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un fanciullo da qualche altra parte. Ma qualsiasi cosa mi riserverà il futuro, non smetterò
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Introduzione

I micro-organismi sono oggigiorno largamente utilizzati in molti campi industriali, come indu-

stria alimentare, farmaceutica, biocombustibili ecc. Con la crescente diffusione delle biotecno-

logie, è nata una nuova scienza che aspira ad una comprensione quantitativa degli organismi,

chiamata microbiologia predittiva. Considerando la grande complessità, variabilità e non li-

nearità dei sistemi biologici, una comprensione quantitativa richiede necessariamente l’uso

di modelli computazionali. Per descrivere i microorganismi, devono essere combinate infor-

mazioni provenienti da scale dimensionali diverse, dalla macroscala, che considera l’intera

popolazione batterica, alla microscala, che descrive ciò che avviene dentro e nell’immediato

intorno di una singola cellula. Mentre le variabili alla macroscala sono facilmente misurabili,

caratterizzare sperimentalmente la microscala è ben più complicato. Nonostante questo, una

recente tecnica sperimentale chiamata analisi isotopica permette di misurare le variabili in-

tracellulari, ovvero le velocità di reazione, dette flussi, e le concentrazioni dei metaboliti. Tale

metodo consiste nel nutrire la cellula con atomi di carbonio identificabili, registrando come

questi si muovono all’interno della cellula attraverso il suo metabolismo.

Un approccio di modellazione di sistemi biologici particolarmente promettente è basato sui

network metabolici (reti metaboliche). I network metabolici sono mappe del metabolismo

cellulare, che riportano informazioni stechiometriche riguardo alla maggior parte dei meta-

boliti che partecipano alla crescita della cellula ed alle reazioni che li legano. Sfruttando i

network metabolici, è possibile formulare un modello primario, ovvero un modello che de-

scrive le naturali dinamiche dei metaboliti cellulari, nonostante la scarsità di informazioni

sperimentali precise a livello intracellulare. Questo richiede molti meno dati rispetto alla de-

terminazione delle equazioni cinetiche di tutte le numerose reazioni intracellulari. Ciò è reso

possibile grazie ad alcune assunzioni semplificative, che sono alla base dell’analisi dei flussi

metabolici (MFA): la popolazione batterica è considerata essere omogenea, considerando la

concentrazione dei metaboliti nell’ambiente microscopico che circonda la cellula pari alla ri-

spettiva concentrazione macroscopica; le dinamiche intracellulari sono trascurate, assumendo

che il sistema sia sempre in uno stato pseudo stazionario, in equilibrio con l’ambiente extra-

cellulare. L’estensione della MFA a sistemi in stato metabolico non stazionario è chiamata

analisi dinamica dei flussi metabolici (dMFA).

Il principale obiettivo cui la microbiologia predittiva aspira è la formulazione di un modello

capace di catturare ed esprimere la complessità del microorganismo, prevedendo la reazione

del sistema biologico a stimoli ambientali esterni. Tale modello permetterebbe di implementa-

re strategie di controllo in tempo reale per ottimizzare ogni variabile ed aspetto del processo,

spingendo la coltura cellulare a soddisfare gli interessi industriali. Questo studio è da inten-
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dersi alla luce di tale prospettiva, dato che aspira a risolvere il modello dinamico primario del

sistema biologico sfruttando solo i dati disponibili online durante il processo. Il problema sta

nel caratterizzare completamente il modello in funzione delle variabili extracellulari. Secondo

la dMFA, infatti, sia le variabili extracellulari che quelli intracellulari variano nel tempo, ma

mentre le prime possono essere determinate in tempo reale durante la fermentazione, l’analisi

isotopica per la misurazione delle seconde è un metodo discontinuo. Bisogna quindi trovare

una relazione che correli la variazione dei flussi all’evoluzione dinamica delle concentrazioni

extracellulari. Due diversi approcci per esprimere questa relazione sono stati sperimentati. Il

cosiddetto approccio a scatola grigia è basato sull’analisi di bilanciamento dei flussi (FBA),

che segue una logica evoluzionistica. Secondo le teorie darwiniane, infatti, il tempo ha trasfor-

mato i microorganismi in perfetti ottimizzatori del loro stesso metabolismo, e i flussi devono

variare ottimizzando in ogni istante una funzione obbiettivo biologica. Al contrario, il secondo

approccio è semplicemente basato su un modello a scatola nera, molto più generale e flessi-

bile, la cui validità per sistemi in mezzo omogeneo e sotto moderate condizioni ambientali è

stata largamente confermata. Non di meno, il limite di questi modelli è la robustezza, ovvero

l’estensione a condizioni ambientali diverse ed in situazioni più realistiche.

I risultati di questi approcci sono testati su due casi: un piccolo network simulato, i cui dati

sono stati generati artificialmente imponendo semplici relazioni tra i flussi e le concentrazioni;

un network più grande, che descrive una popolazione di E. coli ingegnerizzata per la produ-

zione di 1,3-propandiolo (PDO). Questa sostanza è usata industrialmente nella produzione di

plastiche, come additivo per compositi, rivestimenti, additivi ecc. e come solvente. Questo

esempio ricalca quindi una reale fermentazione industriale.

Lo studio si muove in un campo di ricerca molto recente ed innovativo, esplorando le poten-

zialità di un approccio modellistico mai testato prima. Molte problematiche relative all’uso

della FBA sono evidenziate ed esaminate, mentre l’approccio sperimentale ha prodotto alcuni

risulti utili. Il limite di questo approccio rimane sempre l’estrapolazione fuori dalle condizioni

sperimentali, ma rappresenta comunque un modello di partenza da migliorare in futuro ed

arricchire di informazioni biologiche e meccanicistiche. La prospettiva di implementare un

modello in tempo reale efficiente e preciso, capace di rivoluzionare i bioprocessi, è ancora

lontana, ma molto si può ancora sperare da un campo di ricerca fresco ed in continua crescita

come appare la microbiologia predittiva.
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Summary

Micro-organisms nowadays are largely used in many fields of industry, such as food industry,

pharmaceutical industry, biofuels etc. With the spread of biotechnology, a new science which

aims to quantitative understanding of organisms was born, called predictive microbiology.

Considering the enormous complexity, variability and nonlinearity of biological systems, a

quantitative understanding necessarily requires computational models. To describe micro-

organisms, information at different scales must be collected, from the macroscopic scale of

the reactor, which considers the entire microbial population, to the microscopic scale, which

describes what happens inside and in the immediate around of a single cell. While mea-

surements of the macroscopic variables are easily available, to experimentally characterize

the microscopic scale is much more difficult. Nevertheless, a recent technique called iso-

topomer analysis allows to measure the intracellular states, i.e., reaction rates, called fluxes,

and metabolite concentrations. This method consists of feeding labeled carbon atoms to the

cell, registering their movements through the cellular metabolism.

A kind of modeling for biological system which is very promising is based on metabolic net-

works. Metabolic networks are a blueprint of cellular metabolism, reporting stoichiometric

information about most of the metabolites which participate to the cellular growth and the

reactions between them. Using metabolic networks, a primary model, i.e., a model which

describes the natural dynamics of the cellular metabolite, can be formulated which deals with

the lack of precise experimental information at the intracellular scale. In fact, it requires

a much inferior number of data than the determination of the kinetic equations of all the

numerous intracellular reactions. This is possible thanks to some assumptions, which are

at the base of metabolic flux analysis (MFA): the bacterial population is considered to be

homogeneous, assuming the concentration of metabolites in the microscopic medium around

the cell to be equal to the macroscopic, and then measurable, concentration; the intracellular

dynamics are disregarded, assuming the system to be always at the metabolic pseudo-steady

state, in equilibrium with the extracellular variables. These are quite strong hypotheses, but

they are sufficiently satisfied considering simple, liquid media under moderate environmental

conditions. The extension of MFA to systems not at the metabolic steady state is called

dynamic metabolic flux analysis (dMFA).

The main goal which predictive microbiology aims to is to formulate a model able to unravel

the complexity of the micro-organism, predicting the response of the biological system to

the environmental stimuli. Such a model would allow to implement online control strate-

gies to optimize every variable and aspect of the process, pushing the bacterial culture to

accomplish the industrial interests. This study moves toward this prospect, aiming to solve
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only with online inputs the primary dynamic model of the biological system. The issue is to

completely characterize the model as function of the extracellular variables. According with

dMFA, both the extracellular and the intracellular variables continuously vary in time, but

while the extracellular states can be determined in real time during the fermentation process,

the isotopomer analysis for measuring the intracellular ones is a discontinuous method. A

relation which links the variation of the fluxes to the dynamic evolution of the extracellular

concentrations must be found. Two different approaches to find this relation will be tested.

The so-called grey-box approach is based on flux balance analysis (FBA), which follows an

evolutionary logic. According with the Darwinian theory, the time has transformed the micro-

organism to a perfect optimizer of its own metabolism, and the fluxes should vary to always

optimizing a biological objective function. On the contrary, the second approach is simply

based on a black-box model, much more general and flexible, and whose validity on homoge-

neous media under moderate environmental conditions has already been widely confirmed.

Nevertheless, the limit of this kind of model is the robustness, its validity under a wider range

of experimental conditions and in more realistic situations. The results of these approaches

will be tested on two case studies: a small-scale simulated network, called toy network, whose

data were artificially generated with simple relations between fluxes and concentrations; a

bigger network which describes an E.coli population engineered to produce 1,3-propanediol

(PDO). This chemical is used in industry to produce plastic, as an additive to a variety of

products such as coatings, composites, adhesives etc and as a solvent. Hence, the case study

resembles a real industrial fermentation.

The study moves in a very recent and innovative research field, exploring the potentiality

of a previously untested modeling approach. Many problematic issue about the application

of FBA will be highlighted and examined, while the black-box approach will return some

interesting results. The limit of this approach remains the extrapolation outside the range of

experimental conditions, but still it represents a starting model to be improved in future and

enriched with biological and mechanistic information. The prospect of the implementation

of a real-time, efficient and effective model which revolutionizes the bioprocesses is still far

nowadays, but much can still be expected from a fresh and ongoing research area such as

predictive microbiology.
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Chapter 1

Literature study

1.1 Introduction

This study is focused on predictive microbiology. What is predictive microbiology? McMeekin

(McMeekin et al., 2002) defined it as a quantitative science that enables users to objectively

evaluate the effect of processing, distribution and storage operations on the microbiological

safety and quality of foods. Since the previous quotation was included in the first book on

the subject, predictive microbiology can be considered a quite recent science, still growing

and improving nowadays. The adjective “quantitative” still expresses more an approach than

a real state of knowledge. Quoting Lord Kelvin:

When you can measure what you are speaking about and express it in numbers you know

something about it; but when you cannot measure it, when you cannot express it in numbers,

your knowledge is of a meagre and unsatisfactory kind.”

Starting from the first quantitative practice of many food microbiologists of enumerating

all the micro-organisms in all the stages of food storage, which was a slow and expensive

procedure, predictive microbiology is currently adopting the mathematical model approach,

evolving toward a more exact science.

Although the previous definition referred to food, predictive microbiology can be meant as a

general approach to the study of micro-organisms, and consequently extended beyond food

industry to all the biotechnological applications, i.e., all the processes which involve the use

of micro-organisms. The intent of predictive microbiology is to schematize and simplify the

high complexity of the organism, applying a reductionist approach. This approach consists

of identifying a limited number of environmental variables able to considerably influence the

cellular behavior, i.e., such that the response of the organism can be expressed as function of

these extracellular stimuli. Developing such an approach would make it possible to reach a

1
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deep understanding of the intracellular mechanisms.

The necessary condition to apply this scientific approach to the study of living organisms is

the hypothesis that they can be described as mathematical systems. This is expressed by two

general premises, the basis of predictive microbiology science:

• the factors that influence the organism’s responses are limited, and the responses are

reproducible under the same conditions;

• based on past observations, it is possible to predict the micro-organism’s behavior.

The results that were obtained in predictive microbiology since the first studies confirmed

the effectiveness of this kind of scientific approach on living organisms, and they contributed

during the years to make predictive microbiology a recognized and promising science.

“[. . . ] the growth of bacterial cultures, despite the immense complexity of the phenomena to

which it testifies, generally obeys relatively simple laws [. . . ] The accuracy, the ease, the

reproducibility of bacterial growth constant determinations is remarkable and probably

unparalleled, so far as biological quantitative characteristics are concerned.” (Monod, 1949)

1.2 Food safety

1.2.1 Origins

Predictive microbiology was born in relatively recent years, as an answer to food safety issues.

Its history and development appears to be strongly bound to those of this field, and that is

why this historical review will be particularly focused on the food industry case study. The

use of predictive microbiology in food safety mainly aims to prevent or at least minimize

the growth of micro-organisms in foods, a variable and sometimes heterogeneous medium.

The characteristics of the so-called “food predictive microbiology” and the differences with

the other main field of application of this science, biotechnology, will be explained later

(Subsection 1.4).

Methods to limit and prevent the growth of micro-organisms in food were applied since

thousands of years: refrigeration, use of salt, thermal treatment, etc. (McMeekin et al., 2002).

Of course until relatively recent time the approach remained merely empirical, without having

any knowledge or quantitative understanding of what was happening at cellular scale.

The first quantitative approach in the study of micro-organisms, consisting of mathematical

models, arrived with the attempt of characterizing the growth and death of micro-organisms

in time at constant environmental conditions. These models belong to the primary model

class (Subsection 1.5.2). The first appearance of this approach probably dates back to 1922,
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with Esty and Meyer’s log-linear model for thermal death of Clostridium botulinum type A

(McMeekin et al., 2002; Baranyi and Roberts, 2004).

A great advance came in 1936 with Scott (Scott, 1937), who investigated the dependency of

the specific death rate of micro-organisms on environmental conditions such as water activity

(an index between 0 and 1 that counts the relative lack or abundance of water in the medium).

This additional step was important because it introduced the secondary models, i.e., models

that include environmental changes in primary ones (Subsection 1.5.2). Scott also gave a great

contribution to predictive microbiology as we know it, since he was the first to understand

the potentiality of using collected data of microbial responses to predict food safety issues:

“A knowledge of the rates of growth of certain micro-organisms at different temperatures is

essential to studies of the spoilage of chilled beef. Having these data it should be possible to

predict the relative influence on spoilage exerted by the various organisms at each storage

temperature. Further, it would be possible to predict the possible extent of the changes in

populations that various organisms may undergo during the initial cooling off of the sides of

beef in the meatworks when the meat surfaces are frequently at temperatures very favourable

to microbial proliferation.” (Scott, 1937)

Parallel to food predictive microbiology, also biotechnology studies started and had a fast

development in the middle of the twentieth century: famous are the models for fermentation

industry proposed by Monod (Monod, 1949). Although food predictive microbiology and

biotechnology have many common characteristics and they aim to a progressive unification,

there are also some differences in their fundamental hypothesis that made these two sciences

to develop distinguished models.

1.2.2 Modern predictive microbiology

Publications in food predictive microbiology remained limited until the 1960-1970’s. Then,

many research studies in different areas started, e.g., fish spoilage (Olley and Ratkowsky,

1973a,b) and prevention of microbial intoxications (Genigeorgis, 1981; Roberts et al., 1981),

giving a great impulse to the modeling approach. The biggest exploit of the predictive mi-

crobiology approach for food industry arrived in the 1980s, with prioritisation of food safety

research by the governments in the USA, UK, other EU countries, Australia and New Zealand

(McMeekin et al., 2002) and the creation of the first validated, commercialized database for

kinetic data collection, FoodMicroModel™, in 1988 (Baranyi and Roberts, 2004).

Which were the main reasons that caused such a fast increase of trust toward this science, al-

most ignored before? Some possible causes, pointed out by different authors in the past, were:
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(i) the marked increase during the 1980’s in the incidence of major food poisoning outbreaks,

particularly in ready-to-eat food, which led to an acutely increased public awareness of the

requirement for a safe and wholesome food supply (Ross et al., 1999); (ii) the realization

by many food microbiologists that the traditional methods for food quality and safety were

inefficient, and, due to the long time to obtain results, their predictive potentiality was lim-

ited (McMeekin, 1993); (iii) the advent, development and widespread diffusion of computers,

which provided a superior and widely accessible computational power (Buchanan, 1991) and

permitted the creation of huge databases to collect kinetic data and model information for a

wide range of micro-organisms (FoodMicroModel, ComBase [UK-US], SymPrevius [FR], the

Pathogen Modeling Program (PMP) [US]); (iv) the change of mentality of people about food

during the 1980’s, with the diffusion of the green culture paradox, that asked for more healthy,

more safe but less processed foods: “Consumers are demanding miracle foods that are totally

natural, have zero calories, zero fats and cholesterol, delicious taste, total nutrition, low price,

environmentally friendly production, “green” packaging [. . . ] and that guarantee perfect bod-

ies, romance and immortality.”(Carol Brookins, Global Food and Agriculture Summit, 1999).

Deepening the first statement, a great factor of change that made more immediate the need

of a revolution in food industry, as in many other fields, was the globalization. In a world

characterized by condensation, stratification and mobility of human population, that was ex-

periencing an unprecedented rate of change as result of scientific and technological advances,

the emergence and reemergence of foodborne microbial pathogens is not surprising. Typical

bacterial features of adaptation and exploitation, due to their small size, speed of reproduc-

tion, phenotypic plasticity and genetic promiscuity, permit the micro-organisms to colonize

almost every conceivable habitat on earth and to adapt to every environmental change (Leder-

berg, 1997). To reduce the contamination risk, fundamental importance had to go to food

quality control and surveillance strategies. Predictive microbiology offered a feasible alter-

native to the traditional microbiological end-product testing to estimate shelf-life and safety,

used until that moment in food industry. This detection method was expensive and ineffective,

since it was based on a retrospective approach (McMeekin et al., 2002). It was particularly

inefficient against very low infectious dose pathogens, a problem emerging in that period.

Predictive microbiology instead promised the possibility of preventing the bacterial growth

on food products with a theoretic approach, acting in a proactive way. Important elements of

a proactive approach are the accumulation of quantitative information and kinetic data and

an increased understanding of microbial physiology (McMeekin et al., 1997). According to

Ross (Ross et al., 1999), the development of predictive models would greatly reduce the need

for microbial examinations, and would enable quality and safety predictions to be quick and

inexpensive.
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Henceforward, predictive microbiology has known a constant growth of interest and develop-

ment over years.

1.2.3 Applications

Ross (Ross et al., 1999) identified some useful applications for food industry that the future

development of predictive microbiology could make possible: (i) prediction of the influence

of product formulation and environmental conditions on food shelf life and safety; (ii) formu-

lation of new processes and products to reach the required level of safety; (iii) evaluation of

microbial responses to normal processing, that is subject to risk assessment due to its intrinsic

variability, and to eventual lapses in processing or storage control, determining the appro-

priate remedial action;(iv) understanding the effect of processing at microbial scale through

mathematical models, which enables the identification of the steps that contribute more to

the overall risk and permits to minimize redundant processing while food safety is still guar-

anteed. Although these possible use patterns of predictive microbiology are promising, the

real application in food industry is still far. Problems are currently present at different levels,

starting already from practical issues such as experimental design and measuring of some

parameters, e.g., water activity, and moving toward even more philosophical criticisms about

the legitimacy of the predictive microbiology approach.

1.2.4 Criticisms

Many problems are connected with the high uncertainty of biological systems. A difficult

issue is the characterization of the lag-phase, what McMeekin called “growth/no growth

interface” (McMeekin et al., 2002). Since the best option to keep a limited concentration of

micro-organisms is to prevent their growth, the lag-phase is very important in food safety

and shelf-life determination of foods. The duration of this phase depends on many factors

and it is very hard to be modeled. It can depend on singular environmental conditions,

e.g., temperature, pH or water activity, but also on a combination of these. Considering the

combined effect of many environmental factors, the Hurdle concept, formulated by Professor

Leistner (Leistner, 1978, 1992), aims to determine the minimum value for each factor to

prevent microbial growth. This phase is also characterized by an inherent variability, that

has been proven to increase fast with the increase of response time. This variability is due to

the precedent history of the population, which is difficult or impossible to be characterized for

every single case. At a certain time and under certain conditions, cells contaminating food can

be found to be damaged and require repair before starting growth, or they can have entered a

suspended animation state or can be dead. In other words, the cells need an adaptation gap
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to get used to the new environment, before they start to reproduce themselves. In situations

characterized by variability and uncertainty, the development of good mechanistic models

is impossible, and the formulation of good empirical kinetic models improbable (McMeekin

et al., 2002). These considerations introduce the need of a probabilistic approach: under

which sets of conditions could the food product be considered safe with a sufficient certainty?

Parallel to the development of kinetic models, which are concerned with the determination

of rates of response of the organisms, probability models were developed, that consider the

probability or the likelihood of some event within a fixed period of time.

Although large databases have been created including primary and secondary models for many

micro-organism species, the understanding of the intrinsic mechanisms that determine cellular

responses to environmental changes is still quite poor. Most of the secondary models proposed

are black-box models, i.e., merely based on experimental data, since their formulation requires

less time and data. Even if these models were proven to be useful in practical applications,

they should still represent a temporary, intermediate step, moving toward more biologically

significant expressions. According to McMeekin (McMeekin et al., 2002), the recent trends

toward increased use of black-box models like artificial neural networks may inhibit the search

for mechanistic and biologically relevant models.

