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Sommario

Il presente lavoro di tesi tratta della definizione e dell’applicazione di una
nuova classe di prior non parametriche che approssima un processo apparte-
nente alla famiglia di misure aleatorie normalizzate a incrementi indipen-
denti. Queste ultime sono misure di probabilità aleatorie discrete i cui pesi,
che sono infiniti, sono ottenuti mediante normalizzazione dei salti di un pro-
cesso di Poisson, mentre i punti di supporto sono un insieme numerabile di
variabili aleatorie indipendenti e identicamente distribuite da un certa legge.
La particolare classe di prior non parametriche che vogliamo approssimare in
questa tesi è il processo gamma generalizzato normalizzato (NGG).

L’inferenza è complicata a causa della presenza di infiniti parametri non
noti, che sono i pesi e il supporto della misura aleatoria discreta. Per risolvere
ciò saranno tenuti in considerazione nel processo solo i salti del processo NGG
maggiori di una certa soglia ε: tale definizione rende la prior di dimensione
finita. Il parametro ε controlla il livello di approssimazione, da cui il nome di
processo ε-NGG. Successivamente, il nuovo processo verrà considerato come
misura misturante di un modello mistura, spesso usato in statistica bayesiana
non parametrica come un modello flessibile per problemi di stima di densità
e clustering.

In questa tesi costruiremo un algoritmo Gibbs sampler per simulare dalla
posterior del modello mistura. L’algoritmo verrà poi applicato a due diversi
dataset. Il primo dataset, univariato, è il ben noto dataset Galaxy, mentre
il secondo, multivariato, è chiamato in letteratura Yeast cell cycle dataset e
raccoglie i profili di espressione genetica in 9 diversi istanti di tempo. Per en-
trambi condurremo un’approfondita analisi di robustezza rispetto alla scelta
della prior per valutare sia la bontá del modello in un contesto di stima di
densitá, sia l’influenza dei parametri, i quali possono anche essere considerati
aleatori, sulle stime. Nel caso multivariato, infine, il nostro processo verrá
inserito all’interno di un modello di clustering : per scegliere la migliore stima
a posteriori sará usato il metodo di minimizzazione della funzione di perdita.
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Abstract

In this work we define a new class of random probability measures, approxi-
mating the well-known normalized generalized gamma (NGG) process. Our
new process is defined from the representation of NGG processes as discrete
measures where the weights are obtained by normalization of the jumps of a
Poisson process, and the support consists of independent and identically dis-
tributed (iid) points, however considering only jumps larger than a threshold
ε. Therefore, the number of jumps of this new process, called ε-NGG process,
is a.s. finite. A prior distribution for ε can be elicited. We will assume the
ε-NGG process as the mixing measure in a mixture model for density and
cluster estimation. Moreover, an efficient Gibbs sampler scheme to simulate
from the posterior is provided. The model is then applied to two datasets,
the well-known univariate Galaxy dataset and the multivariate Yeast cell
cycle dataset, consisting of gene expression profiles measured at 9 different
times. A deep robustness analysis with respect to the prior is performed for
both models, in order to evaluate the goodness-of-fit of the model in a den-
sity estimation context and investigate the role of the parameters (which can
also be considered as random variables) in the posterior estimates. In the
multivariate case, we will also provide posterior cluster estimates, obtained
through a loss-function minimization approach.
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Introduction

Sometimes in either density estimation and clustering problems a parametric
approach could be too restrictive, leading to wrong inference and decisions:
an approach allowing for a richer and larger class of models is needed. This
is achieved by considering infinite dimensional families of probability mod-
els. Priors on such families are known as nonparametric Bayesian priors. In
this work we propose a mixture model that considers as mixing measure an
homogeneous normalized random measure with independent increments, in
particular the normalized generalized gamma (NGG) process. This random
probability measure is more flexible than the Dirichlet process, considering a
wider range of conditions. In general, the main difficulty of the nonparamet-
ric approach is that posterior inference involves the computation of infinite
unknown parameters; in the literature, there are two main approaches to deal
with this problem, namely marginal and truncation algorithms. The former
integrate out the infinite dimensional parameter (i.e. the random probabil-
ity), while the latter ones approximate the infinite dimensional process with
a finite dimensional one, yielding a full Bayesian analysis. This represents a
positive aspect of the algorithm, since also estimates of all the parameters of
the random process can be obtained.

The solution we propose here can be classified as an a-priori truncation
method, similar to the approach of Ishwaran and James (2001) for the DPM
model. The main original contribution of the thesis, in fact, is the definition
of a new discrete random probability measure, called ε-NGG process, which is
a truncated version of the NGG process; in this sense, a convergence result is
also provided. Another achievement of the work is the construction of a Gibbs
sampler scheme to simulate from the posterior of the ε-NGG mixture model;
in particular, we have built a conditional algorithm that uses a finite random
number of parameters, but, on the other hand, it is easy to implement. We
coded it in C++ language, while the post-processing has been developed
with the software R. We have applied our model to two popular datasets:
the Galaxy data, since it is nowadays the favorite univariate test dataset for
any new nonparametric model in a density estimation context, and the Yeast
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cell cycle data, which is an interesting multivariate dataset consisting of gene
expression profiles measured at 9 different times.

Density estimates for the two applications are shown, together with a deep
robustness analysis of the estimates and the convergence of posterior chains
for different prior choices; moreover, a prior on the parameters of the process
NGG and on ε can be elicited in order to robustify the inference. We deduce
from the analysis that the model is robust with respect to the choice of the
scalar parameters of the NGG process, while it depends strongly on the choice
of the distribution P0, that controls the support of the prior distribution. This
issue is important, especially in the multivariate case, where the parameters
have to be carefully selected. On the one hand, in the univariate application,
it is possible to choose a relatively large ε, thus reducing the computational
efforts but still obtaining reliable estimates. On the other hand, ε strongly
affects the results in the multivariate case. Hence, smaller values for the
parameter are needed in order to have a close approximation of the elicited
nonparametric prior. We point out that the algorithm is quite fast, especially
in the univariate case, where no multivariate sampling is needed.

Furthermore, when considering a sample from a discrete random probabil-
ity measure, as in this case, ties among the sampled values yield a (random)
partition π of the sample labels. Therefore, we have used the hierarchical
structure of our model in order to provide the clustering of data; in par-
ticular, we have chosen a posterior estimate of π through a loss function
minimization method. Finally, we have also illustrated the performances of
the clustering algorithm in the multivariate case.

The work is organized as follows: in Chapter 1 the class of NRMI priors
and mixture models for density estimation are introduced, with focus on the
NGG process. Chapter 2 deals with the definition of the ε-NGG process.
First, we prove the convergence in law to the NGG process when ε tends to
0; then, the Gibbs sampler algorithm for the posterior inference from an ε-
NGG mixture model is provided. The algorithm is applied to the univariate
Galaxy dataset in Chapter 3: a robustness analysis is carried on, illustrating
the results of our estimates for different sets of hyperparameters, in order to
understand the effect of the parameters on posterior estimates. In Chapter 4
a similar analysis is provided on a multivariate dataset: the Yeast cell cycle
data. In this context, we also tackle the clustering problem.
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Chapter 1 | Density estimation
by NRMI mixtures

In this first chapter we deal with the problem of density estimation from a
Bayesian nonparametric point of view. The nonparametric approach is very
useful because it allows a rich class of models for the data: this is achieved
by considering infinite dimensional families of probability models. Priors
on such families are known as nonparametric Bayesian priors and prevent
from misleading decisions and inference that may be done in the parametric
approach, which considers families of models that can be indexed by a finite
dimensional set of parameters. The parametric paradigm requires a strong
knowledge of the phenomenon taken into account and, as clearly explained
in Müller and Mitra (2013), can mislead investigators into a false sense of
posterior certainty.

In this chapter we will see how a particular family of nonparametric priors,
namely normalized random measures with independent increments (NRMI),
can be included as an ingredient in density estimation problems. The main
tool is the mixture model of Section 1.1.

1.1 | Mixture models

Let us start recalling the notion of exchangeability. Let (Xn)n≥1 be a sequence
of observations, defined on a probability space (Ω,F ,P), where each Xi takes
values in X, a complete and separable metric space endowed by a σ-algebra
X (for instance X = R

k for some positive integer k and X = B(Rk)).

The typical assumption in the Bayesian approach is exchangeability of
infinite sequences of data. Formally, this means that for every n ≥ 1 and
every permutation π(·) of the indices 1, 2,.., n, the probability distribution
of the vector (X1, X2, . . . , Xn) is equal to that of (Xπ(1), Xπ(2), .., Xπ(n)).

Before stating the theorem allowing the formalization of the nonpara-
metric model, the de Finetti’s theorem, let us define a random probability
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measure as
P : (Ω,F)→ (PX, CP)

where PX is the space of all the probability measures on (X,X ) and CP is the
smallest σ-algebra such that P 7→ P (B) is a measurable function, for any
B ∈ X .

The de Finetti’s representation theorem states that the sequence (Xn)n≥1

is exchangeable if and only if there exists a random probability measure Q
on the space of the probability measures on X such that

{

Xi|P
iid
∼ P i = 1, 2, .., n

P ∼ Q

for any n ≥ 1. The random element P is defined on (Ω,F ,P) with values
in PX and the distribution Q is the so-called de Finetti measure and rep-
resents the prior distribution. If Q concentrates all the mass over a family
of distributions, namely the population distribution, that can be indexed
by a parameter of finite dimension, then the inferential problem is called
parametric, otherwise the problem is nonparametric.

Mixture models provide a statistical framework for modeling a collection
of continuous observations (X1, . . . , Xn) where each measurement is supposed
to arise from one of k groups, with k eventually unknown, and each group is
modeled by a kernel distribution from a suitable parametric family.

This model is usually represented hierarchically in terms of a collection of
independent and identically distributed latent random variables (θ1, . . . , θn):











Xi|θi
ind
∼ K(·|θi) i = 1, . . . , n

θi|P
iid
∼ P i = 1, . . . , n

P ∼ Q

(1.1)

where Q denotes the nonparametric prior distribution and K(·|θ) is a prob-
ability density function parametrized by the latent random variable θ.

Model (1.1) is equivalent to assume the data X1, . . . , Xn as i.i.d. according
to a probability density that is a mixture of kernel functions:

X1, . . . , Xn
iid
∼ f(x) =

∫

Θ

K(x|θ)P (dθ),

where P is called mixing measure. Note that if Q selects discrete probability
measures, P is discrete and the mixture model can be written as a sum with
a countably infinite number of components:

4



f(x) =
+∞
∑

j=1

pjK (x|θj)

where the weights (pj)j>1 represent the relative frequency of the groups in
the population indexed by θj .

This approach provides a flexible model for clustering items in a hierar-
chical setting without the necessity to specify in advance the exact number
of clusters. This fact will be explained clearly later on.

The most popular model of this family is the Dirichlet Process Mixture
(DPM) model where the random probability measure Q is indeed the Dirich-
let process. In what follows, we introduce a more general class of mixture
models, namely mixtures with mixing measure given by normalized random
measures with independent increments (NRMI), since they include the DPM
as a specific case. As we will see, the NRMIs are very flexible but still mathe-
matically tractable, making them a good choice as Q in the mixture models.
In the next section completely random measures are introduced: they are
the basic block to construct our nonparametric priors.

1.2 | Completely random measures

We refer to Kingman (1993) for all the material in this section.

First let us introduce the Poisson process and the associated count func-
tion: they will be useful later in this section.

Definition 1 (Poisson Process). A Poisson process Π on X is a random
countable subset of X such that:

1. for any disjoint numerable subsets A1, A2, . . . , An of X, the random
variables N(A1), N(A2), . . . , N(An) are independent,

2. N(A) has the Poisson distribution P(ν), where ν = ν(A) is such that
0 6 ν 6∞.

We denote by N the cardinality of the set Π∩A, N(A)=♯{Π∩A}, where
A is a subset of the space X where the process takes place.

The measure ν totally characterizes the process: it is called mean measure
or Lévy’s intensity.

Let (M, B(M)) be the space of boundedly finite measures on (X, B(X)),
i.e. for any measure µ in M and any bounded set A in X, µ(A) <∞.
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Definition 2 (Completely Random Measure, CRM). A random element µ
defined on (Ω,F ,P) and taking values in M is a completely random measure
if, for any A1, A2, . . . , An in X with Ai ∩ Aj = ∅ for any i 6= j and n > 1,
the random variables µ(A1), µ(A2), . . . , µ(An) are mutually independent and

µ

(

⋃

j≥1

Aj

)

=
∑

j≥1

µ (Aj) a.s.

In general, a CRM can be decomposed into three independent compo-
nents: a non-random measure, a countable collection of non-negative random
masses at non-random locations and a countable collection of non-negative
random masses at random locations (see Chapter 8 of Kingman (1993) for a
more detailed explanation). For our purposes we consider CRMs consisting
only of the third component: they are discrete measures a.s., so µ can be
written as an infinite weighted sum of Dirac functions:

µ(·) =
∑

i≥1

Jiδτi(·). (1.2)

The random points (Ji, τi)i>1 are the points of a Poisson process on
(R+,X) with mean measure ν that must satisfy the following conditions :

∫

(0,1)

sν(ds,X) < +∞, ν([1,∞)× X) < +∞. (1.3)

This construction produces the most general completely random measure
without fixed atoms and non-random measure.

An important property one could require from a CRM is the homogene-
ity: this property relies on the possibility to factorize the underlying mean
measure. Let P0 be a non-atomic and σ-finite probability measure on X, then
we have:

• if ν(ds, dx) = ρ(ds)P0(dx), for some measure ρ on R
+, we call N and

µ homogeneous: in this case the jumps in the representation (1.2) are
independent of the locations;

• if ν(ds, dx) = ρ(ds|x)P0(dx), where ρ : B(R+) × X → R
+, i.e. x 7→

ρ(C|x) is B(X) measurable for any C ∈ B(R+) and ρ(·|x) is a σ-finite
measure on B(R+) for any x ∈ X, we call N and µ non homogeneous.

The sequence (Ji)i≥1 represents the jumps controlled by the kernel ρ and
(τi)i≥1 are the locations of the jumps determined by the measure P0 on X.

See Figure 1.1 for a graphical example of an homogeneous CRM on R

(left) with its corresponding Lèvy’s intensity (right).
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Figure 1.1: Left: A draw
∑

i>0 Jiδτi from a homogeneous CRM on R.
Each stick denotes an atom in the CRM with mass given by its height Ji

and location given by τi. Right: the density of its Lèvy intensity measure
ν(ds, dx) = 1/Γ(1 − σ)e−ss−1−σdsP0(dx) where σ = 0.1 and P0 is gaussian
of mean 0 and variance 1.

Since µ is a discrete random measure almost surely, it is straightforward to
build a discrete random probability measure by the normalization procedure,
which yields to NRMIs, first introduced by Regazzini et al. (2003).

1.3 | Species sampling models

We introduce in this section the species sampling model which will be useful
later, dealing with the process proposed in this work, the ε-NGG process.
We refer to Pitman (1996) for all the results in this section.

A sequence of random variables (θn)n>1 is a species sampling sequence if
and only if (θn)n>1 is a sample from a random distribution Q of the form

Q =
∑

i

Piδτi +

(

1−
∑

i

Pi

)

η

for some sequence of variables (Pi)i>1 such that

Pi > 0 ∀i and
∑

i

Pi 6 1 a.s.

and some sequence (τi)i>1 that is iid from η and independent of (Pi)i>1.
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If θn represents the "species" (or the label) of the n−th individual in some
process of sampling of elements from a population, Pi can be interpreted as
the relative frequency of the i − th species and τi as the label assigned to
that species. The model is proper if

∑

i Pi = 1 a.s., i.e. Q is almost surely
discrete.

This class of random probability measures is characterized by a distri-
bution representing the prior guess of the shape of the random measure, η,
and a symmetric function of sequence of positive integers called exchangeable
partition probability function (eppf). Before defining the eppf, it is useful to
introduce the following notation: the finite sample (θ1, . . . , θn) from a species
sampling model Q induces a random partition pn := {C1, . . . , Ck} on the set
Nn := {1, . . . , n} by letting Cj = {i : θi = θ∗j} for j = 1, . . . , k, where θ∗j
are the unique values. In particular, #Ci = ni for 1 ≤ i ≤ k, and the
eppf p can be viewed as a probability law on the set of all the partitions of
Nn. Recalling the definition given in Pitman (2003), an exchangeable parti-
tion probability function is a symmetric function p of sequences of positive
integers (n1, . . . , nk) such that:

P (pn = {C1, . . . , Ck}) = p (n1, . . . , nk) .

The marginal law of (θ1, . . . , θn) has a unique characterization in term
of its unique values θ∗ := (θ∗1, . . . , θ

∗
k) and its corresponding exchangeable

partition pn given by

L(pn, θ
∗
1, . . . , θ

∗
k) = p(n1, . . . , nk)

k
∏

j=1

L(θ∗j ),

where p is the eppf associated to Q.
For a proper sequence (Pi)i>1, the following formula for the corresponding

eppf is valid:

p(n1, . . . , nk) =
∑

j1,...,jk

E

(

k
∏

i=1

P ni

ji

)

, (1.4)

where (j1, . . . , jk) ranges over all permutations of k positive integers.
In Section 2.2 we will see an analytical result on the eppf of the process

Pε we are going to introduce, which is exactly a species sampling model.
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1.4 | Normalized random measures with

independent increments

After the definition of species sampling models, we can resume the construc-
tion of NRMIs from the notion of completely random measures. First notice
that the normalization procedure is well defined only if the total mass of the
measure T := µ(X) is positive and finite almost surely:

P (0 < T < +∞) = 1 a.s.

This requirement is satisfied if the intensity ν in the more general non ho-
mogeneous case is such that

∫

R+

ρ(ds|x) = +∞ ∀x ∈ X. (1.5)

This means that the jumps of the process form a dense set in (0,+∞). Note
that there are infinite masses near the origin since the second condition in
(1.3) must hold. Now we can proceed with the definition of a NRMI.

Definition 3 (Normalized random measure with independent increments,
NRMI). Let µ be a CRM with intensity measure ν such that 0 < µ(X) <∞
almost surely. Then, the random probability measure

P (·) =
µ(·)

µ(X)

is called normalized random measure with independent increments, NRMI,
on (X,B(X)).

It is important to highlight that NRMIs select, almost surely, discrete
distributions, so that P admits a series representation as

∑

j≥1

pjδτj

where pj = Jj/T ∀j > 1 where the weights Jj are those in (1.2).

In order to understand better how the jumps and the locations derive
from the homogeneous mean measure ν of the underlying CRM, we recall
the definition of Bernoulli process.

