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ABSTRACT IN ENGLISH ix

Abstract in English

Thermodynamics is divided into the branches of kinematics, which deals with

the description of the possible states of a system, and dynamics, which aims at

describing the causes and the e�ects of the motion of the system. Regarding the

second aspect, a dynamical law of evolution for thermodynamic systems does not

exist. The resolution of this problem would not only be a milestone in the �eld

of Physics, but it would also allow a more precise description of the evolution of

non-equilibrium systems, a need felt in the most di�erent sectors of engineering.

In particular, through its realization in Kinetic Theory, it would help in modelling

the time-evolution of rare�ed systems for which the Navier-Stokes equations do not

apply. Among the dynamical principles, one of those that have most frequently

been proposed is the Maximum-Entropy Production Principle.

The present work is focused on the dynamical modelling of thermodynamic

systems and is articulated in three parts. The �rst is a systematic review of some

dynamic principles proposed during the history of thermodynamics. The second

aims at understanding similarities and di�erences between the Steepest Entropy

Ascent (SEA) dynamical model proposed by Beretta and the GENERIC dynamic

formalism developed, among others, by Öttinger e Grmela. In order to accomplish

this task, a reformulation of SEA dynamics using Di�erential Geometry formalism

has been considered necessary and constitutes one of the most innovative outputs

of the present thesis. It is shown that both dynamic models are of the entropy-

gradient type, the main di�erence being that GENERIC is built in a more struc-

tured manifold. In the third part, the realization of both these dynamical models

in Kinetic Theory is illustrated: the Boltzmann equation is interpreted di�erently

using the building blocks of the two models. Moreover, as SEA aims at proposing

new model equations for its resolution, numerical results of the application of SEA

methods for the relaxation from non-equilibrium states are presented: good agree-

ment with the exact solution is shown for near-equilibrium situations, while poorer

results are obtained farther from equilibrium. This means that improvements, with

particular regard to the choice of the metric, are needed.

Keywords: non-equilibrium thermodynamics, dynamical models, Steepest

Entropy Ascent, GENERIC, Boltzmann Equation, kinetic models.
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Abstract in Italiano

La termodinamica è divisa in cinematica, che si occupa della descrizione dei pos-

sibili stati di un sistema, e dinamica, che mira a descrivere le cause e gli e�etti del

moto del sistema. In merito al secondo aspetto, una legge di evoluzione dinamica

per un sistema termodinamico non esiste. La soluzione a questo problema non

solo rappresenterebbe una pietra miliare nel campo della Fisica, ma permettereb-

be anche una descrizione più accurata dell'evoluzione dei sistemi di non-equilibrio,

un'esigenza sentita nei più diversi settori dell'ingegneria. In particolare, attraver-

so la sua realizzazione nella Teoria Cinetica, aiuterebbe a modellare l'evoluzione

temporale di sistemi rarefatti, per cui le equazioni di Navier-Stokes non sono ap-

plicabili. Tra i vari principi dinamici, uno di quelli più frequentemente proposti è

il Principio di Massima Produzione di Entropia.

Il presente lavoro di tesi si focalizza sulla modellazione dinamica di sistemi

termodinamici ed è articolato in tre parti. La prima è una review sistematica

di alcuni principi dinamici proposti nella storia della termodinamica. La secon-

da parte ha come obiettivo la comprensione delle analogie e delle di�erenze tra

il modello dinamico Steepest Entropy Ascent, proposto da Beretta, e il formali-

smo GENERIC, sviluppato, tra gli altri, da Öttinger e Grmela. Per realizzare

questo, si è resa necessaria una riformulazione della dinamica SEA attraverso il

formalismo della Geometria Di�erenziale. Questa parte costituisce uno degli out-

put più innovativi della presente tesi. Si mostra che entrambi i modelli dinamici

sono del tipo gradiente-di-entropia, con la principale di�erenza che GENERIC è

sviluppato in una varietà più strutturata. Nella terza parte del lavoro, si illustra

la realizzazione di entrambi i modelli dinamici nella Teoria Cinetica: l'equazione

di Boltzmann è interpretata in modo di�erente utilizzando i blocchi costitutivi dei

due modelli. Inoltre, dal momento che SEA mira a proporre nuovi modelli per

la risoluzione dell'equazione, si presentano i risultati numerici dell'applicazione di

metodi SEA per il rilassamento da uno stato di non-equilibrio: un buon accordo

con la soluzione esatta è evidenziato per situazioni vicine all'equilibrio, mentre lon-

tano dall'equilibrio i risultati sono meno soddisfacenti. Questo signi�ca che sono

necessari miglioramenti, con particolare riferimento alla scelta della metrica.

Parole Chiave: termodinamica del non-equilibrio, modelli dinamici, Steepest

Entropy Ascent, GENERIC, Equazione di Boltzmann, modelli cinetici.



ESTRATTO IN ITALIANO xi

Estratto in Italiano

La Termodinamica nella Fisica e nell'Ingegneria

Beretta e Gyftopoulos de�niscono la Termodinamica come lo studio delle osser-

vabili �siche dei moti di costituenti �sici (particelle e radiazioni), dovuti a forze

applicate esternamente, o da forze interne. Nonostante i concetti base della Ter-

modinamica siano stati utilizzati per la realizzazione di strumenti pratici già dal

XVII Secolo e nonostante i primi tentativi di sistemazione teorica risalgano al-

l'Ottocento (con la formulazione di Carnot, secondo il concetto di ciclo), esistono

ancora oggi notevoli divergenze interpretative sui concetti base e sulla struttura

dell'impianto teorico. Una visione non comune, ma a nostro avviso chiara e rigoro-

sa, della disciplina è quella fornita dalla Keenan School del Massachusetts Institute

of Technology, cui appartegono, oltre al fondatore Joseph Keenan e George Ha-

tsopoulous, anche i già citati Beretta e Gyftopoulos. Essi propongono una visione

della Termodinamica come estensione della Meccanica, un impianto teorico che

mira a evitare i `loop' logici e le ambiguità delle esposizioni tradizionali, una de�-

nizione di entropia valida per tutti gli stati, inclusi quelli di non-equilibrio, e, in�ne,

l'idea che l'irreversibilità sia intrinsecamente contenuta nella natura microscopica

dei fenomeni. Questa visione si oppone decisamente ad una delle formulazioni più

note, quella che interpreta i principi della termodinamica in senso statistico, e al-

la visione per cui l'irreversibilità emerge nel passaggio dal livello microscopico al

livello macroscopico.

Indipendentemente dalla visione di insieme, essa è, come tutte le discipline del-

la �sica, divisa nella branca della cinematica, relativa alla descrizione dei possibili

stati di un sistema, e della dinamica, relativa allo studio delle cause e degli e�etti

del moto del sistema. Sotto quest'ultimo punto di vista, una legge di evoluzio-

ne dinamica per un sistema termodinamico, analoga alla Legge di Newton per la

Meccanica Classica e all'Equazione di Schrödinger per la Meccanica Quantistica,

non esiste. Essa non sarebbe solamente una pietra miliare nella storia della �sica,

ma aiuterebbe anche a modellare meglio l'evoluzione temporale dei sistemi fuori

equilibrio, un'esigenza sentita nei più svariati settori dell'ingegneria. Ad esem-

pio, un semplice processo di ossidazione può avvenire in diversi modi: mediante

una combustione con �amma, processo caratterizzato da maggiori irreversibilità

e minore produzione di lavoro utile, oppure attraverso una cella a combustibile,

processo caratterizzato da minori irreversibilità e maggiore produzione di lavoro

utile. Una migliore conoscenza dell'evoluzione temporale dei sistemi termodinami-
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ci permetterebbe una migliore gestione di questi fenomeni. In questo ambito, gli

scopi della tesi sono:

• e�ettuare una review di alcuni principi dinamici per sistemi termodinamici

che sono stati proposti nel tempo, con particolare riferimento al Principio di

Massima Produzione di Entropia;

• confrontare la teoria dinamica Steepest Entropy Ascent, proposta da Beretta,

con il formalismo GENERIC, sviluppato, tra gli altri, da Öttinger e Grmela;

entrambe le strutture sono state motivate dalla ricerca di formulazioni della

Termodinamica del Non-Equilibrio pienamente compatibili con la Seconda

Legge della Termodinamica;

• veri�care come queste due teorie si applicano alla Teoria Cinetica e all'equa-

zione di Boltzmann, al �ne di proporre nuovi modelli cinetici che possano

essere utili nello studio dell'ampia varietà di fenomeni �sici che vengono soli-

tamente modellati attraverso l'equazione di Boltzmann stessa, quali il moto

di elettroni in un conduttore, il comportamento dei fononi in un isolante, il

trasporto dei neutroni in un reattore, il comportamento di un plasma e il com-

portamento di gas rarefatti o, più in generale, la modellazione di tutte quelle

situazioni �siche in cui, a causa del numero di Knudsen signi�cativamente

diverso da zero, la validità delle equazioni di Navier-Stokes cade.

La validazione del modello

Il secondo capitolo del lavoro si propone di illustrare brevemente, a causa della loro

vastità, i due impianti teorici che sono utilizzati per validare i modelli dinamici suc-

cessivamente illustrati: la Termodinamica Classica del Non-Equilibrio e la Teoria

Cinetica. Da un lato, infatti, la Termodinamica Classica del Non-Equilibrio, so-

prattutto nella sua approssimazione lineare, è utilizzata per modellizzare fenomeni

che non si discostano troppo da una situazione di equilibrio: pertanto, qualsiasi

modello dinamico valido deve contemplarne gli aspetti peculiari nelle situazioni

vicine all'equilibrio. Dall'altro lato, la Teoria Cinetica e, soprattutto, l'Equazio-

ne di Boltzmann, sono utilizzate sia nell'ambito del GENERIC, sia nell'ambito di

SEA, come banco di prova per la loro struttura: i vari termini dell'Equazione di

Boltzmann sono interpretati in maniera di�erente attraverso i blocchi costitutivi

delle due teorie.
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Per quanto riguarda la Termodinamica Classica del Non-Equilibrio, si illustra-

no le ipotesi che vi sono alla base, il modo in cui la produzione entropica locale

emerge come prodotto tra forze e �ussi, come questi ultimi possono essere consi-

derati una funzione lineare delle forze, nonché il principio di Curie e le relazioni di

reciprocità di Onsager, la cui dimostrazione è basata sull'ipotesi della reversibilità

microscopica delle equazioni del moto e su altri punti che sono illustrati. Si illu-

stra poi il Principio di Minima Entropia di Prigogine, chiarendone il legame con il

Principio di Massima Entropia: mentre il primo è un principio globale (si applica a

tutto il corpo preso in considerazione), legato all'andamento nel tempo della pro-

duzione entropica, il secondo è generalmente interpretato come un principio locale,

legato alle possibili direzioni di evoluzione di un sistema ad un istante temporale

�ssato. Inoltre, mentro il secondo è del tutto generale, il primo è valido sotto

ipotesi restrittive. Si mostrano in�ne alcuni ambiti di applicazione dell'impianto

della Termodinamica Classica di Non-Equilibrio, come gli e�etti termoelettrici, gli

e�etti termomeccanici e l'e�etto Righi-Leduc.

Nella seconda parte del capitolo si illustra la derivazione dell'Equazione di Bol-

tzmann, preceduta dall'illustrazione dell'Equazione di Liouville, valida in assenza

di collisioni, e introducendo l'ipotesi della Stosszahlansatz, detta anche ipotesi del

caos molecolare. Si espone il concetto di invariante collisionale e si vede come essi

possano essere espressi come combinazione lineare di massa, momento ed energia.

In�ne si spiega come si ricava l'espressione per la soluzione di equilibrio dell'e-

quazione, ossia la Maxwelliana, come la risoluzione dell'equazione possa essere

sempli�cata attraverso opportuni modelli cinetici o metodi approssimati e quali

siano le applicazioni dell'equazione.

Alla ricerca di un modello dinamico

Il terzo capitolo del lavoro si propone come review di alcune signi�cative teorie

elaborate nel corso del XX Secolo nell'ambito della Termodinamica dei Processi

Irreversibili. Tra queste, si illustra la prima sistematica esposizione del Princi-

pio di Massima Produzione di Entropia, proposto da Hans Ziegler. L'esposizione

di Ziegler costituisce anche una possibile geometrizzazione della Termodinamica

del Non-Equilibrio in quanto il principio di massimo vincolato da lui proposto è

anche conosciuto come principio di ortogonalità, in quanto ha come conseguenza

il fatto che la derivata della produzione entropica rispetto ai �ussi debba essere

parallela alle forze (la ragione dell'ortogonalità è illustrata nel Capitolo). Inoltre,
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partendo dal principio di Ziegler e assumendo un legame lineare tra forze e �ussi, è

possibile dimostrare le relazioni di reciprocità di Onsager. Dopo aver brevemente

introdotto il modello SEA, si illustra la teoria proposta da Edelen, basata sulla

scomposizione dei �ussi in due componenti, una dissipativa e una non dissipati-

va; questo approccio può essere visto come precursore del formalismo GENERIC,

illustrato nel Capitolo successivo.

Termodinamica geometrica

Il quarto capitolo del lavoro si concentra sul rapporto tra la Termodinamica e la

Geometria: probabilmente unica tra le discipline della Fisica, infatti, come sostiene

Mrugaªa, la Termodinamica non è ancora stata sistematicamente geometrizzata.

La Meccanica Classica, ad esempio, è stata invece razionalizzata da un punto di

vista geometrico utilizzando le strutture delle varietà simplettiche e delle varietà

di Poisson, la cui illustrazione occupa la prima parte del capitolo e costituisce la

base per la successiva illustrazione della struttura del GENERIC. L'esigenza di

geometrizzare la Termodinamica è stata recepita, sul versante delle situazioni di

equilibrio da Carathéodory ed altri, mentre, sul versante della Termodinamica di

Non-Equilibrio, il tentativo più compiuto è la cosiddetta dinamica metriplettica

che ha una delle formulazioni più compiute nel GENERIC. L'obiettivo del capi-

tolo è pertanto quello di confrontare questo tentativo di geometrizzazione della

termodinamica con l'approccio Steepest Entropy Ascent proposto da Beretta, ini-

zialmente in un framework quantistico e successivamente applicato anche a sistemi

meso- e macroscopici. Per e�ettuare il confronto, è stato necessario rielaborare il

modello SEA originariamente proposto per fornirne una versione più matematica e

astratta, utilizzando il formalismo della Geometria Di�erenziale. A valle di questa

riformulazione, le analogie e le di�erenze tra le due teorie emergono in maniera

molto chiara e possono essere sinteticamente elencate come segue:

• Steepest Entropy Ascent si focalizza solo sulla modellazione della parte dissi-

pativa della dinamica, utilizzando una metrica non-degenere, mentre GENE-

RIC modellizza esplicitamente sia la parte non-dissipativa (Hamiltoniana),

utilizzando una struttura geometrica tipica della Meccanica Classica, sia la

parte dissipativa (irreversibile), utilizzando una cometrica degenere;

• essendo l'approccio Steepest Entropy Ascent meno strutturato in partenza,

l'imposizione della costanza delle quantità conservate lungo la traiettoria del
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processo termodinamico è e�ettuata a posteriori, mentre GENERIC la consi-

dera già imponendo condizioni di degenerazione sulle strutture che modellano

i due tipi di dinamica;

• al �ne di poter e�ettuare un vero parallelismo tra i due costrutti, è necessario

poter de�nire i gradienti anche mediante la cometrica degenere che caratte-

rizza la parte dissipativa del GENERIC, cosa che può essere fatta mediante

l'aggiunta di un'ulteriore condizione sulla struttura stessa;

• a valle di questa de�nizione, è possibile evidenziare che il GENERIC al-

tro non è se non uno Steepest Entropy Ascent, ossia un moto nella di-

rezione del gradiente dell'entropia, su foglie metriche, ossia super�ci dello

spazio caratterizzate dalla costanza dei valori dell'energia e delle quantità

conservate;

• è possibile concludere che l'approccio Steepest Entropy Ascent è più generale,

in quanto meno vincolato, e che qualunque dinamica di tipo GENERIC,

che soddis� l'ulteriore condizione dell'identità di Leibniz, è automaticamente

Steepest Entropy Ascent.

Nella parte �nale del capitolo si illustrano il legame tra la originaria formulazione

dinamica con doppio generatore proposta da Edelen e la formulazione del GENE-

RIC, e il modo in cui, dalla formulazione GENERIC, emerge l'approssimazione

della Termodinamica Classica del Non-Equilibrio.

Applicazioni

Quest'ultimo capitolo si occupa dell'illustrazione delle applicazioni del GENERIC

e dello Steepest Entropy Ascent a equazioni e modelli correntemente utilizzati in

Fisica, permettendo così di comprendere anche quali sono le di�erenze �loso�che

di fondo tra i due modelli dinamici, oltre a quelle geometriche illustrate nel Ca-

pitolo precedente. In primo luogo si mostra come le equazioni dell'idrodinamica

classica possano essere inquadrate nell'ambito del formalismo GENERIC che se-

para esplicitamente le componenti di evoluzione temporale delle variabili di stato

(che sono responsabili dell'avanzamento dello stato nello spazio di interesse), le

componenti avvettive delle equazioni, che rappresentano la parte Hamiltoniana, e

le componenti irreversibili, che costituiscono la parte dissipativa. Si illustra poi

un analogo inquadramento delle equazioni della magnetoidrodinamica mediante il

formalismo GENERIC.
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La parte principale del capitolo si concentra, tuttavia, sulla di�erente inter-

pretazione dell'equazione di Boltzmann. I vari termini dell'equazione vengono

associati ai di�erenti blocchi costitutivi dei due modelli. In particolare, per quanto

riguarda GENERIC, si individua un operatore di Poisson, de�nito in ogni pun-

to dello spazio, che permette di ricostruire la parte avvettiva dell'Equazione di

Boltzmann. Dall'altro lato, si individua un operatore dissipativo che permette

di ricostruire la parte collisionale. Analogamente a quanto fatto per il GENE-

RIC, anche SEA separa le due parti reversibile e dissipativa dell'equazione, ma

non esplicita la scelta della metrica. In questo ambito è possibile comprendere

la di�erenza fondamentale nell'interpretazione dell'equazione di Boltzmann tra i

due modelli dinamici: GENERIC mira a riprodurre le equazioni tali e quali, ri-

scrivendole semplicemente utilizzando il proprio formalismo, mentre SEA mira a

cercare una metrica adatta a creare un nuovo modello cinetico, ossia una metrica

sempli�cata rispetto a quella esatta del GENERIC, che però possa essere più utile

per la risoluzione numerica dell'equazione.

Nell'ultima parte del capitolo si illustrano i risultati numerici del rilassamen-

to da uno stato di non-equilibrio spazialmente omogeneo mediante l'equazione di

Boltzmann, recentemente ottenuti da Beretta e Hadjiconstantinou. Si e�ettua il

confronto tra la soluzione ritenuta esatta, ottenuta mediante simulazione Mon-

tecarlo, e di�erenti modelli cinetici, ossia espressioni sempli�cate per l'integrale

collisionale. I modelli utilizzati sono il BGK standard, il BGK a frequenza di

collisione variabile e due modelli SEA che di�eriscono proprio per la scelta della

metrica: il primo è caratterizzato da una metrica uniforme (di Fisher), mentre il

secondo è caratterizzato da una metrica modi�cata dalla presenza di una funzio-

ne peso non unitaria. Si mostra come i modelli cinetici SEA soddis�no i requisiti

fondamentali di un modello cinetico, ossia la conservazione degli invarianti collisio-

nali e il teorema H, nonché il fatto che, per piccoli scostamenti dall'equilibrio, essi

convergano ai corrispondenti metodi BGK. I risultati numerici mostrano tuttavia

una scarsa compatibilità dell'evoluzione temporale proposta dai modelli SEA con

la soluzione esatta, in particolare modo per una situazione iniziale lontana dal-

l'equilibrio. Per situazioni iniziali più vicine all'equilibrio, invece, i modelli SEA

risultano e�ettivamente avere andamenti molto più vicini a quelli dei corrispon-

denti modelli BGK e, conseguentemente, riprodurre meglio l'andamento temporale

della soluzione esatta.
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Conclusioni e sviluppi futuri

I tre obiettivi, che erano stati �ssati all'inizio del lavoro e che sono stati preceden-

temente elencati, sono stati raggiunti.

Per quanto riguarda il primo obiettivo, sono state chiarite le di�erenze tra il

Principio di Massima Produzione di Entropia e il Principio di Minima Produzione

di Entropia di Prigogine, la struttura geometrica della teoria elaborata da Ziegler,

con le sue implicazioni riguardanti le relazioni di reciprocità, e, in�ne, si è indivi-

duato il formalismo di Edelen come precursore della teoria dei due generatori su

cui si basa il GENERIC.

Per quanto riguarda il secondo obiettivo, dopo aver individuato la Geometria

Di�erenziale come lo scenario ideale per il confronto tra i due modelli termodina-

mici cha hanno l'ambizione di geometrizzarne l'evoluzione temporale, il modello

Steepest Entropy Ascent è stato riscritto in termini più matematici e astratti in

quella che è, a nostro avviso, la parte più innovativa del lavoro. Si mostra come

entrambi i modelli dinamici siano del tipo gradiente di entropia e come SEA sia, in

quanto meno strutturato, più generale della dinamica sviluppata, tra gli altri, da

Öttinger e Grmela, la quale, con l'aggiunta di una semplice condizione, si può con-

siderare uno Steepest Entropy Ascent su foglie metriche. Si è inoltre veri�cata la

compatibilità dei due modelli con l'approssimazione lineare della Termodinamica

Classica del Non-Equilibrio.

In�ne, per quanto riguarda il terzo obiettivo, si è compreso il di�erente ap-

proccio delle due modellazioni dinamiche all'equazione di Boltzmann: da un lato,

GENERIC mira a riscrivere l'equazione nella sua forma originale individuando

però i blocchi costitutivi fondamentali, nello speci�co, l'operatore di Poisson e l'o-

peratore che regola la dinamica irreversibile. Dall'altro lato, SEA mira a proporre

un modello cinetico che, sulla linea degli altri modelli cinetici che sono stati propo-

sti nel corso del tempo, possa sempli�care la risoluzione numerica dell'equazione.

Si mostra come i due modelli SEA proposti soddis�no i requisiti fondamentali ri-

chiesti ad un modello cinetico, ma diano risultati numericamente peggiori rispetto

a quelli ottenuti dai modelli BGK corrisponenti, a cui tendono per situazioni di

basso scostamento dall'equilibrio.

Le conclusioni ottenute forniscono lo spunto per ulteriori sviluppi:

• rimane aperto il problema, chiave nella Cinematica, dell'identi�cazione siste-

matica delle quantità conservate;
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• rimane aperto il problema della modellazione delle interazioni, ossia della

geometrizzazione dei sistemi aperti, dal momento che ciò che è stato ottenuto

(in modo particolare il GENERIC) è legato a sistemi chiusi;

• si suggerisce di sviluppare algoritmi numerici che permettano di veri�care la

validità dell'identità di Leibniz nei casi pratici più complicati, analogamente

a quanto fatto da Kröger, Hütter e Öttinger per l'identità di Jacobi;

• la questione della metrica da utilizzare nel modello cinetico SEA rimane

aperta e, dal momento che dallo studio del GENERIC non si sono ricava-

te risposte convincenti, possibili suggerimenti potrebbero essere trovati nel

campo emergente dell'Information Geometry.



�[...] the traditional meaning of the term thermodynamics needs to

be reconsidered. Physics is the science that attempts to describe all

aspects of all phenomena pertaining to the perceivable universe. It

can be viewed as a large tree with many branches, such as mechanics,

electromagnetism, gravitation, and chemistry, each specialized in the

description of a particular class of phenomena. Thermodynamics is not

a branch. It pervades the entire tree. To emphasize this conception,

we often use the words physics and thermodynamics as synonyms.�

Elias P. Gyftopoulos and Gian Paolo Beretta in

Thermodynamics: Foundations and Applications 1
Thermodynamics in Physics and

Engineering

The aim of the present chapter is, �rst of all, to give the reader a brief historical

introduction and a general, not universally accepted, overview of the subject of

thermodynamics, which is the topic that frames the present work. Then, a basic

categorization of the areas of study in the subject will be introduced, identifying

the location of the main topic of the thesis in the wider picture. Finally, the

structure of the work and its scope will be illustrated.

1.1 A brief history of Thermodynamics

1.1.1 Etymology

The word thermodynamics has its roots in the Greek θέρμη (therm	e), meaning heat,

and δύναμις (dynamis), meaning power. Its etymology explains that the word has

historically been intended to designate the discipline that aims at explaining the

relationship between the properties of bodies of being hot and cold, the natural

phenomenon of balancing these non-equilibria by transferring heat and the ability

1
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to move objects, that is, to do work. Words referring to commonly used concepts in

the previous sentence have been highlighted in order to underline the fact that they

are not as immediate as it is usually thought to be: in fact, profound di�erences

exist in their exact de�nition and in their positioning in the more general building

of thermodynamics.

The date of birth of the word thermodynamics is controversial: the most

widespread assumption, supported, for example, by Bolton and by Berger, is that

it was coined by William Thomson, Lord Kelvin, in 1854; others (Cengel and

Turner and Sebastian, for example) claim that the word was used by the same

Lord Kelvin before that date, around 1850-1852, while a less plausible hypothe-

sis is that the word had been coined even before, around 1840, as it is stated by

American biophysicist Haynie.

1.1.2 Pioneering experiments on engines

The history of thermodynamics, however, dates back to previous centuries, when,

on one hand, various experiments had been conducted in order to develop ma-

chines and devices of practical interest and, on the other hand, theories regarding

the still unknown nature of heat and its modalities of propagation had been devel-

oped. Between these two approaches, it has undoubtedly been the �rst one that

has contributed the most to the increase in the knowledge of thermodynamics

and the laws that underlie it. In particular, the development of the discipline has

been strongly linked to the improvements in the knowledge and realization of en-

gines, aimed at satisfying elementary needs such as those related to transportation,

cooking or early industrial applications.

One of the pioneers in the work on engines has been Otto von Guericke, who

invented the �rst vacuum pump in 1650, in order to contradict the theory, devel-

oped by Aristotle, of horror vacui, stating that nature abhors vacuum and thus

tends to �ll every possible space. Its work was followed by Robert Hooke and

Robert Boyle that, six years later, developed an air pump, exploiting it to study

the relationship between the thermodynamic concepts of pressure, temperature and

volume. Commercial realizations of thermodynamic devices were developed at the

end of the century and in the following one: in 1698, Thomas Savery patented a

device that, with the use of steam, could pump water from a lower to a higher

level in order to solve water �ooding problems in mines. Successively, around

1710, Thomas Newcomen developed Savery's invention by adding a piston and
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a cylinder to better exploit the condensation of steam in order to pump water.

The following signi�cant step came in the second half of the XVIII century when

James Watt introduced two improvements on Newcomen's machine: the external

condenser, that increased the e�ciency of the machine, and rotary motion, replac-

ing the alternating one of the previous devices, thus reducing the stresses on the

components [Th02]. For a detailed history of the progress in steam engines and

a characterization of the great minds that have made improvements in this �eld

possible, we refer to the book written by Thurston, the �rst professor of Mechan-

ical Engineering at Stevens Institute of Technology and, successively, Director of

Sibley College at Cornell University [Th02].

Fig. 1.1: Illustration of Thomas Savery's Engine of 1698.

1.1.3 Theoretical evolution of the subject

Even though practical devices, starting from the XVII Century, had been con-

stantly improved, the theoretical knowledge regarding these processes was still

anchored to the concepts of phlogiston, a mysterious substance released during

combustion, and caloric, a �uid transferring from hotter bodies to colder bodies.

Starting from the '700s, however, some scientists began to suggest that the concept

of heat was related to the movement of particles inside a body, thus assuming that
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it was a form of energy.

The �rst systematic study of the causes underlying the previously cited phe-

nomena was conducted by Sadi Carnot in 1824 in his Ré�exions sur la Puissance

Motrice du Feu et sur les Machines Propres à Développer Cette Puissance (Re�ec-

tions on the Motive Power of Fire). As underlined in the preface by the editor,

Robert H. Thurston, in the 1897 publication of Carnot's work, the young French

scientist �rst introduced many ideas that are at the base of modern thermody-

namics. The goal of his book, very simple from a mathematical standpoint, was,

on one hand, to understand what was the maximum possible amount of work that

could be extracted from a given quantity of heat and, secondly, if this amount of

work was independent of the particular substance used in the machine. In an-

swering these questions, he introduced the idea of a sort of conservation principle

for the motive power of heat, thus giving an embryonic idea of the Second Law

of Thermodynamics. Then, he introduced the concepts of cycle, stating that, in

order to actually evaluate the e�ects of a process on the environment, the process

itself must return to the initial point, and, �nally, he introduced the notion of

reversibility, associated to the perfection of the cycle [Car97]. The answers to the

questions that had given birth to the book are the principles that underlie the

statement of the Second Law of Thermodynamics in its traditional formulation:

there is a maximum amount of work that can be extracted from a given quan-

tity of heat, depending on the temperatures of the hot and cold source, and this

amount is independent of the nature of the particular substance that is used in

the machine.

From the investigation of a problem of `engineering economics', thermodynam-

ics has grown into a body of doctrine of profound philosophical signi�cance [W52],

even though, as Callen evidences in the preface to his monumental book, ther-

modynamics was the last branch of classical physics to be reformulated from a

theoretical standpoint. This was caused by the fact that thermodynamics has

always been strongly linked to macroscopic observations, as the deep nature of

the phenomena that it investigated, related to the molecular theory of matter,

remained rather obscure for a long time. This is also the reason why its original

formulation had been developed in terms of cycles and transformations and only

successively its structure was overhauled and restated in terms of state functions

and equilibrium states, generating a simpli�cation from a mathematical stand-

point [Cal60]. However, we feel that still nowadays the theoretical structure of

thermodynamics is very much debated and a general view shared by the majority
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of scholars does not exist.

What we claim is particularly important to understand from the development

of the history of thermodynamics is that, with respect to other disciplines, such

as electromagnetism, it has always been more tightly linked with practical appli-

cations and results. This fact, united with the absence of a universally shared

theoretical structure and with the fact that the chemical and mechanical indus-

tries, two sectors that strongly contributed to technological and economic progress

in the XX Century, heavily rely on thermodynamics, has caused a wider engineer-

ing presence in a �eld that should be a prerogative of physicists. With the present

work, as engineers that are developing a topic with strongly theoretical features,

we are thus just joining what has been a mainstream tendency in the history of

the discipline.

1.2 Main problems in Thermodynamics

After having explained the etymology of the word thermodynamics, brie�y illus-

trated its history and, most important, pointed out why we, as engineers, are

working in this �eld, in the present section we aim at clarifying some basic con-

cepts in thermodynamics, which will be helpful to understand the exact place of

our thesis topic in the more general picture of the discipline.

Recalling Albert Einstein in [Ei79], we introduce the subject by stating:

�A theory is the more impressive the greater the simplicity of its

premises, the more di�erent kinds of things it relates, and the more

extended its area of applicability. Therefore the deep impression that

classical thermodynamics made upon me. It is the only physical theory

of universal content which I am convinced will never be overthrown,

within the framework of applicability of its basic concepts.�

The quote by the man who was probably the most prominent scientist of the

XX Century introduces to the problem of the exact positioning of thermodynamics

among the various branches of physics and its relationship with Mechanics. The

issue is still very much controversial and our aim is just to sketch the prevalent po-

sitions and to point out the view through which we were introduced to the subject,

which we found illuminating because of its clarity, sequentiality and rigour, even

though it is not one of the mainstream ways to introduce students to thermody-

namics. After that, we will brie�y illustrate kinematics and dynamics as branches
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of thermodynamics: with the �rst word, we refer to the description of the possible

or allowed states of a system [GB05], while, with the second one, we refer to a

causal description of the time evolution of a state [GB05].

1.2.1 Epistemology

As it has been evidenced in the previous paragraph, thermodynamics was born

from a theoretical point of view thanks to the work of Carnot at the beginning

of the XIX Century. Many other scientists, most notably James Clerk Maxwell,

Ludwig Boltzmann and Josiah Willard Gibbs, contributed to changing the inter-

pretation of the discipline and, most important, linking it with microscopic phe-

nomena. In particular, one of the most common views of thermodynamics, based

on the ideas of Statistical Mechanics, is that of thermodynamics as a statisti-

cal science. It is based on the realization that the description of a macroscopic

system cannot be conducted by describing the evolution of all its constituents be-

cause it would lead to a practically unsolvable system of equations and variables.

As a consequence of this, thermodynamics provides a sort of e�ective `synthesis' of

the behaviour of a huge number of microscopic particles at the macroscopic level.

As Glansdor� and Prigogine have stated, thermodynamics provides a reduced de-

scription or simpli�ed language to describe macroscopic systems [GP71]. It can

thus be said that the statistical interpretation arises because of the impossibility

to describe the system deterministically starting from the equations of motion of

the single particles.

However, statistical foundations of thermodynamics intended in this sense have

given birth to more radical interpretations, such as those suggested by its merging

with Information Theory. The information-theoretic interpretation of the disci-

pline suggests that the thermodynamic state of a system does not depend only

on the system itself, but also on the knowledge that the observer has: based on

this knowledge, the observer may assign probability values to the possible states of

the system and the actual con�guration of the system (i.e. the actual probability

values assigned to each state) is the one that maximizes a certain function, the

entropy, as de�ned by Shannon ([Sha48; Ja57; Ka67]).

However, this interpretation would suggest that the actual state of the system

is not univocally determined as the maximization process is constrained by the

actual knowledge of the observer. This goes against common intuition as macro-

scopic phenomena are characterized by the same patterns independently of the
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particular observer. Moreover, the statistical interpretation of thermodynamics

poses another signi�cant problem: how is it possible that, in its macroscopic de-

scription, nature has a precise direction (irreversible phenomena exist), while the

microscopic equations of motion are perfectly invariant under time-reversal? Many

scientists have tried to give an explanation to this: one of the most common is

the one that claims that macroscopic laws are valid on average and the fact that

nature does not go back in time is due to the reason that it is highly improba-

ble (it would happen probably one time during the life of the Universe), but not

impossible.

The approach of the Keenan School is radically di�erent. With this name, we

refer to the School of Thermodynamics of the Massachusetts Institute of Technol-

ogy (MIT), started with the pioneering work of Joseph Keenan, which brings an

unconventional and often challenged view to the subject. The work of the founder

has then been carried on by several authors during the second half of the XX

Century; among these, there are Elias P. Gyftopoulos and Gian Paolo Beretta,

whose work is frequently cited in the present thesis. According to the scholars of

the Keenan School, Thermodynamics is a non-statistical science that applies

to both micro and macro systems. An observer has no role in the interpretation

of macroscopic phenomena and irreversibility is not a feature that depends on the

particular level of description that is adopted (i.e., it exists at the macroscopic

level, but does not exist at the microscopic level), but exists on all levels. The

general results of this new approach to the discipline may be summarized in the

following main points:

• Thermodynamics is an extension of Mechanics, as the states of Mechanics are

zero-entropy states for thermodynamics; this is witnessed by the following

quotation from Gyftopoulos and Beretta:

�Were we to assume that a system is subject only to the laws of

mechanics, we would conclude that all the energy of the system in

excess of the ground-state energy can be used to lift a weight. [...]

But this conclusion is not consistent with all experimental results.

[...] To account for these experiences, the laws of thermodynamics

entail a greater variety of states than contemplated by the laws of

mechanics.

The contrast between the values of the adiabatic availability in

mechanics and in general is yet another way to present the fun-
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damental di�erences between the domain of validity of the laws of

mechanics and that of the laws of thermodynamics, which includes

the domain of mechanics as a special and limiting case.� [GB05,

p. 81]

• the consideration is valid also on the microscopic level, as more general

quantum states than those considered by Quantum Mechanics are said to

exist; this is related to the fact that the existence of entropy implies a new

paradigm1, as illustrated in the following quotation:

�The possibility for entropy to be created by irreversibility re�ects

a physical phenomenon that is sharply distinct from the great con-

servation principles that underlie the description of physical phe-

nomena in mechanics. It brings forth the need to consider not only

properties that are conserved, such as energy, mass, momentum,

and electric charge, but also properties that may be spontaneously

created, such as entropy.

