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Abstrat

The goal of this thesis is to design a model preditive ontrol strategy for quadopters,

apable of generating trajetories in real-time in order to reah given targets and, at the

same time, avoid �xed and moving obstales. The trajetory is generated in terms of

the jerk by solving a onvex quadrati optimization problem. The obstale avoidane

task should be provided exploiting linear onstraints, due to the great advantages that

these entail in terms of omputational load. First, a method that approximates the

feasible spae through onvex polyhedra is implemented. After deteting several problems

assoiated with this tehnique a di�erent strategy is developed. The latter relies on the

assumption of moving with onstant longitudinal speed. Thus, the bounds on the positions

an be imposed diretly in the time domain. Furthermore, thanks to the holonomi nature

of quadopters, the optimization problem an be deoupled in the three axes. The lateral

and vertial ontrols provide translations in order to avoid ollisions, while the longitudinal

ontrol only deelerates if the solved trajetories do not avoid the obstales properly. The

two ollision avoidane strategies are ompared to eah other. The method developed in

this work shows great improvements onerning the reliability of the provided trajetories

and the omputational load needed to solve the optimization problems. Furthermore, the

strategy is apable of managing higher speeds. The performane of the overall ontrol is

assessed through simulations done on a highly aurate model of the quadopter. Real-

time feasibility is also tested for low CPU frequenies, thus providing the requirements

for a future implementation of the ontroller diretly onboard the vehile.





Sommario

Questa tesi si propone di sviluppare un ontrollo per quadopter basato sul Model Pre-

ditive Control in grado di generare traiettorie in tempo reale in modo da raggiungere

determinati obiettivi evitando ostaoli �ssi e mobili. La traiettoria è generata in termini di

jerk, ovvero la derivata prima dell'aelerazione, risolvendo un problema di ottimizzazione

quadratia. L'aggiramento degli ostaoli deve essere svolto per mezzo di vinoli lineari

imposti sulla posizione del veiolo, in quanto questi ultimi omportano notevoli vantaggi

in termini di osto omputazionale. Il primo metodo studiato onsiste nell'approssimare

lo spazio pratiabile attraverso poliedri onvessi. Vari problemi assoiati a questa tenia

spingono a sviluppare un approio diverso. Tale nuova strategia si basa sull'ipotesi di

perorrere la traiettoria a veloità longitudinale ostante. In tal modo, potendo esprimere

la oordinata longitudinale in funzione del tempo, è possibile imporre dei vinoli sulle o-

ordinate laterali e vertiali per ogni istante di tempo. Inoltre, grazie alla natura olonoma

del quadopter, il problema di ottimizzazione può essere somposto nei tre assi, riduendo

osì di molto il osto omputazionale. La funzione di superamento ostaoli è quindi svolta

dai ontrolli sugli assi laterale e vertiale, mentre il ontrollo sull'asse orizzontale garan-

tise una veloità ostante riduendola solamente in aso le traiettorie generate non siano

in grado di evitare orrettamente gli ostaoli. Le due strategie sono in�ne onfrontate

tra loro. Il metodo sviluppato in questa tesi risulta portare notevoli miglioramenti in

termini di a�dabilità delle traiettorie e di osto omputazionale. Il ontrollo è quindi im-

plementato in un modello altamente dettagliato del quadopter in modo da valutarne le

performane. Sono state inoltre svolte simulazioni a varie veloità di lok del proessore

in modo da veri�are la fattibilità in tempo reale.





1 Introdution

1.1 Motivation

In the last few years there has been muh interest in the use of small unmanned aerial

vehiles (UAVs) for seurity, surveillane, searh and resue as well as �lm reording

appliations. Researh has foused espeially on multirotor heliopters beause of their

great agility and ability to move in tough environments. Multirotors are highly maneu-

verable and are haraterized by the ability to take-o� and land vertially. A speial

lass is the quadrotor on�guration with �xed-pith propellers. This ategory has been

partiularly investigated due to its very simple mehanial struture. Other advantages

of quadopters are the great load apaity as well as the low manufaturing osts. Nev-

ertheless, the highly nonlinear and oupled dynamis along with omplex aerodynami

e�ets set demanding hallenges in the development of reliable ontrols. Furthermore,

the need to give more and more autonomy to this sort of vehiles leads to hallenging

issues regarding the development of real-time trajetory planning strategies. Various ap-

proahes are proposed in the literature both for stabilization and trajetory traking of

quadopters. In [1℄ a nonlinear ontrol for geometri traking of presribed trajetories

is desribed. Controls for aggressive manuevers within tight indoor environments, where

the approximation of small angles of the frame an not be justi�ed, are developed in [2℄

and [3℄. Few works present model preditive ontrol strategies for both path traking and

trajetory generation. Many of them use model preditive ontrol as part of two-layer

ontrol strutures ([4℄, [5℄, [6℄, [7℄). In this ase the double-layer ontrol may onsist of

two distint MPCs, suh as in [6℄, [8℄ and [7℄, or may have an MPC for the high-level

and a di�erent ontrol type for the lower level ([4℄, [5℄). Model preditive ontrol is well

suited also for state intereption maneuvers, thanks to the possibility to diretly impose
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onstraints on the motor thrusts as well as on positions to be reahed ([9℄, [10℄). One

of the most hallenging tasks that trajetory planning ontrols have to ope with, is the

avoidane of ollisions with obstales that may our on the way. For this aim, many

attempts were made in order to develop a ontrol apable of solving valid trajetories

online, and thus with hard restritions imposed on omputational load due to real-time

feasibility. In [12℄ a strategy is presented, that omputes waypoints and aording to

them solves polynomial trajetories. Also MPC was already used for obstale avoidane.

[1℄ exploits a nonlinear model preditive traking ontrol (NMPTC) in order to avoid

ollisions with other vehiles. In [8℄ the obstale avoidane task is instead arried out by

a linear time varying model preditive ontrol (LTV-MPC) that approximates the �yable

area through linear ontraints. As will be seen, linear ontraints bring great bene�ts in

terms of omputational load, however the approximations assoiated to them lead to great

di�ulties regarding the speed at whih the manuevers an be performed.

The aim of this work is to develop a model preditive ontrol for both stabilization

and trajetory planning inluding obstale avoidane, apable of ontrolling a quadopter

at higher speeds, while satisfying the strit requirements for real-time feasibility.

1.2 Content and struture of the work

The remainder of this work is organized as follows. In hapter 2 the system dynamis of the

quadopter are desribed together with the proposed overall ontrol struture. The last

setion of hapter 2 is dediated to the dynami model onsidered by model preditive

ontrol in order to make its predition. This relies on the assumptions made in [9℄.

Moreover, feasibility due to physial limitations is disussed and aordingly onstraints

on the ontrol ations are imposed.

Chapter 3 �rst presents the basis of model preditive ontrol. Then, after hoosing

a speial lass of MPC, it desribes the optimization problem that underlies the ontrol

strategy. After this, simple trajetories are generated for short and longer distanes in

order to interept given target states.

Chapter 4 relies on the results ahieved in the previous hapters and adds the

ollision avoidane feature. For this task the strategy desribed in [6℄ is �rst implemented.
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Various problems assoiated with this tehnique are deteted. This gives the ue to

develop a ompletely di�erent approah for obstale avoidane. Furthermore, the new

method is tested in three-dimensional environments as well as for moving obstales. At

the end of the hapter a omparison between the strategy desribed in [6℄ and the method

developed in this work is made. Trajetory planning performane as well as omputational

load are ompared and disussed.

In hapter 5 the overall ontrol and trajetory planning strategy is implemented into

a highly aurate simulation model of the quadopter. After disussing the results, real-

time feasibility trials are done in order to verify the appliability of the ontrol struture.





2 Quadopter Model

2.1 Overview

The quadopter onsists of a ross-shaped frame with four independent motors, eah

plaed on a vertex of the frame. Eah motor is diretly attahed to a �xed-pith propeller

and by ontrolling its rotational speed it an generate a fore direted along the axis of

the rotor. Through variation of the four rotational speeds one an generate a total thrust,

direted along the vertial axis of the body-�xed frame, and three torques, giving the

quadopter the ability to move in spae. The system has six degrees of freedom, three

translations and three rotations of the frame, but only four indipendent inputs (propeller

speeds), hene it is strongly underatuated. Only four outputs an be ontrolled, namely

the position oordinates x1, x2, x3 and the yaw angle. This leads the rotations about the

horizontal axes being heavily oupled with the translations of the vehile. Furthermore

the quadopter is a highly nonlinear instable system, whih leads to the neessity of an

eletroni ontrol, even for a mere hovering. In fat, unlike ground vehiles, it has very

small frition, hene a damping ation has to be arried out by the ontroller itself.

It is important to understand the funtioning priniple that underlies the quad-

opter's behavior. Hene a simple desription of how the quadopter's rotational and

translational movements are related to the ontrol ation provided by the four motors is

given in this setion. Eah rotor produes a thrust and torque about its enter of rota-

tion, as well as a drag fore opposite to the vehile's diretion of �ight, whih for our

studies an be negleted. As shown in �gure 2.1 the �rst and the third propeller rotate

ounterlokwise, and the seond and the fourth propeller rotate lokwise. Therefore, if

the four propellers all generate the same thrust, the moments will anel out leading to a

null total momentum about the vertial axis in the body-�xed frame.
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1

2

3

4

Figure 2.1: Rotors

A yaw-aeleration is indued by simply speeding up or down a pair of propellers rotat-

ing in the same diretion. For example, speeding up the �rst and third propellers results

in a lokwise rotation of the vehile about its vertial axis. For simple hovering, the

propellers will have to produe all the same power, so that the total thrust ompensates

the gravitational fore. To move up, it is su�ient to speed up the propellers all about

the same quantity, whereas to move the quadopter down the propellers have to slow

down. Lateral movements are ahieved by unbalaning the rotational speed of two op-

posed motors. For example speeding up the seond motor and slowing down the fourth

will result in a torque about the body-�xed x1-axis. This will lead to a rotation of the

frame about the x1-axis that will bring the diretion of the total thrust, whih is always

direted normally to the quadopters plane, to have a horizontal omponent that pulls the

vehile laterally. It is important to remark that rotations and translations are strongly

oupled. Figure 2.1 gives a simple graphial explanation.
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Figure 2.2: Quadopter dynami model - in [9℄

2.2 Quadopter dynamis

The quadopter an be desribed as a rigid body with six degrees of freedom: three linear

translations along the inertial axes x1, x2 and x3 and three degrees of freedom desribing

the rotation of the frame attahed to the body with respet to the inertial frame, desribed

by the orthogonal matrix R. Thus the di�erential equations governing the �ight an be

written as:

ẋ = v (2.1)

mv̇ = Re3f +mg (2.2)

Ṙ = RΩ̂ (2.3)

JΩ̇ + Ω× JΩ = M (2.4)



2 Quadopter Model 8

with e3 = [0 0 1]T and Ω̂ the skew-symmetri matrix form of the vetor ross produt

suh that

Ω̂ =








0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0








(2.5)

Note that (2.1) and (2.2) are written in the inertial frame, whereas (2.4) is expressed

in the body-�xed frame. The inputs of the system are the total thrust f and the three

omponents of the torque M = [M1M2M3]

The motors dynamis are muh faster than the body dynamis, hene we assume

that the thrust of eah propeller is diretly ontrolled, i.e., dynamis of rotors and pro-

pellers are not onsidered ([1℄). The diretion of the thrust is normal to quadrotor plane.

It is also assumed that the torque generated by eah propeller is diretly proportional to

its thrust.

τi = (−1)icτffi (2.6)

where i is the motor index beginning from the front propeller and ounting ounterlok-

wise. cτf is the onstant that relates the torque to the thrust. One the needed total

thrust f and the moments M1,M2,M3 have been evaluated, the fores fi that have to

be provided by eah single motor an be omputed by simply inverting the following

equation.











f

M1

M2

M3











=











1 1 1 1

0 d 0 −d

−d 0 d 0

−cτf cτf −cτf cτf





















f1

f2

f3

f4











(2.7)

where d is the distane of the motor with respet to the enter of gravity of the quadopter.

Generally the propellers are equally spaed for whih reason it is onsidered that their

distanes to the enter are all given by d. The fore produed by eah propeller is related

to its rotational speed as follows:

fi = kfω
2
i (2.8)
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Figure 2.3: Control Struture

This means, one the thrust is known, the angular veloity the motor has to provide an

be easily omputed. Every motor is then ontrolled by its own speed-ontroller. However,

as mentioned before, the motor dynamis won't be onsidered in the system model as

they are muh faster then the quadopter dynamis and an be therefore negleted.

2.3 Control Struture

To govern the quadopter's �ight through a model preditive strategy the same ontrol

sheme and ontrol inputs as desribed in [9℄ are used, sine this greatly simpli�es the

trajetory generation task suh that the model preditive ontroller only has to deal with

linear systems. The quadopter has very low rotational inertia, and an produe high

torques due to the outward mounting of the rotors. Therefore it an ahieve very high

rotational aelerations ω̇1 and ω̇2 on the order of 200 rad/s
2
. The reponse time to hanges

in the desired rotational rate is very fast. It is therefore assumable that the vehile body

rates an be diretly ontrolled, thus the rotational aeleration dynamis an be ignored

by the model preditive ontroller. Hene, the ontrol inputs for the MPC are hosen to

be the generated total thrust f , given by the sum of the four propeller thrusts fi, and

the body rates expressed in the body-�xed frame as ω = [ω1 ω2 ω3]
T
. Thus the MPC will
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generate referene values for the total thrust and the rotational rates in order to bring

the quadopter to follow the desired trajetory. Then the two body rates will be traked

by an attitude ontrol, whih uses feedbak from gyrosopes and returns values of the

needed torques about the body-�xed axes. Finally, total thrust and torques will be mixed

to individual motor thrusts exploting equation (2.7). The overall struture of the ontrol

strategy is depited in �gure 2.3.

2.4 Dynami model for the model preditive ontroller

2.4.1 Control Inputs

As mentioned in setion 2.3 the inputs an be hosen as the total thrust f and the body

rates desribed in the body-�xed frame ω = [ω1 ω2 ω3]
T
, sine the rotational aelerations

are fast enough to deouple them from the body dynamis. For simpliity from now on

the total thrust f is normalized by the vehile mass, thus having units of aeleration.

The di�erential equations an be rewritten leaving out (2.4).

ẍ = Re3f + g (2.9)

Ṙ = RΩ̂ (2.10)

with Ω̂ =








0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0








2.4.2 Reformulation in jerk

The aim is to onsider the trajetories of the quadopter in terms of the jerk (the �rst

derivative of the aeleration) of the axes, allowing the system to be onsidered as a triple

integrator in eah axis and thus simplifying the trajetory generation task. Writing the

hosen inputs of the system, namely the total thrust and the three rotational rates, as a

funtion of the jerk, allows to ompute them easily given a thrie di�erentiable trajetory

x(t), where the jerk is written as j =
...

x = [
...

x 1

...

x 2

...

x 3]
T
.
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The input thrust f is found by applying the Eulidean norm ‖ · ‖ to (2.9),

f = ‖ẍ− g‖ (2.11)

By squaring (2.11), taking the derivative and substituting for (2.9) the following equation

is obtained:

2f ḟ = 2(ẍ− g)T j = 2(Re3f)
T j (2.12)

ḟ = eT3R
T j (2.13)

Derivating (2.9) yields

j = RΩ̂e3f +Re3ḟ (2.14)

Substituting ḟ with (2.13) and evaluating the produt RΩ̂e3 one an �nally write:








ω2

−ω1

0







=

1

f








1 0 0

0 1 0

0 0 0







RT j (2.15)

As shown in (2.15) the jerk j and thrust f �x two omponents of the body rates. Indeed

the third omponent is not neessary, as a rotation about the e3 axis does not a�et the

translational aeleration (2.9). That means that ω3 an be hosen freely, for example one

an ontrol ω3 suh that the x1-axis of the body-�xed frame remains oriented with the

diretion of movement. For simpliity it will be hosen that ω3 = 0. Given a trajetory

desribed by the three omponents of the jerk and the initial states x0, ẋ0 and ẍ0, also the

trajetories for aeleration, speed and position an be omputed. Thus, one an evaluate

the inputs of the system using (2.11) and (2.15).

2.4.3 Feasibility onstraints

A trajetory is onsidered to be feasible if the inputs lie within a feasible range. Neessarily

there are some boundaries on the total thrust and the magnitude of the body rates that

result from physial limitations and therefore have to be onsidered when alulating a

trajetory. As previously stated one an onsider a trajetory desribed by the jerk and
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from that it is possible to evaluate the needed total thrust and body rates using equations

(2.11) and (2.15). As an be seen the total thrust depends on the aeleration, whih

obviously an be alulated by simply integrating the jerk trajetory. The aim is to �nd

boundary onditions on aeleration and jerk in order to satisfy the limitations on total

thrust and body rates, that will depend on physial bounds and an be obtained from

experimental results of the onsidered vehile. Note, that the onstraints must be onvex

and linear due to the requirements of the quadrati programming method exploited by

the model preditive ontrol and desribed in hapter 3. This restritions on the lass of

boundary onditions require to write onservative onstraints that in some ases will not

exploit the whole potentiality of the system.

