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Ampio estratto

Negli ultimi anni molti ricercatori hanno evidenziato vulnerabilità derivanti

dalla scarsa comprensione delle linee guida messe a disposizione da

Android o, piú in generale, dal suo modello di sicurezza. Android, nello

specifico, pone la comunicazione inter processo come uno dei suoi

paradigmi principali. Nonostante ciò, la progettazione della sicurezza

di questa comunicazione viene lasciata agli sviluppatori, ai quali viene

richiesto di seguire precise linee guida. Android non impone esplicita-

mente nessuna linea guida per aiutare gli sviluppatori nell’utilizzare

della vasta gamma di paradigmi di sicurezza che Android stesso mette

loro a disposizione. Questo lavoro vuole evidenziare che in molti casi

reali, queste linee guida non vengono seguite e che questo “cattivo

comportamento” può provocare reali minacce per gli utenti finali.

In questa tesi presento la progettazione e l’implementazione di uno

strumento per l’analisi di sicurezza delle applicazioni Android. Questo

lavoro concentra la propria attenzione sulle informazioni scambiate

tra diversi componenti interni alle applicazioni attraverso il meccan-

ismo di “message passing” di Android. Il lavoro mira a scoprire auto-

maticamente vulnerabilità che possono scaturire in seguito a pratiche

non consone, o semplice distrazione, nell’ uso dei meccanismi di scam-

bio di informazioni fra sotto componenti interni o esterni alle appli-

cazioni.

L’obbiettivo del lavoro, in pratica, è quello di produrre un tool in-

dirizzato a qualsiasi sviluppatore che voglia testare la propria appli-
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cazione. Lo strumento si propone di essere intuitivo e facile da usare.

Il tool consiste in un analizzatore statico del codice, capace di ac-

quisire pacchetti compilati di applicazioni Android e produrre all’utente

precise relazioni circa lo stato di sicurezza dell’applicazione presa in

esame.

In aggiunta, viene utilizzato un approccio formale e corretto per

produrre contenuti maligni che dimostrino la reale esistenza e effica-

cia di un possibile attacco.

Questo lavoro è stato originariamente pensato in seguito alla scop-

erta di alcune vulnerabilità, tramite una analisi manuale di applicazioni

presenti sul Google Play Store. L’esplorazione ha confermato che in

molti casi, anche i più semplici principi di isolamento dei sotto com-

ponenti sono violate, anche in applicazioni popolari e largamente uti-

lizzate.

La mancanza di sanitizzazione degli input, che preverrebbe questa

classe di attacchi, è la dimostrazione evidente della sottostima di questo

problema nello sviluppo di applicazioni.

Nel primo capitolo introduco le caratteristiche del sistema opera-

tivo Android, con particolare attenzione alle sue opzioni di sicurezza

e suo suoi meccanismi di “message passing”.

Nel capitolo 3 descrivo nello specifico il “threat model” analizzato

nella tesi con particolare riferimento ai tre modelli principali di risorse

prese di mira da un possibile attaccante: server remoti, storage locali

o interfacce utente.

Il capitolo 4 contiene le idee di base e le scelte progettuali che

stanno dietro all’analizzatore.

Il capitolo 5 contiene una trattazione riguardante gli strumenti e

le tecnologie utilizzate che permettono di raggiungere l’obiettivo di

ricerca.

Il capitolo 6 è una spiegazione di come l’analizzatore sia stato us-



ato in esempi di applicazioni reali che ne hanno dimostrano l’efficacia.

Infine, il capitolo 7 contiene una trattazione dei benefici pratici

derivanti dall’utilizzo dell’analizzatore e spiega come questo strumento

possa essere esteso ed integrato in futuro per analizzare una più vasta

area di problemi di sicurezza.





Summary

In this thesis I present the design and the implementation of a tool to analyze the

paths that information exchanged by different process on the phone takes, in order

to automatically detect vulnerabilities that may come out from bad programming

practices or simple distractions while implementing Android applications.

The goal of this work is to produce a tool, targeted to every developer who wishes

to test his application. It aims to be intuitive and simple to use.

The tool implements a static code analyzer able to take in input Android appli-

cation packages and produce as output precise security reports on the analyzed

application. A formal and sound approach is then adopted to produce malicious

exploits demonstrating the actual feasibility of a possible attack.

The analysis performed focuses its attention to the facilities provided by Android

to easily enable applications subprocesses to communicate.

This work was originally ideated after some manual exploration in real Android

applications, downloaded from the store. This exploration confirmed that in several

cases even the most simple isolation principles were violated, even by popular and

broadly used applications.

The lack of exhaustive sanity checks preventing this class of attacks is an evi-

dence of the underestimation of this problem in real world application development.
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Chapter 1

Introduction
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In the last few years many researches have highlighted several possible vulner-

abilities deriving from poor understanding of the official Android security guide-

lines [1] and of the Android security model in general. Android specifically makes

interprocess communication and collaboration one of its main paradigms. Although

this communication must be carefully designed by developers, that need to follow

some basic design guidelines, such as Activity state isolation and so on. Android

does not take explicit measures to enforce the design of applications to be intrin-

sically secure. This means that the decision of using or not the large amount of

security features embedded in Android is left to the final application developer. This

philosophy optimistically, assumes that every developer has a reasonably good se-

curity background, to understand and not to underestimate the problems that a

non-defensive programming approach can cause.

This work highlights how in several real-world cases, the design guidelines are

not properly followed, and this “bad behavior” can lead to real threats for the final

users.

The goal of this thesis is to design and implement a tool capable of automati-

cally detect programming choices, when developing Android applications, that can

lead into security risks for the final user. The tool, after having demonstrated the

existance of such risks, should eventually be able to warn the developer about these

risks, and suggest a set of possible solutions. As described in Chapter 3, the subset

of programming choices taken into consideration are the ones concerning messages

exchanged, in particular accepted, by application’s Activities.

The rest of the thesis is organized as follows. Chapter 2 presents the state of the

art of the Android OS. Chapter 3 describes more precisely which set of vulnerabil-

ities this thesis deals with. Chapter 4 contains the core idea behind the analyzer.

Chapter 5 is an overview of the tools and the techniques, along with design choices

made in order to meet the research goal. Chapter 6 is a description of a real-world

example of use of the tool. Chapter 7 contains a discussion of the practical benefits

deriving by the usage of the tool and about how such tool can be extended to analyze

4



a broader circle of security implications.
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Chapter 2

State of the art
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2.1 Android OS Overview

In the past years Android OS had became the most widespread mobile operative

system in the world, surpassing all the competitors by market share. [14]

One of the reasons for Android success is its open source nature. It has to

be noticed that each phone manufacturer can easily customize and adapt to their

needs the operating system, without developing a new one from scratch, determin-

ing drop in development costs, and a subsequent drop in the final product price. Of

course, this possibility is not restricted to manufacturing companies, but everyone

can change and build the code for various purposes such as bug fixing, development

contributions or personal curiosity.

This exposition of the code, moreover, may lead to security problems: a clear

sketch of the security features of the operative system can easily be delineated,

leading to a broader knowledge of the security issues the operative system could

have. This knowledge might be exploited for benign purposes such as fixing, but

also maliciously, endangering the final phones users.

When a security issue is detected and fixed by the community, the propagation

of this patch is, in practice, difficult for two main reasons: first, due to the high

fragmentation in Android versions, it might become complicated to detect all the

versions in which the bug is present. Second the modification performed by the

manufacturers on the actual deployed versions of the operating system might be

significant, leading into substantial differences with respect to the official AOSP

branch. This misalignment usually makes it difficult for the manufacturer to keep

their deployed versions up to date.

2.1.1 Android OS Architecture

Android OS is a comprehensive operative system built on the top of the Linux Kernel.

It is structured as a stack consisting of four logical layers, composed by different

modules written in Java, C++ and C.
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• Applications: these are the actual programs the user interacts with. Appli-

cations can be written either in Java, with the support of the official Android

SDK, or in C++ over the official Android NDK.

• Application Framework: this is a set of services handling applications life-

cycle, message passing and content sharing between applications and manag-

ing application specific resources such as images and localized strings.

• Libraries and Runtime: Libraries are a collections of facilities available for

both application framework components and applications. They provide a uni-

fied way to access database storage, web browsing components, media players

and so on. The runtime enables each application to run in its own instance of

Dalvik VM.

• Linux Kernel: this is the lower layer of the infrastructure. In addition to

the Linux Kernel, in this layer are also present hardware drivers, in charge

of communicating directly to the phone’s physical components. These drivers

are clearly device specific and there exist phone specific build types in AOSP,

containing specific driver binaries (sources are usually not available).

Figure 2.1 shows the complete OS architecture, along with all of the macro-

components.

Java code of Applications and libraries is compiled into Dalvik bytecode, after be-

ing compiled into the classical Java bytecode. This bytecode is specifically designed

to run on mobile devices (ARM processors), carrying some specific optimizations.

Its main characteristic is to be register-based, unlike the classical Java bytecode

which is stack-based. The Dalvik VM was designed to run efficiently multiple VM

instances so to guarantee isolation among processes. From Android 2.2 a built-in

JIT compiler has also been added to the Dalvik virtual machine, in order to speed up

the runtime execution of Android applications.

This thesis focuses on the first two layers of the described hierarchy, i.e. the

application layer and the application framework layer.