In fact, even the requirement of entropy conservation in reversible

processes of isolated systems introduces a radical departure from

the description of physical phenomena in mechanics, a departure

that would persist even if no process in nature were irreversible.

The reason is that this requirement brings forth the need to de-

scribe not only states with zero entropy, such as the states encoun-

tered in mechanics, but also states with various nonzero values of

entropy.� [GB05, p. 106]

• as irreversibility is a built-in characteristic of nature, the microscopic equa-

tions of evolution are not complete because they are time-reversible; a new

equation of motion, that has Schrodinger's equation as a particular case, is

thus needed and has indeed been proposed [Bere81].

In the following Fig. 1.2, a typical energy-entropy graph showing all the states

of thermodynamics is illustrated. It may be understood in which sense Thermo-

dynamics is considered as an extension of Mechanics: the states of Mechanics are
1The word paradigm, in this context, has the same meaning that Kuhn gave it in his 1962

masterpiece The Structure of Scienti�c Revolutions, where he challenged the consolidated view
according to which science proceeds by accumulation, replacing it with the idea that periods
of normal science are alternated with periods of revolutionary science, characterized by the
presence of new paradigms. These are �the set of practices that de�ne a scienti�c discipline at
any particular period of time� [Ku62].
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zero-entropy states in which all the energy of the state in excess of the state of

minimum energy may be `used to lift a weight', i.e., may be converted to work.

This would not happen starting from an isolated, non zero-entropy state because

reaching the state of minimum energy would be impossible without decreasing

the value of the entropy. It may thus be understood that evolution in Mechanics

takes place only vertically on the line of zero-entropy states, while evolution in

thermodynamics takes place in the whole graph; moreover, for each value of the

energy, Thermodynamics considers one stable equilibrium state and in�nite non-

equilibrium states, while Mechanics is characterized by the existence of only one

state for each value of the energy and this state is a non-equilibrium state, unless

it is the one of lowest energy.

Fig. 1.2: Energy versus entropy graph: states on the continuous line are thermo-

dynamic stable equilibrium states, while states inside the curve are non-equilibrium

states.

1.2.2 Kinematics

As it has been stated by Gyftopoulos and Beretta, kinematics is the branch

of physics that has the description of the states of a system as the object of

its study [GB05]. This applies in general to all the disciplines included in the

broad range of physics, thus also to thermodynamics. Fundamental in the previous
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sentence is the concept of state: among the di�erent de�nitions, we chose the

concise and qualitative one given by the same authors, who de�ne the state as the

set that speci�es everything about a system at one instant of time [GB05]. For a

wider and more rigorous de�nition of state, we refer to Beretta and Zanchini who,

in presenting a logical scheme that rigorously de�nes entropy, also give careful

operative de�nitions of many of the basic concepts needed to face the study of

thermodynamics; in addition to state, also system, property, environment, process,

isolated system and other concepts are given [BZ].

The key aspect thus becomes the choice of all the variables that may allow the

speci�cation of all the information about a system at a precise instant of time.

The choice of the variables depends on the particular level of description that is

chosen for the system under consideration. This is related to the fact that di�er-

ent systems may be described with di�erent degrees of coarseness. The various

levels of description have a hierarchical structure and are characterized by di�er-

ent conservation laws: in particular, a level L1 is called deeper than a level L2 if

all the constituents of L1 are conserved in the physical process under examina-

tion, while this is not true for the constituents of L2 [BZ]2. The switch from a

lower level of description to a higher level of description is done through coarse-

graining procedures, which may be seen as a sort of averaging over microscopic

states [Ö05]. Coarse-graining procedures in�uence both the kinematics and the

dynamics of a physical system because, in the passage between di�erent levels of

description, both the variables used to describe the system and its evolution fea-

tures change. Regarding these procedures, an interesting epistemological question,

currently debated by scholars, arises: is it true that, by the successive application

of coarse-graining schemes, the researcher distances himself more and more from

the actual functioning of nature, that is from natural laws, and widens the space

allocated to the modelling part, that he himself provides?

The topic of the choice of variables is thus particularly signi�cant. In Equi-

librium Thermodynamics , the di�erent frameworks used to build the theoretical

construct have all agreed upon the fact that, under some restrictive hypotheses,

the intensive thermodynamic stable equilibrium states may be determined through

two intensive, independent variables. That is, all the other intensive variables of

the system are univocally determined once two of them have been chosen. A third

variable is needed to scale the dimensions of the system. In general, however, if

particular hypotheses on the system are not assumed, the number of independent

2Constituents may be seen as the elementary building blocks of matter [BZ]
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properties in a basis used to describe the state is in�nite and, thus, the choice of

the variables is much harder [GB05]. Particularly hard is thus the choice of the

variables for non-equilibrium systems.

It is not in our intention to review all the solutions that have been adopted in

the past decades in the study of non-equilibrium phenomena. However, we would

like to cite some of the most signi�cant ones in order to o�er to the reader ideas

for possible answers to the problem and to highlight the spirit that underlies these

solutions. Classical Non-Equilibrium Thermodynamics, which will be extendedly

exposed in the second chapter of the work, considers the same variables that

characterize equilibrium thermodynamics. The additional variables that may be

considered for non-equilibrium systems may be of several di�erent types; among

these, there are time derivatives of equilibrium variables, spatial �uxes and internal

variables related to the structure of the system. The choice may depend, on one

hand, on the time scales that are considered and, on the other hand, on the

particular interests of the observer [Jo13]. As for the time scale, for example,

the interest is usually on degrees of freedom of the system whose relaxation times

are comparable to the rates of external perturbations. Indeed, slower degrees of

freedom will be considered frozen, while faster degrees of freedom will be assumed

as instantaneously reaching equilibrium ([JR11; LJC92; LVR01]). On the other

hand, for example, if the interest of the observer is on steady states, rates of change

would be of little use and �uxes would be much more appropriate variables.

Regarding this last aspect, the class of non-equilibrium theories that considers

the �uxes as independent variables for the de�nition of a state is called Extended Ir-

reversible Thermodynamics . Indeed, EIT adds the �uxes of the conserved densities

of Classical Non-equilibrium Thermodynamics (CNET), i.e. mass and energy �ux,

to the set of basic independent variables in order to better describe high-frequency

or short-wavelength phenomena (hyperbolic equations of evolution, with �nite

propagation speeds, are obtained in this way, oppositely to parabolic equations

obtained through classical constitutive laws). CNET equations are obtained in

the limit of slow phenomena. Further generalization and wider domains of validity

are then obtained by adding higher-order �uxes (see, e.g., [JCL88; LVCJ98]).

1.2.3 Dynamics

Dynamics is de�ned generally as the branch of physics that has �the causes of

motion and the analysis of their e�ects� as the objects of study [GB05]. Motion
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is intended as the change in state of a system in time and is due to the presence

of external or internal forces [GB05]. In order to describe the dynamical evolution

of a system, equations of motion are needed: for example, in Classical Mechanics,

Newton's Law, relating the force acting on a body and its acceleration, describes

the dynamical features of the system, while in Quantum Mechanics, the time

evolution is depicted by the Schrödinger's Equation. In thermodynamics, such a

law is still lacking and the topic is the subject of research [GB05]. According to

Gyftopoulos and Beretta, whose view we would like to adopt in the present thesis,

even though a precise equation of motion has not been found yet, general features

that characterize this equation have been discovered and are represented by the

First and Second Law of Thermodynamics. As a consequence of this, if an equation

were discovered which describes the motion of the system in state space (without

discussing if and to what extent could the equation be used in practical terms to

calculate motions of complex systems), the two Laws could be straightforwardly

derived from it as theorems. Many attempts have been made towards this goal,

but no unquestionable result has been obtained yet.

Among these attempts, one of the most recent and, probably, most ambitious

is the one proposed by Adrian Bejan, professor of Mechanical Engineering at Duke

University [CLaw]. He has proposed the Constructal Law of Evolution as an

�additional self-standing law� to the already existing Laws of Thermodynamics.

He claim that the Constructal Law is a general law of physics that applies to all

�ow systems, both animate and inanimate and is stated as follows:

�For a �nite-size �ow system to persist in time (to live), its con�gura-

tion must evolve in such a way that provides greater and greater access

to the currents that �ow through it� [CLaw]

Bejan claims that neither of the two Laws of Thermodynamics take into ac-

count design or optimization phenomena, thus the Constructal Law is needed to

consider the time evolution of a thermodynamic system (even though its appli-

cation is asserted to be much more general). The narrower optimality principles

and patterns that are found both in thermodynamics and in other �elds of human

experience, such as biology, technology or society, are seen as particular realization

of the more general law.

Among the other principles that have been proposed to satisfy the need of an

equation of motion for a thermodynamic system, one of the most studied is the
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Maximum Entropy Production Principle (MEPP). The principle has been

proposed by several authors working independently and may be stated as follows:

�By this principle, a nonequilibrium system develops so as to maximize

its entropy production under present constraint.� [MS06, p. 3]

The reader must be warned about the fact that great confusion upon the hy-

potheses at the base of this principle and upon its actual statement and meaning

is still present nowadays in the scienti�c community: this general expression is

often used in di�erent contexts where di�erent constraints and di�erent optimized

variables are present. One of the purposes of the present work is the one of ratio-

nalizing part of the enormous amount of work that has been done on this topic in

order to understand the actual signi�cance of the principle. Moreover, the MEPP

must not be confused nor assumed to be in contrast with another principle that

has been stated to rule the evolution of non-equilibrium thermodynamic systems:

Prigogine's Minimum Entropy Production Principle [GP54]. Indeed, as it will be

illustrated during the course of the work, Prigogine's principle is, on one hand, a

global principle related to the asymptotic time evolution of the entropy production

and, on the other hand, it is valid under more restrictive hypotheses. The Maxi-

mum Entropy Production Principle is instead a principle related to the evolution

of a system at a �xed instant of time and may be considered much more general:

indeed, Prigogine's principle may be considered as a consequence of MEPP under

particular restrictions. The di�erence will be clari�ed during the course of the

work.

Closely related to the principle of Maximum Entropy Production is the Steep-

est Entropy Ascent (SEA) dynamical model proposed by Beretta, initially in

a quantum framework and successively adapted to meso- and macroscopic sys-

tems [Bere13]. Also Grmela and Öttinger have proposed a GENERIC (General

Equation for Non-Equilibrium Reversible Irreversible Coupling), that is, an equa-

tion that describes the dynamical evolution of non-equilibrium systems at vari-

ous scales [GÖ97]. The study of this dynamical model (and its relationship with

other maximum-entropy-producing principles) is included in the goals of the the-

sis. Many other models and theories of dynamical evolution for a thermodynamic

system have been developed and might be cited, but we will omit them, as the

purpose of the present paragraph is just sketching the borders of the topics that

will be developed in the thesis work, that is, dynamical models for thermodynamic

systems, and not reviewing the scienti�c literature in the �eld.
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1.3 Non-Equilibrium Thermodynamics

1.3.1 Non-equilibrium Thermodynamics and Engineering

As it was said in the previous paragraph, the general focus of the present work

will be on the dynamical modelling of thermodynamic systems. The subject is a

frontier topic in the �eld of physics and the reader is perfectly legitimated to wonder

the reason why the present topic is debated in an engineering thesis. A partial

answer resides in what was exposed in the paragraph regarding the history of

thermodynamics: for various reasons, developments in this discipline, much more

than in other branches of physics, have been due to the work of engineers, even

from a theoretical standpoint. However, a much deeper reason is indeed present

and has a typical engineering feature: usefulness. The research for the patterns or,

more ambitiously, the equation of dynamical evolution of thermodynamic systems

is not only a challenging conceptual problem whose answer would be a milestone

for Theoretical Physics, but it would also be an extremely advantageous device

to better comprehend, govern and exploit practical phenomena. Among these,

there are thermodynamic phenomena of relaxation towards equilibrium from non-

equilibrium states, which characterize an enormous number of engineering systems

of practical use. These phenomena are indeed the object of study of a wide branch

of physics, called Non-Equilibrium Thermodynamics or Thermodynamics

of Irreversible Processes, as processes of evolution from non-equilibrium states

are usually characterized by entropy production. Non-equilibrium thermodynamics

di�ers from equilibrium thermodynamics or thermostatics because of the need of

modelling systems that change in time. Indeed, the latter focuses on systems

having a �xed state, independent of time, or systems undergoing very slow (quasi-

static) transformations [Cal60]. As it has been stated by de Groot and Mazur, �the

�eld of non-equilibrium thermodynamics provides us with a general framework

for the macroscopic description of irreversible processes� [dGM84]. However, it

must be evidenced that most of the consolidated work in this �eld has been done

on the linear approximation for near-equilibrium states. Further details on the

meaning of linear approximation will be given in Chapter 2. It may thus be

said that far-equilibrium states and nonlinear behaviour have been excluded from

traditional treatise, even though they �are key to many technological applications�

[Ö05]; as a consequence of this, there is the need to have a �uni�ed approach

to nonlinear irreversible thermodynamics, the existence, necessity, and usefulness
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of which has currently not been fully realized by large fractions of the science

and engineering communities� [Ö05]. On the other hand, from a more theoretical

standpoint, the same author claims that a uni�ed approach would provide a deeper

understanding of beyond-equilibrium systems by o�ering a general framework for

di�erent empirical applications, consistency with experimental results and recipes

for going from more detailed to less detailed levels of description [Ö05].

1.3.2 Potential applications

As it has been hinted at in the previous subsection, the spectrum of non-equilibrium

situations is extremely wide and very broad is also the range of practical situations

modelled through Classical Non-Equilibrium Thermodynamics and Kinetic The-

ory. Moreover, dynamical principles such as the Maximum Entropy Production

Principle have been adapted and used in a variety of disciplines, distant from pure

thermodynamics. Below is a list of the practical situations related to the topics

that have been cited: some of the them will be further analysed in the following

Chapters.

• A typical non-equilibrium process is the relaxation towards a stable equilib-

rium state of a system that has undergone a chemical reaction of oxidation,

as it happens in the vast majority of power system used nowadays by man: a

deeper knowledge of this process of evolution towards equilibrium may thus

allow to reduce the entropy generated by irreversibility during the process

and to improve the e�ciency of thermal machines. In Fig. 1.3, an illustra-

tion of di�erent processes of evolution towards equilibrium from the initial

non-equilibrium condition are shown in an enthalpy-entropy graph: fuel-cell

oxidation generates less entropy than �ame combustion, thus allowing the

extraction of a greater amount of work.

• Dynamical evolution models for far-equilibrium situations are also needed

for the description of natural phenomena for which Navier-Stokes descrip-

tion fails: in these situations, Kinetic Theory and, in particular, the Boltz-

mann Equation describe the evolution of the system, even though, in order

to simplify computations, Model Equations, usually based on strong assump-

tions, are used in calculation programmes. A dynamical evolution equation

for a thermodynamic system might improve the description of relaxation to-

wards equilibrium in these contexts: one of the purposes of Steepest-Entropy-

Ascent dynamics is exactly this one, as it will be shown in the last part of the
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Fig. 1.3: Di�erent evolutions towards equilibrium in an enthalpy-entropy graph

from the same non-equilibrium initial condition: oxidation in a fuel cell compared

with �ame combustion.

thesis. As illustrated in Fig. 1.4, various situations of practical interest are

characterized by the failure of Navier-Stokes modelling: this happens when

the internal scale of the �uid λ approaches the characteristic scale of the �ow

L, that is, when the Knudsen number Kn = λ/L is signi�cantly di�erent

from zero. Indeed, when the Knudsen number is close to zero, transport is

collision-dominated and Navier-Stokes equations are adopted; as the �uid

internal scale approaches the characteristic lengthscale of the �ow, Navier-

Stokes equations remain valid only in the bulk of the �ow and, eventually, as

the Knudsen number gets even higher, they have to be replaced by ballistic

motion and kinetic models. Recent work on a possible application was done

by Diab and Lakkis, who studied the behaviour of a rare�ed gas �lm under

an oscillating micro-cantilever RF (Radio Frequency) switch [DL12].

• Typical applications of non-equilibrium thermodynamics in its classical lin-

ear approximation is the modelling of thermoelectric and thermodi�usive
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Fig. 1.4: Classi�cation of physical phenomena according to the Mach number

and the Knudsen number, with domains of validity of the di�erent equations.

processes: further details will be given in the exposition of the Classical

Non-Equilibrium theory in Chapter 2.

• Maximum-entropy production evolution principles are applied not only in the

strictly thermodynamic �eld, but also in many other scienti�c problems and

even in the social studies sphere. Citing a few examples, maximum-entropy

production models have been applied to climate studies by Paltridge, who

showed that the Earth's atmosphere is seemingly characterized by maximum

dissipation processes related to horizontal energy �ows [Pa79]; Juretic and

Zupanovic have modelled steady-state bacterial photosynthesis concluding

that �photosynthetic proton pumps operate close to the maximum-entropy

production mode� [JZ03]; Shizawa and Zbib developed a thermodynamic

theory of elastoplasticity, introducing a dislocation density tensor on the

basis of the principle of maximal entropy production rate [SZ99].

1.4 Structure and scope of the Thesis

After having de�ned the general topic that frames the thesis, the illustration of its

scopes and its structure may be more clear.
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1.4.1 Goals of the Work

The main goals of the present work are the following:

• �rst of all, some Maximum-Entropy-Production dynamical models for Non-

Equilibrium Thermodynamics, elaborated during the course of the last decades,

will be presented and systematically reviewed, introducing then the Steepest

Entropy Ascent dynamical model, recently adapted by Beretta to meso- and

macroscopic systems [Bere13];

• the Steepest Entropy Ascent (SEA) dynamical model, which aims at ge-

ometrizing the dynamic evolution of a thermodynamic system, is then com-

pared with one of the most renowned presentations of metriplectic dynamics,

aimed at a geometrization of Non-Equilibrium Thermodynamics, that is, the

GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible

Coupling) formalism, developed, among others, by Grmela and Öttinger in

the last two decades of the XX Century [GÖ97]: a comparison between the

two models, both motivated by the search for Non-Equilibrium Thermody-

namics formulations that are fully compatible with the Second Law, with

the identi�cation of similar and di�erent features, will be conducted;

• �nally, in order to have a clearer comprehension of the two dynamic models,

their compatibility with Classical Non-Equilibrium Thermodynamics will be

evaluated and their realization in Kinetic Theory will be illustrated, with a

numerical example of the use of a Steepest Entropy Ascent kinetic model for

the Boltzmann Equation to reproduce the relaxation from a highly non-

equilibrium state, as recently studied by Beretta and Hadjiconstantinou

[BH13].

1.4.2 Organization of the Work

The structure of the thesis is listed as follows.

• Chapter 2 will be devoted to the explanation of the classical consolidated

theories used to test the successively illustrated models; �rstly, Classical Non-

Equilibrium Thermodynamics (CNET), formalized by de Groot and Mazur

in their best-selling physics book [dGM84], and linear approximations of

non-equilibrium phenomena, with particular reference to Onsager's theory,
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will be explained; then, a general introduction to Kinetic Theory and to the

Boltzmann Equation will be given.

• Chapter 3 will be dedicated to the illustration of some of the Maximum-

Entropy Production Principles (MEPP) that have been developed in the

history of thermodynamics, with particular reference to the theory developed

by Ziegler [Zi57], and to the explanation of their relationship with CNET;

the Steepest Entropy Ascent (SEA) model will then be introduced; in the

second part of the chapter, theoretical studies conducted by Bataille, Edelen,

and Kestin [BEK79] will be illustrated, paying particular attention to the

introduction of the idea of the two-generator formalism, which is also used

in the GENERIC structure.

• Chapter 4 will be devoted to the illustration of the Classical Mechanics equa-

tions in the Di�erential Geometry framework; indeed, as it has been exposed

by Marsden and Ratiu [MR03], Di�erential Geometry is the most natural

setting of the classical Lagrange and Hamilton equations and some peculiar

structures used in this modelling are then at the base of the GENERIC for-

malism developed, among others, by Grmela and Öttinger [GÖ97], which is

successively illustrated in the chapter. The second part of the Chapter con-

stitutes the most innovative output of our thesis work: Di�erential Geometry

has been considered to be the most appropriate setting in which a comparison

of the Steepest Entropy Ascent dynamical model and the GENERIC formal-

ism may be conducted. Because of this, SEA has been �translated� into

Di�erential Geometry terms and, following this reformulation, it becomes

clear that the GENERIC formalism adopts an entropy-gradient dynamics,

such as the one proposed in SEA, with the di�erence that it is built in

a more structured environment. Considerations on the relationship among

SEA, GENERIC and the models explained in the previous chapters will then

be illustrated.

• Chapter 5 will be devoted to the illustration of the applications of the two

models. First of all, the interpretation of the equations of Hydrodynam-

ics and Magnetohydrodynamics (MHD) in the GENERIC formalism will be

shown. Then, the realization of SEA and GENERIC in Kinetic Theory will

be illustrated. The di�erent terms of the Boltzmann equation may be as-

sociated to the di�erent building blocks of the two theories. In particular,
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the metrics that are used will be discussed. Finally, a numerical example

of Steepest Entropy Ascent relaxation from a highly non-equilibrium state,

recently developed by Beretta and Hadjiconstantinou, will be illustrated and

comments will be made on the e�ectiveness of the model equation thus ob-

tained, compared with those that are normally used [BH13].

• Chapter 6 will be dedicated to the conclusions and future developments and

it will be followed by two Appendices. The �rst one contains a Compendium

of Di�erential Geometry; we indeed felt that this Appendix was necessary

in order to introduce the reader to the basic concepts and formalism used

to reformulate SEA dynamics as they are not usually found in a standard

engineering Master of Science course. The second Appendix is much shorter

and aims at explaining the mathematics underlying Edelen's theory, exposed

in Chapter 3, related to the so-called Helmholtz-Hodge decomposition.

We warn the reader used to a typical engineering treatise that the second part of

the thesis may, at �rst sight, be found particularly heavy and hard to understand,

especially because of the Di�erential Geometry mathematical formalism that is

usually not taught in regular curricula. Because of this, we made a strong e�ort

of always trying to anticipate through physical or geometric intuition the general

meaning of the mathematical expressions that we would have successively intro-

duced. However, we felt that this formalism was strictly necessary: if the reader

deeply comprehends it, he will clearly understand that it is the most natural and

limpid setting of the dynamical modelling of thermodynamic systems.
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2
Validating the model

The purpose of the present chapter is to brie�y present the two `theories' that will

be used to `validate' the dynamical models illustrated in the following chapters,

with particular regard to Steepest Entropy Ascent and the GENERIC formalism.

The two `theories' are Classical Non-Equilibrium Thermodynamics (CNET)

in its linear approximation and Kinetic Theory (KT). As these two `theories'

are used to model very di�erent types of phenomena, we have to specify the sense

in which we aim at validating the dynamical models through them.

CNET in its linear approximation, which will be described in its main features

in the following section, has been proved to be e�ective in modelling so-called near

equilibrium situation, that is, situations in which the system under observation

is situated close to thermodynamic equilibrium. Its main features, which are the

linear relationship between forces and �uxes and the symmetry of the matrix of

coe�cients that relates the �rst to the second ones, must then be reproduced by

all dynamical theories, also those that aim at modelling far-equilibrium situations,

when equilibrium is approached. Thus, in the following chapters it will be shown

how these features may or may not naturally emerge in the context of SEA and

GENERIC for near-equilibrium approximations.

On the other hand, Kinetic Theory models systems characterized by a high

27
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number of particles in random motion, allowing the computation of macroscopic

properties from a statistical microscopic description. On the basis of the more or

less restrictive hypotheses that may be stated to `build' an equation governing the

time evolution of the system, di�erent di�erential equations for the main variable,

that is the distribution function f , may be obtained. Mathematical challenges

related to the resolution of these equations are linked to the number and type of

hypotheses that were made to obtain them. One of the most used among these

equations is the Boltzmann equation. The procedure to obtain it, its physical

meaning and the possible ways to solve it will be shown in the second part of the

chapter. The equation will then be `used' to understand how it is framed in the

SEA and GENERIC dynamical models, that is, how the di�erent terms of the

equation are associated to the di�erent `blocks' of the two models and how the

equation is shown to emerge naturally in the two settings. Finally, a numerical ex-

ample of relaxation from a highly non-equilibrium state, using a Steepest-Entropy-

Ascent model of the Boltzmann equation will be shown, in order to understand

the e�ectiveness of the dynamic theory in modelling actual situations.

The premise for the present Chapter was necessary in order to correctly frame

the following paragraphs in the more general picture of the thesis and in order to

understand that the exposition of CNET and KT is not an end in itself, but is

functional to the following parts of the work. In these paragraphs, we have made

the deliberate choice of favouring a more qualitative description of the topics,

rather than reporting numerous equations, in order to convey the main ideas to

the reader more rapidly.

2.1 Non-Equilibrium Thermodynamics

As it has been stated in the introduction, Non-Equilibrium Thermodynamics is

the branch of physics that studies systems that are not in a condition of ther-

modynamic equilibrium, that is, systems that cannot be described through the

relationships peculiar to thermostatics. The discipline is also called thermody-

namics of irreversible processes, as the processes of evolution towards equilibrium

from non-equilibrium situations are (almost) always characterized by the genera-

tion of entropy. Non-equilibrium thermodynamics may be considered an extension

of thermostatics towards the continuum disciplines, such as �uid dynamics and

electromagnetism. Indeed, while thermostatics considers one value of the state

variables for the whole system, on the other hand, non-equilibrium thermodynam-
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ics considers state variables as �elds that are de�ned for every point in space and

time [dGM84].

2.1.1 The hypothesis of local equilibrium

The fundamental assumption that resides at the base of Classical Non-Equilibrium

Thermodynamics is the hypothesis of local equilibrium, also known as hypothesis

of evolutive equilibrium. According to this assumption, the system can be divided

in many subsystems of small dimensions, each of which can be considered in a

thermodynamic equilibrium state, thus allowing the use of the fundamental rela-

tions of thermodynamics, with particular reference to the Gibbs equation. The

fundamental justi�cation of this hypothesis lies in the validity of the results that

are obtained from its application.

However, there is a criterion that may be used to verify if the hypothesis of

evolutive equilibrium for a generic system is acceptable: the comparison between

the internal time-to-equilibrium of the system and the characteristic time of the

perturbation applied to the system. If the former is much smaller than the latter,

it means that the system reaches quickly equilibrium after a modi�cation of the ex-

ternal conditions. It is thus a good approximation to use thermodynamic relations

at equilibrium. On the other hand, if the characteristic time of the perturbation

is comparable to the time-to-equilibrium of the system, the assumption loses its

physical validity because the frequency of excitation is su�ciently high to never

let the system reach a near-equilibrium condition.

In general, as the time-to-equilibrium of a system depends on its dimensions

(the smaller the system, the shorter the time-to-equilibrium), progressively divid-

ing a system into many subsystems eventually leads to a time-to-equilibrium that

is much smaller than the characteristic time of the perturbation, thus making the

local equilibrium assumption reasonable. However, there is a constraint in this pro-

cess: the subsystems considered at local equilibrium should contain a su�ciently

high number of particles. If the system were too rare�ed, the equations of ther-

mostatics would not be valid. Numerically, the applicability of these equations is

veri�ed upon the value of the Knudsen number, de�ned as

Kn =
λ

D
, (2.1)

where λ is the mean free path of the particles and D is the characteristic length
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of the system under consideration. If the Knudsen number is su�ciently close to

zero, the system may be considered as su�ciently dense.

2.1.2 The entropy production term

Traditional non-equilibrium thermodynamics and most of the successive nonequi-

librium theories develop starting from an observation on the form that the entropy

production term assumes after combining the various balance equations.

The fundamental balance equations in continuum physics are the mass balance,

momentum balance and energy balance equations. In non-equilibrium thermody-

namics, a relevant role is attributed to a fourth equation: the entropy balance

equation. The entropy balance equation in its local formulation can be written as

follows:
∂

∂t
(ρs) = −∇ ·js + σs, (2.2)

where ρ is the mass density of the medium, s is the entropy per unit mass, js is

the entropy �ux and σs is the entropy production per unit volume and per unit

time. The equation appears as a regular balance equation with a time-variation

term, a �ux term and a generation term. The peculiarity is that the second law

of thermodynamics imposes that the latter must be non-negative as entropy may

only be generated and cannot be destroyed.

If the �rst three, fundamental, balance equations are inserted into the Gibbs

relation, that is, the expression for the di�erential of the entropy as a function of the

di�erentials of internal energy, volume and concentrations, valid at thermodynamic

equilibrium, an expression for both the entropy �ux and the entropy production

term may be recognized. Indeed, the resulting expression may be shown to have

the form of a balance equation:

ρ
Ds

Dt
= −∇ ·

(
jq −

∑
k µkjk

T

)
−
jq ·∇T

T 2
+

− 1

T

n∑
k=1

jk ·
(
T ∇ µk

T
− F k

)
− 1

T
Π : ∇v − 1

T

r∑
j=1

JjAj, (2.3)

where jq is the heat �ow, jk is the di�usion �ow of component k, µk is the chemical

potential of component k, F k is the force per unit mass exerted on component k,

Π is the non-isotropic part of the pressure tensor and, �nally, Jj and Aj are the

chemical reaction rate and the chemical a�nity of reaction j, respectively.
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Once the equation has been cast in a balance form, the �ux term and the

generation term may be easily identi�ed simply by comparison with the original

form of the entropy balance equation:

js =
jq −

∑
k µkjk

T
, (2.4)

and

σ = −
jq ·∇T

T 2
− 1

T

n∑
k=1

jk ·
(
T ∇ µk

T
− F k

)
− 1

T
Π : ∇v − 1

T

r∑
j=1

JjAj. (2.5)

The entropy �ow term is characterized by two contributions: a term due to

the heat �ow and a term due to the �ow of matter. This expression is often

referred to as the heat-di�usion interaction. It may also be seen from the previous

expressions that the entropy production term is given by a bilinear form: it is

the sum of the products of a �ow with a conjugated force. The force, also called

a�nity, is either the gradient of an intensive state variable, an external force or the

di�erence between thermodynamic state variables. From a physical standpoint, a

thermodynamic force quanti�es the gap of a certain variable from its equilibrium

value. Indeed, at equilibrium, all thermodynamic forces vanish, because there are

no gradients, nor gaps from equilibrium values of state variables. As a consequence

of this, the entropy production term goes to zero, which is its minimum value, as

it is always non-negative because of the second law of thermodynamics.

2.1.3 Linear relationships and Curie's Principle

The simplest assumption on the functional dependence of the �uxes states that a

generic �ux depends on the thermodynamic forces and on the thermodynamic state

variables. It can be said that this assumption is based on �common sense� and

reasonably simpli�es successive analytical developments. However, other theories

that extend the range of functional dependency to other variables have been devel-

oped. A signi�cant example that has already been cited in the introduction is the

one of non-local theories1, such as the one developed by Jou, Casas-Vázquez, and

Lebon, which claim that �uxes also depend on the gradients of the thermodynamic

forces [JCL10].

1Non-local theories are theories characterized by the fact that the variables at one point in
space are not determined from local-equilibrium relationships.
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Once the functional dependence has been set, it is the particular form of the

force-�ux relation that characterizes a speci�c non-equilibrium thermodynamic

theory. The simplest version is a linear relationship. Linear relations between

�uxes and their conjugate thermodynamic forces had already been developed, from

a strictly phenomenological point of view, in the XIX century during the study

of various physical phenomena. Among these, there are Fourier's Law for heat

conduction, Ohm's Law in electrodynamics and Fick's Law in mass transfer. The

peculiarity of these phenomenological laws is related to the fact that each �ux

only depends on its corresponding force, i.e. the heat �ux only on the temperature

gradient, the electric current only on the gradient of the electric potential, the

di�usive �ow only on the concentration gradient.

However, a thermodynamic �ux may, more generally, depend on a linear com-

bination of all thermodynamic forces. The linear relationships may thus be gen-

eralized as

Ji =
∑
k

LikXk, (2.6)

However, �uxes and forces have di�erent dimensions: they can be scalars, vectors

or second order tensors. In the more general case, each �ux depends on all types

of forces and, as a consequence of this, the linear coe�cients must have di�erent

dimensions. The presence of particular symmetries for the medium under consid-

eration allows a simpli�cation of the more general dependence of each �ux from

all types of forces: this is called Curie's symmetry principle [Cu08]. This proof

is based on the invariance of the phenomenological coe�cients, that is, the co-

e�cients relating �uxes and forces (which have di�erent tensorial orders), under

suitable transformations, related to the type of symmetry that is assumed for the

medium. For example, if the medium is isotropic, the phenomenological coe�cients

should be invariant under inversion and under all types of rotations. This leads

to the fact that, for an isotropic medium, phenomenological coe�cients relating

�uxes and forces of di�erent orders are zero and the remaining ones all depend on

a sole scalar value. This simpli�es the expression for the entropy production term

in the isotropic case. In the same way, simpli�ed forms of the phenomenological

coe�cients may be found when the medium is supposed to be characterized by

other types of symmetries (for example, cubic symmetry imposes invariance under

inversions, 90-degrees rotations around coordinate axes and 120-degrees rotations

around body diagonals) (see Chapter 6 of [dGM84]). In the isotropic case, we have
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thus the following relationships between forces and �uxes:

Js = LssXs, (2.7)

Jv = LvvXv, (2.8)

J t = LttX t, (2.9)

where J are the �uxes, X are the forces, the letter s stands for scalar, the letter

v stands for vector and the letter t stands for tensor. Implicit in the previous

notation are the sum signs over the di�erent forces of the same tensorial order.

2.1.4 Onsager's theory

A further simpli�cation of the system of equations that has been obtained is pos-

sible thanks to Onsager reciprocal relations [O31], which may be stated as

Lkl = Llk. (2.10)

Considering the matrix L of phenomenological coe�cients, the symmetry relation-

ships may be written as

L = LT . (2.11)

The following paragraph will illustrate the original formulation of the proof of

the validity of Onsager's symmetry relationships, which is based on the idea of

microscopic reversibility, that is, the fact that a particle at the microscopic level

always traces back its path when its velocity is inverted.

Proof from Statistical Mechanics

The proof of the reciprocal relationships was given by Onsager in the framework

of statistical mechanics. In particular, a system of de�nite energy E and de�nite

number of particles N , obeying the micro-canonical distribution (all states com-

prised between energy E and energy E+dE are equally probable), is considered in

the phase space. A macroscopic description of the system can be given on the base

of n extensive variables, which compose the vector A = A(rN ,pN) that depends

on the position and momentum of each particle of the system. Because of the

motion of particles in the phase space, the values of A are subject to �uctuations;

thus, their instantaneous value may be di�erent from their average value and the
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following relevant quantity may be de�ned:

αi = Ai − 〈Ai〉 (2.12)

Thus, the vector α is the vector containing the shift of the value of the macroscopic

extensive variables from their average value (averages must be interpreted either

as time averages or as averages over a certain ensemble of systems).

Onsager's proof, which will not be illustrated, is based on several assumptions,

listed as follows.

• First of all, the probability density function f(α1, α2, . . . , αn) is assumed to

have a Gaussian distribution:

f(α1, α2, . . . , αn) = ce−
1
2k

∑
ij gijαiαj , (2.13)

where c is a normalization constant, k is Boltzmann's constant and g is a

symmetric positive de�nite matrix.

• Secondly, the average value of α is assumed to obey the linear di�erential

equation of the �rst order

∂ᾱα0

∂t
= −Mᾱα0 , (2.14)

where the α0 indicates the imposed initial conditions and M is the matrix

of phenomenological coe�cients, independent of time. It has been experi-

mentally proved for a wide range of conditions that this linear di�erential

equation, called regression law is actually veri�ed.

• Third, time reversal invariance of the equation of motion is considered: that

is, if the momenta of all the particles at a certain point in time and space are

inverted, the particles trace back their paths with reversed momenta. This

hypothesis leads to the property of microscopic reversibility. Even though

these properties have been proved in the framework of statistical mechanics,

they could be obtained also considering the quantum behaviour of particles.