First, the boundary onditions on the inputs of the system an be expressed as:

0 < fmin ≤ f ≤ fmax (2.16)

‖ω‖ ≤ ωmax (2.17)

where fmin > 0 is typial for �xed-pith propellers with a �xed diretion of rotation. In

fat, the propellers an't reverse their rotation diretion during �ight and an not rotate

under a ertain rotational rate. Thus the minimum ahievable total thrust orresponds

to the ase in whih all the motors are rotating at their minimum speed. Obviously the

maximum total thrust an be ahieved when all motors are rotating at their maximum

speed. By squaring (2.11) and writing it in its omponent these limits an be translated

to limits on the aeleration, and thus on the jerk trajetory.

f 2
min ≤ ẍ2

1 + ẍ2
2 + (ẍ3 + g)2 ≤ f 2

max (2.18)

Note that these onstraints on the aeleration are neither onvex nor linear. Hene it is

neessary to �nd a onvex area desribed by linear onstraints. The following inequalities

give a onservative set of onvex box-onstraints, one for eah axis.

ẍmin1 = −ẍmax1 ≤ ẍ1 ≤ ẍmax1 (2.19)

ẍmin2 = −ẍmax2 ≤ ẍ2 ≤ ẍmax2 (2.20)

ẍmin3 = fmin − g≤ ẍ3 ≤ ẍmax3 (2.21)

As will be explained, in hapter 3 writing onstraints for eah axis separately allows to
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Figure 2.4: Cross-setion of the feasible aeleration sets - [9℄

deouple the axes, whih will greatly simplify the trajetory generation task. Figure 2.4

depits a ross-setion in the x1-x3 plane of the true thrust limits (lightly shaded) and the

deoupled per-axis aeleration limits (darker retangular area). As shown in the graph,

the box-onstraints leave out a big part of the true feasible area in order to be onvex

and linear. As mentioned before the performane of the quadopter an't be exploited to

its full extent and onservative boundary onditions have to be onsidered. Note that the

diretion of a generi thrust vetor drawn in �gure 2.4 also represents the real diretion

of the quadopter's body �xed x3-axis, sine it is always direted with the total thrust.

This means that none of the feasible three-dimensional aelerations onsidered brings the

quadopter to overturn. Hene this will also limit the angle by whih the vehile's frame

an be rotated, with a maximum value owned for the points orresponding to the lower

verties of the retangular area. The resulting trajetories are guaranteed to be feasible

with respet to the thrust limit if

ẍ2
max1 + ẍ2

max2 + (ẍmax3 + g)2 ≤ f 2
max (2.22)

whih brings the box-onstraints to lie inside the true feasible region. An upper bound
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for the body rates an be found as a funtion of the jerk by taking the (indued) norm of

(2.15)

‖ω‖ ≤ 1

f
‖j‖ ≤ 1

fmin
‖j‖ (2.23)

Applying the limit (2.17) to the above and rearranging the terms yields:

‖j‖ =
√

j21 + j22 + j23 ≤ fminωmax (2.24)

To obtain linear onvex deoupled onstraints on the jerk, the worst ase in whih all three

axes produe the maximum allowable jerk jmax is evaluated. In this ase the boundary

onditions expressed in (2.24) still have to be satis�ed. This yields an upper bound on

the allowable jerk per axis

jmax =
1√
3
fminωmax (2.25)

As said before, ωmax, fmin and fmax ome from physial limits and an be obtained

by experimental results. Furthermore, by exploting equations (2.25), (2.22) and (2.19)-

(2.21), onvex limits on jerk and aeleration are found and an be applied diretly into

the optimization problem mentioned in hapter 3 due to their linear nature.



3 Model preditive online trajetory

generation

In this hapter a method for generating online trajetories exploting the potentiality

of model preditive ontrol (MPC) is desribed. As mentioned in hapter 2 MPC will

perform the trajetory generation task and will at as a high-level ontrol. The output

will be a trajetory desribed in terms of jerk, out of whih the total thrust and two body

rates an be easily omputed using equations (2.11) and (2.15). Then the body rates will

be traked by a low-level ontrol whih exploits feedbak from gyrosopes. First, simple

trajetories like reahing a target point starting from resting onditions or approahing

distant positions are performed. The results ahieved in this hapter will be then used in

hapter 4 in order to guide the quadopter through more omplex situations like �ying

among stati and moving obstales.

The remainder of this hapter is organized as follows. After explaining the main

priniple of model preditive ontrol (setion 3.1), a partiular lass of MPC will be hosen

in order to satisfy the strong requirements set on the omputational load for real-time

appliations (setion 3.2). The basis of linear disrete-time MPC and its implementation

will be desribed. In setion 3.4 �rst trials for simple trajetory generation tasks along

with the hoie of the parameters will be illustrated and disussed.

3.1 Model preditive ontrol overview

Model preditive ontrol was introdued in the early 80's. First, it was developed to

ontrol hemial industrial plants as well as re�neries. The basi priniple of MPC is to

ontrol a system by making preditions on its future behavior and therefore being able to
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optimize a ertain ost funtion along the predited horizon. The main advantage of this

ontrol method is that it is able to alulate the optimal ontrol inputs taking into aount

the system dynamis and onsidering the physial limitations that may be imposed on

ertain variables. Considering, for example, a tank whose pressure is ontrolled by a

valve, MPC makes it possible to alulate all the future positions of the valve needed

for the pressure to follow a given referene. The evaluated trajetory for the inputs

an easily handle all the onstraints on the manipulated variable itself as well as the

onstraints on the output (or generally on the states of the plant). For example it an

be onsidered, that the valve is only allowed to lose with a ertain speed or that the

value of the pressure should remain in a given range. As said before the MPC generates a

trajetory for the ontrol variable minimizing a given funtional. Typially this objetive

funtion is the error of the output variables with respet to a given referene as well as

terms onsidering the overall energy needed to follow the trajetory. One the ontrol

ations for the future horizon are omputed by an optimization solver, only the �rst step

of the input trajetory is applied to the system. Then the proess is repeated and a new

trajetory is evaluated starting from the new atual state of the plant. This proedure is

alled "reeding strategy" and allows to ope with problems assoiated to modeling errors

or unpreditable fores ating on the system, therefore allowing a proper feedbak ation.

In fat, if all the system parameters as well as the future behavior of all the external

agents were perfetly known, it would be su�ient to alulate an optimal trajetory

of the ontrol ations one and for all. MPC is a very powerful tool, but on the other

hand it has to ope with two main hallanges. The �rst is the need for an aurate

knowledge of the system model, whih in most ases is governed by a signi�ant number

of nonlinear di�erential equations. It is also di�ult to obtain a preise estimation of all

the parameters desribing the model. The seond drawbak is the huge omputational

load needed by the optimization solver to generate a solution. This is also the reason

why MPC was initially applied only to plants governed by slow dynamis, where the

update rate of the ontrol ation an be low enough to solve an optimization problem.

Due to the progress ahieved in the last deades on the omputational performanes

of the proessors as well as on e�ient optimization algorithms, it is today possible to

ontrol systems with fast dynamis with model preditive tehniques. MPC has therefore
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beome an interesting objet of researh for what onerns real-time generation of optimal

trajetories for autonomous vehiles suh as road vehiles or UAVs.

3.2 Linear disrete-time model preditive ontrol

As explained in setion 3.1 one of the main drawbaks of MPC is the time needed to

solve an optimization problem. A useful solution to keep a low omputational load is to

use a linear disrete-time MPC. The latter is haraterized by minimizing a quadrati

objetive funtion subjet to linear onstraints and using a linearized model of the sys-

tem. Linear equations are muh easier to ope with and there is a great multitude of

fast algorithms that an solve quadrati optimization problems with linear onstraints.

Moreover, by disretizing the system in the time domain it is possible to transform the

dynami optimization problem, whih needs to be solved in an analytial way, into a stati

optimization problem, whih an be easily managed numerially with fast algorithms.

After evaluating the future ontrol ations, only the �rst step is applied to the

system. This ontrol input is held until the next one is alulated, whih means that

the ontrol input is step-shaped. For that reason a disrete-time model of the system is

perfetly suited to the step-working ontrol logi of MPC.

3.2.1 Quadrati Problem Formulation

Most of the software for quadrati programming aept the following formulation of the

problem:

min
x

J =
1

2
xTHx+ xTg (3.1)

s.t. lbA ≤ Aineq · x ≤ ubA (3.2)

lb ≤ x ≤ ub (3.3)

where x is the vetor of the manipulated variables, H is the symmetri and posi-

tive (semi-)de�nite Hessian matrix, whih represents the quadrati term of the objetive

funtion, g is the gradient vetor, representing the linear term. Aineq is the matrix, whih
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multiplied by x returns the a�ne funtions for the linear onstraints. lb and ub are re-

spetively the lower and upper bounds that at diretly on the variables, whereas lbA and

ubA are the lower and upper bounds for the linear onstraints.

3.2.2 Time-disretization of the system

The aim is to generate a trajetory in order to minimize a spei� quadrati ost funtion

along the onsidered time window. Typially this ost funtion onsists of a term that

depends on the states of the system and one that depends on the ontrol input. Given

the linear ontinuous-time system

ẋ(t) = A∗x(t) +B∗u(t) (3.4)

with x ∈ R

n
and u ∈ R

m
, the quadrati objetive funtion is

J =
1

2

∫ TH

0

xTQx+ uTRu dt (3.5)

where Q is the symmetri positive (semi-)de�nite matrix ontaining the weighting terms

for the states and R is the symmetri positive de�nite matrix that weights the ontrol

inputs. The dynami optimization problem of minimizing (3.5) subjet to the dynamis

(3.4) has to be transformed into a stati optimization problem of the form (3.1) - (3.3).

This an be done by exploiting the following equations:

Ad = eA
∗
·ts

(3.6)

Bd =

(∫ ts

τ=0

eA
∗
·τ dτ

)

B∗
(3.7)

where Ad and Bd are the system matries of the disrete-time system given by

xk+1 = Adxk +Bduk (3.8)

For onveniene Ad and Bd will be renamed as A and B. The formulation of the quadrati

optimization problem in disrete-time form is:

min
u0···uN−1

1

2

n−1∑

k=0

xT
k+1Qxk+1 + uT

kRuk (3.9)
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s.t. xk+1 = Axk +Buk (3.10)

lbxk
≤ Cineqkxk ≤ ubxk

k = 1 · · ·N (3.11)

lbuk
≤ uk ≤ ubuk

k = 0 · · ·N − 1 (3.12)

where N represents the number of steps omposing the predition horizon and Cineqk

represents the matrix needed to impose linear ontraints on the states for the step k.

Writing (3.10) for eah step of the horizon and substituting eah equation in the following

one yields:

x1 = Ax0 +Bu0

x2 = Ax1 +Bu1 = A2x0 + ABu0 +Bu1

.

.

.

xN = AxN−1 +BuN−1 = ANx0 + AN−1Bu0 + AN−2Bu1 + · · ·+BuN−1

(3.13)

Equation (3.13) an be summarized in matrix form














x1

x2

x3

.

.

.

xN














︸ ︷︷ ︸

X

=














A

A2

A3

.

.

.

AN














︸ ︷︷ ︸

A

x0 +














B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · · 0
.

.

.

.

.

.

.

.

.

AN−1B · · · B














︸ ︷︷ ︸

B














u0

u1

u2

.

.

.

uN−1














︸ ︷︷ ︸

U

(3.14)

X is the vetor ontaining the states of all N steps of the foreasted horizon, whereas U

ontains the N · m ontrol inputs within the predition time window. Finally it an be

written:

X = Ax0 +BU (3.15)

whih summarizes the response of the disrete-time system given the N ·m ontrol inputs

of the predited horizon. The quadrati problem an be rewritten as:

min
U

1

2
(XTQX + UTRU) (3.16)

s.t. LBX ≤ C ineq X ≤ UBX (3.17)

LBU ≤ U ≤ UBU (3.18)
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with

LBX =











lbx1

lbx2

.

.

.

lbxN











, UBX =











ubx1

ubx2

.

.

.

ubxN











, LBU =











lbu0

lbu1

.

.

.

lbuN−1











, UBU =











ubu0

ubu1

.

.

.

ubuN−1











Q =











Q 0 · · · 0

0 Q · · · 0
.

.

.

.

.

.

.

.

.

0 · · · Q











, R =











R 0 · · · 0

0 R · · · 0
.

.

.

.

.

.

.

.

.

0 · · · R











and C ineq =











Cineq1 0 · · · 0

0 Cineq2 · · · 0
.

.

.

.

.

.

.

.

.

0 · · · CineqN











The aim is now to obtain an objetive funtion that depends only on the manipulated

variables of the N steps of the predition horizon. To do this, (3.15) is substituted in the

ost funtion desribed in (3.16), whih leads to:

J =
1

2

[

(Ax0 +B U)T Q (Ax0 +B U) + UTRU
]

(3.19)

Rearranging the terms yields:

J =
1

2
UT
(
BTQB +R

)
U + UTBTQAx0 + xT

0A
TQAx0 (3.20)

The term xT
0A

TQAx0 is a onstant term, whih means it does not in�uene the minimiza-

tion proess. Therefore it an be ignored, so that the new ost funtion an be de�ned

as:

J∗ =
1

2
UT
(
BTQB +R

)

︸ ︷︷ ︸

H

U + UT BTQAx0
︸ ︷︷ ︸

g

(3.21)

By substituting (3.15) in (3.17) and rearranging the terms the linear onstraints on X

an be rewritten as onstraints on U :

LBX − C ineq Ax0
︸ ︷︷ ︸

lbA

≤ C ineq B
︸ ︷︷ ︸

Aineq

U ≤ UBX − C ineq Ax0
︸ ︷︷ ︸

ubA

(3.22)

Finally, the optimization problem an be expressed as a funtion of the ontrol ation U ,

thus with the formulation needed by the solver.

min
x

1

2
UTHU + UTg (3.23)
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s.t. lbA ≤ Aineq · U ≤ ubA (3.24)

lb ≤ U ≤ ub (3.25)

with

H = BTQB +R (3.26)

g = BTQAx0 (3.27)

lbA = LBX − C ineq Ax0 (3.28)

ubA = UBX − C ineq Ax0 (3.29)

Aineq = Cineq B (3.30)

3.2.3 Time parameters

Mainly two time parameters in�uene the appliabilty of MPC. The �rst is the sampling

time tS; that is the update rate whereby the ontroller generates a new ontrol ation. For

real-time apability all omputation has to be performed within the sample time. This

value has to be set low enough to give the ontroller the apability to apture the fast

dynamis of the plant. If the disretization is hosen too long, there is a risk to �lter out

important dynamis leading to stability problems.

The seond fundamental omponent is the predition horizon N . This sets the time

window in whih the optimization is performed, giving the length of the trajetory that

has to be alulated. The horizon is alulated by TH = N · tS. It has to be hosen long

enough to onsider the long dynamis of the plant. For example, if the horizon is set to

N = 50 and the sampling time to tS = 30ms, the time window has a length of TH = 1.5s.

Hene, the predition horizon de�nes the number of variables that the optimization solver

has to manage. It is easy to understand that the longer the predition horizon is, the

longer the algorithm will take to solve the problem and alulate the optimal trajetory

of the manipulated variable. On the other hand it has to be kept as long as possible in

order to extend the time window of the optimization.
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3.3 Optimization problem and deoupled axes

In this setion the optimization problem that underlies the trajetory generation task is

depited. As desribed in subsetion 2.4.2 the system input an be onsidered to be the

three-dimensional jerk, sine the values of the thrust and two body rates an be easily

omputed as funtions of it. Hene the quadopter dynamis onsidered by the MPC

beome a set of three triple integrators, one on eah axis, with position, veloity and

aeleration as states. As suggested in [9℄ the ost funtion is hosen as:

Jcoupled =

∫ T

0

(j1(t)
2 + j2(t)

2 + j3(t)
2) dt. (3.31)

Indeed, rearranging (2.23) the ost funtion results in an upper bound for a produt of

the inputs:

f 2‖ω‖2 ≤ j21 + j22 + j23 (3.32)

This implies that the problem an be split, thus minimizing the jerk separately for eah

axis without losing the meaning in the ontext of the oupled three-dimensional problem.

The motivation for deoupling the axis is to have the simplest possible model in order

to ompute a solution for the optimization problem as fast as possible. Indeed it an

be proved that solving three separate problems of N variables implies a muh lower

omputational load than solving a single problem of 3N variables.

Note that the axes an be fully deoupled due to the holonomi nature of the

quadopter regarding its three translational degrees of freedom. In other words, the

longitudinal, lateral and vertial movements an be ontrolled separately. To understand

this onsider the ounterexample of a nonholonomi (or anholonomi) vehile suh as a

ar. In order to move left or right it has neessarily to move longitudinally. The most

famous example is the parallel parking problem, where in order to get into the parking

spae the ar �rst has to move forward, then it has to reverse its diretion while steering.

A quadopter, instead, an diretly move laterally. Thus, a point in spae an be reahed

independently from the followed path. For that reason, the quadopter will be ontrolled

by three separate MPCs, eah ontrolling a di�erent axis separately.

Thus, three deoupled trajetory generation problems an be solved. For eah axis

a disrete-time linear, time invariant system given by a triple integrator, an be written
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as:

zk+1 =








1 ts
1

2
t2s

0 1 ts

0 0 1







zk +








1

6
t3s

1

2
t2s

ts







jk (3.33)

jk =
...

x (kts) (3.34)

zk =








x(kts)

ẋ(kts)

ẍ(kts)








(3.35)

with jerk j =
...

x
as input and position, veloity and aeleration as states. These are sum-

marized in the state vetor zk. The axis subsripts have been negleted for onveniene,

sine the formulation is exatly the same for all three axes. The disretization step ts

is hosen as usual equal to the sampling time of the MPC, sine it represents also the

real update rate of the ontrol input. Now, that the system has been desribed, the ost

funtion has to be de�ned. This is done by simply disretizing (3.31) and taking only the

term orresponding to the evaluated axis.

