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Abstract

In this thesis we have developed methodology and a software for the up-

scaling of a three-dimensional oil reservoir model. The upscaling technique

is useful to reduce the discrete model dimensions: given a fine grid where

the permeability is defined for each cell, the goal we have set is to compute

geological properties such as permeability or transmissibility on a coarser

grid. To do this, we use the so called flow-based upscaling where we need to

solve some local problems at fine grid scale: we use a mixed finite element

method (MFEM) for the problem approximation. We focus in particular

on the cases in which the fine grid and the coarse grid are non-matching,

meaning that cells faces of the coarse grid are not aligned with the fine grid.

We have implemented ad hoc discrete integration techniques to minimize

the approximation error. Finally we have tested the software toward the be-

haviours using different kind of coarse grids or different fine scale properties.

We have also analysed some example of real reservoir models in conjunction

with the reservoir modelling department (MOGI) of Eni spa.
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Sommario

In questa tesi abbiamo sviluppato un software per l’upscaling delle proprietà

di un modello tridimensionale di un giacimento petrolifero. La procedura

di upscaling è utile per ridurre le dimensioni del modello discreto: data una

griglia fine dove è definita la permeabilità in ogni cella e data una griglia

più lasca, l’obiettivo che ci prefiggiamo è di calcolare le proprietà geologiche

quali trasmissibilità e permeabilità su quest’ultima griglia. Per fare questo,

utilizziamo delle tecniche chiamate flow-based dove avremo bisogno di ri-

solvere dei problemi locali sulla scala della griglia fine: useremo il metodo

degli elementi finiti misti (MFEM) per discretizzare il problema. Particolare

attenzione è data al caso in cui la griglia fine e la griglia coarse sono non

matching, ovvero che le facce delle celle di una non sono allineate con l’altra.

Per questo motivo sono state implementate tecniche di integrazione discrete

che minimizzano l’errore commesso. Infine abbiamo fatto dei test di veri-

fica su come il metodo implementato si comporta al variare delle proprietà

sulla scala fine e la geometria della griglia lasca. Sono stati analizzati anche

esempi di giacimenti realistici in collaborazione con il dipartimento per la

modellizzazione di giacimenti (MOGI) di Eni spa.

VII



Introduction

The continuous development of modern processors in the last decades pro-

vides us with an incredible resource in terms of computing power. Simulation

of physical processes is at present used in almost all engineering fields for fea-

sibility studies or procedures where a direct study would be either to much

expensive or impossible. However, even using the most modern computers

too, there are still problems in which a direct calculation is unaffordable

since they require a huge amount of data to be processed.

Since oil stocks decrease each year while there is a continuous increment

of the energy demand, it is fundamental to have an optimized plan for reser-

voirs production. A reliable model of field properties is therefore mandatory.

Since an oil reservoir could cover a big area, a full detailed model is often too

expensive for practical purposes. Moreover, for feasibility studies we would

need several simulations using different parameters such as wells positions

or field conditions.

Many studies have been done trying to simplify a reservoir model while

maintaining a good accuracy. For example, one strategy would be to solve

the fluid flow problem into the reservoir domain using a coarser grid. Then

the problem would be how to compute the field properties of the new mesh

starting from the fine one in a way that is consistent with the physical

process. This problem is the so called upscaling problem.

The purpose of this thesis is to implement a standalone three-dimensional

upscaling software based on C++: starting from the works already existing in

the literature we aim at generalizing the approach for generic fine and coarse

grids. In particular we concentrate on the case of non-matching coarse grids,

namely grids in which faces are not aligned with those of the fine grid.

The final part of the work has been done in cooperation with the Reser-

voir Modelling department (MOGI) of Eni (Ente nazionale idrocarburi).

The upscaling technique developed in this work has indeed been applied to

some real test cases and the results have been used to perform coarse scale

simulations using one of the most widespread industrial reservoir simulation
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software.

The thesis structure is arranged as follow:

Chapter 1. In this introductory chapter we present principal techniques

used in oil production and the physics governing fluid flow in porous media.

Furthermore we will describe the general equations that are fundamental for

reservoir simulation.

Chapter 2. We explore the state of the art of the upscaling problem, dis-

cussing the major issues. After a brief overview of various upscaling tech-

niques, we define the procedures needed to find the field properties on a

coarse grid, presenting the available features to enforce the upscaling qual-

ity.

Chapter 3. This chapter is dedicated to the analysis of the discretization

scheme adopted to solve the fluid flow in porous media equations during the

upscaling which is the Mixed Finite Element Method (MFEM) that ensures

the local mass conservation. We present some theoretical results on the con-

vergence for MFEM approximation. Finally we reformulate the fluid flow

in porous media equations as a generic saddle-point problem and a proper

MFEM approximation.

Chapter 4. Algorithms and techniques characterizing the procedure and the

software developed in this work are presented in this chapter. Particular

attention is given to the MFEM implementation and to the geometric oper-

ations, interpolations and quadrature needed to operate with non-matching

grids.

Chapter 5. In the last chapter we test the developed software running real

reservoir simulations. We study the solution behaviour varying the principal

upscaling parameters presented in Chapter 2. We focus on non-matching up-

scaling techniques building coarse grids with various kinds of displacements

with respect to the fine grid to assess the robustness of the proposed strategy.

The last section is devoted to conclusions.



Chapter 1

Reservoir Simulation

Simulation of oil and gas reservoir consists in the construction of a model

that represents the behaviour of a real reservoir. A mathematical model is a

set of equations that, subject to certain assumptions, describes the physical

processes active in the reservoir. The approximation errors that a simulation

could have are mainly of two different types: errors due to physical approxi-

mations, embedded into equations (that usually are formulated as Ordinary

Differential Equations (ODE) or Partial Differential Equations (PDE) for

more complex problems) and errors due to model approximations, gener-

ated by the discretization of the general equations. In this chapter we will

focus to the physical approximations related to the mathematical models

that rule the oil recovery process.

1.1 Oil Recovery Process

After a petroleum reservoir has been located, several oil wells are created

by drilling long holes into the upper sedimentary layers with an oil rig. A

steel pipe is placed in the hole, to provide structural integrity to the newly

drilled well bore. Holes are then made at the base of the well to enable the

oil to pass into the bore. Finally a collection of valves serves the purpose of

regulating pressures and controlling flows.

Then, the oil recovery process, in which oil is extracted, starts. The

whole process can be divided into three stages:

Primary recovery : this first stage happens once a well has been drilled

through the underground field. Natural driving forces like gravity drainage,

expansion of natural gas and the pressure inside the reservoir push the oil

into the well bore. Then the oil is brought to the surface through mechanical
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Figure 1.1: A pumpjack in Texas: a pumpjack is an onshore overground drive for a

piston pump in an oil well.

means. The primary phase of oil recovery continues until the pressure inside

the well is no longer high enough to produce oil in quantities that make it

financially worthwhile. Recovery factor, that is the fraction of oil extracted

from the reservoir, during the primary stage is typically 5-15%.

Secondary recovery (or water flooding): water flooding is the use of water in-

jection to increase the production from oil reservoirs. During this stage there

are two different kind of wells: the injection wells (where water is injected)

and the production wells (where oil is recovered). This is accomplished by

increasing the reservoir pressure back to its initial level and maintaining it

close to that value. Another key factor that drives water flooding develop-

ment and increase of use is water availability in large quantities from nearby

streams, rivers or oceans. Water injection effectively makes production wells

that are near the water-injection wells flow or be pumped at higher rates

because of the increased reservoir pressure The water displaces oil from the

pore spaces, but the efficiency of such displacement depends on many factors

(e.g., oil viscosity and rock characteristics). At this stage the flow can be of

two different types: two-phase immiscible flow or black-oil flow. Two-phase

flow without mass transfer between the phases occurs when the reservoir

pressure is above the bubble point pressure of the oil phase. In this case one
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phase is water and the other one is oil. On the other hand if the reservoir

pressure drops below the bubble point pressure, then the hydrocarbon phase

is split into a liquid phase and a gaseous phase in thermodynamic equilib-

rium. The water phase does not exchange mass with the other phases, but

the liquid and gaseous phase exchange mass with each other. Eventually,

water flooding is no longer worthwhile since a significant ratio of water flows

through the production wells. After this stage, around 50% of oil will still

be in the reservoir. For further informations about secondary recover we

refer to three significant books written by Craig [11], Willhite [34] and Rose

et al. [31] that address water flooding technology.

Tertiary recovery (or enhanced oil recovery - EOR): although more expen-

sive to employ on a field, enhanced oil recovery can increase recovery rate

from a well up to 75%. Although it is used after both primary and sec-

ondary recovery have been exhausted, EOR restores formation pressure and

enhances oil displacement in the reservoir. There are three main types of

EOR: chemical flooding, gas injection and thermal recovery. Each field must

be carefully evaluated to determine which type of EOR will work best on

the reservoir.

1.2 The Mathematical Model

The purpose of simulation is to find the optimal production plan to maximize

the field performance (e.g., oil recovery): whereas the field can be exploited

only once, at considerable expense, a mathematical model can be run many

times at low expense in a short period of time. Observation and evaluation of

model results representing different conditions, for example different wells

location, supports the selection of the producing plan that best suits the

reservoir with the consequent increment in production.

1.2.1 Definitions and considerations

In this chapter, fundamental definitions concerning the problem of interest

are presented [4].

A porous medium body is composed by a solid matrix containing void

spaces that can be filled by liquids or gas. An easy to see example of

porous medium is a sponge. In particular, a reservoir is composed by porous

medium and oil and water are contained into the void spaces. A phase is

defined as a chemically homogeneous portion of a system that is separated

from other such portions by a definite physical boundary. In the case of
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Figure 1.2: Representation of macroscopic, microscopic and molecular scales.

a single-phase system the void space of the porous medium is filled by a

single fluid (e.g., water) or by several fluids completely miscible with each

other (e.g., fresh water and salt water). In a multiphase system the void

space is filled by two or more fluids that are immiscible with each other, in

reservoir they usually are water and oil. There may only be one gaseous

phase since gases are always completely miscible. Formally the solid matrix

of the porous medium can also be considered as a phase called the solid

phase. A component represents a part of a phase that is composed of an

identifiable homogeneous chemical species or of an assembly of species (ions,

molecules). In the case of a fresh water and salt water mixture we would

have a single-phase with two components. The last physical definition is

the mean free path length of a fluid, that is the average distance a molecule

travels between successive collisions with other molecules.

In order to derive mathematical models for fluid flow in a porous medium

there are some crucial properties that have to be taken into account:

P1 The void space of the porous medium is interconnected.

P2 The dimensions of the void space must be large compared to the mean

free path length of the fluid molecules.

P3 The dimensions of the void space must be small enough so that the

fluid flow is controlled by adhesive forces at fluid-solid interfaces and

cohesive forces at fluid-fluid interfaces (multiphase systems).

The first property ensures the connection between two arbitrary points of

the domain, so mass can flow through it. The second one allow us to build a

continuous model into the void spaces. Finally, the third condition discards

particular cases, like pipe networks, from the definition of porous medium.
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A typical reservoir model is characterized by different behaviour at dif-

ferent scale lengths, as shown in Fig. 1.2. The macroscopic scale, that is

on the order of 10m, catches all the ground properties due to sedimenta-

tion and related macroscopic features. Then, there is the microscopic scale

representing all sand grains and void channels of the materials. This scale

is on the order of 10−3m. Finally, the molecular scale appear on the order

of 10−6. Macroscopic, microscopic and molecular scales influence the fluid

flux in different ways and it is crucial to catch all the fluid dynamics. For

example, all fluid properties are due to the molecular compositions while the

void channels width defines the quantity of fluid that could pass through a

given body.

In physics, the Navier-Stokes equations, developed by Claude-Louis Navier

and George Gabriel Stokes, describe the motion of a viscous Newtonian fluid.

For a constant density fluid in a domain Ω ⊂ Rd (with d = 2, 3), they are:
∂u

∂t
−∇ ·

[
ν
(
∇u +∇uT

)]
+ (u · ∇)u +∇p = f x ∈ Ω, t > 0

∇ · u = 0 x ∈ Ω, t > 0

(1.1)

where u is the velocity, ρ the density, p the pressure divided by the density,

µ is the dynamic viscosity, ν = µ
ρ is the kinematic viscosity and f is the

forcing term for mass unit. The Navier-Stokes equations (1.1) model the

microscopic scale features of the fluid, that are represented by ρ, ν and µ.

To solve a flux problem through a porous medium, the equations (1.1)

could be used, but a proper discretization is needed in order to catch both

macroscopic and microscopic scales. That said, the discretization step has to

be smaller than the void channels length scale, so for each axes there would

be a number of intervals N on the order of the ratio between macroscopic

and microscopic scales, that means N ≈ 10
10−3 = 104 intervals. For a generic

3D problem we would have N3 ≈ 1012 cells that is, even with modern

processors, computationally too expensive. Furthermore, in real cases the

domain dimension could be of the order of some kilometres, therefore this

approach is unaffordable. Even with an adequate computational power,

there would still be the issue of how to model the geological variables down

to the microscopical scale. All these problems motivate the development of

approximated equations for flux in porous medium.

