite capabilities,
so it can collide with obstacles or makes some dangerous maneuvers (e.g. for an
ATV the risk of overturn, for an UAV the risk of quote loss, . . .). The vehicle
encounters the previous problems because it generates a plan too approximate.
Consequently a good plan must take into account the capabilities of the vehicle
during the planning phase and it would find the optimal solution to the planning
problem considering a cost function to minimize.

Planning autonomous vehicles comprise two main components: a global
planner and a local planner. These components are complementary, in fact many
times are used together. The global planner creates a trajectory considering the
map of the environment, the constraints of the robot, the risks in executing
some trajectories and all others global informations.

18 Chapter 1. Introduction

A local planner, also named trajectory follower, decides the action to take
locally considering the current state of the vehicle and generating the controls
value to follow a trajectory decided by a global planner. In particular, the
global planner generates a path to reach the goal state starting from the start
state and this path is passed to the local planner that undertakes to follow the
trajectory previously generated respecting admissible values of the controls of
the autonomous vehicle.

In this work the main topic concerns the global planner, often written simply
as planner. In particular the objective of this work is the creation of a planner
that can take into account kinematic and dynamic constraints of an ATV to
create feasible plans, safe as much as possible, in a reasonable computation
time. Some attentions are posed also on other vehicles, for example what
is necessary to do to create plans for a differential drive vehicle. To reach
these objectives we extended a ROS compatible library, in particular the library
extended is SBPL, inserting in it the possibility to consider more vehicle features
than those considered in its current version. At the end of the work we obtained
a planner usable with an ATV vehicle which reduces the risk of overturn, and it
can take into account many sources of information during planning.

In ROS there are many methods to create plans; two of the main libraries
available are SBPL (Search Based Planning Library) and OMPL (Open Motion
Planning Library). These two libraries allow to make plans for various kind of
robot, such as robotic arms, autonomous vehicles and every other robot which
allows a state representation in these libraries. Moreover, SBPL and OMPL
are open source, so if something is missing everyone can add its own code to
implement desirable features. The main difference between the libraries is the
type of algorithm used to plan. SBPL uses search based algorithms, whereas
OMPL uses random sampling algorithms. These categories of algorithm face
the problem of planning in a slightly different matter: search based planning
algorithms build a graph of states linked together and then they search an
optimal solution of the problem in the graph built; random sampling algorithms
sample some possible states of the robot and they connect those found to obtain
a possible solution.

Every family of planning algorithms has its own advantages and disadvan-
tages, in particular, search based planning algorithms are good because they
allow to find the optimal solution with respect to a cost function. However,
they are usually computationally expensive and they need time and resources
to find an optimal plan. Random sampling algorithms are more rapid and less
expensive in term of resources, but it is really difficult (impossible in most cases)
assign costs and find optimal paths with those. Moreover random sampling al-
gorithms cannot determine if a solution exists or not, meanwhile search based
planning algorithms always know if a solution does not exist.

For our application we reputed search based planning algorithms as more
appropriate. To improve search based planning algorithm performance a par-
ticular graph structure can be used: a lattice. A lattice is a graph built from

19

a discretization of the state space; it has regularity properties usable to make
plans efficiently. Moreover the actions executable by the robot can exploit the
regularity properties of the lattice to reduce computational complexity when a
plan is elaborated.

At the actual state SBPL and OMPL have already some classes to do simple
generic planning. Focusing on SBPL, it is already able to plan for a differential
drive vehicle using its Cartesian position and orientation as robot state. More-
over it is also possible to generate plans for other kinds of robots such as robotic
arms. Various search algorithms are implemented in SBPL (for example ARA*,
ANA* and AD*); it is possible to create some simple plans by using them. Al-
though there is a way to use and extend the library [1] with some state variables
to adapt the library to our ATV vehicle. For our intentions, some features are
missing, for instance at the current stage of development there is no possibility
to generate plans for an ackermann vehicle, there is no possibility to take into
account the not instantaneous changes of speed and steer during a plan, and
the safeness of the plan is not taken into account.

So, our work starts from the feasibility study done in [1] where the possibility
to extend SBPL library with some states variables to adapt it to the ATV vehicle
was analyzed to reach previous objectives. The thesis is subdivided in 7 chapters
following a logical subdivision:

Chapter 1 this chapter is the introduction to the work where the general prob-
lem is explained and a simple description of how we faced the problem is
given

Chapter 2 the second chapter discusses the state of art, therefore it reports the
existing kind of planning algorithm, the main libraries that use them, the
main search algorithms and an explanation of the main concepts needed
to understand the approach to the work

Chapter 3 this chapter describes the main choices done for the discretization
and for the costs and heuristics used by the planner; moreover it reports
how the cost map can be created; practically this chapter contains a
description of the necessary informations (named environment) to make
plan

Chapter 4 the fourth chapter reports the vehicle model used to generate the
motion primitives, the precaution taken during the generation process
for the various vehicle type and the various way in which is possible to
generate the motions primitives

Chapter 5 the fifth chapter reports the experimental phase of the work, in
particular considering the developed softwares, the tools used and tests
done

Chapter 6 the sixth chapter presents the integration of the planner with the
ROS middleware in order to use it within the quadrivio project

20 Chapter 1. Introduction

Chapter 7 the final chapter presents the conclusion of our work and future
directions of development

The thesis includes also two appendices:

Appendix A this appendix reports some tables with the tests results

Appendix B this appendix reports a manual on how use the developed software

Appendix C this appendix reports a table with some parameters of the ATV

Chapter 2

State of Art

“Come in close, because the more you think you see, the easier it’ll be to fool

you”

Now You See Me

2.1 Introduction

This chapter shows the state of art starting from some historical notes. After-
wards, we introduce some important definitions and the two main families of
planning algorithm (showing also the two libraries that use them). Furthermore
the main search based planning algorithms are listed and explained and in the
last part of the chapter there are the state of art concerning the state lattice
and the lattice primitives.

2.2 Historical Notes

For many years the researchers have faced the problem of mobile robots nav-
igation, providing much materials. The firsts approaches were based on local
planning: the robot considers only the actions in the near future, so it de-
cides step by step the next action to take. In these group there was potential
field-based techniques where obstacles generate potential fields, attractive in
the goal point and repulsive where the robot cannot stay. Moreover, in this
category there are curvature velocity and dynamic window approaches, where
the plan is done in control space to generate dynamically feasible actions. Ma-
jor limitation of this kind of planners was the impossibility to generate complex
maneuvers [2] as three point turn, because they only reason locally, meanwhile
three point turn need three distinct maneuvers accurately planned. Moreover,
this kind of planners fall often in local minima leading to an erroneous result.

22 Chapter 2. State of Art

To reduce the great influence of local minima of the previous approaches
were developed some algorithms that incorporate global as well as local infor-
mations. Often this approach computes a set of simple local actions and it
evaluates them by using a global value function. This approach works better,
but the local planner still causes some problems (i.e., the robot cannot always
find the optimal path, but only a suboptimal path). So, successive approaches
have improved the quality of the local planner to create a local planner that fol-
lows the global value function better and create more complex local maneuvers
using a sequence of actions. The most complex of these last hybrid approaches
are able to generate very precise local maneuvering, but they are limited by the
approximate global planner.

Due to the inefficiency of the global planner, the effort was addressed to
create powerful global planners. In this way the created path is followed easily
by the vehicle. Some algorithms developed to improve global planners are based
on a construction of a graph composed by robot states. After the construction,
a search of the solution is done in this graph. An improvement of these graph-
search algorithms is a discretization of the space in which the search happens
and the use of heuristic functions to increase plan performance (this kind of
planners are used in sbpl library). Other kind of improved global planners are
randomized planners and geometric planners.

With last discovers, planning tasks have reached a good level of efficiency,
however they remain computational expensive and plan over large distances
considering dynamic constraints is a challenging task, so it is really important
to find a way in order to plan complex feasible paths efficiently.

2.3 Planning Algorithms Definitions and Libraries

This section introduces some preliminary definitions necessary to understand the
algorithms, the main families of planning algorithms and the libraries that use
them.

2.3.1 State Space and Action Space: preliminary definitions

The State Space is the set containing all the configurations reachable by the
robot (i.e., if we take into account the Cartesian position (x, y) of a robot, the
State Space contains all the admissible configurations (x, y) of the robot). Every
element of the State Space (admissible configuration) is called state. The State
Space is important because in the following algorithms, when a robot executes
an action according to the plan generated, it passes from a state to another
state. The first state of the robot is the Initial State (or Start State) and the
Goal State is the desired configuration. The State Space is often a continuous
set, with an infinite number of elements, but in some algorithms it is discretized
to reduce the complexity, obtaining good solutions anyway.

2.3. Planning Algorithms Definitions and Libraries 23

The Action Space (or Control Set) is the set of all the executable actions
(i.e., a rover could go straight, steer left, steer right, etc.). The Action Space
is used to lead a robot from a state to another state executing a particular
action; so given a particular state A and the Action Set we can find all the
possible states reachable by the robot from the state A. The Action Space is an
important thing to define because its cardinality influences the branching factor
of the graph search in the search based algorithms and despite the actions
availability is important, great attention must be posed on the computation
tractability.

2.3.2 Search Based Planning Algorithms

A first kind of planning algorithms is the set of the search based planning
algorithms. They look for the sequence of actions that allow the robot to go
from the start state to the goal state in an optimal way constructing a graph of
states and searching a solution into the graph. In the graph constructed each
node corresponds to a state, each edge corresponds to an action and it link two
nodes. All the algorithms in this category use a heuristic function indicated as
h (s), that is an estimation of the cost to reach the goal state from a state s.
In order to use the heuristic function correctly, it must be admissible1 and if we
need to find an optimal solution the heuristic must be also consistent2. Find a
consistent heuristic that is not admissible is very difficult, so we can affirm that
most of the time consistent heuristic is also an admissible heuristic. An example
of admissible and consistent heuristic function h (s) for robot navigation is the
Euclidean distance from the state s to the goal state. The search algorithms,
to take the decision on which action execute, use a function. A sample of
function is the real cost of the path to reach the current state, indicated as
g (s) plus the heuristic function to reach the goal state: f (s) = g (s) + h (s).
In these algorithms when a state is processed, its possible destination states are
found. The term used to indicate this process is expanded. For some algorithms
another cost function is very important: v (s). It is the best path cost to reach
the state s from the initial state at the moment of the expansion of s.

As we have already introduced, search based planning algorithms use a
graph data structure. Afterwards, we use S to denote the finite set of states
in the graph, succ(s) to denote the set of the successors3 of a state s ∈ S
and pred (s) to denote the set of predecessors4 of the state s. For any pair
of states s, s′ ∈ S such that s′ ∈ succ (s) we require the cost of transitioning
from s to s′ to be positive: 0 < c (s, s′) ≤ ∞. The start state and goal state
are indicated respectively as sstart and sgoal and a path from sstart to sgoal

1The cost estimated by the heuristic function must be less or equal to the real cost to reach
final state

2The cost estimated from a state to each other must be less or equals than real cost
3All the states reachable from a state doing available actions
4All the states that can reach a state doing available actions

24 Chapter 2. State of Art

Figure 2.1: Communication between planners and environments

is denoted with π (sstart). This path is a sequence of states {s0, s1, ..., sk}
such that s0 = sstart, sk = sgoal and for each 1 ≤ i ≤ k, si ∈ succ (si−1).
The cost of the path is the sum of the costs of the corresponding transitions:
∑k

i=1 c (si−1, si). For any pair of states s, s′ ∈ S we denote c∗ (s, s′) as the
cost of the least-cost path from s to s′. For s = s′ we define c∗ (s, s′) = 0.

The goal of a search based planning algorithm is the research of a path from
sstart to sgoal whose cost is minimal (i.e., equal to c∗ (sstart, sgoal)). Supposing
for every state s ∈ S to know the cost of a least-cost path from sstart to s, that
is c∗ (sstart, s), we use g∗ (s) to denote this cost.

2.3.3 SBPL

SBPL stands for Search Based Planning Library and is composed by a set of
domain-independent graph search algorithms and a set of environments (plan-
ning problems) that represents the problem as a graph search problem. The
library is designed to allow the use of the same graph searches to solve a variety
of environments (graph searches types and environments types are independent
each other). Finally, SBPL is a standalone library that can be used with or
without ROS and under Linux or Windows. Many details of SBPL can be found
in [3], in the official SBPL site5 and an example of utilization of the method
exploited by this library can be found in [4][5][6][7].

With SBPL there is the possibility to implement particular planning modules
within ROS, design and drop-in new environments using existing graph searches
to solve it, design and drop-in it new graph searches and test their performance
to solve existing environments or design and drop-in new environments and new
graph searches and test both (the communication between the environments
and the graph searches is shown in Figure 2.1).

Moreover, in some environments of SBPL motion primitives can be used to
include kinodynamics constraints of the robot (in Figure 2.2 there is a sample
of graph expansion with motion primitives). In this way the graph is sparse, the
paths are feasible and we can incorporate a variety of constraints.

To analyze the structure of the library we can divide it in some parts and
analyze each part separately:

• Environments

5http://www.sbpl.net

2.3. Planning Algorithms Definitions and Libraries 25

Figure 2.2: Sample of expansion graph with motion primitives

• Planners

• Motion Primitives, Environment Configuration files and other stuffs

Starting from the environments, in Figure 2.3 it is possible to see a simple
hierarchy graph of the classes of the environments given with the library. We
can rapidly analyze them starting from the super class and proceeding with the
others.

DiscreteSpaceInformation this is the super class of all environments. It is an
abstract class that provides the methods used by the planners to commu-
nicate with every type of environment. It cannot be instantiated directly
in code, it works only as interface between Environments and Planners

EnvironmentXXX this class is given as a template class from the creators of
SBPL to the developers; it represents a simple and naked environment, so
a user can copy and paste the code from that class to create a personalized
environment

AdjacencyListSBPLEnv this class represents an SBPL environment as an ad-
jacency list graph

EnvironmentROBARM this class implements an environment for a planar
kinematic robot arm with variable number of degrees of freedom

26 Chapter 2. State of Art

Figure 2.3: Hierarchy of existing Environment classes of sbpl

EnvironmentNAV2D this class is used to model an environment with the
shape of a grid and a robot state in this problem type have 2 coordi-
nates (x, y), in fact these are 2D problems. This type of environment is
useful for simple navigation problems

EnvironmentNAV2DUU this class will be completed in the following version
of the library. Up to now it is indicated as not completed and is not
explained the use in the code

EnvironmentNAVXYTHETALATTICE this is the base class to execute a
3D planning, in particular in this class the state is composed by the triple
(x, y, θ). This environment accepts also a motion primitives file to simu-
late the real robot movement. If a motion primitives file is not passed to
the class, generic motion primitives are used, but is preferrable the use of
ad hoc motion primitives

EnvironmentNAVXYTHETALAT this class extends the functionality of the
previous class (for instance in this environment there is the possibility to
set the start and goal with apposite method expressing the parameters in
meters and radians, there is a method that return the complete (x, y, θ)
path from the ids path, . . .) and is the class used for 3D navigation

EnvironmentNAVXYTHETAMLEVLAT this class extends the functionality

2.3. Planning Algorithms Definitions and Libraries 27

Figure 2.4: Hierarchy of existing Planner classes of sbpl

of the previous class in order to navigate in (x, y, z, θ) environment. The
z coordinate is managed as a level index. So for example for 1 level of
z the environment behavior is the same of a simple (x, y, θ) navigation,
instead increasing the number of levels of z there is a projection of the
footprint of the robot in height to avoid collisions

In addition to environment files, many pieces of code as well as data struc-
tures, pre-processed macro, functions and other stuffs are also provided to use
easily the environments or extend them to create another problem type.

Instead, analyzing planners, Figure 2.4 reports the classes that offer the
graph search functionalities. These are:

SBPLPlanner this is an abstract class used to communicate with environ-
ments. Every planner inherit from this class

VIPlanner this class offers functionalities of VI planning algorithm

PPCPPlanner this class contains the code to execute the PPCP algorithm (this
introduces some probabilistic elements and it is used mainly for robotic
arms) [8]

RSTARPlanner this class contains a code to execute the algorithm of the R∗

planner [9]

ARAPlanner in this class the algorithm of the ARA∗ planner [10] is imple-
mented, obtaining a result only at the end of the time given to the plan-
ner, when a solution is found or when it is found that a solution does not
exist

anaPlanner in this class the algorithm of the ANA∗ planner [11] is imple-
mented, obtaining a result only at the end of the time given to the plan-
ner, when a solution is found or when it is found that a solution does not
exist

ADPlanner in this class the algorithm of the AD∗ planner [10] is implemented,
obtaining a result only at the end of the time given to the planner, when
a solution is found or when it is found that a solution does not exist

28 Chapter 2. State of Art

Figure 2.5: Relation between Environments and Planners

With these classes a user can use one of these planning algorithms or can
write another algorithm using the facilities provided by the library in the vari-
ous C++ files. An important thing for a creation of a planner in SBPL is the
inheritance from SBPLPlanner and the correct interface with a DiscreteSpace-
Information object, because they are linked by the relation shown in Figure 2.5.

Furthermore, with the library are provided also some motion primitives files
for some robots and the Matlab files used to generate them, so if someone
wants create the personal motion primitives could see how they are constructed.
On the contrary, if the given primitives are enough, everyone can use them.
Moreover are provided some configurations files to try 2D Environment, 2DUU
Environment, 3D Environment and robot arm Environment.

Moreover, some other useful functions are given with the library, for example
a little Matlab script to print a trajectory of a robot in a 2D grid world or some
data structure such as MDP, CHeap, CList and other things used in the code.

Finally, the library is commented with the Doxygen syntax, so there is the
possibility to generate the Doxygen documentation. However, tutorial and ex-
planations are not very rich and if someone would use or modify the library for
the first time is not so simple, the best way is to read and understand the code
already written and read some tutorials on the website.

2.3.4 Random Sampling Algorithms

A second kind of planning algorithms is the random sampling algorithms. They
concern the idea to sample the space of states of the robot starting from the
continuous space of states and not from a finite set of configurations as it often
occurs with search based methods. This sampling operation is done in order
to quickly and effectively answer planning queries, especially for systems with
many degrees of freedom. Traditional approaches to solve these type of problems
could be very slow and managing a continuous state-space could be a problem.
Therefore, the sampling process generally computes a uniform set of random
configurations and at a later stage, it connects these samples via collision free
paths respecting the motion constraints of the robot (verifying them using a
simple model of the robot); the previous procedure is done to answer the query
(the identification of a path to solve the request done to the planner). Many
sampling-based methods provide probabilistic completeness. This means that
if a solution exists, the probability to find a solution converges to one for the
number of samples that tends to infinity. Sampling-based approaches cannot
recognize a problem with no solution.

2.3. Planning Algorithms Definitions and Libraries 29

A set of keywords used in sample based methods is composed by:

Workspace the physical space where the robot operates. An assumption can
be done for the boundaries of the workspace that represents obstacles for
the robot

State Space the parameter space for the robot. This space represents all the
possible configurations of a robot in the workspace. A single point in
the state space is a state. The continuous state space is also called
configuration space and often it is indicated as C

Free State Space a subset of the state space in which each state corresponds
to an obstacle free configuration of the robot. Often it is indicated as
Cfree

Path a continuous mapping of states in the state space. A path is collision
free if each element of the path is an element of the free state space.
Configurations are often indicated with the letter q and the trees generated
to find a path is indicated with T

The last phase of random sample planning algorithms is the query phase and
the goal of a sampling-based motion planning query can be formalized as the
task of finding a collision free path (it should not be the minimum cost path) in
the state space of the robot from a distinct start state to a specific goal state,
utilizing a composition of paths that connects various configurations.

2.3.5 OMPL

OMPL stands for Open Motion Planning Library; it provides an abstract repre-
sentation for all of the core concepts in motion planning, including state space,
control space, state validity, sampling, goal representations and planners. OMPL
is a counterpart of SBPL that uses random sample planners instead of search
based planners[12]. Furthermore, OMPL could be integrated in ROS and it
generates a correct output for another ROS node.

OMPL is flexible, consequently it does not represent explicitly the geometry
of the workspace where the robot operates. So, the user must select a computa-
tional representation for the robot and provide an explicit state validity/collision
detection method. Moreover, there is not a default collision checker in OMPL
and this allow the library to operate with few assumptions, allowing it to plan for
many different systems remaining compact and portable. OMPL is supported
on Linux and Mac OS X. Windows installation is possible from the source code,
but is not a simply thing to do.

For OMPL as for SBPL it is possible to analyze the main classes and func-
tionalities. The main components of OMPL are the following and some of these
are shown in Figure 2.6:

30 Chapter 2. State of Art

StateSampler the StateSampler class implemented in OMPL provides the
methods for uniform and Gaussian sampling in the most common state
space configurations (e.g. Euclidean spaces, the space of 2D and 3D
rotations, . . .). Afterwards, the ValidStateSampler take advantage
from StateValidityChecker to find valid state space configurations

StateValidityChecker the StateValidityChecker controls if a state config-
uration collides with an environment obstacle and respects the constraints
of the robot. In OMPL there is not a default checker, so this component
is an integral part of the chosen planner

NearestNeighbor this is an abstract class that provides a common interface to
various planner in order to find the nearest neighbor among the samples
in the state space. In the library many algorithms are already included to
do this, but a user could develop its own algorithm

MotionValidator the MotionValidator class verifies if the motion of the
robot between two states is valid or not. At high level, the MotionValidator
must be able to evaluate whether the motion between two states is col-
lision free and respects all the motion constraints of the robot. OMPL
contains the DiscreteMotionValidator, which uses the interpolated
movements between two states to determine if a particular motion is
valid. This is an approximate computation as only a finite number of
states along the motion are checked for validity

ProblemDefinition a motion planning query is specified by the ProblemDefinition
object. Instances of this class define a start configuration and a goal con-
figuration for the robot. The goal can be a single configuration or a region
surrounding a particular state

SimpleSetup with previous classes, different types of planning are possible,
for example geometric motion planning and planning with controls. The
SimpleSetup provides a way to encapsulate the various objects necessary
to solve a geometric or control query in OMPL

OMPL is written mainly in C++, but some components and utility are
written in Python. Some of the planners supported by OMPL for planning
under geometric constraints are:

• Kinematic Planning by Interior-Exterior Cell Exploration (KPIECE) [13]

• Bi-directrional KPIECE (BKPIECE) [13] [14]

• Lazy Bi-directional KPIECE (LBKPIECE) [13] [14]

• Single-query Bi-directional Lazy collision checking planner (SBL) [15]

• Parallel Single-query Bi-directional Lazy collision checking planner (pSBL) [15]

2.3. Planning Algorithms Definitions and Libraries 31

Figure 2.6: Components of OMPL

• Expansive Space Trees (EST) [16]

• Rapidly-exploring Random Trees (RRT) [17]

• RRT Connect (RRTConnect) [17]

• Parallel RRT (pRRT) [17]

• Lazy RRT (LazyRRT) [17][18][14]

• Probabilistic RoadMaps (PRM) [19]

• PRM* [19][20]

• RRT* [20]

• Transition-based RRT (T-RRT) [21]

And with other external tools OMPL can support also:

• Inverse Kinematics with Hill Climbing

• Inverse Kinematics with Genetic Algorithms

Instead, for planning under differential constraints the planner supported
are:

• Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE) [13]

32 Chapter 2. State of Art

• Rapidly-exploring Random Trees (RRT) [17]

• Expansive Space Trees (EST) [16]

• Syclop, a meta planner that uses other planners at a lower level

• Syclop using RRT as the low-level planner

• Syclop using EST as the low-level planner

About the state space, instead, some of the following are supported:

• Rn

• SO (2) (rotation in the plane)

• SO (3) (rotation in 3D)

• SE (2) (rotation and translation in the plane)

• SE (3) (rotation and translation in 3D)

• Time (representation of time)

• Discrete (representation of discrete states)

• Dubins (representation of a Dubins car state space)

• ReedsShepp (representation of a Reeds-Shepp car’s state space)

• OpenDE (representation of OpenDE states, if the Open Dynamics Engine
library is available)

For the control space are supported:

• Rn

• Discrete

• OpenDE (this is an extension that is built only if the Open Dynamics
Engine library is detected)

Logically if a user want, the library could be extended with many other
planners and spaces writing them starting on some classes provided by OMPL
that simplify the work of planners creation and state spaces creation.

2.4. Main Search Based Planning Algorithms 33

Figure 2.7: Map used for the search algorithms examples

2.4 Main Search Based Planning Algorithms

Some of the main search algorithms are presented in this section, with particular
attention on the algorithms implemented in SBPL library. The syntax used in
the algorithm pseudo-code is the same for each algorithm and for a better
comprehension for each algorithm is done an example.

Every example is based on a 2D navigation and uses the same map. For
each algorithm the example reported is selected to show the peculiarity of the
algorithm. In the examples the obstacles cells are colored in black, the free
cells are colored in white, the expanded cells are colored in gray, the start cell
is colored in green and the goal cell is colored in blue.

The heuristic function used is the same in all the algorithms and it is the
maximum distance in rows or in columns between a state and the goal state.
The cost assigned to the movements is equal to 1 for an up movement, a down
movement, a left movement or a right movement and 1.01 for a diagonal move-
ment of 1 cell (to give little advantage to horizontal and vertical movements).

The map used for the examples is reported in Figure 2.7.

2.4.1 A*

A* is one of the simplest search based algorithms and it is the base for the
algorithms implemented in SBPL library; its objective is to reach the goal state

34 Chapter 2. State of Art

finding the optimal path using a cost function to express costs of the transitions
between nodes of a data structure (such tree or graph).

A* maintains g-values for each state it has visited so far, where g (s) is
always the cost of the best path found so far from sstart to s. If no path to s
has been found yet then g (s) is assumed to be ∞.

A* starts by setting g (sstart) to 0, inserting it in the OPEN queue and
processing (expanding) it first. The selection of the state to expand is done
selecting in the OPEN queue the state with the lowest value of f (s) = g (s) +
h (s) and extracting it from the queue in order to expand it. In this way the states
that look promising to reach early the goal state are extracted before the others
and this is more efficient than expand states only considering g (s). In case of
tie of f (s) between two states, different criteria can be used to break tie (for
example extract the state from the queue in FIFO order). During the expansion
of a state s, all successors s′ of s are checked; if one or more have a g-cost
greater than the cost of the path passing from s, the g-cost is updated (doing
g (s′) = g (s) + c (s, s′)) and the path to reach s′ pass through s. Moreover,
the state s′ is inserted into the OPEN queue with priority g (s′) + h (s′) and
become a candidate for the next expansion. This process of selection-expansion
is iterated until the goal state is not expanded and the OPEN queue is not
empty. When the goal state is expanded the solution is found, but if the OPEN
queue is empty and the goal state has not been expanded yet a solution does
not exist.

When the search algorithm has finished, if it is successful, there is a path
composed of states with g-values equal to g*-values. That path is the solution.
Therefore, the solution can be composed backward starting from the goal state
and selecting the states to compose the solution in order of increasing g-values,
until the start state is encountered. From now on, unless specified otherwise, the
term greedy path will refer to a greedy path constructed in respect of g-values
of states.

In Algorithm 1 there is the pseudo code of the A* algorithm. Some others
details on A* are explained in [10] [22].

