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Summary 
 

 

Introduction 

Cardiovascular diseases are the leading cause of death in most of the 

developed countries, being associated with more than 30% of all deaths (Go et al, 

2013). Premature ventricular contractions (PVCs) lead to poor prognosis even in 

hearts with no structural diseases (Cha et al, 2012) (Lee et al, 2012). Premature atrial 

contractions (PACs) are known to precede atrial fibrillation (AF) (Haissaguerre et al, 

1998) and to be a surrogate marker of paroxysmal AF in patients with acute ischemic 

stroke (Wallmann et al, 2007). AF is recognized to be one of the leading causes of 

stroke and a strong independent risk factor for increased cardiovascular morbidity 

and mortality (Benjamin et al, 1998) (Wolf et al, 1991) (Stewart et al, 2002), and it is 

very common among old subjects (Lake and Moorman, 2011). The world population 

is rapidly aging and this situation claims for an effective detection and monitoring of 

AF. 

Important clinical decisions are related to the presence of AF, including 

stroke prevention with anticoagulants or left atrial appendage exclusion, 

cardioversion, ablation, and antiarrhythmic drugs. On contrast, no treatments are 

required even in situations with high burden of PVCs or PACs without concomitant 

pathological conditions, such as cardiomyopathy.  

Current devices for arrhythmias detection, such as ECG Holter recordings, 

are obtrusive for the patient and are based on ECG signal, which can be distorted and 

noisy, making features extraction from the waveform not always feasible.  

The RR interval time series is a reliable signal, it requires less computational 

cost and it’s less affected by high frequency noise.  

However, non-invasive devices for determining heart rhythm are not 

commonly used because of reduced confidence in detecting AF based only on the 

heart rate or RR series. In fact, many methods to distinguish between AF and Normal 

Sinus Rhythm (NSR) has been proposed, given the largely different dynamics
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 between the two rhythms (Sarkar et al, 2008) (DeMazumder et al, 2013) (Lake and 

Moorman, 2011) (Tateno and Glass, 2001), but situations of sinus rhythm (SR) with 

frequent ectopy, atrial or ventricular, is expected to share features with AF, and thus 

to be distinguished with difficulty. 

The principal objective of this thesis is to provide an algorithm for the 

detection and classification of AF even when a very high burden of atrial and 

ventricular ectopic beats is present, based only on RR intervals time series. We 

hypothesized that indices related to the dynamics of RR series can contribute to a 

better distinction of SR with ectopy from AF. We tested the hypothesis using three 

nonlinear indices. The Coefficient of Sample Entropy (COSEn) was designated to 

quantify the higher entropy characteristics of AF with respect to NSR, and the 

algorithm was optimized for very short time series (Lake and Moorman, 2011). 

Local Dynamics score (LDs) is a new index proposed to capture local dynamics of 

the heart rate, that are related to the baseline variability and to the outliers, such as 

ectopy (Moss et al, 2014), and it was also designed to work on 12-beat segments. 

Detrended Fluctuation Analysis (DFA) is a well-known method to quantify the 

fractal-like scaling properties of the RR interval time series (Peng et al, 1995).  

The second objective was to analyze the mortality risk over 2 years of the 

same population, based on COSEn and LDs indices only. We hypothesized that the 

combination of these two entropy-based dynamical measures could help to shed light 

on association between cardiac arrhythmias and mortality risk.  

 

Material and Methods 

We studied RR interval time series from 24 hour Holter recordings collected 

from 2’722 consecutive patients at the University of Virginia (UVa) Heart Station 

from 12/2004 to 10/2010. The RR series were subdivided into 377’285 10-minute 

segments. Each 10-minute segment was classified as AF if the burden of AF was 

greater than 5%, as SR with ectopy if the burden of ectopy was more than 10%, as 

NSR otherwise. Thus, the dataset is composed of 79% NSR, 8% AF and 13% SR 

with ectopy segments. The 3 categories are mutually exclusive and reflect clinical 

practice.  
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To test the overall hypothesis that dynamical measures were useful for 

rhythm classification, we used several schemes.  The strategy was to compare the 

accuracy of classification using means and standard deviations of RR series alone, 

and after addition of the 3 dynamical measures - COSEn, LDs and slope of DFA. 

The first scheme was a system of 3 multivariate logistic regression models, each used 

to distinguish one rhythm class from the other two. The second approach was a k-

nearest neighbors technique. All models were validated using a 10-fold cross-

validation procedure on the entire dataset. Finally, the models were externally 

validated on the MIT-BIH database. 

We assessed mean, standard deviation, COSEn and LDs on 30 second 

segments and then we averaged the results over 10 minute, while DFA was 

computed on 10-minute segments. 

As regard the analysis of the mortality risk, we performed a multivariate 

kernel density study on the histograms of the joint distributions of COSEn and LDs 

estimated on the UVa database. The kernel chosen is a bivariate Gaussian with a 

diagonal bandwidth matrix, which allows different amounts of smoothing in each of 

the coordinates (Botev et al, 2010). The two bandwidth parameters are chosen 

optimally without assuming a parametric model for the data (Lake, 2009). 

 

Results 

Our major finding is the improvement in the distinction of SR with ectopy 

using the dynamical measures from the other two groups. The positive predictive 

value using either regression models or k-nearest neighbor (k-NN) analysis was 85%, 

with higher values for the diagnosis of NSR (96%) and AF (90%).  The accuracy 

increased further if the threshold for diagnosing ectopy was higher than 10% burden.  

Surprisingly, these measures do not distinguish well between atrial and 

ventricular premature beats, a potentially important clinical distinction. PACs may be 

harbingers of AF, and PVCs are associated with increased mortality, especially when 

structural heart disease is present. We tested a logistic regression scheme with 4 

models to distinguish among NSR, AF, SR with PVCs and SR with PACs but a large 

misclassification error occurred when the two ectopy classes are separately analyzed. 
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The models were externally validated using the canonical MIT-BIH databases 

of NSR, AF and other arrhythmias (ARH). Here the positive predictive values for 

NSR and AF rose to 99% and 96%, respectively, but fell for SR with ectopy to 45%. 

This may be explained by the much lower incidence of SR with ectopy in the highly 

selected MIT-BIH databases, where they represented <1% of the 11’196 10-minute 

segments, compared with 13% of the 377’825 10-minute segments in the UVa 

database. 

The second objective was to analyze the mortality risk over 2 years of the 

population considering only patients with age over 40 years. The result is a color 

map of the risk, shown in Figure 1.  

 

Figure 1. Mortality risk over 2 years of the UVa Holter population 

 

A well-defined royal blue region, i.e. with very low mortality risk, is 

characterized by low values of LDs, whereas high-risk zones are related to higher 

values of the index. In particular, starting from the low risk region (left lower edge), 

it is possible to distinguish two different directions along which the risk becomes 

higher: the first, marked by the lower arrow, evolves toward increased values of LDs 

independently of COSEn values, whereas the second one, highlighted by the upper 
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arrow, points toward both higher values of LDs and COSEn, reaching the maximum 

for both the indices 

The results hint that heart rate dynamics, alone, can inform on the mortality 

risk. In particular, our results supports the idea that condition characterized by AF, 

high burden of ectopy and reduced variability are associated to mortality. 

 

Discussion and Conclusion 

This work proved the benefit of dynamical measures in the problem of 

arrhythmias detection and classification. COSEn and LDs were already tested as 

efficient measures to specifically detect AF and abnormal local dynamics, 

respectively (Lake and Moorman, 2011) (Moss et al, 2014). Furthermore, this work 

included the short-term scaling exponent obtained from DFA computed over 10-

minute segments as a useful parameter to distinguish three very important clinical 

arrhythmias, such as NSR, AF and SR with a certain burden of ectopy. However, 

future improvements can be done by investigating different types of classification 

algorithms. 

Our clinical emphasis constrains our analysis in several ways. First, we 

consider atrial flutter to be the same as AF. This approach, which is based on the 

similarities in clinical management, can certain lead to misclassifications with NSR. 

Second, we assigned the diagnosis of AF when as little as 30 seconds, or 5% of a 10-

minute segment was present. This is consistent with clinical practice, where episodes 

lasting as in our case elicit full consideration in AHA guidelines (Fuster et al, 2006), 

and thus can lead to treatment measures as for AF. Finally, as previously stated, we 

assigned the diagnosis of ectopy when as little as 10% is present. The end result of 

these classification produced a diagnose of AF or SR with ectopy even when the 

rhythm is 90% or more purely normal SR. 

An accurate arrhythmias detection and classification together with an 

effective method to determine the risk of the subject associated with the arrhythmias, 

both based only on RR interval time series, could have an important clinical impact 

for the management of hospitalized and ambulatory outpatients. 
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Moreover, the potentialities of an automatic RR-based arrhythmias classifier 

are enormously important in new growing fields as home care monitoring and 

telemedicine, where it could find extensive applications, but also in intensive care 

unit (ICU) setting. The potentiality of this analysis is represented indeed by its ability 

to work on segments of only 10 minutes, with an update of the values every 30 

seconds, allowing it to be potentially useful in a clinical setting, where a continuous 

monitoring of the changes in cardiac rhythm and their relative risk is crucially 

important and can be life-saving. An example of the effectiveness of the classifier in 

a real time context is reported in Figure 2. The RR interval time series is depicted 

with dots, the line at the bottom represents the output of the classification model 

proposed in this thesis with an update performed every two minutes.  

 

Figure 2. One hour segment of RR interval time series extracted from 24 hour Holter record. It is 

visible a transition from NSR to SR with ectopy, that the model (bottom solid line) efficiently tracks.  

 

On the other hand, the idea of a “risk map” where regions of low, average and 

high mortality risk are depicted, can find interesting applications in clinical care too. 

The map permits to follow the patient course and to see if the therapy is able to 

maintain the patient or to bring the patient back to the safe region. The monitoring 

could be performed also real time. 
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Sommario 
 

 

Introduzione 

Le malattie cardiovascolari sono considerate una delle principali cause di 

mortalità nei paesi sviluppati, ed è stato stimato che più del 30% di tutti i decessi è 

associato ad esse (Go et al, 2013). Le contrazioni ventricolari premature (PVCs) sono 

responsabili di una prognosi negativa anche in assenza di difetti strutturali del cuore 

(Cha et al, 2012) (Lee et al, 2012), mentre le contrazioni atriali premature (PACs) 

precedono eventi di fibrillazione atriale (AF) (Haissaguerre et al, 1998) e sono 

considerati marker di episodi parossistici di AF in pazienti che hanno subito un ictus 

ischemico acuto (Wallmann et al, 2007). AF è stata riconosciuta come uno dei 

principali fattori di rischio di ictus ed è associata ad un generale aumento di 

morbidità e mortalità cardiovascolare (Benjamin et al, 1998) (Wolf et al, 1991) 

(Stewart et al, 2002). Data la sua maggiore incidenza in pazienti anziani (Lake and 

Moorman, 2011) e il rapido invecchiamento della popolazione globale, diventa 

sempre più crescente il bisogno di dispositivi elettronici meno invasivi ed accurati 

per il rilevamento di episodi di AF. 

La presenza di AF implica decisioni cliniche importanti, come terapie con 

anticoagulanti o la rimozione chirurgica dell’appendice atriale, cardioversione, 

ablazione e farmaci antiaritmici. Al contrario, quando sono presenti battiti prematuri, 

sia di origine atriale che ventricolare, ma non è stata diagnosticata nessun’altra 

patologia cardiaca, non viene prescritto nessun trattamento al paziente, anche se la 

percentuale di extrasistolie è molto elevata. 

I dispositivi che sono presenti attualmente per il rilevamento delle aritmie 

cardiache, come per esempio l’ECG Holter, sono scomodi per il paziente e si basano 

sull’analisi del segnale ECG. Tuttavia il segnale ECG può essere molto rumoroso e 

affetto da artefatti, rendendo l’estrazione di parametri in questi casi complicata e 

spesso non praticabile. 
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La serie degli intervalli RR, al contrario, è un segnale affidabile, richiede un 

minor costo computazionale ed è meno soggetta al rumore. 

Tuttavia, l’uso di strumenti non invasivi per il rilevamento del ritmo cardiaco 

non è molto diffuso a causa della bassa affidabilità dimostrata finora da questi 

dispositivi nel rilevare episodi di AF basandosi solo sul segnale RR. In letteratura 

sono presenti molti studi che documentano l’accuratezza dei metodi proposti per 

distinguere AF dal ritmo sinusale normale (NSR) basandosi sul fatto che le 

dinamiche dei due ritmi sono largamente differenti (Sarkar et al, 2008) 

(DeMazumder et al, 2013) (Lake and Moorman, 2011) (Tateno and Glass, 2001). 

Tuttavia,  in presenza di un ritmo sinusale (SR) e un’alta percentuale di battiti 

prematuri, sia atriali che ventricolari, le caratteristiche del segnale possono 

confondersi con quelle di un segnale di AF. 

L’obiettivo principale di questa tesi è di fornire un algoritmo per il 

rilevamento e la classificazione di AF anche in situazioni in cui siano presenti alte 

percentuali di battiti ectopici, basandosi solo sulle caratteristiche estratte da serie 

temporali RR. L’ipotesi di partenza è che indici legati alle dinamiche non lineari 

delle serie RR possano contribuire a una distinzione migliore tra AF e SR con battiti 

prematuri. Tre indici non lineari sono stati presi in considerazione. Il Coefficient of 

Sample Entropy (COSEn) è stato proposto per distinguere NSR da AF, condizione 

che presenta alti valori di entropia, ed il suo calcolo è stato ottimizzato per segnali 

molto brevi (Lake and Moorman, 2011). Il Local Dynamics score (LDs) è stato 

recentemente proposto come nuovo indice in grado di catturare le dinamiche locali 

non lineari del segnale RR, proprietà che sono legate alla variabilità cardiaca e alla 

presenza di battiti ectopici. Per ottenere un singolo valore di LDs sono necessari 

solamente 12 battiti (Moss et al, 2014). Infine la Detrended Fluctuation Analysis 

(DFA) è invece un metodo utilizzato per quantificare le proprietà frattali delle serie 

RR (Peng et al, 1995). 