1.2.2 Fluid Mass Conservation

The main goal of a good approximation is to represent the microscopic

geological features with a macroscopic continuous variable. Given a domain
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Figure 1.3: Porosity for different sizes of averaging volume.

Ω, we define the void space indicator function as:

γ(x) =

{
1 x ∈ void space

0 x ∈ solid matrix
∀x ∈ Ω (1.2)

Then we define the macroscopic quantity porosity as:

Φ(x0) =
1

|Ω0(x0)|

∫
Ω0(x0)

γ(x)dx (1.3)

where x0 is a fixed point and Ω0(x0) is a subdomain of Ω centered in x0. In

other words, the macroscopic quantity porosity is computed as the average

of microscopic quantity γ. If the diameter d of Ω0(x0) is smaller than the

mean free path length l, the discontinuous pattern of void channels induces

a strong variation of Φ(x0), while for bigger values of d (e.g. larger than a

given length L), macroscopic patterns such like layers of different materials

lead again to a variation of Φ(x0). The averaging volume Ω0(x0) is called

a representative elementary volume (REV) if two length scales l and L can

be identified as in Figure 1.3 such that the value of the averaged quantity

does not depend on the size of the averaging volume. In that case we can

choose the averaging volume anywhere in the range:

l(x0)� diam(Ω0(x0))� L(x0) (1.4)

More informations about averaging of microscopic properties can be found

in [4, 22].

Finally, the macroscopic fluid mass conservation law can be written as:

∂(Φρ)

∂t
+∇ · (ρu) = m̃ (1.5)

where m̃ is the source/sink term expressed as a mass flow rate per unit

volume.
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The main difference between (1.5) and the fluid mass conservation in

Navier-Stokes equations (1.1) is the velocity u: in fact, in (1.5), the u is

an apparent macroscopic velocity taking in consideration the microscopic

features. In particular, the mean real velocity through void channels is

equal to u
Φ .

1.2.3 Darcy’s Law

Darcy’s law is the mathematical equation that describes the flow of a fluid

through a porous medium as defined in 1.2.1. The law was firstly formu-

lated by Henry Darcy based on the results of experiments on the flow of

water through beds of sand [12]. The Darcy’s law can be also derived by

homogenization techniques [23] from the momentum equations in (1.1) and

it can be written as:

u = −K

µ
(∇p− ρg) (1.6)

where g is the gravity vector and K is the symmetric tensor of absolute per-

meability or hydraulic conductivity. It depends on the properties of the solid

matrix only and may depend on the position in the case of a heterogeneous

porous medium. Furthermore K may be anisotropic if the porous medium

has a preferred flow direction. If we replace u in (1.5) with (1.6) we obtain

an equation with p as the only unknown quantity:

∂(Φρ)

∂t
−∇ · (ρK

µ
(∇p− ρg)) = m̃, (1.7)

to be completed with proper bounding conditions. Equation (1.7) is parabolic.

In case of constant density (1.7) become elliptic and it can be rewritten as

−∇ · (K

µ
(∇p− ρg)) = q̃, (1.8)

where q̃ is the volumetric source term.

Unlike (1.1), in order to solve equation (1.8) we do not need fine dis-

cretization since the microscopic features are incorporated into the quanti-

ties Φ and K while molecular features, as in Navier-Stokes equations, are

modelled by ρ and µ.

1.2.4 Two-Phase Flow Model

The equations describing two-phase flow on the fine scale can be derived by

combining Darcy’s law with a statement of mass conservation. In this case,

in the absence of gravity, Darcy’s law can be expressed as

uj = −krj
µj

K∇pj , (1.9)
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where the index j refers to the phase (e.g. j = w for water and j = 0 for oil)

and krj is the relative permeability to phase j. Mass conservation is given

by
∂(φρjSj)

∂t
+∇ · (ρjuj) = m̃j , (1.10)

where Sj is the saturation (volume fraction) of phase j. If we assume that

∂φ/∂t = 0, that ρj does not vary in time or space, and that capillary pressure

(pc) is negligible (i.e. pc(Sw) = po − pw = 0), we obtain:

∇ · ut = q̃t, (1.11)

where q̃j = m̃j/ρj and the total volumetric source term is q̃t = q̃w + q̃o. The

total Darcy velocity ut is given by:

ut = uw + uo = −
(
krw
µw

+
kro
µo

)
K∇p. (1.12)

The water velocity uw can now be expressed as uw = f(Sw)ut where f(Sw)

is the Buckley-Leverett fractional flow function (see [6]). Inserting this form

for uw in Equation (1.10), we can write the water saturation equation as:

φ
∂Sw
∂t

+∇ · [utf(Sw)] = q̃w. (1.13)

The corresponding pressure equation can be written by inserting Equation

(1.12) into Equation (1.11):

−∇ · (λt(Sw)K∇p) = q̃t (1.14)

where we have introduced the total mobility λt, defined as

λt = λw + λo =
krw
µw

+
kro
µo
. (1.15)

The pressure and saturation equations describe the flow of two immisci-

ble fluids. The pressure equation (1.14) is very similar to the single-phase

pressure equation (1.8) except the λt term replaces 1/µ. The single-phase

limit is recovered if the two phases have identical properties and do not

interfere.



Chapter 2

Upscaling of Geological

Models

Typical reservoir simulators are usually designed to handle a large number

of computational cells, on the order of millions. The size of the problem can

vary considerably depending on the type of simulation to be performed and

the available computer hardware. Geological characterizations, by contrast,

is typically much more detailed being described over a finer mesh. These

models, which are referred to as fine grid models, geostatistical models or

simply geocellular models, represent geological variation on very fine scales

vertically, though their areal resolution is still relatively coarse. For exam-

ple, a typical geostatistical model might contain layering of thickness of 1

meter or less, though cell sizes in the horizontal direction might vary from 15

to 30 meters. Another issue of considerable importance is the need for the

assessment of risk and uncertainty in reservoir performance. Nearly every

aspect of the reservoir characterization contains some degree of uncertainty,

so predictions necessarily have a statistical character. The uncertainty in

reservoir performance can be gauged by simulating a number of different ge-

ological realizations or scenarios. Thousands of such runs may be required to

cover the range of parameter variation: therefore, it is not computationally

feasible (or desirable) to perform these simulations on the fine grid model.

Reliable upscaled models are required if a full assessment of project risk and

uncertainty is to be accomplished. In addition, if thousands of coarse models

need to be simulated, the upscaling must be highly automated. Different

upscaling procedures are appropriate in different situations. The ideal pro-

cedure to use on a particular problem depends on the simulation purpose,

the production mechanism, and the level of detail that can be accommo-

dated in the coarse model. For a problem involving primary production

11
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with only oil being produced, the coarse model should correctly capture the

effects of nearwell heterogeneity as well as the general large scale flow re-

sponse of the reservoir. For scenarios involving displacement of oil by water

or gas, it may be important to accurately capture the effects of key flow

paths between injection and production wells. This may require the use of

specialized gridding procedures.

2.1 Upscaling Techniques Overview

There are several different ways in which upscaling techniques can be clas-

sified. Accordingly to [16], we will classify the various methods in terms of

the different kinds of parameters that are upscaled and the way in which

these parameters are computed.

For single-phase flow involving a single component, the only parameters

to be upscaled are porosity and the absolute permeability. In the more gen-

eral case of two-phase flow, the absolute permeability and porosity as well

as the relative permeability can be upscaled. However, in many cases it is

possible to develop reasonably accurate coarse scale models for two-phase

flow with only the upscaled absolute permeability and porosity, particularly

when accurate upscaling is used in conjunction with flow-based grid genera-

tion. In models of this type, the geocellular scale relative permeabilities are

used directly on the coarse scale. Thus, even for two phase flow systems, we

can still generate coarse scale models with only absolute permeability and

porosity upscaled in some cases: some theoretically justification for neglect-

ing the upscaling of relative permeability is presented in [15]. We refer to

this type of approach as single-phase parameter upscaling or single-phase

upscaling with the understanding that the result can be used for both single

and two-phase (or multiphase) flow problems.

The second type of classification is related to the way in which upscaled

parameters are computed. In all cases the intent of the upscaling procedure

is to replace the fine model with a coarse model. In a purely local procedure,

coarse scale parameters are computed by considering only the fine scale

region corresponding to the target coarse block. No additional fine scale

information is included in the upscaling calculation. In a global upscaling

technique, the entire fine scale model is simulated for the calculation of

the coarse scale parameters. The assumption here is that the coarse scale

parameters will be applicable to other flow scenarios.

There are several important variants of the purely local and global ap-

proaches. Very interesting ones are the extended local upscaling techniques.

In extended local procedures, coarse scale parameters are computed by con-
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sidering the region corresponding to the target coarse block plus a border

region or ring around this region. Coarse scale quantities are then gen-

erally computed by averaging the fine scale solution only over the region

corresponding to the target coarse block.

2.1.1 Multiscale Methods

Another important upscaling technique is the Multiscale Finite Element

Method (MsFEM). These methods have the benefit that the fine scale per-

meability information is included into the global solution in a systematic

way. So far, these procedures have mainly been applied to the pressure

equation while transport calculations have generally been performed by re-

constructing the fine scale velocity field. This reconstruction entails the use

of the fine grid for the solution of the saturation equation. Some example

of multiscale methods applied to reservoir simulation context can be found

in [24, 2].

Dual grid approaches are also related to multiscale methods. In these

procedures, different grids are defined and reconstruction techniques are

applied to determine fine scale variables from the global coarse scale solution.

These methods can provide accurate results in many cases, though, like

multiscale procedures, they require the fine scale permeability information

to be stored and used during the global solution. For more information we

refer to [29].

2.2 Geological Quantities Upscaling

2.2.1 Analitical Upscaling of the Porosity

Porosity on the coarse scale φ∗ is computed ensuring that the pore volume

is exactly conserved between the fine and coarse scales. Since this quantity

does not depend on the direction, an average over the bulk volume is enough.

Specifically, φ∗ is computed as:

φ∗ =
1

Vb

∫
Vb

φ(y) dV, (2.1)

where Vb is the bulk volume which is usually a cell belonging to the coarse

grid.

2.2.2 Analytical Upscaling of the Permeability

For now we consider steady, single-phase incompressible flow with no source

terms. We introduce a conceptual two-scale model for permeability, i.e. the
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permeability tensor varies on two distinct scales referred to as x and y. The

x scale is a slow scale, meaning that variations in x are relatively gradual.

The y scale, by contrast, is a fast scale, and captures the fine scale variation

of permeability. That being said, we can rewrite the pressure equation (1.7)

as:

∇ ·K(x, y)∇p = 0. (2.2)

Homogenization procedures allow the Equation (2.2) to be replaced with an

analogous equation in which variations need to be resolved only on the x

(slow) scale. The pressure equation in this case can be written as:

∇ ·K∗(x)∇pc = 0. (2.3)

where K∗(x) is referred to as the effective permeability tensor and pc is the

coarse scale pressure. Note that K∗ is defined on the scale of x. Therefore

y-scale variations have been homogenized or averaged. This means that, in

solving problem (2.3), we do not need to resolve effects on the scale of y

allowing a coarser discretization, which leads to significant computational

savings.

The simplest procedures for computing grid block permeabilities are

power averaging procedures introduced in [13]. These approaches do not

require any numerical solutions so they are computationally very efficient.

The basic approach entails computing upscaled permeability components,

here denotes as k∗i , as:

k∗i =

(
1

Vb

∫
Vb

[ki(y)]ωi dV

)1/ωi

, (2.4)

where Vb is the coarse block bulk volume and both the fine scale permeabil-

ity K(y) and the upscaled permeability K∗ are considered to be diagonal

tensors, with index i indicating a diagonal component. The power averaging

exponent ωi can vary with the direction i. This type of averaging procedure

can be readily applied to coarse grid cells of any shape, so it is suitable for

use with irregular grids.

The power averaging exponent ωi is constrained to lie between −1 and 1.

The extremes values correspond to the suitable choices for layered systems:

for flow parallel to the layers ω = 1 performs the arithmetic average while

for flow orthogonal to the layers ω = −1 gives the harmonic average. The

geometric mean corresponds to ω → 0 (in this case kωi is replaced by ln(ki)).

Power averaging can also be applied using a combination of two different

values of ω. For example, for a structured, approximately layered system

in the x − z coordinate system, k∗x might be computed by harmonically
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Figure 2.1: Coarse cell example.

averaging along each layer in x and then arithmetically averaging these

layer averaged values. The use of this type of procedure generalize power

averaging giving a higher degree of applicability. Power averaging exponents

may be determined in practice by tuning against numerical upscaling results.

The assumption then is that the same ωi can be used for models with similar

permeability distributions.