J =

N−1∑

k=0

j2k (3.36)

where N is the number of steps omposing the onsidered predition horizon. The optimal

ontrol problem has to satisfy boundary onditions assoiated to aeleration and jerk

limits as de�ned in subsetion 2.4.3.

ẍmin ≤
[

0 0 1
]

zk ≤ ẍmax (3.37)

jmin ≤ jk ≤ jmax (3.38)

The optimization problem for trajetory generation is de�ned by minimizing sepa-

rately for eah axis the ost funtion (3.36) subjet to the system dynamis (3.33)-(3.35)

and to the onstraints on aeleration (3.37) and jerk (3.38). In order to perform tasks

like interepting a state or following a referene, some onstraints and ost funtion terms

still need to be added, as will be desribed in the next setions.
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Figure 3.1: 1 meter rest to rest translation within 1 seond - Trajetory of the frame in

x1-x3 plane

3.4 Trajetory generation for state intereption

3.4.1 Rest position to rest position

First, the ase in whih the quadopter has to �y from a point to another in a time that

orresponds to the predition horizon TH , is onsidered. In this ase the time window

onsidered by the MPC overs the whole maneuver. Generally this is not the ase, beause

MPC takes into aount only a time window limited to its predition horizon, although

the whole maneuver may last for a longer period. To fore the trajetory to reah the

desired target, a onstraint on the last state vetor has to be imposed.

zN = [xT ẋT ẍT ]
T

(3.39)

Beause the optimization solvers usually only deal with inequality onstraints, it is ne-

essary to set the same values for the upper and lower bound in order to make an equality

onstraint out of two inequalities.

[xT ẋT ẍT ]
T ≤ zN ≤ [xT ẋT ẍT ]

T
(3.40)

where zT = [xT ẋT ẍT ]
T
is the desired target state that has to be reahed.

The �rst experiment onsidered is the displaement of 1.3m about the x1-axis done

in a time lapse of 1s from resting ondition at start to resting ondition at target. It

should start and arrive with null speed and null aeleration. The sampling time is

hosen to be ts = 20ms. This means that the predition horizon an be omputed as

N = TH

ts
= 50. Having de�ned the whole optimization problem onsisting of the system
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Figure 3.2: 1.3 meters rest to rest translation within 1 seond - Generated trajetories

for States and Jerk

dynamis (3.33) - (3.35), the ost funtion to minimize (3.36) and the onstraints on

input and states (3.37), (3.38) and (3.40) and imposing zT = [1.3m 0 0]T , it an be

implemented in the optimization solver. The aeleration limits are set to ẍmax = −ẍmin =

7m
s2

and the jerk limits to jmax = −jmin = 70m
s3
. As optimization solver qpOASES [14℄

is hosen, whih employs e�ient online ative set methods, generating solutions in very

short times and therefore being very useful for model preditive ontrol appliations. In

this setion it will be disussed about the solutions that the solver omputes for the �rst

optimization, namely the one for t = 0. Hene the reeding strategy ating online, will

not be implemented yet.

In �gure 3.1 the movement of the quadopter in the two-dimensional plane x1-
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Figure 3.3: 1.4 meters rest to rest translation within 1 seond - Generated trajetories

for states and jerk

x3 is illustrated in order to understand how it is rotating its frame while following the

trajetory. It is important to notie that a di�erent aeleration is assoiated to eah

attitude of the frame. Hene the greater the angle about the x2-axis is, the more the

quadopter will aelerate in x1-diretion.

As illustrated in �gure 3.2 the trajetory orretly reahes the 1.3m position. The

quadopter starts at rest position and arrives at resting onditions, as the initial and �nal

veloities show. The saturations of aeleration and jerk are evident. The aelaration

reahes its upper limit of 7m
s
at time step k = 8 and its lower limit for k = 37 while

deelerating.

Due to the hard onstraints on the �nal state as well as to the limits on the
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maximal values reahable by jerk and aeleration, it is obvious that there will be a

maximal translation ahievable within the predition horizon TH = 1s. To �nd out its

value various trajetories having di�erent �nal positions to reah were solved. Starting

with xT = 1m and inreasing the value by 0.001m for every iteration, the last feasible

trajetory, i.e. where the solver still returns a valid solution, is found to be the one for

xT = 1.4m. This means that no greater translations an be ahieved within 1 seond

starting from rest and arriving at rest onditions. The results for this solution are plotted

in �gure 3.3. As shown, �rst the jerk is saturated at j = 70m
s3
. As soon as the aeleration

reahes its maximum the jerk has to assume the zero value, beause a further inreasing of

ẍ is not feasible. Then the aeleration has to swith from a positive to a negative value

in order to deelerate and bring the quadopter to rest in �nal position. This is done

with the maximum ahievable negative gradient, that is the minimum value of the jerk:

jmin = −70m
s3
, bringing

...

x
again to saturation. This is the ase for whih the quadopter

employs its maximum performane, satisfying the given boundary onditions.

The only way to inrease the maximum ahievable distane is to set a longer predi-

tion time TH , as the onstraints on jerk and aeleration ome from physial limitations

and therefore an't be modi�ed. To do this there are two main options. The �rst is

to hoose a longer predition horizon N . Although, this will greatly inrease the time

needed for the solver to generate a solution, due to the large number of manipulated

variables. The seond option onsists in setting a longer sampling time ts, although it

an't be pushed beyond a ertain limit, due to the stability problems mentioned in sub-

setion 3.2.1. Trials were done with ts = 30ms maintaining the value of the predition

horizon at N = 50. Again the experiments were started with xT = 1m and the �nal po-

sition was inreased by 0.001m eah iteration to see whih was the maximum translation

from rest to rest that ould be reahed. The result was that the last feasible solution was

the one for xT = 3.4m. This means that by inreasing the sampling time by only 50% it

has been ahieved to extend the reahable position by a. 143%.

It should not be forgotten, that for now it has been disussed about the �rst

optimization problem that has to be solved, that is for the instant t = 0. In real MPC

appliations the solver will have to optimize a trajetory every ts seonds from the atual

position and state of the vehile, in order to perform the feedbak task.
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Figure 3.4: 2.5 meters rest to target translation - Trajetory of the frame in x-z plane

3.4.2 Rest position to target

In this subsetion the ase in whih a position has to be reahed within the horizon

time starting from rest, is onsidered. Here there are no onstraints on the veloity and

aeleration of the �nal state, whih means the only task is to reah the target without

aring about the speed or aeleration owned in k = N . This means that onstraint (3.40)

will be replaed with:

xT ≤
[

1 0 0
]

zN ≤ xT (3.41)

with zn =








xN

ẋN

ẍN







and xT oordinate on the x1-axis of the target to be reahed. The �rst

trial onsiders xT = 2.5m. Again sampling time and horizon are set to be ts = 20ms and

N = 50 and the onstraints on jerk and aeleration are the same as before. Figure 3.5

shows the results. As it is notieable veloity and aeleration aren't equal to zero at the

�nal step. The jerk is minimized and the onstraints are satis�ed, e.g. the aeleration

is saturated starting at k = 27. The position is reahed at the �nal step while still

aelerating. Figure 3.4 shows the rotation of the quadopter frame in the x1-x3 plane. As

before, trials were done in order to �nd out what the maximal reaheable displaement in

a time lapse of 1 seond is: the resulting value was 3.2m. Setting ts = 30ms and therefore

having a horizon TH = 1.5s a maximal translation of 7.4m is gained.
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Figure 3.5: 2.5 meters rest to target translation - generated trajetories for states and

jerk

3.5 Trajetory planning for distant targets

In this setion the ase is examined, in whih the predition horizon isn't able to over

the whole maneuver. For example, onsider the ase in whih the target is loated 15

meters away from the initial position of the quadopter. For this situation it is impossible

to set hard onstraints on the �nal step of the predition horizon, due to the limitations

seen in setion 3.4 as regards the maximal translation ahievable within the preditive

horizon. Hene it is neessary to onsider the target in the objetive funtion and no more

as a onstraint. To do this it is onvenient to weight the deviation between the predited

states and the state to be ahieved into the ost funtion. For the onsiderations made
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in setion 3.3 the problem will be separated again in three di�erent optimization tasks,

one for eah axis. This means that eah of the three solvers takes are of �nding an

optimal trajetory for its own axis. Note that in this ase the �rst trajetory that will

be alulated won't reah the target but will only ome loser to it. However the MPC

strategy works online, whih means that after applying the �rst ontrol ation to the

system, a new solution will be alulated. This is done every ts seonds, whih means

that every new trajetory will get loser to the target, sine the vehile is moving towards

it.

3.5.1 De�ning the ost funtion

As mentioned before, the deviation to target has to be onsidered into the ost funtion.

Thus a term is added to the objetive funtion depending on the predited states. The

subsripts are negleted for onveniene, sine the problem an be written in the same

way for all three axes.

Jz =
1

2

N∑

k=1

(zT − zk)
TQ(zT − zk) (3.42)

Q =








wx 0 0

0 wẋ 0

0 0 wẍ








(3.43)

zT =








xT

ẋT

ẍT








(3.44)

The vetor zT ontains the position, veloity and aeleration to be reahed. The terms

wx, wẋ and wẍ represent respetively the weights on position, veloity and aeleration

error. Minimizing the ost funtion (3.42) means trying to redue the deviation between

predited state and target state for eah step of the horizon, whih leads the trajetory

to approah the target. The aim is to hoose the values of wx, wẋ and wẍ in order to

ahieve the best performanes as regards the reahing of the arrival point. Again it an
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be deided to also minimize the jerk, so that the �nal ost funtion an be written as:

J =
1

2

(
N∑

k=1

(zT − zk)
TQ(zT − zk) +

N−1∑

k=0

wjj
2
k

)

(3.45)

Here a term wj was added in order to be able to weigh the jerk relatively to the states.

As spei�ed in subsetion 3.2.2 the ost funtion has to be formulated in terms of the

manipulated variables. To do this, (3.45) will be �rst written in matrix form:

J =
1

2

[

(ZT − Z)T Q (ZT − Z) + UTRU
]

(3.46)

with Q =








Q · · · 0
.

.

.

.

.

.

.

.

.

0 · · · Q







, R =








wj · · · 0
.

.

.

.

.

.

.

.

.

0 · · · wj







and ZT =








zT
.

.

.

zT








Z ontains the predited states along the horizon, whereas U ontains all the manip-

ulated variables. Substituting (3.15) in (3.46), rearranging the terms and eliminating the

onstant terms, as they do not a�et the minimization proess, yields:

J∗ =
1

2
UT



BTQB +R
︸ ︷︷ ︸

H



U + UT BTQ (Az0 − ZT
︸ ︷︷ ︸

g

) (3.47)

3.5.2 Setting the parameters

Having de�ned the ost funtion the values of the weights have to be hosen in order

to ahieve the desired performanes. The referene distane will be set to xT = 15m,

whih has to be reahed at rest. Thus the target state will be zT = [15m 0 0]T . Again

ts = 20ms and N = 50 are set. Initially only the position error is weighed, whih means

wx = 1 and wẋ = wẍ = wj = 0. Note that in this ase the value of wx is irrelevant,

provided it is di�erent to zero. In fat the weights in the ost funtion merely have a

relational meaning. Implementing the MPC ontrol strategy into the system model and

simulating leads to the results depited in �gures 3.6 and 3.7.

As an be seen, the translation has a strong overshoot about the referene point.

This is due to the fat that only the position is weighed, hene the ontroller �rst gives

full aeleration to the system in order to get to the target as soon as possible. MPC will

start to deelerate only shortly before the position is reahed, namely at 1.72 seonds,
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Figure 3.6: 15 meters translation - Jerk - Only the position is weighed in the ost fun-

tion - wx = 1;wẋ = wẍ = wj = 0
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Figure 3.7: 15 meters translation - States - Only the position is weighed in the ost

funtion - wx = 1;wẋ = wẍ = wj = 0
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Figure 3.8: 15 meters translation - States for di�erent veloity weighting terms wẋ -

wx = 1;wẍ = wj = 0

whih however is too late to avoide an overshoot. The target is �rst approahed at a.

2.28 seonds, whereas the aeleration starts to derease at 1.62 seonds. This means the

MPC reats to the approah of the target only 0.66 seonds before reahing it. To avoid

an overshoot it is therefore neessary to weigh also the veloity error in order to keep it

under ontrol and give the system a damping ation.

Figure 3.8 shows the response of the system for di�erent values of the weighting

term wẋ. As an be seen, the more the veloity error is weighed the more the system

response is damped. Too low values of wẋ lead to overshoots, whereas too high values

lead to too long transient times for the quadopter to reah the referene. In this ase



3 Model preditive online trajetory generation 34

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

Time [s]

P
os

iti
on

 [m
]

 

 

0.05
0.2
0.5

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

Time [s]

V
el

oc
ity

 [m
/s

]

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

Time [s]

A
cc

el
er

at
io

n 
[m

/s
2 ]

Figure 3.9: 15 meters translation - States for di�erent aeleration weighting terms wẍ

- wx = 1;wẋ = 0.5;wj = 0

the hoie wẋ = 0.5 seems to be a good ompromise. Note that the larger the value of

the veloity-weighting term, the earlier the ontrol reats to an approahing of the target.

For example for wẋ = 2 the quadopter already starts deelerating at 0.9 seonds.

Figure 3.9 shows the trajetories for di�erent values of the aeleration-weighting

term wẍ. The other terms are hosen as wx = 1 , wẋ = 0.5 and wj = 0. Considering

the aeleration into the ost funtion leads to a smoother progress of the latter and in

some ases an help to ahieve better performanes. However, a too large value an lead

to overshoots. To remark the e�et of the predition horizon, di�erent simulations with

various values of N were done. In �gure 3.10 some of the results are plotted. For this
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Figure 3.10: 15 meters translation - States for di�erent preditive horizons N - wx =

1;wẋ = 0.5;wẍ = 0.2;wj = 0

tests the weighting terms are set to wx = 1 , wẋ = 0.5 ,wẍ = 0.2 and wj = 0. As it

is notable shorter predition horizons bring the system to reah the target in a longer

time. Consider that a larger predition time involves a greater number of variables and

therefore a longer omputational time. As an be seen, hanging the predition horizon

from N = 50 to N = 100 doesn't lead to great improvements. Thus a lengthening of the

time window does not justify an inrease of the omputational time.
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Figure 3.11: Comparison between omplex system model and MPC system model

3.5.3 Simulations with omplete model

To verify the performane of the ontroller it was implemented in a omplex simulation

model that takes into aount also the aerodynami e�ets as well as the rotational dy-

namis of the quadopter. It also onsiders the ontroller employed to trak the required

rotational rates. To point out the simpli�ations made for the plant model used for the

MPC the following ase is onsidered. The quadopter starts at rest in the position

x0 = [0 0 5m]T and has to reah the point xT = [10m 7m 5m]T at rest. The fol-

lowing weights for position, veloity and aeleration error were set: wx = 1 , wẋ = 0.5

, wẍ = 0.2. This time the hoie was to weigh also the jerk with wj = 0.1. Figure 3.11

ompares the results obtained by applying the ontroller to the omplete model with those
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gained implementing it in the model onsidered by the model preditive ontroller itself

(dashed lines). As an be seen the quadopter loses altitude by a. 1 meter. This is due

to the aerodynami fores, as at that point the system reahes a peak speed (a. 4.6m
s
)

at whih aerodynami e�ets ontribute signi�antly to the system dynamis. Note that

the drop of the vertial oordinate arises as the speed module reahes its maximum. A

plausible explanation ould be that the ontrollers for the two horizontal axes make sure

to provide a rotational rate needed to ounterat the aerodynami fores. This implies

a larger rotation of the frame in order to inrease the horizontal aeleration. Hene the

vertial omponent of the total thrust dereases, leading to a drop of altitude the vertial

ontroller will have to ope with. Note that the total thrust is alulated without onsid-

ering the aerdynamial fores (See (2.11)). Fortunately, as mentioned in setion 3.1, MPC

is able to ompensate for modeling errors thanks to its online realulation of trajetories.

The ase was presented on purpose in order to highlight the problems that ould arise

negleting the aerodynami e�ets. Obviously the performane of the altitude traking

an be improved for example by inreasing the position weighting term wx of the MPC

ating on the vertial axis. However this ould lead to overshoots in ase the referene

altitude hanges too rapidly (see 3.5.2).





4 Obstale avoidane

In Chapter 3 a method to generate trajetories online for reahing given referene states

and positions is desribed. Consider now the task for whih the quadopter has to �y in

a given diretion, for example towards a given target point, while avoiding the obstales

that may present on the way. It is assumed that a measurement system, apable of

deteting obstales, is passing informations to the trajetory planner about their position,

dimension and possibly veloity in ase of moving obstales. While the height and width

of obstrating objets may be measured easily for example exploiting ameras or laser

sanners diretly mounted on the vehile, obtaining informations about their length may

look like a strong hypothesis. In reality, it is ommon to make preditions based on

previous experiene. So it is normal to expet for example a tree beeing approximately

equally spreaded in all its horizontal diretions.

There are mainly two ways to onsider obstales into an optimization problem. The

�rst is to desribe it in the ost funtion. To do this it is neessary to have a nonlinear ob-

jetive funtion that onsiders the distane to the obstale. In [13℄ the ollision-avoidane

is arried out by onsidering the inverse-square of the distane into the ost funtion.