Il secondo obiettivo è di fornire un’analisi del rischio di mortalità nei 2 anni 

successivi all’esame sulla stessa popolazione, utilizzando solo le misure di COSEn e 

LDs. È stato ipotizzato che una combinazione delle informazioni derivanti dai due 

parametri non lineari potesse essere utile nel comprendere l’associazione tra la 

presenza di aritmie cardiache e il rischio di mortalità.  
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Materiali e Metodi 

 2’722 registrazioni Holter di 24 ore sono state raccolte alla University 

of Virginia (UVa) Heart station dal 12/2004 al 10/2010. Le serie RR sono state 

suddivise in 377’285 segmenti da 10 minuti e ciascun segmento è stato classificato 

come: AF se la percentuale di battiti classificati come AF era superiore al 5%; SR 

con battiti prematuri se la frequenza di extrasistolie era superiore al 10%; NSR in 

tutti gli altri casi. Il database risulta così composto: 79% di segmenti classificati 

come NSR, 8% come AF e 13% come SR con battiti ectopici. Le tre categorie sono 

mutualmente esclusive e rispecchiano la pratica clinica. 

Per testare l’ipotesi che l’aggiunta di misure dinamiche non lineari 

contribuisse ad aumentare la performance della classificazione, sono state utilizzati 

diversi metodi. Il criterio generale è stato quello di confrontare l’accuratezza della 

classificazione basata solo sulla media e la deviazione standard delle serie RR 

rispetto alla stessa classificazione ottenuta con l’aggiunta delle tre misure non lineari 

– COSEn, LDs e il coefficiente DFA. Il primo metodo si basa su tre modelli di 

regressione logistica multivariata, ciascuno dei quali distingue un gruppo dagli altri 

due. Il secondo approccio usa l’approccio k-nearest neighbor (k-NN). Tutti i modelli 

sono stati validati utilizzando la procedura 10-fold cross-validation sull’intero 

database. Infine, i modelli sono anche stati validati esternamente sul database MIT-

BIH. 

Gli indici media, deviazione standard, COSEn e LDs sono stati calcolati ogni 

30 secondi e poi i valori sono stati mediati sui 10 minuti, mentre la DFA è stata 

valutata considerando l’intero spezzone da 10 minuti. 

Per quanto riguarda l’analisi del rischio di mortalità, è stata stimata la densità 

della distribuzione congiunta delle variabili COSEn e LDs usando dei kernel 

multivariati. Il kernel selezionato ha caratteristiche gaussiane bivariate con una 

matrice di larghezza di banda diagonale, che permette un’attenuazione delle alte 

frequenze in ciascuna coordinata (Botev et al, 2010). La scelta dei due parametri di è 

stata ottimizzata e non prevede un modello parametrico per i dati (Lake, 2009). 
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Risultati 

Il risultato principale consiste nel miglioramento della distinzione di SR con 

battiti prematuri grazie all’aggiunta delle misure non lineari. Il valore predittivo 

positivo sia nel caso del modello logistico che nel caso del modello k-NN è pari a 

85% e i valori per la diagnosi di NSR e AF risultano anche più elevati, e pari 

rispettivamente a 96% e 90%. L’accuratezza cresce ulteriormente se la soglia 

imposta sulla percentuale di battiti ectopici, necessaria per classificare il segmento 

come SR con battiti prematuri, viene scelta superiore al 10%. 

I risultati mostrano che le misure utilizzate in questo studio non sono in grado 

di distinguere tra SR con PVCs e SR con PACs, contrariamente a quanto ci si 

aspetterebbe. Una identificazione tra questi due ritmi è tuttavia clinicamente molto 

importante, in quanto i PACs possono essere precursori di un imminente episodio di 

AF, mentre i PVCs sono associati con un alto rischio di mortalità, soprattutto se in 

pazienti con malattie cardiache preesistenti. Per verificare questa ipotesi, 4 modelli di 

regressione logistica sono stati sviluppati per differenziare segmenti classificati come 

AF, NSR, SR con PVCs e SR con PACs, ma i risultati mostrano un’alta percentuale 

di errore nella distinzione delle due classi con battiti ectopici, cioè tra SR con PVCs e 

SR con PACs. 

I modelli sono stati ulteriormente validati utilizzando i database MIT-BIH di 

NSR, AF e altre aritmie (ARH). In questa analisi i valori di predizione positiva nel 

caso di NSR e AF raggiungono percentuali pari rispettivamente a 99% e 96%, ma nel 

caso di SR con battiti prematuri i valori ottenuti sono peggiori. Ipotizziamo che 

questo sia dovuto alla bassa incidenza di segmenti classificati come SR con battiti 

prematuri nel database MIT-BIH, dove sono meno dell’1% di 11’196 segmenti da 10 

minuti, mentre nel database UVA erano il 13% di 377’825 spezzoni  

Infinte per quanto riguarda l’obiettivo secondario di indagare il rischio di 

mortalità entro 2 anni dall’esame Holter nella popolazione Holter UVa, solo pazienti 

con età superiore a 40 anni sono stati presi in considerazione e il risultato principale 

di questa analisi è una mappa del rischio mostrata in Figura 1. 
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Figura 1. Rischio di mortalità entro 2 anni dall’esame Holter ECG nella popolazione Holter UVa  

 

Si nota come la regione associata a un basso rischio di mortalità (blu scuro) è 

caratterizzata da bassi valori di LDs, mentre regioni a rischio di mortalità più alto 

sono contraddistinte da valori maggiori dell’indice. In particolare, partendo dall’area 

a basso rischio nell’angolo in basso a sinistra, è possibile notare due direzioni di 

aumento del rischio: la prima, indicata dalla freccia in basso, evolve verso valori 

crescenti di LDs indipendentemente dai valori assunti da COSEn; la seconda, 

indicata dalla freccia in alto, ha una direzione verso valori più alti di entrambi gli 

indici, raggiungendo la zona con i valori massimi. 

Questi risultati suggeriscono che misure legate alle dinamiche non lineari del 

segnale di frequenza cardiaca contengono informazioni associate al rischio di 

mortalità e, in particolare, situazioni di AF, SR con ridotta variabilità e alta 

percentuale di battiti prematuri sono altamente associate ad un aumento di mortalità. 
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Discussioni e Conclusioni 

In questo lavoro di tesi si è dimostrata la potenzialità di usare misure non 

lineari per ottimizzare la classificazione del ritmo cardiaco e identificare aritmie 

cardiache. Mentre parametri come il COSEn e LDs erano già stati validati come 

misure utili per l’identificazione rispettivamente di AF e dinamiche locali alterate 

(Lake and Moorman, 2011) (Moss et al, 2014), in questa tesi è stato proposto il 

coefficiente di breve scala ricavato dalla Detrended Fluctuation Analysis. Studi futuri 

possono avere come obiettivo quello di investigare diversi tipi di algoritmi per la 

classificazione a partire da questi stessi indici o addirittura includendo altri indici. 

La forte impronta clinica di questo studio ha limitato l’analisi in diversi 

aspetti. Per prima cosa, i flutter atriale sono stati inclusi nella stessa classe dell’AF, 

in base al fatto che in entrambi i casi i medici prescrivono gli stessi trattamenti 

clinici. Tuttavia il flutter atriale è un ritmo che viene comunemente confuso con il 

ritmo NSR. In secondo luogo, è stata assegnata l’indicazione di AF a spezzoni con 

solo il 5% di battiti classificati AF, cioè 30 secondi in un segnale di lunghezza pari a 

10 minuti, secondo le linee guida dell’American Heart Association secondo cui per 

un episodio parossistico di AF di durata 30 secondi viene consigliato un trattamento 

come per l’AF (Fuster et al, 2006). Infine, come precedentemente descritto, è stato 

assegnata la classificazione di SR con battiti prematuri anche quando solo il 10% dei 

battiti era identificato come prematuro. Entrambe queste scelte hanno portato alla 

diagnosi di AF o SR con battiti prematuri in casi in cui il ritmo è classificato per più 

del 90% come sinusale. 

La possibilità di ricavare dall’analisi della sola serie RR una classificazione 

accurata delle aritmie cardiache e un metodo efficace per determinare il rischio del 

paziente in presenza di determinate aritmie, può avere un grosso impatto clinico per 

il trattamento di pazienti ospedalizzati e ambulatoriali. 

Inoltre, le potenzialità di un classificatore automatico basato sul segnale RR 

sono rappresentate dall’applicazione in ambiti come l’home care monitoring e la 

telemedicina in crescente sviluppo, ma anche in ambiti come la terapia intensiva. La 

potenzialità di questa analisi risiede nell’abilità del classificatore proposto di 

funzionare con segmenti di 10 minuti e fornendo un aggiornamento dei valori dei 
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parametri ogni 30 secondi. Questo lo rende uno strumento utile in scenari clinici, 

dove un monitoraggio continuo dei repentini cambiamenti nel ritmo cardiaco e del 

rischio del paziente è d’importanza cruciale. Un esempio è mostrato in Figura 2, 

dove viene mostrata la serie RR (punti) e la linea nella parte bassa del grafico mostra 

l’uscita del modello di classificazione proposto in questa tesi, aggiornata ogni 2 

minuti. 

 

Figura 2. Spezzone di un’ora della serie RR estratta da una registrazione Holter di 24 ore. E’ visibile 

una transizione da ritmo NSR a SR con battiti prematuri di cui il modello (linea inferiore nel grafico) 

riesce efficacemente a identificare. 

 

 Inoltre, anche la proposta di una “mappa di rischio” dove vengono 

rappresentate regioni di basso, medio e alto rischio può trovare applicazioni 

interessanti in ambito clinico. Questa mappa permette di visualizzare i miglioramenti 

o peggioramenti del paziente e verificare se certi trattamenti sono efficaci nel ridurre 

il rischio. Il monitoraggio può essere effettuato in tempo reale similmente al 

classificatore proposto. 
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Chapter 1 

Introduction 
 

 

1.1. Background and motivation 

Several common clinical scenarios call for identification of cardiac rhythm in 

ambulatory outpatients. Atrial fibrillation (AF) is one of the most common chronic 

arrhythmia associated with an adverse prognosis, being an independent risk factor for 

increased cardiovascular morbidity and mortality (Benjamin et al, 1998) (Wolf et al, 

1991) (Stewart et al, 2002). Its incidence is estimated to double with each successive 

age decade beyond 50 years, and it is greater in men than in women (Kannel et al, 

1998). As reported by the World Health Organization (WHO) in 2012, the world’s 

population is rapidly ageing, estimating a doubling of people over 60 years from 

about 11% to 22% between 2000 and 2050. In terms of absolute numbers, the 

expected increase is from 605 million to 2 billion. This situation claims for effective 

detection and monitoring of AF in a rapidly increasing part of the population, and the 

need of low-cost, accurate and comfortable devices for cardiac rhythm monitoring is 

emerging. AF is often paroxysmal in nature and decisions about its therapy are better 

supported by knowledge of the frequency, duration and severity of the arrhythmia 

(Prystowsk, 2000). While implanted devices can record this information with great 

accuracy (Ricci et al, 2009) (Hindricks et al, 2010), non-invasive diagnostic devices 

for ECG recording are limited by the need for skin electrodes and, while much 

smaller than in past years, these recording apparatus are obtrusive for the patients 

(Barret et al, 2014). Holter recording is a very common technique to monitor patients 

with cardiac disorders; it consists of a registration of a patient’s ECG by means of a 

portable device, typically at least 24 h long or more. Because of the paroxysmal 

occurrence of AF, short ambulatory recordings are not sufficient to identify brief 

periods of arrhythmia, thus claiming for longer monitoring. Nonetheless, even high 

fidelity monitoring system as Holter device, can be limited by noisy and distorted 
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waveform data, which makes the features extraction from ECG waveforms not 

always feasible.  

The most frequently available and reliable data is the series of the time 

intervals between two consecutive heartbeats or pulses, which is called RR interval 

time series. The analysis of this signal requires less computational cost with respect 

to the ECG feature extraction procedure and it’s less affected by high frequency 

noise.  

Since the 1980s, with the advent of chaos and information theory, the 

nonlinear and fractal behavior of heart rate (HR) signal has been investigated, 

beginning with the demonstration of self-similarity by Goldberger (Golberger et al, 

1985). In the following years, many researchers began to analyze RR interval time 

series for clinical purposes (Braun et al, 1998) (Cerutti et al, 2007) (Ferrario et al, 

2006). The idea, now widely accepted, is that the complex physiological variability 

of sinus rhythm (SR) is affected by age and illness and, thus, numerical analysis of 

RR series can help in clinical prognosis (Buchman et al, 2002) (Goldberger, 1996) by 

adding valuable information to traditional parameter. Many algorithms for analyzing 

RR interval time series exist (Acharya et al, 2006) (Bravi et al, 2011). These are 

usually classified in time domain, frequency domain, phase domain, non-linear 

dynamical domain, though Bravi et al (2011) have suggested a new classification 

into statistical, geometric, energetic, informational and invariant domains.  