Algorithm 1 ComputePath function of A*

g (sstart) = 0;
other g-values = ∞;
OPEN = {sstart} ;

function ComputePath

while sgoal is not expanded do
remove s with the smallest f (s) from OPEN;
for all successor s′ of s do

if g (s′) > g (s) + c (s, s′) then
g (s′) = g(s) + c (s, s′) ;
insert/update s′ in OPEN with f (s′) = g (s′) + h (s′) ;

end if
end for

end while
end function

2.4. Main Search Based Planning Algorithms 35

Figure 2.8: Example of A* execution on the previous map

In Figure 2.8 is reported an example of execution of A* algorithm. The
Figure 2.8 shows that the optimal path is found, but many cells are expanded
and processed. This fact becomes a problem when the environment becomes
more complex, with many state variables and many more cells because the
memory requirements and the performance requirements become too big.

2.4.2 Weighted A*

Normally, the h-values used by A* search are consistent and therefore they do
not overestimate the cost of the paths from the states to the goal state. This
property leads to an optimal solution, but to find the optimal solution a lot
of states are expanded. However, A* search with inflated heuristics, known as
Weighted A* search can reduce the number of states examined before a solution
is produced. This is equivalent to process states in order of g (s) + ǫ · h (s),
rather than g (s) + h (s). Thus setting ǫ = 1, Wighted A* results in a standard
A* and the resulting path is guaranteed to be optimal. For ǫ > 1 the cost of
the returned path is no larger than ǫ times the cost of the optimal path.

Weighted A* is important to construct an anytime algorithm with subop-
timality bounds, in fact we could run a succession of these A* searches with
decreasing ǫ. In this way we have a series of solutions, each with a subopti-
mality bound equal to the corresponding inflation factor and it has control over
the suboptimality but each search iteration duplicates most of the efforts of

36 Chapter 2. State of Art

Figure 2.9: Example of Weighted A* with ǫ = 3

the previous searches so it wastes a lot of computation. To solve this problem
ARA* has been introduced. It is an efficient anytime heuristic search algorithm
that runs a series of A* searches with inflated heuristics reusing search efforts
from previous executions while ensuring that the suboptimality bounds are still
satisfied.

A problem of Weighted A* is the possibility to fall in local minima with
particular heuristics and particular environments. In this case there is the chance
that increasing inflation factor rise the number of states expanded. An example
of this case is a 2D navigation, with Euclidean distance used as heuristic and a
presence of U-shaped obstacles placed between robot and its goal. In this case
the robot can fall in a minima during the obstacle avoiding and unnecessary
states are expanded until it has not exited from the local minima.

Many details on Weighted A* algorithm are analyzed in [10].

In Figure 2.9 is reported the result of an execution of Weighted A* with
an inflation factor of 3. The image shows that the solution is not the optimal
solution (found before from A* algorithm), but the state expanded compared
to A* are less. This leads to faster executions and is more suitable for complex
environments. Instead, Figure 2.10 shows an execution of Weighted A* with ǫ
equals to 1 and is possible to see that the result is the same of A*.

2.4. Main Search Based Planning Algorithms 37

Figure 2.10: Example of Weighted A* with ǫ = 1

2.4.3 ARA*

A* search can be re-formulated to reuse the search results of its previous execu-
tions. To do this we define the notion of inconsistent state and then formulate
A* search as the repeated expansion of inconsistent states. Moreover will be
also generalized the priority function that A* uses to any function satisfying
certain restrictions. This generalizations allow to define the ARA* algorithm.

Starting from the simple A* we introduce a new variable v (s). Intuitively
v-values estimate the start distances, just as g-values. However, while g (s) is
always the cost of the best path found so far from sstart to s, v (s) is always
equal to the cost of the best path found at the time of the last expansion of
s. Thus, every v-value is initially set to ∞, as with the corresponding g-value
(except g (sstart)), and then it is reset to the g-value of the state when the state
is expanded. A pseudo-code of this procedure is shown in Algorithm 2.

A state s with v (s) 6= g (s) is inconsistent and a state with v (s) = g (s) is
consistent. Thus, OPEN always contains the inconsistent states. Consequently,
since all the states for expansion are chosen from OPEN, new defined A* search
expands only inconsistent states.

Moreover the g-value of s is consistent with the g-value of s′ in the following
sense: the cost of the found path from sstart to s

′ via state s, given by g (s) +
c (s, s′) is already equal to g (s′) and not lower than it.

The decrease in g (s) introduces an inconsistency between the g-value of s

38 Chapter 2. State of Art

Algorithm 2 A∗ ComputePath function with v-values

all v-values = ∞;
g (sstart) = 0;
other g-values = ∞;
OPEN = {sstart};

function ComputePath

while sgoal is not expanded do
remove s with the smallest f (s) from OPEN;
v (s) = g (s);
for all successor s′ of s do

if g (s′) > g (s) + c (s, s′) then
g (s′) = g (s) + c (s, s′);
insert/update s′ in OPEN with f (s′) = g (s′) + h (s′);

end if
end for

end while
end function

and the g-value of its successor s′ (and possibly other successors of s). Whenever
s is expanded, on the other hand, this inconsistency is corrected by setting v (s)
to g (s) and re-evaluating the g-values of the successors of s. This in turn may
potentially make the successors of s inconsistent. In this way the inconsistency
is propagated to the children of s via a series of expansions. Eventually the
children no longer rely on s, none of their g-values are lowered, and none of
them are inserted into the OPEN list.

In this version of ComputePath function, the g-values only decrease, and
since the v-values are initially infinite, all inconsistent states have v (s) > g (s).
We call such states overconsistent.

To continue this algorithm study, priority functions can be generalized. A*
expands the states in order of increasing f-values. For any admissible heuris-
tic, this ordering guarantees optimality. However, we can generalize A* search
to handle more general expansion priorities as long as they satisfy certain re-
strictions. These restrictions will allow the search to guarantee suboptimality
bounds even when the heuristics are inadmissible. We first introduce a function
key (s) that returns the priority of a state s used for ordering expansions. So in
the previous algorithm the line of insertion/update is replaced with:

insert/update s′ in OPEN with key(s′);
Now, key restriction must be added and the algorithm pseudo-code become as
shown in Algorithm 3. If the restriction of the key is satisfied then the cost of a
greedy path after the search is at most ǫ time larger than the cost of an optimal
solution.

The set CLOSED added to algorithm is used to avoid the re-expansion of
the same state twice or more times.

Another change in Algorithm 3 is the initialization of the v- and g-values.
The only condition wanted is that no state is underconsistent and all g-values
satisfy the key restriction. The arbitrary overconsistent initialization will allow
us to re-use previous search results when running multiple searches.

2.4. Main Search Based Planning Algorithms 39

Algorithm 3 A∗ ComputePath function with generalized priority function and
generalized overconsistent initialization

(1) for any two states s, s′ ∈ S such that c∗ (s′, sgoal) < ∞, v (s′) >= g (s′) , v (s) > g (s)
and g (s′) > g (s) + ǫ ∗ c∗ (s, s′) it must hold that key (s′) > key (s);
(2) v- and g-values of all states are initialized in such a way that v (s) >= g (s) =

min
s′∈pred(s)

v (s′) + c (s′, s) forall s! = sstart and v (sstart) >= g (sstart) = 0;

CLOSED = {};
OPEN = {overconsistent state};

function ComputePath

while key (sgoal) > min
s∈OPEN

key (s) do

remove s with the smallest key (s) from OPEN;
v (s) = g (s);
CLOSED = CLOSED + {s};
for all successor s′ of s do

if g (s′) > g (s) + c (s, s′) then
g (s′) = g (s) + c (s, s′);
if s′ not in CLOSED then

insert/update s′ in OPEN with key (s′);
end if

end if
end for

end while
end function

Now all elements to have an efficient version of anytime search with provable
suboptimality bounds were introduced and ARA* can be described entirely. To
complete the algorithm is necessary a new set INCONS of all inconsistent states
that are not in OPEN. So the union of the INCONS and OPEN sets is exactly
the set of all inconsistent states and can be used as a starting point for the
inconsistency propagation before each new search iteration.

In Algorithm 4 there is pseudo code of Anytime Repairing A* (ARA*). The
detailed analysis of the algorithm and some experimental results are reported
in [10].

A small delta to decrease ǫ is suggested to have more benefit from the al-
gorithm. Moreover, as suggested in [10], ARA* can be used to have a fast plan
to execute and meanwhile the robot follow the first path generated, the algo-
rithm compute better solutions. To do this, the search must be done backward,
in this way the g-cost do not change between a search and another changing
the start position of the robot and the only thing needs to do is the heuristic
recomputation.

In Figure 2.11 is reported an example of ARA* algorithm execution. It starts
from an inflation factor of 3.0 and decrease it of 0.5 each iteration. The images
show that initially a reasonable number of states are expanded, but the solution
found is not optimal. Afterwards, some other states are expanded and solution
may improve its quality (not in this case, here it remain the same until last
iteration). Finally when the ǫ became equals to 1 the optimal solution is found
expanding only the unexpanded necessary states.

40 Chapter 2. State of Art

Algorithm 4 ARA∗

function ComputePath

while key (sgoal) > min
s∈OPEN

key (s) do

remove s with the smallest key (s) from OPEN;
v (s) = g (s);
CLOSED = CLOSED + {s};
for all successor s′ of s do

if s′ was never visited by ARA∗ before then
v (s′) = g (s′) = ∞;

end if
if g (s′) > g (s) + c (s, s′) then

g (s′) = g (s) + c (s, s′)
if s′ not in CLOSED then

insert/update s′ in OPEN with key (s′);
else

insert s′ into INCONS;
end if

end if
end for

end while
end function

assuming heuristic consistent

function key(s)
return g (s) + ǫ ∗ h (s);

end function

function Main

g (sgoal) = v (sgoal) = ∞;
v (sstart) = ∞;
g (sstart) = 0;
OPEN = CLOSED = INCONS = {};
insert sstart into OPEN with key (sstart);
ComputePath();
publish current ǫ-suboptimal solution;
while ǫ > 1 do

decrease ǫ;
Move states from INCONS into OPEN;
CLOSED = {};
ComputePath();
publish current ǫ-suboptimal solution;

end while
end function

2.4. Main Search Based Planning Algorithms 41

Figure 2.11: Example of ARA* execution with decreasing inflation factor

This algorithm is particularly suitable for trajectory planning, because if an
autonomous vehicle must do a complex plan, it can execute this algorithm, find
rapidly the solution with epsilon equals to a big value and if remain some times,
it can improve the solution, otherwise it can use the solution found to execute a
plan. The only problem is the incapacity of the algorithm to manage changes of
the maps (for example if robot discover a new obstacle during path execution).

2.4.4 ANA*

We have seen in the previous algorithm based on Weighted A* that the subop-
timality of the solution is bounded by ǫ. So the solution is guaranteed to be
cheaper than ǫ times the cost of the optimal path. This observation is useful
in ARA* algorithm, which initially runs Weighted A* with a large value of ǫ
to quickly find an initial solution, and continues the search with progressively
smaller values of ǫ to improve the solution and reduce its suboptimality bound.
A known problem of many anytime algorithm is the request of setting some
parameters, for instance in ARA* we have two parameters: the initial value
of ǫ and the amount by which ǫ is decreased in each iteration. Setting this
parameters requires trial-and-error and domain expertise.

This problem has brought to develop an anytime A* algorithm that does not
require parameters: ANA* (Anytime Nonparametric A*). Instead of minimizing
and controlling f (s) (or key (s) depending from algorithm), ANA* expands the

open state s with a maximal value of e (s) =
G− g (s)

h (s)
, where G is the cost of

the current-best solution, initially an arbitrarily large value. The value of e (s)

42 Chapter 2. State of Art

is equal to the maximal value of ǫ such that f (s) ≤ G. Hence, continually ex-
panding the node s with the maximal e (s) corresponds to the greediest possible
search to improve the current solution. It automatically adapts the value of ǫ as
the algorithm progresses and path quality improves. In addition, the maximal
value of e (s) provides an upper bound on the suboptimality of the current best
solution, which is hence gradually reduced while ANA* looks for an improved
solution. In the Algorithm 5 is shown the pseudo code of ANA* algorithm.

Algorithm 5 ANA∗

ImproveSolution();
while OPEN != {} do

s = max
s∈OPEN

e (s);

OPEN = OPEN \ {s};
if e (s) < E then

E = e (s);
end if
if IsGoal (s) then

G = g (s);
return ;

end if
for all successor s′ of s do

if g (s) + c (s, s′) < g (s′) then
g (s′) = g (s) + c (s, s′);
pred (s′) = s;
if g (s′) + h (s′) < G then

insert/update s′ with key e (s′);
end if

end if
end for

end while

function Main

G = ∞;
E = ∞;
OPEN = {};
g (sstart) = 0;
insert sstart into OPEN with key e (sstart);
while OPEN != {} do

ImproveSolution();
Report current E-suboptimal solution;
Update keys e (s) in OPEN and prune states if g (s) + h (s) >= G;

end while
end function

Denoting g∗ (s) = c∗ (sstart, s) the cost of the optimal path between the
start state sstart and s, if the optimal solution has not yet been found, there
must be a state s ∈ OPEN that is part of the optimal solution and whose
g-value is optimal.

Moreover each time a state s is selected for expansion in the second line of
ImproveSolution function, its e(s)-value bounds the suboptimality of the current

solution to max
s∈OPEN

{e (s)} ≥
G

G∗
. The track of the suboptimality bound of the

current-best solution is stored in the variable E.

The proof on the suboptimality bounds of the ANA* algorithm and some

2.4. Main Search Based Planning Algorithms 43

Figure 2.12: Example of ANA* algorithm execution

experimental results are reported in [11].

In Figure 2.12 is reported an example of ANA* execution. It shows the
difference of the algorithm with respect to ARA*: during its first execution it
found a solution rapidly (not the best solution, but a solution with a subopti-
mality bound). After, the algorithm expands other states using previous search
effort and it can find the best solution. The goodness of the algorithm is the
ability to generate always solutions with some state expanded (so, the search
increase the progresses) without overload the search expanding too much states
as A*. Moreover it generates a great number of solution in little time, in this
way if the robot needs immediately a solution, the path that algorithm sends to
the robot is the best at the request time.

2.4.5 AD*

In common real world applications is really difficult that the initial graph per-
fectly models the planning problem. In fact the graph could change during the
execution of the planning algorithm and this could be a problem: if an edge cost
decrease, there are not too problems, but if an edge cost is increased, the states
may become underconsistent. The ComputePath function of A*/ARA*/ANA*
do not manage the underconsistence of the states.

For this reason a variant of A* algorithm was introduced: LPA* (Lifelong
Planning A*). It is an incremental algorithm that can manage underconsistence
of the states, but LPA* is not anytime. The way the ComputePath function
of LPA* handles these states is based on a simple idea: every underconsistent
state s can be made either consistent or overconsistent by setting its v-value to
∞. However setting v (s) = ∞ for each underconsistent state s, the g-values of
successors of s may increase, making these successors underconsistent. Thus,
these successors need to have their v-values set to ∞. In Algorithm 6 is reported
the pseudo code to implement this idea. In LPA* the FixInitialization function
is implemented during the ComputePath function to reduce the complexity of

44 Chapter 2. State of Art

the algorithm.

Algorithm 6 Forces all states to become either consistent or overconsistent

function FixInitialization

Q = {s|v (s) < g (s)};
while Q is not empty do

remove any s from Q;
v (s) = ∞;
for all successor s′ of s do

if s′! = sstart then
g (s′) = min

s′′∈pred(s)
v (s′′) + c (s′′, s′);

if v (s′) < g (s′) and s′ not in Q then
insert s′ into Q;

end if
end if

end for
end while

end function

To implement the ComputePath function of LPA* is necessary make some
additional assumptions on the key. These assumptions and the pseudo code
of the ComputePath function of LPA* are reported in Algorithm 7. A more
detailed analysis of LPA* algorithm is done in [10] and in [23].

In the pseudocode reported in Algorithm 7 there is a significant optimiza-
tion to implement. The re-evaluation of g-values is an expensive operation as it
requires us to iterate over all predecessors of s′. We can decrease the number
of times this re-evaluation is done if we notice that it is invoked when state s is
expanded as underconsistent and therefore its v-value is increased to ∞. There-
fore, only those successors of s whose g-values depending on s can be affected.
To keep track of these states we maintain back-pointers (it is set to null for the
start state, it is set to argmin

s′′∈pred(s′)
v (s′′) + c (s′′, s′) for the other states). When-

ever a state is expanded, in addition to updating the g-values of its successors,
we now also need to update their backpointers. In fact, if a backpointer is set
first, then a g-value is just set based on the new state the backpointer points to.
The optimization is that in case of an underconsistent state expansion, the re-
evaluation of a g-value is now only done for the state whose backpointer points
to the state being expanded. In addition, a greedy path, and hence the solution,
can be reconstructed in a backward fashion by just following backpointers from
sgoal to sstart. We will refer to the path reconstructed in this way as the path
defined by backpointers.

Now, combining the anytime property of ARA* and the incremental prop-
erty of LPA* we obtain a single anytime incremental search algorithm: AD*
(Anytime Dynamic A*). AD* can plan under time constraints, just like ARA*,
but is also able to reuse previous planning efforts in dynamic domains.

Both ARA* and LPA* reuse their previous search efforts when executing
the ComputePath function. The difference is that before each call to the
ComputePath function, ARA* changes the suboptimality bound ǫ, while LPA*

2.4. Main Search Based Planning Algorithms 45

Algorithm 7 LPA∗ ComputePath function

(1) for any two states s, s′ ∈ S such that c∗ (s′, sgoal) < ∞, v (s′) >= g (s′), v (s) > g (s)
and g (s′) > g (s) + ǫ ∗ c∗ (s, s′) it must hold that key (s′) > key (s)
(2) for any two states s, s′ ∈ S such that c∗ (s′, sgoal) < ∞, v (s′) >= g (s′), v (s) < g (s)
and g (s′) >= v (s) + c∗ (s, s′) it holds that key (s′) > key (s)
(3) v- and g-values of all states are initialized in such a way that: all the v-values are
non-negative, g(sstart) = 0 and for every state s != sstart g (s) = min

s′∈pred(s)
v (s′)+c (s′, s)

CLOSED = {};
OPEN = {all inconsistent states};

function UpdateSetMembership(s)
if v (s)! = g (s) then

if s not in CLOSED then
insert/update s in OPEN with key (s);

end if
else

if s in OPEN then
remove s from OPEN;

end if
end if

end function

function ComputePath

while key (sgoal) > min
s∈OPEN

key (s) OR v (sgoal) < g (sgoal) do

remove s with the smallest key (s) from OPEN;
if v (s) > g (s) then

v (s) = g (s);
CLOSED = CLOSED + {s};
for all successor s′ of s do

if g (s′) > g (s) + c (s, s′) then
g (s′) = g (s) + c (s, s′);
UpdateSetMembership(s′);

end if
end for

else
//propagating underconsistance
v (s) = ∞
UpdateSetMembership(s);
for all successor s′ of s do

if s′! = sstart then
g (s′) = min

s′′∈pred(s′)
v (s′′) + c (s′′, s′);

UpdateSetMembership(s′);
end if

end for
end if

end while
end function

46 Chapter 2. State of Art

changes one or more edge costs in the graph. The Anytime D* algorithm is able
to do both types of changes simultaneously, improving a solution by decreasing
ǫ even when the model of a problem changes slightly as reflected in the edge
cost changes.

The pseudo code of AD* is reported in Algorithm 8 and Algorithm 9.

The suboptimality bound for each solution AD* publishes is the same as for
ARA*. Some experimental results and some demonstrations are in [10].

As said before, this is a dynamic (or incremental) algorithm. If this algorithm
is executed with an all known map, the result will be the same of ARA*, so to
show the feature of this algorithm a particular example is done: supposing that
robot can view only the cells surrounding it, during robot movements may be
many changes on the map that affect the path planned, moreover ǫ is decreased
of 0.5 each iteration (till ǫ = 1) and the search is done backward to avoid the
recomputation of all g-costs changing the start state.

Figure 2.13 shows that AD* correct the path when a new obstacle impede
the path already planned and expands cells only if the expansion is strictly
necessary.

This algorithm is a good choice for trajectory planning, because it have all
the advantages of ARA* and extends it supporting changes on the map.

2.5 State Lattice

A state lattice is a discretization of the state space in an hyperdimensional grid
converting the problem of planning in continuous function space in a problem
of sequence decision generation, choosing from distinct alternatives. It is done
sampling the state space with regularity and is based on the structure of the
lattice. Representing the state space in a state lattice is possible to perform
a graph search (state lattice is also called search space), in fact we have a
structure composed by nodes and edges as a graph. Each node of the lattice
represent a possible state of the robot state space and each node is connected
to another node by an edge (or a sequence of edges) that represent a possible
motion of the robot. This method allow resolution completeness of the planning
queries.

A motion that connect two nodes should satisfy kinematics and dynamic
constraints of the vehicle; in this case the motion is called feasible motion (at
the moment, to describe state lattice, we do not consider the obstacles in the
environment where the plan is done).

An important property of the state lattice is the regularity that lend to the
state lattice the translational invariant property. This property allow to repeat
the same motion in many nodes of the lattice; to understand better why, we
can consider a state composed by cartesian position (x, y) and some other state
variables. A motion that lead from a state A to a state B, lead also from a
state C to a state D if the state A have the same state variables value of the

2.5. State Lattice 47

Algorithm 8 AD∗ ComputePath function

function UpdateSetMembership(s)
if v (s)! = g (s) then

if s not in CLOSED then
insert/update s in OPEN with key (s);

else if s not in INCONS then
insert s into INCONS;

end if
else

if s in OPEN then
remove s from OPEN;

else if s in INCONS then
remove s from INCONS;

end if
end if

end function

function ComputePath

while key (sgoal) > min
s∈ OPEN

key (s) OR v (sgoal) < g (sgoal) do

remove s with the smallest key (s) from OPEN;
if v (s) > g (s) then

v (s) = g (s);
CLOSED = CLOSED + {s};
for all successor s′ of s do

if s′ was never visited by AD∗ before then
v (s′) = g (s);
bp (s′) =null;

end if
if g (s′) > g (s) + c (s, s′) then

bp (s′) = s;
g (s′) = g (bp (s′)) + c (bp (s′) , s′);
UpdateSetMembership(s′);

end if
end for

else
//propagating underconsistence
v (s) = ∞;
UpdateSetMembership(s);
for all successor s′ of s do

if s′ was never visited by AD∗ before then
v (s′) = g (s′) = ∞;
bp (s′) =null;

end if
if bp (s′) = s then

bp (s′) = argmin
s′′∈pred(s′)

v (s′′) + c (s′′, s′);

g (s′) = v (bp (s′)) + c (bp (s′) , s′);
UpdateSetMembership(s′);

end if
end for

end if
end while

end function

48 Chapter 2. State of Art

Algorithm 9 AD∗ Main function

assuming heuristics consistent
function key(s)

if v (s) >= g (s) then
return [g (s) + ǫ ∗ h (s) ; g (s)];

else
return [v (s) + h (s) ; v (s)];

end if
end function

function Main

g (sgoal) = v (sgoal) = ∞;
v (sstart) = ∞;
bp (sgoal) = bp (sstart) =null;
g (sstart) = 0;
OPEN = CLOSED = INCONS = {};
ǫ = ǫ0
insert sstart into OPEN with key (sstart);
loop

ComputePath();
publish ǫ-suboptimal solution;
if ǫ = 1 then

wait for changes in edge costs;
end if
for all all directed edges (u, v) with changed edge costs do

update the edge cost c (u, v);
if v! = vstart AND v was visited by AD∗ before then

bp (v) = argmin
s′′∈pred(v)

v (s′′) + c (s′′, v);

g (v) = v (bp (v)) + c (bp (v) , v);
UpdateSetMembership(v);

end if
end for
if significant edge cost changes were observed then

increase ǫ or replan from scratch;
else if ǫ > 1 then decrease ǫ;
end if
move states from INCONS into OPEN;
update the priorities for all s in OPEN according to key (s);
CLOSED = {};

end loop
end function

2.5. State Lattice 49

(a) Example of AD* algorithm execution - part 1/2

50 Chapter 2. State of Art

(b) Example of AD* algorithm execution - part 2/2

Figure 2.13: Example of AD* algorithm execution

2.5. State Lattice 51

state C (without consider cartesian position) and the state B have the same
state variables value of the state D (without consider cartesian position) with
euclidean distance between A and B equal to the euclidean distance from B and
C. Formally, supposing to have a state composed by (x, y, θ) where the distance
between the position of the two cells is indicated with ∆l is possible to write:

If exists a feasible path











x1

y1

θ1











→











x2

y2

θ2











exists also a feasible path











x1 + k∆l

y1 + k∆l

θ1











→











x2 + k∆l

y2 + k∆l

θ2











∀k ∈ Z

In this way it is possible to compute all the feasible motions for the states
in a Cartesian position and repeat them for each other position. Moreover, a
state lattice must satisfy two necessary conditions to respect the differential
constraints [7]:

1. Every pair of node connected each other must be connected by a feasible
motion

2. Every pair of node connected each other must guarantee the continuity of
the state variables, so two states are linked if and only if a feasible motion
that join two states exist

When a state lattice is designed, three properties must be taken into account [7]:

Optimality how an optimal path in the lattice is near to the optimal path in
the continuum state space

Completeness how the discretized search space is able to approximate all pos-
sible motions

Complexity how much computation is needed to solve a planning problem

These three properties are critical, because increasing the goodness of one,
the goodness of another can decrease. Therefore, find a good compromise is
important.

Use a state lattice to do searches have many advantages, in fact searches
can be done with search algorithms as AD∗ [4] that take into account dynamic
changes of the lattice, so, if during navigation some obstacles appear in front of
the robot it can change the lattice and replan the path rapidly (the fast change
of the trajectory during vehicle movement is a critical task of autonomous vehi-
cles [24]). Moreover, the long computation due to motion creation can be done

52 Chapter 2. State of Art

out of the planning phase. The motion created can be used in many planning
problems and the cost of each motion during planning is simple to assign taking
into account that the motions (and their costs) are always the same for each
pair of states with the same state variables value (without consider position).
Finally, the lattice is created sampling in the state space, so only the state vari-
ables which are important for a problem are chosen for a particular planning
problem. However, the state lattice has also some problems, indeed it is slightly
memory avid and adding a possible values of the state variables or adding a state
variable the cardinality of the search space, the memory used and the possible
combination of connected state grow rapidly leading to a slower search.

To make planning with state lattice is important make some choices during
the sample phase, because it is very important choose a good state space rep-
resentation to avoid bad plan or bad start and goal states. Once state variables
are chosen a search in the state lattice is done considering also the obstacles in
the environment (states over obstacles are unreachable) and using one of the
previous search algorithm is possible to find the solution of the problem. The
time needed to find the solution is dependent from some factors: cardinality of
the lattice (size of the map where planning is done, number of state variables,
values assumed by the state variables) and branching factor (fanout, number of
admissible motions). When a planning is executed a cost map can be overlaid
to the lattice; in this way is possible to consider the cost of an action on a
particular map, considering the cells crossed by the action. The cost maps can
be obtained in many way, but an interesting approach could involve the use
of DEMs6 [25] [26] [27] to build up a cost map exploiting the features of real
terrains. Planning using a state lattice means do a deterministic search, so the
advantages are more or less the same (optimality with respect to a cost func-
tion and resolution completeness), instead the main drawback is the exponential
growth of complexity increasing the cardinality of the search space.