For the sake of brevity, we omit the mathematical treatise regarding this as-

pect of the proof. It must also be noted that we are adopting the simplifying

assumptions of the absence of magnetic �elds and the consideration of vari-

ables that are even with respect to velocity. With the presence of magnetic
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�elds and odd variables with respect to velocity, the proof would be a little

more burdensome.

• Finally, Boltzmann's entropy postulate is adopted:

f(α) = f(0)e∆S/k. (2.15)

This postulate relates the entropy of a generic state described by the vector

α to the entropy of the most probable state, called equilibrium state (i.e.

the state characterized by a null gap from the average values of the macro-

scopic variables), through the values of the microscopic probability density

distribution of the two states.

The vector X is then de�ned as

X
def
= k

∂

∂α
ln f, (2.16)

and, because of Eq. 2.15, is related to the entropy as follows:

X =
∂

∂α
∆S. (2.17)

Thus, the vector X can be interpreted as the vector of intensive thermodynamic

variables conjugated to the vector α of the extensive ones, in the same way as in

equilibrium thermodynamics the intensive state variables are the partial derivatives

of the entropy with respect to the extensive ones (for example, 1/T = ∂s
∂u
).

Based on the previous hypothesis, it can be proved that the matrix L, de�ned

as follows, is symmetric:
∂

∂t
αα0 = LXα0 . (2.18)

This conclusion was the one obtained by Onsager in his papers and it shows the

validity of its reciprocal relations if we agree in considering the time derivatives of

the state variables as �uxes and the quantity X as an a�nity. The problem of

the transfer of these relationships, obtained on a microscopical point of view, to

the phenomenological equations, whose �uxes are not only time-derivatives, but

usually spatial derivatives, will be faced in the following paragraph.

Under the same hypotheses, it can be proved that the quadratic forms asso-

ciated to L are positive de�nite; that is, for a generic vector ξ, it can be proved
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that

ξTLξ ≥ 0 (2.19)

In this way, the positive de�nite character of the entropy production, which is a

bilinear form in L, if linear relationships between forces and �uxes are assumed, is

proved to hold microscopically under the previously illustrated assumptions. On

the other hand, from a macroscopic point of view, the positive de�nite character

of the entropy production derives from the second principle of thermodynamics

and the positive de�nite character of the matrix L would be a consequence of this.

The fact that, under the previously stated hypotheses, the non-negativeness of the

entropy generation is derived as a consequence may be a hint on the fact that the

assumptions are too restrictive; this would, however, call into question the validity

of the proof of Onsager reciprocal relations. Finally, it may also be proved that,

as the time goes to in�nity, the average value of the shift of the vector α from its

equilibrium value goes to zero:

lim
t→∞

ᾱα0(t) = lim
t→∞

e−Mtα0 = 0 (2.20)

Extension of Onsager relations for vectorial and tensorial phenomena

Onsager relations as derived in the statistical mechanics framework are valid for

scalar macroscopic variables (more precisely, they are valid for the di�erence of

the values of these variables from their equilibrium values) and for �uxes that

are time derivatives of these variables. However, macroscopic phenomenological

equations contain vectorial and tensorial variables, as well as �uxes which are not

time derivatives of state variables. As a consequence of this, it is necessary to

prove that Onsager reciprocal relations are valid for phenomenological equations

too.

The rigorous proof is here omitted and only a general idea of the procedure is

given, examining the case of an isotropic �uid characterized by heat conduction and

mass di�usion phenomena [dGM84, p. 74]. Using the Gibbs equation, expressing

the di�erential of the entropy as a function of the di�erentials of the extensive

variables, and the mass and energy balance equations, the following expressions

for the total derivative of the entropy production is obtained:

dS

dt
= ρ

∫
Ω

(
∆

1

T

∂u

∂t
−

n−1∑
k=1

∆
µk − µn

T

∂ck
∂t

)
dV. (2.21)
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It must be noted that, in this Equation, and in the following Eq. 2.22, Eq. 2.23,

Eq. 2.27 and Eq. 2.28, the symbol ∆ is used to indicate a di�erence and not a

Laplacian. It may be seen that the entropy production is still a bilinear form in the

forces and �uxes; the �rst ones are the di�erences between the local value and a

generic reference value at a reference point r0, whereas the second ones are the time

derivatives of state variables. The sum has become an integral because it depends

on the product of forces and �uxes in all points of the considered domain. Following

this interpretation and the linear structure of phenomenological relationships, the

�uxes may be written as a linear combination of the forces in all points of space,

that is, as an integral:

∂u

∂t
= ρ

∫ {
Kqq(r, r

′)∆
1

T ′
−

n−1∑
k=1

Kqk(r, r
′)∆

µ′k − µ′n
T ′

}
dr′, (2.22)

and

∂ci
∂t

= ρ

∫ {
Kiq(r, r

′)∆
1

T ′
−

n−1∑
k=1

Kik(r, r
′)∆

µ′k − µ′n
T ′

}
dr′ (i = 1, 2, . . . , n− 1).

(2.23)

For these equations, Onsager reciprocal relations are assumed to hold, except for

r = r0 and r′ = r0:

Kqq(r, r
′) = Kqq(r

′, r), (2.24)

Kiq(r, r
′) = Kqi(r

′, r) (i = 1, 2, . . . , n− 1), (2.25)

Kik(r, r
′) = Kki(r

′, r) (i = 1, 2, . . . , n− 1). (2.26)

On the other hand, by inserting the linear phenomenological equations into the

energy and mass balance equations, the following expressions may be obtained:

ρ
∂u

∂t
= −div

(
Lqq∇∆

1

T
−

n−1∑
k=1

Lqk∇∆
µk − µn

T

)
, (2.27)

ρ
∂ci
∂t

= −div

(
Liq∇∆

1

T
−

n−1∑
k=1

Lik∇∆
µk − µn

T

)
(i = 1, 2, . . . , n− 1). (2.28)

The term on the right of these equations may be written as an integral by mul-

tiplying the whole expression for a three-dimensional delta function centred in r.
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Successively integrating by parts, this integro-di�erential equations takes an as-

pect similar to Eq. (2.22) and Eq. (2.23), allowing to identify the values of the

coe�cients K. Mathematical manipulation of the equalities that have been ob-

tained lead to the proof that Onsager relations hold also for the phenomenological

coe�cients L, as it was originally stated in Chapter 6 of [dGM84].

The procedure used in the previous paragraph to prove that Onsager reciprocal

relationships are valid also for vectorial and tensorial phenomena on a macroscopic

point of view may not seem totally convincing. On one hand, in the speci�c

case that has been examined, taking into consideration only the phenomena of

heat di�usion and mass di�usion leads to a lack of generality; on the other hand,

however, the proof may seem to be built to suit ad hoc the formulation of the

reciprocal relationships that had been obtained from the microscopic treatise.

As a consequence of this, other scholars have tried to derive a proof of Onsager

reciprocal relations in other ways. Without entering a subject that is maybe

more epistemological than strictly physical, the fact is that Onsager relations are

shown to be actually valid in a wide range of situations as it has been showed

experimentally by de Groot and Mazur [dGM84], with non-equilibrium molecular

dynamics (NEMD) by Hafskjold and Kjelstrup Ratkje [HK95] and, always through

NEMD, also for surface interactions by Xu et al. [XKB+06]. It may also be argued

that the reciprocity of the phenomenological coe�cients may be obvious in the light

of the original hypothesis made by Onsager, that is, microscopic reversibility.

Variational formulation

Onsager's theory and its reciprocal relations may be derived from a variational

principle, as Onsager himself pointed out in his 1931 article [O31] and Gyarmati

further explored [Gya70].

This is formulated as follows. If thermodynamic forces are prescribed, �uxes

are the solution of the optimization problem
max[D(J)]

s. t.

D(J) = X · J

where Φ(J) =
1

2
JTRJ , (2.29)

that is, seeking the maximum of a dissipation function D subject to the constraint

that D(J) = X · J . Indeed, this corresponds to having chosen a quadratic dis-
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sipation function. The physical signi�cance and the reason for this choice will be

clear after Chapter 3, and in particular after Subsec. 3.1.2.

Onsager Reciprocal Relations in the Steepest Entropy Ascent frame-

work

In his latest work [Ber13], proposing a uni�ed treatment for the dynamical evolu-

tion of thermodynamic systems, Beretta deduces the existence of a linear, symmet-

ric relationship between the �uxes and an expression related to the forces, which

is based on assumptions that seem more general than the ones assumed for the

traditional proof. In particular, Onsager relations appear as a natural consequence

of the use of a metric tensor, which is symmetric by de�nition. In a similar way,

the GENERIC theory claims that Onsager's reciprocity emerges naturally from

their dynamical theory. These aspects will be clari�ed in the following chapters

when both SEA and GENERIC will be explained in detail.

2.1.5 Minimum Entropy Production for stationary states

The proof of Onsager reciprocal relations is related to an important principle

of physics which was �rst stated by Prigogine [Pr47] for discontinuous systems,

generalized by Glansdor� and Prigogine [GP54], and which has been obtained

by Mazur [Ma52] for continuous systems : the principle of minimum entropy

production.

The following hypotheses are assumed for the proof:

• linear phenomenological equations linking �uxes and forces are assumed to

hold:

Ji =
∑
k

LikXk; (2.30)

• Onsager reciprocal relationships for the phenomenological coe�cients are

assumed to be valid:

Lik = Lki; (2.31)

• Onsager's phenomenological coe�cients are assumed to be constant;

• constraints on the border of the considered domain are time-independent;
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• the system is at mechanical equilibrium, that is,

dv

dt
= 0. (2.32)

If these hypotheses are assumed to be valid, it can be proved that imposing the

stationarity of the global entropy production P , that is δP = 0, implies that the

system is at a stationary state. This means that the partial derivatives of the

thermodynamic variables of the system with respect to time are zero. Also the

inverse proof is valid: if the system is assumed to be in a stationary state (partial

time derivatives of the state variables are zero) and the previous hypotheses are

assumed to hold, then the global entropy production is stationary.

Under the same hypotheses, it may also be proved that the partial derivative

of the total entropy production with respect to time is non-positive:

∂P

∂t
≤ 0. (2.33)

where the total entropy production P is de�ned as

P =

∫
Ω

σdV. (2.34)

This means that the total entropy production diminishes over time, until it reaches

a minimum in a stationary state. As a consequence of this, it may be stated that

stationary states are stable states, characterized by a minimum of the entropy

production. In light of these considerations, it may then be remarked that ther-

modynamic equilibrium is a special case of a stationary state which is reached if

the boundary conditions are compatible with the equilibrium conditions [dGM84,

p. 53].

As it has been previously mentioned, a more general statement of the previous

theorem was proposed by Glansdor� and Prigogine [GP54], where no use of the

phenomenological relationships is made. The total entropy production may be

written as

P =

∫
Ω

σdV =

∫
Ω

∑
i

JiXidV. (2.35)

The time derivative of P may thus be written as the sum of two terms:

∂P

∂t
=

∫
Ω

∑
i

Ji
∂Xi

∂t
dV +

∫
Ω

∑
i

∂Ji
∂t
XidV. (2.36)
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This expression shows that the entropy production is either due to the time varia-

tion of the forces (�rst term) or to the time variation of the �uxes (second term).

It may be proved that only the �rst term is non-positive, while the second one does

not have a de�nite sign. As a consequence of this, in the more general case, it may

be stated that the stationary state is a stable state only if the entropy production

term due to the time variation of the �uxes is negative.

It is easy to confuse the minimum entropy production principle with

the maximum entropy production principle, whose historical evolution will

be thoroughly illustrated in the following chapter. The two principles are not

mutually exclusive and refer to di�erent features of the dynamical evolution of a

thermodynamic system. First of all, it must be noted that the maximum entropy

production principle claims to have a broader generality. Moreover, the maximum

entropy production principle is a local principle that rules the evolution of a system

at a �xed instant of time. In simple words, the idea behind it is that, among all

possible paths to equilibrium, the system chooses the one that reaches it more

quickly. In particular, among all possible in�nitesimal advancements at a �xed

instant of time, the system chooses the one that brings to a maximum production

of entropy. At the successive instant of time, the system will choose again the

in�nitesimal path that maximizes the entropy production among all those that

are possible at that instant of time. On the other hand, as it may be understood

from the present paragraph, the minimum entropy production principle refers to

a minimization of the entropy production during the course of time. It states,

indeed, that the time derivative of the entropy production is non-positive and, thus,

that the entropy production decreases as the system evolves towards equilibrium.

That is, the entropy production at one instant of time is lower than the entropy

production at a previous instant of time and higher than the one at a later instant.

Moreover, the principle refers globally to the whole system (the integral of the

local entropy production is said to be minimized) and is valid under the restrictive

hypotheses that have been stated, while, on the other hand, the maximum entropy

production principle is said to be valid much more generally. As some scholars

claim to deduce the reciprocity relationships from themaximum entropy production

principle and as the minimum entropy production principle is based also on this

hypothesis, it may be said that the latter is a consequence of the former. The link

between the two will be more clear at the end of the following chapter when the

features of the maximum entropy production principle will be illustrated. However,

we felt that this digression was necessary at this point of the treatise to avoid
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generating confusion in the reader's mind.

2.1.6 The general problem

Phenomenological equations are necessary to close the problem posed by the bal-

ance equations. If we consider a system with n components, the balance equations

give n + 4 di�erential equations: one scalar equation for each component's mass

conservation, a three-dimensional vectorial equation for momentum balance and

one scalar equation for the energy balance. However, the presence of the �uxes

makes the problem underconstrained.

The insertion of the phenomenological equations, expressing the �uxes as func-

tions of the thermodynamic forces (that is, as functions of the other thermody-

namic variables), leads to the reduction of the variables of the problem. The

variables are then n + 4: the density ρ, the n − 1 concentrations ci, the three

components of the velocity v and the temperature T . Speci�c internal energy

u and chemical potentials µi can be evaluated form the other variables through

the equations of state. As an example, the general problem for a one-component

isotropic �uid with no external forces may be stated as follows [dGM84, p. 41].

The mass balance equation
∂ρ

∂t
= −∇ · (ρv); (2.37)

the momentum balance equation

ρ
dv

dt
= −∇p+ η4v +

(
1

3
η + ηv

)
∇(∇ · v); (2.38)

�nally, the energy balance equation

ρ
du

dt
= λ4T − p∇ · v + 2η(∇v)s : (∇v)s + ηv(∇ · v)2. (2.39)

Obviously, the coe�cients of the phenomenological equations are assumed to be

known and the value of the internal energy u may be calculated from the equation

of state:

u = u(T, ρ). (2.40)

For a one-component system, under the hypothesis of local equilibrium, all the

intensive state variables may be expressed as functions of two generic variables of

the system (in this case temperature and density). Simpli�cation of the previous
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system of equations under particular hypotheses leads to the description of peculiar

problems, such as heat conduction in a solid, isothermal hydrodynamics and others.

It may be then stated that non-equilibrium thermodynamics has the purpose to

study various irreversible processes as heat conduction, di�usion and viscous �ow

from a single point of view. It englobes a number of phenomenological theories

such as the hydrodynamics of viscous �uids, the theory of di�usion and the theory

of heat conduction.[dGM84, p. 42]

The additional entropy balance equation is a scalar equation that introduces

�ve additional variables with respect to the other balance equations: speci�c en-

tropy s, the three-dimensional entropy �ux J s and the speci�c entropy production

σ. With the so-called �heat-di�usion interaction hypothesis�, the entropy �ux J s is

assumed to depend on the heat �ux J q and on the n mass �uxes J i [GFB94], thus

reducing the number of new variables introduced by the entropy balance equation

to two. If the hypothesis of local equilibrium is valid, however, speci�c entropy

may be obtained through the equation of state, which is valid for each point in

space. For a one-component system, speci�c entropy depends only on two generic

thermodynamic variables. The entropy balance equation allows the calculation

of the entropy production rate, which is the bilinear expression that is obtained

combining the balance equations with the Gibbs equation.

The �heat-di�usion interaction hypothesis� is not accepted by everyone and

some theories, such as �Rational Extended Thermodynamics� [MR98], consider

the entropy �ux as a constitutive quantity, that is, as an independent variable,

rather than a quantity expressed as function of other �uxes.

2.1.7 Examples of application

Linear Irreversible Thermodynamics has had great success in the description of

di�erent types of phenomena, both discrete and continuous, as it has been illus-

trated, in addition to the previously cited book by de Groot and Mazur [dGM84],

also in the books by Woods [Wo75] and by Kuiken [Ku94]. In order to give a

feeling of the versatility and usefulness of Linear Irreversible Thermodynamics, we

list some examples of applications, referring to the previously cited books for a

deeper explanation of these phenomena:

• among the non-equilibrium phenomena that are more frequently used in the

industrial sector, there are thermoelectric e�ects, including the Peltier e�ect

and the Seebeck e�ect ; the Peltier e�ect refers to the generation of a heat �ow
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in the presence of an electric current, while, on the other hand, the Seebeck

e�ect refers to the generation of a potential di�erence in the presence of a

temperature gradient, phenomenon that is at the base of the functioning of

a thermocouple (Chapter 13 of [dGM84]);

• thermokinetic e�ects that include the thermomolecular pressure, that is, the

pressure di�erence rquired to suppress a heat �ux in the presence of a temper-

ature gradient, and mechano-caloric e�ects (heat �ow caused by a pressure

di�erence) (Chapter 15 of [dGM84]);

• anisotropic heat conduction in the presence of a magnetic �eld, including the

Righi-Leduc e�ect (a temperature gradient giving rise to a heat �ow in an

orthogonal direction) (Chapter 11 of [dGM84]);

• two-�uid description of super�uids, including the in�uence of cross viscosities

on wave propagation and a discussion of the role of mutual friction between

the two �uids for rotating super�uids ([Wo75]).

2.2 Kinetic Theory

The goal of Kinetic Theory is to describe the behaviour and the macroscopic prop-

erties of a system made up by an enormous number of particles obeying the laws of

Classical Mechanics. Each particle may be identi�ed through six independent vari-

ables: the three-dimensional position vector xi and the three-dimensional velocity

vector vi. As a consequence of this, the whole system, made up of N particles,

may be described by a total of 6N variables which are located in the so-called

phase space. The time evolution of the 6N -dimensional vector z is thus almost

impossible to determine because positions and velocities of such a huge number of

particles would be needed (for systems of ordinary dimensions, the number N is

about the same order of magnitude as Avogadro's number). As a consequence of

this, the aim of Statistical Mechanics is to determine the evolution equation for

P (N)(z) in phase space, that is, the probability density of �nding a particle in z2.

2Notice that the symbol z indicates both the random variable and the value of the random
variable. A distinction has not been made in order not to burden the notation, but it should
remembered in the successive passages.
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2.2.1 Liouville Equation

With the use of the probability density, the system may be seen as a �uid with

a density equals to P (N)(z). As the particles may escape the in�nitesimal vol-

ume only because of a �ux through its surface, the probability density obeys a a

conservation equation that has the same form as a continuity equation [Ce88b]:

∂P (N)

∂t
+∇ · (P (N)Z) = 0, (2.41)

with Z as the velocity vector Z = ż, analogously to what happens for a regular

continuity equation. This equation is called Liouville Equation. Assuming that

the forces F = v̇m do not depend on the velocities, Liouville equation may be

re-written as:
∂P (N)

∂t
+Z · ∂P

(N)

∂z
= 0 (2.42)

which means that the material derivative of P (N) must be equal to zero.

2.2.2 Boltzmann Equation

The Liouville Equation is based on the hypothesis of the absence of collisions:

indeed, collisions change the velocities of the colliding particles, making the vector

z disappear in one point of phase space and making it appear in another point.

In simpler words, in the presence of collisions, the continuity equation in the 6N -

dimensional space is not valid anymore because collisions cause a discontinuity

in the velocity of the single particles. When collisions are considered, together

with speci�c hypotheses, the Boltzmann Equation may be obtained. In fact, it

has to be pointed out that the Boltzmann Equation is related to a di�erent level

of description with respect to the Liouville Equation, as it will be shown in the

following pages. The hypotheses that have to be stated in order to obtain the

Boltzmann Equation are the following:

• having a diluted gas, that is, a gas where the mean free path between colli-

sions λ is much greater than the diameter a of the molecules;

• the forces among molecules are e�ective only in the short range;

• as a consequence of the previously stated hypotheses, collisions are binary,

that is, the probability of having a collision among three or more particles is

negligible;
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• �nally, collisions are elastic, conserving both momentum and kinetic energy

(there is no excitation of internal degrees of freedom, which is reasonable at

not-too-high temperatures).

In order to introduce the Boltzmann equation, the s-particle distribution func-

tion is introduced:

P (s) =

∫
P (N)

N∏
i=s+1

dxidvi (2.43)

with s ∈ {1, 2, . . . , N−1}. P (s)(x1,v1, . . . ,xs,vs)
∏s

i=1 dxidvi represents the prob-

ability density in x1,v1, . . . ,xs,vs of s randomly chosen molecules of �nding s ran-

domly chosen molecules. It may be proved that the following equation is obtained

for the time evolution of the s-particle distribution function under the previously

stated hypotheses for a system of N -particles made up by hard spheres of diameter

σ in the absence of forces:

∂P
(s)
N

∂t
+

s∑
i=1

v · ∂P
(s)
N

∂xi
=

= (N − s)σ2

s∑
i=1

∫ [
P

(s+1)′

N − P (s+1)
N

]
|V i · n|d3nd3u, (2.44)

with (s ∈ [1, N ] ∩ N), where P (s+1)′

N is the (s + 1)-particle distribution function

before the collision, P (s+1)
N is the (s + 1)-particle distribution function after the

collision, Vi is the relative velocity between the two colliding particles whose abso-

lute value is conserved during the collision as a consequence of the conservations of

mass and momentum, and n is the unit vector directed along the line connecting

the two centres. The (s + 1)-particle distribution functions depend on the posi-

tions xi of the particles, on time t and on their velocities: the velocities before the

collision for P (s+1)′

N and the velocities after the collision for P (s+1)
N . It is important

to notice that the s particle distribution function depends on the (s + 1)-particle

distribution function; this would eventually lead to the original Liouville equation.

In order to overcome this problem, Ludwig Boltzmann [Bo64; CC70] stated the

famous Stosszahlansatz hypothesis [Ce88a], that is, the hypothesis of molecular

chaos. This apparently harmless hypothesis states that the joint probability of

�nding a number of particles in a certain point of space, having a certain veloc-

ity, may be decomposed in the product of the single-particle probabilities, that

is, the various stochastic events are independent. For a two-particle probability
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distribution function, we have

P (2)(x1,v1,x2,v2, t) = P (1)(x1,v1, t)P
(1)(x2,v2, t). (2.45)

After introducing Eq. 2.45 (for a general s-particle distribution function) into

Eq. 2.44, the Boltzmann equation is �nally obtained. The Boltzmann equation

is usually written with the mass distribution function f as the unknown variable.

This function is related to the 1-particle distribution function through

f = NmP (1) = MP (1), (2.46)

where N is the number of particles of the system, m is the mass of the single

particle and M is thus the total mass of the system.

The Boltzmann equation, in the presence of forces and in the limit for a very

high number of particles, may thus be written as

∂f

∂t
+ v · ∂f

∂x
+
F

m
· ∂f
∂v

=
σ2

m

∫
[f ′f ′u − ffu] |V · n|d3nd3u (2.47)

where the dependencies of the mass distribution functions f , f ′, fu and f ′u are

the same of the one-particle distribution functions they are biunivocally related to

(the subscript u indicates the dependence from the integration variable u and, as

it has been shown before, the appendix indicates pre-collision distributions, that

is, distributions depending on pre-collision velocities). In the derivation of the

equation [Ce88b], it has also been supposed that the interaction of a rigid sphere

with a wall is independent of the evolution of the state of the other spheres and

that no particles are captured by the solid walls [Ce75]. The Boltzmann equation is

thus a nonlinear integro-di�erential equation which is particularly di�cult to solve

even for the most simple cases. Because of this, various methods of approximate

solution have been proposed and will be illustrated in the following paragraphs.

From now on, the term on the right side of the equation will be called collision

term or collision integral and indicated with Q(f, f) to have a lighter notation.
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2.2.3 Collision invariants

Given the collision integral illustrated in the preceding paragraph, a collision

invariant is a function ϕ(v), de�ned as follows:∫
Q(f, f)ϕ(v)dv = 0 (2.48)

It may be proved ([Ce88b; Ce90]) that all functions satisfying the preceding equa-

tion also ful�ll the equality

ϕ(v1) + ϕ(v2) = ϕ(v′1) + ϕ(v′2), (2.49)

where the functions on the right-hand side depend on the velocities after the

collision. The interpretation of this equation is quite clear: collision invariants

are quantities that are conserved during an elastic collision. It may be proved that

each collision invariant is a linear combination of the quantities that are conserved

during an elastic collision, i.e. mass, momentum and kinetic energy [Ce88b; Ce90]:

ϕ(v) = C0 + C1vx + C2vy + C3vz + C4v
2 = a+ b · v + cv2 (2.50)

where the Ci are the linear combination coe�cients, a = C0, b = {C1, C2, C3} and
c = C4.

2.2.4 Equilibrium solutions and Maxwellian distribution

It is interesting to �nd the equilibrium solution of the Boltzmann equation. With

the terms equilibrium solution and equilibrium state we refer to the conditions

listed in the following passages. The reader must however be warned that the

term has to be used carefully: for a deeper discussion we refer to [Ce88b]. The

equilibrium conditions on the Boltzmann equation are the following:

• absence of external forces;

• the solution does not depend explicitly on time (the partial derivative with

respect to time is equal to zero);

• the system is spatially homogeneous, that is, there are no density gradients,
∂f

∂x
= 0.
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As a consequence of these assumptions, the left-hand term of Eq. 2.47 becomes

zero and the Boltzmann equation may be written as:

Q(f, f) = 0 (2.51)

The necessary and su�cient condition to satisfy this equation is [Ce88b; Ce90]

f ′f ′u = ffu, (2.52)

or, by taking the logarithm of both sides,

ln f ′ + ln f ′u = ln f + ln fu. (2.53)

Thus, we may see that ln f is a collision invariant, according to the de�nition in

Eq. 2.49. As a consequence of this, it may be expressed as a linear combination

of the basis for collision invariants:

ln f eq = a+ b · v + cv2. (2.54)

Consequently, the equilibrium solution for the Boltzmann equation is

f eq(v) = ea+b·v+c|v|2 (2.55)

or, introducing a constant vector w and two constants α and A ((a, b, c) −→ (α,

w, A)),

f eq(v) = Ae−α(v−w)2 , (2.56)

which is a Maxwellian distribution for a gas characterized by linear uniform motion

with velocity w.

Macroscopic quantities are computed as suitable moments of the 1-particle

distribution function and macroscopic balance equations are derived by proper in-

tegrations. For the sake of brevity, we will omit this derivation and only a simple

example of the relationship between macroscopic quantities and microscopic dis-

tribution functions will be shown. Given the one-particle distribution function P

such that P (x,v, t)dxdv is the probability of �nding one particle in the in�nites-

imal neighbourhood of x and v, the spatial probability density Px, that is, the

probability of �nding a particle around the spatial coordinate x, independently of
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the velocity, may be computed by integration:

Px =

∫
Pd3v. (2.57)

The in�nitesimal mass dM(x, t) is equal to

dM = ρd3x = NmPxd3x = d3x

∫
fd3v, (2.58)

where Eq. 2.46 has been used. Thus, we have that:

ρ(x, t) =

∫
fd3v. (2.59)

Considering this de�nition, the Maxwellian distribution expressed through the

macroscopic quantities may be written as:

f eq =
ρ

(2πθ)3/2
· exp

[
−(v −w)2

2θ

]
(2.60)

where θ = kBT
m

, with kB as Boltzmann's constant, T as the temperature of the gas

(related to the average value of the Kinetic Energy of the particles) and w as the

average macroscopic velocity of the medium.

By de�ning other macroscopic variables such as the stress tensor σ, the internal

energy u and the heat �ux q, the macroscopic balance equations illustrated in

Eq. 2.37, Eq. 2.38 and Eq. 2.39 are then obtained. The idea is quite simple: the

Boltzmann equation has to be multiplied by the �ve collision invariants ϕi and

then integrated over all velocities. Because of the de�nition of collision invariant,

the term on the right-hand side of the equation disappears and only the terms on

the left remain. These terms are then re-written according to the de�nition of the

macroscopic variables, thus yielding the balance equations.

According to what has been shown, the Boltzmann equation admits a par-

ticular form of the mass distribution function f as the equilibrium distribution,

even if nothing has been said on how this equilibrium distribution is approached.

Boltzmann has also showed that the average value of ln f has a particular property:

〈ln f(v, t)〉 =
1

ρ

∫
f(v, t) ln f(v, t)dv =

H(t)

ρ
, (2.61)
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where H(t) is Boltzmann's H-function. Boltzmann proved that [Ce75]:

dH

dt
≤ 0, (2.62)

where the equality sign only holds at equilibrium for a Maxwellian distribution.

Generalizing with the use of the collision integral, we have:∫
Q(f, f) ln fd3v ≤ 0 (2.63)

where the equality holds if f is a Maxwellian.

2.2.5 Model equations and approximate solution

The main problem in solving the Boltzmann equation is related to the complex

form of the collision integral. In order to simplify it, alternative collision operators,

named collision models have been proposed. A collision model J(f) must satisfy

two fundamental properties in order to reproduce a behaviour similar to the one

of the collision integral Q(f, f):

• the collision model must conserve the collision invariants ϕα,∫
ϕαJ(f)d3v = 0 (α ∈ [0, 4] ∩ N0); (2.64)

• the collision term J(f) must satisfy∫
ln fJ(f)dv ≤ 0, (2.65)

with the equality holding only for a Maxwellian.

Welander and BGK

The simplest and most widely used collision model has been proposed in 1954 by

Bhatnagar, Gross, and Krook [BGK54] and it is named after the initials of the

last names of the authors, that is, the BGK model. It is also called the relaxation

time model and has been proposed independently by Welander [We54]. The idea

underlying this model is that the e�ects caused by the collisions are proportional

to the deviation from the local Maxwellian. As a consequence of this, the collision



52 CHAPTER 2. VALIDATING THE MODEL

term takes the form

J(f) =
f eq − f

τ
, (2.66)

where τ is the relaxation time and may be seen as constant in the simplest model,

while it could be considered as dependent from other variables in more articulated

models. It may be proved that this model satis�es the H-theorem that was illus-

trated before, while one of the main drawbacks is the fact that it is not able to

predict the correct Prandtl number, which results always equal to one. It is also

straightforward to prove that it satis�es the condition of preserving the collision

invariants; indeed, we have that
J(f) =

[f eq(v)− f(v)]

τ∫
ϕαf

eq(v)d3v =

∫
ϕαf(v)d3v (α ∈ [0, 4] ∩ N0)

(2.67)

The last equation is satis�ed because the equilibrium Maxwellian is, by de�nition,

the one that has the same value of the collision invariants of the mass distribution

function f , i.e. the same value of ρ, v and T . It must be noted that J is a non-

linear function of f , since the parameters of the Maxwellian ρ, v and T are, in

turn, function of f according to their de�nitions.

In order to achieve a more precise value of the Prandtl number, other mod-

els have been proposed, such as the Ellipsoidal-Statistical-BGK (ES-BGK) [CT66;

ALPP00] and the velocity-dependent collision frequency model [Kro59; St97; MS04],

ν(v)-BGK, which will be used in Chapter 5. The collision term for this model may

be written as:

Qν(v)−BGK(f) = ν(v)(fP − f) (2.68)

where ν(v) is the velocity-dependent collision frequency and fP is a pseudo-

Maxwellian whose meaning will be illustrated in Chapter 5. If a power law de-

pendence of the type ν(v) = |v −w|α is chosen, it may be proved, as illustrated

in [St97], that the ratio between thermal conductivity and dynamic viscosity is a

precise expression depending on the value of α. Thus, by adjusting the value of

the exponent, the suitable value of the Prandtl number may be obtained.

Chapman-Enskog and Grad methods

Another way of facing the problem of the complicated form of the collision integral

is the one adopted by the so-called approximate methods of solution. It is not a
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goal of the present work to illustrate the analytical development of these methods,

which is extremely onerous from a mathematical point of view. For a precise

exposition of the subject, we recall [Ce75]. We just aim to give an idea of their

construction.

Regarding the Chapman-Enskog expansion, the starting point is the nondimen-

sionalization of the Boltzmann equation, which may be written as [Li03](
∂

∂t
+ D̂

)
f =

1

Kn
Îf (2.69)

where D̂ is the di�erential operator containing partial derivatives with respect to

space coordinates and velocities, Î is the collision integral operator and Kn is

a nondimensional parameter that emerges from the nondimensionalization of the

equation: the Knudsen number. As it has already been stated in the previous

paragraphs, the Knudsen number represents the ratio between the mean free path

of the particle and a typical length scale of the system [Ce75]. The Chapman-

Enskog expansion is based on the hypothesis that ε is small, that is, the system

is collision-dominated (the mean free path of the particle is signi�cantly smaller

than the typical length of the system). Based on these hypothesis, the function f ,

the collision operator and the time derivative are expanded in series of Kn [Li03].

By stopping the expansion at a certain order, di�erent systems of equations are

obtained: each successive iterate of the Chapman-Enskog expansion gives a more

detailed set of hydrodynamic equations. For example, stopping to the �rst iterate

bring to the Euler equations, while the second iterate gives the Navier-Stokes

equations and the third iterate gives the so-called Burnett equations [Li03].

The so-called Grad's moment method is instead based on the idea of obtain-

ing macroscopic transport equations from di�erent moments of the velocity of the

Boltzmann equation: the Boltzmann equation is multiplied by di�erent powers of

the velocity and then integrated over all velocity space. This method has, obviously

the problem of closure: each moment equation is characterized by the presence of

a higher moment. As a consequence of this, in order to close the problem, a higher

moment must be expressed as a function of lower moments. The method proposed

by Grad is based on the assumption that the fourth-order moments are related to

the second and zero order moments. In this way, the so-called twenty-moments

approximation is obtained. With further simpli�cations and assumptions, approx-

imations with a lower number of moments may be obtained, corresponding to the

well known Navier-Stokes or Euler equations [Li03].
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2.2.6 Examples of application

The Boltzmann equation has been used and is currently used to model many

di�erent physical phenomena. The following is just a list of the main applications

of this tool in the most diverse �elds of physics.

Rare�ed gas dynamics

As it has also been stated in the introductory Chapter, the kinetic approach is

used to model physical situations characterized by a Knudsen number Kn = λ
L

signi�cantly di�erent from zero, when the Navier-Stokes equations fail [Had06].

Traditionally, most of the interest towards this kind of situations was related to

the modelling of external, high-speed �ows associated with �ight in the upper

atmosphere. Recently, however, the interest in microscale and nanoscale internal

�ows has given a strong input to the study of other physical situations when Navier-

Stokes description is expected to fail and kinetic e�ects are important. Because

of this historical reason, �ows characterized by the failure of the Navier-Stokes

description are referred as rare�ed gas dynamics [Bi94; Ko69] or noncontinuum

�ows, which may lead to the idea that this kind of �ows are associated also to a

breakdown of the continuum assumption. It must however be highlighted that,

for a large class of these problems, even though the Navier-Stokes equations fail,

the hydrodynamic �elds and the conservation laws remain well de�ned, arising

from moments of the Boltzmann equation [VK65]. It must then be noted that,

for a large class of scholars, failure of the Navier-Stokes equations is di�erent from

the failure of the continuum approach [Had06]. Another important application

of the Boltzmann equation is the one related to Lattice Boltzmann Methods

(LBM). These are methods of Computational Fluid Dynamics (CFD) simulation

where, instead of the traditional conservation equations (i.e. mass, momentum and

energy), a discretized Boltzmann equation is solved for �ctive particles undergoing

collisions and streaming processes over a discrete mesh. The description in terms of

macroscopic variables arises form the resolution of this discretized system of partial

di�erential equations and these methods have been shown to be more useful than

regular CFD methods in the modelling of complex geometries and situations with

high Knudsen number [Su13]. In Fig. 2.1 the possible di�erent approaches to

Fluid Dynamics simulation are shown.
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Fig. 2.1: Di�erent Approaches to Fluid Dynamics simulation, classi�ed according

to relevant parameters, such as system size and complexity of modelling per unit

volume.

