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Abstra
t

The goal of this thesis is to design a model predi
tive 
ontrol strategy for quad
opters,


apable of generating traje
tories in real-time in order to rea
h given targets and, at the

same time, avoid �xed and moving obsta
les. The traje
tory is generated in terms of

the jerk by solving a 
onvex quadrati
 optimization problem. The obsta
le avoidan
e

task should be provided exploiting linear 
onstraints, due to the great advantages that

these entail in terms of 
omputational load. First, a method that approximates the

feasible spa
e through 
onvex polyhedra is implemented. After dete
ting several problems

asso
iated with this te
hnique a di�erent strategy is developed. The latter relies on the

assumption of moving with 
onstant longitudinal speed. Thus, the bounds on the positions


an be imposed dire
tly in the time domain. Furthermore, thanks to the holonomi
 nature

of quad
opters, the optimization problem 
an be de
oupled in the three axes. The lateral

and verti
al 
ontrols provide translations in order to avoid 
ollisions, while the longitudinal


ontrol only de
elerates if the solved traje
tories do not avoid the obsta
les properly. The

two 
ollision avoidan
e strategies are 
ompared to ea
h other. The method developed in

this work shows great improvements 
on
erning the reliability of the provided traje
tories

and the 
omputational load needed to solve the optimization problems. Furthermore, the

strategy is 
apable of managing higher speeds. The performan
e of the overall 
ontrol is

assessed through simulations done on a highly a

urate model of the quad
opter. Real-

time feasibility is also tested for low CPU frequen
ies, thus providing the requirements

for a future implementation of the 
ontroller dire
tly onboard the vehi
le.





Sommario

Questa tesi si propone di sviluppare un 
ontrollo per quad
opter basato sul Model Pre-

di
tive Control in grado di generare traiettorie in tempo reale in modo da raggiungere

determinati obiettivi evitando osta
oli �ssi e mobili. La traiettoria è generata in termini di

jerk, ovvero la derivata prima dell'a

elerazione, risolvendo un problema di ottimizzazione

quadrati
a. L'aggiramento degli osta
oli deve essere svolto per mezzo di vin
oli lineari

imposti sulla posizione del vei
olo, in quanto questi ultimi 
omportano notevoli vantaggi

in termini di 
osto 
omputazionale. Il primo metodo studiato 
onsiste nell'approssimare

lo spazio prati
abile attraverso poliedri 
onvessi. Vari problemi asso
iati a questa te
ni
a

spingono a sviluppare un appro

io diverso. Tale nuova strategia si basa sull'ipotesi di

per
orrere la traiettoria a velo
ità longitudinale 
ostante. In tal modo, potendo esprimere

la 
oordinata longitudinale in funzione del tempo, è possibile imporre dei vin
oli sulle 
o-

ordinate laterali e verti
ali per ogni istante di tempo. Inoltre, grazie alla natura olonoma

del quad
opter, il problema di ottimizzazione può essere s
omposto nei tre assi, ridu
endo


osì di molto il 
osto 
omputazionale. La funzione di superamento osta
oli è quindi svolta

dai 
ontrolli sugli assi laterale e verti
ale, mentre il 
ontrollo sull'asse orizzontale garan-

tis
e una velo
ità 
ostante ridu
endola solamente in 
aso le traiettorie generate non siano

in grado di evitare 
orrettamente gli osta
oli. Le due strategie sono in�ne 
onfrontate

tra loro. Il metodo sviluppato in questa tesi risulta portare notevoli miglioramenti in

termini di a�dabilità delle traiettorie e di 
osto 
omputazionale. Il 
ontrollo è quindi im-

plementato in un modello altamente dettagliato del quad
opter in modo da valutarne le

performan
e. Sono state inoltre svolte simulazioni a varie velo
ità di 
lo
k del pro
essore

in modo da veri�
are la fattibilità in tempo reale.





1 Introdu
tion

1.1 Motivation

In the last few years there has been mu
h interest in the use of small unmanned aerial

vehi
les (UAVs) for se
urity, surveillan
e, sear
h and res
ue as well as �lm re
ording

appli
ations. Resear
h has fo
used espe
ially on multirotor heli
opters be
ause of their

great agility and ability to move in tough environments. Multirotors are highly maneu-

verable and are 
hara
terized by the ability to take-o� and land verti
ally. A spe
ial


lass is the quadrotor 
on�guration with �xed-pit
h propellers. This 
ategory has been

parti
ularly investigated due to its very simple me
hani
al stru
ture. Other advantages

of quad
opters are the great load 
apa
ity as well as the low manufa
turing 
osts. Nev-

ertheless, the highly nonlinear and 
oupled dynami
s along with 
omplex aerodynami


e�e
ts set demanding 
hallenges in the development of reliable 
ontrols. Furthermore,

the need to give more and more autonomy to this sort of vehi
les leads to 
hallenging

issues regarding the development of real-time traje
tory planning strategies. Various ap-

proa
hes are proposed in the literature both for stabilization and traje
tory tra
king of

quad
opters. In [1℄ a nonlinear 
ontrol for geometri
 tra
king of pres
ribed traje
tories

is des
ribed. Controls for aggressive manuevers within tight indoor environments, where

the approximation of small angles of the frame 
an not be justi�ed, are developed in [2℄

and [3℄. Few works present model predi
tive 
ontrol strategies for both path tra
king and

traje
tory generation. Many of them use model predi
tive 
ontrol as part of two-layer


ontrol stru
tures ([4℄, [5℄, [6℄, [7℄). In this 
ase the double-layer 
ontrol may 
onsist of

two distin
t MPCs, su
h as in [6℄, [8℄ and [7℄, or may have an MPC for the high-level

and a di�erent 
ontrol type for the lower level ([4℄, [5℄). Model predi
tive 
ontrol is well

suited also for state inter
eption maneuvers, thanks to the possibility to dire
tly impose
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onstraints on the motor thrusts as well as on positions to be rea
hed ([9℄, [10℄). One

of the most 
hallenging tasks that traje
tory planning 
ontrols have to 
ope with, is the

avoidan
e of 
ollisions with obsta
les that may o

ur on the way. For this aim, many

attempts were made in order to develop a 
ontrol 
apable of solving valid traje
tories

online, and thus with hard restri
tions imposed on 
omputational load due to real-time

feasibility. In [12℄ a strategy is presented, that 
omputes waypoints and a

ording to

them solves polynomial traje
tories. Also MPC was already used for obsta
le avoidan
e.

[1℄ exploits a nonlinear model predi
tive tra
king 
ontrol (NMPTC) in order to avoid


ollisions with other vehi
les. In [8℄ the obsta
le avoidan
e task is instead 
arried out by

a linear time varying model predi
tive 
ontrol (LTV-MPC) that approximates the �yable

area through linear 
ontraints. As will be seen, linear 
ontraints bring great bene�ts in

terms of 
omputational load, however the approximations asso
iated to them lead to great

di�
ulties regarding the speed at whi
h the manuevers 
an be performed.

The aim of this work is to develop a model predi
tive 
ontrol for both stabilization

and traje
tory planning in
luding obsta
le avoidan
e, 
apable of 
ontrolling a quad
opter

at higher speeds, while satisfying the stri
t requirements for real-time feasibility.

1.2 Content and stru
ture of the work

The remainder of this work is organized as follows. In 
hapter 2 the system dynami
s of the

quad
opter are des
ribed together with the proposed overall 
ontrol stru
ture. The last

se
tion of 
hapter 2 is dedi
ated to the dynami
 model 
onsidered by model predi
tive


ontrol in order to make its predi
tion. This relies on the assumptions made in [9℄.

Moreover, feasibility due to physi
al limitations is dis
ussed and a

ordingly 
onstraints

on the 
ontrol a
tions are imposed.

Chapter 3 �rst presents the basi
s of model predi
tive 
ontrol. Then, after 
hoosing

a spe
ial 
lass of MPC, it des
ribes the optimization problem that underlies the 
ontrol

strategy. After this, simple traje
tories are generated for short and longer distan
es in

order to inter
ept given target states.

Chapter 4 relies on the results a
hieved in the previous 
hapters and adds the


ollision avoidan
e feature. For this task the strategy des
ribed in [6℄ is �rst implemented.
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Various problems asso
iated with this te
hnique are dete
ted. This gives the 
ue to

develop a 
ompletely di�erent approa
h for obsta
le avoidan
e. Furthermore, the new

method is tested in three-dimensional environments as well as for moving obsta
les. At

the end of the 
hapter a 
omparison between the strategy des
ribed in [6℄ and the method

developed in this work is made. Traje
tory planning performan
e as well as 
omputational

load are 
ompared and dis
ussed.

In 
hapter 5 the overall 
ontrol and traje
tory planning strategy is implemented into

a highly a

urate simulation model of the quad
opter. After dis
ussing the results, real-

time feasibility trials are done in order to verify the appli
ability of the 
ontrol stru
ture.





2 Quad
opter Model

2.1 Overview

The quad
opter 
onsists of a 
ross-shaped frame with four independent motors, ea
h

pla
ed on a vertex of the frame. Ea
h motor is dire
tly atta
hed to a �xed-pit
h propeller

and by 
ontrolling its rotational speed it 
an generate a for
e dire
ted along the axis of

the rotor. Through variation of the four rotational speeds one 
an generate a total thrust,

dire
ted along the verti
al axis of the body-�xed frame, and three torques, giving the

quad
opter the ability to move in spa
e. The system has six degrees of freedom, three

translations and three rotations of the frame, but only four indipendent inputs (propeller

speeds), hen
e it is strongly undera
tuated. Only four outputs 
an be 
ontrolled, namely

the position 
oordinates x1, x2, x3 and the yaw angle. This leads the rotations about the

horizontal axes being heavily 
oupled with the translations of the vehi
le. Furthermore

the quad
opter is a highly nonlinear instable system, whi
h leads to the ne
essity of an

ele
troni
 
ontrol, even for a mere hovering. In fa
t, unlike ground vehi
les, it has very

small fri
tion, hen
e a damping a
tion has to be 
arried out by the 
ontroller itself.

It is important to understand the fun
tioning prin
iple that underlies the quad-


opter's behavior. Hen
e a simple des
ription of how the quad
opter's rotational and

translational movements are related to the 
ontrol a
tion provided by the four motors is

given in this se
tion. Ea
h rotor produ
es a thrust and torque about its 
enter of rota-

tion, as well as a drag for
e opposite to the vehi
le's dire
tion of �ight, whi
h for our

studies 
an be negle
ted. As shown in �gure 2.1 the �rst and the third propeller rotate


ounter
lo
kwise, and the se
ond and the fourth propeller rotate 
lo
kwise. Therefore, if

the four propellers all generate the same thrust, the moments will 
an
el out leading to a

null total momentum about the verti
al axis in the body-�xed frame.
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1

2

3

4

Figure 2.1: Rotors

A yaw-a

eleration is indu
ed by simply speeding up or down a pair of propellers rotat-

ing in the same dire
tion. For example, speeding up the �rst and third propellers results

in a 
lo
kwise rotation of the vehi
le about its verti
al axis. For simple hovering, the

propellers will have to produ
e all the same power, so that the total thrust 
ompensates

the gravitational for
e. To move up, it is su�
ient to speed up the propellers all about

the same quantity, whereas to move the quad
opter down the propellers have to slow

down. Lateral movements are a
hieved by unbalan
ing the rotational speed of two op-

posed motors. For example speeding up the se
ond motor and slowing down the fourth

will result in a torque about the body-�xed x1-axis. This will lead to a rotation of the

frame about the x1-axis that will bring the dire
tion of the total thrust, whi
h is always

dire
ted normally to the quad
opters plane, to have a horizontal 
omponent that pulls the

vehi
le laterally. It is important to remark that rotations and translations are strongly


oupled. Figure 2.1 gives a simple graphi
al explanation.
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Figure 2.2: Quad
opter dynami
 model - in [9℄

2.2 Quad
opter dynami
s

The quad
opter 
an be des
ribed as a rigid body with six degrees of freedom: three linear

translations along the inertial axes x1, x2 and x3 and three degrees of freedom des
ribing

the rotation of the frame atta
hed to the body with respe
t to the inertial frame, des
ribed

by the orthogonal matrix R. Thus the di�erential equations governing the �ight 
an be

written as:

ẋ = v (2.1)

mv̇ = Re3f +mg (2.2)

Ṙ = RΩ̂ (2.3)

JΩ̇ + Ω× JΩ = M (2.4)
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with e3 = [0 0 1]T and Ω̂ the skew-symmetri
 matrix form of the ve
tor 
ross produ
t

su
h that

Ω̂ =








0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0








(2.5)

Note that (2.1) and (2.2) are written in the inertial frame, whereas (2.4) is expressed

in the body-�xed frame. The inputs of the system are the total thrust f and the three


omponents of the torque M = [M1M2M3]

The motors dynami
s are mu
h faster than the body dynami
s, hen
e we assume

that the thrust of ea
h propeller is dire
tly 
ontrolled, i.e., dynami
s of rotors and pro-

pellers are not 
onsidered ([1℄). The dire
tion of the thrust is normal to quadrotor plane.

It is also assumed that the torque generated by ea
h propeller is dire
tly proportional to

its thrust.

τi = (−1)icτffi (2.6)

where i is the motor index beginning from the front propeller and 
ounting 
ounter
lo
k-

wise. cτf is the 
onstant that relates the torque to the thrust. On
e the needed total

thrust f and the moments M1,M2,M3 have been evaluated, the for
es fi that have to

be provided by ea
h single motor 
an be 
omputed by simply inverting the following

equation.











f

M1

M2

M3











=











1 1 1 1

0 d 0 −d

−d 0 d 0

−cτf cτf −cτf cτf





















f1

f2

f3

f4











(2.7)

where d is the distan
e of the motor with respe
t to the 
enter of gravity of the quad
opter.

Generally the propellers are equally spa
ed for whi
h reason it is 
onsidered that their

distan
es to the 
enter are all given by d. The for
e produ
ed by ea
h propeller is related

to its rotational speed as follows:

fi = kfω
2
i (2.8)
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Trajectory

Generation
Attitude

Control

Quadcopterω2r

ω1r

ω3r = 0

f

M1

M2

M3

ω1,ω2,ω3

x1,ẋ1,ẍ1,x2,ẋ2,ẍ2,x3,ẋ3,ẍ3

Figure 2.3: Control Stru
ture

This means, on
e the thrust is known, the angular velo
ity the motor has to provide 
an

be easily 
omputed. Every motor is then 
ontrolled by its own speed-
ontroller. However,

as mentioned before, the motor dynami
s won't be 
onsidered in the system model as

they are mu
h faster then the quad
opter dynami
s and 
an be therefore negle
ted.

2.3 Control Stru
ture

To govern the quad
opter's �ight through a model predi
tive strategy the same 
ontrol

s
heme and 
ontrol inputs as des
ribed in [9℄ are used, sin
e this greatly simpli�es the

traje
tory generation task su
h that the model predi
tive 
ontroller only has to deal with

linear systems. The quad
opter has very low rotational inertia, and 
an produ
e high

torques due to the outward mounting of the rotors. Therefore it 
an a
hieve very high

rotational a

elerations ω̇1 and ω̇2 on the order of 200 rad/s
2
. The reponse time to 
hanges

in the desired rotational rate is very fast. It is therefore assumable that the vehi
le body

rates 
an be dire
tly 
ontrolled, thus the rotational a

eleration dynami
s 
an be ignored

by the model predi
tive 
ontroller. Hen
e, the 
ontrol inputs for the MPC are 
hosen to

be the generated total thrust f , given by the sum of the four propeller thrusts fi, and

the body rates expressed in the body-�xed frame as ω = [ω1 ω2 ω3]
T
. Thus the MPC will
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generate referen
e values for the total thrust and the rotational rates in order to bring

the quad
opter to follow the desired traje
tory. Then the two body rates will be tra
ked

by an attitude 
ontrol, whi
h uses feedba
k from gyros
opes and returns values of the

needed torques about the body-�xed axes. Finally, total thrust and torques will be mixed

to individual motor thrusts exploting equation (2.7). The overall stru
ture of the 
ontrol

strategy is depi
ted in �gure 2.3.

2.4 Dynami
 model for the model predi
tive 
ontroller

2.4.1 Control Inputs

As mentioned in se
tion 2.3 the inputs 
an be 
hosen as the total thrust f and the body

rates des
ribed in the body-�xed frame ω = [ω1 ω2 ω3]
T
, sin
e the rotational a

elerations

are fast enough to de
ouple them from the body dynami
s. For simpli
ity from now on

the total thrust f is normalized by the vehi
le mass, thus having units of a

eleration.

The di�erential equations 
an be rewritten leaving out (2.4).

ẍ = Re3f + g (2.9)

Ṙ = RΩ̂ (2.10)

with Ω̂ =








0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0








2.4.2 Reformulation in jerk

The aim is to 
onsider the traje
tories of the quad
opter in terms of the jerk (the �rst

derivative of the a

eleration) of the axes, allowing the system to be 
onsidered as a triple

integrator in ea
h axis and thus simplifying the traje
tory generation task. Writing the


hosen inputs of the system, namely the total thrust and the three rotational rates, as a

fun
tion of the jerk, allows to 
ompute them easily given a thri
e di�erentiable traje
tory

x(t), where the jerk is written as j =
...

x = [
...

x 1

...

x 2

...

x 3]
T
.
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The input thrust f is found by applying the Eu
lidean norm ‖ · ‖ to (2.9),

f = ‖ẍ− g‖ (2.11)

By squaring (2.11), taking the derivative and substituting for (2.9) the following equation

is obtained:

2f ḟ = 2(ẍ− g)T j = 2(Re3f)
T j (2.12)

ḟ = eT3R
T j (2.13)

Derivating (2.9) yields

j = RΩ̂e3f +Re3ḟ (2.14)

Substituting ḟ with (2.13) and evaluating the produ
t RΩ̂e3 one 
an �nally write:








ω2

−ω1

0







=

1

f








1 0 0

0 1 0

0 0 0







RT j (2.15)

As shown in (2.15) the jerk j and thrust f �x two 
omponents of the body rates. Indeed

the third 
omponent is not ne
essary, as a rotation about the e3 axis does not a�e
t the

translational a

eleration (2.9). That means that ω3 
an be 
hosen freely, for example one


an 
ontrol ω3 su
h that the x1-axis of the body-�xed frame remains oriented with the

dire
tion of movement. For simpli
ity it will be 
hosen that ω3 = 0. Given a traje
tory

des
ribed by the three 
omponents of the jerk and the initial states x0, ẋ0 and ẍ0, also the

traje
tories for a

eleration, speed and position 
an be 
omputed. Thus, one 
an evaluate

the inputs of the system using (2.11) and (2.15).

2.4.3 Feasibility 
onstraints

A traje
tory is 
onsidered to be feasible if the inputs lie within a feasible range. Ne
essarily

there are some boundaries on the total thrust and the magnitude of the body rates that

result from physi
al limitations and therefore have to be 
onsidered when 
al
ulating a

traje
tory. As previously stated one 
an 
onsider a traje
tory des
ribed by the jerk and
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from that it is possible to evaluate the needed total thrust and body rates using equations

(2.11) and (2.15). As 
an be seen the total thrust depends on the a

eleration, whi
h

obviously 
an be 
al
ulated by simply integrating the jerk traje
tory. The aim is to �nd

boundary 
onditions on a

eleration and jerk in order to satisfy the limitations on total

thrust and body rates, that will depend on physi
al bounds and 
an be obtained from

experimental results of the 
onsidered vehi
le. Note, that the 
onstraints must be 
onvex

and linear due to the requirements of the quadrati
 programming method exploited by

the model predi
tive 
ontrol and des
ribed in 
hapter 3. This restri
tions on the 
lass of

boundary 
onditions require to write 
onservative 
onstraints that in some 
ases will not

exploit the whole potentiality of the system.

First, the boundary 
onditions on the inputs of the system 
an be expressed as:

0 < fmin ≤ f ≤ fmax (2.16)

‖ω‖ ≤ ωmax (2.17)

where fmin > 0 is typi
al for �xed-pit
h propellers with a �xed dire
tion of rotation. In

fa
t, the propellers 
an't reverse their rotation dire
tion during �ight and 
an not rotate

under a 
ertain rotational rate. Thus the minimum a
hievable total thrust 
orresponds

to the 
ase in whi
h all the motors are rotating at their minimum speed. Obviously the

maximum total thrust 
an be a
hieved when all motors are rotating at their maximum

speed. By squaring (2.11) and writing it in its 
omponent these limits 
an be translated

to limits on the a

eleration, and thus on the jerk traje
tory.

f 2
min ≤ ẍ2

1 + ẍ2
2 + (ẍ3 + g)2 ≤ f 2

max (2.18)

Note that these 
onstraints on the a

eleration are neither 
onvex nor linear. Hen
e it is

ne
essary to �nd a 
onvex area des
ribed by linear 
onstraints. The following inequalities

give a 
onservative set of 
onvex box-
onstraints, one for ea
h axis.