The fact that ωi can vary with the direction leads to the general ob-

servation that the upscaled permeability can be anisotropic even when the

underlying permeability field K is everywhere isotropic. For the power aver-

aging approach described here, the upscaled permeability is still a diagonal

tensor. However, for the more general numerical methods described below,

the upscaled permeability is typically a full tensor.

Other analytical procedures for permeability upscaling include the renor-

malization approach presented in [26] and the full tensor averaging technique

in [25]. Both of these approaches are very efficient and have been shown to

perform well for some classes of problems. Like power averaging techniques,

however, they lack the generality of the more complex procedures.

2.2.3 Flow Based Upscaling of the Permeability

The more robust and accurate procedures for computing K∗ require the

solution of the fine scale pressure equation over the target coarse block. As

we will discuss in the sequel, in some cases it is beneficial to use an extended

local approach in order to include the effects of neighbouring regions in the

calculation of K∗. We now consider a variety of approaches, beginning with

the simplest purely local techniques.



16 Chapter 2. Upscaling of Geological Models

Figure 2.2: Close boundary conditions example for y1 problem: red color represents no

flux condition while green color pressure condition.

In computing equivalent grid block permeabilities, we solve the problem

(2.2) over the fine scale region corresponding to the target coarse block. A

significant issue in any local or extended local upscaling technique is the

choice of boundary conditions to be imposed. Because the actual conditions

imposed on the region during the global flow simulation are not known a

priori and will in general vary, there is always some ambiguity in specifying

the boundary conditions in the upscaling procedure. There is, additionally,

some freedom in how the upscaled K∗ is computed from the local fine grid

solution.

We now consider the cartesian coarse cell shown in Figure 2.1. The

simplest, and in many ways the most intuitive, boundary conditions for this

problem consist in imposing a constant pressure on two opposite faces and

no flow condition on lateral faces: we will refer to this kind of conditions as

closed boundary conditions. These boundary conditions require us to solve

(2.2) three times, once for each space direction. In the first solution we set

p(0, y2, y3) = 1,

p(L1, y2, y3) = 0,

u(y1, 0, y3) · n = u(y1, L2, y3) · n = 0,

u(y1, y2, 0) · n = u(y1, y2, L3) · n = 0,

(2.5)

where L1, L2, L3 are the coarse cell sizes and n is the outward unit normal.

The other solutions are computed respectively along y2 and y3 directions.

From these three solutions we can compute total flow rates through the faces

of the region, i.e. from the first solution, since the pressure gradient is along
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the y1 axis, we obtain an average flux in the y1 direction as

q1 =

∫ L2

0

∫ L3

0
u(L1, y2, y3) · n dy2 dy3. (2.6)

Similarly, q2 and q3 can be computed from the second and third solutions.

Then, using an averaged form of Darcy’s law, we obtain the coarse perme-

ability

k∗1 =
q1L1

L2L3∆p
, (2.7)

where ∆p = 1 from boundary conditions (2.6). The quantities k∗2 and k∗3
are computed in a similar manner.

In many cases, the coarse permeability computed in this way provide

reasonably accurate coarse block permeabilities. However, the boundary

conditions and method for computing K∗ from the local fine grid solution

in this case preclude the calculation of the cross terms of K∗. These terms

can be significant in cases where the grid is not locally K-orthogonal (by

K-orthogonality we mean that the grid geometry and permeability can be

represented in terms of two-point fluxes in a finite volume discretization).

Therefore, procedures for computing a full tensor K∗ are required for more

general cases.

One possible approach for generating full tensor coarse block permeabil-

ities is to compute volume averaged velocities and pressure gradients over

the entire flow domain:

〈u〉j =
1

V

∫
V

uj dV, (2.8)

〈∇p〉j =
1

V

∫
V

(∇p)j dV, (2.9)

where j = I, II, III indicate the flow solution with the pressure difference

along y1, y2 and y3 respectively. Since 〈u〉 and 〈∇p〉 have three components

and we solve three flow problems, nine components of K∗ can be calculated

from these two flow solutions. Then we can write

〈u〉ji = −
3∑
l=1

k∗il 〈∇p〉
j
l , (2.10)

where j = I, II, III is the pressure gradient direction and i = 1, 2, 3 is the

vector component. Since the unknown quantities are the permeability tensor

components, we can rearrange equations (2.10) and define the following



18 Chapter 2. Upscaling of Geological Models

matrix:

¯̄A =



〈∇p〉I1 〈∇p〉I2 〈∇p〉I3 0 0 0

0 0 0 . . . 0 0 0

0 0 0 〈∇p〉I1 〈∇p〉I2 〈∇p〉I3
〈∇p〉II1 〈∇p〉II2 〈∇p〉II3 0 0 0

0 0 0 . . . 0 0 0

0 0 0 〈∇p〉II1 〈∇p〉II2 〈∇p〉II3
〈∇p〉III1 〈∇p〉III2 〈∇p〉III3 0 0 0

0 0 0 . . . 0 0 0

0 0 0 〈∇p〉III1 〈∇p〉III2 〈∇p〉III3


(2.11)

and the linear system:

¯̄A×



k∗11

k∗12

k∗13

k∗21

k∗22

k∗23

k∗31

k∗32

k∗33


= −



〈u〉I1
〈u〉I2
〈u〉I3
〈u〉II1
〈u〉II2
〈u〉II3
〈u〉III1

〈u〉III2

〈u〉III3


, (2.12)

which can now be solved to determine the components of K∗.

With the closed boundary conditions, the K∗ computed using (2.12) will

in general not be symmetric. Various procedures can be applied to enforce

symmetry; the simplest approach is to set each of the cross terms equal to

(k∗ij + k∗ji)/2. A better approach is to solve a least square problem. In this

case we enforce symmetry by adding three equations of the form k∗ij−k∗ji = 0



2.2. Geological Quantities Upscaling 19

with i 6= j. The resulting matrix is now given by

¯̄ALS =



〈∇p〉I1 〈∇p〉I2 〈∇p〉I3 0 0 0

0 0 0 . . . 0 0 0

0 0 0 〈∇p〉I1 〈∇p〉I2 〈∇p〉I3
〈∇p〉II1 〈∇p〉II2 〈∇p〉II3 0 0 0

0 0 0 . . . 0 0 0

0 0 0 〈∇p〉II1 〈∇p〉II2 〈∇p〉II3
〈∇p〉III1 〈∇p〉III2 〈∇p〉III3 0 0 0

0 0 0 . . . 0 0 0

0 0 0 〈∇p〉III1 〈∇p〉III2 〈∇p〉III3

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0



,

(2.13)

which now has 12 rows and 9 columns for 9 unknown variables. Note that

last three equations should be rescaled in order to avoid numerical errors.

In addition to symmetry, we also require that K∗ be positive definite.

This requirement is generally satisfied by the methods described here. In

the few cases when this is not satisfied, K∗ can be recomputed using outlet

averaging or using periodic boundary conditions (described below).

The closed boundary conditions just discussed are not the most general

boundary conditions that can be used. Another alternative is to use bound-

ary conditions that specify a linear pressure variation along the sides parallel

to the direction of the pressure gradient. Since fluid is able to flow through

lateral faces, this kind of conditions are named open boundary conditions

and for the first flow problem along y1 direction they can be written as:

p(0, y2, y3) = 1,

p(L1, y2, y3) = 0,

p(y1, 0, y3) = p(y1, L2, y3) = 1− y1/L1,

p(y1, y2, 0) = p(y1, y2, L3) = 1− y1/L1.

(2.14)

The boundary conditions for the other two problems are built changing the

main direction with y2 and y3. In order to find a solution we can proceed as

for the closed boundary conditions. The K∗ computed with this strategy will

in general differ from the K∗ computed using closed boundary conditions.

It is not clear from the literature which of these approaches is the more

accurate, it is likely that the best choice will be case dependent. However,

solutions using open boundary conditions will have, in general, a higher

connectivity since more fluid can flow through the lateral faces of the coarse
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Figure 2.3: Open boundary conditions example for y1 problem: in this case flow through

lateral faces is possible.

cell increasing the average flux while closed boundary conditions define no

flux condition on lateral faces.

We now describe the use of periodic boundary conditions for the calcu-

lation of K∗. The specific form of the boundary conditions derives from the

assumption that the system is replicated periodically in space. This choice

eliminates some of the ambiguity of the other methods since it provides the

same result for either method of post-processing of the fine grid solution.

These boundary conditions again require that three local fine scale prob-

lems be solved. Periodic boundary conditions can be specified for the first

problem as:

p(0, y2, y3) = p(L1, y2, y3)− L1,

p(y1, 0, y3) = p(y1, L2, y3),

p(y1, y2, 0) = p(y1, y2, L3),

u(0, y2, y3) · n = −u(L1, y2, y3) · n,
u(y1, 0, y3) · n = −u(y1, L2, y3) · n,
u(y1, y2, 0) · n = −u(y1, y2, L3) · n,

(2.15)

By solving this problem and the resulting problems along y2 and y3 direc-

tions, we can compute K∗ using (2.12).

Periodic boundary conditions have several useful features. They guar-

antee that the resulting K∗ will be symmetric and positive-definite. Thus,

no post-processing of the result is necessary to ensure that these two cri-

teria are met. However it can be proved that the differences between the

various methods are slight and strongly dependent on the fine permeability

structure (see [27]).
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This approach could also be used in the case of the coarse cell is not a per-

fect parallelepiped or the faces are not aligned with the fine grid. Thus, the

simulation domain is formed by a set of fine grid cells that cover the coarse

cell while it is possible to choose one of the boundary condition presented

above. The main difference is that all the average values are computed over

the coarse cell domain. Some example can be found in [17] on in [18] where

the averages are computed integrating only over the cells entirely contained

in the coarse cell. A better approach for permeability upscaling over non

matching grids can be found in [9].

2.2.4 Transmissibility Upscaling

The approach introduced in the previous section can also be applied to

the direct calculation of upscaled transmissibility. The transmissibility is a

property of the discrete equation that link the pressure with the flow rate

through cells interface. Given a three dimensional cartesian grid, the flow

rate qxi,i+1 from grid block (i, j, k) to grid block (i+ 1, j, k) is given by:

qxi+1/2,j,k = (Tx)i+1/2,j,k(pi,j,k − pi+1,j,k), (2.16)

where the transmissibility (Tx)i,i+1 is defined as

(Tx)i+1/2,j,k =
2(kx)i+1/2,j,k∆y∆z

∆xi+1,j,k −∆xi,j,k
, (2.17)

where ∆xi,j,k denotes the size of grid block (i, j, k) and the interface per-

meability (kx)i+1/2,j,k is given by the weighted harmonic average of (kx)i,j,k
and (kx)i+1,j,k:

(kx)i+1/2,j,k =
(∆xi,j,k + ∆xi+1,j,k)(kx)i,j,k(kx)i+1,j,k

∆xi,j,k(kx)i+1,j,k + ∆xi+1,j,k(kx)i,j,k
. (2.18)

The transmissibility along other principal directions can be computed in a

similar manner. In case of full tensor permeabilities, the formation of the

discretized equations is more complex (see [1]).

As we have said, coarse scale transmissibilities can also be computed

from the local problems. To do this, we focus on a cell edge. In order to

compute the coarse transmissibility, the local problem must contain the fine

scale region corresponding to coarse blocks (i, j, k) and (i + 1, j, k) which

are on either side of the target edge (i + 1/2, j, k). We solve for flow over

this region using any of the boundary conditions described above and then

compute the upscaled transmissibility via:

(T ∗x )i+1/2,j,k =
qci+1/2,j,k

〈p〉i,j,k − 〈p〉i+1,j,k

, (2.19)
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Figure 2.4: Coarse cell surrounded by a ring with ρ = 2.

where T ∗x designates the upscaled transmissibility in the x direction, qci+1/2,j,k

is the total flow across the interface between coarse blocks (i, j, k) and (i+

1, j, k) and 〈p〉 is the volume average of the fine scale pressure over a coarse

block region. Similar expressions proved coarse transmissibility over y and

z directions.

The transmissibility upscaling over not matching grids is also possible.

Proper averages over the coarse cell domain have to be computed. For a 2D

example we refer to [32] while for the 3D case we present proper integration

methods in Chapter 4.

2.3 Extended Domain

It has been observed that improved accuracy in K∗ and T ∗ can be achieved

by extending the domain of the local problem. By including neighbouring

regions in the calculation of K∗ for a particular coarse block, the effects of

large scale permeability connectivity (or lack of connectivity) can be better

captured, particularly when the permeability field contains features that are

not oriented with the grid. A ring (indicated by the letter ρ) is defined as

a set of cells surrounding the local problem domain. If ρ = 1 then only a 1

fine cells ring over each directions is added to the fine resolution problem.

Any of the boundary conditions discussed in the previous section can now

be applied on the expanded domain.