9



Figure 2.1: Android OS architecture. Source: http://source.android.com/tech/security/

index.html#android-platform-security-architecture

2.1.2 Android OS Security Model

Android claims to be designed to be the most secure and usable mobile operating

system, providing automatic mechanisms to guarantee user data and resources pro-

tection along with application isolation.

The OS strongly relies on the consolidated Linux security model in which process

isolation is guaranteed by design, except for a (reduced) set of privileged code frag-

ments that run with root privileges. Linux policies on user resources ensure that

user A will not access CPU resources, memory, files or devices belonging to user B.

The concept of user isolation is exploited by Android in order to provide a complete

application isolation (application sandboxing). Differently from the traditional Linux

implementation, in Android, each application is assigned to a unique user ID. Each

application will then run into a separate process belonging to its user. This ensures

that no unauthorized data access can occur at native code level.

As mentioned above application sandboxing is also ensured by the fact that com-
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pletely separated instances of Dalvik VMs are started for each new application that

is launched. This guarantees complete isolation also at Java code level.

Together, these two approaches should prevent memory corruptions to compro-

mise the security of the device. Nevertheless application Sandboxing is breakable

on a non properly configured device.

Another higher level security feature that Android OS provides is the so called

Application Permission Model. By default, applications can access a quite limited

number of resources. Most of those can only be accessed through OS calls. Applica-

tions, in order to access non-default features, must declare their intention of usage:

a misdeclaration of a requested resource causes a security exception, raised by the

application framework, leading to a failure of serving such request. The Application

Permission Model contains a fine grained, hierarchical list of capabilities applica-

tions can declare. The choice between allowing or not applications to access the

declared resources is demanded to the final user at installation time. Unfortunately

the capabilities cannot be partially accepted/unaccepted, so the only way a user has

to prevent an application not to access a specific capability is not to install the ap-

plication at all. This choice is presented to the user when installing applications,

whether they are downloaded from the official Google Play Store or from unknown

sources.

2.1.3 Android OS interprocess communication

A single Android application package can contain several (independent) compo-

nents. Each of those components, along with its type has to be declared in a manifest

file. Components can belong to one of the following categories:

• Activities: Activities generally contain the code for one single user-focused

task. Activities have associated UI components the user can interact with.

Typically, the main entry point for an application is a distinguished activity

(declared in the manifest file).
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• Services: Services are pieces of code that run in the background indepen-

dently from the current context presented to the user. Services communicate

with the external environment via interfaces available through remote proce-

dure calls.

Due to sandboxing, application components cannot directly share information or

send messages one to an other. In order to let such isolated processes to com-

municate, the OS has to provide a controlled mechanism. Android interprocess

communication is made possible by the following three elements:

• Binder: It is a lightweight procedure call mechanism, mostly used when the

communication demands high performance communication. It is implemented

using a custom Linux driver. Exploiting Binder, the Services discussed above

can efficiently exchange information.

• Intents: Intents are objects representing simple messages that can be ex-

changed by different processes. The name Intent was chosen because of the

fact that these messages usually are sent when a process has an intention to

interact with another process. Intent messages either carry information on

a specific destination, or express a generic request that needs to be served

by some process able to manage it. Intents can also act as broadcast mes-

sages informing a set of interested processes that some status change has oc-

curred (i.e. a network status change information may be interesting for both

a browser and a chat application that could notify the user in case of a con-

nection drop, or resume a paused operation after the network status returns

available).

• Content Providers Content providers is the name given to the interfaces

used to expose some particular data, generally directly available for all the

processes. An application may want to expose some data it controls to other

applications; this can be done by the exposer application by implementing a
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content provider interface, in which the process specifies its behavior in re-

sponse to queries from the outer world.

Intents are the fundamental communication element in the Android interprocess

communication system.

2.2 Related Work

In this section we present three main relevant research areas in Android security.

• Permission analysis

When installing an Android application, the user is requested to accept and

allow the application to access user and system resources (personal informa-

tions, photo camera, GPS location, ...). This is done presenting by to the user a

list of all the resources required by the application to work. It has been proven

that such a choice is not optimal for two main reasons: first, users might not

have an adequate understanding of the meaning of the entries in such list and

the security issues that accepting a given permission can cause. Second, even

experienced users were found not to pay the required attention to this screen,

mainly because is often long and verbose. Other research areas are interested

in analyzing the risks and the conceptual flaws of this permission model. [10] [8]

Other problems when dealing with Android permission arise because of the

high usage of inter application communication. An application that has not de-

clared the usage of the system contacts can use another application, enabled

to read user’s contacts, as a proxy for this information, as long as one is in-

stalled on the phone. This means that the permission list that the user need to

accept might not be exhaustive. [6,9]

• Automatic malware detection

Android by default only allows to install applications downloaded from trusted

sources (i.e. the Google Play store). Anyway, users can easily install applica-
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tions coming from arbitrary sources (even email attachments) just by disabling

an option in the OS settings. Unfortunately, even applications installed from

the Google Play Store are inadequately controlled for the presence of malicious

code. This has pushed a large part of researches in the Android security world

to come up with techniques to automatically detect malicious pieces of code

in applications. In this area, which is the broadest in Android security, many

approaches have been proposed, from the more formal to the more empirical

ones. [2,5,15,17,18]

• General security toolkits Another broad area of research concerns the study

of automated systems to automatically detect vulnerabilities in applications

that could be exploited by malicious applications to access user’s personal

data, fake user’s behavior or damage the system itself. The toolkits basically

can be used to test applications against a given subset of vulnerabilities. [12] [11]

Android ICC (Inter Component Communication) security has experienced an

increasing concern in the past years. The current state of the art is presented

in [13].

One remarkable research that inspired this work is Quire [7]. Quire is a lightweight

framework to enhance Android IPC mechanism by adding message prove-

nance. The implementation relies on a signature scheme that allows message

recipient validation before delivering. The class of attacks they want to pre-

vent is closely related to the ours: confused deputy attacks. Their approach

needs to modify the Android OS in order to guarantee the described security

features, our approach aims to obtain a similar result by preventing behaviors

that can potentially introduce vulnerabilities in applications.
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Chapter 3

Problem Definition
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Figure 3.1: Activity data exchange model

3.1 Overview

In order to define the problem we will adopt a model consisting of two activities: the

first, identified as sender, produces as output an Intent carrying a set of messages

targeted to another Activity, identified as receiver. The receiver, after being notified

that it is a suitable recipient of the Intent, extracts the information in the messages

in order to complete the operation specified by the logic of the Activity itself.

3.1.1 Messages as Collections of Parameters

Without loss of generality, we can think that an exchanged message consists of

a collection of named parameters (Extras). The names (keys) uniquely identify a

piece of information inside the Intent, therefore the receiver usually relies on its

prior knowledge about these keys in order to retrieve a particular information. This

can be viewed as a protocol that both the sender and the receiver should implement

in order to let the communication succeed.

Given a key, its corresponding payload can have an arbitrary type: the Intent

Java API accept all the primitives Java types, but also a generic Serializable object.
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Table 3.1: INTENT API METHODS FOR EXTRA MANIPULATION

Setters Getters

getBoolean(String key) putBoolean(String key, boolean value)

getByte(String key) putByte(String key, byte value)

getChar(String key) putChar(String key, char value)

getDouble(String key) putDouble(String key, boolean value)

getF loat(String key) putF loat(String key, float value)

getInt(String key) putInt(String key, int value)

getLong(String key) putLong(String key, long value)

getSerializable(String key) putSerializable(String key, Serializable value)

getShort(String key) putShort(String key, Short value)

getString(String key) putString(String key, String value)

To retrieve these variables, then, the Activity willing to use them also needs to know

their exact type. The API provides specific utility methods for each of the primitive

types plus a generic getSerializableExtra(String name) method that returns an ob-

ject implementing the Serializable interface: the access to the object’s informations

will be available only after a cast to its original class.

Table 3.1 lists the main API methods. These functions are also available in their

arrayed fashion, allowing extras to carry multiple values under a single key.

The Intent APIs provide reflective interfaces to retrieve all the Extras a message

includes. The use cases of this approach are however limited mainly to test pur-

poses. It is usually convenient to explicitly name the parameters, providing them an

explicit semantic expressed by the name itself.

The proposed analysis deals only with primitive types, leaving out more complex

structures such as Objects. In practice, this is not a real limitation, since strings

represent the largest amount of data exchanged.
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3.1.2 Activity Lifecycle

Android Activities are managed by the help of a stack structure: the Activity cur-

rently running is the one at the top of the stack and it is in a running state. When

a new Activity is launched, the one previously running is moved to either a paused

state or a stopped state.

An Activity becomes paused when the new launched one partially covers it; it

instead becomes stopped when it is completely covered. In this case, since the

Activity is not visible at all, there is no need for it to keep running.

A running garbage collector can ask both paused and stopped applications to

exit their execution, or it can simply kill them.

In Figure 3.2 is delineated this lifecycle, complete of all the methods that are

invoked on the Activity by the system when a status change is requested.

Whenever there is a match between the Intent recipient and an Activity, this

Activity is always created and pushed on the top of the stack. Thus the logic for

handling the received data has to be encoded starting from the onCreate() callback

method. The Intent data will also be available after a onResume() on a onRestart()

call since such data will be preserved when the activity is either paused or stopped.