Let Π be a Poisson process on a space Y with mean measure ν such
that ν(Y) < +∞: then Π is a finite subset of Y almost surely, since the total
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number of points N(Y) has the Poisson distribution P(ν(Y)). What happens
if we condition the process Π on the value N(Y), the total number of points?
Kingman (1993) explains that, given N(Y), the points of a finite Poisson
process are N(Y) independent random variables with common distribution

q(·) =
ν(·)

ν(Y)
.

This important result allows us to state that, conditioning on a (fi-
nite) number of points, the random locations τjs can be considered to be
i.i.d.according to the probability measure P0 of the factorization ν(ds, dx) =
ρ(ds)P0(dx) and it would be the same in the case of non-homogeneous mea-
sures. Note that if the support of P0 coincides with X, then the corresponding
NRMI has full support PX, which is a desirable property for a prior distri-
bution.

On the other hand, the distribution of the random jumps (Jj)j≥1 is gov-
erned by a Poisson process with Lèvy measure ρ which must satisfy condition
(1.5) in order to be able to normalize the jumps. These jumps are infinite,
therefore it is not possible to consider a Bernoulli process. In the next chap-
ter we will see a way to sample these Jjs. As we have already mentioned,
if the underlying intensity ν is homogeneous, the factorization implies that
the weights pis are independent from the locations τi. Note also that P is a
proper species sampling model.

A challenging issue when dealing with NRMIs in a statistical framework
is the computation of posterior distribution, because the NRMIs are not con-
jugate, with the exception of the Dirichlet process. As shown in James et al.
(2009), conditioning on a specific latent variable, the posterior distribution of
a NRMI coincides with the distribution of another NRMI having a rescaled
intensity and fixed points of discontinuity.

This can be considered as a kind of conditional conjugacy property, that
makes the computation simpler. In particular, we define a positive random
variable U as follows: let Γn be a Gamma random variable with shape and
scale parameters n and 1, respectively, independent from the total sum T.
Setting U = Γn/T and conditioning with respect to U, the conjugacy is
retrieved. It is immediate to show that for n > 1 the density function of U
is given by

fU(u) =
un−1

Γ(n)

∫

R+

tne−utfT (t)dt

where fT is the density function of T.
The main result concerning a posterior characterization of the completely

random measure is the following:
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Theorem 1. Let (X1, . . . , Xn) be a sample from P , where P is a NRMI
with intensity ν(ds, dx) = ρ(ds|x)P0(dx). Then the CRM conditioned to the
variable U and the sample is the sum of two measures

µ|(U,X1,..,Xn) d
= µ|U +

k
∑

i=1

J
|(U,X1,..,Xn)
i δYi

where

1. µ|U is a completely random measure with intensity

ν |U(ds, dx) = e−Usρ(ds|x)P0(dx);

2. {Yi, i = 1, .., k} are the fixed points of discontinuity, i.e. the k unique

values in the sample (X1, . . . , Xn), and the J
|(U,X1,..,Xn)
i are the corre-

sponding independent jumps whose density is proportional to
snie−usρ(ds|Yi), where ni is the number of repetitions of the value Yi in
the sample;

3. µ|U is independent from J
|(U,X1,..,Xn)
i , i=1,..,k.

Note that the symbol
d
= stands for the equality in distribution.

Theorem 1 states that, given some latent variable U, the a-posteriori µ is
still a completely random measure with fixed points of discontinuity corre-
sponding to the locations of the observations, in particular to the positions
of the unique values Yi, i=1,..,k in the sequence (X1, . . . , Xn).

From the previous result it is possible to derive a posterior characteriza-
tion of the class of NRMI too.

Theorem 2. If P is a NRMI with intensity ν(ds, dx) = ρ(ds|x)P0(dx), then
the posterior distribution of P given U and the data is again a NRMI with
fixed points of discontinuity that coincides in distribution with the random
probability measure

w
µ|(U,X1,..Xn)

T |(U,X1,..Xn)
+ (1− w)

∑k
i=1 J

|(U,X1,..,Xn)
i δYi

∑k
i=1 J

|(U,X1,..,Xn)
i

,

where T |(U,X1,..,Xn) = µ|(U,X1,..Xn)(X) is the total mass of the posterior CRM

and w = T |(U,X1,..Xn)
(

T |(U,X1,..Xn) +
∑k

i=1 J
|(U,X1,..,Xn)
i

)−1

.

Proofs of the previous two theorems are given in James et al. (2009).
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1.5 | The NGG process

In this work the focus will be on the Normalized Generalized Gamma process.
As stated in Argiento et al. (2010), a generalized Gamma measure is a NRMI
µ with intensity measure equal to

ν(A× B) = P0(B)

∫

A

ρ(ds), A ∈ B(R+), B ∈ B(X)

where
ρ(ds) =

κ

Γ(1− σ)
s−1−σe−sωds, s > 0. (1.6)

The random measure µ is homogeneous according to the decomposition
of ν in Section 1.2, since ρ(ds|x) = ρ(ds).

Since
∫

R+×B
min(s, 1)ν(ds, dx) = P0(B)

∫

R+ min(s, 1)ρ(ds) < +∞, con-
ditions (1.3) are satisfied, so that the measure is well defined. Moreover,
∫

R+ ρ(ds) = +∞ guarantees the correctness of the normalization procedure,
because P(0 < T := µ(Θ) < +∞) = 1. Therefore

P (·) :=
µ(·)

T
(1.7)

defines a random probability measure on X which will be named normal-
ized generalized gamma process, P ∼ NGG(σ, κ, ω, P0), with parameters
(σ, κ, ω, P0), where 0 6 σ 6 1, ω ≥ 0, κ ≥ 0. This parametrization is redun-
dant because one degree of freedom is lost due to the normalization operation:
either κ or ω can be fixed according to one’s convenience. We fix ω = 1 and
let κ varies, changing the notation accordingly: P ∼ NGG(σ, κ, P0).

Later in this chapter we will study the role assumed by the parameters,
looking at the prior distribution of the number of distinct values in the sample
induced by iid sampling from the process.

Since P in (1.7) is a NRMI, then

P =

+∞
∑

i=1

Piδτi =

+∞
∑

i=1

Ji

T
δτi ,

where T is the total mass of the jumps T =
∑

i Ji, (Ji)i≥1 are the points of a
Poisson process on R

+ with mean intensity ρ(ds) as in (1.6) and the locations
τi derive from P0. The two sequences (τi)i≥1 and (Ji)i≥1 are independent
thanks to the homogeneity of the measure µ.

It is also important to highlight that the NGG process selects discrete
distributions almost surely: thus, sampling from P induces an exchangeable
random partition π on the positive integers.
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The first two moments of P are known in a closed analytic form for any
B in B(X):

E(P (B)) = P0(B), V ar(P (B)) = P0(B)(1− P0(B))I(σ, κ)

where

I (σ, κ) :=

(

1

σ
− 1

)

(κ

σ

)1/σ

e(
κ
σ)Γ

(

1

σ
,
κ

σ

)

=

(

1

σ
− 1

)
∫ +∞

1

e−
κ
σ
(y−1)y−

1
σ
−1dy

and Γ(α, x) =
∫ +∞

x
e−ttα−1dt is the incomplete gamma function.

The factor I(σ, κ) is decreasing as a function of each variable alone and
tends to 0 when σ → 1 or κ → +∞: in this case P (B) converges in distri-
bution to P0(B) for every B in B(X). On the other hand, it can be shown
that

lim
σ→0,κ→0

I(σ, κ) = 1

so that P (B)
d
−→ δτ (B), where τ ∼ P0.

Within this class of priors one finds the following special cases:

1. the Dirichlet process DP (κ, P0) which is a NGG(0, κ, P0) process;

2. the normalized inverse Gaussian process that corresponds to a
NGG(1/2, κ, P0).

1.5.1 | The prior distribution of the number

of groups in a NGG process

We reveal in advance that an important issue that is addressed within mix-
ture models is the analysis of the clustering behavior induced by the latent
variables which are a sample from P ∼ NGG(σ, κ, P0). Therefore the (prior)
distribution of the numbers of groups in the mixture corresponds to the
(prior) distribution of the number Kn of distinct observations in a sample
(X1, . . . , Xn) from a NGG process P with parameters (σ, κ, P0). In fact, since
P selects discrete distributions almost surely, there will be ties in the sample.
If k ∈ {1, 2, .., n} is the number of distinct values in the sample, we denote
by (X∗

1 , . . . , X
∗
k) the distinct values and by ni, i = 1, . . . , k, the number of

ties in the i− th group. Obviously
∑k

i=1 ni = n.
As proved in Lijoi et al. (2007), the prior for Kn induced by sampling

from P ∼ NGG(σ, κ, P0) is

P(Kn = k) =
G(n, k, σ)exp(β)

σΓ(n)

n−1
∑

i=0

(

n− 1

i

)

(−1)iβi/σΓ(k−
i

σ
, β), k = 1, . . . , n,
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for any n > 1; here, β is equal to κ/σ and

G(n, k, σ) =
1

k!

k
∑

j=0

(−1)j
(

k

j

)

(−jσ)n

are known as generalized Stirling numbers.
In the NGG process the parameter κ plays the same role as the mass

parameter in the Dirichlet process, hence the bigger κ, the larger is the
expected number of distinct values in the sample from P . In addition, also
σ influences the grouping of the observations into distinct clusters: it has a
double effect. On one hand, if σ increases also E(Kn) grows; on the other
hand, σ can be used to tune the variance of the number of distinct values:
the bigger σ, the flatter is the distribution of Kn. Figure 1.2 provides two
examples: in the left figure we chose 3 couples of parameters (σ, κ) fixing
the mean value at 6, while in the right figure the mean value is 27. It is
clear that increasing σ the distribution becomes flatter, because the variance
of the variable is bigger: we can deduce that a large value of σ yields a
non-informative prior for the number of groups, favoring a large number of
clusters with a small size.

In Figure 1.3 the mean number of Kn and its variance are represented as
a function of κ (left) and σ (right): the mean and variance of Kn increase
almost linearly with κ and exponentially with σ, which has a great influence
for high values.

In order to choose the parameters (κ, σ) we fix the mean E(Kn) equal to
our prior opinion on the amount of groups: however, one have to consider
the constraints on the possible choices. In fact, it is possible to numerically
check Eκ=0,σ(Kn) 6 Eκ,σ(Kn) for any fixed σ and n (Lijoi et al., 2007).
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Figure 1.2: Prior distribution of the number of distinct values in a sample
of n = 150 from a NGG(σ, κ, P0) process.
Left: E(Kn) = 6, (σ, κ) = (0.002, 1.1), (0.15, 0.55), (0.3, 0.09) in red, dark
green, blue respectively.
Right: E(Kn) = 27, (σ, κ) = (0.1, 7.4), (0.4, 2.3), (0.6, 0.2) in red, dark green,
blue respectively.
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Figure 1.3: Left: Mean (black) and variance (green) of the number of clusters
Kn as a function of the parameter κ, with n = 82, σ = 0.1.
Right: Mean (black) and variance (green) of the number of clusters Kn as a
function of the parameter σ, with n = 82, κ = 0.5.
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Chapter 2 | The ε-NGG
mixture model

Until now we have focused on a class of priors based on homogeneous nor-
malized random measures, in particular the Normalized Generalized Gamma
prior. We know that a homogeneous normalized random measure can be
written as a discrete measure where the weights are obtained by normaliza-
tion of the jumps of a Poisson process with a fixed intensity measure, while
the support is a set of iid points from a distribution P0 on Θ:

P (·) =
∞
∑

j=1

Pjδτj (·) :=
∞
∑

j=1

(

Jj

T

)

δτj (·). (2.1)

The model (1.1) we are going to consider is a NRMI mixture model, i.e.
a mixture model where a NRMI acts as nonparametric prior. In particular,
as NRMI we chose a NGG process:











Xi|θi
ind
∼ K(·|θi) i = 1, . . . , n

θi|P
iid
∼ P i = 1, . . . , n

P ∼ NGG(σ, κ, P0)

where K is a parametric kernel. In other words, data are assumed (condi-
tionally) iid from a mixture of kernels K(·|θ), where the mixing distribution
is a normalized measure. From now on, we will consider kernels defined on
X ⊆ R

p, with p an integer representing the dimension of the data, and NRMIs
defined on Θ ⊆ R

m, the space of the parameters of the kernel. For exam-
ple, if K is a univariate gaussian distribution, N(µ, σ2), the latent variable
θ is the vector (µ, σ2), hence Θ = R × R

+. An advantage in using a NGG
process mixture model instead of a DPM model is the opportunity to have
an extra parameter σ, useful, together with the parameter κ, to tune the
prior distribution of Kn, the number of distinct values in the sample from
the process. We highlight here that using this kind of prior for a density
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estimation problem, the posterior inference is made difficult by the presence
of infinite unknown parameters.

We are going to solve this problem considering only jumps bigger than
a threshold ε, which turns out to control the approximation to the infinite
parameters prior: as we will see, conditionally to ε only a finite number
of jumps has to be considered, so that the support of the mixing measure
becomes finite and the computation easier. We will see in the next section
that this kind of approach can be placed in the literature as an a-priori
truncation method. Our prior will be called ε-NGG process of parameters
(ε, σ, κ, P0). Before starting with the description of the model, we provide a
short review of how this problem has been faced in the recent literature in
Section 2.1.

2.1 | Some approaches in the literature

Many authors have faced the problem of the infinite mixture models when
dealing with nonparametric priors. In general, there exist two main ap-
proaches: marginalization and conditional methods. The first marginalizes
over the infinite dimensional process, leading to the Pólya Urn scheme in
the case of mixture models: MacEachern (1998) and Neal (2000) used this
approach. It has one main limit: we can not obtain information about the
latent variables, since the posterior inference involves only the predictive
distribution f(Xn+1|X1, . . . , Xn).

On the other hand, conditional methods build a Gibbs sampler which
does not integrate out the nonparametric mixing measure but updates it as
a component of the algorithm itself.

Recently, Favaro and Teh (2013) developed algorithms of both types for
mixture models with NRMI priors. The marginal one is a generalization of
Neal’s Algorithm 8 while the other one is a slice sampler, hence it adds a slice
variable with a suitable distribution depending on the atoms of the prior µ.
Conditioning on this variable they obtain a finite truncation for µ, having a
finite number of atoms.

The reference papers on conditional algorithms for Dirichlet process mix-
ture models are two: Papaspiliopoulos and Roberts (2008) and Walker (2007).
The former built a retrospective algorithm, avoiding the need of simulating
whole trajectories of the process, by inverting the order of simulation from
a discrete probability. The latter proposed a slice sampler algorithm: only
a finite number of jumps must be simulated, thanks to the introduction of a
latent variable, conditionally on which the Dirichlet process has a represen-
tation with only a finite number of jumps. The algorithm has been extended
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to NRMI mixtures in Griffin and Walker (2011).
Conditional algorithms are called truncation methods when the infinite

parameter (i.e. the mixing measure) is approximated by truncation of the in-
finite sums defining the process. Truncation can be performed a-posteriori to
approximate the infinite parameter P given the data as described by Gelfand
and Kottas (2002) for the DPM model. On the other hand, truncation can
be applied a-priori to approximate the mixing distribution with a finite di-
mensional random probability measure. In this way, a simpler mixture model
has to be fitted. In this last framework, the pioneer works under DPM model
are the ones of Ishwaran and James (2001), Ishwaran and Zarepour (2000)
and Ishwaran and Zarepour (2003). For instance, Ishwaran and James (2001)
consider stick breaking priors, hence random probability measures that can
be built through a sequence of independent beta random variables. Their
blocked Gibbs sampler uses finite approximations of the prior in order to deal
with a finite number of random variables, which are updated in "blocks". As
regards the NRMIs, Lijoi et al. (2007) made an analytical derivation of the
posterior distribution of mixture models governed by a prior of that type:
based on that result, they built a generalization of the Blackwell-Mac Queen
sampling scheme which previously was suitable only for the Dirichlet process.
Barrios et al. (2012) and Argiento et al. (2010) proposed a-posteriori trun-
cation algorithms that exploit the previous characterization: the first uses
the efficient inverse Lèvy measure (ILM) method developed by Wolpert and
Ickstadt (1998), while the second uses the Ferguson-Klass representation of
independent increment processes to update the unnormalized measure.
Recently, an a-priori truncation method has been introduced by Griffin (2013),
who proposed an adaptive truncation algorithm for posterior inference in
Bayesian nonparametric models involving priors both of stick-breaking and
NRMI type. The level of the truncation is set by the model using a particle
filters algorithm to simulate from a sequence of posterior distributions that
are truncated versions of the infinite dimensional prior with an increasing
number of parameters.

It is important to distinguish between two motivations for truncation.
The first is studying the properties of the prior distribution, which is not our
goal, and the second is posterior inference using these priors. Initial work
on truncation methods was motivated by the first consideration. Concern-
ing the Dirichlet process, the first analytical work on the approximation of
the DP has been provided by Muliere and Tardella (1998): based on the
stick-breaking procedure of Sethuraman (1994) and a random stopping rule,
their method allows to choose in advance the degree of approximation with
respect to the infinite dimensional process, guaranteeing the convergence in
the Prohorov metric.
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Finally, we give a motivation for using conditional algorithms: they are
able to provide a full Bayesian analysis, i.e. it is possible to estimate the pos-
terior mean functional (the predictive distribution), as in algorithms based
on the marginalization, but also linear and non linear functionals, such as
quantile functionals. We will see in Chapter 3 how to build credible intervals
of the predictive distribution. In addition, these algorithms furnish the pos-
terior chains of all the sampled variables belonging to the infinite dimensional
mixture: this is not possible using methods based on marginalization, since
the infinite dimensional parameter would have been integrated out.

2.2 | Construction of the Pε prior

In order to build a finite version of (2.1) we fix ε > 0 and consider jumps
greater than a threshold ε, as in Figure 2.1. This truncation method uses
the compound Poisson process (CPP) approximation to the Lèvy measure
(Griffin, 2013): in fact, the jumps larger than ε follow a compound Poisson
process with intensity ρ(x) for x > ε. In particular, the approximation
considers Nε jumps (J1, . . . , JNε

) of a Poisson process with mean measure
Λε(·) = Λ ((ε,+∞) ∩ ·) =

∫

(ε,+∞)∩·
ρ(ds). Furthermore, the number of jumps

Nε is a random variable that follows a Poisson (Λ (ε,+∞)) law, so that its
expectation increases as ε decreases.

Clearly Λε(·) does not satisfy conditions (1.5) so that

P

(

Nε
∑

j=1

Jj = 0

)

> 0.