ẍmin1 = −ẍmax1 ≤ ẍ1 ≤ ẍmax1 (2.19)

ẍmin2 = −ẍmax2 ≤ ẍ2 ≤ ẍmax2 (2.20)

ẍmin3 = fmin − g≤ ẍ3 ≤ ẍmax3 (2.21)

As will be explained, in 
hapter 3 writing 
onstraints for ea
h axis separately allows to
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Figure 2.4: Cross-se
tion of the feasible a

eleration sets - [9℄

de
ouple the axes, whi
h will greatly simplify the traje
tory generation task. Figure 2.4

depi
ts a 
ross-se
tion in the x1-x3 plane of the true thrust limits (lightly shaded) and the

de
oupled per-axis a

eleration limits (darker re
tangular area). As shown in the graph,

the box-
onstraints leave out a big part of the true feasible area in order to be 
onvex

and linear. As mentioned before the performan
e of the quad
opter 
an't be exploited to

its full extent and 
onservative boundary 
onditions have to be 
onsidered. Note that the

dire
tion of a generi
 thrust ve
tor drawn in �gure 2.4 also represents the real dire
tion

of the quad
opter's body �xed x3-axis, sin
e it is always dire
ted with the total thrust.

This means that none of the feasible three-dimensional a

elerations 
onsidered brings the

quad
opter to overturn. Hen
e this will also limit the angle by whi
h the vehi
le's frame


an be rotated, with a maximum value owned for the points 
orresponding to the lower

verti
es of the re
tangular area. The resulting traje
tories are guaranteed to be feasible

with respe
t to the thrust limit if

ẍ2
max1 + ẍ2

max2 + (ẍmax3 + g)2 ≤ f 2
max (2.22)

whi
h brings the box-
onstraints to lie inside the true feasible region. An upper bound
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for the body rates 
an be found as a fun
tion of the jerk by taking the (indu
ed) norm of

(2.15)

‖ω‖ ≤ 1

f
‖j‖ ≤ 1

fmin
‖j‖ (2.23)

Applying the limit (2.17) to the above and rearranging the terms yields:

‖j‖ =
√

j21 + j22 + j23 ≤ fminωmax (2.24)

To obtain linear 
onvex de
oupled 
onstraints on the jerk, the worst 
ase in whi
h all three

axes produ
e the maximum allowable jerk jmax is evaluated. In this 
ase the boundary


onditions expressed in (2.24) still have to be satis�ed. This yields an upper bound on

the allowable jerk per axis

jmax =
1√
3
fminωmax (2.25)

As said before, ωmax, fmin and fmax 
ome from physi
al limits and 
an be obtained

by experimental results. Furthermore, by exploting equations (2.25), (2.22) and (2.19)-

(2.21), 
onvex limits on jerk and a

eleration are found and 
an be applied dire
tly into

the optimization problem mentioned in 
hapter 3 due to their linear nature.



3 Model predi
tive online traje
tory

generation

In this 
hapter a method for generating online traje
tories exploting the potentiality

of model predi
tive 
ontrol (MPC) is des
ribed. As mentioned in 
hapter 2 MPC will

perform the traje
tory generation task and will a
t as a high-level 
ontrol. The output

will be a traje
tory des
ribed in terms of jerk, out of whi
h the total thrust and two body

rates 
an be easily 
omputed using equations (2.11) and (2.15). Then the body rates will

be tra
ked by a low-level 
ontrol whi
h exploits feedba
k from gyros
opes. First, simple

traje
tories like rea
hing a target point starting from resting 
onditions or approa
hing

distant positions are performed. The results a
hieved in this 
hapter will be then used in


hapter 4 in order to guide the quad
opter through more 
omplex situations like �ying

among stati
 and moving obsta
les.

The remainder of this 
hapter is organized as follows. After explaining the main

prin
iple of model predi
tive 
ontrol (se
tion 3.1), a parti
ular 
lass of MPC will be 
hosen

in order to satisfy the strong requirements set on the 
omputational load for real-time

appli
ations (se
tion 3.2). The basi
s of linear dis
rete-time MPC and its implementation

will be des
ribed. In se
tion 3.4 �rst trials for simple traje
tory generation tasks along

with the 
hoi
e of the parameters will be illustrated and dis
ussed.

3.1 Model predi
tive 
ontrol overview

Model predi
tive 
ontrol was introdu
ed in the early 80's. First, it was developed to


ontrol 
hemi
al industrial plants as well as re�neries. The basi
 prin
iple of MPC is to


ontrol a system by making predi
tions on its future behavior and therefore being able to
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optimize a 
ertain 
ost fun
tion along the predi
ted horizon. The main advantage of this


ontrol method is that it is able to 
al
ulate the optimal 
ontrol inputs taking into a

ount

the system dynami
s and 
onsidering the physi
al limitations that may be imposed on


ertain variables. Considering, for example, a tank whose pressure is 
ontrolled by a

valve, MPC makes it possible to 
al
ulate all the future positions of the valve needed

for the pressure to follow a given referen
e. The evaluated traje
tory for the inputs


an easily handle all the 
onstraints on the manipulated variable itself as well as the


onstraints on the output (or generally on the states of the plant). For example it 
an

be 
onsidered, that the valve is only allowed to 
lose with a 
ertain speed or that the

value of the pressure should remain in a given range. As said before the MPC generates a

traje
tory for the 
ontrol variable minimizing a given fun
tional. Typi
ally this obje
tive

fun
tion is the error of the output variables with respe
t to a given referen
e as well as

terms 
onsidering the overall energy needed to follow the traje
tory. On
e the 
ontrol

a
tions for the future horizon are 
omputed by an optimization solver, only the �rst step

of the input traje
tory is applied to the system. Then the pro
ess is repeated and a new

traje
tory is evaluated starting from the new a
tual state of the plant. This pro
edure is


alled "re
eding strategy" and allows to 
ope with problems asso
iated to modeling errors

or unpredi
table for
es a
ting on the system, therefore allowing a proper feedba
k a
tion.

In fa
t, if all the system parameters as well as the future behavior of all the external

agents were perfe
tly known, it would be su�
ient to 
al
ulate an optimal traje
tory

of the 
ontrol a
tions on
e and for all. MPC is a very powerful tool, but on the other

hand it has to 
ope with two main 
hallanges. The �rst is the need for an a

urate

knowledge of the system model, whi
h in most 
ases is governed by a signi�
ant number

of nonlinear di�erential equations. It is also di�
ult to obtain a pre
ise estimation of all

the parameters des
ribing the model. The se
ond drawba
k is the huge 
omputational

load needed by the optimization solver to generate a solution. This is also the reason

why MPC was initially applied only to plants governed by slow dynami
s, where the

update rate of the 
ontrol a
tion 
an be low enough to solve an optimization problem.

Due to the progress a
hieved in the last de
ades on the 
omputational performan
es

of the pro
essors as well as on e�
ient optimization algorithms, it is today possible to


ontrol systems with fast dynami
s with model predi
tive te
hniques. MPC has therefore
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be
ome an interesting obje
t of resear
h for what 
on
erns real-time generation of optimal

traje
tories for autonomous vehi
les su
h as road vehi
les or UAVs.

3.2 Linear dis
rete-time model predi
tive 
ontrol

As explained in se
tion 3.1 one of the main drawba
ks of MPC is the time needed to

solve an optimization problem. A useful solution to keep a low 
omputational load is to

use a linear dis
rete-time MPC. The latter is 
hara
terized by minimizing a quadrati


obje
tive fun
tion subje
t to linear 
onstraints and using a linearized model of the sys-

tem. Linear equations are mu
h easier to 
ope with and there is a great multitude of

fast algorithms that 
an solve quadrati
 optimization problems with linear 
onstraints.

Moreover, by dis
retizing the system in the time domain it is possible to transform the

dynami
 optimization problem, whi
h needs to be solved in an analyti
al way, into a stati


optimization problem, whi
h 
an be easily managed numeri
ally with fast algorithms.

After evaluating the future 
ontrol a
tions, only the �rst step is applied to the

system. This 
ontrol input is held until the next one is 
al
ulated, whi
h means that

the 
ontrol input is step-shaped. For that reason a dis
rete-time model of the system is

perfe
tly suited to the step-working 
ontrol logi
 of MPC.

3.2.1 Quadrati
 Problem Formulation

Most of the software for quadrati
 programming a

ept the following formulation of the

problem:

min
x

J =
1

2
xTHx+ xTg (3.1)

s.t. lbA ≤ Aineq · x ≤ ubA (3.2)

lb ≤ x ≤ ub (3.3)

where x is the ve
tor of the manipulated variables, H is the symmetri
 and posi-

tive (semi-)de�nite Hessian matrix, whi
h represents the quadrati
 term of the obje
tive

fun
tion, g is the gradient ve
tor, representing the linear term. Aineq is the matrix, whi
h
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multiplied by x returns the a�ne fun
tions for the linear 
onstraints. lb and ub are re-

spe
tively the lower and upper bounds that a
t dire
tly on the variables, whereas lbA and

ubA are the lower and upper bounds for the linear 
onstraints.

3.2.2 Time-dis
retization of the system

The aim is to generate a traje
tory in order to minimize a spe
i�
 quadrati
 
ost fun
tion

along the 
onsidered time window. Typi
ally this 
ost fun
tion 
onsists of a term that

depends on the states of the system and one that depends on the 
ontrol input. Given

the linear 
ontinuous-time system

ẋ(t) = A∗x(t) +B∗u(t) (3.4)

with x ∈ R

n
and u ∈ R

m
, the quadrati
 obje
tive fun
tion is

J =
1

2

∫ TH

0

xTQx+ uTRu dt (3.5)

where Q is the symmetri
 positive (semi-)de�nite matrix 
ontaining the weighting terms

for the states and R is the symmetri
 positive de�nite matrix that weights the 
ontrol

inputs. The dynami
 optimization problem of minimizing (3.5) subje
t to the dynami
s

(3.4) has to be transformed into a stati
 optimization problem of the form (3.1) - (3.3).

This 
an be done by exploiting the following equations:

Ad = eA
∗
·ts

(3.6)

Bd =

(∫ ts

τ=0

eA
∗
·τ dτ

)

B∗
(3.7)

where Ad and Bd are the system matri
es of the dis
rete-time system given by

xk+1 = Adxk +Bduk (3.8)

For 
onvenien
e Ad and Bd will be renamed as A and B. The formulation of the quadrati


optimization problem in dis
rete-time form is:

min
u0···uN−1

1

2

n−1∑

k=0

xT
k+1Qxk+1 + uT

kRuk (3.9)
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s.t. xk+1 = Axk +Buk (3.10)

lbxk
≤ Cineqkxk ≤ ubxk

k = 1 · · ·N (3.11)

lbuk
≤ uk ≤ ubuk

k = 0 · · ·N − 1 (3.12)

where N represents the number of steps 
omposing the predi
tion horizon and Cineqk

represents the matrix needed to impose linear 
ontraints on the states for the step k.

Writing (3.10) for ea
h step of the horizon and substituting ea
h equation in the following

one yields:

x1 = Ax0 +Bu0

x2 = Ax1 +Bu1 = A2x0 + ABu0 +Bu1

.

.

.

xN = AxN−1 +BuN−1 = ANx0 + AN−1Bu0 + AN−2Bu1 + · · ·+BuN−1

(3.13)

Equation (3.13) 
an be summarized in matrix form














x1

x2

x3

.

.

.

xN














︸ ︷︷ ︸

X

=














A

A2

A3

.

.

.

AN














︸ ︷︷ ︸

A

x0 +














B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · · 0
.

.

.

.

.

.

.

.

.

AN−1B · · · B














︸ ︷︷ ︸

B














u0

u1

u2

.

.

.

uN−1














︸ ︷︷ ︸

U

(3.14)

X is the ve
tor 
ontaining the states of all N steps of the fore
asted horizon, whereas U


ontains the N · m 
ontrol inputs within the predi
tion time window. Finally it 
an be

written:

X = Ax0 +BU (3.15)

whi
h summarizes the response of the dis
rete-time system given the N ·m 
ontrol inputs

of the predi
ted horizon. The quadrati
 problem 
an be rewritten as:

min
U

1

2
(XTQX + UTRU) (3.16)

s.t. LBX ≤ C ineq X ≤ UBX (3.17)

LBU ≤ U ≤ UBU (3.18)
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with

LBX =











lbx1

lbx2

.

.

.

lbxN











, UBX =











ubx1

ubx2

.

.

.

ubxN











, LBU =











lbu0

lbu1

.

.

.

lbuN−1











, UBU =











ubu0

ubu1

.

.

.

ubuN−1











Q =











Q 0 · · · 0

0 Q · · · 0
.

.

.

.

.

.

.

.

.

0 · · · Q











, R =











R 0 · · · 0

0 R · · · 0
.

.

.

.

.

.

.

.

.

0 · · · R











and C ineq =











Cineq1 0 · · · 0

0 Cineq2 · · · 0
.

.

.

.

.

.

.

.

.

0 · · · CineqN











The aim is now to obtain an obje
tive fun
tion that depends only on the manipulated

variables of the N steps of the predi
tion horizon. To do this, (3.15) is substituted in the


ost fun
tion des
ribed in (3.16), whi
h leads to:

J =
1

2

[

(Ax0 +B U)T Q (Ax0 +B U) + UTRU
]

(3.19)

Rearranging the terms yields:

J =
1

2
UT
(
BTQB +R

)
U + UTBTQAx0 + xT

0A
TQAx0 (3.20)

The term xT
0A

TQAx0 is a 
onstant term, whi
h means it does not in�uen
e the minimiza-

tion pro
ess. Therefore it 
an be ignored, so that the new 
ost fun
tion 
an be de�ned

as:

J∗ =
1

2
UT
(
BTQB +R

)

︸ ︷︷ ︸

H

U + UT BTQAx0
︸ ︷︷ ︸

g

(3.21)

By substituting (3.15) in (3.17) and rearranging the terms the linear 
onstraints on X


an be rewritten as 
onstraints on U :

LBX − C ineq Ax0
︸ ︷︷ ︸

lbA

≤ C ineq B
︸ ︷︷ ︸

Aineq

U ≤ UBX − C ineq Ax0
︸ ︷︷ ︸

ubA

(3.22)

Finally, the optimization problem 
an be expressed as a fun
tion of the 
ontrol a
tion U ,

thus with the formulation needed by the solver.

min
x

1

2
UTHU + UTg (3.23)
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s.t. lbA ≤ Aineq · U ≤ ubA (3.24)

lb ≤ U ≤ ub (3.25)

with

H = BTQB +R (3.26)

g = BTQAx0 (3.27)

lbA = LBX − C ineq Ax0 (3.28)

ubA = UBX − C ineq Ax0 (3.29)

Aineq = Cineq B (3.30)

3.2.3 Time parameters

Mainly two time parameters in�uen
e the appli
abilty of MPC. The �rst is the sampling

time tS; that is the update rate whereby the 
ontroller generates a new 
ontrol a
tion. For

real-time 
apability all 
omputation has to be performed within the sample time. This

value has to be set low enough to give the 
ontroller the 
apability to 
apture the fast

dynami
s of the plant. If the dis
retization is 
hosen too long, there is a risk to �lter out

important dynami
s leading to stability problems.

The se
ond fundamental 
omponent is the predi
tion horizon N . This sets the time

window in whi
h the optimization is performed, giving the length of the traje
tory that

has to be 
al
ulated. The horizon is 
al
ulated by TH = N · tS. It has to be 
hosen long

enough to 
onsider the long dynami
s of the plant. For example, if the horizon is set to

N = 50 and the sampling time to tS = 30ms, the time window has a length of TH = 1.5s.

Hen
e, the predi
tion horizon de�nes the number of variables that the optimization solver

has to manage. It is easy to understand that the longer the predi
tion horizon is, the

longer the algorithm will take to solve the problem and 
al
ulate the optimal traje
tory

of the manipulated variable. On the other hand it has to be kept as long as possible in

order to extend the time window of the optimization.
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3.3 Optimization problem and de
oupled axes

In this se
tion the optimization problem that underlies the traje
tory generation task is

depi
ted. As des
ribed in subse
tion 2.4.2 the system input 
an be 
onsidered to be the

three-dimensional jerk, sin
e the values of the thrust and two body rates 
an be easily


omputed as fun
tions of it. Hen
e the quad
opter dynami
s 
onsidered by the MPC

be
ome a set of three triple integrators, one on ea
h axis, with position, velo
ity and

a

eleration as states. As suggested in [9℄ the 
ost fun
tion is 
hosen as:

Jcoupled =

∫ T

0

(j1(t)
2 + j2(t)

2 + j3(t)
2) dt. (3.31)

Indeed, rearranging (2.23) the 
ost fun
tion results in an upper bound for a produ
t of

the inputs:

f 2‖ω‖2 ≤ j21 + j22 + j23 (3.32)

This implies that the problem 
an be split, thus minimizing the jerk separately for ea
h

axis without losing the meaning in the 
ontext of the 
oupled three-dimensional problem.

The motivation for de
oupling the axis is to have the simplest possible model in order

to 
ompute a solution for the optimization problem as fast as possible. Indeed it 
an

be proved that solving three separate problems of N variables implies a mu
h lower


omputational load than solving a single problem of 3N variables.

Note that the axes 
an be fully de
oupled due to the holonomi
 nature of the

quad
opter regarding its three translational degrees of freedom. In other words, the

longitudinal, lateral and verti
al movements 
an be 
ontrolled separately. To understand

this 
onsider the 
ounterexample of a nonholonomi
 (or anholonomi
) vehi
le su
h as a


ar. In order to move left or right it has ne
essarily to move longitudinally. The most

famous example is the parallel parking problem, where in order to get into the parking

spa
e the 
ar �rst has to move forward, then it has to reverse its dire
tion while steering.

A quad
opter, instead, 
an dire
tly move laterally. Thus, a point in spa
e 
an be rea
hed

independently from the followed path. For that reason, the quad
opter will be 
ontrolled

by three separate MPCs, ea
h 
ontrolling a di�erent axis separately.

Thus, three de
oupled traje
tory generation problems 
an be solved. For ea
h axis

a dis
rete-time linear, time invariant system given by a triple integrator, 
an be written
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as:

zk+1 =








1 ts
1

2
t2s

0 1 ts

0 0 1







zk +








1

6
t3s

1

2
t2s

ts







jk (3.33)

jk =
...

x (kts) (3.34)

zk =








x(kts)

ẋ(kts)

ẍ(kts)








(3.35)

with jerk j =
...

x
as input and position, velo
ity and a

eleration as states. These are sum-

marized in the state ve
tor zk. The axis subs
ripts have been negle
ted for 
onvenien
e,

sin
e the formulation is exa
tly the same for all three axes. The dis
retization step ts

is 
hosen as usual equal to the sampling time of the MPC, sin
e it represents also the

real update rate of the 
ontrol input. Now, that the system has been des
ribed, the 
ost

fun
tion has to be de�ned. This is done by simply dis
retizing (3.31) and taking only the

term 
orresponding to the evaluated axis.

J =

N−1∑

k=0

j2k (3.36)

where N is the number of steps 
omposing the 
onsidered predi
tion horizon. The optimal


ontrol problem has to satisfy boundary 
onditions asso
iated to a

eleration and jerk

limits as de�ned in subse
tion 2.4.3.

ẍmin ≤
[

0 0 1
]

zk ≤ ẍmax (3.37)

jmin ≤ jk ≤ jmax (3.38)

The optimization problem for traje
tory generation is de�ned by minimizing sepa-

rately for ea
h axis the 
ost fun
tion (3.36) subje
t to the system dynami
s (3.33)-(3.35)

and to the 
onstraints on a

eleration (3.37) and jerk (3.38). In order to perform tasks

like inter
epting a state or following a referen
e, some 
onstraints and 
ost fun
tion terms

still need to be added, as will be des
ribed in the next se
tions.
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Figure 3.1: 1 meter rest to rest translation within 1 se
ond - Traje
tory of the frame in

x1-x3 plane

3.4 Traje
tory generation for state inter
eption

3.4.1 Rest position to rest position

First, the 
ase in whi
h the quad
opter has to �y from a point to another in a time that


orresponds to the predi
tion horizon TH , is 
onsidered. In this 
ase the time window


onsidered by the MPC 
overs the whole maneuver. Generally this is not the 
ase, be
ause

MPC takes into a

ount only a time window limited to its predi
tion horizon, although

the whole maneuver may last for a longer period. To for
e the traje
tory to rea
h the

desired target, a 
onstraint on the last state ve
tor has to be imposed.

zN = [xT ẋT ẍT ]
T

(3.39)

Be
ause the optimization solvers usually only deal with inequality 
onstraints, it is ne
-

essary to set the same values for the upper and lower bound in order to make an equality


onstraint out of two inequalities.