Since it is not reasonable for the Activity logic to wait until a stop or a pause request

occurs to handle the received data, for the following analysis, it will be assumed

that onCreate() is the single entry point for the data, and the single point where the

operations performed on the data start.

3.1.3 Activity Accessibility

Same-application Activities can always exchange data. Due to application isolation

and sandboxing, Activities are not allowed, by default, to receive data by processes

not belonging to the same application. This intention has to be explicitly declared

in one of the ways listed below in the application manifest.

We can easily divide Activities in two macro groups:
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Figure 3.2: Android Activity Lifecycle Explained. Source: http://developer.android.com/

reference/android/app/Activity.html#ActivityLifecycle
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• Intra Application accessible: processes that respond and start only after

receiving commands started from processes inside the same application.

• Inter Application accessible: applications that can be reached by Intents

started by any other process in the system. Android provides two paradigms

that activities must follow in order to be world accessible: Intent Filter and

Content Provider.

The paradigm that Intent Filters implements mainly consist in functionality

delegation: processes delegate to a (set of) other processes a given operation

that the processes responding to the Intent promise to accomplish.

Content Providers, instead, as already discussed, are a paradigm for data ex-

change. Although Content Providers are public by default, they can be kept

private (only accessible by the application) by setting the corresponding option

in the application’s manifest.

As specified in the IPC section of the “Security Tips” section in the Android

developer guide, every Activity is responsible for the received data, and should per-

form input validation, since Intents and Intent filters cannot be considered security

features. [1]

3.2 Android Root Access

As consequence of the Android’s open-source fashion, many communities working

around the project have raised. The work of these groups mainly focuses on mod-

ifications of the official project, mainly in terms of addings UI functionalities and

specific settings. One of their claims, is manifested in the will of avoiding the con-

trol of the phone by the phone’s manufacturer or by Google on the users’ devices.

They see the impossibility of the processes, other than the system ones, to run with

root privilege as a fundamental lack of freedom. Beside this, they perceive the lock-

ing, by the manufacturers of the boot loaders as a constriction, since the phone
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Table 3.2: ANDROID ROOT MARKET IMPACT

Name Application/OS Downloads (thousands)

Superuser Application 10,000 - 50,000

Rom Manager Application 5,000 - 10,000

Titanium Backup Root Application 5,000 - 10,000

CyanogenMod OS 4,200 *

Wireless Tether for Root Users Application 1,000 - 5,000

Root Explorer Application 500 - 1,000

* currently installed

Data updated on March 9, 2013. Sources: Google Play Store, CyanogenMod Statistics.

users loose the capability of changing the built-in operative system with a desired

one.

They started early, with respect to the Android birth, to produce tools able to

“jail-break” (or “root”) the phones (removing the constrains applied by the manu-

facturers) to let the users install any kind of software on their devices (either trusted

or untrusted), having the possibility to escalate their privileges to root.

Understanding the penetration of such communities in the real phone market is

hard. Unfortunately, there are no official reports on the number of rooted devices,

or of devices mounting aftermarket Android versions.

We can anyway deduce that the impact is not marginal by taking a look at the

number of downloads that both the most famous versions and their related applica-

tions received.

In a rooted environment, since every candidate process can obtain root privi-

leges, the security risks for the user increase dramatically, since the application

sandboxing model is compromised. A root process, in fact, no longer obeys the sand

box model. Such process can directly access and modify any local data, send to
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any other process an arbitrary message, and launch any kind of command. When

sending a message to another process, this data sent with root privileges will never

be ignored, regardless of the security and isolation policies mentioned in the pre-

vious paragraph. As s consequence, developers simply cannot ignore the existence

of rooted devices, but they should build applications in a defensive way. Intuitively,

they should perform sanity checks on the data received even on Activities which

access should not be public by specification.

3.3 Preliminary Analysis

The problem presented in the following sections was first noticed by monitoring

inter-Activity Intent payload exchanges from some popular applications downloaded

from the Google Play Store.

This simple monitoring was possible with the help of some instrumented classes

in the Android libraries, in particular the ones concerning Activity lifecycle and

general Activity management.

3.3.1 Instrumentation Class

The Android Java Core framework provides utility classes to instrument and monitor

Activities lifecycle and its interaction with the system. When the instrumentation is

enabled, the Instrumentation class is automatically instantiated before running the

application code. This class is designed to be used by the code in the application

itself, i.e. the monitoring logic has to be implemented inside the application.

Since for a preliminary analysis it may be hard and time consuming to inject

code in the applications under consideration, we adopted a naïve approach. We

modified the official Instrumentation class code, in order to make it log for us on a

phone directory all of the Intent data traffic, regardless of the application or Activity

currently running.1 This was obtained enhancing execStartActivity(). The method is

1The experiment was done on a custom Android 4.0.2 build, targeted for the Android Emulator
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called exactly before the Activity is created, and thus, exactly before the onCreate()

method is called on the Activity itself. In this way, we have the guarantee that the

Intent cannot receive further manipulations, after we capture it.

It has to be noticed that the folder in which the data is saved must have world

writable permissions. This is because the Instrumentation class code runs in the

context of the currently running application, so it will become the application itself

in charge of writing in the directory.

The recorded data then can be easily dumped off the phone and analyzed off-line.

3.3.2 Manual Testing

Android provides several testing and debugging facilities to automatize the testing

process with a batch sequence of commands: in particular, am was found very useful

to emulate sender Activities behavior. am is a shell tool to interact with the Android

runtime, and it can be exploited to create and send Intent populated with Extra

parameters.

am [start|startservice] -a <action> -n <component> -e <extra_key> <extra_value>

The command specified above, launches a generic component (can be either a Ser-

vice or an Activity), specified in the −n option, requesting it to perform an action

(−a, typically VIEW), passing to it the set of Extra parameters specified with the −e

option (there exist several −e type-specific options, String is default).

This allowed us to manually, but easily, reproduce a crafted copy of the collected

messages, and see how changes in message bodies were affecting the execution of

the targeted activity, or the internal state of the whole application.

We were eventually able to change UI elements in the Activities, and to actu-

ally push text in the application local storage. This meant that no particular check

(full-eng).

Instrumentation class can be found under < aosp_root > /frameworks/base/core/java/android/app/
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was performed, but Activities were blindly accepting input strings. In the following

section we describe the risks that such programming behavior creates.

3.4 Threat model

In this section are delineated the attacks and the threats to the final user that could

come out from a non-defensive approach when dealing with received Intent pay-

loads.

A malicious message could harm or change in an unexpected way the status of

the application if one of the following conditions is satisfied.

Exposed Activity: Activities that have explicitly requested to be exposed, for

data or functionality sharing, are, in a sense, world-accessible. Their access, can

not of course exclude malicious requesters.

Unexposed Activity, Root access: Under this scenario, even not exposed Activ-

ities cannot be considered immune with respect to hostile messages. As discussed

before, root applications can overcome the limits imposed by the sandboxing.

In particular, as shown in Figure 3.1, a malicious message can basically be tar-

geted to one of the following resources:

• Network: a malicious message can be forwarded to a server. In this case the

attack may not directly include the application, but use its code as a bridge to

access and modify information on the server.

• Local Storage: the message may include parts able not only to store un-

wanted information on the application’s local storage, but also to also to cor-

rupt previously existing data.

• UI Elements: message parts may be used to compose notes aimed to notify

the user of a certain situation. Crafted messages may lead the user to have a

wrong perception of the current situation.
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Figure 3.3: Attack target resources

Intuitively, the resources can be targeted by those kind of attacks, only if the the

payload of the Intent is directly used as payload for new piece of information sent to

the resource, or if there exist a flow in the code that connects the Intent payload to

the resource, and such flow does not include any sanity check neither on the directly

involved parameter nor on another related parameter.

3.4.1 Attacker

In this scenario, we can think at an attacker as a normal application, installed on

the user’s phone, by the user itself, via either the Google Play Store or an another

third party source. The application may carry some malicious code along with real

functionalities, used for defacing purposes. The malicious code could remain silent

until the user triggers a specific action on the malicious application, believing in the

benignity of the used Application.
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3.4.2 Victim

The victim, for this class of attacks, is the final phone user. The user act a fun-

damental role in this scenario, since he is the one eventually triggering the attack

against himself and also that will perceive the changes or the anomalies on its own

resources.

Users usually tend to trust applications downloaded from the Google Play Store,

because the common sense suggest it to be a “safe” source. In reality, uploaded

applications are not exhaustively tested and verified in actual environments by the

Google Play Store staff, so there is not an actual guarantee that applications, even

if they are distributed by a certified entity, do not embed malicious code fragments.

One may think that malicious applications could be considered suspicious be-

cause they may declare unusual or apparently not required permissions. It has

been shown that, in practice, the effectiveness of such declarations is pretty low

and that users, even if they are actually able to understand them, tend just to ignore

the permission screen prompted on application installation. [8]

3.5 Characterization of the Attacks

The exploitation of this class of vulnerabilities result in a very broad set of use cases.

The attacks can be classified in three categories, accordingly to the resource they

target:

• Server attacks

• Database attacks

• Phishing attacks

3.5.1 Server Attacks

The attacks described in this section can be compared to Cross-Site Request Forgery

web attacks. In CSRF attacks, the attacker makes use of a script or a crafted re-
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Figure 3.4: Server attack schema

source source URL in the page (typically an image) to induce the browser to directly

or indirectly send a request to the server. The sent request is usually targeted to a

route on the web server that accept GET parameters in input (usually to target of

some form in the web application) to change the status of the server itself.