Thus minimizing this term results in maximizing the absolute value of the distane to an

obstale leading the vehile to stay away from it. Unfortunately, sine we are onsidering

a quadrati ost funtion, this is not possible. This leads to the seond way to ope with

the ollision-avoidane task, that is onsidering the obstales as hard onstraints. Dealing

with a linear disrete-time MPC this is not a simple task, sine the equations that may

desribe an obstale are strongly non-linear. Furthermore the region desribed by the

boundary onditions has to be onvex. This two onditions bring to make strong approxi-

mations on the �yable region. In fat, onsidering for simpliity the two-dimensional ase,

linear onstraints on the positions an only onsider polygonal �yable areas.
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In this hapter the inertial axes are referred to as longitudinal, lateral and vertial

axis and are denoted as x,y and z.

4.1 Convex polyhedral approximation approah

A method to solve the obstale avoidane task with MPC exploiting linear ontraints is

proposed in [8℄. The method onsists of approximating the non-onvex feasible spae of

interest for navigation with onvex polyhedra, de�ned for every point in time. The main

idea is to �nd a onvex polyhedron that does not ontain any of the obstales, in order to

onstrain the solution to lie within the latter. For every instant in whih a new trajetory

is generated, a di�erent polyhedron is evaluated aording to the atual position of the

vehile. All the positions omposing the predition horizon must lie within the onsidered

polyhedron.

4.1.1 De�nition of the polyherdon

Let p = [x y z]T denote the position of the vehile and let M denote the number of

obstales to be avoided. Eah obstale is desribed by a onvex polyhedron Wi ⊂ R

3

entered on a di�erent point qi ∈ R

3
. Thus the set {qi} ⊕Wi is onsidered as infeasible.

In order to impose linear onstraints, the nononvex feasible spae where the vehile

an navigate must be under-approximated by a onvex polyhedron. An algorithm that

maximizes the size of a polyhedron not ontaining a set of points is desribed as follows

for a generi spae-dimension d:

Let p0, q1, q2, ..., qM ∈ R

d
, with p0 6= qi, ∀i = 1, ...,M .

The polyhedron P = {p ∈ R

d : Acp ≤ bc} with

Ac =








(q1 − p0)
T

.

.

.

(qM − p0)
T








(4.1)

bc =








(q1 − p0)
T q1

.

.

.

(qM − p0)
T qM








(4.2)
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Figure 4.1: Convex polyhedron avoiding points q1, ...qM

ontains p0 in its interior and does not ontain any of the points qi, for all i = 1, ...,M . The

proof is desribed in [8℄. Every boundary ondition (qi − p0)
T p ≤ (qi − p0)

T qi represents

a halfspae, on the boundary of whih lies the point qi. Furthermore, its boundary is

orthogonal to qi − p0 and p0 is in the interior of the halfspae. The intersetion of more

halfspaes, eah of whih exludes a point qi, results in a polyhedron that does not ontain

any of the points qi. Figure 4.1 gives a graphial representation of this onept in two

dimensions. Every line represents a boundary ondition utting o� a halfspae. Note that

(Ac, bc) in (4.1) and (4.2) may not be a minimal hyperplane representation of P , sine

some points may be already left out from other halfspaes.

However, the obstales are not points but onvex polyhedra. Hene the polyhedron

desribing the feasible spae has to be de�ned in the following way.

Let p0, q1, q2, ..., qM ∈ R

3
, with p0 6= qi, ∀i = 1, ...,M and let W1, ...,WM be polyhedra in

R

d
. Let Ac,bc be de�ned as in (4.1) and (4.2) and let g ∈ R

M
suh that its j-th omponent

gj is de�ned as

gj = min
w∈Rd

Aj
cw s.t. w ∈ Wj (4.3)

for j = 1, ...,M . Then the polyhedron P = {p ∈ R

d : Acp ≤ bc + g} does not ontain

any polyhedron Bj = {qi}⊕Wi in its interior, ∀i = 1, ...,M . The proof is desribed in [8℄.

If Wj 's are polytopes and their vertex representation is Wj = onv{wj1, ..., wjsj}, then
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Figure 4.2: Example of feasible polyhedra - in [8℄

(4.3) an be solved as

gj = min
h=1,...,sj

Aj
cwjh (4.4)

Hene every boundary ondition represents a halfspae on the boundary of whih lies the

nearest vertex of an obstale with respet to the position p0 of the quadopter. Figure 4.2

illustrates a two-dimensional example, where eah polyhedron is evaluated starting from

the point of the previous polyhedron, whih minimizes the Eulidean distane from xt.

For every time step a new onvex polyhedron is evaluated, in whih all the positions

of the predition horizon must lie. Taking into aount all the polyhedra that have

been onsidered from starting point to target, the union of all pointwise-in-time onvex

approximations provides a rather good non-onvex approximation of the feasible spae of

interest for navigation.

4.1.2 Implementation in model preditive ontrol

In [8℄ the overall ontrol struture onsists of a two-layer MPC. A linear time varying

MPC, operating with a sampling time of Tsn = 1.5s, generates referene positions in

order to avoid the obstales and to reah a given target. The desired positions are then

followed by a linear MPC, whih is responsible for stabilization and position traking and
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whih generates a ontrol ation every Ts = 71ms. The onvex approximation strategy for

obstale avoidane is implemented in the high level LTV-MPC. Furthermore, a maximum

rate of hange of the desired position is set to ∆max = −∆min = 0.5m per axis. Sine the

LTV-MPC has a sampling rate of Tsn = 1.5s. This means that the veloity is impliitly

limited to vmax = ∆max

Tsn
≈ 0.33m

s
per axis, whih auses the system to be quite slow.

In this work the onvex polyhedral approximation approah is instead implemented

in the model preditive ontroller used so far, whih takes the jerk trajetory as input

of the system. The only di�erene is that the optimization problem an't be deoupled

any more, sine the boundary onditions for obstale avoidane relate all of the spaial

oordinates within the same inequality. The bounds on jerk and aeleration as well as

the system model are the same as in hapter 3. The overall optimization problem an be

written as:

min
1

2

(
N∑

k=1

(ξT − ξk)
TQ(ξT − ξk) +

N−1∑

k=0

uT
kRuk + wee

2

)

(4.5)

s.t. ξk+1 = Ãξk + B̃uk (4.6)

vmin ≤ vk ≤ vmax (4.7)

amin ≤ ak ≤ amax (4.8)

umin ≤ uk ≤ umax (4.9)

Ac(t)pk ≤ bc(t) + g(t) + 1e (4.10)

with pk = [xk yk zk]
T
, vk = [ẋk ẏk żk]

T
, ak = [ẍk ÿk z̈k]

T
, ξk = [pk vk ak]

T
, uk = [jxk jyk jzk]

T
.

In order to approah the target a term that weighs the error between state vetor ξk and

target state vetor ξT is added to the ost funtion. ξT ontains the target position and

zero entries in order to be able to weigh also veloity and aeleration values:

ξT = [xT yT zT 0 0 0 0 0 0]T . Q and R are the weighting matries for states and
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inputs:

Q =


























wx 0 0 0 0 0 0 0 0

0 wy 0 0 0 0 0 0 0

0 0 wz 0 0 0 0 0 0

0 0 0 wẋ 0 0 0 0 0

0 0 0 0 wẏ 0 0 0 0

0 0 0 0 0 wż 0 0 0

0 0 0 0 0 0 wẍ 0 0

0 0 0 0 0 0 0 wÿ 0

0 0 0 0 0 0 0 0 wz̈


























; R =








wjx 0 0

0 wjy 0

0 0 wjz








(4.11)

Inequality (4.10) de�nes the boundary onditions for obstale avoidane as desribed in

subsetion 4.1.1. Note that the same boundary onditions are applied to all the horizon

steps k, sine all positions must lie within the same polyhedron. Furthermore, a slak

variable is added in order to soften the onstraints, avoiding that the optimization problem

is infeasible. The latter is penalized by a large weight we in the ost funtion. The limits

vmin, vmax, amin, amax, umin and umax all ontain three elements, one for eah axis. Note

that a boundary ondition is added in order to limit the maximum and minimum veloity.

Ã and B̃ de�ne the system model and an be inferred from (3.33) by taking into

aount all three axes and rearranging the terms:

Ã =


























1 0 0 ts 0 0 1

2
t2s 0 0

0 1 0 0 ts 0 0 1

2
t2s 0

0 0 1 0 0 ts 0 0 1

2
t2s

0 0 0 1 0 0 ts 0 0

0 0 0 0 1 0 0 ts 0

0 0 0 0 0 1 0 0 ts

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


























; B̃ =


























1

6
t3s 0 0

0 1

6
t3s 0

0 0 1

6
t3s

1

2
t2s 0 0

0 1

2
t2s 0

0 0 1

2
t2s

ts 0 0

0 ts 0

0 0 ts


























(4.12)

Note that Ac(t), bc(t) and g(t) depend on time, sine a new polyhedron has to be eval-

uated every time a new trajetory is solved. Thus the ontrol strategy beomes a linear
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Figure 4.3: Trajetory avoiding obstales - some polyhedra have been plotted

time varying model preditive ontrol (LTV-MPC). Ac(t), bc(t) and g(t) are obtained by

equations (4.1), (4.2) and (4.4) by setting p0 = p(t) (urrent vehile position) and by

knowing positions and dimensions of the obstales: qi, Wj = onv{wj1, ..., wjsj}.

4.1.3 Simulation results

The �rst trial onsiders a two-dimensional environment with �ve triangular obstales.

The vehile starts at p0 = [0 0]T and has to reah the target position pT = [50 5]T .

The predition horizon is hoosen to N = 20 and the sampling time to ts = 30ms, thus

the predition window is TH = 0.6s. The limits on jerk, aeleration and veloity per

axis are set to jmax = −jmin = 70m
s3
, amax = −amin = 7m

s2
, vmax = −vmin = 5m

s
. The

states-weighting terms are hoosen equally for both axes: wx = wy = 1, wẋ = wẏ = 0.5,

wẍ = wÿ = 0.1, whereas the jerk hasn't been weighed at all.

Figure 4.3 shows the resulting trajetory. The onvex polyhedra desribing the

feasible spae have been plotted for ertain points in time in order to give a graphial

representation of the strategy. As shown in �gure, the vehile orretly avoids the obstale



4 Obstale avoidane 46

Figure 4.4: Trajetory avoiding obstales - predition horizon N = 30

and reahes the target. However, seen from a global point of view, the resulting path

may not be an optimal solution. This is aused by the fat that the onvex polyhedra

leave out a signi�ant part of the feasible spae, whih often leads the vehile to hoose

disadvantageus trajetories. For instane, looking at �gure 4.3, the vehile passes the

entral obstale to the right, though passing it to the left would have made more sense.

Figure 4.4 shows the same senario, where the horizon was hosen to N = 30

instead. This extends the predition time to TH = 0.9s. The path hosen by the ontrol

is di�erent from the previous one. This time the solution seems more resonable. The

�gure also depits some of the predited trajetories generated aording to the plotted

polyhedra. As an be seen, the boundary onditions enfore the trajetories to lie within

the respetive onvex areas. This leads to two main disadvantages of this method, whih

are desribed below.

Figure 4.5 depits the preditions made at two di�erent time instants along the

path. The �rst frame illustrates a typial problem of this strategy. As shown in �gure,

the boundaries ut o� an important part of the real feasible spae. The borders of the

polyhedron squeeze the trajetory, in order to ahieve that all predited positions remain
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Figure 4.5: Trajetory avoiding obstales - predition horizon N = 30 - Two situations

inside the onvex area. This leads to unneessarily high deelerations. The problem an

be urbed by reduing the predition horizon. This implies to enfore a limited number of

predition points to lie within the polygon, avoiding to signi�antly redue the veloities.

However a too small value of N brings the trajetories to not reat in time to fast hanges

of the polygonal boundaries. Moreover, nothing prevents the trajetory points reahing

the border from having a nonzero veloity. It may therefore our that the subsequent

solution is not able to enfore its last point to satisfy the boundary onditions. Thus,

small predition times ombined with high speeds may lead to trajetories lying partially

out of bounds.

Another drawbak of this method is represented in the seond frame of �gure 4.5.

Sine the polyhedra are a quite rough approximation of the real feasible spae, it often

happens, that the strategy onduts the vehile o� ourse. Looking at the illustration, it

is notieable how the generated trajetory tries to approah the vertex of the polyhedron

whih minimizes the Eulidean distane to the target. Although it is the optimal solution

with respet to the boundary onditions, this may not be an appropriate diretion seen

from a global point of view. This inonveniene is partially redued by the reeding
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Figure 4.6: Trajetory avoiding two obstales - predition horizon N = 30

horizon strategy of MPC, whih generates a new trajetory after a short time. Thus a

new polygon is evaluated, whih typially takes into aount a new portion of the real

feasible spae.

4.1.4 Limits of the approah

Some trials were done in order to show the main problems assoiated with this method.

Figure 4.6 illustrates a simple situation where the quadopter has to move towards a

target passing between two obstales. The latter are plaed so that no hange in diretion

would be neessary in order to avoid them. However, as depited, the trajetory bends

when approahing them. The onvex polyhedra representing the boundary onditions are

plotted for t1 = 2.2s and t2 = 3.2s. As shown in the piture, the feasible area around

p1 brings the trajetory to follow an improper diretion. Aording to vehile's position

the polyhedron hanges shape suh that at a ertain point the route is again adjusted, as

shown by the preditions starting from p2.

Figure 4.7 shows an even worse ase. Here the predition horizon was set toN = 20.
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Figure 4.7: Trajetory avoiding two obstales - predition horizon N = 20

The predition window is too short to reat in time to the fast hanges of the polyhedron's

shape, so that, given the physial limitations on the maximum deeleration, the predited

positions are not able to lie within the onvex area. This auses the vehile to rash into

the obstale. The only solution to this problem is to set more stringent onstraints on

the maximum veloity, whih on the other hand leads to not beeing able to manage fast

�ights.

Finally the ase is presented in whih the obstale is loated diretly in front of

the vehile. For this trial the veloity is limited to 10m
s
, whereas the horizon parameters

are hosen to ts = 30ms and N = 50. The obstale is 8 meters wide and is positioned 38

meters away from the starting position of the quadopter. Figure 4.8 shows the results

aptured at di�erent time instants. The dashed lines represent the preditions. As an

be seen, the boundary of the onvex area always remains orthogonal to the diretion of

movement, sine the enter of the obstale is loated diretly in front of the vehile. This

leads the quadopter to not pass the obstale at all. It orretly deelerates in order to

remain within the feasible area and manages to avoid a ollision, but it is not able to

reah its target, sine it is bloked in a deadlok situation. In fat, in order to minimize
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Figure 4.8: Frontal obstale - frames
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4 Obstale avoidane 52

the ost funtion, the solver searhes for the position within the feasible polyhedron that

minimizes the Eulidean distane to the target (whih in this ase is loated 500 meters

away from the vehile). However this solution doesn't ause any hange in the boundaries

of the polyhedron, leading the vehile to stop in front of the obstrution. Note that for

shorter horizons, for example N = 20, the vehile is not able to reat in time to the

presene of the obstale, whih leads to a ollision.

In order to avoid a deadlok a similar trial was made, but this time the enter of

the obstale was loated slightly o�set with respet to the diretion of movement, namely

with y-oordinate yc = −0.1m. Figure 4.9 illustrates the resulting trajetory. As an be

seen, the vehile manages to pass the obstale. However the ahieved path is apparently

not the best solution seen from a global point of view. The vehile lowers its longitudinal

veloity almost down to zero before starting to deviate its ourse in order to avoid a

ollision. This greatly inreases the time needed to pass the obstale. Furthermore, the

y-oordinate presents a high overshoot due to the high lateral speed ahieved.

All the limits of this strategy regarding the reliability of the followed paths along

with the maximum speeds, that an be managed by the onvex polyhedral approximation

approah, brought to hoose a omplete di�erent method for obstale avoidane. The

new strategy should provide smoother trajetories and more aeptable paths seen from

a global point of view. Furthermore, the new ontrol for objets avoidane should be able

to ope with faster veloities, always providing ollision-free paths. In the next setions

the new approah is desribed. Moreover, at the end of this hapter, omparisons are

made between the two strategies,
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Figure 4.10: Retangular obstale in the x-y plane

4.2 Obstale time-disretization method

Consider the ase in whih the quadopter is �ying towards a target. For simpliity it is

moving in x diretion. This is atually not a strong hypothesis, sine one an deide to

diret the oordinate system at will, thus for example with the x-axis direted towards the

target. For now the two-dimensional problem is onsidered, as it is easier to understand.

The airraft has to move towards the target avoiding ollisions. Consider now a retan-

gular obstale plaed �ve meters away from the quadopter as depited in �gure 4.10. As

mentioned in 3.2.2 it is possible to set upper and lower bounds on the system states, thus

also on the positions. One it has been deided whether to pass the objet to the left

or to the right one an set bounds on the y-oordinate in order to avoid a ollision. To

desribe the obstale in an exat way it would be neessary to write boundary onditions

on the y-oordinates as funtion of the x-oordinate, as:

yk ≤ f(xk) for k = 1 · · ·n (4.13)
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Assuming to pass the objet to the right the inequality desribed in (4.13) should limit the

y-oordinate to lie under a ertain value that depends on x. f(x) would be a disontinuous

equation. In fat it should assume the value f = ∞ for x < 5, sine for this positions the

quadopter has not reahed the obstale yet and therefore no bounds should be applied,

f = −2 for 5 ≤ x ≤ 11 and again f = ∞ for x > 11. This funtion is not ontinuous,

whih means it an not be used as boundary ondition, sine onvex onstraints are

needed. In general the equations desribing the obstale's shape are not even linear, due

to various forms objets may have. Thus it is neessary to �nd an approximate way to

desribe the obstale.