However, non-invasive devices for determining heart rhythm are not 

commonly used because of reduced confidence in detecting AF based only on the 

heart rate or RR interval time series. In fact, many methods to distinguish between 

AF and Normal Sinus Rhythm (NSR) has been proposed, given the largely different 

dynamics between the two rhythms (Tateno and Glass, 2001) (Sarkar et al, 2008) 

(DeMazumder et al, 2013) (Lake and Moorman, 2011), but situations of SR with 

frequent ectopy is expected to share features with AF, and thus to be distinguished 

with difficulty.  

However these two conditions are treated very differently in clinical practice. 

Premature ventricular contractions (PVCs), alone, lead to poorer prognosis even in 

patients with no obvious heart disease (Cha et al, 2012). Indeed the cardiac 
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functionality improves after cardiac ablation in the great majority of patients with 

very frequent PVCs and low ejection fraction at the time of ablation (Yokokawa et 

al, 2013). However, no treatments are required even in situations with high burden of 

ectopic beats without concomitant pathological conditions such as cardiomyopathy. 

Premature atrial contractions (PACs), alone, don’t have an important clinical impact 

but they may indicate a high risk of more severe atrial fibrillation or flutter. The 

remarkable difference between AF and SR with atrial or ventricular ectopy in terms 

of clinical implication claims for an accurate distinction of them, in order to give the 

adequate treatment to the patient and reduce the mortality. 

 

1.2. Cardiac arrhythmias: pathophysiology and therapies 

1.2.1. The electrical activity of the heart 

The beginning of the sequence of stimulations, which is conducted over all 

the heart and allows it to contract, is placed in the sinus atrial node (SA node). It is a 

group of pacemaker cells approximately 2 mm thick and 8 mm long located between 

the right atrium and superior vena cava. These cells possess automaticity, which is 

the ability to depolarize without any external electrical stimulus. They spread a wave 

of depolarization through all the atria causing their contraction, called systole. The 

heart rate is the count of these contractions in a minute and it is determined by the 

duration of the depolarization and repolarization cycle of the SA node. The SA node 

maintains the heart rate regular, but there are a lot of outside sources that influence 

the electrical activity of the SA node. This extrinsic regulation of heart rate reflects 

the heart’s ability to adapt to changing circumstances by detecting and quickly 

responding to unpredictable stimuli. The autonomic nervous system (ANS) plays the 

main role in this regulation governing the SA node through the parasympathetic 

(Vagus nerve) and sympathetic efferent. The ANS has indeed two contrasting 

components: the sympathetic and the parasympathetic nervous systems. The result of 

a sympathetic stimulation is an increase of the firing rate of the SA node and 

contractility of the heart, while the parasympathetic stimulation has an opposite 

effect. The first usually occurs in response to stress, exercise and heart disease, the 

second instead responds to the function of internal organs, trauma and allergic 
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reactions. The frequency band ranges of these two systems are different: low 

frequencies (0.04-0.15 Hz) are associated to sympathetic activation, while higher 

frequencies (0.15-0.4 Hz) are associated to parasympathetic firing.  

After the atria, the pacemaker stimulus reaches the atrioventricular (AV) 

node. The AV node is a group of cells about 22 millimeters long, 10 millimeters 

wide and 3 millimeters thick that is located at the mouth of the coronary sinus 

between the right atrium and ventricle. For the electrical stimulus there isn’t another 

way to be propagated to the ventricle. The purpose of this node is to reduce the speed 

of the impulse allowing the spilling of blood into the ventricles before their 

contraction, a heart cycle phase named diastole. The node is divided in three 

sections. Two of them allow the delay of the electrical pulse by means of the slow 

rate of conduction of the cells for one section and by means of a long pathway for the 

second one. The third section is the connection between the AV node and the Bundle 

of His. The AV node is also influenced by the ANS: the parasympathetic system can 

act prolonging the conduction through the AV node and, consequently, increasing the 

length of diastole and decreasing the heart rate; under intense parasympathetic 

stimulation, it can even happen to have a complete AV block. The sympathetic 

system, in contrast, decreases the conduction time through the node.  

After the passage through the AV node, the electrical impulse is transmitted 

through the Bundle of His, which extends into the ventricular septum, and then it 

separates into the left and right bundle branches. These last branches formed the 

Purkinje system that conducts the electrical stimulus from the apex of heart upward 

through the ventricles (Figure 1.1). Once the impulse reaches these fibers, the 

systolic contraction becomes fully initiated. 

This cycling propagation of the electrical impulse from the SA node, through 

the AV node, till the Purkinje fibers generating the contraction of the ventricles, can 

be recorded by the ECG, which has a characteristic waveform shown in Figure1.1. It 

is the result of the depolarization and repolarization of the four chambers of the heart 

in one cardiac cycle. The P wave refers to the depolarization of the atria, the QRS 

complex represents the depolarization of ventricles. The next T wave indicates the 

repolarization of the ventricles, while the atria’s repolarization is hidden by the 
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higher amplitude of the QRS complex. The U wave is very small, so it is not always 

appreciable in ECG and it denotes the repolarization of the papillar muscles. 

The physiological beating of the heart and, thus, the recurrence of this typical 

waveform is indicated as the so-called normal sinus rhythm. 

 

 

 

 

Figure 1.1 The electrical activity of the heart and the typical ECG waveform of a normal sinus rhythm 
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1.2.2. Pathogenesis of arrhythmias 

Arrhythmia is a general term for any cardiac rhythm that deviates from 

normal sinus rhythm, caused by an irregular electrical activity of the heart. If the 

rhythm is faster it is called tachycardia, while if the heartbeat is slower than normal it 

is called bradycardia. Moreover, arrhythmias can be called atrial or ventricular based 

on where the arrhythmia has originated. 

There are three basic mechanisms of pathogenesis of arrhythmias, regardless 

the specific type of arrhythmia: enhanced or suppressed automaticity, triggered 

activity, or re-entry. Automaticity is a natural property of all the cardiac cells to self-

regulate and to initiate an impulse without an external stimulus. However, factors as 

aging, medications and others can alter this automaticity in different portion of the 

heart. For example, suppression of automaticity of the SA node can result in sinus 

node dysfunction, which is still the most common indication for permanent 

pacemaker implantation.  

Triggered activity occurs when a series of heartbeats which spontaneously 

originate from afterdepolarizations, which are oscillations in membrane potential that 

follow the upstroke of an action potential. These can be of two types: early 

afterdepolarizations, occurring during the repolarization of the action potential, and 

delayed afterdepolarizations, which occur when the repolarization is complete or 

nearly complete. When the afterdepolarizations are large enough to reach the 

threshold, an action potential results, called triggered.  

The most common mechanism of arrhythmogenesis is the re-entry. It is 

related to the process of re-excitement of the heart cells after the end of the refractory 

period due to impulses that fail to die out after normal activation of the heart. Re-

entrant arrhythmias are defined as continuous repetitive circular propagation of 

excitatory waves, which return to their originating site and re-activate it. Atrial or 

ventricular fibrillation and tachycardia are generated by this mechanism. 

1.2.3. Atrial Fibrillation 

Atrial Fibrillation (AF) is considered the most common supraventricular 

tachycardia. About 2.2 million US citizens live with this condition and its incidence 

is estimated to double with each successive age decade beyond 50 years. After 

http://en.wikipedia.org/wiki/Electrical_activity
http://en.wikipedia.org/wiki/Heart
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adjusting for cardiovascular risk factors and predisposing conditions, the risk of AF 

was still found to increase 2-fold for each decade of aging and it was predominantly 

present in male than in female (Kannel et al, 1998).  

During AF, the normal regular electrical pulses generated by the SA node are 

overcome by disorganized electrical pulses mostly originating in the left atrium and 

in the roots of the pulmonary veins. The atrial impulse rate can achieve about 300-

600 beats per minute nullify the delay action of AV node because of the fast, chaotic 

and irregular nature of the impulses. This leads to an inadequate emptying of both 

atria and ventricles, due to the irregular and fast contraction rate. The inadequate 

emptying of the ventricles leads to a reduction of stroke volume causing symptoms 

as fatigue, breathlessness and chest pain, depending on the frequency and severity of 

AF. 

The inadequate emptying of the atria allows blood to stagnate into the atria 

too. Within the left atrium there is an area called atrial appendage or auricola, due to 

an enlarged atrial muscle mass that forms a pouch, which usually works as 

decompression chamber during ventricular systole or when the atrial pressure is too 

high. During AF, the atria are not able to empty and this leads to clot formation in the 

appendage. When a blood clot breaks away, the risk of embolism and of an embolic 

stroke is very high (Wolf et al, 1991). Moreover, because the blood stagnates, the 

atria become enlarged with time and this may be a predisposing factor for permanent 

AF condition in adult patients or dilated cardiomyopathy. 

An AF episode can last from minutes to days or can even be permanent. In 

the first case, if the episode self-terminates in less than 7 days, it is called paroxysmal 

AF. On the contrary, if the event lasts for more than 7 days it is classified as 

persistent AF. If there is an ongoing long-term episode (i.e. a year or more) the AF is 

categorized as permanent. Episode that last less than 30 seconds are not included in 

this classification. This classification was recommended by the American College of 

Cardiologist (ACC), the American Heart Association (AHA) and the European 

Society of Cardiology (ESC). 

AF is generally associated with underlying cardiac diseases. Usually a 

damage of the heart tissue may generate extra impulses, whereas stretching and 

http://en.wikipedia.org/wiki/Pulmonary_veins
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remodeling of the cardiac muscle tissue may increase atrial pressure, and 

consequently the pressure on the pulmonary veins. This may be a contributing factor 

to other contributing causes to AF such as atherosclerosis, heart failure, 

hypertension, coronary heart disease, valve disease and congenital heart disease 

(Cottrell, 2012). 

For patients with AF, clinicians need to accurately evaluate prescription of 

oral anticoagulation and to decide the monitoring process of the patient, i.e. rate and 

type of examinations. Rhythm control is necessary to verify symptoms, prevent 

tachycardia-induced cardiomyopathy due to the high ventricular rate and prescribe 

therapy to restore normal sinus rhythm. 

Cardioversion is the typical medical procedure to restore the abnormal 

rhythm to the normal sinus rhythm. The synchronized electrical cardioversion 

consists in the electrical shock sent to a portion of the heart at a specific phase of the 

cardiac cycle, commonly in correspondence of R peak. The pharmacological 

cardioversion consists in giving specific antiarrhythmic agents to the patient. Drugs 

like amiodarone, diltiazem, verapamil and metoprolol are frequently given before 

cardioversion to decrease the heart rate, stabilize the patient and increase the chance 

that cardioversion is successful  

The increased risk of stroke associated with the presence of AF requires 

specific antithrombotic treatments, as oral anticoagulants, among which the most 

common is warfarin. The implications for anticoagulation therapy alone are 

enormously important, as the rate of stroke rises sharply with even short episodes of 

AF (Healy et al, 2012). These therapies have been shown to lower the risk of clinical 

thromboembolism in all patients with AF, regardless of the type (paroxysmal, 

persistent or permanent) (Hart et al, 2007). However, the bleeding risk associated to 

anticoagulant therapy can exceed the risk of thromboembolism without therapy in the 

lowest-risk patients, thus, the initiation of antithrombotic treatment requires an 

accurate evaluation of both embolic and bleeding risk (Levine et al, 2001).  

 AF is usually diagnosed by the absence of the P waves in an ECG trace. P waves 

represent the atria depolarizations and in this case they are replaced by an irregular 

ventricular rate, as shown in Figure 1.2. 
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Figure 1.2 ECG of a patient in AF 

 

1.2.4. Atrial Flutter 

Atrial flutter (AFL) is usually associated with a fast heart beat and it falls in 

the supraventricular tachycardia category. The origin of AFL is usually a premature 

electrical impulse arising in the atria, which propagates due to the differences in 

refractory periods of atrial tissue. The electrical signal travels in an organized 

circular motion within the atria, causing them to beat faster than the ventricles. But 

not all the impulses risen in the atria reach the ventricles, thanks to the low-pass 

filtering action of the AV node, which limits the maximum heart rate. Flutter rates 

can reach even 300-400 bpm, but only a portion of these impulses reach the 

ventricles based on the stable n : 1 conduction regime of the AV node. For this 

reason AFL gives rise to a very fast and regular heart rate, completely different from 

AF, although AFL requires the same treatment. Usually it develops in adults with 

various types of heart disease or severe pulmonary disease and after cardiac surgery 

(Kastor, 2002). Figure 1.3 shows the ECG signal of a patient with AFL. 

 

 

Figure 1.3 ECG of a patient in AFL 
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1.2.5. Premature Atrial Contractions 

Premature Atrial Contractions (PACs) are produced by abnormalities of the 

atrial electrical activity, which lead to early contractions of the atria before the 

normal impulse from the SA node. The morphology of the P wave is abnormal, 

reflecting its origin in a different location than in the sinus node. Typically, the 

impulses propagate normally through the AV node generating narrow QRS 

complexes with a regular morphology. PACs, alone, don’t have a big clinical 

importance and often they don’t require specific treatments, but they may indicate a 

high risk of more severe atrial arrhythmias, such as AF or AFL. Figure 1.4 shows the 

ECG signal of a patient in SR with PACs.  

Figure 1.4 ECG of a patient in sinus rhythm with PACs 

 

1.2.6. Premature Ventricular Contractions  

Premature ventricular contractions (PVCs) are contractions of the ventricles 

due to an impulse started in the Purkinje fibers rather than in the SA node. In this 

situation, ventricles contract before the atria when they are not still filled, leading to 

a reduced stroke volume. The ECG waveform is characterized by a normal beat 

followed by a fast extra beat (the PVC), a slight pause, and a following beat more 

forceful than normal. This is due to the fact that the ventricle fills with more blood 

during the pause after the premature contraction, giving the next beat extra force. 