<img src="http://bank.com/transfer?from=Alice&amount=1000&to=Bob">

In this example, if we assume that the goal of the attack is to transfer money from

Alice to Bob and the example image tag is somehow rendered by Alice’s browser

along with all other DOM elements of the Alice bank page, such browser will send

the request to the server, believing to retrieve an image. Instead of responding with

an image, the server will change its status if no extra check is performed on the

logic in charge of serving the request: the attack will succeed.

The attack relies on the fact that since the resource is requested to be loaded

in the same context (domain) of the rest of the application, in particular of the

attacker target URL. In this scenario the user session identifier for the application

will be also sent along with the request produced by the attacker. This implies that

if the authorization security control in the target page only relies on the user session

identifier, such page will have no way to distinguish between a request performed

in the normal flow and another forged by an attacker.

We can think our Activity attack as a special CSRF attack where a malicious

application is sending an Intent message to a target Activity he knows it will perform

a request on the server. If this request will be created embedding some of the
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Figure 3.5: Server attack example

received Intent extras, an attacker may accurately change the extra values in order

to manipulate the state of the server. Again, similarly to CSRF attacks, the request

will produce the desired result, because it will be populated by the Activity, with

all the session identifiers equivalent that the Activity use to attach when normally

requested to perform this action. Also in this case, if no extra security mechanism

is implemented, nor the Activity, nor the server will be able to distinguish between

a normal and a malicious request.

The example below shows the Activity equivalent of the previous bank example.

Suppose to have a bank application where the money transaction is implemented

by the use of two Activities and they behave in the following way: the first Activity

collects recipient and amount data from the users and sends these data to a second

Activity via an Intent message. Suppose then that this second Activity (processing

Activity) is the one in charge of sending the transaction to the bank server, showing

a load indicator and eventually a success message.

If no extra security mechanism is provided (such as a request validation token),

an attacker may send to the processing Activity a message commanding it to per-

form a transaction of an arbitrary amount to an arbitrary recipient. This transaction

will be prepared by the Activity and successfully sent to the bank server. Of course
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Figure 3.6: Database attack schema

this attack relies on the fact that there is an active user session in the bank applica-

tion at the moment of the attack.

This class of attacks is anyway harder to perform, since their intrinsic architec-

ture is more convoluted, even if they can directly exploit application local knowledge

such as authentication tokens and so on.

3.5.2 Database Attacks

Under the usual assumption that no check is performed on the data extracted from

the Intent, and that such data flows to the database, here classical SQL injection

attacks can be performed.

Android offers APIs to deal with SQLite databases. The API are designed to

strongly recommend the developer to use prepared statement (one for each insert,

update, delete operations) so to explicitly prevent most of the SQL injections risks.

It anyway offers a method to execute arbitrary SQL code: execSQL(String sql). As

shown in Figure 3.6, a malicious string that flows from an Intent message to the

database, without passing through any prepared statement or extra sanity checks,

could eventually damage or compromise user’s local data.

I will now show with an example how not even prepared statements are enough

to defend the application logic. Suppose an application storing sensitive data that

requires a PIN to be accessed.

Suppose that, similarly to the previous example, the “ change PIN” feature is

implemented by two different Activities, the first requiring the user to insert the
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Figure 3.7: Database attack example

PIN and the second performing the update of the PIN on the local database and

showing a success dialog. Of course there is no need for this Activity to be exposed

to the outer world, since a PIN change is a typical internal operation. Suppose the

application is installed on a rooted phone and the attacking application has obtained

root rights. Under these assumptions, the attacker may send a message to the

second activity that will change the local value of the PIN number into an arbitrary

one. The application will then deny further user accesses to the application because

she will not have any idea of what the new set PIN is.

One may say that there is no need to pass through an Activity to access local

data, if the intentioned Activity has the rights to do so (root). This is generally

true if the application’s local data are not encrypted. An attack that flows trough

the Activity, will easily overcome the encryption, because it will directly exploit the

code of the Activity, executed in its specific context, that should have been designed

to cope with encryption.
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Figure 3.8: Phishing attack schema

3.5.3 Phishing Attacks

This class of attacks can be performed whereas the Activity presents some received

payload data to the user.

In this an attacker may use application visive context to let the user believe some

convenient (for the attacker) fact, or to give to the user a wrong perception of the

status of the application.

Suppose there is a given application that contains an Activity used to notify the

user or to give to her some information about the status of the application itself.

Suppose this Activity is just used by the application to display messages that it

receives in input with an Intent message, i.e. it has not any kind of logic. An attacker

could start this activity feeding it with arbitrary strings that will be prompted to the

user.

To make this attack more effective, an attacker application may have been de-

signed to launch a series of target application’s Activities that exactly reconstruct

and reproduce the normal navigation flow of the application. Doing so the user will

be induced to think that she was the author of the flow of actions leading in this last

screen, sometimes in the past.
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Chapter 4

Design
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4.1 Overview

As introduced in the previous chapter, Android does not explicitly force developers

to design applications in a defensive way. Most of the problems described can be

solved just by designing applications in a more conscious way, following the design

guidelines indicated in the official developer guide and using Intent extra messages

to exchange information only when strictly necessary.

For instance, thinking at the scenario described in Section 3.5.3, a different

approach to avoid to transmit text to be displayed into Intent extras exists. We

can think at two different use cases where Intents are convenient here. One where

there is a set of pre-defined messages that are all eventually prompted in the same

Activity, as a general information displaying screen, useful to reuse UI components.

The other where the Activity is used to provide notifications to the user, and the

text of the notification changes every time because, for example, it contains parts

of an e-mail, or the event that required the user to be notified. In both of the cases

can be convenient to design lightweight Activities that simply takes an arbitrary set

of strings in input and place them on the screen. These Activities can be simply

launched and populated through an Intent call.

A more clean and safe solution for the first case could be to directly hard code

all the possible messages in the displaying Activity binding them to a meaningful

ID. When there is the need to display a specific message other Activities can make

use of this ID to command to the displayer which message has to be prompted. In

this way we ensure that all the messages displayed to the user can not come from

an untrusted source.

Unfortunately, if the messages to be shown are variable by nature, this approach

does not apply. In this case the “clean” alternative to the one described above, could

be to create a queue of messages to be dispatched in the local storage, that the noti-

fying Activity consumes when notified. Here an Activity willing to use the notifying

Activity communicate to the user can store the message in the local database and
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command the second Activity to consume the last message in the queue, using it to

populate the UI. If this part of the storage is reliable (encrypted, and not vulnerable

to what described in section 3.5.2), is guaranteed that only notification generated

from trusted sources will eventually be displayed.

This is just an example to show that a safe data handling strategy is possible.

4.2 Goals of the Analysis

The goal of this work is to design and provide a tool, that by statically analyzing

the code, can tell to the developer, what kind of bad behavior is encoded in the

application, and where exactly it occurs, so a responsible programmer can go back

and immediately fix it.

The problem can be transposed to a statical code analysis problem, aimed to

analyze the control flows that Activity extra parameter values take when received

by an Activity. A demonstration of a vulnerability is obtained when there exist a

control flow leading a parameter value to a set of API calls labeled as vulnerable.

This set of API calls includes HTTP requests population (network), database non-

prepared statements calls and UI elements text setters.

The static analysis should then be able to:

• Detect Starting Points: detect the code instructions after the parameter

values are delivered to the Activity (the Intent management is delegated by

the Activity Manager to the matching Activity)

• Follow variables control flow: follow and track all the statements that in-

clude or use the values for further computation

• Deal with aliased variables: follow and track also all the variable that aliases

the variables containing the parameter values

• Deal with branching: effectively and smartly deal with branching and differ-

ent control flow
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• Deal with different scopes: deal with method calls that receive values as

parameter, by following the control flow of these parameters

Moreover, in order to demonstrate that the results discovered by the static anal-

ysis are feasible at run time, a sound analyzer is needed. Such analyzer should be

able to:

• Reconstruct paths: derive the set of values that the entry point variables must

have so that execution reaches a specific vulnerable statement along a specific

computation path.

• Discover malicious values: (try to) derive the set of values that the entry point

variables must have, so that execution reaches a specific vulnerable statement

with the desired values.

4.3 Entry Points Definition

As described in Section 3.1.2, we can consider a single entry point for the Intent

to enter the Activity, i.e. the onCreate() method. Every time an Activity needs

to handle an Intent message, it is newly created and the corresponding creation

handler method is invoked by the Activity Manager.

This ensures that defining entry points for the analysis for all the onCreate()

methods present in the application is an exhaustive assumption.

1. public void onCreate(Bundle savedInstanceState) {

2. super.onCreate(savedInstanceState);

3. String paramValue = getIntent().getStringExtra("A_PARAMETER");

4. doSomethingWith(paramValue);

5. }

The variable paramV alue defined at line 3, is a suitable candidate for the analy-

sis, so the specified onCreate() method will be used as entry point.
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Table 4.1: EXAMPLE OF RELEVANT STATEMENTS

Statement Type Statement Tracked

Assignment int b = doSomethingWith(a); Yes

Assignment int c = a; Yes

Assignment int c = a+ 7; Yes

Method Call doSomethingWith(a); Yes

For for (int i = 0; i < a.size(); i++); No

If if (a > 0); No

Suppose that only variable a is being tracked

4.4 Data Flow Analysis

In this section are described all the problems the analyzer has to deal with when

analyzing the code.