If the assumption of �ying at onstant speed in x diretion vx = const. was made,

it wouldn't be neessary to let the bounds depend on the x-oordinate. In fat, the

obstale ould be disretized in the time domain setting bounds on the y-oordinate for

eah time step, aording to the speed the quadopter is �ying with and assuming it is

maintaining it for the whole preditive horizon. In order to understand this onept a

numeri example is done onsidering the obstale depited in �gure 4.10. Immagine to

�y with a speed vx = 10m
s
(remember this is only the x-omponent of the veloity) and

assume to keep it onstant during the whole time window onsidered. For this example

the predition horizon and the sampling time are set to be N = 50 and ts = 20ms, whih

leads to a predition time window of 1 seond. This means the quadopter will approah

the obstale at t = 0.5s, hene for time step k = 25, and will ompletely pass it at k = 46.

Thus the boundary onditions on the position will be:

yk ≤ ∞ for k = 1 · · ·24 (4.14)

yk ≤ −2 for k = 25 · · ·45 (4.15)

yk ≤ ∞ for k = 46 · · ·50 (4.16)

It is important not to onfuse disontinuities of the bounds in the time domain with

disontinuities in the spaial domain. Indeed for eah time step k a di�erent variable yk

is onsidered, whih means that eah yk will have its own bounds. Thus inequality (4.13)

an't be onsidered for the bounds depend on the x-oordinate in a disontinuous (and

in general non-linear) way, but the bounds desribed in (4.14) - (4.16) an be applied for

they do not depend on the x-oordinate at all, but only on the time. Thus, the axes an
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be deoupled, sine the bounds on yk do not depend on xk. Remember that the MPC

strategy works online, whih means that after 20 milliseonds a new trajetory will be

evaluated. Thus after ts = 20ms the quadopter has moved 0.2 meters and the bounds

for the new trajetory will be

yk ≤ ∞ for k = 1 · · · 23 (4.17)

yk ≤ −2 for k = 24 · · ·44 (4.18)

yk ≤ ∞ for k = 45 · · ·50 (4.19)

The quadopter is indeed loser to the obstale and the bounds will be set at earlier time

steps. The same proedure will be repeated every 20 milliseonds and while the obstale

omes loser it will be disretized at earlier time steps. It is fundamental to understand

that, though an objet an be seen far in advane from the measurement systems, it an

be only taken into aount for the trajetory planning if it is lose enough to be inluded

in the predition horizon. For instane if the quadopter is �ying at 10m
s
and having

onsidered a predition horizon of TH = 1s the obstale an only be seen when it is loser

than 10 meters, or better when it will be approahed in less than 1 seond aording to

the atual speed. Note that with this tehnique one an desribe obstales with various

shapes. It will only be neessary to disretize it in the time domain aording to the atual

longitudinal speed. The disretization stepsize depends on the veloity the quadopter is

�ying with and on the sampling time ts. For example moving at vx = 10m
s
and having a

sampling time of ts = 20ms implies a stepsize of 0,2 meters. The greater the speed or the

longer ts the rougher is the disretization of the obstale. Another thing that needs to be

lari�ed is that the onstraints an only de�ne a onvex region. For instane, given the

obstale desribed in �gure 4.10, one an not set −∞ ≤ yk ≤ −2 ∪ ∞ ≥ yk ≥ 2, for it

is not representing a onvex region. For this reason whether to pass an objet to the left

or to the right has to be deided before solving the optimization problem. The deision

was to implement an algorithm that evaluates the distanes that have to be overed along

the y-diretion in order to pass the objet, and aording to the shortest way it deides

whether to set lower or upper bounds on the y-oordinate.
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Figure 4.11: Trajetory avoiding single obstale

4.3 Implementation in model preditive ontrol

In 4.2 a way to implement the obstale as boundary onditions on the y-oordinate has

been de�ned. It is assumed that the x-axis is pointing towards the target and the lon-

gitudinal veloity vx is maintained onstant. The axes an be deoupled due to the

onsiderations made. This means that for now, onsidering the two-dimensional problem,

the only ontrol responsible for the ollision avoidane is the one ating on the y-axis and

thus governing lateral movements. It is assumed that the only task of the MPC ating on

the x-axis is to trak a referene veloity in order to minimize the error made assuming

a onstant speed during the predition horizon. A referene for the y-oordinate is still

needed. Sine the oordinate system onsidered has its origin at the quadopter's starting

point and the x-axis is pointing towards the target, it is obvious that in order to reah the

target the referene should be yT = 0. In order to follow the latter the following weighting

terms in the ost funtion were set: wy = 1 , wẏ = 0.2 , wÿ = 0 and wj = 0.001. For the

�rst trial an obstale has been loated 20 meters away from the starting position of the

quadopter. It has retangular shape, is 5 meters wide and 4 meters long. For de�ning
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Figure 4.12: Obstale avoidane - trajetories for various sampling times ts

the preditive horizon ts = 30ms and N = 50 are set. The veloity along the x-axis is

kept onstant at vx = 10m
s
. Figure 4.11 shows the resulting trajetory. As an be seen,

the deision whether to pass the obstale to the left or to the right is orretly made by

the mentioned algorithm, sine passing to the left requires a smaller translation about

the y-axis. Having avoided the ollision, the trajetory starts again to trak its referene.

The great potentiality of this ontrol strategy lies in the fat that by its nature it sets

priorities while generating a trajetory. In fat the implementation of the obstales as

hard ontraints bring the solver to avoid a ollision in any ase, even at the ost of leaving

the referene and thus inreasing the value of the objetive funtion. Hene avoiding an

objet is more important than following the referene.

In order to understand the e�et of the sampling time ts and the predition horizon

N on the ollision avoidane task various trials were made. Figure 4.12 depits the

trajetories for di�erent values of ts setting N = 50, whereas �gure 4.13 shows the e�et

of the length of the preditive horizon, while ts = 30ms. Comparing the two �gures it an

be seen that the two parameters have about the same e�et on the trajetory. In fat,

what really matters is the time window TH overed by the predition. As mentioned before
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Figure 4.13: Obstale avoidane - trajetories for various predition horizons N
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Figure 4.14: Obstale avoidane - ontrol ations for various predition horizons N
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the obstale an only be seen by the MPC if ontained in the onsidered horizon. This

means that a longer predition brings the quadopter to reat in advane to the presene

of an objet, whereas a shorter time window will see it later. For example for N = 30

and ts = 30ms the horizon is 0,9 seonds long, whih means the trajetory planner reats

to the obstale only 0,9 seonds before reahing it, that is 9 meters onsidering to �y at

10m
s
. Figure 4.14 shows the ontrol ation, namely the jerk on the y-axis for di�erent

values of N . As an be seen shorter predition horizons bring the ontrol to reat later.

Furthermore the input values will be greater, sine the same translation must be provided

in a shorter time. Smaller predition times bring the trajetory to have bigger overshoots,

beause the veloity ahieved by the quadopter is greater due to the "harder" maneuver.

4.4 Di�erent shapes and multiple obstales

The method onsidered doesn't set any limitations on the obstale's shape, it only needs

to be disretized as mentioned in setion 4.2. In order to omprehend the behavior of the

ontrol many trials with objets of di�erent shapes were made. In �gure 4.15 the results

for a triangular obstale are reported.

The ontrol strategy is apable of dealing with multiple obstales. Figure 4.16

illustrates the resulting path of the quadopter avoiding four objets. The predition

horizon is set to be 1.5 seonds long with ts = 30ms and N = 50 and the quadopter

is �ying with a speed of vx = 10m
s
. Note that for every trajetory solved, only the

obstales that are inluded in the time horizon an be onsidered. For instane the last

objet represented in �gure 4.16 is only taken into aount when the airraft is at least 15

meters lose to it. The ontrol is also able to manage obstales that are very lose to eah

other, leading to small gaps in y-diretion. In this ase the upper objet will set upper

bounds, whereas the lower wider obstale will set lower bounds on the y-oordinate. Both

of them will be onsidered simultaneously leading to a onvex �yable region (the small

gap). Thus both the objets are orretly avoided.

It is interesting to notie the e�et of the input weighting term wj on the followed

path. In �gure 4.17 a set of trials with di�erent values of the jerk weighting term are

presented. It is shown that the value of wj a�ets signi�antly the hosen path. Higher
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Figure 4.15: Triangular obstale
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Figure 4.16: Multiple obstales - trajetory
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Figure 4.17: Multiple obstales - followed paths for various jerk weighting terms wj

values of wj lead to smoother trajetories, sine a variation of the aeleration is minimized

by keeping the value of the ontrol ation as low as possible. It must not be forgotten,

however, that the deision whether to pass the obstale to the right or to the left is not

taken by the optimization solver itself. Indeed it is taken every time a priori evaluating the

shorter translation to be overed from the atual position in order to avoid the obstale.

Then, aording to the hoie made, lower bounds on the upper border or upper bounds

on the lower border of the objet are set. So, as illustrated in �gure 4.17, the green

trajetory passes the third obstale to the left beause, when deteting it, the quadopter

is loser to its left border. Note that after passing an obstale the quadopter starts again

to approah its referene yT = 0 until a new obstale is deteted by the predition horizon.

This behavior is well represented by the magenta trajetory in �gure 4.17. Between the

third and the last obstale the quadopter �rst tries to ome loser to yT = 0, sine the

last objet is not inluded in its predition horizon yet. As soon as it is loser than 15

meters it starts to hange its trajetory in order to avoid it.
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Figure 4.18: Wide obstale

4.5 Problems

As spei�ed in setion 4.2 the obstale is disretized in the time domain. This means that

the bounds on the y-oordinate are set in the time and not in the spae. It is worth to

larify this onept. It has been explained that bounding the y-oordinate as funtion

of the x-oordinate brings to non-linear (due to the generi shape of the obstale) and

disontinuous (at the beginning and at the end of the objet) inequalities that an't be

onsidered using a linear MPC. It is therefore assumed, that the speed along the x-axis is

onstant during the preditive horizon and thus, simple bounds on the y-oordinate an

be set for every time step. This is possible, beause knowing a priori the speed of the

quadopter, its x-oordinate an be determined for eah time step and hene the bounds

to be set on the y-oordinate. This strategy implies two main problems. The �rst is

related to the fat that onsidering a onstant speed a strong hypothesis is made. In fat

the longitudinal veloity vx may vary during the �ight. Thus the predited trajetory

ould be di�erent from the path that the quadopter will follow. In reality, this issue is

redued by the fat that for every new trajetory the obstale is re-disretized aording
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Figure 4.19: Wide obstale - various vx

to the new atual speed. The seond main problem is that the trajetory along the x-

axis is not a�eted from the presene of the obstale at all. As previously stated, the

trajetory generation task of x and y-axis an be deoupled, sine the bounds on the

two oordinates an't be related in a linear way. Hene only the MPC ating on the

y-oordinate is arrying out the ollision avoiding task. However there might be ases

in whih an ation on the veloity along the x-oordinate is neessary in order to avoid

the obstale. For instane onsider the objet depited in �gure 4.18, whih is 20 meters

wide. As usual the MPC detets it 15 meters before approahing it. At this point the

quadopter has 1.5 seonds time to ompute a translation of 10 meters about the y-axis in

order to avoid the obstale. This an't be ahieved due to the physial limitations on jerk

and aeleration seen in subsetion 3.4.2. For example onsidering ts = 30ms and N = 50

and thus having a horizon of 1.5 seonds the maximal translation along an axis that an

be ahieved starting from rest is about 7.4 meters. Indeed, as depited in �gure 4.18 the

quadopter does everything possible to prevent a ollision but doesn't manage to avoid it

ompletely. Note that in this ase, assumed to keep a onstant speed, the ability to avoid

a large obstale doesn't depend on the veloity itself. In fat �ying at di�erent veloities
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Figure 4.20: Two obstales - various vx

implies only that the obstale will be seen at di�erent distanes, but the predition horizon

remains the same. This means that in terms of time the obstale will be deteted always

1.5 seonds in advane (keeping ts = 30ms and N = 50). Therefore the available time

for the quadopter to avoid the obstale is always as long as TH , independently from

vx. Figure 4.19 shows the results for di�erent veloities vx. As an be seen the maximal

translation of 7.4 meters is reahed for all three ases, so that though �ying with a lower

speed the ollision an't be avoided.

The other situation the only ontrol on the y-axis is not able to ope with, is when

two or more obstales are too lose to eah other and disposed as in �gure 4.20. In this

ase the vehile should move left to avoid the �rst obstale and next it should reverse

its diretion in order to avoid the seond one. Here the veloity vx a�ets the ability to

avoid a ollision. In fat a lower speed brings the obstales to be more distant from eah

other in terms of time. In other words, more time elapses from one obstale to the other

in ase of lower speed. Thus the vehile has more time to arry out its lateral maneuver.

As illustrated in �gure 4.20 with speeds up to 6m
s
the obstales an be orretly avoided.

For vx = 12m
s
the quadopter rashes into the objets.
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4.6 Control on the x-axis

4.6.1 Main strategy

In setion 4.5 the problems that derive from ontrolling only the translations along the

y-axis and keeping the veloity on the x-axis onstant have been disussed. However, as

mentioned before, the two oordinates annot be managed within the same optimization

proess. This arises from the fat, that no linear relationship between the two oordi-

nates an be found, that de�nes a orret boundary ondition for the obstale avoidane.

Therefore the obstales were disretized in the time domain assuming a onstant veloity

vx during the predited horizon. As explained, this will only a�et the ontrol on the

y-axis leading to problems related to an infeasibilty of a valid trajetory as desribed in

setion 4.5.

The idea is to inlude a so-alled "slak variable" that will soften the hard on-

straints on the y-oordinate in order to allow the optimization solver to keep on �nding

feasible solutions for the problem. In fat as hard onstraints an't be satis�ed (for ex-

ample for too wide obstales) the solver will return an infeasibility error and no solution

is found. The "soft" onstraints an be written as

yk ≤ ubk + e (4.20)

yk ≥ lbk − e (4.21)

where ubk and lbk are respetively the upper and lower bounds on the y-oordinate for

eah time step k. These bounds ome from the disretization of the obstale in the time

domain. The slak variable e will be then strongly weighed in the ost funtion, therefore

an inrease of e will be heavily penalized. This means that wherever possible the slak

variable will be kept around zero. As soon as the onstraints on the y-oordinate annot

be satis�ed e will inrease its value. Hene, the slak variable beomes a manipulated

variable of the optimization problem. The new objetive funtion ating on the y-axis

an be written as:

J =
1

2

(
N∑

k=1

(zT − zk)
TQ(zT − zk) +

N−1∑

k=0

wjj
2
k + wee

2

)

(4.22)
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Figure 4.21: Wide Obstale - trajetory and preditions - here also the longitudinal

veloity is ontrolled

where the weighting term we assumes a very high value in order to soften the onstraints

only when stritly neessary. Note that using only one slak variable leads all of the

onstraints to beome softer whenever even a single bound needs to be loosened. On the

other hand the omputational load won't be onsiderably a�eted, sine only one variable

is added to the optimization problem.

Having solved the problem of the trajetory infeasibility in ase of obstales that

are too wide or too lose to eah other, the ollision still needs to be avoided and this is

only guaranteed if the veloity about the x-axis is dereased during �ight. A way to do

this is to exploit the information on the value of the slak variable in order to deelerate

the quadopter's longitudinal veloity vx. In fat whenever a trajetory has been solved

having e > 0, one or more onstraints have been loosened. This means a trajetory about

the y-axis has been found, whih doesn't avoid the obstale ompletely. So, an idea ould

be to redue the veloity whenever a softening of the onstraints is deteted. In order to

make sure that the ollision is avoided we an think of deelerating the quadopter with
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Figure 4.22: Wide Obstale - the longitudinal veloity vx depends on the value of the

slak variable e

the maximum deeleration ahievable, till a lateral trajetory that does not overstep the

bounds is found. Note that the deeleration is meant to be along the x-axis.

Figure 4.21 represents the trial done with a 30 meters wide obstale. In order to

avoid it the quadopter has to perform a translation of 15 meters along the y-axis. As

known this is not possible within a time lapse of 1.5 seonds (predition horizon). Hene

the �rst trajetory evaluated when the obstale is deteted does not avoid the obstale

ompletely but only gains a translation of about 7 meters. This means the bounds on the

last steps are overstepped by 8 meters, whih is apparently the value of the slak variable

(see �gure 4.22). This information is sent to the longitudinal ontrol whih aordingly

imposes a maximum deeleration. Sine the model preditive ontroller is ating online

as usual only the �rst ontrol ations of the trajetories are applied. The ontrol on the x-

axis enfores a deeleration, while the ontrol on the y-axis brings the quadopter to raise

its y-oordinate. After a time lapse equal to ts a new trajetory is generated. The time

disretization of the obstale is done aording to the new atual x-veloity. This leads the

value of the slak variable e to derease for every new generated trajetory, as the airraft
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is inreasing its y-oordinate while reduing its longitudinal speed (see �gure 4.22). This

brings the obstale avoidane task to beome more and more feasible, until an x-veloity

is reahed, for whih the predited lateral trajetory is apable of avoiding the obstale

ompletely. As an be seen in �gure 4.22 as long as e > 0 the veloity vx dereases with

maximum deeleration.

4.6.2 Implementation in model preditive ontrol

Now that the main priniple of the longitudinal ontrol has been explained, it is nees-

sary to understand how the strategy is implemented into the model preditive ontroller.

Remember that the ontrol is arried out by two di�erent MPCs. The one ating only on

the y-oordinate and the other ating on the x-axis. The two ontrols ommuniate only

through the information on the slak variable of the y-MPC.