Using a state lattice Maxim Likhachev and Dave Ferguson have obtained
amazing results in the DARPA Urban Challenge Competition [4]. They have
used a lattice with 4 variables:

1. the position x

2. the position y

3. the orientation θ

4. the velocity of the vehicle distinguished in positive and negative velocity

With the addition of velocity sign is possible to distinguish the movement taken
by the vehicle that are different if the velocity is positive or negative. Moreover
in [4] are taken into account some considerations to optimize the performance
using a state lattice, for example multi-resolution lattice (the lattice is discretized

6Digital Elevation Models

2.6. Lattice Primitives 53

with an high resolution near the robot and the goal and a lattice with a poor
resolution is used in other parts of the state space) and possibility to make
plans over large areas. Many considerations on the lattice are done also by
Mihail Pivtoraiko and Alonzo Kelly in [28] and by Mikhail Pivtoraiko and Ross
Alan Knepper and Alonzo Kelly in [7].

2.6 Lattice Primitives

Before explain what is a lattice primitive is necessary explain what is a motion
primitive. A robot can move in several way, so a possibility is the creation of
some minimal movement, that combined together lead to a complex trajectory.
Each of the simple movements is called motion primitive. The problem of using
simple motion primitives is the difficulty to create a relation between the control
of the vehicle and the state space if the robot is subjected to kinematics and
dynamic constraints [29]. As previously written, a node in the lattice corresponds
to a particular state of the robot state space. A lattice primitive is a motion
primitive that lead exactly from a state of the state lattice to another state in
the state lattice. So, if the robot executes an action in the lattice primitives
set, it cannot be in a state not contained in the lattice.

To obtain a set of lattice primitives there are some different ways, but
essentially there are two kind of methods and both use the translational property
of the state lattice (i.e., find in all primitives starting in (x, y) position (0, 0)
and replicate it in every position of the lattice) [7]:

1. Forward: for certain systems there are methods to sample the control
space (set containing all motions), so the resulting after sample process
is a state lattice. In this case first of all is generated a set of motion
primitives and after is transformed in lattice primitives

2. Inverse: first of all the state sampling method is chosen and after is solved
a BVP (Boundary Value Problem) in order to find a feasible motion that
lead from state to another state within the lattice

The first of the previous approach is not always applicable and it is unsafe,
because the resultant lattice primitives set could be incomplete or incorrect.
The second approach is more suitable, because the resultant set is surely a
valid state lattice, even though dependently on the generation program used,
it can be redundant or too big (in this case some measure can be taken). The
disadvantage of the second approach is the computational effort, because a lot of
BVPs must be solved, but a big advantage of primitives is the pre-computation,
in fact lattice primitives are computed off-line, before its use; in this way the
computational effort to create primitives does not affect planning time.

An attempt to reach the minimal set7 of lattice primitives would be nice. To

7Set containing only the primitives strictly necessary to generate every possible path in the
lattice, concatenating them

54 Chapter 2. State of Art

do this, there are fundamentally two possible ways: generate the primitives from
the origin to some radius [5] and after find and remove the lattice primitives that
can be composed by other two or more lattice primitives (e.g. Leave-One-Out
Decomposition or D∗ Decomposition [6]) or try to generate a minimal set of
lattice primitives immediately.

Unfortunately, lattice primitives have also some drawbacks, in particular ob-
jectives reached with a rich set of primitives conflict with other objectives (e.g.,
small set of primitives is better for the planner, but worst for an environment
with many obstacles and narrow passages) and a trajectory follower in many
cases is necessary anyway to correct the imprecisions of the physical compo-
nents.

Finally, a necessary consideration must be done: a terrain should not be
perfectly plain, so the slopes on the terrain must be take into account. This
process was faced in the art considering obstacles all parts of non-plain ter-
rain [7] or generating primitives considering terrain morphology in the primitives
generation phase [30].

Chapter 3

Environments

“Don’t think you are, know you are”

The Matrix

3.1 Introduction

This chapter defines the concept of environment and describes the main kind
of environment that we created and used in our work, in particular three kind
of environment for ATV and one environment for a differential drive vehicle.
Moreover it reports some considerations on environment expansion and some
reflections about the correlation between environments and lattice primitives.
Finally the chapter reports some considerations on the cost map and describes
the method that we used to create cost maps.

We use the term environment to indicate all the features required to con-
struct the state lattice. The environment is thus composed by all the elements
exposed to the planner to have it solving a planning problem. In particular,
depending on the planning problem, the environment defines:

• the composition of the states

• the discretization technique

• the cost function

• the heuristic function

• the start state

• the goal state

• the map cost

56 Chapter 3. Environments

• all the elements necessary to provide a graph (in particular a lattice) to
the planner

In this way, the planner does not distinguish an environment type from another.
The planner uses the environments as instruments to define graphs where it
executes a search.

3.1.1 Environment with three state variables (x, y, θ)

The first of the environments analyzed is an environment with three state vari-
ables:

x the Cartesian position x of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

y the Cartesian position y of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

θ the orientation of the robot taken counterclockwise and discretized as integer
value (pure number); a continuous 0 rad orientation indicate that the
robot is oriented toward the x axis

Taking into account only three state variables the plan is quite simple and a
solution is usually found rapidly; this gives the chance to make plans over large
areas, although some issues might arise if high speed and low speed maneuvers
must be done in the same plan. During the planning with only three variables,
speed is not taken into account, so the trajectory generated could be invalid or
could be difficult to drive through with the real vehicle.

Starting from the discretization, for what concern x and y, they are strictly
dependent from the resolution used, therefore they can assume values depen-
dently on the map size and on the resolution of the map. Instead, the θ angle
can be discretized in different ways. First of all it is possible to decide how many
values of orientation the vehicle can take. Given that the number of values that
orientation can assume should be a multiple of 4 to have a good equal division
in all directions, a good compromise could be 16 values, because with 8 values
the vehicle has too few angles in order to represent a state in a good plan,
and with 32 values the additional computational effort introduced is not really
improving the goodness of the solution.

Once the number of values to use in discretizing θ is chosen, it is important
to decide how to make such discretization. A first possible idea is to execute a
uniform discretization; starting from the first discrete value that corresponds to 0
radians, each discrete value corresponds to an increase of 2·π

N of the angle, where

3.1. Introduction 57

N is the number of available discrete values. This approach has a little problem
when the vehicle starts with an orientation and arrives with the same orientation
because it should follow a straight line, but, with respect to the lattice definition,
it should end in the center of a cell. A straight line oriented with uniform θ
discretization value could not pass in a center of a cell (Figure 3.1(a)). To solve
this issue, we know that a straight line must respect the equation y = m · x
where m is the angular coefficient of the straight line and is also equals to
tan (θ). Combining the two things if we want a straight line for each admissible
orientation of the robot, θ must be chosen in a way that y = tan (θ) · x where
(x, y) are the coordinates of the cell (to have the measure in meters, they must
be multiplied for the resolution). Since we would x and y as integer values for
the lattice to be defined, θ must respect the relation θ = arctan

(y
x

)

with y and
x possible integer values. In our work, we have chosen as orientations 0+ k · π2 ,
arctan(1/3) + k · π2 , arctan(1) + k · π2 and arctan(3) + k · π2 . With this non
uniform discretization for every couple of start and end angles we can find a
straight trajectory that joins two states with the same orientation in some cell.

In Figure 3.1 is possible to see the different orientations with uniform dis-
cretization and with arctan discretization. Moreover it is possible to see why
with the uniform discretization it is not possible to find always straight lines
between two states with the same θ value. Considering that the crosses of
the background grid are the centers of the lattice cells, in Figure 3.1(a) some
straight lines pass near them, but do not intersect them, instead in Figure 3.1(b)
every straight line intersects a center of a lattice cell.

Another important aspect to consider when designing an environment is the
cost function to use. We are writing about trajectory planning problems, so
one of the most desirable property to minimize is the time needed to reach the
goal state from the starting state. As cost function is thus possible to use the
time necessary to execute the planned path. In this way, the g-value of a state
s is the time needed to reach the state s from the start state. However, in
this environment we have no information about the speed maintained by the
vehicle, so to have a time we can fix an average velocity supposing that the
vehicle maintains it and we can calculate the space traveled to reach a state
and divide it for the average velocity.

The result consists in a planner that tries to minimize the space. In this
way the morphology of the terrain that is traversed during plan execution is not
taken into account. To deal with this, when the cost of an action is computed,
the time needed to drive through the path can be multiplied for a cost factor
based on the terrain morphology. Some methods to compute it, considering
that during an action the vehicle traverses more cells, are:

1. get the maximum cell cost between the cells traversed by the vehicle
during an action

2. get the multiplication of 1 plus the cell cost of the cells crossed by the
vehicle during an action

58 Chapter 3. Environments

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

y

x

Directions

(a) Uniform θ discretization

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

y

x

Directions

(b) arctan θ discretization

Figure 3.1: Sample of discretization of θ in 16 values in the two ways explained. The
intersections of the grid are the center of the lattice cells.

3.1. Introduction 59

3. get the sum of the costs of the cells crossed by the vehicle during its
action

4. get the average cost of the crossed cells during a vehicle movement

The second technique is the best to maximize the possibility of making a path
on a flat terrain. So, defined a pair of states (s, s′), the cost function of the
action that leads from state s to state s′ is reported in Equation 3.1.

c
(

s, s′
)

= t · Π
tc∈TCC

(1 + tc) (3.1)

TCC = Traversed Cells Cost

t = time to traverse path

Using this cost function a strong weight is given to the terrain morphology,
leading to a plain path when is possible rather than hilly and irregular one.
Naturally to every action that passes over an obstacle an infinite cost is assigned.

Once the cost function is defined it is important to define also the heuristic
function. It must estimate the cost to reach the goal from a state respecting the
unit of measurement of the cost function. Moreover the heuristic function must
be consistent and admissible to find the optimal solution. So, given the previous
considerations the heuristic function must be a time and for each pair of states
it must be less or equal than the time needed to reach one state from the other.
Furthermore the heuristic function is a delicate choice because a bad heuristic
function can slow down the planning phase. For the previous reasons as heuristic
function we have used the maximum between the Euclidean distance between
two states and the distance computed as 2D navigation distance (considering
the world as a grid); the previous value is divided for the average velocity
(to obtain a time) incremented by 10% to avoid overestimates of the cost.
This choice is done because Euclidean distance between two states is a known
consistent heuristic for navigation problems, but it has a problem when we have
u-shaped obstacles, because of local minima. The Euclidean distance function
is complemented by the 2D navigation distance function that computes the
distance in terms of cells between two states. To compute this value it considers
only the position (x, y) of the two states and the cost map. The actions available
to calculate this distance are the movements in the 8 cells adjacent to the actual
position of the robot and a movement of 2 cells in one direction and 1 cell in
the other direction as shown in Figure 3.2. The cost of an action in the 2D
navigation case is given by the distance traveled by the action. The cost map
used to compute the heuristic values is a variation of the cost map used for
planning, where the cost of each cell is set to a threshold if the cell is not
traversable and it is set to 0 in all other cases. In this way the distance cost
between two states is decreased with respect to the original cost map and on
the traversable cells there is no increments.

Once that the euclidean distance and the 2D navigation distance have been
computed, to take a value that does not underestimate too much the cost

60 Chapter 3. Environments

Figure 3.2: Actions doable in 2D navigation

function the maximum value between the two is taken. Finally to transform
it in a time is possible divide it for an average velocity (in this environment
we do not have velocity informations, so we take an arbitrary average velocity)
incremented by a small amount to avoid the overestimation of the costs in
some rare particular cases. The heuristic function can be written as reported in
Equation 3.2.

h (s) =
max (dE (s, sgoal) , d2D (s, sgoal))

v̄ + k
(3.2)

dE = Euclidean distance

d2D = 2D navigation distance

v̄ = Medium velocity

k = Small constant, about 0.1 · v̄

This environment can be reasonable for a vehicle that needs to move at low
speed or at constant speed, meanwhile if we need high speed maneuvers or we
need to consider also velocity during planning or in our plan there are many
changes of speed, it is not so effective and we should take into account more
state variables.

3.1.2 Environment with four state variables (x, y, θ, v)

This environment has four state variables. In particular it has the same previous
three variables more one. All variables are:

x the Cartesian position x of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

3.1. Introduction 61

y the Cartesian position y of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

θ the orientation of the robot taken counterclockwise and discretized as integer
value (pure number); a continuous 0 rad orientation indicate that the
robot is oriented toward the x axis

v the linear velocity of the vehicle expressed in m/s discretized as integer value

Adding the velocity we have the control of the vehicle speed in every state
and in every transition. In this way, we can use the speed of the vehicle in
planning and we can manage manage costs and risk factors in a better way.

About the discretization, the previous considerations done for the environ-
ment with three state variables are still valid. So, x and y are discretized
according to the environment resolution, and, the orientation θ is discretized in
16 non uniform values as explained for the previous environment. However here
we have also the velocity and it must be discretized.

In order to have a good control on the velocity of the vehicle, the discretiza-
tion must cover both low and high speeds, paying attention to not use too many
values to avoid an excessive increment in the computational effort. Neverthe-
less using too few values we cannot cover admissible velocities of the vehicle
and the resulting plan might not be the ideal one. For instance if we use null
velocity, one positive velocity and one negative velocity, if speeds are too low
the plan could be improved simply increasing the vehicle speed, on the other
hand, if the speeds are too high the plan could fail because the vehicle cannot
maneuver at high speed. A good compromise can be the use of 5 or 7 velocities,
subdivided between positives and negatives plus the null velocity. In particular
in our case we have used 7 velocities, of which 3 negatives, 3 positives and the
null velocity. The positive and negative values are opposites (but the same in
absolute value) and are chosen to give a good range of speeds to the vehicle.
The speeds chosen are a very low one (1.5 m/s) to do some tricky maneuvers
and to execute better the maneuvers when the vehicle must start and stop, one
low (3.0 m/s) for complex maneuvers when the vehicle is already in movement
and one high (9.0 m/s) to navigate fast. Moreover using also the null speed we
can decide to impose that the vehicle must start from a state with null velocity
and arrive in a state with null velocity. To respect the lattice conditions every
action must lead the vehicle into another state, so when the vehicle finishes an
action the speed must be one of the discrete values chosen.

About the cost function, in this case we applied the same principle of the
environment with three state variables, but with the advantage that a velocity
profile is associated to an action. Between two states beside the trajectory and
the orientation we know also the velocity maintained by the vehicle; it becomes
simple know the time needed to walk through two states. In this way the

62 Chapter 3. Environments

transition cost between two states with low velocity is higher than transition
cost between two states with high velocity; when it is possible, the trajectory
doable with highest velocity will be chosen for the plan. Comparing the cost
function with the previous one, this has a t value more accurate and it can
discriminate on the vehicle velocity. Having velocity profile taken during a path
between two position we could impede to go through mountainous terrain when
the speed is over a certain value imposing an infinite cost to an action that
satisfy the previous condition.

Also for the heuristic function, previous considerations done for the environ-
ment with three state variables remain valid, but a little change on the speed
used is required. Using the average velocity the heuristic could be admissible,
but surely not consistent, so it is necessary to use the maximum admissible
velocity to compute the heuristic function. In particular, to be sure about the
consistence of the heuristic it is necessary to use the maximum admissible ve-
locity plus a little constant value to suppress numerical errors and be sure of
the consistency. In Equation 3.3 the heuristic function is reported.

h (s) =
max (dE (s, sgoal) , d2D (s, sgoal))

vmax + k
(3.3)

dE = Euclidean distance

d2D = 2D navigation distance

vmax = Maximum velocity in absolute value

k = Small constant, about 0.1 · vmax

Analyzing the environment we could write that the additional variable in-
crements the computational effort, but it introduces also many advantages,
among which the consideration of a velocity profile associate to the trajectory.
Moreover in this way it is simpler to take into account some constraints of the
vehicle such as dynamics of the actuators (changes of velocity are not instanta-
neous) and the trajectory planned is more accurate and easily followable by the
follower.

3.1.3 Environment with five state variables (x, y, θ, v, δ)

This environment uses five state variables:

x the Cartesian position x of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

y the Cartesian position y of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

3.1. Introduction 63

θ the orientation of the robot taken counterclockwise and discretized as integer
value (pure number); a continuous 0 rad orientation indicate that the
robot is oriented toward the x axis

v the linear velocity of the vehicle expressed in m/s discretized as integer value

δ the steering angle of the vehicle expressed in rad discretized as integer value

In this way is possible to grant very good continuity of the states of an
Ackermann vehicle, between the arriving in a state and the leaving from that
state. Adding the steering variable in the state during the plan allows to take
into account also the steering of the vehicle and this can be used to avoid parts
of the trajectory with rapid, unfeasible, changes of steer.

Thinking about the discretization is necessary to consider that an Ackermann
vehicle steering angle has two limit values, one that limits the right steer and
one that limits the left steer. It is possible to assume that the two limit values
are the same. A reasonable idea is to consider an equal division between the
two limits and the division could be done in five values that corresponds to go
straight, little steer (left and right) and big steer (left and right). In this way
we have enough intervals to grant the continuity of the motions between two
motions passing in a state. Therefore, the discretization of the steer can be
done simply taking the interval of steer and dividing it in smaller intervals. The
formula to compute the steering increment is reported in Equation 3.4.

∆δ =
δinterval
N − 1

(3.4)

δinterval = Steer range

N = Number of discrete values including straight steer

Cost function and heuristic remain the same of those in the 4 variables
environment and all the considerations done for the previous environment are
valid. However, we have the value of the steering angle, so the primitives
improve their continuity with respect to the previous case and the sum of the
action costs is more precise. Again, with respect to the state lattice rules when
the vehicle is in a state its state variables should have one of the values possible
for the state, this holds true also for the steering variable.

Considering this environment it is possible to obtain accurate trajectories,
but the computational effort and memory needs increase significantly (the in-
crease of efforts is exponential with respect to the increasing of the number of
state variables). Since the planning could be really onerous it is necessary to
see if the increment of quality in the result is worth compared to the increment
of planning time and memory requirements.

3.1.4 Environment with five state variables (x, y, θ, v, ω)

This environment was developed for a differential drive vehicle. Indeed it has
five state variables, adapted to a differential drive vehicle:

64 Chapter 3. Environments

x the Cartesian position x of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

y the Cartesian position y of the robot in the map considering the origin in the
lower left point of the map; it is a pure number because it is discretized
as the x position of the vehicle in meters over the resolution used (how
wide is a cell) in meters

θ the orientation of the robot taken counterclockwise and discretized as integer
value (pure number); a continuous 0 rad orientation indicate that the
robot is oriented toward the x axis

v the linear velocity of the vehicle expressed in m/s discretized as integer value

ω the angular velocity of the vehicle expressed in rad/s discretized as integer
value

With this kind of vehicle we have not a steering angle, because a change of
the orientation happens applying to the two motors of the vehicle two different
velocities. Therefore, with these vehicle we have a linear velocity and an angular
velocity. We can control the vehicle movement controlling these two velocities.
For this reason, the environment allows to take into account the two velocities
of the vehicle to make plans, so it is really important to have both the velocities
in the state although this is computationally expensive.

The discretization of the variables is the same of the previous environments
for x, y and θ. Different considerations must be done for the last two variables;
indeed the movements of the robot are composed by the combinations of those.
Five linear velocities and five angular velocities could be sufficient; for both: null
velocity, small speed and high speed (positive and negative). Combining all of
these speeds we obtain 25 combinations (24 if we remove (0, 0)).

The cost functions described before are still valid, however it is important
to consider that the time taken by an action in differential drive platform is not
always given by the traversed space over the linear velocity, because the robot
can move only with angular velocity. In this case, the space traveled could be
also equal to 0, but the time needed to do the action can be different from 0
because a differential drive vehicle can execute turn in place maneuvers. So,
when the time needed to execute an action is computed, it is important to
take into account both the linear space traveled with a linear velocity, and the
angular space traveled with an angular velocity. Regarding the cost map it is
possible to keep valid the same considerations done for the Ackermann vehicle.

Analogue considerations must be done for the heuristic function because
computing the heuristic values we should take into account all the elements
of space and velocity of the vehicle. In this case, however, the function must

3.2. Considerations on environment extensions 65

underestimate the time needed by the actions, thus, similarly to the previous
environment, it is possible to use, as heuristic, the maximum distance to reach
the goal state between Euclidean distance and 2D navigation distance and di-
vide it for the maximum linear velocity incremented by its 10% as shown in
Equation 3.5. Despite we ignore the angular velocity in the heuristic computa-
tion the time is underestimated anyway, because, for instance, in turn in place
maneuvers the space traveled is null.

h (s) =
max (dE (s, sgoal) , d2D (s, sgoal))

vmax + k
(3.5)

dE = Euclidean distance

d2D = 2D navigation distance

vmax = Maximum linear velocity in absolute value

k = Small constant, about 0.1 · vmax

This environment can be a good choice if we are using a differential drive
vehicle, however, having five state variables, the search process could be slightly
slow and a lot of memory might be needed. An alternative to this environment,
obtaining worst results but in less time, is the use of the environment with 3
state variables adopting the methods described to change the cost function and
the heuristic function, and using an arbitrary medium velocity instead of the
real velocities used to make a particular action.

3.2 Considerations on environment extensions

Every problem can be faced the best with a suitable environment; however
there are some considerations to do on environment extensions. Extending
an environment we usually increase the number of state variables, but in this
way the computational effort and memory requirements increase as well. For
instance to consider all state variable needed to plan, according to the lateral
load transfer of a vehicle, the variables needed are 9. Assuming to take only
3 possible values for each variable, with 16 values of θ orientation, 500 values
of x and 500 values of y we can have 5002 · 16 · 36 = 2.916 · 109 possible
states. If some variable uses more than 3 state values this number becomes
even greater and this increasing of states number is hard to manage, especially
from the memory point of view. In Figure 3.3 we report some examples of state
number growth over state variables growth supposing that every state variables
can assume k different values. Only from a theoretical point of view the state
extension is always feasible and in a state there can be an arbitrary number of
state variables. In this way there is the possibility to manage a great number of
vehicle physical parameters directly during the planning phase.

66 Chapter 3. Environments

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10

N
u
m
b
e
r

o
f

s
t
a
t
e
s

Number of state variables

k = 3
k = 5
k = 7

Figure 3.3: Sample of growth of states number over state variable growth supposing
for each example that all state variables can have k different values

3.3. Correlation between environments and lattice primitives 67

3.3 Correlation between environments and lattice prim-

itives

A state lattice planner, with respect to differential constraints, must move the
robot between its states using lattice primitives. The lattice primitives generated
must be strictly correlated to the environment where they will be used. For
instance, if we decide to plan in an environment with (x, y, θ) as state variables
it is not useful to have primitives with information about velocities. On the other
hand if the plan is done with the four state variable environment described before
it is important to have velocity information in the primitives. For these reasons
the model used to generate each kind of primitives is slightly different and in
some extended models it is possible to do some controls that in simplest model
are impossible to do. Moreover the motion generation process of the primitives
must guarantee the connectivity of the lattice, and the resolution used in the
environment and in the primitives must be the same. Primitives can be viewed
as a tool that allows to connect all states of the lattice allowing to use at the
best the environments described before.

3.4 Considerations on the cost map

The cost map has a great relevance on the cost function used during planning;
for this reason is necessary define how we construct it before start planning.
With the cost map we want represent the physical space where the vehicle
must follow the trajectory planned, therefore the maps must represent it in an
accurate way, basing the costs on the risks or on the difficulties of the vehicle
to across a particular part of the terrain.

In this thesis we represent the cost map with a matrix of numbers. This
matrix can be a division of the terrain into cells of fixed dimensions. Each cell of
the matrix represents a portion of the terrain and a cost is assigned to that cell
between a minimum cost value and a maximum cost value. The cost assigned
is proportional to a feature we are interested in when planning. In our case,
the costs varies between 0 and 1 where 0 means free plain zone, 1 means not
traversable terrain, and the values between 0 and 1 are costs related to the risk
in traversing that cell. During planning, the cost map is overlayed to the lattice
on which the robot move, finding the unreachable states and finding which
states are simpler to reach than others. The first step is find a good terrain
representation, the second step is the transformation of that representation in
a cost map.

In this thesis, we present two possible methods to obtain valid terrain rep-
resentations and two possible way to create cost map starting from the terrain
representation.

68 Chapter 3. Environments

3.4.1 Obtain terrain maps

A realistic representation of a terrain is needed to develop a proper plan. A
first possible approach is the generation of the terrain using a tool to generate
synthetic landscapes. One of this tools, for instance, is a tool for Matlab that,
given some parameters, generates a terrain using an algorithm. The relevant
parameters to specify for terrain generation are:

• size of the output terrain

• initial elevation

• roughness of the terrain

• roughness of the roughness

In this way is possible to obtain a plain terrain, an hilly terrain or a mountain
terrain depending on the specified parameters. The result of synthetic terrain
generation is a matrix containing values that indicate the height for each point
(x, y).

Using algorithmic terrain generation, it is really simple to obtain terrains for
tests, with appropriate resolution and to specify the features we want to test
the planner on a particular scenario. However, a possible problem of algorithmic
terrain generation is the nonexistence of that particular terrain in practice, so
to try the planner effectiveness and the planner performance on a real terrain
the algorithmic terrain generation is not practical.

Another possible approach to have possible test terrains involves the use of
a DEM (Digital Elevation Model). A DEM is digital model of terrain elevation
gained with some techniques such as radar or laser. Digital elevation models
are subdivided into two main categories:

Digital Terrain Models These are models of the terrain surface without ob-
jects (naturals and artificials) of all types. Therefore, in DTMs, vege-
tations, buildings and all other objects in relief from the terrain are not
considered

Digital Surface Models These are models of the terrain comprising also the
objects on it. Consequently, in DSMs, all object that influences the height
of a zone are considered

DSMs are more accurate and they are a superset of the DTMs; if they are
available they are perfect for planning, but if they are not available, a simple
DTM can be used anyway with the insertion of new obstacles observed by the
autonomous vehicle during its movement.

Nevertheless DEMs are not that available, in fact many DEMs are available
freely, but they have a low horizontal resolution. This means that an height
reported in the DEM is related to a wide area; this can be a problem using

3.4. Considerations on the cost map 69

planner, because when the discretization of the map into cells is done, many
cells cells of the cost map must corresponds to the same cell of the DEM. If
the DEM horizontal resolution is higher with respect to the resolution used for
the cell size during planning is necessary make elaborations of the DEM data to
have a cost map of the same resolution. The best would be found DEMs with
the same resolution of the cost map used.

3.4.2 From the terrain representation to the cost map

Once we have the terrain representation we must represent a cost for a terrain
part inscribed in a cell. A first simple idea could be the selection of a critical
height to be used as threshold. In this way all the cells of the map that have
a height under the threshold are considered free space while the others are
considered obstacles.

Using a DEM the minimum height usually is not 0 (sea level), for this reason
we find the minimum positive height in the map and reduce all heights exactly
of that value. In this way, after the transformation, only the parts of the map
that exceed the threshold appear as obstacles. Moreover if we are using a DEM
it is necessary to pay attention to negative height cells (below sea level) and
the unknown height cells, and consider them as obstacles if needed.