However, note that Nε is almost surely finite thanks to Λε(R
+) < +∞. For

this reason, conditionally on Nε, the jumps (J1, . . . , JNε
) are iid from

ρε(·) = 1/Λε(R
+)ρ(·)1(ε,+∞)(·)

because it turns out that (J1, . . . , JNε
) is a Bernoulli process, as explained in

Section 1.4. We will consider an additional point J0 ∼ ρε to guarantee that

the total mass of the process is a.s. larger than 0, P
(

Tε =
∑Nε

j=0 Jj = 0
)

= 0.

Let us consider (τ0, τ1, . . . , τNε
) iid random variables from P0, independent

of (J0, J1, . . . , JNε
). We define the following discrete random probability mea-

sure on Θ:

Pε(·) =

Nε
∑

j=0

Pjδτj (·) :=
1

Tε

Nε
∑

j=0

Jjδτj (·), (2.2)
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Figure 2.1: A draw
∑

i>0 Jiδτi from a homogeneous CRM on R. Each stick
denotes an atom in the CRM with mass given by its height Ji and location
given by τi (as in Figure 1.1 (left)). Here the threshold ε is equal to 0.1: all
the gray jumps (they are infinite) are discarded from the definition of the
process Pε.

identified by the triplet
(

Nε, (Jj)
Nε

j=0, (τj)
Nε

j=0

)

.

In this work we take into account in particular an ε-approximation of a
normalized generalized Gamma (NGG) process. Let κ > 0, ω > 0 and 0 <
σ < 1 be real parameters and ε > 0: Pε is obtained by the normalization of
Nε+1 i.i.d. random variables J0, . . . , JNε

from ρε(·), where Nε ∼Poisson(Λε),

Λε := Λε(R
+) =

∫ +∞

ε

ρ(x)dx =
κωσ

Γ(1− σ)
Γ(−σ, ωε),

and

ρε(x) =
1

Λε
ρ(x)1(ε,∞)(x) =

1

ωσΓ(−σ, ωε)
x−σ−1e−ωx

1(ε,∞)(x).

We denote by ε−NGG(σ, κ, ω, P0) the law of the ε-approximation of the NGG
random probability measure just defined and we will write Pε ∼ Pε. From
equation (2.2) it follows that a ε-normalized homogeneous random proba-
bility measure, provided that P0 is nonatomic, is a proper species sampling
model with a random number Nε + 1 of different species.

In the following Proposition 1, a result on the eppf of our ε-NGG process
is provided. We see that the expression depends on an auxiliary random
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variable U we already met in Section 1.4 (suggested by James et al., 2009)
that we are going to reintroduce: U |Tε ∼ Gamma(n, Tε), independent on all
the other variables. Clearly its density is:

fU |Tε
(u) =

1

Γ(n)
T n
ε u

n−1e−uTε. (2.3)

Integrating between 0 and +∞ both members of the last formula, we
obtain an alternative expression of the variable T n

ε in terms of the integral
of a function of U:

1

T n
ε

=

∫ +∞

0

1

Γ(n)
un−1e−uTε . (2.4)

Proposition 1. Let (n1, . . . , nk) ⊂ N be a vector such that
∑k

i=1 ni = n.Then
the eppf associated with an Pε ∼ ε-NGG(σ, κ, ω, P0) is the following:

pε(n1, . . . , nk) =

∫ ∞

0

1

Γ(n)
un−1(u+ ω)kσ−n

k
∏

i=1

Γ(ni − σ, (u+ ω)ε)

·
κk−1

Γ(1− σ)k−1

Λε,u + k

ωσΓ(−σ, ωε)
exp {Λε,u − Λε} du,

(2.5)

where u > 0 and

Λε,u := Λε,u(R
+) =

∫ ∞

ε

ρε,u(x)dx

with

ρε,u(x) =
κ

Γ(1− σ)
x−1−σe−(ω+u)x

1(0,∞)(x). (2.6)

Proof. In order to prove the previous result first observe that

pε(n1, . . . , nk) =

∫

p(n1, . . . , nk|Nε)L(dNε). (2.7)

Then note that thanks to the general result on the species sampling models
(1.4) provided in Section 1.3, we obtain

pε(n1, . . . , nk|Nε) = 1{1,...,Nε+1}(k)
∑

j1,...,jk

E

(

k
∏

i=1

P ni

ji

)

,
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where the vector (j1, . . . , jk) ranges over all permutations of k elements in
{0, . . . , Nε}. Therefore,

pε(n1, .., nk|Nε)=1{1,...,Nε+1}(k)
∑

j1,...,jk

∫ k
∏

i=1

Jni

ji

T ni
ε
L(dJ0, . . . , dJNε

)

=1{1,...,Nε+1}(k)
∑

j1,...,jk

∫

1

T n
ε

k
∏

i=1

Jni

ji
L(dJ0, . . . , dJNε

)

=1{1,...,Nε+1}(k)
∑

j1,...,jk

∫ ∫ ∞

0

1

Γ(n)
un−1e−uTεdu

k
∏

i=1

Jni

ji
L(dJ0, . . . , dJNε

)

=1{1,...,Nε+1}(k)
∑

j1,...,jk

∫ ∞

0

( 1

Γ(n)
un−1

k
∏

i=1

∫ ∞

0

Jni

ji
e−Jjiuρε(Jji)dJji

·
∏

j /∈{j1,...,jk}

∫ ∞

0

e−Jjuρε(Jj)dJj

)

du

=1{1,...,Nε+1}(k)
∑

j1,...,jk

∫ ∞

0

( 1

Γ(n)
un−1

k
∏

i=1

∫ ∞

ε

Jni

ji

ωσΓ(−σ, ωε)
J−σ−1
ji

e−(ω+u)JjidJji

·
∏

j /∈{j1,...,jk}

∫ ∞

ε

1

ωσΓ(−σ, ωε)
J−σ−1
j e−(ω+u)JjdJj

)

du

=1{1,...,Nε+1}(k)
∑

j1,...,jk

∫ ∞

0

[

1

Γ(n)
un−1

k
∏

i=1

(u+ ω)σ−niΓ(ni − σ; (u+ ω)ε)

ωσΓ(−σ, ωε)

·

(

(u+ ω)σΓ(−σ; (u+ ω)ε)

ωσΓ(−σ, ωε)

)Nε+1−k]

du.

We can change the (finite) sum with the integral. Observing that the
integrand function does not depend on the position of the cluster ji, i =
1, . . . , k, but only on the numerosity ni, we can count how many sequences
of k distinct elements we can built using the elements in {0, . . . , Nε}. These

are (Nε + 1)(Nε) . . . (Nε + 1− k) =
(Nε + 1)!

(Nε + 1− k)!
, hence

pε(n1, . . . , nk|Nε) = 1{1,...,Nε+1}(k)

∫ ∞

0

[

1

Γ(n)
un−1 (Nε + 1)!

(Nε + 1− k)!

·
k
∏

i=1

(u+ ω)σ−niΓ(ni − σ; (u+ ω)ε)

ωσΓ(−σ, ωε)

(

(u+ ω)σΓ(−σ; (u+ ω)ε)

ωσΓ(−σ, ωε)

)Nε+1−k]

du

23



Using (2.7) and remembering Nε has a Poisson law with parameter Λε, we
get

pε(n1, . . . , nk) =
∞
∑

Nε=0

pε(n1, . . . , nk|Nε)
ΛNε

ε

Nε!
e−Λε.

By letting Nna = Nε + 1 − k be the number of not allocated jumps, some
simple algebra gives

pε(n1, .., nk) =

∞
∑

Nε=0

∫ ∞

0

{ 1

Γ(n)
un−1(u+ ω)kσ−n

k
∏

i=1

Γ(ni − σ, (u+ ω)ε)

·
1

ωσΓ(−σ, ωε)

κk−1

Γ(1− σ)k−1

·
Na + k

Na!

(

κ(u+ ω)σ

Γ(1− σ)
Γ(−σ, (u+ ω)ε)

)Na

e−Λε

}

du

Using Fubini theorem, we exchange the integration with the series and using
(2.6) to let Λε,u = κ(u+ω)σ

Γ(1−σ)
Γ(−σ, (u+ ω)ε), we obtain

∞
∑

Na=0

Na + k

Na!
ΛNa

ε,u = eΛε,u (Λε,u + k)

where we used the density function of a Poisson distribution and its mean.
Expression (2.5) for the eppf of a ε−NGG(σ, κ, ω, P0) process follows.

2.3 | Weak convergence of the ε-NGG

approximation

Our purpose in the previous section was to build a process that could be
interpreted as a finite dimensional version of a NGG process; however, to
justify our notation some convergence results are needed.

Lemma 1. Let {(a1,n), . . . , (ak,n)} be a family of sequences of real numbers,
with k ≥ 2, such that

1. limn→+∞ (a1,n + · · ·+ ak,n) = l < +∞,

2. lim infn→+∞ ai,n = ai,0 < +∞ for each i ∈ {1, . . . , k},

3. a1,0 + · · ·+ ak,0 = l.
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Then
lim
n→∞

ai,n = ai,0 for each i ∈ {1, . . . , k}.

Proof. We will prove the statement for k = 2, and the general result follows
by induction. Since

lim inf
n→∞

(a1,n + a2,n) ≤ lim sup
n→∞

a1,n + lim inf
n→∞

a2,n ≤ lim sup
n→∞

(a1,n + a2,n)

the following relation holds

l ≤ lim sup
n→∞

a1,n + a2,0 ≤ l ⇒ l ≤ lim sup
n→∞

a1,n + l − a1,0 ≤ l ⇒ lim
n→∞

a1,n = a1,0

Analogously we prove that limn→∞ a2,n = a2,0.

Now we are able to show that the eppf of an ε-NGG process converges
pointwise to the one of a NGG process when ε tends to 0.

Proposition 2. Let pε(·) be the eppf of a ε−NGG(σ, κ, ω, P0) process. Then
for each (n1, . . . , nk) ∈ N with k ≥ 0 and

∑k
i=1 ni = n,

lim
ε→0

pε(n1, . . . , nk) = p0(n1, . . . , nk), (2.8)

where p0(·) is the eppf of a NGG(σ, κ, ω, P0) process.

Proof. By Proposition 1

pε(n1, . . . , nk) =

∫

fε(u;n1, . . . , nk)du

where fε is the integrand in equation (2.5). Moreover the eppf of a NGG(σ, κ, ω, P0)
process can be written as

p0(n1, . . . , nk) =

∫

f0(u;n1, . . . , nk)du

where f0(u;n1, .., nk) =
κk

∏k
i=1 Γ(ni−σ)/Γ(1−σ)

Γ(n)
un−1 exp

{

−κ (ω+u)σ−ωσ

σ

}

(u+ ω)kσ−n .

We first show that

lim
ε→0

fε(u;n1, . . . , nk) = f0(u;n1, . . . , nk) ∀u > 0.

This is straightforward by the following remarks:
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1. since (ni − σ) > 0 for each i = 1, . . . , k, then

lim
ε→0

Γ(ni − σ, (u+ ω)ε) = Γ(ni − σ);

2. thanks to limε→0 Γ(−σ, ωε) = +∞ and the formula

Γ(1− σ, x) = −σΓ(−σ, x) + xσe−x, (2.9)

the following relation is true for each σ and x:

lim
ε→0

Λε,u + k

ωσΓ(−σ, ωε)
=

κ

Γ(1− σ)
;

3. by formula (2.9) and some simple analytic computations

lim
ε→0
{Λε,u − Λε} = −κ

(ω + u)σ − ωσ

σ
.

Now let C = {C1, . . . , Ck} be a partition such that the groups numerosi-
ties are (n1, . . . , nk). Calling pn all the possible partitions of {1, . . . , n} we
have

∑

C1,...,Ck∈pn

p(n1, . . . , nk) = 1

for each partition C. This holds for both pε and p0.
By Fatou’s Lemma we have

∫ ∞

0

lim inf
ε→0

fε(u;n1, . . . , nk)du ≤ lim inf
ε→0

∫ ∞

0

fε(u;n1, . . . , nk)du

∫ ∞

0

lim
ε→0

fε(u;n1, . . . , nk)du ≤ lim inf
ε→0

pε(n1, . . . , nk)

p0(n1, . . . , nk) ≤ lim inf
ε→0

pε(n1, . . . , nk).

Suppose that for a sequence C ∈ pn, we had p0(n1, .., nk)<lim infε→0 pε(n1, .., nk).
In this case

1 =
∑

C1,...,Ck∈pn

p0(n1, .., nk) <
∑

C1,...,Ck∈pn

lim inf
ε→0

pε(n1, .., nk) ≤

≤ lim inf
ε→0

∑

C1,...,Ck∈pn

pε(n1, . . . , nk) = 1,

that is a contradiction. Therefore we can conclude that

p0(n1, . . . , nk) = lim inf
ε→0

pε(n1, . . . , nk) ∀(n1, . . . , nk), ∀k.

Summing up, we have proved that:
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1. limε→0

∑

C1,...,Ck∈pn
pε(n1, . . . , nk) = 1

2. lim infε→0 pε(n1, . . . , nk) = p0(n1, . . . , nk) ∀(C1, . . . , Ck) ∈ pn

3.
∑

C1,...,Ck∈pn
p0(n1, . . . , nk) = 1.

By Lemma 1, (2.8) follows.

It is well known the law of a species sampling model is uniquely deter-
mined by the pair (P0, p), where P0 is a diffuse measure on Θ and p is an
eppf. The next result shows how the pointwise convergence of the eppf of an
ε−NGG process implies the weak convergence of the corresponding random
probability measure.

Proposition 3. The law of Pǫ converges weakly to the law of P as ǫ goes to
0, where P is a NGG(σ, κ, ω, P0) process.

Proof. The laws of Pε and P are the product of two independent components,
i.e. the laws of the jumps and their locations. Since the law of the locations
is the same for both Pε and P , it is sufficient to show the weak convergence
of law of the jumps.

Fix n ∈ N and let (n1,ε, . . . , nk,ε) any vector of the numerosities of the
clusters of a random partition Cn,ε on {1, . . . , n} with eppf pε corresponding
to an ε-NGG process. We have

L(n1,ε, . . . , nk,ε)→ L(n1,0, . . . , nk,0) for ε→ 0, (2.10)

where (n1,0, . . . , nk,0) is the vector of the frequencies of the clusters of a ran-
dom partition Cn,0 with eppf p0 corresponding to a NGG process. Indeed,
the two laws in (2.10) are deterministic functions of the relative eppf. As n in-
creases to infinity, by formula (134) in Pitman (2006), the random sequences
(nj,ε

n

)

and
(nj,0

n

)

converge to (Pj,ε) and (Pj,0) respectively, where (Pj,ε) is the
sequence of the jumps of a ε-NGG process and (Pj,0) is the sequence of the
jumps of a NGG process. Summarizing the previous convergence results, we
have:

•
(nj,ε

n

)

d
−→ (Pj,ε) for n→ +∞;

•
(nj,ε

n

)

d
−→
(nj,0

n

)

for ε→ 0;

•
(nj,0

n

)

d
−→ (Pj,0) for n→ +∞.
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Recall that the weak convergence of a sequence of random probability
measures is equivalent to the pointwise convergence of the Laplace function-
als. Let f(·) be a bounded function on {0, 1, . . . }. If it is possible to invert the
order of the limit operation, the following equalities prove the proposition.

lim
ε→0

E

(

e−
∫
fdPε

)

= lim
ε→0

lim
n→∞

E

(

e−
∫
fd(

nj,ε

n )
)

= lim
n→∞

lim
ε→0

E

(

e−
∫
fd(

nj,ε

n )
)

= lim
n→∞

E

(

e−
∫
fd(

nj,0
n )
)

= E

(

e−
∫
fdP0

)

.

To justify the exchange of the two limits in the previous statement we must

prove that the sequence E

(

e−
∫
fd(

nj,ε
n )
)

converges uniformly. To this end, it

is sufficient to show that the increment from n to (n + 1) does not depend
on ε. Calling (nj,ε,s) the sequence of numerosities of the clusters where the
total number of elements is s,

∣

∣

∣
E

(

e−
∫
fd(

nj,ε,n+1
n+1 )

)

− E

(

e−
∫
fd(

nj,ε,n
n )
)∣

∣

∣
≤ E

(∣

∣

∣
e−

∫
fd(

nj,ε,n+1
n+1 )− e−

∫
fd(

nj,ε,n
n )

∣

∣

∣

)

≤ E

(∣

∣

∣

∣

∫

fd

(

nj,ε,n+1

n+ 1

)

−

∫

fd
(nj,ε,n

n

)

∣

∣

∣

∣

)

Let now Cn+1,ε be a random partition on {1, . . . , n+1} such that its restriction
to {1, . . . , n} corresponds to Cn,ε. We can distinguish two cases:

1. Cn+1,ε has the same number of clusters of Cn,ε. In this case, the cluster
with index j∗ will have nj + 1 elements;

2. Cn+1,ε has one more cluster (of numerosity 1) than Cn,ε.

In both cases we have that

E

(∣

∣

∣

∣

∫

fd

(

nj,ε,n+1

n + 1

)

−

∫

fd
(nj,ε,n

n

)

∣

∣

∣

∣

)

≤
2M

n+ 1

where M ≥ sup f .

2.4 | Bayesian inference for the ε-NGG

mixture model

The mixture model for density estimation we consider can be hierarchically
expressed as follows:
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





















X1, . . . , Xn|θ1, . . . , θn ∼
∏n

i=1K(Xi|θi),

θ1, . . . , θn|Pε
iid
∼ Pε,

Pε|ε ∼ ε−NGG(σ, ω, κ, P0)

ε, σ, κ ∼ π1(ε) · π2(σ) · π3(κ)

(2.11)

where K(·|θi) is a family of densities on R
p, depending on a vector of param-

eters θi belonging to a Borel subset Θ of Rs; P0 is a non-atomic distribution
function on Θ, expressing the "mean" of P . Model (2.11) will be addressed
here as ε-NGG hierarchical mixture model. The Bayesian model specifica-
tion is completed assuming that P0 depends on s hyperparameters γ1, . . . , γs
(possibly random and distributed according to π(γ1, . . . , γs)).

See Chapter 3 in order to understand how the priors on σ, κ and ε affect
the results, making the inference more robust.

We have constructed this kind of model starting from the well known
Normalized Generalized Gamma process: we have proven in Section 2.3 that
if ε decreases to 0 then the ε-NGG process tends to the NGG process. This is
an interesting feature because many theoretical results about the latter pro-
cess are available; for instance, we know in close form the prior distribution
of the number of distinct values in the sample (θ1, .., θn) (see Section 1.5.1).

