
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Robust Odometry, Localization and

Autonomous Navigation on a

Robotic Wheelchair

Relatore: Ing. Matteo Matteucci

Correlatori: Ing. Davide Cucci

Ing. Giulio Fontana

Tesi di Laurea di:

Luca Calabrese, matricola 783214

Anno Accademico 2012-2013

A mio nonno, che porto sempre nel cuore

Abstract

This thesis concerns autonomous robotics, a branch of robotics that deals

with the study and design of vehicles able to fulfil tasks without the need for

human intervention. In particular, a software system for a robotic powered

wheelchair intended for people with motor disabilities has been designed and

implemented on a prototype, previously developed by Politecnico di Milano.

The aim of the thesis was providing the wheelchair with autonomous fea-

tures like path planning and collision avoidance, while keeping it safe for

both users and people around it. A widely used framework for robotic ap-

plications, named ROS (Robot Operating System), has been adopted. With

its publish-and-subscribe paradigm and high portability, this framework im-

proves extensibility and reuse of software modules. Moreover, the issue of

robot localization has been studied. To this end, a new library for multi-

sensor fusion and pose estimation, ROAMFREE (Robust Odometry Applying

Multisensor Fusion to Reduce Estimation Errors), has been used. ROAM-

FREE fusion engine allows to merge odometry data coming from different

sensors, in order to provide an estimate for the robot pose which is robust,

meaning that it is less prone to errors. This method has been combined with

an algorithm known in literature as AMCL (Adaptive Monte Carlo Localiza-

tion), in order to increase the robustness of the estimate by compensating,

in many cases, the absence of absolute position sensors. The robot has been

tested in different situations, involving static and dynamic obstacles (such

as objects and people), and has shown good performance in both cases.

I

Sommario

La presente tesi riguarda la robotica autonoma, un ramo della robotica che

si occupa dello studio e della progettazione di veicoli in grado di eseguire

compiti senza il bisogno dell’intervento umano. In particolare, un sistema

software per una carrozzina robotica per disabili motori è stato progettato

e implementato su un prototipo realizzato in precedenza dal Politecnico di

Milano. Lo scopo di questa tesi è stato dotare la carrozzina di funzionalità

di guida autonoma, come la pianificazione di percorsi e l’evitamento delle

collisioni, mantenendola sicura sia per gli utenti sia per le persone che la cir-

condano. È stato adottato un framework largamente usato in applicazioni

robotiche: ROS (Robot Operating System). Grazie al suo paradigma di tipo

publish-and-subscribe e alla sua alta portabilità, questo framework migliora

l’estensibilità e il riuso dei componenti software. Inoltre si è studiato il pro-

blema della localizzazione. A questo proposito è stata adottata una nuova

libreria per la fusione multi-sensoriale e per la stima della posizione, chia-

mata ROAMFREE (Robust Odometry Applying Multisensor Fusion to Re-

duce Estimation Errors). Il motore di fusione di ROAMFREE permette di

fondere i dati odometrici provenienti da più sensori, in modo da fornire una

stima della posizione del robot che sia robusta, ovvero meno soggetta ad er-

rori. Questo metodo è stato combinato con un algoritmo noto in letteratura

come AMCL (Adaptive Monte Carlo Localization), in modo da irrobustire

la stima compensando, in molti casi, l’assenza di sensori di posizionamento

assoluto. Il robot è stato testato in diverse situazioni, in cui sono stati coin-

volti sia ostacoli statici sia dinamici (come oggetti e persone), e ha mostrato

buone prestazioni in entrambi i casi.

III

Ringraziamenti

Desidero ringraziare innanzitutto il Prof. Matteo Matteucci per avermi of-

ferto l’opportunità di occuparmi di questo progetto cos̀ı importante, e per

aver confidato fin da subito nelle mie capacità. Ringrazio inoltre gli inge-

gneri Davide Cucci e Giulio Fontana per aver seguito da vicino le diverse

fasi del lavoro, e per avermi insegnato ad affrontare ogni problema con ap-

proccio critico e costruttivo. Grazie anche ai ragazzi conosciuti in AIRLab,

che hanno alleggerito anche le giornate più faticose.

Giunto alla conclusione del mio percorso di studi, non posso fare a meno

di ringraziare i miei genitori, per l’affetto che mi donano tutti i giorni e per

avermi supportato in ogni momento della mia vita. Grazie a mia sorella

Laura, per la quale questo è un anno molto speciale, e al mio futuro co-

gnato Carlo. Grazie anche a mia nonna, che fa sempre il tifo per me. Un

ringraziamento speciale va a Martina, che ha reso questi anni bellissimi e

indimenticabili.

Ringrazio tutti coloro che hanno condiviso con me questo cammino, in

particolare Alberto, Alessandro, Francesco, Jacopo e Riccardo, compagni di

giochi e momenti spensierati, oltre che di studi. Un grazie va anche ai miei

amici “storici”, Andrea e Walter, e alle compagnie con cui trascorro le ore

di svago. Ringrazio inoltre Fabrizio, il mio insegnante di basso, per avermi

fatto capire come lo studio della musica sia non solo dilettevole, ma anche

formativo in qualsiasi ambito.

Grazie a tutti coloro che hanno creduto e che credono in me.

Luca

V

Contents

Abstract I

Sommario III

Ringraziamenti V

1 Introduction 1

2 State of the art 5

2.1 Robotic wheelchairs . 5

2.2 Existing projects . 6

2.3 LURCH . 13

2.3.1 Main features . 14

2.3.2 Previous software architecture 15

2.4 ROS . 18

2.4.1 Basic structure . 18

2.4.2 Main properties . 19

2.4.3 The Navigation Stack 20

2.5 ROAMFREE . 21

3 Robot configuration 25

3.1 Wheelchair . 25

3.2 Sensors . 25

3.2.1 Laser scanners . 25

3.2.2 Encoders . 27

3.2.3 Other sensors . 28

3.3 Low-level control . 29

3.4 Computer . 31

3.5 Touch screen . 32

3.6 Joypad . 33

3.7 Emergency management . 33

VII

4 Software project 35

4.1 Initial set-up . 35

4.2 Laser scanners and scan matching 36

4.2.1 Hokuyo drivers . 36

4.2.2 Scan matching . 38

4.3 Encoders . 38

4.3.1 Ticks reading . 39

4.3.2 Wheel velocities . 41

4.4 Multi-sensor fusion . 41

4.4.1 Coordinate frames and sensor parameters 41

4.4.2 Pose tracking . 42

4.4.3 Parameter calibration 45

4.5 Motor board and velocity control 48

4.5.1 Motor board interface 48

4.5.2 PID Controllers . 50

4.5.3 Velocity feedback . 52

4.5.4 PID tuning . 55

4.6 Command devices and collision avoidance 56

4.6.1 Joypad interface . 57

4.6.2 Collision avoidance . 57

4.7 Autonomous drive . 60

4.7.1 Path planner and motion planner 60

4.7.2 Mapping . 61

4.7.3 Security measures . 64

4.8 State management . 65

5 Experimental Results 69

5.1 Localization . 69

5.2 Autonomous navigation . 71

5.2.1 Static obstacles . 71

5.2.2 Dynamic obstacles . 82

5.3 Public demonstrations . 84

6 Conclusions and future work 87

6.1 Conclusions . 87

6.2 Future work . 87

Bibliography 89

VIII

List of Figures

2.1 Some of the first prototypes: SMARTALEC (a), NavChair

(b), TinMan 2 (c), and CCPWNS (d) 8

2.2 OMNI (a), Rolland II (b), Intelligent Wheelchair System (c),

and SPAM (d) . 11

2.3 Some recent examples of robotic wheelchair: BCW (a), MIT

Wheelchair (b), TDS-PWC (c), RT-Mover (d) and Intelligent

Wheelchair (e) . 12

2.4 Software architecture of LURCH with DCDT [3] 17

2.5 ROS basic structure [39] . 19

2.6 Reference frames and coordinate transformations in ROAM-

FREE . 22

2.7 An instance of the hypergraph, with four pose vertices ΓWO (t)

in circles, odometry edges eODO (triangles), two shared cali-

bration parameters kv and kθ (squares), two GPS edges eGPS
and the GPS displacement S

(O)
GPS 23

3.1 The Otto Bock Rabbit wheelchair 26

3.2 An Hokuyo URG-04LX laser scanner 27

3.3 An Honeywell HOA0961 sensor and, on the right, a 3D ren-

dering of the entire system . 28

3.4 A DX-REM34: command panel 29

3.5 The three LED configurations associated to the driving modes.

From left to right: driven by user, driven by PC, driving dis-

abled . 31

3.6 The Zotac ZBOX ID83 . 32

3.7 The Logitech F710 Wireless Gamepad 33

3.8 The emergency button and, on the right, the remote 34

3.9 The complete LURCH robotic system 34

4.1 File system of the project . 36

4.2 The reference frames on the robot 43

IX

4.3 An instance of the “narrow window” problem: the algorithm

uses the last 5 poses, but 7 poses have been added since the

last computation start, so 2 poses are discarded. 44

4.4 The ROAMFREE reference frames visualized in rviz 46

4.5 The multi-sensor fusion and pose-tracking architecture 47

4.6 The correspondence between joystick positions and command

values . 49

4.7 A generic control system . 51

4.8 The motor interface and control architecture 54

4.9 A qualitative representation of the laser scan partitions for

obstacle detection . 59

4.10 The collision avoidance architecture 60

4.11 AMCL localization . 62

4.12 An example of map generated by gmapping for LURCH . . . 63

4.13 A real case (above) compared with the robot internal repre-

sentation (below) . 64

4.14 The autonomous drive architecture 65

4.15 The finite state machine implemented on LURCH 66

4.16 Joypad controls . 67

4.17 The overall software architecture 68

5.1 Comparison between ROAMFREE pose estimation and the

absolute poses provided by OptiTrack cameras 70

5.2 Localization error with respect to time 70

5.3 Map of the laboratory area used for experiments with LURCH 72

5.4 An example of trajectory followed by LURCH to avoid a static

obstacle . 73

5.5 Static obstacle avoidance: test 1 73

5.6 Static obstacle avoidance: test 2 74

5.7 Static obstacle avoidance: test 3 74

5.8 Static obstacle avoidance: test 4 75

5.9 Static obstacle avoidance: test 5 75

5.10 Static obstacle avoidance: test 6 76

5.11 Static obstacle avoidance: test 7 76

5.12 LURCH following an U-shaped path 78

5.13 U-shaped path: test 1 . 78

5.14 U-shaped path: test 2 . 79

5.15 U-shaped path: test 3 . 79

5.16 U-shaped path: test 4 . 80

5.17 U-shaped path: test 5 . 80

X

5.18 U-shaped path: test 6 . 81

5.19 U-shaped path: test 7 . 81

5.20 LURCH avoiding a person appearing on its way 83

5.21 Dynamic obstacle avoidance: test 83

5.22 The map obtained with gmapping for the Open Day 84

5.23 LURCH moving autonomously during the Open Day 85

XI

XII

Chapter 1

Introduction

This thesis concerns autonomous robotics, a branch of robotics that deals

with the study and design of vehicles able to fulfil tasks without the need for

human intervention. In particular, a software system for a robotic powered

wheelchair intended for people with motor disabilities has been designed and

implemented on a prototype, previously developed by Politecnico di Milano,

named LURCH (Let Unleashed Robots Crawl the House).

The aim of the thesis was providing the wheelchair with autonomous

features like path planning and collision avoidance, while keeping it safe for

both users and people around it. A widely used framework for robotic ap-

plications, named ROS (Robot Operating System), has been adopted. With

its publish-and-subscribe paradigm and high portability, this framework im-

proves extensibility and reuse of software modules. Moreover, the issue of

robot localization has been studied. To this end, a new library for multi-

sensor fusion and pose estimation, ROAMFREE (Robust Odometry Apply-

ing Multisensor Fusion to Reduce Estimation Errors), has been employed.

ROAMFREE fusion engine allows to merge odometry data coming from

different sensors, in order to provide an estimate for the robot pose which

is robust, meaning that it is less prone to errors. This method has been

combined with an algorithm known in literature as AMCL (Adaptive Monte

Carlo Localization), in order to increase the robustness of the estimate by

compensating, in many cases, the absence of absolute position sensors.

The present work has been done in order to respond to the usability

limitations of powered wheelchairs already on the market; some people, in-

deed, suffer diseases that hinder the normal usage of such wheelchairs, like

cerebral palsy and Parkinson. Over the years, scientific research has tried to

overtake those limitations, focusing on the development of wheelchairs with

2 Chapter 1. Introduction

features comparable to those of mobile robots. Some of those prototypes are

basically mobile robotic platforms able to transport a person; other projects

use commercial wheelchairs as a base, and add robotic features while keep-

ing the structure and the functionalities already present on those vehicles.

LURCH belongs to this second category: a commercial wheelchair was ex-

tended, including a set of sensors (among which laser scanners and wheel

encoders) that let it perceive the environment, and a circuit that allowed to

communicate with the motors through a computer.

Although the first version of LURCH software system was able to show

the potentialities of an autonomous wheelchair, its development has been

dropped for the following reasons. First of all, the wide and fast diffusion of

ROS over recent years has set up a new de facto standard in robot software

development. This framework has the advantage of being easy to integrate

with new technological solutions, such as ROAMFREE, and to test them

more efficiently, thanks to the large number of tools provided. Moreover,

ROS already includes modules that deal with typical robotic applications,

and that have been tested on a wide variety of platforms; thus, using those

modules increases the robustness of the system in general. The addition

and changing of software components is much simpler, allowing to improve

performances in future developments. Another reason was the need for

creating an architecture that could be easily transferred to other platforms,

because some functionalities, such as localization and motion planning, are

common to most mobile robots.

The work done in this thesis can be divided into four logical parts. In the

first part, modules that read sensory data have been implemented, giving

attention to the estimation of time stamps, since they are critical in com-

puting velocities; the obtained odometry information has been used along

with ROAMFREE to retrieve pose estimates. In the second part, we fo-

cused on the communication with the motors, and on the realization of a

PID software module for speed control. The third part involved command

devices and assisted drive, and it has faced the addition of obstacle detec-

tion and collision avoidance features to manual drive. The last part has

focused on autonomous navigation; to this end, ROS navigation modules

have been used and configured. The AMCL package has been added in the

architecture, in order to enhance the pose estimation process by integrating

the map of the environment as a reference.

The robot has been tested in different situations, involving static and

dynamic obstacles (such as objects and people), and has shown good per-

formances in both cases.

3

The structure of this thesis is the following:

• In Chapter 2 some examples of robotic wheelchairs proposed in litera-

ture are illustrated, and the previous software architecture of LURCH

is described; moreover, the ROS framework and the ROAMFREE

multi-sensor fusion engine are discussed.

• In Chapter 3 the current hardware configuration of LURCH is illus-

trated.

• In Chapter 4 the software architecture is described, along with the

explanation of all design choices.

• In Chapter 5 experimental results are analysed and discussed.

• In Chapter 6 conclusions are made, and some possible extensions and

improvements for the project are illustrated.

4 Chapter 1. Introduction

Chapter 2

State of the art

In this chapter we summarize the state of the art on robotic wheelchairs,

and we describe technologies and methods adopted in the present work.

2.1 Robotic wheelchairs

Electric and motorized wheelchairs increase the moving possibilities of users.

Those wheelchairs are usually driven through an on-board joystick, and are

designed for people who have not enough strength to move a manual one

or have difficulties in doing that. Nevertheless, a category of people who

are not able to safely control even such wheelchairs still remains. Among

those we can count people who suffer cerebral palsy, Parkinson and, more

generally, diseases that alter the ability to perform accurate movements, or

cause involuntary motions.

The need to extend the use of wheelchairs to disabled people who cannot

drive a normal one has led many universities and research institutes to the

development of wheelchairs with more functionalities than those currently

on the market. There are basically two research directions in that sense:

• creating a mobile robot with a seat for a person;

• using a commercial wheelchair as a base, changing the control system

with an “ad hoc” system, and/or adding devices to it.