This approach based on heights has many limitations, indeed it considers
only the heights, so it could be good doing an assumption on the relatively
flatness of the terrain. Otherwise, for instance, between two cells at 1 meter
distance there could be 2 meters of height difference; if we fix the threshold at
a height greater than the highest of the two, both cells could be accepted, but
probably a great change of height in a small space means that in one of the two
cells there is an obstacle. On the other hand, if a low height is chosen to avoid
this problem, in case we have a terrain with low constant slope, at some point
it might exceed the threshold selected, although being traversable.

This approach can be used only when the terrain does not contain small
objects, it has no steep slopes and it does not present big differences in the
height of the traversable cells. In the real world it is really difficult to find
terrains with these previous features.

To deal with a more general terrain model, we propose a different approach
to deal with a DEM. Knowing what is the distance that separates the cells it is
possible to calculate the slope between two cells. Given two cells (x1, y1, z1) and

(x2, y2, z2) we have that |tan (α)| = |z2−z1|√
(x2−x1)

2+(y2−y1)
2
where (x, y) indicate

the position of the center of the cell and z its height. In our case the previous
relation is applied only to adjacent cells, because we suppose that between
two adjacent cells the steepness is regular and it is represented by a straight.
Applying the arctan operator to the previous ratio we can find the α angle that
corresponds to the riptide of the slope. Fixing a maximum slope travelable by
the vehicle, we can find what are the parts of the map accessible by it. Taking

70 Chapter 3. Environments

z1 z2

z3 z4

Compute

z

�z

�x2+�y2

Compute all

 between

 cells

12

34

24

13 23

14

Find cost

max()

lim

Spread to all

map cells

DEM

Cost Map

Figure 3.4: Example of construction of the cost map step-by-step. We start with 4
adjacent cells and we compute the maximum slope between them. Find that, we create
a cell from the previous 4 assigning to it a cost proportional to the maximum slope of
the 6 found between the 4 cells. Now, we can iterate the process for the other map
cells

4 near cells we can find a cost value given by using the maximum slope between
the slopes that connect the 4 cells. In Figure 3.4 we have represented an example
of what happen during the creation phase of a cost map. The resultant map
has one row and one column less than the original map with the heights.

Now, it is simple to make a step ahead assigning a proportional cost to the
resulting cell using the slope. For instance if the maximum affordable slope is
equal to k radiants it is possible to assign a cost of α

k for each transition with
the maximum slope less than k radiants and a cost of 1 to all transitions with
the maximum slope greater or equal to k radiants. These costs are used by
the planner to influence the cost of an action in base of the place where it is
executed.

Chapter 4

Vehicle Models and Lattice
Primitives

“An idea is like a virus. Resilient. Highly contagious. And even the smallest

seed of an idea can grow. It can grow to define or destroy you.”

Inception

4.1 Introduction

This chapter introduces some methods we have used to create lattice primitives
and shows the models we have used to represent the behavior of the vehicles.
We describe what is an Ackermann vehicle and the models, both kinematic
and dynamics, that describes its behavior. Then, we focus the attention on
a different vehicle type, in particular we describes a differential drive vehicle
writing about its kinematic model and introducing the actuators dynamics. For
each model we explain, it is also provided a detailed description of we have done
to create the primitives with that model.

4.2 Methods for lattice primitives creation

A method to created primitives must be defined. As said in the state of art, there
are two possible ways to create lattice primitives: one samples a big action space
and extract lattice primitives meanwhile another method creates directly lattice
primitives solving BVPs1. For our work we have chosen the second method.
Therefore, using a vehicle model we solve many BVPs, one for each primitive
that has to be created. First of all it is necessary to define what a BVP is.
A Boundary Value Problem is defined as a differential equation with a set of

1Boundary Value Problems

72 Chapter 4. Vehicle Models and Lattice Primitives

constraints called boundary conditions. A solution of the problem is a solution
of the differential equation that fulfills constraints imposed by the boundary
conditions. In our case there is not only a differential equation, but there is a
set of differential equations that describes the behavior of the vehicle. This set
of differential equations is composed by states, controls and parameters. The
states are the parameter dependent variables that change following the relations
expressed by the differential equations, the controls are the variables on which
we can act to affect the states and the parameters are independent variables of
the system. Constraints can be imposed on the elements of the problem in order
to create a good primitive. Furthermore, for each BVP, we would optimize the
solution minimizing an objective function. This kind of BVP is called OCP2.
Therefore, solving a series of OCPs we can construct a set of lattice primitives.

An important issue is how to create this set of lattice primitives. Funda-
mentally, we must create simple stackable trajectories, therefore exploiting the
translational invariance property of the state lattice it is possible to approach the
problem in two ways. The first solution is based on creating all feasible lattice
primitives for each cell around the origin and for each pair of start and end state
variable values, until a predetermined distance is reached. Once the primitives
are created it is possible to analyze them, looking for primitives that can be
composed by smaller primitives and deleting the longer ones. This approach,
however, often generates an enormous number of primitives and, although it
leads to a good completeness of the state lattice and it increases the amount
of admissible movements of the vehicle, it affects also the time needed by the
planner to find a plan and the required computational effort. Another approach
is aimed to create a connected lattice avoiding that some primitives lead to
blind points. The lattice generated is probably less complete with respect to
the previous approach, but the number of primitives generated is not so high.
This approach starts from the origin cells and for each pair of start and end state
variable values tries to find a destination cell for which the problem is solved.
The destination cells are taken in order of distance from the origin. This ap-
proach have again some limitations, in fact some primitives instead of others
more desirable could be created, because the distance from the origin is equal
for at least four cells, therefore there could be another cell instead of the one
chosen, that allows a better solution of the BVP (shorter path or faster path).
This problem is partially solved taking some assumptions during the primitive
generation, analyzing the vehicle type for which primitives are generated, and
the state variable that we take into account.

4.3 Ackermann vehicle

The main vehicle for which this planner is developed is an ATV, in particular
a Yamaha Grizzly 700 transformed in autonomous vehicle within the project

2Optimal Control Problem

4.3. Ackermann vehicle 73

Centre of turning circle

Figure 4.1: Sample of ackermann steering geometry, highlighting center point of radii
and wheel axles

quadrivio. However, more generally, we could target it as an Ackermann ve-
hicle. An Ackermann vehicle has the peculiarity of the steering geometry that
is called Ackermann steering geometry. This geometry was invented by Georg
Lankensperger and was patented by Rudolph Ackermann [31][32]. This inven-
tion was created to avoid the slip sideways of the tyres when a curve is followed,
positioning the front wheels in way so as to maintain a curvilinear trajectory.

The peculiarity of this steering model is that the axles of wheels converge to
one point during a curve (if the vehicle go straight axles converge in an infinite
point), but the front external wheel (with greater turning radius than internal
wheel) has a steering angle lower than internal wheel. Knowing that rear wheels
are fixed, the common point is placed on the extension of the rear wheels axle.
Moreover, the front wheels, do not steer together changing rotation around a
common pivot of the arm that connects them (as in the turntable vehicles), but
they steer moving a track rod and each wheel has its own pivot. To obtain the
correct effect, track rod is often designed shorter than arm between two wheels
if it is placed behind the arm, instead it is designed longer if it is placed ahead
the arm, creating in both cases a little toe-out effect on the front wheels.

As write before the two front wheels have a different steering angles and the
mean of the two angles is called ackermann angle. The tangent of the Acker-
mann angle affects the turning radius for an Ackermann vehicle. In Figure 4.1
there is a sample of ackermann steering geometry.

The typology of the vehicle used to plan is important in lattice primitives
creation phase, because the motion must be executable by the vehicle. For this
reason it is important to create the correct primitives using the correct vehicle
model. Once the primitives are created they can be used in different environ-
ments, and an environment can use many types of primitives. For example if
we have a turnable vehicle and an Ackermann vehicle we could use the previous
explained environment with four state variables changing only the primitives

74 Chapter 4. Vehicle Models and Lattice Primitives

used.

4.3.1 Ackermann kinematic model and (x, y, θ)-primitives

A first kind of primitives generated are those that take into account the kine-
matic model of the vehicle. The kinematic model of the vehicle is reported in
Equation 4.1.











ẋ = v · cos (θ)
ẏ = v · sin (θ)
θ̇ = v · tan(δ)

L

(4.1)

The model expressed by Equation 4.1 uses the frames shown in Figure 4.2 and
is composed by three differential equations having as:

• States

x Cartesian position of the vehicle along the x-axis (expressed in m)

y Cartesian position of the vehicle along the y-axis (expressed in m)

θ orientation of the vehicle (expressed in rad), is the angle formed by the
robot longitudinal axis and x-axis, positive counterclockwise

• Controls

v linear velocity (expressed in m/s)

δ steering angle (expressed in rad)

• Parameter

T time to make a maneuver (expressed in s)

• Vehicle dependent constant

L length of the vehicle from rear axis to front axis (expressed in m)

Moreover we can indicate with k = tan(δ)
L the trajectory curvature.

The main advantage of this model is the simplicity of representation and
the low computational effort required to solve BVPs. However it has also many
limitation, in fact the velocity and the steering angle can jump between values in
a discontinuous way, leading to primitives that sometimes are not doable by the
real vehicle. However, the previous model can be changed if we want to exclude
the velocity and describe only the geometrical path traveled by the vehicle.
In fact the model can be transformed in the one represented in Equation 4.2
where the velocity does not appear anymore, and the parameter is now the
space traveled in the movement (S, expressed in m) by the vehicle. Both the
parameters T and S are different from the independent variable t and s. The
parameters indicate the time and the space respectively for a maneuver found

4.3. Ackermann vehicle 75

x

y

θ

v>0v<0

v=0 δ=0

δ<0

δ>0

Figure 4.2: Frames for the state variables and for the control variables for an Ackermann
kinematic that allow to understand better their signs and their meaning. The upper
frame is with respect to the world, the arrows on the vehicle are related to the vehicle
frame.

76 Chapter 4. Vehicle Models and Lattice Primitives

solving a BVP. The independent variables indicate for which variables are the
derivatives in the differential equations. Solving the BVPs, often, the object
to minimize is the parameter, so in the previous model we minimized the time
needed by the vehicle to execute a primitive, instead, in this last model we
minimized the space traveled by the vehicle.











dx
ds = cos (θ)
dy
ds = sin (θ)
dθ
ds = tan(δ)

L

(4.2)

Using the kinematic model one can introduce some assumptions to increase
performance and effectiveness of the generation process. First of all, we have
not velocity as a state variable, but it appears as a control in one model or
disappear completely in another model. Therefore, we can consider that the
velocity during a primitive cannot change its sign. To change velocity sign, the
vehicle should compose two primitives. So, the considerations done afterwards
are valid considering trajectories obtained moving the vehicle with a positive
velocity. All the primitives that involve negative velocities can be obtained from
the ones generated with positive velocities. Now, the primitives can be created
for an initial value of θ between 0 rad and π

2 rad. Then, they can be rotated
of π

2 rad, π rad and 3
2 · π rad. In fact, a primitive remains valid also if it

is rotated of π
2 rad, despite there could be doubts about the validity of the

trajectory created and about state lattice condition (start and end in the center
of a cell with exact discretized value). To demonstrate that rotating a lattice
primitive of π2 rad one obtains a valid lattice primitive, we can take a primitive
that starts in (0, 0, θi) and ends in (xf , yf , θf). A rotation of an angle α of a
reference frame is represented in the relation reported in Equations 4.3.

{

x = X · cos (α)− Y · sin (α)
y = X · sin (α) + Y · cos (α)

(4.3)

Now, applying a rotation of π2 rad to the two previous coordinates we obtain:











0

0

θi











r→











0

0

θi +
π
2





















xf

yf

θf











r→











−yf
xf

θf +
π
2











Analyzing the coordinates of x and y after the transformation, if the start coor-
dinates are into the lattice also the end coordinates are still valid, because they

4.3. Ackermann vehicle 77

are the same, only a change of position and sign has occurred. The orientation,
instead, is increased of π

2 rad, but the discretization of the orientation can be
done in a way that if the start angle is valid, the angle incremented of π2 is valid
as well.

Another simplification is doable considering that an ackermann vehicle can-
not turn in place, as a consequence to do a maneuver it must travel along a
path. If we want that a vehicle turns back passing from an orientation θi to
the opposite orientation (θi + π), it must go through all the values of orienta-
tion between the two previous one. Considering the previous discussion about
rotations of π

2 rad it is possible to generate all the primitives that induce a
maximum rotation of π

2 of the vehicle, obtaining all the others combining the
primitives so far generated. In this way the vehicle can reach every orientation
belonging to the lattice. The maximum rotation allowed is π

2 rad and not a
smaller value because if this value is reduced, the computational effort in plan-
ning time is decreased due to a small number of primitives, but we have a little
loss of completeness. Indeed, we loose all the primitives that lead directly from
an angle to another greater than the maximum rotation allowed starting from
the first angle. From a theoretical point of view it is possible to compose every
movement considering the minimum space needed to rotate of an angle. To do
this, however, we should have a very small resolution, increasing a lot the time
of primitive construction and the memory requirements during planning due to
the map dimensions. Consequently, taking a resolution value that is approxi-
mately equal to the length of the vehicle it is possible to combine the primitives
calculated with a maximum rotation of π2 rad resulting in a good compromise.
To explain better the problem we can do an example: supposing to have a
resolution of 1 meter we can create primitives that pass from an orientation to
the next orientation, but in this way the minimum space needed for each prim-
itive could be 1 cell in x direction and 1 cell in y direction. If we combine all
primitives to do a rotation of π2 rad the movement ends in cell (4, 4). Instead,
calculating directly the primitives that rotate the vehicle of π2 rad it could end
in a nearer cell. An example similar to the previous one, is shown in Figure 4.3.
On the contrary, it is really difficult that the vehicle can turn back or turn of
an angle major of π2 rad in a nearer cell than the one obtained by combining a
π
2 rad turn with another movement.

Now, considering that the maximum rotation is π
2 rad, the vehicle cannot

reach cells positioned at his back in one movement, for this reason it is not useful
to generate that primitives. Moreover to have a set of minimal movements
the final orientation has to be taken into account as well. Indeed if the final
orientation is incremented counterclockwise with respect to the start orientation
the final cell is surely over the perpendicular of the final orientation straight line
translated into the origin, elsewhere is under that translated line. An example
to understand better this assumption is represented in Figure 4.4.

Finally, to generate a minimal set of primitives, we can act on the BVP
definition. From the previous assumptions it follows that the vehicle do not

78 Chapter 4. Vehicle Models and Lattice Primitives

0

1

2

3

0 1 2 3

y

x

0

1

2

0 1 2

y

x

0

1

0 1

�

�

0

1

0 1

�

�

0

1

0 1

�

�

Not composed
0

1

0 1

y

x

Figure 4.3: Example to reach an orientation of π

2
rad using primitives composition of

too small primitives and directly

Start: End:

Figure 4.4: Example of areas where destination cannot be (stripes area) given start and
end orientations, considering the origin as starting point

4.3. Ackermann vehicle 79

- 2

- 1

0

1

0 1 2 3

y

x

0

1

2

3

0 1 2 3

y

x

Figure 4.5: Example of two primitives with the same start angle and goal angle, but
the first despite the end position nearer is worse to compose with other primitives and
in terms of execution time

change its orientation of more than ±π
2 rad from the start θ value. In fact, if

the vehicle changes its orientation more than π
2 rad from its initial orientation

it probably means that it goes around before reaching the destination.

At last, considering always that the vehicle cannot turn more than π
2 rad

during a primitive, another possibility to create better primitives is by inscribing
the generated trajectory into a rectangle, setting constraints on the (x, y) co-
ordinates. In fact, without this expedient, if we try to create the primitives in
order of distance from the origin, it can happen that the BVP is solved in a cell
founding a long curvilinear solution, meanwhile it can perform a straighter path
going more distant of 1 cell. An example to understand better what we think
is reported in Figure 4.5. To face this problem one can find the vertexes of the
rectangle where a primitive can be inscribed. An example of the points found
for a pair of start/end coordinates is in Figure 4.6. To find the four points of
the rectangle in which the primitive should be inscribed we can proceed in the
following way. Two of the four points are well known because are the origin
and the end point of the trajectory. Now indicating with d the euclidean dis-
tance between the two known points (the diagonal of the rectangle), with α the
starting orientation of the robot (angle that one rectangle side form with the x
axis) and with β the angle that the diagonal of the rectangle form with x axis
we can write:

γ = β − α

l1 = d · cos γ size of one side

l2 = d · sin γ size of other side

x1 = l1 · cosα
y1 = l1 · sinα
x2 = l2 · cos

(π

2
+ α

)

y2 = l2 · sin
(π

2
+ α

)

(4.4)

80 Chapter 4. Vehicle Models and Lattice Primitives

- 1

0

1

2

3

4

1 0 1 2

y

x

ect o y
ect e

Figure 4.6: Sample trajectory inscribed in a rectangle highlighting limit points

Now, we have found all the four coordinates of the rectangle and finding between
them the minimum x, minimum y, maximum x and maximum y we can delimit
an area in which our trajectory must stay. The values found can be increased
or decreased in order to relax the problem and the solver can find a solution
easier.

Besides these assumptions, one have to define the constraints applied to the
control in the BVP, therefore minimum and maximum speed and minimum and
maximum steer. The final problem, can be reported as:



























































































min
∫ T
0 dt

ẋ = v · cos (θ)
ẏ = v · sin (θ)
θ̇ = tan(δ)

L

InitialState = (0, 0, θi)

FinalState = (xf , yf , θf)

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

vmin ≤ v ≤ vmax

δmin ≤ δ ≤ δmax

θi − π
2 ≤ θ ≤ θi +

π
2

or



















































































min
∫ S
0 ds

dx
dS = cos (θ)
dy
dS = sin (θ)
dθ
dS = v · tan(δ)

L

InitialState = (0, 0, θi)

FinalState = (xf , yf , θf)

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

δmin ≤ δ ≤ δmax

θi − π
2 ≤ θ ≤ θi +

π
2

4.3.2 Actuators dynamics and extended primitives

The first problem to face, as previously wrote, is the actuators’ dynamic. In fact
the changes of velocity and steering angle are not instantaneous. To consider

4.3. Ackermann vehicle 81

these changes in the vehicle model it is possible to extend the previous model
as represented in Equation 4.5.































ẋ = v · cos (θ)
ẏ = v · sin (θ)
θ̇ = v · tan(δ)

L

v̇ = 1
TV

· uv − 1
TV

· v
δ̇ = 1

Tδ
· uδ − 1

Tδ
· δ

(4.5)

The model is composed by:

• States

x Cartesian position of the vehicle along the x-axis (expressed in m)

y Cartesian position of the vehicle along the y-axis (expressed in m)

θ orientation of the vehicle (expressed in rad), is the angle formed by the
robot longitudinal axis and the x-axis, positive counterclockwise

v linear velocity (expressed in m/s)

δ steering angle (expressed in rad)

• Controls

uv desired velocity (expressed in m/s)

uδ desired steering angle (expressed in rad)

• Parameter

T time to make a maneuver (expressed in s)

• Vehicle dependent constants

L length of the vehicle from rear axis to front axis (expressed in m)

Tv linear velocity time constant (expressed in s); the vehicle reach the
99% of the desired velocity in about 5 · Tv

Tδ steering angle time constant (expressed in s); the vehicle reach the
99% of the desired steering angle in about 5 · Tδ

With the previous model it is possible to simulate the acceleration time and
deceleration time of the vehicle and the time needed to change the steering
angle. In this way the primitives generated are more accurate.

Now, the considerations done for the simple kinematic model still holds.
Moreover, we can add some assumptions for the velocity. First of all, to pass
from a positive velocity to a negative velocity, one have to pass through 0 m/s
velocity. For this reason it is not useful to generate primitives that pass from
a positive velocity to a negative velocity or vice versa. The change of velocity

82 Chapter 4. Vehicle Models and Lattice Primitives

sign is done combining two primitives, the first that arrives to 0 m/s and the
second that starts from 0 m/s. Further, if the velocities chosen during the
discretization design phase are symmetric it is possible to generate only positive
primitives and from that obtain the primitives with negative velocities. In fact
using the model expressed by Equation 4.1 we can negate both the controls,
obtaining:

θ̇ = −v · tan (−δ)
L

tan is an odd function

= −v · − tan δ

L

= v · tan δ
L

(4.6)

Therefore the state equation for θ is unchanged. Instead the state equations of
the Cartesian positions change their signs, because the sign of the velocity is
changed. As a consequence the trajectory is the same of the one with positive
velocity changing the Cartesian coordinate signs. This observation can be done
in the same way in the model expressed by Equation 4.5: changing the signs of
the controls, the transition of the velocity and steering states changes in sign
but not in module and the same considerations done before still holds. Finally,
the last assumption to do before analyzing the BVP constraints is about the
stability of the vehicle. With the model expressed by Equation 4.5 we have no
information about the possibility of overturn of the vehicle, so if we are sure that
a trajectory is straight we can try to generate them with all velocities, however
if the trajectory have a change of orientation (therefore there is a curvature in
the path) it is better avoid to compute the trajectory over a certain velocity.

Now, before analyzing the BVP it is possible to do some considerations
about steer and velocity. Often the steer time constant is lower than the velocity
time constant. This means that changes of velocities can vary the shape and
the length of the path significantly, instead, changes of steering are faster:
considering both initial and final value of steering angles we can generate better
primitives but can lead to difficulty in trajectory generation (e.g., the vehicle
could reach final state, but not with the perfect steering angle, so the BVP
fails to find a solution, . . .), and generate primitives for each pair of initial and
final steering angle leading to an enormous number of primitives. To solve these
problems two approaches are available. The first approach does not consider
the steering value at the beginning and ending of the primitives. The model of
the steering actuator is considered and primitives are generated ensuring that
fast changes of steering do not happen. In this way between two primitives the
continuity of the steering angle is not ensured, but this is not required thanks
to the fast change of the steering angle. This set of primitives can be used
with environments that consider (x, y, θ, v) as a state. The second approach,
instead, considers also the steering angle, but it forces only the start steering
value to one of the discretized values and the final value is rounded to the nearest

4.3. Ackermann vehicle 83

discretized value, so it is not necessary to generate primitives for each pair of
initial and final steering angles (the number of primitives generated is less and
final steering value is not binding). The set of primitives generated in this way is
used with (x, y, θ, v, δ) environment. The constraints of the BVP are the same
of the previous BVP regarding x, y and θ, apart from the constraints related
to the rectangle that inscribes the trajectory. In fact, in the case of primitives
that include steering angle the rectangle is enlarged to allow the vehicle to do a
straightening maneuver when the initial steering value is different from 0 rad.
Moreover, some constraints for the new variables are added. In particular the
velocity must assume values between the initial velocity and the final velocity
and the steering angle must stay in the steering interval. The control variable
must stay in the same intervals of the state variables. So the resulting BVP
generalized for both the cases is:



































































































































min
∫ T
0 dt

ẋ = v · cos (θ)
ẏ = v · sin (θ)
θ̇ = v · tan(δ)

L

v̇ = 1
TV

· uv − 1
TV

· v
δ̇ = 1

Tδ
· uδ − 1

Tδ
· δ

InitialState = (0, 0, θi, vi, (∗|δi))
FinalState = (xf , yf , θf , vf , ∗)
xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

min (vi, vf) ≤ v ≤ max (vi, vf)

δmin ≤ δ ≤ δmax

θi − π
2 ≤ θ ≤ θi +

π
2

min (vi, vf) ≤ uv ≤ max (vi, vf)

δmin ≤ uδ ≤ δmax

(4.7)

4.3.3 Extended model and LLT index

From the previous models it emerges that it is impossible to check if a primitive
is safe or not. For this reason another model can be introduced: a single track
model [33] with a suspended mass. This improved model takes into account
more state variables, in particular it starts from some considerations done on
the single track model represented in Figure 4.7. This model starts from the
assumption to collapse the left wheel and the right wheel in one wheel and
making a study of the forces acting on x-axis and y-axis of the vehicle. We can

84 Chapter 4. Vehicle Models and Lattice Primitives

Figure 4.7: Single track model represented graphically

identify the system of differential equations 4.8.























ψ̈ =
b·Cr·αr−a·Cf ·αf

Iz

β̇ = −Cf ·αf+Cr·αr+m·g·sin γ
v·m − ψ̇

αr = β − b·ψ̇
v

αf = β + a·ψ̇
v − δ

(4.8)

where:

ψ yaw angle (expressed in rad)

β drift angle referring to the vehicle center of gravity (expressed in rad)

a distance from front axial and center of mass (expressed in m)

b distance from rear axial and center of mass (expressed in m)

Cf front tyres cornering stiffness (expressed in Nm
rad)

Cr rear tyres cornering stiffness (expressed in Nm
rad)

αf front tyres drift angle (expressed in rad)

αr rear tyres drift angle (expressed in rad)

Iz yaw moment of inertia (expressed in Kg ·m2)

γ terrain slope angle (expressed in rad)

4.3. Ackermann vehicle 85

z

y

Suspended mass

Figure 4.8: Vehicle representation with its suspended mass

m total mass of the vehicle (expressed in Kg)

v linear velocity (expressed in m/s)

δ steering angle (expressed in rad)

We can take into account also the suspended mass of the model, where for
suspended mass we want to indicate all the components to a different quote with
respect to the suspensions. An example of suspended mass model is reported in
Figure 4.8. Analyzing the forces acting on the vehicle with this model we can
extract the differential equation 4.9.