4.4.1 Variable Path Following

We are interested in tracking every statement that uses one of the variables labeled

as entry point candidate. The concept of using a variable, given a statement, can be

seen as checking whether a given statement contains that variable on the right hand

side of the assignment or not, and if no assignment is included in the statement,

check id there is a method call that contains the variable in its argument list.

So we reduce the problem of following the flow paths taken by the data as track-

ing all the statements that uses the variable containing such data.

In Table 4.1 are listed a set of statements that can be relevant or not to track in

the analysis.

In order to be able to communicate to the user which is the vulnerable piece

of code, and more precisely, which is the parameter that causes the vulnerability,

during the analysis, all the tracked statements must be related to the variable that
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caused them to be tracked.

After this phase the tool should produce a data structure of the type

< parameter_variable, [statements] > for each parameter that needs to be tracked.

4.4.2 Variable Aliasing

Since there is no guarantee of the fact that originally tracked parameters will not

be identically assigned to new variables in the code, the analyzer, while executing,

must dynamically add to its tracking set also all the variables that aliases the base

ones. The algorithm of the analyzer should be general enough to treat generally

both base parameters and the ones added during the execution.

In addition, for each aliasing variable, it has to be provided a reference to the

original variable. For this reason we introduce a slightly modified version of the pre-

vious structure including the reference: < aliasing_variable, variable_ref, [statements] >

The reconstruction and the union of the statements that either directly or indi-

rectly reference a parameter is left to further steps of the analysis.

4.4.3 Inter Procedural Analysis

In order to provide correct and exhaustive results, the analysis has to take care of

methods calls and therefore of different variable scopes.

One approach might be to treat function parameters as special case of aliasing

variables, where their traceability is limited to a specific call context occurred with

a specific argument list. This means that for two different calls of the same method,

with two different tracked variables passed, has to produce two completely sepa-

rated statement lists. Similarly, two different methods that locally share the same

variable name, called with the same value, must produce two completely separated

sets: no overlap can occur.

To do so we need to augment the previously described structure with an addi-

tional information: a method identifier. The resulting structure has this shape:

< aliasing_variable, variable_ref, method_id, [statements] >.
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The structure is instantiated when the method call occurs binding the argument

(variable_ref ) with the corresponding parameter (aliasing_variable). It has to be

noticed that this approach is general enough to deal with nested method calls. The

binding with the original parameter, when it is passed through multiple method calls

can be obtained by navigating the variable_ref chain until a non-aliased variable is

encountered.

4.5 Vulnerability Testing

As last step of the analysis, the remaining thing that has to be done is to check the

statement lists of all the tracked variables against a vulnerable list. This list includes

the methods signatures of all the API calls considered dangerous for our purposes.

Whereas a match is found in the list of statements corresponding to a parameter,

that statement is marked as vulnerable and as consequence a warning presenting

both the statement and the parameter is generated.

4.6 Example

Below is presented an example of the analysis performed on a small piece of code.

1. public void onCreate(Bundle savedInstanceState) {

2. super.onCreate(savedInstanceState);

3. String paramValue = getIntent().getStringExtra("A_PARAMETER");

4. doSomethingWith(paramValue);

5. }

6.

7. public void doSomethingWith(String value) {

8. doSomethingElse(String value);

9. }

10.
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11. public void doSomethingElse(String v) {

12. doSomethingBad(v);

13. }

The analysis, after line 3, will have a list of solutions containing paramV alue and

an empty parameter statement list.

When the analyzer encounter line 4 the solution set will contain two elements,

shown in Table 4.2:

Table 4.2: SOLUTIONS AFTER LINE 4

<paramValue, [doSomethingWith(paramValue);]>

<value, @paramValue, []>

Something similar will happen encountering line 8, in this case the binding is

done between variables value and v.

In Table 4.3 are listed the results obtained at the end of the analysis.

Table 4.3: RESULTS AT THE END OF THE ANALYSIS

<paramValue, [doSomethingWith(paramValue);]>

<value, @paramValue, [doSomethingElse(value);]>

<v, @value, [doSomethingBad(v);]>

In the end, supposing that doSomethingBad() is a method contained in the vul-

nerable method list, such statement will be marked, so will be v. The marking will be

propagated trough value and eventually to paramV alue which is a base parameter

value.

A report will be eventually produced, carrying A_PARAMETER as a vulnerable

parameter and that the vulnerable call for such parameter occurred at line 12.
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4.7 Vulnerability demonstration

In order to demonstrate the actual existence of vulnerable paths and their feasibility

at run time we took advantage of a formal string solver. The goal of this step is to

transform the data collected in the previous analysis into a problem formulation that

the formal analyzer is able to solve.

4.7.1 Graph building

As first step of the process, we are interested in producing an unified graph of the

original control flow graph.

Such graph should not contain the statements that does not involve any of the

statements that operates or include either the base variable or one of its aliases

but should only be built upon the statements tacked during the previous analysis

step. For convenience and simplification of the parsing of the graph, it should be

constructed as an unique, joint representation of all the method bodies captured

during the analysis.

In order to better understand what the outcome of this step should be, let’s take

the example in Section 4.6 and replace dosomethingElse() method body (from line

11 to line 13).

11. public void doSomethingElse(String v) {

12. if (v !== "a string") {

13. doSomethingBad(v);

14. }

13. }

Figure 4.1 shows the outcome of the parsing. As we can see that it contains all

the interesting nodes contained in all the captured method bodies.

It has to be noticed that in order not to loose information about the context

method the statements belong to, the graph’s nodes data structure must be labeled

with such information.
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Figure 4.1: Demonstration - parsed graph

4.7.2 Formal problem formulation

The obtained graph is then traversed in order to produce the final problem formu-

lation. For each conditional statement found in the graph we produce a string con-

straint, properly transforming the string expression (equality, inequality, inclusion).

For each string operation, such as concatenation or replacement, a corresponding

sequence of directives is produced.

The problem formulation is then used to query the string solver in order to obtain

the solution for the string constraints. A solution for the constraints means that we

have proven the vulnerability to be feasible at run time. If the solver is not able to

find a solution, i.e. the given problem is unsatisfiable, the vulnerability is flagged as

unfeasible and it is collected for further manual investigation.
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Chapter 5

Implementation
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Figure 5.1: Analysis workflow

5.1 Overview

In this Chapter are described the tools and the techniques adopted to develop and

implement the tool.

The tool is designed to be simple to use. It takes as input an Android application

package (APK file) and passing through various analysis phases it produces as out-

put security warnings, aimed to notify the user that a suspicious behavior has been

encountered in the code. In addition the tool produces a set of example commands

that can run on on the phone in order to effectively demonstrate the weakness in

the code.

The code contained in the package, in form of Dalvik executable bytecode (dex),

is decompiled and transformed into an higher level intermediate representation.

This representation can be placed in between the bytecode and the actual Java since

it is more human readable than the bytecode, but less complex and structured than

the actual Java code.

This intermediate code, passes through a preliminary analysis aimed to detect

the entry points, and collect informations used for further analysis. This step also

includes a partial computation of the example commands.

The code is then sent to the last step of the analysis, where are extracted the

sequence of operations that have a direct or transitive relation with the extracted

entry points. Eventually, these sequences are checked against a list of potentially
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dangerous operations. Every time a match between an element in the sequence and

an element in the list is found, a report to the user is produced. For this analysis, the

entry points are the values accepted as input by the activities and the list contains

a set of methods concerning network request creation, database storage and UI

presentation.

The tool is written in Java, and it makes use of both Soot1 and Heros2 frameworks

to transform and analyze the code. The first is a well consolidated framework and

the second was recently developed in order to complete some of the lacks of Soot.

They are open source projects distributed under GNU LGPL.

The the vulnerability demonstration is performed with the help of Kaluza3, a

bounded-length string solver that generally used to solve real-world JavaScript con-

straints in web applications.

5.2 The Soot Framework

Soot was first presented between years 1999 and 2000 by members of Sable Re-

search Group at McGill University as master thesis by Vallée-Rai [19] and with the

more famous paper by the whole research group [20].

Soot is a Java static analyzer, that enables manipulation and optimization of the

Java bytecode. The bytecode is transformed in a series of four intermediate repre-

sentations designed for different objectives. These representations can be sorted

from the ones closer to the bytecode to the furthest:

• Baf is a streamlined representation of the bytecode

• Jimple is a 3-addressed readable representation

• Shimple is a version of Jimple in static single assignment form

• Grimp is an aggregated version of Jimple

1http://www.sable.mcgill.ca/soot/
2http://sable.github.io/heros/
3http://webblaze.cs.berkeley.edu/2010/kaluza/
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One of the main characteristic of Soot is its modularity. Soot is designed to be

modular and highly adaptable to solve the set of problems it is aimed to. It relies

on a singleton object, the Scene (accessible via Scene.v()), that is initially populated

when the code is given as input, after being parsed. The Scene offers a large set

of APIs to programmatically access classes and methods of the populated objects.

A large set of tools is provided to analyze the Scene. Soot offers pre-implemented

algorithms to perform call graph analysis, domination analysis or context-sensitive

point-to point analysis. Soot also comes with a package manager that can be used

to handle a chain of modules (as phases) which the code is eventually sent to. This

allows to attach to the execution chain, external or custom transformations of ana-

lyzers.