The former is the first direction that had been followed, but it turns out

to be expansive and it requires much more effort in the design and realization

of the mechanical structure and motorization. The second approach is today

the most used one. Indeed, in a commercial wheelchair the mechanical

6 Chapter 2. State of the art

structure is already working and tested, and the same holds for the low-

level control of the motors. In addition, the use of a commercial wheelchair

as a base allows to keep all the functionalities that are not directly related to

motion. Such wheelchairs are, in fact, already designed to support disabled

people in the best way possible. For instance, the seat is designed taking

into account ergonomics, and in most cases it is adjustable to fit the person’s

posture.

On a functionality level, robotic wheelchairs can be divided into two

categories: semi-autonomous and autonomous.

• Semi-autonomous wheelchairs have the objective of assisting the user,

avoiding obstacles and helping moving through narrow passages. The

path to follow is decided and controlled by the user, who communicates

it through available devices (typically, the joystick, but some special

devices might exist). This approach is known as shared autonomy, and

it is defined as the full or partial replacement of a function that has

to be executed by the robot [1]. In this case, for the most part, the

driving function is carried out by the user.

• Autonomous wheelchairs offer similar functionalities to those usually

implemented on autonomous robots. The user has to specify a des-

tination, or goal; the control software plans a path to reach the goal

and then executes it. In order to accomplish the task it is necessary

to know where the wheelchair is located with respect to a reference

pose, and to have information on static obstacles in the environment.

Sometimes it is possible to integrate static obstacles information with

new data, like unforeseen obstacles, to correct or change the path pre-

viously computed.

Obviously, these two modes can be combined, letting the user choose be-

tween them at runtime.

2.2 Existing projects

Over the years many different wheelchairs with extended features have been

developed. What follows is a list including some of them [2] [3]:

SMART ALEC (Stanford, USA, 1980-1990, Figure 2.1(a)) [4] [5] [6]

was the first semi autonomous wheelchair. It was based on a modified com-

mercial structure, equipped with encoders on its wheels and sonars for ob-

stacle detection. The driving system was based on the position of the head

2.2. Existing projects 7

of the user, detected by using sonars. Among the functionalities offered

there were: obstacle avoidance, keeping of a predefined distance from walls

(useful when moving along corridors), and target following.

Madarasz wheelchair (Arizona University, USA, 1986) [7] was the

first full-autonomous wheelchair. It was equipped with sonars and vision

systems for the identification of artificial landmarks.

Mister Ed (IBM, USA, 1990) [8] was basically a mobile robot with

a seat on it. Its software was based on a subsumption architecture, where

“simple” behaviours were combined to produce more complex and high-level

behaviours. Some simple behaviours implemented were passage through

doors, wall following, and target following.

VAHM (University of Metz, France, 1992-2004) [9] [10], acronym for

Véichule Autonome pour Handicapé Moteur, was based on a mobile robot

with a seat on it. The control architecture was made of three levels, and al-

lowed autonomous navigation based on an internal map, obstacle avoidance

and keeping of a constant distance from walls. The choice of the operating

mode was left to the user. Another prototype was made, with similar fea-

tures, but based on a commercial wheelchair [11].

NavChair (University of Michigan, USA, 1993-2002, Figure 2.1(b)) [12]

was based on a commercial wheelchair with some changes to the motor

control system. It provided collision avoidance and a group of specific be-

haviours, like passage through doors and wall following.

TinMan (Kipr, USA, 1994-1999, Figure 2.1(c)) [13] represents a se-

ries of prototypes for autonomous wheelchairs based on electric wheelchairs.

The first prototype used a mechanical device to move the joystick, while the

following projects used a commercial wheelchair as a base, modifying the

electronic motor control system.

CCPWNS (University of Notre Dame, USA, 1994-2000, Figure 2.1(d))

[14], acronym for Computer Controlled Power Wheelchair Navigation Sys-

tem, allowed following paths which had been learnt previously by the system.

It used landmark identification. No obstacle avoidance feature was provided.

SENARIO (Greece, 1995-1998) [15] was a modified commercial wheel-

chair; it allowed interaction between user’s driving and an obstacle avoidance

8 Chapter 2. State of the art

(a) (b)

(c) (d)

Figure 2.1: Some of the first prototypes: SMARTALEC (a), NavChair (b), TinMan 2

(c), and CCPWNS (d)

system. Autonomous navigation was managed with an internal map.

OMNI (University of Hagen, Germany, 1995-1999, Figure 2.2(a)) [16],

acronym for Office wheelchair with high Maneuverability and Navigational

Intelligence, was a modified omnidirectional electric wheelchair. Its features

were organized in a hierarchical architecture: simple obstacle avoidance,

custom behaviours for specific tasks and autonomous navigation.

Rolland I and II (University of Bremen, Germany, 1997-2002, Figure

2.2(b)) [17] [18] [19] have been the targets of many evolutions and studies.

They were based on a commercial wheelchair (Meyra Genius 1.522) which

already had interfaces for velocity commands and the measurements of the

speed with encoders on the wheels. The first prototype provided autono-

2.2. Existing projects 9

mous navigation based on artificial landmarks and odometry, combined with

collision avoidance through sonars, IR and bumpers. The operation modes

were many and it was possible to follow previously learnt paths. In the

second prototype only sonars were present, but the obstacle avoidance algo-

rithm was more sophisticated. The basic behaviours to follow trajectories

were in-place rotations and maintaining of constant distances from walls. In

semi-autonomous mode the wheelchair adapted its velocity according to the

presence of obstacles.

MAid (Germany, 1998-2003) [20], acronym for Mobility Aid for elderly

and disabled people, was a commercial wheelchair with a custom motor con-

trol. It had two different operating modes: Narrow-Area Navigation (NAN)

and Wide-Area Navigation (WAN). NAN mode allowed navigating from a

starting pose to a goal, WAN mode allowed identifying and avoiding dynamic

objects in the environment. At a later stage, the possibility of following mov-

ing obstacles was added. The odometry part was made out of a gyroscopic

sensor and a couple of encoders mounted on the wheels.

Intelligent Wheelchair System (Osaka University, Japan, 1998-2003,

Figure 2.2(c)) [21] interpreted head movements using a camera pointing to-

ward the seat. A second camera, outward-facing, allowed object following

and interpreting commands even when the user was not on board. The user’s

will was compared to the possibility of moving in a certain direction, basing

both on a topological map and on measurements made with sonars. Local-

ization was given by a system that integrated the odometric data. Thanks

to the external camera, the system was able to recognize the presence of

pedestrians and to move the wheelchair in order to avoid collisions.

Hephaestus (TRAC Labs, USA, 1999-2002) [22] was a kit for electric

wheelchairs that implemented obstacle avoidance behaviours. It was com-

patible with many different wheelchair models and required no modification

on the motor control system.

SIAMO (Alcala University, Spain, 1999-2003) [23] was a wheelchair

equipped with many input devices, among which vocal control, head motion

recognition, and ocular motion perceived with electrodes. It had an obstacle

avoidance system with laser scanners and infra-red sensors which were also

able to distinguish depressions and steep slopes. Localization was possible

thanks to encoders on the motor wheels.

10 Chapter 2. State of the art

Smart Wheelchair (University of Kanazawa, Japan, 2000) [24] was

able to locate itself by using radio beacons. Thanks to the knowledge of its

pose, it could navigate autonomously. It could learn and reproduce paths

thanks to the use of neural networks. It did not implement any obstacle

avoidance system, but it was equipped with an odometry system on its

wheels.

SPAM (Sciences, USA, 2003-2004, Figure 2.2(d)) [25], acronym for

Smart Wheelchair Assistance Module, was developed as an accessory to mo-

torize manual wheelchairs. It was compatible with many manual wheelchair

models. The functionality provided was obstacle avoidance, and software

architecture was based on behaviour rules.

Rolland III (Bremen University, Germany, 2005) [26] had two laser

scanners placed at ground level, one facing forwards and the other one fac-

ing backwards. The wheels were equipped with encoders for odometry. The

vision system was based on an omni-directional camera that perceived land-

marks located in the environment.

In recent years research on autonomous wheelchairs has mostly focused

on means to let disabled users interact with them. Furthermore, motion on

irregular terrains has been studied, allowing wheelchairs to deal with steps

and to move outdoors. Here we illustrate some recent examples.

BCW (National University of Singapore, 2007, Figure 2.3(a)) [27], acro-

nym for Brain Controlled Wheelchair, is based on a commercial wheelchair,

the Yamaha JW-I. It is equipped with optical encoders mounted on special

small wheels, a proximity sensor installed on the front part and a barcode

reader for localization. Control is made with a BCI interface.

MIT Wheelchair (Massachusetts Institute of Technology, 2008, Fig-

ure 2.3(b)) [28], is a wheelchair with a vocal interface that relies on Wi-Fi

networks for indoor navigation, whereas obstacle avoidance is ensured by a

SICK sensor together with a couple of Hokuyo laser scanners.

SILLA (University of Zaragoza, Spain, 2008) [29], is a wheelchair con-

trolled with the brain by means of a BCI interface. It is equipped with

encoders on its wheels for odometry, whereas obstacle avoidance relies on a

SICK scanner placed between the user’s legs.

2.2. Existing projects 11

(a) (b)

(c) (d)

Figure 2.2: OMNI (a), Rolland II (b), Intelligent Wheelchair System (c), and SPAM

(d)

TDS-PWC (Georgia Tech University, 2008, Figure 2.3(c)) [30], acro-

nym for Tongue Drive System-Powered Wheelchair, takes advantage of a

system known as Tongue Drive System to drive a commercial wheelchair by

interfacing with the proprietary bus. The system uses a magnet placed on

the user’s tongue, whose movements are detected by some sensors located

on a dedicated helmet.

RT-Mover (Chiba Institute of Technology, Japan, 2009, Figure 2.3(d))

[31] is a robotic wheelchair capable of moving through rough terrains. It

uses a hybrid mechanism that combines the advantages of both wheeled and

legged robots. To be more precise, it can change the roll of the wheel axes

in order to lift wheels as they were legs, thus succeeding in passing through

slopes and other irregularities of the terrain, while keeping the stability and

12 Chapter 2. State of the art

(a) (b) (c)

(d) (e)

Figure 2.3: Some recent examples of robotic wheelchair: BCW (a), MIT Wheelchair

(b), TDS-PWC (c), RT-Mover (d) and Intelligent Wheelchair (e)

minor complexity of a wheeled system. It also has a control mechanism that

keeps the seat steady. It uses encoders and current sensors on the wheels in

order to detect steps.

Wheelchair for users with cerebral palsy (University of Zaragoza,

Spain, 2010) [32] is a wheelchair that has been specifically designed for peo-

ple with cerebral diseases. It is based on a commercial wheelchair, and uses

a planar laser and wheel encoders to perceive the environment. Users se-

lect goals through a touch screen showing a visual 3D representation of the

wheelchair and the environment around it. The computer does not store

any map: the map is dynamical, based on the current sensor readings, and

always centred on the wheelchair.

2.3. LURCH 13

Intelligent Wheelchair (Freie Universität Berlin, Germany, 2011, Fig-

ure 2.3(e)) [33] is a wheelchair that combines different input sources: it can

be driven through a smartphone (iDriver), with an eye-tracking system (eye-

Driver), or with a Brain Computer Interface (brainDriver). It also provides

obstacle avoidance features. It is based on a commercial wheelchair.

IWS (University of Toronto, Canada, 2012) [34], acronym for Intelli-

gent Wheelchair System, is an add-on for powered wheelchairs. Obstacles

are detected by a stereo-vision camera; movements towards the obstacles are

prevented. If the wheelchair remains stopped by an obstacle for a certain

period of time (about 2 seconds), an audio prompt will be played, which

helps the user navigate into free space surrounding the obstacle (e.g. “try

turning left”, “try turning right”). The audio prompt is repeated every 5

seconds if the wheelchair continues to remain stopped.

Among the prototypes listed above, we can identify some recurring fea-

tures. For instance, most autonomous and semi-autonomous wheelchairs are

equipped with more than one command interface. That is because of two

main reasons: first of all, wheelchairs are often designed for many types of

disabilities, so that the end user can choose the appropriate interfaces; in

the second place, different situations can imply different input methods. As

regards tasks for which a tutor is required, for example, the tutor may need

to drive the wheelchair remotely, so another input device, different from the

one adopted by the user, may be necessary to him/her. The need for many

input possibilities entails a modular architecture both for hardware and for

software: the addition of a device must be as transparent as possible to the

rest of the system.

Another important aspect is that the security required for a robot that

transports people is significant. In particular, it is important that the wheel-

chair is able to locate itself and detect obstacles in the best way possible, in

order to avoid accidental collisions; for this reason, usually many different

sensors are employed, and their data are merged to increase robustness.

2.3 LURCH

In 2007 the AIRLab (Artificial Intelligence and Robotics Laboratory) of Po-

litecnico di Milano developed a robotic wheelchair called LURCH (acronym

for Let Unleashed Robots Crawl the House) [2] [3]. It is based on a com-

mercial wheelchair and implements both semi-autonomous and autonomous

modes.

14 Chapter 2. State of the art

2.3.1 Main features

The first version of LURCH [2] was equipped with:

• 2 laser scanners in the front, each scanning the environment at 240

degrees;

• an IMU (Inertial Measurement Unit) to measure velocities;

• a camera that detects artificial landmarks;

• an on-board x86 computer;

• a touchscreen that helps the user interact with the computer.

Basically, the wheelchair could detect obstacles by means of the two laser

scanners, localize itself with the help of the camera, and have a velocity

feedback given by the IMU. In semi-autonomous mode, the wheelchair could

be driven with the on-board joystick or a joypad alike; the software was able

to facilitate the user’s movement, avoiding collisions.

In autonomous mode, the user could select a goal position through the

touchscreen; the control software had the task of computing the path to

reach the goal and executing it by sending the proper commands to the

motors. In order to make the computer give commands to the motors, the

connection between the joystick and the motors was cut, and an interface

circuit was realized and put in the middle. Such board has basically two

functions:

• it reads the joystick positions and it sends them to the computer;

• it translates the commands sent by the computer into voltage values

that control the motors.

A peculiarity of this solution is that the joystick still keeps its functionality,

as its position can always be known and employed, and it can be used in

conjunction with other input devices.

Over the years some changes to LURCH have been made. In particu-

lar [3]:

• the IMU was removed, for its low accuracy in velocity measurements

and for its high costs;

• the velocity feedback is now given by encoders mounted on the wheels;

• an odometry board was made in order to interface the computer with

the encoders.

2.3. LURCH 15

As for the command interfaces, some different solutions have been tested,

such as a wireless joypad, speech command, facial muscle control and brain-

computer interface (BCI) [35]. A more detailed description of the current

robot hardware is given in Chapter 3.

2.3.2 Previous software architecture

The control software was initially based on a framework known as DCDT

(Device Communities Development Toolkit) [36]. Such framework facilitates

the implementation of software agents that can communicate and exchange

information. Each agent, also known as member, has the following lifecycle:

1. Initialization of the member.

2. Periodic repetition of the member specific function.

3. Closure of the member.

The desired behaviour is obtained by specifying the actions that the member

has to follow at each step. Members communicate one another by exchang-

ing messages. The communication is realized through TCP/IP, allowing

two members to communicate even if they run on different machines. Mes-

sages have a type, in other words they are distinguishable according to a

code. The mechanism that manages dispatch and reception of messages is

based on a publish-and-subscribe paradigm. More specifically, each member

specifies which messages it intends to receive, without the need to know

which the sender is. This creates a quite flexible system that allows, for

instance, to substitute a component with another that produces the same

messages, leaving the other parts of the system unaware of the change; thus

modifications in the receiving members are not required.

Another important feature implemented in the previous version of the

software is BRIAN (acronym for BRIAN Reacts by Inferring ActioNs), a

control system based on behaviours. It provides the choice of active be-

haviours and the fusion of results, basing on conditions defined in terms of

state variables and sensory detections. A behaviour is represented as a set

of fuzzy logic rules.

In the LURCH DCDT control software, members were called experts,

since each of them was specialized in a particular task. The components

were the following.

MotorExpert: it read raw data coming from the motor board, namely

the position of the on-board joystick, and sent them to BrianExpert. At the

16 Chapter 2. State of the art

same time, it transmitted data commands coming from BrianExpert to the

motor board. After the addition of the encoders and the odometry board

this module also published the total number of encoder ticks.