[xT ẋT ẍT ]
T ≤ zN ≤ [xT ẋT ẍT ]

T
(3.40)

where zT = [xT ẋT ẍT ]
T
is the desired target state that has to be rea
hed.

The �rst experiment 
onsidered is the displa
ement of 1.3m about the x1-axis done

in a time lapse of 1s from resting 
ondition at start to resting 
ondition at target. It

should start and arrive with null speed and null a

eleration. The sampling time is


hosen to be ts = 20ms. This means that the predi
tion horizon 
an be 
omputed as

N = TH

ts
= 50. Having de�ned the whole optimization problem 
onsisting of the system
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Figure 3.2: 1.3 meters rest to rest translation within 1 se
ond - Generated traje
tories

for States and Jerk

dynami
s (3.33) - (3.35), the 
ost fun
tion to minimize (3.36) and the 
onstraints on

input and states (3.37), (3.38) and (3.40) and imposing zT = [1.3m 0 0]T , it 
an be

implemented in the optimization solver. The a

eleration limits are set to ẍmax = −ẍmin =

7m
s2

and the jerk limits to jmax = −jmin = 70m
s3
. As optimization solver qpOASES [14℄

is 
hosen, whi
h employs e�
ient online a
tive set methods, generating solutions in very

short times and therefore being very useful for model predi
tive 
ontrol appli
ations. In

this se
tion it will be dis
ussed about the solutions that the solver 
omputes for the �rst

optimization, namely the one for t = 0. Hen
e the re
eding strategy a
ting online, will

not be implemented yet.

In �gure 3.1 the movement of the quad
opter in the two-dimensional plane x1-
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Figure 3.3: 1.4 meters rest to rest translation within 1 se
ond - Generated traje
tories

for states and jerk

x3 is illustrated in order to understand how it is rotating its frame while following the

traje
tory. It is important to noti
e that a di�erent a

eleration is asso
iated to ea
h

attitude of the frame. Hen
e the greater the angle about the x2-axis is, the more the

quad
opter will a

elerate in x1-dire
tion.

As illustrated in �gure 3.2 the traje
tory 
orre
tly rea
hes the 1.3m position. The

quad
opter starts at rest position and arrives at resting 
onditions, as the initial and �nal

velo
ities show. The saturations of a

eleration and jerk are evident. The a

elaration

rea
hes its upper limit of 7m
s
at time step k = 8 and its lower limit for k = 37 while

de
elerating.

Due to the hard 
onstraints on the �nal state as well as to the limits on the
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maximal values rea
hable by jerk and a

eleration, it is obvious that there will be a

maximal translation a
hievable within the predi
tion horizon TH = 1s. To �nd out its

value various traje
tories having di�erent �nal positions to rea
h were solved. Starting

with xT = 1m and in
reasing the value by 0.001m for every iteration, the last feasible

traje
tory, i.e. where the solver still returns a valid solution, is found to be the one for

xT = 1.4m. This means that no greater translations 
an be a
hieved within 1 se
ond

starting from rest and arriving at rest 
onditions. The results for this solution are plotted

in �gure 3.3. As shown, �rst the jerk is saturated at j = 70m
s3
. As soon as the a

eleration

rea
hes its maximum the jerk has to assume the zero value, be
ause a further in
reasing of

ẍ is not feasible. Then the a

eleration has to swit
h from a positive to a negative value

in order to de
elerate and bring the quad
opter to rest in �nal position. This is done

with the maximum a
hievable negative gradient, that is the minimum value of the jerk:

jmin = −70m
s3
, bringing

...

x
again to saturation. This is the 
ase for whi
h the quad
opter

employs its maximum performan
e, satisfying the given boundary 
onditions.

The only way to in
rease the maximum a
hievable distan
e is to set a longer predi
-

tion time TH , as the 
onstraints on jerk and a

eleration 
ome from physi
al limitations

and therefore 
an't be modi�ed. To do this there are two main options. The �rst is

to 
hoose a longer predi
tion horizon N . Although, this will greatly in
rease the time

needed for the solver to generate a solution, due to the large number of manipulated

variables. The se
ond option 
onsists in setting a longer sampling time ts, although it


an't be pushed beyond a 
ertain limit, due to the stability problems mentioned in sub-

se
tion 3.2.1. Trials were done with ts = 30ms maintaining the value of the predi
tion

horizon at N = 50. Again the experiments were started with xT = 1m and the �nal po-

sition was in
reased by 0.001m ea
h iteration to see whi
h was the maximum translation

from rest to rest that 
ould be rea
hed. The result was that the last feasible solution was

the one for xT = 3.4m. This means that by in
reasing the sampling time by only 50% it

has been a
hieved to extend the rea
hable position by 
a. 143%.

It should not be forgotten, that for now it has been dis
ussed about the �rst

optimization problem that has to be solved, that is for the instant t = 0. In real MPC

appli
ations the solver will have to optimize a traje
tory every ts se
onds from the a
tual

position and state of the vehi
le, in order to perform the feedba
k task.



3 Model predi
tive online traje
tory generation 28

0 0.5 1 1.5 2 2.5 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x [m]

z 
[m

]

Figure 3.4: 2.5 meters rest to target translation - Traje
tory of the frame in x-z plane

3.4.2 Rest position to target

In this subse
tion the 
ase in whi
h a position has to be rea
hed within the horizon

time starting from rest, is 
onsidered. Here there are no 
onstraints on the velo
ity and

a

eleration of the �nal state, whi
h means the only task is to rea
h the target without


aring about the speed or a

eleration owned in k = N . This means that 
onstraint (3.40)

will be repla
ed with:

xT ≤
[

1 0 0
]

zN ≤ xT (3.41)

with zn =








xN

ẋN

ẍN







and xT 
oordinate on the x1-axis of the target to be rea
hed. The �rst

trial 
onsiders xT = 2.5m. Again sampling time and horizon are set to be ts = 20ms and

N = 50 and the 
onstraints on jerk and a

eleration are the same as before. Figure 3.5

shows the results. As it is noti
eable velo
ity and a

eleration aren't equal to zero at the

�nal step. The jerk is minimized and the 
onstraints are satis�ed, e.g. the a

eleration

is saturated starting at k = 27. The position is rea
hed at the �nal step while still

a

elerating. Figure 3.4 shows the rotation of the quad
opter frame in the x1-x3 plane. As

before, trials were done in order to �nd out what the maximal rea
heable displa
ement in

a time lapse of 1 se
ond is: the resulting value was 3.2m. Setting ts = 30ms and therefore

having a horizon TH = 1.5s a maximal translation of 7.4m is gained.
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Figure 3.5: 2.5 meters rest to target translation - generated traje
tories for states and

jerk

3.5 Traje
tory planning for distant targets

In this se
tion the 
ase is examined, in whi
h the predi
tion horizon isn't able to 
over

the whole maneuver. For example, 
onsider the 
ase in whi
h the target is lo
ated 15

meters away from the initial position of the quad
opter. For this situation it is impossible

to set hard 
onstraints on the �nal step of the predi
tion horizon, due to the limitations

seen in se
tion 3.4 as regards the maximal translation a
hievable within the predi
tive

horizon. Hen
e it is ne
essary to 
onsider the target in the obje
tive fun
tion and no more

as a 
onstraint. To do this it is 
onvenient to weight the deviation between the predi
ted

states and the state to be a
hieved into the 
ost fun
tion. For the 
onsiderations made



3 Model predi
tive online traje
tory generation 30

in se
tion 3.3 the problem will be separated again in three di�erent optimization tasks,

one for ea
h axis. This means that ea
h of the three solvers takes 
are of �nding an

optimal traje
tory for its own axis. Note that in this 
ase the �rst traje
tory that will

be 
al
ulated won't rea
h the target but will only 
ome 
loser to it. However the MPC

strategy works online, whi
h means that after applying the �rst 
ontrol a
tion to the

system, a new solution will be 
al
ulated. This is done every ts se
onds, whi
h means

that every new traje
tory will get 
loser to the target, sin
e the vehi
le is moving towards

it.

3.5.1 De�ning the 
ost fun
tion

As mentioned before, the deviation to target has to be 
onsidered into the 
ost fun
tion.

Thus a term is added to the obje
tive fun
tion depending on the predi
ted states. The

subs
ripts are negle
ted for 
onvenien
e, sin
e the problem 
an be written in the same

way for all three axes.

Jz =
1

2

N∑

k=1

(zT − zk)
TQ(zT − zk) (3.42)

Q =








wx 0 0

0 wẋ 0

0 0 wẍ








(3.43)

zT =








xT

ẋT

ẍT








(3.44)

The ve
tor zT 
ontains the position, velo
ity and a

eleration to be rea
hed. The terms

wx, wẋ and wẍ represent respe
tively the weights on position, velo
ity and a

eleration

error. Minimizing the 
ost fun
tion (3.42) means trying to redu
e the deviation between

predi
ted state and target state for ea
h step of the horizon, whi
h leads the traje
tory

to approa
h the target. The aim is to 
hoose the values of wx, wẋ and wẍ in order to

a
hieve the best performan
es as regards the rea
hing of the arrival point. Again it 
an
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be de
ided to also minimize the jerk, so that the �nal 
ost fun
tion 
an be written as:

J =
1

2

(
N∑

k=1

(zT − zk)
TQ(zT − zk) +

N−1∑

k=0

wjj
2
k

)

(3.45)

Here a term wj was added in order to be able to weigh the jerk relatively to the states.

As spe
i�ed in subse
tion 3.2.2 the 
ost fun
tion has to be formulated in terms of the

manipulated variables. To do this, (3.45) will be �rst written in matrix form:

J =
1

2

[

(ZT − Z)T Q (ZT − Z) + UTRU
]

(3.46)

with Q =








Q · · · 0
.

.

.

.

.

.

.

.

.

0 · · · Q







, R =








wj · · · 0
.

.

.

.

.

.

.

.

.

0 · · · wj







and ZT =








zT
.

.

.

zT








Z 
ontains the predi
ted states along the horizon, whereas U 
ontains all the manip-

ulated variables. Substituting (3.15) in (3.46), rearranging the terms and eliminating the


onstant terms, as they do not a�e
t the minimization pro
ess, yields:

J∗ =
1

2
UT



BTQB +R
︸ ︷︷ ︸

H



U + UT BTQ (Az0 − ZT
︸ ︷︷ ︸

g

) (3.47)

3.5.2 Setting the parameters

Having de�ned the 
ost fun
tion the values of the weights have to be 
hosen in order

to a
hieve the desired performan
es. The referen
e distan
e will be set to xT = 15m,

whi
h has to be rea
hed at rest. Thus the target state will be zT = [15m 0 0]T . Again

ts = 20ms and N = 50 are set. Initially only the position error is weighed, whi
h means

wx = 1 and wẋ = wẍ = wj = 0. Note that in this 
ase the value of wx is irrelevant,

provided it is di�erent to zero. In fa
t the weights in the 
ost fun
tion merely have a

relational meaning. Implementing the MPC 
ontrol strategy into the system model and

simulating leads to the results depi
ted in �gures 3.6 and 3.7.

As 
an be seen, the translation has a strong overshoot about the referen
e point.

This is due to the fa
t that only the position is weighed, hen
e the 
ontroller �rst gives

full a

eleration to the system in order to get to the target as soon as possible. MPC will

start to de
elerate only shortly before the position is rea
hed, namely at 1.72 se
onds,
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Figure 3.6: 15 meters translation - Jerk - Only the position is weighed in the 
ost fun
-

tion - wx = 1;wẋ = wẍ = wj = 0
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Figure 3.7: 15 meters translation - States - Only the position is weighed in the 
ost

fun
tion - wx = 1;wẋ = wẍ = wj = 0
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Figure 3.8: 15 meters translation - States for di�erent velo
ity weighting terms wẋ -

wx = 1;wẍ = wj = 0

whi
h however is too late to avoide an overshoot. The target is �rst approa
hed at 
a.

2.28 se
onds, whereas the a

eleration starts to de
rease at 1.62 se
onds. This means the

MPC rea
ts to the approa
h of the target only 0.66 se
onds before rea
hing it. To avoid

an overshoot it is therefore ne
essary to weigh also the velo
ity error in order to keep it

under 
ontrol and give the system a damping a
tion.

Figure 3.8 shows the response of the system for di�erent values of the weighting

term wẋ. As 
an be seen, the more the velo
ity error is weighed the more the system

response is damped. Too low values of wẋ lead to overshoots, whereas too high values

lead to too long transient times for the quad
opter to rea
h the referen
e. In this 
ase
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Figure 3.9: 15 meters translation - States for di�erent a

eleration weighting terms wẍ

- wx = 1;wẋ = 0.5;wj = 0

the 
hoi
e wẋ = 0.5 seems to be a good 
ompromise. Note that the larger the value of

the velo
ity-weighting term, the earlier the 
ontrol rea
ts to an approa
hing of the target.

For example for wẋ = 2 the quad
opter already starts de
elerating at 0.9 se
onds.

Figure 3.9 shows the traje
tories for di�erent values of the a

eleration-weighting

term wẍ. The other terms are 
hosen as wx = 1 , wẋ = 0.5 and wj = 0. Considering

the a

eleration into the 
ost fun
tion leads to a smoother progress of the latter and in

some 
ases 
an help to a
hieve better performan
es. However, a too large value 
an lead

to overshoots. To remark the e�e
t of the predi
tion horizon, di�erent simulations with

various values of N were done. In �gure 3.10 some of the results are plotted. For this
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Figure 3.10: 15 meters translation - States for di�erent predi
tive horizons N - wx =

1;wẋ = 0.5;wẍ = 0.2;wj = 0

tests the weighting terms are set to wx = 1 , wẋ = 0.5 ,wẍ = 0.2 and wj = 0. As it

is notable shorter predi
tion horizons bring the system to rea
h the target in a longer

time. Consider that a larger predi
tion time involves a greater number of variables and

therefore a longer 
omputational time. As 
an be seen, 
hanging the predi
tion horizon

from N = 50 to N = 100 doesn't lead to great improvements. Thus a lengthening of the

time window does not justify an in
rease of the 
omputational time.
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Figure 3.11: Comparison between 
omplex system model and MPC system model

3.5.3 Simulations with 
omplete model

To verify the performan
e of the 
ontroller it was implemented in a 
omplex simulation

model that takes into a

ount also the aerodynami
 e�e
ts as well as the rotational dy-

nami
s of the quad
opter. It also 
onsiders the 
ontroller employed to tra
k the required

rotational rates. To point out the simpli�
ations made for the plant model used for the

MPC the following 
ase is 
onsidered. The quad
opter starts at rest in the position

x0 = [0 0 5m]T and has to rea
h the point xT = [10m 7m 5m]T at rest. The fol-

lowing weights for position, velo
ity and a

eleration error were set: wx = 1 , wẋ = 0.5

, wẍ = 0.2. This time the 
hoi
e was to weigh also the jerk with wj = 0.1. Figure 3.11


ompares the results obtained by applying the 
ontroller to the 
omplete model with those
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gained implementing it in the model 
onsidered by the model predi
tive 
ontroller itself

(dashed lines). As 
an be seen the quad
opter loses altitude by 
a. 1 meter. This is due

to the aerodynami
 for
es, as at that point the system rea
hes a peak speed (
a. 4.6m
s
)

at whi
h aerodynami
 e�e
ts 
ontribute signi�
antly to the system dynami
s. Note that

the drop of the verti
al 
oordinate arises as the speed module rea
hes its maximum. A

plausible explanation 
ould be that the 
ontrollers for the two horizontal axes make sure

to provide a rotational rate needed to 
ountera
t the aerodynami
 for
es. This implies

a larger rotation of the frame in order to in
rease the horizontal a

eleration. Hen
e the

verti
al 
omponent of the total thrust de
reases, leading to a drop of altitude the verti
al


ontroller will have to 
ope with. Note that the total thrust is 
al
ulated without 
onsid-

ering the aerdynami
al for
es (See (2.11)). Fortunately, as mentioned in se
tion 3.1, MPC

is able to 
ompensate for modeling errors thanks to its online re
al
ulation of traje
tories.

The 
ase was presented on purpose in order to highlight the problems that 
ould arise

negle
ting the aerodynami
 e�e
ts. Obviously the performan
e of the altitude tra
king


an be improved for example by in
reasing the position weighting term wx of the MPC

a
ting on the verti
al axis. However this 
ould lead to overshoots in 
ase the referen
e

altitude 
hanges too rapidly (see 3.5.2).





4 Obsta
le avoidan
e

In Chapter 3 a method to generate traje
tories online for rea
hing given referen
e states

and positions is des
ribed. Consider now the task for whi
h the quad
opter has to �y in

a given dire
tion, for example towards a given target point, while avoiding the obsta
les

that may present on the way. It is assumed that a measurement system, 
apable of

dete
ting obsta
les, is passing informations to the traje
tory planner about their position,

dimension and possibly velo
ity in 
ase of moving obsta
les. While the height and width

of obstra
ting obje
ts may be measured easily for example exploiting 
ameras or laser

s
anners dire
tly mounted on the vehi
le, obtaining informations about their length may

look like a strong hypothesis. In reality, it is 
ommon to make predi
tions based on

previous experien
e. So it is normal to expe
t for example a tree beeing approximately

equally spreaded in all its horizontal dire
tions.

There are mainly two ways to 
onsider obsta
les into an optimization problem. The

�rst is to des
ribe it in the 
ost fun
tion. To do this it is ne
essary to have a nonlinear ob-

je
tive fun
tion that 
onsiders the distan
e to the obsta
le. In [13℄ the 
ollision-avoidan
e

is 
arried out by 
onsidering the inverse-square of the distan
e into the 
ost fun
tion.

Thus minimizing this term results in maximizing the absolute value of the distan
e to an

obsta
le leading the vehi
le to stay away from it. Unfortunately, sin
e we are 
onsidering

a quadrati
 
ost fun
tion, this is not possible. This leads to the se
ond way to 
ope with

the 
ollision-avoidan
e task, that is 
onsidering the obsta
les as hard 
onstraints. Dealing

with a linear dis
rete-time MPC this is not a simple task, sin
e the equations that may

des
ribe an obsta
le are strongly non-linear. Furthermore the region des
ribed by the

boundary 
onditions has to be 
onvex. This two 
onditions bring to make strong approxi-

mations on the �yable region. In fa
t, 
onsidering for simpli
ity the two-dimensional 
ase,

linear 
onstraints on the positions 
an only 
onsider polygonal �yable areas.
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In this 
hapter the inertial axes are referred to as longitudinal, lateral and verti
al

axis and are denoted as x,y and z.

4.1 Convex polyhedral approximation approa
h

A method to solve the obsta
le avoidan
e task with MPC exploiting linear 
ontraints is

proposed in [8℄. The method 
onsists of approximating the non-
onvex feasible spa
e of

interest for navigation with 
onvex polyhedra, de�ned for every point in time. The main

idea is to �nd a 
onvex polyhedron that does not 
ontain any of the obsta
les, in order to


onstrain the solution to lie within the latter. For every instant in whi
h a new traje
tory

is generated, a di�erent polyhedron is evaluated a

ording to the a
tual position of the

vehi
le. All the positions 
omposing the predi
tion horizon must lie within the 
onsidered

polyhedron.

4.1.1 De�nition of the polyherdon

Let p = [x y z]T denote the position of the vehi
le and let M denote the number of

obsta
les to be avoided. Ea
h obsta
le is des
ribed by a 
onvex polyhedron Wi ⊂ R

3


entered on a di�erent point qi ∈ R

3
. Thus the set {qi} ⊕Wi is 
onsidered as infeasible.

In order to impose linear 
onstraints, the non
onvex feasible spa
e where the vehi
le


an navigate must be under-approximated by a 
onvex polyhedron. An algorithm that

maximizes the size of a polyhedron not 
ontaining a set of points is des
ribed as follows

for a generi
 spa
e-dimension d:

Let p0, q1, q2, ..., qM ∈ R

d
, with p0 6= qi, ∀i = 1, ...,M .

The polyhedron P = {p ∈ R

d : Acp ≤ bc} with

Ac =








(q1 − p0)
T

.

.

.

(qM − p0)
T








(4.1)

bc =








(q1 − p0)
T q1

.

.

.