ϕ̈ =
1

h
·
[

h · ζ̇2 · ϕ+ h · ϕ̇2 · ζ + v · ψ̇ + v̇ · β − kr · ϕ+ br · ϕ̇
ms · h

+ g · sin γ
]

(4.9)

where:

ψ yaw angle (expressed in rad)

β drift angle referring to the vehicle center of gravity (expressed in rad)

ϕ roll angle of the suspended mass (expressed in rad)

kr rolling rigidity (expressed in Nm
rad)

br rolling damping factor (expressed in Nm
rad/s)

γ terrain slope angle (expressed in rad)

ζ sum between terrain slope angle and roll angle of the suspended mass (ex-
pressed in rad)

ms suspended mass of the vehicle (expressed in Kg)

86 Chapter 4. Vehicle Models and Lattice Primitives

h suspended height (expressed in m)

v linear velocity (expressed in m/s)

g gravity acceleration (expressed in m/s2)

We can join the previous equations with the model used in the previous
section obtaining the complete model reported in Equation 4.10.























































































dx
dt = v · cos (θ)
dy
dt = v · sin (θ)
dθ
dt = v · tan(δ)

L
dv
dt =

1
TV

· uv − 1
TV

· v
dδ
dt =

1
Tδ

· uδ − 1
Tδ

· δ
dψ̇
dt = − b2·Cr+a2·Cf

Iz ·v
ψ̇ +

b·Cr−a·Cf

Iz
· β +

a·Cf

Iz
· δ

dβ
dt = −Cf+Cr

m·v · β +
Cr·b−Cf ·a−m·v2

m·v2
· ψ̇ +

Cf

m·v · δ −
g
v · sin γ

dϕ
dt = ϕ̇

dϕ̇
dt = (γ̇ + ϕ̇)2 · ϕ+ (γ + ϕ) · ψ̇2 +

m·v̇−(Cf+Cr)
m·h · β +

Cr·b−Cf ·a
m·h·v · ψ̇

+
Cf

m·h · δ − kr·ϕ+br·ϕ̇
ms·h2

(4.10)
This model is composed by the previous state equations and other four equa-
tions. In particular in this model we have:

• States

x Cartesian position of the vehicle along x-axis (expressed in m)

y Cartesian position of the vehicle along y-axis (expressed in m)

θ orientation of the vehicle (expressed in rad), is the angle formed by the
robot longitudinal axis and the x-axis, positive counterclockwise

v linear velocity (expressed in m/s)

δ steering angle (expressed in rad)

ψ̇ yaw angular velocity (expressed in rad/s)

β drift angle referring to the vehicle center of gravity (expressed in rad)

ϕ roll angle of the suspended mass (expressed in rad)

ϕ̇ roll angular velocity of the suspended mass (expressed in rad/s)

• Controls

uv desired velocity (expressed in m/s)

uδ desired steering angle (expressed in rad)

γ terrain slope angle (expressed in rad)

4.3. Ackermann vehicle 87

γ̇ terrain slope angular velocity (expressed in rad/s)

• Parameters

T time to make a maneuver (expressed in s)

• Vehicle dependent constants

L length of the vehicle from rear axis to front axis (expressed in m)

Tv linear velocity time constant (expressed in s); the vehicle reach the
99% of the desired velocity in about 5 · Tv

Tδ steering angle time constant (expressed in s); the vehicle reach the
99% of the desired steering angle in about 5 · Tδ

m total mass of the vehicle (expressed in Kg)

ms suspended mass (expressed in Kg)

h suspended height (expressed in m)

kr rolling rigidity (expressed in Nm
rad)

br rolling damping factor (expressed in Nm
rad/s)

a distance from front axial and center of mass (expressed in m)

b distance from rear axial and center of mass (expressed in m)

Cf front tyres cornering stiffness (expressed in Nm
rad)

Cr rear tyres cornering stiffness (expressed in Nm
rad)

Iz yaw moment of inertia (expressed in Kg ·m2)

g gravity acceleration (expressed in m/s2)

To use this model it is important to make some hypothesis, in particular:

• velocity referred to the center of mass is approximated equal to the velocity
of the rear axis

• we are in presence of small angles

• there is some inclination γ of the street (also 0 rad)

• γ̈ ≪ ϕ̈

Using the previous model we have all elements to analyze the normal forces
that act on the left wheels of the vehicle and on the right wheels of the vehicle.
The contact between the terrain and the wheels create the normal forces, so
when a wheel loss the contact with the terrain the normal force disappears. So,
using the previous elements it is possible to compute the sum and the difference
between the normal forces wheel-terrain on left and right side of the vehicle.
These forces are computed with Equation 4.11.

88 Chapter 4. Vehicle Models and Lattice Primitives

Fn1 + Fn2 = ms

[

−h · (γ̇ + ϕ̇)2 ·
(

1 + ϕ2
)

− ψ̇2 · (γ + ϕ) · (h · ϕ+ γ)

− m · v̇ − (Cf + Cr)

m
· β · ϕ− Cr · b− Cf · a

m · v · ψ̇ · ϕ

− Cf
m

· δ · ϕ+ g + v ·
(

γ̇ · β − ψ̇ · γ
)

]

(4.11a)

Fn1 − Fn2 =
2

W
·
[

Ix · ϕ · (γ̇ + ϕ̇)2 + Ix · ψ̇2 · (γ + ϕ)

+
m · v̇ − (Cf + Cr)

m · h · Ix · β +
Cr · b− Cf · a
m · h · v · Ix · ψ̇

+
Cf
m · h · Ix · δ −

kr · ϕ+ br · ϕ̇
ms · h2

· Ix

+ (Iz + Iy) · ψ̇2 · sin (2 · (γ + ϕ))

2
− h · ϕ · (Fn1 + Fn2)

]

(4.11b)

In Equation 4.11 there are some new vehicle dependent constants:

W width of the vehicle from right wheel to left wheel (expressed in m)

Ix roll moment of inertia (expressed in Kg ·m2)

Iy pitch moment of inertia (expressed in Kg ·m2)

Using the previous forces it is possible to compute the LLT3 index as reported
in Equation 4.12. A ratio between the sum and difference of the normal forces
constructs the LLT index. This index assumes values between -1 and +1 and
when is equal to ±1 means that one of the vehicle’s wheel has lost contact
with the terrain. Indeed, if the index assumes ±1 value it means that one
of the two normal forces is equal to 0 and the ratio has at numerator and at
denominator the same force (in absolute value). For our scopes it is important
to keep |LLT | ≤ 0.8 to avoid vehicle’s rollover.

LLT =
Fn1 − Fn2

Fn1 + Fn2

(4.12)

Now, generating primitives with this model is difficult because the model
is complex, has many state variables and many controls. For this reason some
additional assumptions are required. First of all, during the creation of the
primitives we can suppose that the terrain is completely flat, in this way two
controls are invariant and are fixed to 0. Despite this simplification there are still
9 state variables to manage. Saving and using all these state variables during
the planning phase represents a problem from a computational and a memory
point of view. A possible solution can be found limiting at the start and at the
end the new state variables and eventually the steering angle to values near to

3Lateral Load Transfer

4.3. Ackermann vehicle 89

0 (not exactly 0 because it could be a too strict condition). In this way the
primitives are practically continuous and the vehicle at the start and at the end
is surely stable. So, the constraints previously explained can be added to the one
considered for the other models, apart from the assumption that avoid genera-
tion of curvilinear trajectory at high speed, because in this case the feasibility is
controlled with LLT, and the assumption that trajectories with negative velocity
can be obtained from the trajectories with positive velocity. With this model it
is possible to generate both (x, y, θ, v) primitives and (x, y, θ, v, δ) primitives.
The final BVP can be recap as:











































































































































































































































min
∫ T
0 dt ∨ min

∫ T
0 (1 + LLT) · dt

dx
dt = v · cos (θ)
dy
dt = v · sin (θ)
dθ
dt = v · tan(δ)

L
dv
dt =

1
TV

· uv − 1
TV

· v
dδ
dt =

1
Tδ

· uδ − 1
Tδ

· δ
dψ̇
dt = − b2·Cr+a2·Cf

Iz ·v
ψ̇ +

b·Cr−a·Cf

Iz
· β +

a·Cf

Iz
· δ

dβ
dt = −Cf+Cr

m·v · β +
Cr·b−Cf ·a−m·v2

m·v2
· ψ̇ +

Cf

m·v · δ −
g
v · sin γ

dϕ
dt = ϕ̇

dϕ̇
dt = (γ̇ + ϕ̇)2 · ϕ+ (γ + ϕ) · ψ̇2 +

m·v̇−(Cf+Cr)
m·h · β +

Cr·b−Cf ·a
m·h·v · ψ̇

+
Cf

m·h · δ − kr·ϕ+br·ϕ̇
ms·h2

InitialState = (0, 0, θi, vi, ([−0.1 : 0.1] |δi) , [−0.01 : 0.01] , [−0.1 : 0.1] ,

[−0.1 : 0.1] , [−0.01 : 0.01])

FinalState = (xf , yf , θf , vf , ([−0.1 : 0.1] |∗) , [−0.01 : 0.01] , [−0.1 : 0.1] ,

[−0.1 : 0.1] , [−0.01 : 0.01])

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

min (vi, vf) ≤ v ≤ max (vi, vf)

δmin ≤ δ ≤ δmax

θi − π
2 ≤ θ ≤ θi +

π
2

min (vi, vf) ≤ uv ≤ max (vi, vf)

δmin ≤ uδ ≤ δmax

0 ≤ γ ≤ 0

0 ≤ γ̇ ≤ 0

−0.8 ≤ LLT ≤ 0.8

(4.13)
With the previous BVP not only the time but also the LLT can be taken

into account in the cost function in order to make the primitives safer.

90 Chapter 4. Vehicle Models and Lattice Primitives

4.4 Creation of primitives for another vehicle type

Once a problem is set up for a vehicle, the question was how difficult is to adapt
this approach to another vehicle. For this reason a differential drive vehicle is
taken into account and a generation of a set of primitives is done for this kind
of vehicle.

4.4.1 Differential drive vehicle

A differential drive robot is composed by two driven wheels (each wheel is
commanded by a motor), one for each side of the robot. The two wheels
are independent, therefore the robot can change its orientation on the spot,
commanding different rotation velocity of the two wheels. In particular if the
two wheels have the same velocity in the same direction the robot go straight,
else if the wheels have the same velocity but in the opposite direction the robot
perform a turn-in-place maneuver. All the other combinations of the two wheels
velocity result in a curvilinear trajectory depending on the combinations between
the two velocities. The center of rotation of a differential drive vehicle can be
anywhere on the axis formed by the wheels contact points. If the robot go
straight the center of rotation is located to an infinite distance from the robot,
meanwhile if the vehicle perform a turn in place maneuver the center of rotation
is in the middle between the wheels contact points. Sometimes, to increase the
stability of the differential drive vehicles additional wheels or casters are added
to the robot.

4.4.2 Differential drive model and primitives creation

First of all we can analyze the kinematic model of a differential drive vehicle
shown in Equation 4.14. It respects the frames reported in Figure 4.9.











dx
dt = v · cos θ
dy
dt = v · sin θ
dθ
dt = ω

(4.14)

In the model we have:

• States

x Cartesian position of the vehicle along the x-axis (expressed in m)

y Cartesian position of the vehicle along the y-axis (expressed in m)

θ orientation of the vehicle (expressed in rad), is the angle formed by the
robot longitudinal axis and the x-axis, positive counterclockwise

• Controls

v linear velocity (expressed in m/s)

4.4. Creation of primitives for another vehicle type 91

x

y

v>0v<0

v=0

>0<0

=0

xx

x

xx

x

yy

y

yy

y

Figure 4.9: Frames for the state variables and for the control variables for a differential
drive kinematic that allow to understand better their signs and their meaning. The
upper frame is with respect to the world. Lower, two vehicles are reported and the
arrows on the vehicles are related to the vehicle frame.

92 Chapter 4. Vehicle Models and Lattice Primitives

ω angular velocity (expressed in rad/s)

• Parameter

T time to make a maneuver (expressed in s)

Moreover it is possible to indicate with k = ω
v the curvature of the trajectory

and this variable can be inserted in the model substituting one of the two
velocities. The two velocities of the vehicle are given in Equations 4.15:

v =
Vx + Vy

2
(4.15a)

ω =
Vx − Vy

2
(4.15b)

where Vx and Vy are the two motor velocities. Also with this kind of model there
are some problems analyzed before for the ackermann model, in fact the velocity
is not reach instantaneously. The simplest way is by determining the time
constants of the two motors and use them to simulate the actuators dynamics.
As the vehicle is commanded with the linear and angular velocity, however, is
better to determine the constant of linear and angular velocity experimentally
and use that values to simulate the dynamics of these two velocities. In this
way the model becomes the one represented in Equation 4.16.































dx
dt = v · cos θ
dy
dt = v · sin θ
dθ
dt = ω
dv
dt =

1
Tv

· uv − 1
Tv

· v
dω
dt = 1

Tω
· uω − 1

Tω
· ω

(4.16)

In the model that considers actuator dynamics, linear and angular velocities
become states and two controls uv and uω are introduced, representing the
desired velocities. Moreover the two vehicle dependent time constant Tv and
Tω are also introduced. Thanks to the turn in place ability it is possible to make
many more maneuvers with respect to the ackermann vehicle. As a consequence,
a slightly different approach is considered: a small interval of cells is chosen and
all combinations of start and end θ, v and ω are tried. The only assumption
that can be taken is that the vehicle during a primitive has to remain into an
interval of coordinates, otherwise to solve a BVP it can go everywhere making
longer and not useful trajectories as shown in Figure 4.10.

Otherwise, it is possible to use the approach explained for the ackermann
vehicle, but the risk is the possibility that all the movements are done in the
nearest cells, though this is not the best solution, for example because the
vehicle executes a turn in place when it could simply go straight to reach the
goal in a cell slightly farther. Finally a BVP for a differential drive vehicle can

4.4. Creation of primitives for another vehicle type 93

- 3

- 2

- 1

0

1

2

3

4

5

6

7

- 4 - � - 2 - 1 0 1 2 � 4

y

x

- �

- 2

- 1

0

1

2

�

- � - 2 - 1 0 1 2 �

y

x

Bad Good

Figure 4.10: Example of bad primitive that is not within an interval and primitive that
stay into an interval

be formalized as follows:


























































































































min
∫ T
0 dt

ẋ = v · cos (θ)
ẏ = v · sin (θ)
θ̇ = ω

v̇ = 1
TV

· uv − 1
TV

· v
ω̇ = 1

Tω
· uω − 1

Tω
· ω

InitialState = (0, 0, θi, vi, ωi)

FinalState = (xf , yf , θf , vf , ωf)

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

min (vi, vf) ≤ v ≤ max (vi, vf)

min (ωi, ωf) ≤ ω ≤ max (ωi, ωf)

min (vi, vf) ≤ uv ≤ max (vi, vf)

min (ωi, ωf) ≤ uω ≤ max (ωi, ωf)

(4.17)

94 Chapter 4. Vehicle Models and Lattice Primitives

Chapter 5

Experimental tests

A long time ago in a galaxy far, far away...

Star Wars

5.1 Introduction

This chapter shows the experiments and the tests we have done for this work.
First of all are presented two BVP solvers used to create the sets of lattice
primitives. Then, we present our evaluations on the planner reporting the cost
map construction, the tests done and the experimental results.

5.2 BVP Solvers

In order to generate primitive sets we use a BVP solver. The BVP solvers
employed in our work are two: ACADO and BOCOP. Both are open source, so
their source code is freely available on the net and there are no fees to pay.

5.2.1 ACADO: an open source BVP solver

ACADO is an open source toolkit for automatic control and dynamic opti-
mization freely available at http://sourceforge.net/p/acado/wiki/Home/ under
GNU Lesser General Public License v3. ACADO offer a C++ library and a
MATLAB interface to use it. To solve a problem with ACADO one has to use
the functions provided by the library, set up a new problem and solve it using
the method exposed by ACADO. There is not a GUI shipped with the software,
however there are many examples freely available with the source code and there
are tutorials and documentation on the website to understand how to use the
toolkit. We use ACADO to solve OCPs formalized in Chapter 4 in order to
create a good set of lattice primitives.

http://sourceforge.net/p/acado/wiki/Home/

96 Chapter 5. Experimental tests

The solving procedure of a BVP with ACADO consists in the creation of a
source file (C++ or Matlab) that includes the problem definition (defined using
the ACADO library components) and a call to the solver of ACADO library for
the problem just defined. Then the solution can be saved automatically on a
file or can be stored in variables.

To generate a first set of primitives both models of Equations 4.1 and 4.2
can be used. In our case we have used the second model because it is simpler
to solve that kind of problem for the solver. Moreover we have used a resolution
of 1 meter, so the vehicle must start and end in cells multiple of 1 meter and θ
discretization of 16 angles not uniform, in particular the values that orientation
can take are arctan (0) + π

2 rad, arctan
(

1
3

)

+ k · π2 rad, arctan (1) + k ·
π
2 rad and arctan (3) + k · π2 rad. The steering value must be in the interval
[

−π
4 : π4

]

rad. To accelerate the computation of the primitives set the execution
of problems was parallelized. In particular with a bash script our C++ program
was launched for given start θ values, end θ values and final cells; this last is
incremented to increase the distance from the origin every execution. A C++
program launch in parallel many scripts. In our cases we have used a 48-core
computer with 64 GB of RAM. Given the assumptions done before for the
primitive generation, for each start orientation it is necessary to solve the BVPs
for 9 goal orientations. The start orientation can be a value between

[

0 : π2
)

rad
and the other orientations are obtained with the rotation of the primitives. In
this way all 36 problems can be launched together in parallel and all together
they try to find a solution starting from the cell nearer to the origin and widen
the distance if a solution is not found. For each primitive the start discrete
angle, the end discrete pose, a cost multiplier for the primitive (in this case the
space traveled in m), the number of intermediate poses (in our case 101) and
the intermediate poses with values not discretized are saved on a file. Once the
Boundary Value Problems were solved, the solutions were joined, rotated four
times of π

2 rad to obtain all the primitives and saved on a file containing all
useful information: resolution used, number of discrete values used to represent
orientations, total number of primitives and all the primitives assigning an ID
to each one. In Figure 5.1 there is an example of primitive generation with the
model that uses Equations 4.1 or 4.2.

The second model used have introduced in our problem the actuators dy-
namics and is represented by Equation 4.5. In this case the problem has two
more state variables and two different controls. The problem set up is the same
of the previous model, with some additional constraints due to the new state
variables and the new control variables. Using this model, two sets of lattice
primitives were created, one let free the steering angle state variable using only
four state variables, the other take into account also the steering angle value.
The constraints are formalized in Equation 4.7, with only a little change: the
values that controls can assume are increased in absolute value of 20% for the
velocity control, and of a very small constant (0.01 rad) for the steering control.
This is done because as explained before, in 5 · T is reached the 99% of the

5.2. BVP Solvers 97

- 4

- 3

- 2

- 1

0

1

2

3

4

- 4 - 3 - 2 - 1 0 1 2 3 4

y

x

Figure 5.1: Example of primitives taking into account three state variables

98 Chapter 5. Experimental tests

desired value, but the exact value is not reached for many other seconds and
the solver could not consider reached the target value. Increasing the control
variables speeds up the actuators, allowing to reach the target value without
significantly change the behavior of the model. ACADO had some problem to
find a solution directly with this model, so, to improve the solver behavior, the
problem is initialized with the solution of the correspondent simple kinematic
problem. For the initialization of the two new states a maximum velocity value
is set and the steering is taken from the controls of the kinematic problem.
The time parameter is initialized as the ratio between the euclidean distance to
travel and the medium velocity between initial and final velocity values. First of
all the simple kinematic problem is solved then this solution is need to initialize
the problem that includes the dynamics of the actuators. To do this, a bash
script receives initial and final values of θ, with the same strategy seen for the
kinematic model. It solves the simpler problem and once a solution is found
tries to solve the more complex problem. At the end of an iteration, if a result
is found a new pair of speed values and eventually a new initial steer value are
used to solve a new problem, otherwise a wider cell is taken and the procedure
is restarted. At the end of the script all useless files are deleted automatically,
leaving only the files containing the primitives. Also in this case all scripts are
launched in parallel for each pair of θ values as in the previous case, but each
scripts try to solve the problem for each pair of selected velocities (start and final
values can take four positive values, 0 m/s, 1.5 m/s, 3.0 m/s and 9.0 m/s)
and eventually for each value of start steering angle (π8 · k, k = −2,−1, 0, 1, 2).
Also in this case the solutions are saved in a file. At the end of the execution
all primitives can be obtained rotating four times of π2 rad the primitives found
and, for the negative velocities, changing signs of the actual primitives as ex-
plained in Chapter 4. The final file saved contains some information: resolution
used, number of angles, number of velocity values, velocities used, number of
steering values (if in the BVP there is boundary conditions on steering angle),
total number of primitives and all the primitives assigning an ID to each of
them. With this approach, discretizing θ in 32 values, a set of primitives was
generated with ACADO. The results, however, were not so good, because the
number of primitives increased too much. The additional values of θ adopted
in this case were arctan

(

1
7

)

+ π
2 rad, arctan

(

2
3

)

+ π
2 rad, arctan

(

3
2

)

+ π
2 rad

and arctan (7) + π
2 rad. In Figure 5.2 and in Figure 5.3 there are two exam-

ples of primitives obtained solving BVP reported in Equations 4.7, in the first
considering only the velocity, in the second considering also the start steering
angle.

At last, some tries was done with the extended model but ACADO has
shown some limitations. First of all, the solver during the solving process uses
an approximation of a Hessian matrix, but with this model the approximation
becomes too ill-conditioned and many trajectories cannot be generated. To solve
this issue one can set a parameter of the OCP and use the exact matrix, not
only an approximation, to the detriment of the solving time needed. Moreover

5.2. BVP Solvers 99

- 10

-

2

1

0

1

2

10

10 2 1 0 1 2 10

y

x

Figure 5.2: Example of primitives taking into account the four state variables and
actuators dynamics

100 Chapter 5. Experimental tests

- 10

-

2

1

0

1

2

10

10 2 1 0 1 2 10

y

x

Figure 5.3: Example of primitives taking into account the five state variables and
actuators dynamics

5.2. BVP Solvers 101

there is another problem, indeed in the extended model in some of the state
equations the velocity parameter appears in the denominator. This becomes a
problem when the velocity starts or ends to 0 m/s. A possible workaround is
to constraint the minimum velocity to 0.1 m/s. However also with this new
value ACADO have some difficulties and it was not able to solve the problem,
despite some tries was done, for example we have tried to solve the problem
in the space domain, then the problem with the model that includes actuator
dynamics, using its solution as initial input of some states of the extended
model problem. Other tries was done changing the order of the Runge-Kutta
integrator, changing the integrator type, increasing the number of the integrator
steps or increasing the value of the minimum speed. Unfortunately the unique
way to solve this problem was by increasing the speed value, but the value at
which the problem became solvable by using ACADO was about 0.7 m/s that
is too high to simulate a stopped vehicle. Finally with this model considering all
necessary constraints and LLT ACADO was really slow also when it was able to
find a solution. For all these reasons a try was done with another solver called
BOCOP.

Despite the problems encountered during the primitives generation, espe-
cially with the last model of the vehicle, ACADO must be taken into account
because it is simple to use in order to create personal software to solve optimal
control problems. Unfortunately, it is slightly lacking from some points of view
as write before.

5.2.2 BOCOP: an open source BVP solver

BOCOP is an open source toolbox for Optimal Control Problems developed
within the framework Inria-Saclay and supported by the team Commands with
support of industrial and academic partner. BOCOP is freely available at
http://bocop.org/ and is licensed with EPL1. BOCOP is given with a sim-
ple GUI that can be used in order to solve a BVP. In that GUI we can set up a
problem specifying:

• parameters and dimensions of the problem

• variable names

• functions

• bounds

• constant values

• discretization method

• number of time steps

1Eclipse Public License

http://bocop.org/

102 Chapter 5. Experimental tests

• starting values of the problem components over parameter normalized
between 0 and 1

• various parameters on the optimization process

With the GUI it is possible to compile and execute a solution process and view
the solution graphically. Practically the BOCOP GUI is a front-end for a software
that exploit some C++ template files containing the model definition and then
read some text files containing the dimensions and parameters of the problem,
the bound imposed, the constants, the variable initialization and all the others
informations. We can compile our problem from the GUI creating an executable
to solve the problem.

We have used BOCOP to solve the problem with the extended model. With
respect to ACADO, BOCOP has a wider selection of discretization methods
and some of them work also with the extended model, for example Mid Point
Rule method and Euler methods (both implicit and explicit). In Figure 5.4 and
in Figure 5.5 there are two examples of primitive generations obtained solving
BVP reported in Equations 4.13, in the first considering only the velocity, in the
second considering also the initial steering angle.

In order to create a set of primitives, we must solve many problems and
collect the ones for which a solution is determined. Solve many problems with
BOCOP GUI is really uncomfortable, so we had two ways to do this. A first
method consists in using BOCOP as ACADO, therefore understanding the library
and using every single component to create an executable that solves a problem.
However, this method is time consuming. Another simpler solution consists in
changing the main function of the program compiled from the GUI in such a
way that it reads from files problem parameters and boundaries. Then, the
executable can be compiled from the terminal or from the GUI and the problem
parameter files can be automatically generated.

Finally, the values used for angle, speed and steer states are the same written
above in the previous paragraph, the controls γ and γ̇ must be equal to 0, instead
the values used for all other initial and final states was 0.1 rad for the angles and
0.01 rad/s for the angular velocities. As discretization type we used the implicit
Euler method. The last distinction concerns the various kind of constraints, in
fact start and end values of the problem are boundary conditions, the interval
of values that a state variable can assume are state constraints, the interval of
values between control variables must stay are control variable constraints, the
eventually constraints on time are parameter constraints and the LLT constraint
is a path constraint. The strategy of creation is the same used with ACADO,
so the script changes only the executable to launch. Also this time are launched
36 generation processes in parallel, one for each pair of θ values. At the end
applying the rotations it is possible to have the final motion primitive file that is
structured as the file created with the model that considers only the actuators
dynamics.

5.2. BVP Solvers 103

- 12

- 10

-

2

0

2

10

12

12 10 2 0 2 10 12

y

x

Figure 5.4: Example of primitives taking into account the four state variables, actua-
tors dynamics and LLT value (paying attention that the resolution is 1 meter, but for
graphical reasons on the graph is represented a cell every 2 meters, so the primitives
that finish in the middle of a cell are anyway valid)

104 Chapter 5. Experimental tests

-

7

6

- 5

- 4

- 3

- 2

- 1

1

2

3

4

5

6

7

8

- 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 1 2 3 4 5 6 7 8

y

x

Primitives

Figure 5.5: Example of primitives taking into account the five state variables, actuators
dynamics and LLT value

5.3. Planner Evaluation 105

To solve a single OCP, BOCOP is simple to use and is also effective and
efficient enough, however using this software directly it is slightly more difficult
than ACADO. Anyway in our experiment it was really useful because it allows
us to create a set of safe primitives on plain terrains.

5.3 Planner Evaluation

5.3.1 Experimental Setup

Maps Evaluation

We have used two different approaches to build the maps for tests. In particular
we have used a terrain generation toolbox for Matlab to try the planner on
digitally generated terrains and we have interpreted DEMs from real terrains.

We have tried some terrains obtained with the Automatic Terrain Generation
tool freely available on line. This tool contains some Matlab scripts to create
a terrain with some specification. We have used the toolbox function [x, y, h,
hm, xm, ym] = generate terrain(n, mesh size, h0, r0, rr) that takes as input
the following parameters:

n number of iterations of the algorithm used by the toolbox; a number of itera-
tions over 7 brings some advantages that are not notable, but an increment
of 1 iteration leads to increase time increment of about 3 seconds, so 7
can be a good compromise2

mesh size size of the mesh given in output; it is a square mesh of mesh size×
mesh size

h0 initial height

r0 initial roughness (how much the terrain can vary in a step)

rr roughness roughness (how much the roughness can vary in a step)

and after computation the function get back some vectors:

x, y, h vectors of points comprising terrain

xm, ym, hm meshes over landscape

Using this function we can generate a terrain and visualize it in Matlab
using the surf function as the one shown in Figure 5.6. Using the function c =
generate terrain colors(hm) of the Automatic Terrain Generation tool it is also
possible to generate a color profile for the map created, displaying in the surf
function a colored map, that simulates a real terrain map (e.g., sea, mountains,
etc.) as in Figure 5.7. In the previous function the input parameter is the

2the toolbox use an iterative algorithm to creates the terrain map and the number of
iterations can be specified by the user; increasing the number of iterations the result is better,
however the toolbox creator suggests a value of 7 iterations

http://www.mathworks.com/matlabcentral/fileexchange/39559-automatic-terrain-generation/content/html/terrain_generation_introduction.html

106 Chapter 5. Experimental tests

Figure 5.6: Terrain generated and plotted with the surf Matlab function

Figure 5.7: Terrain generated and plotted with realistic colors

5.3. Planner Evaluation 107

Figure 5.8: Example of map created with Automatic Terrain Generation. The parts in
black are obstacles, meanwhile the white places compose the free space.

elevation map and the output parameter is the color profile.