JoypadExpert: it mapped joypad buttons to commands to be sent to

BrianExpert.

HokuyoExpert: it interacted with the laser scanners and sent informa-

tion on the minimum distance from obstacles to BrianExpert. On request

it also sent a list of points representing the shape of obstacles.

MTiExpert: it retrieved sensory data coming from the IMU and sent

them to PoseExpert. It was removed after the addition of the encoders.

VisionExpert: it periodically acquired an image from the camera and

computed, whenever possible, the wheelchair position with respect to the

reference frame. The message was then sent to PoseExpert.

PoseExpert: it managed data coming from encoders and VisionExpert

to compute the actual speed of the wheelchair, which was then sent to Bri-

anExpert.

SpikeExpert: it is the path planning module. It waited for a planning

request and returned a path, or a message that communicated the impos-

sibility of building it. The chosen planner was Spike, which in turn used

the A* algorithm to compute the path over a grid with cells of customizable

size. The map could be dynamically updated.

SequencerExpert: it specified a starting point, a goal and information

on new obstacles. It sent planning requests to SpikeExpert.

BrianExpert: it was the core of the whole architecture. It collected all

data coming from the other experts, translated them into fuzzy variables,

run the proper rules and returned commands for MotorExpert. The obstacle

avoidance feature was treated as a high-priority behaviour, separated from

the actual path planning, in order to make the wheelchair more reactive to

dynamic obstacles.

GuiExpert: it managed the graphic user interface, which was used to

display information and to set goals.

2.3. LURCH 17

Figure 2.4: Software architecture of LURCH with DCDT [3]

ErrorExpert: its task was to detect and manage system failures by

reading the messages sent by the other members.

Figure 2.4 shows the entire system architecture. AudioExpert was only

used to reproduce multimedia contents, and LANExpert was predisposed to

exchange messages through an Ethernet connection (used, for instance, by

the BCI).

Although such system was able to demonstrate the potentialities of a

wheelchair with extended features in a satisfactory way, there was the need

of creating a system that was easier to extend and to integrate with newest

technological solutions. Furthermore, the wide and fast diffusion of ROS

framework over recent years, along with its benefits, has set up a new de

facto standard in robot software development. This means that there is

now the tendency to converge to a unique framework that allows to share

solutions and to reuse components in other projects. The main advantages

of ROS are described in the next section.

18 Chapter 2. State of the art

2.4 ROS

ROS (Robot Operating System) [37] is an open-source operating system for

robots, developed by the Stanford Artificial Intelligence Laboratory and by

Willow Garage. More precisely, it is a meta-operating system, as it provides

a structured communication layer above a host operating system. Its aim is

to provide a general framework, suitable for the most common use cases in

robotic software development.

2.4.1 Basic structure

A system built using ROS is made of a certain number of processes, poten-

tially on a number of different hosts, connected at runtime in a peer-to-peer

topology. Those processes are called nodes. In a typical robot application,

each node is responsible for a specific task, often related to a particular part

of the hardware. On a conceptual level, nodes are the ROS equivalent of

the members/experts used in DCDT framework (see Section 2.3.2).

Nodes communicate with each other by passing messages. A message

is a typed data structure. Standard primitive types, such as integer, float,

etc. are supported, but programmers can also create custom messages and

combine different types to produce more complex messages.

A node sends a message by publishing it to a given topic. A node that

is interested in a certain kind of data must subscribe to the proper topic.

In general, many nodes publishing or subscribing to the same topic may

exist, and a single node may publish or subscribe to multiple topics. As in

DCDT architecture, publishers and subscribers are not aware of each others’

existence.

Although this topic-based model, founded on the publish and subscribe

paradigm, is very flexible and can be useful in many of the most common

cases, it is not appropriate for synchronous transactions. To solve this prob-

lem, ROS provides the possibility to define a so-called service, that is a pair

of messages, one for the request and one for the reply. This is similar to

what happens on Web services, which have request and response documents

of well-defined types.

In order to let processes locate each other at runtime there is a module

called master, which provides naming and registration services to the rest of

the nodes in the ROS system. It tracks publishers and subscribers to topics

and services [38].

2.4. ROS 19

Figure 2.5: ROS basic structure [39]

2.4.2 Main properties

The structure, made of independent nodes and messages, improves the reuse

and extensibility of software projects. In fact, the encapsulation of code,

forced by this structure, makes it relatively easy to take a single node or a

package, that is a set of nodes, from a project and put it into another project.

The only required effort is to adapt the new project to the interface of the

retrieved nodes, namely message types and topic names, without having to

touch their inner code. For these reasons, many generic nodes are provided,

by the ROS team or by the community of programmers, and can be used in

many cases directly out of the box or with little tuning. Among those, there

is a variety of drivers for the most famous or common devices for robots, like

sensors and input devices. The growing diffusion of ROS as a standard for

robot software developing has increased the number of available solutions

for many typical problems.

Another important feature of ROS is that it allows communication be-

tween nodes written in different programming languages. This allows, for

instance, to write some parts of the software in an interpreted language (like

Python) to make those parts configurable and testable with less effort, and

use more complex, compiled languages (like C++) to deal with tasks that

have strict constraints in terms of time or memory consumption.

ROS is not a monolithic development and runtime environment. On the

20 Chapter 2. State of the art

contrary, it is composed of many small tools, able to perform various tasks.

All these tools can be run by means of bash commands, so they are inte-

grated in the normal operating system usage. These tools allow to navigate

the source code tree, get and set configuration parameters, run single nodes

or sets of nodes, see which topics and nodes are running, visualize messages

published on a topic, and so on. This modular structure is useful when de-

bugging, specially if the scope of investigation is a single part of the project,

such as a single node. In fact a node can be run, modified, and then rerun

without having to restart the whole infrastructure: the graph composed by

talkers and listeners is dynamically modifiable. ROS also provides specific

tools for recording and playing back nodes, thus simplifying data analysis

and research.

Among the tools provided by ROS, an important role is played by graphic

tools. Programmers can plot data and visualize graphs containing nodes,

topics and relations between them. There is also a complete tool for data

visualization, called rviz. This tool allows to view maps, reference frames,

landmarks, planned paths, sensor data, and so on.

In a nutshell, ROS allows to employ less effort in the coding and engi-

neering parts, and to concentrate more on the core research.

2.4.3 The Navigation Stack

As we said above, ROS repositories already contain some packages that deal

with the most common problems in robotics. One of them manages the

autonomous navigation of the robot. The Navigaton Stack is a collection

of packages for path planning, localization and environment mapping. Con-

sidering it as a whole, it takes information from odometry and sensors and

outputs velocity commands to a mobile base [38]. Obviously, all packages

needs to be configured for the kinematics, dynamics and shape of the specific

robot.

Concerning the path planning and motion planning module, called move

base, it is basically subdivided into two parts: a global planner and a local

planner. The global planner has the task of building a path from starting

pose to goal pose over the entire, static map of the environment. A local

planner, on the other hand, reasons about a little portion of the environment,

the one that immediately surrounds the robot, which is updated more often

than the global map. It decides which action to choose from a set of possible

actions in order to approach the global plan. The environment is represented

as a grid, where each cell has a cost, which is higher in correspondence of

obstacles and lower in free space. This cost is taken into account while

2.5. ROAMFREE 21

planning: the planner tends to move in low-cost cells so, as a consequence,

it makes the robot avoid obstacles.

The map of the environment can be directly provided (for instance, if the

environment has a well-defined structure and a map is already available), or

it can be built with a package called gmapping, which relies on the approach

of the same name [40]. Given odometry data and distance measurements

collected by a laser scanner, it solves the problem known in literature as

SLAM (Simultaneous Localization and Mapping) to create a map.

The presence of a map can also be used to adjust the pose estimate given

by odometry. The approach adopted by the ROS Navigation Stack is called

AMCL (Adaptive Monte Carlo Localization), and it is described in [41].

Basically, it samples around the uncertain pose given by odometry data,

and applies a weight to every sample. The weight contains information on

the similarities between laser scans and static obstacles on the map. At each

step the distribution of samples changes in accordance with their weights.

In other words, the higher the weight, the higher the probability of drawing

that sample. By doing so, after some steps the sample distribution tends to

concentrate near the real pose of the robot.

Since there can be situations in which AMCL is uncertain on the robot

position, such as when no map feature is detectable, or when many similar

features are present, the accuracy of odometry data is important. Therefore

AMCL has to be coupled with another localization system that combines the

information given by sensors to produce a pose estimate that is as precise

as possible.

2.5 ROAMFREE

In order to provide an estimate of robot location, in general it is necessary

to combine data coming from multiple sources, like wheel encoders and

laser scanners. Pose tracking, along with multi-sensor fusion, is one of the

most important issues in mobile robotics: the effectiveness of autonomous

navigation is strongly dependent on this factor.

ROAMFREE (Robust Odometry Applying Multisensor Fusion to Reduce

Estimation Errors) [42] is a framework developed by Politecnico di Milano

that has the double objective of fusing position measurements coming from

an arbitrary number of sensors and solving the pose tracking problem on-

line. Its aim is to provide a general approach, so it tries to abstract from

the nature of the information sources. For this reason, it does not deal

with physical sensors, but with logical sensors, based on their functionality,

namely the kind of information they provide. In that way, the same physical

22 Chapter 2. State of the art

Figure 2.6: Reference frames and coordinate transformations in ROAMFREE

sensor can be associated to more than one logical sensor, and vice versa,

one logical sensor can be composed of many physical devices that together

provide the same kind of information.

The framework includes a library of sensor families, such as absolute

position and/or velocity, angular and linear speed, acceleration and vector

field (e.g. magnetic field). For each category an error model is defined that

relates the state estimate with the measurement data, considering the most

common sources of distortion, bias and noise. These models are taken into

account during the estimation process, in order to handle the logical sensor

readings according to their type.

ROAMFREE uses basically three reference frames: W , the fixed world

frame, O, the moving reference frame, placed at the odometric center of the

robot, and the i-th sensor frame, Si. The tracking module estimates the

position and orientation of O with respect to W , namely ΓWO (see Figure

2.6).

The tracking problem is formulated as a maximum likelihood optimiza-

tion on a hyper graph in which the nodes represent poses, and edges repre-

sent measurement constraints. An error function is associated to every edge,

to measure how well the values of the nodes involved in the edge fit the sensor

observations. The goal is to find a configuration for poses which minimizes

the negative log-likelihood of the graph given all the measurements.

Let ei(xi, η) be the error function associated to the i-th edge in the

graph, where xi is a vector containing the variables appearing in any of the

connected nodes and η is a zero-mean Gaussian noise. Thus ei(xi, η) is a

random vector and its expected value is ēi(xi) = ei(xi, η)|η=0. Since ei(xi, η)

can involve non-linear dependencies with respect to η, the covariance of the

2.5. ROAMFREE 23

Figure 2.7: An instance of the hypergraph, with four pose vertices ΓWO (t) in cir-

cles, odometry edges eODO (triangles), two shared calibration parameters kv and kθ
(squares), two GPS edges eGPS and the GPS displacement S

(O)
GPS

error is computed through linearization:

Σei = JiΣηJ
T
i |η=0 (2.1)

where Ση is the covariance matrix of η and Ji is the Jacobian of ei with

respect to η.

The optimization problem is formulated as follows:

P : argmin
x

N∑
i=1

ēi(xi)
TΩei ēi(xi) (2.2)

where Ωei = Σ−1
ei and N is the total number of edges. If a reasonable

initial guess for x is provided, a numerical solution to this problem can be

found by means of non-linear least-squares methods such as Gauss-Newton

or Levenberg-Marquardt algorithms.

In order to build the graph, first of all it is necessary to choose a high

frequency sensor from which it is possible to predict ΓWO (t+∆t) given ΓWO (t)

and its measurement z(t). This sensor is called master. Each time a new

reading for the master sensor is available, a new node ΓWO (t+ ∆t) is instan-

tiated, using the last pose estimate available, Γ̆WO (t), and z(t) to compute

an initial guess for that node. z(t) is also used to construct an odometry

edge between poses at time t and t+ ∆t.

When a new measurement from a different sensor is available at time t,

its corresponding edge is inserted between the poses that have timestamps

24 Chapter 2. State of the art

nearest to t. The error introduced by this approximation is very low if

the master sensor has a sufficiently high sampling rate. Since by increasing

the graph size the time complexity of the optimization step increases, it is

necessary to limit its scope, so a moving pose window is implemented, and

only the last poses are considered.

An interesting feature of this framework is that it is also possible to

include sensor parameters in the hyper-graph, in order to calibrate them

on-line. This characteristic is useful when some parameters are unknown, or

difficult to measure with accuracy. Some examples are sensor displacements

with respect to the robot odometric center, wheel radius and axis length for

encoders, scale factors and biases.

ROAMFREE exposes to programmers a simple Python interface, com-

posed of functions that allow to add logical sensors, choose the master sensor,

set the window size and the number of optimization iterations, select which

parameters are going to be estimated, and so on. It can be wrapped in a

ROS node that subscribes to sensor outputs and periodically publishes the

current estimated pose.

Chapter 3

Robot configuration

What follows is a description of LURCH configuration prior to the current

thesis work. The content of this chapter is the base upon the work has been

done. The equipment of LURCH presented here derives from other works

and theses, especially from [2] and [3].

3.1 Wheelchair

The wheelchair used as a base for the development of the system is Rabbit,

produced by the German company Otto Bock. It is a wheelchair suitable

for both indoor and outdoor environments, as it has two large rear wheels

with tessellated tyres. The drive is realized by means of two independent

motors that operate on each rear wheel, while the front wheels are free to

turn and not controllable. The motors are about 200W each and the power

source is given by two 12V - 70Ah serially-linked batteries located under the

seat. The control system of the motors, along with the on-board joystick, is

part of the DX System series produced by Dynamic Controls.

3.2 Sensors

Every robot needs sensors to perceive the environment and estimate its state.

LURCH is equipped with several sensors, and here we describe them.

3.2.1 Laser scanners

In order to perceive the environment in the most precise and dependable

way, the robot is equipped with two laser scanners; the model is Hokuyo

URG-04LX. These sensors are able to perceive the range of obstacles on a

26 Chapter 3. Robot configuration

Figure 3.1: The Otto Bock Rabbit wheelchair

plane, with a field of view of 240◦ and a resolution of 0.36◦. The maximum

detectable distance is 5.6 m. The wiring of the laser scanners to the computer

is made of a USB interface, and the required voltage is 5V.

The Hokuyo URG-04LX consists of a compact stacked structure with

a spindle motor and the actual scanner on top of it. The motor rotates a

small transmission mirror that deflects the vertical laser beam coming from

the top of the sensor into horizontal direction. This allows the laser beam

to scan a planar area around the sensor with an opening angle of 240◦.

A second mirror below, the reception mirror, deviates the horizontal laser

beam captured by a lens into vertical direction again [43].

Distances are then computed by measuring the so-called time-of-flight,

that is the time gap between the signal emission and its return after being

reflected by a surface. This quantity is equal to twice the space divided by

the wave velocity:

t =
2d

v
(3.1)

from which the distance can be easily extracted:

d =
tv

2
(3.2)

A full scan is performed every 100 ms.

The two lasers scanners are mounted on each side of the footplate. In

order to maximize the scanning angular range, the two sensors are placed

3.2. Sensors 27

Figure 3.2: An Hokuyo URG-04LX laser scanner

at about 90◦ with respect to the longitudinal axis of the robot. In this way

the central area in front of the wheelchair is covered by both sensors, adding

robustness to the detection of obstacles: if one scanner fails, the other one

will keep a minimum degree of security.

3.2.2 Encoders

LURCH is also equipped with two encoders, one for each driving wheel.

These sensors are able to measure the number of rounds completed by the

wheels, expressed in ticks (detectable sections of a round), in order to ab-

stract odometry information. The encoders currently mounted on the robot

are implemented using two Honeywell’s HOA0961 infrared sensors in quadra-

ture. They are fork-shaped sensors composed of an infra-red emitting diode

facing an Optoschmitt detector. The emitted ray passes through a toothed

disc mounted on the wheel axis, and is caught by the receiver. The signal

can be received if the ray passes through an open space, or not received if

the ray intersects a tooth. This originates two different states that can be

used to detect if a wheel has moved. The second sensor is used to detect

the direction of rotation.