(qM − p0)
T qM








(4.2)
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Figure 4.1: Convex polyhedron avoiding points q1, ...qM


ontains p0 in its interior and does not 
ontain any of the points qi, for all i = 1, ...,M . The

proof is des
ribed in [8℄. Every boundary 
ondition (qi − p0)
T p ≤ (qi − p0)

T qi represents

a halfspa
e, on the boundary of whi
h lies the point qi. Furthermore, its boundary is

orthogonal to qi − p0 and p0 is in the interior of the halfspa
e. The interse
tion of more

halfspa
es, ea
h of whi
h ex
ludes a point qi, results in a polyhedron that does not 
ontain

any of the points qi. Figure 4.1 gives a graphi
al representation of this 
on
ept in two

dimensions. Every line represents a boundary 
ondition 
utting o� a halfspa
e. Note that

(Ac, bc) in (4.1) and (4.2) may not be a minimal hyperplane representation of P , sin
e

some points may be already left out from other halfspa
es.

However, the obsta
les are not points but 
onvex polyhedra. Hen
e the polyhedron

des
ribing the feasible spa
e has to be de�ned in the following way.

Let p0, q1, q2, ..., qM ∈ R

3
, with p0 6= qi, ∀i = 1, ...,M and let W1, ...,WM be polyhedra in

R

d
. Let Ac,bc be de�ned as in (4.1) and (4.2) and let g ∈ R

M
su
h that its j-th 
omponent

gj is de�ned as

gj = min
w∈Rd

Aj
cw s.t. w ∈ Wj (4.3)

for j = 1, ...,M . Then the polyhedron P = {p ∈ R

d : Acp ≤ bc + g} does not 
ontain

any polyhedron Bj = {qi}⊕Wi in its interior, ∀i = 1, ...,M . The proof is des
ribed in [8℄.

If Wj 's are polytopes and their vertex representation is Wj = 
onv{wj1, ..., wjsj}, then
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Figure 4.2: Example of feasible polyhedra - in [8℄

(4.3) 
an be solved as

gj = min
h=1,...,sj

Aj
cwjh (4.4)

Hen
e every boundary 
ondition represents a halfspa
e on the boundary of whi
h lies the

nearest vertex of an obsta
le with respe
t to the position p0 of the quad
opter. Figure 4.2

illustrates a two-dimensional example, where ea
h polyhedron is evaluated starting from

the point of the previous polyhedron, whi
h minimizes the Eu
lidean distan
e from xt.

For every time step a new 
onvex polyhedron is evaluated, in whi
h all the positions

of the predi
tion horizon must lie. Taking into a

ount all the polyhedra that have

been 
onsidered from starting point to target, the union of all pointwise-in-time 
onvex

approximations provides a rather good non-
onvex approximation of the feasible spa
e of

interest for navigation.

4.1.2 Implementation in model predi
tive 
ontrol

In [8℄ the overall 
ontrol stru
ture 
onsists of a two-layer MPC. A linear time varying

MPC, operating with a sampling time of Tsn = 1.5s, generates referen
e positions in

order to avoid the obsta
les and to rea
h a given target. The desired positions are then

followed by a linear MPC, whi
h is responsible for stabilization and position tra
king and
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whi
h generates a 
ontrol a
tion every Ts = 71ms. The 
onvex approximation strategy for

obsta
le avoidan
e is implemented in the high level LTV-MPC. Furthermore, a maximum

rate of 
hange of the desired position is set to ∆max = −∆min = 0.5m per axis. Sin
e the

LTV-MPC has a sampling rate of Tsn = 1.5s. This means that the velo
ity is impli
itly

limited to vmax = ∆max

Tsn
≈ 0.33m

s
per axis, whi
h 
auses the system to be quite slow.

In this work the 
onvex polyhedral approximation approa
h is instead implemented

in the model predi
tive 
ontroller used so far, whi
h takes the jerk traje
tory as input

of the system. The only di�eren
e is that the optimization problem 
an't be de
oupled

any more, sin
e the boundary 
onditions for obsta
le avoidan
e relate all of the spa
ial


oordinates within the same inequality. The bounds on jerk and a

eleration as well as

the system model are the same as in 
hapter 3. The overall optimization problem 
an be

written as:

min
1

2

(
N∑

k=1

(ξT − ξk)
TQ(ξT − ξk) +

N−1∑

k=0

uT
kRuk + wee

2

)

(4.5)

s.t. ξk+1 = Ãξk + B̃uk (4.6)

vmin ≤ vk ≤ vmax (4.7)

amin ≤ ak ≤ amax (4.8)

umin ≤ uk ≤ umax (4.9)

Ac(t)pk ≤ bc(t) + g(t) + 1e (4.10)

with pk = [xk yk zk]
T
, vk = [ẋk ẏk żk]

T
, ak = [ẍk ÿk z̈k]

T
, ξk = [pk vk ak]

T
, uk = [jxk jyk jzk]

T
.

In order to approa
h the target a term that weighs the error between state ve
tor ξk and

target state ve
tor ξT is added to the 
ost fun
tion. ξT 
ontains the target position and

zero entries in order to be able to weigh also velo
ity and a

eleration values:

ξT = [xT yT zT 0 0 0 0 0 0]T . Q and R are the weighting matri
es for states and
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inputs:

Q =


























wx 0 0 0 0 0 0 0 0

0 wy 0 0 0 0 0 0 0

0 0 wz 0 0 0 0 0 0

0 0 0 wẋ 0 0 0 0 0

0 0 0 0 wẏ 0 0 0 0

0 0 0 0 0 wż 0 0 0

0 0 0 0 0 0 wẍ 0 0

0 0 0 0 0 0 0 wÿ 0

0 0 0 0 0 0 0 0 wz̈


























; R =








wjx 0 0

0 wjy 0

0 0 wjz








(4.11)

Inequality (4.10) de�nes the boundary 
onditions for obsta
le avoidan
e as des
ribed in

subse
tion 4.1.1. Note that the same boundary 
onditions are applied to all the horizon

steps k, sin
e all positions must lie within the same polyhedron. Furthermore, a sla
k

variable is added in order to soften the 
onstraints, avoiding that the optimization problem

is infeasible. The latter is penalized by a large weight we in the 
ost fun
tion. The limits

vmin, vmax, amin, amax, umin and umax all 
ontain three elements, one for ea
h axis. Note

that a boundary 
ondition is added in order to limit the maximum and minimum velo
ity.

Ã and B̃ de�ne the system model and 
an be inferred from (3.33) by taking into

a

ount all three axes and rearranging the terms:

Ã =


























1 0 0 ts 0 0 1

2
t2s 0 0

0 1 0 0 ts 0 0 1

2
t2s 0

0 0 1 0 0 ts 0 0 1

2
t2s

0 0 0 1 0 0 ts 0 0

0 0 0 0 1 0 0 ts 0

0 0 0 0 0 1 0 0 ts

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


























; B̃ =


























1

6
t3s 0 0

0 1

6
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(4.12)

Note that Ac(t), bc(t) and g(t) depend on time, sin
e a new polyhedron has to be eval-

uated every time a new traje
tory is solved. Thus the 
ontrol strategy be
omes a linear
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Figure 4.3: Traje
tory avoiding obsta
les - some polyhedra have been plotted

time varying model predi
tive 
ontrol (LTV-MPC). Ac(t), bc(t) and g(t) are obtained by

equations (4.1), (4.2) and (4.4) by setting p0 = p(t) (
urrent vehi
le position) and by

knowing positions and dimensions of the obsta
les: qi, Wj = 
onv{wj1, ..., wjsj}.

4.1.3 Simulation results

The �rst trial 
onsiders a two-dimensional environment with �ve triangular obsta
les.

The vehi
le starts at p0 = [0 0]T and has to rea
h the target position pT = [50 5]T .

The predi
tion horizon is 
hoosen to N = 20 and the sampling time to ts = 30ms, thus

the predi
tion window is TH = 0.6s. The limits on jerk, a

eleration and velo
ity per

axis are set to jmax = −jmin = 70m
s3
, amax = −amin = 7m

s2
, vmax = −vmin = 5m

s
. The

states-weighting terms are 
hoosen equally for both axes: wx = wy = 1, wẋ = wẏ = 0.5,

wẍ = wÿ = 0.1, whereas the jerk hasn't been weighed at all.

Figure 4.3 shows the resulting traje
tory. The 
onvex polyhedra des
ribing the

feasible spa
e have been plotted for 
ertain points in time in order to give a graphi
al

representation of the strategy. As shown in �gure, the vehi
le 
orre
tly avoids the obsta
le
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Figure 4.4: Traje
tory avoiding obsta
les - predi
tion horizon N = 30

and rea
hes the target. However, seen from a global point of view, the resulting path

may not be an optimal solution. This is 
aused by the fa
t that the 
onvex polyhedra

leave out a signi�
ant part of the feasible spa
e, whi
h often leads the vehi
le to 
hoose

disadvantageus traje
tories. For instan
e, looking at �gure 4.3, the vehi
le passes the


entral obsta
le to the right, though passing it to the left would have made more sense.

Figure 4.4 shows the same s
enario, where the horizon was 
hosen to N = 30

instead. This extends the predi
tion time to TH = 0.9s. The path 
hosen by the 
ontrol

is di�erent from the previous one. This time the solution seems more resonable. The

�gure also depi
ts some of the predi
ted traje
tories generated a

ording to the plotted

polyhedra. As 
an be seen, the boundary 
onditions enfor
e the traje
tories to lie within

the respe
tive 
onvex areas. This leads to two main disadvantages of this method, whi
h

are des
ribed below.

Figure 4.5 depi
ts the predi
tions made at two di�erent time instants along the

path. The �rst frame illustrates a typi
al problem of this strategy. As shown in �gure,

the boundaries 
ut o� an important part of the real feasible spa
e. The borders of the

polyhedron squeeze the traje
tory, in order to a
hieve that all predi
ted positions remain
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Figure 4.5: Traje
tory avoiding obsta
les - predi
tion horizon N = 30 - Two situations

inside the 
onvex area. This leads to unne
essarily high de
elerations. The problem 
an

be 
urbed by redu
ing the predi
tion horizon. This implies to enfor
e a limited number of

predi
tion points to lie within the polygon, avoiding to signi�
antly redu
e the velo
ities.

However a too small value of N brings the traje
tories to not rea
t in time to fast 
hanges

of the polygonal boundaries. Moreover, nothing prevents the traje
tory points rea
hing

the border from having a nonzero velo
ity. It may therefore o

ur that the subsequent

solution is not able to enfor
e its last point to satisfy the boundary 
onditions. Thus,

small predi
tion times 
ombined with high speeds may lead to traje
tories lying partially

out of bounds.

Another drawba
k of this method is represented in the se
ond frame of �gure 4.5.

Sin
e the polyhedra are a quite rough approximation of the real feasible spa
e, it often

happens, that the strategy 
ondu
ts the vehi
le o� 
ourse. Looking at the illustration, it

is noti
eable how the generated traje
tory tries to approa
h the vertex of the polyhedron

whi
h minimizes the Eu
lidean distan
e to the target. Although it is the optimal solution

with respe
t to the boundary 
onditions, this may not be an appropriate dire
tion seen

from a global point of view. This in
onvenien
e is partially redu
ed by the re
eding
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Figure 4.6: Traje
tory avoiding two obsta
les - predi
tion horizon N = 30

horizon strategy of MPC, whi
h generates a new traje
tory after a short time. Thus a

new polygon is evaluated, whi
h typi
ally takes into a

ount a new portion of the real

feasible spa
e.

4.1.4 Limits of the approa
h

Some trials were done in order to show the main problems asso
iated with this method.

Figure 4.6 illustrates a simple situation where the quad
opter has to move towards a

target passing between two obsta
les. The latter are pla
ed so that no 
hange in dire
tion

would be ne
essary in order to avoid them. However, as depi
ted, the traje
tory bends

when approa
hing them. The 
onvex polyhedra representing the boundary 
onditions are

plotted for t1 = 2.2s and t2 = 3.2s. As shown in the pi
ture, the feasible area around

p1 brings the traje
tory to follow an improper dire
tion. A

ording to vehi
le's position

the polyhedron 
hanges shape su
h that at a 
ertain point the route is again adjusted, as

shown by the predi
tions starting from p2.

Figure 4.7 shows an even worse 
ase. Here the predi
tion horizon was set toN = 20.
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Figure 4.7: Traje
tory avoiding two obsta
les - predi
tion horizon N = 20

The predi
tion window is too short to rea
t in time to the fast 
hanges of the polyhedron's

shape, so that, given the physi
al limitations on the maximum de
eleration, the predi
ted

positions are not able to lie within the 
onvex area. This 
auses the vehi
le to 
rash into

the obsta
le. The only solution to this problem is to set more stringent 
onstraints on

the maximum velo
ity, whi
h on the other hand leads to not beeing able to manage fast

�ights.

Finally the 
ase is presented in whi
h the obsta
le is lo
ated dire
tly in front of

the vehi
le. For this trial the velo
ity is limited to 10m
s
, whereas the horizon parameters

are 
hosen to ts = 30ms and N = 50. The obsta
le is 8 meters wide and is positioned 38

meters away from the starting position of the quad
opter. Figure 4.8 shows the results


aptured at di�erent time instants. The dashed lines represent the predi
tions. As 
an

be seen, the boundary of the 
onvex area always remains orthogonal to the dire
tion of

movement, sin
e the 
enter of the obsta
le is lo
ated dire
tly in front of the vehi
le. This

leads the quad
opter to not pass the obsta
le at all. It 
orre
tly de
elerates in order to

remain within the feasible area and manages to avoid a 
ollision, but it is not able to

rea
h its target, sin
e it is blo
ked in a deadlo
k situation. In fa
t, in order to minimize
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Figure 4.8: Frontal obsta
le - frames
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the 
ost fun
tion, the solver sear
hes for the position within the feasible polyhedron that

minimizes the Eu
lidean distan
e to the target (whi
h in this 
ase is lo
ated 500 meters

away from the vehi
le). However this solution doesn't 
ause any 
hange in the boundaries

of the polyhedron, leading the vehi
le to stop in front of the obstru
tion. Note that for

shorter horizons, for example N = 20, the vehi
le is not able to rea
t in time to the

presen
e of the obsta
le, whi
h leads to a 
ollision.

In order to avoid a deadlo
k a similar trial was made, but this time the 
enter of

the obsta
le was lo
ated slightly o�set with respe
t to the dire
tion of movement, namely

with y-
oordinate yc = −0.1m. Figure 4.9 illustrates the resulting traje
tory. As 
an be

seen, the vehi
le manages to pass the obsta
le. However the a
hieved path is apparently

not the best solution seen from a global point of view. The vehi
le lowers its longitudinal

velo
ity almost down to zero before starting to deviate its 
ourse in order to avoid a


ollision. This greatly in
reases the time needed to pass the obsta
le. Furthermore, the

y-
oordinate presents a high overshoot due to the high lateral speed a
hieved.

All the limits of this strategy regarding the reliability of the followed paths along

with the maximum speeds, that 
an be managed by the 
onvex polyhedral approximation

approa
h, brought to 
hoose a 
omplete di�erent method for obsta
le avoidan
e. The

new strategy should provide smoother traje
tories and more a

eptable paths seen from

a global point of view. Furthermore, the new 
ontrol for obje
ts avoidan
e should be able

to 
ope with faster velo
ities, always providing 
ollision-free paths. In the next se
tions

the new approa
h is des
ribed. Moreover, at the end of this 
hapter, 
omparisons are

made between the two strategies,
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Figure 4.10: Re
tangular obsta
le in the x-y plane

4.2 Obsta
le time-dis
retization method

Consider the 
ase in whi
h the quad
opter is �ying towards a target. For simpli
ity it is

moving in x dire
tion. This is a
tually not a strong hypothesis, sin
e one 
an de
ide to

dire
t the 
oordinate system at will, thus for example with the x-axis dire
ted towards the

target. For now the two-dimensional problem is 
onsidered, as it is easier to understand.

The air
raft has to move towards the target avoiding 
ollisions. Consider now a re
tan-

gular obsta
le pla
ed �ve meters away from the quad
opter as depi
ted in �gure 4.10. As

mentioned in 3.2.2 it is possible to set upper and lower bounds on the system states, thus

also on the positions. On
e it has been de
ided whether to pass the obje
t to the left

or to the right one 
an set bounds on the y-
oordinate in order to avoid a 
ollision. To

des
ribe the obsta
le in an exa
t way it would be ne
essary to write boundary 
onditions

on the y-
oordinates as fun
tion of the x-
oordinate, as:

yk ≤ f(xk) for k = 1 · · ·n (4.13)
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Assuming to pass the obje
t to the right the inequality des
ribed in (4.13) should limit the

y-
oordinate to lie under a 
ertain value that depends on x. f(x) would be a dis
ontinuous

equation. In fa
t it should assume the value f = ∞ for x < 5, sin
e for this positions the

quad
opter has not rea
hed the obsta
le yet and therefore no bounds should be applied,

f = −2 for 5 ≤ x ≤ 11 and again f = ∞ for x > 11. This fun
tion is not 
ontinuous,

whi
h means it 
an not be used as boundary 
ondition, sin
e 
onvex 
onstraints are

needed. In general the equations des
ribing the obsta
le's shape are not even linear, due

to various forms obje
ts may have. Thus it is ne
essary to �nd an approximate way to

des
ribe the obsta
le.

If the assumption of �ying at 
onstant speed in x dire
tion vx = const. was made,

it wouldn't be ne
essary to let the bounds depend on the x-
oordinate. In fa
t, the

obsta
le 
ould be dis
retized in the time domain setting bounds on the y-
oordinate for

ea
h time step, a

ording to the speed the quad
opter is �ying with and assuming it is

maintaining it for the whole predi
tive horizon. In order to understand this 
on
ept a

numeri
 example is done 
onsidering the obsta
le depi
ted in �gure 4.10. Immagine to

�y with a speed vx = 10m
s
(remember this is only the x-
omponent of the velo
ity) and

assume to keep it 
onstant during the whole time window 
onsidered. For this example

the predi
tion horizon and the sampling time are set to be N = 50 and ts = 20ms, whi
h

leads to a predi
tion time window of 1 se
ond. This means the quad
opter will approa
h

the obsta
le at t = 0.5s, hen
e for time step k = 25, and will 
ompletely pass it at k = 46.

Thus the boundary 
onditions on the position will be:

yk ≤ ∞ for k = 1 · · ·24 (4.14)

yk ≤ −2 for k = 25 · · ·45 (4.15)

yk ≤ ∞ for k = 46 · · ·50 (4.16)

It is important not to 
onfuse dis
ontinuities of the bounds in the time domain with

dis
ontinuities in the spa
ial domain. Indeed for ea
h time step k a di�erent variable yk

is 
onsidered, whi
h means that ea
h yk will have its own bounds. Thus inequality (4.13)


an't be 
onsidered for the bounds depend on the x-
oordinate in a dis
ontinuous (and

in general non-linear) way, but the bounds des
ribed in (4.14) - (4.16) 
an be applied for

they do not depend on the x-
oordinate at all, but only on the time. Thus, the axes 
an
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be de
oupled, sin
e the bounds on yk do not depend on xk. Remember that the MPC

strategy works online, whi
h means that after 20 millise
onds a new traje
tory will be

evaluated. Thus after ts = 20ms the quad
opter has moved 0.2 meters and the bounds

for the new traje
tory will be

yk ≤ ∞ for k = 1 · · · 23 (4.17)

yk ≤ −2 for k = 24 · · ·44 (4.18)

yk ≤ ∞ for k = 45 · · ·50 (4.19)

The quad
opter is indeed 
loser to the obsta
le and the bounds will be set at earlier time

steps. The same pro
edure will be repeated every 20 millise
onds and while the obsta
le


omes 
loser it will be dis
retized at earlier time steps. It is fundamental to understand

that, though an obje
t 
an be seen far in advan
e from the measurement systems, it 
an

be only taken into a

ount for the traje
tory planning if it is 
lose enough to be in
luded

in the predi
tion horizon. For instan
e if the quad
opter is �ying at 10m
s
and having


onsidered a predi
tion horizon of TH = 1s the obsta
le 
an only be seen when it is 
loser

than 10 meters, or better when it will be approa
hed in less than 1 se
ond a

ording to

the a
tual speed. Note that with this te
hnique one 
an des
ribe obsta
les with various

shapes. It will only be ne
essary to dis
retize it in the time domain a

ording to the a
tual

longitudinal speed. The dis
retization stepsize depends on the velo
ity the quad
opter is

�ying with and on the sampling time ts. For example moving at vx = 10m
s
and having a

sampling time of ts = 20ms implies a stepsize of 0,2 meters. The greater the speed or the

longer ts the rougher is the dis
retization of the obsta
le. Another thing that needs to be


lari�ed is that the 
onstraints 
an only de�ne a 
onvex region. For instan
e, given the

obsta
le des
ribed in �gure 4.10, one 
an not set −∞ ≤ yk ≤ −2 ∪ ∞ ≥ yk ≥ 2, for it

is not representing a 
onvex region. For this reason whether to pass an obje
t to the left

or to the right has to be de
ided before solving the optimization problem. The de
ision

was to implement an algorithm that evaluates the distan
es that have to be 
overed along

the y-dire
tion in order to pass the obje
t, and a

ording to the shortest way it de
ides

whether to set lower or upper bounds on the y-
oordinate.
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Figure 4.11: Traje
tory avoiding single obsta
le

4.3 Implementation in model predi
tive 
ontrol

In 4.2 a way to implement the obsta
le as boundary 
onditions on the y-
oordinate has

been de�ned. It is assumed that the x-axis is pointing towards the target and the lon-

gitudinal velo
ity vx is maintained 
onstant. The axes 
an be de
oupled due to the


onsiderations made. This means that for now, 
onsidering the two-dimensional problem,

the only 
ontrol responsible for the 
ollision avoidan
e is the one a
ting on the y-axis and

thus governing lateral movements. It is assumed that the only task of the MPC a
ting on

the x-axis is to tra
k a referen
e velo
ity in order to minimize the error made assuming

a 
onstant speed during the predi
tion horizon. A referen
e for the y-
oordinate is still

needed. Sin
e the 
oordinate system 
onsidered has its origin at the quad
opter's starting

point and the x-axis is pointing towards the target, it is obvious that in order to rea
h the

target the referen
e should be yT = 0. In order to follow the latter the following weighting

terms in the 
ost fun
tion were set: wy = 1 , wẏ = 0.2 , wÿ = 0 and wj = 0.001. For the

�rst trial an obsta
le has been lo
ated 20 meters away from the starting position of the

quad
opter. It has re
tangular shape, is 5 meters wide and 4 meters long. For de�ning
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Figure 4.12: Obsta
le avoidan
e - traje
tories for various sampling times ts

the predi
tive horizon ts = 30ms and N = 50 are set. The velo
ity along the x-axis is

kept 
onstant at vx = 10m
s
. Figure 4.11 shows the resulting traje
tory. As 
an be seen,

the de
ision whether to pass the obsta
le to the left or to the right is 
orre
tly made by

the mentioned algorithm, sin
e passing to the left requires a smaller translation about

the y-axis. Having avoided the 
ollision, the traje
tory starts again to tra
k its referen
e.