1.3 Biotechnology

1.3.1 History and applications

Although the term predictive microbiology is historically connected with food safety applica-

tions, the general approach of this science is far more general, and it could be applied to study

every system that involves cellular populations. The biggest field other than food industry

that involves the use of micro-organisms is biotechnology, i.e., the science that includes every

technological application of biology and that uses living systems and organisms to develop or

make useful products. From this last point of view, biotechnology exists since thousands of

years, and it contributed largely to the growth and development of human kind, since even

the cultivation of plants and agriculture could be considered the earliest biotechnology appli-

cations. Even focusing on the modern concept of biotechnology, which concerns the use of

micro-organisms for useful productions, biotechnology dates back to Babylonians and Sume-

rians, since these populations started to use yeast to prepare alcohol. This was the beginning

of a long history of fermentation processes, e.g., production of wine, vinegar, cheese, yogurt,

bread, etc. Many of these applications are still fundamental in our society.

A fermentation process is defined as the overall set of biochemical reaction mechanisms to

extract energy and form products under anaerobic conditions, even if aerobic processes are
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also sometimes called fermentations. The word fermentation comes from the latin verb fer-

vere, describing the action of yeast on malt or sugar.

In the mid-nineteenth century, Louis Pasteur pointed out the role of micro-organisms not

only in food processes, but also in chemical industry for the production of fuels and fine

chemicals. The branch of biotechnology that concerns industrial applications is called white

biotechnology. The quantitative knowledge of biological phenomena and mechanisms enables

biotechnology to optimize every aspect of the fermentation processes, using organisms to pro-

duce chemicals on industrial scale. Other examples of white biotechnology are for example the

use of enzymes as catalyst to produce valuable chemicals or destroy hazardous or polluting

ones. These considerations sketch the profile of an alternative chemical industry, more in line

with the present environmental issues.

Industrial fermentation knew an incredible enhancement more recently, from the 1970’s on,

thanks to the development of genetic engineering and gene mounting. The first successes in

this field came from the works of Paul Berg, Herbert W. Boyer and Stanley N. Cohen. This

new science made it possible to force bacteria toward the production of chemicals of interest,

e.g., amino acids.

Nowadays biotechnology is widely used in industrial fermentation, such as the production of

alcohols and acetone, and in pharmaceutical industry (Najafpour, 2007). Moreover the rising

demand for biofuels, an important alternative to petroleum-derived fuels, is giving a great

boost both to the industrial production of ethanol and to genetic applications in agriculture.

1.3.2 Bioreactors

The heart of a biochemical fermentation process is the bioreactor or fermenter (Figure 1.1).

A properly designed bioreactor should provide a controlled environment to optimize cellular

growth and formation of products according with the particular biological system employed.

The performance of the bioreactor depends on many variables, given the complexity of cellu-

lar systems, and many factors have to be controlled and regulated. Some of the fundamental

features to consider, which can influence the efficiency of the fermentation, are: (i) biomass

concentration, which should remain high enough to provide satisfactory yield; (ii) sterile con-

ditions, to obtain a pure culture; (iii) agitation, to distribute and uniform the substrate and

other concentrations in the available volume; (iv) heat transfer, to maintain the temperature

as constant as possible and optimal for cellular growth; (v) creation of the correct shear con-

dition, not too high share rate to avoid damages at the culture but high enough to prevent

phenomena as flocculation, aggregation of the cells and cellular growth on the reactor walls;

(vi) nutrient supply; (vii) product removal; (viii) product inhibition; (ix) aeration. To guar-

antee that the reactor operates respecting all of these requirements, sensors are needed to
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measure at least pH, temperature and dissolved oxygen. Compared with a normal chemical

process, a fermentation usually works at milder conditions, but it also presents much more

strict operative ranges. Living organisms, in fact, are really sensible to the environmental

conditions, and even a small change of these can cause great damages to the microbial cul-

ture, inhibiting the micro-organisms’ growth or killing them. From these considerations the

fundamental role that process control assumes in these kinds of processes emerges.

To design a bioreactor is a complex task, relying on scientific and engineering principles

and many rules of thumb. Some fundamental aspects that require critical decisions for the

bioreactor design are (i) the configuration, e.g., air-lift or stirred tank, and (ii) the mode

of operation, continuous or discontinuous. As for normal chemical reactors, for every mode

of operation there are many different configurations of bioreactors, each one with its own

advantages and drawbacks, that must be weighted on the particular system to treat. The

different configurations will not be treated in this study, and for every mode of operation only

a stirred tank reactor will be considered.

Most of the bio-processes are discontinuous (Figure 1.2, a), since this mode of operation

adapts well to the intrinsic dynamic behavior of cellular growth: lag phase, growth, stabiliza-

tion and death (Section 1.5). The reactors for this kind of process can be fully discontinuous,

i.e., batch reactors, or semi-discontinuous, i.e., fed-batch reactors. Batch reactors simply con-

sist of a vessel, usually jacketed and mixed, and they have the dual advantage of low capital

and operating costs. The working principle of this equipment is quite basic: the reactants

are charged inside the tank and this is closed; when the desired environmental conditions

are reached the reaction starts; the reaction proceeds for a determined time, then the pro-

cess is stopped and the reactor is opened, yielding the final products. This equipment works

cyclically, repeating this sequence of operations every time. To remove the products and

eventually clean the vessel, after every cycle a dead time must be considered, which reduces

the productivity of the reactor. Since it behaves as a closed system, it is mathematically de-

scribed by a dynamic model. A critical aspect of this bioreactor is the agitation: turbulence

is required to enhance material and heat exchange, but it can also cause foaming, which may

lead to unknown contamination in the vessel. This can be prevented both chemically, adding

antifoam agents to the medium, and mechanically, with foam breakers near the liquid surface.

Baffles are often used to reduce vortexing and to improve the heat exchange in large volume

vessels (Najafpour, 2007; Doran, 1995).

The fed-batch reactor (Figure 1.2, b) is very similar to the previous one, and most of the
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Figure 1.1: Stirred tank bioreactor.

considerations are still valid. The difference is in the working principle. The reactor in fact

is closed only on one side: the reactants are fed during the whole process cycle, but there

are no streams coming out. The level in the reactor increases over time, and the model is

still necessarily dynamic. This working principle is useful because it maintains the basic

characteristics of a batch reactor, but it permits to gradually feed the substrate. This way it

avoids too high concentrations of substrate at the beginning of the cycle, which may lead to

quickly reaching the stationary phase. A too fast growth in fact can cause the rise of limiting

effects, e.g., an oxygen demand required for the growth which is too high for the mass-transfer

capability of the reactor or the accumulation of substances which have an inhibitory effect on

cell growth (Doran, 1995).

Even continuous reactors (Figure 1.2, c) are possible for biotechnology applications. The

continuous bioprocesses are few, e.g., brewing, baker’s yeast production and waste treatment.

Considering a stirred tank configuration, a continuous operation is possible if the bacteria are

suspended in the liquid medium and not immobilized on a support, otherwise it would be a

problem to remove the dead cells. In this equipment the level is kept constant by controlling

the input and output flow rates, and the mathematical model that describes the system is

stationary (Doran, 1995).

1.4 Food predictive microbiology vs biotechnology

Since the approach of predictive microbiology is general and in theory extendable to both

food safety and biotechnology, why are the models developed for these fields of application

different? Some differences that explain the distinction between the two sciences (Baranyi

and Roberts, 1994) are highlighted here.

• Objective: The aim of food predictive microbiology is to prevent or at least minimize

bacterial growth. On the contrary, biotechnology usually attempts to maximize micro-
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Figure 1.2: Batch, fed-batch and continuous stirred tank reactor.

bial growth to a certain extent or product formation.

• Bacterial concentration: Due to the industrial scale of the bioreactors and to the

optimal conditions for cellular growth, bacterial concentration in bioprocesses is typi-

cally greater than 106 − 107 cell/ml. On the contrary, microbial concentration in foods

is generally very low. As a consequence, some methods validated and commonly applied

in biotechnology applications cannot be used for food safety issues.

• Model phase: Food predictive microbiology models focus on the lag-phase, investi-

gating the inhibitory effects of environmental factors. Biotechnology models instead

usually describe the exponential growth phase. Monod’s model (Monod, 1942) for ex-

ample, commonly used in biotechnology to represent the transition from the exponential

to the stationary phase, loses its significance in food safety because substrate limitation

is rarely important unless food spoilage is reached.

• Medium: The bioreactor is a controlled environment, in which many variables are

controlled and manipulated. It is generally a mixed liquid medium, and it is almost

everywhere homogeneous, unless for inherent non-ideal behaviors. Foods can be con-

sidered homogeneous only if they are liquid, and to collect physicochemical information

about this “environment” is far more difficult. Hence food safety requires more simpli-

fying hypotheses, empirical elements and mathematical-statistical methods.
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Although the efforts of food microbiologists and biochemical engineers are directed toward

different phases of microbial growth, unifying their works would make it possible to charac-

terize the entire life of the cellular population. Furthermore, global approaches that treat

the growth curve without focusing on particular phases could be useful for both fields of

application.

1.5 Modeling

1.5.1 Empirical vs mechanistic models

A possible definition for a model is “the description of a system, theory, or phenomenon

that accounts for its known or inferred properties and may be used for further study of its

characteristics” (McMeekin et al., 2008). In engineering applications, a model is a simplified

representation of the relationship between the effects, and the factors that are considered

to be the causes of those effects. Translating this relationship as a mathematical function,

the effects are the dependent variables, observations or responses, while the causes are the

independent variables or inputs.

There are two main approaches to formulate a model starting from a set of measurements: (i)

the first approach is simply based on the experimental data, trying to fit them; (ii) according

with the second approach, a model should be based on theoretical considerations and should

express some intrinsic relationship between dependent and independent variables. Models

that belong to the first class are called black-box or empirical models, since they are general

and they can be applied to any set of data coming from any system, without requiring any

specific knowledge about system features. For the models of the latter class instead, called

mechanistic models, measurements should be used just to validate the model after its formu-

lation.

Few models are purely mechanistic, while fully empirical models are useful only in a small

number of applications, since they provide information limited to the very specific conditions

at which they were obtained. Most of the models could be classified halfway: empirical models

that include some knowledge about the specific system or models based on biological consid-

erations with empirical parameters. This way, both types of models can be used not only for

prediction, which is generally the first aim of model formulation, but also for validation of

some base hypotheses. Modeling in general does not only have an immediate purpose, limited

to certain conditions and circumstances, but it can also be used to systematically improve

the deep understanding of a system. Mechanistic models are preferred for this aim, since
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they contain more a priori knowledge about the system, but to obtain a mechanistic model

is much more time expensive and requires much more data for validation than to perform a

regression for a black-box model. These observations justify the large use of black-box models

in predictive microbiology.

1.5.2 Biological models

The different categories of models used in predictive microbiology will now be defined and

analysed singularly. According with a general classification, biological models can be divided

into: (i) primary models, which describe the dynamics of growth and death of populations of

microorganisms in a constant environment; (ii) secondary models, which express the parame-

ters of primary ones as function of relevant environmental factors; (iii) tertiary models, which

collect the information from the primary and secondary models, incorporate the algorithm

into a computer software package and enable practical applications and predictions.

Primary models are the most important models in predictive microbiology, and chronologically

also the first being formulated. Generally the life of a bacterial population is characterized

by different phases. Models were formulated both focused on singular phases and trying to

give a global description of the cellular life-cycle. The initial stationary phase is called lag

(Figure 1.3, Lag phase). During the lag phase growth has not started yet, since cells are

not ready to reproduce. It can be thought of as a period of adaptation of the cell to the

new environment that surrounds it. The extent of this temporary lapse depends on many

factors which are not easy to isolate, and on the previous history of the organism, introducing

a great variability which is usually modeled with a probabilistic approach. Since generally

limited information is available on the pre-inoculation period, many models simply disregard

this phase. After this phase the cell begins to reproduce, and the exponential growth starts

(Figure 1.2, Growth phase). At invariant environmental conditions and while growth is not

limited, the rate at which bacterial doubling occurs is constant. This second phase is also

called log phase, since on a semi-logarithmic kinetic curve, i.e., a graph with natural loga-

rithm of the cell number versus time, it is approximately linear. The third phase (Figure

1.2, Stationary phase) occurs when the bacterial population reaches the maximum carrying

capacity of the environment and some growth-limiting factor gains importance, e.g., lack of

essential nutrients, accumulation of inhibitory substances or a concentration of cells which is

too high. The growth rate drops, until it becomes equal to the death rate: a new stationary

phase results. Finally, when the substrate concentration is no longer high enough to permit

cellular survival, the death phase begins (Figure 1.2, Death phase), with the number of cells

decreasing over time. The corresponding behavior on the kinetic curve is called tailing-off.
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Figure 1.3: Typical batch growth curve.

The dynamic behavior resulting from the succession of all these phases and characterizing

the growth of every bacterial culture justifies the wide use of batch and fed-batch bioreactors

in biotechnology applications. The particular shape of the entire kinetic curve for bacterial

growth in constant environmental conditions on a non-logarithmic graph can be well approx-

imated with a sigmoid function. This was the form chosen by the Gompertz empirical model,

which has been the most popular primary model until the mid-90s (Zwietering et al., 1990).

An alternative strategy for the formulation of a primary model, which is still nowadays largely

studied, is based on stoichiometric considerations. It will be presented later on in section 1.6.

To formulate a secondary model, a reductionist approach has to be applied to determine a lim-

ited number of factors that can be considered to notably influence the cellular response. These

factors were individuated, in decreasing importance order, as temperature, pH, water activity,

concentration of preservatives and antimicrobials, and composition of the atmosphere. These

factors do not act individually on the cellular growth, but they interact between each other.

This feature is the base of the Hurdles concept (Subsection 1.2.4), that studies the syner-

gic effects of environmental factors on growth inhibition (Leistner, 1978, 1992). A number

of mechanistic models were proposed to describe temperature effects, e.g., the square-root

model by Ratkowsky (Ratkowsky et al., 1983), based on thermodynamics, Arrhenius-based

models (Broughall et al., 1983) and the Cardinal Temperature model of Rosso (Rosso et al.,

1994). Nevertheless, most of the secondary models nowadays are still black-box models,

particularly when the simultaneous variation of more than one variable is considered. Many

studies suggested a quadratic polynomial regression to take into account the interaction terms

without using too complex models. Geeraerd (Geeraerd et al., 2004) proposed an alterna-

tive quadratic polynomial regression able to also include physical constraints, moving toward

grey-box models.
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1.5.3 Black-box models

The use of black-box models is very common in predictive microbiology, particularly for sec-

ondary models. The formulation of an empirical model requires to select an appropriate

functional form, a regression method and an error function. To perform a good regression,

good experimental data are needed. Before the regression step, an optimal experimental de-

sign is also important. To perform a regression means to find the value of the parameters that

minimizes the error function on the whole set of experimental data, i.e., such that the response

of the empirical model is as close as possible to the experimental values. Mathematically, this

is translated as solving an optimization problem. In this sense, the regression provides the

best model between the infinite possible ones for the selected model shape. There are many

regression methods, each one with its own strengths and drawbacks: the easiest and the most

common one is the least-squares estimation.

There are some general rules to correctly formulate a black-box model: (i) parsimony; (ii)

experimental data analysis; (iii) stochastic specification; (iv) validation. To explain the con-

cept of parsimony, consider first a least-squares estimation method. In the linear case, if

some hypotheses on the experimental data are satisfied, this method exhibits many desirable

properties, e.g., the parameters selected are unbiased estimators of the real ones, they are the

most efficient estimators, i.e., they possess the minimum variance between all the possible

estimators, and they are normally distributed. Since these properties are not valid for the

nonlinear case, it would be auspicable to always work with the easiest models available, since

they are closer to linear behavior and to the cited properties. For nonlinear models it is also

possible to perform a parameterization, i.e., a reorganization of the shape of the parameters

that does not affect the prediction power of the model but could improve some of its proper-

ties. More generally, a trade-off problem must be considered for any regression. Depending

on the error function chosen to be minimized, it is often true that the more complex a model

is, i.e., the higher the number of terms and parameters, the better it fits the data. Theoret-

ically, for a number of parameters equal to the number of measurements, perfect match is

reached. But data fitting is not the aim of a regression model, since otherwise it would be

limited to describe that particular set of measurements used to train it. A model is useful for

practical applications if it can predict the response of the system under conditions that are at

least slightly different from the original ones, and the higher the complexity of the model is,

the more difficult it will be to generalize it. This is a problem also treated by philosophy in

the past. The principle of parsimony embodied in Ockhams Razor, enunciated in the Middle

Ages by William of Ockham, can be expressed as “Entities are not to be multiplied beyond

necessity” (Ratkowsky, 1993).
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Before concluding a regression step on a set of experimental data, it is often necessary to mod-

ify these data to better satisfy some hypotheses and for experimental design reasons. Some

of the most common issues of dealing with the set of experimental data are: (i) particularly

if the data are raw, i.e., they directly come from the field, they can include gross errors. A

big issue consists of the individuation, study and possible elimination of the so-called outliers,

data that are not well fitted by the model. Together with the experimental data, the error

on the data should also be provided to the regression. (ii) The error on the data should be

stochastic, i.e., with null mean and constant variance all over the experimental range. This

last property is called homoscedasticity. (iii) The problem of collinearity or multi-collinearity

between the data consists of using terms that are linear combinations of others: this should be

avoided because it makes the global matrix of the regression problem, obtained by multiply-

ing the matrix which contains all the experimental values for the inputs with the transposed

matrix of the regression coefficients, ill conditioned. Consequently, to calculate the jacobian

of this matrix, which is necessary to solve the optimization problem, becomes difficult. (iv)

Unless the main interest is focused only around a portion of the experimental range, because

the model can provide good fit on the entire experimental range and catch different behaviors,

the experimental data should uniformly cover the overall range. If the data distribution is

not uniform on the whole range, data can be modified to improve their distribution.

Since the estimators of the parameters obtained from the regression are stochastic variables,

they posses an intrinsic variability. This variability should always be reported. If the vari-

ance on a parameter is too large, the estimators cannot be considered meaningful (Ratkowsky,

1993).

The validation step is useful before the regression and essential after it. The validation

performed before regression is part of a procedure called cross-validation. The first step of

cross-validation is called training, in which the regression is done by using only a fraction

of the original set of data. This step is reiterated many times, selecting every iteration a

different set of training data. Also the criterion to select these data can change. Then the

proper validation step arrives, in which the sum of the objective values on all the iterations is

compared between the different models. Cross-validation can help to select the shape of the

model if no previous information is available about it, and it takes into account not only data

fitting but also the capability of the model to be generalized. Outside the cross-validation

context instead, the term validation is generally used to point out the phase, after regression,

of verification of the estimated model, by trying to use it to fit sets of data different from the

training set.
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1.6 Metabolic network-based models

1.6.1 Metabolic networks

As was told, large use of empirical or semi-empirical models is made in predictive microbiol-

ogy, both to describe growth and inactivation of species and to characterize the parameters

of these models as function of the environmental conditions. Grey-box models, i.e., empirical

models which also include biological information, are flexible, since for secondary models they

can be extended to more variables with a multiplicative approach, and they guarantee good

prediction properties while even being parsimonious. Nevertheless, they also have some draw-

backs: (i) they don’t perform well outside the range used for training, i.e., the extrapolation

results are no longer accurate; (ii) although these models were proven to provide a good de-

scription of microbial dynamics under certain non-stressing conditions, avoiding for example

rapid change of environmental factors, they fail when they are applied to more realistic and

complex systems. In fact they consider simple liquid systems controlled by few variables,

disregarding many complex phenomena able to modify the dynamic cellular behavior, e.g.,

background flora, microbial competition, stress and stress adaptation and physico-chemical

properties of the medium. The influence of these and many other factors is considered by

the so-called completeness error, which is one of the largest sources of error in predictive mi-

crobiology (McMeekin and Ross, 2002). From these considerations the necessity emerges to

make the existing models more applicable and reliable, moving toward deterministic models.

It is necessary to look inside the black-box and unravel the underlying biological mechanisms

(Brul and Westerhoff, 2007). But to catch the intrinsic complexity of living organisms, the

study at macroscopic scale, i.e., the level of the overall population, is not enough. Information

must be considered also at the microscopic scale, i.e., at what happens inside the cell.

A viable way to do it is to exploit metabolic network-based models, making use of the re-

sults of previous studies that precisely characterize the metabolic networks of many species:

Metabolic networks are a blueprint of the reactions that occur inside the micro-organisms

during the biochemical process (Van Impe et al., 2012). These reactions can be divided in

intracellular reactions, i.e., between intracellular metabolites, and transport reactions, i.e.,

reactions that bond the extracellular species to the intracellular metabolism. While for most

cellular networks, e.g., signaling or protein-protein interaction networks, not all the metabo-

lites or reactions are known and the relative studies are still focused on the identification of

these elements, metabolic networks are a notable exception. In many metabolic networks the

interaction topology, i.e., most of the reactions that take a role in metabolism, the enzymes

that catalyze them, the genes that encode the enzymes and how they interact stoichiometri-

cally within a biochemical network (Schuetz et al., 2007), is well established and allows to
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describe almost the entire microbial genomes with mechanistic models (Schuetz et al., 2007).

Although the structure of a network is quite intuitive, real networks are incredibly compli-

cated to study, since the number of molecular components that interact is enormous, and the

way they interact is highly nonlinear (Burgard and Maranas, 2003).

The primary models obtained by metabolic networks can be considered mechanistic models,

since they don’t include experimental parameters but they are just dynamic mass balances for

the extracellular metabolites based on stoichiometric information of the metabolic reactions.

The metabolic network approach contributes to make predictive microbiology a more exact

science, moving from empirical to mechanistic models.