Electron and phonon transport in solids

Another important application of the Boltzmann equation is the study of electron

and phonon transport in solids, with particular regard to the determination of

transport coe�cients. The key idea is that electrons in a solid are assumed to obey

the probability distribution function f = f(r,p, t) in phase-space. If collisions are

not considered, the governing equation is the Liouville equation; on the other hand,

if the collisions are considered, the collision term is usually modelled with a mean

relaxation time τ(p) term:

Q(f, f) = −f(r,p, t)− f0(r,p, t)

τ(p)
. (2.70)

Electrons are then modelled as semiclassical Bloch wave packets moving in a par-

tially occupied band, the equilibrium distribution f0 is assumed to be the Fermi-

Dirac distribution and the probability distribution function f is approximated

through a �rst order expansion in r and p. After further developments, the ex-

pression for the electric conductivity tensor and the thermal conductivity due to

electrons may be obtained. On the other hand, also phonon packets in an insulator

may be modelled through the Boltzmann equation in order to compute the expres-

sion for the thermal conductivity of the material. Analytical passages are similar

to those that have been described for electron transport, even though it must be
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noted that, as phonons are bosons and not fermions, they obey the Bose-Einstein

distribution [Z72].

Neutron transport

A further application of the Boltzmann Equation is the modelling of neutron be-

haviour in a reactor (in this case, the equation is usually referred to as the Boltz-

mann Transport Equation, or BTE). Neutron transport may be modelled either

deterministically, through the BTE, or stochastically, through Montecarlo meth-

ods. With the �rst method, the system is described through a di�erential equation

related to the underlying physical process: the equation is then discretized in order

to be solved numerically. On the other hand, with the use of Montecarlo methods,

the physical process is simulated directly and only the probability density func-

tions (pdfs) related to its di�erent phases are needed: Montecarlo simulation then

proceeds by random sampling from the pdfs. The Boltzmann Transport Equation

for neutrons is obtained as a balance between the neutrons that are generated and

the neutrons that are consumed. It is a complicated integro-di�erential equation

in seven dimensions: three in space r, two in direction Ω and one each in energy

E and time t. It may be written as[
1

v

∂

∂t
+ Ω · ∇+ Σ(r, E, t)

]
φ(r,Ω, E, t) =

=

∫ ∞
0

dE ′
∫

4π

dΩ′Σs(r,Ω ·Ω, E → E)φ(r,Ω′, E ′, t)+

+
χ(E)

4π

∫ ∞
0

dE ′
∫

4π

dΩ′ν(E ′)Σf (r, E
′, t)φ(r,Ω′, E ′, t) +Q(r,Ω, E, t), (2.71)

where v is the absolute value of the velocity of the neutron, biunivocally associated

to its energy E = 1/2mv2, Σ is the macroscopic total cross section, Σs is the

macroscopic scattering cross section, Σf is the macroscopic �ssion cross section, φ

is the neutron �ux, ν(E) is the average number of neutrons produced per �ssion

and χ(E) represents the probability distribution function related to the neutrons

produced isotropically in a �ssion. The left-hand side of the equation represents

the neutrons lost either because of leakage or because of collisions that result

in scattering or absorption. The right-hand side of the equation represents the

source terms: the neutrons scattered in that direction and energy, from all others

directions and energies, the �ssion neutrons produced in that direction and energy

and the source term Q. The equation is usually discretized in space, directions
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and time and neutrons are clustered into energy groups [La66].

Kinetic description of plasmas

Plasmas are also objects of study of Non-Equilibrium Thermodynamics. Whenever

the continuum hypothesis is valid for them, Classical Non-Equilibrium Thermody-

namics (as outlined in Sec. 2.1) can be applied, and one deals with multiple-�uid

or single-�uid (Magneto-HydroDynamic) models. There are certain situations in

which �uid models of the Navier-Stokes type are not applicable and one has to

switch to kinetic models. Of course, it is again a matter of time scales: if one wants

to study the response of a plasma to perturbations comparable to its natural reso-

nance frequency, �uid models are not appropriate neither from the conceptual nor

from the mathematical standpoint. The most important example is represented

by the study of longitudinal modes, which are also called electrostatic modes since,

for their description, the magnetic �eld may be neglected and the plasma model

is studied in conjunction with Gauss Law

∇ ·E =
ρ

ε0

;

this, indeed, is responsible of the longitudinal component of the wave.

Usually, the time scales of the phenomena under consideration are longer than

the typical relaxation time of the system (thermalisation of the plasma population),

so that one can neglect collisions and focus onto Vlasov Equation, another name

to say a collisionless Boltzmann Equation. After this equation has been coupled

with Gauss Law and the electrostatic potential has been introduced, the resulting

system of equation is called Vlasov-Poisson system. For instance, here is the

system for an electronic population:

E(x, t) = −∇φ(x, t)

∇ ·E(x, t) =
e

ε0

∫
f(x,v, t)d3v

∂f(x,v, t)

∂t
+ v · ∂f(x,v, t)

∂x
− e

me

· ∂f(x,v, t)

∂v
= 0

Analytically solving the linearised version of this system was a great challenge

which required complex analysis and the theory of Schwartz' distributions. Once

this has been done, one disposes of the dispersion relation related to electrostatic

modes, and observes certain peculiar phenomena, such as the famous one of Landau
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damping, which could not be uncovered with a �uid model.
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3
Seeking a dynamical Law

In their view of Thermodynamics, which we like to adopt in this thesis, Gyftopoulos

and Beretta take the position that the two Laws of Thermodynamics are nothing

but two general features of the Dynamics of any (thermodynamic) system from any

state to another. In other words, if an equation were discovered which describes

the motion of the system in state space (without discussing if and to what extent

could the equation be used in practical terms to calculate motions of complex

systems), the two Laws could be straightforwardly derived from it as theorems.

Thus, as it has been pointed out by many authors such those in [CLaw; MS06],

Thermodynamics lacks a Dynamical Law which, superimposed to the chosen Kine-

matics of the system, completes the general description of all its possible trajecto-

ries.

TheMaximum Entropy Production Principle (MEPP) is a valuable can-

didate in that it gives a possible and consistent choice of evolution of a system

and, perhaps, it has been the most studied in the last decades. As Martyushev

and Seleznev wrote in their large review on this principle [MS06], the MEPP was

proposed independently by several scientists in di�erent contexts where it was used

to solve speci�c problems. Its most general gist may be stated with Martyushev

and Seleznev:

63
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�By this principle, a nonequilibrium system develops so as to maximize

its entropy production under present constraint.� [MS06, p. 3]

On the other hand, it has been largely criticized in its general validity by many

authors, both on theoretical and experimental grounds. In this thesis, we do not

aim to prove the generality of the principle, but only that it is useful to describe

the dynamics of certain systems.

3.1 Ziegler's extremum principle

As far as we now, although the MEPP was proposed di�erently by some authors,

the �rst clear statement and use in Nonequilibrium Thermodynamics was by Hans

Ziegler in 1957 [Z57]. Changing the notation of the original articles, this reads as

follows:

�If the force vectorX is prescribed, the actual �ux vector J maximizes

the dissipation rate σ subject to the side condition D(J) = J ·X� [Z68,

p. 416]

The original goal of the MEPP is to generalize Onsager's theory with a more

general principle applying to nonlinear phenomena too.

�Once the connection between �uxes and forces is known, the rate of

dissipation can be expressed, by means of the dissipation function in

terms of the �uxes (and possibly the instantaneous values of the state

variable) alone. The reverse is not true: the dissipation function does

not completely determine the relationship between �uxes and forces

unless an additional statement is provided by Onsager's theory which

thus yields the forces in terms of the dissipation function. [Z68, p. 415]�

The �statement� that substitutes the other one in the quotation is chosen to be

his orthogonality principle. Let's summarize the mathematical problem.

3.1.1 Mathematical formulation

Following Ziegler, we formulate the problem in terms of prescribed forces and �uxes

as unknowns. As in Classical Nonequilibrium Thermodynamics, it is also supposed

that �uxes depend on forces and state variables, and knowing the relationship

between �uxes and forces closes the description of the dynamics. For the bene�t
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of the reader, we omit the dependence on state variables, which plays no role in

the following treatment. In particular, the dissipation function D is that function

of �uxes which, if calculated in correspondence of a certain set of �uxes, gives the

entropy production σ:

σ = D(J) (3.1)

As described by Ziegler, the mathematical form of classical linear force-�ux

relations in terms of the dissipation function may be written as follows. First of

all, �uxes may be expressed as linear combination of forces:

J(X) = LX, (3.2)

with the resistivity matrix R de�ned as

R def
= L−1. (3.3)

The dissipation function, given by the product of forces and �uxes, may then be

written as

J(X) = LX, (3.4)

and its derivative with respect to the �uxes is

∂D(J)

∂J
= (R + RT )J , (3.5)

and, considering Onsager symmetry relations, we obtain that

RT = R (3.6)

∂D(J)

∂J
= 2RJ(X) = 2X (3.7)

where Eq. 3.5 and Eq. 3.2 have been used in the last passages.

The classical linear force-�ux relations may be then be rewritten in the equiv-

alent form 
λ
∂D(J)

∂J
= X

λ =
1

2

, (3.8)

which leads to the wanted relation by inverting the function on the left hand side

to get J as a function of X. Moreover, it suggests a generalization by letting λ
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X

J

D = cost.

Fig. 3.1: Vector representation of �uxes and forces.

be a function of J . In particular, the �nal result obtained by Ziegler is

D(J)

∂D(J)

∂J
· J

∂D(J)

∂J
= X (3.9)

and was also called orthogonality principle because this is equivalent to state that,

if the thermodynamics forces are prescribed, the �ux vector must be such to point

the contour line of D(J) where the force is orthogonal to the latter (see Fig. 3.1).

Indeed, we may see that the �rst term on the left-hand side of the equation is

a scalar; thus, the previous expression means that the gradient of the dissipation

function with respect to the �uxes must be parallel to the forces. As the gradient is

locally orthogonal to the curve at constant D, the tangent at any point on a curve

at constantD, which is orthogonal to the local gradient, must also be orthogonal to

the forces. Euler Theorem for homogeneous functions clearly implies that Eq. (3.9)

reduces to
1

k

∂D(J)

∂J
= X (3.10)

for a homogeneous function of degree k, and � for k = 2 (the case of linear

phenomenological relations) � to (3.7). Therefore, any linear phenomenological

law (which makes the dissipation function be a bilinear form of the �uxes) implies

a MEPP: however, the set of possible mathematical functions which satisfy (3.9)

is larger than the set of bilinear forms, so that Ziegler's principle may constitute
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a proper generalization of the linear theory.

Eq. (3.9) can be derived from the variational principle stated above, which

takes the expression 
maxD(J)

s. t.

D(J) = X · J

(3.11)

The physical signi�cance of the constraint is given by the balance equations. In-

deed, as explained in Subsec. 2.1.2, the form of the entropy production is due to

the balances of energy, momentum, etc., so that � focusing on the entropy pro-

duction term only � the constraint appears to be their full representative. The

constrained optimization is performed by means of the usual Lagrange multipliers.

We de�ne the Lagrangian

L(J , λ) = D(J)− λ[D(J)−X · J ] (3.12)

and solve for it the unconstrained problem by putting its partial derivatives to

zero: (1− λ)
∂D(J)

∂J
+ λX = 0

D(J)−X · J = 0
(3.13)

where the �rst equation is the derivative with respect to J , while the second

equation of the system is the derivative with respect to the Lagrange multiplier.

From the �rst equation,

λ− 1

λ

∂D(J)

∂J
= X (3.14)

Substituting back into the constraint,

D(J)− λ− 1

λ

∂D(J)

∂J
· J = 0 =⇒ λ− 1

λ
=

D(J)

∂D(J)

∂J
· J

, (3.15)

and then using Eq. 3.14, we get the result

D(J)

∂D(J)

∂J
· J

∂D(J)

∂J
= X. (3.16)

We may visualize the constrained optimization performed in Eq. (3.11) by means
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Fig. 3.2: Simplest (quadratic) dissipative surface D(J) during a linear irreversible

process. Here J1 and J2 are two thermodynamic �uxes and 0 denotes the point

corresponding to the equilibrium state. [MS06]

of Fig. 3.2. The graph of the dissipation function is represented as a paraboloid,

and the constraint is the plane X1J1 +X2J2 = 0 (where X1, X2 are constants). If

the dissipation function has suitable convexity features, the problem has a unique

solution, which is also proven to be a maximum. In this regards, Ziegler imposes

the condition that the component of the thermodynamic force vector along the �ux

vector increases for increasing �uxes, that is X ·J/|J | grows if |J | grows, in order

�to exclude instabilities (in the form of self-excited oscillations) [...]. It then follows

from (3.1) that D(J) does not only increase on any ray emanating from the origin

O in J -space, but increases faster than |J |. Thus, the D-surfaces are ordered, each

one of them containing those with smaller values of D. Moreover, they become

more dense with increasing D, in the sense that the distances between the points

of intersection of an equidistant family of D-surfaces with a given ray from O

decrease monotonically.� [Z68, p. 419] In other words, the dissipation function is
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convex with respect to �uxes. This stability condition assures that, to each value

of the force vector, a unique value of the �ux vector corresponds. We thus have

the constitutive law J = j(X) or X = x(J) (as the relationship between forces

and �uxes is bijective, it is also invertible). If we take the dissipation function be

a bilinear form of the �uxes, we have already noticed that the form of Eq. (3.9)

is preserved, so that linear phenomenological laws imply a MEPP.

�It appears that, physically as well as mathematically, the principle of

maximum dissipation rate (or maximum rate of entropy production) is

the simplest and most satisfactory of the principles enumerated [in the

article]. Subject to the stability condition, it supplies the generalization

we have been looking for, and it even ensures the convexity of the D-

surfaces.� [Z68, p. 419]

3.1.2 Ziegler's MEPP implies Onsager relations

A very important characteristic of the MEPP is that it entails Onsager reciprocity

in the near-equilibrium domain. This is signi�cant because Onsager relations are

a widely accepted feature of non-equilibrium dynamics, which � as outlined in

Subsec. 2.1.4 � has been proven valid through di�erent theoretical explanations

and experiments. Below, we shall give the proof of the fact that Onsager's reci-

procity may be deduced if the Maximum Entropy Production Principle and linear

relationships between forces and �uxes are assumed as hypotheses.

By expanding the �ux vector in a Maclaurin series to �rst order:

J = j(X) =
∂j(0)

∂X
X + o(X) = LX + o(X) for |X| → 0, (3.17)

we see that the phenomenological matrix L is the coe�cient of the �rst-order term.

Assuming the function j to be invertible in a neighbourhood of the equilibrium

point, and considering that j(0) = 0 by choice, by the inverse function theorem

x(J)
def
= j−1(J) satis�es

∂x(0)

∂J
=

[
∂j(0)

∂X

]−1

=⇒ R = L−1.

Therefore, proving Onsager reciprocity is equivalent to proving the symmetry of

this matrix. Moreover, using the �rst order approximation and the conservation

equations (which have as a consequence that the dissipation function is the product
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of forces and �uxes),the entropy production takes the form

σ = D(J) = XT (J)J ' JT
[
∂x(0)

∂J

]T
J ; (3.18)

that is, the dissipation function is quadratic in the vicinity of equilibrium. By

using these simple facts, it is easy to arrive at the desired result.

We shall use the following notation:

∂k
def
=

∂

∂Jk
.

Assuming as hypothesis the functional form (3.9) of the constitutive relations

between forces and �uxes, it is su�cient to prove that

∂jxk = ∂kxj,

which is Onsager's reciprocity.

Proof. Using Euler Theorem for homogeneous functions (the dissipation function

is an homogeneous function of the second order, using a linear approximation of

the force-�ux relations), we have that:

J`∂`D = 2D.

we obtain

∂jxk
(3.9)
= ∂j

(
D

J`∂`D
∂kD

)
(3.18)
=

1

2
∂j∂kD;

∂kxj
(3.9)
= ∂k

(
D

J`∂`D
∂jD

)
(3.18)
=

1

2
∂k∂jD.

The result follows from Schwarz theorem. Thus, we have proved that, if the

generalized Ziegler relationship Eq. 3.9 and linearity of the force-�ux relations are

assumed, Onsager reciprocity may be derived.

3.2 Steepest Entropy Ascent

The Steepest Entropy Ascent (SEA) principle to model the dynamics of a thermo-

dynamic system was originally proposed in Intrinsic Quantum Thermodynamics
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by Beretta [Ber81] and it was recently adapted to meso- and macroscopic ther-

modynamic frameworks [Ber13]. Since the Fisher metric that was adopted in the

quantum theory is not general enough to reproduce the dynamics of the other

thermodynamic theories, an extension of the previous formulation was needed.

The idea behind the SEA construction is to geometrize the thermodynamic

system and choose the direction of evolution of the state in a proper space. The

formulation of the principle may be expressed as follows:

�The time evolution and transport equations advance the local state

representative in the direction of maximal entropy production per unit

of distance traveled in state space compatible with the conservation

constraints.� [Ber13, p. 101].

In this thesis, we shall give a more mathematical and abstract formulation of the

SEA principle with respect to the one that was expressed originally, in order to

reach the following, equally important, objectives:

• making SEA more comparable to other abstract theories, such as GENERIC;

• clearly recognizing certain mathematical concepts.

For now, we do not have the tools to deal with the rigorous mathematical formula-

tion. Hence, we postpone the full discussion to Chapter 4. Here we only anticipate

the �nal results.

The time evolution of the state is represented by a curve on a manifold, and

this is an integral curve of a vector �eld (the velocity vector is parallel to the vector

�eld at each point of the curve). The vector �eld is composed of two distinguished

parts: the �rst one is a reversible contribution, whose form is known from each

physical theory; the second one is a dissipative contribution, which is modelled

with a Maximum Entropy Production principle (MEPP). After concentrating the

attention on the latter part, one would want the state to go in the direction of the

gradient of the entropy in state space.

But an �obstacle� is imposed by the conservation laws: if the states is pushed

in the direction of the entropy gradient, the conserved quantities may really not

be conserved. Therefore, the dissipative vector �eld must point in the direction of

maximal directional derivative of the entropy compatibly with the orthogonality

to the gradients of all conserved quantities.
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3.2.1 SEA main features

The principal advantages of the SEA formalism are:

• Direct implementation of the Second Law of Thermodynamics into the dy-

namic law itself.

• Implication of Onsager reciprocal relations in the near-equilibrium domain.

3.3 Edelen's theory

During the seventies, Dominic G. B. Edelen proposed a generalization of Onsager's

linear theory based on a few thermodynamically consistent assumptions. Here we

present the most mature formulation in [BEK79]. Since a wider view of the subject

will be available towards the end of the thesis, we postpone the discussion and

comments to Chapter 4.

3.3.1 Thermodynamic requirements for �uxes

According to the exposition in [BEK79], the basic thermodynamic requirements

for a nonlinear system of constitutive relations

J = j(X,ω) (X ∈ Rn) (3.19)

are the following:

• forces vanishes in the equilibrium state;

• �uxes can be expressed as functions of forces and state variables:

J = j(X,ω) j ∈ C∞(Rn) ∀ω; (3.20)

• the dissipation inequality:

σ = X · J = X · j(X,ω) = D(X,ω) ≥ 0; (3.21)

• the linear approximation should yield Onsager's reciprocal relations:

j(X,ω) = L(ω)X + o(X) for |X| → 0 (3.22)

=⇒ L(ω)T = L(ω).
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3.3.2 Onsager's linear theory

In the linear theory, we have:

σ = D(X,ω) = X · j(X,ω) = XTL(ω)X (3.23)

∇D(X,ω) = [L(ω) + L(ω)T ]X = 2L(ω)X (3.24)

The di�erential form j(X,ω) · dX � in this case � is exact, since:

j(X,ω) · dX = L(ω)X · dX = d

[
D(X,ω)

2

]
= dΦ(X,ω) (3.25)

3.3.3 Generalizations via integrating factor

Some attempts to generalize Onsager's linear theory are based on admitting that

the di�erential form has an integrating factor u(X,ω). That is, we can write

j(X,ω) = u(X,ω)∇Φ(X,ω), (3.26)

so that the following di�erential form is exact :

j(X,ω)

u(X,ω)
· dX = dΦ(X,ω). (3.27)

and Φ(X,ω) is called dissipation function. The notion of integrating factor is

de�ned based on Eq. 3.27.

This and the linear theory are based on the additional requirement that, in

order to render the di�erential form closed (which is a necessary condition for

the exactness), these modi�ed �uxes
j(X,ω)

u(X,ω)
must be Onsager �uxes, i.e. �uxes

which satisfy {
∂

∂X

[
j(X,ω)

u(X,ω)

]}T
=

∂

∂X

[
j(X,ω)

u(X,ω)

]
. (3.28)

and this follows from Schwarz theorem if we assume the function Φ is C1 in the

forces.

3.3.4 Generalization via Helmholtz-Hodge decomposition

The most general method to decompose a di�erential form on a compact, oriented,

Riemannian manifold M and more explicit than the previous attempt with an
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integrating factor is the so called Helmholtz-Hodge decomposition (see Chapter B).

Since X ∈ Rn with the standard Euclidean metric, the same decomposition may

be applied directly to the vector �elds1, so that:

j(X,ω) = jcons(X,ω) + jnoncons(X,ω) = ∇Φ(X,ω) + y(X,ω), (3.29)

where jcons is a `conservative' vector �eld (jcons ∈ Xcons(Rn)), namely a vector �eld

that can be written as the gradient of a smooth function Φ ∈ C∞(Rn); and y be-

longs to the orthogonal complement of Xcons(Rn) ([Xcons(Rn)]⊥ = X(Rn)\Xcons(Rn)).

As explained by Bataille, Edelen, and Kestin (we do not report the arguments,

about which we refer to [BEK79]), the dissipation inequality imposes a condition

on y (which we rename U), so that the �nal result for a thermodynamically

consistent decomposition is:j(X,ω) = ∇Φ(X,ω) +U(X,ω)

X ·U(X,ω) = 0,
(3.30)

where Φ(X,ω) is a smooth scalar-valued function such that

Φ(X,ω) =

∫ 1

0

D(λX,ω)
dλ

λ
, D(λX,ω) = O(λ2). (3.31)

Therefore, the requirement about Onsager �uxes may be relaxed in the following

way. De�ne

j(X,ω) = jD(X,ω) + jN(X,ω),

where

jD(X,ω) = ∇Φ(X,ω)

is the dissipative part, and

jN(X,ω) = U(X,ω), X ·U (X,ω) = 0,

the nondissipative part of j(X,ω). Moreover,∇Φ(λX,ω) = O(λ) andU(λX,ω) =

O(λ2) (the nondissipative �uxes, near equilibrium, go to zero faster than the dis-

sipative ones).

1This is possible, as shown in Chapter B, through the isomorphism g].
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The exact di�erential form is instead:

[j(X,ω)− jN(X,ω)] · dX = dΦ(X,ω). (3.32)

Hence, the Onsager requirement is equivalent to the closedness of this di�erential

form: {
∂

∂X
[j(X,ω)− jN(X,ω)]

}T
=

∂

∂X
[j(X,ω)− jN(X,ω)] . (3.33)

These symmetry relations can be written in the equivalent form[
∂jD(X,ω)

∂X

]T
=
∂jD(X,ω)

∂X
(3.34)

since the dissipative part of the �ux, jD, is given by j − jN .
In the light of this discussion, we see that in Edelen's formalism there is place

for a non-dissipative (reversible) contribution. This opens up to the problem of the

one- vs. two-generator formalisms fronted by GENERIC: we shall take it up again

in Chapter 4, where we will also resume the theory above from the standpoint of

GENERIC.
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�[. . . ] an `ideal physical theory' [. . . is . . . ] a theory in which there are

well de�ned mathematical constructs and well de�ned rules for trans-

lating physical reality into these constructs; having done so the math-

ematics then grinds out whatever answers it can and these are then

translated back into physical statements. The point here is that while

`physical intuition' is a useful guide for formulating the mathemati-

cal structure and may even be a source of inspiration for constructing

mathematical proofs, it should not be necessary to rely on it once the

initial `translation' into mathematical language has been given.�

Elliot H. Lieb and Jakob Yngvason in

The Physics and Mathematics of the Second Law of Thermodynamics 4
Geometric Thermodynamics

The quotation opening this chapter describes the most ambitious goal of Physics,

and it is very similar to the sixth of the famous `Mathematische Probleme', whose

translation in [Hi02] reads:

�The investigations on the foundations of geometry suggest the prob-

lem: To treat in the same manner, by means of axioms, those physical

sciences in which mathematics plays an important part [. . . ].�

In this chapter, we will make use of very important and known concepts in Di�eren-

tial Geometry (we have written Chapter A for the reader not used to the subject).

In the spirit of this chapter, we add the beautiful introduction by Mrugaªa to his

article [Mr00]:

�The basic problem of any physical theory is to �nd the proper set M

of all plausible states, i.e. the so-called state space of the system. The

other necessary ingredient is the structure of this space. The structure

is usually de�ned by means of a tensor, vector or covector �eld, or

by connection. The group preserving the geometrical structure of M

is considered as the symmetry group of the theory. From this point

of view any physical theory can treated as a branch of geometry in

79
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the broadest meaning of this word. This approach is well known for

instance in classical mechanics, special and general relativity, electro-

dynamics, gauge �elds, quantum mechanics, and so on.

Contrary to the above-mentioned theories the situation is not so clear

in thermodynamics. First of all there are two phenomenological and

statistical approaches to the thermal phenomena. For the second, the

situation is relatively simple only for homogeneous equilibrium systems.

It complicates remarkably for general nonequilibrium systems where

one has to deal with a big number of macroscopic variables of various

types.�

At this point, we are thus faced to the following situation:

• As testi�ed by Einstein at Page 5, Thermodynamics is the most `consoli-

dated' physical theory.

• On the other hand, according to Mrugaªa, Thermodynamics has not been

clearly `geometrized' yet, at variance with other theories.

Following the line of thought of Grmela and Öttinger, we recognize the following

steps on the route towards this `geometrization':

• Classical Mechanics can be formulated in an abstract (general) setting, in

the context of Geometric Mechanics ([A89; MR03]): the natural arenas are

symplectic manifolds, and their generalization, i.e., Poisson manifolds.

• Also Thermodynamics may be made a physical theory as in the quotation

above. The most famous examples are, in Equilibrium Thermodynamics,

the work by Carathéodory [C09], the book by Hermann [He73], and � for

example � the references in [Q07]; in Nonequilibrium Thermodynamics, the

important geometric structure of metriplectic manifolds (see some history

and references in [Mor09] and in [F05]), on which we shall focus our attention

herein.

• In its most renowned presentation, metriplectic dynamics has been called

General Equation for the Non-Equilibrium Reversible-Irreversible Coupling

(GENERIC) [GÖ97], which represents also a generalization in the context

of contact manifolds.
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• A simpler and less structured approach (Steepest-Entropy-Ascent dynamics)

was proposed by Beretta in a quantum landscape [B81], and recently adapted

for meso- and macroscopic systems in [B13].

In general, a reversible evolution is modelled with an antisymmetric tensor, while

the irreversible one with a symmetric object. When the latter is a tensor, clearly

it may be represented by a kind of metric tensor. This is why below we shall

associate dissipation with a metric tensor.

As for the interpretations applied to thermodynamics, we have already touched

the subject in Chapter 1. Here we brie�y mention the two main lines of thought

in the narrower context of its geometric formulation:

• According to spirit of the Keenan school of Thermodynamics, we take the

position that Thermodynamics is valid at every scale, entropy is an intrinsic

property of matter: this is brought to the point that even microscopically

there is dissipation (an example is represented by Intrinsic Quantum Ther-

modynamics). A particular dynamical equation is typical of the Kinematics

pertaining to a certain level of description.

• Multiscale dynamics: Grmela sees Thermodynamics as �a meta-theory ad-

dressing relations among dynamical theories formulated on di�erent levels of

description� [Gr13]; this relations are expressed in the framework of contact

structures. At every scale there is a GENERIC, and in passing from a more

detailed level to a less detailed one through the method of Coarse Graining

[Ö05] one sees dissipation, even if microscopic dynamics were reversible.

As a �nal comment before entering the beautiful geometrical exposition of Clas-

sical Mechanics, we anticipate and stress that the most consolidated dynamical

models are designed for isolated systems, which we shall consider in this work.

Therefore, the parameters characterizing the dynamics do not explicitly depend

on time: both thermodynamic potentials and vector �elds are �xed, and the state

representative moves on the integral lines of them (time is the parameter of these

curves). For driven systems, some solutions have been proposed, as we shall discuss

later.
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4.1 Mechanics and Geometry

In nineteenth and twentieth centuries, and much research is still alive, Classical

Mechanics has been formulated in the mathematical language of Di�erential Geom-

etry, so that an entire new �eld was born under the name of Geometric Mechanics.

Following this route, some attempts have been made to translate also Thermody-

namics (in particular, Non-Equilibrium Thermodynamics) in this setting.

In this section, we shall give the main notions of Geometric Mechanics following

one the main reference books in the �eld: Introduction to Mechanics and Symmetry

by Marsden and Ratiu.

4.1.1 Symplectic manifolds

Let M be a Banach manifold and

Ω : M → Λ2T ∗M

z 7→ Ωz

a smooth di�erential two-form, namely Ω ∈ Ω2(M).1

Ω is (weakly) nondegenerate if, ∀z ∈M ,

Ωz(v1, v2) = 0 ∀v2 ∈ TzM =⇒ v1 = 0; (4.1)

that is, if v1 is `Ωz-orthogonal' to every vector in TzM , it is the zero vector.

Ωz induces the associated vector bundle homomorphism

Ω[
z : TzM → T ∗zM

v 7→ Ω[
z(v)

de�ned by Ω[
z(v1)(v2) = Ωz(v1, v2). Therefore, weakly nondegeneracy translates

into �Ω[
z(v) = 0 implies v = 0�, which � for the linearity of the map Ω[

z � is

equivalent to injectivity of Ω[
z.

In case of surjectivity in addition to injectivity (so that Ω[
z is a vector space

isomorphism), Ω is called strongly nondegenerate. This guarantees the conti-

nuity of the inverse function as well, thanks to a theorem of Functional Analysis

(in particular, from a corollary of the open mapping theorem). In �nite dimen-

1We apologize for using the same symbol for the di�erential form and the global section
Ω2(M), but this is the usual notation.
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sions, since a linear map between �nite-dimensional spaces of the same dimension

is injective if and only if it is surjective, weak and strong degeneracies coincide.

De�nition 4.1. A symplectic manifold is a pair (M,Ω), whereM is a manifold

and Ω is a closed (weakly) nondegenerate two-form on M (called symplectic

form). The manifold is strongly symplectic is Ω is strongly nondegenerate.

One of the most important results in symplectic geometry is Darboux Theorem,

which essentially says that every symplectic manifold is locally `�at'; namely, that

is possible to �nd coordinates in which the components of the symplectic form are

constants.2

Theorem 4.2 (Darboux Theorem). If (M,Ω) is a strong symplectic manifold,

in a neighbourhood of each z ∈ M there is a local coordinate chart in which Ω is

constant.

Corollary 4.3. If (M,Ω) is a �nite-dimensional symplectic manifold, M is even-

dimensional (dimM = 2n), and in a neighbourhood of each z ∈ M there are local

coordinates (q1, . . . qn, p1, . . . pn) in which

Ω =
n∑
k=1

dqi ∧ dpi.

Such coordinates are called canonical coordinates (or Darboux coordinates,

or symplectic coordinates).

In Chapter A we have not talked about integration and orientation on mani-

folds. However, for completeness, and for the bene�t of those who are acquainted

to the subject, we report the following

Theorem 4.4. Let (M,Ω) be a 2n-dimensional symplectic manifold. Then, M is

oriented by the Liouville volume form

Λ =
(−1)n/2

n!
Ω ∧ Ω ∧ · · · ∧ Ω︸ ︷︷ ︸

n times

=
(−1)n/2

n!
Ωn (4.2)

which � thanks to the non-degeneracy of the symplectic form � is nowhere vanish-

ing. In canonical coordinates, it takes the expression

Λ = dq1 ∧ dq2 ∧ · · · ∧ dqn ∧ dq1 ∧ dq2 ∧ · · · ∧ dpn. (4.3)

2This does not happen in Riemannian geometry: a manifold with non-zero curvature is not
locally isometric to Euclidean space; namely, it is not �at.
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A further important point is the abstract de�nition of canonical transforma-

tions, which are smooth maps preserving the symplectic structure.

De�nition 4.5. Let (M1,Ω1) and (M2,Ω2) be symplectic manifolds. A di�eo-

morphism f : M1 → M2 satisfying f ∗Ω2 = Ω1 is called symplectomorphism or

canonical transformation.

Hamiltonian systems

De�nition 4.6. Let (M,Ω) be a symplectic manifold. A vector �eldXH isHamil-

tonian if there is a function H : M → R such that

XH yΩ = Ω[(XH) = dH (4.4)

In a (weak) symplectic in�nite-dimensional manifold, the injectivity of Ω[ (4.4)

does not guarantee that the inverse function

Ω] =
(
Ω[
)−1

: T ∗M → TM

be de�ned on all the cotangent bundle. Therefore, for a given smooth function H,

we cannot infer a priori whether a Hamiltonian vector �eld exists or not, but we

can only a�rm its uniqueness. Generally, one assumes its existence abstractly and

then verify it in examples.

The triple (M,Ω, H) is a Hamiltonian system.

Let's focus on the �nite-dimensional case. In Darboux coordinates, XH can be

computed explicitly as follows. After writing

XH =
n∑
k=1

(
ak

∂

∂qk
+ bk

∂

∂pk

)

for some coe�cient (ak, bk) to be determined, we compute

XH yΩ =
n∑
k=1

(
ak

∂

∂qk
+ bk

∂

∂pk

)
y

n∑
k=1

dqk ∧ dpk =
n∑
k=1

(akdpk − bkdqk).

On the other hand,

dH =
n∑
k=1

(
∂H

∂qk
dqk +

∂H

∂pk
dpk
)
,
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so that we �nd

XH =
n∑
k=1

(
∂H

∂pk
∂

∂qk
− ∂H

∂qk
∂

∂pk

)
. (4.5)

The integral curves of this vector �eld are Hamilton's Equations
q̇i(t) = ai(q(t), p(t)) =

∂H

∂pk
(q(t), p(t))

ṗi(t) = bi(q(t), p(t)) = −∂H
∂qk

(q(t), p(t))
. (4.6)

Theorem 4.7. If XH is a Hamiltonian vector �eld on the symplectic manifold

(M,Ω) and θ is the �ow of XH , θt is a symplectomorphism, namely θ∗tΩ = Ω ∀t.
Since, for t = 0, θ0(p) = θ(p, 0) is the identity, this is equivalent to show that

d

dt

∣∣∣∣
t0

(θ∗tΩ) = θ∗t0
(
£XH Ω

)
= 0 ∀ t0 (4.7)

or, equivalently, that

£XH Ω = 0 (4.8)

Proof. The last expression is proven, by Cartan's magic formula (A.35)

£XH Ω = d(XH yΩ) +XH y dΩ = 0,

thanks to the facts that XH is Hamiltonian and Ω is closed.

We note that the closure of the symplectic form implies Hamiltonian �ows are

symplectomorphisms.

Corollary 4.8 (Liouville Theorem). A corollary of Th. 4.7 in �nite dimensions

is Liouville Theorem: Hamiltonian �ows preserve the Liouville volume form.

Poisson Brackets on Symplectic Manifolds

Another well-known concept from Classical Mechanics is represented by Poisson

brackets. On symplectic manifolds, they are de�ned after the symplectic form.

De�nition 4.9. Let (M,Ω) be a strong symplectic manifold. We de�ne the Pois-

son bracket of two functions F,G : M → R by

{F,G} def
= Ω(XF , XG) = dF (XG) = XGF = £XG F (4.9)
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Poisson brackets measure the rate of change of F along the Hamiltonian �ow

of G; or, equivalently, thanks to the skew-symmetry of the symplectic form, it is

the opposite of the rate of change of G along the Hamiltonian �ow of F .