On the other hand, letting ε assume large values the ε-NGG process
departs from the NGG: we are considering a different process that obviously
takes into account less jumps, since more of them are cut off from the process.
In particular, when ε tends to +∞ the model becomes parametric. In fact,
we know that Nε ∼ Poisson(Λε) for every ε > 0: when ε tends to +∞, the
parameter

Λε =

∫ +∞

ε

κ

Γ(1− σ)
s−(1+σ)e−ωsds→ 0,

hence the number of components of the mixture Nε + 1 tends to 1 in dis-
tribution. For that reason, the model we are considering for the data is a
parametric one:

X1, . . . , Xn
iid
∼ f(x) = K(x|τ0),

where τ0 is a draw from distribution P0.

Unfortunately, for large values of ε we do not have many theoretical
results as for NGG: more considerations about the case with a relatively
large ε will be done in Chapter 3 looking at the numerical results.

We introduce some preliminary steps before starting deriving an algo-
rithm for the posterior inference from the model (2.11). We have seen that
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the prior Pε ∼ Pε is identifiable from the triplet of series
(

(Jj)
Nε
j=0

, (τj)
Nε
j=0

, Nε

)

where the variables τs and Js are independent.
Under model (2.11), the Bayesian estimate of the real density is

fXn+1(x|X1, .., Xn) =

∫

P×R

{
∫

Θ

K(x|θ)P (dθ)

}

L(dP, dε, dσ, dκ|X1, . . . , Xn)

=

∫

P×R

Nε
∑

j=0

Jj

Tε

K(x|τj)L(dP, dε, dσ, dκ|X1, . . . , Xn),

where R = R
+ × (0, 1) × R

+. This integral, as well as the other posterior
inferences, must be computed via a MCMC algorithm. With this aim, we
sample a Markovian sequence {ε(b), σ(b), κ(b), P

(b)
ε }Bb=1 from the posterior law

L(dε, dσ, dκ, dPε|X1, . . . , Xn) with B large enough. The density estimation
then becomes

fXn+1(x|X1, .., Xn) ≃
1

B

B
∑

b=1

N
(b)
ε
∑

j=0

J
(b)
j

T
(b)
ε

K(x|τ
(b)
j ).

If we enlarge the state space by θ = (θ1, . . . , θn) and by the auxiliary variable
U , we can build a Gibbs sampler algorithm.

First of all we provide some notation issues and then a result concern-
ing the posterior distribution. Let θ = (θ1, . . . , θn) be a sample from Pε

and set the variable U := Γn/Tε, where Γn ∼ gamma(n, 1). The follow-
ing proposition gives a "finite dimensional" version of the characterization
of the posterior law of a NGG process in James et al. (2009). As in the
infinite dimensional case, the posterior distribution of an ε-NGG(σ, κ, ω, P0)
process, conditionally on U and θ, can be expressed as the law of a random
probability measure, which is a mixture between a ε-NGG process and a
discrete probability measure with support given by the (observed) distinct
values θ∗ = (θ∗1, . . . , θ

∗
k). We will call allocated jumps of the process the val-

ues Jl∗1
, Jl∗2

, . . . , Jl∗
k

such that there exists a corresponding location for which
τl∗i = θ∗i , i = 1, . . . , k. The other values will be called non-allocated jumps.

Proposition 4. If Pε is a ε−NGG(σ, κ, ω, P0) process, then the posterior
distribution of Pε coincides with that of the random measure

P ∗
ε (·) = wP (na)

ε,u (·) + (1− w)
k
∑

j=1

P
(a)
j δθ∗

k
(·)

where U is the variable defined in (2.3) and
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1. P
(na)
ε,u (·), the process of not assigned jumps, is distributed according to

an ε−NGG(σ, κ, ω + u, P0) process, conditional to have N (na) jumps,
where

N (na) ∼
Λε,u

k + Λε,u
(P(Λε,u) + 1) +

k

k + Λε,u
P(Λε,u)

with P a Poisson density.

2. The jumps {P
(a)
1 , . . . , P

(a)
k } assigned to the fixed points of discontinuity

θ∗ = (θ∗1, . . . , θ
∗
k) of P ∗

ε are obtained by normalization of

J
(a)
j ∼ gamma(nj − σ, u+ ω), for j = 1 . . . , k.

3. P
(na)
ε,u (·) and {J

(a)
1 , · · · , J

(a)
k } are independent.

Moreover, if N (na) is different from 0, w = Tε,u/(Tε,u+
∑k

j=1 J
(a)
j ) where Tε,u

is the normalization variable in the representation of P
(na)
ε,u (·) as in (2.2).

This result will be clarified later, when in the Gibbs sampler we will obtain
the full-conditional for Pε : now we begin to derive a method to sample from
the posterior distribution. Note that

L(θ1, .., θn|Pε) =
n
∏

i=1

Pε(θi) =
n
∏

i=1

Nε
∑

j=0

(

Pjδτj (θi)
)

=
Nε
∑

l1=0

Pl1δτl1 (θ1)
Nε
∑

l2=0

Pl2δτl2 (θ2) . . .
Nε
∑

ln=0

Plnδτln (θn)

=
∑

l∗1 ,...,l
∗

k

(

P n1
l∗1

. . . P nk

l∗
k
δτl∗

1
(θ∗1) . . . δτl∗

k

(θ∗k)
)

(2.12)

where (θ∗1, θ
∗
2, . . . , θ

∗
k) represents the vector of the unique values of the sample

θ: any value is repeated ni times. This induces a partition over the indices of
the data into k groups {C1, C2, . . . , Ck} that will be useful later. Moreover,
the law of the data and the latent variables θi, i = 1, .., n, conditional to Pε

is the following:

L(X, θ|Pε) =
n
∏

i=1

(

Pε(θi)K(Xi|θi)
)

(2.12)
=
(
∏

i∈C1

K(Xi|θ
∗
1)..

∏

i∈Ck

K(Xi|θ
∗
k)
)
∑

l∗1 ,..,l
∗

k

(

P n1

l∗1
..P nk

l∗
k
δτl∗

1
(θ∗1)..δτl∗

k

(θ∗k)
)

=
1

T n
ε

∑

l∗1,..,l
∗

k

(

Jn1
l∗1

∏

i∈C1

K(Xi|θ
∗
1)J

n2
l∗2

∏

i∈C2

K(Xi|θ
∗
2)..J

nk

l∗
k

∏

i∈Ck

K(Xi|θ
∗
k)
)

.

(2.13)
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Building our Gibbs sampler we will consider the law L(X, θ|Pε) as the
marginal of L(X, θ, u|Pε). In particular, thanks to the independence of the
variables, the expressions (2.4) and (2.13), we obtain

L(X, θ, u|Pε) =
1

Γ(n)
un−1e−uTε

∑

l∗1 ,..,l
∗

k

(

Jn1
l∗1

∏

i∈C1

K(Xi|θ
∗
1) . . . J

nk

l∗
k

∏

i∈Ck

K(Xi|θ
∗
k)
)

Therefore, the conjugate law of the entire model can be written in the fol-
lowing way:

L(X, θ, u, Pε, ε) = L(X, θ, u|Pε, ε)L(Pε, ε) = L(X, θ, u|Pε, ε)L(Pε|ε)L(ε)

=
1

Γ(n)
un−1e−uTε

∑

l∗1 ,..,l
∗

k

(

Jn1
l∗1

∏

i∈C1

K(Xi|θ
∗
1)..J

nk

l∗
k

∏

i∈Ck

K(Xi|θ
∗
k)
)

L(Pε|ε)π(ε)

=
1

Γ(n)
un−1

Nε
∏

j=0

(e−uJj)
∑

l∗1 ,...,l
∗

k

(

Jn1
l∗1

∏

i∈C1

K(Xi|θ
∗
1)..J

nk

l∗
k

∏

i∈Ck

K(Xi|θ
∗
k)
)

·

·
Nε
∏

j=0

(

ρε(Jj)P0(τj)
)

P(Nε|Λε)π(ε)

=
1

Γ(n)
un−1

Nε
∏

j=0

(

e−uJjρε(Jj)P0(τj)
)
∑

l∗1,..,l
∗

k

(

Jn1
l∗1

∏

i∈C1

K(Xi|θ
∗
1)..J

nk

l∗
k

∏

i∈Ck

K(Xi|θ
∗
k)
)

· P(Nε|Λε)π(ε)

(2.14)

where P(Nε|Λε) is the density of the random variable Nε distributed as a
Poisson of parameter Λε. In the previous relation we used the characteriza-
tion of Pε in form of infinite summation in order to write the law of Pε given
ε as the law of the vectors J, τ and Nε. Moreover,

L(Pε|ε) = L((Jj)
Nε

j=0
, (τj)

Nε

j=0
, Nε|ε) = L(J|Nε)L(τ |Nε)L(Nε|ε)

= P(Nε|Λε)
Nε
∏

j=0

(ρε(Jj)P0(τj)) .

The factorization is due to the independence between the vectors J and
τ . The product arises from the fact that the τi are iid from P0(·) on the state
space Θ while the Ji are iid from ρε(·) on R

+.
In order to construct a Gibbs sampler to sample from the posterior of Pε,

we are going to list and describe every updating step of the algorithm, namely
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the full-conditionals. We highlight that in the previous (and the following)
passages only the parameter ε is been considered as a random variable: later,
we will introduce updating steps in the algorithm for the cases where also σ
and κ are random.

2.4.1 | Gibbs Sampler

Update U

Since the variable u is independent from the others, the posterior law will be
again

1. L(u|X, θ, Pε) = Gamma(n, Tε)

where Tε is the sum of all the masses.

Update θ

Thanks to the Bayes theorem we have

L(θ|u,X, Pε) ∝ L(X, u, θ, Pε),

so from the relation (2.14), omitting all the parts not depending on θ, we
obtain a discrete law with support on all the τj , for every i = 1, . . . n,

2. P(θi = τj) ∝ JjK(Xi|τj), j = 0, .., Nε.

Update Pε

This is the most complicated step, because the law Pε is a combination of
different contributions, the jumps J, the locations τ , the number of com-
ponents of the mixture Nε and the level of approximation ε. Observe now
that

L(Pε|u, θ,X) = L(ε,Nε,J, τ |u, θ,X) ∝

L(J, τ |u, θ,X, ε, Nε)L(ε,Nε|u, θ,X) ∝

L(J, τ |u, θ,X, ε, Nε)L(Nε|ε, u, θ,X)L(ε|u, θ,X).
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This relation suggests a way to hierarchically sample from the posterior
L(Pε|u, θ,X): first sample ε from L(ε|u, θ,X), then Nε from L(Nε|ε, u, θ,X)
and finally the jumps and the points of support from L(J, τ |u, θ,X, ε, Nε).
Proceeding with the updating step of Nε and ε, we obtain:

L(Nε, ε|u, θ,X) ∝ L(Nε, ε, u, θ,X) =

∫

L(Nε, ε, u, θ,J, τ )dJdτ

=

∫
[

1

Γ(n)
un−1

Nε
∏

j=0

(

e−uJjρε(Jj)P0(τj)
)
∑

l∗1 ,...,l
∗

k

(

Jn1
l∗1

∏

i∈C1

K(Xi|θ
∗
1)

. . . Jnk

l∗
k

∏

i∈Ck

K(Xi|θ
∗
k)
)

P(Nε|Λε)π(ε)

]

dJdτ

=
∑

l∗1,...,l
∗

k

∫
[

k
∏

i=1

(

Jni

l∗i

∏

j∈Ci

K(Xj|θ
∗
i )
)Nε
∏

j=0

(

e−uJjρε(Jj)P0(τj)
)

]

dJdτ

·

(

1

Γ(n)
un−1P(Nε|Λε)π(ε)

)

=
∑

l∗1,...,l
∗

k

{[

k
∏

i=1

∫

Jni

l∗i

∏

j∈Ci

K(Xj|θ
∗
i )e

−uJl∗
i ρε(Jl∗i

)P0(τl∗i )dJl∗i
dτl∗i

]

·

[

Nε
∏

j 6={l∗1,..,l
∗

k
}

∫

e−uJjρε(Jj)P0(τj)dJjdτj

]}

1

Γ(n)
un−1P(Nε|Λε)π(ε).

(2.15)

We do not specify the domain of the integrals for simplicity of notation.
Observe that the integral in the second parenthesis for the non-allocated
jumps is equal to

∫

e−uJjρε(Jj)P0(τj)dJjdτj =

∫

e−uJjρε(Jj)dJj

=
(ω + u)σ

ωσΓ(−σ, ωε)

∫

∞

(ω+u)ε

e−yy−σ−1dy =
(ω + u)σΓ(−σ, (ω + u)ε)

ωσΓ(−σ, ωε)
.

On the other hand, the first squared parenthesis in expression (2.15) , thanks
to the relation τl∗i = θ∗i , becomes:

k
∏

i=1

∫

Jni

l∗i

∏

j∈Ci

K(Xj |θ
∗
i )e

−uJl∗
i ρε(Jl∗i

)P0(τl∗i )dJl∗i
dτl∗i

=
k
∏

i=1

∫

Jl∗i

∏

j∈Ci

K(Xj|θ
∗
i )e

−uJl∗
i ρε(Jl∗i

)P0(θ
∗
i )dJl∗i

dθ∗i

=
k
∏

i=1

(
∫

Jl∗i
e
−uJl∗

i ρε(Jl∗i
)dJl∗i

)

(

∫

∏

j∈Ci

K(Xj |θ
∗
i )P0(θ

∗
i )dθ

∗
i

)

.

(2.16)
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The last parenthesis will be named m(Ci):=
∫ ∏

j∈Ci

K(Xj |θ
∗
i )P0(θ

∗
i )dθ

∗
i ; it is the

marginal law of the data in the i-th group.

Going on with the computation of the part of the expression (2.16) asso-
ciated with the allocated jumps, i.e. the first parenthesis, we have:

∫

Jl∗i
e
−uJl∗

i ρε(Jl∗i
)dJl∗i

=
1

ωσΓ(−σ, ωε)

∫

∞

ε

xnie−uxx−1−σe−ωxdx

=
(ω + u)σ−ni

ωσ

Γ(ni − σ, (u+ ω)ε)

Γ(−σ, ωε)
,

where we used the change of variable in the integral (u+ω)x = y (as before)
and the definition of incomplete gamma function.

Expression (2.15), that represents the updating part of the paramater ε
and the number of components of the mixture Nε, then becomes the following:

1

Γ(n)
un−1 ∑

l∗1 ,..,l
∗

k

{(

(ω + u)kσ−n
∏k

i=1 Γ(ni − σ, (ω + u)ε)m(Ci)

ωσkΓ(−σ, ωε)k

)

·

(

(ω + u)σ(Nε+1−k)Γ(−σ, (u+ ω)ε)Nε+1−k

ωσ(Nε+1−k)Γ(−σ, ωε)Nε+1−k

)}

P(Nε|Λε)π(ε)

=
un−1

Γ(n)
P(Nε|Λε)π(ε)

(Nε + 1)!

(Nε + 1− k)!

k
∏

i=1

(

m(Ci)Γ(ni − σ, ε(ω + u))

)

·
(ω + u)σk−n

ωσkΓ(−σ, ωε)k
(ω + u)σNnaΓ(−σ, ε(ω + u))Nna

ωσNnaΓ(−σ, ωε)Nna
1{(Nε+1)≥k}

In the previous computation, we have exploited the fact that no terms in
the summation depend explicitly on l∗1, . . . , l

∗
k: we replaced the summation

with the number of all possible combination of indices, that is
(Nε + 1)!

(Nε + 1− k)!
with Nε + 1 ≥ k. Moreover, we denoted by Nna = Nε + 1− k the number of
non-allocated jumps.
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After these observations, the law (2.15) becomes the following:

L(Nε, ε|u, θ,X) ∝
un−1

Γ(n)Nε!
e−ΛεΛNε

ε π(ε)1(Nε+1≥k)
(Nε + 1)!

Nna!

·
(ω + u)σ(Nε+1)−nΓ(−σ, ε(ω + u))Nna

ωσ(Nε+1)Γ(−σ, ωε)Nε+1

k
∏

i=1

(

m(Ci)Γ(ni − σ, ε(u+ ω))

)

=
un−1

Γ(n)

Nε + 1

Nna!
e−Λε

( κωσ

Γ(1− σ)
Γ(−σ, ωε)

)Nε
π(ε)1(Nε+1≥k)

·
(ω + u)σ(Nε+1)−nΓ(−σ, ε(ω + u))Nna

ωσ(Nε+1)Γ(−σ, ωε)Nε+1

k
∏

i=1

(

m(Ci)Γ(ni − σ, ε(u+ ω))

)

=
un−1

Γ(n)

(

κ

Γ(1− σ)

)k−1

π(ε)1(Nna≥0)e
−Λε

k
∏

i=1

(

m(Ci)Γ(ni − σ, ε(u+ ω))

)

·
(ω + u)σk−n

ωσΓ(−σ, ωε)

(Nna + k)

Nna!

(

κ(u+ ω)σ

Γ(1− σ)
Γ(−σ, (u+ ω)ε)

)Nna

where we remembered the equality Λε =
κωσ

Γ(1− σ)
Γ(−σ, ωε) .

If we call ρε,u(x) = ρε(x)e
−uxωσ =

κ

Γ(1− σ)
x−1−σe−x(u+ω)

1(ε,+∞)(x), then

the total mass of this new function ρε,u is

Λε,u = Λε,u(R
+) =

∫ +∞

0

ρε,u(x)dx =
κ(u+ ω)σ

Γ(1− σ)
Γ(−σ, ε(u+ ω)).

At the end, expression (2.15) is equal to

L(Nε, ε|u, θ,X) ∝
un−1

Γ(n)

(

κ

Γ(1− σ)

)k−1

π(ε)

k
∏

i=1

[

m(Ci)Γ(ni − σ, ε(u+ ω))

]

·
(ω + u)σk−n

ωσΓ(−σ, ωε)
(Nna + k)e−Λε

1

Nna!
(Λε,u)

Nna
1(Nna≥0)e

−Λε,ueΛε,u

=
un−1

Γ(n)

(

κ

Γ(1− σ)

)k−1 k
∏

i=1

[

m(Ci)Γ(ni − σ, ε(u+ ω))

]

·
(ω + u)σk−n

ωσΓ(−σ, ωε)
(Nna + k) · P(Nna|Λε,u)e

Λε,u−Λεπ(ε).

Observing the previous relation it is clear that the posterior law of the number
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of non-allocated jumps, Nna, is a mixture of two Poisson’s laws:

L(Nna|ε, u, θ,X) ∝
Nna + k

Nna!
e−Λε,uΛNna

ε,u =

(

Nna

Nna!
+

k

Nna!

)

e−Λε,uΛNna

ε,u

=
Λε,u

(Nna − 1)!
Λ(Nna−1)

ε,u e−Λε,u +
k

Nna!
ΛNna

ε,u e−Λε,u

∝
Λε,u

Λε,u + k
P(N∗

na|Λε,u) +
k

Λε,u + k
P(Nna|Λε,u)

(2.17)

where N∗
na = Nna − 1.