1.6.2 Flux Balance Analysis

The solution of the mechanistic model derived from a metabolic network requires to deter-

mine the rate of all the reactions that participate to cellular metabolism, both intracellular

and transport reactions. Looking at the network structure, the reactions appear to link the

metabolites. The reaction rates could be interpreted as material fluxes that move from the

reactants to the products, and that is why in metabolic networks analysis these quantities are

called fluxes. The fluxes are related to extrinsic and intrinsic factors via kinetic expressions,

each one including a set of empirical parameters. Since the number of reactions in a network

is usually notable, and for every reaction many kinetic parameters must be determined, even

for small networks, e.g., in the order of 50 reactions, the operation of determining the param-

eter values would be experimentally and computationally very demanding. Techniques for

model reduction are essential to enable the use of these models for simulation, prediction and

control purposes. Furthermore, to obtain experimental data for these systems is very difficult,

and their quality is often poor (a large experimental error must be considered). While the

extracellular metabolite concentrations, which are involved in uptake and secretion fluxes,

can be quite easily measured, it is more difficult to collect information about what happens

inside the cell. The analysis method to obtain data about the intracellular components is

relatively recent, and it is called isotopomer analysis. It consists of feeding 13C-labeled sub-

strate and then analysing the labeling state by nuclear magnetic resonance (NMR) and/or gas

chromatography/mass spectroscopy (GC/MS) measurements (Burgard and Maranas, 2003).

An alternative to the kinetic approach to obtain the distribution of fluxes is possible, but a

strong hypothesis is necessary, whose basic concept is well expressed by two sentences:

“Living organisms have evolved to maximize their chance of survival” (Darwin, 1899)

“Experimental evidence suggests that organisms have developed control structures to ensure
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optimal growth in response to environmental constraints” (Edwards et al., 2001)

The first sentence motivates the redundancy of pathways that link the enzymes in a metabolic

network, so that the removal of a single one due to for example environmental changes or

limitations will not prevent an organism’s ability to produce key components (Burgard and

Maranas, 2003). In mathematical terms, this is translated by the fact that, even when adding

physical and chemical constraints to the model, the distribution of fluxes will always identify

a space of solutions. The second sentence instead allows to determine a single point in this

feasible space. Always in accordance with Darwin’s evolution theory, cellular organisms have

maximized their growth performance as a response to selective pressure (Gianchandani et al.,

2008). The flux distribution is obtained by solving a mathematical optimization problem,

whose objective function expresses the organism’s trial to survive or grow, depending on the

environmental conditions and limitations.

The evolution hypothesis and the derived optimization problem, which are fundamental steps

in the reductionist approach to enable the solution of metabolic networks-based models, con-

stitute the basis of a method called Flux Balance Analysis (FBA).

1.6.3 The objective function

As we have seen in the previous section, FBA allows to compute the flow of cellular metabolites

through the metabolic network, making it possible to predict the growth rate of the organism

or the rate of production of a particular metabolite of interest (Feist and Palsson, 2010). As the

constraint-based reconstruction of the genome-scale network is often still a large mathematical

space of fluxes, this method requires an objective function to determine a flux distribution

that corresponds to an optimal network state.

To determine the objective function means to understand what a micro-organism tries to do in

a given environment. According with the evolutionary logic, i.e., everything in biology should

be viewed through the eyes of evolution (Feist and Palsson, 2010), the answer implies some

optimal performance based on the organism’s past history. Common objective functions are

for example maximization of biomass, maximization of ATP yield, minimization of glucose

consumption etc. These functions were proven to work well on different micro-organisms and

in different situations (Schuetz et al., 2007).

Many studies have been carried out in the past decades to investigate the objective function

optimization with different metabolic networks in different conditions. These studies can

be subdivided in two main categories: (i) studies examining which hypothesized cellular

objective function best predicts cellular behavior through metabolic network optimization

and comparison with experimental data and (ii) studies utilizing computational algorithms
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to determine best-fit cellular objective functions. The first studies resulted in the knowledge

that objective functions for an organism are likely condition-dependent and training data

specific. To obtain an objective function able to describe the aim of the organism, numerous

input, output and intracellular training-data fluxes must be analysed, with a case-by-case

logic, in order to find the best overall predictive function. Notable is the study of Schuetz

(Schuetz et al., 2007), that use a combinatorial engineering approach on E.coli to compare

the performance of 11 objective functions, with different constraints, under 6 different growth

conditions. The second kind of studies, in addition to the immediate predictive use, can be

used to confirm the importance of some previously hypothesized objective function, improving

the metabolic network understanding (Burgard and Maranas, 2003).

Even though there is a wide number of studies which explore the objective function in every

possible situation, many others are still to appear: we are only beginning to decipher what

cellular objectives actually are, and the search of these objectives is an ongoing area of research

(Feist and Palsson, 2010).



Chapter 2

Materials and methods

2.1 Introduction

In this chapter the materials and methods used to produce the results of this study are pre-

sented. The knowledge of these procedures is fundamental for the understanding of the next

chapter (3).

In the first section (Section 2.2) the model used for the simulations is introduced. Since it is

a stoichiometry-based model, the starting point will be the metabolic network and the stoi-

chiometric matrix derived from it. All the reductive hypotheses are highlighted and properly

motivated. Then the focus moves to the optimization step, formulating the biologic opti-

mization problem and defining the objective function and its basic constraints. Later on,

a general overview of the optimization problems is provided (Section 2.3). After present-

ing the general characteristics of a simple optimization problem, particular attention goes to

describing specific kind of problems encountered during the study, e.g., bilevel optimization

problems and problems with complementarity constraints. Finally, the last section is focused

on the black-box model formulation (Section 2.4). Different kinds of regression methods are

presented, with their advantages and drawbacks. The entire procedure to correctly formulate

an empirical model is briefly analyzed, starting from the experimental data and finishing with

the model validation. This topic alone is incredibly wide. Since the aim of this study is not an

analysis of the black-box model formulation, but black-box models are instruments inserted

in a wider procedure, this part provides a brief description of the problems. To have more

information about the empirical model formulation and how to manage experimental data,

data mining studies can be consulted (Buzzi-Ferraris and Manenti, 2010).

20
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2.2 Metabolic reaction network-based modeling

2.2.1 Stoichiometric model

A cellular organism can be schematized as a mathematically open system, that exchanges

both matter and energy with the environment that surrounds it. Molecular species are taken

up by the cell, they are consumed by the metabolism reactions to produce other components

and finally the products leave the cell. Metabolic networks provide a schematic representa-

tion of both metabolites and the reactions between them (Figure 2.1). This kind of system,

although easily explained above, is actually incredibly complicated to study, since the num-

ber of molecular components that interact is enormous, and the way they interact is highly

nonlinear (Burgard and Maranas, 2003).

Figure 2.1: A schematized organism: (1) is the uptake flux; (2),(3),(4) are the intracellular

reactions that link the intracellular metabolites A, B and C; (5),(6) are the desorption fluxes.

A biological system can be described at three different levels, which allow to catch different

aspects of the phenomena involved: (i) the macroscopic level, on which the characteristics

and the behavior of the overall cellular population are described; (ii) the mesoscopic level,

on which small populations or part of a bigger population are studied; (iii) the microscopic

level, on which information at cellular or intracellular level is considered. The link between

macroscopic and mesoscopic scale is very important, since mesoscopic scale allows to catch the

heterogeneity of the system, which can no longer be considered to be made up of identical cells.

To properly describe a biological system, information from both microscopic and macroscopic

level, moving through the mesoscopic one, have to be considered and linked together.

At the macroscopic scale, the system is described with the following dynamic equations:
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dNmacro

dt
= µ ·Nmacro (2.1)

dCS,macro

dt
= −σ ·Nmacro (2.2)

dCP,macro

dt
= π ·Nmacro (2.3)

σ =
µ

YX/S
+

π

YP/S
(2.4)

Nmacro is the macroscopic number of cells, expressed as a concentration [CFU/ml] (CFU =

Colony Forming Unit); CS,macro [mol/ml] and CP,macro [mol/ml] are the macroscopic concen-

trations of substrates and products, respectively; µ [1/h] is the specific rate of cell growth; σ

and π [ mol
CFUh ] are the specific rates of substrate consumption and product formation; finally

YX/S and YP/S are the yield coefficients of biomass on substrate and product on substrate.

This system can be also rewritten in a more compact form as:

dCmacro

dt
= Rmacro ·Nmacro (2.5)

where Cmacro is a vector containing Nmacro, CS,macro and CP,macro; Rmacro is a vector con-

taining the respective specific rates.

Moving to the microscopic level, the system of equations becomes:

dCint

dt
= Sint · v− µ ·Cint (2.6)

dCext

dt
= Sext · v ·N (2.7)

where Cext and Cint are the microscopic concentrations of extracellular and intracellular

metabolites, respectively, expressed in [mol/CFU ]; N is the microscopic number of cells,

considered as an extracellular metabolite; v is a vector of all the metabolic fluxes; finally

S is a matrix of dimensions n xm called the stoichiometric matrix of the network, with

n the number of metabolites and m the number of reactions. It can also be split in two

parts, corresponding to extracellular and intracellular components. The term µCint is called

“dilution term”: physically speaking, the more the number of cells increases, the less the

intracellular concentration of metabolites will be, when their total amount is kept constant.

The contribution of this term is much smaller than the stoichiometric term, and thus it will

be disregarded in the following treatise.

The two ODE systems are linked together through kinetic equations. These equations relate

the fluxes to extrinsic and intrinsic factors through a set of parametrized expressions f with

parameters Φ:
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v = f(Cext,Cint, T, pH, . . . ,Φ) (2.8)

The determination of the kinetic models appears to be quite an insurmountable step at the

present moment (1.6.2).

The problems faced now are: how to find an alternative way to kinetic expressions to compute

the extracellular concentrations at the microscopic scale? How to correlate the microscale to

the macroscale, obtaining the macroscopic concentrations from the microscopic ones? Two

hypotheses are needed. (i) Average cell: all the cells are equal to one average cell, i.e.,

they all have the same flux distribution. This means Nmacro = N . (ii) Homogeneity

of the population: the microscopic concentrations are homogeneous all over the medium,

Cext = Cmacro. This is sufficiently satisfied assuming a mixed liquid medium.

The new system we obtain when applying these hypotheses is:

dCmacro

dt
= Sext · v ·Nmacro (2.9)

dCint

dt
= Sint · v (2.10)

v = f(Cmacro,Cint, T, pH, . . . ,Φ) (2.11)

A further hypothesis can be done to simplify the system. (iii) Pseudo-steady state: ob-

serving that the intracellular dynamics are much faster than the extracellular/macroscopic

dynamics, they can be disregarded and the intracellular concentrations can be assumed at

pseudo-steady state: Sintv = 0. The dynamic equations for the intracellular metabolites are

converted into algebraic equations. Furthermore, Sint is a redundant matrix, i.e., not all the

reactions it describes are independent. Most of them actually are linear combination of a few

independent fluxes. The original set of fluxes can be re-written as v = K · u, where u are

called free fluxes, and K(nx(n −m)) is a suitable basis for the null space of Sint. The null

space of a matrix can be easily computed using the MATLAB® function null. The null

space, and then the set of free fluxes also, is not unique. After these assumptions, the final

system appears as:

dCmacro

dt
= Sext ·K · u ·Nmacro (2.12)

u = f(Cmacro, T, pH, . . . ,Φ) (2.13)

This procedure is fully explained and motivated by Van Impe (Van Impe et al., 2012).
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2.2.2 Optimization problem

The concentration of the extracellular metabolites depends on the intracellular dynamics

(Subsection 2.2.1). To compute this concentration, it would be necessary to link the macro

and the microscale through kinetic equations. Since the amount of reactions in a network is

relevant, and for each reaction more kinetic parameters have to be determined, a large amount

of experimental data would be needed to determine all kinetic expressions. Our present pos-

sibilities make it difficult to obtain such a set of experimental data.

How to overcome this problem and determine the dynamic profile of the fluxes? Once the

pseudo-steady state hypothesis is set (Subsection 2.2.1), the intracellular flux distribution

can be determined by solving a stationary problem for every time point. A continuous time

profile can then be obtained by interpolating all the individual time points, but the problem

to determine the flux distribution from the stationary problem still remains. If n−m is the

number of free fluxes obtained by simplifying the original set of fluxes, i.e., the dimension of

the null-space of the original stoichiometric matrix S, the problem consists of determining a

unique flux distribution. Mathematically this means finding a unique point in an unbounded

space Rn−m. It is now shown how it is possible to bound and reduce the feasible space using

general physical considerations.

• Irreversibility matrix: Not all the fluxes v can assume every value. Some of them

are bounded to only positive values, since the corresponding reaction in the network is

irreversible. This can be expressed mathematically as:

IR ·K · u ≥ 0 (2.14)

The IR matrix is called irreversibility matrix. It is a matrix of dimension (nirr xn),

with nirr the number of irreversible fluxes and n the total number of fluxes. Each row

identifies an irreversible reaction, and it has one on the column corresponding to the

irreversible flux, zero for the non-irreversible ones. The following irreversibility matrix,

for example, would be applied on a network with n = 4 fluxes, among which 1, 2 and 4

are irreversible.

IR =


1 0 0 0

0 1 0 0

0 0 0 1

 (2.15)
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Practically, this matrix multiplied for the vector of fluxes selects some rows from the

entire vector v, so that these fluxes are bounded to positive values. This constraint

modifies the feasible space, forcing it to assume a particular shape called convex poly-

hedral cone (Figure 2.2).

• Upper bounds: The polyhedral cone selected by the irreversibility constraint is still

an unbounded space. The value of the fluxes can be bounded (i) with physical consid-

erations, e.g., there is a maximal value on the substrate uptake flux due to transport

limitations; (ii) with experimental statistical considerations, e.g., a value above a cer-

tain limit was never observed experimentally for a certain flux. Despite the different

nature of these considerations, they can be mathematically expressed in the same way,

as:

K · u ≤ UB (2.16)

where UB is a vector of dimension n. Imposing the previously presented constraints,

the feasible area is reduced to a completely bounded space. It is called Bounded convex

polyhedral cone (Figure 2.2).

The size of the feasible space can be reduced by applying the constraints just introduced, but

still infinite feasible flux distributions remains. A unique solution can be found by searching

the optimal value of a specific objective function in the feasible area. This step requires a

further and important hypothesis: according with Darwin’s evolution theories (Darwin, 1899),

the cellular organism has become a perfect optimizer of its own metabolism, pushing it to

achieve at best some objectives to maximize its chance of survival (Subsection 1.6.2). Finally,

the stationary problem to determine the flux distribution for every time point can be written

as a constrained optimization problem:

min
u

f(u) (2.17)

s.t. IR ·K · u ≥ 0 (2.18)

UB−K · u ≥ 0 (2.19)
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Figure 2.2: Conceptual basis of the FBA problem: (A) the entire space Rn−m of free flux

distribution; (B) the bounded convex polyhedral cone, introducing the irreversible and upper

bound constraints; (C) the solution of the optimization problem, finding the optimum of the

objective function in the feasible area.

2.2.3 Dynamic Metabolic Flux Analysis (dMFA)

Leighty (Leighty and Antoniewicz, 2011) highlighted the pseudo state assumption used in the

model as one of the reasons why flux balance analysis is not commonly used in industry yet.

Since most of the industrial bioprocesses are fed-batch fermentations, the PSS assumption is

in contrast with the inherent dynamic nature of a system where cells continually adapt to a

changing of environmental conditions. In Equation (2.12) both the fluxes and concentrations

are continuous functions of time. The in vivo experiments provide isolate points in time of

what are called states, i.e., external metabolite concentrations or fluxes. From these isolated

points, a unique smooth profile must be obtained on time. This step can be considered as a

problem called Dynamic Metabolic Flux Analysis (dMFA).

In literature one approach to solve the problem (Niklas et al., 2011) is to perform a regression

on the measurements, obtaining additional time points apart from the original ones. For

each of these points a standard static FBA problem is solved (2.17), computing the flux

values. By representing the dynamic problem as a series of disconnected points, each one

statically solved, important information on the dynamic nature of the system is lost. Another

approach (Leighty and Antoniewicz, 2011) consists of combining the fluxes with the biomass

concentration to non-specific fluxes, which are then parametrized as piecewise linear functions.

The dynamic problem is this way turned in a non-dynamic, non-linear parameter estimation

problem, that can be solved analytically. Also this approach presents some drawbacks, e.g.,

the fact that the conversion from non-specific fluxes to biologically descriptive fluxes results

in a loss of information and the non-smoothness of the profile obtained from the piecewise

linear description. To overcome most of the presented disadvantages, a new method has

been investigated by Vercammen, solving a dynamic input optimization problem with a least-

squares objective function, that represents the true non-linear dynamic problem:
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min
u(t),x0

ntime∑
i=1

nout∑
j=1

(
yj(ti)−mij

σij
)2 (2.20)

s.t. dx(t)
dt = Se ·K · u(t) ·X · x(t) (2.21)

x(0) = 0 (2.22)

y(t) = f(x(t),u(t)) (2.23)

IR · u(t) ≥ 0 (2.24)

This optimization problem requires state-of-the-art tools for this kind of problems. The

method consists of B-spline parametrization with incremental spline knot insertion.

Although the results obtained from the dMFA solution will be used in this work, the procedure

will not be described in detail.

2.2.4 Objective function

The underdetermined problem of identifying the distribution of fluxes is solved by defining a

feasible area based on biological constraints, and optimizing an objective function inside this

space. Still there is the problem of identifying the objective function, since no information is

a priori available about what the cell is trying to accomplish in every instant. In other words,

the problem of determining the objective function answers the question: which particular

combination of fluxes is the cell trying to optimize in that particular environmental frame?

Can this function be justified with biological considerations?

In literature, a list of objective functions with their respective biological meaning is provided

by Schuetz (Schuetz et al., 2007) (Figure 2.3). In this article, the flux distributions obtained

when optimizing different objective functions with a direct biological interpretation are com-

pared with the experimental flux distributions obtained in different environmental situations.

This way it is verified which objective function appears to better describe the behaviour of

the micro-organism for a specific situation or which describes the behaviour of the micro-

organism in a wider range of conditions.

An alternative approach is also presented in literature, called ObjFind (Burgard and Maranas,

2003). Because the fluxes have to approximate the corresponding experimental values, they

can be correctly determined by adding a step of minimization of the least squares error be-

tween the estimated and the experimental values. Additional coefficients are then added to

the objective function. A possible objective function could be simply made up of a summation

of fluxes in which each term is multiplied with a coefficient. The global problem is a bilevel
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Figure 2.3: A list of objective functions with their biological explanation (Schuetz et al.,

2007).
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optimization problem, where the fluxes are the optimization variables of the inner problem,

which optimizes the biological objective function, and the CoIs are the optimization variables

of the outer problem, which minimizes the distance between the estimated fluxes and the

experimental fluxes. In this sense, the outer problem can be interpreted as a regression, while

the mechanistic information is contained in the inner problem. Since in the original ObjFind

method the objective function is a linear combination of the fluxes, both the objective func-

tion and the constraints are linear functions of the optimization variables. The inner problem,

when formulated in this way, is a linear programming (LP) optimization problem:

min
c∈Rq

n−m∑
i=1

(ui − uexpi )2 (2.25)

s.t.

q∑
i=1

ci = 1 (2.26)

maxu∈Rn−m f(u, c) (2.27)

s.t. IR ·K · u ≥ 0 (2.28)

UB−K · u ≥ 0 (2.29)

where n is the total number of fluxes v in the network and m is the number of intracellular

metabolites, so that n−m is the number of free fluxes u; q is the number of CoIs c, which are

normalized to one; f is the objective function, which depends on the free fluxes through the

CoIs; IR is the irreversibility matrix, while K · u = v; finally, UB is a vector of dimension

n which contains the upper bounds for every flux of v. The optimization solver generally

requires to set upper bounds for each optimization variable. To set the upper bound constraint

is different because it bounds not only the free fluxes u, which are optimization variables, but

every flux v which can be obtained as a combination of the free fluxes. Being an LP, this

bilevel problem is solved though reformulation with the strong duality theorem (2.3.3). The

aspect of the optimization problem after reformulation is:
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min
c,u∈Rn−m,λ1∈Rp,λ2∈Rn

n−m∑
i=1

(ui − uexpi )2 (2.30)

s.t.
n−m∑
i=1

ci = 1 (2.31)

cT · u = −λT2 ·UB (2.32)

IR ·K · u ≥ 0 (2.33)

UB−K · u ≥ 0 (2.34)

c− (IR ·K)T · λ1 + KT · λ2 = 0 (2.35)

(cj ≥ 0 ∀j ∈ 1, · · ·n−m)

(λ1,i ≥ 0 ∀j ∈ 1, · · · p)

(λ2,j ≥ 0 ∀j ∈ 1, · · ·n)

where p is the number of irreversible fluxes, i.e., the number of rows of the IR matrix, and

λ1 and λ2 are dual variables or lagrangian multipliers. In this case the optimization problem

is an LP.

As highlighted during the ObjFind study, this formulation mainly adapts to find the opti-

mization coefficients c for a given flux distribution. Since the fluxes are not free to vary

anymore, the biological meaning of the objective function falls entirely on the coefficients.

Considering a linear objective function, these coefficients can be interpreted as the weights

of the fluxes in the summation, and they are called Coefficients of Importance (CoIs). The

set of coefficients establishes the relative importance of each flux in the network. To clarify

this concept, the example of the biomass function follows. It is intuitive, in an evolutionary

logic, that a possible objective function for a micro-organism is the maximization of its own

growth. Since, based on metabolic network biological analysis, it is possible to also formulate

a combination of fluxes which expresses the biomass growth, the ObjFind approach could be

used both to verifying if the distribution of CoIs resembles the hypothesized one, confirming

and enhancing the biological understanding of the network, or, inserting the biomass growth

in the network as an additional flux, to verify if it assumes an important weight in the sum-

mation.