Soot can run either as command line tool or as embedded Java library to satisfy

needs that require more complex customizations.

5.2.1 Jimple Intermediate Representation

For the purposes of our analysis we adopted Jimple as intermediated representation.

This choice was not driven by a special need, but we made it because of the wide

support that this representation has obtained. Jimple has become the most popular

intermediate representation and it can be considered as a kind of standard when

performing static code analysis and optimization.

Here below is presented an example of method in its Jimple representation:
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protected void onCreate()

{

[...]

$z1 == 0 goto label4;

$r4 = $r0.<com.dropbox.client2.android.AuthActivity: java.lang.String consumerKey>;

label4:

virtualinvoke $r3.<android.content.Intent: android.content.Intent

putExtra(java.lang.String,java.lang.String)>("CONSUMER_KEY", $r4);

[...]

}

Jimple is a 3-addressed representation. It consists of a reduced set of statements

(12), that limit the complexity of the analysis without reducing its expressibility in

terms of readability. It also completely masks the underlining stack representation

(as in the bytecode) by the use of local variables so not to cope with location of non-

explicit variables in the stack. As can be noticed in the example above, it preserves

the original Java types, complete with their namespace.

5.2.2 Soot with Dalvik Bytecode

It has recently been announced the integration in Soot of Dexpler4 [3], adding to

Soot the ability to transform the Dalvik bytecode into a Jimple representation and

vice-versa.

This transformation may seem simple to perform, since Dalvik bytecode is regis-

ter based, and there is a remarkable similarity between Dalvik registers and Jimple

local variables. However, registers and constants in Dalvik are untyped, and their

types has to be computed in order to complete the Jimple transformation (as seen

before Jimple variables preserves the original Java types).

4Instrumenting Android Apps with Soot - http://www.bodden.de/2013/01/08/soot-android-

instrumentation
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Thank to this addition we were able to analyze the code without any further

decompilation. This of course highly simplified the whole process. Unfortunately

Dexpler has been pushed only to the development branch of Soot, so it is only in-

cluded in the nightly build.

5.2.3 Heros Framework and IFDS

Unfortunately Soot does not provide a precise method for inter-procedural analysis.

To overcome this lack, Eric Bodden, one of the Soot’s current main contributors,

has designed Heros [4].

Heros does not rely neither on Soot nor on any kind of Soot’s intermediate rep-

resentation to perform the analysis. It is also language-agnostic, in the sense that

it can be used to analyze any language. It is written in Java and it accepts generics

types representing statements, methods and data facts.

Heros is an IFDS/IDE general purpose solver. IFDS/IDE frameworks are class of

algorithms to solve in polynomial time inter-procedural finite data-flow analysis.

IFDS is a general algorithm that allow to reduce a inter-procedural data-flow

analysis into a graph reachability problem. [16]. It solves problems in which flow

functions can be expressed as distributive functions. Many data-flow problems can

be defined with distributive flow functions, and thus be solved with the IFDS/IDE

framework such as defining truly-live variables, variables typestate and information-

flow.

The IFDS algorithm extracts from the program’s inter-procedural control-flow

graph a, so called, “exploded super graph”. In this graph, a node (s, d) is reach-

able from a selected start node (s0, 0) if and only if the data-flow fact d holds at s,

where s is a program statements. As “fact” is intended any logical statement, such

as variable x has been declared, initialized or has passed through a series of defined

computations. The algorithm makes use of data-flow functions to connect different

nodes. As sketched in Figure 5.2 the function id is the identity function, mapping

each data-flow fact before a statement into itself. The value 0 represents an empty
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Figure 5.2: IFDS flow functions, reproduced from [16]

fact that is always valid. This 0 value is used to generate data-flow facts uncondi-

tionally. Function a adds a to the set of facts by connecting 0 to a, and at the same

time removes b and other facts not explicitly connected. Function f adds b, removes

a and leaves c untouched.

Heros solves arbitrary IFDS problems defined by implementing the

IFDSTabulationProblem<N,D,M> interface, where N are node types (statements),

D are data-fact types and M are method types. By implementing this interface the

programmer has to define the chosen value for zero data-facts, provide a set of entry

points for the analysis and define the behavior of the flow functions. Defining the

flow functions means to implement four callback methods, one for each different

inter-procedural behavior:

• getNormalFlowFunction(N curr, N succ)

• getCallFlowFunction(N callStmt , M destinationMethod)

• getReturnFlowFunction(N callSite , M calleeMethod , N exitStmt , N

returnSite)

• getCallToReturnFlowFunction(N callSite , N returnSite)

For each of these functions (each of them representing a generic flow function)

the programmer has to implement a inner callback method that will be called for
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each data-fact present at a given computation moment: Set<D> computeTargets(D

source). In this way one or more facts can be generated specifically from a specific

fact.

As can be noticed Heros is a precise and close implementation of the originally

propose IFDS algorithm.

5.3 Entry Points Detection and Command Generation

IFDS algorithm has a worst-case complexity of O(N3) where N is the number of

instructions in the analyzed domain. It is not reasonable to perform the analysis

with data facts produced from any point in the program. To prevent this we need to

collect a subset of methods (entry points) from which the analysis can begin.

To do so, a full scan of the Jimple representation of the program is performed. In

this scan we are interested in detecting all the instructions that affect Intents extras,

e.g. that both set or retrieve them. Since the set of API calls that Android provides

to set and retrieve the extra parameters contained in the Intent message is quite

limited and constant between different Android versions, the list of the signatures

of this calls is explicitly declared. Whereas one these statements is interesting in

the context of our search a data structure is populated wrapping together all the

extras that are enclosed in the same Intent. To this data structure is also added

other information that is not relevant to the real analysis but is instead necessary to

generate the example commands, like class and package names.

In the application there may exists Intent messages targeted to other applica-

tion’s Activities (for example more than one application are included in the scope

of the analysis), the tool also produces commands for Intent messages sent, but not

received by the same application, as well as received, but never sent within the ap-

plication. For this reason in this step is collected information both when a creation

method callback is encountered (onCreate()) and when a request to start a new Ac-

tivity is performed. Of course this causes duplicates that are removed afterwards.
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As entry points for the real inter-procedural analysis, since we are tracking the

programming behavior when receiving data, only the structures populated from

receiving methods are considered.

5.4 Inter-procedural analysis

In this section is presented how the IFDS algorithm is exploited to perform the data

flow analysis described in Section 4.4.

IFDS algorithm is well suitable to our analysis objectives, in fact this specific

analysis is an instance of an information-flow problem easily describable as an IFDS

Tabulation problem.

For our instance of the IFDS problem we use a simple data structure to represent

data facts, similar to the one described in Section 4.4.3:

<Value trackedVariable,

Value baseVariable,

SootMethod contextMethod,

List<Stmt> trackedStatements>

where trackedVariable is the variable to which the list of tracked statements

corresponds, baseVariable is the reference to an aliased variable if any, null other-

wise. contextMethod is the scope of validity of the variable and trackedStatements

is the list of all the statements in which trackedVariable appears.

Value is a Soot interface that classes can implement to represent a variable,

SootMethod is an utility class to access methods information and Stmt is an interface

that represents general statements.

5.4.1 IFDS Problem

The problem is expressed as an instance of an Heros problem by implementing the

interfaces described in Section 5.2.3. Below is described the logic encoded in the

flow functions for each of the normal flow, call flow, return flow and call to return
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flow callbacks.

As mentioned previously, as soon as the analysis starts is available the list of

entry points complete with all the parameters treated in such entry points, namely

base parameters.

• Normal flow function This callback is called when the statement does not

include a method call or a return instruction.

When this callback is called on behalf of a statement containing a base pa-

rameter reference, if the fact set is empty or it does not contain a fact yet

having such base parameter as trackedVariable a new fact is added with the

base parameter variable as trackedVariable and a new list of statements is

initialized with the current statement.

If the current statement is an assignment and one of the trackedVariable

contained in the fact set is present in the right hand side of the assignment a

new fact is generated. This fact will contain as trackedVariable the variable

in the left hand side and the previous fact trackedVariable as baseVariable.

Then the current statement is added to the new fact’s statement list.

Eventually, if a statement simply uses a variable contained in the trackedVariable

field of a fact, such statement is added to the list, otherwise the previous facts

are simply propagated.

• Call flow function This callback is called when a statements include a method

invocation.

If the fact set is empty is done something similar to what described for the

normal flow callback, i.e. a new fact is generated if the current statement is

an assignment that contains on its left hand side a variable containing a base

value. Similarly, when the invocation contains as parameter a variable present

in the trackedVariable field of a fact, if the returned value of the method is

assigned to a new variable, a referencing fact is created containing the current

statement in the statement list.
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Also, whereas a variable in the fact list is passed a parameter, a new fact is

generated with trackedVariable equal to the local variable, as baseVariable

equal to the passed parameter and the statement list with the current state-

ment added. In this way is explicitly created a parameter-argument binding

for all the method invocations.

The fact list is killed in all the other cases so to avoid to analyze method not

relevant in our analysis domain.

• Return flow function

Since we are not propagating facts from the body to the method to the one

enclosing it when the end of the body is reached, we simply kill all the paths

passing by this callback.

• Call to return function

We are not interested in propagating back facts binding the local returned

variable to an external assignments, since we explicitly binding local and ex-

ternal scopes. This solutions is more robust since it allows to track internal

operations performed on non primitive types (that are passed by reference).