Therefore the law of Nε is that of Nna + k − 1, where Nna is a sample
from a mixture of two Poissons with parameter Λε,u.

Moreover, the posterior law of the approximation parameter ε is:

L(ε|u, θ,X) ∝

+∞
∑

Nna=0

L(Nna, ε|u, θ,X)

=
un−1

Γ(n)

(

κ

Γ(1− σ)

)k−1 k
∏

i=1

[

m(Ci)Γ(ni − σ, ε(u+ ω))

]

π(ε)

·
(ω + u)σk−n

ωσΓ(−σ, ωε)
eΛε,u−Λε

+∞
∑

Nna=0

(Nna + k)P(Nna|Λε,u)

∝

k
∏

i=1

Γ(ni − σ, ε(u+ ω))(ω + u)σk−ne(Λε,u−Λε)
Λε,u + k

Γ(−σ, ωε)
π(ε)

(2.18)

At the end, the scheme of this step of the Gibbs sampler can be summarized
in the following way:

3. Sample ε from law (2.18);

4. Sample Nna from the mixture in (2.17) and compute the number of
components in the mixture as Nε + 1 = Nna + k;

5. Sample the Nε + 1 jumps, (J0, J1, . . . , JNε
).

If the jump is non-allocated, then sample from the following density
(compare expression (2.14)):

L(Jj|Nε, ε, u,X, θ) ∝ L(Jj, Nε, ε, u,X, θ) ∝ e−uJjρε(Jj) = ρu,ε(Jj)
(2.19)
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On the other hand, if the jump is allocated, so there exists an index l∗i
such that θi = τl∗i , we have to independently sample from:

L(Jl∗i
|Nε, ε, u,X, θ) ∝ Jni

l∗i
e
−uJl∗

i ρε(Jl∗i
) ∝ Gamma(ni− σ, ω+ u)1(ε,+∞)

6. Sample the Nε + 1 points of the support, (τ0, τ1, . . . , τNε
). As for the

jumps, for the non-allocated points we have simply to sample i.i.d. from
P0; instead, for the allocated ones, the sample is i.i.d. from:

L(θ∗i |Nε, ε, u,X, θ) ∝

{

∏

j∈Ci

K(Xj |θ
∗
i )

}

P0(θ
∗
i ). (2.20)

There are some computational issues that must be highlighted. In the
updating step of the non-allocated jumps it is necessary to sample from
distribution ρu,ε (see (2.19)) which does not belong to any popular family of
distributions. In order to sample from ρε,u(·) we used an acception-rejection
method. First notice that it is possible to find a couple (M, g(x)), with
M > 0 and g(x) an instrumental distribution, such that f(x) < Mg(x), for
every x in R: in particular,

M =
e−ε(u+ω)

(ω + u)σΓ(−σ, ε(ω + u))σεσ

and
g(x) = σεσx−1−σ

1(ε,+∞)(x).

Therefore, to the end of sampling a X from ρu,ε we have to perform the
following steps:

i. Sample Y from g(y)

ii. Accept Y as a sample with probability f(Y )/Mg(Y ). In other words,
sample U from Unif(0, 1): if U 6 f(Y )/Mg(Y ) = exp(−(u+ω)(Y −ε))
then put X=Y, else return to i.

Note that in order to perform the step i we exploited an inversion of the
cumulative distribution function.

Another not straightforward step in the Gibbs Sampler is the updating
of ε from the law (2.18). To do so, at each iteration of the algorithm a step
of Random Walk Metropolis Hastings is performed. More specifically, given
the current value of ε, we sample a new value from the proposal distribution
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N(ε, 0.5S), where S is the support of the prior distribution π(ε). Then the
new value is accepted with probability equal to the ratio

α =
π(εnew|u, θ,X)

π(ε|u, θ,X)

since we choose a proposal that is symmetrical.
The same technique is been used in the case of random σ: it will be

clarified later in this section.
Suppose the kernel density K is gaussian, K(·|θ) = N(·|µ, σ2): in this

case the latent variable θ is the vector (µ, σ2). In Chapter 3 we are going to
show some numerical results considering this kernel; the most convenient P0

for the ε-NGG is then

P0(dµ, dσ
2) = P 1

0 (dµ|σ
2)P 2

0 (dσ
2) = N(dµ|m0, σ

2/k0)IG(dσ2|a, b),

since it is conjugate with the kernel. In fact, the posterior law (2.20) of the
i-th allocated point (µ∗

i , σ
2∗
i ) is still a Normal-InvGamma distribution where

the parameters are updated as follows:

N

(

dµ∗
i |

(

m0 +
∑

j∈Ci
Xj

ni + 1

)

,
σ2∗
i

ni + 1

)

IG(dσ2∗
i |a

∗, b∗)

where
a∗ = a +

ni

2

and

b∗ = b+
(ni + 1)

2

[(

m2
0 +

∑

j∈Ci
Xj

ni + 1

)

−

(

m0 +
∑

j∈Ci
Xj

ni + 1

)2
]

.

Until now we developed the algorithm only in the case of random ε: we
want to extend the method when also the parameters σ and κ are random.
In both cases the only step to add to the algorithm is the updating of these
parameter: the other steps remain the same.

In particular, it is possible to prove that the posterior of the parameter
σ is the following:

3′. L(σ|ε, κ,X, u, θ) ∝

(u+ ω)kσ

ωσ

Λε,u + k

Γ(−σ, ωε)

k
∏

i=1

Γ(ni − σ, ε(u+ ω))e(Λε,u−Λε)Γ(1− σ)1−kπ(σ).
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.
Clearly, in order to update σ with the previous law we used a Metropolis

Hastings algorithm, as for ε.
Moreover, letting κ be a random variable with prior distribution π(κ) =

Gamma(α, β), we obtain the following posterior distribution, that is a mix-
ture of gamma densities:

3′′. L(κ|ε, σ, ω,X, u, θ) = p1G(α+ k, R+ β) + (1− p1)G(α+ k− 1, R+ β)
(2.21)

where G stands for a gamma distribution,

R =
ωσΓ(−σ, εω)

Γ(1− σ)
−

(ω + u)σΓ(−σ, ε(ω + u))

Γ(1− σ)

and

p1 =
(α + k − 1)(u+ ω)σΓ(−σ, ε(ω + u))

(α + k − 1)(u+ ω)σΓ(−σ, ε(ω + u)) + k(R + β)Γ(1− σ)
.

Note that the posterior (2.21) is well defined only if R > 0, since β > 0.
Specifically, we need the function xσΓ(−σ, εx) is decreasing with x. This is
true because, omitting the positive constant term Γ(1− σ),

d

dx

(

xσ

∫ +∞

εx

t−1−σe−tdt

)

= xσ
(

−(εx)−1−σe−εx
)

+ σxσ−1Γ(−σ, εx) =

= −xσ−1Γ(1− σ, εx) 6 0, ∀x > 0,

where we used the relation Γ(α + 1, x) = αΓ(α, x) + xαe−x.
We open here a parenthesis about the difficulty of the computation of

the incomplete gamma when the second parameter is high: this happens, in
particular, when the numerosity of the dataset is large because the variable
u tends to assume larger values (its mean is n/Tε), therefore (u+ ω) will be
often a big value. The following asymptotic approximation in this case is
used:

Γ(a, x) ≃ e−xxa−1
∑

m=0

Γ(a)

Γ(a−m)
x−m, x→ +∞.

In conclusion we highlight that thanks to the fact that conditionally on
ε only a finite number of components of the mixture has to be considered,
namely the support of the mixing measure becomes finite, we do not analyt-
ically integrate out the mixing component but impute the ε−NGG prior and
update it as a component of the Gibbs sampler thus pursuing a full nonpara-
metric Bayesian inference, obtaining posterior estimates of linear and non
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linear functionals of the population distribution. Below, for sake of clarity, a
scheme of the Gibbs Sampler which has just been derived is reported.

0. Inizialization

Repeat steps 1-8 for g in 1 ... G: 1. Sample u(g) from a Gamma(n, Tε)

2. For i=1,..,n sample θi
(g) from a discrete distribution s.t.

P(θi = τj) ∝ JjK(Xi|τj), j = 0, .., Nε.

3. Sample ε(g) from

L(ε) ∝
∏k

i=1 Γ(ni − σ, ε(u+ ω))eΛεu−Λε
Λεu + k

Γ(−σ, ωε)
π(ε)

3’. Sample σ(g) from L(σ) ∝ (u+ω)kσ

ωσ

Λεu + k

Γ(−σ, ωε)
eΛεu−Λε

·
∏k

i=1 Γ(ni − σ, ε(u+ ω))Γ(1− σ)1−kπ(σ)

3”. Sample κ(g) from a mixture of Gamma densities:
p1Gamma(α+ k, R+ β) +(1− p1)Gamma(α+ k− 1, R+ β).

4. Sample N
(g)
na from

Λεu

Λεu + k
Poi(Nna − 1|Λεu) +

k

Λεu + k
Poi(Nna|Λεu),

then set Nε
(g) + 1 = N

(g)
na + k(g).

5a. Non-allocated jumps: sample
iid from L(Jj) ∝ e−uJjρε(Jj).

5b. Allocated jumps: sample iid
from
L(Jl∗i

) ∝ Gamma(ni − σ, u+ ω)1(ε,∞).

6a. Non-allocated points of sup-
port: sample iid from P0.

6b. Allocated points of support:
sample iid from

L(τ ∗i ) ∝ {
∏

j∈Ci
K(Xj |τi)}P0(τi).

←− In case of
random parameters
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2.5 | Comparison to Muliere and Tardella’s

approximation of Dirichlet processes

We describe in this section a similar approach for approximating the Dirichlet
prior: here we call this approximation εMT -Dirichlet distribution, where the
subscript MT stands for the initials of the authors of the paper Muliere and
Tardella (1998). Based on Sethuraman’s stick-breaking representation of a
Dirichlet process (Sethuraman, 1994), they introduced a method based on a
randomly stopping procedure different from ours.

In particular, the stick-breaking representation of the Dirichlet process
DP (κ, P0) is the following:

P (·) =
∞
∑

i=1

piδYi
(·), (2.22)

where Yi
iid
∼ P0 and the weights are built according to the stick-breaking

procedure:

p1 = V1,

pi = Vi (1− Vi−1) . . . (1− V1) ∀i ≥ 2,

where Vi
iid
∼ Beta(1, κ), independent on the Yis. Muliere and Tardella approx-

imate this distribution stopping the series in (2.22) after a random number
of terms nεMT

such that the remaining probability mass is smaller than εMT .

Definition 4 (εMT -Dirichlet random probability). For any εMT ∈ (0, 1), an
εMT -Dirichlet random probability is defined as

PεMT
(·) =

nεMT
∑

i=1

piδYi
(·) ·

(

1− rnεMT

)−1

where

nεMT
= inf{m ∈ N :

m
∑

i=1

pi > 1− εMT},

rεMT
= 1−

nεMT
∑

i=1

pi.

In this definition the remaining mass rεMT
is spread proportionally to

the sampled part of the distribution. This kind of approximation allows
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generating a random probability measure as close as one wants (in total
variation distance, as proved in the paper) to the Dirichlet process. Lemma
3 in Muliere and Tardella (1998) states that nεMT

− 1 is Poisson distributed
with mean −κ log(εMT ).

This result is very similar to ours which states that Nε ∼ Poisson(Λε)
where Λε = −κEi(−ωε) (Ei is the exponential integral). However we can not
relate formally the two types of approximations because of the construction
behind the weights: we have seen that the components pi of the Muliere
and Tardella’s approximation are exactly the first nεMT

weights of the stick-
breaking procedure. This implies an "almost decreasing" order, in the sense
that they are decreasing in mean:

E (pi+1) < E (pi) i = 1, 2, ..

For instance, this is not true for our approximation, where the jumps Ji are
sampled iid from a Poisson process with intensity ρε(x) = x−1e−ωx(− 1

Ei(−ωε)
)

in the interval (ε,+∞), therefore they are not ordered.
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Chapter 3 | Galaxy data

In this chapter we apply the model and the algorithm (implemented in C++
language) proposed in Chapter 2 to a dataset very popular in the literature:
the Galaxy dataset. We perform an extensive robustness analysis through
a lot of experiments which highlight the relationships between the posterior
estimates and the prior choice of the parameters. In fact, the choice of
a value (or a prior in the random case) for these parameters remains the
most complicated part of the model, since it deeply influences the posterior
inference.

3.1 | Description of the robustness analysis

As already pointed out, the dataset used in this chapter is the Galaxy dataset.
These data are observed velocities of n = 82 different galaxies, belonging to
six well-separated conic sections of space. Values are expressed in [Km/s],
scaled by a factor of 10−3. The error from sampling the velocities is estimated
to be less than 50 Km/s.

We report here the specific model: an ε-NGG mixture model with Gaus-
sian kernel densities. As far as the parameter P0 of the nonparametric prior
concerns, it is fixed as a normal inverse-gamma distribution. Briefly:







































X1, X2, . . . , Xn|θ1, θ2, . . . , θn
ind
∼ N(Xi|θi), θi = (µi, σ

2
i )

θ1, θ2, . . . , θn|Pε
iid
∼ Pε

Pε ∼ ε−NGG(κ, σ, ω, P0)

P0(dµ, dσ
2) = N(dµ|m0,

σ2

k0
)IG(dσ2|a, b)

ε, σ, κ ∼ π1(ε)π2(σ)π3(κ)

where N(X|µ, σ2) represents the univariate normal distribution with mean
µ and variance σ2; IG(a, b) stands for the inverse-gamma distribution with
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mean b
a−1

(for a > 1) and variance b2

(a−1)2(a−2)
(for a > 2). From now on the

parameter ω is fixed equal to 1.
Later on we will specify the prior elicited for ε, σ and κ: its effect will be

clarified in the next sections.
An extensive set of tests has been done: we report it in Table 3.1. We

denote the different "experiments" with the letters A-N and the number after
the letters represents the different set of hyperparameters.

For all the tests, we selected as hyperparameters for P0:

m0 = X̄ = 20.8315, k0 = 0.01, a = 2, b = 1

which is a standard set of hyperparameters, first proposed by Escobar and
West (1995). The value m0 is set equal to the sample mean of the data. We
are going to analyze the posterior inference in the next sections.

In Table 3.1, B stands for the Beta distribution and G for the Gamma
distribution, while δ is the minimum between 0.1 and the expected value of
the sum of the jumps in the NGG process: E(T ) = κωσ−1.

E(Kn) σ κ

3 0.001 0.45
3 0.1 0.25
3 0.2 0.05

5 0.001 1.0
5 0.2 0.35
5 0.3 0.09

20 0.2 5.0
20 0.4 2.2
20 0.6 0.3

Table 3.2: Couples of parameters
(σ, κ) fixed for tests D, E, F: we
selected three different couples for
each prior mean number of groups
in the data: (3, 5, 20).

Prior for σ Prior for κ

Beta(2,5) Gamma(2,2)
Beta(10,23) Gamma(1.1,8)
Beta(1.1,30) Gamma(1.1,8)
Beta(1.1,30) Gamma(100,50)
Beta(10,23) Gamma(100,50)

Table 3.3: Couples of priors for
parameters (σ, κ) in tests M: we
selected different prior informa-
tion for the parameters and, conse-
quently, for the number of clusters.

In order to correctly evaluate the model for density estimation proposed
in this work, one could be interested in the time employed by the algorithm
to run the code. In Tables 3.4, 3.5, 3.6, 3.7 there are the run-times of each
test made on a processor Intel Core i7 2670QM with 6GB of RAM. Every
run produces a final sample of 10000 iterations, after a thinning of 10 and
an initial burn-in period of 10000 iterations.
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Name ε σ κ

A0, . . . , A8 10−6 {0.001, 0.1, . . . , 0.8} 0.45
B0, . . . , B9 Unif (0, δ) {0.001, 0.1, . . . , 0.9} 0.45
C0, . . . , C9 Beta (0.69, 2.06) in (0, δ) {0.001, 0.1, . . . , 0.9} 0.45
D0, . . . , D8 10−6 As in Table 3.2 As in Table 3.2
E0, . . . , E8 Unif (0, δ) As in Table 3.2 As in Table 3.2
F0, . . . , F8 Beta (0.69, 2.06) in (0, δ) As in Table 3.2 As in Table 3.2
G0, . . . , G6 10−4 B (2, 18) {0.01, 0.05, 0.07, 0.1, 0.5, 1, 2}
H0, . . . , H3 10−4 B(1, 19),B(1.5, 13.5),B(3, 7),B(2, 2) 0.45
I0, . . . , I9 10−4 {0.001, 0.1, . . . , 0.8, 0.9} G(2, 2)
L0, . . . , L3 10−4 0.001 G(1.1, 2),G(2, 2),G(5, 3),G(10, 3)

M0, . . . , M5 10−4 As in Table 3.3 As in Table 3.3
N0, . . . , N3 {10−6, 10−3, 10−1, 1} 0.4 0.45

Table 3.1: Scheme of the tests in the robustness analysis.
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It is obvious that the value of ε greatly influences the run-time of the
algorithm: see, for instance, tests N, where the variable ε is considered fixed
and increases from 10−6 to 1 (Table 3.7). The time greatly decreases from
N0 to N3: it goes from almost 8 minutes to 21 seconds.

Test name Time Test name Time Test name Time

A0 1m28s B0 48s C0 1m1s
A1 56s B1 31s C1 36s
A2 1m30s B2 35s C2 39s
A3 2m53s B3 38s C3 43s
A4 7m01s B4 43s C4 51s
A5 17m13s B5 48s C5 1m3s
A6 39m46s B6 50s C6 1m2s
A7 120m50s B7 55s C7 1m7s
A8 280m26s B8 56s C8 1m8s

B9 59s C9 1m7s

Table 3.4: Run-times of the algorithm in tests A, B, C: in group A ε is fixed,
in B a Uniform prior on (0, δ) for ε is assumed while in C the prior is a Beta
distribution.

Moreover, comparing tests A, B and C, we see that it is computationally
convenient to consider a random ε rather than a fixed and small one, as in
tests of group A (Table 3.4): the times in the first column are higher than
those in the second and third columns, even though in B and C there is
an additional step that updates the variable ε to be done. It is possible to
appreciate this fact also in tests of group D, E, F in Table 3.5. In particular,
in group E the variable ε is free to assume also relatively large values since
the prior is uniform: comparing these times with the same tests of group D,
where ε is fixed to a very small value, it is perceptible a substantial gain in
computational time. We will realize in next sections that this occurs because
a small value of ε implies a lot of components to consider in the mixture.