From the map generated it is possible to take the height in various points
and create a cost map using both the methods seen in Chapter 3: cutting to
a determined height or considering the slopes. These operations can be done
directly from Matlab.

The advantages of this approach using Matlab are the simplicity and the
velocity by which a terrain of desired size is generated, however, the terrain does
not correspond to any existing terrain and if the parameters for the creation are
wrong the terrain generated can be unrealistic.

An important aspect to take into account is represented by the values used;
the default ones are not expressed in a specific unit, so it is really important to
take care of the value for height thresholding or, in case of slope computation, to
pay attention to the measure assumed for the cell distance and for the elevations.

In Figure 5.8 there is an example of map created with Automatic Terrain
Generation.

The cost maps created with this toolbox are nice, but for our tests we have
not used them. We have not use them because the terrain generated is not equal
to a real terrain, and, despite the accuracy of the parameters, it is different from

108 Chapter 5. Experimental tests

a real terrain (e.g., some features repeat themselves in the terrain, create a ter-
rain that represents cliffs is hard, etc.). We have created the cost maps used in
the tests starting from DEM from real terrains. The DEM used for the experi-
ments can be found on the web portal SardegnaGeoportale3. The particularity
of these DEM is the high horizontal resolution up to 1 meter. Both DTM and
DSM are available with the reference to which part of the region they are re-
ferred; coordinates in the various DEM are provided in the WGS84/UTM32N
reference system. On the same web site, if needed a coordinates converter4 is
available. The DEMs are available in simple ARC/INFO ASCII GRID format
representing a portion of terrain and the ASCII file contains:

NCOLS # the number of columns of the matrix representing the elevation
map

NROWS # the number of rows of the matrix representing the elevation map

CELLSIZE # the size of a cell of the matrix

XLLCENTER # x coordinate of the origin

YLLCENTER # y coordinate of the origin

NOVALUE # value representing a part of the terrain which is unknown

Beside the previous values that compose the header, the files contain a matrix
of values. Each cell of the matrix corresponds to an height.

From the previous file format is simple to read and to create the correspond-
ing cost map. With a simple C++ program we have read the DEM available
on the portal and we can export various files:

• A text file containing the cost map as a matrix of number; each number is
in the interval [0;1] where 0 stands for free cell and 1 stands for obstacle

• A PNG gray scale image representing the cost map (using libPNG++);
each pixel of the image corresponds to a cell of the DEM; a white pixel
is a free space and a black pixel is an obstacle

• A configuration file template for the various environments containing the
dimensions of the map, all the specific parameters of the environments
depending on environment type and the cost map

Starting from the DEMs, we can create the cost map in two different ways.
In the first, we create a cost map cutting the DEM to a certain height and
assigning to a cell a value corresponding to obstacle or free space. In the
second, we analyze the slopes between the cells and assign a cost depending

3http://www.sardegnageoportale.it/
4http://www.sardegnageoportale.it/index.php?xsl=1594&s=40&v=9&c=8759&n=10

http://www.sardegnageoportale.it/
http://www.sardegnageoportale.it/index.php?xsl=1594&s=40&v=9&c=8759&n=10

5.3. Planner Evaluation 109

on the maximum slope as explained in Chapter 3. We have used a slope limit
of π

6 rad and 10 interval of costs, so every π
60 rad the cost was increased of

0.1 and the costs value goes between 0 and 1. When the image is exported in
the first case (height thresholding) it looks like a black and white image where
the white pixels correspond to the accessible cells, whereas the black pixels
represent the obstacles. Instead, the images generated with the second method
(slope thresholding) are gray scale images where the gray intensity of the pixels
is proportional to the slope of the terrain.

In Figure 5.9 there is an example of a piece of terrain represented with the
real map and with the two methods used to create cost maps. The second
method is applied both on a DTM and on a DSM. As it is possible to see from
the images the second method give a cost map richer of informations.

SBPL Setup

SBPL is an open source library for planning from the Search-Based Planning Lab
of the Carnegie Mellon University. It allows plans with every kind of robot if an
appropriate environment and a planner are defined. More specifically it is com-
posed by a superclass of the environments called DiscreteSpaceInformation

that is used as a variable of the SBPLPlanner superclass. In this way the plan-
ner can interact with the environment to solve a problem without knowing the
details of a particular environment.

The environment assigns a unique ID to a state composed by a combination
of the state variables. Then, the planner uses that ID to identify a state during
the search phase. When the planner needs the successors of a given state it
calls an environment function that given a state ID returns all the state IDs of
its successors. The same happens with the predecessors and with all elements
used by the planner which are related to the environment.

In our work we have extended SBPL library to use it with an Ackermann
vehicle, and to consider also dangerousness of the path. To do this, we can
use the environment EnvironmentNAVXYTHETALAT given with the library. One
thing we have to change in this environment is the format of the map, indeed
SBPL uses a reference system similar to the image reference system with origin
in the up-left corner, x axis right oriented and y axis down oriented, instead we
used a Cartesian reference system with the origin in low-left corner, x axis right
oriented and y axis up oriented. This is required to have the reference system
of the cost map in agreement with the reference system used to develop motion
primitives. Furthermore, as default, the map used by the planner is a pointer to
int, so we have changed it to a pointer to double to allow the use of decimal
costs if needed. Also, the cost function of that environment has been changed,
since, as default, it considers both linear time and angular time (for a differential
drive vehicle), but this is not correct for an Ackermann vehicle. We use only one
time that is needed to perform the trajectory. Finally, the existing environment
used a uniform discretization of the orientations, and we have changed it as

110 Chapter 5. Experimental tests

(a) Real terrain map get

(b) Cost Map created starting from DTM cutting at determined height

5.3. Planner Evaluation 111

(c) Cost Map created using the slopes steepness of the DTM

(d) Cost Map created using the slopes steepness of the DSM

Figure 5.9: Example of map resulting from a DEM of the Sardinia

112 Chapter 5. Experimental tests

explained in Chapter 3.

Beside the previous variation, the library has been extended with some en-
vironments that did not exist. The structure of these environments has been
explained in Chapter 3, and they take into account the velocities of the vehi-
cle, and the start steering angle of the vehicle considering ackermann vehicles.
Additionally, we build an advanced environment for differential drive vehicles.

We have made some significant changes in these environments with respect
to the existing ones. For instance in the existing environments actions were
saved in a matrix and acceding to this matrix as ActionsV[i][j] means ac-
ceding to the j-th action for the i-th source angle. This structure is slightly too
rigid, so we have changed it using a vector of vectors making it dynamic.

We have made some changes also in the search algorithm, in particular we
have saved on a file some performance index to make tests. A search algorithm
at each iteration (all the search algorithms tested are anytime, so they execute
many iterations) save:

• The total execution time

• The execution time of that iteration

• The cost of the solution found

• The sub-optimality bound for the solution found

• The number of expansions done in that iteration

• The indicator of the memory used (saved as the dimension of the table
that maps IDs to search states multiplied for the size of an integer)

In this way we can view the performance and the quality of the various search
algorithms with the different environments. The search algorithms in which we
are interested in are ARA*, ANA* and AD*. Since ANA* search algorithm
included in SBPL library had some problems, before do all tests we have fixed
it.

First set of tests setup

We have made a first set of tests in order to evaluate the search algorithms and
to have a more clear idea of what are the differences between the environments.
We have created a set of 100 random goals. Only for primitives generated
considering the LLT constraint there is an exception. Indeed, in this case we have
set the goal steering angle to 0 rad: due to the boundary problem formulation
the final steering angle of the primitives is often 0 rad, and to avoid a failure
of many tests for the goal steering angle we have changed it.

We have executed these tests solving every planning problem for each pair
of planning algorithm and environment using both the primitives generated with

5.3. Planner Evaluation 113

the model with actuator dynamics and with the extended model that considers
LLT. In particular we have used the following search algorithms:

• ARA*

• ANA*

• AD*

and for each of them we have used the following pairs of environment and
primitives:

• Environment with 3 state variable (x, y, θ) and primitives created with the
simple kinematic model

• Environment with 4 state variable (x, y, θ, v) and primitives created with
the model that take into account actuators dynamics

• Environment with 4 state variable (x, y, θ, v) and primitives created with
the extended model that take into account LLT

• Environment with 5 state variable (x, y, θ, v, δ) and primitives created with
the model that take into account actuators dynamics

• Environment with 5 state variable (x, y, θ, v, δ) and primitives created with
the extended model that take into account LLT

We executes the tests with 16 values of orientation and, where it is expected,
the set of velocities V = {−9.0,−3.0,−1.5, 0.0, 1.5, 3.0, 9.0}m/s (0.1m/s in-
stead of 0.0 m/s in case of motion primitives created with the extended model)
and the set of steering angles∆ =

{

−π
4 ,−π

8 , 0,
π
8 ,

π
4

}

rad. For the environment
with three state variables we have used an average velocity of 3.0m/s.

We have created the footprint of the robot using its real sizes. The planning
is done forward (the behavior of the planner with forward or backward searches
is really similar, sometimes with backward searches it is faster).

We have set initial ǫ for AD* and ARA* planners to 3.0 with a decreasing
factor of 0.2, and we have set the maximum time to find the optimal solution
to 1500 seconds. If the planner finds the optimal solution in time it continues
with the next goal until all planning problems are executed. If it does not find
the solution in time it stops to the suboptimal solution found or notify a failure
if it does not find any solution.

The cost map used in this tests is represented in Figure 5.10(b). It is
obtained starting from a DTM (vegetations and buildings are not taken into
account) corresponding approximately to the place in Figure 5.10(a). Its area
is 1441 meters width and 1146 meters high. Therefore, using a resolution of 1
meter we have a map of 1441× 1146 cells, that is a relatively wide area. This
map does not consider the slope, but we have thresholded it to an height of 5
meters.

114 Chapter 5. Experimental tests

(a) Real map of the zone used for the first set of tests (the building must
not be considered and water is not deep)

(b) Representation of the cost map used for the first set of tests cutting at
a certain height

Figure 5.10: Real map and cost map of the first test set

5.3. Planner Evaluation 115

The starting point is shown with a red dot on the map, the starting orienta-
tion was of 3.14 rad, the starting velocity was 0 m/s and the starting steering
angle was 0 rad.

Second set of tests setup

We have made a second set of tests in order to evaluate the environments and
the lattice primitives. We have created a set of 70 goals. We have generated
randomly the values of x, y and the orientation θ. We have set the goal velocity
to 0 m/s (0.1 m/s in case of motion primitives created with the extended
model) and the goal steering angle to 0 rad.

We have executed these tests solving every planning problem using only AD*
as search algorithm because the first set of tests shown that AD* is the best
search algorithm for our scopes (data are reported in the next subsection). How-
ever, we have used every environment and both the primitives generated with
the model with actuator dynamics and with the extended model that considers
LLT. In particular we have used the following search algorithm:

• AD*

and we have used the following pairs of (environment,primitives):

• Environment with 3 state variable (x, y, θ) and primitives created with the
simple kinematic model

• Environment with 4 state variable (x, y, θ, v) and primitives created with
the model that take into account actuators dynamics

• Environment with 4 state variable (x, y, θ, v) and primitives created with
the extended model that take into account LLT

• Environment with 5 state variable (x, y, θ, v, δ) and primitives created with
the model that take into account actuators dynamics

• Environment with 5 state variable (x, y, θ, v, δ) and primitives created with
the extended model that take into account LLT

We executes the tests with 16 values of orientation and, where it is expected,
the set of velocities V = {−9.0,−3.0,−1.5, 0.0, 1.5, 3.0, 9.0}m/s (0.1m/s in-
stead of 0.0 m/s in case of motion primitives created with the extended model)
and the set of steering angles∆ =

{

−π
4 ,−π

8 , 0,
π
8 ,

π
4

}

rad. For the environment
with three state variables we have used an average velocity of 3.0m/s.

We have created the footprint of the robot using its real sizes. The planning
is done forward (the behavior of the planner with forward or backward searches
is really similar, sometimes with backward searches it is faster).

We have set initial ǫ for AD* and ARA* planners to 3.0 with a decreasing
factor of 0.2, and we have set the maximum time to find the optimal solution

116 Chapter 5. Experimental tests

to 1500 seconds. If the planner finds the optimal solution in time it continues
with the next goal until all planning problems are executed. If it does not find
the solution in time it stops to the suboptimal solution found or notify a failure
if it does not find any solution.

The cost map used in this tests is represented in Figure 5.11(b). It is
obtained starting from a DTM (vegetations and buildings are not taken into
account) corresponding approximately to the place in Figure 5.11(a). Its area
is 650 meters width and 500 meters high. Therefore, using a resolution of 1
meter we have a map of 650×500 cells, that is a smaller area than the previous
one, but it is still a relatively wide area. This map considers the slope to define
the costs and in Figure 5.11(b) darker pixels corresponds to higher costs (black
pixels are obstacles).

The starting point is shown with a red dot on the map, the starting orien-
tation was of 0 rad, the starting velocity was 0 m/s and the starting steering
angle was 0 rad.

5.3.2 Experimental Results

First set of tests results - search algorithm evaluation

We report and comment here some data extracted from the first set of tests
executed. We have put the data into tables reporting on the rows the different
planning algorithms and on the column the different pairs of environment and
lattice primitives. In particular the column contains (in order) the following
elements:

XYθ Environment with 3 state variable (x, y, θ) and primitives created with the
simple kinematic model

XYθV Environment with 4 state variable (x, y, θ, v) and primitives created with
the model that take into account actuators dynamics

XYθV LLT Environment with 4 state variable (x, y, θ, v) and primitives created
with the extended model that take into account LLT

XYθVδ Environment with 5 state variable (x, y, θ, v, δ) and primitives created
with the model that take into account actuators dynamics

XYθVδ LLT Environment with 5 state variable (x, y, θ, v, δ) and primitives cre-
ated with the extended model that take into account LLT

The attention is drawn on the search algorithms. We can start to analyze
the number of solutions found (also suboptimal solutions) by the planner. They
are reported in Table 5.1. We can see that all the search algorithms find the
same number of solutions considering the same pair of environment and lattice
primitives. Additionally it is easy to see how the environment that take into
account five state variables and use the lattice primitives created using the

5.3. Planner Evaluation 117

(a) Real map of the zone used for the second set of tests (the building must
not be considered)

(b) Representation of the cost map used for the second set of tests cutting
at a certain height

Figure 5.11: Real map and cost map of the second test set

118 Chapter 5. Experimental tests

Table 5.1: Number of solutions found (also suboptimal) in the 100 problems of the first
test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 95 95 95 76 95

ANA* 95 95 95 76 95

AD* 95 95 95 76 95

Table 5.2: Number of optimal solutions (suboptimality equal to 1) found (when is
found) in 1500 seconds in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 95 90 92 22 69

ANA* 95 79 35 19 39

AD* 95 91 85 22 69

model with the actuators dynamics find less solution than the others. This
happen because generating random goals the plan can finish in a cell with a
velocity different from 0 m/s and a fixed steering angle, but the primitives
that lead to that state is missing constructing them as seen in Chapter 4. The
solutions not found by the planner, probably, are placed in valid points, but
unreachable by the vehicle (maybe isolated points).

We can consider also the number of optimal solution found in time by the
planner. These results are reported in Table 5.2. From the table we can see how
with the increasing of the number of state variables the optimal solutions found
in time5 are less. In fact using the environment with only three state variable all
the solution found have reached the optimality, instead in the other cases only
a part of the solutions found have reached the optimality. However the number
of optimal solutions found with four state variable environment is near to the
number of solutions found. From Table 5.2 we can also see that ARA* and
AD* are comparable and find both a good number of optimal solution. Instead,
ANA* finds less optimal solutions than the previous two.

In Table 5.3 we can see the average cost of the solutions found by the
planner. In this case the costs correspond to the time in milliseconds (multiplied
for 103 in the table for a better comprehension) needed to travel the path found.
We can see immediately how the costs of the three variables environment are
greater than the others. This happens because the three variables environment
does not take into account of the exact velocity during the computation, but
use an average velocity without considers feasibility of certain maneuvers to a

51500s as reported in test setup

5.3. Planner Evaluation 119

Table 5.3: Average of the costs divided by 103 at the best solution found (when is
found) in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 320.529 115.089 108.132 121.631 108.093

ANA* 320.529 117.722 111.153 132.868 108.356

AD* 320.529 115.089 108.278 121.631 108.093

Table 5.4: Average of the suboptimality bound reached at the best solution found
(when is found) in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 1.00 1.01 1.01 1.17 1.05

ANA* 1.00 1.04 1.07 1.25 1.13

AD* 1.00 1.01 1.02 1.17 1.05

certain velocity. In this case the average velocity was set at 3.0m/s. It can
be set at every value and the path found does not change. This is not good if
we want consider the real feasibility of the path found. The other results are
similar, but seeing the numbers in Table 5.3 we can see that using the lattice
primitives that take into account the LLT the solution have a lower cost than
the others. Moreover we can see that ANA* search algorithm have often an
average cost higher than others planner. This happen because it finds rarely
the optimal solution in time with respect to the other search algorithms.

The Table 5.4 reports the average suboptimality value reached at the best
solution found by the planner. This table confirms the considerations done
for the previous tables. In fact for the environment with three state variables
the optimal solution is always found (when a solution exists). For the others
environments the suboptimality increase a little, but the values are acceptable
anyway. Also in this case ANA* search algorithm have worst performance than
the others.

The Table 5.5 reports the average time in seconds used by the planner to
find the best solution (if a solution exists). This table is full of meaning, indeed,
we can see how the time are higher for the ANA* search algorithm with respect
to others search algorithms and we can see also how the time needed to find
the best solution found is lower for the three state environment variables with
respect to the other environments (considering the best solution found, not the
first solution found). This environment difference depends by the increasing of
the state variables and by the great size of the map.

120 Chapter 5. Experimental tests

Table 5.5: Average of the time in seconds used to find the best solution found (when
is found) in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 29.27 510.41 564.62 1196.17 914.31

ANA* 152.10 687.60 1179.14 1262.05 1203.53

AD* 29.12 483.55 688.28 1197.79 941.43

Table 5.6: This table shows how many times a given planner found a solution that
cost less (lower suboptimality) in front of the other planners (also equal are accepted
only for ARA* and AD* due to the algorithm similarity) on the 100 problems of
the first test set when a solution is found

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 0 7 50 38 34

ANA* 0 2 6 14 2

AD* 0 7 49 38 34

Tables 5.6 and 5.7 show how many times a search algorithm is the best
in term of cost of the best solution found. The first table considers a search
algorithm the best search algorithm if its best solution found have a lower cost
than the minimum solution cost found by the three search algorithms. In the
second table a search algorithm is considered the best if it found a solution that
have a cost low or equal with respect to the minimum solution cost found by
the three search algorithms. From these tables is evident how ARA* and AD*
performance are equivalent and ANA* performance are lower with respect to
the other two.

Moreover we report in Figure 5.12 the cost of the solutions along the y-
axis and the time along the x-axis for a solution of this test set. Instead, in

Table 5.7: This table shows how many times a given planner found a solution that cost
less or equals (lower or equal suboptimality) respecting the other planners on the 100
problems of the first test set when a solution is found

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 95 93 89 62 93

ANA* 95 88 45 38 61

AD* 95 93 87 62 93

5.3. Planner Evaluation 121

Figure 5.12: Cost of the solution found over the time need to found them for a solution
of a first test set

Figure 5.13 we report the number of expansions done by the search algorithms
during a planning along the y-axis and the time along the x-axis. This last graph
is subdivided into Figure 5.13(a) and Figure 5.13(b). The second sub-figure is
a detail of the first sub-figure to show the number of expansions of ARA* and
AD* algorithm that in the Figure 5.13(a) does not appear clearly. In both the
graph each point marked corresponds to a suboptimal solution found. The last
point corresponds to the best solution found. These graphs are in according
on the comments done on the tables. Focusing on Figure 5.13 we can see that
ANA* make many more expansions6 than other two search algorithms and this
is time and resource consuming.

From the data we can affirm that ARA* and AD* are the best search algo-
rithm. However, AD* is also dynamic, whereas ARA* is only anytime. For this
reason the predefined search algorithm to use is AD*. Indeed, the next set of
test is done only with the AD* search algorithm.

Finally, we report in Figure 5.14 an example of the five solutions found in a
problem of this set of tests. In the image we highlight two parts of the solution
to show how the solution with environment that take into account only three
state variables make curvilinear maneuvers and it does not consider the speed
and the feasibility of that maneuvers.

All the Tables with data extracted from these tests are in Appendix A.

6mainly because AD* and ANA* does not expands duplicate states in one iteration, ANA*
can expand some duplicates

122 Chapter 5. Experimental tests

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5
x 10

10

ARAXYθ

ARAXYθV

ARAXYθV_LLT

ARAXYθVδ

ARAXYθVδ_LLT

ANAXYθ

ANAXYθV

ANAXYθV_LLT

ANAXYθVδ

ANAXYθVδ_LLT

ADXYθ

ADXYθV

ADXYθV_LLT

ADXYθVδ

ADXYθVδ_LLTN
u
m

b
e
r

o
f

e
x
p
a
n
s
io

n
s

Time [s]

(a) Expansions done by the various search algorithms during planning over time in seconds

(b) Expansions done by the various search algorithms during planning over time in seconds
with focus on ARA* and AD*

Figure 5.13: Expansions done in a problem of the first test set

5.3. Planner Evaluation 123

XYθ

XYθV

XYθV_LLT

XYθVδ

XYθVδ_LLT

Figure 5.14: Solution found for a problem of the first test set with a zoom on two part
of the solution to see better the differences between them

124 Chapter 5. Experimental tests

Table 5.8: Number of solutions found (also suboptimal) in the 70 problems of the
second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 55 55 55 38 56

Second set of tests - environment evaluation

We report and comment here some data extracted from the second set of tests
executed. Considering the results of the first set of tests, we have used only
AD* search algorithm to execute these tests. We have put the data into tables
reporting only one row for the search algorithm and on the column the different
pairs of environment and lattice primitives. In particular the column contains
(in order) the following elements:

XYθ Environment with 3 state variable (x, y, θ) and primitives created with the
simple kinematic model

XYθV Environment with 4 state variable (x, y, θ, v) and primitives created with
the model that take into account actuators dynamics

XYθV LLT Environment with 4 state variable (x, y, θ, v) and primitives created
with the extended model that take into account LLT

XYθVδ Environment with 5 state variable (x, y, θ, v, δ) and primitives created
with the model that take into account actuators dynamics

XYθVδ LLT Environment with 5 state variable (x, y, θ, v, δ) and primitives cre-
ated with the extended model that take into account LLT

This time attention is drawn on the environment evaluation and on the
lattice primitives comparison. It is possible to start analyzing the number of
solutions found (also suboptimal solutions) by the planner. They are reported
in Table 5.8. From the table emerges that with the first three environment and
in the last environment a great number of solutions are found. In particular in
the last environment is found an additional solution with respect to first three
environments. This can happen due to the completeness of the primitives that
is higher in the last pair of environment and primitives. The environment that
take into account five state variable with the primitives that consider only the
actuators dynamics is the worst of all as in the previous tests done.

We can consider also the number of optimal solution found in time by the
planner. These results are reported in Table 5.9. Also, in this set of tests as in
the previous one we can see that increasing the number of variables the optimal
solution is not found in time7, but only a suboptimal solution is found. From

71500s as reported in test setup

5.3. Planner Evaluation 125

Table 5.9: Number of optimal solutions (suboptimality equal to 1) found (when is
found) in 1500 seconds in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 55 45 25 14 28

Table 5.10: Average of the costs divided by 103 at the best solution found (when is
found) in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 270.329 151.575 121.806 123.367 123.204

this table we have not information on the quality of the solution found, but only
if the optimal solution is found.

In Table 5.10 we can see the average cost of the solutions found by the
planner. In this case the costs correspond to the time in milliseconds (multiplied
for 103 in the table for a better comprehension) needed to travel the path
found multiplied for a cost factor based on the terrain morphology. We can
see immediately how the costs of the three variables environment are greater
than the others. As in the previous set of tests, this happens because the three
variables environment does not take into account the exact velocity during the
computation, but it uses an average velocity without considers feasibility of
certain maneuvers to a determined velocity. In this case the average velocity
was set at 3.0m/s. This is not good if we want consider the real feasibility
of the path found. We can analyze the results to give a judgment based on
Table 5.9 and Table 5.10; indeed we can see that despite the optimal solutions
found in the third, fourth and fifth columns of the Table 5.9 are not so many,
the suboptimal solutions found are good anyway. In fact, the average of the
costs of the third, fourth and fifth columns are lower than one in the second
column (that found more optimal solutions).

The Table 5.11 reports the average suboptimality value reached at the best
solution found by the planner. This table confirms the considerations done in
for the previous table. In fact for the environment with three state variables
the optimal solution is always found (when a solution exists). For the others
environments the suboptimality increase its value despite the average costs of
the solution that is good anyway as seen in Table 5.10.

The Table 5.12 reports the average time in second used by the planner to
find the best solution (if a solution exists). From this table we can observe
that increasing the number of state variables the time needed increase a lot.
However, we are planning on a relatively big cost map and the times reported
are times needed to find the best solution found. A suboptimal solution can be
found in less time.

126 Chapter 5. Experimental tests

Table 5.11: Average of the suboptimality bound reached at the best solution found
(when is found) in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 1.00 1.25 1.75 1.96 1.63

Table 5.12: Average of the time in seconds used to find the best solution found (when
is found) in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 69.00 691.32 1093.88 1142.58 1059.47

Moreover we report in Figure 5.15 the cost of the solutions along the y-axis
and the time along the x-axis for a solution of this test set. From this graph
we can see how the environments paired with the lattice primitives that take
into account the LLT index find the solution with a low costs. Therefore, when
we can select primitives that considers LLT and primitives created taking into
account only the actuators dynamics, we can select the first one. Moreover we
can see also that the various suboptimal solution have not a big decrease of the
cost, for this reason we could start from an higher value of suboptimality and
increase the decreasing factor to speed up the time in which the first solution
is found.

Instead, in Figure 5.16 we report the number of expansions done by the
search algorithm during a planning along the y-axis and the time along the x-axis.
The trend of the various curves is not so different, unless for the environment
with three state variable that expands few states.

Finally, to analyze the difference between the solutions, we report in Fig-
ure 5.17 an example of the five solutions found in a problem of this set of
tests. In Figure 5.18 there is approximately the path found on the aerial map
to understand where the vehicle pass.

Now, we can define what is the best environment for our objectives. From
a computational point of view the best environment is surely the one with three
state variables. However, it does not take into account dynamic constraints
of the vehicle, in the various maneuvers there is an high risks of overturn and
in some cases the path found with that environment could be unfeasible (path
not executable maintaining certain velocities) or dangerous. For these reasons
the environments to evaluate are the two indicated in the Tables as XYθV LLT
and XYθVδ LLT. The last environment has only a problem: during planning
for performance reasons, the memory needed for the states is pre-allocated and
with this environment the number of states is enormous. So, often the planning
arrive to use also some decades of GB of memory and on the vehicle this is
difficult to have. So, to use on the vehicle, the best choice is the environment

5.3. Planner Evaluation 127

0 500 1000 1500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10

5

XYθ

XYθV

XYθV_LLT

XYθVδ

XYθVδ_LLT

S
o
lu

ti
o
n
 c

o
s
t

Time [s]

Figure 5.15: Cost of the solution found over the time need to found them for a solution
of the second test set

with four state variables and the lattice primitives created with the extended
model considering the LLT index. If we have available a supercomputer we
can also use the environment with five state variables and the lattice primitives
created considering LLT index.