The flow function for this call back is simply an identity function that simply

propagates all the facts valid so far.

This analysis will produce a set of all and only interesting variables in the context

of the analysis, along with a list of all the statements that used them, or affected

them for some reason.

5.4.2 Vulnerability check

At this point what remains to do is simply to query the IFDS facts for each captured

onCreate() method (entry points). The complete IFDS facts can be considered the

ones corresponding to the last statement for each entry point method.
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The list of facts can be used to reconstruct the variable dependencies (aliasing)

in order to correlate all the statements to the variables enclosing the base parameter

values and build a new list containing only base parameters in the trackedVariable

field.

Then each of the entries in the statement lists is checked against a list of methods

statements considered vulnerable. Every time a match is encountered a security

warning is produced and outputted.

5.5 Vulnerability formal problem formulation

As stated in Section 4.7 in order to obtain a precise Kaluza formal problem formula-

tion, two steps are required. First a inter-procedural unified graph, containing only

tracked statements is extracted, then such graph is traversed in order to finally

produce a Kaluza input string. The original control flow graph taken into consider-

ation is not an exceptional control flow graph: for sake of simplicity exceptions are

left out in this implementation. The algorithm presented in the following sections

are executed independently for each captured vulnerable statement. A solution is

considered acceptable is the solver can obtain a solution for all the vulnerable state-

ments belonging to the same Intent payload.

5.6 Control flow graph extraction

Here below is presented a sketch of the algorithm used to obtain the desired graph.

Where:

• graph is the resulting graph variable

• sink is the vulnerable statement

• statementsSet is the list of tracked statements from the IFDS analysis
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The algorithms works as follows: starting from the vulnerable statement point in

the code the control flow graph is traversed backward (w.r.t. normal code execution

order) jumping from callee to callers until the entry point variable is reached.

extractMethod is the algorithm wrapper function taking care of managing inter-

procedural calls. After adding the vulnerable statement the algorithms iterates over

the callees until the newly generated graph has not been changed (convergence

point).

graph;

sink;

statementsSet;

extractGraph() {

context; // sink’s method

contextGraph;

graph.addNode(sink);

addPredecessors(contextGraph, sink, sink);

repeat {

headMethod = methodOf(lastUpdatedHead);

caller = callerOf(headMethod);

context = methodOf(callerStmt);

contextGraph = extractGraph(context);

if (caller in statementsSet) {

addPredecessors(contextGraph, callerStmt, prevHead);

}

} until (graph.getHead() != lastUpdatedHead);
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}

addPredecessors(contextGraph, currentStatement, graphHead) {

for (predecessor, i : currentStatement.getPredecessors()) {

if (!currentStatement in statementsSet) {

addPredecessors(contextGraph, predecessor, graphHead);

return;

}

if (current statemet branches) {

if (i == 1) {

addNodesAndEdge(graphHead, <Empty>);

}

addNodesAndEdge(predecessor, graphHead);

if (i == 0) {

addNodesAndEdge(graphHead, <Empty>);

}

} else {

addNodesAndEdge(predecessor, graphHead);

}

addPredecessors(contextGraph, predecessor, newGraphHead);

}

}

addPredecessors iterates over statements inside a specific method body and it is

in charge of reconstructing intra-procedural code points from the original method’s
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body to newly constructed graph. This method is invocated from the precise pro-

gram point from which the previous method was invocated until the first statement

in the method body.

The function first checks whether the current statement was tracked in the pre-

vious analysis step or not, i.e. such statement affects somehow the base variable

(or one of its aliases) or not. If a match is encountered and the statements is not

a merging point (the graph branches), the current statements is simply added to

the graph and the next statement is taken in consideration. If the statement is a

merging point, since the then-else branches are positional in the graph semantic,

the right position for the next statement has to be preserved. This is obtained by

checking the index of the current statement in the predecessors list (0 or 1).

It has to be noticed that:

• the first statement in a method body has no predecessors

• points in the code in which if-then-else blocks merges have two predecessors

• all other statements have only one predecessor

addNodesAndEdges method (not presented here) is a simple utility method to

add the edge between the two nodes in the right position.

Control flow graph parsing Eventually, in order to produce the desired Kaluza

problem formulation, the previously constructed graph is parsed to obtain the set of

string constraints and directives. The implementation works on a set of string oper-

ations such as concatenation, substring extraction, length equality, string equality.

The subset of possible string operation chosen for the implementation was empiri-

cally determined by the code instruction found in the application taken in consider-

ation for the proof of concept.

Kaluza has a wide set of pre-implemented string operations that are exploited to

construct the problem formulation. For example:

• Concatenation of S1 and S2 (S1 and S2 strings) is S3 := S1.S2;
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• Length equality of S1 and S2 (S1 and S2 strings) is I1 := Len(S1); I2 :=

Len(S2);T1 := I1 == I2;

• Equality/Inequality of S1 and S2 (S1 and S2 strings) is T1 := S1 == S2; T1 :=

S1! = S2;

In order to avoid clashes, local variable names are transformed by prefixing to

them their method name. For example variable v of method doSomethingElse pre-

sented in the example 4.7.1 is transformed to the variable name doSomethingElsev.
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Chapter 6

Proof of Concept
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6.1 Experimental Setup

In order to demonstrate the effectiveness of our method we choose a set of popular

applications from the Google Play Store. We downloaded a sample consisting of 30

middle size applications. For middle size we mean applications with a limited, but

significant, number of Activities (8-15) and Services (1-3). This choice was driven

by the substantial execution time that the analysis takes. The IFDS solver takes

between 2 and 9 minutes to complete the analysis of a single Activity. The variance

in this time strongly depends on the number of methods present in the Activity,

along with their complexity.

The execution time for the Kaluza problem formulation and solution is negligible

w.r.t. IFDS solving time: the whole process always completes within a second.

6.2 Results

In Table 6.1 are present the number of paths the tool detected, divided into three

sets. These three sets corresponds to the three set of vulnerabilities described in

Section 3.4.

Below are listed some remarkable vulnerabilities which effectiveness have been

demonstrated by manually creating an exploit that triggers them:

• Mint let an attacker load an arbitrary web page in the visual context of the

application. Since this application deals with user’s personal finance reports

it is easy to imagine how an attacker could exploit this capability.

• Poste Italiane/Postepay: these two applications let an attacker communicate

any kind of message to the application user through the applications’ modal

alert screen. An user may be deceived and induced to perform some dangerous

action on its debit card account.

• Airbnb let open the modification of the house rules and the FAQ screen.
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Table 6.1: EXPERIMENTAL ANALYSIS RESULTS

Application Name Paths to Network Paths to Database Paths to UI

Airbnb 0 0 5

Airfrance 0 0 0

Blink 0 0 0

Booking 0 0 4

Craiglist 0 0 1

EF File Manager 0 0 0

Evernote 0 0 1

Expedia 0 0 2

Fancy 0 0 2

FriendCaster 0 0 0

GoChat 0 0 4

Hike 0 1 2

IM+ 0 0 2

Imo 0 0 1

Mediolanum 0 0 0

Mint 1 0 1

OpenTable 0 0 1

Poste Italiane 0 0 5

Postepay 0 0 9

Readability 0 0 0

RocketTalk 1 0 8

Seesmic 0 0 1

Skype 0 0 0

Skyscanner 0 0 0

Snapchat 0 0 2

Swissquote 0 0 2

TripIt 0 0 0

Twitter 5 1 10

Wall Street Journal 0 0 0

Waze 0 0 0
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• in RocketTalk, an attacker may specify a chat room (JSON resource) which

URL could not belong to the RocketTalk default domain. This fact can be

exploited by an attacker to actually manipulate user’s chat history.

During the analysis was also found a noteworthy defense mechanism imple-

mented by GOChat. This simple chat application exchanges verification codes for

inter-Activity communication. This defense method exploits the Applications shared

memory space (shared among all the Activities) to store a token generated from the

Intent sender. The Intent receiver then matches the token received in the Intent

payload with the one stored in the application shared memory. Every communica-

tion request without a valid token will then be discarded.

This simple approach was found to be very effective. In fact we were not able to

manually perform any kind of operation on Activities protected by this mechanism.

Of course this approach cannot be exploited when a given Activity or Service has to

be world accessible by design.

6.3 Paths Distribution

As can be noticed in Figure 6.1 the number of UI paths detected heavily dominates

the number of paths in the other two classes. Intuitively we can see the cardinality

of these three sets decreasing with the increasing complexity of the threat model.

As can be intuitively deduced from an high level reasoning about the use cases

and the underlining architectures that let these classes of vulnerability raise, net-

work and database paths are less likely to appear.

To support this thought, we can also rank the three vulnerability classes in or-

der of severity: network vulnerabilities are the most severe since they can impact

remote user resources (maybe locally synchronized on many user devices). Then

database set that affect the local status of the application and eventually the phish-

ing set which (in theory) should only affect user’s current session.
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Figure 6.1: Path distribution histogram

63



64



Chapter 7

Conclusions and Future Work
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To conclude, we identified a major source of vulnerabilities for Android applica-

tions, namely the lack of filtering and controls in Intent based inter-process commu-

nications. We explored the potential impacts, and identified the threat model.