The main requirement on the longitudinal ontrol is to trak a referene veloity (in

this ase 10m
s
) and to deelerate in ase a loosening of the bounds on the lateral ontrol

is deteted. This means that the errors on veloity and aeleration need to be weighed

in the ost funtion in order to trak the referene. The ost funtion of the longitudinal

ontrol an be written as:

Jx =
1

2

(
n∑

k=1

(zR − zk)
TQ(zR − zk) +

n−1∑

k=0

wjj
2
k

)

(4.23)

where the states-weighting matrix is given by:

Q =








0 0 0

0 wẋ 0

0 0 wẍ








(4.24)

Note that the weighting on the position is not needed, sine the x-axis is always direted

towards a given target, whih means given vx > 0 the quadopter is getting loser to it

in any ase. For what regards the referene state vetor it is neessary to distinguish
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Figure 4.23: Wide Obstale - the aeleration weighting term is hosen too low wẍ = 0.1

and the trajetory doesn't avoid the obstale properly

between two ases:

zR =








0

10m
s

0m
s2








for e = 0

zR =








0

10m
s

−7m
s2








for e > 0

This means that as long as the lateral ontrol generates trajetories that don't overstep

any boundaries, the longitudinal ontrol will keep on referening a 0m
s2
aeleration, main-

taining therefore its referene speed. As soon as some bounds are overstepped (e > 0) a

referene aeleration of −7m
s2

is passed to the longitudinal optimization proess in order

to bring the quadopter to deelerate. Note that e is the value of the slak variable of

the optimization problem that has just been solved by the lateral ontrol. Hene, seen
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Figure 4.24: Wide Obstale - wẍ = 0.1 - longitudinal speed vx and slak variable e

from the longitudinal ontrol, it omes as an external parameter. Sine di�erent zR an

be imposed for every new optimization problem, they an depend on e. The aeleration

weighting term wẍ has to be hoosen greater than the veloity weighting term wẋ sine

the deeleration task has a priority. Figure 4.23 and �gure 4.24 show the results for a

too low value of the aeleration weighting term with respet to the veloity weighting

term. Here the hoie was wẍ = 0.1 and wẋ = 0.1. As an be seen the quadopter doesn't

deelerate properly, whih leads to a ollision. Good performanes have been proved by

hoosing wẍ = 1 and wẋ = 0.1.

To test the ability of the ontrol to ope with narrow gaps a seond obstale was

plaed right after the �rst one as depited in �gure 4.25. First, the model preditive

ontroller generates trajetories in order to avoid only the �rst objet, sine the seond one

doesn't appear in the predition horizon yet. Here a longitudinal deeleration is neessary.

As the y-MPC also detets the seond obstale it �rst tries to generate a trajetory that

avoids it. The longitudinal veloity, however, is still too high, hene some boundaries will

be overstepped. The information e > 0 is again passed to the longitudinal ontrol, whih

redues the speed a seond time. Finally, also the seond obstale is orretly avoided.
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Figure 4.25: Two Obstales - longitudinal veloity is ontrolled
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Figure 4.26: Two Obstales - the longitudinal veloity depends on the slak variable



4 Obstale avoidane 72

Some onsiderations have to be made on the proposed ontrol strategy. As long as

the quadopter is moving with a onstant speed the preditions done during the trajetory

generation task are quite reliable. However, when an obstale is deteted for whih a

redution of the longitudinal speed is neessary, the trajetories generated during the

deeleration begin to be only suboptimal. In fat the lateral trajetories are solved relying

on the assumption of onstant longitudinal speed during the onsidered horizon, whih

does not re�et reality in ase of deeleration along the x-axis. However, sine the obstales

are re-disretized every time step aording to the atual speed, ourse adjustments are

made. Although this strong approximation seems to be only a drawbak, it an be proved

that it also implies great advantages. For instane, think of the 30 meters wide obstale

desribed in subsetion 4.6.1. The ontrol starts to onsider the objet when it is inluded

in its time horizon, whih, having TH = 1.5s and �ying at a speed of 10m
s
, means deteting

it 15 meters in advane. In reality, it an be shown that 2.3 seonds elapse from the

moment the obstale is seen to the moment it is reahed, whih is a longer time than the

predition horizon. This is aused by the fat that the quadopter is deelerating, whereas

the lateral ontrol supposes to travel at onstant speed and thus to reah the obstale in

a shorter time. This means the ontrol ats as a sort of predition time extender. Hene

also ollision-avoiding maneuvers that may last more than the predition horizon an be

easily performed.

Note that this is provided only beause the disretization of the obstale is done

assuming to move at onstant longitudinal speed. One ould have atually thought of

disretizing the obstale aording to the foreasted deeleration on the longitudinal axis.

Although, at �rst sight, this ould be interpreted as a better way to disretize the ob-

stale, sine representing better the future longitudinal positions of the vehile, it would

have aused few problems. Considering again the 30 meters wide obstale, as usual it is

deteted 1.5 seonds in advane. Sine a deeleration is neessary in order to avoid it,

the longitudinal ontrol predits a trajetory that traks a maximum deeleration for the

whole horizon. If the obstale is desretized aording to the foreasted deeleration, it

is obvious that it is no more 1.5 seonds away from the vehile, but muh more. Indeed,

if the speed is low enough to be able to stop the vehile ompletely before the obstale

is reahed, the objet would be ∞ seonds away from the quadopter in terms of time.
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Hene, the obstale would no longer be seen. Aordingly the vehile would start again to

aelerate till the obstale is one again inluded in the predition horizon. Also this time

a deeleration would be needed, hene the obstale would be again disretized aording

to a dereasing veloity and thus no more inluded in the horizon and so on. Therefore, it

would ause an instable situation and a ollision avoidane ould not be guaranteed any

more.

4.6.3 Maximum allowable speed

In this subsetion some onsiderations are made on the maximum speed that should be

allowed in order to avoid ollisions. Two situations are onsidered. The �rst one is the

ase for whih it is deided that the maximum veloity should be low enough to guarantee

in every moment the possibility to stop the vehile within the predition horizon. This

means that in every moment the vehile should be able to impose a zero veloity for the

last step of its predition. Assuming a onstant aeleration a the following equation an

be written for the speed:

v = v0 + at (4.25)

It is assumed that in ase of emergeny the maximum ahievable deeleration amin is

applied. Thus, assuming to travel at v = vmax, the veloity should be dropped down to

zero within the time horizon TH . The limits on the jerk are negleted, hene it is assumed

that the maximum deeleration an be applied instantaneously. Imposing the speed to

be zero after a time equal to TH yields:

0 = vmax + aminTH (4.26)

By rearranging the terms the maximum allowable speed an be found in relation to the

predition horizon:

vmax = −aminTH (4.27)

For instane, hoosing N = 50 and ts = 30ms, thus having a predition time of TH = 1.5s,

a maximum speed of vmax = 10.5m
s
is obtained, onsidered to have amin = −7m

s2

However this maximum veloity is set in a onservative way. Consider, for instane,

the worse ase in whih an obstale is deteted, that an't be passed at all, sine it is too
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large and there is no way out. Hene, the only way to avoid a ollision is to deelerate

for the whole distane until the obstale is reahed. As mentioned in previous setions

the obstrution is deteted by MPC as soon as it an be onsidered within the predition

horizon, hene it is an be only seen TH seonds in advane. Assuming to travel at a ertain

speed v0, one an alulate the distane xobst at whih the obstale is �rst deteted.

xobst = v0TH (4.28)

The minimum time ∆t needed for the vehile to stop ompletely an be evaluated by:

∆t = − v0
amin

(4.29)

The distane overed during a deeleration is omputed by:

x = v0∆t+
1

2
amin∆t2 (4.30)

Substituting (4.29) in (4.30) the distane overed during a omplete arrest of the vehile

traveling at an initial speed of v0 is found. Imposing this distane to be equal to xobst,

namely the one that elapses between vehile an obstale in the moment when the latter

is deteted, yields:

v0TH = v0

(

− v0
amin

)

+
1

2
amin

(

− v0
amin

)2

(4.31)

Rearranging the terms the maximum speed an be found, whih guarantees a ollision

avoidane in the worse ase in whih the obstale an't be passed at all.

vmax = −2aminTH (4.32)

Thus, having for example TH = 1.5 and amin = −7m
s2
, a maximum allowable speed of 21m

s

is ahieved.

4.7 Obstale avoidane in three dimensional spae

The proposed strategy for obstale avoidane an be extended to the three dimensional

ase. A third MPC is added to ontrol the translations about the vertial axis of the

inertial frame. This an be ontrolled in the same way as the y-oordinate. The obstale's
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upper and lower sides are disretized in the time domain with the assumption of onstant

longitudinal speed during the predition horizon. Whether lower or upper bounds are

imposed, whih means whether the quadopter should pass above or below the obstale, is

evaluated before eah trajetory is generated. For this task one an employ the algorithm

that best suits the needs. Note that in most ases the boundary onditions on the vertial

oordinate will be lower bounds, sine the quadopter will have to pass over objets, for

example trees or walls. It ould however be neessary to also impose upper bounds, e.g.

for passing under a bridge. There are many ases that ould be onsidered. For example

passing through a window requires the imposition of lower and upper bounds on the

vertial oordinate as well as on the lateral oordinate, in order to obtain a retangular

feasible region.

An other important onsideration that has to be done is that due to the same

arguments disussed in the previous setions, it is quite di�ult to linearly relate the y

and z oordinate in order to desribe the obstale in a orret way. This is the reason

why also y and z axis have been deoupled. Seen from a global point of view, the �yable

regions will be retangular frames (in y-z plane), one for eah step of the horizon. This

omes from the fat that y-MPC and z-MPC an both impose lower and upper bounds

for eah time-step of their predition windows.

4.7.1 Implementation

In this subsetion trials of the ontrol ating in a three-dimensional environment are

presented. In order to impose upper and lower bounds on the vertial and lateral opti-

mization problems a simple algorithm was exploited. The latter evaluates the distanes

of the atual position with respet to the lower and upper verties of the objet along the

respetive axes. Aording to the shortest way that may be traveled in order to avoid the

obstale, the algorithm returns upper/lower bounds on the z-oordinate or upper/lower

bounds on the y-oordinate. In other words if the obstale is wider than it is tall the

ontrol imposes lower bounds on the z-oordinate and no bounds on the y-oordinate.

Thus the quadopter will pass above. If it is taller than it is wide it will pass to the left

or to the right aoring to the shortest way, hene only lateral bounds will be set.

Note that the vertial ontrol also has to trak a referene that is evaluated in the
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Figure 4.27: Three-dimensional environment - three obstales
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Figure 4.28: Three obstales - three-dimensional environment - x-y plane
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Figure 4.29: Three obstales - three-dimensional environment - x-z plane

ost funtion. This will be the desired altitude at whih the quadopter has to �y. The

simulation presented in �gure 4.27 shows the avoidane of three onseutive obstales in

a three-dimensional environment. The quadopter is �ying 3 meters above the ground.

The �rst obstale is 14 meters wide, has a height of 5 meters and is 2 meters long. The

seond is 3 meters wide, 3 meters long and 20 meters tall, the third is similar to the �rst

but 6 meters tall. In a real world situation the two wide obstales ould represent two

walls, whereas the seond one ould be a olumn or a light pole. The quadopter orretly

avoids the objets. Figure 4.28 and �gure 4.29 illustrate the trajetory respetively in the

x-y and in the x-z plane.

The onsiderations made in setion 4.6 an be exploited also for the three-dimensional

ase. This means it is still possible to ontrol the longitudinal speed in ase of predited

trajetories that overstep some boundary onditions and hene rash into obstales. Here

two di�erent slak variables will be used. The �rst softens the position onstraints of the

lateral optimization problem, whereas the seond is used by the MPC ating on the verti-

al axis. The MPC governing the longitudinal �ight will deelerate the vehile as soon as

one slak variable assumes a value greater than zero. Remember that the slak variable
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Figure 4.30: Window - quadotper's trajetory passing through a window in a wall

performs two main tasks. The �rst task is to allow the optimization solver to �nd feasible

solutions also in ase an overstepping of the position-bounds is inevitable aording to the

atual speed vx. The seond task is to pass this information to the longitudinal ontrol,

whih arodingly dereases the veloity.

4.7.2 Quadopter size

Until now the quadopter was treated as a puntual mass. Hene the trajetories were

allowed to touh the ontours of the obstales, sine this was still interpreted as a fea-

sible solution. In reality, this an't be permitted, sine the quadopter has its own size.

This means that the dimensions of the quadopter's frame and its propellers have to be

onsidered when imposing boundary onditions on positions. The easiest way to ope

with this problem is to simply redue the �yable region by the quadopters dimensions.

For instane, the bounds on the y-oordinate should be redued by half of the quad-

opter's width, sine the trajetory refers to the vehile's midpoint (whih in most ases

orresponds to its enter of gravity). Atually, another term should be added in order
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Figure 4.31: Quadotper's trajetory passing through an aperture in a wall - x-y plane
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Figure 4.32: Quadotper's trajetory passing through an aperture in a wall - x-z plane
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to onsider a safety margin. In fat, errors ould arise for example from the position

estimation made by the measurement systems (for the quadopter's position as well as

for the obstales). The safety term should also onsider the fat that, though the slak

variable is hugely weighed into the ost funtion, it will always assume a very small value

even in ase there's no need for a relaxation of the boundary onditions. This ould bring

the trajetories to slightly ut the edges of the obstales. Note that, sine the obstales

are represented as bounds, the trajetories are allowed to pass very lose to them. Hene,

the safety term must also inlude a minimum distane to the obstale that should be

provided. Therefore the bounds on the y-oordinate an be written as:

yk ≤ ubk + e− lw − ls (4.33)

yk ≥ lbk − e+ lw + ls (4.34)

where ubk and lbk are respetively upper and lower bounds deriving from time-disretization

of the obstale. e is the slak variable, lw is the term onsidering the quadopter's size

and ls is the safety term. The bounds on the z-oordinate an be written in the same

way.

In �gure 4.30 a wall with a retangular window is depited. The ontrol has to

generate trajetories in order to pass through the opening, whih in a real world situation

ould represent a window. As soon as the aperture is deteted lower and upper bounds

on the y- and z-oordinate are imposed in orrespondane to the horizon steps overed

by the window itself (aording to the atual speed). This time the quadopter's size

and the safety margin are taken into aount and the boundary onditions are imposed

as desribed in (4.33) - (4.34). Figure 4.30 shows the resulting path. The blak frame

represents the atual window, whereas the red one represents the bounds that are set on

the positions. As shown in �gure, the trajetory orretly passes through the red frame,

thus avoiding a ollision with the wall.

4.8 Avoidane of moving obstales

In previous setions trajetories were planned assuming �xed obstales. In reality, also

moving objets, suh as other vehiles or persons, may present on the way. For this reason

it is neessary to develope a ontrol apable of avoiding them.
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4.8.1 Main strategy

Sine MPC relies on future preditions made about the system behaviour, it is obvious

that in order to set bounds at future time steps a foreast of the obstale's movements

is needed. Though it may seem like a di�ult request, it is normal to make assumptions

about future behaviours of other agents. For example vehiles are generally expeted to

travel at onstant speed. Moreover, model preditive ontrol generates trajetories every

few milliseonds, whih means for every optimization problem a new predition about the

obstale's movements an be made. This an adjust the ourse of the quadopter in ase

of unexpeted hanges in diretion and veloity of the moving obstale.

For the �rst trial a retangular obstale is hosen. It is 7 meters long and 5 meters

wide. It is assumed that it is traveling at a onstant speed of vxobst
= 3m

s
, vyobst = 2m

s
,

with vxobst
longitudinal veloity and vyobst lateral veloity. The quadopter is �ying at

10m
s
and the horizon parameters are set to ts = 30ms and N = 50. Figures 4.33 and 4.34

show the resulting trajetory of the airraft aptured at various time steps. Note that the

graphial representation of the moving obstale and the path followed by the quadopter

an be deeptive. For instane looking at �gure 4.33 the trajetory seems to pass aross

the objet. It is atually a misleading optial illusion aused by the attempt to plot a

dynamial environment through stati frames. It has to be taken into aount that the

plotted trajetory is representing past positions of the vehile. Thus, it doesn't matter

if the obstale rosses the path that has just been traveled by the quadopter. Only the

atual position of the vehile (represented by the small irle) with respet to the urrent

position of the obstale has to be observed in order to verify whether the quadopter is

avoding the objet. Moreover it has to be rememberd that the vehile is onsidered as a

puntual mass. Hene, though the �gures depit it as a irle, it only has to be veri�ed

that the enter of the irle is not passing through the objet.

As mentioned in subsetion 4.7.2, for real situations the bounds will be inreased in

order to take into aount the dimensions of the quadopter together with a safety term

that sets a minimum distane to stay away from the obstale.
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Figure 4.33: Trajetory avoiding moving obstale - Frames 1-3
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Figure 4.34: Trajetory avoiding moving obstale - Frames 4-6
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4.8.2 Time-disretization of the moving obstale

As usual, the obstale is disretized in the time domain in order to be able to set boundary

onditions on the y-oordinate for eah time step. This time, setting bounds for the

obstruting objet requires a more hallenging onsideration. While the disretization

of a �xed obstale is only depending on the quadopter's veloity, the disretization of

a moving one is determined also by the lateral and longitudinal speed of the obstale

itself. For instane, if the moving objet was in front of the quadopter, traveling with

a higher longitudinal veloity, no bounds would be required at all, sine the airraft is

never reahing the obstale.