For example, in the case of permeability upscaling, since we wish to

compute K∗ for only a portion of the fine scale domain, we apply the volume

averaging procedure using Equations (2.8) and (2.9) computing 〈u〉 and 〈∇p〉
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only over the coarse cell domain and then solve the linear system (2.12) to

compute K∗. We can note that, even if periodic boundary conditions are

applied, the K∗ computed will not in general be symmetric. This is because

the symmetry provided by periodic boundary conditions for purely local

upscaling is lost when border regions are applied. However, symmetry can

be approximately recovered through use of the least square technique as we

have shown previously.

2.4 Global and Local-Global upscaling

All the methods described in the previous sections require the specification

of boundary conditions for the local problem, which could be closed, open

or periodic conditions. In global upscaling methods the intent is to solve a

global flow problem and to use this solution to extract coarse scale quantities.

Most of these methods apply transmissibility upscaling for the calculation

of coarse grid quantities. From the fine grid solution, transmissibilities are

computed by averaging over coarse block regions and then applying (2.19).

Global upscaling methods can provide very accurate results for a particu-

lar set of wells and boundary conditions. In many cases the model developed

in this way can be used for other flow scenarios. However, it is also pos-

sible that the model may lack robustness with respect to other boundary

conditions or well arrangements, e.g. see [33].

Another class of upscaling technique is the local-global upscaling that

is presented in [10]. The main difference from global upscaling is that the

global flow is computed using the coarse grid. The idea is to use such solution

to estimate the boundary conditions to be used in the local calculation of the

transmissibility. Then the procedure is iterated until the upscaled quantity

is consistent with the global flow, i.e. the difference of the solution with

respect to the previous iteration is small.

In both global and local-global upscaling, a negative transmissibility may

be generated in some cell. In these cases, we should compute again the

transmissibility using a local upscaling with periodic boundary condition to

ensure the positivity of the upscaled quantity.

2.5 Near Well Upscaling

In local and extended local techniques, we have assumed that the flow can

be locally described as approximately linear so that the large scale pressure

gradient is ∇p is approximately constant. This is not assumed in the global
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and local-global approaches which determine local velocity and pressure from

a global model solution. The assumption of a locally linear pressure field is

also not applicable in the near-well region, as the steady state pressure in

the well proximity varies as log r, where r is the radial distance. Therefore,

special techniques are required for.

The well behaviour is specified by the so called Well Index (WI) which

relates the wellbore pressure to the grid cell pressure as

qwi,j,k = WIi,j,k(pi,j,k − pwi,j,k). (2.20)

Note that it is very similar to the transmissibility definition. The WI de-

pends of many parameters such as wellbore inclination and pipe radius.

In general, a local extended domain surrounding the well is defined and,

using proper boundary conditions, a steady-state problem is solved. We

then select a coarse cell that includes the well. We compute average flux

on coarse grid interfaces and average pressure on coarse cells. Moreover we

can compute the wellbore pressure pw and well flow rate qw of the steady-

state solution. Finally, equivalent transmissibility and numerical WI∗ are

determined by

T ∗n = − qcn
〈p〉n − 〈p〉i,j,k

(2.21)

WI∗i,j,k =
qw

〈p〉i,j,k − pw
(2.22)

where n represents a neighbour cell of the selected coarse cell (i, j, k). A

in-depth analysis can be found in [14].



Chapter 3

Local Problem Discretization

In this section we discuss the discretization techniques used to solve the

local problems during the Upscaling procedure. In particular, we will use

the Mixed Finite Element Method (MFEM) to find the velocity and pressure

fields. The computational domain of the local problem is usually very small,

on the order of the coarse grid cells size. A numerical method ensuring the

local mass conservation of the solution is therefore mandatory in order to

limit errors due to the approximation of in the mass balance. Another

reason that leads us to consider a Mixed Finite Element Method, is the

possibility to reconstruct accurately the velocity field over a given set of

points: this is crucial for non-matching upscaling technique, since we have

to compute quantities from the final velocity field over non-matching subsets,

e.g. velocity flux over the interface between a coarse cells pair. The Mixed

Finite Element Method is widely used for fluid flow equations such as the

Stokes problem or fluid flow through porous media.

3.1 Local Mass Conservation

Let us recall the pressure equation for a single-phase flow in case of constant

density and with the absence of gravity (1.8):
−∇ ·K∇p = f in Ω ⊂ R2

p = p0 on ΓD,

∂p

∂n
= pn on ΓN .

(3.1)

where Ω ⊂ R3 is a polygonal domain with a Lipshitz continuous boundary

∂Ω = Γ̄D ∪ Γ̄N , ΓD ∩ ΓN = ∅, |ΓD| > 0, n is the outward unit normal on

∂Ω, and K is a symmetric, uniformly, positive definite tensor, that means
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there are k0, k1 ∈ R, 0 < k0 ≤ k1 <∞ such that

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ (3.2)

for every x ∈ Ω and ξ ∈ R3. As we have seen in Chapter 1, u is the Darcy

velocity and K represents the permeability field divided by the viscosity.

Since we set the fluid viscosity equal to one during the local problem res-

olution in the upscaling method, K will be the real permeability tensor.

Moreover we assume that p0 ∈ H1/2(ΓD) and pn ∈ H1/2(ΓN ).

In the first instance, we consider a full homogeneous Dirichlet problem,

e.g. ΓD ≡ ∂Ω and p0 = 0. Multiplying for a test function and properly

integrating by parts gives us the following weak formulation associated with

(3.1):

Find u ∈ V such that

a(p, φ) = F(φ) ∀φ ∈ V, (3.3)

where
V = H1

0 (Ω),

a(p, φ) =

∫
Ω

K∇p · ∇φ dΩ : V × V → R,

F(v) =

∫
Ω
fφdΩ : V → R.

Since a(·, ·) is a bilinear, continuous and coercive form and F (·) is linear

and continuous, the Lax-Milgram Lemma ensures that problem (3.3) has a

solution that is unique.

We can discretize the problem using a Galerkin Finite Element Method

(GFEM). Given a geometrical regular partition Th of the domain Ω into non

overlapping simplexes K, let x = (x1, · · · , xd) and let Pr be the space of

polynomials in the variables x1, · · · , xd with real coefficients and of global

degree at most r over the simplex K:

Pr(K) =

p(x) =
∑

0≤i1,··· ,id≤r
i1+···+id≤r

αi1···idx
x1
1 x

id
d ; αi1···id ∈ R

 .

We can readily verifies that Pr(K) is a vector space of dimension

dimPr(K) =

(
d+ r

r

)
.

Then, we introduce the finite dimensional space of piecewise continuous

polynomials over Th:

Xr
h(Ω) = {v ∈ C0(Ω̄) : v|k ∈ Pr(K)∀K ∈ Thv|Γ = 0}. (3.4)
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The GFEM approximation of (3.1) is:

Find ph ∈ Vh ≡ Xr
h(Ω) such that

a(ph, φh) = F(φh) ∀φh ∈ Vh. (3.5)

Again, application of the Lax-Milgram Lemma allows to conclude that (3.5)

has a unique solution.

Now we consider the space of piecewise linear continuous polynomials

X1
h(Ω) for the problem (3.5). Giving a closer look at ∇ph, it is clear that

∇ph|K ∈ (P0(K))3 ∀K ∈ Th

so the approximate vector filed is a discontinuous function over Tk. In par-

ticular, we notice that:

1. ∀K ∈ Th, we have

−divK∇ph = 0. (3.6)

2. ∀e = ∂K+ ∩ ∂K−, K+, K− being two mesh elements, we have

∇p+
h · n

+
e +∇p−h · n

−
e 6= 0. (3.7)

The relation (3.6) reveals that the approximate vector field∇ph is not locally

self equilibrated, so it does not reproduce the starting equilibrium equation.

The relation (3.7) says that GFEM does not satisfy the local mass conser-

vation properties: in other words, fictitious mass could be generated along

cells interfaces without any physical meaning.

We conclude that the GFEM suffers from loss of accuracy of some phys-

ical requirements for ∇p. Moreover, this is not related to the degree r used

for the finite dimensional space Vh.

3.2 Dual Mixed Formulation

In this section, we will give an alternative formulation of the pressure prob-

lem (3.1). Since we are interested in having a good approximation of the

velocity field, we use the Darcy’s law to explicitly define u. Therefore we

obtain the formulation named dual mixed formulation:

Find (u, p) such that 
u = −K∇p in Ω,

∇ · u = f in Ω,

p = p0 on ΓN ,

u · n = u0 on ΓD,

(3.8)
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where Ω ⊂ R3 is a polygonal domain with a Lipshitz continuous boundary

∂Ω = Γ̄D ∪ Γ̄N , ΓD ∩ ΓN = ∅, |ΓD| > 0 and n is the outward unit normal

on ∂Ω.

We assume the source term f ∈ L2(Ω) and the boundary data are

p0 ∈ H1/2(ΓN ) and u0 ∈ H1/2(ΓD). We can identify the first equation

as the constitutive law (that is the Darcy’s law), the second equation as the

indefinite equilibrium condition and the remaining equations as constraint

boundary conditions.

Since K is invertible, let us introduce a new matrix

η = K−1, (3.9)

then we can rewrite the equilibrium condition as

ηu = −∇p.

We start by multiplying by a proper test functions and integrating over Ω:

∫
Ω
ηu · v dΩ +

∫
Ω
∇p · v dΩ = 0 ∀v,

∫
Ω

(∇ · u + f)q dΩ = 0 ∀q.

(3.10)

By application of the Green’s formula to the first equation we obtain∫
Ω
ηu · v dΩ−

∫
Ω
p∇ · v dΩ +

∫
∂Ω
pv · n dσ = 0. (3.11)

Note that in the mixed formulation the Neumann boundary condition (open

condition) is a condition on pressure. So we can substitute the pressure with

p0 in the last integral over ΓN . We can now define the Sobolev spaces in

which the solution is defined. The function space for the pressure is

Q = L2(Ω) =

{
q : Ω→ R :

∫
Ω
q2 dΩ <∞

}
(3.12)

with the norm defined as

‖q‖Q := ‖q‖L2(Ω) =

(∫
Ω
q2 dΩ

)1/2

. (3.13)

The natural choice for the velocity is

H(div; Ω) = {v ∈ (L2(Ω))2 : ∇ · v ∈ L2(Ω)}. (3.14)
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with the norm defined as

‖v‖V = ‖v‖H(div;Ω) =

(∫
Ω

v · v dΩ +

∫
Ω

(∇ · v)2 dΩ

)1/2

. (3.15)

For our purposes, we set u0 = 0 and f = 0. Since the Dirichlet boundary

condition (closed condition) are enforced into the Sobolev space V in a strong

way, we define V0 as

V0 = {v ∈ V : v · n = 0 on ΓD} , (3.16)

equipped with the norm defined in (3.15). Finally, substituting the boundary

data and applying all the considerations given above, we obtain the mixed

variational form of the problem (3.8):

Find (u, p) ∈ V0 ×Q such that{
a(u,v) + b(v, p) = F(v) ∀v ∈ V0,

b(u, q) = 0 ∀q ∈ Q,
(3.17)

where

a(u,v) =

∫
Ω
ηu · v dΩ, (3.18)

b(v, p) = −
∫

Ω
p∇ · v dΩ, (3.19)

F(v) = −
∫

ΓD

p0v · n dσ. (3.20)

It is interesting to observe that the following property holds (for a proof,

see [5]):

Proposition 3.1. Let v : Ω→ R3 be such that:

a) v|K ∈ (H1(K))3 ∀K ∈ Th;

b) v+ · n−e + v+ · n−e = 0 ∀e = ∂K+ ∩ ∂K−.

Then, v ∈ H(div; Ω). Conversely, if v ∈ H(div; Ω) and a) holds, then b)

also holds.

From Proposition 3.1 we immediately conclude that functions in V au-

tomatically satisfy the local mass conservation principle at cells interfaces.

Finally, the relation ∫
Ω

(∇ · u− f)q dx = 0 ∀q ∈ Q
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automatically implies, due to the completeness of L2(Ω), that ∇ · u = f

almost everywhere in Ω, which is a very good instance of the equilibrium

condition.

The formulation (3.17) is a particular saddle-point problem. In the fol-

lowing section we will report the main stability and convergence properties

for this class of problems.