The disc has 45 teeth, which originate 45 rising edges and 45 falling

edges. The total amount has to be doubled because of the use of two sensors,

thus obtaining 180 ticks per round. In this configuration, considering a 20

ms timing between two readings of the cumulated counts, the minimum

28 Chapter 3. Robot configuration

Figure 3.3: An Honeywell HOA0961 sensor and, on the right, a 3D rendering of the

entire system

detectable velocity is given by:

vmin =
∆ticks

∆t · ticksround
· circ ' 1

0.02s · 180
· 1m ' 0.28m/s (3.3)

where ∆ticks is the difference between the total number of ticks revealed

by two subsequent readings, ∆t is the difference between the timestamps of

the two detections, ticksround are the number of ticks per round, and circ

is the wheel circumference, which in our case is 1 m.

The interface between the encoders and the computer is made of an

electronic board, called odometry board, which sends messages with a period

of 20 ms, specifying:

• a counter representing the number of messages sent since the start;

• the total number of ticks for the left wheel since the start;

• the total number of ticks for the right wheel since the start.

Communication is possible through a serial connection.

Although an electronic PID velocity controller based on encoder readings

has been designed [3], it has never been added. Chapter 4 shows how a

velocity controller based on encoders has been implemented as a software

module by us in this thesis.

3.2.3 Other sensors

The robot is also equipped with sonars and a camera. In the previous soft-

ware system, the wheelchair used the sonars to detect obstacles on the back,

and the camera to detect landmarks located in the environment to provide

3.3. Low-level control 29

Figure 3.4: A DX-REM34: command panel

an absolute position estimate. Those sensors have not been used in the

project, so we do not discuss them here. In the new software the abso-

lute position is given by a Monte Carlo global localization algorithm named

Adaptive Monte Carlo Localization (AMCL) (see Chapter 2), which uses the

laser scans. AMCL has the advantage of not requiring any modification of

the environment.

As for rear obstacles, since the wheelchair is meant to move mostly for-

wards, sonars are not strictly necessary to test the navigation features, al-

though they could be added in future to improve security and add backward

movements to the planner’s action set. Anyway, sonars are not sufficiently

accurate to be used for localization purposes (i.e. they can’t be added to

ROAMFREE multi-sensor fusion module). Nevertheless, in Chapter 6 we

discuss some possible directions for improvement using additional sensors.

3.3 Low-level control

The low-level control of the actuators is done by the DX-REM34 module

developed by Dynamic Controls and included in the wheelchair default con-

figuration. This module has several functions among which:

• a joystick that can be used to control wheelchair speed and direction;

• a switch for selecting the gear among 5 different options (a seven seg-

ment display shows the currently selected gear).

30 Chapter 3. Robot configuration

In order to let the computer send commands to the motors and retrieve

the commands given manually by the user, an interface circuit is present,

known as motor board. Such board can read joystick positions and send them

to the computer; at the same time, it can translate the commands given by

the computer into appropriate voltage values for the motor controllers. This

is done by converting the joystick analog signals into digital signals that can

be sent to the computer by means of an ADC (Analog to Digital Converter).

The output signal coming from the computer is then converted again into

a compatible analog signal through a DAC (Digital to Analog Converter)

to be sent to the motor controlling circuits. In this way the commands

sent by the computer are treated exactly as they were sent directly through

the joystick. It’s important to clarify that velocity commands cannot be

expressed as actual velocities (in m/s and rad/s), but rather as joystick

positions. A position is given by two fields: position on forward-backward

axis and on left-right axis. Both are expressed as integers between 0 and

255, where:

• for the forward-backward axis, 0 corresponds to maximum backward

velocity and 255 corresponds to maximum forward velocity;

• for the left-right axis, 0 corresponds to maximum left velocity and 255

corresponds to maximum right velocity.

For both coordinates, 128 means 0 velocity. The actual velocity reached by

the wheelchair obviously depends on the currently selected gear.

Even if the joystick is not directly connected to the motor controllers, it

is still possible to drive the wheelchair in a normal way with the computer

turned off. Indeed the motor board has two driving modes: driven by user

and driven by PC. In driven by user mode the wheelchair can be normally

driven through the on-board joystick, so the presence of the additional circuit

is completely transparent; the computer cannot control the wheelchair in any

way. In driven by PC mode the wheelchair is driven by the computer. The

driving mode can be changed by means of a physical button, and the current

state is displayed by two LEDs having different colours:

• a yellow LED indicates that the current mode is driven by user ;

• a green LED indicates that the current mode is driven by PC.

If both LEDs are flashing intermittently, the wheelchair is in an intermedi-

ate state (driving disabled) in which it can be driven neither through the

computer nor manually. This mode has been added for safety reasons. At

3.4. Computer 31

Figure 3.5: The three LED configurations associated to the driving modes. From left

to right: driven by user, driven by PC, driving disabled

start, the wheelchair is in driven by user mode. Pressing the button can

cause one of the following situations:

• if the computer is sending commands to the motor board, the wheel-

chair switches to driven by PC mode;

• otherwise the wheelchair switches to driving disabled mode.

Moreover, if the wheelchair is in driven by PC mode and no commands are

sent by the computer for about 1 second, the wheelchair switches to driving

disabled mode.

Messages coming from and sent to the board have the same format,

only their interpretation is different. They are composed of four fields (each

expressed as one byte). The first field represents the current mode: 0 for

driven by user, 1 for driven by PC, 2 for driving disabled. The second field

contains the joystick position on the forward-backward axis, expressed as

an integer between 0 and 255. The third field is the joystick position on

the left-right axis, again between 0 and 255. The last field is a checksum

that can be used to verify message integrity; it is computed as the sum of

the other three fields. Communication between the motor board and the

computer is made possible through a serial connection.

3.4 Computer

The computer elaborates sensor readings in order to extract information

about the environment and the robot location. In addition, it provides

intelligent behaviours like obstacle avoidance and autonomous navigation,

and automatically sends commands to the motor board.

A Zotac ZBOX ID83 has been chosen for its compact size and its good

performances. It is equipped with an Intel Core i3 3120M processor, having

32 Chapter 3. Robot configuration

Figure 3.6: The Zotac ZBOX ID83

two physical cores running at 2.5 GHz. Concerning memory and storage, it

has 4 GB of RAM and a 64 GB SSD. As for the graphics part, the ZBOX

ID83 is equipped with an Intel HD 4000 integrated video card, supporting

OpenGL 4.0. Ethernet and Wi-Fi connections are also included [44].

The on-board Operating System is Ubuntu-Linux. This OS has been

chosen for its full compatibility with ROS. Furthermore, most of ROS pack-

ages and add-ons are already available in the Ubuntu repositories, which are

constantly updated. As for the version, 12.04 has been chosen, since it is

the last version available with long term support (5 years). The installed

ROS distribution is Groovy Galapagos [38].

3.5 Touch screen

In order to provide a visual feedback and allow the user to select goals in

a simple way, a touch screen monitor is present. The monitor, a Xenarc

700YYV [45], has a 7” display with a resolution of 800x480, and integrated

speakers. In this project the touch screen has been used mainly to give a

visual feedback of the localization during testing sessions, and to set naviga-

tion goals through rviz while on the wheelchair; no dedicated user interface

has been designed yet.

3.6. Joypad 33

Figure 3.7: The Logitech F710 Wireless Gamepad

3.6 Joypad

The wheelchair can be driven remotely by means of a wireless joypad. The

joypad that has been adopted is a Logitech F710 Wireless Gamepad [46],

a device commonly used for video games. This device is connected to the

computer by means of a USB wireless receiver. The joypad has 2 analog

sticks having an angular range of 360◦, an 8-way digital pad, and 12 digital

buttons, two of which are accessible by pushing the analog sticks. This

device allows to set up many different button configurations.

3.7 Emergency management

A security system has been added to the wheelchair; on one side, easy to

reach for the user, there is an emergency button that, if pushed, blocks

the DX-REM34 controller and stops the wheelchair. In that condition, the

display on the joystick panel shows an horizontal segment. In order to

unlock the system it is necessary to turn the button and reset it to its

original position. The security block can also be triggered by pushing any

button on a dedicated safety remote (Figure 3.8). If the system is blocked

by the remote, in order to restore it the physical security button must be

pushed and released again. Figure 3.9 shows the complete configuration of

LURCH.

34 Chapter 3. Robot configuration

Figure 3.8: The emergency button and, on the right, the remote

Figure 3.9: The complete LURCH robotic system

Chapter 4

Software project

This chapter describes the design of the novel control architecture for LURCH.

First of all, sensor readings are treated; then the multi-sensor fusion method

for localization is discussed. The following part is devoted to assisted drive,

autonomous behaviour, velocity control and management of the operating

states.

4.1 Initial set-up

Since one of the aims of this project is to build a solid base structure for

future developments, a significant amount of time has been spent to think

about the organization of code. The first dilemma we have encountered

concerned whether to deploy it as a single package or as a set of packages.

The first option makes it easier to port the whole project on other ma-

chines, thanks to its atomicity; on the other hand, if its content grows be-

cause of a large number of nodes, browsing the source files may be difficult.

Developing a set of packages has the clear advantage of having all the code

well partitioned, keeping track of the dependencies between modules, and al-

lowing to distribute single parts easily; however working with many packages

is more complex, running a node implies remembering to which package it

belongs, and the project is spread throughout the workspace, meaning that

packages involved in the project are placed together with packages belonging

to other potential projects.

Eventually, we have chosen to develop a single package and give a hier-

archical structure to the source files by means of folders, in order to improve

code browsing and readability. At a high level, we have categorized code

based on the logical part of the robot which it involves (odometry, naviga-

36 Chapter 4. Software project

Figure 4.1: File system of the project

tion, control, and so on). Inside each of these categories, a folder is dedicated

to each node. Nodes are isolated because, in general, a single node can be

made of more than one source file; for instance, pid node (Section 4.7) is

made of a header file and a .cpp file that implements it. In this way, retriev-

ing a node means simply copying the correspondent folder. Figure 4.1 shows

the file system of the project. In the architecture diagrams presented in this

chapter, each folder is represented as a coloured rectangle with a label on it.

4.2 Laser scanners and scan matching

The Hokuyo laser scanners are very useful, not only to detect obstacles,

but also to provide odometry information. Indeed, subsequent scans can

be compared by means of a technique known as scan matching. Differences

between scans imply a linear or angular movement, whose measurement

can be used for odometry purposes. For this reason, the output of the scan

matching module is given as input for ROAMFREE, in order to add a second

odometry sensor to the one implemented through encoders.

4.2.1 Hokuyo drivers

As seen in Chapter 3, the two Hokuyo lasers are connected to the computer

via USB. The driver that allows to communicate with them is already pro-

4.2. Laser scanners and scan matching 37

vided in the ROS repositories. It is called laser drivers and it is basically

a set of packages that deals with the most common laser sensors, Hokuyo’s

included.

The package we are interested in is hokuyo node. This package contains

a node of the same name that reads sensor raw data and publishes an array of

682 elements. Each element in the array represents the distance in meters to

the closest obstacle detected in one section of the angular range. The order is

counterclockwise around the z axis (which is considered to point upwards), in

accordance to the mostly used convention in angle measurement. Like most

of ROS message types, this message contains a header, a field including a

sequence number, a time stamp, and a frame id, that is a string associated

to the sensor reference frame. Obviously, in order to adjust the provided

package to our specific case, some parameters had to be set.

First of all, since we have two sensors, two instances of the node have to

be run. Each one needs a different name in order to be recognizable. We

have chosen hokuyo left and hokuyo right. Also the published topics have

been renamed, in order to separate the output of the two sensors, resulting

in scan left and scan right respectively. Another required parameter is

the logical port name corresponding to each device. It is important that left

and right Hokuyos are always distinguishable from each other, regardless of

the physical port they are attached to; moreover, the name of each sensor

must always correspond to its geometrical position (sensors must not be

“swapped”). For these reasons, we had to define univocal names for logical

ports. In general, the name assigned to a device is not the same every time

the operating system is booted up: each device is assigned a string termi-

nating with an increasing number that represents the order in which it is

detected by the system (in this case, ttyACM0, ttyACM1...). This order is

not deterministic, so it is not always sufficient for an unambiguous identifi-

cation. We have solved this problem by writing an udev rule. In Linux an

udev rule is basically a file specifying what to do when a specific device is

plugged in. In our case, we needed to build a symbolic link to the logical

port of each Hokuyo, and use that link as a port name for that sensor’s node

instance. The link name has to identify the device univocally. In order to do

that, we have used a program included in the drivers folder, named getID.

This program returns the serial ID for a sensor, given its logical port name.

Then, the resulting ID has been used as the symbolic link name. Here we

report part of the rule:

PROGRAM=="/opt/ros/groovy/stacks/laser_drivers/hokuyo_node/bin/

getID /dev/%k q", SYMLINK+="hokuyo_%c"

38 Chapter 4. Software project

%k is the kernel name for the device (e.g., ttyACM0), and %c gets the output

value of the program specified by attribute PROGRAM. Once the geometri-

cal position of the two devices has been identified, we have assigned the

corresponding symbolic link names to the appropriate nodes.

4.2.2 Scan matching

For the scan matching part, a node developed by Politecnico di Milano

has been used. It reads laser scans from either scan left or scan right

topic, and publishes an odometry topic that provides the estimated pose of

the correspondent sensor, with respect to that sensor reference frame. The

pose is expressed as position and orientation. Position is declared as three

coordinates (x, y, z), while orientation is expressed as a quaternion (qx, qy,

qz, qw).

This node has the peculiarity of providing not only the pose estimate

given by scans, but also the associated 6x6 covariance matrix:

V(x) C(x, y) C(x, z) C(x, qx) C(x, qy) C(x, qz)

C(y, x) V(y) C(y, z) C(y, qx) C(y, qy) C(y, qz)

C(z, x) C(z, y) V(z) C(z, qx) C(z, qy) C(z, qz)

C(qx, x) C(qx, y) C(qx, z) V(qx) C(qx, qy) C(qx, qz)

C(qy, x) C(qy, y) C(qy, z) C(qy, qx) V(qy) C(qy, qz)

C(qz, x) C(qz, y) C(qz, z) C(qz, qx) C(qz, qy) V(qz)

(4.1)

where C(x, y) is the covariance between x and y, defined as E[(x−µx)(y−µy)],
µx being the expected value of x. V(x) is the variance of x, defined as C(x, x).

The covariance matrix can be used to state how much the estimate is reliable

when doing multi-sensor fusion: if covariances are high, more importance

will be given to other odometry sources; on the contrary, if covariances are

low, the scan matcher is quite sure of the estimate, therefore it will be con-

sidered more reliable than other odometry sources. Of course, also for this

node two instances must be present, originating two topics: odometry left

and odometry right. These topics are read by the ROAMFREE fusion

node.

4.3 Encoders

Encoders are another important source for pose estimation. Since the fre-

quency at which encoder data are provided is relatively high (50 Hz), they

can be elected as master sensors for ROAMFREE. Moreover, since they

are the fastest sensors that are able to measure the current speed of the

wheelchair, they can also be used to close the loop in velocity control.

4.3. Encoders 39

4.3.1 Ticks reading

In order to interact with the odometry board, which periodically sends a

message containing the number of ticks detected on each wheel, we have

written a node called tick reader. This node reads raw data from the

serial port corresponding to the board, extracts the number of ticks for the

two wheels and publishes them on a topic, called enc.

The format of messages coming from the board is the following:

O [COUNTER][LEFT TICKS][RIGHT TICKS]

The node opens a serial connection with the board and constantly reads

characters from the stream by means of the fgetc() function, which, on

success, returns the character currently pointed by the internal file position

indicator; then, the position indicator is advanced to the next character [47].

All characters are initially discarded until an O is read; all successive char-

acters before the following O are parsed, in order to extract useful data.

Those data are then wrapped in a custom ROS message we have created:

Encoders. This message is composed of the following fields:

• header.seq: sequence number of the message, based on the counter

read from the odometry board, and initialized at node start up;

• header.stamp: the time stamp of the message;

• left: the total number of ticks read from the left encoder;

• right: the total number of ticks read from the right encoder.