On the other hand, large values for σ imply more elements to consider
in the mixture. Hence, the computational time increases: look, for example,
tests A, B, C in Table 3.4 where σ is considered on a grid from 0.001 to 0.99
and κ is fixed. The same happens in tests of group I in Table 3.6.

From Table 3.5 we see that assuming a smaller E(Kn) implies a gain in
run-time, since of course the algorithm must take into account less clusters.

Convergence has been checked for every run monitoring the traceplots of
posterior chains and the cumulate mean number of clusters: we report an
example for test A8 and A0 in Figure 3.1. Figures 3.1 (a) and (b) show
satisfactory posterior chains of variables Kn and U , Figure 3.1 (c) illustrates
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(a) Traceplot of the number of
groups in test A8.
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(b) Traceplot of the latent vari-
able U in test A8.
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(c) Iteration versus cumulate
mean number of groups in test
A0.

Figure 3.1: Some convergence indexes.
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Test name Time Test name Time Test name Time

D0 1m28s E0 1m10s F0 1m1s
D1 42s E1 43s F1 35s
D2 34s E2 36s F2 30s
D3 2m41s E3 1m35s F3 1m45s
D4 1m17s E4 37s F4 41s
D5 57s E5 35s F5 44s
D6 10m45s E6 1m9s F6 1m28s
D7 35m15s E7 59s F7 1m16s
D8 35m15s E8 57s F8 1m20s

Table 3.5: Run-times of the algorithm in tests D, E, F: for the parameters
used in these tests see Table 3.2.

Test name Time Test name Time Test name Time

G0 28s I0 4m2s L0 3m20s
G1 34s I1 1m18s L1 4m3s
G2 35s I2 1m37s L2 4m52s
G3 39s I3 2m12s L3 7m2s
G4 52s I4 2m50s M0 2m11s
G5 1m9s I5 4m10s M1 1m
H0 59s I6 5m55s M2 1m47s
H1 1m I7 7m30s M3 1m15s
H2 1m32s I8 8m15s M4 4m30s
H3 2m20s I9 9m15s M5 45m40s

Table 3.6: Running times of the algorithm in tests G, H, I, L, M.

the cumulate mean number of groups, which is very stable after the burn-in
period (the x-axis represents iterations’ number).

Finally, we underline that all the density estimates are pretty good: we
will not present them for each prior we have considered since they are very
similar. However, this fact reflects the robustness of the method.

In order to give an estimation of the quantile functional of the density, we
refer to Gelfand and Kottas (2002). In their paper, they provide a computa-
tional approach about the estimation of a generic functional H for a mixture
model. We report the main passages.

Given a mixture distribution of the form F (·, G) =
∫

K(·, θ)G(dθ), the
goal is to estimate H(F (·, G))|data, where H is a generic functional of F . The
simulation provides a posterior chain of the latent variable θb, b = 1, .., B.
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Test name Time

N0 7m56s
N1 52s
N2 29s
N3 21s

Table 3.7: Running times of the algorithm in tests N.

(a) Density estimation and its pointwise
90% credibility interval for test A0.

(b) Density estimation and its pointwise
90% credibility interval for test A8.

Figure 3.2: Two examples of density estimates with the corresponding quan-
tiles.

If H is linear, then a simple Monte Carlo integration is needed, since

H(F (·, G)) =

∫

H(K(·, θ)G(dθ)) ≃ B−1

B
∑

b=1

H(K(·, θb)).

On the other hand, if H is non linear we can evaluate Gb, which is a
realization from G|data: thanks to the Monte Carlo integration we obtain
Hb = H(F (·, Gb)), b = 1, .., B, realization from H(F (·, G))|data, from which
the estimation for H can be recovered.

In our specific case, where H is the quantile functional νp, we evaluate

Fb = F (grid, Gb) =

N
(b)
ε
∑

i=0

p
(b)
i K(grid, θ

(b)
i )

for every iteration of the algorithm, over a grid of values where we want to
evaluate the functional.
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Then, for every value x of the grid, we apply the quantile function νp on
the B values, obtaining an estimation of the 5% and 95% quantiles.

In Figure 3.2 an example of density estimation is provided: the blue part
represents the 90% credible interval (pointwise) computed with the previous
method and the thick line is the mean, i.e. the predictive distribution.

3.2 | The ε-NGG mixture model with

fixed parameters

First of all we provide an example of density estimation for tests of group
N where the parameters are kept fixed and ε increases (Figure 3.3): all the
estimates are pretty good and detect the "right" number of clusters, even if
the estimates adjust to the data, so there are more groups, when ε is small.
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Figure 3.3: Density estimation in tests N with different values for parameter
ε.

Thanks to the tests in group N we understand the influence of the pa-
rameter ε: when ε increases, more jumps are cut off from the sum defining
the process and, consequently, less components in the mixture must be con-
sidered. Recalling that Nε+1 is the sum of the number of allocated jumps
(the groups) and the non-allocated jumps, it is clear that less clusters are
used to describe the data (see Figure 3.4).
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Figure 3.4: Histograms of Kn for each test in group N.
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A decrease of number of non-allocated jumps is visible from Figure 3.5,
when ε increases: thanks to this fact, a huge gain in run-time is reached, as
we can see in Table 3.7. In fact, the time goes from approximately 8 minutes
when ε is very small to less than 1 minute when the parameter assumes the
largest value.
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Figure 3.5: Histograms of variable number of non allocated jumps Nna for
each test of group N.

Another relationship one could be interested in, is that between σ and
the posterior number of clusters: as expected, looking at Figure 3.6 related
to experiments A, we can observe an approximately linear increasing of the
posterior mean number of clusters while σ goes from 0 to the maximum. Of
course, also the variance increases.

We also point out that increasing the value of σ has a positive effect
on the MCMC chains: see Figure 3.7 to notice the improvement on the
autocorrelation of variable U between the test with σ equal to 0.001 and σ
equal to 0.8.
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Figure 3.6: Values of the parameter σ versus posterior mean number of
clusters Kn in tests A.
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Figure 3.7: Autocorrelation of the auxiliary variable U in tests A0 where
σ = 0.001 (left) and A8 where σ = 0.8 (right).
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3.3 | The ε-NGG mixture model with

random parameters

In this section the effect of the randomness of the parameters is studied, in
order to choose a suitable prior for the parameters of the process. We divide
the section into four subsections: the first one deals with the precision pa-
rameter ε, while the second and the third ones are related to the randomness
of the parameters of the NGG process σ and κ, respectively. They will be
considered both random in Section 3.3.4.

3.3.1 | The effect of the prior on ε
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Figure 3.8: Density estimation in tests B with different values of parameter
σ.

When ε is random, the model is expected to be more flexible, since it
would "adjusts" for the number of jumps of the process Pε that must be
considered. If ε increases the process will be significantly different from the
NGG process, since in this case many small jumps will not be included in
the mixture. Moreover, when ε is large, the variable Nε, which counts the
number of weights in the mixture, will be generally smaller than when ε is
fixed.

The density estimations are good, as we can appreciate in Figure 3.8, but,
as we expect, the model is more parsimonious with respect to the variable
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Figure 3.9: Value of the parameter σ versus mean number of clusters in tests
A (magenta), B (blue) and C (green).

Kn, number of groups, especially in the case with the uniform prior which
is the most non informative. This fact can be understood from Figure 3.9
where the posterior mean of Kn diminishes letting ε be random (points green
and blue). In particular, we can see that a sort of asymptote in the mean
number of cluster is been reached in the random case, because we do not
force the model to have a large number of clusters.

It is important to notice that also the number of non-allocated jumps is
smaller than the case with fixed ε. This fact, together with the reduction of
Kn, explains the huge profit in run-time, Table 3.4. The algorithm is faster
since it needs to sample less jumps and less points of support, which is the
most complex part from a computational point of view.

Moreover, we notice that the traceplot of the non-allocated jumps gets
better increasing σ. On the other hand, observing the variable Tε that repre-
sents the total mass of the process, we have discerned that the chain improves
in the random case with respect to the fixed case. The behavior of this vari-
able is significantly different in the two cases, but this fact is not simply
explicable.

Examine now the traceplot of log(ε) in the experiments B e C (Figure
3.10): the chain is better when σ is small, as in cases B0 and C0. As far
as the robustness with respect to σ is concerned, we should acknowledge
that, as σ increases, more computational problems come up, because of the
incomplete gamma function, that is harder to be numerically evaluated. Also
the autocorrelation gets worse with large values of σ.

An interesting information we can extract from the MCMC chain of ε
is its posterior distribution: looking at Figure 3.11 we deduce the model
suggests to assume small values for ε even if the prior is non-informative,
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Figure 3.10: Traceplot of the variable log(ε) in different tests.
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Figure 3.11: Histograms of variable ε in different tests of group B with
superimposed in gray the prior, Unif(0, δ).
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uniform between 0 and 0.1.
In particular, increasing σ and consequently the expected value of prior

number of clusters, smaller values of ε are needed: even if we do not know the
exact relation between ε and the number of clusters in the data we deduce
from the numerical results that reducing ε the number of groups increases.
This fact is simple to imagine since decreasing ε leads to consider a bigger
amount of points of support. These considerations hold also for tests of group
C, where we gave a prior concentrated over very small values.
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Figure 3.12: Variable U versus ε in test B0 (left) and B9 (right).

We also point out that there exists a strong correlation between the vari-
ables U and ε, above all when σ is small: see the scatterplots in Figure
3.12.
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Figure 3.13: Prior distributions of the variable number of clusters: (left) the
mean is 3 for all the three different couple of (σ, κ) of Table 3.2 , while the
mean is 5 (center) and 20 (right).

In the experiments D, E and F we fixed a priori the mean number of
groups to be 3, 5 or 20 (of course in the corresponding NGG case, where
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ε = 0, because the distribution is available only in this case). For each
expected value we selected three couples (σ, κ) which correspond to the prior
distributions for the variable Kn in Figure 3.13: as pointed out in Section
1.5.1, an increase of σ means a prior distribution with a larger variance, so
more non-informative.

Consider now the case with ε fixed (test D): we cannot appreciate a
significant difference between posterior distributions of Kn in the 3 cases
when E(Kn) = 3, Figure 3.14 (a), while it is possible to see it in the other
two cases, compare Figures 3.14 (d) and (g).

When σ assumes larger values also posterior distributions of Kn become
spread to a larger range of possible values: since the model is more flexible
the posterior mean is free to shift towards the "real" average being more
"sensible" to the data. In this case the model seems to tell us that there are
about 10 clusters, in fact:

• If E(Kn) = 3, the a-posteriori mode is 6 in all the cases;

• If E(Kn) = 5, the a-posteriori mode is 7,8,9;

• If E(Kn) = 20, the a-posteriori mode is 15, 17, 19.

We notice from the previous values that in all the experiments there is a shift
of E(Kn|data) towards larger values in the case with E(Kn) = 3 or 5, towards
smaller values in the case with 20 as prior mean value. This shift is more
visible when σ is large, thanks to the flexibility of the model. Moreover, fixed
the value for E(Kn), the number of non-allocated jumps decreases when σ
enlarges (and κ diminishes, of course): see Figure 3.15 and observe how the
number of non-allocated jumps decreases when the a-priori variance of Kn

increases with σ.
Considering now tests E e F with ε random, the model seems to find a

lower number of clusters: in the tests with very flexible models the shift of
the distribution occurs towards smaller values with respect to the fixed ε
case. See for example the histograms (d) to (i) in Figure 3.14. In this case
the posterior distributions present a variance relatively small even if the prior
variance is very big: the variability affects ε.

It is interesting to notice from the histograms of ε in Figures 3.16 and 3.17
that not always the values of ε are small: in some cases (for example E6 and
F6) the model tends to become "parametric", because only few components
of the mixture are considered (Nε tends to Kn, the number of groups). This
fact highlights the flexibility of the process which is suitable to represent a
large variety of situations.

Moreover, we point out that once E(Kn) is fixed, increasing σ yields
smaller values for ε: see, for instance, Figures 3.17 (g), (h), (i) or 3.16 (d),
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Figure 3.14: Histograms of the posterior number of clusters in tests D,
E, F. In blue the tests with a bigger a-priori variance for Kn, in magenta
the tests corresponding to a relatively small variance a-priori, in green the
intermediate ones.
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Figure 3.15: Histograms of the variable Nna, number of non-allocated jumps,
in tests D, E, F where the a-priori mean number of clusters is 3.
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Figure 3.16: Histograms of the variable ε in tests E: in black, the prior.
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Figure 3.17: Histograms of the variable ε in tests F: in black, the prior.

65



(e), (f). This happens because a large value for σ implies more clusters and
more non-allocated jumps in the data: a small value for ε is thus needed in
order to have enough components in the mixture.

Finally, an interesting issue related to the randomness of ε is that the
number of non-allocated jumps diminishes with respect to the non random
case since the algorithm is free to consider a larger ε, therefore taking into
account less non-allocated jumps (see Figure 3.15).

3.3.2 | The effect of the prior on σ

In this section we analyze the experiments made with random σ, in order to
understand better how the choice of the prior affects the estimates. We have
already seen that both σ and κ have the effect of increasing the number of
clusters in the model. Look for example Figure 3.18 or 3.9.
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Figure 3.18: Tests of group G:
values of variable κ versus the
posterior mean number of clus-
ters.
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Figure 3.19: Priors for the parame-
ter σ in tests H: Beta(1, 19) (red),
Beta(1.5, 13.5) (green), Beta(3, 7)
(light blue), Beta(2, 2) (purple).

But what happens letting σ be a random variable? In Figure 3.19 four
different priors used for the experiments H are shown: they become more non
informative but also shifted towards larger values. As expected the number of
clusters rises (Figure 3.20) together with the number of non-allocated jumps
which is huge: the computation time explodes.

Observing the histograms of σ in Figure 3.21, if the prior is concentrated
on small values, as in H0 and H1, the chain tends to move towards larger
values ((a) and (b)) while in the case of non informative priors (see (d)) the
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Figure 3.20: Histograms of Kn in tests of group H.
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values of the chain tends to assume intermediate values in the range (0.2, 0.7).
In any case, the model tends to be very different from the Dirichlet Process,
which corresponds to σ = 0.
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Figure 3.21: Histogram of σ in tests of group H.

In the experiments G we selected κ on a grid and we assumed a beta
distribution as prior for σ: we are going to study the behavior of the variable
σ in these conditions. Obviously, the number of groups increases as we have
already noticed from Figure 3.18. Observe now Figure 3.22, where posterior
distributions of σ are shown: one one hand, when κ is very small (as in cases
(a), (b), (c), (d)) σ increases, playing a key role in adjusting the number of
clusters and correcting a model that could be too poor. On the other hand,
when κ is large enough (and the model is sufficiently rich) σ remains small,
as suggested by the prior.
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Figure 3.22: Histogram of σ in tests of group G.
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Figure 3.23: Four different priors for the parameter κ in tests of
group L: Gamma(1.1, 2) (red), Gamma(2, 2) (green), Gamma(5, 3) (cyan),
Gamma(10, 3) (purple).

3.3.3 | The effect of the prior on κ

In this section the influence of the mass parameter κ is studied.
In the set of tests L we have chosen four different priors for the parameter,

as in Figure 3.23 .
Examining the histograms of the number of clusters Kn, we notice that

the randomness of κ has a positive effect on the estimates. Indeed, as we
expected, there is an increase of the posterior mean value because of the
prior information we gave: therefore, this augment is smoothed thanks to the
randomness of κ, since the data can influence more the results (see Figure
3.24).

Studying the histograms of the non-allocated jumps Nna, it is clear that
they increase, even though not strongly: the parameter κ has a softer effect
with respect to σ.

Exactly as the case where σ was random, now κ has the key role of
"compensating" the small value of σ, 0.001. The posterior histograms of κ
in Figure 3.25 highlight the shift of the posterior distribution towards larger
values with respect to the prior distribution in the cases L0, L1 and L2.

With the ε-NGG process we have two parameters compared to the one
of the DPM: this is useful since one can compensate the other if one of them
is shifted over values that are not suitable for the data.

In the experiments I we put a non informative prior for κ, a Gamma
distribution with mean 1 and variance 0.5 and we let σ vary over a grid on
the interval (0, 1). The Figure 3.26 shows an almost linear relation between
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Figure 3.24: Histograms of the number of clusters Kn.
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Figure 3.25: Histograms of parameter κ in tests of group L.
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Figure 3.26: Values of the fixed parameter σ versus posterior mean number
of clusters, E(Kn|data), in test I.

σ and the posterior number of clusters Kn.

There is a general increase in the number of non allocated jumps: this is
due most of all to the augment of the parameter σ. This is clear looking at
Figure 3.27.
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Figure 3.27: Histograms of the number of non-allocated jumps in some tests
of group I: looking at the scale along the x-axis it is clear the increase of the
number of jumps with σ.

Observing the histograms of κ in Figure 3.28 we see the attempt of the
parameter to balance the effect of the parameter σ.

If σ is small, κ tends to assume larger values with respect to the prior
distribution, as in case I0; if σ is too large, the posterior distribution of κ
shifts towards smaller values because there is no need to have a richer model,
as in case I9.
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Figure 3.28: Histograms of κ.
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Figure 3.29: Autocorrelation of the variable κ.
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The autocorrelation of the variable κ increases when σ assumes large
values: see Figure 3.29. In general, with large values of σ some numeri-
cal problems appear due to the Incomplete Gamma function. It would be
necessary to use a library with an higher precision, for example PARI.

3.3.4 | When σ and κ are both random

We now introduce some tests where both σ and κ are considered (indepen-
dent) random variables.
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Figure 3.30: Five different couples of priors used in experiments of group
M for σ (left) and κ (right), as in Table 3.3. Every color specifies a different
couple.

In the experiment M we choose five different couple of priors: they are
represented in Figure 3.30, where each couple is identified by a color. In par-
ticular, we give as prior various information about the distribution of the two
parameters and, consequently, of the number of clusters: a diffused distri-
bution for both the parameters (non informative, as in M0, red), conflicting
believes (as in case M1, yellow, where the prior for σ gives great mass on
relatively large values while the distribution of κ is concentrated over very
small values and M2, green, where we have the opposite situation) or in ac-
cordance (as in cases M3, blue, where both the priors give a big mass to small
values of the parameters and M4, purple, where there is a complementary
condition).

Remember that choosing a very small ε, as in this case, means consider
a process that approximates the NGG process.

Looking at the histograms of Kn, we deduce from the first test, where the
prior information was vague, that the model guesses the groups are about

75



0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2

3 5 7 9 11 13 15 17 19 21 23 25 27 29

(a) Test M0

0
.0

0
0

.0
5

0
.1

0
0

.1
5

3 4 5 6 7 8 9 10 12 14 16 18 20 22

(b) Test M1

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(c) Test M2

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

3 4 5 6 7 8 9 10 11 12 13 14

(d) Test M3

0
.0

0
0

.0
4

0
.0

8
0

.1
2

6 8 10 12 14 16 18 20 22 24 26 30 32

(e) Test M4

Figure 3.31: Histograms of Kn in tests M.
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11. This is a large value: the model has to be coerced with the prior belief
to consider less groups otherwise it identifies too many clusters in the data.
The density estimate in any case is good.