While bilinearity and skew-symmetry are obvious from the de�nition, Jacobi

identity

{F, {G, h}}+ {G, {h, F}}+ {h, {F,G}} = 0

can be proven, for every triplet of smooth functions F , G, h. This is a consequence

of the fact that Hamiltonian �ows are symplectomorphisms, or � in other words

� that the symplectic form is closed (and the converse is also true: the validity

of Jacobi identity implies Hamiltonian �ows are symplectomorphisms). We thus

have the following

Theorem 4.10. The space of the smooth functions (modulo constant3) on a sym-

plectic manifold is a Lie algebra under the Poisson bracket.

Moreover, we have the following

Theorem 4.11. In view of the identity

[
XF , XG

]
= −X{F,G}, (4.10)

the set of Hamiltonian vector �elds H(M) is a Lie subalgebra of the set of vector

�elds X(M).

By means of Poisson bracket, we may also write the equations of motion of

Mechanics in a concise form.

Theorem 4.12. If θ is the �ow of the Hamiltonian vector �eld XH and F is a

smooth function, we have

d

dt

(
F ◦ θ(z)

)
(t) = dF (θ̇(z)(t)) = XH

θ(z)(t)F =

= {F,H}(θ(z)(t)) =
(
{F,H} ◦ θ(z)

)
(t), (4.11)

or, equivalently,
∂

∂t
(F ◦ θ) (z, t) = ({F,H} ◦ θ) (z, t). (4.12)

3Namely, smooth functions de�ned up to a constant: C∞(M)/R. Obviously, a constant
doesn't a�ect the de�nition of Hamiltonian vector �eld 4.4.
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One often writes Eq. (4.11) in the compact form4

Ḟ = {F,H} (4.13)

and calls it equation of motion in Poisson bracket form. Clearly, if one

chooses F = zi, where zi is the ith component function in a given coordinate chart,

one obtains the equations of motion for coordinates, i.e., Hamilton's Equations.

Example 4.13 (Symplectic view of the Schrödinger Equation). Let H be a com-

plex Hilbert space equipped with the inner product 〈, 〉 and the symplectic form

Ω(ψ1, ψ2) = 2~=〈ψ1, ψ2〉.

Given a (self-adjoint) Hamiltonian operator Ĥ onH, we write its expectation value
H : H → R as

H(ψ)
def
= 〈ψ, Ĥψ〉,

which is also our Hamiltonian function.

With straightforward computations, one veri�es that the vector �eld de�ned

by

XH
ψ = − i

~
Ĥψ,

is indeed the Hamiltonian vector �eld associated to H:

dHψ(φ) =
d

dt

∣∣∣∣
t=0

〈ψ + tφ, Ĥ(ψ + tφ)〉 = 〈φ, Ĥψ〉+ 〈ψ, Ĥφ〉 = 2<〈φ, Ĥψ〉 =

= 2=〈−iĤψ, φ〉 =
1

~
Ω(−iĤψ, φ) = (XH

ψ yΩ)(φ)

The integral curves of that vector �eld are the solutions of the Schrödinger Equa-

tion

ψ̇(t) = − i
~
Ĥψ(t).

By means of a similar calculation, one may verify that

{F,G}(ψ) = Ωψ(XF
ψ , X

G
ψ ) =

1

i~
〈ψ, [F̂ , Ĝ]ψ〉,

where [, ] is the Lie bracket (quantum commutator) of the vector �elds (operators)

F̂ and Ĝ associated to their expectation values F and G.

4This is only a symbolic notation: with Ḟ we denote neither the total nor the partial derivative
of F with respect to time, but precisely what is written above.
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Cotangent Bundle5

The most important symplectic manifolds are total spaces of cotangent bundles,

which have a natural symplectic structure and are also called phase spaces.

De�nition 4.14. Let (q, p) be a point in T ∗M with q ∈ M , p ∈ T ∗qM and

π : T ∗M → M is the projection. We de�ne the (tautological) one-form τ ∈
Ω1(T ∗M) by

τ(q,p) = dπ∗(q,p)p (4.14)

so that, if v ∈ T(q,p) (T ∗M),

τ(q,p)(v) = p
(
dπ(q,p)(v)

)
. (4.15)

Theorem 4.15. The tautological one-form τ is smooth and Ω = −dτ is a sym-

plectic form on the total space of T ∗M .

We note that Ω is automatically closed, since it is exact by de�nition.

4.1.2 Poisson manifolds

Poisson manifolds represent a generalization of symplectic manifolds, in the sense

they allow for a degeneracy we shall study below. One usually starts from Poisson

brackets instead of a skew-symmetric tensor, and later de�nes the latter in term

of the former. The �rst concept is the one of Poisson algebra.

De�nition 4.16 (Poisson algebra). A Poisson bracket on a manifold M is a

bilinear operation {, } on the ring of smooth functions C∞(M) such that:

(C∞(M), {, }) is a Lie algebra;

{, } is a derivation in each factor, that is

{FG,K} = {F,K}G+ F{G,K} ∀ F,G,K ∈ C∞(M). (4.16)

The analogous property

{F,GK} = {F,G}K +G{F,K}

follows from Eq. (4.16) and the skew-symmetry of the Poisson brackets.

5This paragraph may be omitted on a �rst reading: the contents will not be used, but we
report them here for completeness.
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A pair of a manifoldM and a Poisson bracket on it is calledPoisson manifold.

Then, since � �xing K � the map G 7→ {G,K} is a derivation, we have the

following

Theorem 4.17. Let M be a Poisson manifold. For each smooth function H on

M there is a unique vector �eld XH on M such that

XHG = {G,H} ∀ G ∈ C∞(M) (4.17)

and we call XH the Hamiltonian vector �eld of H.

Theorem 4.18. If θ is the �ow of the Hamiltonian vector �eld XH and F is a

smooth function, we have

d

dt

(
F ◦ θ(z)

)
(t) =

(
{F,H} ◦ θ(z)

)
(t), (4.18)

or, equivalently,
∂

∂t
(F ◦ θ) (z, t) = ({F,H} ◦ θ) (z, t). (4.19)

One often writes Eq. (4.18) in the compact form

Ḟ = {F,H}. (4.20)

So far, Poisson manifolds are very similar to symplectic manifolds. The main

feature distinguishing them each other is degeneracy. Indeed, smooth functions C

satisfying

{C,F} = 0 ∀F ∈ C∞(M) (4.21)

are called Casimir functions of the Poisson bracket. The set of Casimir functions

forms the centre of the Poisson algebra.6 This means that a Casimir function is

constant along the �ow of every Hamiltonian vector �eld or, equivalently, XC = 0,

that is, C generates trivial dynamics.

On a symplectic manifold M , XC = 0 implies dC = Ω[(XC) = 0 since Ω[ is

injective (for the nondegeneracy of the symplectic form): therefore, any Casimir

function is constant on connected components of M . This is an important point

for the construction of a thermodynamic theory: if entropy were chosen among the

6The centre of a group (or algebra) is the set of elements which commute with every element
of the group (or algebra).
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Casimir functions of the Poisson bracket on a symplectic manifold (thus, it would

certainly be conserved by reversible dynamics), it could not vary, and we would

not be describing but constant-entropy states (for example, the zero-entropy states

of Mechanics). In other words, there would be no room for dissipation. Instead,

the degeneracy of a Poisson structure allows a Casimir function to vary on the

manifold, but not along Hamiltonian vector �elds (reversible dynamics). Hence,

we see (and anticipate) that an irreversible contribution may be generated by a

`dissipative' vector �eld, which increases entropy along its integral curves, and �

summed to the Hamiltonian one � yields the total dynamics of the system.

In this context, canonical transformation take the name of Poisson transfor-

mations and are de�ned analogously:

De�nition 4.19. Let (M1, {, }1) and (M2, {, }2) be Poisson manifolds. A di�eo-

morphism f : M1 →M2 satisfying

f ∗{F,G}2 = {f ∗F, f ∗G}1 ∀ F,G ∈ C∞(M2) (4.22)

is called Poisson or canonical transformation.

Even in this case, Hamiltonian �ows are canonical transformation. In the

context of symplectic manifolds, this property was assured by the closedness of

the symplectic form, or � equivalently � by Jacobi identity. In the present context,

we do not dispose of a closed form, but Jacobi identity still holds and implies the

following

Theorem 4.20. If XH is a Hamiltonian vector �eld on the Poisson manifold

(M, {, }) and θ is the �ow of XH , θt is a Poisson transformation, namely

θ∗t {F,G} = {θ∗tF, θ∗tG} ∀ F,G ∈ C∞(M2).

Poisson tensor

The derivation property of the Poisson bracket implies the existence of a con-

travariant antisymmetric two-tensor �eld P ∈ Γ(T 2TM) such that

Pz(dFz, dGz) = {F,G}(z).

P is called cosymplectic or Poisson tensor.
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Let P ] : T ∗M → TM the vector bundle homomorphism associated to P .

Through this map, we have an even more direct rule to calculate Hamiltonian

vector �elds.

{F,H} =

XHF = dF (XH)

P (dF, dH) = dF
(
P ](dH)

) =⇒ XH = P ](dH) (4.23)

Lie-Poisson structures

In addition to the case of symplectic manifolds, there is another situation where

Poisson brackets arise naturally.

Theorem 4.21. Consider a Lie algebra g with bracket [, ] and a (weakly) non-

degenerate pairing between this and another Banach space h:

〈, 〉 : g× h→ R.

Then, h is a Poisson manifold with bracket

{F,G}h =

〈
h,

[
δF

δg
,
δG

δf

]〉
(h ∈ h, F,G ∈ C∞(h)) , (4.24)

which is often called Lie-Poisson bracket. The functional derivatives are de�ned

in the usual way:

dFh1(h2) =

〈
h2,

δF

δh

∣∣∣∣
h1

〉 (
h1, h2 ∈ h,

δF

δf
∈ g

)
.

Symplectic strati�cation

The �rst relation from Poisson and symplectic manifold arises when the Poisson

tensor is strongly nondegenerate.

Theorem 4.22. Let (M, {, }) be a Poisson manifold. If the Poisson tensor is

strongly nondegenerate, that is, it yields an isomorphism P ] : dF 7→ XF of T ∗M

with TM , then (M,Ω) is a symplectic manifold with Ω(XF , XG) = {F,G} for any
locally de�ned vector �elds XF and XG. The closure of the symplectic form follows

from Jacobi's identity.

In the general �nite-dimensional case, a Poisson manifold is the disjoint union

of symplectic manifolds, in the sense we shall now discuss brie�y. The subset
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P ](T ∗M) of TM is called the characteristic �eld or distribution of the Pois-

son structure.7 Since the rank of the Poisson operator P ] is not constant in general,

this is not a regular distribution, but a singular (or generalized) distribution.

The point is: when is a singular distribution integrable (in the sense of Sec. A.5)?

While the answer for the constant-rank case is given by Th. A.7 (Frobenius The-

orem), for singular distributions the problem is solved by the following

Theorem 4.23 (Stefan-Sussmann Theorem). A smooth (singular) distribution

D on M is integrable if and only if it is spanned by a set of smooth local vector

�elds which are in�nitesimal automorphisms of D, that is, for each point z ∈ M ,

horizontal vector �eld X : U → D (U ⊆ M) (we say that X ∈ XD
loc

(M)) with �ow

φXt , it happens that

d(φXt )z(Dz) = D(φXt )z . (4.25)

Another way to say it is that the distribution is φXt -invariant ∀X ∈ XD
loc

(M), or

that it is invariant under the �ow of every X ∈ XD
loc

(M).

Theorem 4.24 (Symplectic Strati�cation Theorem). In our case, D =

P ](T ∗M) and XD
loc

(M) is the set of local Hamiltonian vector �elds. Thanks to Ja-

cobi identity, �ows of local Hamiltonian vector �elds are Poisson maps (***), so

that Eq. (4.25) is automatically satis�ed, and P ](T ∗M) is integrable: its maximal

integral submanifolds are called symplectic leaves because the induced Poisson

structure on them is symplectic.

Another way to characterise a symplectic leaf is the following

De�nition 4.25. Let M be a Poisson manifold. We say that z1, z2 ∈ P are on

the same symplectic leaf of M if there is a piecewise smooth curve in M joining z1

and z2, each segment of which is a trajectory of a local Hamiltonian vector �eld.

Thanks to this alternative de�nition of foliation, we have a better feeling on

why the maximal integral submanifolds (i.e., leaves) of P ](T ∗M) are symplectic:

indeed, Hamiltonian �ows preserve the Poisson tensor, thus � in particular � its

rank, which is constant on the leaves. Hence, the Poisson tensor, when restricted

on submanifolds of dimension equal to its rank, `becomes' a symplectic tensor.8

7For a brief discussion of distributions and foliations, see Sec. A.5.
8See, e.g., [OR03] for a rigorous discussion.
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4.2 Steepest Entropy Ascent

The main ideas of the SEA principle were exposed in Sec. 3.2 and here are resumed

and developed in mathematical language.

For each thermodynamic theory, we are given:

• a (possibly in�nite-dimensional) smooth real Banach manifold M (whose

points are named γ);

• a set of functions (or operators) Ci : M → R, which represent the conserved

properties of the process;

• another function S : M → R, the entropy of the system;

• a (strongly nondegenerate) Riemannian metric tensor �eld g ∈ T2(M), which

� at every point of the manifold � takes two vectors as an input:

gp : (u, v) 7→ gp(u, v)

and gives a real number (which is the inner product of u and v).

In particular � as explained in Sec. A.4.4 �, the property of strong non-degeneracy

implies that the vector bundle map (at every point p) g[p : TpM → T ∗pM

[g[p(u)](v) = gp(u, v), (4.26)

which brings a vector into a covector. Therefore, the inverse map g]p : T ∗pM → TpM

is de�ned too, and we can de�ne the gradient of a smooth function by

dFp(v) = gp((gradF )p, v);

or, explicitly,

(gradF )p = g]pdFp. (4.27)

Furthermore, we suppose to know the reversible dynamics of any process, through

a vector �eld XH , which always takes known forms, as we will see in examples.

Instead, we focus on the irreversible part of the dynamics, represented by the

dissipative vector �eld Y S. A thermodynamic process α : I → M (I ⊆ R) is an

integral curve of the sum of the reversible and dissipative vector �elds:

α̇(t) = XH
α(t) + Y S

α(t) (4.28)
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Now comes the choice of the dynamics.

• We require the constancy of the properties Ci during a process: the conserva-

tion laws (also for the entropy) along the reversible vector �eld are taken for

granted, while the conservations along the dissipative one must be assured:

d(Ci ◦ α)(t)

dt
= dCi(α̇(t)) = dCi

(
Y S
α(t)

)
= 0, (4.29)

where we have used the chain rule in the �rst step.

• We build the dissipative vector �eld

Y S =
1

τ

(
gradS −

∑
j
βj gradCj

)
=

1

τ
g]
(

dS −
∑

j
βjdCj

)
=

= −1

τ
g]dΦ (4.30)

where τ is a dimensionality constant, Φ is the potential [GÖ97]

Φ(γ, a,β) = −S(γ) + aE(γ) +
∑

j
βjdCj(γ), (4.31)

and the βjs are Lagrange multipliers related to the conservation constraints.

Their values are computed by inserting Eq. (4.30) into Eq. (4.29):

1

τ

[
dCi(gradS)− dCi

(∑
j
βj gradCj

)]
= 0 (4.32)

g[ gradCi (gradS)−
∑

j
βjg[ gradCi

(
gradCj

)
= 0∑

j

g(gradCi, gradCj)βj = g(gradCi, gradS). (4.33)

and solving this linear system of equations.

This construction is justi�ed in [B08; B13] and can be recognized in Fig. 4.1.

We see that the rate of entropy production in a process is

d(S ◦ α)(t)

dt
= dS(α̇(t)) =

1

τ
g
(

gradS, gradS −
∑

j
βj gradCj

)
=

=
1

τ
g
(

gradS −
∑

i
βi gradCi, gradS −

∑
j
βj gradCj

)
≥ 0, (4.34)

where the last equality follows from Eq. (4.33), and the inequality from the non-

negativity of the metric tensor. The Second Law of Thermodynamics is thus
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Manifold M

grad E grad S

τ YS

XH

 α 𝑡

Thermodynamic process:

(grad S - βE grad E ) = τ YS

βE grad E

α(t1)

Fig. 4.1: SEA construction with energy as the only conserved quantity.

automatically satis�ed.

The reader might have wondered about the meaning of the thermodynamic

potential introduced in Eq. (4.31). This is the function indicating the equilibrium

states. Indeed, optimising it equals maximising entropy subjected to the conserva-

tion constraints. At equilibrium, it assumes the value of a Legendre transform of

entropy, depending on which variables are conserved. This is why it has sometimes

been called non-equilibrium Massieu function.

4.3 GENERIC

In this section we present the simplest form of GENERIC (see [GÖ97]), the one

that best resembles the SEA equation. Call M the manifold of all possible states

γ (γ ∈M) and build the following structure.

• There exist two potentials H : M → R and S : M → R representing energy

and entropy respectively.

• M is a (possibly in�nite-dimensional) Banach (co)metriplectic manifold, that
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is a manifold carrying two compatible structures:

� A Poisson structure describing the reversible part of the dynamics,

which consists of an antisymmetric contravariant 2-tensor �eld P : M →
T 2T ∗∗M , which yields the Poisson operator P ] : T ∗M → T ∗∗M satis-

fying P ](T ∗M) ⊆ T ∗∗M ⊆ TM9. Since P is assumed to be possibly

degenerate, P ] is in general non-invertible (it is not a vector-space iso-

morphism, but only an homomorphism). To this tensor the Poisson

bracket

{F,G}z = Pz(dFz, dGz) ∀ F,G ∈ C∞(M)

is associated on the set of smooth functions C∞(M). This bracket must

also satisfy Jacobi identity

{F, {G,K}}+{G, {K,F}}+{K, {F,G}} = 0 ∀ F,G,K ∈ C∞(M),

which represents a further constraint on the Poisson tensor.

� A degenerate co-Riemannian structure (i.e., we have a degenerate co-

metric instead of a nondegenerate metric) describing the irreversible

dynamics.10 This is suggested by various arguments that we don't en-

ter in this thesis, and consists of a symmetric and non-negative de�nite

contravariant 2-tensor �eld h : M → T 2T ∗∗M , which yields the vector

bundle map h] : T ∗M → TM satisfying h](T ∗M) ⊆ T ∗∗M ⊆ TM , in

general non-invertible and sometimes called friction operator. Analo-

gously, we have the dissipative bracket

[F,G]z = hz(dFz, dGz) ∀ F,G ∈ C∞(M).

The time evolution of the state is thus represented by the curve α : I →M (I ⊆ R),

which is the integral curve of the sum of two vector �elds XH and Y S such that

α̇(t) = XH
α(t) + Y S

α(t). (4.35)

The two vector �elds are:
9This condition is needed to guarantee that P ](dH) is a vector �eld, and is automatically

satis�ed whenever the manifold is modelled on a re�exive Banach space or, as a particular case,
on a Hilbert space. See [OR03].

10Here is the point where a generalization has already been proposed, especially in the context
of contact manifolds: see [He73; Gr08].



4.3. GENERIC 97

• a Hamiltonian vector �eld XH , computed through

XH = P ](dH); (4.36)

• a dissipative vector �eld Y S, computed through

Y S = h](dS). (4.37)

Moreover, we impose the following complementary requirements of degeneracy:

• the entropy function S is chosen among the distinguished functions (Casimir

functions) of the Poisson structure, that is

{F, S} = P (dF, dS) = dF
(
P ](dS)

)
= 0 ∀F ∈ C∞(M), (4.38)

or P ](dS) = 0; (4.39)

• analogously, the Hamiltonian function H is chosen among the distinguished

functions of the dissipative structure, that is

[F,H] = h(dF, dH) = dF
(
h](dH)

)
= 0 ∀F ∈ C∞(M), (4.40)

or h](dH) = 0; (4.41)

• lastly, we have to assure that other conserved properties of the system are

kept constants by the dynamics or, in other words, that they are distin-

guished functions of both brackets.

If α is a thermodynamic process and F is a smooth function, we have

d

dt
(F ◦ α) (t) = α̇(t)F =

= XH
α(t)F + Y S

α(t)F =

= {F,H}(α(t)) + [F, S](α(t)) =

= ({F,H} ◦ α) (t) + ([F, S] ◦ α) (t); (4.42)

or, more synthetically,

Ḟ = {F,H}+ [F, S]. (4.43)
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From the degeneracy conditions, one easily sees that, for F = H,

Ḣ = 0, (4.44)

which re�ects the conservation of energy for an isolated system; and, for F = S,

Ṡ = [S, S] ≥ 0, (4.45)

in accordance with the principle of entropy non-decrease.

We note in passing that the expression

h](dS)

is similar in form to Eq. (4.27). The di�erence is the degeneracy of the pairing,

which hinders us from disposing of an expression like Eq. (4.27); in other words,

there is no one-to-one correspondence between covectors and vectors. Howsoever,

by means of a further condition we may associate to it the meaning of gradient, in

the sense we will discuss later.

4.4 Discussion

Thanks to having rewritten the SEA method with a more rigorous di�erential

geometry language, we made it more comparable to the GENERIC model.

First of all, since the reversible part of the dynamics in the SEA model is not

rationalized as in GENERIC, but only described case by case, we see that the

Poisson structure may be fully imported from the second to the �rst dynamics

without changes. Hence, we shall focus on the dissipative part, analyse similarities

and di�erences between the two models and highlight the aspects not completely

clear that deserve to be further developed.

4.4.1 Purposes

In their original article [GÖ97], Grmela and Öttinger declared the two main pur-

poses of GENERIC:

1. to reproduce known equations of motion of known physical theories by cast-

ing them in a single abstract form;
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2. to suggest new equations for new thermodynamic theories dealing with com-

plex systems.

The goal of the SEA method [B13] applied to meso- and macroscopic systems was

similar:

1. to show that a broad selection of known theoretical frameworks for the de-

scription of non-equilibrium thermodynamics at various levels of description

can all be uni�ed when viewed as implementations of the SEA principle;

2. to provide rigorous mathematical formalization of the so-called Maximum

Entropy Principle (MEP) Principle, as an attempt to clarifying its meaning,

scope and domain of validity;

3. to propose a formalization of known theories which reduces to the linear the-

ories in the proximity of equilibrium, entailing Onsager reciprocity. Hence,

showing that such theories are indeed SEA with respect to any metric, which

at equilibrium reduces to a generalized Onsager conductivity matrix.

4.4.2 Geometric structure

By construction,

Y SF = dF (Y S) = dF
(
h](dS)

)
= h(dF, dS) = [F, S] = 0;

for every distinguished function F of the dissipative bracket. That is, the de-

generacy condition (4.40) imposed on the geometrical structure of the manifold

implies that every distinguished function of the dissipative bracket cannot vary

along the dissipative vector �eld: the entropy `gradient' h](dS) is automatically

parallel to the level sets of all the distinguished functions (thus, for example, to

the level set of energy). The information of constancy of the conserved functions

is contained already in the co-metric tensor h. Conversely, the SEA model is built

on a manifold with less structure and, consequently, there cannot be preliminary

assumptions on the functions related to the conserved properties, i.e., that they are

distinguished functions of some structure. As a consequence, in the SEA method

the conservations must be imposed later.

The GENERIC dissipative structure is a `weak version' of the SEA one: by

looking at Fig. 4.1 and Fig. 4.4, we see that in the GENERIC picture there

cannot be any dissipative vector outside the metric leaf for the degeneracy of the
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dissipative bracket. In the SEA picture the situation is di�erent, but can easily

be transformed into the GENERIC one by simply allowing for a degeneracy of the

metric tensor.

The geometric structure of the dissipative dynamics of GENERIC is similar to

a sub-Riemannian structure. The di�erence lies in the nature of the distribution

h](T ∗M): whereas, in the sub-Riemannian case, this is a regular distribution (i.e.,

of constant dimension), in the case of GENERIC this may not happen (since the

rank of h] may vary from point to point), and one is faced to a generalized (or sin-

gular) distribution, whose dimension is not constant.11 As outlined in Par. 4.1.2,

a generalized distribution is integrable if and only if it is generated by a family

of smooth vector �elds, and is invariant with respect to their �ows. In Classical

Mechanics, the condition that assures this integrability is Jacobi identity, since it

forces Hamiltonian �ows to be canonical transformation (Poisson maps), that is,

to preserve the Poisson structure. Indeed, as in Th. 4.7, since � for t = 0, the �ow

of XH is the identity � we have to prove that

£XH P = 0. (4.46)

Proof. We make use of the identities Eqs. (A.26) and (A.36) and Jacobi's (JI),

£XH (P (dF, dG))
(A.26)

=

= (£XH P )(dF, dG) + P (£XH dF, dG) + P (dF,£XH dG)
(A.36)

=

= (£XH P )(dF, dG) + P (d(£XH F ), dG) + P (dF, d(£XH G)) =

= (£XH P )(dF, dG) + P (d{F,H}, dG) + P (dF, d{G,H}) =

= (£XH P )(dF, dG) + {{F,H}, G}+ {F, {G,H}} (JI)
=

= (£XH P )(dF, dG) + {{F,G}, H} =

= (£XH P )(dF, dG) + £XH (P (dF, dG)).

What about the dissipative part of the dynamics? Going through the same

11Hereafter, we shall consider �nite-dimensional manifolds, because the theorems we will men-
tion are valid for this case.
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steps, we notice that, since

£Y S(h(dF, dG))
(A.26)

=

= (£Y S h)(dF, dG) + h(£Y S dF, dG) + h(dF,£Y S dG)
(A.36)

=

= (£Y S h)(dF, dG) + h(d(£Y S F ), dG) + h(dF, d(£Y S G)) =

= (£Y S h)(dF, dG) + h(d[F, S], dG) + h(dF, d[G,S]) =

= (£Y S h)(dF, dG) + [[F, S], G] + [F, [G,S]] ,

�ows of the dissipative vector �eld do not preserve the cometric tensor. For this

reason, the distribution h](T ∗M) is not integrable, and we do not even have the

notion of distance, as we would have in the sub-Riemannian (constant rank) case

(Carnot-Carathéodory distance: see, e.g., [Mon06]).

Instead, if we endowed the dissipative structure with the Leibniz identity

[[F,G] , K] = [F, [G,K]] + [[F,K] , G] , (4.47)

which is a generalization of Jacobi identity for non skew-symmetric brackets, we

see that dissipative �ows preserve the cometric tensor, thus guaranteeing the in-

tegrability of the generalized distribution h](T ∗M) to metric leaves. On metric

leaves, one has a (non-degenerate) metric, can calculate distances with it, and

de�ne gradients by Eq. (4.27). In this case, one may also interpret GENERIC

dynamics as a SEA dynamics on metric leaves.

At the present time, we do not know the implications of this possible assump-

tion from the physical standpoint, nor whether it is satis�ed in known examples

of dynamics (such as the Boltzmann Equation) because of its complexity of veri�-

cation. We only recognize its mathematical coherence and notice that it leads to

a more symmetric treatment of the two structures, maybe paving the way to an

uni�cation into a single one.

It is interesting to understand the relationship between metric leaves, where

metriplectic dynamics takes place, and symplectic leaves, where Hamiltonian dy-

namics takes place. The �rst ones are surfaces with constant energy, while the

second ones are surfaces with constant entropy (because Hamiltonian dynamics is

reversible). As a consequence of this, the intersection of symplectic leaves on a

metric leaf produces isentropic lines, and the reversible vector XH is always con-

tained in a symplectic leaf. This is illustrated in Fig. 4.4, where the constancy of
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Thermodynamic process:

Isentropic line:

α(t1)

 α t1

Manifold M

Metric Leaves
E = E1

Ci = Ci
1

E = E2

Ci = Ci
2

Fig. 4.2: Metric leaves in a manifold: GENERIC dynamics takes place on a single

metric leaf.

YS

XH

 α t1

α(t1)

Neighbourhood of α(t1)

Thermodynamic process:

Isentropic line:

Fig. 4.3: GENERIC dynamics on a metric leaf, with the velocity vector decom-

posed in a reversible or Hamiltonian part and a irreversible or dissipative one.

all the other conserved quantities is assumed.
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Metric Leaf

Symplectic Leaf

Submanifold with Ci = constant

E = constant

S = constant

 α t1

YS

XH

α(t1)

Thermodynamic process:

Fig. 4.4: Intersection of a metric leaf with a symplectic leaf and correlation with

the evolution of a thermodynamic process.

4.4.3 MEPP

Let's resume our last statement and suppose, for a moment, that there is only

dissipative dynamics, con�ning ourselves on a metric leaf, where the degenerate

contravariant tensor h is restricted into the non-degenerate one hL. In this way,

we can build the corresponding covariant metric tensor gL, which acts on vectors

as gL(u, v) = hL(h[L(u), h[L(v))12, take a unit vector v (gL(v, v) = 1) and wonder

in which direction the directional derivative of entropy is greater. By de�nition

(4.27) of gradient of a smooth function (given the non-degenerate bilinear form

gL) and the Cauchy-Schwarz inequality,

|dS(v)|2 = |gL(gradL S, v)|2 ≤

≤ gL(gradL S, gradL S) gL(v, v) = ‖gradL S‖
2
L . (4.48)

12In �nite dimension, it has matrix [gL,ij ] = [hijL ]−1. For a more rigorous treatment of this
procedure for the case of symplectic leaves, see [OR03].
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That is, the absolute value of the directional derivative is always smaller than the

norm of the gradient vector, and reaches its maximum value when v =
gradL S

‖gradL S‖L
.

The restriction of the total entropy `gradient' h](dS) to the metric leaf is indeed

gradL S
13, since the evolution of the dissipative part takes place uniquely on the

metric leaf by de�nition: the entropy gradient has zero components outside of it.14

Therefore, any nonequilibrium dynamics that can be written in GENERIC

form and satisfying Leibniz identity (4.47) is automatically SEA.

4.4.4 Relaxation time

Once the state has been chosen, namely the manifold where a thermodynamic

process occurs, in the SEA concept we may identify the following two degrees of

freedom:

• distance between states (or, more generally, the metric);

• trajectory of the state representative (or, locally, direction of evolution on

the manifold).

It is clear that the rate of evolution is regulated by the metric, since the velocity

of a curve is the scalar

‖α̇(t)‖ =
√
g(α̇(t), α̇(t)),

which can be scaled by a constant in the metric tensor.

GENERIC and SEA show that many thermodynamic theories may be given

a metric with respect to which the dynamics is fully reproduced. If, indeed, one

selects the GENERIC or SEA assumption, the problem falls entirely onto the

choice of the metric.

A question might arise at this point: is there a metric natural to the manifold

of each nonequilibrium framework? That is, can one forget about the �standard�

equations of motion in each framework (GENERIC always �nds a metric when it

starts from the equations of motion) and �nd another form for them through a

new metric not imposed by the �standard� equations themselves? Perhaps, this is

a point where the emerging �eld of Information Geometry could give a hint.

In the previous formulation of the SEA model, in the IQT framework, a metric

(the Fisher-Rao metric) was chosen ab initio: this was inspired by the fact that

13This vector is sometimes called horizontal gradient, because it belongs to the distribution
Im(h]).

14It has no vertical components.
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the state is, essentially, a probability measure. On the other hand, because of

the novelty of the theory, there was no equation having to be reproduced by the

model, as in the other meso- and macroscopic frameworks. Due to this fact, the

relaxation time τ was allowed to be a functional of the state, in order to keep the

degree of freedom rate of evolution in the dynamics.

But now that the metric is not chosen a priori, the SEA relaxation time may

be merged in the metric tensor (indeed, the operator L̂
def
= g]/τ introduced in [B13]

does so), since it simply scales the intensity of the dissipative vector �eld in the

direction of the entropy gradient. That's why, in this work, we assumed it to be

only a dimensionality constant.

4.4.5 Reversible-irreversible coupling

One the most interesting successes of metriplectic dynamics is the description of

the mutual relation between the reversible and irreversible parts of the dynam-

ics. Indeed, let's do a comparison among the dynamic theories we have met so far:
Theory Equation Additional constraints

Onsager's dynamics α̇ = L
∂S

∂α
dH = 0, dCi = 0

Edelen's theory
j = jN + jD

= U + ∇Φ
X ·U = 0

GENERIC
α̇ = α̇rev + α̇irr

= P ]dH + h]dS

P ]dCi = 0, h]dCi = 0

P ]dS = 0, h]dH = 0

Steepest-Entropy-Ascent
α̇ = α̇rev + α̇irr

= α̇rev − g]dΦ

Recalling the de�nition (4.31) of the thermodynamics potential and exploiting

the degeneracy conditions, GENERIC may be also rewritten as

α̇ = α̇rev + α̇irr =
1

a
P ]dΦ− h]dΦ (4.49)

This was called by Grmela a nonlinear Onsager-Casimir equation.

In its reasoning, which we outlined in Subsec. 2.1.4, Onsager interprets α̇

as a �ux. Indeed, this represents the rate of evolution of the state as pulled
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out from equilibrium. If we interpret the operator L (or h] and g]) as a kind

of `spring constant', X
def
= dΦ takes the role of a thermodynamic force, i.e., an

indicator of how much a system is far from equilibrium (think of the fact that the

derivative of the potential vanishes at equilibrium!). In the case of Onsager, the

force
∂S

∂α
vanishes at equilibrium since the constraints of energy and number of

particle conservation are automatically satis�ed (he considers a micro-canonical

ensemble).

In light of this, we are open to two di�erent interpretations of the work of

Edelen:

• Edelen's total �ux may be interpreted as α̇, so that the two components

(dissipative and non-dissipative) may be naturally associated to α̇rev and

α̇irr in the following way (in this form of GENERIC, we take the quadratic

potential that leads to linear phenomenological relations):

jD = LX ←→ α̇irr = −h]dΦ = h]dS (4.50)

jN = U ←→ α̇rev =
1

a
P ]dΦ = P ]dH (4.51)

Edelen's condition X ·U = 0 becomes

dΦ(P ]dH) = {−S + aH,H} = 0, (4.52)

which is automatically veri�ed for the degeneracy condition (4.39) and the

skew-symmetry of the Poisson bracket.

Hence, if Edelen suggestion to consider non-dissipative phenomena is inter-

preted as above, Onsager dynamics appears to contain only the irreversible

component, and could be extended as follows:

α̇ = P
∂H

∂α
+L

∂S

∂α
, (4.53)

which is basically the GENERIC.

• The second interpretation is more natural to Edelen's presentation itself, and

it is advocated by Goddard in [Go11], or Ostoja-Starzewski and Zubelewicz

in [OZ11]. Consider a kind of `non-dissipative irreversible' contribution due

to some symmetric part of the friction operator:

α̇irr = −h]symdΦ− h]skewdΦ. (4.54)
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The skew-symmetric part obviously does not contribute to the entropy pro-

duction. Taking a look toEq. (4.49), we don't see why such a `non-dissipative

irreversible' contribution should not directly incorporated in the reversible

dynamics. This is why we prefer the �rst interpretation.

An alternative explanation by Grmela and Öttinger in [GÖ97] is that they

�consider isolated systems (no external magnetic �elds) and [they] assume

that a su�ciently detailed level of description has been chosen�.

4.4.6 Thermodynamic forces and �uxes

As we see from the previous considerations, the quantity that is `maximized' is

the total entropy production, and not a local one. A local MEPP was originally

proposed by Ziegler in [Zi57] and brought to the fore by Martyushev and Se-

leznev in [MS06] as a possible `�rst principle' entailing the Second Law, linear

phenomenological relations near equilibrium, and Onsager reciprocity; in particu-

lar it constitutes an extension of Linear Irreversible Thermodynamics (LIT).

