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Abstract

Bio-electronic interfaces are a fundamental subject in the wider areas of electro-

chemistry and neuroscience. The aim of this Master Thesis is to derive and numeric-

ally solve a hierarchy of novel mathematical models, which can serve as a supporting

tool for design and investigation of innovative bio-hybrid structures.

The basis of the present work is a three dimensional model describing the ionic

concentration dynamics and the electrical displacement in the extracellular fluid as

the result of an external stimulation of the cell. The focus is on the thin sheet of elec-

trolyte bath between the cell and the electronic device, where most of the physical

phenomena occur. Ion channels and capacitive couplings at the cellular membrane

and at the oxide layer covering the device are modeled through specific transmission

conditions. Numerical computations are performed in axisymmetric configurations,

introducing a suitable exponentially fitted finite element discretization for these par-

ticular geometries. Simulations are able to characterize not only the behavior of a

single cell on a single electrode, but also the mutual interactions between multiple

cells and multiple devices, providing results that are in good agreement with phys-

ical expectation and experiments.

A detailed derivation of geometrically reduced models is also presented and val-

idated on numerical simulations of biological relevance, conducted in the middle

plane of the considered electrolyte cleft.





Abstract

L’accoppiamento di dispositivi elettronici con materiali bologici è un aspetto fon-

damentale nel campo delle neuroscienze e dell’elettrochimica. L’obiettivo di que-

sta Tesi è la derivazione e la risoluzione numerica di una gerarchia di nuovi modelli

matematici che possano essere uno strumento utile nell’ambito di queste discipline.

Il punto di partenza del lavoro è un modello tridimensionale per descrivere il flus-

so di ioni e il campo elettrico che si creano nel fluido extracellulare quando una cellu-

la viene stimolata dall’esterno. L’attenzione viene posta sul sottile strato di elettrolita

tra la cellula e il dispositivo elettronico, dove avvengono i fenomeni fisici di maggior

interesse. La descrizione dei canali ionici e degli accoppiamenti capacitivi con la

membrana cellulare e con l’ossido che ricopre il substrato è affidata a specifiche con-

dizioni di trasmissione. Per quanto riguarda il trattamento numerico del modello, è

stata introdotta una discretizzazione ad elementi finiti di tipo “exponential fitting”

adattata a trattare le particolari configurazioni assialsimmetriche studiate. Le simu-

lazioni condotte riproducono non soltanto il comportamento di una singola cellula

su un singolo elettrodo, ma anche le interazioni tra più cellule e più dispositivi, con

risultati in buon accordo con le aspettative fisiche e i dati sperimentali.

Viene infine presentata la derivazione matematica di una riduzione geometrica

del modello di partenza nel piano medio del dominio tridimensionale. I modelli ri-

dotti proposti sono validati su numerose simulazioni numeriche relative a casi test

di interesse biologico.
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Introduction

The research activity of the present Master Thesis can be cast within the context of

Bio-Electronics, which is a discipline belonging to the wider areas of Nanotechno-

logies and Neurosciences. The focus is on the coupling between biological matter

and solid state devices: an example of a simple structure can consist of a living cell

attached to an electronic substrate and surrounded by an electrolyte bath. This in-

terfacing gives rise to the study of different types of signal trasmissions. One of the

main ways of operation consists in the actual stimulation of the cell, with a depolar-

izing pulse or other specific techniques, transducing the chemical signals produced

by the biological component into electronic signals measured by the device. Another

way of operation, on the contrary, is the activation of the biomaterials from the elec-

tronic component.

The interface contact is realized by a thin conductive electrolyte cleft between the

cell and the substrate, whose amplitude is smaller than the cell radius of about three

orders of magnitude. Therefore, the cell-chip junction forms a planar electrical core-

coat conductor and the main physical phenomena take place in this thin region.

In this work a novel contribution in the area of modeling and simulation of the

bio-electronic interfaces is given by introducing a hierarchy of mathematical models

able to describe the ion flow and the electric potential variation in the extracellular

fluid. The attention is on the layer of extracellular fluid in the cleft, which repres-

ents the computational domain chosen to perform the analysis and the simulations.

Special interest is devoted to the modeling of the transmembrane currents and of

the strong coupling mechanisms with both cell and device, dealt through specific

boundary and interface conditions on the considered three dimensional domain.

Several modeling hypotheses are also introduced and discussed to mathematically

derive different reduced models in the middle horizontal plane of the cleft, whose

aim is to reduce the number of the degrees of freedom in the numerical computa-

tions.

Extensively conducted simulations reveal that the ion flow and the electric dis-



placement variation mainly occur in the considered cleft. The three dimensional

model is solved in axisymmetric configurations and produces sensible results also

when considering the mutual interactions among more than only one cell on an

electronic substrate. The stimulation of one cell results in turn in a stimulation of

the electrodes and of the other cells collocated in the neighbourhood around and

this physical behaviour is investigated and effectively reproduced. Finally, computa-

tional experiments demonstrate that the proposed model reduction is valid in terms

of physical accuracy and useful in terms of decrease of the computational effort.

The thesis structure consists in a first chapter where we present an overview of

the main components and features of bio-electronic interfaces. Great importance

is given to the cell membrane, which is actually the major leader in the considered

phenomena, to the stimulation techniques and to the coupling between the biolo-

gical and the electronic environments.

The hierarchical mathematical modeling is discussed in Chapter 2, using the Pois-

son Nernst Planck system as a basis and starting point in the description of the mo-

tion of the charged particles in the electrolyte. The adopted approach consists in

solving the equations in the cleft junction, accounting for the cell and for the device

with appropriately chosen coupling conditions based on several symplifying mod-

eling assumptions. With an averaging procedure and proper hypotheses on the dis-

tributions of the potential and of the concentrations, based on the physical nature

of the problem, a geometrical reduction is then performed from a three dimensional

picture leading to a suitable two dimensional formulation in the middle section of

the electrolyte cleft.

In Chapter 3 we illustrate the general scheme used to numerically solve the math-

ematical models. Time dependence is dealt with a Backward Euler scheme and at

each time level the resulting nonlinear system is solved with a staggered algorithm,

namely the Gummel Map iterative procedure. After the application of this solution

map, the equations are decoupled and at each iteration one needs to solve a diffu-

sion advection reaction problem with strongly advection dominating terms. A spatial

discretization with an exponentially fitted finite element method is introduced and

described for the particular case of axisymmetric geometries.

In Chapter 4 an extensive validation of all the mathematical models of the present

work is performed. We study and analyze in detail some test cases for the discretiz-

ation in axial symmetry and then we apply this numerical procedure to solve many



different biological cases. Not only a simple cell-chip junction is considered, but the

analysis focuses also on the simulation of the interaction between multiple cells and

multiple devices, obtaining physically sound behaviors and results. Then we also

reproduce the same results with the models of reduced order, to validate the math-

ematical procedure and the assumptions introduced in Chapter 2.

Finally, in Chapter 5 we present a summary of the main mathematical and com-

putational aspects investigated in this thesis and we indicate several possible future

research developements in the area of modeling and simulation of bio-electronic in-

terfaces.





Chapter 1

Introduction to Bio-Hybrid Devices

In this chapter we give a short introduction to the subject of bio-electronics, a sci-

entific discipline whose principal aim is to couple a biological component (a cell or a

system of cells) and a solid-state device (a silicon transistor or an array of transistors).

1.1 Basic principles of bio-electronics

Bio-Electronics is a scientific and technological discipline that deals with the study

of the coupling of biomolecules with electronic devices. The interfacing of bioma-

terials and electronic devices can be used to transduce chemical signals generated

by biological components into electronically readable signals or, conversely, to ac-

tivate the biomaterials by applying electronic signals, thus resulting in a switchable

performance of the biological components. The scientific and practical importance

of bio-electronics reflects in a variety of different fields, as basic science, practical

use in medicine, high-tech industry and many other applications [54]. Miniaturiz-

ation is a requisite for future implantable bio-electronic devices, and these types of

applications will certainly introduce the need for biocompatibility of the systems.

Miniaturization will also require the patterned, dense organization of biomolecules

on electronic supports.

As explained in [53], cell-silicon junctions are the basis for an integration of neur-

onal dynamics and digital electronics. One way of operation is the so called “cell to

chip” mode: an input biological signal is transduced into an electrical signal, which

can be measured at the output terminals of the electronic substrate (as in non- invas-

ive techniques to record cellular response to drugs and/or toxins [23]). The second

way is called “chip to cell” mode: an electrical signal applied to the chip can induce
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Figure 1.1.1 – Neuroelectronic hybrids and cell transistor schemes (from [53]).

Figure 1.1.2 – Network of neurons on a silicon chip (from [53]).

a stimulation of the cell.

To illustrate some basic ideas we now describe the structure of a communication

system between cells and chips. The simplest configuration is the interface of indi-

vidual nerve cells and silicon microstructures and is shown in Fig. 1.1.1-(a). Neuronal

activity is elicited by capacitive stimulation from the chip and is then recorded by a

transistor. On a next level, pairs of nerve cells are coupled to a chip. Fig. 1.1.1-(b)

schematically depicts the operation of a neuronal network: the network receives a

signal from a stimulator, then it elaborates the signal, and finally transmits the in-

formation to an electronic device for further use. In Fig. 1.1.1-(c) the role of the bio-

logical and electrical components is reversed compared to Fig. 1.1.1-(b): as a matter

of fact, the electronic device elaborates the signal received from the cell, and then the
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resulting output signal is used as a driving force for the stimulator towards a second

cell. Configurations (b) and (c) are therefore mutually complementary. In a further

step, neuronal networks are created on the chip in such a way that an intimate com-

munication of network dynamics and computation is built (Fig. 1.1.1-(d)).

The neuronal network shown in Fig. 1.1.2 conceptually corresponds to the con-

figuration of Fig. 1.1.1-(b) and is grown onto a silicon substrate, where transistors

were implemented before the implantation of the cells and neuronal cell bodies are

inserted into the cages. In this configuration, neurons are electrically stimulated and

the electric signal propagates to the end point of the network, where it is transferred,

for further elaboration, to a transistor located underneath.

Before going further in analyzing bio-electronic interfaces we need to take a closer

look at the cell structure, which is the main biological component of the system and

at the techniques used to stimulate it. This is mandatory for the study we want to

conduct.

1.2 The cell and the cell membrane

In the present work, the mathematical modeling of the cell and of its membrane is

a major object, therefore we take a look at the entire structure of a cell to make sure

that the proposed mathematical models account for the main phenomena.

The cell is the basic living unit of the human body. Each type of cell is adapted to

perform one or a few specific functions, and identifying and characterizing cells is a

big task which pertains the field of medical physiology [18]. Although cells often dif-

fer considerably from one another, all of them have certain basic characteristics that

are alike. For instance, every different kind of cell uses the same reaction of oxygen

with carbohydrate, fat, or protein to release the energy required for its function. The

basic structure of a cell is also shared among each type of cell, and is depicted in Fig.

1.2.1.

Its two major parts are the nucleus and the cytoplasm. The nucleus is separated

from the cytoplasm by a nuclear membrane, and the cytoplasm is separated from

the surrounding fluid by the cell membrane. The different substances that make up

the cell are collectively called protoplasm. Protoplasm is composed mainly of five

basic substances: water, electrolytes, proteins, lipids, and carbohydrates. Water is by

far the principal fluid medium of the cell in a concentration of 70 to 85 per cent for

most cells. Many cellular chemicals are suspended or dissolved in water: ions such as
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Figure 1.2.1 – Basic structure of a cell.

potassium, magnesium, sodium, chloride, and calcium are present, and play a major

role in the electrochemical activity of the cell and in the regulation of the transport of

substances across the cell membrane.

The exterior of the cell, or “extracellular fluid”, is the medium where cells live,

and accounts for almost one third of the body fluids. There are obviously many dif-

ferences between the quality and quantity of the substances present in the extra-

and intracellular fluid: specifically, there is a great difference in the amount of the

dissolved ions, a difference due to special transport mechanism occurring at the cell

membrane.

Fig. 1.2.2 shows a detail of a two-dimensional cross-section of a cell membrane:

it consists almost entirely of a lipid bilayer, with a thickness of the order of 10 nm,

but it also contains large numbers of protein molecules in the lipid, many of which

penetrate all the way through the membrane. The lipid bilayer is not miscible with

water, therefore it constitutes a barrier against the movement of water and water-

soluble substances (such as ions) between the extracellular and intracellular com-

partments. The protein molecules in the membrane have entirely different proper-

ties for transporting substances: their molecular structure interrupts the continuity

of the lipid bilayer, constituting an alternative pathway through the cell membrane.

Most of these penetrating proteins work as transport proteins and are usually highly

selective to the types of substances that are allowed to cross the membrane. Protein

molecules that permit the flow of ions are called ionic channels [19].

Transport mechanism and selectivity of ionic channels depend on the type of

channel that is being considered. Transport can be passive, namely due the simple
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Figure 1.2.2 – Transmembrane channels and ion flow across the membrane.

electrodiffusion of substances, or active, that is the flow of substances is activated

with the use of cellular energy (mostly ATP, adenosine triphosphate) in the process.

Also, the permeability of the ion channels is often modulated by either the concentra-

tion of substances (chemical gating) or the potential difference across the membrane

(voltage gating), as is the case for potassium and sodium ion channels. The role of

the membrane in the communication between the interior and exterior of the cell is

very important, because it supervises the dynamic regulation of the concentration

of ionic species dissolved in the cytoplasm. A variation of concentration implies an

accumulation or depletion of charged ions, causing in turn a variation of the electric

potential Vm across the membrane.

1.3 Cell stimulation: voltage clamp technique

The voltage clamp technique is widely used in electrophysiology to study a single or

multiple ion channels in cells and to measure the ion currents through the mem-

brane, while holding the membrane voltage at a prescribed value. It can be applied

to a variety of cells, especially to excitable cells such as neurons, cardiomyocytes,

muscle fibers and pancreatic cells.

The membranes of excitable cells contain many different kinds of ion channels,

some of which are voltage-gated. With the application of the voltage clamp, the

membrane voltage Vm can be manipulated independently from the ionic currents, al-

lowing to study the current-voltage relationships of membrane channels. The concept
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Figure 1.3.1 – Schematics for the voltage-clamp technique.

of the voltage clamp is attributed to Kenneth Cole and George Marmont in the 1940s,

then Hodgkin and Huxley discovered in 1952 how ionic currents give rise to the ac-

tion potential [24].

The voltage clamp consists in a current generator with two electrodes, one inside

the cell and the other one in the surrounding bath, as schematically depicted in Fig.

1.3.1. The transmembrane voltage Vm is the difference of potential between the intra-

cellular and the extracellular electrodes. The experimenter sets a “holding voltage”,

or “command potential” and the voltage clamp maintains the cell at this value. The

electrodes are connected to an amplifier, actually measuring and recording mem-

brane potential, and then feeding the signal into a feedback amplifier. Whenever the

cell deviates from the holding voltage, this amplifier generates an error signal (the

difference between the holding voltage and the actual voltage of the cell). The feed-

back circuit passes current into the cell to reduce the error signal to zero, therefore

the clamp circuit produces a current equal and opposite to the ionic current, giving

an accurate reproduction of the currents flowing across the membrane.

In the present work we study and try to reproduce experimental results where

voltage clamp and current clamp techniques are applied to stimulate the cells [3, 5,

14, 38, 48, 49]. In most of these experimental setups the configuration consists in one

or multiple cells attached on an electronic device (as described in Section 1.4) and

the goal is to study the behavior of these cells after an external stimulation, resulting

in the opening of the transmembrane channels and in the flow of ions through the

surrounding electrolyte. This stimulation is made possible with the use of voltage

clamp or patch clamp, which is a refinement of the voltage clamp tecnique developed

by Neher and Sakmann in the late 1970s [36].
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1.4 Contact between a cell and an electronic

device

Great importance has the compatibility of electronics and biological material, be-

cause living cell or neurons must be cultured or attached to a substrate that does not

threaten their survival. Interfacing biological and electronic systems requires to es-

tablish a contact between these two worlds. This contact must be intimate because

the distance between cells and electronic devices influences the amount of coupling,

as we will see in our numerical simulations.

In order to maintain a spatio-temporal coherence in the measurement and stim-

ulation, the immobilization of biocomponents on the interface is also needed. The

methods involved in the culture of neurons on silicon are the basis for the considered

application, but we are not describing them in the present work because it would re-

quire a huge amount of bio-chemistry (for a detailed explanation see [13]). We can

see an example of a simple stucture in Fig. 1.1.2-(a), where the neuron is caged in

“micro fences” post-fabricated on the electronic substrate [5, 35].

1.4.1 Ion-electronic interfacing

Fig. 1.4.1 shows an example of what we refer to when describing ion-electronic inter-

facing. We see the micrograph of a nerve cell from rat brain on a silicon chip, along

with source and drains contacts of a linear array of Field Effect Transistors (FET),

while the gate contacts are visible as bright squares.