As for the sequence number, also left and right ticks are initialized at node

start up. These initializations are needed otherwise the counter and the

number of ticks would be computed based on the board starting time, which

does not correspond to when the actual software starts.

Encoder ticks are used to estimate the velocity of the wheels. In order to

do this, it is important that the time stamp difference between subsequent

messages published on topic enc is as accurate as possible. However, the

odometry board does not provide time information; this is a problem, be-

cause we can measure timestamps only via software (by means of functions

like ros::Time::now(), which return the current wall time), with a non-null

delay from the instant at which data were sent by the board. This delay is

mostly given by the communication time. An additional delay is caused by

the scheduling mechanisms that occur in the Operating System: the instant

40 Chapter 4. Software project

at which the reading process is given priority by the system scheduler is not

deterministic.

Assuming that the frequency at which the board outputs data is approx-

imately constant over time, a solution to this problem is setting the time

stamp of the current message as the time stamp of the previous one plus the

period:

t̂(i) = t̂(i− 1) + ∆t; (4.2)

where ∆t is the period; since the nominal frequency of the board output is

50 Hz, we could set ∆t = 0.02s. However, the real frequency is not exactly

equal to the nominal one, because the accuracy of the board hardware is not

as perfect. For this reason, an estimate of the period has been computed:

∆t̄(i) = t̄(i)− t̄(i− 1); (4.3)

∆t̂(i) = w ·∆t̄(i) + (1− w) ·∆t̂(i− 1); (4.4)

t̂(i) = t̂(i− 1) + ∆t̂(i). (4.5)

First (Equation 4.3) the current difference between time stamps is mea-

sured by computing the difference between the new return value of function

ros::Time::now() (t̄(i)) and the one obtained for the previous message

(t̄(i − 1)), thus getting one sample ∆t̄(i). The unbiased estimated period

is then computed recursively as a weighted average between the current

sample ∆t̄(i) and the period estimated for the previous message ∆t̂(i − 1)

(Equation 4.4). We have chosen value 0.01 for w, thus giving much more

importance to the period estimated so far than to the current sample. In

fact, our goal is to reduce the impact of outliers, and change our estimate

significantly only if many samples have a new value. Finally (Equation 4.5),

the time stamp of the message is computed as in Equation 4.2, but using

the new period estimate. This expedient has significantly reduced noise in

the resulting velocity profile.

The node also publishes data on two separate topics, lwheel and rwheel,

compatible with the diff tf node, included in the differential drive

package, already provided by ROS. The latter computes odometry (pose

and velocity of the robot) given the ticks, the number of ticks per meter

and the distance between the wheels. Since ROAMFREE takes the angu-

lar velocity of the wheels and computes the robot pose by itself including

information coming from the laser scanners, diff tf has only been used

to test the tick reader node, while it has not been employed in the final

implementation.

4.4. Multi-sensor fusion 41

4.3.2 Wheel velocities

A node called wheel speed is responsible for computing the angular velocity

of the wheels. This node subscribes to topic enc, containing the number of

ticks for each wheel and the correspondent time stamp, and publishes a topic

called wspeed. The type of messages published on this topic is custom, and

we have called it Wheelspeed. Its format is the following:

• header: it is equal to the header of the last Encoder message that has

been received;

• left: the angular velocity of the left wheel, in rad/s;

• right: the angular velocity of the right wheel, in rad/s.

In order to output one speed message, at least two messages from the en-

coders are needed, so the node stores the last message retrieved. The com-

putation is done as it follows (for simplicity, here we consider only one wheel,

since the computation is the same for both):

∆ticks = ticks(i)− ticks(i− 1); (4.6)

∆t = t̂(i)− t̂(i− 1); (4.7)

ω =
∆ticks · 2π

∆t · 180
; (4.8)

where ticks(i) is the number of ticks returned by the i-th Encoders message

for the wheel, and t̂(i) is the time stamp of the i-th message estimated before.

4.4 Multi-sensor fusion

Once all sensor data have been captured, our goal is to merge them to obtain

a robust odometry information, minimizing possible errors. For this reason,

ROAMFREE has been used. We have created a node called fusion, written

in Python language, that subscribes to all topics from which it is possible to

estimate the robot location, and publishes the robot estimated pose, using

the ROAMFREE library.

4.4.1 Coordinate frames and sensor parameters

Firstly we had to provide the right sensor displacements, in terms of coordi-

nate frames. We have considered as center of the robot the middle point of

the rear wheel axis, which corresponds to the reference frame of the encoders.

42 Chapter 4. Software project

Indeed, the velocity of the wheels provide information on the velocity of the

axis center. As for the coordinate frames, we have adopted ROS conven-

tions, which consider the x axis directed as the robot, and pointing to the

robot front; the z axis is orthogonal to the plane and pointing upwards; the

y axis is placed according to the right-hand rule. The odometry information

provided by the laser scanners also adopts this convention.

Figure 4.2 shows the location of the reference frames. Using the same

terminology adopted by ROAMFREE (Chapter 2), Si indicates the reference

frame of the i-th sensor, O represents the odometry frame, and ΓOSi
represents

the rototranslation from O to Si. The two rototranslations ΓOSL
and ΓOSR

have

been measured manually:

• as for ΓOSL
, we have set xOL = 0.765m, yOL = 0.22m, qOzL = 0.59, the

other coordinates equal to 0;

• as for ΓOSR
, we have set xOR = 0.755m, yOR = −0.235m, qOzR = −0.67,

the other coordinates equal to 0.

qOzi has been computed considering that, on a plane, qOzi = sin(θ/2), where θ

is the counterclockwise rotation of frame Si around the z axis with respect

to reference frame O.

In order for ROAMFREE to compute linear and angular velocities of

the robot, based on the velocity of the wheels, it is necessary to provide

other two parameters: the wheel radius and the axis length, that is, the dis-

tance between the wheels. These parameters have been measured manually,

obtaining values 0.16 m for the wheel radius and 0.5 m for the axis length.

4.4.2 Pose tracking

Node fusion subscribes to topics wspeed (corresponding to the angular

velocity computed with the encoders), odometry left and odometry right

(the odometry topics provided by the two laser scan matchers). At start up,

sensors are added to the fusion engine. The logical sensor that corresponds

to the encoders is DifferentialDriveOdometer, which assumes that the

kinematic model of the robot is the standard differential drive. Each laser

scanner, on the contrary, is considered as a pair of logical sensors, one that

measures linear velocity and the other that measures angular velocity. When

a sensor is added, it is required to define which, among them, has to be the

master sensor. The master sensor, as said in Chapter 2, is the main sensor

used to build the hypergraph. It must be the fastest sensor (i.e., the one

with the highest frequency) and it must provide sufficient information to

predict the next robot pose. The DifferentialDriveOdometer satisfies

4.4. Multi-sensor fusion 43

ΓS L
O ΓS R

O

S L S R

O

x
x

x
y

y

y

Figure 4.2: The reference frames on the robot

all these requirements, because it produces data at the frequency of 50 Hz

(while laser scanners run at 10 Hz), and, from the measurement of the wheel

angular velocities and the last estimated pose, it is possible to predict the

new pose.

When a sensor measurement is added, the associated covariances have

to be specified. The laser scan matchers already provide covariance matrices

(see Section 4.2.2), so we have adopted that. Concerning the encoders, we

have set an arbitrary covariance matrix with this form:

V (w1) C(w1, w2) C(w1, y) C(w1, z) C(w1, α) C(w1, β)

C(w2, w1) V (w2) C(w2, y) C(w2, z) C(w2, α) C(w2, β)

C(y, w1) C(y, w2) V (y) C(y, z) C(y, α) C(y, β)

C(z, w1) C(z, w2) C(z, y) V (z) C(z, α) C(z, β)

C(α,w1) C(α,w2) C(α, y) C(α, z) V (α) C(α, β)

C(β,w1) C(β,w2) C(β, y) C(β, z) C(β, α) V (β)

(4.9)

where the top-left 2x2 block is the additive noise on the wheel velocity, while

the remaining parts constraint the degrees of freedom which are not fixed

by the kinematics: y, z, roll (α) and pitch (β). Indeed, the differential drive

kinematics provides information only on x and yaw, leaving the other space

coordinates free.

Covariances V (w1) and V (w2) take into account the encoder resolution,

the floor friction and other physical phenomena that have not been modelled.

44 Chapter 4. Software project

discarded discarded

computation time

window

pose(i)

Figure 4.3: An instance of the “narrow window” problem: the algorithm uses the last

5 poses, but 7 poses have been added since the last computation start, so 2 poses are

discarded.

We have assigned values on the order of 10−2 to them. The covariance

between the two wheel velocities, namely C(w1, w2), has been set to zero,

since the wheels are independently controlled, and so we can assume that

disturbances on the two measures are not correlated. V (y), V (z), V (α) and

V (β) are set to very low values, in order to constraint the motion on the

xy plane. We have treated separately the special case in which the wheels

are not moving. Indeed, when the robot is steady, laser scan matchers

become more and more uncertain on the robot pose, resulting in divergent

covariances. In order to ensure that the fusion engine considers only the

encoder information in this particular situation, we have forced V (w1) and

V (w2) to be very low (on the order of 10−6) if left and right wheel velocities

are zero, respectively.

Before running the fusion engine, we must select the time window size

and choose the solver method. The time window size is the maximum num-

ber of poses that are considered in the hypergraph. This is a critical param-

eter, because, in order to improve the estimation, the number of poses has

to be the largest possible; however, having many nodes in the hypergraph

results in a higher complexity for the solver. In other words, the frequency

at which the engine can run is proportional to the window size. On the

other hand, if the window is too narrow it is possible that some poses are

discarded from the pose window before being processed: since the window

shift is faster than the solver computation, the window could “leave behind”

poses, thus losing information (see Figure 4.3).

4.4. Multi-sensor fusion 45

The effectiveness and performance of the fusion engine relies also on the

solver; in general, the more the iterations of the algorithm are, the better

the solution is. The solver methods to choose from in the current ROAM-

FREE implementation are Gauss-Newton and Levenberg-Marquardt [48];

the number of iterations is customizable for both. While the two algorithms

have proven to have similar performances for this problem, the number of

iterations is a critical parameter: increasing it in general improves the solu-

tion, but at the same time it can drastically reduce the allowed frequency

for the ROS fusion node. Moreover, the computational power of the CPU

plays an important role in this part.

We have found empirically a good trade-off using the following parame-

ters:

• window size: 50 poses

• solver method: Gauss-Newton

• number of iterations: 3

With these parameters, we have succeeded in running the whole ROS fusion

node at about 20 Hz, while obtaining satisfying localization solutions.

The resulting pose is formulated as a transform between the fixed frame

W (the world frame) and the robot frame O at current time t, namely ΓWO (t).

The initial displacement, ΓWO (0), can be set arbitrarily by means of a ROS

parameter: at start, the fusion node searches for initial pose values (x0, y0,

z0, qw0, qx0, qy0, qz0) on the parameter server; if it finds them, it retrieves

them, otherwise it initializes the pose at (0,0,0,1,0,0,0), meaning that the

world frame is placed at the starting pose of the robot. In practice, without

providing an initial pose for the robot, at start W ≡ O. In Figure 4.4 you

can see a graphical visualization of the main ROAMFREE reference frames,

obtained with rviz. left hokuyo link and right hokuyo link correspond

to SL and SR respectively, while roamfree corresponds to O.

In Figure 4.5 the software architecture for the multi-sensor fusion part is

shown. The resulting pose is communicated to the other nodes in two ways:

it is published as a tf transform and as a message on a topic named pose.

4.4.3 Parameter calibration

The five logical sensors are configured with parameters that we have mea-

sured empirically (Section 4.4.1). For every parameter, however, we can

specify whether it is fixed or it needs to be calibrated it during the pose-

tracking process. Parameter calibration aims at adjusting measurements

46 Chapter 4. Software project

Figure 4.4: The ROAMFREE reference frames visualized in rviz

that have been obtained manually (for example, with tools like yardsticks

or protractors). Empirical measures are often imperfect; moreover, mea-

suring with sufficient precision quantities like angles is not an easy task.

For this reason we have tried to use the calibration feature of ROAMFREE

to estimate the uncertain parameters: the displacements of the two laser

scanners, the radius of the rear wheels and the length of the wheel axis.

Online calibration has proven to be very demanding in terms of resources;

thus it reduces the speed of pose estimation, making it difficult to keep

track of the robot location. Since in this case parameters do not change

significantly over time, we have considered doing calibration in one session,

and then to use the returned parameter values for pose-tracking, keeping

them fixed.

As for the calibration session, we used a set of OptiTrack cameras for

motion capture [49]. Such system is able to track with high accuracy the

position of special markers in a 3D space, with respect to a fixed point in

the environment (in this case, a point on the laboratory’s floor). We placed

a marker on the wheelchair; the OptiTrack software, running on a dedicated

4.4. Multi-sensor fusion 47

Figure 4.5: The multi-sensor fusion and pose-tracking architecture

computer, sent pose information to the wheelchair’s PC, where a special

node, called mocap node, converted it into appropriate ROS messages. The

first message was taken by node fusion as starting pose; in that case, frame

W coincided with the OptiTrack’s fixed reference frame.

The OptiTrack system was then added as logical sensor to ROAMFREE;

in particular, the correspondent type of measurement was AbsolutePosition.

We then moved the wheelchair for a few minutes, performing a random tra-

jectory in which the robot could experience many possible movements (going

forward and backward, turning left and right); we recorded sensor data by

means of rosbag, a ROS tool that can store execution information (e.g. nodes

and topics running, messages with the appropriate time stamps, etc.), al-

lowing to reproduce it later offline. We then replayed the sample trajectory,

running ROAMFREE with parameter calibration and the following config-

uration:

• window size: 1000 poses

• solver method: Gauss-Newton

• number of iterations: 300

48 Chapter 4. Software project

We used a large number of poses for the window because we wanted the

solution to be found considering all the trajectory. Moreover, we adopted

a large number of iterations in order to be quite sure that the algorithm

reached convergence.

The parameter values we obtained were far from reality (for instance,

wheels were considered a lot smaller than the real ones, and the distance of

the laser scanners from the odometric center along the x axis was signifi-

cantly shorter). This is not a surprising fact, since the estimation process

solves the problem in an analytical way, without taking into account the

real world; thus, it finds a feasible optimal solution in terms of error mini-

mization, which does not always correspond to the real case. Indeed, even

with those unrealistic parameter values, the wheelchair position was tracked

quite well 1.

4.5 Motor board and velocity control

In order to send commands to the wheelchair, as seen in Chapter 3, we

needed to communicate with the motor board. Since the only type of com-

mand we can send to the board is a position for the on-board joystick, and

not a velocity command, a module that translates velocity commands into

joystick positions is needed. Furthermore, given that the wheelchair is not

equipped with any hardware velocity control system, a PID controller has

been implemented via software. The controller receives setpoints from the

control devices or the autonomous navigation module, and adjusts them on

the basis of the current velocity.

4.5.1 Motor board interface

The motor board has an interface which is similar to that of the odometry

board, since it also communicates with the computer via a serial link. Un-

like the odometry board, however, messages can be not only received, but

also sent. Indeed the board sends to the computer the current position of

the on-board joystick, in order to manage it via software, and at the same

time receives command messages about the desired position of the on-board

joystick. It is therefore important that reading and writing on the motor

board happen simultaneously: a read must not wait for a write to finish,

1In the end we have obtained better performances using the parameters that we had

measured empirically, so in the final implementation we have used those, leaving to future

studies a more specific research on parameter calibration for LURCH.

4.5. Motor board and velocity control 49

255

128

0

0 128 255

forward

backward

left right

Figure 4.6: The correspondence between joystick positions and command values

and vice versa. This is an important issue, both for security and for the

correct functioning of the robot.

The old implementation solved this problem with a polling mechanism,

which periodically controlled if the buffer of incoming messages was empty;

if not, a message from the buffer was read. At the end of the reading part,

command messages coming from the control software were written on the

board. This approach has been abandoned for two reasons: first of all, read

and write within an iteration step were still sequential; secondly, commands

sent from the joystick were not read as soon as they were available, but on a

periodical basis. For this reason we have opted for an approach that uses two

threads, one (called main) that sends commands to the board, and another

(receive) which reads messages coming from it. In more detail, thread main

subscribes to topic command, which contains command messages, and sends

the correspondent commands to the motor board; thread receive listens

constantly to the serial port, reads messages from the motor board as soon

as they arrive, parses them and publishes them on a topic called joystick.