On the contrary, the inverse problem, i.e., using a set of CoIs to obtain the fluxes, does not

perform well. In fact, the optimization of the CoI-based fluxes subject to stoichiometric bal-

ances results in many different flux distributions, due to the degeneracy of the LP optimization

problem. Most of these solutions are not biologically meaningful, and they don’t represent

physical solutions. In practice, in accordance with the ObjFind method, to obtaining the
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fluxes from the coefficients is not possible.

2.3 Optimization

2.3.1 Material and software

In this section the formulation of an optimization problem is introduced, particularly fo-

cusing on constrained bilevel optimization. Although this kind of problem is the heart of

the FBA method previously presented, and its solution is a fundamental step for the use of

metabolic network-based models, a deep mathematical treatise is not the main aim of this

study. For more complete information about optimization, this study refers to the “Script for

Numerical Optimization” by Moritz Diehl (Diehl, 2009), while the solution of mathematical

problems with complementarity constraints takes the entire 11th chapter of “NONLINEAR

OPTIMIZATION, Concepts, Algorithms and Applications to Chemical Processes” by Lorenz

T. Biegler (Biegler, 2010).

Two different numerical computing environments were tested to solve the optimization prob-

lem: MATLAB® and CasADi. Exploiting the characteristics of each environment, the opti-

mization problem was solved with different strategies.

The MATLAB® optimization toolbox offers many optimization solvers, each one for a specific

kind of problem. In particular, the solvers available for a constrained optimization problem

with a generic objective function are: linprog for LP, quadprog for QP and fmincon for NLP.

The computational effort required to solve them increases in the same order.

For the aims of this study, the main advantage of using MATLAB® instead of CasADi is

the possibility of solving the bilevel optimization problem without reformulating it, using

embedded functions. At each time and variance iteration, the least squares can be minimized

with the free fluxes obtained by maximizing the objective function with its constraints. The

kind of internal problem, and consequently the type of solver between the cited ones, depends

uniquely on the selected objective function. The advantage of not writing the KKT conditions

consists of avoiding the solution of the MPCC problem.

Using CasADi instead, the formulation of the problem is more complex, since the origi-

nal bilevel problem must necessarily be reformulated using the duality theorem for LP or

the KKT conditions for NLP (2.3.3). The reformulated problem was easily implemented in

CasADi using symbolic optimization variables, which allow to compute the derivatives with

automatic differentiation instead of numerical differentiation, as MATLAB® does. Using

symbolic variables, the different operations are performed analytically, and only at the end

the numerical values are substituted. Theoretically, automatic differentiation requires more

computational time than numerical differentiation, but it is more precise, since it is exact
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up to the limit of machine precision (2.3.4). Furthermore, the optimization solver used in

CasADi, named IPOPT (Interior Point OPTimizer), offers a wider range of options than

MATLAB®’s optimset. By modifying the default options the user is allowed to play with

many parameters of the optimization. The reformulation of the bilevel problem introduces

the difficulty of solving an MPCC problem. If the solver proceeds too slowly or does not find

a feasible solution, it is convenient to try to relax the complementarity constraints with one

of the methods proposed by literature (Subsection 2.3.5).

2.3.2 Constrained bilevel optimization

The form of a standard constrained optimization problem is:

min
x∈Rn

f(x) (2.36)

s.t. g(x) = 0 (2.37)

h(x) ≥ 0 (2.38)

with f : Rn → R, g : Rn → Rm, and h : Rn → Rq smooth functions.

A constrained bilevel problem is a combination of two different constrained problems embed-

ded. The solution of the internal problem is a necessary condition for the solution of the other

one. To mathematically express this correlation, the solution of the inner problem is used as

a constraint for the outer problem. The general form of a constrained bilevel optimization

problem is:

min
x∈Rn

fouter(x, y) (2.39)

s.t. gouter(x, y) = 0 (2.40)

houter(x, y) ≥ 0 (2.41)

miny∈Rp finner(y) (2.42)

s.t. ginner(y) = 0 (2.43)

hinner(y) ≥ 0 (2.44)

This kind of problem can be equivalently solved by reformulating the inner problem with

some additional conditions. These conditions have to substitute the inner problem in the

constraints of the outer one. The equivalent conditions depend on the type of inner problem

under study (2.3.3).
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2.3.3 Inner problem reformulation: duality and KKT conditions

To solve a bilevel optimization problem, it is necessary to reformulate the inner problem with

equivalent conditions. These conditions depend on which class of optimization problems the

inner one belongs to: LP or NLP. The quadratic programming (QP) problems are a particular

case of NLP, and the reformulation is the same. For LP, given a constrained optimization

problem in the form (2.36), called Primal problem, which solution is indicated as p∗, the

Lagrange function is defined as:

L(x, λ, µ) = f(x)− λT g(x)− µTh(x) (2.45)

Where λ ∈ Rm and µ ≥ 0 ∈ Rq are the Lagrange multipliers or dual variables. Since µ ≥ 0 ,

from the definition of the Lagrange function it results that if x∗ is a solution of the problem,

then L(x∗, λ, µ) ≤ f(x∗).

For fixed λ and µ, the unconstrained infimum of the Lagrange function over x is called

“Lagrange dual function”:

q(λ, µ) = inf
x∈Rn

L(x, λ, µ) (2.46)

It is easy to prove that q(λ, µ) ≤ p∗.
The dual problem is the following:

d∗ = maxλ∈Rm,µ∈Rq q(λ, µ) (2.47)

s.t. µ ≥ 0 (2.48)

For every possible primal problem, weak duality is valid:

d∗ ≤ p∗ (2.49)

If the Primal problem is also convex, then the more powerful strong duality theorem is valid:

d∗ = p∗ (2.50)

Using the duality theorem, the LP inner problem can be rewritten as its dual problem, which

can be added as a constraint to the outer problem.

Considering a constrained nonlinear optimization problem (NLP), the first order necessary

optimality condition (FONC) can be expressed using a series of equations called Karush-

Kuhn-Tucker (KKT) conditions. Some basic definitions are needed. (i) Active Set: an

inequality constraint hi ≥ 0 is called active at x∗ iff hi(x
∗) = 0; otherwise it is called inactive.



CHAPTER 2. MATERIALS AND METHODS 34

The set A(x∗) of i active inequality constraints is called the active set. (ii) LICQ: the linear

independence constraint qualification (LICQ) for the constrained problem holds at x∗ iff all

vectors ∇gi(x∗) for i ∈ {1, . . . ,m} & ∇hi(x∗) for i ∈ A(x∗) are linearly independent (usually

this condition is always satisfied and it is not necessary to verify it).

If x∗ is a local minimum of the optimization problem (2.36) and LICQ holds at x∗, then

λ ∈ Rm and µ ∈ Rq exist, where:

∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ = 0 (2.51)

g(x∗) = 0 (2.52)

h(x∗) ≥ 0 (2.53)

µ ≥ 0 (2.54)

µ∗ihi(x
∗) = 0, i = 1, . . . , q (2.55)

The KKT conditions are useful to indirectly solve a bilevel optimization problem. Since these

conditions are the FONC for the constrained problem (they are equivalent to the condition

∇f(x∗) = 0 for unconstrained optimization problem), the solution of the inner optimization

problem can be guaranteed by imposing these conditions as constraints for the outer problem.

2.3.4 Automatic differentiation (AD)

Solving an optimization problem always requires to calculate the jacobian (∇) or the hessian

(∇2) of a function f . The derivatives can be evaluated in different ways.(i) Finite differences

∇f(x)T p ≈ f(x+ tp)− f(x)

t
(2.56)

Critical in this method is the choice of t. A trade-off must be reached between small values of t,

which make the derivatives more precise but subject to numerical noise, and big values, which

make the linearization influence prevalent. A rule of thumb to obtain a good compromise

consists of choosing t =
√
εmacheps, where εmacheps is the precision of the function evaluation.

As a limit, εmacheps is equal to the machine precision. This means that the derivative uses

only half of the digits compared to the function evaluation, losing precision. This problem

becomes even more critical with the second order derivative. (ii) Automatic differentiation

(AD): automatic differentiation has the advantage to compute the derivatives up to machine

precision. It makes use of symbolic expressions that concatenate different basic operations.

Each operation can be computed subsequently by the calculator. The algorithm for function

evaluation via elementary operations is reported. This algorithm is chosen because it is

particularly useful to show the principle of automatic differentiation.
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Algorithm: Function Evaluation via Elementary Operations

Input : x1, . . . , xn

Output : xn+m

for i = (n+ 1) to (n+m) do

xi ←− ϕi(x1, . . . , xn−1)

end for

Where ϕi is an elementary operation and xi is a combination of the function variables obtained

by the precedent iterations. Automatic differentiation uses the chain rule for derivatives,

separately differentiating each elementary operation. Two possible strategies exist for AD,

with two different algorithms, respectively:

• Forward Mode

It is based on the following chain rule formula:

dxn+i

dt
=
∑
j<n+i

∂ϕn+i

∂xj

dxj
dt
, i = 1, . . . ,m (2.57)

The original function f is decomposed to elementary operations ϕi. Both the variables

and the operations are differentiated with respect to a virtual time, and they are called

dot quantities. The algorithm is the following:

Algorithm: Forward automatic differentiation

Input : ẋ1, . . . , ẋn

Output : ẋn+m

for i = 1 tomdo

ẋn+i ←−
∑
j<n+1

∂ϕn+1

∂xj
ẋj

end for

The virtual time expedient has the advantage that each intermediate variable is used

in the following iteration. Storing all variables at the beginning is not necessary. Com-

puting derivatives with the forward AD algorithm is slightly more computationally

expensive than with finite differences, but it is exact up to machine precision.
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• Backward Mode

It is based on the alternative chain rule formula:

df

dxi
=

∑
j>max(i,n)

df

dxj

∂ϕj
∂xj

(2.58)

Instead of dot quantities ẋ, bar quantities x̄ are used: partial derivatives of the final

output, i.e., the derivative of the entire function f with respect to the intermediate

quantity variable (x̄j = df
dxi

).

Algorithm: Reverse automatic differentiation

Input : all
∂ϕj
∂xi

Output : x̄1, . . . , x̄n

x̄1, . . . , x̄n+m−1 ←− 0

x̄n+m ←− 1

for j = n+m down to n+ 1 do

for all i < j do

x̄i ←− x̄i + x̄j
∂ϕj
∂xi

end for

end for

The same considerations as in the forward algorithm are valid, but two additional ob-

servation can be done: (i) the reverse AD algorithm requires more space to store all

the intermediate variables xi at the beginning of the procedure; (ii) it is also far more

efficient than forward AD for large n.

2.3.5 Inequality constrained optimization: complementarity

Equation (2.55), is called complementarity condition. It must be considered together with

equations (2.53) and (2.54), which are inequality constraints. If these inequality constraints

are present, the optimization problem becomes a mathematical problem with complementarity

constraints (MPCC). The analytic formulation of the complementarity condition is:
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hi(x∗) ⊥ µ (2.59)

This is equivalent to writing one of the following conditions:

hi(x
∗) = 0 OR µi = 0 (2.60)

hi(x
∗)µi = 0 (hi

T · µ = 0) (2.61)

hi(x
∗)µi ≤ 0 (hi

T · µ ≤ 0) (2.62)

(hi(x
∗) ≥ 0), (µ ≥ 0), i = 1, . . . ,m

The complementarity constraints violate the LICQ (Subsection 2.3.3), i.e., linearly inde-

pendent gradients for equality and inequality constraints. For every feasible solution x∗,

hi(x
∗) = 0 and hi(x

∗) · µ = 0. Since the constraint qualification does not hold anymore, the

multipliers of the MPCC are unbounded and non-unique. Consequently to these considera-

tions, directly solving a MPCC can result to be hard. Different algorithms have been proposed

to avoid these problems, reformulating the MPCC with alternative relaxed forms. All these

algorithms are iterative. They start with solving the problem with very low precision, and

they gradually increase the precision by using the previous solution as starting point. This

way they gradually lead the solution to the real value. The final precision must be set by the

user.

Different reformulations are reported by Biegler (Biegler, 2010):

Reg(ε) : min f(x) (2.63)

s.t. g(x) = 0 (2.64)

h(x) ≥ 0 (2.65)

µ = 0 (2.66)

hi(x) · µi ≤ ε, for i = 1, . . . ,m (2.67)

RegComp(ε) : min f(x) (2.68)

s.t. g(x) = 0 (2.69)

h(x) ≥ 0 (2.70)

µ = 0 (2.71)

h(x)T · µ ≤ ε (2.72)
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RegEq(ε) : min f(x) (2.73)

s.t. g(x) = 0 (2.74)

h(x) ≥ 0 (2.75)

µ = 0 (2.76)

hi(x) · µi = ε, for i = 1, . . . ,m (2.77)

where ε is a positive scalar which gradually approaches to 0, e.g., concatenating the values

for the different iterations in a vector, ε = [10−1, 10−2, 10−3, 10−4, . . . ]. The value of the last

iteration must reach the desired precision.

Slightly different is the subsequent reformulation, called Penalty formulation:

PF(ρ) : min f(x) + ρ · h(x)T · µ (2.78)

s.t. g(x) = 0 (2.79)

h(x) ≥ 0 (2.80)

µ = 0 (2.81)

In this case the additional vector ρ assumes positive increasing values, ρ = [10, 102, 103, 104, . . . ],

until the solution reaches the desired precision.

The number of elements of the ε or ρ vectors and their value must be decided case-by-case

to reach a compromise between increase of the computational time and improvements of the

solution. Studies on the efficiency of the different reformulations have been led, and some

results are reported in Figure 2.4.

2.4 Linear regression

2.4.1 Pre-processing of data

To regress means literally to come back: in mathematics and statistics, to make a regression

consists of trying to obtain a mathematical expression that describes how some variables,

called dependent variables, vary as function of others, called independent variables.

The first step to perform a regression is to find an appropriate functional form suitable for

the kind of relationship to represent. The regression step does not modify the structure of the

model. The functional expression can be derived from physical considerations, as it usually

happens for kinetic expressions, or it can be simply guessed and compared with different pos-

sible shapes to select the best one. The comparison is performed during the cross-validation
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Figure 2.4: A comparison of the performances of the different MPCC formulations tested on

a collection of 92 relevant problems with two reliable solvers, IPOPT and CONOPT (Biegler,

2010).

step (Subsection 2.4.5).

Before facing the real regression problem, it can be useful to have a look at the set of data

to be used. Pre-processing consists of optional additional operations on the data to make the

following steps easier. Pre-processing includes: (i) mean-centering; (ii) scaling; (iii) improve-

ment of the distribution of the data on the experimental range.

In most regression problems, the variables are used in the mean-centered form (Figure 2.5,

B). This form is better conditioned than the original one. For each column of the X matrix

of the independent variables and/or of the Y matrix of the dependent variables, i.e., the

experimental set of each independent/dependent variable, each element is diminished with

the average of that column.

Scaling can be useful or even necessary depending on the set of data (Figure 2.5, C). It is

necessary if the variables are expressed in different units. It is useful if there are differences

of orders of magnitude between the values of the variables, since in this case it makes the

problem better conditioned. Scaling is usually done by dividing every element of a column

by the standard deviation computed on the population of that column. A different kind of

scaling also exists, consisting of a sort of weighting. The element is not divided by the stan-

dard deviation but by a selected parameter which takes into account the importance of that

term. If a variable is considered to influence the model in a lower degree, it will be weighted

less in the parameters identification step.

To properly perform a regression on a set of data, these data have to be more or less equally
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distributed on the experimental range. The distribution of the data can be easily visualized

by subdividing the range of each variable in smaller intervals and plotting the number of

experiments which fall in every interval. If the distribution on the whole range is visibly far

from being homogeneous, it can be improved slightly by modifying each column.

Other pre-processing operations exist, but they are not presented here, since they were not

used in this study. In the following treatise every x or y variable is assumed to be mean-

centered and variance-scaled already.

Figure 2.5: Data preprocessing. The data for each variable are represented by a variance bar

and its center: a) Most raw data look like this; b) The results after mean-centering only; c)

The result after variance-scaling only; d) The result after mean-centering and variance-scaling.

2.4.2 Multiple Linear Regression (MLR)

In this study only linear regression was used. A linear regression is a regression problem with

a linear model. It is called multiple linear regression (MLR) if it is used to estimate more

than one dependent variable, i.e., if Y is no longer a column vector but it is a matrix. To

present multiple linear regression problems, the general expression of a linear model is first

introduced:

Y = XB + E (2.82)

or

Y = F(X)B + E (2.83)

Looking at the first equation: Y (n x p) has p independent variables on the columns and

n repeated experiments for each variable on the rows; X (n xm) has a similar structure to

Y, but with as many rows as the number of independent variables m; B (m x p) contains
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the set of estimated parameters for each variable xi on the rows and yi on the columns;

finally, E (n xm) is the matrix of the residuals between the predicted values Z = XB and the

experimental ones Y (Figure 2.6). The second equation is equivalent to the previous one, but

it highlights that the word linear refers to the parameters B of the model, not necessary to the

independent variables. The F(X) term is a general functional expression of the independent

variables, linear or not. In this case, m is no longer the number of the independent variables

but it is the number of terms of the function. The shape of the model F(X) is a priori

selected by using knowledge of the specific system or with an additional cross-validation step

(Subsection 2.4.5). The following treatise always refers to the X matrix of the independent

variables presuming it can also be a combination of the columns of the original X.

Figure 2.6: A representation of the dimensions of the MLR problem.

The regression problem corresponds to the particular case n > m. In this case the available

information is not enough to reduce the feasible area to a unique solution, i.e., a point,

and an infinite number of feasible solutions is possible, i.e., a space. The problem is called

underdetermined, and it is solved as an optimization problem, selecting the set of parameters

B which provides the best fit of the experimental data, i.e., which minimizes a particular

selected error function. An error function consists of a summation of the distances between

the experimental data and the respective points of the estimated model. Many error functions

exist, each one with its own properties. The most common one is the least squares function,

which inserted in the optimization problem provides:

min
x∈Rn

1

2
‖ zi,j − yi,j ‖22 (2.84)

This optimization problem can be analytically solved. The analytic solution is:

B = (XT ·X)−1 ·XT ·Y = X+ ·Y (2.85)

The X+ matrix is called pseudo-inverse. Obtaining the pseudo-inverse is possible only if the

XT ·X, called covariance matrix, is invertible, i.e., the matrix is positive definite (XT ·X � 0).

Problems with the inversion can derive from linear dependency between different variables.

This situation is called collinearity or multicollinearity.

The LP optimization problem of the linear regression can be modified to take into account
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(a) (b)

Figure 2.7: representation of the dimensions of the matrix X: a) X is expressed as summation

of r matrices of rank 1; b) X is expressed as summation of PCA components.

physical considerations. These considerations can be mathematically expressed by adding

additional constraints. The new solution B respects the imposed constraints, but it is not

analytic anymore. The optimization problem then needs a specific solver for constrained LP

or NLP, depending on whether the constraints are linear or not.

2.4.3 Principal Components Analysis (PCA)

The rank of a matrix is a number expressing the true underlying dimensionality of a matrix.

Assuming the rank of X to be r, X can be written as a sum of r matrices of rank 1. Each of

these matrices is obtained by the product of two vectors ti(n x 1) and pi(m x 1) (Figure 2.7):

X = t1p
′
1 + t2p

′
2 + · · ·+ trp

′
r (2.86)

X = T ·P′ (2.87)

The vectors ti and pi, respectively called scores and loading, possess a precise physical mean-

ing. This meaning is evident when visualizing the bidimensional case, with only two indepen-

dent variables, x1 and x2. When representing the elements of the X matrix on the x1 and

x2 plane, PCA finds the line which best fits the data. The original bidimensional R2 space

is reduced to only one variable, and the distance of the data from this new axis is considered

as noise. PCA tries to explain most of the variance on the data with a reduced number of

components. The maximum number of components is equal to the number of original inde-

pendent variables. In this specific case the model explains 100% of the variance. Most likely,

the largest part of the variance can be explained by using just a few components, while the

components which contribute just a little can be disregarded according with a fixed criterion.
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Figure 2.8: A principal component analysis in the case of two variables: (A) loadings are the

angle cosines of the direction vector; (B) scores are the projection of the sample points on the

PCA direction. The data are mean-centered.

Looking at the figure (Figure 2.8), the loadings (m x 1) are the cosines of the new components

with respect to the axes of the original space, and the scores (n x 1) are the projection of each

data on the corresponding component.

There are many algorithms to perform PCA on a set of data, each one with advantages and

drawbacks for particular applications. The NIPALS algorithm 2.4.6 is important because

it is one of the most complete and elegant algorithms for prediction. Furthermore Partial

least squares (PLS) regression is based on this algorithm (Subsection 2.4.4). In the NIPALS

algorithm scores and loadings are iteratively computed pair-by-pair for one component at a

time, starting from the most important, i.e., the one that explains most of the variance.

PCA can also be used to obtain predictions of Y, and then it is called principal components

regression (PCR). In this context, PCA can be interpreted as a step to re-organize X before

the regression, in order to reduce its dimension and improve its properties. In fact, since

the scores T are the new axes for the regression and they are orthogonal by definition, the

problem of multicollinearity does not exist anymore after PCA.

Y = T ·B + E (2.88)

B = (TT ·T)−1 ·TT ·Y (2.89)

However, PCA mostly remains a method to re-organize the independent variable set. It is

not optimized for predictions, since it does not take into account the Y .



CHAPTER 2. MATERIALS AND METHODS 44

2.4.4 Partial Least Squares (PLS)

The Partial least squares regression is based on the NIPALS algorithm 2.4.6. The method

consists of two relations, one called external, that individually reorganizes the independent and

the dependent variables, decomposing them in their respective scores and loadings, and the

latter called internal, that links both X and Y blocks. While principal components analysis

treats each block separately, the partial least squares method gives the blocks information

about each other, making the model to slightly rotate. The fact that both the independent

and the dependent variables are considered at the same time and they influence each other

makes PLS particularly useful for prediction.