The contact between neurons and substrate is a perfectly polarized electrolyte/ox-

ide electrode without electronic or ionic current. As long as the insulating lipid layer

of the membrane is in intimate contact with the substrate insulator, an electrical field

across the membrane due to neuronal activity can polarize the silicon dioxide to af-

fect the underlying transistor (cell to chip stimulation). The same effect can also be

reversed by applying an electrical field from the substrate in order to polarize the

membrane and affect field-sensitive membrane ion channels (chip to cell stimula-

tion).

When a nerve cell grows on a chip, the lipid layer of the cell and the oxide layer

of the chip do not form a compact dielectric [13]. Actually, a thin layer of electrolyte

is created between cell and substrate, caused by steric repulsion of fibronectin and

of proteins in the glycocalix of the cell. The amplitude of the distance between the
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Figure 1.4.1 – Example of ion-electronic interfacing: rat neuron on a linear array
of transistors (the ionic current in the cell interacts with the electronic current in
the silicon substrate) [57].

cell and the substrate can be measured by fluorescence interference contrast (FLIC)

and is usually around 100 nm [5]. This conductive electrolyte cleft shields the electric

field, preventing a direct mutual polarization of membrane and dielectric insulator.

The cell-silicon junction forms a planar electrical core-coat conductor: the coats of

silicon dioxide and membrane insulate the core of the conductive cleft from the con-

ducting environments of silicon and cytoplasm. The neuro-electronic interface is

then mediated by the cleft, where the ionic currents from the cell are forced to flow.

Sensing the activity of a neuron can then be divided into two different mechan-

isms:

• stimulating a neuron leads to electric displacement and ionic currents through

the membrane, and a concomitant current along the cleft gives rise to an ex-

tracellular potential between cell and chip;

• the potential variation induced by the neuron in the cleft produces an electrical

field across the substrate insulator that is then probed by a FET.

1.4.2 An example of bio-hybrid device: the EOSFET

In this section we briefly introduce the simplest example of a bio-chip, namely, the

EOSFET (Electrolyte-Oxide Field Effect Transistor). In Fig. 1.4.2 the representation of

the working principle of a generic ion-electronic interface is schematically depicted:

a neuron surrounded by an electrolyte bath is attached to an electronic device. This
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Figure 1.4.2 – Schematics of a neuro-chip [35].

is the so called EOSFET structure, namely a transistor device where the gate contact

is made by an electrolyte solution instead of a metal interconnection, as in stand-

ard semiconductor technology. The structural difference between the EOSFET and

the conventional MOSFET (Metal-Oxide Field Effect Transistor) device implies a rad-

ical change in the nature of the charges controlling the transistor. In the case of a

MOSFET, the conducting channel is gated by the electric field generated by electrons

in the gate contact, while in the case of a EOSFET the gating process is operated by

ionic charges coming from the cell towards the semiconductor.

Integration of cell and chip is made possible by proper control of the flow of ionic

charges exchanged between the cell and the semiconductor component, in such a

way that the hybrid device can work under two different modes of operation. In the

first mode, the cell gates the transistor and regulates the electronic current flowing

into the transistor conducting channel. In the second mode, which is the reverse

case, the cell acts as the receiver of a signal coming from a microelectronical net-

work. The EOSFET also presents a ionic sensitivity due to interactions between its

chemically sensitive insulator surface and the ions in the electrolyte solution [52].





Chapter 2

Mathematical Models

In this chapter we extensively illustrate the modeling hypotheses and the mathem-

atical equations used in the present work to describe and to simulate bio-electronic

interfaces. The Poisson-Nernst-Planck system is the starting point for the self con-

sistent treatment of ion electrodiffusion and potential variations in the thin layer of

electrolyte between the cell and the electronic device.

2.1 Mathematical modeling of bio-electronic

interfaces

In order to characterize the bio-electronic interfaces described in Chapter 1, we need

to elaborate a suitable physical model, whose aim can be thought either as an oppor-

tunity to confirm the understanding and analysis of experimental data or as a tool to

be used in the design of actual devices. The present work is not a “real-world” simu-

lation/design tool, but can be considered a first step in the direction of the construc-

tion of a mathematical simplified model, which is able to reproduce experimental

results and to be applied in complex configurations.

To fully describe bio-electronic interfaces, a broad range of mathematical models

should be considered. As a matter of fact, the phenomena involved are of very differ-

ent nature, since they originate from two separate domains (the biological world and

the electronic device) with different physical behaviors and scales, both temporal

and spatial.

More in detail, one has to consider three levels of modeling:

• bio-physical models to describe the behavior of the cell. The cell membrane
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is crucial for this application, because it controls the ionic flow through the

cell. As pointed out in [26, 29], the transfer of substances to and from the cell is

strongly affected by pressure, by changing the cell volume and also by varying

the distance between the cell and silicon device;

• advection-diffusion models to describe the flow of substances in the intra- and

extra-cellular spaces. The transport processes of charged particles are mainly

due to diffusion and electric field drift. Fluid-mechanical forces also act on the

substances present in the liquid medium, as well as chemical reactions taking

place at the silicon-electrolyte interface and in the whole aqueous solution, as

pointed out in [5];

• an appropriate drift-diffusion model to represent the electric current flow into

the semiconductor device [50, 30] and the interaction of the electric field with

the overlying biological domain;

Such a detailed level of description would lead to a multiphysics mathematical model,

in a heterogeneous three dimensional representation, through a strongly coupled

nonlinear system of partial differential equations. Obviously, this very general ap-

proach would require a very large amount of computational burden to be solved and

this is the motivation to introduce suitable simplifying approximations.

In the mathematical treatise carried out in this chapter, we reduce the compu-

tational domain to a thin layer of electrolyte and then introduce a suitable three di-

mensional model, in order to study in detail the physical phenomena taking place

in the extracellular bath. After that, we discuss a possible model reduction in a two

dimensional domain, to decrease the computational complexity. Thanks to an av-

eraging procedure and some physical assumptions on the distributions along the z-

direction, we derive different hierarchical models describing the quatities of interest

only in a x-y plane.

2.2 Three dimensional model

In this section we derive a three dimensional model of the interface between cell and

electronic substrate. The mathematical description should account for variations in

time and space of the potential and of the ion species flowing in the bath, keeping in

mind that everything is due to the influence of the cell and the substrate, which can

be both stimulated and/or controlled from the outside: this eventually results in the
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Figure 2.2.1 – Geometrical model: a cell surrounded by an electrolyte bath is attached on
an electronic device. The thin layer of electrolyte between the cell and the substrate is the
considered mathematical domain Ωe l .

opening and closing of the membrane channels, which are the major responsibles of

the physical phenomena.

2.2.1 Geometrical model

Fig. 2.2.1 illustrates the three dimensional physical domain considered in this sec-

tion: the cell shape has been simplified to a smooth rotational solid and the repres-

entation of the electronic substrate internal structure is neglected, as it will be in all

the models we are going to consider in the present work (see also [31, 32, 3, 38, 4]).

The extracellular fluid is surrounding all the cell, but the computational domain we

are going to refer to from now on is the layer Ωe l , a thin sheet of electrolyte bath,

which includes the cleft between the attached area of the cell and the device, but

also the part of electrolyte in the neighborhood of the cell. We are dealing with a

layer thickness δj of the order of 50÷ 100 nm, while the cell radius is assumed to be

around 10µm in the applications we are investigating [3, 5, 38].
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2.2.2 The Poisson-Nernst-Planck system

The Poisson-Nernst-Planck (PNP) system serves as basic electrodiffusion model for

the motion of chemical species in a fluid medium, for example the ion flow through

membrane channels and the transport of holes and electrons in semiconductors, and

is also applicable to the ion flow in the electrolyte bath surrounding the cell. There-

fore, as in [3, 14, 33, 38], we apply the PNP model to study ion flow in the region Ωe l

in order to determine the potential ϕ (V) and the concentration c i (m−3) of each ion

in the electrolyte. The basic assumption of the PNP system is that the substances in

the aqueous electrolyte medium are subject to two main forces: thermodynamical or

diffusion forces and electrical or drift forces.

Considering M ion species in the three dimensional domain Ωe l , one can write

the following equations [44]:

qz i
∂ c i

∂ t
+div ji

�

c i ,ϕ
�

= 0 i = 1, ..., M (2.1a)

ji
�

c i ,ϕ
�

= q |z i |µi c i E−qz i Di∇c i i = 1, ..., M (2.1b)

div E =
q

ε

∑

i

z i c i (2.1c)

E = −∇ϕ (2.1d)

Di =
µi Vt h

|z i |
i = 1, ..., M . (2.1e)

The first one (2.1a) is the continuity equation (one for each ion), describing the

conservation of electric charge. Mathematically, it states that the divergence of the

current density ji (A m−2) is equal to the negative time rate of change of the charge

density ρi = qz i c i (C m−3). A current is a movement of charge and this description

states that if charge is moving out of a differential volume, then the amount of it

within that volume is going to decrease. Here q is the elementary charge and z i is the

valence of the ion species.

Each ion current density is defined in (2.1b), the Nernst-Planck relation. This is a

simplified momentum conservation equation, where the flow of ions is driven by the

superposition of their concentration gradients∇c i and by the electric field E (V m−1)

defined in (2.1d). It is then possible to recognize in (2.1b) both the chemical and

the electric contributions influencing the flux, so that the model extends Fick’s law

of diffusion to the case where the diffusing particles are also moved by electrostatic

forces with respect to the fluid. µi and Di are respectively the mobility (m2 V−1 s−1)

and the diffusivity (m2 s−1) of the chemical species. These two last physical quantities
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are related by the fundamental Einstein relation (2.1e), which describes the diffusion

of a particle in an electric field, where Vt h = k B T /q is the thermal potential (k B is the

Boltzmann constant and T is the absolute temperature).

The electric field is governed by the ion concentrations through the Poisson equa-

tion for electrostatics (2.1c). Substituting the electric field (the electrolyte dielectric

constant is ε= ε0εr ) one obtains the usual form

−ε4ϕ =ρ,

where the total charge density ρ is defined as

ρ =
∑

i

ρi =
∑

i

qz i c i .

The PNP system (2.1) has the same format and structure as the Drift-Diffusion

(DD) equations for semiconductors [25], but it is applied to a different medium (wa-

ter instead of a semiconductor crystal lattice) and, in most of the cases, one needs to

consider more charge carriers than just holes and electrons, as in the case of semi-

conductor device theory.

Adding together the M continuity equations (2.1a), we obtain

∑

i

qz i
∂ c i

∂ t
+
∑

i

div ji = 0,

and then using the Poisson equation (2.1c) we get

ε
∂

∂ t
div E+div

∑

i

ji = 0. (2.2)

Relation (2.2) suggests the introduction of a total current density, as the following

definition shows

jt ot = jd i s p + jcond
t ot = ε

∂ E

∂ t
+
∑

i

ji ,

where we recognize a displacement current term, given by the time derivative of

the electric field E, and a total conductivity current term, given by each ion Nernst-

Planck current. Therefore, exchanging the space and the time derivatives, (2.2) be-

comes now

div jt ot = 0,

which shows that the total current density (conduction current plus displacement



16 CHAPTER 2. MATHEMATICAL MODELS

current) is solenoidal.

For numerical purposes, the PNP model can be reformulated introducing the

mass flux fi (m−2 s−1) for each ion species, defined as

fi :=
ji

qz i
i = 1, ..., M . (2.3)

By doing so, the PNP system reads as follows [14]:

∂ c i

∂ t
+div fi

�

c i ,ϕ
�

= 0 i = 1, ..., M (2.4a)

fi
�

c i ,ϕ
�

= z iµi c i E−Di∇c i i = 1, ..., M (2.4b)

div E =
q

ε

∑

i

z i c i (2.4c)

E = −∇ϕ (2.4d)

Di =
µi Vt h

|z i |
i = 1, ..., M . (2.4e)

This is the model we will refer to from now on. Of course, to recover the current

density ji for each ion, we can use (2.3) as a post-processing formula.

2.2.3 Boundary and initial conditions

The concentrations c i = c i (t , x) and the potential ϕ =ϕ (t , x) are unknown functions

of both time t and space x (the spatial coordinate with respect to a fixed frame of

reference). Thus, we need to impose an initial condition at time t = 0 and boundary

conditions on ∂ Ωe l to complete the three dimensional model (2.4).

The initial conditions c 0
i (x) = c i (0, x) andϕ0(x) =ϕ(0, x) are determined by solving

the static version of the PNP system (2.4) in the domain Ωe l , which corresponds to

setting ∂ c i

∂ t
= 0 in (2.4a) for each ion i = 1, ...M .

The boundary conditions need a more thorough discussion: they are required to

complete the mathematical model describing the whole considered physical system.

The domain Ωe l is reduced to a thin layer of electrolyte (the parallelepiped shown

in Fig. 2.2.2), but it is essential to remember the presence of a cell over it and of an

electronic device under it and that they have a major role in the overall behavior of

the coupled bio-electronic system. All around the cell there is also an electrolytic

bath identical to the one in the cleft area, therefore we need to take into account that

there can be exchange of ions between the portion of electrolyte considered and all

the environment surrounding the cell and the substrate (of Fig. 2.2.1). We assume
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Figure 2.2.2 – Three dimensional domain Ωe l . Seven different boundary regions are
distinguished: the upper surface is divided in Γc e l l (the cell attachment area) and Γe f

(surface dividing electrolyte from electrolyte).

that far away from the cell the electrolyte is a neutral solution, in such a way that the

following electroneutrality condition holds

ρb a t h =q
M
∑

i=1

z i c b a t h
i = 0. (2.5)

The corresponding potential Vb a t h is then computed using the concentrations c b a t h
i

in (2.4c)-(2.4d): this value can be interpreted as the reference value of an electrode

located in the electrolyte nearby the cell.

Then, in defining boundary conditions, as shown in Fig. 2.2.2, we distinguish

among seven different regions (the domain is a parallelepiped, but the upper face

can be divided into two areas: the attached area Γc e l l and the free one Γe f , covered

by the surrounding part of extracellular fluid). Accordingly, the following conditions

are enforced on the electric field and the particle fluxes:

ϕ = Vb a t h onΓ1 ∪Γ2 ∪Γ3 ∪Γ4 (2.6a)

¹D ·nºΓe f = 0 onΓe f (2.6b)

¹D ·nºΓc e l l = 0 onΓc e l l (2.6c)

¹D ·nºΓs u b = 0 onΓs u b (2.6d)

c i = c b a t h
i onΓ1 ∪Γ2 ∪Γ3 ∪Γ4 (2.6e)

¹fi ·nºΓe f = 0 onΓe f (2.6f)

¹fi ·nºΓc e l l = 0 onΓc e l l (2.6g)
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fi ·n = 0 onΓs u b . (2.6h)

The symbol ¹·ºζ denotes the jump operator restricted to the interface ζ.

Conditions (2.6a) and (2.6e) are Dirichlet boundary conditions: the concentra-

tions are fixed at the same value as the electrolyte concentrations and the potential

is fixed at the reference value Vb a t h . These can be interpreted as “far field condi-

tions” for the considered variables, consistently with the fact that the side faces of

Ωe l (Γ1, Γ2, Γ3 and Γ4) are sufficiently far away from the surface where the cell is at-

tached to the substrate.

A little more accurate discussion is required for Γc e l l and Γs u b , which are the sur-

faces attached to the cell membrane and to the electronic device, respectively. In

order to describe this complex bio-hybrid system one has to introduce suitable coup-

ling conditions representing the presence of the cell and the substrate. On Γc e l l there

is conservation of the normal electric field and of the normal component of the ionic

fluxes, namely both the jumps of the displacement vector and of the current densities

are set equal to zero (conditions (2.6c) and (2.6g)). This tells us that there is continu-

ity between the variation of the potential and the particle fluxes inside the cell and

in the electrolyte in the cleft. For the description of the electronic substrate we need

to impose on Γs u b again a null jump of the electric displacement field, but also that

there is no ion current injected from the cleft to the device or the other way around,

as stated in (2.6h).

The surface Γe f is the free part of the upper face but we cannot neglect that the

ions can flow not only in the thin sheet of electrolyte we are considering, but also in

the upper part of the bath surrounding the whole cell, and this is why again both the

jumps are set equal to zero in (2.6b) and (2.6f).

2.2.4 Coupling conditions

In this section, we discuss coupling conditions describing the behavior of the elec-

tric displacement vector and of the ionic current densities at the interface surfaces

separating the various parts of our system.

Cleft-cell coupling

As described in Section 1.2, a cell is an enormously complex structure. Accounting

for all its bio-chemical reactions is evidently impossible, hence a drastic modeling

reduction must be undertaken. In this work both the interior and exterior of the cell
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Figure 2.2.3 – On the left: cell and electrolyte separated by the membrane with its physical thick-
ness tM . On the right: cell and electrolyte separated by an interface Γc e l l with zero thickness,
result of the lumping of the original boundaries Γ1 and Γ2 of the membrane region.

will be described as simple electrolyte solutions. This choice is both due to the need

of a computationally feasible model and to the observation that ions and potential

are the main physical quantities acting on the bio-electronic interface.