Messages received by the motor board and sent to it have the following

format:

[MODE][FWRW][RXLX][CHECKSUM]

where MODE corresponds to the operating mode of the wheelchair, as seen

in Chapter 3 (driven by user, driven by PC, driving disabled); ?FWRW

50 Chapter 4. Software project

and RXLX correspond to the joystick position coordinates (forward-backward

axis and left-right axis respectively); CHECKSUM is a number used to verify

message integrity, and is computed as the sum of the 3 preceding fields. Each

of these fields is encoded in 1 Byte, meaning that the number of obtainable

informative data is equal to 28 = 256. Field MODE uses only 3 of these

combinations, as there are 3 possible operating modes for the wheelchair (0

for driven by user, 1 for driven by PC, 2 for driving disabled); the other fields

use the entire range of possibilities, namely [0, 255]. As for the two position

fields, 128 means steady position (correspondent to the axis center), while

0 and 255 correspond to the speed extremities (see Figure 4.6).

Values read from the board are converted into values between -1 and +1,

in order to have a more intuitive notation. The type used for ROS messages

is the same for both directions (topics command and joystick). We have

called it Motion. It reproduces the same format of the raw messages (mode,

fwrw, rxlx), with the exception of the two position fields, which are floating

point values between -1 and +1, and the presence of an header, in order

to track the number of messages received and their respective time stamps.

Command messages sent to the motor board must have the mode field equal

to 1, otherwise its content is discarded.

4.5.2 PID Controllers

A fundamental part of robot software is represented by speed control. In

order to make the robot execute the commands given by the user or by

the motion planner, it is necessary to have a mechanism that translates a

velocity setpoint into an input signal for the motors such that, in a short

time, the system velocity becomes equal to the setpoint. Such mechanism,

for instance, makes the robot brake when an obstacle is near.

In Figure 4.7 a generic control system is shown. The setpoint ȳ is com-

pared to the measured output y. Their difference e = ȳ−y is given as input

to the controller, which in turn produces a control variable u for the real

system. d represents disturbances on the system, while n is the measure-

ment error, which causes measure y to be different, in general, from the real

output yreal. In order for the controller to work properly, a mathematical

model for the system is generally needed.

PIDs [50] [51], or Proportional-Integral-Derivative controllers, are the

most widespread linear controllers in industrial settings. The main advan-

tage of using a PID regulator is that a model of the real system is not

required; the control variable u is simply computed as the sum of three

4.5. Motor board and velocity control 51

Controller System

Measurement

y realȳ e

y

u

d

—

n

Figure 4.7: A generic control system

components:

u(t) = uP (t) + uI(t) + uD(t). (4.10)

The first one is proportional to the error e:

uP (t) = KP e(t). (4.11)

In most cases, the proportional component alone is not sufficient to have an

efficient control. This is because if KP is too low, the process will respond

slowly, while increasing KP may lead the output of the system to oscillate.

The integral component contains information on the past of the error,

and it is defined as:

uI(t) = KI

∫ t

t0

e(τ)dτ. (4.12)

This component is required in order to drive the error to zero. In many cases,

the so-called PI controller, composed only of proportional and integral parts,

is sufficient to have solid control.

The derivative component causes u to increase if y is increasing rapidly,

making the control system more responsive. The derivative response is pro-

portional to the rate of change of the process variable:

uD(t) = KD
de(t)

dt
. (4.13)

The implementation of a PID controller is thus reduced to the tuning of

the three constants KP , KI and KD. However, these three components are

not independent in general. In fact, KP influences integral and derivative

actions in the following way:

KI = KP /TI ; (4.14)

KD = KP · TD; (4.15)

52 Chapter 4. Software project

where TI and TD are called integral time and derivative time respectively.

Tuning KP , TI and TD is generally easier, because the three quantities are

independent from each other.

We have created a ROS node that implements a PID controller. The

node takes a velocity setpoint (the ȳ we mentioned above) and a veloc-

ity feedback (the measured output y), and produces a control variable for

the motor subsystem. In more details, the node subscribes to two topics:

setpoint, from which to read velocity setpoints, and speed, which contains

measured velocity messages. It publishes the output of the PID as a mes-

sage of type Motion (see Section 4.5.1), that is basically a position for the

joystick expressed as numbers between -1 and +1. Indeed with the current

configuration the wheelchair is not able to respond to velocity commands

given in m/s and rad/s, therefore this node adjusts the “virtual” joystick

position (as seen by the motor board) in order to obtain the desired velocity.

Since velocity has a linear and an angular component, two instances of this

node are present, one for each variable type. The two nodes publish their

results on separated topics, called control linear and control angular

respectively.

In order to speed up the tuning process, the node has been made fully

configurable, meaning that the three constants KP , TI and TD have been

represented as ROS parameters that can be modified at runtime, without

having to recompile the source. This allows to immediately see the effects

of the tuned parameters on the robot behaviour.

Downstream of the two PIDs, a node named cmd mapping has been in-

troduced. Its task is merging the two control variables, by subscribing to

topics control linear and control angular, and periodically publishing

an appropriate Motion message on topic command, which in turn is read by

node command manager. In this way, command messages are sent by the

motor board synchronously.

4.5.3 Velocity feedback

As for the velocity feedback, we can provide it in two possible ways. The

first one is using the velocity estimated by ROAMFREE. The advantage of

this solution is that the obtained measure would be more robust, since it

involves two types of sensors and considers their respective error models.

However, in order to retrieve a velocity estimate, some executions of the

estimation process are required, and the time employed in computing the

estimate would delay the response of the PID.

On the contrary, the control system must be as reactive as possible for

4.5. Motor board and velocity control 53

security reasons, thus the alternative is to use the sensor data directly from

the odometry board, because it has the highest output rate, and a very low

variance compared with the estimate provided by the scan matchers.

In Section 4.3.2, we have shown how the angular velocities of the wheels

are computed. Node wheel speed subscribes to encoder data (topic enc)

and publishes the correspondent wheel velocities on topic wspeed. We have

chosen to reuse this module for speed calculation, by creating another node

that subscribes to topic wspeed and provides the velocity of the odometric

center of the wheelchair. We have named this node chair speed.

In order to compute the velocity, the kinematic model must be used.

We have chosen to adopt an ideal Differential Drive model. First of all, the

wheel linear velocities are computed in the following way:

vL = ωL · r; (4.16)

vR = ωR · r; (4.17)

where r is the wheel radius. Given the wheel velocities, the linear speed of

the odometric center of the wheelchair, which is located at the center of the

wheel axis, is computed as the average between them:

vO =
vL + vR

2
. (4.18)

The corresponding angular velocity is computed as follows:

ωO =
vR − vL

d
; (4.19)

where d is the distance between the wheels, that is, the axis length.

The presence of the free front wheels could lower the accuracy of the

model. Indeed, the velocity of the wheelchair also depends on their initial

position. However, the approximation we have introduced has revealed to

be sufficiently good for the purposes of this thesis.

The angular and the linear velocity values are published on the topic

speed, which is read by the PID node. Even if a generic ROS message for

velocity data already exists (Twist), that message type does not include any

header, so we have created a custom one, called Speed, having the following

fields:

• header: contains a sequence number for the message and its time

stamp. The time stamp is important to associate the velocity measure

to the encoder data that have generated it;

• linear: is the linear velocity of the odometric center of the robot

along the x axis, in m/s;

54 Chapter 4. Software project

Figure 4.8: The motor interface and control architecture

• angular: is the angular velocity of the odometric center of the robot

around the z axis, in rad/s.

Since the resolution of the encoders is quite low (about 0.28 m/s, see

Chapter 3), the obtained velocity profile is not a smooth function of time,

but rather it contains sharp variations that could alter the stability of the

control system. For this reason, we have implemented a moving average, in

order to give as feedback for the system the average of a pre-defined number

of samples. This number is configurable; in the current implementation it is

5, therefore, at every iteration step of the PID controller, the last 5 samples

of velocity measures are averaged and given as input to the controller. Fig-

ure 4.8 shows the software architecture for the motor interface and control

subsystems.

4.5. Motor board and velocity control 55

4.5.4 PID tuning

The tuning of the parameters KP , TI and TD has been done by using a

graphical tool included in MATLAB. This tool, named pidtool [52], takes

as input the transfer function between setpoints and measured output of

the system in closed loop, and automatically tunes the parameters in accor-

dance with adjustable options such as the response time and the transient

behaviour, while visualizing the effect on the step-response function.

The transfer function has been estimated by using another MATLAB

tool called ident, which, given a list of setpoints and their respective output

in closed loop, computes an appropriate transfer function (whose number of

poles and zeroes is customizable) that relates them. For this purpose, we

recorded with rosbag the execution of a trajectory in which the wheelchair

mainly moved forwards and backwards, in order to tune the PID for the

linear velocity. We then stored the recorded setpoint and velocity values,

that is, messages published on topics setpoint and speed, and gave them

as input to the ident tool. We tuned the number of poles and zeroes in order

to have a transfer function that better interpolated the samples in our data

set.

The resulting function was then used with pidtool for tuning. The tool

estimated the three PID parameters for the current settings, allowing to

adjust them, either directly or by means of some options. The main options

available are:

• Response Time: regulates the responsiveness of the system. A graphic

slider allows to choose the appropriate value, which can make the

closed-loop response of the control system faster or slower.

• Transient Behaviour: makes the controller more aggressive at distur-

bance rejection or more robust against uncertainty.

The obtained parameters were then set in the PID configuration. The

same experiment has been repeated for the angular velocity (in that case,

the data set was produced performing many rotations in both directions).

However, with the parameters obtained through the MATLAB tools, the

robot behaviour was not very good in terms of reactivity and robustness

(there were still oscillations around the equilibrium). Our hypothesis is that

the low accuracy of the encoders had introduced a measurement error that

had made the measured output velocity slightly different from the real one.

In order to improve the control system behaviour we have made some mod-

ifications to the estimated parameters, basing on the general assumptions

that are summarize in Table 4.1 from [51]. The tuning has been done at run-

56 Chapter 4. Software project

Parameter

increased

Response speed Response stability

KP Increases Decreases

TI Decreases Increases

TD Increases Increases (only in ideal

conditions, with zero

noise)

Table 4.1: General effects of the PID parameters on the control system

Parameter Linear velocity Angular velocity

KP 1 -0.4

TI 0.59 0.29802

TD 0.1475 0

Table 4.2: The current configuration of the PID

time, setting parameters by means of ROS command rosparam set. The

current configuration is shown in Table 4.2.

The proportional gain KP for the angular velocity controller is negative

because the direction in which the angle around z increases is opposite to the

command given to the motor board. In other words, a positive command

value on the left-right axis makes the wheelchair turn to the right, thus

producing a negative angular velocity.

We clarify that the control system, and LURCH software in general, has

been tested with only one gear (4); obviously, changing the gear requires to

use other parameters for the two PIDs.

4.6 Command devices and collision avoidance

Commands can be given to the wheelchair in different ways. As seen in

Section 4.5.1, the position of the on-board joystick is retrieved from the

motor board and published on a dedicated topic, allowing to reuse it via

software. This lets the system modify given commands in accordance to the

state of the robot, for instance the presence of obstacles on the way. The

same principle can be applied to an arbitrary number of interfaces.

4.6. Command devices and collision avoidance 57

4.6.1 Joypad interface

In order to introduce a joypad in our architecture, the first task was adding a

driver for it. Fortunately, ROS already provides a node that deals with some

joypad models, and the Logitech F710 is among them. The node, named

joy node, is responsible for reading joystick commands and translating them

into ROS messages. The resulting message is published on a topic named

joy, and contains an array in which each element corresponds to a button or

stick on the joypad. Digital button values can be either 0 or 1, while analog

stick values are decimal, and range between -1 and +1. When a digital

button is pressed, the correspondent value becomes 1, otherwise it is 0. On

the other hand, if an analog stick is moved two elements are involved: one

for the forward-backward axis and the other for the left-right axis. Values

are 0 when the handle is placed in the central position. Messages are not

published periodically; they are published only if the state of the joypad has

changed (that is, when a button has been pressed or released, or when an

analog stick has been moved).

We have created a node, named joypad node, which maps joypad states

to commands for the wheelchair. Since the analog sticks have a shape and

usability that are similar to those of the on-board joystick, they are the most

suitable input methods for driving the wheelchair. Moreover, in joy node,

analog sticks are given values between -1 and +1, exactly as in our Motion

message type. For these reasons, an analog stick has been chosen for driving;

in particular, the left one. However, since joy node publishes messages only

when the joypad state changes, simply translating joypad values into Motion

messages would not be sufficient. In fact, it would be very difficult to keep

the same command for a period of time, and the wheelchair actuators would

not respond visibly. Hence, we have decided to store the last joypad state

in our node, and publish it periodically (50 Hz, like the output frequency of

the motor board). Messages are published on a topic called joypad.

4.6.2 Collision avoidance

Commands given through the on-board joystick and the joypad are read by

a node called obstacle avoidance. This node has three main tasks:

1. managing the mutual exclusion between input devices;

2. scaling commands in order to limit velocity;

3. using information on obstacles to adjust commands if assisted drive

mode is on.

58 Chapter 4. Software project

The first task of this node is managing the mutual exclusion between the

input devices. The selection of the command device is done automatically,

without making the user choose the preferred input modality manually. Fol-

lowing the choice that had been made for the previous software architecture

[2], it has been decided to give maximum priority to the on-board joystick.

This entails that, if the joystick and the joypad are both sending commands,

only joystick commands will be executed. In order to check if a device is

sending commands, the correspondent values are checked: basically, if a han-

dle (joypad or joystick) is placed in central position (fwrw and rxlx near

zero) we assume that it is not sending commands.

Applying scale factors allows to limit the maximum velocity of the wheel-

chair. We have chosen to use gear 4 for the wheelchair low-level controller,

which is the second highest gear, because it is a good balance between brak-

ing power and security (with that configuration the wheelchair is physically

unable to run at maximum velocity). Moreover, with gear 4, the motors

provide enough power to transport a person of average weight. In all our

tests, we have preferred to limit the velocity via software, in order to in-

crease security. Hence command values are divided by a scale factor (in the

current implementation, both forward-backward and left-right commands

are divided by 1.5, which means that velocity is reduced by 33%).

To react to the presence of obstacles, a node that translates laser read-

ings into higher-level information on obstacles has been introduced. This

node is called obstacle detector. It subscribes to topics scan left and

scan right, so that it can access to all laser data. The scanned area has

been divided in three partitions: left, right, and front. Within each parti-

tion, the distance from the closest obstacle detected is considered. As you

can see in Figure 4.9, front and side partitions overlap, so that, if an obstacle

is detected on the front and on one side at the same time, movements in

both directions can be blocked. Of course, frontal area is covered by both

laser scanners; this increases robustness against obstacles that are located

in the main movement direction.

The minimum distance from obstacles that are detected in the three

partitions is then published as a custom message named Obstacle. This

message has four fields:

• header: sequence number and time stamp of the message;

• front: minimum distance (m) from obstacles detected on the front;

• left: minimum distance (m) from obstacles detected on the left;

• right: minimum distance (m) from obstacles detected on the right.

4.6. Command devices and collision avoidance 59

S L S R

FRONT

LEFT RIGHT

Figure 4.9: A qualitative representation of the laser scan partitions for obstacle detection

Obstacle messages are published on topic obstacle, which is read by

node obstacle avoidance. This node modifies the received commands in

accordance with the distance values; in particular, it applies a distance

threshold within which, if an obstacle is detected, the wheelchair must stop.

In order to make the wheelchair slow down when an obstacle is approaching

on its way, another threshold has been added, within which the wheelchair

must limit its velocity, so that it can stop in time. Currently, the wheel-

chair slows down when an obstacle is located within 1.10 m, and stops when

an obstacle is at 0.6 m or nearer. Since the wheelchair angular velocity is

generally low, only one threshold has been set for rotations: left and/or

right rotations are blocked if an obstacle is detected at 0.5 m or less on the

respective sides.