Given a generi obstale its upper and lower sides an be desribed by two generi

funtions that de�ne its shape.

yu = fu(x) (4.35)

yl = fl(x) (4.36)

where yu and yl are respetively y-oordinate of upper and lower side of the objet de-

sribed as funtions of the x-oordinate. In order to be able to use fu and fl to de�ne

bounds they should assume the following generi form:

fu(x) =







−∞, if x < 0

f ∗

u , if 0 ≤ x ≤ l

−∞, if x > l

(4.37)

fl(x) =







+∞, if x < 0

f ∗

l , if 0 ≤ x ≤ l

+∞, if x > l

(4.38)

where f ∗

u and f ∗

l de�ne the shapes of upper and lower side and l is the longitudinal length

of the objet.

Sine the obstale is moving, its position and thus the funtions de�ning its upper

and lower shapes will also depend on time in the following way. For simpliity, the

equations are written only one, sine the same onsiderations are valid for both upper
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and lower sides of the moving objet.

yu/l = fu/l (x− x0obst − vxobst
t) + y0obst + vyobstt (4.39)

where vxobst
and vyobst are respetively the longitudinal and lateral omponents of the

obstale's veloity, whih is assumed to be onstant over time. x0obst and y0obst de�ne the

initial position of the objet (for t = t0). The funtions desribed in (4.39) represent a

translation of the funtions de�ned respetively in (4.35) and (4.36) that depends on time

t.

In order to set bounds on the y-oordinate of the quadopter it will be again

assumed that it is moving with onstant speed. Thus, its longitudinal position an be

written as:

x = x0 + vxt (4.40)

with x0 initial position of the quadopter and vx longitudinal speed. By substituting

(4.40) in (4.39) and rearranging the terms the following equation is obtained:

yu/l = fu/l (x0 − x0obst + (vx − vxobst
) t) + y0obst + vyobstt (4.41)

The two equations de�ne the shape of the obstale in the time domain, from the quad-

opter's point of view. They an atually be used for de�ning the bounds on the y-

oordinate, sine they only depend on the time. What still needs to be done is to dis-

retize the funtion with stepsize equal to ts, sine the bounds have to be imposed for

eah time step k.

t = t0 + k · ts (4.42)

By substituting (4.42) in (4.41) one an evaluate the bounds aording to the onsidered

time step k.

yu/l{k} = fu/l (x0 − x0obst + (vx − vxobst
) kts) + y0obst + vyobstkts (4.43)

For every new trajetory the atual time is set to be t0 = 0. This means x0, y0, x0obst

and y0obst are the oordinates of quadopter and obstale measured at the time when the

trajetory is solved.
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Again an algorithm an be exploited, whih deides whether to impose upper or

lower bounds aording to the shortest y translation that may be performed in order to

avoid the obstale. Thus:

yk ≤ yl{k} if y0 −min(yl) ≤ max(yu)− y0 (4.44)

yk ≥ yu{k} if y0 −min(yl) > max(yu)− y0 (4.45)

Note that by rearranging (4.40) it is possible to evaluate the time for whih the quadopter

is reahing a ertain x-oordinate.

t =
x− x0

vx
(4.46)

Substituting (4.46) in (4.41) upper and lower bounds on the y-oordinate an be repre-

sented in the spatial domain.

yu/l = fu/l

(

x

(

1− vxobst

vx

)

− x0obst +
vxobst

vx
x0

)

+ y0obst +
vyobst
vx

(x− x0) (4.47)

This means that from the quadopter's point of view, traveling with onstant longitudinal

speed, the moving obstale an be seen as a virtual �xed objet. If both vehile and

obstale are traveling at onstant veloities, the boundary onditions on the vehile's

y-oordinate an be set a priori for every future time step. Hene, assuming that the

longitudinal speeds do not vary over time, the bounds are �xed in time and thus in spae.

Therefore, every moving obstale involves a �tive �xed objet representing the bounds

that has to be avoided. The latter an be treated exatly in the same way as for �xed

obstales.

4.8.3 Implementation of the moving obstale

Figures 4.35 and 4.36 show the same trial as the one depited in subsetion 4.8.1. The

red dashed frame represents the bounds on the position seen from the quadopter's point

of view as desribed in (4.47). As visualised, the trajetory orretly avoids the moving

obstale only if it also avoids the dashed frame.

Various onsiderations an be made. First the ase vx > vxobst
is onsidered. The

obstale is moving longitudinally slower than the airraft, whih means it an only be seen

if it is in front of the quadopter. Looking at equation (4.47), the term

(

1− vxobst
vx

)

in the
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Figure 4.35: Moving obstale - Frames 1-3 - The red dashed frame represents the �tive

�xed objet that has to be avoided in order to prevent a ollision with the

moving obstale
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Figure 4.36: Moving obstale - Frames 4-6 - The red dashed frame represents the �tive

�xed objet that has to be avoided in order to prevent a ollision with the

moving obstale
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Figure 4.37: Moving obstale - Bounds orresponding to various longitudinal veloities

of the obstale

funtion's argument auses a strething of the bounds. The more similar the two speeds

are, the more the shape gets strethed. This omes due to the fat that if the relative

veloity is low, the quadopter takes longer to pass the objet. The term (−x0obst + αx0),

with α =
vxobst
vx

is responsible for a longitudinal translation. The greater α the more the

bounds are shifted to the right, sine the quadopter takes longer to reah the obstale.

Figure 4.37 shows the e�et of vxobst
on the bounds shape. For learness, the obstale has

been left out and only the bounds (dashed) together with the resulting trajetories were

plotted. As an be dedued from equation (4.47), vyobst brings to a shear transformation

of the original shape. The higher the lateral speed of the obstale, the more distorted is

the representation of the bounds in the spaial domain. Figure 4.38 shows the results for

di�erent values of the obstale's lateral speed.

For vx ≤ vxobst
the situation is slightly di�erent. The obstale will be approahed

only if its initial position is loated behind the quadopter. It �rst reahes the airraft

with its front side. Figures 4.39 and 4.40 show the results for an obstale �ying at 14m
s
.

As an be seen, the quadopter runs along its side with a negative relative veloity. In
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Figure 4.38: Moving obstale - Bounds orresponding to various lateral veloities of the

obstale

order to pass from the obstale's shape to the spatial representation of the bounds (red

dashed frame), the form-funtion is �ipped, sine the quadopter �rst approahes the

front side of the objet. This an be mathematially proved by looking at equation (4.47)

and noting that the term

(

1− vxobst
vx

)

is negative due to vx ≤ vxobst
.

The method is apable of dealing with obstales of various forms, sine no limitation

is set on the shape funtion. Figure 4.41 shows frames of the path followed by the

airraft while avoiding a hexagonal objet. The objet is traveling with vxobst
= 6m

s

and vyobst = 2m
s
. Figure 4.42 shows the results for a triangular obstale moving with

vxobst
= 14m

s
and vyobst = 5m

s
. Note that, due to vx < vxobst

, the dashed frame representing

the �xed bounds on the y- positions is �ipped with respet to the obstale's shape. Note

that the reeding strategy of MPC is apable of adjust the ourse in ase the obstale

hanges speed or diretion. In fat, the time-disretization is done aording to the urrent

foreast of the objet's movements, whih an atually hange over time. In this ase the

shape of the frame representing the bounds in the spaial domain will hange aording

to the new preditions made.
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Figure 4.39: Trajetory avoiding an obstale that is travelling faster than the vehile -

Frames 1-3
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Figure 4.40: Trajetory avoiding an obstale that is travelling faster than the vehile -

Frames 4-6
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Figure 4.41: Moving obstale - Hexagon
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Figure 4.42: Moving obstale - Triangle - frames 1-3
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Figure 4.44: Comparison between the two methods - single obstale

4.9 Comparison between the two strategies

More trials were onduted in order to make a omparison between the obstale avoidane

strategy proposed in [8℄ and the one developed in this work. The �rst method approx-

imates the feasible area with a onvex polyhedron, whih is reomputed for every new

optimization aording to the urrent position of the vehile with respet to the obstales.

Then it imposes that all positions of the solution lie within the onvex area. The seond

one disretizes the obstale in the time-domain, assuming to travel at onstant speed, and

aordingly imposes upper and lower bounds on the y-oordinate. If a trajetory is found

that does not avoid the obstale, the longitudinal ontrol reats dereasing the veloity

until a valid trajetory is found. Some relevant trials are presented in this setion.

First the two methods are ompared in avoiding a single retangular obstale.

The horizon parameters are hosen equally for both strategies as ts = 30ms and N =
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Figure 4.45: Comparison between the two methods - two obstales

50 in order to obtain a meaningful omparison. The obstale is 10 meters wide and

loated in front of the vehile. Its enter is positioned slightly o�set with respet to the

quadopter's y-oordinate so that the deadlok situation mentioned in subsetion 4.1.4 for

the onvex polyhedron strategy is avoided. The veloity is limited in both ases to 10m
s
.

Figure 4.44 plots the results for the two methods. As depited, the onvex approximation

strategy has a muh higher overshoot of the y-oordinate. Moreover, while the obstale

disretization method manages to keep a onstant longitudinal speed, the other strategy

needs to deelerate a lot in order to avoid a ollision.

Figure 4.45 shows the results for two subsequent obstales. As illustrated, the

onvex polyhedron method has di�ulties in �nding a valid path. This is aused by the

fat that the polyhedra ondut the vehile towards improper diretions. The quadopter

has to shortly reverse its longitudinal veloity, however it gets orretly to the target

positioned at 80 meters. The high longitudinal deeleration brings the vehile to employ



4 Obstale avoidane 98

0 10 20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

x [m]

y 
[m

]

 

 
Trajectory with obstacle discretization
Trajectory with convex polyhedron method

Figure 4.46: Comparison between two methods - various obstales

more time to reah the �nal position. Indeed, the onvex polyhedron method takes 10.2

seonds to get to the target, whereas the obstale disretization strategy employs only 8

seonds, sine the vehile travels at a onstant speed of 10m
s
.

Figure 4.46 illustrates a senario onsisting of �ve obstales. The obstale dis-

retization method behaves learly better with respet to the onvex polyhedron strat-

egy. The followed trajetory is muh smoother and lateral translations ourr only when

stritly neessary. The onvex polyhedron method, instead, brings the vehile to heaviliy

divert its ourse. This is aused by the onsiderable redution of the feasible area due to

the approximation with a onvex polyhedron.

In order to quantify the omputational load needed to solve eah optimization,

the CPU time was measured for both the strategies. The simulations were performed

using Matlab and the solver qpOASES was ompiled into a MEX-funtion in order to be

able to use it diretly within the Matlab environment. The alulations were done on a
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Figure 4.47: Convex polyhedron strategy - CPU time for eah optimization
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Figure 4.48: Obstale disretization strategy - CPU time for eah optimization
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PC running Windows 7, with an Intel Core i7-3610QM at 2.30 GHz, with 8GB RAM.

Figure 4.47 plots the results for the onvex polyhedron method, whereas �gure 4.48 shows

the CPU times for the obstale disretization method. The data refer to the senario

depited in �gure 4.46. The �gures present the time needed by the CPU to solve eah

optimization problem. For real-time appliations it is obvious that this time has to be

kept lower than the sampling time, sine a ontrol ation has to be provided every ts

seonds. Note that the initial peak an be negleted, sine it represents the time needed

to solve the �rst optimization. This is always muh higher than the other values due to

the "old" start of the optimizer. Indeed, for the �rst minimization problem, it has to

"guess" the optimal solution in order to start its algorithm. All further optimizations are

"hot-started", whih means they are done exploiting the solutions of the previous ones,

so that the minimization proess will be muh faster.

As shown in the �gures, there is a great di�erene between the CPU times needed

for the two methods. The values di�er by two orders of magnitude. Negleting the �rst

value, the onvex polyhedron method presents a peak of almost 180 milliseonds, whih

is apparently o� limit for a real-time implementation. The situation for the obstale dis-

retization method is very di�erent. Here, always negleting the �rst peak, the maximum

value lies at 1.6 milliseonds, whih is a very good result. This ensures the requirements

for a real-time implementation of this strategy. Note that the omputational load depited

in the �gures refers only to the optimization proesses. In order to evaluate the overall

omputatinal load it is neessary to onsider also routine algorithms as the ones needed

to build the bounds for ollision avoidane aording to the position of the vehile with

respet to the obstales. However, it an be shown that this operations take muh less

time, leading the optimization proesses to be the main ause of the omputational load.

There are several reasons for suh a great di�erene between the omputational time

needed by the two strategies. The �rst one lies in the fat that the onvex polyhedron

method onsiders the two axes within the same minimization problem, wheareas the other

method solves two distint optimizations, one for eah axis. As mentioned in previous

hapters, solving a single problem with 2 · N variables takes longer than solving two

problems eah of N variables. Hene, the three-dimensional ase is even worse, sine

3 ·N have to be optimized within the same problem. The seond main reason is that the
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Figure 4.49: Convex polyhedron strategy with N = 50 - CPU time for eah optimization

obstale disretization method always imposes at most two bounds on the y-oordinate for

eah time step, hene in the ase of N = 50, a maximum of 100 boundary onditions. The

onvex polyhedron method, instead, imposes, for eah time step, a boundary ondition for

every half-spae to be ut out, hene one for eah obstale. This means that for the ase of

�ve obstales and an horizon of N = 50, 250 boundary onditions are set. Apparently the

time needed to solve an optimization is also related to the number of bounds. An other

reason lies in the fat that, for the onvex polyhedron strategy, the matrix Ac needed for

the boundary onditions hanges every new optimization, sine it has to be realulated

aording to the urrent position of the vehile with respet to the obstales (see eq. 4.1).

Hene, the ontrol strategy beomes a linear time varying MPC (LTV-MPC), whih in

general needs more time to solve the optimizations, sine a new matrix Ac has to be

passed to the solver every time.

In order to derease the omputational load of the onvex polyhedron method, the

only solution is to redue the number of variables onsidered by the optimization problem,

hene to redue the horizon N . Figure 4.49 shows the results for a simulation done with

the same senario as before, but reduing the predition horizon by half of its length,



4 Obstale avoidane 102

thus setting N = 25. The omputatinal load dereases signi�antly, suh that a real-

time implementation ould be onsidered also for this strategy. However, the maximum

allowed vehile speed must also be redued. In fat the risk of having a short predition

time window is to not reat in time to a hange of the bounds due to obstale avoidane.



5 Simulation Results

5.1 Simulation model

It is important to underline that, sine dealing with model preditive ontrol, two di�erent

system models are needed. The �rst one is the model that MPC uses in order to make its

preditions. This one has to be reliable and has to bring out the main dynamis of the

system. On the other hand it has to be kept as simple as possible in order to be e�ient

in making preditions in short times. Thus, it is not fundamental for it to be exat sine,

thanks to the reeding strategy, the ontrol is apable of oping with model varianes.

The seond model is the one needed to atually simulate the real vehile. The latter has

to be kept as aurate as possible, in order to be able to verify the e�etiveness of the

ontrol. This model has to represent reality in the most detailed way.

In previous hapters the same system model is used for both MPC and simulation,

namely the one desribed in setion 3.4 by equations (3.33)-(3.35), whih onsists of a

set of triple integrators, one for eah axis, and takes the respetive jerks as inputs of

the system. In this hapter the ontrols are implemented into an exhaustive model of

property value unit

mass m 0.58 [kg]

inertia tensor J








6.4 0 0

0 6.4 0

0 0 12.5







× 10−3 [kgm2]

lever arm l 0.17 [m]

Table 5.1: model properties
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x-MPC y-MPC z-MPC

Q








0 0 0

0 1 0

0 0 0.5















1 0 0

0 0.2 0

0 0 0















1 0 0

0 0.1 0

0 0 0








R 0 0.01 0.001

Table 5.2: Weighting matries for eah axis

the quadopter in order to verify the e�etiveness and appliability of the overall ontrol

struture. Hene also the low level ontrol, whih traks the body rates evaluated by

the MPC, is implemented. This time also the propeller and motor dynamis together

with their own speed ontrollers are taken into aount. All this results in a omplex

model able to represent reality quite well. The quadopter model relies on an AsTe

®

Hummingbird with the properties reported in table 5.1. Simulations were done using

Simulink

®

, while the model preditive ontroller uses an embedded Simulink-interfae of

the software qpOASES [14℄ in order to solve the optimization problems.

Here the attitude ontrol is simply provided by a proportional ontroller as de-

sribed below.

M1 = kp1 (ω1r − ω1) (5.1)

M2 = kp2 (ω2r − ω2) (5.2)

M3 = kp3 (ω3r − ω3) (5.3)

where ω1r and ω2r are the referene body rates evaluated by the MPC, whereas the yaw

speed is referened as ω3r = 0. The values of the body rates ω1,ω2 and ω3 are provided

by onboard sensors. M1, M2 and M3 are the torques about the body �xed axes, whih

are then mixed together with the evaluated total thrust f to individual motor thrusts

exploting equation 2.7 as depited in setion 2.3. Note that the three rotations an be

deoupled, sine the inertia tensor J is diagonal.
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5.2 Simulations

In the trial presented in this setion the quadopter has to avoid three subsequent obstales

while �ying at a longitudinal speed of 10m
s
. The obstrutions are respetively 3 meters,

7 meters and 14 meters wide. The ontrol on the vertial axis is supposed to maintain a

ground learane of 2 meters, while the longitudinal ontrol has to keep a onstant speed

and to provide a deeleration only in ase the lateral ontrol is not able to �nd a valid

trajetory that avoids a ollision. Hene, the lateral MPC, ating on the y-oordinate, is

responsible for the obtsale avoidane task.