In the present work, most of the physiological phenomena relevant to the con-

sidered applications depend upon the cell membrane, which is the communication

medium between interior and exterior of the cell. The physical model of the mem-

brane is the sum of two contributions: one from the sole lipid membrane and one

from the ionic channels. The lipid membrane is largely impermeable to the ions

and can be modeled as a constant specific capacitance CM (F m−2). The main fea-

ture of the membrane subdomain (shown in Fig. 2.2.3-(a)) is that the thickness tM ,

according to biophysical evidence (it is in the order of 5÷ 10nm), is much smaller

than the characteristic size of the domain (the cell radius). The principal difficulty

in the numerical solution of a microscale model accounting for the cell membrane

is the geometrical discretization of this small region, which may give rise to a huge

number of degrees of freedom of the numerical method. To reduce computational

complexity, we have decided to study and apply the membrane model proposed and

investigated in [34, 33, 4] in the three dimensional study of cellular electrical activity.

This approach consists of a geometrical level and a modeling level.

Geometrically, as shown in Fig. 2.2.3, we need to introduce a two dimensional

manifold Γc e l l corresponding to the middle cross-section of the membrane volume

and to partition the membrane into the union of two disjoint subregions Ωm 1 and
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Ωm 2 (the two open portions of the membrane respectively in contact with the cell

and the cleft) and of Γc e l l . At this point we can define “extended” subdomains: the

cell, consisting in the union of the cell and of Ωm 1, and the electrolyte insiede the

cleft, consisting in the union of the cleft and of Ωm 2. The new geometrical partition

of the cell structure is shown in Fig. 2.2.3-(b).

Going into details for the modeling level, condition (2.6c) can be rewritten as

De ·ne +Dc ·nc = 0 on Γc e l l , (2.7)

where two outward unit normal vectors ne and nc are considered: this is actually

a transmission condition across the two dimensional manifold Γc e l l . The principal

assumption in this modeling reduction is that the electric potential varies linearly

inside the membrane along the z-direction, so that ∂ ϕ
∂ z
' ϕ(z 1)−ϕ(z 2)

z 1−z 2
. This assumption

agrees with the fact that tM is much smaller than the cell radius and, replaced into

the transmission condition (2.7), yields

Dc ·nc =−De ·ne =−εM
ϕm 2−ϕm 1

tM
'−CM

�

ϕm 2−Vc e l l
�

, (2.8)

where ϕm 1 and ϕm 2 are the traces of ϕ at both sides of Γc e l l . Moreover, in our sim-

plified model, we consider the intra-cellular potential Vc e l l only as a function of time

and not varying in space, because we are not interested in describing the intra-cellular

phenomena, as in [5]. We also get a capacitive coupling between the cell and the elec-

trolyte, having defined CM = εM/tM as the intrinsic membrane specific capacitance.

To account for the ionic channels, a detailed description of their behavior re-

quires a compromise between accurate physical modeling and computational effort.

The types of channels to consider are at most K+, Ca2+, Na+ and Cl− channels, as

those four are responsible for the majority of the ionic current in a cellular action

potential. In the present work we focus on cells where K+ channels are the principal

inflow/outflow current sources. The ionic current carried by this ionic species needs

to be described as a function of a set of controlling variables, namely potential across

the channel, ion concentrations and gating variables.

The most general formulation for ion flow through membrane channels is the

generalized Hodgkin Huxeley model [20, 21, 33]

j t m
i = j t m

i

�

t , x, s, Vc e l l ,ϕ, ci n , ce x t
�

(2.9)

accounting for voltage-gating mechanism of the channels, which in turn permits the
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simulation of the propagation of an action potential. The symbol s denotes the so

called gating variables, while ci n and ce x t are arrays of size M containing all the ions

concentrations inside and outside the cell. Evidently, transmembrane injection de-

pends on both potential difference and ionic concentration differences between in-

side and outside the cell.

The first model we consider is the so called linear resistor model [26]. This is the

simplest current-voltage relationship of the form (2.9) and the ionic current density

of the i-th ion is expressed as

j t m
i = g i

J M

�

�

Vc e l l −ϕ
�

+
Vt h

z i
ln

�

c c e l l
i

c i

��

, (2.10)

where g i
J M is the specific transmembrane conductance of the i -th ion (S m−2). It

multiplies two terms: the first one is the potential difference between inside and out-

side and the second one is the Nernst potential1 between the cell and the electrolyte,

calculated using internal concentrations c c e l l
i and unknown concentrations in the

electrolyte c i = c i (t , x) evaluated at x ∈ Γc e l l . This model, although very simple, is

quite accurate and successfully used in [3, 5].

The second model adopted in the present work is the Goldman-Hodgkin-Katz

(GHK) current equation for ionic channels [19]. The electrodiffusion process across

the channel can be expressed as

j t m
i = p i z i q

�

B e

�

−
z i
�

Vc e l l −ϕ
�

Vt h

�

c c e l l
i − B e

�

z i
�

Vc e l l −ϕ
�

Vt h

�

c i

�

, (2.11)

where p i is the permeability constant of the specific ion (m s−1), z i the valence and

B e (·) is the inverse of the Bernoulli function, defined as

B e (x ) =
x

e x −1
. (2.12)

The GHK model describes the flow of ions across the membrane as the result of elec-

trodiffusion processes, where the equivalent diffusion constant in the membrane is

accounted for with the permeability constant and the potential is assumed to vary

linearly across the membrane. The permeability value is a sensitive parameter to

compute for the membrane channels, because there is a stochastic part to account

1In electrochemistry the equilibrium potential of each ion species can be calculated using the

Nernst equation, which gives Vi =−Vt h

z i
ln
�

c i nt
i

c e x t
i

�

.
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p
K

cKVm

Figure 2.2.4 – Values of potassium membrane permeability pK (in m s−1) as a
function of Vm (in V) and cK (logarithmic axis for the millimolar concentration).

for the opening and closing of these. Its mathematical definition is

p i =
De f f

i

tM
, (2.13)

where De f f
i is the effective diffusion coefficient of ion i throughout the membrane.

A precise characterization of this latter parameter would require the use of more

advanced models than the ones considered in the present work, for example mo-

lecular dynamics simulations. In order to provide an immediate and mathematically

consistent characterization of p i , we propose the following approach: we conduct

a parametric analysis to find the correct values of p i by equating expressions (2.10)

and (2.11) and studying the permeability as a function of c i and of the membrane

potential Vm :=Vc e l l −ϕ, resulting in

p i =
g i

J M

qz i

�

Vm +
Vt h

z i
ln

c c e l l
i

c i

�

B e
�

− z i Vm

Vt h

�

c c e l l
i − B e

�

z i Vm

Vt h

�

c i

. (2.14)

The obtained result for potassium permeability is illustrated in Fig. 2.2.4, where

one can observe that a sensible value for the considered problem can be estimated

as 2÷3×10−6 m s−1. This provides a useful indication for the potassium diffusion

through the membrane proteins, which can be computed with definition (2.13): the

result obtained is of the order of 1×10−11 m2 s−1 and this value is significantly smaller

than potassium diffusivity in water (1.96×10−9 m2 s−1).

Introducing in the model a transmembrane current density j t m
i for each ion spe-
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cies (the current perpendicularly injected into the electrolyte when the transmem-

brane channels open after a stimulation), condition (2.6g) becomes

fi
e ·ne =−fi

c ·nc =−
j t m

i

qz i
. (2.15)

The negative sign of the last term in (2.15) agrees with the direction of these currents,

going from the cell to the domain Ωe l in a direction which is perpendicular to Γc e l l .

Cleft-substrate coupling

A complete charge transport model (e.g. a Drift-Diffusion model, see [31, 30]) should

be used, in principle, to fully describe the electronic substrate and the electrolyte-

oxide interface in all of its electro-chemical aspects. This approach, however, would

add a huge amount of computational burden to the overall model, not balanced by

the benefits obtained in terms of physical accuracy.

Therefore, in the present work, we choose to adopt a lumped equivalent model

to treat the semiconductor device, which is assumed to behave as a MOS capacitor

having a metal-like gate contact. Furthermore, a simplified coupling model will be

considered, namely the action of the electro-chemical bounding of ions at the inter-

face will be neglected. Fig. 2.2.5 illustrates a detailed zoom of the bio–chip area Γs u b :

the electronic behavior of the substrate is driven by the ionic current coming from

the biological environment and requires a careful characterization.

z

x

−δj

2

electrolyte

gate oxide

Γs u b

CSiO2

−δj

2
− ts

tsne

ns

VG

ϕ

L d e v

Figure 2.2.5 – Electronic substrate model and coupling with the electrolyte.



24 CHAPTER 2. MATHEMATICAL MODELS

In this simplified treatise, the electrical equivalent representation of the structure

in Fig. 2.2.5 is just a capacitor, because we neglect the effective electrical behaviour

of the device and we do not account for this modeling part (for a detailed description

see [3]). The same argument used in (2.8) can be applied on (2.6d), in order to enforce

a coupling boundary condition on the potentialϕ on Γs u b . We are then able to write,

at z =−δj

2

Ds ·ns =−De ·ne '−εs
ϕs 2−ϕs 1

tS
=−CS

�

ϕs 2−VG
�

, (2.16)

where we have lumped the thin oxide layer in a similar manner as done for the cell

membrane, tS and εS being the region thickness and dielectric constant respectively.

We have also assumed that the potential ϕ in this thin region varies linearly in the

z-coordinate. Therefore another capacitive coupling is introduced, with the specific

substrate capacitance CS = εS/tS (this is the capacitance CSiO2 in the figure, in F m−2)

and the function VG = VG (t ) denoting the value of the potential on the gate contact,

taken to be spatially constant according to the hypothesis of ideal metallic behaviour

of the gate. Here ϕs 1 and ϕs 2 are the traces of ϕ on both sides of Γs u b .

Electrolyte-electrolyte artificial coupling

In our geometrical representation, as shown in Fig. 2.2.1, we are focusing on a thin

electrolyte sheet with the amplitude δj of the cleft. This is of course an approxima-

tion, because the whole electrolyte surrounding the cell should be studied, not just

the layer under it: namely, the ions are free to flow in the entire bath, not just in the

considered part. This geometrical approximation leads us to carefully think of the

boundary condition to impose on the part that is called Γe f , depicted in Fig. 2.2.6,

which is a fictitious boundary, not actually separating two different media.

We need to incorporate this physical flow in the model, through boundary con-

ditions on the mass fluxes and on the electric field: this is the the aim of conditions

(2.6b) and (2.6f), having set to zero the jumps of the electric field and of the currents

across Γe f . These can be treated with a similar procedure as the one described for

the cell membrane, ending up with a capacitive coupling and an injected current.

Beginning with the displacement vector, we can rewrite condition (2.6b) as

Di nt ·ni nt +De x t ·ne x t = 0 on Γe f ,

where the subscripts indicate the internal part of electrolyte in Ωe l and the external

one (see Fig. 2.2.6). Again assuming that the potential is a linear function of the z-
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cell

extracellular fluid

Ωe l

Γe f
ni nt

ne x t

Vb a t h

ϕ
z

x

Figure 2.2.6 – Cross section in the x-z plane of the electrolyte bath, illustrating the coup-
ling condition between Ωe l and the external remaining electrolyte imposed on Γe f .

direction, as for (2.8), we obtain

De x t ·ne x t =−Di nt ·ni nt '−C
�

ϕi nt −ϕe x t
�

, (2.17)

where ϕi nt and ϕe x t are the traces of ϕ respectively on the two sides of Γe f . This

capacitive coupling is identical to the ones introduced for the membrane and for

the substrate, but here we have to perform a further lumping procedure. Clearly the

potential is changing also in the part of electrolyte outside our domain Ωe l , but we

are not interested in its distribution. Then, we can assume that far away from the

boundary Γe f the potential is at the reference value Vb a t h and, consistently, capacit-

ive condition (2.17) becomes

Di nt ·ni nt 'C ∗
�

ϕi nt −Vb a t h
�

, (2.18)

where C ∗ is a fictitious capacitance introduced to relate the external and the internal

potential in the electrolyte. The value of C ∗ cannot be calculated as for CM and CS

using a thickness and a dielectric constant, because there is no physical membrane

at Γe f . A possible modeling approach consists in using the value of CM and taking

a fraction 1/κ of it: in this work we have studied the change of the phenomena as a

function of this parameter and we have come to the conclusion that an appropriate

value for κ can be ' 1000, as explained in Section 4.2.

Regarding the particle fluxes, one has to imagine that the ions can flow every-

where in the bath and we have to make sure that this physical behaviour is respected

by our mathematical model. This is the reason why taking null fluxes would be a

wrong assumption and would lead to unphysical results. The condition we are going
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to impose is again the result of a lumping procedure: the ions tends to distribuite

themselves in order to balance their charges with other species and are moved by

the electrical field. Therefore, the normal component of their fluxes will be propor-

tional to the difference between their concentrations over and under Γe f . Rewriting

condition (2.6f) in the following way

fi
e x t ·ne x t + fi

i nt ·ni nt = 0 on Γe f ,

we can come to this relation

fi
e x t ·ne x t =−fi

i nt ·ni nt =−vi

�

c i nt
i − c e x t

i

�

. (2.19)

As in the case of the potential, we assume that far away the concentrations can be

considered to be at their bath value c b a t h
i and the electrolyte to be electroneutral.

Then, using the bath values c b a t h
i for c e x t

i in (2.19), we obtain

fi
i nt ·ni nt = v ∗i

�

c i nt
i − c b a t h

i

�

. (2.20)

Mathematically, v ∗i can be considered as a factor which mul the difference between

the concentrations, amplifying or reducing this flux, but physically it has the dimen-

sions of a velocity (m s−1). For this reason one can think of it as an “effective” per-

meability coefficient and model it by equating flux (2.20) to a fraction 1/κ of the flux

v
∗ K

ϕ

cK

Figure 2.2.7 – Values of potassium parameter v ∗K (in m s−1) as a function ofϕ (in V)
and cK (logarithmic axis for the millimolar concentration), with κ= 20 in (2.21).



CHAPTER 2. MATHEMATICAL MODELS 27

through the membrane (2.15), in the following way

fi ·n|Γe f
=

1

κi
fi ·n|Γc e l l

. (2.21)

As in (2.14), we can write v ∗i as a function of ϕ and c i

v ∗i =
z i p i

κi

B e
�

−z i
Vc e l l−ϕ

Vt h

�

c c e l l
i − B e

�

z i
Vc e l l−ϕ

Vt h

�

c i

c i − c b a t h
i

.

Again conducting a parametric analysis (see Section 4.2.1), we have come to the con-

clusion that a reasonable value for v ∗ can be determined by taking κ= 20 in (2.21), as

shown in Fig. 2.2.7.

2.2.5 General framework for boundary conditions

At the end of this discussion we can now summarize the boundary conditions in

a general framework that we will apply to every considered geometrical setting, in

both three and two dimensional cases. A part of ∂ Ωe l , denoted by Γb and given by

the union of Γ1, Γ2, Γ3 and Γ4 in Fig. 2.2.2, is set to the bath reference values with

Dirichlet boundary conditions for the potential and the concentrations.

The description of the cell and of the electronic substrate is represented through

Robin coupling boundary conditions, on Γc e l l and Γs u b respectively, and an analog-

ous argument is applied to the surface Γe f , as analyzed in the previous paragraphs.

We then have a remaining part denoted ΓN , where Neumann homogeneous condi-

Γc e l l

Γb

Γs u b

Γe f

ΓN Ωe l

Figure 2.2.8 – General framework for boundary conditions applied to different
problems and geometries.
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tions for all variables hold, as in the case where the geometry requires symmetry con-

ditions, as discussed in Section 4.1.

Referring to the notation of Fig. 2.2.8, for the Poisson problem we have the fol-

lowing conditions:


































D ·n=CM
�

ϕ−Vc e l l
�

on Γc e l l

D ·n=CS
�

ϕ−Vs u b
�

on Γs u b

D ·n=C ∗
�

ϕ−Vb a t h
�

on Γe f

D ·n= 0 on ΓN

ϕ =Vb a t h on Γb ,

(2.22)

while for the continuity equations we have:







































fi ·n=−
j t m

i

qz i
on Γc e l l

fi ·n= 0 on Γs u b

fi ·n= v ∗
�

c i − c b a t h
i

�

on Γe f

fi ·n= 0 on ΓN

c i = c b a t h
i on Γb .

(2.23)

2.3 Hierarchical models

The goal of the present work is to describe the ion flow and the distribution of the

electrical potential in the cleft between the cell and the device. This problem, natur-

ally, requires a three dimensional description, but in this section we derive a suitable

two dimensional mathematical model, thanks to an appropriate geometrical reduc-

tion, whose aim is to gain in computational time without losing accuracy.