Obviously, if the prior information on the 2 parameters is in agreement,
then the posterior E(Kn) will be large or small accordingly. The mean num-
ber of groups is about 10 if the prior information on σ and κ is in disagreement
(look at Figure 3.31).

Furthermore, observing in Figure 3.32 the histograms of the non-allocated
jumps, we notice that they are a lot in the non-informative case M0 and if
the two parameters assume large values, as in M4.
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Figure 3.33: Histograms of the variable σ in tests M.

From cases M1 and M3 we deduce that σ influences the variance of the
distribution of the variable Nna, in fact if σ is big the tails of the distribution
are heavier.

Another interesting issue is the behavior of the posterior chains of σ and
κ: as we can observe from Figures 3.33 and 3.34, they are quite faithful to
their prior distributions, even if in general the variable κ is more flexible like,
for example, in test M3 where both the priors are concentrated on very small
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Figure 3.34: Histograms of the variable κ in tests M.
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values and the parameter κ is shifted towards larger values while σ remains
faith to the prior distribution.
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Figure 3.35: Scatterplots of σ versus κ: in gray the contour levels of the
conjugate prior distribution over the couple (σ, κ).

Figure 3.35 shows the scatterplot of σ versus κ in tests M: the contour
levels of the prior distribution are superimposed. We notice the shifting of
the points from the prior distribution in cases M1 and M3 where the prior
model is too restrictive on the values of the parameters.
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Chapter 4 | Yeast cell cycle data

In this final chapter we apply our model to a multivariate dataset, the Yeast
cell cycle data. First, a robustness analysis is performed, as we did in Chap-
ter 3 for the unidimensional case; then, we use the model for cluster analysis.
Indeed, since we are dealing with a gene expression dataset, this application
can be very interesting: clustering techniques have proven to be helpful to
understand gene functioning, gene regulation and cellular processes. Genes
with similar expression patterns can be clustered together, hence suggesting
similar cellular functions.

4.1 | Description of the robustness analysis

We provide in this section a robustness analysis in a multidimensional case:
in particular, we fitted our model to a dataset used in the literature for
clustering gene expression profiles, usually called Yeast cell cycle data, and
represented in Figure 4.1. We are considering a gene expression dataset from
a microarray experiment: a microarray is an array of DNA molecules that
permits many hybridization experiments to be performed in parallel. It can
monitor expression levels of thousands of genes simultaneously in multiple
conditions (in this case we obtain a time-series during a biological process).
The dataset can be represented by a real-valued matrix [Xij , 1 ≤ i ≤ n,
1 ≤ j ≤ p], where the rows (X1, . . . , Xn) contain the expression patterns of
genes and will be our data points. Each cell Xij is the measured expression
level of gene i at time j. The Yeast cell cycle dataset contains n = 389 gene
expression profiles, observed at 17 different time values, one every 10 minutes
from time zero. We chose a subset of the original dataset, representing the
second cell cycle. The final dataset (n = 389, p = 9) has been obtained
standardizing each row of the gene expression matrix to have zero mean and
unitary variance.
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Figure 4.1: Yeast cell cycle data: on the x-axis the 9 time steps in which
the 389 gene expression profiles are observed. On the y-axis the measured
expression level of the n different genes after the standardization.
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We model data as follows:











Xi|θi
ind
∼ Np(·|θi) i = 1, .., n

θ1, θ2, . . . , θn|Pε
iid
∼ Pε

Pε ∼ ε−NGG(σ, ω, κ, P0)

where θi = (µi,Σi) and Σi, the covariance matrix, is assumed diagonal, as
follows:











σ2
1,i 0 . . . 0
0 σ2

2,i . . . 0
...

...
. . .

0 0 . . . σ2
p,i











In this way the correlation between the variables is ignored, but we will
see that the model is enough flexible. We fixed P0 as:

Np

(

µi|m0,
1

s0
Σi

)

×

p
∏

k=1

IG(σ2
k,i|a, b).

As far as the choice of hyperparameters for P0 is concerned, it is straight-
forward to see that

• E(µ) = m0

• V ar(µ) =
b

(a− 1)s0
Ip

• E(Σ) =
b

(a− 1)
Ip

• V ar(σ2
1, . . . , σ

2
p) =

b2

(a− 1)2(a− 2)
Ip

where Ip is the identity matrix of dimension p × p. For our analysis we se-
lected two different sets of hyperparameters for P0: the first is (m0, s0, a, b) =
(0, 1, 2.1, 0.11) such that V ar(µ) = 0.1Ip, E(Σ) = 0.1Ip and V ar(σ2

i ) = 0.1
for every i, while the second is (0, 1, 3, 2) in order to have V ar(µ) = Ip,
E(Σ) = Ip and V ar(σ2

i ) = 1 for every i.
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Name ε (m0, s0, a, b) σ κ

A0, . . . , A3 10−6 (0, 1, 2.1, 0.11) {0.001, 0.1, 0.2, 0.5} 0.7
a0, . . . , a3 10−6 (0, 1, 3, 2) {0.001, 0.1, 0.2, 0.5} 0.7
B0, . . . , B3 Unif(0, 0.01) (0, 1, 2.1, 0.11) {0.001, 0.1, 0.2, 0.5} 0.7
b0, . . . , b3 Unif(0, 0.01) (0, 1, 3, 2) {0.001, 0.1, 0.2, 0.5} 0.7
C0, . . . , C3 10−4 (0, 1, 2.1, 0.11) Beta(2, 15) {0.1, 1, 3, 10}
c0, . . . , c3 10−4 (0, 1, 3, 2) Beta(2, 15) {0.1, 1, 3, 10}
D0, . . . , D3 10−4 (0, 1, 2.1, 0.11) {0.001, 0.1, 0.2, 0.5} Gamma(2, 0.1)
d0, . . . , d3 10−4 (0, 1, 3, 2) {0.001, 0.1, 0.2, 0.5} Gamma(2, 0.1)

E0 10−4 (0, 1, 2.1, 0.11) Beta(2, 15) Gamma(2, 0.1)
e0 10−4 (0, 1, 3, 2) Beta(2, 15) Gamma(2, 0.1)

F0, . . . , F3 {10−6, 10−5, 10−4, 10−3} (0, 1, 2.1, 0.11) 0.001 0.7
f0, . . . , f3 {10−6, 10−5, 10−4, 10−3} (0, 1, 3, 2) 0.001 0.7

G0, . . . , G2 10−4 (0, 1, 2.1, 0.11) {0.001, 0.1, 0.2} {.7, .4, .1}
g0, . . . , g2 10−4 (0, 1, 3, 2) {0.001, 0.1, 0.2} {.7, .4, .1}

Table 4.1: Scheme of the tests in the robustness analysis. In these experiments, the final sample size produced by
the algorithm is 5000 iterations, after a burnin period of 5000 and a thinning of 20.
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Note that in the experiments A, a, B, b, F and f we have fixed κ = 0.7
so that when σ = 0.001 E(Kn) is equal to 5, that is the number of clusters
identified by Cho et al. (1998) by visual inspection. Remember that Kn is the
variable number of groups in the data. We will return on this aspect later.
Furthermore, in the tests B the prior on the variable ε is concentrated over
smaller values with respect to the unidimensional case. This is because, in
the multivariate case, the MCMC algorithm is more complex and the model
is more sensible with respect to hyperparameters’ choice. We bumped into
the following problem: large values of ε yield parametric models and in this
case the MCMC chains of Nε and Kn assume always the same, fixed, value.

In tests e0 and E0 we consider both σ and κ random: the prior on σ
is a Beta distribution that gives most mass between 0 and 0.3, while the
prior for κ is a Gamma with mean 20 and very large variance in order to be
non-informative.

On the other hand, in tests G and g we chose 3 different couples of values
for (σ, κ) such that E(Kn) = 5 and the variance, as we have seen also in
Chapter 3, goes up with σ. The corresponding prior distributions for the
variable Kn in the 3 cases are reported in Figure 4.2.

5 10 15
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00
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05
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10

0.
15

0.
20

Figure 4.2: Prior distributions of the variable Kn in tests G0 with (σ, κ) =
(0.001, 0.7) (blue), G1 where (σ, κ) = (0.1, 0.4) (green) and G2 with (σ, κ) =
(0.2, 0.1) (red). All the prior distributions have mean equal to 5, while the
variance is larger as σ gets bigger, as in G2.

Before presenting the Bayesian inference we got, we introduce an index
that is useful for evaluating the performance of the model and compare the
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different sets of parameters: the Log Pseudo Marginal Likelihood (LPML)
that is

LPML =

n
∑

i=1

log (CPOi)

where the CPOi is the conditional predictive ordinate of the i-th sample,
Xi. The CPO is the value of the predictive distribution evaluated at Xi

conditioning on the training sample X−i:

CPOi = fi(Xi|X−i), i = 1, .., n.

Obviously if the values of the CPO (and of the LPML, of course) are large
the model fits the data well.

In order to evaluate these indexes, the following formulas make the com-
putation simpler, taking advantage of the MCMC algorithm we built in Chap-
ter 2:

CPOi =

∫

Θ

fi(Xi|θ,X−i)L(θ|X−i)dθ =

∫

Θ

fi(Xi|θ)

∏

j 6=i fj(Xj|θ)π(dθ)
∫

Θ

∏

j 6=i fj(Xj |θ)π(dθ)

=

∫

Θ

∏n
j=1 fj(Xj|θ)π(dθ)

∫

Θ

∏

j 6=i fj(Xj |θ)π(dθ)

where we used the Bayes’ theorem. We obtain:

1

CPOi
=

∫

Θ

∏

j 6=i fj(Xj|θ)π(θ)dθ
∫

Θ

∏n
j=1 fj(Xj |θ)π(θ)dθ

=

∫

Θ

1

fi(Xi|θ)

∏n
j=1 fj(Xj|θ)π(dθ)

∫

Θ

∏n
j=1 fj(Xj |θ)π(dθ)

=

∫

Θ

1

fi(Xi|θ)
π(θ|X) ≃

1

G

G
∑

g=1

1

fi(Xi|θ(g))
,

where G is the number of total iterations and θ(g) is the value of the chain
at iteration g. In Table 4.2, values of the LPML index for every test are
reported. However, observe that a more complex model will usually be able
to explain the data better, and consequently will yield a higher LPML. In
fact, it is clear from the table that this index depends strongly from the
choice of P0: when the hyperparameters in P0 are (0, 1, 2.1, 0.11), all the test
experiments provide more groups to describe the data. As expected, this
yields larger values of LPML for all the experiments named with the capital
letters.

Let us see some general comments on density estimation: since all the esti-
mates are similar we will present here only few density estimates.
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Name LPML

A0, . . . , A3 {5.2, 5.04, 5.08, 4.96}
a0, . . . , a3 {1.63, 1.63, 1.61, 1.56}
B0, . . . , B3 {5.09, 5.2, 5.15, 5.1}
b0, . . . , b3 {1.67, 1.68, 1.69, 1.71}
C0, . . . , C3 {5, 5.15, 5.09, 5.08}
c0, . . . , c3 {1.67, 1.68, 1.69, 1.71}
D0, . . . , D3 {5.14, 5.09, 5.12, 5.2}
d0, . . . , d3 {1.63, 1.63, 1.65, 1.69}

E0 {5.12}
e0 {1.63}

F0, . . . , F3 {5.18, 5.03, 5.04, 5.19}
f0, . . . , f3 {1.63, 1.64, 1.63, 1.65}

G0, . . . , G2 {5.04, 5.15, 5.2}
g0, . . . , g2 {1.63, 1.63, 1.67}

Table 4.2: Values of LPML index for every test experiment.

As we have just seen from the analysis of LPML, what actually affects
the estimation is the choice of P0 in the ε-NGG. Figures 4.3 and 4.4 show
the Bayesian density estimates, i.e. the marginal predictive densities along
the different p directions; in Figure 4.3 all the parameters are fixed while in
Figure 4.4 σ and κ are random. It is obvious that changing P0, the fitting of
the model to the data changes. In the tests with the capital letters (the green
curves in Figures 4.3 and 4.4) the model needs more groups to describe the
data. The corresponding estimate is closer to the histogram of the data with
respect to the tests with the lower case letter (a0 and e0 in blue in Figures
4.3 and 4.4).

We do not observe substantial differences in the density estimation plots
in Figures 4.3 and 4.4, thus implying the robustness of the model with respect
to the choice of σ and κ.

Consider now test B0, where ε is a random variable with a Uniform
prior: also in this case the estimates are good. In Figure 4.5 we report the
density estimates. The points with a low CPO (lower than the 10% observed
quantile) are shown in red.

Finally, Figure 4.6 shows the marginal (bi-dimensional) predictive distri-
butions for test experiments a0 and A0. The results are encouraging because,
although the true distribution of the data is not available, we observe a good
fit between the points and the marginal predictive density. However, observe
that the figure concerns only a 2D slice of a 9 dimensional space, and when
we display this marginal (bivariate) predictive density, we do not show any
statistical phenomenon which might occur in the larger space.
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Figure 4.6: Bivariate density estimates (along the first 2 dimensions) for
tests a0 (left) and A0 (right).

4.1.1 | The ε-NGG mixture model with

fixed parameters

We report in this section some results concerning the experiments where
all the parameters are kept fixed in order to investigate their effects on the
posterior estimates. In particular, we are going to comment the inference for
tests F and f, where the parameter ε increases, and the sets G and g, where
different couples (σ, κ) are considered.

The first aspect to notice in tests F (and f) is that the posterior chains
of the number of clusters Kn and of the total number of components of the
mixture Nε + 1 get worse if ε increases (see Figure 4.7). In the multivariate
case the model is very sensitive with respect to ε and it is necessary to keep
it low in order to obtain good posterior chains. In fact, if ε is relatively large,
the jumps J are sampled from a distribution which is almost a Dirac’s delta
in ε, and therefore they will assume the same value. For this reason we will
obtain Nε + 1 = Kn constant.

The number of non-allocated jumps is larger when ε is smaller: obviously
the run-time of the algorithm will be greater but the mixing will be better.
In particular, a larger number of small jumps are included in the process
when ε is small: they have an important role in the multivariate case, since
increasing ε yields "bad" posterior chains and a very slow mixing.

Consider now tests G and g: we have already seen in Figure 4.2 how the
prior distribution of the number of groups changes in the tests.
When σ is relatively large and, of course, κ becomes small, in order to keep

91



0 1000 2000 3000 4000 5000

5
6

7
8

9
10

(a) Test f0: ε = 10−6

0 1000 2000 3000 4000 5000

5
6

7
8

9

(b) Test f3: ε = 10−3

0 1000 2000 3000 4000 5000

9
10

11
12

13
14

15

(c) Test F0: ε = 10−6

0 1000 2000 3000 4000 5000

9
10

11
12

13
14

15

(d) Test F3: ε = 10−3

Figure 4.7: Traceplots of Kn, the number of groups, in some tests of groups
f and F.

92



5 10 15 20

0
20

0
40

0
60

0
80

0

(a) Test f0: ε = 10−6
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Figure 4.8: Posterior distribution (histograms of the MCMC draws) of the
variable Nε, where Nε +1 is the number of elements in the mixture, in some
tests.
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Figure 4.9: Traceplots of Kn in experiment tests G. It is clear that the
mixing of the chain gets worse when σ becomes larger and κ smaller.
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Figure 4.10: Posterior distributions (histograms of the MCMC draws) of the
variable Nε in some tests.
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E(Kn) equal to 5, the posterior chains become "worse" as shown in Figure 4.9.
The chains of Kn and Nε get stuck: the model becomes "almost parametric"
because the algorithm is not able to update the values of these two variables.
In particular, when σ is large, the posterior variance of Kn becomes small
(see Figure 4.10).

4.1.2 | Bayesian inference when ε is random

We focus here on tests a, A and b, B in order to compare the estimates
with ε fixed and random. In the multivariate case the randomness of ε
yields posterior chains with a bad mixing, in particular for the variable Kn,
number of groups. Therefore, it is necessary to consider a suitable prior for
ε, concentrated on very small values. In fact, in this way there is a gain in
the computational time while the MCMC chains’ mixing is still satisfactory.

In Figure 4.11 posterior distributions of variable Kn, number of groups,
are shown. In tests A and a it is clear how the distribution of the variable
Kn is shifted towards larger values when σ increases (lines green and blue,
corresponding to tests number 2 and 3) as in the unidimensional case. On
the other hand, when ε is random (as in tests b and B), the posterior variance
of Kn is very small and we can not appreciate the increase of the number of
groups when σ goes up.

In tests A and a, the posterior chains have a good mixing both when σ
is small or large (see Figure 4.12). We notice also a significant increase in
Nε and, consequently, of the non-allocated jumps when σ gets larger, as in
the univariate case. On the contrary, in test experiments b and B, where ε
is random, posterior chains have a bad mixing (in Figure 4.12 compare the
test B0 and B3, for instance).

Another interesting aspect is the analysis of the posterior values assumed
by ε. We can observe from Figure 4.13 that this variable assumes also rela-
tively large values: when this occurs, the chains of the variables Kn and Nε

get stuck, leading to bad estimates. This phenomenon is more visible when
σ is large, as in cases B3 and b3.

4.1.3 | Bayesian inference when both σ and κ are random

We now focus on tests where σ and κ are both random. In the test experi-
ments C and c, we gave as prior for σ a Beta(2, 15) distribution and we let κ
vary over a grid from 0.1 to 10. Because of the randomness of σ, the number
of groups Kn slightly depends on the choice of the parameters of the prior
process: if κ is small, as in C0 and c0, the posterior chain of σ is shifted
towards big values, while if κ is large, as in C3 and c3, the histogram will
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Figure 4.11: Here histograms of Kn, number of clusters, are superimposed
in groups a, A, b and B. In black tests with σ equal to 0.001; in green with
σ equal to 0.1, while red corresponds to σ = 0.2 and blue to σ = 0.3.
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Figure 4.12: Traceplots of variable Nε, where Nε + 1 is the number of com-
ponents of the mixture, in some tests.
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Figure 4.13: Histograms of the random variable ε. In gray the prior is
represented: Unif(0, 0.01).
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be concentrated over small values (compare Figure 4.14). In this sense, σ
"balances" the value assumed by κ. From Figure 4.16 it is clear the shifting
towards larger values of the posterior distribution of Kn when κ increases. As
we just pointed out, this effect is weakened by the randomness of parameter
σ.
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Figure 4.14: Histograms of the variable σ: the balancing effect of σ is clear
observing the support of the posterior chains.