In order to see the consistency of the SEA and GENERIC approaches to LIT,

we have to identify thermodynamic forces and �uxes. Let's concentrate ourselves

onto GENERIC. Öttinger in [Ö05], citing the article [E98] by Edwards, decomposes

the friction operator into

h] = B ◦D ◦BT , (4.55)

where B : Z → TM is a �mechanical component�, BT : T ∗M → Z∗ is its trans-

pose map, D : Z∗ → Z contains all the dynamic material information and may be

identi�ed with the phenomenological matrix of classical nonequilibrium thermo-

dynamics (L = D), and Z is a vector space. Then, he de�nes the thermodynamic

forces

X
def
= −BTdS ∈ Z∗, (4.56)

so that the classical form of linear irreversible thermodynamics arises naturally:

Ṡ = [S, S] = dS(h]dS) = dS(B ◦ L ◦BTdS) =

= dS ◦B ◦ L ◦BT (dS) = (BTdS)(LBTdS) = X(LX) (4.57)

and the (Onsager) symmetry and non-negative de�niteness of L are deduced from

the analogous properties of h] (cf. Eq. (4.55)). De�ning also the thermodynamic
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�uxes

J = LX, (4.58)

he realizes that the structure of this GENERIC version carries the one of Linear

Irreversible Thermodynamics. The transformation BT basically moves some dif-

ferential operator from M to B, thus to X, allowing us to recognize the forces of

Classical Non-Equilibrium Thermodynamics.

In CNET, however, the thermodynamic force takes the role of how far a system

is from equilibrium. The correct quantity to be optimized to �nd equilibrium states

is not the unconstrained entropy, but the potential (4.31)

Φ(x, a,β) = −S(x) + aE(x) +
∑

i
βiCi(x), (4.59)

whose di�erential dΦ vanishes at equilibrium states.

In [Ö05] no explanation on how to make the decomposition (4.55) is given, but

only a few examples are presented, and the only imposed constraint is

BTdE = 0. (4.60)

If the following further constraints are added:

BTdCi = 0 (4.61)

for each distinguished function of the dissipative bracket, we see that

−BTdΦ = BTdS, (4.62)

and we are allowed to treat −BTdS as a thermodynamic force, since

J = −LBTdΦ = LBTdS. (4.63)

We note that, in this reasoning, no reference is made to physical space R3, no local

force X = X(r) (r ∈ R3) emerges, but a force is a covector �eld on a manifold,

hence function of the state. For example, if we choose a set of �elds as state (as

in hydrodynamic: see Sec. 5.1)

x = x̃(r) = (x1(r), x2(r), . . . , xn(r))
(
r ∈ R3

)
,
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a thermodynamic force is function of the entire �elds, and is a �eld itself. Eq. (4.57)

becomes

dS

dt
= [S, S] =

〈
δS

δx
, h]

δS

δx

〉
=

〈
CT
M

δS

δx
, LCT

M

δS

δx

〉
= 〈X,LX〉 ; (4.64)

and, if one doesn't make the integration implied by the scalar product inEq. (4.64),

but performs only the scalar product on the discrete indexes

XTLX, (4.65)

so that
dS

dt
=

∫
XT (r)L(r)X(r)d3r, (4.66)

he may be led to recognize the local entropy production σ(r) that appears in

dS

dt
=

∫
σ(r)d3r. (4.67)

by

σ(r) = XT (r)L(r)X(r) (4.68)

and infer the non-negativity of σ(r) by the one of L. However, since the domain

of integration is all the region of R3 occupied by the system (it is not arbitrary,

because it is closed by choice!), the above identi�cation is not fully justi�ed: thus,

the local entropy production is not assured to be non-negative. Moreover, it is not

clear why one should distinguish between discrete and continuous indexes in this

setting of global reasoning (the state is the collection of �elds, there is not a state

at each point of R3).

As a �nal question, we ask ourselves whether the transformation rule (4.56)

is a change of variables from x ∈ M (the coordinates of the manifold where we

started the construction) to some y ∈ N , which � in general � is not known, since

the properties of the transformation are not known as well. If we were able to

invert B, we could invert the following

α̇(t) =
[
PdH + (B ◦ L ◦BT )dS

]
α(t)

= [PdH +BJ ]α(t) , (4.69)

to get

[ẏ(t) =] β̇(t) ≡ B−1
α(t)α̇(t) =

[
B−1PdH + J

]
α(t)

= Uα(t) + Jα(t), (4.70)
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and go back to y.15 For instance, in the case of hydrodynamics, B is not even

invertible: hence, the representation in terms of forces and �uxes of LIT is not

fully equivalent to the GENERIC evolution equation. Furthermore, we doubt its

usefulness: in the spirit of SEA and GENERIC, the thermodynamic force may be

taken as dΦ (or dS for GENERIC), and the corresponding �ux as h]dΦ (= h]dS

for GENERIC), without need for making a transformation of variables.

As we have just seen, the GENERIC approach in the present form (namely, for

closed system only) doesn't claim to deal with a maximization of the local entropy,

nor assure its non-negativity. In fact, the really fundamental quantity is the total

entropy S, which is assured not to decrease for closed system. From the point

of view of GENERIC, the most promising mathematical tool for modelling open

systems resides in the Dirac structures, which represent an extension of Poisson

structures and a geometrical framework to treat constraints, i.e., driven systems

(see [JÖ04; Ö05]).

In the SEA model, an attempt to treat open systems was made in [B08; B13],

and a simple phenomenological model for quantum systems were developed in

[B09]). An interesting parallel could be played out between this attempt and the

more mathematical framework of Dirac structures.

Another interesting way of making thermodynamic forces and �uxes emerge

from the geometric structure is in [Gr08], in the context of contact manifolds.

4.5 (Free) thoughts on brackets

This section may be omitted since it does not contain information needed to un-

derstand what will be exposed in the subsequent chapters. Moreover, some notions

have not been introduced in the remaining part of the thesis. We presently do not

know the physical implications of the following mathematical statements, but we

only want � sometimes � to stress the mathematical consistence of our reasoning,

and � other times � only to suggest possible future developments, even if we have

not the time and the necessary mathematical tools to tackle the topics.

15More rigorously, as in Sec. A.5, we could wonder if B−1(TM) is the tangent bundle of some
manifold N .
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4.5.1 Leibniz-Leibniz bracket

Under some conditions, we may think of the Poisson and cometric tensors as a

unique tensor in the following way.

Given the entropy S, the energy H, and all the conserved properties Cj, we

introduce, as before, the potential

Φ = −S + aH +
∑
j

βjCj. (4.71)

Then, de�ne the tensor �eld

T = P − h
(

: M → T 2T ∗∗M
)
, (4.72)

yielding the vector bundle homomorphism T ] : T ∗M → T ∗∗M that satisfy P ](T ∗M) ⊆
T ∗∗M ⊆ TM , and associate to this the Leibniz-Leibniz bracket16F,Gz = Tz(dFz, dGz) = Pz(dFz, dGz) + hz(dFz, dGz) =

= {F,G}z + [F,G]z ∀ F,G ∈ C∞(M). (4.73)

on the set of smooth functions C∞(M). This bracket must also satisfy Leibniz

identityF,G, K=
F,G,K+

F,K, G ∀ F,G,K ∈ C∞(M), (4.74)

which represents a further constraint on the tensor T . As discussed in Sec. 4.4.2,

adding the requirement of the Leibniz identity on the symmetric bracket makes

dissipative processes preserve the cometric tensor. Imposing the Leibniz identity

on the bracket (4.73) is a further generalization. This does not imply Jacobi and

Leibniz identities on the Poisson and dissipative brackets. Not even the converse

is true: Jacobi and Leibniz identity do not entail Eq. (4.74), as we can see by

16We decided to call this bracket in this way because it satis�es both Leibniz identity for
derivations and Leibniz identity (4.47).
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expanding Eq. (4.74) in terms of Poisson and dissipative brackets:

{{F,G} , K}+ [{F,G} , K] + {[F,G] , K}+ [[F,G] , K] =

= {F, {G,K}}+ [F, {G,K}] + {F, [G,K]}+ [F, [G,K]] +

+ {{F,K} , G}+ [{F,K} , G] + {[F,K] , G}+ [[F,K] , G] .
(4.75)

However, the conditions are compatible: satisfaction of Leibniz identity by Poisson

and dissipative brackets may be seen as a `�rst step' towards Eq. (4.75); the other

`steps' are the mutual Leibniz identities

[{F,G} , K] = [F, {G,H}] + [{F,K} , G]

and

{[F,G] , K} = {F, [G,H]}+ {[F,K] , G} .

Recalling the arguments of Subsec. 4.4.2, all these relations would guarantee

that Hamiltonian �ows preserve the dissipative structure, that dissipative �ows

preserve the Poisson structure, hence that thermodynamic processes preserve the

whole tensor �eld de�ned in Eq. (4.72).

The time evolution of the state is thus represented by the curve α : I →
M (I ⊆ R), which is the integral curve of the (structure-preserving) vector �eld

ZΦ such that

α̇(t) = ZΦ
α(t), (4.76)

and computed through

ZΦ = T ](dΦ). (4.77)

4.5.2 (Complex) SEA-Nambu dynamics

Steepest-Entropy-Ascent dynamics is rather similar to Nambu dynamics in that,

unlike symplectic and Poisson ones, it adopts as generators not only the Hamil-

tonian, but also all the other conserved functions, which are thus brought to the

same level of energy. In addition, however, also entropy is present to generate the

irreversible part of the time evolution, so that, in metriplectic systems, the latter

is associated to a symmetric tensor or bracket. On the other hand, as one may

learn from Kähler geometry, a complex structure J can provide the link between
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a symmetric and a skew-symmetric tensor in the following way:

g(v, w) = ω(v, Jw),

where (as in Kähler manifolds) a symplectic and Riemannian tensor have been

taken as examples.17 Therefore, we have the feeling (but, so far, we have not

developed the necessary mathematical instruments to tackle the problem) that

energy and entropy could be uni�ed in a single entity such as E + iS, and in such

a way that the full skew-symmetry of the Nambu bracket united to the `complex-

i�cation' of entropy might assure both constancy of the conserved properties and

non-decrease of entropy along a thermodynamic process.

4.5.3 Complex GENERIC

The same idea might be applied to the GENERIC formalism. The di�erence is

degeneracy, in such a way that the only generators are energy and entropy, and all

the conserved functions are distinguished functions of the bracket(s). It would be

interesting to look whether the complex structure capable of capturing the features

of GENERIC is already present in the literature, or it have to be designed for this

occasion.

17Think of the fact that i times a hermitian matrix gives an anti-hermitian one.
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5
Applications

5.1 Metriplectic formulation of Hydrodynamics

The simplest framework for which we may see metriplectic dynamics realise itself is

the system of equations of Subsec. 2.1.6. This formulation was given by Morrison

in [Mo84] and Öttinger in [Ö05] and we report it here in a schematic way, in

order to highlight how the various building blocks take place in the geometrical

formulation. We do not discuss the derivation of the starting equations, since the

latter is on the same streamline of Subsec. 2.1.2, where we outlined the necessary

steps without directly showing them.

Firstly, the two most natural choices of state are:

• an energy representation:

x = (ρ,M , u) ;

• an entropy representation:

x′ = (ρ,M , s) ,

which we shall adopt below.
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ρ is the mass density, M the bulk volume-speci�c linear momentum of the �uid,

u the volume-speci�c internal energy, and s the volume-speci�c entropy. Another

common option consists in choosing the velocity v instead of the linear momentum.

Then, one makes the assumptions of local thermal equilibrium, linear relations

between the viscous stress tensor1 and the bulk velocity
τ ik = Λikmn∂m

(
Mn

ρ

)
Λikmn def

= −η
(
δniδmk + δnkδmi − 2

3
δikδmn

)
− ζδikδmn

, (5.1)

and between heat �ux and temperature gradient (Fourier Law).

The whole system of equation is the following:

∂ρ

∂t
= − div(M )

∂M

∂t
= − div

(
M ⊗M

ρ
+ τ

)
− grad(p) + ρ grad(φgrav)

∂s

∂t
= − div

(
sM

ρ

)
+
κ

T
∂2T − τ

T
: grad

(
M

ρ

) , (5.2)

where φgrav is the gravitational energy per unit mass, and ∂2 is the Laplacian.

Temperature and pressure arise for the local equilibrium assumption and are not

new variables, since they are functions of mass and entropy density:
T =

∂u(ρ, s)

∂s

p = sT (ρ, s) + ρµ(ρ, s)− u(ρ, s) = s
∂u(ρ, s)

∂s
+ ρ

∂u(ρ, s)

∂ρ
− u(ρ, s)

. (5.3)

The other parameters are

η : shear viscosity

ζ : bulk viscosity

κ : thermal conductivity

.

Having identi�ed the system of interest, we are ready to give its metriplectic

formulation. First of all, some mathematical points should be clari�ed. Indeed,

the whole problem of the description of a �uid could be situated in the more

general framework of its abstract Hamiltonian description. Here we do not want

to give such deeply mathematical (beautiful) insights (we shall give some basic

ideas before introducing the discussion about the Boltzmann Equation), but we

1As usual, the stress tensor is decomposed as: σik = τ ik + pδik.
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limit to notice that, henceforth, thanks to the L2 inner product∫
x · ydV, (5.4)

covectors and vectors (which, on a vector space, are identi�ed with the vector

space itself) will be identi�ed. For example, the di�erential dAy of a function A

dAy(z) =

〈
δA

δx

∣∣∣∣
y

, z

〉
=

∫
δA

δx

∣∣∣∣
y

· zdV

is identi�ed with the functional derivative
δA

δx

∣∣∣∣
y

. Therefore, Eq. (4.35) takes the

form
∂x

∂t
= P ]

x

δH

δx
+ h]x

δS

δx
. (5.5)

The �rst ingredient is the generator of reversible dynamics, namely, the total

energy

H =

∫ [
M 2

2ρ
+ ρφgrav + u(ρ, s)

]
dV, (5.6)

which is a constant of the motion if the �uid is an isolated system. Furthermore, we

assume that any boundary term arising from integration by parts vanishes. The

Poisson bracket is calculated from the corresponding ideal �uid model (Euler's

equations the ideal �uid) and reads

{f, g}x =

∫
dV ρ

[(
∂

∂r

δf

δρ

)
· δg
δM

−
(
∂

∂r

δg

δρ

)
· δf
δM

]
+

+M ·
[(

grad
δf

δM

)
δg

δM
−
(

grad
δg

δM

)
δf

δM

]
+

+s

[(
∂

∂r

δf

δs

)
· δg
δM

−
(
∂

∂r

δg

δs

)
· δf
δM

]
. (5.7)

Other forms of the bracket may be obtained according to the procedure that is

used to the scope, and they all related through integration by parts. This is the

more symmetric and the one which allows for the most abstract treatment of the

hydrodynamic system, which we do not talk about.

The Poisson bracket has several Casimir functions: some of them are of the

form

C(x) =

∫
ρψ(s/ρ)dV, (5.8)
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among which we notice the total mass and the total entropy of the �uid

m(x) =

∫
ρdV (5.9)

S(x) =

∫
sdV. (5.10)

The latter is chosen to be the generator of the irreversible dynamics, which is

governed by the dissipative bracket

[f, g]x =

∫
dV

{
κT 2∂k

(
1

T

δf

δs

)
∂k
(

1

T

δg

δs

)
+

+TΛikmn

[
∂i

(
δf

δMk

)
− 1

T
∂i

(
Mk

ρ

)
δf

δs

] [
∂m

(
δg

δMn

)
− 1

T
∂m

(
Mn

ρ

)
δg

δs

]}
. (5.11)

This may veri�ed to be symmetric and positive-de�nite [Mo84]; the Hamiltonian

function and the total mass are distinguished functions.

To the brackets correspond the Poisson operator2

P ]
x = −

 0 ∂k(ρ 0

ρ∂k Mi∂k + ∂i(Mk s∂k

0 ∂k(s 0

 (5.12)

and the friction operator

h]x =


0 0 0

0 ∂i
(
TΛikmn∂m −∂i

[
Λikmn∂n

(
Mn

ρ

)
0 Λikmn∂i

(
Mk

ρ

)
∂m − 1

T
Λikmn∂i

(
Mk

ρ

)
∂n

(
Mm

ρ

)
− 1

T
∂i

[
βT 2∂i

(
1

T

 .

(5.13)

The last ingredients we need are the functional derivatives

δH

δx
=


µ+ φgrav −

M 2

2ρ2

v

T

 ,
δS

δx
=

 0

0

1

 . (5.14)

Putting all the pieces together, we realise that the full system of equations (5.2)

2With the open bracket we mean that what must be di�erentiated is not only what stands
immediately on its right, but also what comes after the matrix multiplication has been performed.
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takes the metriplectic form (5.5).

Equilibrium states

Equilibrium states can be found by doing entropy maximisation subjected to con-

straints. For example, a family of equilibrium states may be recovered if we de�ne

the potential

Φ(x, β) = −S(x) + βH(x) + λm(x). (5.15)

Its functional derivatives are

δΦ

δρ
= β

[
−M

2

2ρ2
+ φgrav + µ(ρ, s)

]
+ λ

δΦ

δM
= β

M

ρ
δΦ

δs
= βT (ρ, s)− 1

, (5.16)

and setting them to zero, we obtain
λeq = −µ(ρeq, seq) + φgrav

T (ρeq, seq)

M eq = 0

βeq =
1

T (ρeq, seq)

. (5.17)

The potential thus becomes

Φ(xeq, βeq, λeq) = −S(xeq)+
1

T (ρeq, seq)
H(xeq)−

µ(ρeq, seq) + φgrav
T (ρeq, seq)

m(xeq), (5.18)

i.e., the opposite of a Massieu function at equilibrium, plus a contribution from

the external potential. In Eq. (5.17) we have already the value of the Lagrange

multiplier β, but in the �rst equation we can only determine λeq as a function of

ρeq and seq. This means that the equilibrium is characterized by three degrees of

freedom: one is the external potential energy φgrav, and the other two are ρeq and

seq (or, by means of a proper change of variables, Teq or µeq).
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Thermodynamic forces and �uxes

As brie�y reported in Subsec. 4.4.6, Edwards and Öttinger decompose the friction

operator into

h] = B ◦ L ◦BT , (5.19)

where L is the phenomenological matrix of classical nonequilibrium thermodynam-

ics. In the case under study, we have

B =


0 0

∂i 0
1

T
∂i

(
Mk

ρ

)
1

T
∂i

 (5.20)

BT =

 0 −∂m
1

T
∂n

(
Mm

ρ

)
0 0 −∂n

(
1

T

 (5.21)

L =

(
−TΛikmn 0

0 κT 2δni

)
(5.22)

Then, thermodynamic forces are de�ned:

X
def
= −BT δS

δx
=

 − 1

T
∂n

(
Mm

ρ

)
−∂n

1

T

 , (5.23)

so that the classical form of linear irreversible thermodynamics arises naturally:

Ṡ = X(LX) (5.24)

and the (Onsager) symmetry and non-negative de�niteness of L are deduced from

the analogous properties of h] (cf. Eq. (5.19)). De�ning also the thermodynamic

�uxes

J = LX, (5.25)

we realize that the structure of this GENERIC version carries the one of Linear

Irreversible Thermodynamics. The transformation BT basically moves some dif-

ferential operator from M to B, thus to X, allowing us to recognize the forces of

Classical Non-Equilibrium Thermodynamics.
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5.2 Metriplectic formulation of visco-resistive

magnetohydrodynamics

Another example of realisation of metriplectic (GENERIC) dynamics is the for-

mulation of visco-resistive MHD in [MT12]. In this article, Materassi and Tassi

consider a plasma interacting with the magnetic �eld generated by its own mo-

tion, and subjected to dissipation due to �nite viscosity, electrical resistivity and

thermal conductivity. The goal of the paper is to show that the resulting system

of di�erential equations can e�ectively be written in metriplectic form. Here we

borrow their result in order to give a concrete example of realization of Eq. (4.35)

without entering the details of their derivation.

The state is chosen as

x = (ρ,v,B, s) , (5.26)

where ρ is the mass density, v the bulk velocity of the plasma, B the magnetic

�eld, and s the mass-speci�c entropy. This is slightly di�erent choice with respect

to the previous formulation of Hydrodynamics. The passage between the two can

be made by means of the change of variables
ρ(ρ,v, s) = ρ

M(ρ,v, s) = ρv

s(ρ,v, s) = ρs

, (5.27)

which implies the laws for the functional derivatives

δF (ρ,v, s)

δρ
=
δF (ρ,M , s)

δρ

∣∣∣∣
(ρ,ρv,ρs)

+ v · δF (ρ,M , s)

δM

∣∣∣∣
(ρ,ρv,ρs)

+

+ s
δF (ρ,M , s)

δs

∣∣∣∣
(ρ,ρv,ρs)

δF (ρ,v, s)

δv
= ρ

δF (ρ,M , s)

δM

∣∣∣∣
(ρ,ρv,ρs)

δF (ρ,v, s)

δs
= ρ

δF (ρ,M , s)

δs

∣∣∣∣
(ρ,ρv,ρs)

. (5.28)

It is assumed a local thermal equilibrium, and linear relations between the
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viscous stress tensor and the bulk velocity:
τ ik = Λikmn∂mvn

Λikmn def
= −η

(
δniδmk + δnkδmi − 2

3
δikδmn

)
− ζδikδmn

. (5.29)

and between heat �ux and temperature gradient (Fourier Law).

The whole system of equation is the following (the magnetic permeability of

vacuum has been put to zero in order to keep the notation neater):

∂tρ = −∂k(ρvk)

∂tv
i = −vk∂kvi −

1

ρ
∂ip− 1

2ρ
∂iB2 +

1

ρ
Bk∂kB

i − ∂iφgrav −
1

ρ
∂kτ

ik

∂tB
i = Bj∂jv

i −Bi∂jv
j − vj∂jBi + µ∂2Bi

∂ts = −vk∂ks+
τ ik

ρT
∂kvi −

µ

ρT
εikhε mn

h ∂iBk∂mBn +
κ

ρT
∂2T

, (5.30)

where φgrav is the gravitational energy per unit mass. Pressure and temperature

arise for the local equilibrium assumption and are not new variables, since they

are functions of mass and entropy density:
p = ρ2∂u(ρ, s)

∂ρ

T =
∂u(ρ, s)

∂s

. (5.31)

The other parameters are

η : shear viscosity

ζ : bulk viscosity

µ : plasma resistivity

κ : thermal conductivity

.

The generator of reversible dynamics is the total energy

H =

∫ [
ρ
v2

2
+ ρφgrav +

B2

2
+ ρu(ρ, s)

]
dV (5.32)

and is a constant of the motion if the plasma is an isolated system. The Poisson
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bracket is calculated from the corresponding ideal MHD model and reads

{f, g}x = −
∫

dV

[
δf

δρ
∂i
(
δg

δvi

)
+
δg

δρ
∂i
(
δf

δvi

)
− 1

ρ

δf

δvi
εikjεjmn

δg

δvk
∂mvn+

+
1

ρ

δf

δvi
εijkεkmnBj∂

m

(
δg

δBn

)
+ (5.33)

+
δf

δBi
εijk∂j

(
1

ρ
εkmnB

m δg

δvn

)
+

1

ρ
∂is

(
δf

δs

δg

δvi
− δg

δs

δf

δvi

)]
.

This has several Casimir functions: some of them are of the form

C(x) =

∫
ρψ(s)dV, (5.34)

among which we notice the total mass and the total entropy of the plasma

m(x) =

∫
ρdV (5.35)

S(x) =

∫
ρsdV. (5.36)

The latter is chosen to be the generator of the irreversible dynamics, which is

governed by the dissipative bracket

[f, g]x =

=

∫
dV T

{
−Λikmn

[
∂i

(
1

ρ

δf

δvk

)
− 1

ρT
∂ivk

δf

δs

] [
∂m

(
1

ρ

δg

δvn

)
− 1

ρT
∂mvn

δg

δs

]
+

+ µεikjε mnj

[
∂i

(
δf

δBk

)
− 1

ρT
∂iBk

δf

δs

] [
∂m

δg

δBn
− 1

ρT
∂mBn

δg

δs

]
+

+κT∂k

(
1

ρT

δf

δs

)
∂k
(

1

ρT

δg

δs

)}
.

(5.37)

This may veri�ed to be symmetric, positive-de�nite [MT12]; the Hamiltonian func-

tion and the total mass are distinguished functions.

The equilibrium states are the same as the previous section, with the additional

condition B = 0.

In this case too, the Poisson and friction operators could be worked out, as

well as thermodynamic forces and �uxes may be given an expression of the type

−BT δS

δx
.
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5.3 Metriplectic and SEA formulations of the

Boltzmann Equation

In this section, we shall illustrate how the two models realize themselves in Kinetic

Theory: in particular, we shall see the form that the various quantities de�ned

above assume to reproduce the Boltzmann Equation

∂f(r,p; t)

∂t
=

[
∂φ(r)

∂r
· ∂
∂p
− p

m
· ∂
∂r

]
f(r,p; t)+

+

∫
d3p1d3p2d3q1d3q2δ

(3)(p1 − p)w(q1, q2|p1,p2)

[f(r, q1; t)f(r, q2; t)− f(r,p1; t)f(r,p2; t)] .

(5.38)

φ(r) is an external potential, w(q1, q2|p1,p2) the transition probability given by

w(q1, q2|p1,p2) =

= δ(3)(q1 + q2 − p1 − p2)δ(3)(q2
1 + q2

2 − p2
1 − p2

2)
8

m
σ(q1, q2|p1,p2), (5.39)

and σ the di�erential cross section calculated in the centre-of-mass frame. This is

the formulation given by Öttinger in [Ö97].

First of all, comes the choice of the state. According to the formulation by

Marsden and Weinstein in [MW82] and recalling the arguments in Par. 4.1.2,

we see the space of distribution functions as a Banach space in duality with the

Lie algebra of the smooth functions (modulo constant); this space has a natural

Poisson structure. Let's make it more precise.

The space of smooth functions (modulo constant) is given the structure of a

Poisson algebra (C∞(M), {, }1), which � in particular � is a Lie algebra. Next, we

choose a space in (strong) duality with the latter. For reasons that will become

clear later, we choose the space of strictly positive Schwartz functions S+(M) as

the dual to C∞(M) through the (strongly non-degenerate) pairing 〈, 〉 : S+(M)×
C∞(M)→ R given by the L2(M)-product:

〈f, a〉 =

∫
M

faΛ, (5.40)

where f ∈ S+(M), a ∈ C∞(M) and Λ = d3rd3p is the Liouville measure. The

strengthen of the pairing allows to identify covectors in TS+(M) ∼= S+(M) with
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smooth functions in C∞(M).

In Par. 4.1.2 we explained that a space in duality with a Lie algebra is naturally

a Poisson manifold. Hence, the space of smooth functions on it is a Poisson algebra,

whose Poisson brackets {, }2 are often called Lie-Poisson brackets and take the

expression

{A,B}2(g) =

〈
g,

{
δA

δf
,
δB

δf

}
1

〉
,

where A,B ∈ C∞(S+(M)), g ∈ S+(M) and the functional derivatives are de�ned

by the usual implicit relation

dAf (g) =

〈
g,
δA

δf

〉
=

∫
M

g
δA

δf
Λ

(
f, g ∈ S+(M),

δA

δf
∈ C∞(M)

)
.

The question that still must be answered is: why did we choose the Schwartz

space? The smooth functions (A) we shall consider in C∞(S+(M)) are the (mean)

values of the physical observables a

A(f) = 〈f, a〉 =

∫
M

faΛ, γ ∈ S+(M), a ∈ C∞(M). (5.41)

The physical observables a may be polynomial functions in M : examples are the

linear momentum and the energy. Thus, in order for the integrals in Eq. (5.41)

to be �nite, the best choice is the space of (strictly positive) rapidly decreasing

functions in M .3

The abstract dynamics is the motion of the state on the (in�nite-dimensional)

Hilbert space S+(M), and is represented by a curve α : I → S+(M) (I ⊆ R),

solution of the following di�erential equation:

α̇(t) = XH
α(t) + Y S

α(t), (5.42)

where

α(t) = f(r,p; t). (5.43)

Let's now build the fundamental quantities of the theory, which will give rise to

the dynamical equation in both SEA and GENERIC formulations. The entropy

3Indeed, a rapid decrease in momentum space would be enough, since observables are poly-
nomial functions of momentum, so that S+(M) may also be thought of as the suitable space of
functions that eliminate the divergences in the correct way.
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functional is

S(f(r,p)) = −kB
∫
f(r,p) ln

f(r,p)

b
d3rd3p

def
=

∫
S(r,p)f(r,p)d3rd3p, (5.44)

where b is a suitable constant. The conserved properties are the �ve collisional

invariants (and linear combinations)

C0(f(r,p)) =

∫
f(r,p)d3rd3p = N, (5.45)

C1(f(r,p)) =

∫
pxf(r,p)d3rd3p = Px, (5.46)

C2(f(r,p)) =

∫
pyf(r,p)d3rd3p = Py, (5.47)

C3(f(r,p)) =

∫
pzf(r,p)d3rd3p = Pz, (5.48)

C4(f(r,p)) =

∫ [
p2

2m
+ φ(r)

]
f(r,p)d3rd3p = H, (5.49)

among which we recognize the total energy. In short,

Cj(f(r,p)) =

∫
ϕj(r,p)f(r,p)d3rd3p, (5.50)

where, of course,

ϕ0(r,p) = 1,

ϕ1(r,p) = px,

ϕ2(r,p) = py,

ϕ3(r,p) = pz,

ϕ4(r,p) =
p2

2m
+ φ(r)

are smooth functions. Finally, the expressions for the functional derivatives are

δS

δf

∣∣∣∣
f(r,p)

= −kB
[
ln
f(r,p)

b
+ 1

]
(5.51)

δCj

δf

∣∣∣∣
f(r,p)

= ϕj(r,p). (5.52)

If the distribution were allowed to vanish, the expression (5.51) would present

a divergence for values of r and p outside the support of f : it would not be a
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function of C∞(M).

5.3.1 SEA

At variance with the last formulation in [BH13], here we consider an isolated

system: we do not have a state for each point of space, and the quantity being

maximized is the total entropy production.

In the SEA model, Eq. (5.42) takes the form:

α̇(t) = XH
α(t) + g]α(t)

(
δS

δx

∣∣∣∣
α(t)

−
∑

j
βj

δCj

δx

∣∣∣∣
α(t)

)
. (5.53)

Thus, Eq. (5.53) becomes

∂f(r,p; t)

∂t
= XH

f(r,p;t) + g]f(r,p;t)

(
δS

δf

∣∣∣∣
f(r,p;t)

−
∑

j
βj

δCj

δf

∣∣∣∣
f(r,p;t)

)
, (5.54)

where

XH
f(r,p;t) =

[
∂φ(r)

∂r
· ∂
∂p
− p

m
· ∂
∂r

]
f(r,p; t) (5.55)

is prescribed.

The values of the Lagrange multipliers are found by solving the following system

of �ve algebraic equations:

4∑
j=0

g(gradCi, gradCj)βj = g(gradCi, gradS) (i ∈ [0, 4]) . (5.56)

In contrast to the GENERIC, which imposes restricting conditions on the friction

operator D], the SEA method is that it does not assume a priori any form for

the metric tensor g. So, without a particular choice of g, the gradients remain

unspeci�ed. The subsequent e�ort in the SEA philosophy, is to �nd a metric

tensor that models correctly and e�ciently the collision integral of the Boltzmann

Equation in the best way, so as to extend the validity of the traditional Kinetic

Models, such as BGK, ES-BGK, etc. from the near-equilibrium to the far non-

equilibrium domain. The problem of identifying criteria to that choice is still open.

Recent numerical results [BH13] (which we shall expose in Sec. 5.4) show that the

choice of a uniform (Fisher-Rao) metric yields poor models in this framework;

more precisely, although near equilibrium it is fully equivalent to the BGK model,
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in the far non-equilibrium regime it selects trajectories in state space that diverge

from the direction of evolution actually chosen by the full Boltzmann collision

integral. It is hoped that the present analysis and perhaps Information Geometry

could provides hints to �nd a suitable metric for this purpose.

5.3.2 GENERIC

The results of this subsection are borrowed from Öttinger's article [Ö97], where

they are also justi�ed. Here we only present them without proofs.

GENERIC for our in�nite-dimensional system takes the expression:

α̇(t) = P ]
α(t)

(
δH

δx

∣∣∣∣
α(t)

)
+ h]α(t)

(
δS

δx

∣∣∣∣
α(t)

)
, (5.57)

or, more explicitly for the case of Kinetic Theory,

∂f(r,p; t)

∂t
= P ]

f(r,p;t)

(
δH

δf

∣∣∣∣
f(r,p;t)

)
+ h]f(r,p;t)

(
δS

δf

∣∣∣∣
f(r,p;t)

)
, (5.58)

The Poisson operator at point f(r,p) is

P ]
f(r,p) =

∂

∂p
· f(r,p)

∂

∂r
− ∂

∂r
· f(r,p)

∂

∂p
, (5.59)

and the associated Poisson bracket at point f(r,p)

{A,B}f(r,p) = Pf(r,p)

(
δA

δf

∣∣∣∣
f(r,p)

,
δB

δf

∣∣∣∣
f(r,p)

)
=

=

〈
δA

δf

∣∣∣∣
f(r,p)

, P ]
f(r,p)

δB

δf

∣∣∣∣
f(r,p)

〉
=

=

∫
d3rd3p

δA

δf

∣∣∣∣
f(r,p)

P ]
f(r,p)

δB

δf

∣∣∣∣
f(r,p)

= (5.60)

=

∫
d3rd3p

δA

δf

∣∣∣∣
f(r,p)

[
∂

∂p
· f(r,p)

∂

∂r
− ∂

∂r
· f(r,p)

∂

∂p

]
δB

δf

∣∣∣∣
f(r,p)

=

=

∫
d3rd3pf(r,p)

[
∂

∂p

δA

δf

∣∣∣∣
f(r,p)

· ∂
∂r

δB

δf

∣∣∣∣
f(r,p)

− ∂

∂p

δB

δf

∣∣∣∣
f(r,p)

· ∂
∂r

δA

δf

∣∣∣∣
f(r,p)

]

In the case of the friction operator, we don't know how to arrive at an expres-
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sion similar to Eq. (5.59), which was obtained by some integrations by parts.4

Indeed, the Boltzmann Equation itself suggests that we are not dealing with a dif-

ferential operator, but with an integral one. Therefore, we present only its kernel

M̂(r,p,p1), de�ned by

h]f(r,p)

δA

δf

∣∣∣∣
f(r,p)

=

∫
d3p1M̂f(r,p)(r,p,p1)

δA

δf

∣∣∣∣
f(r,p1)

, (5.61)

where

M̂f(r,p)(r,p,p1) =

=
1

kB

∫
d3q1d3q2d3p2w(q1, q2|p,p2)[
δ(3)(p− p1) + δ(3)(p2 − p1)− δ(3)(q1 − p1)− δ(3)(q2 − p1)

]
f(r, q1)f(r, q2)− f(r,p)f(r,p2)

ln[f(r, q1)f(r, q2)]− ln[f(r,p)f(r,p2)]
.

(5.62)

is the dissipative `matrix' given in Eq. (12) of Ref. [Ö97]. The associated dissipa-

tive bracket at point f(r,p) reads

[A,B]f(r,p) = hf(r,p)

(
δA

δf

∣∣∣∣
f(r,p)

,
δB

δf

∣∣∣∣
f(r,p)

)
=

=

〈
δA

δf

∣∣∣∣
f(r,p)

, h]f(r,p)

δB

δf

∣∣∣∣
f(r,p)

〉
=

=

∫
d3rd3p

δA

δf

∣∣∣∣
f(r,p)

h]f(r,p)

δB

δf

∣∣∣∣
f(r,p)

=

=

∫
d3rd3pd3p1

δA

δf

∣∣∣∣
f(r,p)

M̂f(r,p)(r,p,p1)
δB

δf

∣∣∣∣
f(r,p1)

(5.63)

(5.64)

It is easy but important to verify that the degeneracy requirements

h]f(r,p)

δCj

δf

∣∣∣∣
f(r,p)

= 0 ∀j (5.65)

are consequence of the symmetry property (invariance upon exchange of q1, q2

4The kernel of the Poisson operator, if we derive it directly from the Boltzmann Equation,
contains some Dirac delta functions, so that � after some integrations by parts � the integral
operator can be turned into a di�erential operator.