In order to reduce the model to a two dimensional form [5, 38], we have to con-

sider the physical phenomena we are investigating. The opening of the transmem-

brane channels elicits ion currents: considering a cell with only potassium channels,

we have a K+ ion flow in the electrolyte, which causes an increase of positive charge

in the cleft. Because of the resulting electric field, other ions start to move: posit-

ive ions leave the cleft and move into the surrounding bath solution, while negative

ions are attracted and enter the cleft. Connected with this ion flux is a change in the

concentration of the different species inside the cleft.

In physical experiments, K+ ions enter the cleft across the membrane with a cur-



CHAPTER 2. MATHEMATICAL MODELS 29

rent density vector more or less parallel to the z-axis and then, inside the cleft, the dir-

ection of the ion current density changes into the radial direction. The time needed

to flow across the cleft height is of the order of 10−7 s (we are considering a diffusiv-

ity DK = 2×10−9 m2 s−1) and because the ratio between the cleft thickness and the

radius of the attached area is of the order of 10−3, the ions move many times up and

down in the z-direction over the cleft height before leaving the cleft. The same con-

siderations are valid for all the other considered ion species. The average of this ran-

dom motion in the z-direction over an appropriate time interval (order of µs) gives a

zero current density



j i ,z
�

t i m e = 0 inside the cleft. With respect to this, we can build

a two dimensional model neglecting the z-dependence of the physical variables.

In the next pages, we introduce an approximation in the middle plane of the cleft,

reducing the three dimensional model into a two dimensional one with an averaging

procedure.

2.3.1 Model reduction: from 3D to 2D

The three dimensional domain Ωe l is a thin layer of electrolyte (the parallelepiped

shown in Fig. 2.2.2), with a height δj (cleft thickness) of the order of 50÷ 100 nm. In

order to reduce the model, a coordinate system with the origin in the middle of Ωe l

should be placed. The plane in the middle of the cell-chip junction, depicted in Fig.

2.3.1, is going to be the new two dimensional domain Ω2D : it is equidistant from Γs u b

and from Γe l ∪Γc e l l , which are respectively placed at z =−δj /2 and z =+δj /2.

We follow a procedure based on the integration of the three dimensional equa-

tions (2.4) on the test volume of Fig. 2.3.1: this domain of integration is a paral-

lelepiped with a volume Vx y = δj hx hy , where hx and hy are infinitesimal. Then, we

can introduce the following integral mean for the quantities of interest, here written

for a generic function u = u (t ;x , y , z )

u
�

t ;x , y
�

=

´ δ/2

−δ/2
u
�

t ;x , y , z
�

d z

δj
. (2.24)

Beginning the model reduction with the continuity equations (2.4a) for each ion,

we integrate them in the test volume Vx y

ˆ
Vx y

∂ c i

∂ t
d V +

ˆ
Vx y

divfi d V = 0.

We can use the Stokes theorem on the second term and obtain the surface integ-
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Γc e l l ∪Γe l

Γs u b

Ω2D

Vx y

δj

2

δj

2

z

y

x

hx
hy

z = 0

Σt op

Σbot

Figure 2.3.1 – Schematics for the geometrical reduction in the x-y plane: the middle plan of the cleft
becomes the two-dimensional domain Ω2D . Vx y is a control volume used to compute the integrals
and the fluxes.

ral
´
∂ Vx y

fi ·ndΣ. Denoting as fx , fy and fz the components of the fluxes in the three

directions, the integral on ∂ Vx y can be rewritten as sum of the integrals of the cor-

responding component of the flux on each face of the parallelepiped, having then six

different terms

∂

∂ t

ˆ x+ hx
2

x− hx
2

dξ

ˆ y+
hy
2

y− hy
2

dη

ˆ δj
2

−
δj
2

d z c i
�

t ;ξ,η, z
�

+
ˆ y+

hy
2

y− hy
2

dη

ˆ δj
2

−
δj
2

d z fi
x

�

t ;ξ+
hx

2
,η, z

�

−
ˆ y+

hy
2

y− hy
2

dη

ˆ δj
2

−
δj
2

d z fi
x

�

t ;ξ−
hx

2
,η, z

�

+
ˆ x+ hx

2

x− hx
2

dξ

ˆ δj
2

−
δj
2

d z fi
y

�

t ;ξ,η+
hy

2
, z

�

−
ˆ x+ hx

2

x− hx
2

dξ

ˆ δj
2

−
δj
2

d z fi
y

�

t ;ξ,η−
hy

2
, z

�

+
ˆ x+ hx

2

x− hx
2

dξ

ˆ y+
hy
2

y− hy
2

dη fi
z

�

t ;ξ,η,
δj

2

�

−
ˆ x+ hx

2

x− hx
2

dξ

ˆ y+
hy
2

y− hy
2

dη fi
z

�

t ;ξ,η,−
δj

2

�

= 0.

Each one of the surface integrals can be approximated with the baricentric formula
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and we can use (2.24) on the first term with the time derivative, obtaining the follow-

ing average expression

∂ c i

∂ t
δj hx hy + fi

x

�

t ;x +
hx

2
, y , 0

�

δj hy − fi
x

�

t ;x −
hx

2
, y , 0

�

δj hy

+ fi
y

�

t ;x , y +
hy

2
, 0

�

δj hx − fi
y

�

t ;x , y −
hy

2
, 0

�

δj hx

+ fi
z

�

t ;x , y ,
δj

2

�

hx hy − fi
z

�

t ;x , y ,−
δj

2

�

hx hy = 0. (2.25)

We need to be careful with the last two terms, because the value of the flux fi on

Σt op and Σbot (respectively the upper and lower basis of the parallelepiped Vx y ) is

unknown and needs in turn to be computed according to the boundary conditions

applied on these surfaces. For the purpose of deriving a general two dimensional

model, we rewrite the boundary conditions on the two considered surfaces as:

fi ·n = f t op
i

�

t ; c t op
i , c i ,ϕt op ,ϕ

�

onΣt op (2.26a)

fi ·n = f bot
i

�

t ; c bot
i , c i ,ϕbot ,ϕ

�

onΣbot , (2.26b)

where we have introduced two functions f t op
i and f bot

i (not necessarily linear, be-

cause we use non linear transmembrane current models). These latter functions de-

pend on the “averaged” quantities c i and ϕ computed as in (2.24), but also on the

quantities eveluated on the surfaces Σt op and Σbot , defined as:

c t op
i := c i |Σt op

c bot
i := c i |Σbot

(2.27)

ϕt op := ϕ
�

�

Σt op
ϕbot := ϕ

�

�

Σbot
. (2.28)

Dividing expression (2.25) by
�

�Vx y

�

� = δj hx hy and taking the limit hx , hy → 0, we ob-

tain the following general expression for the two dimensional continuity equations

in Ω2D :

∂ c i

∂ t
+divx y fi +

1

δj
f t op

i +
1

δj
f bot

i = 0 (2.29a)

fi = −Di

�

∇x y c i +
z i

Vt h
c i∇x yϕ

�

. (2.29b)

The boundary conditions applied on ∂ Ω2D simply reduce to

c i = c b a t h
i (2.29c)
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because ∂ Ω2D is now a one dimensional manifold, part of the two dimensional sur-

faces Γ1, Γ2, Γ3 and Γ4 of Fig. 2.2.2, which were set to the bath values with Dirichlet

boundary conditions.

All the same approximations and reasoning applied above to the continuity equa-

tions can be applied also to the Poisson equation, again integrating it in the test

volume Vx y and using the Stokes theorem and the baricentric formula. We need again

to rewrite the boundary conditions on the top and the bottom surface in a general

form:

D ·n = g t op

�

t ; c t op
i , c i ,ϕt op ,ϕ

�

onΣt op (2.30a)

D ·n = g bot

�

t ; c bot
i , c i ,ϕbot ,ϕ

�

onΣbot , (2.30b)

where g t op and g bot are functions of the unknown quantities defined in (2.24),(2.27)

and (2.28). Therefore, we can complete the two dimensional model with this aver-

aged Poisson equation in Ω2D :

divx y D+
1

δj
g t op +

1

δj
g bot = q

∑

i

z i c i (2.31a)

D = −ε∇x yϕ (2.31b)

with the Dirichlet boundary condition on ∂ Ω2D , as in (2.29c),

ϕ =ϕb a t h . (2.31c)

Having derived a two dimensional model with an averaging procedure, we now

need to provide a physical model for the quantities at the upper and at the lower sur-

face introduced in (2.27) and (2.28), in order to close the mathematical formulation.

This is the object of the next pages.

Model approximation in the boundary layers

The two dimensional model (2.29) and (2.31) requires the characterization of the

functions f t op
i , f bot

i and g t op , g bot introduced in (2.26) and (2.30). The unknowns for

our model are the averaged values ϕ and c i , but also the top and the bottom values

of the potential (2.28) and of the concentrations (2.27), because we need to account

for fluxes through the upper and the lower surfaces of the three dimensional domain.

With the purpose of modeling these functions, we use the boundary conditions
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of the three dimensional model, discussed in Section 2.2.3. Referring to Fig. 2.3.1, the

lower surface is Γs u b and the upper surface is the union of two different parts, Γc e l l

and Γe l . This decomposition results, in turn, in the decomposition of f t op
i and g t op

as the sum of two different functions in the following way:

f t op
i = f c e l l

i ,t op χΓc e l l + f e l
i ,t op χΓe l (2.32a)

g t op = g c e l l
t op χΓc e l l + g e l

t op χΓe l , (2.32b)

where χζ is the characteristic function of a generic domain ζ⊂R2.

Therefore, in the modeling hypotheses, we need to account for the presence of

actual physical surfaces, namely the cell membrane and the oxide layer at Γc e l l and

Γs u b , which should be distinguished from the artificial boundary Γe l .

Regarding Γc e l l and Γs u b , we apply to both of them the same approximation, be-

cause the coupling conditions are between different environments (the cell and the

electrolyte and the device and the electrolyte) and give rise to boundary layers. This

behavior is illustrated in Section 4.2, where we show the distributions of potential and

concentrations in the r-z plane and is also present in literature results as [3, 14, 34].

This actually represents an electrical double layer, namely a structure that appears

on the surface of an object when it is exposed to a fluid [16]. The first layer accounts

for the ions adhering to the surface due to chemical reactions. The second layer is

called “diffuse layer” and is composed of free ions attracted to the surface charge,

but that can move in the fluid under the influence of the electric field. As in the

Gouy-Chapman approximation [16], we only model the diffuse layer, neglecting the

ions attached to the surfaces.

In order to simplify the mathematical treatment of the problem, we consider a

fixed value of the coordinate ȳ ∈ [0; L] (see Fig. 2.2.1) and we focus our attention on a

x-z cross section of the whole three dimensional electrolyte cleft at y = ȳ . Referring

to Fig. 2.3.2, the partition along the z-direction is defined as Ωx z =Ω1∪Ω2∪Ω3, where

Ω1 =
¦

(x , z ) s.t. z ∈
�

δj /2−H ; δj /2
�©

,Ω2 =
¦

(x , z ) s.t. z ∈
�

−δj /2+H ; δj /2−H
�©

and

Ω3 =
¦

(x , z ) s.t. z ∈
�

−δj /2; −δj /2+H
�©

, H being the amplitude of the boundary lay-

ers. According to physical evidence, for every fixed point x̄ of the x axis, we assume

that
∂ ϕ(x̄ , z )
∂ z

=
∂ c i (x̄ , z )
∂ z

= 0 inΩ2,

and we set ϕ(x̄ , z ) =ϕ(x̄ , z ) and c i (x̄ , z ) = c i (x̄ , z ) for all z ∈Ω2. These two definitions

amount to extending along the z-direction (in the sole interval Ω2) the averaged val-
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z

x

δj

2

δj

2

H

H

Γc e l l

Γs u b

∂ ϕ

∂ z
6= 0

∂ c i

∂ z
6= 0

Ω1

Ω2

Ω3

Figure 2.3.2 – Cross section in the x-z plane of the three dimensional cleft, showing the schem-
atics for the modeling hypothesis of the boundary layers near the surfaces Γc e l l and Γs u b (H
is the layers amplitude).

ues determined by the model described in Section 2.3.1. We also introduce further

assumptions on the electric potential and the particle fluxes in the two boundary

layer subdomains. Precisely, we assume that:

1. ϕ is linear in Ω1 and Ω3 and continuous at z =δj /2−H and at z =−δj /2+H ;

2. fi is constant in Ω1 and Ω3.

The spatial distribution of ϕ(x̄ , z ) for a fixed point x̄ is schematically depicted in Fig.

2.3.3-(a). Assumption 1. indicates that the electric field is piecewise constant over

Ωx z (and equal to zero in Ω2). Also the particle fluxes are piecewise constant over Ωx z

(and equal to zero in Ω2 because both drift and diffusion terms are null there).

In order to determine the concentration c i (x̄ , z ), we integrate the Nernst-Planck

transport equation (2.4b) in Ω1 and Ω3. The resulting distribution of ions is piecewise

exponential over Ωx z , continuous at z =δj /2−H and at z =−δj /2+H , and constant

in Ω2 as depicted in Fig. 2.3.3-(b). The corresponding mathematical expressions for

the boundary fluxes f c e l l
i ,t op and f bot are:

f c e l l
i ,t op = −

Di

H

�

B e

�

−
z i (ϕt op −ϕ)

Vt h

�

c t op
i − B e

�

z i (ϕt op −ϕ)
Vt h

�

c i

�

(2.33a)

f bot
i = −

Di

H

�

B e

�

z i (ϕ−ϕbot )
Vt h

�

c bot
i − B e

�

−
z i (ϕ−ϕbot )

Vt h

�

c i

�

, (2.33b)

where we use again the inverse of the Bernoulli function (2.12). The above described

modeling reduction procedure is equivalent to applying the Scharfetter-Gummel (SG)
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H H

z

ϕ(x̄ , z )

ϕbot (x̄ , z )

ϕt op (x̄ , z )

(a) Potential

H H

z

c (x̄ , z )

cbot (x̄ , z )

c t op (x̄ , z )

(b) Concentration

Figure 2.3.3 – Schematics of the assumptions on the distributions in the z-direction at a fixed x̄
for ϕ(x̄ , z ) and for c i (x̄ , z ) (where the considered ion is positively charged) for the cross section
depicted in Fig. 2.3.2.

exponentially fitted approximation in Ω1 and Ω3 [47].

Regarding the electric displacement, with the above approximation we obtain:

g c e l l
t op = −ε

ϕt op −ϕ
H

(2.33c)

g bot = −ε
ϕbot −ϕ

H
. (2.33d)

In order to close the mathematical formulation of the system, we need to use the

boundary conditions of the three dimensional model. Conditions on the particle

fuxes (2.23) give the following expressions for f t op
i and f bot

i :

f c e l l
i ,t op = fi ·n|Γc e l l

=−
j t op

i

qz i
(2.34a)

f bot
i = fi ·n|Γs u b

= 0, (2.34b)

where j t op
i is the transmembrane current computed at Γc e l l using ϕt op and c t op

i . For

example, using the resistive model (2.10), we set

j t op
i (ϕt op , c t op

i ) = g i
J M

�

�

Vc e l l −ϕt op

�

+
Vt h

z i
ln

�

c c e l l
i

c t op
i

��

. (2.34c)

Conditions on the electric displacement (2.22), in turn, give the following relations
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for g t op and g bot :

g c e l l
t op = D ·n|Γc e l l

=CM

�

ϕt op −Vc e l l

�

(2.34d)

g bot = D ·n|Γs u b
=CS

�

ϕbot −VG
�

. (2.34e)

Then, by equating the Scharfetter-Gummel expressions (2.33a)-(2.33b) and (2.33c)-

(2.33d) with the coupling boundary conditions (2.34a)-(2.34b) and (2.34d)-(2.34e) re-

spectively, we are able to compute , c t op
i , c bot

i , ϕt op and ϕbot at Γc e l l and Γs u b , ending

up with

c t op
i

�

�

Γc e l l
=

1

B e
�

−z i (ϕt op −ϕ)/Vt h

�

�

c i B e
�

z i (ϕt op −ϕ)/Vt h

�

+
j t op

i H

qz i Di

�

(2.35a)

c bot
i

�

�

Γs u b
=

B e
�

−z i (ϕ−ϕbot )/Vt h
�

B e
�

z i (ϕ−ϕbot )/Vt h
� c i (2.35b)

ϕt op

�

�

Γc e l l
=

1

CM +ε/H

�

CM Vc e l l +
ε

H
ϕ
�

(2.35c)

ϕbot

�

�

Γs u b
=

1

CS +ε/H

�

CSVG +
ε

H
ϕ
�

. (2.35d)

The modeling procedure described so far accounts for the steep layers in the

neighbourhood of Γc e l l and Γs u b . As anticipated, a different approach is required for

the surface Γe l , where the coupling conditions are artificial and we do not have an

actual physical surface giving rise to a boundary layer. Therefore, in this part of elec-

troyte, we can assume that the potential and the concentrations are constant along

z. We do not need to introduce further relations because we have:

ϕt op

�

�

Γe l
= ϕ (2.35e)

c t op
i

�

�

Γe l
= c i . (2.35f)

The functions f e l
i ,t op and g e l

t op introduced in (2.32) are then computed using the

electrolyte-electrolyte coupling conditions (2.18) and (2.20) in the following way:

f e l
i ,t op = v ∗

�

c i − c b a t h
i

�

g e l
t op = C ∗

�

ϕ−Vb a t h
�

.
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The final two dimensional model in Ω2D then reads:

∂ c i

∂ t
+divx y fi +

1

δj
f t op

i ,c e l l χ
�

�

Γc e l l
+

1

δj
f bot

i +
1

δj
v ∗
�

c i − c b a t h
i

�

χ
�

�

Γe l
= 0 (2.36a)

fi =−Di (∇x y c i +
z i

Vt h
c i∇x yϕ) (2.36b)

divx y D+
1

δj
g c e l l

t op χ
�

�

Γc e l l
+

1

δj
g bot +

1

δj
C ∗
�

ϕ−Vb a t h
�

χ
�

�

Γe l
=q

∑

i

z i c i (2.36c)

D=−ε∇x yϕ, (2.36d)

to be closed by relations (2.35).