PLS is now analyzed step by step. An oversimplified algorithm for PLS would perform two

separate PCAs, using the NIPALS algorithm on both X and Y:

X = T ·P′ + E (2.90)

Y = U ·Q′ + F (2.91)

Then it would regress between the respective loadings T and U. This algorithm individually

considers the independent and dependent variables, without combining the information from

the two blocks.

The actual NIPALS algorithm for PLS is far more complicated. It follows an iterative proce-

dure which mixes the computation of the principal components for X and Y.

The iterative algorithm which gives each block information about the other one improves

the inner relation û = bit. Since the order used for PCA has changed, the scores have lost

their orthogonality. Orthogonality is not mandatory, but is useful for the inversion of the

covariance matrix. The algorithm can be slightly modified to recover this property. The

modified algorithm (i) introduces the additional vector w of the weights (w does not have

any index since it is just an intermediate variable which is overwritten at every iteration) and

(ii) adds the following extra loop after convergence on ti:

p′i =
t′iX

t′iti
(2.92)

p′i =
p′i
‖ p′i ‖

(2.93)

ti = ti ‖ p′i ‖ (2.94)
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2.4.5 Cross-validation

The number of components obtained from PCA is at maximum equal to the number of terms

of the F(X) function. Not all the components are important, and some of these just describe

noise. Defining a criterion to select the number of significant components is fundamental.

Since PCA is an iterative method which builds up one component a time, this means to

interrupt the procedure after a while.

How to select an appropriate number of components? There are different stopping criteria,

generally based on a measure of the prediction error, e.g., the sum of squares error (SSE) or

the prediction residual sum of squares (PRESS). Both examples provide an estimation of the

predictive power of the model.

SSE is defined as:

SSE =

n∑
j=1

(zj − yj)2

n− i
(2.95)

where n is the number of experimental data and i is the number of components selected. A

stopping criterion could be (Figure 2.9):

STOP IF:
‖ SSEi − SSEi−1 ‖

SSEi−1
≥ 0.95 (2.96)

Figure 2.9: SSE vs number of components. The stop criterion requires to select a ∆ value.

Another possible criterium is based on the specific property of the definition (2.95) not to

monotonously decrease when increasing the number of components h (Figure 2.10). This is

due to the choice of the denominator, which takes into account the number of components.

STOP IF: SSEi − SSEi−1 ≥ 0 (2.97)

The previously presented procedure to select the number of components is useful during the

construction of the model. For prediction instead, another method can be applied, called
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Figure 2.10: SSE vs number of components. The stop criterion is based on the existence of a

local minimum in the profile.

cross-validation. Cross-validation does not just perform a simple regression for a selected

model, but it also tests its predictive power. The regression is repeated many times, training

each time on a different fraction 1−α of the entire set of experiments and computing an SSEi

on the entire experimental range. In practise, the remaining fraction α is used to validate

the obtained model. The final SSE of the model is an average of all the obtained SSEi.

How to properly select α? The choice depends on the structure and the characteristics of the

particular set of data. This step is called data folding.

An additional step can be performed based on cross-validation. The PCA components result

from a linear combination of the original variables, whose weights are selected by the NIPALS

algorithm for PCA. If any of the weights is very small, the corresponding variable can be

disregarded. Since each coefficient is estimated as many times as iterations are selected by

data folding, a distribution of values is available for every component after cross-validation.

A test of significance is performed on the mean value b of this distribution, for example a

t-test. The t-test verifies the null hypothesis H0 : b = 0, returning a p-value. If this value is

higher than a fixed one, the null hypothesis is assumed to be true. In this case the parameter

can be disregarded, and the dimension of X is reduced.
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2.4.6 Appendix: NIPALS algorithm for PCA and PLS

Algorithm: NIPALS for PCA

Input : X

Output : ti,pi

for i = 1 to n

th,i = xj

for h = 1 to k do

p′h,i =
t′h,iX

t′h,ith,i

p′h,i =
p′h,i
‖ p′h,i ‖

th+1,i =
Xp′h,i

p′h,iph,i

if th+1,i ' th,i

BREAK

end if

end for h

end for i

where xj is a random column of X; i is the iteration on the PCA component; h is the iteration

to reach convergence, and k is the maximum number of iterations.
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Algorithm: NIPALS for PLS

Input : X,Y

Output : ti,pi

E0 = X

F0 = Y

for i = 1 to n

uh,i = yj

for h = 1 to k do

p′h,i =
u′h,iX

u′h,iuh,i

(
w′ =

u′h,iX

u′h,iuh,i

)

p′h,i =
p′h,i
‖ p′h,i ‖

(
w′ =

w′

‖ w′ ‖

)
th,i =

Xp′h,i
p′h,iph,i

(
th,i =

Xw′

w′w

)
q′h,i =

t′h+1,iY

t′h+1,ith+1,i

q′h,i =
q′h,i
‖ q′h,i ‖

u′h+1,i =
Yqh,i

q′h,iqh,i

if h ≥ 2

if th+1,i ' th,i

BREAK

end if

end if

end for h

Ei = Ei−1 − tip
′
i [OUTER RELATION (1)]

Fi = Fi−1 − uiq
′
i [OUTER RELATION (2)]

bi = (t′iti)
−1t′iY

û = bit [INNER RELATION]

Fi = Fi−1 − ûiq
′
i

end for i
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where yj is a random column of Y; i is the iteration on the PCA components; h is the

iteration to reach convergence and and k is the maximum number of iterations.



Chapter 3

Results and Discussion

3.1 Introduction

The general aim of this study is to formulate a procedure which enables to predict the re-

sponse of a micro-organism based only on the information available in real time during the

fermentation, i.e, online. To be able to predict how a microbe and, for extension, an en-

tire microbial population reacts to external stimuli that can be manipulated would allow to

optimize the environmental conditions, pushing the culture in a determined direction. Con-

sidering an industrial fermentation, this would mean for example to optimize the production

of the products of interest and, consequently, to increase the economical gain. This kind of

study is classified as secondary model synthesis for micro-organisms, since secondary models

introduce the effect of the environmental variables in the primary description of the system.

The literature about this argument is quite recent, and considering the present state of knowl-

edge the prospected potentiality is still far from the practical application. This study does

not pretend to reach and fully explore this ambitious prospect, but it is a small step in the

same direction. Which aspects of this wide field will be treated must be specified, and more

in detail: what is meant for response of the micro-organism, i.e., what is the output of the

process? Which information is available about the micro-organism, i.e., what is the input of

the process? What does the procedure consist of?

Considering an industrial fermentation, the bacterial growth is promoted to produce some

metabolite which can be valuable. The cell absorbs nutrients from the environment, and it

expels the sub-products of its metabolism. In this context, the response of the micro-organism

corresponds to the extracellular concentration of the metabolites, i.e., the concentration of

the valuable products to be extracted from the medium and the concentration of the nutrients

and/or inhibitors to maximize the productivity.

Since the process developed in this study is meant to be implemented in future as part of a

50
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wider process control procedure, a necessary requisite is that it must work online. This means

that it should make use of only information which is available during the process and it must

require a computational time comparable with the dynamic evolution of the system. Consid-

ering a microbial population in a liquid mixed fermenter, such as a fed-batch bioreactor, the

medium can be assumed as homogeneous. In this situation, the only measurements which

can be collected online are about the environmental conditions. Applying a reductionist ap-

proach, among all the environmental conditions a few are selected to be relevant variables

for the microbial system. Two kind of environmental variables can be distinguished: (i) the

variables which are not affected by the bacterial growth, e.g., temperature, pH etc., and (ii)

the variables which depend on the bacterial evolution, e.g., the extracellular concentrations of

metabolites. In this study the variables pertaining to the first class will be always considered

controlled, being kept constant, while the evolution of the second ones will be taken into

account. Hence, both the starting and the final point of this procedure coincides with the

extracellular concentrations. This condition perfectly adapts to an iterative online implemen-

tation.

The procedure requires to solve the primary model of the system (2.12), which is a dynamic

model. Since this model contains the fluxes, how the fluxes continuously evolves in time must

be known to solve it. Isotopomer analysis is a modern technique which allows to obtain time

values for the fluxes. It measures the instant concentrations of labeled molecules by nuclear

magnetic resonance (NMR) and/or gas chromatography/mass spectroscopy (GC/MS), and

once the metabolic network has been completely characterized it provides the correspond-

ing values of the other fluxes by solving stoichiometric balances. The expression of fluxes

as function of the concentrations can then be obtained by regressing the experimental data

collected in time. The problem, as was previously explained, is that isotopomer analysis is a

discontinuous technique, and it cannot be performed online. Hence, the only way to include

online information in the model is to express fluxes as function of the extracellular concen-

trations. The procedure’s first step consists of finding a bond between fluxes and metabolite

concentrations. The fluxes are used to solve the primary dynamic model. The solution is then

slightly extrapolated in time, enabling to predict the reaction of the micro-organism and, in

future applications, to optimize it. Since the growth and the dynamic evolution of a microbial

population are quite slow, the time available for the solution of the procedure is in the order

of the hour.

Different approaches were tested to complete this procedure. They distinguish each other

in the way they relate the fluxes to the concentrations. In particular, a (i) grey-box (GB)

approach, i.e., partially mechanistic, and a (ii) black-box (BB) approach, i.e., fully experi-

mental, will be presented.
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First, the two case studies used to test the procedure are introduced and described. Then

every step of the procedure of both the approaches is analysed for both the case studies.

3.2 Data

3.2.1 Case studies

To perform a study about metabolic network-based modeling, a metabolic network is needed.

Fortunately, many complete metabolic networks are inherited by the literature of the past

decades. Metabolic networks can be very large systems, with many metabolites and reac-

tions. Although the computational load proportionally increases with the system dimension,

the approach here developed is general, and, at least in theory, it can be indifferently applied

on small as on large networks. All the procedures of this study were tested on two different

case studies: (i) a small-scale simulated network and (ii) the network which describes the

metabolism of engineered E. coli for the production of 1,3-propanediol (Antoniewicz et al.,

2007). The differences between these two systems, which will be here highlighted, allow also

to investigate how the dimension of the network and the peculiarities of a real system influ-

ence the efficiency of the whole procedure.

The small-scale network is a toy network, i.e., a network whose data were not experimentally

obtained but artificially simulated. It consists of 4 extracellular metabolites, 6 (m) intracellu-

lar metabolites and 9 (n) fluxes (Figure 3.1). Hence, the number of free fluxes is n−m = 3.

The set of free fluxes is not univocally determined, since the basis of the null space of the S

matrix is not unique. The fluxes 1, 5 and 7 were chosen. The measurements were simulated

by computing the free fluxes as:

u1,ref =
cA,ext

1.5+cA,ext
(3.1)

u5,ref = 0.2 · cE,ext

3+cE,ext
(3.2)

u7,ref = 1
1+cF,ext

(3.3)

The states, i.e., measurements of extracellular concentrations and fluxes, were then computed

by solving the ODE system of the primary model, given the starting point for the extracel-

lular concentrations at [10, 15, 0, 0.1] and a time interval between 0 and 20 hours. A small

amount of noise was added afterwards. The simulation provided 500 time points, equally

distributed in the interval, for every extracellular concentration. The reference profiles for

both extracellular concentrations and fluxes are reported (Figure 3.2, 3.3).
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Figure 3.1: Small-scale network. A schematic representation of a microorganism, with the

intracellular and extracellular metabolites and the relative fluxes.

(a) Concentration Aext (b) Concentration Eext

(c) Concentration Fext (d) Concentration BIO

Figure 3.2: Solution of the primary dynamic system for the toy network in the time experi-

mental range.

The second case study is a real metabolic network instead. For all the details about the

system this study refers to Antoniewicz et al. (Antoniewicz et al., 2007). In this article the
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(a) u1 (b) u2 (c) u3

Figure 3.3: Solution of the primary dynamic system for the E.coli network in the time ex-

perimental range.

author desired to make use of the detailed time profiles of in vivo fluxes to obtain additional

insight in support of the assumed genotype of the organism. The data were collected from

a fed-batch fermentation of Escherichia coli to produce 1,3-propanediol (PDO). PDO is a

chemical which covers a role in many industrial productions: it is a building block in the

production of polymers such as polytrimethylene terephthalate; it is added to the formula-

tions of many products, e.g., composites, adhesives, laminates, coatings, moldings, aliphatic

polyesters, copolyesters; it is a solvent. Consequently, this case study closely resembles an in-

dustrial fermentation. All the main environmental variables in the reactor, identified through

a reductionist approach, are controlled, and they can be assumed to stay constant during the

whole fermentation. The temperature was kept constant at 34oC, pH at 6.8 ± 0.04 and the

dissolved oxygen at 10%± 0.7 of saturation. The glucose was fed during the fermentation to

keep its concentration in the medium more or less constant, around 45±5mM . The use of fed-

batch reactors to gradually feed the substrate during the fermentation is quite common, since,

if all the substrate were provided at once from the beginning of the fermentation, the culture

would know a very fast growth during the first hours, but then it would reach the stationary

and the death phase before the end of the process. To maximize the productivity, to maintain

the cellular population in the exponential growth phase as long as possible is convenient. The

only environmental variables which are allowed to change are the extracellular concentration

of metabolites. The network consists of 11 extracellular metabolites, 5 substrates, i.e., glu-

cose (Glc[e]), citrate (Cit[e]), O2, NH3 and SO4, 5 products, i.e., 1,3-propanediol (PDO[e]),

biomass, CO2 (CO2[e]), acetate (Ac[e]) and ATP , and glycerol (Glyc[e]),which can be both

a substrate or a product. Of these 11 extracellular metabolites, only 6 were not controlled

and free to vary. The concentration of glucose in the feed of the fermenter (GlucF [e]) is

considered as an additional extracellular metabolite, and it is correlated to the concentration
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of feed in the medium adding a new flux to the network. The total number of extracellular

concentrations results to be k = 7, while the total number of fluxes is n = 69. The number of

intracellular metabolites is m = 62, and the number of free fluxes then is n−m = 7. Since the

null space of the Sint matrix is not unique, many combinations of free fluxes can be selected.

The study works well for every selected combination, but a proper one can influence some

properties of the system making the calculation easier (3.3.3). The fluxes that were chosen

as independent in this study are reported in Table 3.1.

Free Fluxes

u Reaction

1 GlucF [e]→ Gluc[e]

2 Cit[e]→ Cit

3 PDO → PDO[e]

4 Ac→ Ac[e]

5 CO2 → CO2[e]

6 O2[e]→ O2

7 Biomass formation

Table 3.1: The fluxes which were chosen as independent for the E. coli network.

The simulation was led on a time interval between 15.4 and 44.6 hours. From literature 21

measurements per measured variable were provided, rendering a total of 189 measurements.

This study was led using instead 500 measurements, equally distributed in the time interval,

per measured variable. The time profiles which are obtained are almost continuous. The new

data were generated by Vercammen with the dMFA approach briefly presented in section

2.2.3, using B-spline parametrization with incremental spline knot insertion (Figure 3.4,

Figure 3.5, Figure 3.6).

3.2.2 Input data

As reported in subsection 3.2.1, the experimental data this study has worked on consist of

500 time points for each variable, concentrations and fluxes. Since the data are subject to

an intrinsic variability, it is important to always consider how the error propagates in the

different steps of the procedure. Additional data are required to estimate the uncertainty

for each time point. A reasonable number of data to take into account the variability of the

system could be about 100. Infinite sets of data can be generated for the toy network, since

it is a simulated network. Also for the real system additional data can be easily obtained,
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Figure 3.4: Experimental measurements and fitting profiles for the metabolite concentrations

of the fed-batch case study.

since continuous functions of time were obtained for both fluxes and concentrations. For the

fluxes these expressions were obtained by solving the dMFA problem (2.2.3), while for the

concentrations a simple regression was performed on the experimental data. The additional

data were obtained by normally perturbing 100 times the first experimental point in time.

These 100 points were used as starting values to solve 100 times the primary dynamic system.

Hence, 100 different time profiles were obtained, each one showing its own time evolution.

The way the data are organized and, consequently, how the results of the study are plotted

is now explained and justified. The most common way to represent the variability for each

time point is by using error bars, i.e., the confidence interval at α = 0.05 centered around the

mean value:

ErrorBar = X̄ ± 1.96 · σ√
n

(3.4)

where n is the number of experiments used to compute the mean and the standard devia-

tion. This representation of error individually considers each time point, and this way it does

not take into account the dynamic nature of the different simulations. For this reason, it

was chosen to always plot all the 100 time profiles. The dynamic correlation of data on the

same profile is evident when looking at a typical graph used for regressions, which reports

yexperimental vs yestimated (Figure 3.7). From the plot is evident how the data are not ran-

domly distributed, but they follow different profiles.

Having 100 curves for each variable being represented at once on a graph could be sometimes



CHAPTER 3. RESULTS AND DISCUSSION 57

(a) Glucose concentration (b) Glycerol concentration

(c) Glucose feed concentration (d) Citrate concentration

(e) PDO concentration (f) Acetate concentration

(g) Biomass concentration

Figure 3.5: Experimental profiles of the extracellular concentrations for the E.coli network.



CHAPTER 3. RESULTS AND DISCUSSION 58

(a) u1 (b) u2

(c) u3 (d) u4

(e) u5 (f) u6

(g) u7

Figure 3.6: Experimental profiles of the fluxes for the E.coli network.
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Figure 3.7: Yestimated versus Yexperimental.

confusing, but it allows to catch how the dynamic of each profile evolves (Figure 3.8). Look-

ing at the error bars diagram, the plot appears to sharply deviate around t = 31 [h] and the

confidence interval to drastically increase, but no evident reasons to explain this behavior

can be identified. Instead, from the diagram which reports the 100 profiles it is evident how

the problem lies in the solution of the dynamic system, which diverges, possibly showing an

unstable behaviour of the system.

(a) 100 profiles (b) Error bars

Figure 3.8: Representation of the error: a) reporting all the 100 dynamic profiles; b) reporting

the error bars for each time point.

The total amount of data for each variable, concentrations or fluxes, is 500 x 100 = 5e5.

Since the number of variables is in the order of 10, and the number of parameters to correlate

these variable will be slightly bigger, the system will be largely overdetermined. This is the

best condition to perform a good regression. Such a huge amount of data is not comfortably

manageable, and it must be properly organized. The input variables to all procedures are

organized in a big matrix which concatenates 100 smaller matrices in vertical, each one

having the variables on the rows and the time profile on the columns. The dimension of each
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of these matrices is n x 500, where n is the number of variables. The big matrix has dimension

100 · n x 500.

3.3 Grey-box approach

3.3.1 Introduction

The first approach being presented is a grey-box approach. The name expresses the char-

acteristic to be halfway between a black-box model, fully experimental, and a theoretical so

called white-box model, fully mechanistic. What does fully experimental or fully mechanistic

mean? A fully experimental model is a model generated by a regression on a particular set

of data, being consistently able to properly describe just that set of data. Even if it does

not include any comprehension of the system, it is generally a very flexible model, and it

can be adapted to describe the system also in conditions slightly different from the training

conditions. To obtain an experimental model can seem an immediate and basic task, but it

is not. A good black-box model should represent a compromise between its description of the

training set of data and its ability to be adapted to other data. In other words, the synthesis

of a black-box model is a trade-off between its descriptive and predictive capability. On the

contrary, a fully mechanistic model is a model which perfectly interprets the mechanisms

that rule the system, a model which includes a complete knowledge and understanding of the

system. While the first class of models is nowadays widely adopted in many fields and for

many applications, including predictive microbiology and biotechnology, since it is the easiest

and the most immediate kind of model which can be formulated about a system, it is not the

same for the latter class. Fully mechanistic models are few, since finding models which do

not contain adaptive parameters is quite difficult. What can be reached is a compromise, a

grey-box model. The different grey-box models distinguish each other in their shade of grey,

i.e., in how many empirical information they still contain and how deeply they penetrate

the underlying mechanisms of the system. If the first models being adopted are generally

black-box, since they don’t require any knowledge about the system, the natural path would

move toward mechanistic models, adding more and more biological information. In the case

of this study the starting point was not a black-box model, but the wide number of studies

published in literature about metabolic network-based modeling was used as a base to for-

mulate a model which already includes mechanistic informations. Particularly, the grey-box

approach here presented makes use of the primary dynamic model formulated by Van Impe

(Van Impe et al., 2012) and of dynamic metabolic flux analysis (dMFA) and flux balance

analysis (FBA) to estimate the flux distribution at each time point.
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3.3.2 Formulation of the optimization problem

In section 2.2.4, two different approaches to determine the distributions of fluxes were pre-

sented. Since the main interest of this study is not in collecting biological information about

the system, but in reproducing a set of fluxes as close as possible to the experimental values

in large range of conditions, the ObjFind approach was chosen. The main difference between

the ObjFind approach and the one proposed in this study is the final aim. While the original

ObjFind estimates a set of coefficients with a linear objective function to formulate biological

considerations or to test a previous hypothesis about the cell response, in this study the set of

coefficients is used to solve the inverse problem, i.e., the determination of the fluxes by solving

only the inner problem with the CoIs estimated with the bilevel problem. This problem is

called simulation problem, and, theoretically, it should allow to obtain a distribution of fluxes

close to the experimental one. In the original article about ObjFind (Burgard and Maranas,

2003), the degeneracy of the LP when facing the simulation problem was described, since

it accepts many flux distributions as optimal solution. Using an LP formulation, the flux

distributions through the network cannot be uniquely defined based solely on the identified

CoIs. This is the first reason why the optimization problem was modified in the objective

functions and in the constraints by introducing non linear terms. The second reason can be

intuitively understood when considering the feasible area defined by the biological constraints

of the inner problem. Most of the experimental flux distributions fall inside this area, not on

its bounds. Since a linear objective function is monotonous, it will not be able to identify an

optimal solution internal to the feasible area, but it will always find a solution on its bounds.