The great potentiality of this 
ontrol strategy lies in the fa
t that by its nature it sets

priorities while generating a traje
tory. In fa
t the implementation of the obsta
les as

hard 
ontraints bring the solver to avoid a 
ollision in any 
ase, even at the 
ost of leaving

the referen
e and thus in
reasing the value of the obje
tive fun
tion. Hen
e avoiding an

obje
t is more important than following the referen
e.

In order to understand the e�e
t of the sampling time ts and the predi
tion horizon

N on the 
ollision avoidan
e task various trials were made. Figure 4.12 depi
ts the

traje
tories for di�erent values of ts setting N = 50, whereas �gure 4.13 shows the e�e
t

of the length of the predi
tive horizon, while ts = 30ms. Comparing the two �gures it 
an

be seen that the two parameters have about the same e�e
t on the traje
tory. In fa
t,

what really matters is the time window TH 
overed by the predi
tion. As mentioned before
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Figure 4.13: Obsta
le avoidan
e - traje
tories for various predi
tion horizons N
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the obsta
le 
an only be seen by the MPC if 
ontained in the 
onsidered horizon. This

means that a longer predi
tion brings the quad
opter to rea
t in advan
e to the presen
e

of an obje
t, whereas a shorter time window will see it later. For example for N = 30

and ts = 30ms the horizon is 0,9 se
onds long, whi
h means the traje
tory planner rea
ts

to the obsta
le only 0,9 se
onds before rea
hing it, that is 9 meters 
onsidering to �y at

10m
s
. Figure 4.14 shows the 
ontrol a
tion, namely the jerk on the y-axis for di�erent

values of N . As 
an be seen shorter predi
tion horizons bring the 
ontrol to rea
t later.

Furthermore the input values will be greater, sin
e the same translation must be provided

in a shorter time. Smaller predi
tion times bring the traje
tory to have bigger overshoots,

be
ause the velo
ity a
hieved by the quad
opter is greater due to the "harder" maneuver.

4.4 Di�erent shapes and multiple obsta
les

The method 
onsidered doesn't set any limitations on the obsta
le's shape, it only needs

to be dis
retized as mentioned in se
tion 4.2. In order to 
omprehend the behavior of the


ontrol many trials with obje
ts of di�erent shapes were made. In �gure 4.15 the results

for a triangular obsta
le are reported.

The 
ontrol strategy is 
apable of dealing with multiple obsta
les. Figure 4.16

illustrates the resulting path of the quad
opter avoiding four obje
ts. The predi
tion

horizon is set to be 1.5 se
onds long with ts = 30ms and N = 50 and the quad
opter

is �ying with a speed of vx = 10m
s
. Note that for every traje
tory solved, only the

obsta
les that are in
luded in the time horizon 
an be 
onsidered. For instan
e the last

obje
t represented in �gure 4.16 is only taken into a

ount when the air
raft is at least 15

meters 
lose to it. The 
ontrol is also able to manage obsta
les that are very 
lose to ea
h

other, leading to small gaps in y-dire
tion. In this 
ase the upper obje
t will set upper

bounds, whereas the lower wider obsta
le will set lower bounds on the y-
oordinate. Both

of them will be 
onsidered simultaneously leading to a 
onvex �yable region (the small

gap). Thus both the obje
ts are 
orre
tly avoided.

It is interesting to noti
e the e�e
t of the input weighting term wj on the followed

path. In �gure 4.17 a set of trials with di�erent values of the jerk weighting term are

presented. It is shown that the value of wj a�e
ts signi�
antly the 
hosen path. Higher
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Figure 4.15: Triangular obsta
le
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Figure 4.16: Multiple obsta
les - traje
tory
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Figure 4.17: Multiple obsta
les - followed paths for various jerk weighting terms wj

values of wj lead to smoother traje
tories, sin
e a variation of the a

eleration is minimized

by keeping the value of the 
ontrol a
tion as low as possible. It must not be forgotten,

however, that the de
ision whether to pass the obsta
le to the right or to the left is not

taken by the optimization solver itself. Indeed it is taken every time a priori evaluating the

shorter translation to be 
overed from the a
tual position in order to avoid the obsta
le.

Then, a

ording to the 
hoi
e made, lower bounds on the upper border or upper bounds

on the lower border of the obje
t are set. So, as illustrated in �gure 4.17, the green

traje
tory passes the third obsta
le to the left be
ause, when dete
ting it, the quad
opter

is 
loser to its left border. Note that after passing an obsta
le the quad
opter starts again

to approa
h its referen
e yT = 0 until a new obsta
le is dete
ted by the predi
tion horizon.

This behavior is well represented by the magenta traje
tory in �gure 4.17. Between the

third and the last obsta
le the quad
opter �rst tries to 
ome 
loser to yT = 0, sin
e the

last obje
t is not in
luded in its predi
tion horizon yet. As soon as it is 
loser than 15

meters it starts to 
hange its traje
tory in order to avoid it.
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Figure 4.18: Wide obsta
le

4.5 Problems

As spe
i�ed in se
tion 4.2 the obsta
le is dis
retized in the time domain. This means that

the bounds on the y-
oordinate are set in the time and not in the spa
e. It is worth to


larify this 
on
ept. It has been explained that bounding the y-
oordinate as fun
tion

of the x-
oordinate brings to non-linear (due to the generi
 shape of the obsta
le) and

dis
ontinuous (at the beginning and at the end of the obje
t) inequalities that 
an't be


onsidered using a linear MPC. It is therefore assumed, that the speed along the x-axis is


onstant during the predi
tive horizon and thus, simple bounds on the y-
oordinate 
an

be set for every time step. This is possible, be
ause knowing a priori the speed of the

quad
opter, its x-
oordinate 
an be determined for ea
h time step and hen
e the bounds

to be set on the y-
oordinate. This strategy implies two main problems. The �rst is

related to the fa
t that 
onsidering a 
onstant speed a strong hypothesis is made. In fa
t

the longitudinal velo
ity vx may vary during the �ight. Thus the predi
ted traje
tory


ould be di�erent from the path that the quad
opter will follow. In reality, this issue is

redu
ed by the fa
t that for every new traje
tory the obsta
le is re-dis
retized a

ording
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Figure 4.19: Wide obsta
le - various vx

to the new a
tual speed. The se
ond main problem is that the traje
tory along the x-

axis is not a�e
ted from the presen
e of the obsta
le at all. As previously stated, the

traje
tory generation task of x and y-axis 
an be de
oupled, sin
e the bounds on the

two 
oordinates 
an't be related in a linear way. Hen
e only the MPC a
ting on the

y-
oordinate is 
arrying out the 
ollision avoiding task. However there might be 
ases

in whi
h an a
tion on the velo
ity along the x-
oordinate is ne
essary in order to avoid

the obsta
le. For instan
e 
onsider the obje
t depi
ted in �gure 4.18, whi
h is 20 meters

wide. As usual the MPC dete
ts it 15 meters before approa
hing it. At this point the

quad
opter has 1.5 se
onds time to 
ompute a translation of 10 meters about the y-axis in

order to avoid the obsta
le. This 
an't be a
hieved due to the physi
al limitations on jerk

and a

eleration seen in subse
tion 3.4.2. For example 
onsidering ts = 30ms and N = 50

and thus having a horizon of 1.5 se
onds the maximal translation along an axis that 
an

be a
hieved starting from rest is about 7.4 meters. Indeed, as depi
ted in �gure 4.18 the

quad
opter does everything possible to prevent a 
ollision but doesn't manage to avoid it


ompletely. Note that in this 
ase, assumed to keep a 
onstant speed, the ability to avoid

a large obsta
le doesn't depend on the velo
ity itself. In fa
t �ying at di�erent velo
ities
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Figure 4.20: Two obsta
les - various vx

implies only that the obsta
le will be seen at di�erent distan
es, but the predi
tion horizon

remains the same. This means that in terms of time the obsta
le will be dete
ted always

1.5 se
onds in advan
e (keeping ts = 30ms and N = 50). Therefore the available time

for the quad
opter to avoid the obsta
le is always as long as TH , independently from

vx. Figure 4.19 shows the results for di�erent velo
ities vx. As 
an be seen the maximal

translation of 7.4 meters is rea
hed for all three 
ases, so that though �ying with a lower

speed the 
ollision 
an't be avoided.

The other situation the only 
ontrol on the y-axis is not able to 
ope with, is when

two or more obsta
les are too 
lose to ea
h other and disposed as in �gure 4.20. In this


ase the vehi
le should move left to avoid the �rst obsta
le and next it should reverse

its dire
tion in order to avoid the se
ond one. Here the velo
ity vx a�e
ts the ability to

avoid a 
ollision. In fa
t a lower speed brings the obsta
les to be more distant from ea
h

other in terms of time. In other words, more time elapses from one obsta
le to the other

in 
ase of lower speed. Thus the vehi
le has more time to 
arry out its lateral maneuver.

As illustrated in �gure 4.20 with speeds up to 6m
s
the obsta
les 
an be 
orre
tly avoided.

For vx = 12m
s
the quad
opter 
rashes into the obje
ts.
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4.6 Control on the x-axis

4.6.1 Main strategy

In se
tion 4.5 the problems that derive from 
ontrolling only the translations along the

y-axis and keeping the velo
ity on the x-axis 
onstant have been dis
ussed. However, as

mentioned before, the two 
oordinates 
annot be managed within the same optimization

pro
ess. This arises from the fa
t, that no linear relationship between the two 
oordi-

nates 
an be found, that de�nes a 
orre
t boundary 
ondition for the obsta
le avoidan
e.

Therefore the obsta
les were dis
retized in the time domain assuming a 
onstant velo
ity

vx during the predi
ted horizon. As explained, this will only a�e
t the 
ontrol on the

y-axis leading to problems related to an infeasibilty of a valid traje
tory as des
ribed in

se
tion 4.5.

The idea is to in
lude a so-
alled "sla
k variable" that will soften the hard 
on-

straints on the y-
oordinate in order to allow the optimization solver to keep on �nding

feasible solutions for the problem. In fa
t as hard 
onstraints 
an't be satis�ed (for ex-

ample for too wide obsta
les) the solver will return an infeasibility error and no solution

is found. The "soft" 
onstraints 
an be written as

yk ≤ ubk + e (4.20)

yk ≥ lbk − e (4.21)

where ubk and lbk are respe
tively the upper and lower bounds on the y-
oordinate for

ea
h time step k. These bounds 
ome from the dis
retization of the obsta
le in the time

domain. The sla
k variable e will be then strongly weighed in the 
ost fun
tion, therefore

an in
rease of e will be heavily penalized. This means that wherever possible the sla
k

variable will be kept around zero. As soon as the 
onstraints on the y-
oordinate 
annot

be satis�ed e will in
rease its value. Hen
e, the sla
k variable be
omes a manipulated

variable of the optimization problem. The new obje
tive fun
tion a
ting on the y-axis


an be written as:

J =
1

2

(
N∑

k=1

(zT − zk)
TQ(zT − zk) +

N−1∑

k=0

wjj
2
k + wee

2

)

(4.22)
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Figure 4.21: Wide Obsta
le - traje
tory and predi
tions - here also the longitudinal

velo
ity is 
ontrolled

where the weighting term we assumes a very high value in order to soften the 
onstraints

only when stri
tly ne
essary. Note that using only one sla
k variable leads all of the


onstraints to be
ome softer whenever even a single bound needs to be loosened. On the

other hand the 
omputational load won't be 
onsiderably a�e
ted, sin
e only one variable

is added to the optimization problem.

Having solved the problem of the traje
tory infeasibility in 
ase of obsta
les that

are too wide or too 
lose to ea
h other, the 
ollision still needs to be avoided and this is

only guaranteed if the velo
ity about the x-axis is de
reased during �ight. A way to do

this is to exploit the information on the value of the sla
k variable in order to de
elerate

the quad
opter's longitudinal velo
ity vx. In fa
t whenever a traje
tory has been solved

having e > 0, one or more 
onstraints have been loosened. This means a traje
tory about

the y-axis has been found, whi
h doesn't avoid the obsta
le 
ompletely. So, an idea 
ould

be to redu
e the velo
ity whenever a softening of the 
onstraints is dete
ted. In order to

make sure that the 
ollision is avoided we 
an think of de
elerating the quad
opter with
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Figure 4.22: Wide Obsta
le - the longitudinal velo
ity vx depends on the value of the

sla
k variable e

the maximum de
eleration a
hievable, till a lateral traje
tory that does not overstep the

bounds is found. Note that the de
eleration is meant to be along the x-axis.

Figure 4.21 represents the trial done with a 30 meters wide obsta
le. In order to

avoid it the quad
opter has to perform a translation of 15 meters along the y-axis. As

known this is not possible within a time lapse of 1.5 se
onds (predi
tion horizon). Hen
e

the �rst traje
tory evaluated when the obsta
le is dete
ted does not avoid the obsta
le


ompletely but only gains a translation of about 7 meters. This means the bounds on the

last steps are overstepped by 8 meters, whi
h is apparently the value of the sla
k variable

(see �gure 4.22). This information is sent to the longitudinal 
ontrol whi
h a

ordingly

imposes a maximum de
eleration. Sin
e the model predi
tive 
ontroller is a
ting online

as usual only the �rst 
ontrol a
tions of the traje
tories are applied. The 
ontrol on the x-

axis enfor
es a de
eleration, while the 
ontrol on the y-axis brings the quad
opter to raise

its y-
oordinate. After a time lapse equal to ts a new traje
tory is generated. The time

dis
retization of the obsta
le is done a

ording to the new a
tual x-velo
ity. This leads the

value of the sla
k variable e to de
rease for every new generated traje
tory, as the air
raft
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is in
reasing its y-
oordinate while redu
ing its longitudinal speed (see �gure 4.22). This

brings the obsta
le avoidan
e task to be
ome more and more feasible, until an x-velo
ity

is rea
hed, for whi
h the predi
ted lateral traje
tory is 
apable of avoiding the obsta
le


ompletely. As 
an be seen in �gure 4.22 as long as e > 0 the velo
ity vx de
reases with

maximum de
eleration.

4.6.2 Implementation in model predi
tive 
ontrol

Now that the main prin
iple of the longitudinal 
ontrol has been explained, it is ne
es-

sary to understand how the strategy is implemented into the model predi
tive 
ontroller.

Remember that the 
ontrol is 
arried out by two di�erent MPCs. The one a
ting only on

the y-
oordinate and the other a
ting on the x-axis. The two 
ontrols 
ommuni
ate only

through the information on the sla
k variable of the y-MPC.

The main requirement on the longitudinal 
ontrol is to tra
k a referen
e velo
ity (in

this 
ase 10m
s
) and to de
elerate in 
ase a loosening of the bounds on the lateral 
ontrol

is dete
ted. This means that the errors on velo
ity and a

eleration need to be weighed

in the 
ost fun
tion in order to tra
k the referen
e. The 
ost fun
tion of the longitudinal


ontrol 
an be written as:

Jx =
1

2

(
n∑

k=1

(zR − zk)
TQ(zR − zk) +

n−1∑

k=0

wjj
2
k

)

(4.23)

where the states-weighting matrix is given by:

Q =








0 0 0

0 wẋ 0

0 0 wẍ








(4.24)

Note that the weighting on the position is not needed, sin
e the x-axis is always dire
ted

towards a given target, whi
h means given vx > 0 the quad
opter is getting 
loser to it

in any 
ase. For what regards the referen
e state ve
tor it is ne
essary to distinguish
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Figure 4.23: Wide Obsta
le - the a

eleration weighting term is 
hosen too low wẍ = 0.1

and the traj
etory doesn't avoid the obsta
le properly

between two 
ases:

zR =








0

10m
s

0m
s2








for e = 0

zR =








0

10m
s

−7m
s2








for e > 0

This means that as long as the lateral 
ontrol generates traje
tories that don't overstep

any boundaries, the longitudinal 
ontrol will keep on referen
ing a 0m
s2
a

eleration, main-

taining therefore its referen
e speed. As soon as some bounds are overstepped (e > 0) a

referen
e a

eleration of −7m
s2

is passed to the longitudinal optimization pro
ess in order

to bring the quad
opter to de
elerate. Note that e is the value of the sla
k variable of

the optimization problem that has just been solved by the lateral 
ontrol. Hen
e, seen
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Figure 4.24: Wide Obsta
le - wẍ = 0.1 - longitudinal speed vx and sla
k variable e

from the longitudinal 
ontrol, it 
omes as an external parameter. Sin
e di�erent zR 
an

be imposed for every new optimization problem, they 
an depend on e. The a

eleration

weighting term wẍ has to be 
hoosen greater than the velo
ity weighting term wẋ sin
e

the de
eleration task has a priority. Figure 4.23 and �gure 4.24 show the results for a

too low value of the a

eleration weighting term with respe
t to the velo
ity weighting

term. Here the 
hoi
e was wẍ = 0.1 and wẋ = 0.1. As 
an be seen the quad
opter doesn't

de
elerate properly, whi
h leads to a 
ollision. Good performan
es have been proved by


hoosing wẍ = 1 and wẋ = 0.1.

To test the ability of the 
ontrol to 
ope with narrow gaps a se
ond obsta
le was

pla
ed right after the �rst one as depi
ted in �gure 4.25. First, the model predi
tive


ontroller generates traje
tories in order to avoid only the �rst obje
t, sin
e the se
ond one

doesn't appear in the predi
tion horizon yet. Here a longitudinal de
eleration is ne
essary.

As the y-MPC also dete
ts the se
ond obsta
le it �rst tries to generate a traje
tory that

avoids it. The longitudinal velo
ity, however, is still too high, hen
e some boundaries will

be overstepped. The information e > 0 is again passed to the longitudinal 
ontrol, whi
h

redu
es the speed a se
ond time. Finally, also the se
ond obsta
le is 
orre
tly avoided.
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Figure 4.25: Two Obsta
les - longitudinal velo
ity is 
ontrolled
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Figure 4.26: Two Obsta
les - the longitudinal velo
ity depends on the sla
k variable
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Some 
onsiderations have to be made on the proposed 
ontrol strategy. As long as

the quad
opter is moving with a 
onstant speed the predi
tions done during the traje
tory

generation task are quite reliable. However, when an obsta
le is dete
ted for whi
h a

redu
tion of the longitudinal speed is ne
essary, the traje
tories generated during the

de
eleration begin to be only suboptimal. In fa
t the lateral traje
tories are solved relying

on the assumption of 
onstant longitudinal speed during the 
onsidered horizon, whi
h

does not re�e
t reality in 
ase of de
eleration along the x-axis. However, sin
e the obsta
les

are re-dis
retized every time step a

ording to the a
tual speed, 
ourse adjustments are

made. Although this strong approximation seems to be only a drawba
k, it 
an be proved

that it also implies great advantages. For instan
e, think of the 30 meters wide obsta
le

des
ribed in subse
tion 4.6.1. The 
ontrol starts to 
onsider the obje
t when it is in
luded

in its time horizon, whi
h, having TH = 1.5s and �ying at a speed of 10m
s
, means dete
ting

it 15 meters in advan
e. In reality, it 
an be shown that 2.3 se
onds elapse from the

moment the obsta
le is seen to the moment it is rea
hed, whi
h is a longer time than the

predi
tion horizon. This is 
aused by the fa
t that the quad
opter is de
elerating, whereas

the lateral 
ontrol supposes to travel at 
onstant speed and thus to rea
h the obsta
le in

a shorter time. This means the 
ontrol a
ts as a sort of predi
tion time extender. Hen
e

also 
ollision-avoiding maneuvers that may last more than the predi
tion horizon 
an be

easily performed.