2.3.2 Area contact lumped model

In this section we illustrate the derivation of a model in the same spirit as done by

Fromherz et al. in [5, 53], having as starting point the model reduction discussed in

Section 2.3.1.

In this version, we focus our attention only on the attached area (the one colored

in grey in Fig. 2.3.4, which is our computational domain Ω) as in [5, 38] and consider

the quantities ϕ = ϕ
�

x , y ; t
�

and c i = c i
�

x , y ; t
�

. In this approximate description,

we neglect the variation of the quantities in the z-direction: therefore the functions

f t op
i , f bot

i , g t op and g bot introduced in (2.26) and (2.30) are computed with the three

dimensional boundary conditions as if ϕt op =ϕbot =ϕ and c t op
i = c bot

i = c i .

Neglecting from now on the symbol (·) to simplify the notation, we sum the M

j t m
i

j e l
i

cell

substrate

x

y

z
Ω

Figure 2.3.4 – Area contact model: reduction in the x-y plane [3].
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continuity equations (2.29a) and come to this relation

δJ

M
∑

i=1

∂ c i

∂ t
+divx y fcond

t ot =
j t m

t ot

q
, (2.37)

where fcond
t ot =

∑M
i=1 fiδj . Here the transmembrane current j t m

i for the i-th ion is not

computed as in (2.34c), with ϕt op and c t op
i , but using ϕ and c i instead.

If the first term is multiplied by q and by each ion valence z i , one can immedi-

ately recognize the time derivative of the surface charge density ρδJ = q
∑M

i=1 z i c iδJ

(C m−2). Using the Poisson equation and the boundary coupling conditions defined

for the cell and the substrate in (2.8) and (2.16), we can express the time derivative of

ρ in the following way

∂

∂ t

�

ρδJ
�

=
∂

∂ t

�

divx y D
�

+
∂

∂ t

�

CMϕ+CSϕ
�

−
∂

∂ t
(CM Vc e l l +CSVG ) . (2.38)

Then, substituting (2.38) into the sum of the M equations (2.37) (each one multiplied

by qz i ), we reach this final result

(CM +CS)
∂ ϕ

∂ t
+divx y

�

jcond
t ot +

∂D

∂ t

�

= j t m
t ot +

∂

∂ t
(CM Vc e l l +CSVG ) . (2.39)

We can rewrite (2.39) in the following way

(CM +CS)
∂ ϕ

∂ t
+divx y jt ot = j t m

t ot +
∂

∂ t
(CM Vc e l l +CSVG ) ,

with the introduction of the current per unit length (A m−1)

jt ot = jcond
t ot +

∂D

∂ t
=σe l E+ε

∂ E

∂ t
. (2.40)

As one can see, this conduction current is the sum of each ion currents

jcond
t ot =q

∑

i

|z i |µi c iδJ E=
∑

i

σe l
i E, (2.41)

whereσe l
i is the conductance of the i-th ion. Using the expression of the electric field

as E=−∇ϕ, we rewrite (2.39) and (2.41) as

(CM +CS)
∂ ϕ

∂ t
+divx y

�

jcond
t ot −

∂
�

ε∇ϕ
�

∂ t

�

= j t m
t ot +

∂

∂ t
(CM Vc e l l +CSVG ) (2.42a)
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jcond
t ot = −q

∑

|z i |µi c iδJ∇ϕ, (2.42b)

where the unknowns are the potential ϕ and the concentrations c i .

This is a simplified version of the reduced model mathematically derived in Sec-

tion 2.3.1, because here we are working under the simplifying assumption that the

potential and the concentration values in the middle of the cleft are the same as their

values on Σt op and Σbot . In order to close formulation (2.42), we adopt the approach

proposed by Brittinger and Fromherz in [5], which basically amounts to neglecting

the spatial variations of the ion concentrations.

The authors first introduce a simple electrical model for the cell-chip junction:

the concentrations should be here considered constant both in space and time, not

accounting for the electrodiffusive part of the phenomenon. They propose the fol-

lowing one compartment model of the core-coat conductor

(CM +CS)
d VJ

d t
+ g J

�

VJ −Vc e l l
�

= g K
J M

�

Vc e l l −VJ −V K
M 0

�

. (2.43)

The electrical state of the system is described by different electrical potentials: VJ for

the electrolyte junction, Vc e l l for the cell interior, VG for the substrate and Vb a t h for the

electrolyte bath. A global ohmic conductance g J is introduced to model the coup-

ling between the junction and the bath and the Nernst potential V K
M 0 drops across the

attached membrane. Fig. 2.3.5-(a) shows the equivalent electrical representation of

this model. The dynamics of the system is then determined by an electrical time con-

stant τJ = (CM +CS)/g J , because instantaneous opening and closing of the channels

is assumed: this basic representation is able to reproduce the component of the tran-

sistor record that matches the membrane current, but it cannot account for the slow

component.

The above described electrical model is very simple and not accurate, because a

flow of ions may lead to changes of concentration in the cell-chip junction. There-

fore, Brittinger and Fromherz propose an electrodiffusion model [5], whose dynam-

ics is determined by two-dimensional electrodiffusion. This characterization is made

possible with the introduction of the ion conductances g i
J and of the Nernst poten-

tials V i
J 0, as shown in the equivalent circuit in Fig. 2.3.5-(b). Now the Nernst potential

across the membrane is V i
J M 0 with V i

M 0 =V i
J 0+V i

J M 0.

Electrodiffusion is described with the variation in time of each ion concentration

(again lumped parameters) in the cell-chip junction. The following nonlinear system
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Vc e l l

Ic e l l

VG

VJ

CS

CM

g i
J M

g J

V i
M 0cell

substrate

Vb a t h

(a) Electrical model

Vc e l l

Ic e l l

VG

VJ

CS

CM

g i
J M

g i
J

V i
J M 0cell

substrate

V i
J 0

Vb a t h

(b) Electrodiffusion model

Figure 2.3.5 – Equivalent circuits for lumped models [5]. Left: electrical model, with a global ohmic
conduction g J from junction to bath. Right: electrodiffusion model, where the variation in time of
the concentrations gives a further Nernst potential V i

J 0 and ion conductances g i
J (for all ions i in

parallel) from junction to bath.

characterizes the concentration dynamics [5]:

qA JδJ
d cK

d t
+ g K

J

�

VJ −Vb a t h −V K
J 0

�

= g K
J M

�

�

Vc e l l −VJ
�

−
�

V K
M 0−V K

J 0

��

(2.44a)

qz i A Jδj
d c i

d t
+ g i

J

�

VJ −Vb a t h −V i
J 0

�

= 0 for i 6= K . (2.44b)

The total driving force along the junction is given by the voltage VJ −VE and by the

Nernst potentials V i
J 0 between junction and bath, defined as

V i
J 0 =−

Vt h

z i
ln

c i

c b a t h
i

,

while the ion flow along the junction is described by the conductances defined as

g i
J = 5.78πδJ

z 2
i q

Vt h
Di c i , (2.45)

where Di are the ion diffusivities. The concentration changes in the junction de-

termine the net electrical charge that gives rise to the electrical potential VJ and, as

discussed in Section 4.3.2, the time constant is now quite larger than the one of the

electrical model.

Brittinger and Fromherz’s model is a zero-dimensional representation of the bio-

electrical system and uses a lumped parameter approach. Yet in our two dimensional
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description we have a cleft potential ϕ
�

x , y
�

, so that we can compare our model

(2.43) with their results using the integral mean of the potential in the cell-chip ad-

hesion area Ω (see Fig. 2.3.4), by setting

VJ :=

´
Ωϕ
�

x , y
�

d x d y

|Ω|
.

Therefore, we solve the two dimensional equation (2.39) computing the spatial distri-

bution of the cleft potential ϕ and we use its integral mean in the lumped equations

(2.44a)-(2.44b) for the concentrations, finding their time variation. The area-contact

system to be solved in Ω reads:

(CM +CS)
∂ ϕ

∂ t
+divx y Jt ot = j t m +

∂

∂ t
(CM Vc e l l +CSVG ) (2.46a)

VJ =

´
Ωϕ
�

x , y
�

d x d y

|Ω|
(2.46b)

qA JδJ
d cK

d t
+ g K

J

�

VJ −Vb a t h −V K
J 0

�

= g K
J M

�

�

Vc e l l −VJ
�

−
�

V K
M 0−V K

J 0

��

(2.46c)

qz i A Jδj
d c i

d t
+ g i

J

�

VJ −Vb a t h −V i
J 0

�

= 0 for i 6= K (2.46d)

with the usual boundary conditions ϕ = Vb a t h on ∂ Ω and with the following initial

conditions:

ϕ
�

0,x , y
�

= Vb a t h (2.46e)

c i (0) = c b a t h
i . (2.46f)





Chapter 3

Numerical Methods

In this chapter we illustrate the main numerical techniques adopted to solve the

mathematical models introduced in Chapter 2.

We start presenting the temporal discretization, which is based on the Backward-

Euler scheme and then we describe the fixed point iteration used to handle the in-

trinsic nonlinearity of all our models, namely the Gummel Map. The map is im-

plemented in several different variants, adapting the algorithm to the specific con-

sidered problem.

The obtained linear differential problems are numerically solved using the Edge

Averaged Finite Element method (EAFE) [1, 8, 15, 56]. This method is an exponen-

tially fitted discretization scheme that satisfies a Discrete Maximum Principle (DMP)

under mild conditions on the triangulation. A full characterization of the invest-

igated phenomena would require three dimensional simulations, but to avoid the

computational burden caused by a three dimensional spatial discretization, we take

advantage of the intrinsic axial symmetry of most of our problems, which allows us

to solve them in a two dimensional domain, namely a cross section in the r-z plane.

Therefore, we adapt the EAFE method to this particular configuration, using radial

and cylindrical coordinates and we give a detailed description of this finite element

discretization in Section 3.3.



44 CHAPTER 3. NUMERICAL METHODS

3.1 Time discretization

Most of the models described in Chapter 2 are based on systems of parabolic equa-

tions of the form:






∂ u

∂ t
+ Lu = f (t ) t ∈ (0, T )

u |t=0 = u 0

where L is an elliptic second order differential operator (for a complete treatise of this

problems see [42]). For each model numerically solved, time dependence is man-

aged with the introduction of a simple temporal semi-discretization, applying the

so-called θ -method to approximate all time derivatives (θ ∈ (0, 1) is a parameter)

u n+1−u n

∆t
+θ L

�

t n+1, u n+1
�

+(1−θ )L (t n , u n ) = θ f
�

t n+1
�

+(1−θ ) f (t n ) . (3.1)

In all computations, we use the Backward-Euler (BE) method, choosing θ = 1. It

is well known that the BE method is unconditionally stable, is easy to implement and

introduces a time discretization error of order4t .

We choose to have a time-span of [0, Te nd ], Te nd being the final time, but the time

stepping ∆t in (3.1) is not uniform over this span. Since in most of our applica-

tions the input signals (usually the intracellular potential Vc e l l (t )) are a combination

of Heaviside functions, the time stepping is a-priori appropriately chosen. At each

time level, a nonlinear system of equations must be solved and we have seen in our

numerical experiments that the linearization methods may suffer from convergence

problems when we do not use a refining procedure after discontinuities. Therefore,

in correspondence of the switch time on/off of the signal, the value of∆t is set to an

appropriately small value, in order to track the fast rise time of the solution. After this

initial transient part, a such refined time stepping is not mandatory anymore, so that

we can use a larger value of∆t , reducing the computational effort. We have then M T

non uniform intervals, in such a way that tm =
∑

m4tm is the m -th time level, where

m = 0, 1, ..., M T −1 and4tm is the a-priori chosen discretization step.

In all our simulations, the time stepping used is of the order of 1×10−8 s in the

neighborhood of signal switching on and of the order of 1×10−4 s when the transi-

ents are exhausted.
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3.2 Linearization methods

The partial differential models introduced in Chapter 2 are nonlinear. In order to

treat this difficulty, we apply a functional iteration procedure widely used in the de-

coupled solution of the Drift-Diffusion semiconductor device equations. This is the

well known Gummel Map [25, 27, 17, 2], a staggered algorithm where each variable

of the problem and its corresponding equation are treated in sequence until conver-

gence.

The nonlinearity of the considered models is related to the coupling between the

potentialϕ and the ion concentrations c i , due to the drift term z iµi c i E=−z iµi c i∇ϕ
in the ionic flux constitutive equation (2.4b), and due to the nonlinear nature of the

equations describing the ionic membrane currents for both the resistive (2.10) and

the GHK model (2.11). Functional iterations provide an approach to translate the

nonlinear system into a sequence of linear problems, the solution of which should

converge to a corresponding, but non necessarily unique, solution of the original

problem. The most relevant example of functional iteration is the Newton method.

While this method has the property of being quadratically convergent, some es-

sential drawbacks must be pointed out: first, a “good” initial guess must be provided

to reach the correct solution (the method could stop in a local minimizer or not even

converge); second, the algebraic system associated with the discretization of the lin-

earized problem may be very large in size, because it has to be solved for all variables

simultaneously. This large size strongly increases the amount of computational time

and often results in an ill-conditioned Jacobian matrix.

These are the main reasons why we have decided to use a staggered algorithm as

the main basic approach of the present work. The equations defining the potential

and each ion concentration are solved separately, instead of using a monolithic al-

gorithm. This is the so called Gummel Map approach and it simplifies the problem

because of the following properties:

• the decoupling of the potential from the concentration variables renders the

continuity equations linear, hence easily solvable;

• the size of the corresponding algebraic system is reduced, decreasing the global

time required to reach a solution, as well as improving the numerical condi-

tioning of the coefficient matrix.
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3.2.1 Linearization of the electrodiffusion model

The first case we analyze is the simplified model presented in Section 2.3.2, where a

two dimensional equation for the potentialϕ
�

t ,x , y
�

and then the lumped equations

for each ion concentration c i (t ) need to be solved.

Regarding the first equation, the nonlinearity is caused by the Nernst potentials in

the transmembrane current but also by jcond
t ot = −σe l∇ϕ, because the cleft conduct-

ance depends on the unknown concentrations. In the system of ODEs for each ion

concentration, (2.44a) and (2.44b) are decoupled from one another but again non-

linear because of the Nernst potential and the cleft conductances (defined in (2.45))

depending on the concentrations.

We apply a simple staggered algorithm to this model: at each time step the con-

sidered problem needs an iterative procedure to reach the current solution. We use

the temporal discretization with the BE method introduced in Section 3.1 for the

specific area contact equation (2.46a), ending up with the following semi-discretized

equation

1

δj
(CM +CS)

ϕn+1

∆t
+div

�

σn+1
t ot

ε
Dn+1+

Dn+1

∆t

�

=
1

δj

�

CM
V n+1

c e l l −V n
c e l l

∆t
+CS

V n+1
G −V n

G

∆t

�

+
1

δj
(CM +CS)

ϕn

∆t
+div

�

Dn

∆t

�

+
j n+1

t m

δj
,

where σn+1
t ot is a function of the unknown concentrations c n+1

i . Regarding the ODE

system proposed in [5], we come to this discretization

qA JδJ
d c n+1

i

∆t
+ g n+1

J i

�

V n+1
J −Vb a t h −V n+1

J 0i

�

= qA JδJ
d c n

i

∆t
+ g K

J M

��

V n+1
c e l l −V n+1

J

�

−
�

V n+1
M 0i −V n+1

J 0i

��

.