3.3 The saddle-point problem

Let V and Q be Hilbert spaces equipped with norms ‖·‖V and ‖·‖Q; let

V ′ and Q′ be the dual spaces associated. We introduce two bilinear forms

a(·, ·) : V × V → R and b(·, ·) : V ×Q→ R that are continue, meaning that

there exist γ, δ > 0 such that:

|a(w, v)| ≤ γ‖w‖V ‖v‖V , |b(w, q)| ≤ δ‖w‖V ‖q‖Q, (3.21)

for each w, v ∈ X and q ∈ Q. The generic saddle-point problem can be

written as:

Find (u, p) ∈ V ×Q such that{
a(u, v) + b(v, p) = 〈l, v〉 ∀v ∈ V,
b(u, q) = 〈σ, q〉 ∀q ∈ Q,

(3.22)

where l ∈ X ′ and σ ∈M ′ are two functional and 〈·, ·〉.
It is useful to rewrite the problem (3.22) using operators. That said, we

define the operators A ∈ L(V, V ′) and B ∈ L(V,M ′) defined as:

〈Aw, v〉 = a(w, v) ∀w, v ∈ V,
〈Bv, q〉 = b(v, q) ∀v ∈ V, q ∈ Q,

where we have used the standard notation L(X,Y ) for the space of linear

and continuous functionals from X to Y . Let BT ∈ L(Q,V ′) be the adjoint

operator of B defined as:〈
BT q, v

〉
= 〈Bv, q〉 = b(v, q) ∀v ∈ V, q ∈ Q.

We can finally rewrite problem (3.22) as:

Find (u, p) ∈ V ×Q such that{
Au+BT p = l in V ′,

Bu = σ in Q′.
(3.23)

Then, we define the affine variety of the Hilbert space V as

V σ = {v ∈ V : b(v, q) = 〈σ, q〉 ∀q ∈ Q}. (3.24)
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We note that the V 0 space identify the Kernel of B that is a closed subspace

of V .

The following theorem ensures the existence and uniqueness of the solu-

tion for the problem (3.22):

Theorem 3.1. The problem (3.22) admits one and only one solution if the

following conditions are satisfied:

1. The bilinear form a(·, ·) is continuous (3.21) and coercive on V 0, i.e.

∃α > 0 such that:

a(v, v) ≥ α‖v‖2V ∀v ∈ V 0. (3.25)

2. The bilinear form b(·, ·) is continuous (3.21); moreover, ∃β∗ > 0 such

that:

∀q ∈ Q,∃v ∈ V with v 6= 0 : b(v, q) ≥ β∗‖v‖V ‖q‖Q (3.26)

Furthermore, the map (l, σ)→ (u, p) is an isomorphism between V ′×Q′

and V ×Q, and the following a priori estimates exist:

‖u‖V ≤
1

α

[
‖l‖V ′ +

α+ γ

β∗
‖σ‖Q′

]
, (3.27)

‖p‖Q ≤
1

β∗

[(
1 +

γ

α

)
‖l‖V ′ +

γ(α+ γ)

αβ∗
‖σ‖Q′

]
. (3.28)

In (3.27) and (3.28) we have used the norms of the dual spaces, defined

as:

‖l‖V ′ = sup
v∈V

〈l, v〉
‖v‖V

, ‖σ‖Q′ = sup
q∈Q

〈σ, q〉
‖q‖Q

.

In order to approximate the problem (3.22), we introduce proper finite

dimensional subspaces Vh and Qh associated with V and Q.

Thus, the discrete formulation of (3.22) is:

Find (uh, ph) ∈ (Vh ×Qh) such that{
a(uh, vh) + b(vh, qh) = 〈l, vh〉 ∀vh ∈ Vh,
b(uh, qh) = 〈σ, qh〉 ∀qh ∈ Qh.

(3.29)

The discrete saddle point problem (3.29) can be rewritten in algebraic for-

mulation as [
A BT

B 0

](
u

p

)
=

(
l

σ

)
, (3.30)
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that is the counterpart of the problem (3.23). In (3.30), A is a square

symmetric matrix, B is a rectangular matrix, u and p are the unknown

vectors, while l and σ are the right hand side vectors. System (3.30) has

dimension

Nh = dim(Vh) + dim(Qh)

and its coefficient matrix is symmetric but in general indefinite.

Likewise (3.24), we define the space

V σ
h = {vh ∈ Vh : b(vh, qh) = 〈σ, qh〉 ∀qh ∈ Qh}. (3.31)

Then, we can formulate a new theorem, similar to Theorem 3.1, that

ensures the existence and the uniqueness of the solution for the problem

3.29:

Theorem 3.2. The problem (3.29) admits one and only one solution if the

following conditions are satisfied:

1. The bilinear form a(·, ·) is continuous (3.21) and coercive on V 0
h , i.e.

∃αh > 0 such that:

a(vh, vh) ≥ αh‖vh‖2V ∀vh ∈ V 0
h . (3.32)

2. The bilinear form b(·, ·) is continuous (3.21); moreover, ∃βh > 0 such

that:

∀qh ∈ Qh, ∃vh ∈ Vh with vh 6= 0 : b(vh, qh) ≥ βh‖vh‖V ‖qh‖Q. (3.33)

Furthermore, the map (l, σ)→ (uh, ph) is an isomorphism between V ′ ×
Q′ and Vh ×Qh, and the following a priori estimates exists:

‖uh‖V ≤
1

αh

[
‖l‖V ′ +

αh + γ

βh
‖σ‖Q′

]
, (3.34)

‖ph‖Q ≤
1

βh

[(
1 +

γ

αh

)
‖l‖V ′ +

γ(αh + γ)

αhβh
‖σ‖Q′

]
. (3.35)

The relation expressed in (3.33) is widely known as the discrete inf-sup

condition or LBB condition and it can be rewritten as:

inf
qh∈Qh,qh 6=0

sup
vh∈Vh,vh 6=0

b(vh, qh)

‖vh‖V ‖qh‖Q
≥ βh. (3.36)

This condition restricts the selection of the finite subspaces Vh and Qh. If

the condition (3.36) is not satisfied, it exists a function p∗h ∈ Qh such that
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p∗h 6= 0 and b(vh, p
∗
h) = 0 for each vh ∈ Vh. Therefore, if (uh, ph) is a solution

of the problem (3.29), then also (uh, ph+ τp∗h), for every τ ∈ R, is a solution

of the same problem. The p∗h is named spurious mode. Since the spurious

modes are transparent to the discrete model, the solution will have numeric

fluctuation.

In practical cases, a direct proof of the discrete problem inf-sup condition

may be not trivial. A useful alternative approach is to check the fulfilment

of the following two conditions (see [5, 21]):

1. inclusion of the kernels

KerBh ⊂ KerB, (3.37)

2. existence of an operator Πh : V → Vh such that{
b(v −Πhv, qh) = 0 ∀qh ∈ Qh
‖Πhv‖V ≤ C‖v‖V ∀v ∈ V,

(3.38)

where C is a positive constant independent of h.

Finally the last theorem about convergence analysis:

Theorem 3.3. Let the conditions of Theorems 3.1 and 3.2 be true, then

the solutions (u, p) and (uh, ph) of problems (3.22) and (3.29) respectively,

satisfy the following error estimations:

‖u− uh‖V ≤
(

1 +
γ

αh

)
inf

v∗h∈V
σ
h

‖u− v∗h‖V +
δ

αh
inf

qh∈Qh
‖p− qh‖Q, (3.39)

‖p−ph‖Q ≤
γ

βh

(
1 +

γ

αh

)
inf

v∗h∈V
σ
h

‖u−v∗h‖V +

(
1 +

δ

βh
+

γδ

αhβh

)
inf

qh∈Qh
‖p−qh‖Q.

(3.40)

Furthermore, the following estimation applies:

inf
v∗h∈V

σ
h

‖u− v∗h‖V ≤
(

1 +
δ

βh

)
inf

vh∈Vh
‖u− vh‖Q. (3.41)

A detailed proof of Theorems 3.1, 3.2 and 3.3 can be found in [28].

3.4 The Raviart-Thomas finite element

We now introduce some finite dimensional spaces that can be used in prob-

lem (3.29). For more details on possible choices of finite element spaces and

their properties see [19].
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Figure 3.1: Degrees of freedom of RT0 element in 2D and 3D.

Let Th be a triangulation of Rd and K be a simplex of Th. Consider the

vector space of Rd-valued polynomials

RT0 = [P0]d ⊕ xP0, (3.42)

where P0 is the space of constant function on K. Clearly, the dimension of

RT0 is d+ 1. For v ∈ RT0, the local degrees of freedom σi are chosen to be

the value of the flux of the normal component of v across the faces of K, so

for 0 ≤ i ≤ d:

σi(v) =

∫
Fi

v · ni,

where Fi is a face of K and ni is the relative outward unit normal.

The local base functions are:

ϑi(x) =
1

d|K|
(x− ai), 0 ≤ i ≤ d, (3.43)

where ai are the nodes of K. Indeed, ϑ ∈ RT0 and σj(ϑi) = δij for

0 ≤ i, j ≤ d. Note that the normal component of a local base function

is constant on the corresponding face and is zero on the other faces. A con-

ventional representation of the degrees of freedom of the Raviart-Thomas

finite element is shown in Figure 3.1. An arrow denotes the flux of the nor-

mal component. These finite elements have been introduced by Raviart and

Thomas [30].

The domain of the local interpolation operator can be taken to be

V div(K) = {v ∈ [Lp(K)]d;∇ · v ∈ Ls(K)},

for p > 2, s ≥ q, 1
q = 1

p+ 1
d . The local Raviart-Thomas interpolation operator

is then defined as follows:

ΠRT
K : V div(K) 3 v → ΠRT

K v =
d∑
i=0

(∫
Fi

v · ni
)

︸ ︷︷ ︸
σi(v)

ϑi ∈ RT0. (3.44)
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Note that Raviart-Thomas elements are d-dimensional linear functions on

K.

3.5 The Mixed Finite Element Method (MFEM)

We now recall the saddle-point formulation of the fluid flow in porous media

problem (3.17). Since the bilinear form (3.18) is continuous and coercive (η

is positive definite), the bilinear form (3.19) is continuous, the linear form

(3.20) is continuous, the inf-sup condition holds for V0 and Q spaces, then

for Theorem 3.1 problem (3.17) has a unique solution.

For a numerical approximation of (3.8), we need to choose two finite

dimensional subspace of V and Q. We set

Qh = X0
h = {q ∈ Q : q|K ∈ P0(K) ∀K ∈ Th},

Vh = {v ∈ V : v|K ∈ RT0(K)∀K ∈ Th}.

To impose the boundary condition on the velocity we use the Nitsche’s

penalization method discussed in [7]. Finally the discrete approximation of

problem (3.17) is:

Find (uh, ph) ∈ Vh ×Qh such that{
ah(uh,vh) + b(vh, ph) = Fh(vh) ∀vh ∈ Vh,
b(uh, qh) = 0 ∀qh ∈ Qh,

(3.45)

where

ah(uh,vh) =

∫
Ω
ηuh · vh dΩ +

∫
ΓD

γh−1(uh · n)(vh · n) dσ, (3.46)

b(vh, ph) = −
∫

Ω
ph∇ · vh dΩ, (3.47)

Fh(vh) = −
∫

ΓD

p0vh · n dσ

∫
ΓD

γh−1u0(vh · n) dσ. (3.48)

Notice that we have set u0 = 0, then Fh(vh) = F(vh).

Again we discover the typical structure of a saddle-point problem and

it is possible to prove that all the required conditions for the forms (3.46),

(3.47) and (3.48) hold, so the inf-sup condition is satisfied and a unique so-

lution exists. Lastly, a convergence estimation for the approximate solution

holds. An exaustive discussion of error analysis of each particular mixed

formulation can be found in [5].

As we have done for a generic saddle-point problem in (3.30), writing

velocity as a linear combination of the Raviart-Thomas base functions and
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pressure as a linear combination of piecewise constant base functions and

properly substituting test functions we finally arrive to the algebraic formu-

lation: [
A BT

B 0

](
u

p

)
=

(
f

0

)
. (3.49)

This is the linear system that has to be solved for each local problem, giving

us the RT0 degrees of freedom for the velocity field and the P0 degrees of

freedom for the pressure field.



Chapter 4

Implementation and

Algorithms

In this chapter we present the code and the techniques developed for up-

scaling over non-matching grids. In the first instance, existing tools and

compatibility issues are presented. We give special attention to the use of

standard grid format so we will be able to analyse the upscaled field quality

using commercial software. Then, we discuss in detail the code features and

the workflow structure.

4.1 Compatibility with existing tools

One of the major issue is to provide a full compatibility with the most com-

mon commercial software for reservoir simulation. The most used reservoir

simulator in oil and gas industry is Eclipse provided by Schlumberger. With

over 30 years of continuous development, Eclipse simulator is a feature-rich

and comprehensive reservoir simulator on the market covering the entire

spectrum of reservoir models.

4.1.1 The Corner Point grids

The standard type of computational grid used in oil and gas industry, in

particular in Eclipse simulator, is the Corner Point grid. The geometry

of these grids is rather flexible and can be used to accurately describe the

free surface. Moreover geological formations are usually arranged in layered

structures and a Corner Point grid can easily follow the different layers of

rock.

The Corner Point grids are three-dimensional structured grids, com-
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Figure 4.1: Example of Corner Point grid with fractures.

posed of hexahedral cells. A three-dimensional structured grid is character-

ized by the following features:

1. all cells are identified by eight nodes, i.e. they are topologically equiv-

alent to a cube,

2. the cells are logically organized in a regular scheme, such that each

cell position in the grid is uniquely determined by its (i, j, k)-indices,

where i, j and k vary between 1 and Nx, Ny or Nz respectively.