Given the tasks that eah ontrol has to arry out, the parameters that de�ne

the performanes of the model preditive ontroller have to be hosen. Table 5.2 reports

the weighting matries for states and jerk, respetively Q and R, that have been set for

eah axis and that provide a quite good overall performane. As shown in the table,

the MPC ating on the longitudinal oordinate only weighs veloity and aeleration.

This is due to the fat that no position referene is given to the x-oordinate, sine the

vehile is intrinsially �ying towards a given target. The oordinate system is indeed

plaed with its origin at the starting position of the vehile and direted with its x-axis

towards the target. This means that, given vx > 0 and assumed that the lateral ontrol

is orretly following its referene on the y-oordinate, the vehile will reah the �nal

position. The state-weighting matrix for the lateral MPC is hosen in order to trak the

referene (yT = 0). Here also the jerk is slightly weighed so that smoother translations

are obtained. Weighing the jerk avoids high peaks on the body rates ensuring gradual

movements. The vertial ontrol weighs the altitude error with respet to the referene

ground learane of 2 meters. Additionally also the veloity is weighed in order to have a

damping ation.

The slak variable for the boundary onditions needed for obstale avoidane is

weighed with we = 9 · 106. So as to ensure that the vehile is not �ying too lose to the

ground or too high, lower and upper bounds on the vertial oordinate were added. These

are hosen to lbz = 1m and ubz = 3m. The boundary onditions that derive from the

imposition of limitations on the vertial position are "relaxed" by a slak variable in order

to avoid problems assoiated with an infeasibility of the optimization solution. This slak
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Figure 5.1: Comparison between MPC model and omplete model

variable is again weighed with we = 9 · 106. Hene, the task of remaining within a feasible

altitude of 1-3 meters, is treated in the same way as for the obstale avoidane task.

The parameters setting the predition horizon are hosen equally for all three axes

to ts = 3ms and N = 50. Note that the sampling time has to be the same for all axes,

sine the body rates and the total thrust are omputed mixing together the optimal jerks

and aelerations evaluated by the three MPCs. Therefore the values of the three jerks

have to be provided simultaneously.

Figure 5.1 illustrates the resulting trajetory followed by the quadopter in or-

der to avoid a ollision with the three obstales. To make a omparison, the same trial

was implemented simulating the model exploited by the MPC to make its preditions,

whih onsists only of a set of a triple integrators as desribed in equations (3.33)-(3.35).

As mentioned in previous hapters this model does not onsider neither the rotational

dynamis, nor the motor and propeller dynamis nor any aerodynami e�et. The red

dashed line depits the trajetory resulting by simulating the latter. All parameters were
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Figure 5.3: Euler angles of the body frame with respet to the inertial frame

hosen the same way for both simulations in order to be able to make a meaningful om-

parison. As depited in �gure, the trajetory ahieved by simulating the omprehensive

model di�ers very little from the one resulting from implementing the ontrol on the

model used by MPC. The good results justify the hoie made by passing a very simple

system model to the MPC. As mentioned in hapter 3, the great advantage of feeding the

model preditive ontroller with a trivial model of the system, lies in the fat of being

able to solve optimization problems very quikly. The reeding strategy is able to ope

with all simpli�ations made by approximating the omplex system with a very simple

one. Thus, the e�etiveness of the ontrol has been proven, whih means MPC is able to

manage the deviation between the real behavior of the system and the preditions made.

Figure 5.2 illustrates the inputs ommanded by the model preditive ontroller
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after mixing together the three optimal jerks and solving equations (2.11) and (2.15).

Note that for omputing the desired inputs, namely the total thrust f normalized by the

vehile mass, and the two body rates ω1ref and ω2ref , also the optimal aeleration is

needed. The latter is simply evaluated by integrating the jerk trajetory. The rotation

matrix R of the body frame with respet to the inertial frame, whih is also needed to

ompute the inputs, is alulated exploiting the estimation of the attitude provided by

onboard sensors. The red dashed lines depit the real body rates ω1 and ω2 resulting from

the overall ontrol ation. As an be seen, the attitude ontrol manages very well to trak

the referene body rates provided by MPC.

Note that body rate ω1, namely the rotational rate about the body-�xed x-axis,

is responsible for lateral translations, sine it leads the total thrust to have a lateral

omponent. Thus, it is mainly assoiated with the obstale avoidane task. This explains

the high peaks depited in �gure 5.2.

Body rate ω2 is assoiated with longitudinal movements. The �utuations that an

be seen are due to the ontrol ation that tries to keep the longitudinal speed as lose as

possible to 10m
s
. A peak is notieable shortly after t = 0. This is aused by the ontrol

that has to slightly rotate the body frame in order to ounterat the aerodynami fores.

In fat, though the simulation starts with the vehile already having a speed of 10m
s
,

the body frame is initially �at. Thus, a small angle around the body-�xed y-axis has to

be provided in order to ahieve a longitudinal fore that ompensates for aerodynami

e�ets.

Figure 5.3 depits the Euler angles φ and θ, respetively about the x-axis and y-

axis. As an be seen, θ �utuates around a steady state value of approximately θs = 10◦.

This is the angle of the frame needed to bend the vetor of the total thrust forward in

order to ounterat the aerodynami fore assoiated to a speed of 10m
s
.

Figure 5.4 shows the veloities for all three axes. The dashed lines represent the

simulations done diretly on the model used by MPC to make its preditions. The longitu-

dinal ontrol is able to trak the 10m
s
speed with very small deviations. As demonstrated,

MPC is able to ope with modeling errors very well. For instane it manages to maintain

a onstant speed despite the in�uene of external fores that have not been modeled.

The lateral veloity vy does not di�er muh from the one resulting from the simu-
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Figure 5.4: veloities - the dashed lines represent the results of the simulation made on

the same model used by MPC

lations done on the simple model. As said before, lateral movements are responsible for

avoiding the obstales and traking the referene yT = 0.

Larger di�erenes between simulations on omplete model and results with simple

model are notable for the veloities about the z-axis. Here the �utuations are more

relevant, with a peak of 1.45m
s
. These are aused by strong aerodynami e�ets arising

at higher speeds. As an be seen, the greatest �utuations arise always shortly after a

peak of the lateral speed vy, hene orresponding with high values of the magnitude of

the overall veloity.

Figure 5.5 plots the trajetory of the z-oordinate. As depited, the altitude de-

reases up to 1.8 meters and has a maximum overshoot of a. 0.62 meters aused by

the mentioned aerodynami e�ets. Sine the ground learane represents a priority for

safety reasons one an assume to put stronger lower bounds on the z-oordinate. For this

reason a trial was made setting lbz = 1.99m and ubz = 2.4m. Also the upper limits on
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Figure 5.5: Trajetory for z-axis - bounds are set to lbz = 1m and ubz = 3m
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Figure 5.6: Trajetory for z-axis - bounds are set to lbz = 1.99m and ubz = 2.4m
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the altitude were set stronger in order to try to redue the overshoots of the z-oordinate.

However, experiment have shown that the slak variable has to be weighed in a milder

way. Otherwise the optimazation solver will have di�ulties in �nding a valid solution

and will return an infeasibility error. Hene, though the new bounds limit the altitude to

lie within a smaller region (1.99m-2.4m), the orresponding boundary onditions are set

in a "softer" way, sine the slak variable is weighed less into the ost funtion, that is

with we = 1 · 104. This means, an overstepping of the bounds will be less penalized.

Figure 5.6 shows the results. As an be seen the situation has improved. The

altitude drops with a maximum value of 0.057m and has a peak of 2.49m. Hene the

bounds are slightly overstepped due to the slak variable. The z-oordinate however is

kept within a range of 0.5m, whih is an aeptable result. A further redution of the

feasible range for the altitude has shown not to bring any improvements. This means

that, though bringing the upper and lower limits loser to eah other, overshoots of

approximately 0.4 meters still ourred. Moreover, limiting the solution for the altitude

to lie in a too small region leads to infeasibility problems of the optimization.

5.3 Real-time feasibility

One of the purposes of this work is to develop a model preditive ontroller suitable for

real-time implementations. This means it has to be able to ontrol the system online,

managing to solve its algorithms fast enough to not ause any losses in performanes and

stability. In the speial ase of MPC, real-time appliability translates in its ability to

solve all the neessary alulations within a time equal to the hosen sampling time ts. In

fat, after this time lapse a new ontrol input has to be evaluated in order to perform a

feedbak ation for the system. As known, one of the main drawbaks of MPC is the time

needed for the solver to �nd a solution for the optimization problem, whih underlies the

ontrol strategy. For this reason all onsiderations on the ontrol parameters as well as

on the hoie of the system model that is handed to the MPC have to be made in order

to keep the omputational load as low as possible. This brought to hoose a very simple

model of the vehile as well as a not too long predition horizon. On the other hand the

ontrol has still to be able to deal with all dynamis of the system in order to not ause
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stability problems.

In setion 4.9 some results regarding the omputational load needed for eah op-

timization to be solved are already shown. Those simulations are done using Matlab.

The solver qpOASES is used diretly within the Matlab environment. It is ompiled into

a so-alled MEX funtion, hene still providing very fast performanes. However, the

ontrol needs to perform other routine algorithms like the evaluation of the bounds for

obstale avoidane as well as the realulation of the vetors to be passed to the optimiza-

tion problem. In fat, looking at equations (3.27),(3.28),(3.29), vetor g as well as the

overall lower and upper bounds, lbA and ubA, depend on the atual state vetor x0, whih

apparently hanges for every new optimization, sine it is evaluated aording to the in-

formations provided by the sensor unit. As known, though very versatile, Matlab is not a

fast programming language. This means that solving all auxiliary alulations needed for

the ontrol using Matlab is not the most e�ient way. Hene, though the performanes

were already very satisfatory, the overall model preditive ontroller, inluding optimiza-

tion solver and routine algorithms, was oded in programming language C using Simulink

Coder�. The ompiled ontroller was then passed to a Real-Time Target omputer and

simulated in order to obtain reliable values of the omputational load. Various trials were

performed so as to to verify the e�etiveness of the ontrol together with its real-time a-

pability. In order to get loser to the performanes provided by urrent miroontrollers,

trials were performed simulating various values of the proessor's speed.

The horizon parameters were set to ts = 30ms and N = 50. Note that the �rst

parameter, namely the sampling time ts, sets time restritions for the optimization. Indeed

it represents the maximum time allowed to �nd a valid solution. The horizon length

N instead determines the omplexity of the optimization problem. In fat it sets the

number of variables the solver has to ope with, whih apparently inreases the numerial

alulations that have to be performed. Note that only the ontroller is simulated with

the real-time omputer. The atual system response is not simulated, sine it would

only harge the proessor with unneessary alulations. In fat, in real appliations, the

ontroller only has to evaluate the ontrol ation aording to the informations on the

urrent vehile state.

Note that the �rst optimization needs a longer time to be solved. This is due
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Figure 5.7: Task exeution times at di�erent CPU rates

to the online ative set algorithm exploited by qpOASES, whih needs to start in a

"old" way. This means, that for its �rst optimization it has to make guesses about the

possible solution, whih apparently osts omputational load. For this reason the real-

time mahine was allowed to take more time for the very �rst optimization problem. For

all suessive optimizations the algorithm takes the solution of the previous problem and

uses it as an initial guess. This proedure is alled "hot start", and brings the subsequent

solutions to be found within a shorter time.

The sampling time at whih the overall ontrol unit proesses its tasks is set to

∆t = 1ms. All auxiliary and routine algorithms are proessed within ∆t. In order to

allow the optimization proesses to last within ts = 30ms, the minimization algorithm is

splitted in subtasks that are omputed at a sampling rate

1

∆t
. Thus, the simulation an

be performed at a single sampling rate.

Real time feasibility was tested for the obstale disretization strategy. Figure 5.7

shows the results for a simulation done onsidering a single obstale. The trial was

repeated simulating two di�erent CPU rates: 800MHz and 128MHz. As an be seen,

the proessor manages in both ases to ompute the tasks within a lower time with respet
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to the primitive sampling time ∆t = 1ms.





6 Conlusions and outlook

In this work the design of a model preditive ontrol for online trajetory generation in-

luding �xed and moving obstale avoidane is presented. The design relies on a ontrol

struture originally developed for state intereption manuevers and desribed in [9℄. The

hoie to use that ontrol strategy was done due to the very simple model that model

preditive ontrol has to manage. Furhtermore no linearization is needed, sine the model

only onsiders translational movements and thus an be desribed through a set of triple

integrators. The rotational movements an be evaluated analytially given the solutions

provided by model preditive ontrol. Basing on this results, the trajetory planning for

distant targets together with the ollision avoidane task have been added. Initially only

the two-dimensional ase, hene the ase in whih the vehile is moving in the x-y plane,

was onsidered. First, the strategy presented in [8℄, whih relies on the approximation of

the �yable area with onvex polyhedra, was implemented. Several problems assoiated

with this method have been deteted. These issues lead to onsiderable restritions on

the real-time feasibility as well as on the maximum speeds that may be ahieved in or-

der to guarantee a ollision avoidane. All this brought to hoose a omplete di�erent

strategy for avoiding obstales. Still using linear onstraints, that an be managed muh

easier and with very low omputational loads, a new method was implemented, whih

relies on the time-disretization of the obstale. Indeed, assuming to �y at a onstant

speed, the bounds on lateral positions, whih in the spatial representation are funtion

of the longitudinal oordinate, start depending diretly on time. Hene, the boundary

onditions an be diretly applied to the lateral movements. This, together with the holo-

nomi nature of the quadopter, implies an other great advantage, that is the possibility

to ompletely deouple the axes. Thanks to it the problem an be splitted in two di�er-

ent optimization problems, whih leads to great improvements in terms of omputational
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load. The obstale avoidane task is only provided by the lateral ontrol, sine the bounds

are imposed on the y-oordinate. However there might be ases in whih the longitudinal

speed needs to be dropped in order to avoid an obstale. For this reason the use of a

slak variable was added. The latter has two main funtions. The �rst is to "soften"

the hard onstraints on the lateral positions in order to prevent that the optimization

solver returns an infeasibility error in ase an obstale an't be avoided (due to physial

limitations). The seond funtion of the slak variable is to send the information to the

longitudinal ontrol, in order to derease the speed in ase a trajetory is found, that

does not avoid a ollision. The only way that has been proved to be e�ient was the one

that redues the speed with maximum deeleration until the lateral ontrol again �nds

a valid trajetory that orretly avoids all objets on the way. The strategy has shown

great results in avoiding multiple obstales simultaneously as well as objets of di�erent

shapes and dimensions. The same method was then applied to three dimensional envi-

ronments again showing good performanes. At the end, also a method to avoid moving

obstales was proposed. The latter relies on the assumption that the obstales move with

onstant speed during the predition horizon. Thanks to the reeding strategy of model

preditive ontrol a new foreast of the obstale's veloity an be made for every new op-

timization, thus the ourse an be adjusted in ase of unpreditable hanges of speed and

diretion of the obstale. The strategy assures, that given the mentioned assumptions,

the bounds on the y-oordinate deriving from the ollision avoidane task, remain �xed

in the spae and an be therefore onsidered as a �tive �xed objet. The method was

able to manage obstales moving both slower and faster than the vehile. At the end of

the hapter a omparison was made between the onvex polyhedron strategy dexribed

in [8℄ and the obstale time-disretization method desribed in this work. The strategies

were ompared in the ability of avoiding obstrutions as well as in the omputational

load needed for the optimizations to be solved. The obstale disretization method has

shown great improvements with respet to the other method. The trajetories are muh

smoother and reliable. Furthermore, the strategy an manage muh faster speeds, always

ensuring that the obstales will be avoided. Also from a omputational point of view the

advantages are evident. Keeping the same horizon length for both strategies, the obstale

disretization method employs almost hundred times less in terms of time for solving the
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optimization proesses. The overall ontrol was then implemented in a omplex model of

the quadopter, that simulates the system dynamis in a very detailed way, thus providing

a reliable representation of the system response. The real system behavior di�ers very

little from the preditions made with the model exploited by the MPC, whih proves the

ability of the ontrol to ope with external fores that have not been modeled, as for ex-

ample aerodynami e�ets. The greatest disrepanies our for the vertial axis. Indeed,

the ontrol showed some di�ulties in keeping a referene altitude at high speeds. This

may be aused by strong aerodynami e�ets. Finally the ontrol unit was simulated on

a real-time target omputer. Trials were made simulating various lok rates. Real-time

feasibility was proved also for low CPU frequenies, thus providing the requirements for

a future implementation of the ontroller diretly on board the quadopter.

Further researh based on the presented work an be made. The good results

ahieved in simulations make the ontroller ready to be tested on real quadopters. First,

experiments an be done providing informations on positions and veloities of the vehile

through an external motion apture system. Also position (and eventually veloity) of

the obstales ould be passed by an external soure. The next step an be to develop

a unit apable of deteting obstales diretly onboard the quadopter. This ould be

provided for example by exploiting ameras or laser sanners, so that the vehile beomes

ompletely autonomous. Improvements an also be done on the ontroller itself. Till

now, the longitudinal ontrol dereases the speed with maximum deeleration in ase the

lateral trajetory does not manage to ompletely avoid a ollision. Seen from a global

point of view this is not the optimal solution. The obstale avoidane task, however, an

not be performed orretly within the same optimization problem for all three axes, sine

linear ontraints are onsidered. Thus, more detailed studies an be made on how to

formulate the longitudinal optimization problem in order to ahieve smoother trajetories

along the x-axis. For instane, the optimal longitudinal speed at whih to move within a

given environment ould be estimated a priori given the number, dimension and density

of the obstales along the way.
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