When looking to the ECG trace a PVC event is easily seen by the spacing from the 

QRS complex preceding the PVC, which is shorter than normal (i.e. the premature 

contraction), and the QRS complex following the event which is much longer than 

usual (i.e. the compensatory pause) and of larger amplitude. However, the total 

duration of the short premature beat and its compensatory pause lasts as two 

consecutive normal beats. 
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They can be occasional or persistent, leading in the latter case to typical pattern as 

bigeminy, when premature beats alternate with sinus beats, trigeminy, when a 

premature beat follows two normal beats, or quadrigeminy, when one every four 

beats is premature. Couplets and triplets are sequences of a normal beat followed by 

two or three abnormal beats, respectively, and when three or more consecutive PVCs 

occur at a rate greater than 100 bpm the rhythm is classified as non sustained 

tachycardia. 

PVCs are a common arrhythmia that everybody could occasionally have (in 

healthy hearts 4% of the population has more than 100 PVCs/day (Lee et al, 2012)), 

but usually they are more frequent in patients with hypertension, cardiomyopathy, 

pulmonary disease, congenital heart disease, cardiac surgery and an important 

myocardial damage (Kastor, 2002). Figure 1.5 shows the ECG signal of a patient in 

SR with PVCs. 

 

Figure 1.5 ECG of a patient in sinus rhythm with PVCs 

 

1.3. Cardiac arrhythmias: mortality risk 

Cardiovascular diseases are the leading cause of death in most of the 

developed countries, being associated with more than 30% of all deaths (Go et al, 

2013). Therefore, there is a great interest in studying the underlying etiology of 

cardiac arrhythmias and new methods to improve their detection and classification, 

in order to prevent and treat the disease in advance, reducing the high burden of 

mortality. 

AF is generally accepted as the most common chronic arrhythmia associated 

with an adverse prognosis, being an independent risk factor for increased 

cardiovascular morbidity and mortality. Clinical investigations revealed the 

significant association of AF to increased mortality risk, after adjusting for 
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coexistence cardiac conditions and common risk factors as age, hypertension, 

diabetes, left ventricular hypertrophy, myocardial infarction, congestive heart failure, 

valvular heart disease and stroke (Benjamin et al, 1998) (Krahn et al, 1995) (Stewart 

et al, 2002).  

The relationship between AF and the risk of stroke, in particular, has been 

widely investigated. Together with hypertension, coronary heart disease and cardiac 

failure, which are well-known causes for stroke, AF was found to increase about five 

folds the risk of stroke, compared to the two, three and four folds related to coronary 

heart disease, hypertension and cardiac failure, respectively (Wolf et al, 1991). The 

high incidence of AF in old patients leads to a strong relation between AF and stroke 

especially in elderly, for whom all the other cardiovascular comorbidities become 

secondary factors. 

Premature ventricular contractions have been thought for a long time to be 

relatively benign in absence of structural heart disease. Their effect on patients who 

have suffered myocardial infarction and in ambulatory patients with stable coronary 

heart disease has been widely studied. These works proved their strong relation with 

an increased mortality due to sudden and non-sudden cardiac death (Ruberman et al, 

1981) (Moss et al, 1979) (Chugh et al, 2008). However, over the last decade, PVC-

induced cardiomyopathy and left ventricular dysfunction has been subject of a great 

interest as many works proved this evidence (Cha et al, 2012) (Lee et al, 2012). 

Moreover, a recent research explored the relation between premature cardiac 

contractions and risk of incident ischemic stroke, resulting in an association of PVCs 

and PACs with a 2- and 1.3-fold increase in the rate of ischemic stroke, respectively 

(Ofoma et al, 2012). 

The incidence of cardiac arrhythmias and their association with death have 

been investigated for many years even on critically ill hospitalized patients, 

especially those admitted in the Intensive Care Unit (ICU). Studies about the impact 

of arrhythmias in pediatric cardiac ICU (Hoffman et al, 2002), in the surgical ICU 

(Knotzer et al, 2000), in the medical ICU (Arrigo et al, 2013) (Khoo and Lip, 2009) 

(Reinelt et al, 2001) and on premature infants in the neonatal ICU (Southall et al, 

1982), reveal the importance of arrhythmias in this clinical setting. The most 

common are supraventricular tachyarrhythmias as AF or AFL and ventricular 
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arrhythmias such as ventricular fibrillation or tachycardia. Furthermore many ICU 

patients experience more than one arrhythmias type (Hoffman et al, 2002). An 

overall increase in mortality risk in critically ill and arrhythmic patients was 

observed universally, explaining the urgent necessity of detailed etiological studies 

about cardiac rhythm abnormalities and methods to accurately detect them in many 

clinical setting and ambulatorial facility. 

 

1.4. Cardiac Arrhythmias: detection algorithms 

The strong relation between arrhythmias and mortality risk makes the clinical 

diagnosis of them extremely important, as discussed in the previous paragraphs, and 

this pushed researchers to develop new methods for the automatic detection and 

classification of various arrhythmias.  

The majority of them are based on the analysis of the ECG morphology, 

being a non-invasive and low-cost method, which provides important information 

regarding the rate and the regularity of the heart. However, the extraction of ECG 

features for detection and classification of arrhythmias is not always feasible due to 

the presence of noise, which often makes the analysis on the ECG signal very 

difficult, and to the time-consuming computational process, which becomes thus 

ineffective for real time analysis.  

Alternative approaches to the problem have been proposed, based on the 

direct analysis of the RR intervals time series. Although the high computational 

velocity and the absence of ECG noise allow these new techniques to be more 

efficient than the ECG-based algorithms, an important drawback is associated with 

the effectiveness of the QRS detector algorithm. However, sophisticated algorithms 

have been developed allowing a precise detection of the R peaks within good 

confidence intervals. 

A good reason to prefer a RR-based arrhythmias classifier than an ECG-based 

algorithm is the fact that diagnostic ECG waveform may not always be available, 

especially in ambulatory monitoring, while the heartbeat can be easily detected in 

every clinical setting. 
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1.4.1 ECG based classification algorithms 

Common features extracted from the ECG signal include frequency-based 

features (Minami et al, 1999), time frequency-based features (Tompkins, 1995), non-

linear features such as Lyapunov exponent and the correlation dimension (Owis et al, 

2002), ECG morphology features such as ST segment area, RS interval, ST slope, 

QRS area and R-wave amplitude (Chazal and Reilly, 2004) (Hosseini et al, 2006) 

(Cheng and Chan, 1998), Karhunen–Loeve expansion of ECG morphology (Moody 

and Mark, 1990) and wavelet transform (Senhadij et al, 1995) (Song et al, 2005) (Yu 

and Chen, 2008).  

Recent methods for cardiac arrhythmias detection and classification employ 

neural networks (Minami et al, 1999) (Hosseini et al, 2006) (Yu and Chen, 2008) 

(Wang et al, 2001), hidden Markov models (Cheng and Chan, 1998), Linear or 

Quadratic Discriminant function (Chazal and Reilly, 2004) (Ouelli et al, 2012) and 

support vector machine (Song et al, 2005). 

1.4.2 RR based classification algorithms 

Using RR intervals time series for arrhythmias classification has lots of 

advantages, but few works have been done in this direction. A summary of them is 

presented in Table 1.1. The majority takes into account AF only, except two studies 

from Tsipouras et al (2004) and Kamath (2012). Moreover very few works admit 

atrial and ventricular ectopy. Only Huang et al (2011) and Bardossy et al (2013) 

consider both situations with PVCs and PACs. The first employed linear measures to 

identify the transitions between AF and NSR, whereas the second proposed a 

diagnostic algorithm for implantable cardioverter defibrillators. The second one 

reaches a very high accuracy, but the real innovation of that work consists in 

applying a new fuzzy logic-based scheme to standard measures of onset and 

instability. Tsipouras and Fotiadis (2003) proposed an automatic arrhythmia detector 

based on time and time-frequency domain analysis of the RR intervals. However, 

their method was designed to classify the input segment as “normal” or “arrhythmic” 

only without discrimination among the arrhythmias. Acharya et al (2002) employed 

an artificial neural network and a fuzzy equivalence classifier, combining linear and 

non-linear parameters, which could only classify the input segments into one of the 
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four different arrhythmia classes – ischemic cardiomyopathy, complete heart block, 

NSR and sick sinus syndrome together with AF and ectopy - without discrimination 

between AF and ectopic beats. The rest of the works listed in Table 1.1 consider only 

PVCs. 

Linear and nonlinear measures are employed together with a variety of 

classification algorithms. The majority of these methods are tested on the canonical 

MIT-BIH database, which is relatively old and limited (free at 

http://www.physionet.org).  

The classifier proposed in the present thesis was performed on a larger and 

more complex database of 2’722 24-hour Holter recordings collected at the 

University of Virginia (UVa) Heart Station from 12/2004 to 10/2010. The classifier 

was successively validated on the MIT-BIH database. 
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Table 1.1 List of works on RR-based classification algorithms 

Reference Database Method AF Ectopy NSR 

(Tateno and Glass, 
2001) 

MIT-BIH 
Linear measures, two-

samples KS
  
test 

yes - yes 

(Sarkar et al, 2008) MIT-BIH Linear measures yes - yes 

(Huang et al, 2011) MIT-BIH Linear measures yes 
Atrial and 
ventricular 

yes 

(Bardossy et al, 2013) 
MIT-BIH and ICD 

database 
Linear measures, Fuzzy logic yes 

Combined atrial 
and ventricular 

yes 

(Acharya et al, 2002) ? 
Linear measures, ANN and 

Fuzzy classifier 
yes Yes yes 

(Tsipouras et al, 2004) MIT-BIH 
knowledge-based 

deterministic automaton 
- Ventricular yes 

(Tsipouras and 
Fotiadis, 2003) 

MIT-BIH Linear measures, ANN yes Yes yes 

(Lian et al, 2011) MIT-BIH Linear measures, RdR map yes Ventricular yes 

(Acharya et al, 2008) 

Database from 
Kasturba Medical 
College Hospital, 

Manipal, India 

Linear measures, ANN yes Ventricular yes 

(Acharya et al, 2004) MIT-BIH 
Linear and nonlinear 

measures 
yes Ventricular yes 

(Yaghouby et al, 2009) 
MIT-BIH and MVAD 

databases 

Linear and nonlinear 
measures, feature reduction 

with GDA and MLP-NN 
yes 

Ventricular 
trigeminy 

- 

(Anuradha and Reddy, 
2005-2008) 

MIT-BIH 
Nonlinear measures, Fuzzy 

classifier 
yes Ventricular yes 

(Kamath, 2012) MIT-BIH 
Nonlinear measures, 

ANCOVA and NN 
- Ventricular yes 

(Acharya et al, 2003) MIT-BIH 
Nonlinear measures, Fuzzy 

classifier and ANN 
yes Ventricular yes 

(Mohammadzadeh Asl 
et al, 2008) 

MIT-BIH 
Linear and nonlinear 

measures, feature reduction 
with GDA and SVM 

yes Ventricular yes 

(Lake and Moorman, 
2011) 

UVa Holter Nonlinear Entropy yes - yes 

(DeMazumder et al, 
2013) 

ICD database Nonlinear Entropy yes - - 

This paper UVa Holter 
Linear and nonlinear 

entropy, kNN and logistic 
regression 

yes 
Atrial and 
ventricular 

yes 

KS=Kolmogorov-Smirnov, ANN=Artificial Neural Network , GDA=Generalized Discriminate Analysis, MLP-NN=Multi Layer 

Perceptron Neural Network, ANCOVA=Analysis of Covariance, SVM=Support Vector Machine, kNN=k-Nearest Neighbors 
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1.5 Objectives 

The first and principal objective of this thesis was to provide an algorithm for 

the detection and classification of AF even when a very high burden of atrial and 

ventricular ectopic beats is present, based only on RR intervals time series. We 

hypothesized that indices related to dynamics of RR series can contribute to a better 

distinction of SR with ectopy from AF. We tested the hypothesis using three 

nonlinear indices. The Coefficient of Sample Entropy (COSEn) was designated to 

quantify the higher entropy characteristics of AF with respect to NSR, and the 

algorithm was optimized for very short time series (Lake and Moorman, 2011). 

Local Dynamics score (LDs) is a new index proposed to capture local dynamics of 

the heart rate, that are related to the baseline variability and to the outliers, such as 

ectopy (Moss et al, 2014). Detrended Fluctuation Analysis (DFA) is a well-known 

method to quantify the fractal-like scaling properties of the RR interval times series 

(Peng et al, 1995).  

The second objective was to analyze the mortality risk of the same 

population, based on COSEn and LDs indices only. We hypothesized that the 

combination of these two entropy-based dynamical measures could help to shed light 

on association between cardiac arrhythmias and mortality risk.  

The general goal of our work was to contribute to the clinical problem of AF 

detection and management of outpatients, and secondly to study mortality risk 

associated to arrhytmias in a large population composed of 2’722 24-hour Holter 

recordings from ambulatory patients with a follow-up of two years. 
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Chapter 2 

Cardiac rhythm classification from RR 

intervals 

 

 

2.1 Introduction 

Since the 1980s, the rhythm of heartbeats has been contemplated as the output 

of a non-linear dynamical system. Mathematical tools of chaos theory and its 

precedents have been brought to bear on RR interval time series. Subsequently, a rich 

literature tests the idea that sophisticated numerical analysis of RR interval time 

series informs on clinical prognosis. The general finding, now clear and simple, is 

that the physiological variability of sinus rhythm has complex structure that gets lost 

with age and illness (Goldberger, 1996) (Buchman et al, 2002). 