If the robot is in assisted drive state, meaning that it must avoid collisions

while it is driven by the user, the resulting command is translated into a

setpoint for the PID controllers, so that the robot adjusts its speed properly;

on the other hand, if obstacle avoidance features are off, commands are

published directly on topic command and sent to the motor board, in order

to leave the complete control to the user. The management of the robot

states is treated in Section 4.8.

60 Chapter 4. Software project

Figure 4.10: The collision avoidance architecture

Figure 4.10 shows the architecture for obstacle avoidance features.

4.7 Autonomous drive

The autonomous driving feature has been added in order to test the effec-

tiveness of the localization and control subsystems, while providing a first

view of the possibilities offered by the ROS framework on an autonomous

wheelchair. For this reason, we have adopted the Navigation Stack and con-

figured it for our case. However, the current architecture allows to substitute

the motion and path planner with any other implementation without having

to modify existing nodes.

4.7.1 Path planner and motion planner

As seen in Chapter 2, the path planner and the motion planner provided

by ROS are included in a package called move base. This package provides

a global planner and a local planner. The global planner is basically the

equivalent of a path planner: it searches for a path from the robot starting

position to a goal position that has been published on topic goal, considering

visible and mapped obstacles.

Once the path has been computed, the local planner simulates many

4.7. Autonomous drive 61

possible trajectories, which take into account the environment and the cur-

rent speed of the robot. This is done by creating, locally around the robot,

a value function represented as a grid map built with laser scanners. This

value function encodes the costs of traversing the grid cells; basically, the

cost of a cell is maximum (255) when the cell is occupied by an obstacle,

and minimum (0) if it is far from obstacles. The trajectory that minimizes

the following cost function is chosen:

cost = P · pdist+G · gdist+O · occdist; (4.20)

where pdist is the distance to the planned path from the endpoint of the

trajectory in meters, gdist is the distance to the goal from the endpoint of

the trajectory in meters, and occdist is the maximum obstacle cost along the

trajectory. P , G and O are scale factors that determine the weight of each

term. We have chosen: P = 0.6, G = 0.8, and O = 0.01. With these values

the robot gives, in general, high importance to obstacles; on the contrary,

increasing P and G, or decreasing O, results in a more aggressive behaviour,

allowing the wheelchair to pass closer to obstacles and reach the goal faster.

The output of move base is a Twist message, named cmd vel, which

is composed of a linear and an angular velocity setpoint for the controller

(in our case, the PID). This setpoint is computed considering the acceler-

ation limits of the robot and some velocity bounds which are configurable.

The current speed of the robot is communicated by means of an Odometry

message. ROS type Odometry is composed of both Pose and Twist; so we

have created a node, called odometry node, that is responsible for merg-

ing messages coming from fusion and chair speed and providing a proper

Odometry message. This node might also be reused in future for other

planners that adopt ROS conventions. Since trajectories are evaluated pe-

riodically while the robot is moving, the motion planner is able to react to

dynamic obstacles.

4.7.2 Mapping

Although move base could be run in the ROAMFREE world frame, the

odometry drift, caused by the absence of an absolute position sensor, makes

it difficult to reach the goal position successfully. Indeed, in every odometry

system, the localization error accumulates over time. In order to correct

that error, a map-based algorithm, called AMCL, has been included. The

basic operating principles of this method have been explained in Chapter 2.

AMCL subscribes to the following topics:

62 Chapter 4. Software project

map world roamfree
Odometry Drift Dead Reckoning

AMCL Estimate

Figure 4.11: AMCL localization

• scan: a topic providing laser scans. Since there cannot be more than

one instance of such topic, scans belonging to the two laser scanners,

hokuyo left and hokuyo right, have been merged in a single topic by

means of a node, named whole scan. The two scans are distinguished

thanks to the field frame id, which allows to associate each scan to

its correct reference frame.

• tf: the list of reference frames and transforms between them. In

particular, the transform between the odometry frame and the robot

base frame, and that between the robot base frame and the sensor

frames must be provided. In our case, ROAMFREE handles this task.

• initialpose: an initial pose estimate, from which to initialize the

particle filter.

• map: a map of the environment.

Given a map, laser data, and the roto-translation between the odometry

frame and the robot base frame, AMCL estimates the position of the robot

with respect to the map frame. In our case, the odometry frame corresponds

to frame W (world), and the base frame corresponds to frame O (roamfree)

(Figure 4.11). The algorithm adjusts the roto-translation between frames

map and world, in order to compensate the odometry error.

Maps are obtained by means of the gmapping package, along with laser

measurements. To build a map with gmapping, the wheelchair is driven

in the environment with the joypad to collect data on static obstacles and

boundaries, while recording the output of a laser scanner with rosbag. Given

the recorded data, the output of gmapping is an image where:

• black pixels indicate that the correspondent areas are certainly occu-

pied;

• white pixels indicate areas that are certainly free;

4.7. Autonomous drive 63

Figure 4.12: An example of map generated by gmapping for LURCH

• grey pixels indicate unknown areas; the shade reflects the probability

of the areas of being occupied.

The map is then saved and provided at runtime by a ROS node named

map server. An example of map obtained with this method is shown in

Figure 4.12.

AMCL requires a good initialization; indeed, if the initial pose estimate

is too far from the real pose of the robot, the algorithm could take too much

time to converge. A way to set the initial pose of the robot is via rviz. In

the graphical program, the initial pose can be set by placing a vector on

a point of the map. Accuracy in setting the initial pose estimate is not

fundamental, since the algorithm tends to correct the robot pose according

to the laser data it acquires while moving. The goal for the planner can be

set in a similar way. These operations can also be done on board by using

the touch screen.

In figure below, the robot internal representation of an environment is

shown. The red rectangle is the robot footprint, that is the area physically

occupied by the robot; we have slightly increased its size with respect to

the real one, in order to have a security range. White points represent the

actual laser data; red cells represent obstacles. Obstacles are inflated by the

inscribed radius of the robot (orange cells). For the robot to avoid collision,

64 Chapter 4. Software project

Figure 4.13: A real case (above) compared with the robot internal representation (be-

low)

the center point of the robot must never overlap with a cell that contains an

inflated obstacle. The red vector indicates a goal position and orientation,

while the black line represents the path computed by the global planner.

4.7.3 Security measures

In order to handle cases in which the wheelchair becomes uncontrollable, or

an obstacle is not added in the cost map in time as a consequence of some

malfunction, we have added an additional collision avoidance layer. The cor-

4.8. State management 65

Figure 4.14: The autonomous drive architecture

responding node, named emergency, is logically placed between move base

and the PID controllers; in this way, every velocity command sent by the

autonomous navigation layer must be filtered by the node before being con-

verted in a setpoint for the control system. The main task of this node

is subscribing to the output of move base (topic cmd vel) and to topic

obstacle. If the distance from an obstacle is below a certain threshold,

which is configurable, a 0 velocity setpoint is sent to the controllers, making

the wheelchair stop if it was moving; otherwise, the setpoint becomes equal

to the velocity command. This node can be reused in future to implement

further security measures that operate on the planner output.

4.8 State management

With many possible operating modes, a system that keeps track of the robot

state is needed, which carries out all the required actions when the state

changes. We have adopted a package previously developed by Politecnico di

Milano, called heartbeat, that implements a finite state machine designed

for robots. The states defined by such package are: MANUAL, ASSISTED,

AUTO, SAFE, and HALT. These states correspond to the modes in which

the robot can operate: when the robot is in MANUAL state, it is driven

66 Chapter 4. Software project

Figure 4.15: The finite state machine implemented on LURCH

without active intervention of the control software; in ASSISTED state,

software features for user’s assistance, like collision avoidance, are activated;

in AUTO state, autonomous drive features are activated. SAFE and HALT

are security states: in SAFE state the robot stays still, but can be reactivated

via software; in HALT state, the robot stays still as in SAFE state, but it

can only be reactivated by physically operating on the robot hardware. The

transition function is defined in the following way:

• from HALT only transition to SAFE is allowed;

• from MANUAL every transition except the one to AUTO is allowed;

• from SAFE every transition is allowed;

• from ASSISTED every transition except the one to AUTO is allowed;

• from AUTO only transitions to SAFE and to HALT are allowed.

In Figure 4.15 the transition function is represented.

The package uses a client-server paradigm: a server node keeps track of

the current state, and manages the state changes. Every node can retrieve

the current state, or ask for a change.

We have used the finite state machine with LURCH in the following way.

4.8. State management 67

AUTOHALT

ASSISTED

MANUAL

SAFEDRIVE

Figure 4.16: Joypad controls

• MANUAL: when the robot is in this state, it can be driven with the

on-board joystick or the joypad alike; all commands are sent directly

to the motor board without passing through the PID controllers.

• ASSISTED: the commands given with the joystick or the joypad are

filtered by the obstacle avoidance node and are sent to the PID con-

trollers.

• AUTO: the robot moves autonomously toward goals set by the user.

• SAFE: the robot cannot move without selecting one of the states

above.

• HALT: all messages sent to the motor board are assigned mode 2.

This makes the motor board go into driving disabled operating mode.

The only way to reactivate the robot from this state is by pushing the

dedicated physical button located on the wheelchair (Chapter 3).

Whenever the state changes, variables related to the previous state are reini-

tialized. In particular:

• setpoints are zeroed;

• if previous state was AUTO, the current goal is cancelled.

States can be set by using the joypad; every state is assigned a specific button

(see Figure 4.16). Figure 4.17 shows the overall software architecture.

68 Chapter 4. Software project

F
igu

re
4.17:

T
h

e
overall

softw
are

arch
itectu

re

Chapter 5

Experimental Results

In this chapter we test the localization performances and the autonomous

behaviour of the robot, and we analyse the obtained results.

5.1 Localization

In order to test the localization performances of the multi-sensor fusion

engine, we used the same OptiTrack cameras we employed for calibration of

the ROAMFREE parameters as a reference(Chapter 4). The position of the

robot was initialized with the absolute position of the robot given by the

motion capture system in t = 0. Then we analysed the differences between

the trajectory estimated by ROAMFREE and the ground truth, obtained

while driving the wheelchair along random paths by means of the joypad.

A graph showing a comparison between localization data provided by the

two sources for an example path of 43 seconds is presented in Figure 5.1.

Figure 5.2 shows the evolution of the error, computed as Euclidean distance

between the two measurements at each time stamp. The average error is

0.1367 m, while the maximum error is 0.3248 m.

The example shows that ROAMFREE estimates tend to diverge im-

mediately from the motion capture output. A possible cause could be the

approximation introduced by treating the kinematic model of the wheelchair

as an ideal differential drive system; a more sophisticated model which, for

instance, takes into account the position and orientation of the front wheels

could enhance the velocity estimate.

The fact that near the end of the path the estimation error is lower is a

coincidence: in general, the odometry error tends to increase. Indeed, the

odometry error at time t depends not only on the noise on current sensor

70 Chapter 5. Experimental Results

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x (meters)

y
(m

et
er

s)

optitrack

roamfree

Figure 5.1: Comparison between ROAMFREE pose estimation and the absolute poses

provided by OptiTrack cameras

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (seconds)

er
ro

r
(m

et
er

s)

Figure 5.2: Localization error with respect to time

5.2. Autonomous navigation 71

readings, but also on the error at time t− 1. By using multi-sensor fusion,

ROAMFREE is able to reduce the error introduced by sensor noise; how-

ever, in order to reduce the overall positioning error, an absolute position

reference is needed. To this end, AMCL has been included. This algo-

rithm has proven to reduce the error introduced by odometry, by adjusting

the roto-translation between a fixed frame map and the odometry reference

frame (which in our case is frame world). This is done by comparing the

laser scans with a static map of the environment. We have noted that the ef-

fectiveness of this algorithm increases when the environment includes static

features with distinguishable shapes (e.g., walls, nooks, pillars, furniture),

while open areas make the algorithm more uncertain on the robot position.

It is also important that, in every moment, laser scanners detect some ob-

stacles within their range; note, however, that this issue is critical only for

AMCL, while ROAMFREE is able to compensate the lack of information

given by the scan-matchers with the odometry data obtained through the

encoders.

In most cases it is necessary to drive the robot around for 1-2 minutes

before having the sample distribution of AMCL converge to the real pose;

however, the convergence time may vary, depending on the shape of the

room, the accuracy of the initial pose estimate, and the trajectory performed

(in general, moving the robot near walls and objects that are noticeable on

the map can speed up convergence).

5.2 Autonomous navigation

The autonomous drive system allows to plan paths and follow them. As

seen in the previous chapter, goals can be easily assigned through the rviz

graphical interface, by selecting a specific point on the map. Indeed, when

a goal point is selected, a message on topic /move base simple/goal is

published, and subsequently read by move base.

5.2.1 Static obstacles

One of the main requirements for LURCH is collision avoidance. In order

to test the reliability of our system against obstacles, we have done several

laboratory experiments. The map used for our experiments, obtained with

gmapping, is shown in Figure 5.3.

We placed a basket in the middle of the room and we asked the robot to

reach a goal located beyond it (Figure 5.4). We repeated the test 7 times,

starting approximately from the same position and giving the same goal

72 Chapter 5. Experimental Results

Figure 5.3: Map of the laboratory area used for experiments with LURCH

through rviz. The robot used both ROAMFREE and AMCL for localization.

The resulted trajectories are shown in Figures 5.5, 5.6, 5.7, 5.8, 5.9,

5.10, and 5.11. We considered a goal succeeded if it was located within a

range of 40 cm from the robot position. The blue line represents the global

plan, while the red line is the actual robot trajectory (positions are given

in meters). An arrow indicates the robot starting position and orientation.

Table 5.1 shows the time required for reaching the goal in each test.

In all tests, the robot has successfully planned a path and reached the

goal. However, in some cases, like in tests 2, 4, and 6 (Figures 5.6, 5.8

and 5.10), it had some difficulties in passing between the obstacle and the

wall beside it, even if the space was physically sufficient. In these cases, the

robot did not immediately proceed trough the passage; instead, it turned in

place in search of free space, and tried other trajectories (this is the stan-

dard behaviour adopted by move base when a clear path is not found). This

behaviour is probably related to the configuration of the navigation param-

eters, in particular occdist, gdist and pdist factors for trajectory evaluation

(Chapter 4). Indeed, the general result we have obtained is having a “cau-

tious” robot, which rarely hits obstacles, but as a consequence needs more

space around them.

5.2. Autonomous navigation 73

(a) (b)

(c) (d)

Figure 5.4: An example of trajectory followed by LURCH to avoid a static obstacle

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.5: Static obstacle avoidance: test 1

74 Chapter 5. Experimental Results

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.6: Static obstacle avoidance: test 2

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.7: Static obstacle avoidance: test 3

5.2. Autonomous navigation 75

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.8: Static obstacle avoidance: test 4

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.9: Static obstacle avoidance: test 5

76 Chapter 5. Experimental Results

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.10: Static obstacle avoidance: test 6

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.11: Static obstacle avoidance: test 7

5.2. Autonomous navigation 77

Test Time

Test 1 39.329 s

Test 2 85.674 s

Test 3 55.693 s

Test 4 91.318 s

Test 5 69.617 s

Test 6 85.980 s

Test 7 18.757 s

Table 5.1: Static obstacle avoidance: time required to reach the goal

The considerations we made above also hold for the following test case.

We placed some objects in a row, in order to simulate a short corridor. Then

we placed a goal on the other side of the row. The robot had to follow the

corridor till the end, and then perform an U-shaped trajectory to reach the

goal (Figure 5.12).

The resulting trajectories are shown in Figures 5.13, 5.14, 5.15, 5.16,

5.17, 5.18, and 5.19. The respective times employed for reaching the goal

are shown in Table 5.2.

As it can be seen from the diagrams, LURCH succeeded in reaching

the goal also in this more complex scenario. The plan has always been

computed correctly. Nevertheless, we can clearly see that in tests 4, 5, and

7, represented in Figures 5.16, 5.17, and 5.19, the robot had to move around

for a long time before finding a clear way to reach the goal; it took 74.676 s,

155.781 s and 74.489 s to reach the goal, respectively. In tests 1, 2, and 6

the robot managed to follow the path smoothly; in tests 5 and 7, it made

many attempts before completing the turn; in tests 3 and 4, it had some

difficulties with the wall encountered right after the turn.