128 Chapter 5. Experimental tests

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3
x 10

7

XYθ

XYθV

XYθV_LLT

XYθVδ

XYθVδ_LLT

N
u
m

b
e
r

o
f

e
x
p
a
n
s
io

n
s

Time [s]

Figure 5.16: Expansions done by the search algorithms in a problem of the second test
set

5.3. Planner Evaluation 129

XYθ
XYθV

XYθV_LLT

XYθVδ

XYθVδ_LLT

Figure 5.17: Solution found for a problem of the second test set with a zoom on two
part of the solution to see better the differences between them

130 Chapter 5. Experimental tests

Figure 5.18: Solution found for a problem of the second test set reported on the real
terrain representation

Chapter 6

Integration with ROS

I accept that every time I get into my car, there’s 20% chance I could die and I

could live with it, but not one percent more!

Niki Lauda - Rush

6.1 Introduction

This chapter describes the current state of the system installed on the vehicle
where we would initially use this planner. Since the system is based mainly on
the ROS middleware we have developed a ROS node for the planner. In the
second part of this chapter we explain that ROS node.

6.2 Current system

The last phase of the project consists in the integration of the developed planner
in the ROS middleware to use it on the ATV vehicle (currently it can only
move following a manual built trajectory). On the vehicle there is a hybrid
system involving ROS and OROCOS middlewares. The current evolution is
making a transition in ROS direction wherever this is possible. The modules
actually integrated are various, but the most relevant (at least for our work) are
ROAMFREE and the trajectory follower.

ROAMFREE executes computations on the data gathered by the sensors
to give information about the robot pose; using it we can identify the actual
position of the robot, the orientation, the current linear velocity and some others
useful information. Using ROAMFREE the planner can know the actual position
of the robot to start the plan. The trajectory follower is the ROS node that uses
the trajectory generated by the planner to give commands to the vehicle and
move it on the generated trajectory. Two additional nodes give to the planner
the map and the goal to reach; in particular, the node that provides the map

132 Chapter 6. Integration with ROS

Figure 6.1: Example of communication between ROS nodes

reads a png image and uses the gray scale values of the pixels publishing the
corresponding cost values as a topic. If something changes in the map, the
planner receives the updates, so it can possibly change some edge costs and
eventually make corrections to the plan.

The planner publishes on a topic the trajectory computed including a velocity
profile and the steering angle at each pose in the trajectory; the controller can
subscribe to that topic to obtain the trajectory and all the rest of the information.
We report an example of communications between the nodes in Figure 6.1.

6.3 Planner node

We have developed a ROS node which allows to use the planner on the ATV
vehicle. We use AD* as default planning algorithm because it has good perfor-
mance and is both anytime and dynamic (as reported in Chapter 5). Moreover,
we have increase the capability of the search algorithm allowing it to publish
a suboptimal solution every time it found a solution. Also, we can change its
goal, its start and the cost map between two iterations of AD* algorithm. The
node can read from a file the parameters to plan. In particular it can read:

• the file of motion primitives to use

• the initial suboptimality value

• the width of the vehicle footprint

• the length of the vehicle footprint

6.3. Planner node 133

• the type of the environment to use among the one with 3 state variables
(x, y, θ), the one with 4 state variables (x, y, θ, v), the one with 5 state
variables (x, y, θ, v, δ), the one with 5 state variables (x, y, θ, v, ω)

• the obstacle threshold (from which cost value a cell has to be considered
as an obstacle)

• the cell size (i.e., the resolution of the map)

• the number of orientations used to initialize the environment

• the maximum time allowed to find a feasible path

• the flag indicating if the node must continue search until a solution is
found (if exists) ignoring the maximum time allowed to find a feasible
path

• the search direction flag (true is forward, false is backward)

• some parameters needed if the environment used is the three variables
environment

– the nominal velocity

– the time to turn in place

• some parameters if the environment used takes into account (x, y, θ, v [, . . .])

– the number of linear velocities admitted

– the linear velocities admitted

– the number of steering angles if the environment take into account
the steering angles

– the number of angular velocities admitted if the environment take
into account angular velocities

– the angular velocities admitted if the environment take into account
angular velocities

This node subscribes to the odometry topic published by ROAMFREE to
get the actual position and velocity of the vehicle, to a topic that publishes the
goal pose to know where the vehicle must go and to a topic that publishes a
map to get the map of the zone in which it needs to navigate. When the node
receives the map it instantiates a new matrix to save it, otherwise it checks its
size. If the current map size and the new map size does not correspond or some
value into the cost map is changed, it changes the map taking into account
how many cells have changed their value. Finally, the node advertise a topic
called path where it publishes the path with the velocity profile associated to
each point for the follower.

134 Chapter 6. Integration with ROS

The node waits the map, the start pose and the end pose and when it get
all these elements it starts to plan. First of all it sets up the environment, then
the search algorithm and finally executes a plan iteration. To have a solution
rapidly we have decided to start with a very big ǫ value (ǫ = 64) and to decrease
it halving its value at each iteration of AD*. In this way the epsilon decrease
rate is not linear, but provides good results due to the fast search of the initial
solutions and refines them in successive iterations. At the end of a plan iteration,
the current solution is published onto a topic, and, if while planning the node
has received different values of start position, end position or map it consider
these changes before continuing with the next iteration. In particular, if the
map is changed it checks how many cells are changed and if they are less than
5% of the number of cells composing the map it notifies the environment and
the planning algorithm of this changes to correct the planned path, otherwise
it forces the planner to restart from scratch because corrections of the current
solution can be more expensive than a new plan. The start position of the
vehicle after one iteration might be different because it started moving with
the previous solution. The node then updates the start position and if the
search is done backward it exploits the previous computation calculating the
new solution, since the g-values of the state did not change. The goal position
probably is the same until the vehicle reaches the planned point; for this reason
if that changes, environment and planner are updated, but, with a backward
search, the planning restarts from scratch (it is a reasonable choice, because
the destination might be changed with a completely different point).

If a solution is found the planner proceeds refining it until the optimal solu-
tion is reached, each time publishing the best current solution. Otherwise, if a
solution does not exist the planner notifies this fact and planning process end,
waiting for a new planning problem.

We have tested this node in ROS using RViz node to view the path computed
and results are good. It find a rapid solution which is not so bad and then it
refines the solution until the optimal solution is found. An example of solution
found and its refinements are shown in Figure 6.2 where it is possible to see how
the first solution is different from the optimal one and how at each iteration the
trajectory becomes smoother and it passes through plain zones instead of hilly
ones.

6.3. Planner node 135

"DTM1450_01. png" bi nar 	 f i l et 	pe=png "DTM1450_01. png" bi nar 	 f i l et 	pe=png

"DTM1450_01. png" bi nar 	 f i l et 	pe=png "DTM1450_01. png" bi nar 	 f i l et 	pe=png

"DTM1450_01. png" bi nar 	 f i l et 	pe=png "DTM1450_01. png" bi nar 	 f i l et 	pe=png

"DTM1450_01. png" bi nar 	 f i l et 	pe=png

Figure 6.2: Example of solution refinement starting from a suboptimal solution reaching
the optimal solution

136 Chapter 6. Integration with ROS

Chapter 7

Conclusion and future works

When you have excluded the impossible, whatever remains, however improbable,

must be the truth.

Sherlock Holmes

In this work we have developed a planner for an autonomous vehicle; the
resulting planner is able to take into account vehicle constraints, both kinematics
and dynamics. To reach this result, we have extended successfully the SBPL
library, creating new planning environments and extending the functionalities of
the AD* planner to use it in a real application of an ATV ackermann vehicle
with limited planning time. We have considered two kind of vehicles, an ATV
vehicle and a differential drive vehicle, and, to consider the path safeness, the
terrain morphology was considered as a cost increment for the path.

A series of tests was done to verify the performance and the effectiveness of
the software that we have developed. The results of the tests are rather good;
despite the need of a considerable amount of time to find an optimal solution,
a suboptimal solution is found very rapidly and the quality of the solution is
greater than the solution found with state of the art solution. Up to now the
software have been used only in simulation, since the global system is under
developed, however simulation results are rather good and we are optimistic on
the performance on the real vehicle.

Our work could be extended in many parts; a first extension concerns the
search algorithm; nowadays, computer have often many processors to use for
computations, so it would be nice if a search algorithm could exploit the paral-
lelism of the actual architectures, maintaining in all cases the advantages of the
anytime and dynamic searches. Currently some parallel versions of A* algorithm
exists (PRA*, IDA*, . . .), but they are neither anytime nor dynamic and they
are not available as components of SBPL. If these algorithms became a reality,
it there will be also a realistic possibility of installing some network device on
the vehicle, compute the path on a supercomputer with many decades of cores
and then send the solution back to the vehicle. This could be done keeping the

138 Chapter 7. Conclusion and future works

same planning software on the vehicle, possibly oriented to small distance plans
as fall-back solution if something in the communications goes wrong. With a
“cloud” based planner we could plan on very large distances and we could use
big states still having good time performance.

Another extension could be done to the SBPL library; it could be useful to
define a generic environment for autonomous vehicle navigation usable with an
arbitrary number of state variables each one with an arbitrary number of values,
overriding for a specific case only the action cost definition and the heuristic
used. This is doable thinking to an appropriate configuration file or a method to
pass parameters in a more generic way (e.g., using dynamic vectors, templates
and other C++ features). In this way changing the vehicle type in planning
problem or changing the state representation could be as simple as changing
the motion primitives.

An additional extension, correlated with the previous one considers the ex-
tension to different kind of vehicle (e.g., aerial vehicles, water vehicles, etc.). In
this way the planner could be suitable for a great number of planning problems.

Another improvement of the library could be a memory usage optimization;
when the number of state variables and the number of states increases, the
planner becomes too cumbersome from a memory consumption point of view.

Analyzing more specifically our work, some extensions could be done rela-
tively to the morphology of the terrain; two cost maps could be used, one that
shows the slope in x direction (positive and negative to consider both slope
directions) and the other that consider the slope in y direction (again, positive
and negative to consider both slope directions). Combining these two maps
we could know the exact orientation of the terrain in a given point and this
representation could be exploited to generate primitives that take into account
also the terrain morphology, using discrete values for the slope and generating
them considering the various terrain morphology combinations. An alternative
approach to slope discretization could be the use of a set of parametric prim-
itives, that, fixed many parameters, it uses the extended model of the vehicle
leaving the inclination of the terrain as parameter where it appears. So, the
LLT computation happens during planning having the exactly informations on
the slope. In this way, we can assign an infinite cost to every action that violate
the LLT constraint and the avoid of overturns is practically certain.

BIBLIOGRAPHY 139

Bibliography

[1] M. Li, “Planning dynamic trajectories within the search based planning
library,” Master’s thesis, Politecnico di Milano, Scuola di Ingegneria In-
dustriale e dell’Informazione, Corso di Laurea Magistrale in Ingegneria
dell’Automazione, AA 2011/2012.

[2] I. E. Paromtchik and C. Laugier, “Motion generation and control for park-
ing an autonomous vehicle,” in Robotics and Automation, 1996. Proceed-
ings., 1996 IEEE International Conference on, vol. 4, pp. 3117–3122, April
1996.

[3] M. Likhachev, Search-based Planning with Motion Primitives. Carnegie
Mellon University.

[4] M. Likhachev and D. Ferguson, “Planning Long Dynamically Feasible Ma-
neuvers for Autonomous Vehicles,” The International Journal of Robotic
Research, vol. 28, pp. 933–945, August 2009.

[5] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-uav motion
replanning for exploring unknown environments,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2013.

[6] M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state
lattice motion primitives,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011.

[7] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field Robotics,
vol. 26, pp. 308–333, March 2009.

[8] M. Likhachev and A. Stentz, “PPCP: Efficient Probabilistic Planning with-
EnvironmentsClear Preferences in Partially-Known Environments,” tech.
rep., American Association for Artificial Intelligence, 2006.

[9] R* Search, Association for the Advancement of Artificial Intelligence, 2008.

[10] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime
search in dynamic graphs,” Artificial Intelligence, vol. 172, pp. 1613–1643,
September 2008.

140 BIBLIOGRAPHY

[11] J. van den Berg, R. Shah, A. Huang, and K. Goldberg, “ANA*: Any-
time Nonparametric A*,” tech. rep., Association for the Advancement of
Artificial Intelligence, February 2011.

[12] Rice University, Kavraki Lab, Open Motion Planning Library: A Primer,
January 2013.

[13] I. A. Şucan and L. E. Kavraki, “Kinodynamic Motion Planning by Interior-
Exterior Cell Exploration.” Workshop on the Algorithmic Foundations of
Robotics, December 2008.

[14] R. Bohlin and L. E. Kavraki, “Path Planning using Lazy PRM,” in Robotics
and Automation, 2000. Proceedings. ICRA ’00. IEEE International Confer-
ence on, pp. 521–528, April 2000.

[15] G. Sánchez and J.-C. Latombe, “A Single-Query Bi-Directional Probabilis-
tic Roadmap Planner with Lazy Collision Checking,” Robotic Research,
vol. 6, pp. 403–417, 2003.

[16] D. Hsu, J.-C. Latombe, and R. Motwani, “Path Planning In Expansive
Configuration Spaces,” International Journal of Computational Geometry
& Applications, vol. 9, no. 4 & 5, pp. 495–512, 1999.

[17] J. J. Knuffer and S. M. LaValle, “RRT-Connect: An Efficient Approach to
Single-Query Path Planning,” Robotics and Automation, 2000. Proceed-
ings. ICRA ’00. IEEE International Conference on, vol. 2, pp. 995–1001,
April 2000.

[18] R. Bohlin and L. E. Kavraki, “A Randomized Approach to Robot Path
Planning Based on Lazy Evaluation.” Handbook on Randomized Comput-
ing, 2001.

[19] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic Roadmaps for Path Planning in High-Dimensional Configura-
tion Spaces,” Robotics and Automation, IEEE Transactions on, vol. 12,
pp. 566–580, August 1996.

[20] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal mo-
tion planning,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[21] L. Jaillet, J. Cortés, and T. Simeon, “Sampling-Based Path Planning on
Configuration-Space Costmaps,” Robotics, IEEE Transactions on, vol. 26,
pp. 635–646, August 2010.

[22] S. Russel and P. Norvig, Intelligenza Artificiale. Un Approccio Moderno,
vol. 1. Pearson, 3 ed., September 2010.

BIBLIOGRAPHY 141

[23] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown
terrain,” Robotics, IEEE Transactions on, vol. 21, pp. 354–363, June 2005.

[24] Z. Shiller, S. Sharma, I. Stern, and A. Stern, “Obstacle Avoidance at High
Speeds,” The International Journal of Robotic Research, vol. 32, pp. 1030–
1047, August/September 2013.

[25] F. Ambrosiani, “Interpolazione di mappe dem mediante algoritmi di dis-
tanza inversa pesata e funzioni a base radiale,” Master’s thesis, Politecnico
di Milano, Scuola di Ingegneria Industriale e dell’Informazione, Corso di
Laurea Magistrale in Ingegneria Meccanica, AA 2012-2013.

[26] C. Hu, “Comparison of the interpolation methods on digital terrain mod-
els,” Master’s thesis, Politecnico di Milano, Scuola di Ingegneria In-
dustriale e dell’Informazione, Corso di Laurea Magistrale in Ingegneria
dell’Automazione, AA 2012/2013.

[27] “DEM standards.”
http://nationalmap.gov/standards/demstds.html.

[28] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning control sets
for constrained motion planning in discrete state spaces,” in Proceedings
of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’05), pp. 3231–3237, August 2005.

[29] Z. Shiller and Y.-R. Go, “Dynamic Motion Planning of Autonomous Ve-
hicles,” Robotics and Automation, IEEE Transactions on, vol. 7, pp. 241–
249, April 1991.

[30] T. M. Howard and A. Kelly, “Optimal Rough Terrain Trajectory Genera-
tion for Wheeled Mobile Robots,” The International Journal of Robotics
Research, vol. 26, pp. 141–166, February 2007.

[31] “Rudolph Ackermann Notes.”
http://en.wikipedia.org/wiki/Rudolph_Ackermann.

[32] “Rudolph Ackermann Biography.”
http://www.spartacus.schoolnet.co.uk/Jackermann.htm.

[33] M. Zago, “Modellistica e controllo del servomeccanismo di sterzo di un
atv,” Master’s thesis, Politecnico di Milano, Scuola di Ingegneria Industriale
e dell’Informazione, Corso di Laurea Magistrale in Ingegneria Elettronica,
AA 2010/2011.

http://nationalmap.gov/standards/demstds.html
http://en.wikipedia.org/wiki/Rudolph_Ackermann
http://www.spartacus.schoolnet.co.uk/Jackermann.htm

142 BIBLIOGRAPHY

Appendix A

Data extracted from tests

The tables from Table A.1 to Table A.9 are referred to the first test set, whereas
tables from Table A.10 to Table A.16 are referred to second test set. The
costs in the tables are expressed in milliseconds (multiplied for 103 for a better
comprehension) incremented in percentage of a portion of not flat terrain, the
times are expressed in seconds and suboptimalities are pure numbers.

Table A.1: Number of solutions found (also suboptimal) in the 100 problems of the
first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 95 95 95 76 95

ANA* 95 95 95 76 95

AD* 95 95 95 76 95

144 Appendix A. Data extracted from tests

Table A.2: Number of solutions not found in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 5 5 5 24 5

ANA* 5 5 5 24 5

AD* 5 5 5 24 5

Table A.3: Number of optimal solutions (suboptimality equal to 1) found (when is
found) in 1500 seconds in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 95 90 92 22 69

ANA* 95 79 35 19 39

AD* 95 91 85 22 69

Table A.4: Number of solutions that not have reached the optimality (when is found)
in 1500 seconds in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 0 5 3 54 26

ANA* 0 16 60 57 56

AD* 0 4 10 54 26

Table A.5: Average of the costs divided by 103 at the best solution found (when is
found) in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 320.529 115.089 108.132 121.631 108.093

ANA* 320.529 117.722 111.153 132.868 108.356

AD* 320.529 115.089 108.278 121.631 108.093

145

Table A.6: Average of the suboptimality bound reached at the best solution found
(when is found) in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 1.00 1.01 1.01 1.17 1.05

ANA* 1.00 1.04 1.07 1.25 1.13

AD* 1.00 1.01 1.02 1.17 1.05

Table A.7: Average of the time in seconds used to find the best solution found (when
is found) in the 100 problems of the first test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 29.27 510.41 564.62 1196.17 914.31

ANA* 152.10 687.60 1179.14 1262.05 1203.53

AD* 29.12 483.55 688.28 1197.79 941.43

Table A.8: This table shows how many times a given planner found a solution that cost
less (lower suboptimality) in front of the other planners (also equal are accepted only
for ARA* and AD* due to the algorithm similarity) on the 100 problems of the first
test set when a solution is found

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 0 7 50 38 34

ANA* 0 2 6 14 2

AD* 0 7 49 38 34

Table A.9: This table shows how many times a given planner found a solution that cost
less or equals (lower or equal suboptimality) respecting the other planners on the 100
problems of the first test set when a solution is found

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

ARA* 95 93 89 62 93

ANA* 95 88 45 38 61

AD* 95 93 87 62 93

146 Appendix A. Data extracted from tests

Table A.10: Number of solutions found (also suboptimal) in the 70 problems of the
second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 55 55 55 38 56

Table A.11: Number of solutions not found in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 15 15 15 32 14

Table A.12: Number of optimal solutions (suboptimality equal to 1) found (when is
found) in 1500 seconds in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 55 45 25 14 28

Table A.13: Number of solutions that not have reached the optimality (when is found)
in 1500 seconds in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 0 10 30 24 28

Table A.14: Average of the costs divided by 103 at the best solution found (when is
found) in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 270.329 151.575 121.806 123.367 123.204

Table A.15: Average of the suboptimality bound reached at the best solution found
(when is found) in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 1.00 1.25 1.75 1.96 1.63

Table A.16: Average of the time in seconds used to find the best solution found (when
is found) in the 70 problems of the second test set

XYθ XYθV XYθV LLT XYθVδ XYθVδ LLT

AD* 69.00 691.32 1093.88 1142.58 1059.47

Appendix B

User manual

The software is provided on the AirLAB svn. From that repository it is possible
to find all software sources developed for this thesis. They was developed and
used under a Linux operating system, in particular the compatbility is granted
for *buntu based distribution from 12.04, however, it should be compatible with
all Linux distributions. Moreover it should work correctly also on Mac OS and
Windows if the dependencies are satisfied and gcc-4.7 compiler and cmake are
installed and configured correctly.

B.1 Maps

B.1.1 Map generation

First of all, in order to use the terrain generation tool is needed a Matlab instal-
lation. After is necessary download the Automatic Terrain Generation toolbox
from the Mathworks website. Once the download is finished, from the root of
the cloned folder, using a shell move into Maps/TerrainGeneration/. In that
folder there is a Matlab script called myTerrainGenerationScript.m. Copy and
paste it into the root folder of the Automatic Terrain Generation Toolbox. Now,
using Matlab moving into the root folder of Automatic Terrain Generation and
executing the script in the file (writing the file name in the Matlab shell) is
possible to generate a terrain.

To change some terrain parameters is possible change some values into the
Matlab scripts, for example the generated terrain size, the roughness, the initial
height, . . . , in according on what explained in Chapter 5 about Automatic
Terrain Generation toolbox.

http://www.mathworks.com/matlabcentral/fileexchange/39559-automatic-terrain-generation

148 Appendix B. User manual

B.1.2 Map creation from DEM

Build

First of all, to use these softwares is needed a valid installation of png++
library. After have installed that library, from the root of the cloned folder,
using a shell move into Maps/DEMDTM/ and copy into that position the file
FindPNG.cmake installed within png++ library (its position is dependent on
the library installation place) and staying into Maps/DEMDTM/ folder execute
the following commands:

mkdir build

cd build

cmake ..

make

cd ..

Now in the folder are available all the executable files:

• demToOccupancy

• demToOccupancySlope

• imageToOccupancy

• occupancyToRandomGoals

• convertAll.sh

• convertAllSlope.sh

Usage - demToOccupancy

The executable demToOccupancy allow to transform a DEM given in AR-
C/INFO ASCII GRID format (as the DEM downloaded from SardegnaGeoportale)
into an occupancy map considering the heights and optionally also converting it
into an image and into an environment configuration file template. The syntax
of the executable is:

./ demToOccupancy srcFile dstFile [-I imgFile]

[-eXYT xytEnvDstTemplate]

[-eXYTV xytvEnvDstTemplate]

[-eXYTVP xytvpEnvDstTemplate]

where:

srcFile is the source DEM file

dstFile is the destination file where the occupancy map is saved

http://www.sardegnageoportale.it/index.php?xsl=1594&s=40&v=9&c=8936&na=1&n=100

B.1. Maps 149

imgFile is the destination png file where the map is saved and black pixel are
parts of map higher than threshold, white pixel are the lower ones

xytEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ) as state variables is saved with the
cost map of the DEM converted

xytvEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ, v) as state variables is saved with the
cost map of the DEM converted

xytvpEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ, v, δ) as state variables is saved with
the cost map of the DEM converted

If the height threshold (positive for mountains and negative for sea) would
be changed, before compile all programs is necessary modify the two values:

• HEIGHT THRESHOLD

• NEGATIVE HEIGHT THRESHOLD

at the top of the source file, defined with a #define instruction.

Usage - demToOccupancySlope

The executable demToOccupancySlope allow to transform a DEM given in AR-
C/INFO ASCII GRID format (as the DEM downloaded from SardegnaGeoportale)
into an occupancy map considering its slopes steepness and optionally convert-
ing it also into an image and into an environment configuration file template.
The syntax of the executable is:

./ demToOccupancySlope srcFile dstFile [-I imgFile]

[-eXYT xytEnvDstTemplate]

[-eXYTV xytvEnvDstTemplate]

[-eXYTVP xytvpEnvDstTemplate]

where:

srcFile is the source DEM file

dstFile is the destination file where the occupancy map is saved

imgFile is the destination png file where the map is saved using pixel colors in
relation to the steepness, in particular black pixels are unaccessible cells,
white pixel are free cells and the middle color corresponds to the risks

xytEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ) as state variables is saved with the
cost map of the DEM converted

http://www.sardegnageoportale.it/index.php?xsl=1594&s=40&v=9&c=8936&na=1&n=100

150 Appendix B. User manual

xytvEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ, v) as state variables is saved with the
cost map of the DEM converted

xytvpEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ, v, δ) as state variables is saved with
the cost map of the DEM converted

If the slope threshold, the negative height limit (how much below sea level),
the distance between two cells horizontally and vertically and the distance be-
tween two cells diagonally would be changed, before compile all programs is
necessary modify the values:

• SLOPE THRESHOLD

• NEGATIVE HEIGHT THRESHOLD

• R DIST

• D DIST

at the top of the source file, defined with a #define instruction.

Usage - imageToOccupancy

The executable imageToOccupancy allow to transform a PNG gray scale image
into an occupancy map or into an environment configuration file template as-
signing a decimal cost value proportioned on the color value of the pixel. The
syntax of the executable is:

./ imageToOccupancy srcFile [-O occFile]

[-eXYT xytEnvDstTemplate]

[-eXYTV xytvEnvDstTemplate]

[-eXYTVP xytvpEnvDstTemplate]

where:

srcFile is the source png image

occFile is the destination file where the occupancy map is saved

xytEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ) as state variables is saved with the
cost map of the image converted

xytvEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ, v) as state variables is saved with the
cost map of the image converted

B.1. Maps 151

xytvpEnvDstTemplate is the destination file where a template of configuration
file for an environment with (x, y, θ, v, δ) as state variables is saved with
the cost map of the image converted

If the resolution of the map (how meters corresponds to a pixel) would be
changed, before compile program is necessary modify the value of RESOLU-
TION at the top of the source file, defined with a #define instruction.

Usage - occupancyToRandomGoals

The executable occupancyToRandomGoals allow to find many possible valid
goals in the map, maybe not reachable, but surely valid (the cells are not obsta-
cle). The goals are created considering all five state variables taken into account
in the environments; the not useful variables must not be considered during en-
vironment initialization. The goals are saved on a file goalsFileSlope.txt. The
syntax of the executable is:

./ occupancyToRandomGoals occupancyFile

where occupancyFile is the file containing the occupancy map.

If the number of goals to save would be changed, before compile program is
necessary modify the value of NUMGOALS at the top of the source file, defined
with a #define instruction. To change the discretization parameters up to now
is mandatory make some modifies to the code.

Usage - convertAll.sh and convertAllSlope.sh

These two bash scripts do the same things, but one launch the demToOccu-
pancy program, the other launch demToOccupancySlope program. These bash
scripts take in input a range of value and convert sequentially a series of DEMs
named as DTM####.asc (or changing the name also DEM####.asc or
DSM####.asc where the #### stands for digits from 0 to 9) into an im-
age to view graphically the terrain and choose what use. Uncommenting a line
in the script and commenting the actual program launch and the deleting of
occupancy map file created is also possible create immediately the occupancy
map and the environments configuration templates more than images for each
DEM. The syntax of the executables is:

./ convertAll .sh startNumber endNumber

./ convertAllSlope .sh startNumber endNumber

where startNumber and endNumber are the interval of numbers contained in
the DEM file name to convert.