Note that this is provided only be
ause the dis
retization of the obsta
le is done

assuming to move at 
onstant longitudinal speed. One 
ould have a
tually thought of

dis
retizing the obsta
le a

ording to the fore
asted de
eleration on the longitudinal axis.

Although, at �rst sight, this 
ould be interpreted as a better way to dis
retize the ob-

sta
le, sin
e representing better the future longitudinal positions of the vehi
le, it would

have 
aused few problems. Considering again the 30 meters wide obsta
le, as usual it is

dete
ted 1.5 se
onds in advan
e. Sin
e a de
eleration is ne
essary in order to avoid it,

the longitudinal 
ontrol predi
ts a traje
tory that tra
ks a maximum de
eleration for the

whole horizon. If the obsta
le is des
retized a

ording to the fore
asted de
eleration, it

is obvious that it is no more 1.5 se
onds away from the vehi
le, but mu
h more. Indeed,

if the speed is low enough to be able to stop the vehi
le 
ompletely before the obsta
le

is rea
hed, the obje
t would be ∞ se
onds away from the quad
opter in terms of time.
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Hen
e, the obsta
le would no longer be seen. A

ordingly the vehi
le would start again to

a

elerate till the obsta
le is on
e again in
luded in the predi
tion horizon. Also this time

a de
eleration would be needed, hen
e the obsta
le would be again dis
retized a

ording

to a de
reasing velo
ity and thus no more in
luded in the horizon and so on. Therefore, it

would 
ause an instable situation and a 
ollision avoidan
e 
ould not be guaranteed any

more.

4.6.3 Maximum allowable speed

In this subse
tion some 
onsiderations are made on the maximum speed that should be

allowed in order to avoid 
ollisions. Two situations are 
onsidered. The �rst one is the


ase for whi
h it is de
ided that the maximum velo
ity should be low enough to guarantee

in every moment the possibility to stop the vehi
le within the predi
tion horizon. This

means that in every moment the vehi
le should be able to impose a zero velo
ity for the

last step of its predi
tion. Assuming a 
onstant a

eleration a the following equation 
an

be written for the speed:

v = v0 + at (4.25)

It is assumed that in 
ase of emergen
y the maximum a
hievable de
eleration amin is

applied. Thus, assuming to travel at v = vmax, the velo
ity should be dropped down to

zero within the time horizon TH . The limits on the jerk are negle
ted, hen
e it is assumed

that the maximum de
eleration 
an be applied instantaneously. Imposing the speed to

be zero after a time equal to TH yields:

0 = vmax + aminTH (4.26)

By rearranging the terms the maximum allowable speed 
an be found in relation to the

predi
tion horizon:

vmax = −aminTH (4.27)

For instan
e, 
hoosing N = 50 and ts = 30ms, thus having a predi
tion time of TH = 1.5s,

a maximum speed of vmax = 10.5m
s
is obtained, 
onsidered to have amin = −7m

s2

However this maximum velo
ity is set in a 
onservative way. Consider, for instan
e,

the worse 
ase in whi
h an obsta
le is dete
ted, that 
an't be passed at all, sin
e it is too
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large and there is no way out. Hen
e, the only way to avoid a 
ollision is to de
elerate

for the whole distan
e until the obsta
le is rea
hed. As mentioned in previous se
tions

the obstru
tion is dete
ted by MPC as soon as it 
an be 
onsidered within the predi
tion

horizon, hen
e it is 
an be only seen TH se
onds in advan
e. Assuming to travel at a 
ertain

speed v0, one 
an 
al
ulate the distan
e xobst at whi
h the obsta
le is �rst dete
ted.

xobst = v0TH (4.28)

The minimum time ∆t needed for the vehi
le to stop 
ompletely 
an be evaluated by:

∆t = − v0
amin

(4.29)

The distan
e 
overed during a de
eleration is 
omputed by:

x = v0∆t+
1

2
amin∆t2 (4.30)

Substituting (4.29) in (4.30) the distan
e 
overed during a 
omplete arrest of the vehi
le

traveling at an initial speed of v0 is found. Imposing this distan
e to be equal to xobst,

namely the one that elapses between vehi
le an obsta
le in the moment when the latter

is dete
ted, yields:

v0TH = v0

(

− v0
amin

)

+
1

2
amin

(

− v0
amin

)2

(4.31)

Rearranging the terms the maximum speed 
an be found, whi
h guarantees a 
ollision

avoidan
e in the worse 
ase in whi
h the obsta
le 
an't be passed at all.

vmax = −2aminTH (4.32)

Thus, having for example TH = 1.5 and amin = −7m
s2
, a maximum allowable speed of 21m

s

is a
hieved.

4.7 Obsta
le avoidan
e in three dimensional spa
e

The proposed strategy for obsta
le avoidan
e 
an be extended to the three dimensional


ase. A third MPC is added to 
ontrol the translations about the verti
al axis of the

inertial frame. This 
an be 
ontrolled in the same way as the y-
oordinate. The obsta
le's
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upper and lower sides are dis
retized in the time domain with the assumption of 
onstant

longitudinal speed during the predi
tion horizon. Whether lower or upper bounds are

imposed, whi
h means whether the quad
opter should pass above or below the obsta
le, is

evaluated before ea
h traje
tory is generated. For this task one 
an employ the algorithm

that best suits the needs. Note that in most 
ases the boundary 
onditions on the verti
al


oordinate will be lower bounds, sin
e the quad
opter will have to pass over obje
ts, for

example trees or walls. It 
ould however be ne
essary to also impose upper bounds, e.g.

for passing under a bridge. There are many 
ases that 
ould be 
onsidered. For example

passing through a window requires the imposition of lower and upper bounds on the

verti
al 
oordinate as well as on the lateral 
oordinate, in order to obtain a re
tangular

feasible region.

An other important 
onsideration that has to be done is that due to the same

arguments dis
ussed in the previous se
tions, it is quite di�
ult to linearly relate the y

and z 
oordinate in order to des
ribe the obsta
le in a 
orre
t way. This is the reason

why also y and z axis have been de
oupled. Seen from a global point of view, the �yable

regions will be re
tangular frames (in y-z plane), one for ea
h step of the horizon. This


omes from the fa
t that y-MPC and z-MPC 
an both impose lower and upper bounds

for ea
h time-step of their predi
tion windows.

4.7.1 Implementation

In this subse
tion trials of the 
ontrol a
ting in a three-dimensional environment are

presented. In order to impose upper and lower bounds on the verti
al and lateral opti-

mization problems a simple algorithm was exploited. The latter evaluates the distan
es

of the a
tual position with respe
t to the lower and upper verti
es of the obje
t along the

respe
tive axes. A

ording to the shortest way that may be traveled in order to avoid the

obsta
le, the algorithm returns upper/lower bounds on the z-
oordinate or upper/lower

bounds on the y-
oordinate. In other words if the obsta
le is wider than it is tall the


ontrol imposes lower bounds on the z-
oordinate and no bounds on the y-
oordinate.

Thus the quad
opter will pass above. If it is taller than it is wide it will pass to the left

or to the right a

oring to the shortest way, hen
e only lateral bounds will be set.

Note that the verti
al 
ontrol also has to tra
k a referen
e that is evaluated in the
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Figure 4.27: Three-dimensional environment - three obsta
les
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Figure 4.28: Three obsta
les - three-dimensional environment - x-y plane
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Figure 4.29: Three obsta
les - three-dimensional environment - x-z plane


ost fun
tion. This will be the desired altitude at whi
h the quad
opter has to �y. The

simulation presented in �gure 4.27 shows the avoidan
e of three 
onse
utive obsta
les in

a three-dimensional environment. The quad
opter is �ying 3 meters above the ground.

The �rst obsta
le is 14 meters wide, has a height of 5 meters and is 2 meters long. The

se
ond is 3 meters wide, 3 meters long and 20 meters tall, the third is similar to the �rst

but 6 meters tall. In a real world situation the two wide obsta
les 
ould represent two

walls, whereas the se
ond one 
ould be a 
olumn or a light pole. The quad
opter 
orre
tly

avoids the obje
ts. Figure 4.28 and �gure 4.29 illustrate the traje
tory respe
tively in the

x-y and in the x-z plane.

The 
onsiderations made in se
tion 4.6 
an be exploited also for the three-dimensional


ase. This means it is still possible to 
ontrol the longitudinal speed in 
ase of predi
ted

traje
tories that overstep some boundary 
onditions and hen
e 
rash into obsta
les. Here

two di�erent sla
k variables will be used. The �rst softens the position 
onstraints of the

lateral optimization problem, whereas the se
ond is used by the MPC a
ting on the verti-


al axis. The MPC governing the longitudinal �ight will de
elerate the vehi
le as soon as

one sla
k variable assumes a value greater than zero. Remember that the sla
k variable
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Figure 4.30: Window - quad
otper's traje
tory passing through a window in a wall

performs two main tasks. The �rst task is to allow the optimization solver to �nd feasible

solutions also in 
ase an overstepping of the position-bounds is inevitable a

ording to the

a
tual speed vx. The se
ond task is to pass this information to the longitudinal 
ontrol,

whi
h a

rodingly de
reases the velo
ity.

4.7.2 Quad
opter size

Until now the quad
opter was treated as a pun
tual mass. Hen
e the traje
tories were

allowed to tou
h the 
ontours of the obsta
les, sin
e this was still interpreted as a fea-

sible solution. In reality, this 
an't be permitted, sin
e the quad
opter has its own size.

This means that the dimensions of the quad
opter's frame and its propellers have to be


onsidered when imposing boundary 
onditions on positions. The easiest way to 
ope

with this problem is to simply redu
e the �yable region by the quad
opters dimensions.

For instan
e, the bounds on the y-
oordinate should be redu
ed by half of the quad-


opter's width, sin
e the traje
tory refers to the vehi
le's midpoint (whi
h in most 
ases


orresponds to its 
enter of gravity). A
tually, another term should be added in order
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Figure 4.31: Quad
otper's traje
tory passing through an aperture in a wall - x-y plane
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Figure 4.32: Quad
otper's traje
tory passing through an aperture in a wall - x-z plane
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to 
onsider a safety margin. In fa
t, errors 
ould arise for example from the position

estimation made by the measurement systems (for the quad
opter's position as well as

for the obsta
les). The safety term should also 
onsider the fa
t that, though the sla
k

variable is hugely weighed into the 
ost fun
tion, it will always assume a very small value

even in 
ase there's no need for a relaxation of the boundary 
onditions. This 
ould bring

the traje
tories to slightly 
ut the edges of the obsta
les. Note that, sin
e the obsta
les

are represented as bounds, the traje
tories are allowed to pass very 
lose to them. Hen
e,

the safety term must also in
lude a minimum distan
e to the obsta
le that should be

provided. Therefore the bounds on the y-
oordinate 
an be written as:

yk ≤ ubk + e− lw − ls (4.33)

yk ≥ lbk − e+ lw + ls (4.34)

where ubk and lbk are respe
tively upper and lower bounds deriving from time-dis
retization

of the obsta
le. e is the sla
k variable, lw is the term 
onsidering the quad
opter's size

and ls is the safety term. The bounds on the z-
oordinate 
an be written in the same

way.

In �gure 4.30 a wall with a re
tangular window is depi
ted. The 
ontrol has to

generate traje
tories in order to pass through the opening, whi
h in a real world situation


ould represent a window. As soon as the aperture is dete
ted lower and upper bounds

on the y- and z-
oordinate are imposed in 
orrespondan
e to the horizon steps 
overed

by the window itself (a

ording to the a
tual speed). This time the quad
opter's size

and the safety margin are taken into a

ount and the boundary 
onditions are imposed

as des
ribed in (4.33) - (4.34). Figure 4.30 shows the resulting path. The bla
k frame

represents the a
tual window, whereas the red one represents the bounds that are set on

the positions. As shown in �gure, the traje
tory 
orre
tly passes through the red frame,

thus avoiding a 
ollision with the wall.

4.8 Avoidan
e of moving obsta
les

In previous se
tions traje
tories were planned assuming �xed obsta
les. In reality, also

moving obje
ts, su
h as other vehi
les or persons, may present on the way. For this reason

it is ne
essary to develope a 
ontrol 
apable of avoiding them.
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4.8.1 Main strategy

Sin
e MPC relies on future predi
tions made about the system behaviour, it is obvious

that in order to set bounds at future time steps a fore
ast of the obsta
le's movements

is needed. Though it may seem like a di�
ult request, it is normal to make assumptions

about future behaviours of other agents. For example vehi
les are generally expe
ted to

travel at 
onstant speed. Moreover, model predi
tive 
ontrol generates traje
tories every

few millise
onds, whi
h means for every optimization problem a new predi
tion about the

obsta
le's movements 
an be made. This 
an adjust the 
ourse of the quad
opter in 
ase

of unexpe
ted 
hanges in dire
tion and velo
ity of the moving obsta
le.

For the �rst trial a re
tangular obsta
le is 
hosen. It is 7 meters long and 5 meters

wide. It is assumed that it is traveling at a 
onstant speed of vxobst
= 3m

s
, vyobst = 2m

s
,

with vxobst
longitudinal velo
ity and vyobst lateral velo
ity. The quad
opter is �ying at

10m
s
and the horizon parameters are set to ts = 30ms and N = 50. Figures 4.33 and 4.34

show the resulting traje
tory of the air
raft 
aptured at various time steps. Note that the

graphi
al representation of the moving obsta
le and the path followed by the quad
opter


an be de
eptive. For instan
e looking at �gure 4.33 the traje
tory seems to pass a
ross

the obje
t. It is a
tually a misleading opti
al illusion 
aused by the attempt to plot a

dynami
al environment through stati
 frames. It has to be taken into a

ount that the

plotted traje
tory is representing past positions of the vehi
le. Thus, it doesn't matter

if the obsta
le 
rosses the path that has just been traveled by the quad
opter. Only the

a
tual position of the vehi
le (represented by the small 
ir
le) with respe
t to the 
urrent

position of the obsta
le has to be observed in order to verify whether the quad
opter is

avoding the obje
t. Moreover it has to be rememberd that the vehi
le is 
onsidered as a

pun
tual mass. Hen
e, though the �gures depi
t it as a 
ir
le, it only has to be veri�ed

that the 
enter of the 
ir
le is not passing through the obje
t.

As mentioned in subse
tion 4.7.2, for real situations the bounds will be in
reased in

order to take into a

ount the dimensions of the quad
opter together with a safety term

that sets a minimum distan
e to stay away from the obsta
le.
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Figure 4.33: Traje
tory avoiding moving obsta
le - Frames 1-3
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Figure 4.34: Traje
tory avoiding moving obsta
le - Frames 4-6
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4.8.2 Time-dis
retization of the moving obsta
le

As usual, the obsta
le is dis
retized in the time domain in order to be able to set boundary


onditions on the y-
oordinate for ea
h time step. This time, setting bounds for the

obstru
ting obje
t requires a more 
hallenging 
onsideration. While the dis
retization

of a �xed obsta
le is only depending on the quad
opter's velo
ity, the dis
retization of

a moving one is determined also by the lateral and longitudinal speed of the obsta
le

itself. For instan
e, if the moving obje
t was in front of the quad
opter, traveling with

a higher longitudinal velo
ity, no bounds would be required at all, sin
e the air
raft is

never rea
hing the obsta
le.

Given a generi
 obsta
le its upper and lower sides 
an be des
ribed by two generi


fun
tions that de�ne its shape.

yu = fu(x) (4.35)

yl = fl(x) (4.36)

where yu and yl are respe
tively y-
oordinate of upper and lower side of the obje
t de-

s
ribed as fun
tions of the x-
oordinate. In order to be able to use fu and fl to de�ne

bounds they should assume the following generi
 form:

fu(x) =







−∞, if x < 0

f ∗

u , if 0 ≤ x ≤ l

−∞, if x > l

(4.37)

fl(x) =







+∞, if x < 0

f ∗

l , if 0 ≤ x ≤ l

+∞, if x > l

(4.38)

where f ∗

u and f ∗

l de�ne the shapes of upper and lower side and l is the longitudinal length

of the obje
t.

Sin
e the obsta
le is moving, its position and thus the fun
tions de�ning its upper

and lower shapes will also depend on time in the following way. For simpli
ity, the

equations are written only on
e, sin
e the same 
onsiderations are valid for both upper
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and lower sides of the moving obje
t.

yu/l = fu/l (x− x0obst − vxobst
t) + y0obst + vyobstt (4.39)

where vxobst
and vyobst are respe
tively the longitudinal and lateral 
omponents of the

obsta
le's velo
ity, whi
h is assumed to be 
onstant over time. x0obst and y0obst de�ne the

initial position of the obje
t (for t = t0). The fun
tions des
ribed in (4.39) represent a

translation of the fun
tions de�ned respe
tively in (4.35) and (4.36) that depends on time

t.

In order to set bounds on the y-
oordinate of the quad
opter it will be again

assumed that it is moving with 
onstant speed. Thus, its longitudinal position 
an be

written as:

x = x0 + vxt (4.40)

with x0 initial position of the quad
opter and vx longitudinal speed. By substituting

(4.40) in (4.39) and rearranging the terms the following equation is obtained:

yu/l = fu/l (x0 − x0obst + (vx − vxobst
) t) + y0obst + vyobstt (4.41)

The two equations de�ne the shape of the obsta
le in the time domain, from the quad-


opter's point of view. They 
an a
tually be used for de�ning the bounds on the y-


oordinate, sin
e they only depend on the time. What still needs to be done is to dis-


retize the fun
tion with stepsize equal to ts, sin
e the bounds have to be imposed for

ea
h time step k.

t = t0 + k · ts (4.42)

By substituting (4.42) in (4.41) one 
an evaluate the bounds a

ording to the 
onsidered

time step k.

yu/l{k} = fu/l (x0 − x0obst + (vx − vxobst
) kts) + y0obst + vyobstkts (4.43)

For every new traje
tory the a
tual time is set to be t0 = 0. This means x0, y0, x0obst

and y0obst are the 
oordinates of quad
opter and obsta
le measured at the time when the

traje
tory is solved.
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Again an algorithm 
an be exploited, whi
h de
ides whether to impose upper or

lower bounds a

ording to the shortest y translation that may be performed in order to

avoid the obsta
le. Thus:

yk ≤ yl{k} if y0 −min(yl) ≤ max(yu)− y0 (4.44)

yk ≥ yu{k} if y0 −min(yl) > max(yu)− y0 (4.45)

Note that by rearranging (4.40) it is possible to evaluate the time for whi
h the quad
opter

is rea
hing a 
ertain x-
oordinate.

t =
x− x0

vx
(4.46)

Substituting (4.46) in (4.41) upper and lower bounds on the y-
oordinate 
an be repre-

sented in the spatial domain.

yu/l = fu/l

(

x

(

1− vxobst

vx

)

− x0obst +
vxobst

vx
x0

)

+ y0obst +
vyobst
vx

(x− x0) (4.47)

This means that from the quad
opter's point of view, traveling with 
onstant longitudinal

speed, the moving obsta
le 
an be seen as a virtual �xed obje
t. If both vehi
le and

obsta
le are traveling at 
onstant velo
ities, the boundary 
onditions on the vehi
le's

y-
oordinate 
an be set a priori for every future time step. Hen
e, assuming that the

longitudinal speeds do not vary over time, the bounds are �xed in time and thus in spa
e.

Therefore, every moving obsta
le involves a �
tive �xed obje
t representing the bounds

that has to be avoided. The latter 
an be treated exa
tly in the same way as for �xed

obsta
les.

4.8.3 Implementation of the moving obsta
le

Figures 4.35 and 4.36 show the same trial as the one depi
ted in subse
tion 4.8.1. The

red dashed frame represents the bounds on the position seen from the quad
opter's point

of view as des
ribed in (4.47). As visualised, the traje
tory 
orre
tly avoids the moving

obsta
le only if it also avoids the dashed frame.