Another utility of dynamical systems analysis is in the detection of cardiac 

arrhythmia in clinical practice. The simplest and most intuitive application is the 

detection of AF, which has grossly different dynamics from sinus rhythm. This is 

important in clinical care, as this diagnosis leads to numerous decisions about stroke 

prevention with anticoagulation or left atrial appendage exclusion, rate control, 

cardioversion, ablation, and antiarrhythmic drugs. 

Successful numerical methods for this purpose include inspection of Poincarè 

plots (Sarkar et al, 2008) and entropy estimation, as COSEn (Lake and Moorman, 

2011). The latter work showed that RR interval time series in AF had higher entropy 

as expected. However, there are two challenging situations: atrial flutter, where 

entropy is low, but all the AF management problems still pertain, and SR with 

ectopy, both atrial and ventricular, where entropy is high, but not due to AF, and the 

therapy is different from AF. 
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The hypothesis of this work is that further analyses of the dynamics should 

allow better distinction of SR with ectopy from AF. The hypothesis was tested using 

two other dynamical techniques selected for their ability to detect the fundamental 

feature of SR with ectopy, that is, a baseline of normal variability punctuated by 

outliers. The first one is the Detrended Fluctuation Analysis  (DFA), a well-

characterized measure, examines variability from the mean at different time scales, 

and the second one is the Local dynamics score (LDs), a new index to measure 

variability and to detect outliers. We tested the proposed algorithms in a new 

database of 2’722 consecutive Holters from the University of Virginia, and validated 

them in the canonical MIT-BIH databases (Goldberger et al, 2000). The product – 

robust numerical recipes for distinguishing among NSR, SR with ectopy, and AF – 

are widely applicable in clinical practice, and should improve AF management. 

 

2.2 Study population 

We studied RR interval time series from 24 hour Holter recordings collected 

from 2’722 consecutive patients at the University of Virginia (UVa) Heart Station 

from 12/2004 to 10/2010. The age of the patients varied from 0 to 100 years, with an 

average value of 47±25 years. AF, PAC and PVC labels were obtained from an 

automatic classifier (Philips Holter Software). The RR series were subdivided into 

377’285 10-minute segments. Each 10-minute segment was classified as AF if the 

burden of AF was greater than 5%, as SR with ectopy if the burden of PAC or PVC 

was more than 10%, as NSR otherwise. Thus, the dataset is composed of 79% NSR, 

8% AF and 13% SR with ectopy segments. The 3 categories are mutually exclusive 

and reflect clinical practice. 
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2.3 Heart rate metrics 

We computed means and standard deviations (SD) for 30-second segments 

and averaged results for each 10-minute segment. To investigate the HR dynamics, 

we computed the Coefficient of Sample Entropy, the slope from the Detrended 

Fluctuation Analysis and the Local Dynamics score. 

2.3.1 Coefficient of Sample Entropy (COSEn) 

COSEn is an entropy measure derived from the Sample Entropy (SampEn) 

and designed specifically to detect AF in very short RR interval time series (Lake 

and Moorman, 2011). 

The idea of entropy was first proposed by Shannon (1948) as a part of 

communication theory and, in the following years, it was studied and re-elaborated in 

the works of Kolmogorov (1959/1959), Sinai (1959), Grassberger and Procaccia 

(1983), Eckmann and Ruelle (1985) and others. Pincus in 1991 proposed 

Approximate Entropy as a feasible method to be applied even to limited and noisy 

time series, as encountered in cardiovascular or other biological studies (Pincus, 

1991). However, it has some limitations that were studied by Richman and Moorman 

(2000) who came up with a new entropy measure, called Sample Entropy (SampEn). 

This has the advantage of being less dependent on time series length and it shows 

relative consistency over a broader range of possible parameters, as tolerance, length 

of templates and the total length of signal. 

Generally, entropy estimators measure the degree of regularity of a signal by 

counting how many template patterns repeat themselves. Repeated patterns imply 

order and lead to low values of entropy. More formally, sample entropy is the 

negative natural logarithm of the conditional probability that two sequences of length 

m that match within tolerance r will also match at the (m+1)th point. Given a data 

record of N consecutive interbeat intervals, x1, x2, . . . , xn, for a length m < n and 

starting point i, the template xm(i) is the vector containing the m consecutive intervals 

xi, xi + 1, . . . , xi + m – 1. Defined a matching tolerance r, a template match occurs when 

all the components of xm(i) are within a distance r of any other xm(j) in the record. 

Let Bi denote the number of matches of length m within template xm(i) and Ai denote 

the number of matches of length m + 1 within template xm + 1(i). We indicate with    
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A = ∑ Ai the total number of matches of length m + 1 and with B = ∑ Bi the total 

number of matches of length m. The ratio cp = A/B is the conditional probability that 

subsequent points of a set of closely matching m intervals also remain close and 

match. The Sample Entropy is the negative natural logarithm of this ratio and it is 

computed as: 

 

          (  )     (  ⁄ )     ( )     ( )    (1) 

 

If A and B are equal, which means that the time series is very regular, the entropy 

measure is zero, whereas if A is smaller than B, this leads to a higher value of 

entropy. 

The choice of the parameters m and r is crucial in order to obtain a reliable 

estimation of the conditional probability, especially in very short time series. In fact, 

a too large value of m or a too small value for r brings to a very small number of 

matches, not sufficient for a confident result. On the other hand, both situations of a 

too large r or a too small m allow all the template to match each other, without 

discrimination among different rhythms. Lake proposed the conversion of the 

measured conditional probability to a probability density. The new measure was 

named Quadratic Sample Entropy (QSE) and it consists of normalizing the sample 

entropy by the volume of each matching region, 2r
m
 (Lake, 2006). In the calculation 

of entropy this reduces to adding ln(2r) to the estimation, and the equation (1) 

becomes:  

 

       (
 

(  )   )  (   (
 

(  ) 
))     (  )    (  )            (  )  

(2) 

QSE allows direct comparison of results obtained by using different values of 

r. Regression analyses showed that heart rate was an important independent predictor 

of AF (Lake and Moorman, 2011). Hence, the COSEn measure requires the 

subtraction of the natural logarithm of the mean RR interval: 
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               (  )     (                )        (3) 

 

In this work the choice of r and m reflects the standards and findings already 

described in (Lake and Moorman, 2011), therefore we chose m = 1 and r = 30 msec. 

We calculated COSEn over 30-second segments, consistent with the clinical idea that 

AF must usually last 30 sec to be considered (Fuster et al, 2006). 

2.3.2 Detrended Fluctuation Analysis (DFA) 

DFA was proposed by Peng et al. (1995) as a way to quantify the fractal-like 

scaling properties of RR interval time series and it is a measure of the complexity of 

a signal. The idea of complexity cannot be merely related to the concept of 

irregularity of a signal: the latter is linked to how patterns repeat themselves, but it 

lacks of information about the underlying process. Instead, complexity is associated 

with “meaningful structural richness” which, in contrast to the outputs of random 

phenomena, can also exhibit relatively high regularity. Entropy measures, as 

discussed above, assign the highest value to uncorrelated random signals such as 

white noise, which are highly unpredictable but not structurally complex and, at a 

general level, admit a very simple description. In a biological contest, the idea of 

complexity is related to the physiological complexity ,which is the capacity of the 

organism to adapt to the ever-changing environments, thus requiring an integrative 

and multiscale functionality. The so called “regular sinus rhythm” is, in reality, the 

result of the complex and erratic fluctuations of the interbeat intervals, exhibiting 

long-range correlations. Thus, a disease situation is seen as an alteration of this scale 

invariant (fractal) correlation property. The Detrended Fluctuation Analysis was 

proposed by Peng to quantify this quantity. 

DFA computes the root-mean-square fluctuation of integrated and detrended 

time series F(n) for different window lengths n. A detailed description of the method 

is reported. The interbeat intervals time series of total length N is first integrated,  

 

 ( )  ∑   ( )       
 
           (4) 
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where B(i) is the ith interbeat interval and      is the average interbeat interval. 

Next, the integrated time series is divided into non overlapping boxes of equal 

length, n. In each box a least-squares line is fitted to represent the trend in that box. 

Let   ( ) be the y coordinate of the straight line. The integrated time series, y(k), is 

detrended by subtracting the local trend   ( ) in each box. The root-mean-square 

fluctuation of this integrated and detrended time series is: 

 

 ( )  √
 

 
∑   ( )    ( )   

          (5) 

 

This computation is repeated over all the box sizes. The results from each box 

length are averaged – fewer points contribute to the plotted value for higher n. 

Typically, F(n) will increase with the box size n. A linear relationship on a log-log 

plot of F(n) versus the box size n indicates the presence of power law (fractal) 

scaling. Under such conditions, the fluctuations can be characterized by a scaling 

exponent.  In fact, if the data are long-range correlated, F(n) increases as a power–

law with respect to n,  ( )   . Thus, the fluctuation scaling exponent can be 

determined by a linear fit on the log-log plot. For uncorrelated data, such as white 

noise, the scaling exponent is      . A slope larger than 0.5 indicates persistent 

long-range correlations. In contrast, 0< <0.5 indicates an anti-persistent type of 

correlation. The slope equal to 1 is the theoretical value which corresponds to 1/f 

noise, and        to Brownian noise. 

One of the main advantages of this technique is its effectiveness to work even 

on very non stationary signals. It must distinguish between those fluctuations driven 

by uncorrelated stimuli due to changes in the environmental conditions, and those 

intrinsic fluctuations, which arise from the complexity of the system. Only the last 

ones pertains to long-range correlations. Thus, the effectiveness of the DFA 

algorithm lays in the idea of “detrending” the physiological time series to eliminate 

all the fluctuations that arise from the external stimuli and affect the signal at a 

determined scale (i.e. at the frequencies related to the stimuli).  
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The original calculation of the DFA was proposed for long signals, such as 

24hr Holter ECG recordings (Peng et al, 1995), but it was used also in shorter 

interval time series (Shieh et al, 2006) (Pena et al, 2009) (Yeh et al, 2009). In this 

work the scaling exponent    was calculated on the 10-minute segments over the box 

size range of 4 to 12. 

2.3.3 Local Dynamics score (LDs) 

The LDs is a new index to investigate the local dynamics of short RR series 

(Moss et al. 2014). The innovative idea is to examine how often individual templates 

in a short series match each other not only according to the rhythm, but also 

according to the local dynamics of the signal. In the original work the authors 

examined the challenging situation of the coexistence of reduced heart rate 

variability (HRV) and ventricular ectopy. The other common HRV metrics, such as 

standard deviation, range and the pNNx family, failed due to the contrasting 

influences of the two features on the metrics. In contrast, local dynamics (LD) 

showed different values for signals of low HRV punctuated with ectopy from both 

NSR and AF, proving the potentiality of this index in capturing abnormal local HR 

dynamics. 

Given a 12-beat segment, the algorithm consists mainly into counting the 

number of times each sample matches with the other 11 with a tolerance r of 20 

msec. A histogram of the count of templates as a function of the number of matches 

is constructed. If no points match, a bar of 12 counts appears in the bin 0, and all the 

other bins are empty, when all 12 points match each other, the histogram will have a 

bar of 12 counts in bin 11. The LDs is computed as a linear combination of the 

values in bin 0, bin 10 and bin 11; the coefficients were normalized so as to sum to 1. 

A uniform distribution of matches, i.e. the counts in all bins are equal to 1, leads to 

LD score of 1. Lower scores imply a bell-shape histogram distribution, and higher 

scores imply a distribution concentrated on either or both extremes of the histogram. 

Here, we calculated the score on the average 12-beat histogram in each 10-

minute segment. 

  



CHAPTER 2. Cardiac rhythm classification 
 

 

39 

 

 

2.4 Statistical analysis 

One way Kruskal-Wallis ANOVA was used to compare the index values 

among the three groups (NSR, AF, SR with ectopy) and post-hoc multiple 

comparisons were performed by the Wilcoxon rank-sum test using the Bonferroni 

correction. For this univariate statistical analysis only a single 10-minute segment 

from each patient was randomly selected. To test the overall hypothesis that 

dynamical measures were useful for rhythm classification, we used several schemes.  

The strategy was to compare the accuracy of classification using means and SD 

alone, and after addition of the dynamical measures (COSEn, LDs and slope of 

DFA). The first scheme was a system of 3 multivariate logistic regression models, 

each used to distinguish one rhythm class from the other two. The final classification 

of the RR intervals time series was obtained by using the highest probability 

estimate among the three models. The second approach was a k-nearest neighbor 

technique (Xiao et al, 2010). All models were validated using a 10-fold cross-

validation procedure on the entire dataset. Finally, the indices were computed as 

previously described on the MIT-BIH database and used to test the proposed model. 

 

2.5 Results 

2.5.1 Overview of the computational procedure 

We propose an example of the analysis to better explain the computational 

procedure for each parameter and for better understanding the results. 

Figure 2.1 shows ECGs of four patients from the UVa Holter database. Four 

different rhythms are illustrated: NSR (a), AF (b), SR with PVCs (c) and SR with 

PACs (d).  
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(a)

 

(b) 

 

(c)

 

(d) 

 

Figure 2.1 ECGs from four patients of the UVa Holter database in NSR (a), AF (b), SR with PVCs (c) 

and SR with PACs (d). 