132 CHAPTER 5. APPLICATIONS

with p1, p2) of both the transition probabilities w(q1, q2|p1, p2) and the positive

semi-de�nite resistance matrix

Γ(q1, q2|p1,p2) =
ln[f(r, q1)f(r, q2)]− ln[f(r,p1)f(r,p2)]

f(r, q1)f(r, q2)− f(r,p)f(r,p1)
(5.66)

whose form was suggested by the related work in [Si87] on chemical kinetics and

in the present kinetic theory framework can be interpreted as a resistance matrix

due to the collisions from q1, q2 to p1,p2 and vice versa. Indeed, the entropy

production rate can be written as

Σ = kB

∫
d3q1d3q2d3p1d3p2w(q1, q2|p1,p2)Γ(q1, q2|p1,p2)

[f(r, q1)f(r, q2)− f(r,p1)f(r,p2)]2 .

(5.67)

In the case of GENERIC, the e�ort has been to put the Boltzmann Equation in

metriplectic form, so that the Poisson operator and the friction operator M̂ have

arisen from this procedure. The friction operator M̂f given above leads exactly

to the collision integral of the Boltzmann Equation. In spite of the complexity

of such operators, it is hoped that knowing their explicit forms may help identify

kinetic models of the Boltzmann collision integral in the same spirit of the BGK

model but capable of capturing more features of the collision dynamics and of

giving better approximations in the far non-equilibrium domain.

5.4 Numerical results for relaxation from

non-equilibrium states

As it has been stated, the Steepest Entropy Ascent Modelling of Kinetic Theory,

oppositely to the GENERIC modelling, aims at developing new model equations

for the resolution of the integro-di�erential Boltzmann equation. The key aspect is

thus the choice of the metric. As the �nal goal is to create a kinetic model, the ideal

choice would be a metric as simple as possible, being, at the same time, as accurate

as possible. The aim of the following paragraphs will be to illustrate the numerical

realization of the SEA kinetic model proposed by Beretta and Hadjiconstantinou,

that has been exposed in the recent work to which we refer by the same authors

[BH13]. Beretta and Hadjiconstantinou have examined in the work two simple

metrics. The organization of the present section will be as follows:



5.4. NUMERICAL RESULTS FOR A RELAXATION PROCESS 133

• �rst of all, the Steepest Entropy Ascent kinetic model will be illustrated and

it will be shown that it satis�es the two fundamentals properties asked for a

collision model, stated in Eq. 2.64 and in Eq. 2.65;

• secondly, it will be shown that the SEA models that have been proposed

coincide with standard BGK models near equilibrium;

• �nally, the numerical setup will be illustrated and the results for the relax-

ation from a highly non-equilibrium state will be shown.

5.4.1 Steepest Entropy Ascent Collision Term

In [Be13] and [BH13], the theory is slightly di�erent in that it does not consider

isolated systems, as we did in this thesis, but it picks up a state for each point of

space. Without referring all the details of the di�erences between the formulation

in those articles and ours in Subsec. 5.3.1, we report the result, which � indeed �

is very similar to Eq. (5.54):

∂f(r;v; t)

∂t
=

[
1

m

∂φ(r)

∂r
· ∂
∂v
− v · ∂

∂r

]
f(r;v; t)− g]f(r;v;t)Φf(r;v;t), (5.68a)

4∑
j=0

g
(
g]f(r;v;t)ϕ

i(r;v), g]f(r;v;t)ϕ
j(r;v)

)
βjf(r;v;t) =

= g
(
g]f(r;v;t)ϕ

i(r;v), g]f(r;v;t)Sf(r;v;t)

)
,

(5.68b)

where, in this case,

Φf(r;v)
def
= −Sf(r;v) +

4∑
j=0

βjf(r;v)ϕ
j(r;v) (5.69)

The non-degenerate pairing between smooth functions and distribution functions

is the L2-product

a(r) = 〈f, a〉 =
m

ρ(r)

∫
d3vf(r;v)a(r;v),

which gives the local �eld a(r). Since, in its formulation, Beretta takes as state

the square root of the distribution function, in analogy with the �nite-dimensional

case, the Fisher metric is the uniform one. By expressing this fact in terms of f
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in lieu of its square root, the SEA collision term reads

JSEA,Fisher(f) = Y S
f(r;v) = − 1

kBτ
f(r;v)Φf(r;v). (5.70)

In order to make the model well-behaved near equilibrium, as a slightly more

complex expression, a positive function w = w(v, f) is added:

JSEA,w(f) = Y S
f(r;v) = − 1

kBτ
f(r;v)w(v, f(r;v))Φf(r;v) (5.71)

and, in the successive numerical simulations, is assumed to take on two speci�c

values.

It may be veri�ed that the SEA kinetic model satis�es the two fundamental

properties listed before. Indeed, for each collision invariant ϕi, we have that:

m

ρ

∫
d3vϕi(r;v)JSEA,w(f) = −m

ρ

∫
d3vϕi(r;v)g]f(r;v)Φf(r;v) =

= −
〈
g]f(r;v)Φf(r;v), ϕ

i(r;v)
〉

= −g
(
g]f(r;v)Φf(r;v), g

]
f(r;v)ϕ

i(r;v)
)

= 0, (5.72)

where the last equality comes from the fact that the βi satisfy the system of

equations in Eq. 5.68b.

The kinetic model satis�es also the H-theorem:

m

ρ

∫
Ωc

d3vSf(r;v)JSEA,w(f) = −m
ρ

∫
d3vSf(r;v)g

]
f(r;v)Φf(r;v) =

= −
〈
g]f(r;v)Φf(r;v), Sf(r;v)

〉
= g
(
g]f(r;v)Φf(r;v), g

]
f(r;v)Φf(r;v)

)
≥ 0. (5.73)

The mathematical steps are the same as in Sec. 4.2.

In the numerical setup that follows, two precise choices for the value of the

weight function w will be made: in the �rst case, w = 1 will be considered, while,

in the second case, the choice will be w = ξCα with C =
√

2ϕ4, α = (
√

21− 1)/2

and ξ = 1. The �rst choice corresponds to the one of a Fisher metric, while the

second choice is related to the fact that it gives the correct Prandtl number for a

monoatomic gas.

5.4.2 Compatibility with BGK models near equilibrium

The Steepest Entropy Ascent kinetic model coincides with a standard BGK model

near equilibrium [BH13]. In order to prove this, it is necessary to de�ne a pseudo-
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Maxwellian distribution fP that di�ers slightly from the local Maxwellian used in

a standard BGK model. Based on fP , it is possible to de�ne the deviation of a

certain probability density function f from equilibrium:

φ =
f − fP
fP

(5.74)

The pseudo-Maxwellian is then de�ned by

SP = −kB ln(bfP ) =
4∑
j=0

βPj ϕ
j, (5.75)

where the coe�cients βPj are given by

〈
fp, wϕ

j
〉

=
〈
f, wϕj

〉
(5.76)

From the de�nition, the physical meaning of the pseudo-Maxwellian may be under-

stood: whereas the local Maxwellian of a standard BGK model is the Maxwellian

function having the same values of the density ρ, the macroscopic velocity w and

the temperature T that the probability density function f has, the local pseudo-

Maxwellian is the Maxwellian that has the same values of these macroscopic quan-

tities averaged over the weight function w. Indeed, if a uniform Fisher is chosen

(w = 1), then the pseudo-Maxwellian reduces to the standard local Maxwellian.

Multiplying Eq. 5.75 by wϕi and then averaging over the probability density

function f , the following system of equations is obtained:

4∑
j=0

〈
f, wϕiϕj

〉
βPj =

〈
f, wSPϕ

i
〉

(5.77)

with i = 0, ..., 4. It may also be noted that, using the de�nition of the local

pseudo-Maxwellian, Eq. 5.74, the local average may be written as

〈f, a〉 = 〈fp, (1 + φ)a〉 (5.78)

The entropy S(f) may then be written as

S = Sφ + SP (5.79)
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with

Sφ = −kB ln (1 + φ) (5.80)

Subtracting then Eq. 5.77 from Eq. 5.68b and using the expressions in Eq. 5.78

and Eq. 5.79, we obtain that

4∑
j=0

〈
fP , w(1 + φ)ϕiϕj

〉 (
βj − βPj

)
=
〈
fP , w(1 + φ)Sφϕ

i
〉

(5.81)

with i = 0, ..., 4.

For near-equilibrium situations, the deviation of the probability density func-

tion f from the local pseudo-Maxwellian goes to zero (φ → 0) and, thus, expres-

sions in φ may be approximated with a Taylor expansion. Stopping the expansion

to �rst order, from Eq. 5.80, we have that Sφ = −kBφ because ln(1 + x)→ x for

x→ 0. The right-hand side of Eq. 5.81 may then be written as

− kB
〈
fP , wφϕ

i
〉

= −kB
(〈
f, wϕi

〉
−
〈
fP , wϕ

i
〉)

= 0 (5.82)

where the �rst equality comes from the relationship between averages on f and av-

erages on fP illustrated in Eq. 5.78, while the second equality comes from Eq. 5.76.

As a consequence of this, it may be concluded from Eq. 5.81 that βj = βPj if

the approximation is arrested to �rst order in φ. Using Eq. 5.79 and Eq. 5.75,

the function Φ contained in the Steepest Entropy Ascent collision term may be

re-written as

Φ = Sφ −
4∑
j=0

(βj − βPj )ϕj (5.83)

Using the �rst-order approximations that have been obtained before, the �rst term

becomes Sφ = −kBφ, while the second term goes to zero. The SEA kinetic model

thus becomes

JSEA,w(f) =
1

kBτ
wfΦ −→ −1

τ
wfPφ =

1

τ
w(fP − f). (5.84)

This �nal expression is the one of a standard BGK model if w = 1 and is the

one of a ν(v)-BGK model if w = τν(v). In this way, it is also proved that, for

near equilibrium situations, the w-BGK models are equivalent to w-SEA models

for any weight function w.
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5.4.3 Numerical setup and results

The numerical simulation that was set up in [BH13] is based on the homoge-

neous relaxation from a highly non-equilibrium initial distribution. The initial

distribution is indeed characterized by the mixture of two Maxwellians with the

same density n0, the same temperature T0 and opposite initial velocities in the x-

direction (with initial velocities in the other two coordinate directions being equal

to zero) [BH13]. The initial Maxwellian f0 may then be written as:

f0 =
1

2
[f eq(n0, (vi, 0, 0), T0) + f eq(n0, (−vi, 0, 0), T0)] (5.85)

where the initial velocity in the x-direction vi is given by

vi = Ma

√
5kBT0

3m
(5.86)

In the following Fig. 5.1 and Fig. 5.2, the two initial distributions f0 for

Ma = 4 and Ma = 0.2, respectively, are shown. It may be noted that the initial

distribution in the �rst case is much farther from equilibrium than in the second

case.

Fig. 5.1: Initial distribution f0 with Ma = 4, given by the sum of two Maxwellians

with a consistent di�erence in the macroscopic velocity in the x-direction; the graph

is plotted at constant vz and the Maxwellians are considered having unitary density

ρ.

From the conservation requirements it may be deduced that the �nal state

corresponds to a Maxwellian having density n0, null macroscopic velocity and
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Fig. 5.2: Initial distribution f0 with Ma = 0.2, given by the sum of two

Maxwellians with a small di�erence in the macroscopic velocity in the x-direction;

the graph is plotted at constant vz and the Maxwellians are considered having

unitary density ρ.

a temperature T∞ = 1+5Ma2

9
T0. The values that have been considered for the

constants are kB = 1.38 · 10−23 J/K, m = 6.63 · 10−26 kg, T0 = 273 K. In

the following Fig. 5.3 and Fig. 5.4, the �nal equilibrium distributions for the

situations previously illustrated are shown.

Fig. 5.3: Final equilibrium distribution for the initial situation with Ma = 4:

the �nal equilibrium temperature is about one order of magnitude higher than the

initial one; the graph is plotted at constant vz and the Maxwellian is considered

having unitary density ρ.

As the two �nal Maxwellians may seem at �rst sight very similar (and, qual-
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Fig. 5.4: Final equilibrium distribution for the initial situation with Ma = 0.2:

the �nal equilibrium temperature is of the same order of magnitude of the initial

one; the graph is plotted at constant vz and the Maxwellian is considered having

unitary density ρ.

itatively, indeed they are), it may be more useful for the reader to notice the

di�erence between the initial and �nal distributions in the two examined cases: it

may be seen in Fig. 5.5 and in Fig. 5.6 that the initial and �nal distributions are

much closer to each other for the case with the lower initial Mach number.

Fig. 5.5: Di�erence between �nal and initial distributions f∞−f0 in the case with

Ma = 4; the graph is plotted at constant vz and the Maxwellians are considered

having unitary density ρ.

As it has been shown by Struchtrup [St97], in the variable-collision frequency

BGK-model where ν(v) = ζCα with C = |v−w|, the correct Prandtl number for
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Fig. 5.6: Di�erence between �nal and initial distributions f∞−f0 in the case with

Ma = 0.2; the graph is plotted at constant vz and the Maxwellians are considered

having unitary density ρ.

a monoatomic gas Pr = 2/3 is recovered with ζ = 1 and α =
√

21−1
2

. Because of

this, in the numerical simulations, the weight function is �rstly assigned the value

w = 1 (Fisher metric) and then the value w = Cα with α =
√

21−1
2

. In the following

�gures, the results that have been obtained with the numerical simulations are

shown: Fig. 5.7 to Fig. 5.10 refer to the case with an initial condition with

Ma = 4 in Eq. 5.86, while Fig. 5.11 to Fig. 5.14 refer to the case with Ma = 0.2

in Eq. 5.86.

In each one of the �gures that are reported in the present paragraph and that

refer to the recent work by Beretta and Hadjiconstantinou, the results for the two

SEA kinetic models are compared with the results for the standard BGK-model,

the velocity-dependent collision frequency BGK-model and the assumed exact so-

lution, obtained by Professor Hadjiconstantinou of MIT with a Direct Simulation

Monte Carlo (DSMC) code using Hard-Sphere (HS) dynamics [Bi94]. The results

for the �rst four models have been obtained using Matlab and, more speci�cally,

using the ode45 solver. During the simulation, the symmetry of the problem has

been exploited to simplify it in the velocity-space from a three-dimensional one

into a two-dimensional one: vr =
√
v2
y + v2

z . The following discretisations were

adopted: vx was discretised in the range ±10
√

2kBT0/m using 30 cells, while cr
was discretised in the range 0 ≤ vr ≤ 10

√
2kBT0/m using at least 180 cells.

In the following �gures [BH13], signi�cant quantities and moments obtained

from the probability density function f are plotted:
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• in Fig. 5.7 and Fig. 5.11, an adimensionalized entropy is plotted against an

adimensionalized time;

• in Fig. 5.8 and Fig. 5.12, an adimensionalized parallel temperature (tem-

perature related to the square of the velocity in the x-direction) is plotted

against an adimensionalized entropy;

• in Fig. 5.9 and Fig. 5.13, an adimensionalized fourth moment of the velocity

in the x-direction is plotted against an adimensionalized entropy;

• in Fig. 5.10 and Fig. 5.14, an adimensionalized fourth moment of the velocity

in the x-direction is plotted against an adimensionalized parallel temperature.

The numerical results show some important evidence:

• both BGK models, the standard one and the variable-collision-frequency

one, show a good agreement with the exact solution obtained through the

Montecarlo method;

• Steepest Entropy Ascent models show a signi�cantly lower agreement with

the exact solution with respect to the corresponding BGK-models;

• between the two Steepest Entropy Ascent models, better agreement with

the Hard-Sphere solution and with the BGK-models is given by the one with

w = Cα, while a signi�cantly poorer performance is given by the uniform-

metric one;

• the di�erences between the various models are consistently reduced for the

relaxation from a near-equilibrium situation (Ma = 0.2) with respect to the

relaxation from a far-equilibrium situation (Ma = 4);

• the numerical results prove that, for near-equilibrium situations, the two

SEA kinetic models coincide with the respective BGK-models, as the time-

evolution is shown to be the same.

Some considerations may be then made on the result of the numerical exper-

iment, taking in consideration also the �rst part of the Chapter, related to the

interpretation of the Boltzmann Equation by the Steepest Entropy Ascent dy-

namic model and the GENERIC model.
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• First of all, it is shown that SEA dynamics, reformulated from a Di�erential

Geometry standpoint in the previous Chapter, actually provides consistent

kinetic models, as both families of SEA models that have been proposed

satisfy the fundamental conditions required for a kinetic model, that is, the

conservation of the collision invariants and the veri�cation of the H-theorem.

• It is further shown the SEA dynamics applied to the Boltzmann Equation is

characterized by the presence of one `degree of freedom', related to the choice

of the metric. From a geometric standpoint, the choice of the metric is re-

lated to the velocity of evolution in state-space, while, from an applicative

standpoint in the Boltzmann Equation kinetic model, the choice of the met-

ric is related to the `coe�cient' multiplying the term ruling the dissipative

evolution.

• In the SEA models that have been analyzed, two precise choices for the

metric have been made, the uniform one and the variable-collision-frequency

one; these choices have been dictated by two factors: on one hand, simplicity

for the calculations and, on the other hand, precise calibration to the cor-

responding BGK models near equilibrium (it was indeed shown analytically

that, near equilibrium, the SEA models converge to the corresponding BGK

models).

• However, it is shown in the calculations by Beretta and Hadjiconstantinou

that these two choices for the metric do not yield satisfying results far from

equilibrium (while, near equilibrium, as it was shown analytically, they are

coincident with the corresponding BGK model).

• In our opinion, this is not an element against the idea of a Steepest En-

tropy Ascent evolution of a system governed by the Boltzmann Equation

because the geometric equivalence of SEA and GENERIC and the fact that

GENERIC has identi�ed an exact metric that reproduces the Boltzmann

Equation, suggest that there is a precise metric that makes the collision

term of the Equation a SEA term.

• In our opinion, then, the real problem does not reside in the validity of

the idea of a SEA evolution of the system, but in the choice of a metric,

that, in the examined case, has been limited and partial and has to satisfy

two opposing needs: being able of reproducing correctly real behaviours and
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being su�ciently simple to generate a `facilitation' in the calculations, also

considering more complex cases than the one that has been presented, for

which spatial dependence does not exist.

• Thus, the next step should be to examine metrics that are calibrated on

models and methods of approximate solution that are valid also far from

equilibrium, such as the Chapman-Enskog expansion.

Fig. 5.7: Adimensionalized entropy as a function of an adimensionalized time

for the di�erent collision operators for relaxation from the initial non-equilibrium

distribution with Ma = 4. The time is scaled on the basis of the time where the

entropy change is half of the total change due to the relaxation.
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Fig. 5.8: Adimensionalized parallel temperature as a function of an adimensional-

ized entropy for di�erent collision operators for relaxation from the non-equilibrium

distribution with Ma = 4.

Fig. 5.9: Adimensionalized fourth moment of the velocity in the x-direction as a

function of an adimensionalized entropy for di�erent collision operators for relax-

ation from the initial non-equilibrium state with Ma = 4.
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Fig. 5.10: Adimensionalized fourth moment of the velocity in the x-direction as a

function of an adimensionalized parallel temperature for di�erent collision operators

for relaxation from the initial non-equilibrium distribution with Ma = 4.

Fig. 5.11: Normalized entropy as a function of an adimensionalized time for the

di�erent collision operators for relaxation from the initial non-equilibrium distri-

bution with Ma = 0.2. The time is scaled on the basis of the time where the

entropy change is half of the total change due to the relaxation.
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Fig. 5.12: Adimensionalized parallel temperature as a function of an adimension-

alized entropy for di�erent collision models for relaxation from the non-equilibrium

distribution with Ma = 0.2.

Fig. 5.13: Adimensionalized fourth moment of the velocity in the x-direction

as a function of an adimensionalized entropy for di�erent collision operators for

relaxation from the initial non-equilibrium state with Ma = 0.2.
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Fig. 5.14: Adimensionalized fourth moment of the velocity in the x-direction as a

function of an adimensionalized parallel temperature for di�erent collision operators

for relaxation from the initial non-equilibrium distribution with Ma = 0.2.
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6
Conclusions and future developments

6.1 Conclusions

6.1.1 Development of the Work

The work developed in the present thesis is focused on the dynamical modelling of

thermodynamic systems, namely on the branch of Thermodynamics that aims at

describing the causes and the e�ects of the motion of a system. As highlighted in

the introduction, a dynamical law of evolution such as Newton's Law for Classical

Mechanics or Schrödinger's Equation for Quantum Mechanics, does not exist in

the �eld of Thermodynamics. According to the view of Gyftopoulos and Beretta,

such a law should yield as corollaries the statements of the two Principles of Ther-

modynamics, which are proved features of dynamical evolution. Such a law would

not only be a milestone in the �eld of Physics, but it would help in modelling the

time evolution of thermodynamic systems. In particular, through its application

in Kinetic Theory it might help to �nd an easier model for the collision term of the

Boltzmann Equation, thus generating a tangible improvement in the many �elds

where the Boltzmann Equation is used to schematize physical situations: rare�ed

gas dynamics, the description of electrons in a conductor and phonons in an in-

151
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sulator, the time-evolution of neutrons in a nuclear reactor and the description of

plasmas.

In this context, the objective of the Thesis is threefold:

• �rst of all, to carry out a systematic review of some di�erent formulations

of one of the most frequently proposed dynamical principles for the evolu-

tion of thermodynamic systems, that is, the Maximum Entropy Production

Principle;

• second, to identify and discuss similarities and di�erences between the Steep-

est Entropy Ascent (SEA) dynamical model, initially proposed by Beretta

[B81] in a quantum framework and recently adapted to meso- and macro-

scopic systems [B13], and the GENERIC (General Equation for Non-Equilibrium

Reversible-Irreversible Coupling) formalism, developed, among others, by

Grmela and Öttinger [GÖ97];

• third, to understand how these two models apply to Kinetic Theory and

how the di�erent terms of the Boltzmann Equation are interpreted using the

building blocks of the two theories, in order to develop new kinetic models

based on these principles.

Chapter 2 illustrates Classical Non-Equilibrium Thermodynamics and Kinetic

Theory, that is, the theories needed to understand the successive chapters and

used to validate the dynamic models that are presented in the thesis.

Chapter 3 deals with the �rst one of the goals listed above. First of all, the link

between the Maximum Entropy Production Principle and Prigogine's Minimum

Entropy Production Principle is clari�ed: if we consider its interpretation in SEA,

the �rst one is usually understood to be a principle governing the evolution of a

thermodynamic system locally, at a �xed instant of time, when the thermodynamic

system, among all possible directions, chooses the one that maximizes the entropy

production. On the other hand, the Principle of Minimum Entropy Production

introduced by Prigogine [P47] refers globally to the whole system under study and

the minimization of the entropy production has to be understood in the sense that

the total entropy production of the system decreases in time (time is not �xed).

Moreover, while the Maximum Entropy Production Principle appears to be valid

with no particular restrictions, the Minimum Principle has been proved to hold

under restrictive hypotheses such as linearity of the relations between forces and
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�uxes, validity of Onsager's reciprocal relations, constancy of the phenomenological

coe�cients and time-independence of the constraints on the border of the body.

Successively, Ziegler's theory, which may be considered the �rst complete state-

ment of the Maximum Entropy Production Principle, is illustrated. It constitutes

an attempt to geometrize Non-Equilibrium Thermodynamics: indeed, if entropy

production is maximized subject to the constraint of being the product of forces

times �uxes, the �nal output is that the gradient of the entropy production with

respect to the �uxes should be parallel to the forces. This condition, for reasons

that are illustrated in the Chapter, is called orthogonality condition. It is further

shown that Ziegler's principle and linear relations between forces and �uxes entail

Onsager's reciprocity. In the �nal part of the Chapter, Edelen's theory is illus-

trated and it is shown how, by proposing a decomposition of the �ux vector in

two parts, his theory may be seen as a precursor of GENERIC's two-generator

formalism that is analyzed in the successive Chapter.

Chapter 4 deals with the second one of the objectives listed above: the com-

parison between SEA and GENERIC, two structures that have been motivated

by the search for Non-Equilibrium Thermodynamics formulations that are fully

compatible with the Second Law of Thermodynamics. The link with the previous

Chapter lies in the fact that the Steepest Entropy Ascent dynamic model is of the

entropy-gradient type, that is, it states that a thermodynamic system evolves in

the direction of maximum-entropy-production compatible with the conservation

requirements. Moreover, SEA aims at geometrizing the time-evolution of the sys-

tem. Because of this, the Steepest Entropy Ascent model has been compared to

the GENERIC model, which is, up to date, among the most structured approaches

towards the geometrization of Non-Equilibrium Thermodynamics. The �rst part

of the Chapter deals with the study of the rationalization, through the formalism

of Di�erential Geometry, of the equations of Hamiltonian Mechanics. This is a �eld

that has developed in the XX Century, taking the name of Geometric Mechanics,

and is set in the `arenas' of symplectic manifolds and of their generalisation, that

is, Poisson manifolds. This study has been particularly useful for the development

of the second part of the Chapter for two reasons:

• �rst of all, it has allowed us to understand how Di�erential Geometry repre-

sents a consistent formalism and setting for a rigorous mathematical formu-

lation of physical theories;

• secondly, it has allowed us to understand concepts, such as the one of Poisson
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manifolds, that are at the base of the `di�erential geometric formulation' of

the GENERIC formalism.

6.1.2 Reformulation of SEA and comparison with GENERIC

With this background, Di�erential Geometry has been considered as the ideal set-

ting to carry out the comparison between GENERIC and SEA. Steepest Entropy

Ascent dynamics was then reformulated in a more abstract and mathematical way

using the `di�erential geometric language', making it more immediately compara-

ble to the formalism developed, among others, by Öttinger e Grmela, which had

already been expressed in these terms. In our opinion, this constitutes one of the

most innovative outputs of the present Thesis.

It has thus been showed that the two dynamic models show similar patterns

as both may be considered as belonging to the maximum-entropy-producing or the

entropy-gradient type. That is, the time evolution of the thermodynamic system,

in a suitable manifold, goes in the direction of the entropy gradient. However,

speci�c di�erences must be pointed out and are listed as follows.

• GENERIC is characterized by a more explicit separation between the re-

versible and irreversible terms, while SEA only considers explicitly the irre-

versible part of the dynamics.

• SEA chooses a non-degenerate Riemannian metric tensor that regulates the

evolution of the dissipative part of the equation, while GENERIC is set in a

more structured environment, as it uses a Poisson structure to describe the

reversible part of the dynamics and a degenerate co-Riemannian structure

to describe the irreversible part of the dynamics;

• As SEA dynamics is set in a less-structured manifold, the constraints related

to the conservation laws must be imposed at a later phase (by forcing the

thermodynamic process to be locally orthogonal to the gradients of the con-

served properties), while, in the GENERIC formalism, conservation laws are

already built-in in the degeneracy of the two structures that characterize the

manifold.

• In SEA dynamics, the choice of a non-degenerate metric allows to univocally

de�ne gradients, while in the GENERIC formalism, the choice of a degenerate

metric makes it impossible to de�ne a metric and, thus, a gradient, unless a

further condition (the Leibniz identity) on the dissipative bracket is imposed.
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• By imposing this further condition on the dissipative bracket, a metric and,

thus, gradients may be de�ned on metric leaves, that is, surfaces where the

dissipative GENERIC evolution of a system takes place. These surfaces are

characterized by constant values of the energy and the conserved quanti-

ties and it is shown that the dynamics that takes place on them is of the

entropy-gradient type because the dissipative vector points in the direction

of maximum entropy increase.

As a concluding remark, we may state that, after the reformulation of Steep-

est Entropy Ascent dynamics using Di�erential Geometry formalism, it is shown

that SEA is more general because it is less structured than GENERIC. Moreover,

by imposing the Leibniz identity on the dissipative bracket, GENERIC becomes

Steepest Entropy Ascent on metric leaves.

6.1.3 Realizations of the dynamical models

Chapter 5 illustrates the realizations of the two dynamic models in di�erent phys-

ical theories. It is shown how the governing equations of classical hydrodynamics

and magnetohydrodynamics are interpreted by the GENERIC framework. Con-

sidering also the GENERIC interpretation of the Boltzmann equation, the main

goal of the GENERIC formalism emerges clearly: reproducing known equations of

motion of known physical theories by casting them in a single abstract form. The

authors claim that through this formalism, a deep insight of the physical phenom-

ena that are described may be gained and the solution of important problems may

be facilitated. On the other hand, in its realization in Kinetic Theory, SEA shows

that its goal is not reproducing the equation in its exact form through its building

blocks, but developing kinetic models for its resolution that depend on the choice

of the metric (that is, on the speci�c choice that is made for the Riemannian metric

tensor).

In the last part of the Chapter, numerical results obtained by Beretta and

Hadjiconstantinou for the relaxation from two non-equilibrium states through the

Boltzmann Equation are shown [BH13]. The exact solution, calculated through a

Montecarlo method, is compared with the time-evolutions obtained through two

di�erent BGK models and two di�erent SEA Kinetic Models (that di�er for the

choice of the metric). The SEA models are shown to satisfy the usual requirements

needed for kinetic models, that is, the conservation of collision invariants and

the veri�cation of the H-theorem. Moreover, they are proved to converge to the
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correspondent BGK models in a near-equilibrium approximation. The following

considerations may be made on the numerical results:

• BGK models show a good agreement with the exact solution both for near-

equilibrium and far-equilibrium relaxations;

• SEA models do not show a good agreement with the exact solution for far-

equilibrium relaxation, while in near-equilibrium, as they converge to the

correspondent BGK model, results are more satisfactory;

• between the two SEA models, the one characterized by the variable-collision-

frequency is the best, while the uniform metric model clearly yields poor

results.

In the light of these results and of the conclusions of Chapter 4, some comments

may be made:

• the key aspect in the SEA models, that were shown to be consistent with

the requirements for kinetic models, is the `degree of freedom' related to the

choice of the metric, which, in practical terms, in�uences the `coe�cient'

multiplying the term ruling the dissipative evolution;

• in the two models that have been examined in the numerical examples

by Beretta and Hadjiconstantinou, the choice of the uniform and variable-

collision-frequency metrics has been dictated by the reasons of simplicity

(they are simply a numerical coe�cient in front of the dissipative term) and

by a precise calibration with BGK models near-equilibrium;

• in our opinion, the poor results that are yielded far from equilibrium are

not an element against the idea of a Steepest Entropy Ascent evolution of a

system governed by the Boltzmann Equation because the geometric equiva-

lence of SEA and GENERIC and the fact that GENERIC has identi�ed an

exact metric that reproduces the Boltzmann Equation, suggest that there is

a precise metric that makes the collision term of the Equation a SEA term;

• in our opinion, then, the real problem does not reside in the validity of

the idea of a general SEA evolution of the system, but in the choice of a

metric and, thus, in the choice of a precise family of SEA methods; in the

examined cases, the choice of the metric, which has two main needs, being

able of reproducing correctly real behaviours and being su�ciently simple to
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generate a facilitation in the calculations, has been limited to only two cases

which turned out to be not satisfactory.

6.2 Future developments

Many of the topics that have been considered in the present thesis, especially

regarding the geometrical comparison of SEA and GENERIC and the SEA kinetic

models for the Boltzmann Equation, may either give spark to further ideas or

deserve a deeper analysis.

Among the open problems, there are the following ones:

• a systematic identi�cation of the conserved properties of a system, a topic

not examined in this work and related to the choice of the particular level

of description [BZ11], still does not exist and is one of the most important

points to be addressed in Kinematics;

• the modelling of interactions still remains an open issue, as mathematical

devices needed to perform such a modelling are under study or have been

recently proposed, but there is not a consolidated theory like for isolated

systems;

• regarding the SEA modelling of the Boltzmann Equation, whose numerical

results are unsatisfactory, a better choice of the metric is needed in order to

improve SEA kinetic models.

The following is instead a list of the ideas sparked by the present work:

• the reversible-part formalism that GENERIC borrows from Geometric Me-

chanics might be `transferred' to SEA in order to have a more complete

model that explicitly considers Hamiltonian dynamics;

• imposing the dissipative bracket in GENERIC to satisfy the further condition

of the Leibniz identity in order to have a non-degenerate metric on the metric

leaves and to be able to de�ne a horizontal gradient is an idea that, in

practical realizations in equations, could be tested by a computer algorithm

as Kröger, Hütter, and Öttinger did for the Jacobi identity in [KHÖ01], as

it is analytically too burdensome to perform;
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• suggestions for this improved metric for an e�cient kinetic model have not

been found in the GENERIC modelling as it simply aims at reproducing the

exact equations governing the time evolution of the system, while help could

be found in the emerging �eld of Information Geometry or by calibrating the

metric with respect to approximate methods of solution for the Boltzmann

Equation that are valid farther from equilibrium with respect to the BGK

methods.
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A
Compendium of Di�erential Geometry

The purpose of the present appendix is to brie�y introduce the basic concepts of

Di�erential Geometry that are needed for the comprehension of the part of the

thesis regarding the geometrical formulation of the Steepest Entropy Ascent and

GENERIC theories. Di�erential Geometry is usually not present in regular Master

of Science curricula in engineering and it has been thus considered necessary to

present at least a smattering of the subject. The following pages do not pretend

to be exhaustive and we anticipate that, when considered necessary, mathematical

rigour will be sidelined in favour of a more accessible and colloquial presentation

because of the need, on one hand, to summarize such a wide variety of topics and,

on the other, to o�er an immediate mean of comprehension to a reader that is

assumed to be totally unfamiliar with the subject. The following treatise, including

notations and �gures, refers to the book Introduction to Smooth Manifolds by John

M. Lee.

A.1 Basic concepts

Di�erential Geometry is de�ned as the �study of smooth manifolds endowed

with some structure and of their properties that are invariant under structure-

161
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preserving maps�.

A.1.1 Manifolds and charts

The basic idea behind smooth manifolds is that they are spaces that locally look like

a Euclidean space and are endowed with a smooth structure that allows to make

sense of derivatives. Basically, as derivations and integrations cannot be made

directly on the manifold, the manifold has to be mapped to a Euclidean space

where these calculations are perfectly de�ned. This is not a forced choice: in

place of Euclidean space, one may choose another vector space where di�erential

operations are de�ned. In general, this vector space takes the name of model

space . Hence, one has the notions of:

• Fréchet manifolds, whose model space is a Fréchet space;

• Banach manifolds (a particular case of Fréchet manifolds), whose model

space is a Banach space;

• Hilbert manifolds (a particular case of Banach manifolds), whose model space

is a Hilbert space.

In the following discussion, we shall consider only the Euclidean case, which gives

rise to topological manifolds and is a subcase of the Hilbert one. However, all

de�nition which do not directly involve the dimension of the model space can be

extended to Hilbert manifolds with minor modi�cations. This is not an unim-

portant point, since � in our thesis � we have considered some cases in in�nite

dimensions.

Moreover, although the model space may also be a complex vector space, or a

quaternionic vector space, etc., only the real case will be considered.

In order for a topological space M to be a topological manifold of dimen-

sion n, it has to be characterized by three properties:

• M has to be anHausdor� space : for every pair of distinct points p, q ∈M ,

there are disjoint open subsets U, V ⊆ M such that p ∈ U and q ∈ V , that
is, a space for which two disjoint neighbourhoods may be de�ned for two

di�erent points.

• M is second-countable : there exists a countable basis for the topology of

M .



A.1. BASIC CONCEPTS 163

• M is locally Euclidean of dimension n: each point p ∈ M possesses a

neighbourhood which is homeomorphic to an open subset of Rn.

The third property means that, for each p ∈M , there is:

• an open subset U ⊆M containing p;

• an open subset Û ⊆ Rn;

• a homeomorphism ϕ : U → Û .

The key to the mapping of a manifold to the equivalent Euclidean space is a

coordinate chart .

De�nition A.1. Let M be a topological n-manifold. A coordinate chart (or

just a chart) on M is a pair (U,ϕ), where U is an open subset of M and

ϕ : U → Û is a homeomorphism from U to an open subset Û = ϕ(U) ⊆ Rn

(Fig. A.1). Given a chart (U,ϕ), we call the set U a coordinate domain , or

a coordinate neighbourhood of each of its points. The map ϕ is called a (lo-

cal) coordinate map, and the components functions (x1, . . . , xn) of ϕ, de�ned

by ϕ(p) = (x1(p), . . . , xn(p)) are called local coordinates on U .