The possibilities to overcome this problem just consists of adopting a non-linear objective

function, which admits internal solutions to the feasible area, or to add further boundaries

which include or at least approximate the experimental points. While the first alternative

can find quite an easy biological explanation (see the list of objective functions proposed by

Schuetz (Schuetz et al., 2007)), finding meaningful constraints which are close to the experi-

mental point for every time instant is rather difficult. This would mean to leave aside part of

the biological mechanistic considerations in favour of a precise description of the experimen-

tal data and a major flexibility of the model. Still the experimental characterization of the

grey-box model remains strong.

For the procedure to succeed, the CoIs obtained from the direct optimization problem, i.e.,

the bilevel optimization problem, must satisfy an additional condition: they must vary con-

tinuously in time. The set of CoIs has to univocally correspond to a set of fluxes which are not

constant in time. For example, a common problem to many objective functions is that they

return a set of CoIs which is very unbalanced, i.e., with one CoI extremely larger than the
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others. This fact is not a problem by itself. For example, the studies reported in literature had

proven that one of the most common objective functions which returns a good description of

the microbial response is the biomass growth. Since in the metabolic network one of the free

fluxes is a combination of fluxes which expresses the biomass growth, it would be normal to

expect the weight of this flux to be prevalent to the others. Nevertheless, if the different CoIs

are too unbalanced, i.e., they differ in many orders of magnitude, the variation of the smaller

CoIs could be disregarded with respect to the bigger one, and the set of CoIs would appear

to be almost constant. Such a set of CoIs would not allow to solve the simulation problem.

These and other empirical considerations can be done to define a proper formulation of the

bilevel optimization problem, but at the end the best way to test the formulation is to solve

the simulation problem time point by time point, outside the primary dynamic model, and

to look at the results. The proper solution of the simulation problem is a necessary condition

to the procedure of this study.

Considering the same problem as the original ObjFind method (2.25), but with a quadratic

objective function as f = uT · C · u, the duality theorem cannot be applied anymore, and

the solution of the inner problem is reformulated using the KKT conditions (2.3.3). In case

of inequality constraints, the KKT conditions will produce a mathematical problem with

complementarity constraints (MPCC), which is harder to solve.

min
c,u∈Rn−m,µ1∈Rp,µ2∈Rn

n−m∑
i=1

(ui − uexpi )2 (3.5)

s.t.

n−m∑
i=1

ci = 1 (3.6)

IR ·K · u ≥ 0 (3.7)

UB−K · u ≥ 0 (3.8)

(IR ·K · u)T · µ1 = 0 (3.9)

(UB−K · u)T · µ2 = 0 (3.10)

2 ·C · u− (IR ·K)T · µ1 + KT · µ2 = 0 (3.11)

(cj ≥ 0 ∀j ∈ 1, · · ·n−m)

(µ1,j ≥ 0 ∀j ∈ 1, · · · p)

(µ2,j ≥ 0 ∀j ∈ 1, · · ·n)

where µ1 and µ2 are lagrange multipliers for inequality constraints. In case of equality con-

straints, further additional lagrange multipliers λ should be added. In this case the problem

is a NLP.
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In this case, since physical information about the nature of the system were not available, the

value of each element of UB can be set much bigger than the experimental values, remaining

as an inactive constraint, or it can be omitted. Since the biggest flux is the one for glucose,

which reaches a maximum around 70 g/L ·h, every element of the upper bound vector was set

to 100. Furthermore, since the number of fluxes v is usually much bigger than the number of

free fluxes, and during the reformulation of the problem a slack optimization variable must

be added for every element of v, to include this constraint means to notably increase the

number of variables to optimize. Hence, in the following results, the upper bound constraint

was considered only if it were proven not to badly affect the computational efficiency of the

optimization problem, otherwise it was just disregarded.

As introduced in Section 2.3.1, two different frameworks are considered to solve the optimiza-

tion problem: MATLAB® and CasADi. The peculiarities of each framework allow to solve

the problem formulated in different ways. The performances of two different strategies, imple-

mented in both the environments, were compared on the same problem, to establish the more

efficient and precise strategy for this application. Choosing an optimization problem with a

quadratic objective function, which admits an exact solution, 100 iterations were solved for

each case. (i) First MATLAB® and CasADi were compared using for both the reformulated

problem with KKT conditions. The MATLAB® solver was necessarily fmincon, since the

MPCC problem introduce non linear constraints, and the interior point algorithm was chosen.

While CasADi was able to find the exact solution, MATLAB® returns a different one. The

difference between the solvers probably depends on the use of symbolic variables and auto-

matic differentiation in CasADi, which allows to better solve the MPCC problem. (ii) Then

the performance of the bilevel optimization problem in MATLAB® and the reformulated

problem with KKT conditions in CasADi were compared. Using the interior point algorithm

in MATLAB®, which was the only algorithm proven to properly work for this problem,

both strategies return the exact solution. MATLAB® spent 420 s ∼= 7min to solve all the

iterations, while CasADi 16 s. The total amount of iterations to complete in this study for

both case studies was 5e5, even without considering the eventual reformulation of the MPCC,

which requires still more iterations. This consideration give a measure of how important it is

to use a fast solver. Hence, all the following results were generated using the reformulation of

the problem with KKT conditions using CasADi. MATLAB®, instead, was used afterwards

to solve the simulation problem inside the primary dynamic system.

3.3.3 Optimization problem results

The interest is not only in solving the optimization problem, but also in checking how the

whole procedure behaves when introducing the optimization as intermediate step. To do this,
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(a) c1 · x1 + c2 · x2 (b) c2 · x2
1 + c1 · x2

2

Figure 3.9: Plots of the level lines of a 3D function on the positive quarter: a) linear function;

b) quadratic function. Both the linear and the quadratic functions monotonically increase,

with a minimum in the origin and a not defined maximum, since they are unbounded.

the optimization problem has to be fully solved, which means both to obtain an objective

function able to well fit the experimental data and to generate a set of CoIs whose time

profiles vary smoothly and continuously in time and which univocally solve the simulation

problem. Given the difficulties to find an objective function between the ones listed in lit-

erature (Schuetz et al., 2007) which satisfy all these requirements, the optimization problem

was slightly modified. It was decided to renounce part of the mechanistic aspect of the model

by introducing an experimental parameter to make the solution easier. This way of course

the model loses in generality and in applicability, but it can be useful in the meanwhile to

test the efficiency of the whole procedure, while a physical objective function still is lacking.

The easiest way to find a formulation which provides a good solution was to visualize it on

a bidimensional constrained space. In fact, to have a visual representation of a problem can

always help its understanding.

As previously highlighted, simple linear and quadratic objective functions are not suitable

for this problem since they are only able to find solutions which lie on the boundaries of the

feasible area. The reason is that they monotonously increase or decrease (Figure 3.9).

When minimizing a quadratic function in the form f = xT · C · x in the feasible region

identified by the constraints of the problem (2.25), the minimum lays in the origin, far from

a theoretical experimental point interior to this area. The summation of all the free fluxes

is a line which crosses the feasible area. When imposing this summation to be bigger than

some value, the minimum of the quadratic function would now lie on this constraint (Figure

3.10). Which point on the line, inside the feasible region, is the minimum depends on the

shape of the objective function, i.e., on the CoIs. Since the CoIs are selected to minimize
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(a) x2
1 + x2

2 (b) c2 · x2
1 + c1 · x2

2

Figure 3.10: Plots of the level lines of a surface: a) quadratic function x2
1 + x2

2 and constraint

x1+x2 = cb; b) quadratic function c2 ·x2
1+c1 ·x2

2 and constraint x1+x2 = cb. The addition of a

linear constraint, which cut the positive quarter, allows to define a minimum of the quadratic

objective function internal to the original feasible area. This minimum changes if the shape

of the function will change, i.e., if the CoIs will change. The CoIs are optimized to make the

solution always as close as possible to the experimental point.

the least squares error on the fluxes, if the parameter of the new constraint is set as a new

optimization variable it would oblige the line to include the experimental point, and the other

optimization variables would be estimated to make that point the minimum of the quadratic

function in the new feasible area. Since the experimental time profiles for fluxes are smooth,

the experimental point on this graph will move smoothly, and theoretically the set of CoIs

should also vary continuously and smoothly. Furthermore, by introducing a new parameter

in the outer optimization problem, the degrees of freedom of the problem are reduced, and

the risk of multiple solutions diminishes.

The formulation of the bilevel optimization problem including the new constraint is:

min
c∈Rq

n−m∑
i=1

(ui − uexpi )2 (3.12)

s.t.

q∑
i=1

ci = 1 (3.13)

maxu∈Rn−m f(u, c) (3.14)

s.t. IR ·K · u ≥ 0 (3.15)

UB−K · u ≥ 0 (3.16)

1T · u− cb ≥ 0 (3.17)
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where q = (n −m) + 1, cb is the additional optimization variable and 1 is a vector of ones

with dimension [(n−m) x 1].

The problem reformulated with the KKT conditions, since the objective function is non linear,

is :

min
c,u∈Rn−m,µ1∈Rp,µ2∈Rn,µ3,cb∈R

n−m∑
i=1

(ui − uexpi )2 (3.18)

s.t.
n−m∑
i=1

ci = 1 (3.19)

IR ·K · u ≥ 0 (3.20)

UB−K · u ≥ 0 (3.21)

1T · u− cb ≥ 0 (3.22)

(IR ·K · u)T · µ1 = 0 (3.23)

(UB−K · u)T · µ2 = 0 (3.24)

(1T · u− cb) · µ3 = 0 (3.25)

2 ·C · u− (IR ·K)T · µ1 + KT · µ2 − (1T · u) · µ3 = 0 (3.26)

(cj ≥ 0 ∀j ∈ 1, · · ·n−m)

(µ1,j ≥ 0 ∀j ∈ 1, · · · p)

(µ2,j ≥ 0 ∀j ∈ 1, · · ·n)

(µ3 ≥ 0)

Since the variable cb is always set by the optimization problem to the summation of the

experimental values, it is possible to rewrite the inequality constraint as an equality one,

which introduces a variable λ1 instead of µ3. Furthermore, it is also possible to disregard

the upper bound constraints, because they are not active since the problem minimizes the

objective function and the solution will always be far from the upper bounds. This way the

number of complementarity constraints is reduced, and solving the optimization problem is

easier. The reformulated problem with the last constraint expressed as an equality constraint

and disregarding the upper bound constraints is:
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min
c,u∈Rn−m,µ1∈Rp, λ1,cb∈R

n−m∑
i=1

(ui − uexpi )2 (3.27)

s.t.
n−m∑
i=1

ci = 1 (3.28)

IR ·K · u ≥ 0 (3.29)

1T · u− cb = 0 (3.30)

(IR ·K · u)T · µ1 = 0 (3.31)

2 ·C · u− (IR ·K)T · µ1 − (1T · u) · λ1 = 0 (3.32)

(cj ≥ 0 ∀j ∈ 1, · · ·n−m)

(µ1,j ≥ 0 ∀j ∈ 1, · · · p)

The set of free fluxes is not unique, but it depends on the selected K matrix, i.e., the null

space of the Sint matrix. Although the procedure must work for every possible set of free

fluxes, working with negative fluxes can introduce some additional difficulty. Considering the

modified bilevel optimization problem (3.12), the problem is able to find the exact distribu-

tion of fluxes only if all the fluxes are positive. This is due to the particular form of the

additional constraint which was chosen. To maintain the properties of a positive set of fluxes

for a very general set, the free fluxes can be normalized between their maximal and minimum

experimental value. Although the procedure was tested on a small example network and

proven to work equally well with normalized and not-normalized fluxes, in this study the set

of fluxes was chosen to be always positive on the experimental range, to avoid complications

due to the normalization. Hence, the solution of the optimization can be visualized on the

positive quadrant of the space of free fluxes.

The solution obtained when solving the optimization problem (3.27) fits the experimental

values perfectly. The time profiles of the simulated fluxes and CoIs obtained from the opti-

mization problem are reported hereafter.

For the toy network, the number of free fluxes is 3, and the number of CoIs is consequently

4. The time profiles for each simulated free flux, compared with the corresponding experi-

mental profiles, are reported in Figure 3.11. The time profiles for each CoIs are reported

in Figure 3.12). For the E.coli network, the number of free fluxes is 7, and the number of

CoIs is consequently 8. The time profiles for each simulated free flux, compared with the

corresponding experimental profiles, are reported in Figure 3.14. It can be noted that the

profiles are smooth enough to be regressed with a polynomial function, which is a necessary

condition to solve the optimization and to go on in the procedure.
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(a) u1 (b) u2 (c) u3

Figure 3.11: Profiles for all the fluxes of the toy network: in red are the experimental data, in

blue the trajectories obtained solving the bilevel optimization problem. The plot shows very

good accordance between experimental and simulated profiles.

(a) c1 (b) c2

(c) c3 (d) cb

Figure 3.12: Profiles for all the optimization coefficients of the toy network, obtained solving

the bilevel optimization problem. Considering the structure of the problem, which makes use

of a quadratic objective function and of an additional experimental constraint, these profiles

can not be easily interpreted from a biological point of view.
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The time profiles for each CoI are reported in Figure 3.13.

Once each time point for each profile has been saved, the simulation problem must be solved,

to check whether it is possible to return from the CoIs to the fluxes due to the degeneracy of

the problem. The formulation of the inverse problem is:

min
u∈Rn−m

f = uT ·C · u (3.33)

s.t. IR ·K · u ≥ 0 (3.34)

UB−K · u ≥ 0 (3.35)

1T · u− cb ≥ 0 (3.36)

For the toy network, the time profiles for the fluxes obtained from the simulation problem

(3.33) are reported in Figure 3.16. For the E.coli network, the time profiles for the fluxes

obtained from the simulation problem (3.33) are reported in Figure 3.16.

As can be noticed, this particular formulation of the optimization problem not only allows to

obtain smooth profiles for the CoIs, but it also permits the solution of the inverse problem,

re-obtaining the original profiles. The new constraint added to this problem practically sets

all simulated fluxes to the experimental value. The problem is of course that this experimental

parameter has no mechanistic explanation, and it will become critical when the experimental

information is not available. This will probably present a problem when trying to use the

procedure to predict the micro-organism behavior. Still this modification allows to solve the

optimization problem respecting all the requirements, and it is useful to test if the procedure

can be completed.

3.3.4 Regression for the grey-box approach

In this study the regression step has a fundamental role in enabling the solution of the dynamic

system, since it has to link the variation of the fluxes to the variation of the extracellular con-

centrations. The first choice when a regression problem is approached is to select the kind of

model to be used, i.e., linear or non linear with respect to the parameters. In fact algorithms

and consequently software for the two categories are distinct. The shape of the model, and

hence the kind of regression, since the two choices are linked, can be completely arbitrary

or, in case the system under study is well known, it could be suggested by physical consid-

erations. Considering the field of microbiology, since micro-organisms are extremely complex

and highly non linear systems, the natural choice would be a non linear model. Nevertheless,

in this study only linear regression was tested. The choice was sustained by a wide range of

literature examples (Geeraerd et al., 2004; Gibson et al., 1988), which prove how linear mod-
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(a) u1 (b) u2

(c) u3 (d) u4

(e) u5 (f) u6

(g) u7

Figure 3.13: Profiles for all the fluxes of the E. coli network: in red are the experimental

data, in blue the trajectories obtained solving the bilevel optimization problem. The plot

shows very good accordance between experimental and simulated profiles.
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(a) c1 (b) c2

(c) c3 (d) c4

(e) c5 (f) c6

(g) c7 (h) cb

Figure 3.14: Simulation profiles for all the optimization coefficients of the E. coli network,

obtained solving the bilevel optimization problem. Considering the structure of the prob-

lem, which makes use of a quadratic objective function and of an additional experimental

constraint, these profiles can not be easily interpreted from a biological point of view.
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(a) u1 (b) u2 (c) u3

Figure 3.15: Flux profiles of the toy network obtained from the simulation problem (blue) vs

experimental flux profiles (red). The formulation of the simulation problem allows to reobtain

almost perfectly the experimental profiles.

els, probably at the cost of a higher but still reasonable number of parameters, can provide

good enough fitting of the biological experimental data. The results of the study confirmed

this observation. Moreover, additional motivations were the easier implementation of a linear

regression and the major number of software available to perform it compared to the non

linear case. Stressing the concept, there were no mechanistic reasons to exclude the use of a

non linear regression, which could theoretically better interpret the inherent mechanisms of

a biological systems. The development of non linear models for microorganisms could surely

represent a promising topic for future studies.

To obtain a regression curve which well fits the data is quite easy, but to obtain a good

black-box model is far more difficult. The general rules and principles to formulate a proper

black-box model are explained in subsection 1.5.3. Much more factors than the mere de-

scriptive power of the model have to be considered, and to look at the data from different

perspectives can help in the selection of the model. Different kinds of graphs are normally

used to support the choice. Although some criterion based on these graphs can be imple-

mented, it is difficult to formulate general rules. These criteria in fact could reveal to not be

always effective, given the extreme variability of the input data and the lack of other infor-

mation. If the user has some experience, the best criterion is always to look at the graphs

and select case-by-case. The manual selection is suggested, but if the regression is inserted in

a wider procedure, such as in this case, it can make the solution slower and non-automatic.

In the following steps, different situations in which a delicate decision is required will occur.

Whether to ask the user a manual choice or to leave the selection to the automatic criterion

implemented will be decided case-by-case, depending on the respective improvements and on

the loss of computation efficiency.

The common structure of the input data to a regression problem is different from the one
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(a) u1 (b) u2

(c) u3 (d) u4

(e) u5 (f) u6

(g) u7

Figure 3.16: Flux profiles of the E.coli network obtained from the simulation problem (blue)

vs experimental flux profiles (red). The formulation of the simulation problem allows to

reobtain almost perfectly the experimental profiles. The abrupt deviations show the existence

of alternate optima.
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previously presented (3.2.2). There is no longer need to visually preserve the dynamic be-

havior of the data. The regression considers for each variable a unique vector containing all

the points available, listed without any specific order and independently whether they are

correlated or not. The matrix containing the input data to this problem has the independent

variables on the columns, and all the experimental values for each variable on the rows. Since

the total amount of data for each variable is 500 time points x 100 iterations = 5e5 points,the

input matrix is shaped 5e5 xm, where m is the number of independent variables.

Before starting the regression, data are treated according with data pre-processing operations

(2.4.1). Considering an experimental range, the best condition to perform a regression is

generally to have data uniformly distributed on the whole range. During the parameter esti-

mation step in fact, the best model is selected by trying to reduce the total distance between

the points of the estimated model and the corresponding experimental values. Consequently,

without a uniform distribution of data, the model would better fit the area where there are

more data available, providing instead a worse fit where there is lack of data. It should

be better, before performing regression, to check the distribution of data, and eventually to

modify it. Since a black-box model is being considered, the regression operates in the same

way on every possible set of data given as input. The substitution of a variable provides a

regression curve which fits the new data, but it does not affect the global procedure. The

estimated variables should then be re-substituted to be compared with the corresponding

experimental profiles. An immediate way to visualize how the data are distributed on the

experimental range is to plot an histogram. The experimental range of each variable is equally

subdivided in intervals on the abscissa x and the number of experiments which falls in each in-

terval is reported on the ordinate y (Figure 3.17). It can be seen how the distribution of data

is much more uniform on the experimental range using the square root of the original variable.

To generate the final results of this study an unmodified set of data for the dependent vari-

ables was used, since no relevant improvements in the fitting were registered with substituted

variables (Figure 3.18). Furthermore, there are no general criteria to modify the data, and

the substitution should be made by the user looking at the histogram of each variable. Con-

sequently, it represents a limit to the possibility of making the procedure fast and automatic.

The regression method chosen for this study was Partial Least Squares (PLS). This method

combines the advantages of the Principal Component Analysis (PCA), which reorganizes the

original set of data, to good fitting properties. The algorithm was implemented in a software

by Geert Gins, and it is a slightly modified version of the NIPALS algorithm (2.4.4). Mean-

centering and variance-scaling are automatically performed on the input data by the software.
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(a) u2 (b)
√
u2

Figure 3.17: Histograms for the flux 2 of the E. coli network: a) Y range vs number of

experiments for every interval of Y values; b)
√
Y range vs number of experiments for every

interval of
√
Y values. The distribution of data in plot b) is much more uniform than in plot

a).

(a) u2 (b)
√
u2

Figure 3.18: Estimated model and experimental profiles comparison for the flux 2 of the E. coli

network: a) the regression is performed using the variable u2; b) the regression is performed

using the variable
√
u2. The substitution of the variable gives no evident improvements.

The PLS regression is not uninfluenced when providing the entire matrix containing all the

dependent variables as input or just one column a time. If the regression problem is run

with more than one dependent variable, the PCA axes slightly rotate, and the fitting of each

variable gets worse. In this study a regression problem for each dependent variable was solved,

since there are no particular reasons why the dependent variables should adapt to each other

(Figure 3.19).