  



CHAPTER 2. Cardiac rhythm classification 
 

 

41 

 

 

 
Figure 2.1 10 minutes of RR interval time series from the UVa Holter database for NSR (a), AF (b), 

and SR with PVCs (c) and PACs (d). 
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Figure 2.2 shows 10 minute segments of the RR interval time series from the 

same ECG recordings displayed in Figure 2.1. In this example we considered a 10-

minute record of SR with a high burden of PVCs (Figure 2.2(c)) equal to 57% and a 

very high burden of PACs (Figure 2.2 (d)), equal to 73%. 

Figure 2.3 illustrates an example of the procedure of counting matches, which 

is the core of the COSEn estimation, over the first 30 seconds extracted from the RR 

series of Figure 2.2(a). For a template of length m = 1 (first red filled circle) and a 

tolerance r = 30 msec (red lines), the number of matches is obtained by counting all 

subsequent points that fall within r, that is, within the tolerance range marked by the 

red lines. In this case only one match occurs and this is highlighted by the second red 

filled circle. Next, all the matches for a template of length m+1 (first red filled circle 

and first green triangle) are counted. The green lines delimits now the tolerance 

interval for the sample designed as a triangle. 

A match occurs when all the points of the template are within a distance r of 

any other m+1 segment in the signal. Thus, in this case, there is only one match, 

which is highlighted by the shapes and colors. Finally, the natural logarithm of the 

ratio between the total number of matches of length m+1 and length m is divided by 

the factor 2r, and subtracted by the natural logarithm of the mean of RR intervals. 

COSEn is so obtained. 

The series depicted in Figure 2.2(b) is associated with the highest value of 

COSEn= -0.48, as the AF epoch is the most irregular signal, while an intermediate 

value characterizes SR with PVCs (COSEn = -1.29, Figure  2.2(c)), where the high 

burden of ventricular ectopy increases the low values of this index usually associated 

to NSR epoch. In fact, COSEn =-2.11 in NSR epoch (Figure  2.2 (a)) and COSEn =-

1.82 was obtained for SR with PACs (Figure 2.2(d)). This results is expected for 

NSR, since the characteristic of this type of signal is its regularity, while in the case 

of SR with PACs it can be explained by the fact that high burdens of ectopic beats 

such as bigeminy, can lead to a very regular patterns. 
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Figure 2.3 Illustration of the count of number of matches for template of length m and m +1, during 

COSEn calculation procedure. Here m=1 and tolerance r=30 msec. The red and green lines indicate 

the tolerance windows for the first red filled circle and the first green triangle, respectively. 

 

Figure 2.4 shows an example of the detrending procedure for the DFA. Only 

the first 36 RR intervals of each trend in Figure 2.2 are shown and the detrending 

procedure is illustrated for box size n=4 and n=12. Note that the variations from the 

green lines are large, especially in panels (a) and (b).  

Figure 2.5 shows the results for the 4 RR interval time series displayed in 

Figure 2.2. The 10-minute epochs classified as SR with PVCs and SR with PACs 

(line with triangles and line with circles) have a flat trend with a slope equal to 0.18 

and 0.3, respectively. The epoch classified as NSR (line with stars) shows the trend 

with the highest slope, equal to 1.11. Finally, the trend classified as AF (line with 

squares) places in the intermediate region with a value of slope equal to 0.46 which 

is close to the theoretical value of 0.5 related to uncorrelated signals.  
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Figure 2.4 Illustration of the detrending procedure for the DFA in case of NSR (a), AF (b), SR with PVCs (c) 

and PACs (d) RR interval time series. The process is illustrated for the first 36 heartbeats of the 10-minute 

epochs shown in Figure 2.2. The open blue circles are the integrated signal, the red line and green line represent 

the linear interpolation for box size n=4 and n=12, respectively. 
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Figure 2.5 Relationship between the fluctuations function F(n) and the box size n in a double 

logarithmic plot. Shapes to the four different RR interval segments: stars corresponds to NSR, squares 

to AF, triangles to SR with PVCs and filled circles to SR with PACs. 

 

To explain these results, we refer to Figure 2.4: open circles represent the 

integrated time series, the red and green lines indicates the linear interpolation for 

box size n=4 and n=12, respectively. Looking at the distance between the circles and 

the red line, it is clear how F(n) for box length equal to 4 differs among the groups: 

NSR (a) has the lowest value, AF (b), SR with PVCs (c) and PACs (d) larger values. 

As the scale n increases, a concomitant increase of F(n) is appreciable in all the 4 

groups – looking at the distance between the circles and the green lines, even if with 

very different magnitude. For NSR the increment is elevated, and this is reflected by 

the highest value of the slope, for AF it is still significant but lower than NSR, and 

the slope, consequently, has a reduced value. In the cases of SR with ectopic beats 

the increase is very little, generating almost flat lines in the log-log plot; the scaling 

exponents are indeed the lowest. 
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LDs is computed on the averaged histogram of template count as a function 

of template matches calculated every 12 beats. Figure 2.6 illustrates the step-by-step 

procedure in a 12-beat segment extracted from the same 30-second record of Figure 

2.3 (gray filled circles). Two points are considered: the half-filled square, in Figure  

2.6(a), has 2 matches (crosses), whereas the filled square, in Figure 2.6(b), counts 8 

matches within a tolerance of 20 msec. The contribution of each of the two interbeat 

intervals to the histogram is highlighted in Figure 2.6(c). Repeating this counting for 

all the 12 points, the final histogram of the templates counts as a function of the 

number of matches is obtained. 
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Figure 2.6 Illustration of the calculation of the LD histogram for a 12-beat segment extracted from 30-

second record of a healthy patient of the UVa Holter database. The half-filled square and the filled 

square are the samples taken into account for the calculation of matches respectively in (a) and (b) 

panels on the same 12 beat segment. The crosses represent the matches within a tolerance of 20 msec. 

(c) LD histogram based on the count of templates as a function of the number of matches. The 

remaining sample of the 12-beat segment are represented by the grey circles. The half-filled square 

sample has 2 matches, the filled square sample has 8 matches, and therefore they contribute to the bin 

2 and 8 respectively. 
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The average histograms for the 10-minute segments represented in Figure 2.2 

are shown in Figure 2.7. As expected, in AF condition most templates find very few 

matches (Figure 2.7 (b)), whereas a bell-shape histogram distribution was obtained 

for the NSR series (Figure 2.7 (a)). In case of PVCs the histogram is similar to the 

AF case, due to the high amount of ventricular ectopic beats which produces high 

values in the first bins of the histogram (Figure 2.7 (c)). For SR with PACs (Figure 

2.7 (d)), the histogram reports a peak in correspondence of bin 5 and the majority of 

templates finds a number of matches less than 5. Intuitively, the peak appears due to 

the alternation of accelerated and delayed beats, associated to the bigeminy.  

LDs is computed on the histograms. The highest score of 2.05 belongs to AF, 

as expected, followed by SR with PVCs (LDs = 1.24), due to its high burden of 

ectopy. NSR and SR with PACs both have a low score, equal to 0.28 and 0.54, 

respectively. This is expected in the case of NSR, due to its distribution mainly 

concentrated in the center of the histogram, while in the case of SR with PACs the 

low value is related to the specific pattern of bigeminy, which corresponds to low 

counts in bins 0, 10 and 11. 
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Figure 2.7 Average histograms of the count of templates as a function of the number of matches for the 10-

minute RR interval time series displayed in Figure 2.2. 
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We further investigated the effect of ectopy on dynamical measure. Figure 

2.8 shows the distribution of each index as a function of the burden of ectopy 

calculated on all 10-minute records, with the 95% confidence interval. The bins in 

the figure are constructed after ranking the sequences according to ectopy burden, 

and by setting the bins distance equal to a fixed percentile increment, i.e. 2%. As 

expected, ectopic beats increase entropy and the related LDs – after a point - though, 

entropy falls with increased ectopy. This may be caused by the particular 

arrhythmias named trigeminal and bigeminal rhythms, or non-sustained atrial and 

ventricular tachycardia. The regularity of these abnormal rhythms accounts for the 

lower entropy values.  The fall in DFA slope reflects the effects of ectopic beats on 

the dynamics of the RR interval time series. The physiological condition (NSR) is 

characterized by long-range correlations, the presence of ectopic beats plays a role 

such as an uncorrelated noise. As resulting effect the slope values falls below 0.5. 
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  (b) 
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  (c) 

 
  (d) 

 
  (e) 

 

 

Figure 2.8 Mean (a) and standard deviation (b) of the RR intervals time series, COSEn (c), scaling 

exponent (slope) (d) and LDs (e) as a function of the burden of ectopy. In black the average trend. The 

gray region indicates the 95% confidence intervals. 
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2.5.2 Univariate analysis 

Table 2.1 presents the median and (25°,75°) percentile values for each group 

and for each parameter discussed in the previous paragraphs. Significant differences 

were obtained for all the parameters except for mean and the standard deviations of 

RR interval time series, using Kruskal-Wallis test. As expected, NSR had the lowest 

variability (Std), entropy and LDs, and the highest DFA values. 

 

Table 2.1 Median and (25°,75°) percentile values of the parameters for each group 

Post-hoc comparisons p-value <0.05: 
a
 vs. AF, 

b 
vs. SR with ectopy 

  

Parameters AF NSR SR with ectopy 

Kruskal-
Wallis 
test p-
value 

Mean RR 
(sec) 

763 (660,884)b 795 (676,928)b 820 (707,942) < 0.001 

Std RR 
 (sec2) 

149 (116,186) 38 (24,58)a,b 152 (108,208) < 0.001 

COSEn -0.5 (-0.8,-0.3)b -2.1 (-2.3,-1.8)a,b -1.7(-2,-1.4) < 0.001 

LDs 1.92 (1.5,2.36)b 0.84 (0.52,1.33)a,b 1.28 (1.01,1.62) < 0.001 

DFA 0.61 (0.56,0.66)b 0.98 (0.66,1.26)a,b 0.32 (0.21,0.5) < 0.001 

Age 71.9 (64.9,78.8)b 47 (22.5,65.6)a,b 58.4 (20.1,73.5) < 0.001 
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2.5.3 Logistic regression analysis  

The strategy of classification was based on three multivariate logistic 

regression models, each used to discriminate one group from the other two. This 

parametric analysis hypothesized a linear relationship among the effects of the 

independent predictor variables on the predicted output.  

Table 2.2 shows the accuracy of labeling 10-minute records using the 

standard factors model in the test set. The columns give the correct classification 

based on the labels provided by the software. The rows show the classification 

results from the model adopted. The numbers in the table were obtained from the 

average of the results of the 10-folds cross-validation procedure. The accuracy is 

88.4% and the positive predictive values, reported in the last column of the table, are 

63%, 92% and 62% for AF, NSR and SR with ectopy, respectively. 

 

Table 2.2 Contingency matrix of Multi-label model with linear measures and 

Positive Predictive Values 

 

Table  2.3 shows the accuracy of labeling 10-minute records considering the 

second model, when also non-linear indices are taken into account. The accuracy of 

the classification rises to 94.1% and the positive predictive values, reported in the 

last column of the table, becomes 89%, 96% and 86%.  

  

 AF NSR 
SR with 
ectopy 

PPV 

AF 984.5 (34%) 85.6 (0%) 496.2 (10%) 63% 

NSR 373.3 (13%) 29333.4 (99%) 1559.7 (31%) 92% 

SR with ectopy 1618.4 (53%) 223.8 (1%) 3053.6 (60%) 62% 
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Table 2.3 Contingency matrix of Multi-label model with dynamical measures and 

Positive Predictive Values 

 

A fixed threshold to classify a segment as NSR or SR with ectopy was chosen 

equal to 10%, reflecting clinical practice. However, one of the most common errors 

of this system is when SR has little amount of ectopy, which are the main causes of 

misleading with NSR. We further tested the accuracy of the new model by varying 

the threshold from 4% to 20% with an increasing step of 2%. An improvement of the 

exact match of segments classified as SR with ectopy was obtained from a value of 

55% (4% burden) to 89% (20% burden), while NSR accuracy decreases of about 2%. 

The overall accuracy rose from 88.9% to 93.7% and peaked at 94.4% in 

correspondence of a threshold of 14% burden. 

For a further discrimination between SR with PVCs or PACs, we tested a new 

strategy of classification with four logistic regression models. The final decision 

classified the RR interval time series by using the highest output among the four 

models. Table  2.4 shows the results. An accurate differentiation of the two situations 

of ectopy is not feasible: low accuracies are associated with the two classes of 

ectopy, with a big misclassification of SR with PVCs as SR with PACs (44%) and 

high percentages of misleading with NSR. Moreover, the value of 13% of error 

between SR with PACs and AF model shows that the two arrhythmias are easily 

confused, a situation that can be reasonably expected. Positive predictive accuracies 

are equal to 85%, 94%, 65% and 58%, for AF, NSR, SR with PVCs and PACs, 

respectively. When considering the two classes of ectopy together in a three-based 

models scheme, the positive predictive accuracy rises to 85.5%. These findings 

confirm that the best classification strategy is the one based on three classes.  