Each step of the algorithm, as shown by the diagram of Fig. 3.2.1, requires the follow-

ing two solution blocks:

• computing the updated potential ϕ(k+1) as solution of the linear area contact

equation, where, as initial guesses, we use the concentrations c (k )i at the previ-

ous step in the conductivityσ(k )t ot and in the transmembrane currents

j (k+1)
t m = g i

J M

 

�

ϕ(k+1)−V n+1
c e l l

�

−
Vt h

z i
ln

 

c c e l l
i

c (k )i

!!

;
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ϕ(k ), c (k )i

ϕn+1 =ϕ(k+1)

c n+1
i = c (k+1)

i

V (k+1)
J =

´
Ωϕ
(k+1)(x )d x
|Ω|

ϕ(k+1)

c (k+1)
i

‖ · ‖ ≤ ε?

Area contact model

ODE lumped system

Yes

No
k = k +1

Figure 3.2.1 – Solution map for the electrodiffusion model.

• solving the M nonlinear ordinary differential equations to update the concen-

trations c (k+1)
i ; with the potential ϕ(k+1) one is now able to compute its integral

mean V (k+1)
J and use it in the ODE system. The system is still nonlinear, due to

the Nernst potentials VM 0 and VJ 0 and the conductance g i
J defined in (2.45).

Different methods can be used to treat the nonlinearity in this second computational

block. We compare three different approaches:

1. Nernst potentials and cleft conductaces are evaluated at the previous Gummel

step. The corresponding system is then linear;

2. the concentrations are taken at the previous Gummel step in the Nernst poten-

tials, but the conductances are considered unknown (at the current Gummel

step). Again the system is reduced to a linear one;

3. lastly, a nonlinear system can be solved, using the unknown concentrations

c (k+1)
i at the current Gummel step in all the equations. To handle this nonlin-

earity, we introduce a further sub-iteration (tipically a Newton method).

The Gummel cycle needs a stopping criterion, as one can see in Fig. 3.2.1. The con-

vergence check of each iteration is carried out by verifying whether the maximum

absolute difference between two consecutive iterates (k ) and (k+1) is less than a pre-

scribed tolerance ε. For the potential and for the M concentrations the convergence
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check is:

‖ϕ(k+1)−ϕ(k )‖L∞(Ω) <εϕ ‖c (k+1)
i − c (k )i ‖L∞(Ω) <εc , (3.2)

where, for any measurable function f , we set

‖ f ‖L∞(Ω) = inf
�

M ≥ 0 : | f (x )| ≤M almost everywhere in Ω
	

.

3.2.2 Linearization of the PNP system

As pointed out in Section 2.2.2, the PNP system is formally identical to the drift-

diffusion (DD) model for semiconductor devices. One can thus profitably apply a

change of variable, known as Cole-Hopf transformation [22] in such a way that ex-

pression (2.4b) for the fluxes can be rewritten as

fi =−
�

Di∇c i + z i c iµi∇ϕ
�

=−z i Di c i

�

∇c i

z i c i
+
∇ϕ
Vt h

�

, (3.3)

where we have used the Einstein relation (2.4e). Then, with the introduction of a

suitable reference concentration cr e f (for example cr e f =maxi

¦

c b a t h
i , c c e l l

i

©

), we are

able to define the electro-chemical potential associated with the i-th ionic species as

ϕc i :=ϕ+
Vt h

z i
ln

c i

cr e f
, (3.4)

and then the ion concentrations can be computed in the following way

c i = cr e f exp

�

z i (ϕc i −ϕ)
Vt h

�

. (3.5)

Resubstituting (3.4) into expression (3.3), we end up with the following gradient form

for the ion flux constitutive equation

fi =−z i Di c i
∇ϕc i

Vt h
.

This deep similarity between the PNP and the DD model, is a valid motivation for the

choice of the Gummel map in the iterative solution of the PNP system. As shown in

the flow chart in Fig. 3.2.2, at each time level tm , the iterative procedure starts with

initial guesses for the electric and electro-chemical potentials, ϕ(0) and ϕ(0)c i (or equi-

valently, with a concentration guess c (0)i ). Each single k-th iteration of the Gummel

process consists of:
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ϕ(k ), c (k )i

ϕn+1 =ϕ(k+1)

c n+1
i = c (k+1)

i

ϕ(k+1)

c (k+1)
i

‖ · ‖ ≤ ε?

Non linear Poisson

Continuity equations

Yes
No

k = k +1

Linearized Poisson

δϕ(j )

ϕ(j ) =ϕ(k ), c (k )i

ϕ update

ϕ(k+1)

‖ · ‖ ≤ ε?

Yes
No

j = j +1

ϕ(j+1)

Figure 3.2.2 – Solution map for the PNP system: Gummel map and Newton subcycle for the non
linear Poisson problem.

• the solution of a non linear Poisson equation to obtain an updated potential

ϕ(k+1). In detail, with the use of (3.5), one can rewrite (2.4c) as

div
�

−ε∇ϕ
�

=q
M
∑

i=1

z i cr e f exp

�

z i (ϕc i −ϕ)
Vt h

�

and an iterative Newton method [50] can be applied to find a solution. We need

then to introduce another sub-cycle using the index j to indicate the subiter-

ations. With this procedure we are able to find the solution for the Newton

update δϕ(j ) =ϕ(j+1)−ϕ(j ) of the following linearized problem

F ′
�

ϕ(j )
�

δϕ(j ) =−F
�

ϕ(j )
�

,

where

F
�

ϕ
�

= div
�

−ε∇ϕ
�

−q
M
∑

i=1

z i cr e f exp

�

z i (ϕc i −ϕ)
Vt h

�
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and where F ′
�

ϕ
�

is the Fréchet derivative of F , evaluated at ϕ(j ) and acting in

a linear manner on the increment function δϕ(j );

• the solution of a linear continuity equation for each ion species c (k+1)
i , i =

1, ..., M , given the known updated potentialϕ(k+1). We treat the nonlinear trans-

membrane currents using the concentrations c (k )i at the previous step, thus ob-

taining a linear system to solve;

• the check of convergence (3.2) of the current iteration, already illustrated in

Section 3.2.1.

A complete analysis of the convergence of the Gummel map is carried out in [25] in

the case M = 2 for the drift diffusion model: the main result is that as k →∞, the map

converges to a unique solution ϕ and c i , i = 1, 2, provided that suitable constraints

are enforced on boundary data and problem coefficients. With minor modifications

we expect this result to be extendable also to the case of the PNP model examined in

this thesis.

3.3 Finite element approximation in axisym-

metric geometries

Once the linearization is applied, one needs to numerically approximate the resulting

linear system of PDEs with a Galerkin-Finite Element Method (G-FEM). Standard G-

FEM are in general not suitable for problems where drift terms are dominant. Since

this latter situation is what typically occurs in the study of ion-electronic interfaces,

in the present work we have decided to use the Edge Averaged Finite Element method

(EAFE). This is a multidimensional extension of the Scharfetter-Gummel one dimen-

sional difference scheme, which provides an exponential fitting finite element dis-

cretization [1, 8, 15, 28, 56]. The advantage of the EAFE method is that if a maximum

principle holds for the problem on the continuous level, then the discrete counter-

part holds too, giving rise to a “monotone scheme”. A well-known sufficient condi-

tion for a scheme to be monotone is that the corresponding stiffness matrix is an M-

matrix and it can be shown that the stiffness matrix obtained with the EAFE method

is an M-matrix under the sole assumption that the triangulation of the domain is of

Delaunay type [56]. This result is very important, since applying the EAFE method to

the continuity equations in the PNP system ensures that the computed concentra-

tions are strictly positive.
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As already anticipated, most of the geometrical models studied in the present

work require the introduction of cylindrical coordinates in axial symmetry. There-

fore, we extend the EAFE method, originally proposed in the case of cartesian or-

thogonal coordinates, to treat this particular configuration, building the two dimen-

sional numerical discretization with the use of cylindrical coordinates.

3.3.1 Model problem in an axisymmetric configuration

For the sake of clarity, we introduce a model continuity problem for a function u , on

a domain Ω ⊂ R3 with a Lipschitz boundary ∂ Ω = ΓD ∪ ΓN such that ΓD ∩ ΓN = ;, as

follows:






















−div J (u )+ c u = f inΩ

J (u ) =µ (∇u −bu ) inΩ

u = 0 on ΓD

−J (u ) ·n= jN on ΓN .

(3.6)

Here µ ∈ C 0(Ω) is a strictly positive real function such that µ = µ (x ) ≥ µ0 > 0 ∀x ∈ Ω.

The drift field can be written as b :=∇ψ,ψ being a continuous piecewise linear func-

tion over Ω, the reaction coefficient c ∈ L∞(Ω), c ≥ 0 a.e. in Ω and f ∈ L2 (Ω). Regard-

ing the boundary conditions, only for ease of presentation we are considering homo-

geneous Dirichlet boundary conditions on ΓD , while on ΓN Neumann conditions are

applied, having jN ∈ L2(ΓN ) as a given datum.

Under these assumptions, we can reformulate the flux expression in a way that

will be useful when studying the spatial discretization of the flux. Introducing the

following change of variable

u := neψ (3.7)

and replacing (3.7) into the definition of the flux, yields

J(n ) =µeψ∇n . (3.8)
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Thanks to this change of variables, problem (3.6) reads as follows:























−div J (n )+ c eψn = f inΩ

J (n ) =µeψ∇n inΩ

n = 0 on ΓD

−J (n ) ·n= jN on ΓN .

(3.9)

For our geometrical purpose, one can then rewrite problem (3.9) with the use of

cylindrical coordinates (r,φ, z ) and obtain the boundary value problem:















1

r

∂

∂ r
(r Jr )+

1

r

∂

∂ φ
Jφ +

∂

∂ z
Jz + c eψn = f inΩ

n = 0 on ΓD

−J (n ) ·n= jN on ΓN ,

(3.10)

where the operator J= J(n ) is defined as

J=











Jr

Jφ

Jz











=

















µeψ
∂ n

∂ r

µ
1

r
eψ
∂ n

∂ φ

µeψ
∂ n

∂ z

















, (3.11)

and the outward unit normal vector in cylindrical coordinates is n=
�

n r , nφ, n z

�

.

At this point, we choose to study problem (3.10) in an axisymmetric configur-

ation, for example the domain Ωa s schematically depicted in Fig. 3.3.1. This two

dimensional domain, if rotated around its symmetry axis, becomes a three dimen-

sional rotational solid. Therefore we can say that performing two dimensional com-

putations, we are actually able to reconstruct three dimensional distributions of the

considered quantities. This configuration is independent of the φ-coordinate and

then we can take ∂
∂ φ
= 0, ending up with the following model problem on Ωa s :















1

r

∂

∂ r
(r Jr )+

∂

∂ z
Jz + c eψn = f inΩa s

n = 0 on ΓD

−J (n ) ·n= jN on ΓN ,

(3.12)
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symmetry
axis

z
r

φ Ωa s

Figure 3.3.1 – Schematics of an axisymmetric configuration: the dependence on the φ-
coordinate can be neglected and the problem can be solved only in the Ωa s part, obtain-
ing a three dimensional domain with the rotation of Ωa s around the symmetry axis.

where now we have

J=







Jr

Jz






, n=







n r

n z







and where, for ease of notation, the boundaries ΓN ∩ ∂ Ωa s and ΓD ∩ ∂ Ωa s of the new

domain are simply denoted ΓN and ΓD , respectively.

To solve system (3.12), we need to introduce a spatial discretization on the do-

main Ωa s . Dealing with radial and cylindrical coordinates is a little different from the

usual cartesian case, because the operators assume a different form. Besides, when

writing the weak formulation, the integration procedure leads to the introduction of

a new scalar product. The cylindrical test volume of integration is dω = r d r dφd z ,

which can be reduced to dω= r d r d z thanks to axial symmetry, having
´ 2π

0 dφ = 2π.

Therefore, for a given open set Ω ⊆ R2 we can define on L2(Ω) a new scalar product

〈·, ·〉ω as




f , g
�

ω :=
ˆ
Ω

f (ω)g (ω)dω (3.13)

=
ˆ Z

0

ˆ R

0

f (r, z )g (r, z )r d r d z

=
ˆ Z

0

ˆ R

0

ef (r, z )eg (r, z )d r d z =
¬

ef , eg
¶

,

where ef :=
p

r f and eg :=
p

r g . Expression (3.13) shows that 〈·, ·〉ω inherits all the
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properties of the usual scalar product (for a detailed treatise of this issue see [40]).

With the use of an analogous argument, one can introduce a “cylindrical measure”

ω starting from the Lebesgue measure λ [40], to actually measure manifolds using

cylindrical coordinates and also to build the Lp spaces. In this way, all the usual

properties are inherited and the usual results valid in the standard cartesian ortho-

gonal case easily follow. For example, the new norm in L2(Ω) is defined on the scalar

product (3.13) as

‖w ‖ω,L2(Ω) = 〈w , w 〉1/2ω ∀w ∈ L2(Ω). (3.14)

Proceeding with the derivation of the weak formulation of problem (3.12), we can

now integrate it against a test function v = v (r, z ) and obtain

ˆ Z

0

ˆ R

0

1

r

∂

∂ r
(r Jr )v r d r d z +

ˆ Z

0

ˆ R

0

∂

∂ z
Jz v r d r d z

+
ˆ Z

0

ˆ R

0

c eψnv r d r d z =
ˆ Z

0

ˆ R

0

f v r d r d z .

The 1/r term in the first integral can be simplified with the integrating r , and using

as usual the Gauss theorem we end up with

−
ˆ
Ωa s

Jr
∂ v

∂ r
dω+

ˆ
∂ Ωa s

Jr v n r d sω−
ˆ
Ωa s

Jz
∂ v

∂ z
dω

+
ˆ
∂ Ωa s

Jz v n z d sω+
ˆ
Ωa s

c eψnv dω =
ˆ
Ωa s

f v dω.

Here we have introduced the curvilinear abscissa in radial coordinates d sω = r d s ,

where d s is the usual curvilinear abscissa. At the end of this procedure we can re-

group the terms and come to the usual weak formulation:

find n ∈V such that:

aω (n , v ) = Fω (v ) ∀v ∈V (3.15a)

aω (n , v ) = −
¬

µeψ∇n ,∇v
¶

ω
+
¬

c eψn , v
¶

ω
(3.15b)

= −
ˆ
Ωa s

J ·∇v dω+
ˆ
Ωa s

c eψnv dω

Fω (v ) =



f , v
�

ω+
ˆ
ΓN

jN v d sω (3.15c)

=
ˆ
Ωa s

f v dω+
ˆ
ΓN

jN v d sω,

where the vector J is defined in (3.11). The functional space is defined on the new
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measure space in the usual way

V :=H 1
ΓD
(Ωa s ) =

¦

v ∈H 1 (Ωa s ) : v |ΓD
= 0
©

, (3.15d)

with the norm defined as follows, thanks to the Poincaré inequality [42]1

‖w ‖V := ‖∇w ‖ω,L2(Ωa s ) . (3.16)

The following theorem can be proved, as in the usual case of cartesian orthogonal

coordinates.

Theorem. The bilinear form (3.15b) is continuous and coercive on V and the func-

tional (3.15c) is continuous on V . Therefore the application of the Lax-Milgram Lemma

ensures that problem (3.15) has a unique solution and that the following a-priori es-

timate holds

‖n‖V ≤
CΩa s





 f






L2(Ωa s )
+CT





jN







L2(ΓN )

eψmµo
.

This automatically implies that (3.12) admits a unique weak solution u ∈V .

Proof. Thanks to the hypotheses introduced for problem (3.6), we define the max-

imum and the minimum values of the functionsψ and µ overΩ in the following way:

ψM :=max
x∈Ω

ψ(x) ψm :=min
x∈Ω
ψ(x)

µM :=max
x∈Ω

µ(x).

Using the norms defined in (3.14) and (3.16) and omitting the subscript ‖·‖ω for

ease of notation, we start proving that the bilinear form aω(·, ·) is continuous on V .

Thanks to the Hölder and Cauchy-Schwarz inequalities, the first integral in (3.15b)

can be upper bounded as follows

�

�

�

�

ˆ
Ωa s

µeψ∇n ·∇v dω

�

�

�

�

≤ µM eψM ‖∇n‖L2(Ωa s ) ‖∇v ‖L2(Ωa s ) = µM eψM ‖n‖V ‖v ‖V .

Using the Poincaré inequality on the second term, we obtain

�

�

�

�

ˆ
Ωa s

c eψnv dω

�

�

�

�

≤ eψM ‖c‖L∞(Ωa s )C
2
Ωa s
‖n‖V ‖v ‖V .