In Figure 4.15, some traceplots of Kn are shown: the mixing gets better
increasing κ. Even if chains of Nε are not reported for brevity, they are
good; the number of components becomes very large when κ is big and the
computational time goes up.

On the other hand, in tests d and D we put a non-informative prior on
parameter κ: a Gamma distribution with shape 2 and rate 0.1. In these
experiments, the mixing of the posterior chains gets worse drastically when
σ assumes large values (as in d3 and D3): the correlation between variables
is high and the chains get stuck into some states. Furthermore, the posterior
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Figure 4.15: Traceplots of the variable Kn, number of groups, in tests C.
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Figure 4.16: Histograms of Kn are superimposed: the black ones correspond
to tests c0 and C0 (κ = 0.1), the red ones to tests c1 and C1 (κ = 1). In
green the tests c2 and C2 where κ is equal to 3, while the blue ones are c3
and C3 with κ = 10. It is clear the progressive shifting towards larger values.
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mode of the variable Kn is always equal to 6 in tests d, equal to 12 in tests
D.
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Figure 4.17: Histograms of variable κ in some tests.

On the other hand, the chains of variable κ are satisfactory: Figure 4.17
shows the posterior distributions of this parameter. As usual, when σ is
small (d0 and D0) κ assumes relatively large values, while if σ is large small
values are assumed by the variable κ, proving the flexibility of the model.

Experiments e0 and E0 are interesting: here, both σ and κ are random.
Priors are non-informative. Figure 4.18 shows the posterior behavior of the
two variables in the case E0. Since κ has a prior with huge mean and vari-
ance, σ assumes small values, thus reducing the computational effort of the
algorithm and favoring the good mixing of the chains. In fact, the posterior
chain of Kn is good and the number of components of the mixture Nε is nei-
ther too small nor too large, which is a good feature from a computational
point of view (see Figure 4.19). We obtained similar results for test e0.
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Figure 4.18: Histograms of variables κ (left) and σ (center). Scatterplot of
the two variables, σ versus κ (right). In gray the priors.
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Figure 4.19: Histogram of the number of groups Kn (left) and its traceplot
(center). On the right the histogram of the variable Nε in test E0.
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4.2 | A Bayesian nonparametric

model-based clustering

We introduce here a simple method for cluster analysis which uses ε-NGG
mixture models: it is a model-based technique, since it requires a mathemat-
ical model describing the problem.

In parametric model-based clustering, data are often modelled by a finite
mixture of kernel densities, so that the number of clusters (i.e., the number of
components in the mixture) is assumed fixed. In this sense a nonparametric
approach allows more flexibility and robustness in the analysis.

We have already pointed out how ties in the sample θ induce a partition
π of the data, based on the values of latent variables θs. In particular, two
points Xs and Xg belong to the same cluster if and only if θs = θg. In order
to cluster data, is enough to know which latent variables are equal and which
ones are not, avoiding the knowledge of their specific values.

The problem is to find one suitable posterior estimate of the partition
of the data, the "best" posterior partition π. Usually, the standard choice
is to minimize a loss-function. With this approach, an appropriate function
is proposed, which evaluates the loss resulting from choosing the consid-
ered partition among all possibilities. The aim of this method is to find
the clusterization of the data minimizing the posterior expected value of
the loss-function. They are called loss-function minimization methods. See
Cremaschi (2012) for a detailed review of the most used loss-functions in
literature.

Often the loss function takes into account the misclassification costs gen-
erated by selecting a particular partition π̂ instead of the true partition π.
Recalling that θ can be equivalently represented by the couple (φ, c) where
φ are the unique values and c is the label vector that for a given partition
contain the label associated with each observation, the loss function we are
going to consider is the following:

L(π, π̂) =
∑

i<j

(

a1(ci=cj ,ĉi 6=ĉj) + b1(ci 6=cj ,ĉi=ĉj)

)

(4.1)

where π̂ and ĉ stand for the estimated partition and label vectors and π and
c for the "true" ones. From (4.1) we see that a and b are two parameters
that weight two types of misclassification (or wrong labeling): a is the cost
related to put in different groups elements that belong to the same group,
while the weight b is related to the error of associate elements that belong to
different groups.
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Starting from the label vectors it is possible to build the corresponding
incidence matrix: this is a matrix whose entries are binary values indicating
whether two elements are in the same cluster or not. Integrating out the
random part of L(π, π̂), we obtain the posterior expected value of the loss-
function:

l(π̂) = E (L(π, π̂)) =
∑

i<j

(

a1(ĉi 6=ĉj)P(ci = cj |data) + b1(ĉi=ĉj)P(ci 6= cj|data)
)

.

Now l is a function of the proposed partition only and can be evaluated:
the quantities P(ci = cj|data) and P(ci 6= cj |data) are estimated by the
algorithm.

If the posterior coincidence probabilities ρij are equal to P(ci = cj|data)

and K̂ := b
a+b
∈ [0, 1], the posterior expected value l(π̂) can be written as

l(π̂) = a
∑

i<j

ρij − (a + b)
∑

i<j

1(ĉi=ĉj)

(

ρij − K̂
)

, (4.2)

therefore minimizing l(π̂) corresponds to maximizing the function f(π̂) =
∑

i<j 1(ĉi=ĉj)

(

ρij − K̂
)

with respect to π̂. In the algorithm we need half of

the iterations to estimate the quantity ρij as a mean of incidence matrixes,
and the other half to evaluate the function f(π̂) and find the partition that
maximize this value. In our examples, we set K̂ = 0.5, weighing the two kind
of misclassification in the same way.

4.3 | Cluster analysis of the dataset

In this section we apply the method of Section 4.2 to the Yeast cell cycle data.
These data are very used for clustering applications: we will use as reference
partition that one of Cho et al. (1998) in Figure 4.20. They grouped the
data by visual inspection according to the peak times of expression levels. In
particular, they detected five peaking points in the second cycle, related to
five phases of the cell cycle, at times 2, 3, 4, 6 and 8. In order to assess the
clustering estimates we introduce here two cluster validation indexes well-
known in literature: the Silhouette coefficient and the Adjusted Rand index.

Silhouette coefficient The Silhouette index assesses the quality of the
proposed clusterization using only quantities relative to the dataset. It is a
popular validation tool, first introduced by Rousseeuw in 1986. In particu-
lar, given a distance among the data (we will use euclidean distance) and a
partition π = {C1, . . . , Ck}, the silhouette coefficient for an individual point
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Figure 4.20: The partition of the data in 5 groups made by Cho et al. (1998)
according to the time when the peak occurs.
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can be computed as follows: first, for the i− th datum, calculate the sample
mean of the distance between the datum and all the others in its group. Call
this value ai. Secondly, compute the sample mean of the distances between
the i − th datum and all the points in a cluster not containing it. Find the
minimum of that values with respect to all clusters: call this value bi. Finally,
the silhouette coefficient for the i− th datum is defined as

si =
(bi − ai)

max(ai, bi)
.

The value of the silhouette coefficient can vary between -1 and 1. Obvi-
ously, a large value reveals that the element is appropriately clustered. In
fact, if ai = 0, the silhouette coefficient of the i− th observation is equal to
1. Moreover, a negative value is undesirable because corresponds to a case
in which the mean distance of the element from the points in its cluster is
greater than bi , the minimum average distance to points in another cluster.
An si near zero means that the datum is on the border of two clusters. An
overall measure of the quality of a partition can be obtained by computing
the average silhouette coefficient of all points: this value is reported for all
the tests in the table. Note that, since the silhouette coefficient is not defined
when there is a unique cluster, in this case we set it equal to 0. The average
of the Silhouette index over all data of a cluster is a measure of how tightly
grouped all the data in the cluster are. If there are too many or too few
clusters, some of the clusters will typically display much narrower silhouettes
than the rest. Thus silhouette plots and averages may be used to determine
the natural number of clusters within a dataset.

Adjusted Rand Index The adjusted Rand index is a measure of the sim-
ilarity between two data clusterings, one taken as reference. It is widely used
in cluster validation analysis, when a "true" reference partition is available.
Given a set of n elements and two partitions to compare, π1 = {C1, . . . , Ck}
and π2 = {B1, . . . , Bs}, consider the following quantities:

• a, the number of pairs of elements of the dataset that are in the same
set both in π1 and in π2;

• b, the number of pairs of elements that are in two different sets both in
π1 and in π2;

• c, the number of pairs of elements that are in the same set in π1 but in
different sets in π2;

• d, the number of pairs of elements that are in different sets in π1 but
in the same set in π2.
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The Rand index (Rand, 1971) is defined as:

R =
a+ b

a+ b+ c+ d
=

a+ b
(

n
2

)

where a + b is the number of agreements between the two partitions, while
c + d is the number of times that the two disagree. Intuitively, R is the
proportion of agreements between the two partition π1 and π2.

A form of the Rand index may be defined, that is adjusted for the chance
grouping of elements: this is the adjusted Rand index. Suppose that the two
partitions π1 and π2 to be compared are chosen randomly, with fixed number
of groups and elements within each group. Hubert and Arabie (1985) defined
the adjusted Rand index as

AR =
R− E(R)

max(R)− E(R)

which is bounded above 1 and takes the value 0 when the index equals its
expected value. The two authors showed the following result under the as-
sumption of a generalized hypergeometric model:

AR =

∑

i,j

(

nij

2

)

−
[

∑

i

(

ai
2

)
∑

j

(

bj
2

)

]

/
(

n
2

)

1
2

[

∑

i

(

ai
2

)

+
∑

j

(

bj
2

)

]

−
[

∑

i

(

ai
2

)
∑

j

(

bj
2

)

]

/
(

n
2

)

where ai and bj are the numerosities of the groups in partitions π1 and π2 and
nij are the agreements between the two clusters: in other words, it denotes
the number of objects in common between Ci and Bj, i.e. nij = #{Ci ∩Bj}.
We will consider as reference partition that one of Cho et al. (1998) in Figure
4.20.

Let us see the cluster analysis provided by the model under some of the
test experiments. Table 4.3 shows the estimated number of clusters as those
minimizing l(π̂) in (4.2), and the Silhouette and Adjusted Rand (AR) indexes
from the posterior distribution of the partition π.

As we already pointed out in Section 4.1, the tests named with the capital
letter have a P0 (that strongly influences the number of groups) inducing a
higher number of clusters than the tests named with the lower case letter.
For this reason the values of the AR indexes, that assess the distance between
the our clusterization and the one of Cho et al. (1998) (that identifies only 5
clusters), is lower for all the tests with the capital letter. However, we recall
that the clusters provided by Cho et al. (1998) are not the "true" ones, but
the result of a clustering made by visual inspection.
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Figure 4.21: Data clustering using test a0: 7 clusters are found by our loss
function minimization method. Image (h) represents the incidence matrix.
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Name Nr. of clusters Silhouette Index Adj Rand Index

a0 7 0.199 0.444
A0 11 0.121 0.376
a2 8 0.19 0.445
A2 11 0.108 0.38
b0 6 0.2 0.44
B0 10 0.133 0.372
c2 9 0.183 0.446
C2 15 0.091 0.369
d0 7 0.195 0.443
D0 11 0.099 0.369
e0 6 0.196 0.443
E0 13 0.096 0.37
f3 6 0.199 0.443
F3 10 0.126 0.373
g1 7 0.2 0.443
G1 10 0.129 0.373

Table 4.3: Table of the tests for which the clustering algorithm has been
applied: for every choice of the parameters the number of clusters and the
value of the two validation indexes are reported.

Also the Silhouette index is lower, in general, for the tests named with
capital letter: we will see later through some examples that the estimates
seem better in the tests with the lower case letter. In fact, in that cases, too
groups are identified by the algorithm and some of them could be clustered
together, thus leading to a small Silhouette coefficient.

In Figure 4.21 the posterior cluster estimates for test a0, where all the
parameters are fixed, are shown. The groups identified by Cho et al. (1998)
(compare Figure 4.20) are similar to these: the only cluster that it is not
really distinguishable is group (c) of Cho, since presents a large empirical
variance and it does not show a precise feature. An interesting characteristic
is the splitting of group (b) of Cho (Fig. 4.20) in two clusters by our model:
in fact, our model takes into account the general behavior of the curves and
not only where the peak occurs, differently from the visual clusterization
made by Cho et al. (1998). For this reason we got the splitting into two
groups: both have a peak at time t = 3 but group (b) in Figure 4.21 behaves
differently from the group (d) in the same figure with respect to the values
of the curve at times 8 and 9.

Furthermore, this method identifies a cluster that it is not present in the
work of Cho et al. (1998): cluster (c) which presents two maximums at time
t = 1 and t = 9. Group (g) is formed by a unique curve: the algorithm

110



2 4 6 8

−2
−1

0
1

2
3

(a)

2 4 6 8

−2
−1

0
1

2
3

(b)

2 4 6 8

−2
−1

0
1

2
3

(c)

2 4 6 8

−2
−1

0
1

2
3

(d)

2 4 6 8

−2
−1

0
1

2
3

(e)

2 4 6 8

−2
−1

0
1

2
3

(f)

2 4 6 8

−2
−1

0
1

2
3

(g)

2 4 6 8

−2
−1

0
1

2
3

(h)

2 4 6 8

−2
−1

0
1

2
3

(i)

2 4 6 8

−2
−1

0
1

2
3

(j)

2 4 6 8

−2
−1

0
1

2
3

(k) (l)

Figure 4.22: Data clustering in test A0: 11 clusters are found by the loss
function minimization method. Image (l) represents the incidence matrix.
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seems to suggest that this is a sort of outlier of the dataset, since it does not
resemble any other datum because it has no peaks. The same feature occurs
in other tests, for instance a2, d0 and g1.

Tests with the capital letters identify more clusters in the dataset, with
a smaller variance inside the group: for example, the inference of test A0
is presented in Figure 4.22. The groups identified by Cho et al. (1998) are
divided into many clusters: for example, cluster (a) of Cho (Fig. 4.20) seems
here to be split into three groups (Fig. 4.22: (a), (i), (j)). All have a peak
in t = 2 but the behavior of the curves in the other times changes. However,
this model identifies too many clusters: in fact, probably groups (i) and (j)
could be clustered together, since they do not present many differences.
We report here the Silhouette indexes for each group in Figure 4.22:

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

-0.01 0.18 0.21 0.2 0 0.09 0.04 -0.02 0.14 0.1 0.2

The Silhouette index of the first cluster is negative: this means, according
to this coefficient, that the elements of the group are less distant from other
clusters, thus they could be clustered with other groups.

Clustering estimates arising from test e0 are satisfactory: the Silhouette
coefficient is relatively high in every group, except from (d) which is the
cluster presenting the larger variability,

(a) (b) (c) (d) (e) (f)

0.22 0.23 0.22 0.04 0.18 0.14

thus indicating a good estimation. This time no "outliers" are detected
and all the clusters have a good numerosity. The first two clusters are very
similar to the ones of Cho et al. (1998). On the other hand, test E0 identifies
too many clusters (see Figure 4.24): σ and κ here were random variables,
conducing to a lot of clusters with a small numerosity.

In conclusion, we have seen how the method seems robust with respect
to the choice of the parameters ε, σ and κ (fixed or random). What really
influences is the choice of P0: this is a problem that affects in general the non
parametric mixture models. In particular, the choice becomes more difficult
when the dimension p of the problem goes up, since slight differences in the
choice of the distribution P0 lead to enormous changes in the results.
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Figure 4.23: Data clustering estimates for test e0: 6 clusters are found by
the loss function minimization method. Image (g) represents the incidence
matrix.
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Conclusions and
future developments

This work has proposed a new model for density and cluster estimates in
the Bayesian nonparametric framework. In particular, we introduced a finite
dimensional process called ε-NGG process that, when ε tends to 0, converges
in distribution to the well-known Normalized Generalized Gamma process.

We employed this process as the mixing measure in a mixture model
for density estimation. An interesting achievement is that, varying ε, a large
range of models can be obtained: from a nonparametric NGG mixture model,
when ε decreases to 0, to a parametric model, where the number of elements
of the mixture is fixed, when ε assumes large values. Hence, on the one
hand, the model can be used as an approximation of a NGG mixture model
on which many theoretical results are available in the literature. For instance,
the distribution of the number of distinct values in a sample from the pro-
cess is known: this turns out to be useful when the parameters of the prior
must be fixed. On the other hand, the model can be viewed as a separate
model with a new prior: since it is finite dimensional, the inference will be
relatively simple. Furthermore, the precision parameter ε can be considered
as a random variable, once we have elicited a prior for it: in this case, the
data "drive" the degree of approximation. Of course under this model the
posterior distribution must be computed via simulation methods: a Gibbs
sampler algorithm has been built to this aim. All the updating steps are
relatively easy to implement and the model is more flexible than the popular
DPM model. In addition, thanks to the finite approximation, there is no
need to integrate out from the model the mixing component (i.e. the infinite
dimensional parameter), thus pursuing a full nonparametric Bayesian infer-
ence, obtaining posterior estimates of linear and non linear functionals of the
population distribution.

We illustrated our proposal through a density estimation problem: thanks
to a deep robustness analysis, the role and the influence of the parameters
ε, σ and κ of our prior on the posterior chains and estimates have been
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understood; moreover, the robustness of the model with respect to the choice
of the hyperparameters has been verified.

In addition to density estimation, a clustering problem has also been tack-
led in the multivariate case: in fact, the ε-NGG mixture model can be useful
to solve clustering problems, minimizing a-posteriori a suitable loss function
(of the random partition), that quantifies the loss when a misclassification
error occurs. The obtained cluster estimates were satisfactory.

As far as the drawbacks of the model are concerned, the first issue consists
in the choice of the distribution P0, that is a parameter of the ε-NGG pro-
cess. Particularly when the dimension of the data is high, the choice of this
distribution is very difficult and affects both the estimates and the mixing of
the MCMC chains. However, this is a problem troubling nonparametric mix-
ture models in general. A second problem concerns the parameter σ: when
it assumes values close to 1, the computation becomes difficult because of
the presence of the Incomplete Gamma functions in the algorithm, which are
very unstable in this case. Moreover, the number of components in the mix-
ture grows very fast with σ, slowing the run-time of the algorithm. Finally,
another problem is the slow convergence and the bad mixing of posterior
chains (especially in the multivariate case), requiring a long burn-in period
and a large thinning in the algorithm.

As future developments, the parallelization of the C++ code could be
interesting to speed up the algorithm, which is fast in the unidimensional
case, but it can be very slow in the multivariate case because of the presence
of sampling from multivariate distributions.

Furthermore, different loss functions or even different types of cluster
estimates could be used in the clustering problem, in order to improve the
estimation when too clusters are selected by the model.
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