 

 AF NSR 
SR with 
ectopy 

PPV 

AF 2377.8 (81%) 77.1 (0%) 213.7 (4%) 89% 

NSR 317.9 (10%) 29179.8 (99%) 962.9 (19%) 96% 

SR with ectopy 280.5 (9%) 385.9 (1%) 3932.9 (77%) 86% 
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Table 2.4 Contingency matrix of Multi-label model with four groups 

 

2.5.4 k-Nearest Neighbor analysis (k-NN analysis)  

This analysis requires no apriori model, because it belongs to the 

nonparametric clustering methods category. For the k-NN analysis a first selection of 

the optimal parameters was necessary, in particular, the metric for calculating the 

distance between the current query point and the training set, and the number of 

neighbors (K). We analyzed three distance metrics: the Euclidean distance, the 

standardized Euclidean distance and the Mahalanobis distance. Their efficiency was 

tested on the same dataset using a 10-fold cross-validation procedure with an initial 

value of K = 1. The strategy was to classify a 10-minute segment based on the 

classification of the majority of its neighbors. For a new test record xi, distances from 

all the points of the training set are sorted in ascending order. Fixed the number K of 

neighbors, the first K smallest distances are chosen and their classes are taken into 

account for the final decision: the new record is assigned a probability to be in one of 

the three classes and the higher value was selected for the classification. The overall 

accuracy of the classification with the three approaches, i.e. Euclidean distance, 

standardized Euclidean distance and Mahalanobis distance, was 87.9%, 92.8% and 

92.7%, respectively. The standardized Euclidean distance was selected for further 

investigations. The accuracy of the classifier with the chosen distance metrics was 

tested as a function of the number of neighbors K. It rises for small K, but for 

numbers greater than 15 the value remains constant, at approximately 94.55%. We 

chose K=25 for the successive analyses.  

 AF NSR SR with PVCs 
SR with 

PACs 
PPV 

AF 2471.4 (83%) 86.4(0%) 96.9 (3%) 265 (13%) 85% 

NSR 353.3 (12%) 29358.1 (99%) 783.3 (26%) 605.6 (30%) 94% 

SR with 
PVCs 

95.2 (3%) 169.3 (1%) 2099.5 (67%) 882.4 (44%) 65% 

SR with 
PACs 

56.3 (2%) 29 (0%) 110.8 (4%) 266 (13%) 58% 
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Table  2.5 and Table 2.6 report the accuracy obtained with the k-NN classifier 

of labeling 10-minute records using the minimal model with the standard indices (i.e. 

with the mean and SD of RR intervals time series) and the new model, respectively. 

The overall accuracy is 89.4% in the first case and equal to 94.5% in the second case. 

Positive predictive values are 90%, 97% and 84% for AF, NSR and SR with ectopy, 

respectively. 

 

Table 2.5 Contingency matrix of k-NN model with linear measures and Positive 

Predictive Values 

 

 

Table 2.6 Contingency matrix of k-NN model with dynamical measures and Positive 

Predictive Values 

  

 AF NSR 
SR with 
ectopy 

PPV 

AF 1589.4 (54%) 95.4 (0%) 976.9(20%) 60% 

NSR 266 (9%) 28210.7 (98%) 930.3 (19%) 96% 

SR with ectopy 1077.3 (37%) 532.5 (2%) 3056.4 (61%) 66% 

 AF NSR 
SR with 
ectopy 

PPV 

AF 2388.4 (82%) 72.4 (0%) 201.4 (4%) 90% 

NSR 266 (9%) 28265.2 (98%) 683.1 (14%) 97% 

SR with ectopy 278.3 (9%) 501(2%) 4079.1 (82%) 84% 
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2.5.5 Validation on a different database 

The proposed classifiers are also externally validated on the canonical MIT-

BIH database, which includes the AF, NSR and other arrhythmias (ARH) databases 

(Goldberger et al, 2000). The MIT-BIH AF database consists of 10-hour recordings 

from 25 patients with AF with 1.22 millions of RR intervals, 42.5% labeled as AF. 

The ARH database consists of 30-minute recordings from 48 patients with various 

arrhythmias with 0.1 millions of RR intervals, 11% labeled as AF. The NSR database 

consists of 24-hour recordings from 72 patients with a total of 7.52 millions of RR 

intervals, some of them labeled as ectopy but none labeled as AF.  In all, there are 

11’290 10-minute segments in the combined data sets, 644 that we labeled as AF. 

This 6% prevalence of AF is similar to the 10% in the UVa Holter data set. In 

contrast, though, is the small number of 10-minute segments with 10% or more 

ectopic beats – only 94 (0.8%). 

As external validation, we tested the regression-based scheme and the k-NN 

algorithm on the individual (Tables a, b, c) and combined (Tables d) MIT-BIH data 

sets divided into 10-minute segments. Table 2.7 and Table 2.8 show the results of the 

rhythm classifications achieved by the regression-based schemes and k-NN, 

respectively.  

The results obtained of accuracies and positive predictive values in case of 

AF and NSR in the combined databases (Table  2.7d and Table 2.8d) are higher than 

those found for the UVa Holter database. However, for what concern SR with 

ectopy, the values are lower. We think that this is due to the low prevalence of SR 

with ectopy segments, which is only 0.8%, as already discussed previously.  

We observed a problem in performing the k-NN algorithm on the combined 

databases related to the lack of age information for some patients. While in 

computing the logistic regression based scheme an appropriate model was created if 

the data of age was missing, in the case of the non-parametric k-NN method it was 

not possible and we discarded the age values from the analysis on the combined 

databases. We can reasonably assume, though, that the results would have been 

better if the age was included.  
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Table 2.7a Logistic Regression analysis on MIT-BIH AF database 

 

 

 

 

 

 

 

 

 

 

Table 2.7b Logistic Regression analysis on MIT-BIH ARH database 

 

Table 2.7c Logistic Regression analysis on MIT- BIH NSR database 

 

Table 2.7d Logistic Regression analysis on all 3 combined MIT database 

  

 AF NSR PPV 

AF 485 (77%) 8 (1%) 98% 

NSR 92 (15%) 713 (87%) 89% 

SR with ectopy 49 (8%) 94 (12%) 0% 

 AF NSR 
SR with 
ectopy 

PPV 

AF 14 (78%) 0 (0%) 5 (17%) 74% 

NSR 3 (16%) 56 (97%) 3 (10%) 90% 

SR with ectopy 1 (6%) 2 (3%) 21 (73%) 88% 

 AF NSR 
SR with 
ectopy 

PPV 

AF 0 8 (0%) 1 (2%) 0% 

NSR 0 9631 (100%) 7 (11%) 100% 

SR with ectopy 0 40 (0%) 57 (88%) 59% 

 AF NSR 
SR with 
ectopy 

PPV 

AF 499 (77%) 16(0%) 6 (6%) 96% 

NSR 95 (15%) 10400 (100%) 10 (11%) 99% 

SR with ectopy 50 (8%) 42 (0%) 78 (83%) 40% 



CHAPTER 2. Cardiac rhythm classification 

 

59 

 

 

Table 2.8a k-NN analysis on MIT- BIH AF database 

 

 
 
 
 
 
 

 

 

 

Table 2.8b k-NN analysis on MIT- BIH ARH database 

 

Table 2.8c k-NN analysis on MIT- BIH NSR database 

 

Table 2.8d k-NN analysis on all 3 combined MIT databases (without age) 

 
 

 AF NSR PPV 

AF 514 (82%) 13 (2%) 98% 

NSR 63 (10%) 688 (84%) 92% 

SR with ectopy 49 (8%) 114 (14%) 0% 

 AF NSR 
SR with 
ectopy 

PPV 

AF 14 (78%) 0 (0%) 1 (4%) 93% 

NSR 2 (11%) 56 (97%) 3 (10%) 92% 

SR with ectopy 2 (11%) 2 (3%) 25 (86%) 86% 

 AF NSR 
SR with 
ectopy 

PPV 

AF 0 25 (0%) 1 (1%) 0% 

NSR 0 9588 (99%) 1 (1%) 100% 

SR with ectopy 0 66 (1%) 63 (98%) 49% 

 AF NSR 
SR with 
ectopy 

PPV 

AF 528 (82%) 15 (0%) 0 (0%) 97% 

NSR 66 (10%) 10366 (99%) 5 (5%) 99% 

SR with ectopy 50 (8%) 57 (1%) 89 (95%) 45% 
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Chapter 3 

2-years mortality risk analysis based on 

heart rate dynamics 

 

 

3.1 Introduction 

Abnormal dynamics of heart rhythm are associated with an increased risk of 

mortality. As already discussed in §1.3, AF and situations of normal variability 

punctuated with atrial or ventricular ectopy are strongly associated with an increased 

risk of mortality. AF is generally accepted as one of the most important risk factors 

for stroke (Wolf et al, 1991) and it is associated to other cardiac diseases, such as 

tachycardia-induced cardiomyopathy, congestive heart failure and valve disease 

(Stewart et al, 2002). Many studies have been presented in order to assess the 

independency of AF as a risk factor for mortality, but if this is a direct effect of AF 

itself or is related to the risky conditions associated with it, is still under study 

(Leong et al, 2013). Ventricular ectopy have been thought for a long time to be 

benign when occurring in healthy hearts, but recent studies shed light on the 

evidence of poor prognosis associated with PVCs, even in hearts with no structural 

diseases (Cha et al, 2012) (Lee et al, 2012). There are proofs that PVCs may lead to 

adverse prognosis by generating fatal arrhythmias and heart failure. PVC-induced 

cardiomyopathy and left ventricular dysfunction can be reversed by radiofrequency 

ablation, and studies demonstrated that the ejection fraction rises at the time of PVC 

ablation (Yokokawa et al, 2013). Premature atrial contraction are known to precede 

AF (Haissaguerre et al, 1998) and to be surrogate markers of paroxysmal AF in 

patients with acute ischemic stroke (Wallmann et al, 2007).  

Specific parameters to detect abnormalities in the cardiac rhythm have been 

already developed. The coefficient of sample entropy was optimized for AF 

detection, while the local dynamics score was specifically designed to recognize the 
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abnormal dynamic phenotype associated with reduced variability and occurrence of 

ventricular ectopy.  

In this work, a mortality risk stratification analysis was performed on the 

University of Virginia (UVa) Holter database, and we show how, combining these 

two heart rate dynamical measures, a picture of mortality risk can be obtained. 

 

3.2 Study population 

The analysis was performed on 1’518 RR interval time series from a database 

of 2’440 ambulatory patients that were prescribed for 24-hour Holter monitoring at 

the Health System Heart Station, University of Virginia (UVa), USA, from 12/2004 

to 10/2010. Only patients with age over 40 were taken into account based on the low 

incidence of AF in younger patients, thus the dataset shows an overall average value 

of 65±13 years. The mortality rate in two years was 5%. We used Philips Holter 

Software labels of AF, premature atrial and ventricular beats. The recordings were 

classified as previously described in §2.2, by taking a fixed threshold of 10% burden 

for ectopic beats. The dataset is composed of 71% NSR, 13% AF and 15% SR with 

ectopy recordings. 

 

3.3 Methods 

COSEn is a measure derived from the sample entropy and it is developed 

specifically for the detection of AF in very short RR interval time series (Lake and 

Moorman, 2011). For the details of its calculation we refer to §2.3.1. In this study 

COSEn was assessed on 30 second segments and we averaged all results over 24 

hours. For those recordings with an AF burden lower than 90%, we analyzed only 

the segments where each beat was labeled as AF. 

LDs is a new index to investigate the local dynamics of short time series and 

the overall calculation is explained in § 2.3.3. The prognostic importance of this 

index has been evaluated by Moss et al (2014), who introduced LDs as a significant 

independent predictor factor of mortality in ambulatory patient undergoing 24hr 

Holter, in addition to standard risk factors such as age, hypertension, diabetes, 

hyperlipidemia, history of tobacco use and history of congestive heart failure (Moss 



CHAPTER 3. Mortality risk 

 

62 

 

 

et al, 2014). Results show that patients with higher local abnormalities, i.e. higher 

values of the index, were subject to higher mortality during a follow-up of 8 years. 

High values can be reached with both situations of high irregularity, such as AF or 

ectopy, or very low variability, such as conditions of reduced heart rate variability. 

For what concern the LDs calculation, we averaged the result of the number of 

templates as a function of the number of matches from all 12-beat segments in 24 

hours and we assessed the score on the average histogram.  

To analyze the distribution of the population and its relative mortality risk as 

a function of COSEn and LDs, we performed a multivariate kernel density study on 

the histograms of the joint distributions of the parameters. The multivariate kernel 

density approach helps in solving the problem related to the estimation of probability 

density functions. In a case of bivariate analysis, the estimation consists in 

constructing the histograms and creating a map of the dataset where the density is 

assigned with the use of a grid, whose dimensions are based on the bin width of the 

univariate histograms. This approach has the disadvantage to be affected by the bins 

size and by the grid starting point. However, the use of kernel functions creates a 

density map smoothed out from every single data point into its surrounding region of 

space, obtaining a smoother result and a performance not dependent on the width of 

histogram’s bins.  

In this study the kernel chosen is a bivariate Gaussian with a diagonal 

bandwidth matrix, which allows different amounts of smoothing in each of the 

coordinates (Botev et al, 2010). Because of the choice of the bandwidth matrix is the 

most important factor affecting the accuracy of the estimation, since it controls the 

orientation and the amount of smoothing induced, the two bandwidth parameters are 

chosen optimally without assuming a parametric model for the data (Lake, 2009). 
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3.4 Results 

Color maps of the joint distributions of COSEn and LDs are shown in Figure 

3.1 for different groups of population. Panel (a) shows the entire database, panel (b) 

all the patients who died within two years, panel (c) all the survivals and, finally, 

panel (d) illustrates a color map of 2-years mortality risk, which is computed as the 

ratio of the joint distributions of COSEn and LDs of the patients who died and the 

whole population. The majority of the patients survived and has low values of 

COSEn and LDs, as demonstrated by the high density regions in panels (a) and (c). 