Previously to regression, a cross-validation is trained. Cross-validation, in this situation, is
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(a) Regression of Y (b) Regression of y

Figure 3.19: Estimated model and experimental profiles comparison for the flux 2 of the E.

coli network: a) the PLS regression giving input Y as a matrix; b) PLS regression providing

input Y as a vector. The fitting is better when giving as input only one dependent variable

a time.

meant to select the minimum number of terms which guarantees a good fitting. Limiting

the number of terms is in line with parsimony, which is one of the fundamental principles

of regression (1.5.3). The cross-validation step consists of comparing many kinds of models

according with a defined criterion. The comparison does not only take into account the model

obtained when training on the whole set of data, which tests only the descriptive capability of

the model. The whole time range is divided into uniform intervals, and the model is trained

as many times as there are intervals on a set of data which excludes one interval at a time.

The criterion chosen in this study for the comparison is to compute the global sum of squared

errors (SSE) for each model, weighted with a term which takes into account the number of

terms considered.

SSE =
n∑
j=1

(zj − yj)2

n− i
(3.37)

where n is the number or experimental data and i is the number of components selected. The

SSE includes not only the training data of each cross-validation iteration, but the whole time

range. Thanks to the denominator, the graph of SSE vs number of terms can even show a

non-monotonic decrease, allowing a more correct choice, which takes into account not only

the fitting but also the generalization properties of the model. Although some general criteria

exist in literature to select the best number of terms on this graph (2.4.5), they were proven

not to always accurately work. After various attempts, it was preferred to leave the choice to

the user. During the cross-validation the solver stops as many times as there are Y variables,
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(a) (b)

Figure 3.20: Interface for cross-validation step. The y axis called validation is the SSE value,

while the x axis indicates the corresponding number of terms. a) There is a sharp change in

the derivative of the curve, and the choice easily falls on 3 terms. b) In this case the SSE

continues to gradually decrease, and the choice is less evident: a good value in this situation

could be around 6 or 7 terms.

and it asks for a numerical value which is then saved as the number of terms to describe

that variable. The number of terms to be selected is generally the one which guarantees the

lowest SSE value, i.e., the best description of the data, according with a sufficient differential

decrease of the SSE compared with the previous terms. Sometimes the choice is easy, since

there is a visible gap in the derivative of the SSE curve between two successive terms. Usually,

in these situations, an almost asymptotic value is reached for a very low number of terms.

In other cases the choice is more delicate, and the number of terms must be chosen higher

(Figure 3.20).

Generally, the use of principle components analysis represents a great aid for regressions. This

is even more true for cross-validation. Cross-validation, in fact, compares the performance of

many different models, starting from the easiest one and increasing gradually its complexity

by adding new terms. If the set of input variables is not reorganized, there is no way to decide

which variable should be added at each iteration. All the possible permutations of terms must

be explored, causing a notable increase of the computational time. PCA instead generates

the so called components, which are linear combinations of the original set of variables, and

it orders the components for importance, i.e., which percentage of the original variance each

component can explain. Hence, the cross-validation starts exploring from the most important
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Figure 3.21: Graph to select the number of parameters, which reports the number of the

parameters on the abscissa and the value of the parameters on the ordinate for the different

cross-validation iterations. In this case, parameter n◦3 can be disregarded based on the t-test.

component, and for every iteration it just has to add the successive component in order of

importance. PCA is naturally part of the PLS algorithm (2.4.4), since PLS briefly consists of

two combined PCAs on the dependent and independent variables, which are able to influence

each other by making the final components slightly rotate.

A further step can be added to cross-validation before the final parameter estimation. The

parameters obtained from the cross-validation can be checked to decide whether they can be

assumed to be zero. For every training set of data and every parameter a value is now available

from cross-validation. A t-test with significance level of 5% is performed on the distribution

of parameter values, to determine if they can be assumed to come from a distribution with

null mean and unknown variance (Figure 3.21). If the t-test accepts the null hypothesis, that

term is disregarded in the following regression.

After performing cross-validation, which selects the number of components and eliminates the

ones whose parameter is assumed to be null, a new PLS regression is performed, introducing

one column of the Y matrix a time and already providing the number of components to be

used. This is the proper regression step, which estimates the parameters of the model. Three

kinds of linear model structures were tested, gradually increasing the complexity: (i) a linear

model both in the parameters and the variables, (ii) a linear model in the parameters and

quadratic in the variables, with only quadratic terms; (iii) a linear model in the parameters

and quadratic in the variables, with both quadratic and cross-product terms. The number of

total terms increases from one model structure to the other, but thanks to cross-validation, the
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final number of parameters of the model is limited, depending on the number of components

selected. In case of number of independent variables m = 4, the three model structures would

appear as:

Y = a1 · x1 + a2 · x2 + a3 · x3 + a4 · x4 (3.38)

Y = a1 · x1 + a2 · x2 + a3 · x3 + a4 · x4 + a5 · (x1)2 + a6 · (x2)2 + a7 · (x3)2 + a8 · (x4)2

(3.39)

Y = a1 · x1 + a2 · x2 + a3 · x3 + a4 · x4 + a5 · (x1)2 + a6 · (x2)2 + a7 · (x3)2 + a8 · (x4)2 +

+ a9 · x1 · x2 + a10 · x1 · x3 + a11 · x1 · x4 + a12 · x2 · x3 + a13 · x2 · x4 + a14 · x3 · x4

(3.40)

Generalizing the expression (3.40):

Y = a1 ·X + a2 ·X2 +

n−1∑
i=0

n∑
j=i+1

a3 i,j · xi · xj (3.41)

Total number of terms

Kind of model Toy network E.coli network

Linear 4 7

Quadratic 8 14

Quadratic + cross-products 14 34

Table 3.2: Total amount of terms for PLS regression for the different model structures and

case studies.

Although there exist many criteria to verify the goodness of a regression model, the final

judgment should always be based on the fitting, by just looking at the estimated and the

experimental profiles of the dependent variables over time. To compare the estimated model to

the experimental values, all the pre-processing operations must be inverted. (i) For variance-

scaling, each column must be multiplied by the respective variance; (ii) for mean-centering,

to each column the mean of that column must be added; (iii) for substitution of variables,

the original variable must be plotted.

3.3.5 Results of PLS regression for the grey-box approach

The aim is to express the CoIs as a continuous function of the extracellular concentrations.

This regression model enables to obtain the fluxes starting from the experimental values of
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the concentrations, by solving the optimization problem and the regression. The part of the

procedure which includes the optimization and the regression can be written as:u = g(c) (Optimization)

c = f(x(t)) (Regression)
→ u = g(f(x(t))) (3.42)

The inputs to each problem will be listed first, and then the plots resulting from the regression

will be shown and discussed for both the case studies.

The regression software requires as input just which kind of model to select from the proposed

ones, i.e., (3.38),(3.39) or (3.40), and the number of cross-validation iterations, i.e., the number

of selected training sets. Since the cross-validation explores each possible model which can

be generated from the original terms, in theory the wider the range of original terms, the

better will be the regression, without renouncing to the principle of parsimony. Having 500

time points, a proper number of training sets for cross-validation could be 5. This means that

the whole time range is subdivided in 5 intervals of 100 points each. Every cross-validation

iteration excludes one of these intervals, and it trains the PLS regression on the remaining

400 points. At every iteration the interval which is disregarded is switched, exploring all the

possible permutations.

For the toy network, there are 4 extracellular concentrations and 4 coefficients, and the results

of the regression are reported in Figure 3.22. The number of components used is reported in

Table 3.3.

PLS for toy network, GB approach

Dependent variable N of components

CoI 1 8

CoI 2 8

CoI 3 7

Cb 5

Table 3.3: PLS components for the toy network.

For the E.coli network, there are 7 extracellular concentrations and 8 coefficients (Figure

3.23). The number of components used is reported in Table 3.4.

The resulting fit is very good, but the estimated curves oscillate much more than the exper-

imental ones. This is probably due to the choice of a polynomial model. The polynomial

model is useful because it is very flexible and it can adapt to almost every type of curve, but

it does not catch the real mechanism which is behind the experimental profile. Hence, the
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(a) c1 (b) c2

(c) c3 (d) cb

Figure 3.22: Coefficient profiles for the toy network: in red are the simulated profiles obtained

from the bilevel optimization problem, in blue the profiles obtained using the PLS regression.

The fit is quite good, but where the simulated profiles becomes asymptotic, the regression

model oscillates around the asymptote.

number of terms is probably superior than a proper nonlinear model, causing more oscilla-

tions and the risk of over-fitting. This fact is particularly evident when the model reaches a

stationary region: while the system asymptotically approaches the stationary value, the poly-

nomial model oscillates around it. Polynomials in fact always go to infinity, and they are not

able to simulate asymptotic behaviours. These oscillations have a notable consequence when

the stationary value of the experimental profile corresponds to 0, since the model becomes

negative.

What would happen in the grey-box approach if a regressed CoI turns negative? In the op-

timization problem the CoIs were normalized between 0 and 1, and their bounds were fixed.

Considering the modified optimization problem (3.12) with the quadratic objective function

f = xT · C · x, if all the CoIs were positive, the correspondent quadratic function in the

bidimensional case would be x2
1 + x2

2 = 0. The 3D representation of the function is reported
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(a) c1 (b) c2

(c) c3 (d) c4

(e) c5 (f) c6

(g) c7 (h) cb

Figure 3.23: Coefficient profiles for the E.coli network: in red are the simulated profiles

obtained from the bilevel optimization problem, in blue the profiles obtained using the PLS

regression.
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PLS for E.coli network, GB approach

Dependent variable N of components

CoI 1 12

CoI 2 15

CoI 3 12

CoI 4 7

CoI 5 15

CoI 6 15

CoI 7 8

Cb 5

Table 3.4: PLS components for the E. coli network.

(a) x2
1 + x2

2 surf (b) x2
1 + x2

2 contour

Figure 3.24: Surface plot and level line plot. The quadratic function shows a defined minimum

in the origin.

in Figure 3.24).

The function shows a definite minimum in the origin, and the considerations made for the

modified bilevel problem are perfectly valid. If one of the CoIs assumed a negative value

instead, the bidimensional quadratic function would be x2
1 − x2

2 = 0, and its 3D plot would

be completely different (Figure 3.25).

The function doesn’t show a defined minimum anymore, but it goes to −∞, and the opti-

mization problem is able to reach only solutions which lie on the bounds.

The previous consideration shows the importance of bounding the regression for the CoIs

to positive values. The easiest way to do this would just be to set the model to zero if its

effective value turns negative. Nevertheless, this expedient causes a non smooth profile for the

optimization parameters, which could create problems during the solution of the simulation
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(a) x2
1 − x2

2 surf (b) x2
1 − x2

2 contour

Figure 3.25: Surface plot and level line plot. The shape of the quadratic function has changed,

and it does not have a defined minimum anymore.

problem. The alternative is to use multiple linear regression instead of PLS, imposing each

point to be positive.

3.3.6 Multiple Linear Regression for the grey-box approach

The importance of bounding the coefficients to positive values during the regression step was

previously highlighted. Since no software for regression exists in MATLAB® which allows to

set upper and lower bound to the variables, the problem must be formulated as a constrained

regression.

The problem with PLS is that, given the complexity of the algorithm, it is difficult to modify

some step and still maintain good fitting results. How to impose constraints to the parameter

estimation? A normal least squares method finds the parameter values as analytic solution

of an optimization problem. A least squares problem linear in the parameters β appears as:

S(β) =
n∑
i=1

| yexpi −
m∑
j=1

βj · xj(ti) |2=‖ y−X · β ‖2 (3.43)

where n > m, i.e., the system is overdetermined. This means that there are more equations

than unknowns. The matrix β of the coefficients is determined by minimizing the SSE. This

optimization problem has an analytic solution by computing the derivative of the least squares

with respect to the parameters and imposing it to be 0.
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β̂ = arg min
β

S(β) (3.44)

∂S

∂β̂
= XT · y−XT ·X · β̂ = 0 (3.45)

β̂ = (XT ·X)−1 ·XT · y (3.46)

where the term (XT ·X)−1 ·XT is called pseudoinverse.

A way to introduce constraints in the regression could be to substitute the analytic expres-

sion of the solution of this problem with a solver for constrained least squares method such as

lsqlin in MATLAB®, which requires constraints to be linear in the parameters. This strat-

egy was first tested on a PLS algorithm. Nevertheless, the complexity of the PLS algorithm

makes very difficult to modify some passage, and the final fitting is not good any more.

An alternative chance is to renounce to the advantages of the PLS implementing this strategy

on a normal multiple linear regression problem (MLR) (Figure 3.26, Figure 3.27). The input

dependent variables were provided as a matrix, regressing the variables in the same problem.

Differently from PLS, this does not affect the final results, since every column of the input

matrix is individually considered. It was necessary to implement a non-negativity constraint

for each variable and for each time point, bounding the entire estimated profile to be positive.

This means to add a big number of constraints, but the solution is quite fast since the problem

is QP:

min
β

‖ Y−X · β ‖2 (3.47)

s.t. β · (X−X̄)
σX

· σY + Ȳ ≥ 0 (3.48)

The particular way to express the constraint stems from the necessity of comparing the

non mean-centered and non variance-scaled estimated values with the experimental data.

Nevertheless, the expression is still linear in the parameters, and the optimization problem

remains QP.

The results of the regression using the MLR algorithm for the toy network are reported in

Figure 3.28. For the E. coli network instead, the results are reported in Figure 3.29. When

looking at the graphs, the constrained MLR seems to provide a very good fitting, solving the

problem of the negative values for the fluxes.

For the MLR regression the PCA was not implemented, and the cross-validation is not applied

then. The model is always the most complex one, built using all the terms of the quadratic
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(a) PLS (b) Constrained MLR

Figure 3.26: Comparison of the estimated models obtained with the two different regression

algorithms. In red are the experimental data, in blue the profiles obtained with PLS regression

(a) and constrained MLR (b). The curve from constrained MLR never becomes negative.

(a) PLS (b) Constrained MLR

Figure 3.27: Comparison of the estimated models obtained with the two different regression

algorithms. The graphs are the same as the previous ones, but zoomed around the asymptotic

region to highlight the difference between PLS and constrained MLR regression.

form with cross-product terms. The number of used terms is 14 for the toy network and 34

for the E.coli network. This is such a high number of terms, much higher of what is necessary

to obtain a good fit. Since part of the terms gives just a small contribution to the fitting, the

fact of using so much terms does not notably influence the regression, but it can cause a loss

of generalization properties for the model. For the future use of the procedure, PCA should

always be implemented in case of using a linear model for regression.

3.3.7 Dynamic system solution for the grey-box approach

The grey-box approach is a succession of many steps, very different between each other and

inspired from different studies. Each step implies a certain computational time, but it also
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(a) c1 (b) c2

(c) c3 (d) c4

Figure 3.28: Coefficient profiles for the toy network using the constrained MLR regression:

in red are the experimental data, in blue the profiles obtained with regression.

introduces a component of error with respect to the exact solution. Depending on how much

the system under study is sensible to errors with respect to the experimental data, the in-

crease of the error percentage could make the solution of the dynamic system difficult. The

optimization problem in particular, derived from the FBA method, was extrapolated from

its original context and slightly adapted for the aim of this application. The uncertainty

introduced by this step makes the solution of the dynamic system very delicate.

Once an analytic expression for the fluxes has been found, the primary dynamic system can

be solved. It is a system of as many ordinary differential equations as there are extracellular

concentrations. The system appears as:

dCmacro

dt
= Sext ·K · u ·Nmacro (3.49)

u = f(Cmacro, T, pH, . . . ,Φ) (3.50)

The extracellular concentrations Cmacro will be generically called X(t) in the following trea-



CHAPTER 3. RESULTS AND DISCUSSION 88

(a) c1 (b) c2

(c) c3 (d) c4

(e) c5 (f) c6

(g) c7 (h) cb

Figure 3.29: Coefficient profiles for the E.coli network using the constrained MLR regression:

in red are the experimental data, in blue the profiles obtained with regression.
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tise. Since in this problem the macroscopic number of cells is the last element of the vector

of extracellular concentrations, Nmacro will be substituted by xx · X(t), where xx is a row

vector of zeros with only a 1 which corresponds to the extracellular concentration of cells.

Working in an environment with constant temperature, pressure, pH etc., the only variables

affected by the growing culture are the metabolite concentrations. The final system is:

dX(t)

dt
= Sext ·K · u · xx ·X(t) (3.51)

u = f(β,X(t)) (3.52)

where β are the parameters estimated during the regression step.

Without extrapolating the results of the dynamic system in time, which is considered a risky

operation, the model can be tested on different training sets obtained by perturbing the initial

point for t = 0h and solving a different simulation from each of these starting point. This

effect was included in the procedure by reporting for each plot always 100 profiles, which take

into account the variability of the system. Consider the toy network, whose equations are

known and they can be used to generate infinite additional data. The 100 profiles of each

concentration were already reported (Figure 3.3). Even if the variance between the different

profiles, obtained by normally perturbing the starting point of each variable inside its 95%

confidence interval, is quite limited in these graphs, it must be taken into account that the

dynamic system solution internal to the procedure has to deal with much larger variance, due

to the introduction of the optimization and regression steps. An analysis of sensitivity was

performed on the dynamic system solution for the toy network by increasing the perturbation

of the initial points. For systems of differential equations, a fundamental property is the

stability. A dynamic system is stable if small perturbations of the input data lead to small

perturbations of the outputs, i.e., if a trajectory, which starts from an initial point near the

original profile, indefinitely stays inside a defined neighbourhood of this one. A trajectory,

even called orbit, can be attracted from the original profile, converging on it after a transient,

or it can be repelled, diverging from it. This concept is similar to the condition number of a

function with respect to a variable, which indicates how sensitive the function is to errors in

that variable. If a perturbation on that variable will be propagated or softened is a property

of the system. The plots in Figure 3.30 report the profiles obtained by perturbing the starting

point both of one concentration at a time and of more concentrations at the same time.

How much the variance increases along the time evolution between the different profiles is

evident. This fact highlights that the system is very sensitive to errors, and it gives a measure

of how difficult it could be to solve the entire grey-box procedure, where each step naturally

implies its own error.
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(a) Concentration Aext (b) Concentration Eext

(c) Concentration Fext (d) Concentration BIO

Figure 3.30: Solution of the primary dynamic system for the toy network, artificially perturb-

ing the starting point for each concentration: in red are the experimental data, in blue the

simulated profiles. Although for a small perturbation of the initial points of the simulation,

a much bigger increase of the variance is obtained, still, after a while, the different profiles

seem to reconverge to the experimental trajectory.

The results of the dynamic system which includes all the steps of the grey-box procedure will

now be presented. The information and the results of the optimization and the regression

step are the ones presented in the subsection 3.3.3 and 3.3.6, respectively.

For the toy network, the number of extracellular concentrations is 4, and the results are

reported in Figure 3.31. As can be noticed from the plots, the ODE solver is not able to

complete the integration of the system over the whole time range. Both ode45 and ode15s,

for stiff problems, were tested, providing the same result. The default absolute and relative

tolerances for these solvers are set to 1e− 6 and 1e− 3, respectively. Even the selection of a

lower precision does not improve the results.

To understand where the problem lies, the procedure is split in many different steps, gradually

complicating it and passing from the analytic solution towards the actual one.
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(a) Concentration Aext (b) Concentration Eext

(c) Concentration Fext (d) Concentration BIO

Figure 3.31: Solution of the primary dynamic system for the toy network: in red are the

experimental profiles, in blue a simulated one. The simulation stops before completing the

integration.

The first step consists of solving the dynamic system using the profiles of the CoIs directly

obtained from the simulation problem (Figure 3.12), excluding the regression. Since the

simulation problem proved to properly work with these profiles, reproducing almost exactly

the original fluxes, the solution of the dynamic problem should reproduce exactly the original

profiles of the concentrations. The CoIs as continuous function of time are obtained with a

simple linear interpolation between the adjacent values. This is necessary because the ODE

solver makes use of a variable integration step, and it could require the values of the CoIs

for different time points from the original 500 ones. As it was expected, the solution of the

dynamic system with these profiles of the optimization coefficients returns the exact profiles

of the concentration. The problem is not in the ODE solver or in the solution of the dynamic

system. Further complications have to be added.

Since adding the regression of the CoIs as a function of the extracellular concentrations to

the dynamic system the problem would be the complete one, which was proven not to be



CHAPTER 3. RESULTS AND DISCUSSION 92

(a) u1 (b) u2 (c) u3

Figure 3.32: Solution of the simulation problem with the regressed profiles of the CoIs point

by point for the toy network. In red are the experimental data, in blue the simulated profiles.

The simulated profiles do not closely follow the experimental ones, and they present abrupt

oscillations.

able to complete the integration, the second step solves the simulation optimization problem

with the regressed profiles of the CoIs for each of the 500 time points. The values of the

fluxes are returned point by point, excluding the complications due to the integration. These

profiles of the fluxes (Figure 3.32) are the same ones that the ODE solver uses to solve the

dynamic problem. As can be seen, the simulated profiles of the fluxes are really far from the

real ones, and they are even subject to notable and unmotivated oscillations. This fact does

not find an explanation in the regressed CoIs (Figure 3.28, blue profiles), since these profiles,

obtained with the MLR technique, don’t show evident or big deviations from the training

profiles (Figure 3.28, red profiles). This behaviour is probably due to the extreme sensitivity

of the simulation problem to the CoIs provided as input. This is actually a problematic issue,

since the profiles obtained from regression would never perfectly reproduce the original one.

This kind of deviation cannot be easily avoided.

The confirmation that the problem of the dynamic system solution lies in the simulation

problem can be obtained by checking the profiles of the fluxes during the solution of the

dynamic system. Since the fluxes are not the variables of the dynamic system, the ODE

solver does not return their value. This problem can be overcome by transforming the ordinary

differential equation (ODE) system into a differential-algebraic equation system (DAE), and

adding the algebraic equations which return the values of the fluxes: ui = 0, (∀i ∈ 1, · · · p),
where n is the number of fluxes (or, expressing the fluxes as one vector of dimension (n x 1)).