Then, we proposed a method to automatically detect them in apps. With static

analysis, we automatically identified data flows that could lead to (parts of) Intent

payloads being used as (part of) arguments for framework method calls. We formu-

lated the problem efficiently as an Interprocedural Distributive Environment one,

and analyzed the flows to check for appropriate sanitization measures.

Where such controls seemed absent, we used a string solver to automatically

generate Intent examples that trigger the detected behavior.

We tested our approach on 30 popular applications from the Google Play, finding

19 potential vulnerabilities and automatically exploiting 13 of these.

From our results it is clear that only a few applications implement appropriate

security countermeasures for Intent communications.

The tool could be confidently used (along with manual validation) in real world

development environments to test application’s message passing implementation

against the three class of vulnerabilities discussed in this thesis.

Unfortunately, since the tool is not able to cope with application semantic (com-

mon trough this class of approaches), it suffers of false positives. For example, just

by looking at the paths it can not be determined if a phishing attach can be consid-

ered effective: we can not distinguish between slight modification in the UI (button

label changing) and considerable modification that can actually deceive an user.

The main lack of this tool is a complete dynamic test suite that can demonstrate

the severity of found vulnerabilities. This problem is, unfortunately, hard, because

the analysis includes a wide set of Android system features, namely interprocess

communication, network communication, databases and UI elements.

The only effective way to automatically prove the severity of a given vulnerabil-

ity is to test it into the application execution context. This requires the ability to

instrument the applications at run time, by artificially triggering events that lead
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the application in the vulnerable state. To have a solid feedback is also needed to

monitor the effective changes that occur in the resources, and to bind them to the

event that provoked them.

Android debugging tools may not be enough for this purposes due to their in-

ability to explicitly track cause-effect events. In addition, debugging tools does not

provide mechanisms to analyze encrypted network traffic or encrypted data stor-

age. Of course a exhaustive testing can be performed only by having clear access to

all the resources of the system.

A solution could be to create a modified Android Open Source Project build,

where informations are captured before being encrypted and (in case of the net-

work), before leaving the system, and responses are captured after entering the

system and after being decrypted. This, moreover, requires a deep knowledge of

the Android system, because this approach requires to instrument all the system li-

braries such as the Activity Manager, the Apache HTTP Library included in Android,

the SQLite database drivers and the component rendering library.
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Appendix A

IFDS implementation

1

2 public class IFDSFollowFlow

3 extends DefaultJimpleIFDSTabulationProblem<IFDSFact, InterproceduralCFG<Unit, SootMethod>> {

4

5 private final Set<Unit> initialSeeds;

6 private final Set<Value> baseValues;

7 private final SootMethod baseContext;

8

9 public IFDSFollowFlow(InterproceduralCFG<Unit, SootMethod> icfg, AbstractTrappedAction receiver) {

10 super(icfg);

11 Set<Unit> seeds = new HashSet<Unit>();

12 baseValues = new HashSet<Value>();

13 baseContext = Scene.v().getMethod(receiver.getMethodSignature());

14 seeds.add(baseContext.getActiveBody().getUnits().getFirst());

15 baseValues.addAll(receiver.getAllValues());

16 this.initialSeeds = seeds;

17 }

18

19 private boolean valueInUseBoxes(Value val, Stmt statement) {

20 for (ValueBox dBox : statement.getUseBoxes()) {

21 if (dBox.getValue().equivTo(val)
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22 && interproceduralCFG().getMethodOf(statement).equals(baseContext)) return true;

23 }

24 return false;

25 }

26

27 @Override

28 protected FlowFunctions<Unit, IFDSFact, SootMethod> createFlowFunctionsFactory() {

29 return new FlowFunctions<Unit, IFDSFact, SootMethod>() {

30

31 @Override

32 public FlowFunction<IFDSFact> getNormalFlowFunction(Unit curr, Unit succ) {

33 if (interproceduralCFG().isStartPoint(curr)

34 && interproceduralCFG().getMethodOf(curr).equals(baseContext)) {

35 return new FlowFunction<IFDSFact>() {

36

37 @Override

38 public Set<IFDSFact> computeTargets(IFDSFact source) {

39 if (source == zeroValue()) {

40 HashSet<IFDSFact> res = new HashSet<IFDSFact>();

41 for (Value v : baseValues) {

42 IFDSFact fact = new IFDSFact(v, baseContext);

43 res.add(fact);

44 }

45 return res;

46 } else {

47 return Collections.emptySet();

48 }

49 }

50 };

51 }

52

53 if (curr instanceof DefinitionStmt) {

54 final DefinitionStmt assignment = (DefinitionStmt) curr;
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55 return new FlowFunction<IFDSFact>() {

56 @Override

57 public Set<IFDSFact> computeTargets(IFDSFact source) {

58 // facts have already been initialized

59 if (source != zeroValue()) {

60 // source base value is assigned

61 if (source.getValue().equals(assignment.getRightOp())

62 && interproceduralCFG().getMethodOf(assignment).equals(

63 source.getContextMethod())) {

64

65 source.addStatement(assignment);

66 source.addAlias(assignment.getLeftOp(),

67 interproceduralCFG().getMethodOf(assignment));

68 return Collections.singleton(source);

69 }

70 // source alias is assigned

71 if (source.hasAlias(assignment.getRightOp(),

72 interproceduralCFG().getMethodOf(assignment))) {

73 source.addAlias(assignment.getLeftOp(),

74 interproceduralCFG().getMethodOf(assignment));

75 source.addStatement(assignment);

76 return Collections.singleton(source);

77 }

78

79 }

80 return Collections.singleton(source);

81 }

82 };

83 }

84

85 return Identity.v();

86

87 }
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88

89 @Override

90 public FlowFunction<IFDSFact> getCallFlowFunction(final Unit callStmt,

91 final SootMethod destMethod) {

92 if (interproceduralCFG().isStartPoint(callStmt)

93 && interproceduralCFG().getMethodOf(callStmt).equals(baseContext)) {

94 return new FlowFunction<IFDSFact>() {

95

96 @Override

97 public Set<IFDSFact> computeTargets(IFDSFact source) {

98 if (source == zeroValue()) {

99 HashSet<IFDSFact> res = new HashSet<IFDSFact>();

100 Set<Stmt> statements = new HashSet<Stmt>();

101 for (Value v : baseValues) {

102 IFDSFact fact = new IFDSFact(v, baseContext);

103 res.add(fact);

104 }

105 return res;

106 } else {

107 return Collections.emptySet();

108 }

109 }

110 };

111 }

112 final Stmt stmt = (Stmt) callStmt;

113 final InvokeExpr invokeExpr = stmt.getInvokeExpr();

114 final List<Value> args = invokeExpr.getArgs();

115 final List<Value> localArguments = new ArrayList<Value>(args.size());

116 for (Value value : args) {

117 if (value instanceof Value)

118 localArguments.add(value);

119 else

120 localArguments.add(null);
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121 }

122

123 return new FlowFunction<IFDSFact>() {

124

125 @Override

126 public Set<IFDSFact> computeTargets(IFDSFact source) {

127 if (source == zeroValue()) return Collections.singleton(source);

128 if (localArguments.contains(source.getValue())) {

129

130 int paramIndex = args.indexOf(source.getValue());

131 source

132 .addAlias(

133 new EquivalentValue(Jimple.v().newParameterRef(

134 destMethod.getParameterType(paramIndex), paramIndex)),

135 invokeExpr.getMethod());

136 source.addStatement(stmt);

137 source

138 .addAlias(

139 new EquivalentValue(Jimple.v().newParameterRef(

140 destMethod.getParameterType(paramIndex), paramIndex)),

141 invokeExpr.getMethod());

142 if (callStmt instanceof DefinitionStmt) {

143 DefinitionStmt defStmt = (DefinitionStmt) callStmt;

144 if (defStmt.getLeftOp().getType().toString().equals("java.lang.String")) {

145 source.addAlias(defStmt.getLeftOp(), baseContext);

146 }

147 }

148 return Collections.singleton(source);

149 }

150 SootMethod contextMethod = interproceduralCFG().getMethodOf(callStmt);

151 Value aliasedArg = getValueFromFact(source, contextMethod, localArguments);

152 if (aliasedArg != null) {

153 source.addAlias(aliasedArg, invokeExpr.getMethod());
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154 source.addStatement(stmt);

155 if (callStmt instanceof DefinitionStmt) {

156 DefinitionStmt defStmt = (DefinitionStmt) callStmt;

157 if (defStmt.getLeftOp().getType().toString().equals("java.lang.String")) {

158 source.addAlias(defStmt.getLeftOp(), contextMethod);

159 }

160 }

161 return Collections.singleton(source);

162 }

163 // do not propagate trough non−interesting functions

164 return Collections.emptySet();

165 }

166 };

167 }

168

169 @Override

170 public FlowFunction<IFDSFact> getCallToReturnFlowFunction(Unit arg0, Unit arg1) {

171 return Identity.v();

172 }

173

174

175 @Override

176 public FlowFunction<IFDSFact> getReturnFlowFunction(Unit arg0, SootMethod arg1, Unit arg2,

177 Unit arg3) {

178 // no need to propagate local fact

179 return KillAll.v();

180 }

181 };

182 }

183

184 @Override

185 public Set<Unit> initialSeeds() {

186 return initialSeeds;
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187 }

188

189 @Override

190 protected IFDSFact createZeroValue() {

191 return new IFDSFact(new JimpleLocal("<<zero>>", NullType.v()), baseContext);

192 }

193

194 }
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