In conclusion, the performance of autonomous navigation with static

obstacles is acceptable and satisfactory in terms of both path planning and

path following. The planner is able to plan paths that avoid obstacles, and

generate appropriate velocity commands for the robot. Movements are suffi-

ciently fluid, indicating that the generated commands are consistent with the

acceleration limits of the robot, and that the PID controllers that we have

implemented work properly. However, some optimizations are required, in

order to allow the robot to pass through tight passages, like narrow corridors

or doorways.

78 Chapter 5. Experimental Results

(a) (b)

(c) (d)

Figure 5.12: LURCH following an U-shaped path

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.13: U-shaped path: test 1

5.2. Autonomous navigation 79

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.14: U-shaped path: test 2

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.15: U-shaped path: test 3

80 Chapter 5. Experimental Results

Figure 5.16: U-shaped path: test 4

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.17: U-shaped path: test 5

5.2. Autonomous navigation 81

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.18: U-shaped path: test 6

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.19: U-shaped path: test 7

82 Chapter 5. Experimental Results

Test Time

Test 1 18.550 s

Test 2 16.710 s

Test 3 46.390 s

Test 4 74.676 s

Test 5 155.781 s

Test 6 25.376 s

Test 7 74.489 s

Table 5.2: U-shaped path: time required to reach the goal

5.2.2 Dynamic obstacles

In move base the local planner chooses the most suitable action in accor-

dance with the obstacles it sees in a cost map that is constantly updated.

We have set an update frequency for the cost map equal to 10 Hz, which

corresponds to the frequency at which the Hokuyo laser scanners perform

a complete scan. This rate is high enough to allow the robot to notice un-

expected obstacles, and react to them by avoiding collisions. Since the cost

map is updated very fast, the reaction time mainly depends on the reactivity

of the PID controllers. In order to test the reactivity of the robot against dy-

namic obstacles, we have performed several experiments in which obstacles

were added suddenly along the path that the robot was trying to follow. An

example is shown in Figure 5.20. First (Figure 5.20(a)), the robot was given

a goal located on the other side of the room, computed a path to reach it

and started following it; a person approached rapidly (Figure 5.20(b)); the

robot stopped immediately (Figure 5.20(c)) and then continued by avoiding

the new obstacle (Figure 5.20(d)). The correspondent plan and trajectory

are shown in Figure 5.21. As it can be seen, initially the robot tried a more

straight path than the one computed by the global planner, because the

local planner had found a trajectory that resulted in positions closer to the

goal. However, the unexpected obstacle made the robot change its trajec-

tory, since the previous one was no more convenient (positions close to the

goal were no longer free). As a consequence, the velocity commands with

the highest values became the ones leading to the positions computed by the

global planner; this made the robot avoid the obstacle while still following

the global plan. If the person had appeared along the global plan, and no

way to approach it or reaching the goal had been found in the local costmap,

the global planner would have re-planned a new path considering the person

5.2. Autonomous navigation 83

(a) (b)

(c) (d)

Figure 5.20: LURCH avoiding a person appearing on its way

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (meters)

y
(m

et
er

s)

trajectory
plan

Figure 5.21: Dynamic obstacle avoidance: test

as a static obstacle. In general, the robot has proven to be very responsive

against dynamic obstacles. In the following section we discuss the behaviour

of LURCH in crowded areas with multiple obstacles moving unpredictably.

84 Chapter 5. Experimental Results

Figure 5.22: The map obtained with gmapping for the Open Day

5.3 Public demonstrations

The autonomous navigation features of the robot have been presented to

the public at the Open Day of Politecnico di Milano (February 15th, 2014),

an event that counted more than 15.000 visitors overall 1. In that occasion

we tested the robot behaviour in a crowded environment, planning paths

and avoiding people. The map of the area had been previously captured via

gmapping, and is shown in Figure 5.22.

LURCH proved to be sufficiently safe for people and objects around it,

since it avoided collisions even in unpredictable situations, for instance when

distracted people walked very close to it. The robot was able to plan paths

and reach goals successfully even when surrounded by dozens of people.

Dynamic obstacles were detected and collisions were avoided in time. As

for the localization performance, since the area was large and with many

obstacles interfering with the laser scanners, the robot encountered some

difficulties in estimating its pose with AMCL, having to rely mostly on

odometry data provided by encoders, but could correct its estimation when

approaching walls. Figure 5.23 shows some situations in which LURCH,

surrounded by people, moved autonomously at the event.

1Source: milano.corriere.it

5.3. Public demonstrations 85

(a) (b)

(c) (d)

Figure 5.23: LURCH moving autonomously during the Open Day

86 Chapter 5. Experimental Results

Chapter 6

Conclusions and future work

In this chapter we discuss strengths and weaknesses of our system, and we

propose some possible enhancements, based on the results we have obtained

in Chapter 5.

6.1 Conclusions

The result of this work has been a ROS package for a robotic wheelchair that

includes an innovative multi-sensor fusion engine for localization and many

features typically present in a mobile robot, among which path planning and

motion planning. Thanks to the use of the heartbeat package, selecting

operating modes at runtime is possible. Many parts of the package are

configurable, from sensor parameters to PID gains.

With this new software system, LURCH has shown satisfying perfor-

mances in both assisted and autonomous drive. Moreover, using ROAM-

FREE for odometry measurements and AMCL to correct positioning errors

has proven to be a good compromise when no absolute position sensor is

present.

6.2 Future work

Despite the good results obtained, some features have to be improved. In

particular, a more accurate kinematic model of the wheelchair should result

in a better performance of both localization and control. That model could

require encoders also on the front wheels, in order to take into account

their position and orientation when computing the robot’s twist. Since the

resolution of the encoders is critical when calculating wheel velocities, also

88 Chapter 6. Conclusions and future work

changing the rear encoders with more accurate sensors is a way to improve

precision in speed and pose estimation.

Localization can also be improved with the addition of an absolute posi-

tion sensor. In Chapter 3 we mention the presence of a camera on LURCH,

which was previously used along with visual markers to detect the robot

position in known environments. Such system could substitute AMCL as

reference for localization, and some preliminary experiments have already

been done in this direction.

A limit of the new software is that currently it cannot detect obsta-

cles located behind the robot. For this reason, sonars, which are already

mounted on the wheelchair, have to be added to the software architecture.

Furthermore, the robot can only perceive the environment as a plane: the

third dimension has not been taken into account. This can be considered a

good approximation if the wheelchair is moving on flat floors, but it is no

more sufficient if we want the robot to deal with slopes; moreover, collisions

with obstacles that do not intersect the scanned plane cannot be prevented.

In this work we focused on the implementation of robotic features, with-

out concentrating on aspects of human-robot interaction. For instance, we

have not taken advantage of the on-board touch screen. A graphical user

interface can be designed on the basis of user’s disabilities. Other command

devices previously experimented on LURCH, such as voice recognition and

brain-computer interfaces, can also be re-introduced; indeed the architecture

is built in a way that allows to interface many different types of devices.

Bibliography

[1] B. Pitzer, M. Styer, C. Bersch, C. DuHadway, and J. Becker, Towards

Perceptual Shared Autonomy for Robotic Mobile Manipulation, IEEE

International Conference on Robotics and Automation, 2011.

[2] S. Ceriani, Sviluppo di una carrozzina autonoma d’ausilio ai disabili

motori, Master’s thesis, Politecnico di Milano, 2008.

[3] M. Dalli, Sviluppo di un sistema di controllo basato su odometria per

una carrozzina robotica, Master’s thesis, Politecnico di Milano, 2008.

[4] S. Rönnbäck, On Methods for Assisted Mobile Robots, Doctoral Thesis,

Lule̊a University of Technology, 2006.

[5] R.C. Simpson, Smart wheelchairs: A literature review, Journal of Re-

habilitation Research and Development, 2005.

[6] D.L. Jaffe, A Case Study: The Ultrasonic Head Controlled Wheelchair

and Interface, OnCenter, Issue No.2, March 1990.

[7] R. Madarasz, L. Heiny, R. Cromp, and N. Mazur, The Design of an

Autonomous Vehicle for the Disabled, IEEE Journal of Robotics and

Automation, 1986.

[8] J. Connell and P. Viola, Cooperative control of a semi-autonomous

mobile robot, Proceedings of the IEEE International Conference on

Robotics and Automation, 1990.

[9] A. Pruski and G. Bourhis, The VAHM project: a cooperation between

an autonomous mobile platform and a disabled person, IEEE Interna-

tional Conference on Robotics and Automation, 1992.

[10] G. Bourhis, K. Moumen, P. Pino, S. Rohmer, and A. Pruski, Assisted

navigation for a powered wheelchair, International conference on sys-

tems, man and cybernetics, 1993.

89

90 Bibliography

[11] O. Horn, A. Courcelle, Interpretation of Ultrasonic Readings for Au-

tonomous Robot Localization, Journal of Intelligent and Robotic Sys-

tems, March 2004.

[12] S.P. Levine, D.A. Bell, L.A. Jaros, R.C. Simpson, Y. Koren, and J.

Borenstein, The NavChair Assistive Wheelchair Navigation System,

IEEE Transactions on Rehabilitation Engineering, 1999.

[13] D.P. Miller and M.G. Slack, Design and testing of a low-cost robotic

wheelchair prototype, Autonomous Robots, 1995.

[14] G. Del Castilloa, S. Skaara, A. Cardenasb, and L. Fehr, A sonar ap-

proach to obstacle detection for a vision-based autonomous wheelchair,

Robotics and Autonomous Systems, 2006.

[15] N.I. Katevas, N.M. Sgouros, S.G. Tzafestas, G. Papakonstantinou, P.

Beattie, J.M. Bishop, P. Tsanakas, and D. Koutsouris, The auton-

omous mobile robot SENARIO: a sensor aided intelligent navigation

system for powered wheelchairs, IEEE Robotics and Automation Mag-

azine, 1997.

[16] U. Borgolte, H. Hoyer, C. Bühler, H. Heck, and R. Hoelper, Architec-

tural Concepts of a Semi-autonomous Wheelchair, Journal of Intelli-

gent and Robotic Systems, 1998.

[17] A. Lankenau, O. Meyer, and B. Krieg-Bruckner, Safety in robotics: the

Bremen Autonomous Wheelchair, Advanced Motion Control, pages

524-529, 1998.

[18] A. Lankenau and T. Röfer, A versatile and safe mobility assistant,

IEEE Robotics and Automation Magazine, 2001.

[19] A. Lankenau, T. Röfer, and B. Krieg-Brückner, Self-Localization in

Large-Scale Environments for the Bremen Autonomous Wheelchair,

in C. Freksa, W. Brauer, C. Habel, and K.F. Wender, editors, Spatial

Cognition III: Routes and Navigation, Human Memoryand Learning,

Spatial Representation and Spatial Learning, volume 2685 of Lecture

Notes in Computer Science, pages 34-61, Springer, 2003.

[20] E. Prassler, J. Scholz, and P. Fiorini, A robotics wheelchair for crowded

public environment, IEEE Robotics and Automation Magazine, 2001.

[21] Y. Kuno, N. Shimada, and Y. Shirai, Look where you’re going [robotic

wheelchair], IEEE Robotics and Automation Magazine, 2003.

Bibliography 91

[22] R. Simpson, D. Poirot, and F. Baxter, The Hephaestus Smart Wheel-

chair system, IEEE Transactions on Neural Systems and Rehabilita-

tion Engineering, 2002.

[23] M. Mazo, An integral system for assisted mobility, IEEE Robotics and

Automation Magazine, 2001.

[24] H. Seki, S. Kobayashi, Y. Kamiya, M. Hikizu, and H. Nomura,

Autonomous/semi-autonomous navigation system of a wheelchair by

active ultrasonic beacons, IEEE International Conference on Robotics

and Automation, 2000.

[25] R. Simpson, E. Lopresti, S. Hayashi, I. Nourbakhsh, and D. Miller,

The smart wheelchair component system, Journal of Rehabilitation

Research and Development, 2004.

[26] C. Mandel, K. Huebner, and T. Vierhuff, Towards an autonomous

wheelchair: Cognitive aspects in service robotics, Proceedings of To-

wards Autonomous Robotic Systems, 2005.

[27] B. Rebsamen, E. Burdet, Cuntai Guan, Chee Leong Teo, Qiang Zeng,

M. Ang, and C. Laugier, Controlling a wheelchair using a BCI with

low information transfer rate, pages 1003-1008, June 2007.

[28] F. Doshi and N. Roy, Spoken language interaction with model un-

certainty: an adaptive human-robot interaction system, Connection

Science, December 2008.

[29] I. Iturrate, M. Antelis, J. Minguez, and A. Kuebler, Non-Invasive

Brain-Actuated Wheelchair based on a P300 Neurophysiological Proto-

col and Automated Navigation, IEEE Transactions on Robotics, 2009.

[30] X. Huo, J. Wang, and M. Ghovanloo, Wireless control of powered

wheelchairs with tongue motion using tongue drive assistive technology,

30th Annual International IEEE EMBS Conference, 2008.

[31] S. Nakajima, Concept of a Novel Four-wheel-type Mobile Robot for

Rough Terrain, RT-Mover, The 2009 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, October 11-15, 2009.

[32] L. Montesano, M. Dı́az, S. Bhaskar, and J. Minguez, Towards an Intel-

ligent Wheelchair System for Users With Cerebral Palsy, IEEE Trans-

actions on Neural Systems and Rehabilitation Engineering, 2009.

92 Bibliography

[33] Intelligent Wheelchair Research Group, accessed March 13, 2014,

http://userpage.fu-berlin.de/~latotzky/wheelchair/

[34] T. How, R. H Wang, and A. Mihailidis, Evaluation of an intelligent

wheelchair system for older adults with cognitive impairments, Journal

of NeuroEngineering and Rehabilitation, 2013.

[35] R. Vandone, Controllo di una carrozzina con biosensori a basso costo,

Thesis, Politecnico di Milano, 2009.

[36] P. Meriggi, Processing and Communication Systems for Device Com-

munities, PhD thesis, Università degli Studi di Brescia, 2005.

[37] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E.

Berger, R. Wheeler, and A. Ng, ROS: an open-source Robot Operating

System, IEEE International Conference on Robotics and Automation,

2009.

[38] ROS Documentation, accessed March 6, 2014, http://wiki.ros.org/

[39] R.B. Rusu, ROS - Robot Operating System, Tutorial Slides, November

1, 2010.

[40] G. Grisetti, C. Stachniss, and W. Burgard, Improving Grid-based

SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals

and Selective Resampling, IEEE Transactions on Robotics, Volume 23,

pages 34-46, 2007.

[41] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, The MIT

Press, 2005.

[42] D. Cucci, M. Matteucci, A Flexible Framework for Mobile Robot Pose

Estimation and Multi-Sensor Self-Calibration, Informatics in Control,

Automation and Robotics (ICINCO), 2013.

[43] L. Kneip, F. Tâche, G. Caprari, and R. Siegwart, Characterization of

the compact Hokuyo URG-04LX 2D laser range scanner, IEEE Inter-

national Conference on Robotics and Automation, 2009.

[44] Zotac website, accessed March 14, 2014, http://www.zotac.com.

[45] Xenarc website, accessed March 14, 2014, http://www.xenarc.com.

[46] Logitech Gaming Gear, accessed March 14, 2014 http://gaming.

logitech.com.

Bibliography 93

[47] C++ Reference, 2000-2014, accessed March 19, 2014, http://www.

cplusplus.com

[48] P. E. Gill and W. Murray, Algorithms for the solution of the nonlinear

least-squares problem, SIAM Journal on Numerical Analysis, 1978.

[49] Motion Capture Systems by OptiTrack, 2014, accessed March 21, 2014,

http://www.naturalpoint.com/optitrack/

[50] National Instruments, PID Theory Explained, 2011.

[51] M. Veronesi, Regolazione PID. Tecniche di taratura, schemi di con-

trollo, valutazione delle prestazioni, Franco Angeli Editore, 2011.

[52] The Mathworks, Inc., MATLAB Documentation Center, 2014, ac-

cessed March 24, 2014, http://www.mathworks.it/it/help/index.

html