152 Appendix B. User manual

B.2 Lattice Primitives

In this folder are provided many pieces of code to generate the primitives. Below
are explained only the main program created and the more developed, hence
the file more suitable for an immediate use, but if someone would see also the
other source files they are leaved as example.

B.2.1 ACADO set up

Many of these kind of primitives was generated with ACADO, so first of all
is necessary download it and follow the instruction of building present on the
website. After is necessary execute the instruction:

source <ACADO_ROOT >/build/acado_env .sh

or append the previous line at the end of the ∼/.bashrc file and restart the
terminal or source the ∼/.bashrc file. At this point is possible to compile all
the programs that use ACADO.

B.2.2 Bocop set up

Other primitives was generated using Bocop solver, so it must be downloaded
from the website and install it following the instructions reported on the website.
Once the program was installed pick the file main.cpp from the folder Bocop-
Files/ of our software and place it into the <BOCOP ROOT>/core/ replacing
the existing main.cpp. Now all is ready to use Bocop to solve our BVPs.

B.2.3 Lattice Primitives with Kinematic Model

Build

To build these program, in a terminal, move the position from the root of the
cloned folder into MotionPrimitives/xytheta not unif/ folder and copy there
the file FindACADO.cmake from <ACADO ROOT>/cmake/. Now execute
the commands:

mkdir build

cd build

cmake ..

make

cd ..

Now, in the folder are available all the executable files:

• xytheta

• genprimsvpos.sh

• genminprimsvpos.sh

http://sourceforge.net/p/acado/wiki/Home/
http://bocop.org/

B.2. Lattice Primitives 153

• xytheta parallel

• rotate all motions

• negative velocities generation

Usage - xytheta

This program allow to create a set of primitives using the kinematics model of
the vehicle. The syntax to launch it is:

./ xytheta -t t_i t_f -s s_x s_y -e e_x e_y

where:

t i is the initial discrete θ orientation value of the vehicle

t f is the final discrete θ orientation value of the vehicle

s x is the start discrete position x of the vehicle

s y is the start discrete position y of the vehicle

e x is the end discrete position x of the vehicle

e y is the end discrete position y of the vehicle

Launching the executable the problem is solved and the solution of the BVP
is saved in two files: one is formatted as a lattice primitives, the other is done
to print the trajectory with gnuplot or Matlab (contains only the continuous
coordinates).

Usage - genprimsvpos.sh

This bash script allow to create in a file all the lattice primitives for a given pair
of discrete orientation values in an interval of cells since a certain distance from
the origin. The syntax to launch it is:

./ genprimsvpos .sh t_i t_f interval

where:

t i is the initial θ orientation of the vehicle

t f is the final θ orientation of the vehicle

interval is how far x and y must go from the origin; for clarity, if as interval
is passed the value 3, all primitives in all combination of cells between
x ∈ [−3..3] and y ∈ [−3..3] are tried to be generated

At the end of the execution in a file we have the primitives found formatted
as lattice primitives, in another files we have only the continuous pose to plot
them in gnuplot or Matlab. All the intermediate files generated during solving
phase and not necessary at the end of the script are deleted.

154 Appendix B. User manual

Usage - genminprimsvpos.sh

This bash script allow to create in a file all the lattice primitives for a given pair
of discrete orientation values trying the generation from the cells nearer to the
origin and increasing the distance at each iteration. When a solution is found
with this model the script ends, finding one primitive. The syntax to launch it
is:

./ genminprimsvpos .sh t_i t_f

where:

t i is the initial θ orientation of the vehicle

t f is the final θ orientation of the vehicle

At the end of the execution in a file we have the primitive found formatted
as lattice primitive, in another files we have only the continuous pose to plot
them in gnuplot or Matlab. All the intermediate files generated during solving
phase and not necessary at the end of the script are deleted.

Usage - xytheta parallel

Launching this executable many processes are generated, one for each θ com-
bination in according on what explained in Chapter 4 and in Chapter 5. All of
these process execute one bash script between the previous two explained (in
base on the strategy generation; the second strategy is better, how written in
Chapter 4), specifying in the code the script to execute. The syntax is:

./ xytheta_parallel

At the end we have all the lattice primitives with θ orientation start value in the
first quadrant. Pay attention that many processes are launched, so if we have
not a great number of processor to manage all them, use this program is not a
good idea.

Usage - rotate all motions

This program allow to rotate all primitives generated of π
2 rad three times

obtaining all primitives in according to what explained in Chapter 4. The syntax
is:

./ rotate_all_motions -d primitives_directory

where primitives directory is the folder containing all the primitives generated
by the parallel execution program or generated one by one with the previous pro-
grams. As output is given a file xytheta rotate.txt in the same folder containing
all the lattice primitives usable in the planner and four other files containing
the continuous values, one for each start orientation value quadrant, in order to
plot the primitives.

B.2. Lattice Primitives 155

Usage - negative velocities generation

This executable takes in input the file generated by rotate all motions program
and give in output the old primitives file more all primitives previously generated
if the velocity take into account would be negative instead of positive, making
a transformation of the trajectories. The syntax is:

./ negative_velocities_generation primitives_file

B.2.4 Lattice Primitives considering Actuators Dynamics

In this subsection are explained the software developed using the model that
introduces the actuators dynamics. This kind of primitives are generated both
for the environment that takes into account four state variables during planning
phase and the environment that takes into account five state variables during
planning phase. Due to the similarity of the executables are explained the
procedure in parallel for both the program types developed.

Build

Starting from the root of the software get from svn, the folder in which we
are interested in are MotionPrimitives/1030 theta not unif/ and MotionPrimi-
tives/1205 intro steer/. In this two folders is necessary copy the FindACADO.cmake
file as explained before. After in both folders execute the following commands:

mkdir build

cd build

cmake ..

make

cd ..

Now, in the first folder we have the executables:

• ackermann space

• ackermann time vpos

• genprimsvpos.sh

• genminprimsvpos.sh

• ackermann time parallel

• ackermann time parallel min

• rotate all motions

• negative velocities generation

156 Appendix B. User manual

whereas in the second folder there are the executables:

• ackermann space

• ackermann steerinit vpos

• genprimsvpos.sh

• genminprimsvpos.sh

• ackermann steerinit parallel

• ackermann steerinit parallel min

• rotate all motions

• negative velocities generation

Usage - ackermann space

This executable solve the simple kinematic problem preparing the solution found
into some files for the executable that solve the problem with the model com-
prising the actuators dynamics. The file is common for both the folders and the
syntax is:

./ ackermann_space -t t_i t_f -s s_x s_y

-e e_x e_y -(vpos|vneg)

where:

t i is the initial discrete θ orientation value of the vehicle

t f is the final discrete θ orientation value of the vehicle

s x is the start discrete position x of the vehicle

s y is the start discrete position y of the vehicle

e x is the end discrete position x of the vehicle

e y is the end discrete position y of the vehicle

vpos this flag is used to consider the assumptions on the final cells in accord-
ing on explanations done in Chapter 4, considering the velocity used to
generate the primitive more or equal to 0

vneg this flag is used to consider the assumptions on the final cells in accord-
ing on explanations done in Chapter 4, considering the velocity used to
generate the primitive less or equal to 0

B.2. Lattice Primitives 157

Usage - ackermann time vpos and ackermann steerinit vpos

These two executables solve the problem that take into account the actua-
tors dynamics. The first executable creates primitives file that considers as
state (x, y, θ, v), whereas the second executable consider in the primitives saved
(x, y, θ, v, δ). The velocities specified in these files must be both positive veloc-
ities and the initial values is given by ackermann space execution. The syntaxes
are:

./ ackermann_time_vpos -v v_i v_f -t t_i t_f

-s s_x s_y -e e_x e_y

./ ackermann_steerinit_vpos -st st_i -v v_i v_f

-t t_i t_f -s s_x s_y -e e_x e_y

where:

st i is the initial discrete steering angle value of the vehicle

v i is the initial discrete velocity value of the vehicle

v f is the final discrete velocity value of the vehicle

t i is the initial discrete θ orientation value of the vehicle

t f is the final discrete θ orientation value of the vehicle

s x is the start discrete position x of the vehicle

s y is the start discrete position y of the vehicle

e x is the end discrete position x of the vehicle

e y is the end discrete position y of the vehicle

At the end of the solving phase a file with the lattice primitive generated is
created and another file containing continuous pose to plot them is created.

Usage - genprimsvpos.sh and genminprimsvpos.sh

These two bash scripts use the same strategy of creation of the scripts explained
for the kinematic model, but in this case for each pair of θ passed as arguments
are created the primitives for each pair of start/end positive velocities and with
the model that save also the steering values also for each start steering value
admissible.

158 Appendix B. User manual

Usage - ackermann time parallel, ackermann time parallel min, acker-
mann steerinit parallel and ackermann steerinit parallel min

These executables carry out the same operations done by the executable xy-
theta parallel considering the other models. In particular the executables with-
out min at the end of the name launch in parallel the bash script genprimsv-
pos.sh, the others launch the script genminprimsvpos.sh. The only additional
information to add during launch is the velocities signs, so the syntaxes are:

./ ackermann_time_parallel -t (vpos|vneg)

./ ackermann_time_parallel_min -t (vpos|vneg)

./ ackermann_steerinit_parallel -t (vpos|vneg)

./ ackermann_steerinit_parallel_min -t (vpos|vneg)

For our problem set up we generate all the primitives with positive velocities
and after we transform it creating the primitives with negative velocities.

Usage - rotate all motions

As explained for the previous model, the executable make the same work, chang-
ing the values of the states saved to obtain a rotation of the primitives. The
syntax is the same explained before, but change the code because here we have
more informations.

Usage - negative velocities generation

Also in this case the syntax is the same explained before and the work done is the
same: transform the primitives saved to create a set of primitives with positive
and negative velocities. The syntax is the same of the executable developed
for the previous model used, but change the code because here we have more
informations.

B.2.5 Lattice Primitives considering LLT

This kind of primitives was generated using Bocop as solver. The proce-
dure to solve the two kind of BVPs (one save only (x, y, θ, v), the other save
(x, y, θ, v, δ)) is similar so in the same way of the previous case the explanations
are given in parallel.

Build

The two folders taken into account in this case areMotionPrimitives/0207 bocop single track/
andMotionPrimitives/0212 bocop single track steer/. Into this folder are presents
many files. All the files with .tpp extension are C++ template files and are useful
to define the model. Some other files are used by Bocop to define the problem,
start conditions, end conditions and all things needed to solve the Optimal Con-
trol Problem. Between all the files there is a file named problem.def that contain

B.2. Lattice Primitives 159

informations on the problem and it is needed to create the executable. Now,
open the Bocop GUI (launching the file <BOCOP ROOT>/qtgui/BocopGui)
and load one of the problem.def file located into one of the folder listed before
(in base of which problem want solve). From the GUI click on the hammer
button to compile the project. At this point in the folder of our problem an
executable file is appeared. Before launch that, move the terminal into the
problem folder and execute the following commands:

mkdir build

cd build

cmake ..

make

cd ..

Now, in the folder (which folder depends on the problem chosen) the fol-
lowing executables are available:

• create files

• bocop

• genminprimsvpos.sh

• parallel execution

• rotate all motions

Usage - create files

This executable allow to create the file containing some problem informations
and the file containing bounds of the problem. Finally it allow to catch the data
from the result file generated by bocop and use it to create our primitives files.
The syntaxes used to launch these programs are:

./ create_files -(i|r) -v v_i v_f -t t_i t_f

-s s_x s_y -e e_x e_y

./ create_files -(i|r) -st st_i -v v_i v_f

-t t_i t_f -s s_x s_y -e e_x e_y

depending if we are solving the problem that save in the solution the steering
informations or not. In the previous commands the parameters are:

i indicate that this program creates the problem parameters file and the bound-
ary condition file

r indicate that this program analyze the bocop results file and save the data we
need into a file

st i is the initial discrete steering angle value of the vehicle

160 Appendix B. User manual

v i is the initial discrete velocity value of the vehicle

v f is the final discrete velocity value of the vehicle

t i is the initial discrete θ orientation value of the vehicle

t f is the final discrete θ orientation value of the vehicle

s x is the start discrete position x of the vehicle

s y is the start discrete position y of the vehicle

e x is the end discrete position x of the vehicle

e y is the end discrete position y of the vehicle

The files created by this program are useful to solve our problems and to create
all primitives.

Usage - bocop

This is the executable created by Bocop and allow to solve an OCP. With the
modified main.cpp copied into Bocop folder instead to force the executable
to read problem.def and problem.bound files, is possible to pass them on the
command line. This feature is particularly important in parallel solving process.
To use this executable in order to solve a problem we can create the files needed
with create files executable and after launch this program with:

./ bocop file.def file.bound

This generate some files, but the important is the file with .sol extension. In
that file there are the results, viewable with the Bocop GUI or converting it
with create files executable in a file containing the primitives generated and in
another file containing the continuous pose to plot the primitives.

Usage - genminprimsvpos.sh

This script in the same way of the previous scripts explained with the same
name allow to generate a group of primitives given start orientation and final
orientation. All the files are created and deleted into the script and at the end of
the script execution in the folder are present only the primitives files formalized
to be joined and used in the planner and the files to make plots of the primitives.

If we would create primitives with negative velocities, change the velocities
used in this script and some conditions in create files program is enough.

B.2. Lattice Primitives 161

Usage - parallel execution

This program is launched in same way of the executable explained before that
parallelize the creation process and make the same work, in fact it parallelizes
the execution of the genminprimsvpos.sh script. The syntax is:

./ parallel_execution -t vpos

Usage - rotate all motions

Also in this case this executable rotate the primitives generated to have at least
one primitive for each start orientation. The syntax is the same explained before
for the other programs with the same name.

B.2.6 Differential Drive model primitives

There is also the program to build the lattice primitives for differential drive
vehicle. Up to now, the program develop exploits ACADO as solver.

Build

First of move into the folderMotionPrimitives/differential drive/1213 grid11 TSTV.
In that folder copy the file FindACADO.cmake as explained previously. Now ex-
ecute the following commands:

mkdir build

cd build

cmake ..

make

cd ..

Now in the folder we have three executables:

• dd time vpos

• genprimsvpos.sh

• dd time parallel

Usage - dd time vpos

This executable in the same way of the executables for an ackermann vehicle
allow to create a lattice primitive for a differential drive vehicle as explained
in Chapter 4 to use them with the environment for differential drive vehicles
explained in Chapter 5. The syntax to launch this program is:

./ dd_time_vpos -w w_i w_f -v v_i v_f

-t t_i t_f -s s_x s_y -e e_x e_y

162 Appendix B. User manual

where:

w i is the initial discrete angular velocity value of the vehicle

w f is the final discrete angular velocity value of the vehicle

v i is the initial discrete linear velocity value of the vehicle

v f is the final discrete linear velocity value of the vehicle

t i is the initial discrete θ orientation value of the vehicle

t f is the final discrete θ orientation value of the vehicle

s x is the start discrete position x of the vehicle

s y is the start discrete position y of the vehicle

e x is the end discrete position x of the vehicle

e y is the end discrete position y of the vehicle

As output this executable gives two files, one formatted with the lattice
primitives and the others containing the continuous values to plot.

Usage - genprimsvpos.sh

This executable accepts as arguments the start discrete orientation value, the
end discrete orientation value and the interval of cells in which try to generate
the primitives. At the end all the primitives with all combinations of positive
velocities (both linear and angular) findable in the given interval for the start
and end discrete orientation values are generated and stored in a file.

Usage - dd time parallel

This program allow to launch in parallel the previous explained bash script
in order to generate all primitives needed. If we want change the interval of
orientation generated in parallels is necessary change the for cycle initialization
end out conditions of the source code, after recompile the program and execute.
The syntax of this executable is:

./ dd_time_parallel -t vpos

B.3. SBPL - our modified planning library 163

B.3 SBPL - our modified planning library

Build and Install

To build the library open a terminal and move from the root of our software
into the folder sbpl/. From this folder execute some commands:

mkdir build

cd build

cmake ..

make

At this moment the library is compiled and is also usable, however if we want
use it in ROS is mandatory the installation of the library into the system, so as
superuser execute the command:

make install

Now, is all ready to test the library and for example in the build folder there
are some executables that can be used to test the planner, in particular the
executables are:

• test sbpl

• xythetav test

• xythetavsteer test

• performance test

• xythetavomega test

Moreover there is an additional program called test adjacency list, but for the
our objectives is not useful.

Usage - test sbpl

This program is the default test program shipped with SBPL. We have changed
it a little to test the environment that take into account 3 state variables that
we have modified. The syntaxes to launch this software are:

./ test_sbpl [-s] [--env=<env_t >]

[--planner=<planner_t >]

[--search -dir=<search_t >]

<cfg file > <mot prims >

./ test_sbpl -h

where:

h is the flag to show the help

164 Appendix B. User manual

s is the flag to simulate a robot navigation in completely unknown environment
(cells occupation is discovered moving the robot)

env allow to specify the environment used to do planning. In our case we are
interested in xytheta for this executable, that is also the default environ-
ment if none is specified

planner allow to specify the planning algorithm to use. In our case we are
interested in one of adstar, arastar or anastardouble (default anastar does
not work). If it is not specified the default planning algorithm value is
arastar

search-dir allow to specify if the search must be done forward or backward. By
default the value is set to backward

cfg file this parameter is needed and is the path to the environment configu-
ration file. Some sample of configuration files for this executable are in
sbpl/myenvfiles/xytheta env/ subdivided for number of orientation val-
ues. Other samples of environments are into sbpl/env examples/

mot prims this parameter specifies the motion primitives file and despite in
the original test file this file is not necessary for our scope is mandatory
specify a motion primitive file. In the folder sbpl/myprimitives/ there are
some lattice primitive samples. Other primitives file are into the folder
sbpl/matlab/mprim/

If we want a complete list of environments and planning algorithm to use with
this executable we can show the help and all options are listed. The executable
save the solution in a file called sol.txt.

Usage - xythetav test

This program allow to test the environment with four state variables that we
have developed. The syntax to launch it is:

./ xythetav_test [-s|-m] [--planner=<planner_t >]

[--search -dir=<search_t >]

<cfg file > <mot prims >

./ xythetav_test -h

where:

h is the flag to show the help

s is the flag to simulate a robot navigation in completely unknown environment
(cells occupation is discovered moving the robot)

B.3. SBPL - our modified planning library 165

m is the flag to execute manually managed iterations of planning, publishing
every suboptimal solution found (using the changes done in adstar). The
only planning algorithm usable with this flag is adstar up to now

planner allow to specify the planning algorithm to use. In our case we are
interested in one of adstar, arastar or anastardouble (default anastar does
not work)

search-dir allow to specify if the search must be done forward or backward

cfg file this parameter is needed and is the path to the environment configu-
ration file. Some sample of configuration file are in sbpl/myenvfiles/xy-
thetav env/ subdivided for number of orientation values

mot prims this parameter specifies the motion primitives file. In the folder
sbpl/myprimitives/ there are some primitive samples usable

To show a detailed help launch the executable with -h flag. The solution found
is saved into solContinuous.txt file. If the executable is launched with -m flag
every solution found is saved into solContinuous(N).txt where in place of (N)
there is the ǫ value multiplied for 10.

Usage - xythetavsteer test

This program allow to test the environment with five state variables that we
have developed. The syntax to launch it is:

./ xythetavsteer_test [-s] [--planner=<planner_t >]

[--search -dir=<search_t >]

<cfg file > <mot prims >

./ xythetavsteer_test -h

where:

h is the flag to show the help

s is the flag to simulate a robot navigation in completely unknown environment
(cells occupation is discovered moving the robot)

planner allow to specify the planning algorithm to use. In our case we are
interested in one of adstar, arastar or anastardouble (default anastar does
not work)

search-dir allow to specify if the search must be done forward or backward

cfg file this parameter is needed and is the path to the environment configu-
ration file. Some sample of configuration file are in sbpl/myenvfiles/xy-
thetavsteer env/ subdivided for number of orientation values

166 Appendix B. User manual

mot prims this parameter specifies the motion primitives file. In the folder
sbpl/myprimitives/ there are some primitive samples usable

To show a detailed help launch the executable with -h flag. The solution found
is saved into solContinuous.txt file.

Usage - performance test

This program allow to launch a series of tests to face the performance and the
effectiveness of the various environments and algorithms. Before launch this
executable is necessary change GLOBAL PERFORMANCE TEST value in sb-
pl/src/include/sbpl/config.h setting it to 1 and after recompile the library. In
this way for each planning problem solved, together the solution is saved into
a file a recap of the performance as explained in Chapter 5 and the majority
of the video outputs are suppressed. All the files are stored in a folder struc-
ture with format ./Performance/<planner used>/<environment used>/. The
start position of the robot, the goal positions and the occupancy map are read
from some files putted in the same folder of the executable called respectively
startFile.txt, goalsFile.txt and occupancyFile.txt. If the number of tests or the
typology of tests must be changed it must be changed into the code. The
syntax to launch this executable is simply:

./ performance_test

Usage - xythetavomega test

This program allow to test the environment with five state variables for the
differential drive vehicles that we have developed. The syntax to launch it is:

./ xythetavsteer_test [--planner=<planner_t >]

[--search -dir=<search_t >]

<cfg file > <mot prims >

./ xythetavsteer_test -h

where:

h is the flag to show the help

planner allow to specify the planning algorithm to use. In our case we are
interested in one of adstar, arastar or anastardouble (default anastar does
not work)

search-dir allow to specify if the search must be done forward or backward

cfg file this parameter is needed and is the path to the environment configu-
ration file

mot prims this parameter specifies the motion primitives file

B.4. ROS Nodes 167

To show a detailed help launch the executable with -h flag. The solution found
is saved into solContinuous.txt file.

B.4 ROS Nodes

The ROS node developed to use the trajectory planner is created as part of the
quadrivio package. However, it is usable anyway also to make plans for different
vehicles respect the ATV involved in quadrivio project.

Build

To use the planner node, ROS must be installed and configured opportunely as
explained in the on-line wiki. Moreover SBPL library with our changes must be
installed into the system. At this point two ROS node must be added to the
ROS workspace. These nodes are in the folders ROSNodes/trajectoryPlanner/
and ROSNodes/map server decimal costs/. The first is the planner node, the
second is a node that gives a map with decimal costs to the planner. These
nodes can be added in two different packages. Now, from the root of the catkin
workspace execute:

catkin_make

roscore

and the nodes are ready to be used.

Usage - map server decimal costs

This node allow to publish on a topic the map used, reading it from a png
image. To do this work, somewhere in the filesystem we must have a gray scale
png image and a correspondent yaml file containing the name of the image and
the resolution used. At this point the node can be launched with:

rosrun <package > map_server_decimal_costs

<yaml file >

where <yaml file> is the file explained before and <package> is the name of
the package within the node is placed. On a topic named /map is published
the map values. The only attention must be posed to the map order format,
because it is the same of the original map server of ROS: the first values of the
vector published corresponds to the last row of the image, instead the order of
the column remain the same.

B.4.1 Usage - trajectoryPlanner

This node is the planner node. It can be launched as:

rosrun <package > trajectoryPlanner

http://wiki.ros.org/

168 Appendix B. User manual

where package is trajectoryPlanner if the node is putted alone in a package called
trajectoryPlanner, otherwise if it is used into quadrivio package the <package>
value is quadrivio. The node read many parameters from a configuration file (as
write in Chapter 6) and it should be loaded when the node starts. A sample of
configuration file is putted in the node directory. This node read from a topic
/map the occupancy map, from a topic /goal the goal pose and from a topic
/roamfree/odometry the start state. Once it have all the previous informations
it starts to make plan in according on the features explained in Chapter 6. The
goal and start pose can be given with some other ROS node, for example the
goal can be given with RViz, the start with ROAMFREE or another node that
give an Odometry object. Finally the node publish two topic each time it found
a solution. One is named /path, its type is PathWithVelocity and contain
the path composed by poses with a velocity associated to every pose. The
other is called /testPath and its type is Path and does not contain a velocity
profile. This second topic published is useful to see the trajectory found in RViz
together the map on which the planning is done.

Appendix C

Vehicle parameters

This appendix in Table C.1 reports some ATV parameters used in the Ackermann
vehicle models.

170 Appendix C. Vehicle parameters

Table C.1: Parameters of the ATV

Parameter Symbol used Value Measurement unit

Linear velocity time constant Tv 0.7 s

Steering angle time constant Tδ 0.13 s

Vehicle length L 1.25 m

Vehicle width W 0.96 m

Steer angle interval δmax ∼ ±π
4 rad

Total mass of the vehicle m 422.0 Kg

Suspended mass ms 366.7 Kg

Suspended height hs 0.604 m

Rolling rigidity kr 48900.0 Nm
rad

Rolling damping factor br 1062.0 Nm
rad/s

Distance from front axial a 0.728 m

Distance from rear axial b 0.565 m

Front tyres cornering stiffness Cf 18137.7 Nm
rad

Rear tyres cornering stiffness Cr 63601.5 Nm
rad

Yaw moment of inertia Iz 86.5 Kg ·m2

Roll moment of inertia Ix 7.7 Kg ·m2

Pitch moment of inertia Iy 41.39 Kg ·m2

	List of Figures
	List of Tables
	Abstract
	Estratto in lingua italiana
	Acknowledgements
	Introduction
	State of Art
	Introduction
	Historical Notes
	Planning Algorithms Definitions and Libraries
	State Space and Action Space: preliminary definitions
	Search Based Planning Algorithms
	SBPL
	Random Sampling Algorithms
	OMPL

	Main Search Based Planning Algorithms
	A*
	Weighted A*
	ARA*
	ANA*
	AD*

	State Lattice
	Lattice Primitives

	Environments
	Introduction
	Environment with three state variables (x,y,)
	Environment with four state variables (x,y,,v)
	Environment with five state variables (x,y,,v,)
	Environment with five state variables (x,y,,v,)

	Considerations on environment extensions
	Correlation between environments and lattice primitives
	Considerations on the cost map
	Obtain terrain maps
	From the terrain representation to the cost map

	Vehicle Models and Lattice Primitives
	Introduction
	Methods for lattice primitives creation
	Ackermann vehicle
	Ackermann kinematic model and (x,y,)-primitives
	Actuators dynamics and extended primitives
	Extended model and LLT index

	Creation of primitives for another vehicle type
	Differential drive vehicle
	Differential drive model and primitives creation

	Experimental tests
	Introduction
	BVP Solvers
	ACADO: an open source BVP solver
	BOCOP: an open source BVP solver

	Planner Evaluation
	Experimental Setup
	Experimental Results

	Integration with ROS
	Introduction
	Current system
	Planner node

	Conclusion and future works
	Bibliography
	Data extracted from tests
	User manual
	Maps
	Map generation
	Map creation from DEM

	Lattice Primitives
	ACADO set up
	Bocop set up
	Lattice Primitives with Kinematic Model
	Lattice Primitives considering Actuators Dynamics
	Lattice Primitives considering LLT
	Differential Drive model primitives

	SBPL - our modified planning library
	ROS Nodes
	Usage - trajectoryPlanner

	Vehicle parameters