Fig. A.1: Coordinate chart on a manifold: homeomorphism from an open subset

of the manifold M to an open subset of the Euclidean space Rn.

A.1.2 Smooth structures

The de�nition of topological manifold that has been given is su�cient to study its

topological structure, but not to make sense of the instruments of calculus on it.

Thus, a new kind of manifold needs to be introduced: a smooth manifold, which is
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a topological manifold with an extra structure. In the present treatise we assume

the concept of smoothness to be synonymous with in�nitely di�erentiable ,

that is C∞. Let M be a topological n-manifold. If (U,ϕ), (V, ψ) are two charts

such that U ∩ V 6= ∅, the composite map ψ ◦ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) is called

the transition map from ϕ to ψ (Fig. A.2). Two charts (U,ϕ) and (V, ψ) are

said to be smoothly compatible if either U ∩V = ∅ or the transition map ψ◦ϕ−1

is a di�eomorphism , that is, it is a bijective map and has a smooth inverse map.

Since (U,ϕ) and (V, ψ) are open subsets of Rn, smoothness of this map is to be

interpreted in the sense of having continuous partial derivatives of all orders.

Fig. A.2: Transition map between two open subsets of Rn: if it is a di�eomor-

phism, the two charts are smoothly compatible.

An atlas is then de�ned as a collection of charts whose domains cover all M .

The atlas is called a smooth atlas if any two charts are smoothly compatible with

each other. The idea is then to de�ne a smooth structure on the manifold by

assigning a smooth atlas and then to de�ne a function f : M → Rn to be smooth

if and only if the composition f ◦ ϕ−1 is smooth in the ordinary sense for every

coordinate chart of the atlas. In this way, it is possible to de�ne di�erentiability

for the functions on the manifold. A problem that arises is due to the fact that

there are many possible atlases that determine the same smooth structure: among

these, an atlas A is de�ned as maximal if it is not properly contained in any

larger smooth atlas.

At this point an important concept may be de�ned: if M is a topological

manifold, a smooth structure on M is a maximal smooth atlas. A smooth

manifold is then a pair (M,A), where M is a topological manifold and A is
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a smooth structure on M . Then, if M is a smooth manifold, any chart (U,ϕ)

contained in the maximal smooth atlas is called smooth chart , and the relative

coordinate map ϕ is called smooth coordinate map.

Once the concept of smooth structure has been clari�ed, also smooth func-

tions and smooth maps may be de�ned: even if the two words are sometimes

used as synonyms, we refer to functions as maps whose codomain is Rn and maps

as, more generally, maps between manifolds.

If M is a smooth n-manifold, k is a non-negative integer, and f : M → Rk is

any function, we say that f is a smooth function if, for every p ∈M , there exists

a smooth chart (U,ϕ) forM whose domain contains p and such that the composite

function f ◦ ϕ−1 is smooth on the open subset Û = ϕ(U) ⊆ Rn (Fig. A.3).

Fig. A.3: De�nition of smooth function.

IfM and N are a smooth manifolds and F : M → N is a map, we say that F is

a smooth map if, for every p ∈M , there exists smooth charts (U,ϕ) containing p

and (V, ψ) containing F (p) such that F (U) ⊆ V and the composite map ψ◦F ◦ϕ−1

is smooth from ϕ(U) to ψ(V ) (Fig. A.4).

It is then possible to de�ne a di�eomorphism between manifolds: if M and N

are smooth manifolds, a di�eormophism from M to N is a smooth bijective

map F : M → N that has a smooth inverse.
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Fig. A.4: De�nition of smooth map.

A.2 Tangent vectors and vector �elds

A.2.1 Tangent spaces

One of the key concepts of Di�erential Geometry is the one of tangent vectors. We

introduce it by giving a geometrical intuition of the subject. When we talk about

elements of Rn, we either think of them as points, whose only relevant property

is location, or vectors, whose relevant properties are magnitude and direction,

independently of location. In Di�erential Geometry, in order to de�ne a vector,

both location, i.e. the point of application, and the sum of magnitude and direction

are important: a vector in Rn in a point a may be seen as belonging to a copy of

Rn located in that precise point. A vector of the same magnitude and direction,

applied in a di�erent point of Rn, is a di�erent entity.

Moreover, the second relevant property of the concept of vector in Di�erential

Geometry is that it acts as a derivation, that is, it satis�es the product rule. This

is linked to the fact that a vector at a point can be bijectively associated to the

directional derivative of a generic function at that point. For example, any vector

va ⊆ Rn
a (space Rn at point a) yields a map Dv|a : C∞(Rn)→ R, which takes the

directional derivative in the direction v at a:

Dv|af = Dvf(a) =
d

dt

∣∣∣∣
t=0

f(a+ tv). (A.1)

We can thus de�ne tangent vectors on manifolds. Let M be a smooth manifold

and p be a point of M . A linear map v : C∞(M) → R is called a derivation at

p if it satis�es

v(fg) = f(p)vg + g(p)vf (A.2)
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Fig. A.5: Geometric tangent space and tangent space to a sphere in R3.

for all f, g ∈ C∞(M). The set of all derivations of C∞ at p, denoted by TpM , is a

vector space called the tangent space to M at p. An element of TpM is called

tangent vector at p.

When talking about tangent spaces, it is important to understand how a

smooth map a�ects tangent vectors. This is related to the action of a linear

map between tangent spaces called di�erential of the function. If M and N are

smooth manifolds and F : M → N is a smooth map, for each p ∈ M , we de�ne a

map

dFp : TpM → TF (p)N (A.3)

called the di�erential of F at p (Fig. A.6), as follows. Given v ∈ TpM , we let

dFp(v) be the derivation at F (p) that acts on f ∈ C∞(N) by the rule

dFp(v)(f) = v(f ◦ F ) (A.4)

It may be proved that this operator is linear and satis�es the product rule. In

common words, the di�erential operator associates to a vector in the tangent space

of a point of the domain, a vector in the tangent space of the corresponding point

in the codomain. It may be proved that tangent spaces have the same dimensions

Fig. A.6: Di�erential on a manifold.
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of the manifolds they are tangent to.

It is often useful to consider the set of all tangent vectors at all points of a

manifold. Given a smooth manifold M , we de�ne the tangent bundle of M ,

denoted by TM , to be the disjoint union of the tangent spaces at all points of M :

TM =
∐
p∈M

TpM. (A.5)

A tangent bundle comes equipped with a natural projection map π : TM →M ,

which sends each vector in TpM to the point p at which it is tangent: π(p, v) = p.

Just as an example, in the caseM = Rn, as the tangent space to each point may be

identi�ed with Rn, the tangent bundle is the union of all these spaces and is thus

the Cartesian product of Rn with itself. For any n-dimensional smooth manifold,

its tangent bundle is a 2n-dimensional smooth manifold.

In Di�erential Geometry it is also important to de�ne velocity vectors to curves

in a manifold. First of all, we de�ne a curve: if M is a manifold, a curve in M

is a continuous map γ : J → M , where J ⊆ R is an interval. Practically, a curve

is a map that associates a point on the manifold to each real number, which may

be interpreted as a particular instant of time. At this point, given a smooth curve

γ : J → M and t0 ∈ J , the velocity of γ at t0 (Fig. A.7), denoted by γ′(t0), is

the vector

γ′(t0) = dγ

(
d

dt

∣∣∣∣
t0

)
∈ Tγ(t0)M, (A.6)

where d/dt|t0 is the standard coordinate basis vector in Tt0R. In other words, the

velocity vector is the one associated by the di�erential of γ to the standard tangent

vector in the space of real numbers, which is the regular derivation in the `positive

direction'. The latter belongs to the tangent space in t0, while the former belongs

to the tangent space in γ(t0).

Fig. A.7: The velocity of a curve in a manifold.
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A.2.2 Vector �elds and �ows

In Euclidean geometry, a vector �eld is an assignment of a vector to each point in

the Euclidean space. The concept of vector �eld in Di�erential Geometry is quite

similar: if M is a smooth manifold, a vector �eld on M is a continuous map

X : M → TM , usually written p 7→ Xp, with the property that Xp ∈ TpM for each

p ∈ M . A vector �eld on a manifold may be visualized in exactly the same way

as in a Euclidean space: as an arrow attached to each point in M , belonging to

the local tangent space and varying continuously from point to point (Fig. A.8).

Vector �elds may be also seen as endomorphisms in C∞(M). Smooth vector

�elds are smooth maps from the manifold M to the manifold TM (the vector

bundle).

Fig. A.8: A vector �eld in a manifold.

Velocity vectors to a curve are vectors belonging to the tangent space at that

point of the curve on the manifold. On the other hand, it may be possible to seek

a curve whose tangent vector at each point is equal to a given vector: if V is a

vector �eld on M , an integral curve of V is a di�erentiable curve γ : J → M

whose velocity at each point is equal to the value of V at that point (Fig. A.9):

γ′(t) = Vγ(t) ∀t ∈ J. (A.7)

If 0 ∈ J , the point γ(0) is called the starting point of γ.

A very important concept based on integral curves is the one of �ows . A

global �ow on M is continuous map θ : R ×M → M , satisfying the following
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Fig. A.9: The integral curve of a vector �eld.

properties for all s, t ∈ R and p ∈M :θ(0, p) = p

θ(t, θ(s, p)) = θ(t+ s, p)
. (A.8)

This de�nes, for each t ∈ R, a continuous map θt : M →M by θt(p) = θ(t, p) and,

for each p ∈ M , a curve θ(p) : R → M by θ(p)(t) = θ(t, p). More concretely, given

an integral curve passing through a point, a �ow is a map that assigns to each point

p ∈ M on the curve the point obtained by following for time t the integral curve

starting at p: that is, the map θt slides the manifold along the integral curves

for time t. Every smooth global �ow gives rise to a smooth vector �eld whose

integral curves are the curves de�ned by the �ow; this vector �eld is called the

in�nitesimal generator of θ. On the other hand, every smooth vector �eld is

the in�nitesimal generator of a smooth �ow who is not necessarily global because

it might not extend its domain to all R ×M (the di�erence between global and

local is in the domain of de�nition).

A vector �eld might also depend on time: a time-dependent vector �eld

on M is a continuous map V : J ×M → TM , where J ⊆ R is an interval, such

that V (t, p) ∈ TpM for each (t, p) ∈ J ×M . This means that for each instant

of time t ∈ J , the map Vt : M → TM de�ned by Vt(p) = V (t, p) is a vector

�eld on M . If V is a time-dependent vector �eld on M , an integral curve of

V is a di�erentiable curve γ : J0 → M , where J0 is an interval contained in J ,

such that γ′(t) = V (t, γ(t)) ∀t ∈ J0 (this means that integral curves are the same

as pathlines in �uid dynamics, that is, curves that show the trajectory that an

individual particle has followed).

An important way of combining two vector �elds to obtain a third vector �eld

is represented by Lie brackets. Given two vector �elds X and Y , we de�ne an
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operator [X, Y ] : C∞(M)→ C∞(M), called the Lie bracket of X and Y , by

[X, Y ] f = XY f − Y Xf. (A.9)

The last concept introduced in this subsection is a very deep one, and related

to the very rich theory of Lie groups. Here we limit ourselves to de�ne a Lie

algebra , which is a vector space g endowed with a map

[, ] : g× g → g

(X, Y ) 7→ [X, Y ]

satisfying the following properties ∀X, Y, Z ∈ g:

• bilinearity : for a, b ∈ R,

[aX + bY, Z] = a[X,Z] + b[Y, Z],

[X, aY + bZ] = a[X, Y ] + b[X,Z];

• antisymmetry :

[X, Y ] = −[Y,X];

• Jacobi identity :

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

A linear subspace h ⊆ g is called a Lie subalgebra of g if it closed under brackets.

Lie brackets satisfy precisely the axioms of a Lie algebra.

A.3 Vector bundles

It has already been said that the disjoint union of all the tangent spaces in the

points of a manifold make up another smooth manifold structure, called the tan-

gent bundle . This concept may be generalized: a collection of vector spaces, one

for each point of the manifold, might be glued together to make up a vector bundle.

The rigorous de�nition is the following one:

De�nition A.2. LetM be a topological space. A vector bundle of rank k over

M is a topological space E together with a surjective continuous map π : E →M

satisfying the following conditions:
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• For each p ∈M , the �bre Ep = π−1(p) over p is endowed with the structure

of a k-dimensional real vector space.

• For each p ∈ M , there exists a neighbourhood U of p in M and a homeo-

morphism Φ: π−1(U)→ U × Rk, (called a local trivialization of E over

U), satisfying the following conditions (Fig. A.10):

� πU ◦ Φ = π (where πU : U × Rk → U is the projection);

� for each q ∈ U , the restriction of Φ to Eq is a vector space isomorphism

from Eq to {q} × Rk ∼= Rk.

The space E is usually called the total space of the bundle , M is called its

base , and π is its projection .

Fig. A.10: Local trivialization of a vector bundle.

Let π : E → M be a vector bundle. A section of E (sometimes called a

cross section) is a section of the map π, that is, a continuous map σ : M → E

satisfying π ◦ σ = IdM . This means that σ(p) is an element of the �bre Ep for

each p ∈ M . There is a further distinction between local (Fig. A.11) and global

sections according to whether the domain is a subset of the manifold or the whole

manifold. We denote by Γ(E) the vector space of all smooth global sections of E.

Thus, vector �elds are nothing but global sections of the tangent bundle; according

to the usual notation, this section takes the special symbol X(M)
def
= Γ(TM).
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Fig. A.11: Local section of a vector bundle.

A.4 Covectors and tensors

A.4.1 Covectors

Another very important concept in Di�erential Geometry is the one of covector .

Let V be a �nite-dimensional vector space. A covector on V is a real-valued

linear functional on V , that is, a linear map ω : V → R. The space of all covectors
on V is itself a real vector space under the operations of pointwise addition and

scalar multiplication. It is denoted by V ∗ and called the dual space of V . It

may be proved that the dimensions of a covector space are the same as those of

the vector space it is associated to.

Very often there is confusion about the notation used to indicate vectors and

covectors. We assume that basis covectors are written with upper indices and the

components of a covector with lower indices. On the other hand, basis vectors are

written with lower indices and components of a vector with higher indices. The

notation will be illustrated and will be more clear in the successive Subsec. A.4.4.

Each map that links two vector spaces has a dual map between covector

spaces. Let V and W be vector spaces and A : V → W is a linear map. We de�ne
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a linear map A∗ : W ∗ → V ∗, called the dual map or transpose of A, by

(A∗ω)(v) = ω(Av) (A.10)

for ω ∈ W ∗, v ∈ V . It is also possible to de�ne a second dual space V ∗∗ = (V ∗)∗,

which is the dual space of the dual space. For a �nite-dimensional vector space

V ∗∗ = V .

Once the concept of covector has been introduced, it is possible to de�ne the

cotangent space . Given a smooth manifold M , for each p ∈ M , the cotangent

space at p, denoted by T ∗pM , is the dual space to TpM :

T ∗pM
def
= (TpM)∗. (A.11)

The elements of T ∗pM are called tangent covectors at p, or just covectors at

p. For any smooth manifold M , the disjoint union

T ∗M =
∐
p∈M

T ∗pM (A.12)

is called the cotangent bundle ofM . The cotangent bundle is thus the collection

of all cotangent spaces at the various points of a manifold. The cotangent bundle of

smooth n-dimensional manifold has a natural smooth structure that make it into a

smooth rank-n vector bundle over M . It is hard to visualize covector �elds from a

graphic point of view; as they are collections of linear functionals, the idea is that

a covector ωp at a certain point p may be identi�ed by a hyperplane containing

the endpoints of vectors v for which ωp(v) = 1. In Fig. A.12, two hyperplanes per

each point are illustrated, where the second one is the hyperplane parallel to the

previously mentioned one, passing through the origin. It represents the kernel of

the covector.

If f is a smooth real-valued function on a smooth manifold M , it is possible to

implicitly de�ne the covector �eld df , called the di�erential of f , as

dfp(v) = vf (A.13)

for v ∈ TpM .

The concept of di�erential allows the extension of some ideas commonly found

in calculus to Di�erential Geometry. First of all, a smooth covector �eld ω on a

smooth manifold M is said to be exact on M if there is a function f ∈ C∞(M)
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Fig. A.12: Graphical representation of a covector �eld.

such that ω = df . The function f is called a potential for ω.

Analogously to calculus, a smooth covector �eld ω is conservative if the

line integral of ω over every piecewise smooth closed curve segment is zero. The

de�nition of line integral on a manifold is here omitted for the sake of brevity. It

may be proved that, on a smooth manifold, a smooth covector �eld is conservative if

and only if it is exact. Also the idea of irrotationality might be extended to the �eld:

in Di�erential Geometry, it is associated to the concept of closedness . Without

de�ning exactly a closed covector �eld (we shall come back to this point later), it

is su�cient to say that the two concepts match and, as every conservative vector

�eld in a Euclidean space is irrotational, in the same way every exact covector �eld

on a manifold is closed.

As a smooth map yields a linear map between tangent spaces, in the same way,

there is a sort of dual of this map, that is, a linear map between covector spaces

that goes in the opposite direction.

Let F : M →M be a smooth map between smooth manifolds with or without

boundary, and let p ∈ M be arbitrary. The di�erential dFp : TpM → TF (p)N

yields a dual linear map

dF ∗p : T ∗F (p)N → T ∗pM (A.14)

called the (pointwise) pullback by F at p, or the cotangent map of F .

Exploiting the de�nition, we may see that

dF ∗p (ω)(v) = ω(dFp(v)) (A.15)

with ω ∈ T ∗F (p)N and v ∈ TpM .

It may be proved that covector �elds are always pulled back to covector �elds.
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Given a smooth map F : M → N , and a covector �eld ω on N , we de�ne the

covector �eld F ∗ω on M , called the pullback of ω by F , by

(F ∗ω)p = dF ∗p (ωF (p)) (A.16)

It acts on a vector v ∈ TpM by

(F ∗ω)p(v) = ωF (p)(dFp(v)). (A.17)

A.4.2 Tensors

After illustrating linear maps, we generalize and illustrate multilinear maps, that

is, maps that take several vectors as inputs and depend linearly on each one of

them separately. Tensors in Di�erential Geometry are, in their simplest inter-

pretation, real-valued multilinear functions of one or more variables. A covector

is, for example, a tensor of rank one.

To be more precise, if V1, . . . , Vk, and W are vector spaces, a map

F : V1 × · · · × Vk → W

is said to be multilinear if it is linear as a function of each variable separately

when the others are held �xed. That is, for each i,

F (v1, . . . , avi + a′v′i, . . . , vk) = aF (v1, . . . , vi, vk) + a′F (v1, . . . , v
′
i, . . . , vk).

The set L(V1, . . . , Vk;W ) of all multilinear maps from V1, . . . , Vk to W is a vector

space under the operations of pointwise addition and scalar multiplication. Two

generic tensors give another tensor as a result of tensorial multiplication : let

V1, . . . , Vk,W1, . . . ,Wl be real vector spaces, and suppose F ∈ L(V1, . . . , Vk;R) and

G ∈ L(W1, . . . ,Wl;R). The function F ⊗ G : V1 × · · · × Vk ×W1 × · · · ×Wl → R
is de�ned as

F ⊗G(v1, . . . , vk, w1, . . . , wl) = F (v1, . . . , vk)G(w1, . . . , wl). (A.18)

As F and G are both multilinear, also F ⊗G depends linearly on each argument

and is thus an element of the space L(V1, . . . , Vk,W1, . . . ,Wl;R), called tensor

product of F and G.

A distinction can be made among tensors: they are de�ned as covariant or
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contravariant according to the input that they take. More rigorously, we have

the following de�nitions:

De�nition A.3. Let V be a �nite-dimensional vector space. If k is a positive

integer, a covariant k-tensor on V is an element of the k-fold tensor product

V ∗ ⊗ · · · ⊗ V ∗, which may be thought as a real-valued multilinear function of k

elements of V . α : V ⊗ · · · ⊗ V → R (with V replicated k times).

The number k is called the rank of α. The vector space of all covariant

k-tensors on V is denoted by T k(V ∗) = V ∗ ⊗ · · · ⊗ V ∗.
On the other hand, we have:

De�nition A.4. Let V be a �nite-dimensional vector space. If k is a positive

integer, a contravariant tensor on V of rank k is an element of the k-fold

tensor product V ⊗ · · · ⊗ V , which may be thought as a real-valued multilinear

function of k elements of V ∗. α : V ∗⊗ · · · ⊗ V ∗ → R (with V ∗ replicated k times).

The vector space of all contravariant k-tensors on V ∗ is denoted by T k(V ) =

V ⊗ · · · ⊗ V .
In general, when any two arguments of a tensor are exchanged, it is not possible

to predict the e�ect on the outcome of the operation. However, there are two

particular categories of tensors for which the exchange of any two arguments either

does not change the value or changes its sign. A covariant k-tensor α on V is said to

be symmetric if its value is unchanged by interchanging any pair of arguments. A

covariant k-tensor α on V is said to be alternating (or antisymmetric or skew-

symmetric) if it changes sign whenever two of its arguments are interchanged. As

it will be explained later, alternating tensor �elds are called di�erential forms .

It is also possible to de�ne tensor bundles . The bundle of covariant k-

tensors on M is

T kT ∗M =
∐
p∈M

T k(T ∗pM), (A.19)

while the bundle of contravariant k-tensors on M is

T kTM =
∐
p∈M

T k(TpM). (A.20)

Sections of tensor bundles are called tensor �elds . A smooth tensor �eld is a

smooth section of a tensor bundle; in other words, it is a smooth choice of a tensor



178 APPENDIX A. COMPENDIUM OF DIFFERENTIAL GEOMETRY

for each point of an open set of the manifold. In particular, smooth covariant

tensor �elds are most important and deserve the shorthand notation

Tk(M)
def
= Γ(T kT ∗M).

The pullback operation (A.16) is easily generalized to covariant tensors. Let

A ∈ Tk(N) be a covariant tensor �eld on N and F : M → N a smooth map. Then,

the pullback of A by F is the covariant tensor �eld on M

(F ∗A)p = dF ∗p (AF (p)), (A.21)

which acts on vectors v1, . . . , vk ∈ TpM by

(F ∗A)p(v1, . . . , vk) = AF (p)(dFp(v1), . . . , dFp(vk)). (A.22)

For contravariant tensors, the de�nition works, with slight modi�cations, only if

F is a di�eomorphism.

A.4.3 Lie derivative

A canonical way of computing directional derivatives of a tensor �eld on a manifold

passes through the concept of Lie derivative. Since there is no canonical way of

comparing tensors in di�erent points, the idea is to `slide' a tensor �eld along the

�ow of a vector �eld, as shown in Fig. A.13.

Fig. A.13: The Lie derivative of a tensor �eld.

The Lie derivative of the covariant tensor �eld A with respect to V
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is thus the following tensor �eld:

(
£V A

)
p

=
d

dt

∣∣∣∣
t0

(θ∗tA)p = lim
t→0

d(θt)
∗
p

(
Aθt(p)

)
− Ap

t
(A.23)

The very same de�nition of Lie derivative as in Eq. (A.23) applies to vector �elds

and, more generally, to contravariant tensor �elds (with the condition to correctly

interpret the various terms).

For vector �elds, we have

(
£V W

)
p

=
d

dt

∣∣∣∣
t0

(θ∗tW )p = lim
t→0

d(θt)
∗
p

(
Wθt(p)

)
−Wp

t
=

= lim
t→0

d(θ−t)θt(p)
(
Wθt(p)

)
−Wp

t
, (A.24)

which is illustrated in Fig. A.14.

Fig. A.14: The Lie derivative of a tensor �eld.

Moreover, one could verify that

£X Y = [X, Y ] . (A.25)

A further important property is Leibniz rule with respect to contraction (we

take a contravariant tensor �eld as example, because we used this case in Chap-

ter 4):

£X(A(ω1, ω2, . . . , ωk)) = (£X A)(ω1, ω2, . . . , ωk)+

+ A(£X ω1, ω2, . . . , ωk) + A(ω1,£X ω2, . . . , ωk) + A(ω1, ω2, . . . ,£X ωk). (A.26)
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A.4.4 Riemannian manifolds

In Euclidean spaces, geometric concepts such as distances and angles are de�ned

thanks to the inner product. In Di�erential Geometry, in order to accomplish a

similar feature, the appropriate structure is a Riemannian metric. The subject

of Riemannian Geometry is very deep and was illustrated by Lee [L97]. In the

following paragraphs, we will only give some basic de�nitions.

In Euclidean geometry an inner product is a symmetric tensor as it has two vec-

tors as arguments and gives back a real number and is invariant upon an exchange

of arguments. In much the same way, if M is a smooth manifold, a Riemannian

metric on M is a smooth symmetric covariant 2-tensor �eld on M that is posi-

tive de�nite at each point. A Riemannian manifold is a pair (M, g), where M

is a smooth manifold and g is a Riemannian metric on M . If g is a Riemannian

metric on M , then for each p ∈ M , the 2-tensor gp is an inner product on TpM .

Because of this, the notation 〈v, w〉g is used to denote the real number gp(v, w) for

v, w ∈ TpM . One of the simplest examples of a Riemannian metric is the Euclidean

metric on Rn, that is, the operator that associates to any pair of vectors the sum

of the products of the corresponding components of the two vectors.

Metrics that have signi�cantly di�erent geometric properties may be de�ned

on the same manifold. Thus, the choice of a metric is a particularly delicate one.

Di�erent geometric concepts may be de�ned on a Riemannian manifold:

• the length or norm of a tangent vector v ∈ TpM is de�ned to be ||v||g =√
〈v, v〉g =

√
gp(v, v);

• the angle between two nonzero tangent vectors v, w ∈ TpM is the unique

θ ∈ [0, π] satifying cos θ =
〈v, w〉g
||v||g||w||g

;

• tangent vectors v, w ∈ TpM are said to be orthogonal if 〈v, w〉g = 0.

One of the most important aspects of a Riemannian metric is that it provides

a natural isomorphism, that is a one-to-one correspondence, between the tangent

and the cotangent bundles. Given a Riemannian metric g on a smooth manifoldM ,

a vector bundle homomorphism (sometimes we say vector bundle map) g[ : TM →
T ∗M is de�ned as follows. For each p ∈M and each v ∈ TpM , we let g[p(v) ∈ T ∗pM
be the covector de�ned by

g[p(v)(w) = gp(v, w) ∀w ∈ TpM (A.27)
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The components of the covector �eld are usually written as:

g[(X) = Xjdx
j, Xj = gijX

i. (A.28)

Because of this, one says that g[(X) is obtained from X by lowering an index .

Thus, the symbol [ is used because, in musical notation, it indicates that a tone is

to be lowered. As [gij] is the matrix of the isomorphism g[, it is invertible and its

inverse is the matrix of the inverse map g] : T ∗pM → TpM , indicated as [gij]. The

inverse matrix is symmetric, too, and it is said that g] raises an index ; because

of this, the symbol ] is used, as, in musical notation, it indicates that a tone is to

be raised. These two isomorphisms are thus called musical isomorphisms .

Thanks to the sharp operation, it is possible to reinstate the gradient as a

vector �eld on Riemannian manifolds:

(grad f)p = g]pdfp. (A.29)

Thus, the gradient is the unique vector �eld that satis�es

〈grad f,X〉g = Xf ∀X. (A.30)

It may thus be seen that the de�nition of a gradient in Di�erential Geometry is

not independent from the choice of metric: it is upon the choice of a particular

type of metric that the gradient is determined.

A.4.5 Di�erential forms

As it has been stated when introducing tensors, symmetric and alternating tensors

are tensors that behave speci�cally under the exchange of any two arguments. The

importance of a particular example of symmetric tensor �elds, that is Riemannian

metrics, has been stated; however, in Di�erential Geometry, as surprising as it

might be, the study and the use of alternating tensors turns out to be more useful

than the ones of symmetric tensors. Particularly important is the idea of dif-

ferential forms . The algebra that results after de�ning the wedge product, the

exterior di�erential and the interior product gives a powerful generalization to any

dimension of the familiar concepts of the di�erential operators gradient, divergence

and curl, of the cross product, and allows to develop the theory of orientation and

integration on manifolds.
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Given a smooth manifold M , T kT ∗M is the bundle of covariant k-tensors on

the manifold. The subset of the bundle consisting of alternating tensors is denoted

by ΛkT ∗M :

ΛkT ∗M =
∐
p∈M

Λk(T ∗pM). (A.31)

A section of ΛkT ∗M is called a di�erential k-form , or just a k-form ; it is thus

a continuous tensor �eld whose value at each point is an alternating tensor. The

integer k is called the degree of the form. Smooth k-forms make up a vector space

indicated by Ωk(M)
def
= Γ(ΛkT ∗M).

There is a notion of product between di�erential forms that turns their space

into a very useful algebra. Let's outline the main facts.

Given a k-tensor α, we de�ne the alternation operator Alt : T k(V ∗)→ Λ(V ∗)

as follows:

(Altα)(v1, v2, . . . , vk) =
1

k!

∑
σ∈Sk

(sgnσ)α(vσ(1), vσ(2), . . . , vσ(k)),

where Sk is the symmetric group on k elements (the group of all permutations of

the set {1, . . . , k}), sgnσ = 1 if σ is even (i.e., can be written as a composition of

an even number of transpositions), and sgnσ = −1 otherwise. This means that

Altα is a k-form.

At this point, we can introduce the wedge product (or exterior product).

Given α ∈ Λk(V ∗) and β ∈ Λ`(V ∗), their product is the following (k + `)-form:

α ∧ β =
(k + `)!

k!`!
Alt(α⊗ β). (A.32)

The coe�cient is justi�ed by the simplicity of certain calculations which we do not

discuss here. For instance, in the case of two 1-forms, Eq. (A.32) reads:

ω ∧ η = 2 · 1

2
(ω ⊗ η − η ⊗ ω) = ω ⊗ η − η ⊗ ω.

The wedge product is bilinear, associative and anticommutative. This means

that, if we de�ne the vector space

Λ(V ∗) =
n⊕
k=0

Λk(V ∗)

the wedge product turns Λ(V ∗) into an associative and anticommutative graded
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algebra, called exterior algebra (or Grassmann algebra) of V .

An exterior derivative is a di�erential operator on smooth forms that consti-

tutes a generalization of the concept of di�erential of a function. Without entering

into de�nitions and mathematical details, the exterior derivative d of a di�erential

form of degree k is a di�erential form of degree k + 1 that satis�es certain prop-

erties that are here omitted for the sake of brevity. In the case of a function f ,

that is, a zero-form, the exterior derivative is its di�erential df . It is said that a

di�erential form ω ∈ Ωk(M) is closed if dω = 0 and exact if there exists a smooth

(k − 1)-form η on M such that ω = dη. Every exact form is automatically closed

for the property of the exterior di�erential d ◦ d = 0. Vice versa, a closed form

is exact if it is de�ned over a simply connected domain; hence, a closed form is

always locally exact. This is equivalent to the familiar Poincaré lemma, which says

that every irrotational vector �eld is conservative in a simply connected domain.

On the other hand, it is possible to de�ne the interior product , which is an

important operation that relates vectors with alternating tensors. If V is a �nite-

dimensional vector space, for each v ∈ V , we de�ne a linear map ιv : Λk(V ∗) →
Λk−1(V ∗), called interior product by v, as follows:

ιvω(w1, w2, . . . , wk−1) = ω(v, w1, w2, . . . , wk−1) (A.33)

In common words, ιvω is obtained from ω by inserting v into the �rst slot. This

is also written as

vyω = ιvω. (A.34)

Finally, we report a very useful theorem to calculate the Lie derivative of

di�erential form.

Theorem A.5 (Cartan's Magic Formula). Let V a smooth vector �eld and ω

a smooth di�erential form on a smooth manifold. Then,

£V ω = V y dω + d(V yω). (A.35)

The most important consequence is the

Corollary A.6. If V is a smooth vector �eld and ω is a smooth di�erential form,

then the Lie derivative and exterior di�erential operators commute:

£V (dω) = d(£V ω). (A.36)
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A.5 (Regular) distributions and foliations

For the discussion we would need to say too many things of topology and sub-

manifolds. Since we don't have the space to that, we try to give only notions as

intuitive as possible.

A (regular) distribution on M of rank k is a rank-k subbundle of TM ,

that is, a vector bundle πD : D →M , where

• D is a topological subspace of TM ;

• πD is the restriction of πTM : TM →M ;

• for each p ∈M , the subset Dp = D ∩ TpM is a linear subspace (and inherits

the vector space structure) of TpM .

Vectors in D are called horizontal .

A distribution D is a smooth distribution if each point p ∈ M has a neigh-

bourhood U on which there are smooth vector �elds X1, . . . , Xk : U → TM such

that X1|p, . . . , Xk|p form a basis for Dp at each p ∈ U . In this case, we say that

D is the distribution (locally) spanned by the vector �elds X1, . . . , Xk. We

write X1, . . . , Xk ∈ XD
loc(M).

Suppose D ⊆ TM is smooth (regular) distribution . A nonempty immersed

submanifold N ⊆ M is called an integral submanifold of D if TpN = Dp for

each p in N . A smooth (regular) distribution D on M is said to be integrable if

each point of M is contained in an integral submanifold of D.

Theorem A.7 (Frobenius Theorem). Let D a smooth (regular) distribution

on M and Γ(D) ⊆ X(M) denote the space of smooth global sections of D. The

following statements are equivalent:

• D is integrable;

• Γ(D) is a Lie subalgebra of X(M) ( involutivity condition).

An integral submanifold of D is called maximal if it is not contained in any

strictly larger integral submanifold of D. For a smooth integrable distribution,

every point is contained in a unique maximal integral submanifold. The collection

of all maximal integral submanifolds form a foliation1 of M induced by the

1A foliation is de�ned independently from a distribution; however, we are not interested in
its de�nition, but only in the case where its leaves are the maximal integral submanifolds of a
distribution.
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integrable distribution D, and each maximal integral manifold is called a leaf

of the foliation .
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B
Helmholtz-Hodge decomposition

Helmholtz decomposition for vector �elds in R3 was �rst developed by Hermann

L. F. von Helmholtz in [vH58], and it is based on using two potentials to ex-

tract the irrotational and divergenceless components from a vector �eld de�ned

in all three-dimensional space. The same decomposition often takes the name

of Helmholtz-Hodge decomposition when it is generalized (see [BNPB13] for an

interesting survey). For bounded domains, either

• by specifying the tangential component of the irrotational part or the normal

component of the divergenceless one,

• or by adding a third harmonic part and specifying both tangential and normal

components of the other two parts at the same time.

The two or three components are assured to be unique because they are mutually

L2(R3)-orthogonal.

A further generalization can be built on a compact, boundaryless, oriented,

Riemannian manifold, and reads

ω = ωα + ωβ + ωγ

= dα + d∗β + γ, (B.1)

187
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where α ∈ Ωk−1(M) (i.e., ωα is the exact part of ω), β ∈ Ωk+1(M) (ωβ is the co-

exact part of ω) and γ ∈ Hk(M). d is the exterior derivative, d∗ its adjoint with

respect to the Riemannian metric, and Hk(M) is the space of harmonic forms on

M . Harmonic forms on a Riemannian manifold are de�ned through the Laplace-

Beltrami operator ∆ = dd∗ + d∗d, which is a generalization of the Laplacian for a

p-form. In terms of vector spaces, decomposition (B.1) is

Ω(M) = dΩk−1(M)⊕ d∗Ωk+1(M)⊕Hk(M).

This may also be generalized to the case of manifold with boundary.

In the context of Subsec. 3.3.4, the ambient space is Rn, but we are interested

only in the fact that any p-form has always an exact component; the remaining

component is left unspeci�ed. The decomposition is thus used in the form

ω = dα + y, (B.2)

where y ∈
[
dΩk−1(Rn)

]⊥
= d∗Ωk+1(Rn)⊕Hk(Rn).

If ω is a 1-form (a covector), α ∈ Ω0(Rn) = C∞(Rn) is a smooth function, and

the same decomposition may also be expressed in terms of vectors through the

tangent-cotangent isomorphism g]:

j = g]ω = g](dα + y) = gradα + y.

We denote by Xcons(M) = dC∞(M) the space of conservative vector �eld and by

[Xcons(M)]⊥ its orthogonal complement.
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