1The Poincaré inequality ‖w ‖L2(Ωa s ) ≤CΩa s ‖w ‖H 1
ΓD
(Ωa s ) =CΩa s ‖∇w ‖L2(Ωa s ) holds in this case because

we are considering w ∈H 1
ΓD
(Ωa s ), having homogeneous boundary conditions on ΓD .
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We have then proved the continuity of aω(·, ·) on V , namely that there exists a con-

stant M > 0 such that

|aω(n , v )| ≤ M ‖n‖V ‖v ‖V ∀n , v ∈V, M = eψM
�

µM +C 2
Ωa s
‖c‖L∞(Ωa s )

�

.

The coercivity can be easily proved by considering only the first term of (3.15a),

thanks to the hypothesis on the reaction term that c ≥ 0 a.e. in Ω. Using the the defin-

ition of the norm on V , we obtain

aω(v, v ) ≥ µ0eψm ‖∇v ‖2
L2(Ωa s )

=µ0eψm ‖v ‖2
V .

The bilinear form is therefore coercive with a coercivity constant α, as follows

aω(v, v ) ≥ α‖v ‖2
V ∀v ∈V, α=µ0eψm .

Lastly, we need to prove the continuity of the functional (3.15c). Using again the

Poincaré inequality, we can find an upper bound for the first term as

�

�

�

�

ˆ
Ωa s

f v dω

�

�

�

�

≤




 f






L2(Ωa s )
‖v ‖L2(Ωa s ) ≤ CΩa s





 f






L2(Ωa s )
‖v ‖V .

On the boundary integral, after the Cauchy-Schwarz inequality, we apply a trace in-

equality2 in the following way

�

�

�

�

ˆ
ΓN

jN v d sω

�

�

�

�

≤




jN







L2(ΓN )
‖v ‖L2(ΓN ) ≤ CT





jN







L2(ΓN )
‖v ‖V .

The linear functional is then continuous, with a continuity constant Λ> 0 such that

|Fω(v )| ≤ Λ‖v ‖V ∀v ∈V, Λ=CΩa s





 f






L2(Ωa s )
+CT





jN







L2(ΓN )
.

Therefore, the assumptions of the Lax-Milgram lemma are verified for problem

(3.15), and the following a-priori estimate holds

‖n‖V ≤
Λ
α
=

CΩa s





 f






L2(Ωa s )
+CT





jN







L2(ΓN )

eψmµ0
.

2For a function w ∈ Lp (Γ), with Γ⊆ ∂ Ω, the trace inequality states




w |Γ






Lp (Γ) ≤CT ‖w ‖H 1(Ω).
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3.3.2 Spatial discretization

We are now able to apply the EAFE method [8, 6] to the model problem in cylindrical

coordinates introduced in Section 3.3.1. In order to do that, we use piecewise linear

finite elements on a regular triangulation Th of the domain Ωa s such that

Ωa s =
⋃

K∈Th

K

with the following properties:

• int(K ) 6= ;;

• int (K1)∩ int (K2) = ; for each distinct K1, K2 ∈ Th ;

• if F = K1 ∩K2 6= ; (with K1 and K2 distinct elements of Th ) then F is a common

side or vertex of K1and K2;

• diam(K )≤ h ∀K ∈ Th .

For the purpose of simplifying the presentation, we assume that the triangulation

covers Ωa s exactly. Given K ∈ Th , we introduce in Fig. 3.3.2 a local notation for the

triangles in such a way that the verteces vi , i = 1, 2, 3 are labeled in counterclockwise

order and we denote with ei the edge opposite to vi , orienting it in such a way that

it connects vi+1 to vi−1. The cylindrical coordinates of the verteces are (ri , z i ). l i

denotes each edge length, ti is the unit tangent vector oriented in the same direction

as ei and ni is the unit outward normal vector to edge ei . Lastly, the segment from

the midpoint of ei to the intersection of the perpendicular edge bisectors is denoted

e1

e2e3

n1

v1

v2 v3

(r1, z 1)

(r2, z 2) (r3, z 3)

l 1

h1

s1

Figure 3.3.2 – Parameters associated with a generic triangle K of the triangulation.
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by s i . We will also need a difference operator along ei , defined, for each continuous

function η, as

δi (η) :=η(vi−1)−η(vi+1). (3.17)

Let then

Vh = {v ∈C 0(Ωa s ) : v |K ∈P1(K ), ∀K ∈ Th} ⊂H 1
ΓD
(Ωa s )

be the piecewise linear finite element space (subspace of the functional space V

defined in (3.15d)) and denote by ϕi the nodal basis function, which is equal to one

at vi and to zero at the other vertices.

The equation associated with the generic test function ϕh over a generic element

K for problem (3.15a) reads as follows

−
ˆ

K

J(n h) ·∇ϕh r d r d z +
ˆ

K

c eψn hϕh r d r d z

=
ˆ

K

f hϕh r d r d z +
ˆ
∂ K∩ΓN

jNϕh d sω (3.18)

for n h ,ϕh ∈Vh .

We start analyzing the first integral, namely we build an approximation Jh of the

flux. This problem is dealt in the present work with the EAFE method, character-

ized by the approximation of the diffusion coefficient of the flux differential operator

with an armonic average along the triangle sides ei . Given a function η ∈C 0(K ), the

harmonic average of η along the edge ei is defined as

bηi :=

�

1

l i

ˆ
ei

η−1d s

�−1

. (3.19)

The first term in (3.18) becomes then

ˆ
K

JE A
h (n h) ·∇ϕh r d r d z , (3.20)

where we are introducing the discretized EAFE expression for the flux, defined with

the use of relation (3.19) in the following way

JE A
h (n h) =

3
∑

j=1

J E A
j (n h) jj . (3.21)

In this latter, jj is a vector-valued shape function associated with edge ej to be suit-

ably defined, while J E A
j is the associated degree of freedom for the flux. Since n h is
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a piecewise linear function, using δi defined in (3.17), each component of the first

term in the last relation can be explicitly written as

J E A
j = ba j∇n h · tj = ba j

δj (n h)
l j

, (3.22)

where ba j is the harmonic average of µeψ along ej , in this case equal to

ba j :=

�

1

l j

ˆ
ej

�

µeψ
�−1

d s

�−1

= µeψj−1 B e (ψj−1−ψj+1),

where B e (·) is the usual inverse of the Bernoulli function defined in (2.12).

The choice of piecewise linear finite elements for the approximation of n is cru-

cial, because in this way the flux projection J E A
j along each triangle edge is a constant

value, that can be used to construct the numerical approximation of J over each tri-

angle K . The basis function set for the flux approximation along the edge is defined

as follows

jj =
l j s j

|K |
tj j = 1, 2, 3.

The above description therefore shows that JE A
h (n h) is a constant approximation

of J(n ) over the element K and a linear operator that allows to reconstruct a vector

field over K starting from its tangential components along the triangle edges [1]. To

numerically implement the method and to analyze its monotonicity, it is essential

to write the stiffness matrix associated with the generic element K . Substituting the

test function ϕh with the basis function ϕi , i = 1, 2, 3 (see Fig. 3.3.2) defined on the

triangle K , we obtain

ˆ
K

JE A
h (n h) ·∇ϕi r d r d z =

3
∑

j=1

J E A
j (n h)

ˆ
K

ji ·∇ϕi r d r d z (3.23)

= J E A
i−1(n h)

ˆ
K

l i−1s i−1ti−1

|K |
·∇ϕi r d r d z

+ J E A
i (n h)

ˆ
K

l i s i ti

|K |
·∇ϕi r d r d z

+ J E A
i+1(n h)

ˆ
K

l i+1s i+1ti+1

|K |
·∇ϕi r d r d z .
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For the approximation of the integrals, we recall that the following relationships hold

on an arbitrary triangle K :

∇ϕi = −
ni

h i

l i ti ·∇ϕi = 0

l i±1ti±1 ·∇ϕi = ±1.

Using these properties, (3.23) becomes

ˆ
K

JE A
h (n h) ·∇ϕi r d r d z

=
J E A

i+1(n h)s i+1

|K |

ˆ
K

r d r d z −
J E A

i−1(n h)s i−1

|K |

ˆ
K

r d r d z i = 1, 2, 3. (3.24)

So far, the procedure is identical to that valid in the cartesian case, but here we

also need to account for the presence of r and to use a quadrature rule in order to

approximate the term
´

K r d r d z . We adopt a baricentric formula, which is exact in

this case, because we are dealing with the approximation of a first-degree polyno-

mial in cylindrical coordinates. Therefore we can exactly compute the integral in the

following way ˆ
K

r d r d z = rK |K | =
r1+ r2+ r3

3
|K |, (3.25)

where we are introducing the baricenter rK of element K in radial coordinates (ri are

the r coordinates of the verteces vi , as shown in Fig. 3.3.2).

Combining the use of relations (3.22) and (3.25) in (3.24), the explicit form of the

flux integration over K can be easily written, highlighting the contribution of each

basis function:

ˆ
K

JE A
h (n h) ·∇ϕ1r d r d z = J E A

2 (n h)s2rK − J E A
3 (n h)s3rK

=
��

ba 2
s2

l 2
+ ba 3

s3

l 3

�

n 1− ba 3
s3

l 3
n 2− ba 2

s2

l 2
n 3

�

rKˆ
K

JE A
h (n h) ·∇ϕ2r d r d z = J E A

3 (n h)s3rK − J E A
1 (n h)s1rK

=
�

ba 3
s3

l 3
n 1+

�

ba 1
s1

l 1
+ ba 3

s3

l 3

�

n 2− ba 1
s1

l 1
n 3

�

rKˆ
K

JE A
h (n h) ·∇ϕ23r d r d z = J E A

1 (n h)s1rK − J E A
2 (n h)s2rK

=
�

−ba 2
s2

l 2
n 1− ba 1

s1

l 1
n 2+

�

ba 1
s1

l 1
+ ba 2

s2

l 2

�

n 3

�

rK
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The last expression in algebraic form reads as follows

AK nK = fK ,

where

AK =

















â 2
s2

l 2
+ â 3

s3

l 3
−â 3

s3

l 3
−â 2

s2

l 2

−â 3
s3

l 3
â 3

s3

l 3
+ â 1

s1

l 1
−â 1

s1

l 1

−â 2
s2

l 2
−â 1

s1

l 1
â 1

s1

l 1
+ â 2

s2

l 2

















rK nK =











n 1

n 2

n 3











.

Summing the above local contributions over each mesh triangle K , we can as-

semble the global stiffness matrix A of the problem. It is immediate to check that A

is a symmetric and positive definite M-matrix (as in the cartesian case), because its

entries satisfy the following conditions:

A j j > 0 ∀j ; A i j ≤ 0 ∀i , j : i 6= j ;

A j j ≥
Nh
∑

i=1,i 6=j

|A i j | ∀j ; A j j >

Nh
∑

i=1,i 6=j

|A i j | for at least one j .
(3.26)

Under the regularity assumptions on the problem coefficients and if the triangulation

is of Delaunay type, then A is an irreducible M-matrix with respect to its columns

and the discrete maximum principle holds for the EAFE method. For a more gen-

eral diffusion-convection equation, if we assume that the coefficients are piecewise

smooth functions and the triangulation is weakly acute, then the stiffness matrix is

still an M-matrix [83]. Returning to the original u variable, we have to invert (3.7) at

each mesh node, obtaining

AK n=













AK













e−ψ1 0 0

0 e−ψ2 0

0 0 e−ψ3

























uK uK =











u 1

u 2

u 3











,

giving back the two-dimensional Scharfetter-Gummel method on triangular meshes.

Proceeding with the discretization of the reaction term
´

K c eψn hϕh r d r d z and of

the source term
´

K f hϕh r d r d z in (3.18), we adopt the same approximation used for

the cartesian case in [8] to build the corresponding local matrix and local load vector.
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For the reaction term we can invert (3.7) and return to the original variable u before

starting with the discretization procedure, having

ˆ
K

c eψn hϕh r d r d z =
ˆ

K

c u hϕh r d r d z .

We introduce the discretization of the function u using its nodal values u j over the

generic triangle K as u =
∑3

j=1 u jϕj . Once again, we substitute the test function ϕh

with the basis function ϕi , i = 1, 2, 3 defined on the triangle K and in order to ap-

proximate the integrals we use a trapezoidal quadrature rule, which for the reaction

term yields

ˆ
K

c u hϕh r d r d z =
3
∑

j=1

ˆ
K

c j u jϕjϕi r d r d z

=
|K |
3

3
∑

i=1

c i u i ri ,

where again ri are the vertex coordinates. We are approximating the integral of a

third-degree polynomial (result of the product of three first-degree polynomials),

having then a quadrature error of the order of h2, which is the usual error of the EAFE

method. The same procedure and quadrature rule are applied to the source integral,

having ˆ
K

f hϕh r d r d z =
|K |
3

3
∑

i=1

f i ri .

Regarding the boundary term in (3.18), we approximate the integral
´
∂ K∩ΓN

jNϕh d sω

using the same argument as before. We need to account for all the edges e lying on

the Neumann boundary ∂ K ∩ΓN of the considered triangle K , therefore we obtain

∑

e∈∂ K∩ΓN

∑

i∈e

ˆ
e

jNϕi r d s =
∑

e∈∂ K∩ΓN

|e|
2

∑

i∈e

jN ,i ri .

At the end of the above discretization procedure, we are able to write the local

mass matrix over a triangle K as

M K =













c1r1 0 0

0 c2r2 0

0 0 c3r3













|K |
3
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and the local load vector as

FK =











f 1r1

f 2r2

f 3r3











|K |
3
+

∑

e∈∂ K∩ΓN

|e|
2

∑

i∈e

jN ,i ri .

Therefore, the discretized formulation of the system for the variable u derived

above reads as follows













AK













e−ψ1 0 0

0 e−ψ2 0

0 0 e−ψ3













+M K













uK = FK .

Defining the local matrix of the system as

ΣK = AK













e−ψ1 0 0

0 e−ψ2 0

0 0 e−ψ3













+M K ,

we can sum the above local contributions over each mesh triangle K and assemble

the global matrix Σ of the entire system. In an analogous manner we assemble the

global load vector F, so that the linear algebraic system asociated with the EAFE dis-

cretization of (3.15) reads

Σu = F. (3.27)

As already pointed out above, the global stiffness matrix is an M-matrix, with the

conditions expressed in (3.26) and it is easy to extend these properties to the matrix

Σ because the mass matrix is diagonal. One can then prove that for this discretized

system in cylindrical coordinates the following theorem applies.

Theorem. The global matrixΣ of system (3.12) is an irreducible M-matrix with respect

to its columns and the discrete maximum principle holds for the EAFE method, under

the regularity assumptions on the problem coefficients and if the triangulation is of

Delaunay type. Thus, as a consequence, if F≥ 0, then the solution of (3.27) is such that

u≥ 0.
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3.4 Substructuring methods

In the present work we study a geometrical configuration (analyzed in Section 4.2.1)

where we need to partition the domain into two separate but communicating parts

and to solve the system of PDEs in each domain.

To handle this problem, as in [6, 11], we apply a substructuring method prop-

erly designed for systems of partial differential equations. For the sake of clarity, we

introduce the following simplified model boundary value problem:











−div J (u ) = f inΩ

u =ϕD on ΓD

J (u ) ·n=ϕN on ΓN .

(3.28)

The domainΩ is a two-dimensional open bounded set with Lipschitz boundary ∂ Ω=

ΓD ∪ΓN , such that ΓD ∩ΓN = ;, whose outer normal unit vector is denoted by n. We

assume for the operator J (u ) = µ
�

∇u +u∇ψ
�

, that µ ∈ L∞ (Ω), µ (x ) ≥ µ0 > 0 in Ω

andψ∈H 1 (Ω). Moreover we choose f ∈ L2 (Ω) and ϕD , ϕN ∈ L∞ (Ω).

Proceeding to a multi-domain formulation, we introduce a partition of the com-

putational domain Ω into two non overlapping subdomains Ω1 and Ω2, as schemat-

ically depicted in Fig. 3.4.1. The interface Γ = Ω1 ∩Ω2 is supposed to be a Lipschitz

one-dimensional manifold. We indicate by u (i ) the restrictions on Ωi , i = 1, 2 of the

solution u , and by ni the outward normal on of domain Ωi . Then, our multi-domain

Ω1

Ω2

Γ

ΓN

ΓN

ΓD

ΓD

Figure 3.4.1 – Partition of a computational heterogeneous domainΩ into two different parts.
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reference problem is:



































−div J
�

u (i )
�

= f i inΩi

u (i ) =ϕD on ΓD ∩ ∂ Ωi

J
�

u (i )
�

·ni =ϕN on ΓN ∩ ∂ Ωi

¹u (i )ºΓ = 0 on Γ

¹J
�

u (i )
�

·niºΓ = 0 on Γ

(3.29)

with i = 1, 2. The last two equations in (3.29) represent the transmission conditions

for u and for the flux J at the interface Γ.