Various 
onsiderations 
an be made. First the 
ase vx > vxobst
is 
onsidered. The

obsta
le is moving longitudinally slower than the air
raft, whi
h means it 
an only be seen

if it is in front of the quad
opter. Looking at equation (4.47), the term

(

1− vxobst
vx

)

in the
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Figure 4.35: Moving obsta
le - Frames 1-3 - The red dashed frame represents the �
tive

�xed obje
t that has to be avoided in order to prevent a 
ollision with the

moving obsta
le
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Figure 4.36: Moving obsta
le - Frames 4-6 - The red dashed frame represents the �
tive

�xed obje
t that has to be avoided in order to prevent a 
ollision with the

moving obsta
le
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Figure 4.37: Moving obsta
le - Bounds 
orresponding to various longitudinal velo
ities

of the obsta
le

fun
tion's argument 
auses a stret
hing of the bounds. The more similar the two speeds

are, the more the shape gets stret
hed. This 
omes due to the fa
t that if the relative

velo
ity is low, the quad
opter takes longer to pass the obje
t. The term (−x0obst + αx0),

with α =
vxobst
vx

is responsible for a longitudinal translation. The greater α the more the

bounds are shifted to the right, sin
e the quad
opter takes longer to rea
h the obsta
le.

Figure 4.37 shows the e�e
t of vxobst
on the bounds shape. For 
learness, the obsta
le has

been left out and only the bounds (dashed) together with the resulting traje
tories were

plotted. As 
an be dedu
ed from equation (4.47), vyobst brings to a shear transformation

of the original shape. The higher the lateral speed of the obsta
le, the more distorted is

the representation of the bounds in the spa
ial domain. Figure 4.38 shows the results for

di�erent values of the obsta
le's lateral speed.

For vx ≤ vxobst
the situation is slightly di�erent. The obsta
le will be approa
hed

only if its initial position is lo
ated behind the quad
opter. It �rst rea
hes the air
raft

with its front side. Figures 4.39 and 4.40 show the results for an obsta
le �ying at 14m
s
.

As 
an be seen, the quad
opter runs along its side with a negative relative velo
ity. In
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Figure 4.38: Moving obsta
le - Bounds 
orresponding to various lateral velo
ities of the

obsta
le

order to pass from the obsta
le's shape to the spatial representation of the bounds (red

dashed frame), the form-fun
tion is �ipped, sin
e the quad
opter �rst approa
hes the

front side of the obje
t. This 
an be mathemati
ally proved by looking at equation (4.47)

and noting that the term

(

1− vxobst
vx

)

is negative due to vx ≤ vxobst
.

The method is 
apable of dealing with obsta
les of various forms, sin
e no limitation

is set on the shape fun
tion. Figure 4.41 shows frames of the path followed by the

air
raft while avoiding a hexagonal obje
t. The obje
t is traveling with vxobst
= 6m

s

and vyobst = 2m
s
. Figure 4.42 shows the results for a triangular obsta
le moving with

vxobst
= 14m

s
and vyobst = 5m

s
. Note that, due to vx < vxobst

, the dashed frame representing

the �xed bounds on the y- positions is �ipped with respe
t to the obstal
e's shape. Note

that the re
eding strategy of MPC is 
apable of adjust the 
ourse in 
ase the obsta
le


hanges speed or dire
tion. In fa
t, the time-dis
retization is done a

ording to the 
urrent

fore
ast of the obje
t's movements, whi
h 
an a
tually 
hange over time. In this 
ase the

shape of the frame representing the bounds in the spa
ial domain will 
hange a

ording

to the new predi
tions made.
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Figure 4.39: Traje
tory avoiding an obsta
le that is travelling faster than the vehi
le -

Frames 1-3
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Figure 4.40: Traje
tory avoiding an obsta
le that is travelling faster than the vehi
le -

Frames 4-6
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Figure 4.41: Moving obsta
le - Hexagon
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Figure 4.42: Moving obsta
le - Triangle - frames 1-3
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Figure 4.43: Moving obsta
le - Triangle - frames 4-6
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Figure 4.44: Comparison between the two methods - single obsta
le

4.9 Comparison between the two strategies

More trials were 
ondu
ted in order to make a 
omparison between the obsta
le avoidan
e

strategy proposed in [8℄ and the one developed in this work. The �rst method approx-

imates the feasible area with a 
onvex polyhedron, whi
h is re
omputed for every new

optimization a

ording to the 
urrent position of the vehi
le with respe
t to the obsta
les.

Then it imposes that all positions of the solution lie within the 
onvex area. The se
ond

one dis
retizes the obsta
le in the time-domain, assuming to travel at 
onstant speed, and

a

ordingly imposes upper and lower bounds on the y-
oordinate. If a traje
tory is found

that does not avoid the obsta
le, the longitudinal 
ontrol rea
ts de
reasing the velo
ity

until a valid traje
tory is found. Some relevant trials are presented in this se
tion.

First the two methods are 
ompared in avoiding a single re
tangular obsta
le.

The horizon parameters are 
hosen equally for both strategies as ts = 30ms and N =
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Figure 4.45: Comparison between the two methods - two obsta
les

50 in order to obtain a meaningful 
omparison. The obsta
le is 10 meters wide and

lo
ated in front of the vehi
le. Its 
enter is positioned slightly o�set with respe
t to the

quad
opter's y-
oordinate so that the deadlo
k situation mentioned in subse
tion 4.1.4 for

the 
onvex polyhedron strategy is avoided. The velo
ity is limited in both 
ases to 10m
s
.

Figure 4.44 plots the results for the two methods. As depi
ted, the 
onvex approximation

strategy has a mu
h higher overshoot of the y-
oordinate. Moreover, while the obsta
le

dis
retization method manages to keep a 
onstant longitudinal speed, the other strategy

needs to de
elerate a lot in order to avoid a 
ollision.

Figure 4.45 shows the results for two subsequent obsta
les. As illustrated, the


onvex polyhedron method has di�
ulties in �nding a valid path. This is 
aused by the

fa
t that the polyhedra 
ondu
t the vehi
le towards improper dire
tions. The quad
opter

has to shortly reverse its longitudinal velo
ity, however it gets 
orre
tly to the target

positioned at 80 meters. The high longitudinal de
eleration brings the vehi
le to employ
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Figure 4.46: Comparison between two methods - various obsta
les

more time to rea
h the �nal position. Indeed, the 
onvex polyhedron method takes 10.2

se
onds to get to the target, whereas the obsta
le dis
retization strategy employs only 8

se
onds, sin
e the vehi
le travels at a 
onstant speed of 10m
s
.

Figure 4.46 illustrates a s
enario 
onsisting of �ve obsta
les. The obsta
le dis-


retization method behaves 
learly better with respe
t to the 
onvex polyhedron strat-

egy. The followed traje
tory is mu
h smoother and lateral translations o

urr only when

stri
tly ne
essary. The 
onvex polyhedron method, instead, brings the vehi
le to heaviliy

divert its 
ourse. This is 
aused by the 
onsiderable redu
tion of the feasible area due to

the approximation with a 
onvex polyhedron.

In order to quantify the 
omputational load needed to solve ea
h optimization,

the CPU time was measured for both the strategies. The simulations were performed

using Matlab and the solver qpOASES was 
ompiled into a MEX-fun
tion in order to be

able to use it dire
tly within the Matlab environment. The 
al
ulations were done on a
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Figure 4.47: Convex polyhedron strategy - CPU time for ea
h optimization
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Figure 4.48: Obsta
le dis
retization strategy - CPU time for ea
h optimization
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PC running Windows 7, with an Intel Core i7-3610QM at 2.30 GHz, with 8GB RAM.

Figure 4.47 plots the results for the 
onvex polyhedron method, whereas �gure 4.48 shows

the CPU times for the obsta
le dis
retization method. The data refer to the s
enario

depi
ted in �gure 4.46. The �gures present the time needed by the CPU to solve ea
h

optimization problem. For real-time appli
ations it is obvious that this time has to be

kept lower than the sampling time, sin
e a 
ontrol a
tion has to be provided every ts

se
onds. Note that the initial peak 
an be negle
ted, sin
e it represents the time needed

to solve the �rst optimization. This is always mu
h higher than the other values due to

the "
old" start of the optimizer. Indeed, for the �rst minimization problem, it has to

"guess" the optimal solution in order to start its algorithm. All further optimizations are

"hot-started", whi
h means they are done exploiting the solutions of the previous ones,

so that the minimization pro
ess will be mu
h faster.

As shown in the �gures, there is a great di�eren
e between the CPU times needed

for the two methods. The values di�er by two orders of magnitude. Negle
ting the �rst

value, the 
onvex polyhedron method presents a peak of almost 180 millise
onds, whi
h

is apparently o� limit for a real-time implementation. The situation for the obsta
le dis-


retization method is very di�erent. Here, always negle
ting the �rst peak, the maximum

value lies at 1.6 millise
onds, whi
h is a very good result. This ensures the requirements

for a real-time implementation of this strategy. Note that the 
omputational load depi
ted

in the �gures refers only to the optimization pro
esses. In order to evaluate the overall


omputatinal load it is ne
essary to 
onsider also routine algorithms as the ones needed

to build the bounds for 
ollision avoidan
e a

ording to the position of the vehi
le with

respe
t to the obsta
les. However, it 
an be shown that this operations take mu
h less

time, leading the optimization pro
esses to be the main 
ause of the 
omputational load.

There are several reasons for su
h a great di�eren
e between the 
omputational time

needed by the two strategies. The �rst one lies in the fa
t that the 
onvex polyhedron

method 
onsiders the two axes within the same minimization problem, wheareas the other

method solves two distin
t optimizations, one for ea
h axis. As mentioned in previous


hapters, solving a single problem with 2 · N variables takes longer than solving two

problems ea
h of N variables. Hen
e, the three-dimensional 
ase is even worse, sin
e

3 ·N have to be optimized within the same problem. The se
ond main reason is that the
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Figure 4.49: Convex polyhedron strategy with N = 50 - CPU time for ea
h optimization

obsta
le dis
retization method always imposes at most two bounds on the y-
oordinate for

ea
h time step, hen
e in the 
ase of N = 50, a maximum of 100 boundary 
onditions. The


onvex polyhedron method, instead, imposes, for ea
h time step, a boundary 
ondition for

every half-spa
e to be 
ut out, hen
e one for ea
h obsta
le. This means that for the 
ase of

�ve obsta
les and an horizon of N = 50, 250 boundary 
onditions are set. Apparently the

time needed to solve an optimization is also related to the number of bounds. An other

reason lies in the fa
t that, for the 
onvex polyhedron strategy, the matrix Ac needed for

the boundary 
onditions 
hanges every new optimization, sin
e it has to be re
al
ulated

a

ording to the 
urrent position of the vehi
le with respe
t to the obsta
les (see eq. 4.1).

Hen
e, the 
ontrol strategy be
omes a linear time varying MPC (LTV-MPC), whi
h in

general needs more time to solve the optimizations, sin
e a new matrix Ac has to be

passed to the solver every time.

In order to de
rease the 
omputational load of the 
onvex polyhedron method, the

only solution is to redu
e the number of variables 
onsidered by the optimization problem,

hen
e to redu
e the horizon N . Figure 4.49 shows the results for a simulation done with

the same s
enario as before, but redu
ing the predi
tion horizon by half of its length,
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thus setting N = 25. The 
omputatinal load de
reases signi�
antly, su
h that a real-

time implementation 
ould be 
onsidered also for this strategy. However, the maximum

allowed vehi
le speed must also be redu
ed. In fa
t the risk of having a short predi
tion

time window is to not rea
t in time to a 
hange of the bounds due to obsta
le avoidan
e.



5 Simulation Results

5.1 Simulation model

It is important to underline that, sin
e dealing with model predi
tive 
ontrol, two di�erent

system models are needed. The �rst one is the model that MPC uses in order to make its

predi
tions. This one has to be reliable and has to bring out the main dynami
s of the

system. On the other hand it has to be kept as simple as possible in order to be e�
ient

in making predi
tions in short times. Thus, it is not fundamental for it to be exa
t sin
e,

thanks to the re
eding strategy, the 
ontrol is 
apable of 
oping with model varian
es.

The se
ond model is the one needed to a
tually simulate the real vehi
le. The latter has

to be kept as a

urate as possible, in order to be able to verify the e�e
tiveness of the


ontrol. This model has to represent reality in the most detailed way.

In previous 
hapters the same system model is used for both MPC and simulation,

namely the one des
ribed in se
tion 3.4 by equations (3.33)-(3.35), whi
h 
onsists of a

set of triple integrators, one for ea
h axis, and takes the respe
tive jerks as inputs of

the system. In this 
hapter the 
ontrols are implemented into an exhaustive model of

property value unit

mass m 0.58 [kg]

inertia tensor J








6.4 0 0

0 6.4 0

0 0 12.5







× 10−3 [kgm2]

lever arm l 0.17 [m]

Table 5.1: model properties
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x-MPC y-MPC z-MPC

Q








0 0 0

0 1 0

0 0 0.5















1 0 0

0 0.2 0

0 0 0















1 0 0

0 0.1 0

0 0 0








R 0 0.01 0.001

Table 5.2: Weighting matri
es for ea
h axis

the quad
opter in order to verify the e�e
tiveness and appli
ability of the overall 
ontrol

stru
ture. Hen
e also the low level 
ontrol, whi
h tra
ks the body rates evaluated by

the MPC, is implemented. This time also the propeller and motor dynami
s together

with their own speed 
ontrollers are taken into a

ount. All this results in a 
omplex

model able to represent reality quite well. The quad
opter model relies on an As
Te


®

Hummingbird with the properties reported in table 5.1. Simulations were done using

Simulink

®

, while the model predi
tive 
ontroller uses an embedded Simulink-interfa
e of

the software qpOASES [14℄ in order to solve the optimization problems.

Here the attitude 
ontrol is simply provided by a proportional 
ontroller as de-

s
ribed below.

M1 = kp1 (ω1r − ω1) (5.1)

M2 = kp2 (ω2r − ω2) (5.2)

M3 = kp3 (ω3r − ω3) (5.3)

where ω1r and ω2r are the referen
e body rates evaluated by the MPC, whereas the yaw

speed is referen
ed as ω3r = 0. The values of the body rates ω1,ω2 and ω3 are provided

by onboard sensors. M1, M2 and M3 are the torques about the body �xed axes, whi
h

are then mixed together with the evaluated total thrust f to individual motor thrusts

exploting equation 2.7 as depi
ted in se
tion 2.3. Note that the three rotations 
an be

de
oupled, sin
e the inertia tensor J is diagonal.
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5.2 Simulations

In the trial presented in this se
tion the quad
opter has to avoid three subsequent obsta
les

while �ying at a longitudinal speed of 10m
s
. The obstru
tions are respe
tively 3 meters,

7 meters and 14 meters wide. The 
ontrol on the verti
al axis is supposed to maintain a

ground 
learan
e of 2 meters, while the longitudinal 
ontrol has to keep a 
onstant speed

and to provide a de
eleration only in 
ase the lateral 
ontrol is not able to �nd a valid

traje
tory that avoids a 
ollision. Hen
e, the lateral MPC, a
ting on the y-
oordinate, is

responsible for the obtsa
le avoidan
e task.

Given the tasks that ea
h 
ontrol has to 
arry out, the parameters that de�ne

the performan
es of the model predi
tive 
ontroller have to be 
hosen. Table 5.2 reports

the weighting matri
es for states and jerk, respe
tively Q and R, that have been set for

ea
h axis and that provide a quite good overall performan
e. As shown in the table,

the MPC a
ting on the longitudinal 
oordinate only weighs velo
ity and a

eleration.

This is due to the fa
t that no position referen
e is given to the x-
oordinate, sin
e the

vehi
le is intrinsi
ally �ying towards a given target. The 
oordinate system is indeed

pla
ed with its origin at the starting position of the vehi
le and dire
ted with its x-axis

towards the target. This means that, given vx > 0 and assumed that the lateral 
ontrol

is 
orre
tly following its referen
e on the y-
oordinate, the vehi
le will rea
h the �nal

position. The state-weighting matrix for the lateral MPC is 
hosen in order to tra
k the

referen
e (yT = 0). Here also the jerk is slightly weighed so that smoother translations

are obtained. Weighing the jerk avoids high peaks on the body rates ensuring gradual

movements. The verti
al 
ontrol weighs the altitude error with respe
t to the referen
e

ground 
learan
e of 2 meters. Additionally also the velo
ity is weighed in order to have a

damping a
tion.

The sla
k variable for the boundary 
onditions needed for obsta
le avoidan
e is

weighed with we = 9 · 106. So as to ensure that the vehi
le is not �ying too 
lose to the

ground or too high, lower and upper bounds on the verti
al 
oordinate were added. These

are 
hosen to lbz = 1m and ubz = 3m. The boundary 
onditions that derive from the

imposition of limitations on the verti
al position are "relaxed" by a sla
k variable in order

to avoid problems asso
iated with an infeasibility of the optimization solution. This sla
k
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Figure 5.1: Comparison between MPC model and 
omplete model

variable is again weighed with we = 9 · 106. Hen
e, the task of remaining within a feasible

altitude of 1-3 meters, is treated in the same way as for the obsta
le avoidan
e task.

The parameters setting the predi
tion horizon are 
hosen equally for all three axes

to ts = 3ms and N = 50. Note that the sampling time has to be the same for all axes,

sin
e the body rates and the total thrust are 
omputed mixing together the optimal jerks

and a

elerations evaluated by the three MPCs. Therefore the values of the three jerks

have to be provided simultaneously.

Figure 5.1 illustrates the resulting traje
tory followed by the quad
opter in or-

der to avoid a 
ollision with the three obsta
les. To make a 
omparison, the same trial

was implemented simulating the model exploited by the MPC to make its predi
tions,

whi
h 
onsists only of a set of a triple integrators as des
ribed in equations (3.33)-(3.35).

As mentioned in previous 
hapters this model does not 
onsider neither the rotational

dynami
s, nor the motor and propeller dynami
s nor any aerodynami
 e�e
t. The red

dashed line depi
ts the traje
tory resulting by simulating the latter. All parameters were
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Figure 5.2: inputs - total thrust, normalized by the vehi
le mass, and two body rates


ommanded by model predi
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ontrol - the dashed lines illustrate the real

body rates as tra
ked by the attitude 
ontrol
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Figure 5.3: Euler angles of the body frame with respe
t to the inertial frame


hosen the same way for both simulations in order to be able to make a meaningful 
om-

parison. As depi
ted in �gure, the traje
tory a
hieved by simulating the 
omprehensive

model di�ers very little from the one resulting from implementing the 
ontrol on the

model used by MPC. The good results justify the 
hoi
e made by passing a very simple

system model to the MPC. As mentioned in 
hapter 3, the great advantage of feeding the

model predi
tive 
ontroller with a trivial model of the system, lies in the fa
t of being

able to solve optimization problems very qui
kly. The re
eding strategy is able to 
ope

with all simpli�
ations made by approximating the 
omplex system with a very simple

one. Thus, the e�e
tiveness of the 
ontrol has been proven, whi
h means MPC is able to

manage the deviation between the real behavior of the system and the predi
tions made.

Figure 5.2 illustrates the inputs 
ommanded by the model predi
tive 
ontroller
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after mixing together the three optimal jerks and solving equations (2.11) and (2.15).

Note that for 
omputing the desired inputs, namely the total thrust f normalized by the

vehi
le mass, and the two body rates ω1ref and ω2ref , also the optimal a

eleration is

needed. The latter is simply evaluated by integrating the jerk traje
tory. The rotation

matrix R of the body frame with respe
t to the inertial frame, whi
h is also needed to


ompute the inputs, is 
al
ulated exploiting the estimation of the attitude provided by

onboard sensors. The red dashed lines depi
t the real body rates ω1 and ω2 resulting from

the overall 
ontrol a
tion. As 
an be seen, the attitude 
ontrol manages very well to tra
k

the referen
e body rates provided by MPC.

Note that body rate ω1, namely the rotational rate about the body-�xed x-axis,

is responsible for lateral translations, sin
e it leads the total thrust to have a lateral


omponent. Thus, it is mainly asso
iated with the obsta
le avoidan
e task. This explains

the high peaks depi
ted in �gure 5.2.

Body rate ω2 is asso
iated with longitudinal movements. The �u
tuations that 
an

be seen are due to the 
ontrol a
tion that tries to keep the longitudinal speed as 
lose as

possible to 10m
s
. A peak is noti
eable shortly after t = 0. This is 
aused by the 
ontrol

that has to slightly rotate the body frame in order to 
ountera
t the aerodynami
 for
es.

In fa
t, though the simulation starts with the vehi
le already having a speed of 10m
s
,

the body frame is initially �at. Thus, a small angle around the body-�xed y-axis has to

be provided in order to a
hieve a longitudinal for
e that 
ompensates for aerodynami


e�e
ts.