A DAE system can be easily solved by ode15s by providing a singular mass matrix. The mass

matrix M is a diagonal matrix of dimension (m xm), where m is the number of unknowns

or equations, with 1 in correspondence of the differential equations and 0 in correspondence

of the algebraic equations. The mass matrix simply multiplies the left argument of the
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(a) u1 (b) u2 (c) u3

Figure 3.33: Fluxes of the toy network obtained from the dynamic system with the regressed

profiles of the CoI. In red are the experimental data, in blue are the simulated profiles. The

integration stops when the simulated fluxes begin to oscillate.

dynamic system, not modifying the dynamic equations but setting to zero the derivatives of

the stationary variables:

M · ∂x

∂t
= f(t,x) (3.53)

The flux profiles obtained when solving the DAE system are reported in figure 3.33.

As it can be seen, the integration stops when the flux profiles begin to abruptly oscillate,

confirming this fact to be the cause why the ODE solver cannot complete the integration.

The same considerations are valid for the E. coli network, but the negative effects caused by

the extreme sensitivity of the simulation problem are much bigger, since the CoIs show pro-

files which are more difficult to fit, and the error introduced by the regression is consequently

higher. Also for the E. coli network in fact, the ODE solver was not able to complete the

integration of the dynamic system.

3.4 Black-box approach

3.4.1 Introduction

The results of the previous section (3.3) prove that the complications of the grey-box approach

represent an insurmountable obstacle to overcome, and they make it impossible to complete

the procedure of integrating the primary dynamic system. These complications derive from

the attempt to insert biological information about the system for determining how the fluxes

vary in time in the procedure, through the FBA method. The introduction of this informa-

tion is fundamental to make the model more significant and representative of the real system.
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Even if many models currently used in literature still maintain a large experimental charac-

terization, the natural evolution of research consists of always inserting new and additional

knowledge in the mathematical description of the system, increasing the mechanistic aspect

of the model. Nevertheless, in the case of this study, since the grey-box approach showed

to be too complicated and heavy to be solved, it was chosen to make the procedure lighter,

eliminating the steps connected with the FBA method. This means of course to make a step

back from the future of this kind of modeling, since part of the mechanistic information of

the model is excluded and the experimental characterization of the model is increased. Still,

considering the innovation of the proposed approach, it was decided to prefer the flexibility of

the model, making it possible to complete the procedure. Stressing the concept, this was just

a practical choice, and it does not exclude the future possibility of alternatively reformulating

the whole procedure moving toward mechanistic models.

As was told in the introduction of the chapter (3.1), what distinguishes the two approaches

is the way fluxes and extracellular concentrations are bonded. The black-box approach usu-

ally represents the first and the most direct attempt to approach modeling. In fact a simple

black-box model is used, i.e., a fully experimental model. Disregarding any specific informa-

tion about the system under study, this kind of model is just based on the experimental data

available for the independent and dependent variables, i.e., extracellular metabolite concen-

trations and fluxes, respectively. A regression between fluxes and concentrations is performed

to obtain a continuous function starting from isolated experimental points. Although to per-

form a regression could seem quite an immediate and simple task, many more aspects should

be considered to obtain a model which not only fits well the data, but is also as much sig-

nificative as a fully experimental model can be. In this context, for significative is meant

a model which possesses good generalization properties (Geeraerd et al., 2004). This is of

course difficult for a model which is built based on just a particular set of experimental data.

The attempt to generalize the model can involve different sets of data inside the same exper-

imental range, or data taken outside it. Testing the model according with the first case is

called validation, in the second case extrapolation. In particular, the extrapolation of a model

is usually an unrecommended practice. Nevertheless, considering a future application of the

procedure as part of an online strategy of predictive control, the extrapolation required would

be limited to a small time interval outside the experimental range. If the model would be

able to catch just the direction in which the system is evolving, possibly it could already be

considered useful information. This aspect of the black-box model will be tested at last after

obtaining and validating the model.
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3.4.2 Regression for the black-box approach

In the black-box approach, the distribution of the fluxes is directly linked to the variation of

the extracellular concentrations. The fluxes are assumed as dependent variables, and regressed

as function of the concentrations. Since the concentrations are the variables of the dynamic

system, the model so formulated allows to compute the distribution of fluxes for every time

point during the integration:

u = f(x(t)) (3.54)

The considerations about the regression are the same as highlighted for the black-box ap-

proach (3.3.4). The only difference is about the negative values assumed by the dependent

variables caused by the oscillations of the regression model. As was told, the black-box model

is chosen as a polynomial linear in the regression parameters, due to its particular flexibility

and adaptability. Since it does not reflect in any way the knowledge about the system, the

number of parameter to be used is probably bigger than a proper non linear model, and this

fact causes the model to oscillate more. Being a polynomial, the regression model is not able

to approximate asymptotic behaviours, and when the system reaches a stationary region the

polynomial tend to oscillate around the training profile. In particular, when the training pro-

file asymptotically approaches 0, the regression model could assume negative values. While

for the grey-box approach this fact could represent a problem (3.3.5), it is theoretically not

the same for the black-box approach, where the dependent variables of the regression are no

longer the optimization coefficients but the fluxes. There is no physical or biological reason

why the fluxes should be bounded to positive values. Since the fluxes are just reaction rates,

a negative value for a flux can be interpreted as an inverse reaction, i.e., a reaction which

proceed consuming its products to produce the reactants. The only fluxes bounded to positive

values are the ones which are selected by the irreversibility matrix IR and involved in the

irreversibility constraint. Consequently, the negative values assumed by the fluxes should not

cause problem to the solution of the dynamic system, and the PLS regression can be used

instead of the MLR of the grey-box approach.

3.4.3 Results of PLS regression for the black-box approach

The results of the regression problem are presented for both case studies. The regression

model is the one with cross-products (3.40), and the algorithm was PLS (2.4.4).

For the toy network, the number of extracellular concentrations is 4, and the number of free

fluxes is 3. The regression graphs obtained are reported in Figure 3.34. The number of
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(a) u1 (b) u2 (c) u3

Figure 3.34: Flux profiles for the toy network: in red are the experimental data, in blue are

the profiles obtained with PLS regression. The regression provides an accurate fit.

components manually selected for each free flux is reported in Table 3.5.

PLS for toy network, BB approach

Dependent variable N of components

Flux 1 8

Flux 2 4

Flux 3 5

Table 3.5: PLS components for the toy network.

The E. coli network is bigger than the toy network. The number of both extracellular concen-

trations and free fluxes is 7.The regression graphs obtained are reported in Figure 3.35. The

number of selected components is reported in Table 3.6. The considerations are analogous

to the grey-box approach.

PLS for E.coli network, BB approach

Dependent variable N of components

Flux 1 5

Flux 2 10

Flux 3 6

Flux 4 15

Flux 5 15

Flux 6 15

Flux 7 13

Table 3.6: PLS components for the E. coli network.
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(a) u1 (b) u2

(c) u3 (d) u4

(e) u5 (f) u6

(g) u7

Figure 3.35: Flux profiles for the E.coli network: in red are the experimental data, in blue

are the profiles obtained with PLS regression. The regression provides an accurate fit.
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(a) Concentration 1 (b) Concentration 2

(c) Concentration 3 (d) Concentration 4

Figure 3.36: Solution of the primary dynamic system for the toy network: in red are the

experimental data, in blue the simulated profiles. The integration in completed, and the

simulated profiles closely follow the experimental trajectories.

3.4.4 Dynamic system solution for the black-box approach

Once the fluxes have been expressed as continuous functions of time, the primary dynamic

system can be solved (Equation 3.51).

For the toy network the number of extracellular concentration is 4, and the results are re-

ported in Figure 3.36. The simulation closely follows the experimental profiles. The variance

is slightly bigger, as it could be expected for the propagation of error. For the E. coli network

the extracellular concentrations are 7. The results are reported in Figure 3.37. As it can

be seen, the ODE solver cannot conclude the integration. Even when modifying the default

tolerance the solution does not improve. The reasons which cause this kind of output must

be investigated.

A possible explanation can be found when looking at the behaviour of the profiles near the

critical point of the integration. The profiles of the extracellular concentrations 3, 4, 5, 6 and
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(a) Glucose concentration (b) Glycerol concentration

(c) Glucose Feed concentration (d) Citrate concentration

(e) PDO concentration (f) Acetate concentration

(g) Biomass concentration

Figure 3.37: Solution of the primary dynamic system for the E.coli network: in red are the ex-

perimental data, in blue the simulated profiles. The simulated profiles follow the experimental

trajectories quite well in the first part, then they diverge, and the integration stops.
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7 approximate quite well the experimental ones. Not the same appears for the concentrations

1 and 2, whose profiles show a big increase of the variance in the last hours of the simulation,

and some profiles even diverge from the experimental trajectories. The different behaviour of

the simulation can be due to the fact that the experimental profiles of the concentrations 1

and 2 are less regular than the others, presenting more oscillations in the initial part of the

simulation. In this area, the simulated profiles seem to follow the experimental trend until

the first oscillation peak is reached, then they gradually get far from the original trajectory.

This is the typical behaviour of an unstable system. As was previously introduced (3.3.7), a

stable system is able to lessen the error with respect to its input variable, while an unstable

system exponentially increases it, so that a small change in the input produces a big change

in the output. The concept of stability for systems of differential equations is analogous

to the conditioning of a function. The criterion to verify whether a linear dynamic system

x(t)′ = A · x(t) is stable is based on the eigenvalues of the A matrix. If all the eigenvalues

of this matrix are positive numbers, the system is stable. If the eigenvalues are complex

numbers, only the real part is significant for this criterion. If even only one eigenvalue has a

positive real part, the system is unstable. For non-linear dynamic systems, an extension of this

criterion does exist. The stability of the system in the neighbourhood of a point is assessed

by linearizing the system with respect to all the variables around that point, computing the

partial derivatives. The eigenvalues of the Jacobian of the dynamic system must be checked,

according with the stability criterion.

The stability of the dynamic system (3.51) for the E. coli network was tested for different

values of the input variable, the extracellular concentrations. Since the system under study is

autonomous, i.e., it does not explicitly depend on time, the jacobian of the system is the same

in every moment of the simulation. Then, a time near the critical value t = 30h, where the

integration stops, was chosen. The range between the maximum and minimum values assumed

by each extracellular concentration during the simulation was uniformly subdivided in k = 10

points, collecting all the points in a matrix of dimension (nxk), where n is the number of

extracellular concentrations. The stability of the system was tested for each element of this

matrix, numerically computing the Jacobian and the eigenvalues. The resulting values show

the existence of at least one positive eigenvalue for most of the points inside the tested range.

The system is then unstable.

The second consideration is focused on why the instability of the system is particularly evident

in two of the seven extracellular concentrations, while the others seem to follow quite well the

experimental profiles. A possible explanation was already given considering the oscillations

that characterize the experimental profiles of concentrations 1 and 2. An alternative or

additional explanation could be bonded to the structure of the Sext·K matrix, which multiplies
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the vector u of the fluxes in the dynamic system:

Sext ·K =



1.000 2.500 5.000e− 1 −3.333e− 1 −1.167 1.000 −4.312

0.000 −3.000 −2.000 0.000 2.000 −2.000 −4.603

−1.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 −1.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 3.968e+ 1


(3.55)

This matrix has dimension (m xn), where m is the number of extracellular concentrations

and n is the number of free fluxes. Each row corresponds to a concentration, and the columns

describe which are the fluxes each concentration depends on. It can be noticed that the

concentrations 1 and 2, corresponding to the first two rows of the Sext ·K matrix, depend on

many fluxes, while the other concentrations just on one flux each. This observation means

that the error intrinsically introduced by the regression on each flux is summed during the

estimation of the concentrations 1 and 2, increasing the effects of the instability of the system.

The stability is a property of the system, and not much can be done to improve it.

3.4.5 Testing the predictive capability

In the previous section (3.4.4), the black-box procedure was completed for the toy network.

Since the procedure did not properly work for the E.coli network, this case study will not

be included in this section. Furthermore, while for the toy network additional data can be

generated at every moment, since it is a simulated network, not the same can be done for

the E.coli network, whose data are experimental and were taken from literature (Antoniewicz

et al., 2007). The only way to test the validity of the procedure for the E.coli network outside

the training range would be to exclude part of the data during the training phase, and use

these data to test the extrapolation.

Since the simulations for the toy network follow the experimental profiles quite well, the next

step is to test the predictive power of the model, i.e., to check whether the model can be gen-

eralized to new data. The new data can be generated inside the original time range by just

changing the starting points for the simulations, or outside it, by extrapolating the response

of the system in time. Extrapolation is always a delicate operation, even if the model had

been largely validated. In particular, for polynomial expressions, the higher the degree of the

polynomial, the more it will oscillate, and the faster it will diverge outside the training range.

This is even more critical particularly in case of asymptotic behaviour.
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(a) Concentration Aext (b) Concentration Eext

(c) Concentration Fext (d) Concentration BIO

Figure 3.38: Solution of the primary dynamic system for the toy network, extrapolating the

model in time: in red are the simulated data, in blue the solutions of the dynamic system.

The simulations from different starting points are critical for the toy network, since the pri-

mary dynamic system was proven to be very sensitive to changes in the initial values (3.30).

To try applying the regression obtained from one set of data on another one which starts from

a different point does not provide useful results.

The extrapolation in time will now be tested, slightly increasing the time interval from 0÷20h

to 0 ÷ 23h (Figure 3.38). The model results to catch the behavior of the system for a very

short while, after which it will probably get far from the experimental data. No applications

of predictive control are available until now for this type of systems.



Chapter 4

Conclusions

In this chapter some general conclusions are drawn about the approach proposed by this

study, in light of the results presented in Results and discussion (Chapter 3).

This study proposes a new approach to solve a metabolic network-based primary model of

the growth of cellular cultures online. Metabolic network-based modeling was chosen since it

is one of the most promising strategies for biological systems. Many metabolic networks have

already been fully characterized in the literature of the past, and the derived models showed

to provide good accordance with many sets of experimental data. Furthermore, they do not

have the necessity to estimate kinetic expressions, which, in a so articulated and nonlinear

system as a living organism, would be too many and too complicated to determine. Resulting

from some simplifying hypothesis (2.2.1), the model is quite easy, but still it requires to esti-

mate at every time point the distribution of fluxes, which cannot be measured online during

the process. At first, the FBA method (Burgard and Maranas, 2003; Gianchandani et al.,

2008) was applied to estimate these fluxes as the ones which optimize an objective function of

cellular metabolism, theoretically dependent on the condition of the cell, i.e., in which growth

phase it is going through, and on the environmental conditions, i.e., just the abundance or

lack of substrates and the accumulation of products, in this case. Successively, since the FBA

method introduces difficulties that were shown to be practically insurmountable, the second

approach was tried, which simply correlates the offline experimental measurements of the

fluxes to the online variation of the extracellular metabolite concentrations. Considering that

the procedure was tested for both approaches with two different case studies (3.2.1), at the

end four formulations of the problem were faced. Between these formulations, only one, the

black-box approach solved for the smaller case study, called toy network, could be successfully

completed. All the others instead were proven to accumulate during the procedure a quantity

of error which makes the simulation to diverge from the experimental behaviour. This is

probably due in part to the excessive sophistication of the procedure, which extrapolates and
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combines many strategies with different original aims, and in part on the formulated model

itself, which was proven to be extremely sensitive to error in the inputs. The different ap-

proaches will now be considered, and for each one some conclusions both general and relating

to a single step are drawn.

The first consideration is about the grey-box approach, whose critical step is the optimization

problem. The optimization problem is solved in two different moments, i.e, (i) the bilevel

problem, which is used off-line to estimate the coefficients of the objective function and (ii)

the simulation problem, which is effectively solved during the integration. In other studies

about flux balance analysis, the fluxes are left free to vary, comparing the results obtained

with different objective functions to determine which is the one that better describes the

behaviour of the organism in that particular situation. Many objective functions, which are

nonlinear combinations of fluxes without experimental coefficients, can be formulated based

on biological considerations, and a list of objective functions with their respective biological

meaning is provided by Schuetz (Schuetz et al., 2007). This method works very well to in-

crease the understanding of the cellular metabolism, but not for the aim of this study, since

the simulated distribution of fluxes is not constrained in any way to closely follow the pro-

files of the fluxes obtained when regressing the measurements of off-line isotopomer analysis.

Consequently, the addition of the experimental coefficients to the objective function and of

the outer problem to estimate them was necessary. The outer problem is analogous to the

determination of the coefficients of a regression problem. The system is much more bonded

to the training data, since the fluxes are forced to follow the experimental profiles. The bio-

logical interpretation is then completely left to the optimization coefficients. The formulation

of the bilevel problem was inspired by the ObjFind approach presented in literature (Burgard

and Maranas, 2003), which uses a linear objective function simply made by the weighted

summation of all the fluxes multiplied by the corresponding coefficients. The original method

used the obtained set of coefficients to determine which fluxes were more important inside

the objective function, i.e., which fluxes the cell seemed to optimize, obtaining information or

validating hypotheses about the cellular metabolism. Burgard also says that the simulation

problem, i.e., the optimization of the objective function with the set of coefficients estimated

by the bilevel problem, cannot be univocally solved, since the same distribution of coeffi-

cients correspond to many sets of fluxes. In this study, to make the solution of the simulation

problem, which is inserted in the integration, possible, the linear objective function was trans-

formed into a quadratic function, and an experimental constraint was added, which bounds

the summation of the simulated fluxes to be equal to the summation of the experimental

fluxes. In this way the dynamic system can be correctly solved, but the set of coefficients is

far more difficult to be interpreted, renouncing part of the biological information. Finally, the
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model loses all its mechanistic characterization, and the reasons which justified the addition

of the optimization problem to the procedure fall. The optimization step was completely

excluded, and the black-box approach was adopted. Given the importance of considering the

physics of the system for the model to better represent reality, it would be important to add

new biological information to the model. Furthermore, the solution of the simulation prob-

lem was still very delicate, being easily subject to alternate optima and extremely sensitive

to error in the input coefficients. In future, possible improvement to this study would be

given by finding a biological objective function able to properly solve the simulation problem,

or finding an alternative formulation of the optimization problem able to maintain both the

experimental data fitting and the biological relevance.

The second consideration is about the primary dynamic system proposed in literature (Van

Impe et al., 2012). The system proved to be very sensitive to error, i.e., for small changes in

the initial starting points of the simulation, the estimated profiles drastically increase their

variance with respect to the experimental trend. For dynamic systems, this behaviour is called

instability. Actually, the behaviour which was observed was slightly different from instability,

since the simulated profiles did not diverge, but after a while seem to reconverge toward the

experimental one. The variance of the model appears to vary a lot during the integration,

and this can represent a problem for the solution of the online procedure, since simulations

from different starting points always diverge, being the error increased by the intermediate

steps. The dynamic system inserted inside the online procedure was in fact definitely unsta-

ble, and also starting from the same initial point, the profile risks to diverge due to the error

accumulated during the integration. The stability being a property of the system, probably

there is not an intuitive or immediate way to improve the situation.

At the end, due to the critical points here presented, only the dynamic system of the black-

box approach for the toy network was completely integrated, and even extrapolated in time

to verify how much it is able to follow the response of the micro-organism. The model is still

strongly bonded to the experimental training set of data, but its extrapolation seems to catch

the trend of the experimental data, at least in a limited time near the training interval. It

should be tested if this prediction can be useful to implement some online control strategy.

Hopefully, future improvements in each step of the procedure will make it possible to increase

the predictive power of the model, producing results which can be extended to cover a larger

range of situations.

Finally, remaining on the case of black-box models, the regression which correlates the ex-

tracellular concentrations to the optimization coefficients in the grey box-approach, or the

fluxes in the black-box approach, could be improved. Only linear regression was tested, due

to practical reasons and justified by a wide range of previous studies which confirmed this
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type of models to effectively work. Nevertheless, considering the extreme complication and

the high nonlinearity of the systems which try to describe the living organisms, for sure a

nonlinear model would be more appropriate. If a functional form would be found which

better interprets the mechanisms that take place inside the cell, the number of experimental

coefficients could be probably diminished, and the model would be more easily generalized.

In future, nonlinear regression should be tested.

The modeling here presented is in general, not theoretically depending on the features of

the particular metabolic network, and it can be applied to any fermentation. Although this

study recognizes the primary importance of developing a comprehensive and quantitative

understanding of biological systems, to allow for better control of the fermentations and im-

proved process performance, it still proposes an innovative method, which can be considered

a first attempt of online metabolic network based-modeling. This consideration justifies the

choice of a model which maintains a strong experimental characterization, giving priority to

its flexibility and adaptability more than to the biological interpretation. Still there are many

steps of the proposed procedure which should be adjusted or re-invented to improve and

extend its applicability, and only after guaranteeing a proper functioning of the experiment

based model more mechanistic information could be included, with their respective compli-

cations. A natural evolution of this study will be to bond the flux variation to the state of

the culture, using the experimental data to formulate and validate more significant models,

not limited to a specific set of data.

Although being ambitious, the promise of a computationally efficient methodology which

works online would enable real-time process control and monitoring, improving the efficiency

and the productivity of biotechnological processes. The data from off-gas analysis and off-

line metabolite measurements would be continuously updated, providing new inputs to the

procedure. Since the performance of a fermentation depends on two different scales, the

macroscopic scale of the bioreactor and the microscopic of cellular metabolism, information

from both these levels is necessary to implement a proactive control strategy. The greatest

aid to biological modeling would probably derive from enhancements in the experimental

characterization of the microscopic scale, which is nowadays still problematic and limited.

The expectation of new discoveries able to at least improve the present situation in predictive

microbiology is not utopian, and much can still be expected from such a fresh and ongoing

research area.
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