About 5% of the population died and these are patients characterized by higher 

values of both the indices. A scatter plot of the dead people over the survival is 

reported in Figure 3.2, to quantitatively assess the previous results discussed. These 

findings are summarized in panel (d) showing the mortality risk. The color bar 

defines the different levels of mortality risk. The light blue, i.e. the color associated 

with the value 1, indicates regions that have a risk equal to the average mortality rate 

of the dataset. Cooler colors indicate areas associated with a lower risk, whereas 

regions marked with warmer colors denote higher risk. For example, patients in 

regions with a color value of 0.5 have a mortality risk equal to half of the average, 

whereas orange regions hold patients with a 2 times higher risk than the average. 

A well-defined royal blue region, i.e. with very low mortality risk, is 

characterized by low values of LDs, whereas high-risk zones are related to higher 

values of the index. A mutual increase of LDs values and mortality risk is thus 

observable. In particular, starting from the low risk region (left lower edge), it is 

possible to distinguish two different directions along which the risk becomes higher: 

the first, marked by the lower arrow, evolves toward increased values of LDs 

independently of COSEn values, whereas the second one, highlighted by the upper 

arrow, points toward both higher values of LDs and COSEn, reaching the maximum 

for both the indices. 
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Figure 3.1 Color maps of the joint distributions of COSEn and LDs for different groups in the UVa 

Holter population. Panel (a) shows all the patients, panel (b) shows the patients who died within two 

years, panel (c) shows all the survivals and panel (d) the mortality risk over two years. The color bar 

indicates the fold-increased risk. The arrows in panel (d) mark the directions towards increasing risk 

from a region of very low risk to areas with higher risk. 
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Figure 3.2 Distribution of the average values over 24 hours of LDs and COSEn for the UVa Holter 

population. Red dots mark the patients who survived, blue dots the patients who died within two 

years. The black line indicates the low risk region represented with royal blue color in Figure 3.1(d). 

 

 

 

Figure 3.3 shows the distribution of the 24-hour average values of LDs and 

COSEn for the population. The three groups AF, SR with ectopy and NSR are 

labeled by their colors. The red dots represent the AF patients: it is noticeable that 

the majority of them has the highest values of COSEn and LDS, and that they are 

gathered in an upper corner almost separated from all the rest of the population. Blue 

dots denote patients in NSR, which have the lowest averaged value of COSEn, but 

they are scattered over a wide range of LDs values, from 0.5 to 2. Finally the patients 

in SR with ectopy denoted by green dots, have intermediate values of both COSEn 

and LDs. The AF group had higher mortality. This is expected, given its increased 

occurrence in patients with heart disease.  
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The arrows of Figure 3.1(d) draw attention to two trends of heart rate 

dynamics in higher-risk patients. The lower arrow follows a group with high LDs 

and low COSEn: looking at the  

Figure 3.3, these are patients with SR with reduced variability and little or no 

ectopy. The upper arrow follows a group with high LDs and intermediate COSEn, 

not high enough to signify AF: these patients have SR and a high burden of ectopy. 

 

 

 
 

Figure 3.3  Distribution of the average values over 24 hours of LDs and COSEn for the UVa Holter 

population. The three categories of AF, NSR and SR with ectopy are displayed with different colors: 

red for AF, blue for NSR, green for SR with ectopy. 
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An example of 24-hour recording of four patients with different heart rhythm 

is presented in Figure 3.4, with features of NSR (a), SR with ectopy (b), AF (c) and 

SR with low variability (d).  

 

(a) 

 
 

(b) 
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(c) 

 
 

(d) 

 
Figure 3.4 RR interval time series of 24 hours from the UVa Holter database for NSR (a), SR with 

ectopy (b), AF (c) and SR with reduced variability (d). 
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Interestingly, we do not find large differences in the dynamics of atrial and 

ventricular ectopy, as Figure 3.4 shows with a clear overlap between the two classes. 

This is clinically counter-intuitive, as the coupling intervals of PVCs are perceived to 

be more regular than those of PACs. No direct comparisons of the dynamics of atrial 

and ventricular ectopy are currently available to shed light on this issue.  

 

 
Figure 3.4 COSEn and LD score values for SR with PVCs represented with circle and SR with PACs 

represented with cross. Notice the overlap between the two groups. 

 

 

Moreover, we also do not find any difference in the mortality rate related with 

the two classes. This is surprising, since it is documented the greater association of 

PVCs with a rising in the risk of cardiac morbidity and mortality, as discussed in 

§3.1, while PACs are considered harbinger of AF, but not important risk factors for 

death per se.  
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The most important finding is the greatly reduced mortality risk in the 

patients with the lowest values of both the dynamical measures. However, a blue 

region is also observable in the upper right corner, where the AF patients place. This 

is related to limit number of patients and high percentage of survivors as depicted in 

Figure 3.2. When computing the ratio between the joint distributions of the people 

who died and the whole population, this situation generates a low risk region which is 

not consistent with the value of risk of the rest of AF patients.  

Heart rate dynamics, alone, can inform on the mortality risk. Condition 

characterized by AF, high burden of ectopy and reduced variability are confirmed to 

be associated with mortality in ambulatory population. 
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Chapter 4 

Discussion and Conclusion 

 

 

4.1 Cardiac rhythm classification from RR intervals 

We tackled the problem of arrhythmia detection and classification based on 

RR interval time series using linear and dynamical measures to discriminate among 

NSR, AF and SR with ectopy. The RR interval time series of 24hr ECG recordings 

from 2’722 ambulatory patients were divided into 10-minute segments, we measured 

three different indices: the Coefficient of Sample Entropy, the scaling exponent using 

Detrended Fluctuation Analysis, and the Local Dynamics score. We tested the 

hypothesis that these measures, added to standard measures of heart rate and heart 

rate variability, can improve the classification performance.  Our major finding is the 

improvement in the distinction of SR with ectopy using the dynamical measures 

from the other two groups. The positive predictive value using either regression 

models or k-NN analysis was 85%, with higher values for the diagnosis of NSR 

(96%) and AF (90%). The threshold to classify a segment as SR with ectopy rather 

than NSR, was fixed to be 10% of ectopy burden – this reflects clinical practice, and 

accuracy increased further if the threshold for diagnosing ectopy was higher.  

The models were internally validated using 10-fold cross-validation and 

externally validated by using the canonical MIT-BIH databases of NSR, AF and 

other arrhythmias (ARH). In this latter case, the positive predictive values for NSR 

and AF rose to 99% and 96%, respectively, but fell for SR with ectopy to 45%.  This 

may be explained by the much lower incidence of SR with ectopy in the highly 

selected MIT-BIH databases, where they represented <1% of the 11’196 10-minute 

segments, compared with 13% of the 377’825 10-minute segments in the UVa 

database. 

Surprisingly, these measures do not distinguish well between atrial and 

ventricular premature beats, a potentially important clinical distinction. Atrial 



CHAPTER 4. Discussion and Conclusion 

 

73 

 

 

premature beats may be harbingers of AF, and ventricular premature beats are 

associated with increased mortality, especially when structural heart disease is 

present. 

 

4.2 Mortality risk evaluation 

We evaluated the incidence of deaths in the UVa Holter population using two 

specific indices of HR dynamics, COSEn and LDs. A low-risk region with a 

prevalence of patients in NSR, is characterized by low values of both, implying SR 

without a high burden of ectopy. Situations related to higher risk are SR with 

reduced HRV, SR with an increasing amount of ectopy and AF.  

The important finding is that there is a great increase in the risk of mortality 

related only to the cardiac rhythm of the patients. As already discussed in chapter 1, 

many studies in literature assessed AF as an independent risk factor for stroke and 

for increased morbidity and mortality. Situations with high burden of ectopic beats 

precede AF and lead to poor prognosis per se. Reduced heart rate variability is a sign 

of loss of capacity of the organism to adapt to the ever-changing environments, 

manifesting a dangerous situation of disease. 

The mortality risk color map can be a very effective way for clinicians to 

assess the risk of patients associated with the presence of arrhythmias, thanks to its 

simplicity and easiness of understanding. 

 

4.2 Clinical implications 

The clinical importance of accurate detection of AF is related to the specific 

treatments that the presence of the arrhythmia requires.  For example, the distinction 

between AF and SR with ectopy can be difficult without PQRST waveforms, but is 

nonetheless important for two reasons. First, the diagnosis of AF calls for decisions 

about anticoagulation and for the monitoring process of the patient, such as 

prescription of diagnostic ECG. Second, atrial ectopy may anticipate AF, and 

ventricular ectopy may lead to cardiomyopathy or in other ways increase the risk of 

mortality (Lee et al. 2012). An atrial ectopy burden of even less than 1% increases 
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the risk of AF over the next 5 to 15 years (Dewland et al, 2013). More than 10% 

ventricular ectopy can be associated with left ventricular dysfunction and clinical 

heart failure syndromes that are reversed by ablation of the ectopic site (Lee et al, 

2012) (Yokokawa et al, 2013) (Baman et al, 2010).  

An accurate arrhythmias detection and classification together with an 

effective method to determine the risk of the subject associated with that specific 

arrhythmia, both based only on RR interval time series, could have an important 

clinical impact for the management of hospitalized and ambulatory outpatients. 

 

4.3 Limitations 

Our clinical emphasis constrains our analysis in several ways. First, we 

consider atrial flutter to be the same as AF. This approach, which is based on the 

similarities in clinical management, can certain lead to misclassifications. The 

dynamics of atrial flutter when AV conduction is fixed can never be considered the 

same as AF. The regularity with which AFL rhythm can appear is responsible for 

most of the 9 to 10% misclassification error of AF as NSR.   

Second, we assigned the diagnosis of AF when as little as 30 seconds, or 5% 

of a 10-minute segment was present. This is consistent with clinical practice, where 

episodes lasting as in our case elicit full consideration in AHA guidelines (Fuster et 

al, 2006), and thus can lead to treatment measures as for AF. 

Finally, as previously stated, we assigned the diagnosis of ectopy when as 

little as 10% is present. The end result of these classification produced a diagnose of 

AF or SR with ectopy even when the rhythm is 90% or more purely normal SR.  

 

4.4 Future developments and applications 

The analyses were performed using an average of the values of COSEn and 

LDs estimated over 10 minute epochs. The potentiality of this approach consists in 

having an update of these indices every 30 seconds, so this type of analysis can be 

performed in a clinical setting such as in Intensive Care Unit where a continuous 
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monitoring of the changes in cardiac rhythm and their relative risk is crucially 

important and can be life-saving. 

The idea of a “risk map” where regions of low, average and high mortality 

risk are depicted, can find interesting applications in clinical care too. The map 

permits to follow the patient course and to see if the therapy is able to maintain the 

patient or to bring the patient back to the safe region. The monitoring could be 

performed also real time. 

An example of the effectiveness of the classifier in a real time context is 

reported in Figure 4.1. The RR interval time series is depicted with dots, the line at 

the bottom represents the output of the classification model proposed in this thesis 

with an update performed every two minutes. In panels (a) and (b) are presented two 

cases of 24-hour recordings of two different patients of the UVa Holter database. The 

first presents an episode of AF about 3 hour long, while the second has a very high 

burden of atrial premature beats all over the duration of the Holter registration and a 

single episode of NSR of about 3 hours. A zoom of the transition from one rhythm to 

the other is shown in panels (c) and (d), respectively. The transition from NSR to AF 

(panel (c)) is preceded by 10 minutes of SR with ectopy, as the model output 

precisely tracks.  

Moreover, the potentialities of an automatic RR-based arrhythmias classifier 

are enormously important in new growing fields as home care monitoring and 

telemedicine, where it could find extensive applications. Some of the important 

challenges in western countries society are represented by the growth in the aging 

population, the changes in lifestyle, the need for healthcare cost containment and the 

need for improvement and monitoring of healthcare quality. It is clear how cardiac 

abnormalities and risk monitoring plays a central role in this scenario. Telemedicine 

has been extensively investigated and today it can contribute to new trends in 

healthcare system through all-day monitoring of vital signs without the commitment 

of hospital personnel or hospital facilities. 

Finally, this work proved the benefit of dynamical measures in the problem of 

arrhythmias detection and classification. COSEn and LDs were already tested as 

efficient measures to specifically detect AF and abnormal local dynamics, 

respectively (Lake and Moorman, 2011) (Moss et al, 2014). However, this work 
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included the short-term scaling exponent obtained from DFA computed over 10 

minute segments as a useful parameter to distinguish three very important clinical 

arrhythmias, such as NSR, AF and SR with a certain burden of ectopy. In the work 

of Yeh et al (2009) they proposed the same calculation of the short-term scaling 

exponent over 10 minutes with a maximum box size of 11 beats, but the goal of the 

study was to discriminate healthy patients from patients with congestive heart failure. 

However, future improvements can be done by investigating different types of 

classification algorithms, as many works demonstrated the efficiency of Neural 

Networks, Support Vector Machine or Fuzzy logic in the classification problem 

(Acharya et al, Comprehensive analysis of cardiac health using heart rate signals, 

2004) (Bardossy et al, 2013) (Mohammadzadeh Asl et al, 2008). 
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Figure 4.1 In the panels (a) and (b) there are two examples of 24-hour recordings from two distinct 

patients of the UVa Holter database. In (a) an AF episode occurs after about 14 hours and sparsely 

episodes of ectopic beats are present; in (b) the rhythm is dominated by atrial premature contractions, 

unless a 4-hour periods of NSR. The lower solid line indicates the output of the classifier proposed in 

this work with an update every 2 minutes. In panels (c) and (d) a zoom of the previous signals is 

presented: in (c) the transition from NSR to AF, preceded by episodes of atrial ectopies; in (d) the 

transition from NSR to SR with PACs. 
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