Figure 5.3 depi
ts the Euler angles φ and θ, respe
tively about the x-axis and y-

axis. As 
an be seen, θ �u
tuates around a steady state value of approximately θs = 10◦.

This is the angle of the frame needed to bend the ve
tor of the total thrust forward in

order to 
ountera
t the aerodynami
 for
e asso
iated to a speed of 10m
s
.

Figure 5.4 shows the velo
ities for all three axes. The dashed lines represent the

simulations done dire
tly on the model used by MPC to make its predi
tions. The longitu-

dinal 
ontrol is able to tra
k the 10m
s
speed with very small deviations. As demonstrated,

MPC is able to 
ope with modeling errors very well. For instan
e it manages to maintain

a 
onstant speed despite the in�uen
e of external for
es that have not been modeled.

The lateral velo
ity vy does not di�er mu
h from the one resulting from the simu-
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Figure 5.4: velo
ities - the dashed lines represent the results of the simulation made on

the same model used by MPC

lations done on the simple model. As said before, lateral movements are responsible for

avoiding the obsta
les and tra
king the referen
e yT = 0.

Larger di�eren
es between simulations on 
omplete model and results with simple

model are notable for the velo
ities about the z-axis. Here the �u
tuations are more

relevant, with a peak of 1.45m
s
. These are 
aused by strong aerodynami
 e�e
ts arising

at higher speeds. As 
an be seen, the greatest �u
tuations arise always shortly after a

peak of the lateral speed vy, hen
e 
orresponding with high values of the magnitude of

the overall velo
ity.

Figure 5.5 plots the traje
tory of the z-
oordinate. As depi
ted, the altitude de-


reases up to 1.8 meters and has a maximum overshoot of 
a. 0.62 meters 
aused by

the mentioned aerodynami
 e�e
ts. Sin
e the ground 
learan
e represents a priority for

safety reasons one 
an assume to put stronger lower bounds on the z-
oordinate. For this

reason a trial was made setting lbz = 1.99m and ubz = 2.4m. Also the upper limits on
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Figure 5.5: Traje
tory for z-axis - bounds are set to lbz = 1m and ubz = 3m
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Figure 5.6: Traje
tory for z-axis - bounds are set to lbz = 1.99m and ubz = 2.4m
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the altitude were set stronger in order to try to redu
e the overshoots of the z-
oordinate.

However, experiment have shown that the sla
k variable has to be weighed in a milder

way. Otherwise the optimazation solver will have di�
ulties in �nding a valid solution

and will return an infeasibility error. Hen
e, though the new bounds limit the altitude to

lie within a smaller region (1.99m-2.4m), the 
orresponding boundary 
onditions are set

in a "softer" way, sin
e the sla
k variable is weighed less into the 
ost fun
tion, that is

with we = 1 · 104. This means, an overstepping of the bounds will be less penalized.

Figure 5.6 shows the results. As 
an be seen the situation has improved. The

altitude drops with a maximum value of 0.057m and has a peak of 2.49m. Hen
e the

bounds are slightly overstepped due to the sla
k variable. The z-
oordinate however is

kept within a range of 0.5m, whi
h is an a

eptable result. A further redu
tion of the

feasible range for the altitude has shown not to bring any improvements. This means

that, though bringing the upper and lower limits 
loser to ea
h other, overshoots of

approximately 0.4 meters still o

urred. Moreover, limiting the solution for the altitude

to lie in a too small region leads to infeasibility problems of the optimization.

5.3 Real-time feasibility

One of the purposes of this work is to develop a model predi
tive 
ontroller suitable for

real-time implementations. This means it has to be able to 
ontrol the system online,

managing to solve its algorithms fast enough to not 
ause any losses in performan
es and

stability. In the spe
ial 
ase of MPC, real-time appli
ability translates in its ability to

solve all the ne
essary 
al
ulations within a time equal to the 
hosen sampling time ts. In

fa
t, after this time lapse a new 
ontrol input has to be evaluated in order to perform a

feedba
k a
tion for the system. As known, one of the main drawba
ks of MPC is the time

needed for the solver to �nd a solution for the optimization problem, whi
h underlies the


ontrol strategy. For this reason all 
onsiderations on the 
ontrol parameters as well as

on the 
hoi
e of the system model that is handed to the MPC have to be made in order

to keep the 
omputational load as low as possible. This brought to 
hoose a very simple

model of the vehi
le as well as a not too long predi
tion horizon. On the other hand the


ontrol has still to be able to deal with all dynami
s of the system in order to not 
ause



5 Simulation Results 113

stability problems.

In se
tion 4.9 some results regarding the 
omputational load needed for ea
h op-

timization to be solved are already shown. Those simulations are done using Matlab.

The solver qpOASES is used dire
tly within the Matlab environment. It is 
ompiled into

a so-
alled MEX fun
tion, hen
e still providing very fast performan
es. However, the


ontrol needs to perform other routine algorithms like the evaluation of the bounds for

obsta
le avoidan
e as well as the re
al
ulation of the ve
tors to be passed to the optimiza-

tion problem. In fa
t, looking at equations (3.27),(3.28),(3.29), ve
tor g as well as the

overall lower and upper bounds, lbA and ubA, depend on the a
tual state ve
tor x0, whi
h

apparently 
hanges for every new optimization, sin
e it is evaluated a

ording to the in-

formations provided by the sensor unit. As known, though very versatile, Matlab is not a

fast programming language. This means that solving all auxiliary 
al
ulations needed for

the 
ontrol using Matlab is not the most e�
ient way. Hen
e, though the performan
es

were already very satisfa
tory, the overall model predi
tive 
ontroller, in
luding optimiza-

tion solver and routine algorithms, was 
oded in programming language C using Simulink

Coder�. The 
ompiled 
ontroller was then passed to a Real-Time Target 
omputer and

simulated in order to obtain reliable values of the 
omputational load. Various trials were

performed so as to to verify the e�e
tiveness of the 
ontrol together with its real-time 
a-

pability. In order to get 
loser to the performan
es provided by 
urrent mi
ro
ontrollers,

trials were performed simulating various values of the pro
essor's speed.

The horizon parameters were set to ts = 30ms and N = 50. Note that the �rst

parameter, namely the sampling time ts, sets time restri
tions for the optimization. Indeed

it represents the maximum time allowed to �nd a valid solution. The horizon length

N instead determines the 
omplexity of the optimization problem. In fa
t it sets the

number of variables the solver has to 
ope with, whi
h apparently in
reases the numeri
al


al
ulations that have to be performed. Note that only the 
ontroller is simulated with

the real-time 
omputer. The a
tual system response is not simulated, sin
e it would

only 
harge the pro
essor with unne
essary 
al
ulations. In fa
t, in real appli
ations, the


ontroller only has to evaluate the 
ontrol a
tion a

ording to the informations on the


urrent vehi
le state.

Note that the �rst optimization needs a longer time to be solved. This is due
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Figure 5.7: Task exe
ution times at di�erent CPU rates

to the online a
tive set algorithm exploited by qpOASES, whi
h needs to start in a

"
old" way. This means, that for its �rst optimization it has to make guesses about the

possible solution, whi
h apparently 
osts 
omputational load. For this reason the real-

time ma
hine was allowed to take more time for the very �rst optimization problem. For

all su

essive optimizations the algorithm takes the solution of the previous problem and

uses it as an initial guess. This pro
edure is 
alled "hot start", and brings the subsequent

solutions to be found within a shorter time.

The sampling time at whi
h the overall 
ontrol unit pro
esses its tasks is set to

∆t = 1ms. All auxiliary and routine algorithms are pro
essed within ∆t. In order to

allow the optimization pro
esses to last within ts = 30ms, the minimization algorithm is

splitted in subtasks that are 
omputed at a sampling rate

1

∆t
. Thus, the simulation 
an

be performed at a single sampling rate.

Real time feasibility was tested for the obsta
le dis
retization strategy. Figure 5.7

shows the results for a simulation done 
onsidering a single obsta
le. The trial was

repeated simulating two di�erent CPU rates: 800MHz and 128MHz. As 
an be seen,

the pro
essor manages in both 
ases to 
ompute the tasks within a lower time with respe
t
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to the primitive sampling time ∆t = 1ms.





6 Con
lusions and outlook

In this work the design of a model predi
tive 
ontrol for online traje
tory generation in-


luding �xed and moving obsta
le avoidan
e is presented. The design relies on a 
ontrol

stru
ture originally developed for state inter
eption manuevers and des
ribed in [9℄. The


hoi
e to use that 
ontrol strategy was done due to the very simple model that model

predi
tive 
ontrol has to manage. Furhtermore no linearization is needed, sin
e the model

only 
onsiders translational movements and thus 
an be des
ribed through a set of triple

integrators. The rotational movements 
an be evaluated analyti
ally given the solutions

provided by model predi
tive 
ontrol. Basing on this results, the traje
tory planning for

distant targets together with the 
ollision avoidan
e task have been added. Initially only

the two-dimensional 
ase, hen
e the 
ase in whi
h the vehi
le is moving in the x-y plane,

was 
onsidered. First, the strategy presented in [8℄, whi
h relies on the approximation of

the �yable area with 
onvex polyhedra, was implemented. Several problems asso
iated

with this method have been dete
ted. These issues lead to 
onsiderable restri
tions on

the real-time feasibility as well as on the maximum speeds that may be a
hieved in or-

der to guarantee a 
ollision avoidan
e. All this brought to 
hoose a 
omplete di�erent

strategy for avoiding obsta
les. Still using linear 
onstraints, that 
an be managed mu
h

easier and with very low 
omputational loads, a new method was implemented, whi
h

relies on the time-dis
retization of the obsta
le. Indeed, assuming to �y at a 
onstant

speed, the bounds on lateral positions, whi
h in the spatial representation are fun
tion

of the longitudinal 
oordinate, start depending dire
tly on time. Hen
e, the boundary


onditions 
an be dire
tly applied to the lateral movements. This, together with the holo-

nomi
 nature of the quad
opter, implies an other great advantage, that is the possibility

to 
ompletely de
ouple the axes. Thanks to it the problem 
an be splitted in two di�er-

ent optimization problems, whi
h leads to great improvements in terms of 
omputational
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load. The obsta
le avoidan
e task is only provided by the lateral 
ontrol, sin
e the bounds

are imposed on the y-
oordinate. However there might be 
ases in whi
h the longitudinal

speed needs to be dropped in order to avoid an obsta
le. For this reason the use of a

sla
k variable was added. The latter has two main fun
tions. The �rst is to "soften"

the hard 
onstraints on the lateral positions in order to prevent that the optimization

solver returns an infeasibility error in 
ase an obsta
le 
an't be avoided (due to physi
al

limitations). The se
ond fun
tion of the sla
k variable is to send the information to the

longitudinal 
ontrol, in order to de
rease the speed in 
ase a traje
tory is found, that

does not avoid a 
ollision. The only way that has been proved to be e�
ient was the one

that redu
es the speed with maximum de
eleration until the lateral 
ontrol again �nds

a valid traje
tory that 
orre
tly avoids all obje
ts on the way. The strategy has shown

great results in avoiding multiple obsta
les simultaneously as well as obje
ts of di�erent

shapes and dimensions. The same method was then applied to three dimensional envi-

ronments again showing good performan
es. At the end, also a method to avoid moving

obsta
les was proposed. The latter relies on the assumption that the obsta
les move with


onstant speed during the predi
tion horizon. Thanks to the re
eding strategy of model

predi
tive 
ontrol a new fore
ast of the obsta
le's velo
ity 
an be made for every new op-

timization, thus the 
ourse 
an be adjusted in 
ase of unpredi
table 
hanges of speed and

dire
tion of the obsta
le. The strategy assures, that given the mentioned assumptions,

the bounds on the y-
oordinate deriving from the 
ollision avoidan
e task, remain �xed

in the spa
e and 
an be therefore 
onsidered as a �
tive �xed obje
t. The method was

able to manage obsta
les moving both slower and faster than the vehi
le. At the end of

the 
hapter a 
omparison was made between the 
onvex polyhedron strategy dex
ribed

in [8℄ and the obsta
le time-dis
retization method des
ribed in this work. The strategies

were 
ompared in the ability of avoiding obstru
tions as well as in the 
omputational

load needed for the optimizations to be solved. The obsta
le dis
retization method has

shown great improvements with respe
t to the other method. The traje
tories are mu
h

smoother and reliable. Furthermore, the strategy 
an manage mu
h faster speeds, always

ensuring that the obsta
les will be avoided. Also from a 
omputational point of view the

advantages are evident. Keeping the same horizon length for both strategies, the obsta
le

dis
retization method employs almost hundred times less in terms of time for solving the
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optimization pro
esses. The overall 
ontrol was then implemented in a 
omplex model of

the quad
opter, that simulates the system dynami
s in a very detailed way, thus providing

a reliable representation of the system response. The real system behavior di�ers very

little from the predi
tions made with the model exploited by the MPC, whi
h proves the

ability of the 
ontrol to 
ope with external for
es that have not been modeled, as for ex-

ample aerodynami
 e�e
ts. The greatest dis
repan
ies o

ur for the verti
al axis. Indeed,

the 
ontrol showed some di�
ulties in keeping a referen
e altitude at high speeds. This

may be 
aused by strong aerodynami
 e�e
ts. Finally the 
ontrol unit was simulated on

a real-time target 
omputer. Trials were made simulating various 
lo
k rates. Real-time

feasibility was proved also for low CPU frequen
ies, thus providing the requirements for

a future implementation of the 
ontroller dire
tly on board the quad
opter.

Further resear
h based on the presented work 
an be made. The good results

a
hieved in simulations make the 
ontroller ready to be tested on real quad
opters. First,

experiments 
an be done providing informations on positions and velo
ities of the vehi
le

through an external motion 
apture system. Also position (and eventually velo
ity) of

the obsta
les 
ould be passed by an external sour
e. The next step 
an be to develop

a unit 
apable of dete
ting obsta
les dire
tly onboard the quad
opter. This 
ould be

provided for example by exploiting 
ameras or laser s
anners, so that the vehi
le be
omes


ompletely autonomous. Improvements 
an also be done on the 
ontroller itself. Till

now, the longitudinal 
ontrol de
reases the speed with maximum de
eleration in 
ase the

lateral traje
tory does not manage to 
ompletely avoid a 
ollision. Seen from a global

point of view this is not the optimal solution. The obsta
le avoidan
e task, however, 
an

not be performed 
orre
tly within the same optimization problem for all three axes, sin
e

linear 
ontraints are 
onsidered. Thus, more detailed studies 
an be made on how to

formulate the longitudinal optimization problem in order to a
hieve smoother traje
tories

along the x-axis. For instan
e, the optimal longitudinal speed at whi
h to move within a

given environment 
ould be estimated a priori given the number, dimension and density

of the obsta
les along the way.





Bibliography

[1℄ Lee T., Leok M., M
Clamro
h N. H. "Geometri
 Tra
king Control of a Quadrotor

UAV on SE(3)", in IEEE Conferen
e on De
ision and Control, pp. 1383-1389, 2010.

[2℄ Mellinger D., Mi
hael N., Kumar V. "Traje
tory generation and 
ontrol for pre
ise

aggressive maneuvers with quadrotors" in The International Journal of Roboti
s Re-

sear
h, pp. 664-674, 2012.

[3℄ Mellinger D., Kumar V. "Minimum Snap Traje
tory Generation and Control for

Quadrotors" in IEEE International Conferen
e on Roboti
s and Automation, pp.

2520-2525, 2011.

[4℄ Ra�o G.V., Ortega M.G., Rubio F.R. "MPC with Nonlinear H∞ Control for Path

Tra
king of a Quad-Rotor Heli
opter" in Pro
eedings of the 17th World Congress The

International Federation of Automati
 Control, pp. 8564-8569, 2008.

[5℄ Ra�o G.V., Ortega M.G., Rubio F.R. " An integral predi
tive/nonlinear H∞ 
ontrol

stru
ture for a quadrotor heli
opter" in Automati
a, pp. 29-39, 2010.

[6℄ Bemporad A.,Pas
u

i C.A., Ro

hi C. "Hierar
hi
al and Hybrid Model Predi
tive

Control of Quad
opter Air Vehi
les", in 3rd IFAC Conferen
e on Analysis and Design

of Hybrid Systems, pp. 14-19, 2009.

[7℄ Alexis K., Nikolakopoulos G., Tzes A. "Model predi
tive quadrotor 
ontrol: attitude,

altitude and position experimental studies" in IET Control Theory and Appli
ations,

pp. 1812-1827, 2012.

[8℄ Bemporad A., Ro

hi C. "De
entralized Linear Time-Varying Model Predi
tive Con-

trol of a Formation of Unmanned Aerial Vehi
les" in 50th IEEE Conferen
e on De-



6 Bibliography 122


ision and Control and European Control Conferen
e (CDC-ECC), pp. 7488-7493,

2011.

[9℄ Mueller M.W., D'Andrea R. "A model predi
tive 
ontroller for quadro
opter state

inter
eption" in European Control Conferen
e (ECC), pp. 1383-1389, 2013.

[10℄ Hehn M., D'Andrea R. "Quadro
opter Traje
tory Generation and Control" in

Preprints of the 18th IFAC World Congress, pp. 1485-1491, 2011.

[11℄ Alexis K., Nikolakopoulos G., Tzes A. "Swit
hing Model Predi
tive Attitude Con-

trol for a Quadrotor Heli
opter subje
t to Atmospheri
 Disturban
es", in Control

Engineering Pra
ti
e, pp. 1195-1207, 2011.

[12℄ Ri
hter C., Bry A., Roy N. "Polynomial Traje
tory Planning for Aggressive Quadro-

tor Flight in Dense Indoor Environments", in Pro
eedings of the International Sym-

posium of Roboti
s Resear
h, 2013.

[13℄ Kim J.H., Shim D.H., Sastry S. "Nonlinear Model Predi
tive Tra
king Control for

Rotor
raft-based Unmanned Aerial Vehi
les" in Pro
eedings of the Ameri
an Control

Conferen
e, pp. 3576-3581, 2002.

[14℄ Ferreau H.J., qpOASES User's Manual. http://www.qpOASES.org, 2007-2011.

[15℄ Bou�ard P. On-board Model Predi
tive Control of a Quadrotor Heli
opter: Design,

Implementation, and Experiments, 2012.

[16℄ Chen M. Formation and Flight Control of A�ordable Quad-rotor Unmanned Air Ve-

hi
les, 2003.

[17℄ De Val N., Fuso A. Model Predi
tive Control for an Autonomous Vehi
le, 2013.

[18℄ Huy
k B., Callebaut L., Logist F., Ferreau H. J., Diehl M., De Brabanter J., Van

Impe J., De Moor B. "Implementation and Experimental Validation of Classi
 MPC

on Programmable Logi
 Controllers" in 20th Mediterranean Conferen
e on Control

and Automation, pp. 679-684, 2012.



6 Bibliography 123

[19℄ Lapp T., Singh L. "Model Predi
tive Control Based Traje
tory Optimization for

Nap-of-the-Earth (NOE) Flight In
luding Obsta
le Avoidan
e" in Pro
eeding of the

2004 Ameri
an Control Conferen
e Boston, pp. 891-896, 2004.

[20℄ Wang L. Model Predi
tive Control System Design and Implementation Using MAT-

LAB, Springer-Verlag London, 2009.

[21℄ Cama
ho E. F., Bordons C., Model Predi
tive Control, Springer-Verlag London, 2007.


	List of Figures
	Introduction
	Motivation
	Content and structure of the work

	Quadcopter Model
	Overview
	Quadcopter dynamics
	Control Structure
	Dynamic model for the model predictive controller
	Control Inputs
	Reformulation in jerk
	Feasibility constraints


	Model predictive online trajectory generation
	Model predictive control overview
	Linear discrete-time model predictive control
	Quadratic Problem Formulation
	Time-discretization of the system
	Time parameters

	Optimization problem and decoupled axes
	Trajectory generation for state interception
	Rest position to rest position
	Rest position to target

	Trajectory planning for distant targets
	Defining the cost function
	Setting the parameters
	Simulations with complete model


	Obstacle avoidance
	Convex polyhedral approximation approach
	Definition of the polyherdon
	Implementation in model predictive control
	Simulation results
	Limits of the approach

	Obstacle time-discretization method
	Implementation in model predictive control
	Different shapes and multiple obstacles
	Problems
	Control on the x-axis
	Main strategy
	Implementation in model predictive control
	Maximum allowable speed

	Obstacle avoidance in three dimensional space
	Implementation
	Quadcopter size

	Avoidance of moving obstacles
	Main strategy
	Time-discretization of the moving obstacle
	Implementation of the moving obstacle

	Comparison between the two strategies

	Simulation Results
	Simulation model
	Simulations
	Real-time feasibility

	Conclusions and outlook
	Bibliography