The difference between a Corner Point grid and a generic Structured grid

is that in a Corner Point grid the corners cannot be completely arbitrary

but they lie on given lines called Pillars: a Pillar is a straight non-horizontal

line defined by two points and it is identified by its (i, j)-indices, where i

and j vary between 1 and Nx + 1 or Ny + 1 respectively. Usually the index

i is increasing along x-axis as the index j with y-axis; for example, in a

Cartesian grid (that is a particular Corner Point grid), the Pillars would

be the vertical lines.

4.1.2 Eclipse Interface

Eclipse stores the grids in Corner Point format. The format used by Eclipse

is defined through the two keywords COORD and ZCORN.

The COORD is used to define the Pillars, each Pillar is uniquely defined

by two points. Since the line cannot be horizontal, the two points are de-

noted by 1 for the top one and 2 for bottom one. If we consider a grid with

dimensions Nx × Ny × Nz, we have (Nx + 1) × (Ny + 1) Pillars. Thus, to
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define all the Pillars we need to provide 6 × (Nx + 1) × (Ny + 1) values.

Pillar are given in sequence, cycling over i for every j:

COORD

x
(1,1)
1 y

(1,1)
1 z

(1,1)
1

x
(1,1)
2 y

(1,1)
2 z

(1,1)
2

...

x
(Nx+1,1)
1 y

(Nx+1,1)
1 z

(Nx+1,1)
1

x
(Nx+1,1)
2 y

(Nx+1,1)
2 z

(Nx+1,1)
2


1st row of pillars (j = 1)

x
(1,2)
1 y

(1,2)
1 z

(1,2)
1

x
(1,2)
2 y

(1,2)
2 z

(1,2)
2

...

x
(Nx+1,Ny+1)
1 y

(Nx+1,Ny+1)
1 z

(Nx+1,Ny+1)
1

x
(Nx+1,Ny+1)
2 y

(Nx+1,Ny+1)
2 z

(Nx+1,Ny+1)
2

/

The depths of cells corners are defined by the keyword ZCORN. Since each

cell is defined by 8 values, if we consider a grid with dimensions Nx×Ny×Nz,

we will have to provide 8 ×Nx ×Ny ×Nz values. Corner depths are given

in sequence, cycling over i fore every j and then for every k:

ZCORN

z
(1,1,1)
1 z

(1,1,1)
2 · · · · · · z

(Nx,1,1)
1 z

(Nx,1,1)
2

z
(1,1,1)
3 z

(1,1,1)
4 · · · · · · z

(Nx,1,1)
3 z

(Nx,1,1)
4

z
(1,2,1)
1 z

(1,2,1)
2 · · · · · · z

(Nx,2,1)
1 z

(Nx,2,1)
2

z
(1,2,1)
3 z

(1,2,1)
4 · · · · · · z

(Nx,2,1)
3 z

(Nx,2,1)
4

...

z
(1,Ny,1)
1 z

(1,Ny,1)
2 · · · · · · z

(Nx,Ny,1)
1 z

(Nx,Ny,1)
2

z
(1,Ny,1)
3 z

(1,Ny,1)
4 · · · · · · z

(Nx,Ny,1)
3 z

(Nx,Ny,1)
4

z
(1,1,1)
5 z

(1,1,1)
6 · · · · · · z

(Nx,1,1)
5 z

(Nx,1,1)
6

z
(1,1,1)
7 z

(1,1,1)
8 · · · · · · z

(Nx,1,1)
7 z

(Nx,1,1)
8

...

z
(1,Ny,1)
5 z

(1,Ny,1)
6 · · · · · · z

(Nx,Ny,1)
5 z

(Nx,Ny,1)
6

z
(1,Ny,1)
7 z

(1,Ny,1)
8 · · · · · · z

(Nx,Ny,1)
7 z

(Nx,Ny,1)
8



1st layer of cells (k = 1)

z
(1,1,2)
1 z

(1,1,2)
2 · · · · · · z

(Nx,1,2)
1 z

(Nx,1,2)
2

.

..

z
(1,Ny,Nz)
7 z

(1,Ny,Nz)
8 · · · · · · z

(Nx,Ny,Nz)
7 z

(Nx,Ny,Nz)
8

/
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4.1.3 The CPgrid3D class

The CPgrid3D custom class is the one that stores and manages the Corner

Point grid in our C++ environment. The data are stored in the Eclipse stan-

dard format, that means there are two main vectors for COORD and ZCORN. It

also contains special classes to store and manage permeability and transmis-

sibility fields. Many geometric tools have been developed with the purpose

of doing the upscaling of geological fields: for example, we need tools to ex-

tract the local problem subgrid for each coarse cell problem. For this reason

the function getMeshBlock has been developed and it can be called using

different options:

getfem : : mesh getMeshBlock ( const CPcell3D &Cell ,

const UInt &ring = 0) const ;

getfem : : mesh getMeshBlock ( const CPcell3D &firstCell ,

const CPcell3D &secondCell ,

const UInt &ring = 0) const ;

The CPcell3D class is the standard container representing a generic cell and

the getfem::mesh is a class containing the mesh information compatible with

the external library GetFEM++ where the algebraic problem is assembled: we

will further present this library in the next chapter. The first call is useful

when we do a permeability upscaling, where the local domain is composed

by the fine cells lying into the bounding box of the coarse cell: the bounding

box is defined as the set of fine grid cells which cover the coarse cells. If

we do a transmissibility upscaling we need to solve the problem over the

bounding box of two adjacent coarse cells. In both cases we can choose

the ring size that will surround the bounding box as explained in Chapter

2.3. Since we want to solve a mixed finite element problem in each local

domain, we need to build a tetrahedral grid: the easier and more efficient

way is to split each hexahedron belonging to the Corner Point grid in six

tetrahedrons. By doing this, we will avoid errors due to the interpolation of

the fine permeability field on a possibly non matching fine grid.

Another important geometric tool needed for all basic manipulation of

the grid is the following function:

CPcell3D getCell3D ( const Point3D &p ) const ;

this function returns the cell containing the point p. In case of cartesian

grid, the getCell3D function is relatively easy to implement, since we can

take advantage of the cartesian structure; otherwise, for generic Corner

Point grids, this problem requires special and efficient algorithms for the

search.
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Figure 4.2: Upscaling software flowchart.

We briefly present an algorithm based on [20]: let C be a generic cell

of a corner point grid, we suppose that C is topologically an hexahedron,

meaning that there is a trilinear map

TC : Ĉ → C (4.1)

operating between the reference cube Ĉ = [0, 1]3 and the cell C, with the

Jacobian JC = ∂TC
∂x̂ being non singular for every x̂ ∈ Ĉ. We also define

x̂ = (x̂i, x̂j , x̂k).

Then, to check if a given point x lies in C we can:

• Find x̂ = (x̂i, x̂j , x̂k) = T−1
C (x);

• Check if 0 ≤ i ≤ 1, 0 ≤ j ≤ 1 and 0 ≤ k ≤ 1.

This algorithm can become complex for the following reasons: the faces

of C are non planar moreover the map is non linear and the map is well

defined only inside the reference cube Ĉ. To overcome the first problem,

a Newton method is employed; if C is hexahedric with planar faces, the

Newton method converges in one iteration. The second problem is solved

applying the Newton method only if the point lies inside the cell bounding

box of C where the map is well defined.

4.2 Structure of the Software

In this chapter, we analyse in detail the structure of the software and its

implementation. The code mainly performs three types of operations, that

are:
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1. solving the local problem,

2. extracting data from the solution,

3. looping over each coarse cell.

We can see in Figure 4.2 the interconnection among the steps; there is a

fundamental difference between permeability and transmissibility upscaling:

about the first one, the domain of the three problems along each direction

is the same, so it can be solved within the same base structure and dif-

ferent bounding conditions, while the transmissibility upscaling needs three

different domains in each direction, that are twice the size of the perme-

ability ones. This means that transmissibility upscaling is, in general, more

expensive than permeability upscaling.

4.2.1 Solving Local Problem

As discussed in Chapter 3, we want to solve each problem in the local domain

using the Mixed Finite Element method. That said, we rely on the external

library GetFEM++: that is a generic C++ finite element library which aims to

offer the widest range of finite element methods and elementary matrix com-

putations for the approximation of linear or non-linear problems. It can be

downloaded from http://home.gna.org/getfem/ where full documentation is

provided.

The class dealing with the local problem and providing the interface

with the GetFEM++ library is the LocalProblem3D class. The main functions

of this class are:

vector<Real> computeCoarsePermeability (

const Geometry : : CPgrid3D &fineGrid ,

const Geometry : : CPcell3D &coarseCell ,

const UInt &Ring ,

const bool &Cartesian ) ;

Real computeCoarseTransmissibility (

const Geometry : : CPgrid3D &fineGrid ,

const Geometry : : CPcell3D &firstCell ,

const Geometry : : CPcell3D &secondCell ,

const PbOrientation &DIR ,

const UInt &Ring ,

const bool &Cartesian ) ;

The two functions above are similar: given the fine grid (fineGrid) and

one or two coarse cells, the functions return the results of the upscaling

procedure, i.e. the diagonal elements of the cell permeability tensor (all

three problems are solved) or the transmissibility of the cells pair interface.
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Once the local domain has been extracted from fineGrid variable, we

have a tetrahedral mesh, represented by the getfem::mesh class. Then we

can define the finite element spaces (P0 for pressure and RT0 for velocity)

over the mesh in order to assemble the matrices and solve the problem with

the mixed finite element method discussed in Chapter 3.5.

One important software feature is that we can easily choose which kind

of boundary condition apply to local problems using the BcType flag.

4.2.2 Extract Data from the Solution

(a) (b)

Figure 4.3: Complex intersection between a hexahedron and a tetrahedron.

Once the problem has been solved, we have the pressure field described

by the P0 degrees of freedom and the velocity field by RT0 degrees of freedom.

We want to compute the upscaled geological variables using equation 2.12 or

2.19. If the coarse cell coincides with a subset of fine grid cells, i.e. we are in

the matching case, then it is relatively easy to compute the needed values.

However many complications occur in the case of non-matching coarse cell.

We have focused in developing a non-matching upscaling technique for the

transmissibility field: therefore, the values we are interested in are the mean

pressure over the cell:

〈p〉C =

∫
C p dC∫
C dC

, (4.2)

where C is an hexahedric coarse cell, and the flux through the interface is:

u|S =

∫
S

u · dS, (4.3)

where S is a coarse cell face.

We can rewrite (4.2) in a discrete form knowing that is P0 in each tetra-

hedron. Let k be the index of the k-th tetrahedron, we want to find the
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fraction of volume x̃k inside the hexahedron C. We start by placing each

tetrahedron of the mesh into one of these group:

1. the tetrahedron k is inside the coarse cell, x̃k is equal to 1,

2. the tetrahedron k is outside the coarse cell, x̃k is equal to 0,

3. the tetrahedron k intersects one or more faces of C, 0 < x̃k < 1.

The average pressure can be computed as:

〈p〉C =

∑
k pkVkx̃k∑
k Vkx̃k

(4.4)

where pk is the local pressure and Vk is the tetrahedron volume. The main

problem is how to compute x̃k in case of intersections: indeed a generic 3D

intersection between tetrahedron and hexahedron could lead to more com-

plex polyhedrons. In order to solve this problem and to avoid the analysis of

all possible cases, we have implemented the following algorithm. Let K be

the current tetrahedron, we start searching for a set of points PC , composed

by:

• vertices of C that are inside K,

• vertices of K that are inside C,

• intersections between edges of C and faces of K,

• intersections between faces of C and edges of K.

We now need the concept of convex hull: given a subset A ∈ Rd the convex

hull is defined as the smallest convex set in Rd containing A. In particular,

the convex hull of PC in R3 is the intersection between K and C. To

find such convex hull, we use another external library named QHULL: this

library is one of the most used for convex hull computation and Delaunay

triangulation. To compute the convex hull for a given set of points it uses

the Quickhull algorithm presented in [3], returning a set of tetrahedrons

covering the original polyhedron. Finally, we can compute the intersection

volume Ṽ as the convex hull volume and the fraction of volume inside the

cell x̃T = Ṽ /VK .

We can use a similar approach to discretize the integral in (4.3). In order

to avoid integration errors, we implement an integration method that is exact

for RT0 elements. We want to find the area of the intersection between the

plain interface S and the k-th tetrahedron. We start by assigning each

tetrahedron to one of the following groups:
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1. the tetrahedron k does not intersect the interface S,

2. the tetrahedron k intersects the interface S.

A generic 3D intersection between a finite plane and a tetrahedron could

generate complex polygons, so it is not easy foreseeing how many edges

they could have. Let K be the current tetrahedron, we search a new set of

points PS composed by:

• vertices of S that are inside K,

• intersections between edges of S and faces of K,

• intersections between S and edges of K.

Again, the convex hull of PS (in this case it is 2D) is the intersection we are

searching for. As we have seen in Chapter 3.4, the local base functions ϑi
of Raviart-Thomas element are linear. Let S̃ be the intersection between S

and K and nS the S normal vector (that is constant): recalling the Raviart-

Thomas interpolation function ΠRT
K (·) defined in Chapter 3.4, and knowing

that the velocity field belongs to RT0 in each tetrahedron (so u = ΠRT
K (u)),

then the function f̃(x) = (ΠRT
K (u) · nS)(x) : S̃ → R is linear and using the

mean value theorem we have:∫
S̃
f̃(x) dS̃ = f̃(R)|S̃|, (4.5)

where R is the center of mass of S̃ that can be computed as:

R =
1

|S̃|

∫
S̃

x dS̃. (4.6)

Moreover, the center of mass of a triangle embedded in R3 can be easily

computed as the vertices average

R4 =
1

| 4 |

∫
4

x d4 =
t1 + t2 + t3

3
, (4.7)

where the ti are the triangle vertices. For more complex polygons, there is no

relation between center of mass and vertices average. A workaround to find

the center of mass of a more complex polygon is to split it in several triangles,

compute their centers of mass and lastly compute a weighted average of these

points. Finally, using (4.3) and (4.5) for each tetrahedron, imposing |S̃k| = 0

for tetrahedrons which does not intersect S, we obtain:

v|S =
∑
k

f̃(Rk)|σ̃k| (4.8)

which is an exact quadrature formula for plain surface integrals of RT0

elements.
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4.2.3 The Main Loop

The core of the software is basically a for loop cycling over all the coarse cells.

For each cell we need to solve the problems along each direction and extract

data as explained above. There is not any correlation for the computation

of the upscaled quantities among coarse cells. In fact each local problem

requires only a subset of the original fine grid.

For these reason it is natural to think of a parallel version of the soft-

ware. In parallel computing, an embarrassingly parallel workload, or em-

barrassingly parallel problem, is one for which little or no effort is required

to separate the problem into a number of parallel tasks. We can think at

the upscaling procedure as being part of the embarrassingly parallel class of

problem. For example, let nt be the number of threads, we could split the

fine grid in nt subgrids, for example along x-axis. Therefore each thread

would process only one subgrid. However, we should pay attention if the

ring feature has been used. Using a ring size of ρ, we should extend the

subgrids dimension adding ρ cells along x-axis in both the ways resulting in

nt overlapping subgrids.
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Numerical Results

In this chapter, we will perform and test the upscaling of several fields with

the methods and software described in the previous chapters. All flow simu-

lations have been done using the commercial software Eclipse. This software

uses a finite volume method with two-points flux approximation to solve ma-

terial and energy balance equations modelling a subsurface petroleum reser-

voir. In order to solve the fluid flow problem, several input data must be set;

we can distinguish them into two type: field data and external data. Some

examples of external data are the injection and production well positions,

which can be varied for feasibility studies over new reservoirs or to optimize

the oil production in the existing ones. Field data are quantities such as

porosity, permeability and transmissibility. As we have seen in Chapter 2

they characterize the reservoir. The more this quantities are matching the

real physical fields, the more accurate the reservoir simulation is.

5.1 Validation Tests

5.1.1 Linear Permeability

With this first step, we want to assess the correct behaviour of the code. To

this aim, we provide a case study where the solution is known analytically.

Thus our first case test is shown in Figure 5.1: it is a cubical Cartesian

grid made by four z-layers 1 meter thick with an isotropic permeability ki
of 2,4,6, and 8 millidarcy respectively.

In the case of permeability upscaling along the x and y axes, the flux

is parallel to the grid layers, then the upscaled permeability K∗xx and K∗yy
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Perm

2

4

6

8

Figure 5.1: Cube with linear permeability.

should be equal to the average value of the permeability

K∗xx = K∗yy =
1

4

4∑
i=1

ki = 5. (5.1)

On the contrary, a permeability upscaling along z axis leads to a flux or-

thogonal to the layers. The analytical solution for the upscaled permeability

K∗zz is equal to the harmonic average of the permeability, namely

K∗zz =

(
1

4

4∑
i=1

1

ki

)−1

= 3.84. (5.2)

Note that it is possible to obtain an anisotropic permeability field starting

from a isotropic permeability field. To better understand the equations

(5.1) and (5.2), we note that the Darcy problem could be associated to

an electrical circuit problem, where the permeability is associated to the

conductance, the velocity to the electric intensity current and the pressure

gradient to the potential difference, therefore the upscaling along x and y

corresponds to a circuit with conductances in parallel (resistors in series),

while along z we have conductances in series (resistors in parallel).

We test our upscaling procedure over the above cube using both open and

closed boundary conditions. Using closed conditions we obtain the following

tensor:

K∗C =

 5 1.85 · 10−16 2.72 · 10−16

7.82 · 10−16 5 −4.032 · 10−16

3.01 · 10−16 −1.48 · 10−16 3.84

 (5.3)
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Figure 5.2: Computational grid for mismatch test.

In the case of open condition the matrix is:

K∗O =

 4.9994 −0.0006 −0.0039

−0.0006 4.9994 −0.0076

−0.0039 0.0076 4.5818

 (5.4)

Note that both K∗C and K∗O are symmetric as a consequence of the linear

least square approach used to compute the upscaled matrix (see Chapter

2.2.3).

Using closed boundary conditions we obtain an almost perfect matching

with the analytical results. Instead, using open boundary conditions the

permeability computed along z-axis is overestimated, plus we obtain signifi-

cant values for extra-diagonal elements of the permeability tensor. However,

this does not mean that upscaling using closed boundary condition is always

better, because the local upscaled permeability strictly depends of the ad-

jacent field properties: for example, if a coarse cell is surrounded by high

permeability values, a method that slightly overestimate permeability would

suit better, since at fine scale the global solution would flow through lateral

faces encouraging the use of open boundary conditions. This is a reason

that leads to the use of global or local-global methods (see 2.4).

5.1.2 Non-Matching Grids Test

Now we want to test our software using a coarse cell not aligned with the fine

grid. The simulation setup shown in Figure 5.2 is now made by a Cartesian

fine grid with 8× 4× 4 cells where each of them is a perfect 1m× 1m× 1m

cube. Then we define two adjacent coarse cells whose faces cut the fine grid
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Figure 5.3: Computational grid for mismatch test with a sloped interface.

cells. We set a uniform velocity field directed along the x axis equal to 1m/s

and we are interested in computing the flux through the coarse cells interface

(the red face in Figure 5.2) to validate the algorithm described in Chapter

4.2.2. Note that the interface is crossing a lot of fine mesh tetrahedrons.

Since the velocity is constant and the interface area is 9m2, the analytical

flux is 9m3/s.

Our code is able to manage this configuration, returning a solution with

negligible errors (less than 0.0001%).

For a more complex test, we use the setup shown in Figure 5.3 where we

have an inclined interface. Since the velocity is still constant and parallel

to the x-axis, the flux over the new interface will be unchanged. Again

the software is able to extrapolate the right information from fine scale

properties.

5.1.3 Existing Upscaling Software

The commercial software Petrel, mainly used for corner point grid manip-

ulation, is able to do a flow based upscaling of the permeability field over

matching Cartesian grids. The only difference from our approach is that

Petrel use a Finite Volume approximation to solve the local problems.

In Figures 5.4 and 5.5 are shown the cross-plot charts comparing the

permeability field computed by Petrel and our software. To generate the

upscaled permeability field, we have used a Cartesian coarse grid where

each cell is double size compared to the fine scale (the coarse grid size is

55 × 15 × 15). The cross-plot using closed boundary conditions does not

reveal substantial differences between the two methods. However, in the case
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Figure 5.4: Cross-plot of the permeability using open BC.
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Figure 5.5: Cross-plot of the permeability using closed BC.

of open boundary conditions, the permeability field computed using mixed

finite element approximation seems to be slightly lower, leading to a less

general reservoir connectivity. This fact is partially due to the higher degrees

of freedom we have using a mixed finite element approach, allowing more

fluid to flow through the lateral faces during the local problems resolution.

In general, a lower permeability using open condition should be better since

we expect an overestimation of the field connectivity.

5.2 Real Reservoir Cases

The SPE Comparative Solution Project (http://www.spe.org/web/csp/) is

a comparative solution projects organised by the Society of Petroleum Engi-

neers. The purpose of the projects has been to provide benchmark datasets

which can be used to compare the performance of different simulators or

algorithms. In particular, the SPE Comparative Solution Project provides

a reservoir model for benchmark purposes. The model consists of part of

the Brent sequence. The top part of the model is the Tarbert formation, it

is a representation of a prograding near shore environment. The lower part

is fluvial. The model is described on a regular Cartesian grid.
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(a) G1 (b) Sector

Figure 5.6: SPE-CSP subgrid G1, to the right side the middle layer seen from the top.

(a) G2 (b) Sector

Figure 5.7: SPE-CSP subgrid G2, to the right side the middle layer seen from the top.



5.2. Real Reservoir Cases 53

Production PP Pos(i, j) Injection INJ Pos(i, j)

PP1 (4, 4) INJ1 (107, 27)

PP2 (4, 10) INJ2 (107, 21)

PP3 (4, 16) INJ3 (107, 15)

PP4 (4, 22) INJ4 (107, 9)

PP5 (4, 28) INJ5 (107, 3)

Table 5.1: Wells positions for fine grid simulation.

In order to test our upscaling software, we have extracted two sub-grids

from the SPE model: one from the top part, that we name G1, and one from

the lower part, G2. Both grids are composed by 110× 30× 30 (99000 cells)

cells and each cell is 20ft× 10ft× 2ft (roughly 6m× 3m× 0.6m). Then the

grids measure 2200ft× 300ft× 60ft (660m× 90m× 18m). The permeability

field of grid G1 shown in Figure 5.6(a) does not exhibit any particular pattern

that could force the fluid flow over preferential paths. Conversely, the grid

G2 shown in Figure 5.7(a) is characterized by high permeability channels

forcing the flow. In Figures 5.6(b) and 5.7(b) we show two sectors of the

grids orthogonal to the z-axes. Since the upscaling could be interpreted as

an homogenization of the fine grid quantities, the upscaling of G2 will be

more challenging.

In all our test cases we simulate the injection of water into an oil filled

reservoir. Moreover the two phases are defined as incompressible and im-

miscible fluids with the same physical properties. The result is practically a

single phase simulation that permits to track the water displacements over

the fine and coarse grids easily. This type of simulation is the so called tracer

simulation.

(a) PP position (b) INJ position

Figure 5.8: Production and Injection wells position.

The wells setup is shown in Figure 5.8 and it is the same for all tests
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and in both grids. There are five aligned injection wells (IW) at one edge

of the reservoir and five production wells (PW) at the opposite. All wells

are 30 cells deep, covering the entire domain along z-axis. The exact wells

positions are listed in Table 5.1.

The comparison between fine grid and coarse grid simulation is not triv-

ial: we need to identify some fundamental values to look for. For this reason

we introduce the Field Water Cut (FWCT) defined as the ratio of the wa-

ter extracted from the production wells (Vpw) compared to the volume of

total liquids produced (Vpt = Vpw +Vpo where Vpo is the oil produced at the

wells). In our simulations this quantity refers to the ratio of tracer produced

compared with total production, so

FWCT =
Vpw
Vpt

. (5.5)

The FWCT is a dimensionless variable, thus it varies within [0, 1]. We could

also define a similar quantity for the oil produced:

FOPR =
Vpo
Vpt

. (5.6)

Since the initial condition sets the reservoir completely filled with oil, the

FWCT will be zero until the first drop of water reaches the production wells

and for this reason there will be a certain amount of time where only oil is

produced (FOPR= 1).

Another important parameter to take into account is the Field Water

Injection Rate (FWIR). Flow results are reported in terms of wells injec-

tion and production. Eclipse expresses injection rates as the water volume

pumped into the reservoir in Sm3 per day (Sm3/Days). Sm3 are Standard

cubic meter, a derived unit of volume. It refers to a cubic meter at a spec-

ified standard temperature and pressure. In oil and gas industry standard

conditions are usually 15◦C for temperature and 100kPa for pressure. Since

we are considering incompressible and immiscible fluids and we fix the wells

pressure, the water injection rate will be constant. We can also define a spe-

cific injection rate for each well: we will refer to it as Well Water Injection

Rate (WWIR).

One big issue in the comparison between fine grid and coarse grid results

is the well positions: we must choose a coordinate (i, j) in which each well

will be placed therefore it is impossible to place the wells at the same place in

both fine and coarse grids. To overcome this problem, we use the local grid

refinement (LGR) that allows enhanced grid definition in areas needing a

higher level of simulation accuracy, such as near wells or in areas of complex
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Figure 5.9: Example of local grid refinement.

geology. In our case, we use the refinement to place the wells of the coarse

simulation into the same position of the fine one. An example is shown in

Figure 5.9. In all the tests below a proper grid refinement has been used so

the errors reported are generated by only the upscaling procedure, avoiding

the component due to the near well upscaling approximation.

5.2.1 Coarse Scale Analysis

Now we want to analyse the behaviour of the upscaling procedure varying

the dimension of the coarse grid cells: given a Cartesian fine grid with

nx × ny × nz cells and a Cartesian coarse grid with ncx × ncy × ncz cells, we

define the directional scale factors as

sx =
ncx
nx

; sy =
ncy
ny

; sz =
ncz
nz
.

If sx = sy = sz, we can define the isotropic scale factor siso. For example, if

Nfine is the number of cells of the fine grid, if we use a scale factor siso = 3

the coarse grid has Nfine/27 cells.

Then, given a fine grid reservoir (in our cases G1), we can generate a

coarse grid with a fixed scale factor. We note that using integer scale factors

leads to the generation of a matching coarse grids.

In Figure 5.10 we can see the Field Water Cut as defined in (5.5) for sev-

eral realizations using different siso for the coarse grid generation. We have

used both open and closed conditions for boundary treatments in transmis-

sibility upscaling. Note we have used a proper local grid refinement for each
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Figure 5.10: Upscale analysis: Field Water Cut for G1.
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Figure 5.11: Upscale analysis: Field Water Cut zoom G1.
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coarse grid. The first observation we can do is that the Field Water Cut

of the upscaled coarse grids using open boundary conditions is significantly

greater than the fine grid one. Conversely, using closed boundary conditions,

the Field Water Cut is lower than the reference one. This is in agreement

with the preliminary tests since simulations using open boundary condition

generally provide higher values for permeability and transmissibility. An-

other finding is that, even when using large coarse scale, the solution is still

in good agreement with the fine one if we consider that using siso = 5 each

coarse cell replaces 125 fine cells, significantly decreasing the total degrees

of freedom and speeding up the simulation.
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Figure 5.12: Upscale analysis: Water Injection Rate for G1

In Figure 5.12(a) we represent the Field Water Injection Rate. The real-

izations using closed boundary conditions seem to represent more accurately

the FWIR of the fine grid. However with both open and closed boundary

conditions the solution is not affected by the coarse scale. In other words it

seems like this kind of upscaling is particularly suitable for large coarsening

levels.
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Figure 5.13: Ring analysis: Field Water Cut for G1.

5.2.2 Ring Analysis

Another important feature we have introduced is the possibility to extend

the local problem domain. This is named ring (ρ) and it was introduced

in 2.3. We now extend the local domain in each direction adding ρ rows of

cells. Doing this, the influence of the boundary conditions decreases leading

to a more reliable solution. However the computational cost increases for

each local problem.

We use the standard setup and, starting from a 2 × 2 × 2 coarse grid,

we upscale the transmissibility field using different values of ρ and different

boundary conditions.

We start analysing the ring influence for the upscaling of G1. In Fig-

ure 5.13, and in the detail shown in Figure 5.14, we can see that the Field

Water Cut seems to converge to the fine grid FWCT in both open and closed

boundary conditions cases. Theoretically, if the ring size tends to infinite,

the transmissibility field is not affected by the boundary conditions and the

solutions using open or closed conditions for the upscaling converge.

In Figure 5.15(a) the Field Water Injection Rate shows the same con-

verging behaviour, decreasing the approximation errors due to upscaling for

grater values of ρ. This is also true for each singular well as it is shown in

Figure 5.15(b).

We now apply the same ring analysis for G2. This time, as shown in



5.2. Real Reservoir Cases 59

600 620 640 660 680 700 720 740 760 780 800
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Field Water Cut

F
W

C
T

time [days]

 

 

Fine grid

Closed ρ = 0

Closed ρ = 1

Closed ρ = 2

Open ρ = 0

Open ρ = 1

Open ρ = 2

Figure 5.14: Ring analysis: Field Water Cut zoom for G1.
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Figure 5.15: Ring analysis: Water Injection Rate for G1.
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Figure 5.16: Ring analysis: Field Water Cut for G2.

Figure 5.16, the solutions are qualitatively less accurate with respect to the

previous ones. This is in part due to an evident delay of the begin of water

production. The water pumped into the injection wells arrives slightly later

to the production wells, and only when this happens the water cut begin

to grow. A valid explanation of these behaviours could be the spreading of

high transmissibility areas of the reservoir field due to the upscaling. For

example, if a coarse cell lies on the boundary of an high transmissibility

channel, since the upscaling assigns an intermediate value for the coarse

transmissibility, the channel will increases. Then the fluid velocity inside

the channel decreases and consequently the water phase needs more time in

order to cross the whole reservoir.

However, the Field Injection Rate shown in Figure 5.18(a) does not seem

to suffer of systematic errors converging to the fine grid solution, though

slower than G1, for both closed and open boundary conditions. The same

behaviour for each well is shown in Figure 5.18(b).

5.2.3 Structured Displacement Analysis

Finally, we have tested our upscaling methods on non-matching grids. At

first, after a 2×2×2 Cartesian coarse grid has been generated, internal points

are moved along the same direction to generate a non matching coarse grid

as shown in Figure 5.19. Since, to avoid errors, the well positions should be
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Figure 5.17: Ring analysis: Field Water Cut zoom for G2.
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Figure 5.18: Ring analysis: Water Injection Rate for G2.
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Figure 5.19: Example of structured displacement (red grid) seen from the top.

the same in the coarse and fine grids, we do not move the points that belong

to the first two and last two rows of cells along the x-axis. Moreover, points

belonging to the boundary are fixed too.

That said, internal points move along the direction passing through the

points (0, 0, 0) and (Lx, Ly, Lz) where Li are the grid dimensions along each

direction. Finally we define a parameter δs > 0 indicating the displacement

intensity: δs is the ratio between the displacement length and the cell space

diagonal. Thus a displacement with δs = 1 would move an inner cell with

index (i, j, k) to the cell with index (i+ 1, j + 1, k + 1).

We have generated three coarse grids with δs = 0.2/0.4/0.6 starting

from a 2 × 2 × 2 upscaling of G1. Then we have applied transmissibility

upscaling using both open and closed boundary conditions to generate the

geological fields. In the case of open boundary conditions, what we notice

in Figure 5.20 is that grids that have been internal displaced seem to give a

better solution compared to the solution with δs = 0. Indeed this behaviour

is the fault of using the bounding box as defined in 4.1.3 to define the local

problem domains. In fact, even if there is a very small displacement, the

bounding box holds more fine grid cells. Thus, in the case of a 2 × 2 × 2

coarse grid with δs = 0, each local problem size would be of 2× 2× 2 while

if we apply a displacement 0 < δs < 1, the local problem size would be of

3×3×3 inducing a sort of ring and then reducing errors due to the upscaling

of transmissibility.

This is also noticeable in Figure 5.22(a) where the Field Water Injection

Rate is shown. Again the solutions given from grids with displacement seem

to approximate better the fine grid behaviour. This is true for each injection
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Figure 5.20: Structured displacement analysis: Field Water Cut for G1.
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Figure 5.21: Structured displacement analysis: Field Water Cut zoom for G1.
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Figure 5.22: Structured displacement analysis: Water Injection Rate for G1.

well (Figure 5.22(b)).

However, the use of closed boundary conditions does not improve the

solution as much as the open conditions, instead it moves away from the

fine grid solution. We will try to explain this behaviour in the next section.

In short, it does not seem that structured displacements over non-matching

grids can introduce systematic errors to the solutions. This validates, at least

for this kind of non-matching grids, the upscaling algorithm and the extrap-

olation of the average pressure and average flow from the local problems.

However in this case we are not taking into account the possible presence of

non parallel faces between coarse and fine grids. For this reason we study

another unstructured kind of grid displacements in the next chapter.

5.2.4 Unstructured Displacement Analysis

Finally, we study the behaviour of transmissibility upscaling for unstruc-

tured displacements of the coarse grid. This is achieved by a suitable move-

ment of the pillars; first of all, we define a new parameter δus, then we divide

the pillars into two groups denoted as black and white. Looking from a top

view we can assign each pillar to the two groups likewise a chess board,

e.g. if i + j is even the pillar belongs to the black group otherwise if i + j

is odd it belongs to the white group. Finally we move pillars belonging to

”black” groups of δus along y-axis while pillars belonging to ”white” group

are moved of −δus along y-axis. The resulting configuration is shown in

Figure 5.23.

We start considering the first grid G1. In Figures 5.24(a) and 5.24(b)

are shown the Field Water Cut of the solutions using different values for δus
and closed boundary conditions. As we can see there is a noticeable decay
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Figure 5.23: Example of unstructured displacement (red grid) seen from the top.

of the water cut growing with increasing displacement. The same behaviour

is observed for the Water Injection Rate in Figures 5.25(a) and 5.25(b).
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Figure 5.24: Unstructured displacement analysis: Field Water Cut for G1 using Closed

BC.

Then, we analyse the solutions obtained using the transmissibility fields

upscaled on unstructurally displaced grids and open boundary conditions.

The solutions seem to decay again in both parameters FWCT (Figures 5.26(a)

and 5.26(b)) and FWIR/WWIR (5.25(a) and 5.25(b)). However this time,

since upscaling using open boundary conditions for transmissibility fields

generally results with an higher connectivity, the solutions for high values of

δus behave better. This can be in part explained recalling the fact that we

are using a Finite Volume method with two-points flux over non-Cartesian

grids. In fact, this method is only correct if the grid directions are aligned
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Figure 5.25: Unstructured displacement analysis: Water Injection Rate for G1 using

Closed BC.
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Figure 5.26: Unstructured displacement analysis: Field Water Cut for G1 using Open

BC.
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Figure 5.27: Unstructured displacement analysis: Water Injection Rate G1 using Open

BC.
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with the principal directions of the permeability tensor. For general non

orthogonal grids, the two-points flux scheme does not work properly. Some

analysis of the two-points flux over distorted grids can be found in [1]. It

would be interesting to use a multipoint approximation to avoid errors due

to the adopted discretization scheme. However, this extension is beyond the

purpose of the work. For a complete analysis of the finite volume multipoint

flux we refer the reader to [8].

A similar behaviour is obtained using G2 and varying δus. With both

open and closed boundary conditions there is a decreasing trend of the in-

jected water resulting in an underestimation of the reservoir connectivity

(see Figures 5.28 and 5.30).

Therefore we can conclude that upscaling over coarse grids with unstruc-

tured displacements does not produce systematic errors due to the upscaling

procedure itself. The major problem in these cases is the solver used that is

not optimal for this kind of grids. However for small values of the displace-

ment the error is limited and we stress the fact that the relevant real cases

are often almost Cartesian.
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Figure 5.28: Unstructured displacement analysis: Field Water Cut for G2 using Closed

BC.
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Figure 5.29: Unstructured displacement analysis: Water Injection Rate for G2 using

Closed BC.
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Figure 5.30: Unstructured displacement analysis: Field Water Cut for G2 using Open

BC.
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Figure 5.31: Unstructured displacement analysis: Water Injection Rate G2 using Open

BC.





Conclusions

The aim of this thesis was the development of a workflow and the tools for 3D

upscaling on non-matching coarse grids. We have implemented an original

code in C++ that can be interfaced with commercial reservoir simulators such

as Eclipse using the industrial standard for grid format. Given a fine grid

in which, for each cell, the permeability tensor is defined, we are able to

compute upscaled properties such as permeability and transmissibility over

any coarse grid with the help of different tools to improve upscaling accuracy

such as variable ring size and different choices of the boundary conditions.

The integration on the intersection between non matching cells have

been developed in order to manage coarse grids in which cells faces are not

aligned with fine grid. We have performed several tests to assess the correct

behaviour and robustness of the upscaling techniques providing comparisons

with already existing software for upscaling with matching grids. The spe-

cial treatments of wells placement allow us to focus on errors exclusively

produced by the upscaling procedures without introducing further approxi-

mations.

We believe that a satisfactory result for various type of coarse grids has

been reached, focusing on the case of non-matching coarse grids. The results

show that our upscaling technique is robust with respect to the grids, i.e.

it is not particularly influenced by the overlap between fine and coarse cells

while the results are strongly dependent, as expected, by the properties of

the global field, such as high channelised reservoir, and by the coarsening

level.

We now point out some possible future development to improve the

software capabilities:

• the upscaling technique could be easily parallelized using MPI or hy-

brid MPI/OpenMP as discussed in Chapter 4.2.3,

• the study the coarse field behaviours using a finite volume multipoint

flux scheme to solve the fluid flow equations could be beneficial in the

case of extremely distorted grids,

71



• the implementation of a local-global upscaling technique as shown in

Chapter 2.4 would lead to the more precise solution,

• the implementation of a near-well upscaling scheme would eliminate

errors due to the wells placement in fine/coarse grids as discussed in

Chapter 2.5.
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