In order to write the weak form for problem (3.29), we introduce the bilinear

forms

aΩi

�

w (i ), v (i )
�

=
ˆ
Ωi

J
�

w (i )
�

·∇v (i )dΩi , i = 1, 2 (3.30a)

and the linear functionals

FΩi

�

v (i )
�

=
ˆ
Ωi

f v (i )dΩi +
ˆ
∂ Ωi

Hv (i )
�

�

∂ Ωi
d s i , i = 1, 2. (3.30b)

In the above notation, we are introducing the flux across ∂ Ωi defined as H := J(u (i ))·ni

(that is, for example, H = ϕN on ΓN ). The weak multidomain formulation of (3.29)

can be obtained using suitable extension operators in order to describe interface

conditions. Therefore we have: find u (i ) ∈Ui such that:

aΩi

�

u (i ), v (i )
�

= FΩi

�

v (i )
�

∀v (i ) ∈Vi (3.31a)

u (1)
�

�

Γ = u (2)
�

�

Γ (3.31b)
2
∑

i=1

aΩi

�

u (i ), R (i )η
�

+ FΩi

�

R (i )η
�

= 0 ∀η∈Λ (3.31c)

where the functional spaces are defined as:

V := H 1
ΓD
(Ω) =

¦

v ∈H 1 (Ω) : v |ΓD
= 0
©

Vi := H 1
ΓD
(Ωi )

Λ :=
¦

φ ∈H 1/2 (Γ) : φ = v |Γ for a suitable v ∈V
©

Ui :=
¦

v ∈H 1 (Ωi ) : v |ΓD∩∂ Ωi
=ϕD

©

and where R (i )η denotes an extension of η∈Λ to Ui .
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To introduce the discretization of equations (3.31a)-(3.31c) we consider the same

finite element discretization introduced in Section 3.3. We define U h
i and V h

i as the

following finite dimensional subspaces of Ui and Vi :

U h
i := X 1

h (Ωi )∩Ui =
¦

vh ∈C 0
�

Ωi

�

: vh |K i
∈P1 (K i ) ∀K i ∈ Th

©

∩Ui

V h
i := X 1

h (Ωi )∩Vi ,

that are the spaces of continuous piecewise linear polynomial functions over each

subdomain Ωi . Now we are able to derive the discretized form of system (3.31a)-

(3.31c), obtaining:

aΩi

�

u (i )h , v (i )h

�

= FΩi

�

v (i )h

�

∀v (i )h ∈V h
i (3.32a)

u (1)h

�

�

�

Γ
= u (2)h

�

�

�

Γ
(3.32b)

2
∑

i=1

aΩi

�

u (i )h , R (i )h η
�

+ FΩi

�

R (i )h η
�

= 0 ∀η∈Λh (3.32c)

where Λh :=
¦

φ ∈H 1/2 (Γ) : φ = v |Γ for a suitable v ∈X 1
h

©

.

It is now possible to write the algebraic counterparts of (3.32a)-(3.32c). For each

subdomain the nodes of the computational grid can be divided into three disjoint

subsets. Denoting with u(i )Γ the unknowns at the nodes belonging to Γ, with u(i )D the

ones on ΓD ∩ ∂ Ωi and with u(i )I the internal nodes of each domain Ωi , we have the

vector

u(i ) =











u(i )I

u(i )D

u(i )Γ











.

The algebraic version of (3.32) is then

A (i )











u(i )I

u(i )D

u(i )Γ











=











b(i )I

b(i )D

b(i )Γ











+M (i )











0

H(i )D

H(i )Γ











i = 1, 2, (3.33)

where HD represents the flux across the Dirichlet sides as well as HΓ represents the

flux across Γ. The matrix

A (i ) =











A (i )I I A (i )I D A (i )IΓ

A (i )DI A (i )DD 0

A (i )ΓI 0 A (i )ΓΓ










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is the discretized form of aΩi (·, ·), while

M (i ) =











0 0 0

0 M (i )
DD 0

0 0 MΓΓ











is a sparse block matrix accounting for the quadrature rule adopted when computing

the integrals on the right hand side of (3.32a)-(3.32c). MΓΓ does not have any domain

index, because we have assumed conformity of the two grids over Γ, so that we have

M (1)
ΓΓ =M (2)

ΓΓ. Therefore the interface conditions are:

u(1)Γ = u(2)Γ (3.34)

H(1)Γ +H(2)Γ = 0. (3.35)

As u(i )D is a given datum, we can reduce (3.33) to the following system







A (i )I I A (i )IΓ

A (i )ΓI A (i )ΓΓ













u(i )I

u(i )Γ






=







b(i )I

b(i )Γ






−







A (i )I D u(i )D

0






+







0

MΓΓH(i )Γ






. (3.36)

System (3.36) is the starting point for the development of two different approaches

to solve (3.29): the “Schur complement approach” and the one we call “global ap-

proach” [7], which we have actually used in our work. The method we have imple-

mented does not impose the transmission conditions in explicit way, so that it does

not require the computation of inverse matrices. By doing so, we end up with the

following monolithic problem



















A (1)I I 0 A (1)IΓ

0 A (2)I I A (2)IΓ

A (1)ΓI A (2)ΓI

2
∑

i=1

A (i )ΓΓ

































u(1)I

u(2)I

uΓ















=



















b(1)I −A (1)I D u(1)D

b(2)I −A (2)I D u(2)D

2
∑

i=1

b(i )Γ



















.

The above linear system has clearly a large size but, unlike the Schur complement

method, we do not have the need to deal with inverse matrix approximation.





Chapter 4

Numerical Simulation of

Bio-Electronic Interfaces

In this chapter, we carry out an extensive validation of all the mathematical mod-

els discussed in Chapter 2, showing and critically describing the numerical results

we were able to obtain with the application of the numerical methods introduced in

Chapter 3.

We can divide the simulations conducted into two cathegories:

• a validation of the PNP model in two dimensional axisymmetric geometries.

Using this geometrical model we also study complex configurations, to invest-

igate problems similar to those depicted in Fig. 1.1.1;

• a validation of the model reduction performed in Section 2.3. We discuss the

results obtained with the approximations introduced in Section 2.3.1 and then

we compare the results of [5]with our area contact lumped models.

For the numerical implementation we use Octave, an open-source language. This

choice is motivated by the availability of computer codes developed in previous works

for the generation of meshes (octave package msh [10]) and for the construction of

the matrices resulting from the spatial discretizations (package bim [9]). We point

out that we have contributed to the development of this last package, implementing

the EAFE method to solve problems in axial symmetry, using radial and cylindrical

coordinates, described in Sections 3.3.1 and 3.3.2.

Stationary and time-dependent problems are linearized using the Gummel Map

iterative scheme (see Section 3.2), applied to the different nonlinear problems. The

Newton subcycle is dealt with the nonlinear solver fsolve. The tolerances introduced

in (3.2), in most of the numerical experiments are chosen as εϕ ' 10−4 and εc ' 10−5.
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4.1 Axisymmetric geometry

The first set of simulations has the goal to provide an accurate validation of the meth-

ods implemented in the bim package to deal with axisymmetric configurations. The

need to resort to radial and cylindrical coordinates is intrinsic to most of the geomet-

ries considered in the description of bio-hybrid devices.

4.1.1 Convergence analysis on a test case for the Octave

library

For the validation of the part of bim library developed in the present work, we have

conducted a broad range of test cases, for both radial and cylindrical coordinates.

Here we discuss the results of a convergence analysis carried out on a two dimen-

sional advection-diffusion problem (we refer to the model continuity problem (3.6)),

solved with cylindrical coordinates on a square domain Ωa s = [1, 2]× [0, 1] in a r-z

plane (the symmetry axis is then the left side, with coordinates r = 1 and z varying

between 0 and 1). Given this domain, we apply homogeneous Neumann boundary

conditions on the symmetry axis side and Dirichlet boundary conditions on the other

three sides. These conditions are enforced in such a way that the exact solution is

u e x (r, z ) = z 2 ln r

with µ= 1, b= [1, 1], c = 0 and f computed accordingly.

p=2

Figure 4.1.1 – Convergence analysis: ‖u h −u e x ‖L2(Ω) as a function of the mesh size h.
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(b) |u h −u e x |

Figure 4.1.2 – Left: numerical solution computed with the Octave library for axysymmetric prob-
lems. Right: difference between exact and numerical solutions with h = 1/80.

Fig. 4.1.1 illustrates the convergence of the method as a function of the mesh

size h. It is remarkable to notice that the numerical solution u h enjoys the O (h2)

superconvergence behavior to the exact solution u , as explained in Section 3.3 and as

proved in [8, 28, 56] for the same EAFE method in cartesian coordinates. The spatial

distribution of the absolute value of the error between this analytical solution and

our numerical solution is shown in Fig. 4.1.2-(b) for a mesh size h = 1/80.

4.1.2 A biological test case solved with radial and cyl-

indrical coordinates

One dimensional simulation

We tested our library also on a biological case, solving the model presented in [38],

where the authors derive an analytical solution of a Poisson-Nernst-Planck system

in radial coordinates under the assumption of axial symmetry. Their model refers

to the middle plane of a cleft between a cell and a substrate as in the general setup

described in Section 2.3 and with the following simplifications:

• ions are assumed to flow only in the radial direction, so that j i ,φ = j i ,z = 0.

Beside the pure radial current flow, no dependence onφ and z is assumed: the

radial coordinate r is the only independent variable and in the interval [0, R] (R

being the cell radius);

• three types of ions are considered (potassium, sodium and chloride) and in this
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model only K+ ions can flow from the inside of the cell to the outside. The in-

flux of K+ ion charge per volume and per time is given by λK = j t m
K /δj , where

δj is the cleft width and j t m
K is the potassium current density through the mem-

brane, here assumed to be constant;

• there is no influence on the flux of ions inside the cleft from the two boundaries

(the cell-cleft and the chip-cleft interfaces), neglecting the capacitive couplings

described in Section 2.2.4;

• only the stationary case is considered, meaning that all quantities are inde-

pendent of time.

Imposing at r =R Dirichlet boundary conditions at bath values for both the potential

and the concentrations, the analytical solution for the potential ϕ for this particular

one dimensional PNP system is the following [38]

ϕ (r ) = k R2





�

1−
r 2

R2

�

+4
λ2

De by e

R2

 

I0

�

r /λDe by e

�

I0

�

R/λDe by e

� −1

!

 (4.1)

where k is a suitable constant, λDe by e is the Debye length1 of the bath and I0 is the

modified Bessel function of the first kind (for the details see [38]). In this case, the

second term in the bracket can be neglected, because λDe by e � R2 and the potential

is then reduced to a parabolic term. From this expression the authors also calculate

[µm]

[m
V
]

(a) Potential ϕ

[µm]

[m
M
]

(b) Concentrations c i

Figure 4.1.3 – On the left: radial profile of the potential ϕ (r ). On the right: radial profile of the
changes of ion concentrations with respect to their bath values c i (r )− c b a t h

i . Results obtained with
a source term λK = 11 pAµm−2 and a cell radius R = 15µm.

1The Debye length of the bath has the following expression: λDe by e =
p

ε0εr k B T /q 2c t ot
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(a) Potential ϕ(t , r = 0) (b) Concentrations c i (t , r = 0)

Figure 4.1.4 – Time variation of the potential and of the concentrations with respect to their bath
values, at the centre of the junction.

the ion charge densities inside the cleft: again the r -dependent terms are grouped

into a leading parabolic term proportional to R2 (1− r 2/R2), and a smaller one that

can be neglected.

As shown in Fig. 4.1.3, the results obtained with our numerical tool are in very

good agreement with the analytical solutions. Under the hypotheses illustrated above,

the potential variation at r = 0 is really small (less than 1 mV) and the absolute changes

of ion concentrations for Cl− and Na+ are quite small too. Only the change of the K+

ion concentration is considerable: from 5 mM to 8 mM.

We also conduct a time dependent simulation of this experimental setup, redefin-

ing the transmembrane current as λK (t ) =λK H (t ), where λK is the constant current

used in the static formulation and H (t ) is the Heaviside function, defined in such a

way that H (t ) = 0 for t < 0 and H (t ) = 1 for t ≥ 0. With this mathematical definition

of the the potassium injection, we are considering an instantaneous opening of the

K+ channels at t = 0, which leads to a time variation of the quantities ϕ and c i (see

Fig. 4.1.4, where we show the variation of these functions evaluated at r = 0). Accord-

ing to the time dependent results presented in [55], the transients are exhausted in

about 150 ms. Moreover, the stationary limits of ϕ and c i are consistently the same

as the static case shown in Fig. 4.1.3.

One dimensional simulation with a larger domain

In this section, we study the same model as in the previous paragraph [38], but be-

sides the electrolyte under the cell, we also include in the problem a portion of elec-
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Ωe fΩc e l l

R X
r

Figure 4.1.5 – One dimensional geometry for the axisymmetric problem. The domain
is Ω=Ωc e l l ∪Ωe f (cell radius R = 10µm).
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Figure 4.1.6 – On the left: radial profile of ϕ. On the right: radial profile of the changes of ion con-
centrations with respect to their bath values c i (r )− c b a t h

i . Results obtained with a cell radius R =
15µm and free space X = 10R .

trolyte nearby it, as depicted in Fig. 4.1.5. The entire domain Ω is the union of two

different parts: the attached area Ωc e l l (R is the cell radius) and the free part Ωe f ,

whose width is here called X. We can set the whole domain amplitude at W = R +X .

At r =W we impose Dirichlet boundary conditions at bath values and we carry out a

parametric analysis changing the amplitude of Ωe f , to study the decay of the poten-

tial and of the concentrations.

In Fig. 4.1.6 we can see the radial profiles of ϕ and of the concentrations, with a

domain amplitude W = R +X = R + 10R and we see that the trend has a decay sim-

ilar to lnr in the free part, which is a solution of the diffusion problem in radial co-

ordinates. The central value is higher than in Fig. 4.1.3, and the decay is slower than

the physical one, because we are extending the author’s hypothesis of neglecting the

couplings also in Ωe f , instead of using the electrolyte-electrolyte artificial coupling

conditions introduced in Section 2.2.4. This approximation results in the radial dis-

tributions shown in Fig. 4.1.6, whereϕ and c i do not approach their bath values with
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Figure 4.1.7 – Parametric analysis of the potential and of the potassium concentration at the centre
of the junction as a function of the size of the domain.

the physically expected rapidity: this is due to the fact that the ions are not allowed

to flow outside the domain.

The parametric analysis in Fig. 4.1.7 gives us an idea of the variation of ϕ (r = 0)

and cK (r = 0) with different domain configurations (from X = 5R to X = 100R): the

trend is logarithmically increasing, which means that it continues growing, unlike

what one should expect. Again the reason of this behavior is that we are not account-

ing for the ion flow in the overlying electrolyte. This could be overcome in the same

spirit of the treatise of Section 2.3.1 with the addition of a term in the continuity equa-

tions in the following way

[m
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]

[µm]

(a) Potential ϕ

[µm]

[m
M
]

(b) Concentrations c i

Figure 4.1.8 – Results accounting for the ion fluxes outside the cleft, solving (4.2). Profiles of ϕ and
of c i (r )− c b a t h

i in the case of a cell radius R = 15µm and a free space X = 10R .
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∂ c i

∂ t
+div fi = λK |Ωc e l l

−
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�
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Beside the current rate λK injected in Ωc e l l , we give the ions the possibility to flow

from Ωe f into the surrounding extracellular fluid, in a way consistently similar to that

introduced in (2.20), using for v ∗ a value around 1×10−5 m s−1. The results obtained

solving (4.2) in the PNP system are shown in Fig. 4.1.8: as expected, we see a faster

decay to the bath values in the Ωe f part for the potential and the concentrations.

Two dimensional simulation

In order to check the accuracy of the one dimensional approximation, we solve the

model studied in [38] in a two dimensional geometry with cylindrical coordinates.

We consider a cross section in the r-z plane, so that we are actually dealing with a

three dimensional description, thanks to the symmetry with respect to the φ- co-

ordinate. We choose the geometry represented in Fig. 4.1.9, describing the entire

electrolyte bath surrounding the cell, in order to have an accurate description of the

involved phenomena to be compared with our radial solution.

The boundary conditions for this model are represented in Fig. 4.1.9. Referring

to the framework of Section 2.2.5, they are specified as follows:

• on Γs i m we impose homogeneous Neumann conditions on both potential and

concentrations, as required by the axial symmetry;

• on Γs u b we have the chip interface: we can consider a coupling condition for

the potential with a substrate capacitance CS , as described in Section 2.2.4, or

we can neglect the device influence, setting CS = 0 in (2.16), to reproduce res-

ults similar to [38];

• on Γc e l l we again can choose whether to have or not the capacitive coupling

described in Section 2.2.4 for the potential, but we have to impose a trans-

membrane current injected from all over this part of boundary. This can be

managed either with a fixed flux or with the models for the transmembrane

currents introduced in (2.10) and (2.11);

• on Γb (the external ellipse) we impose Dirichlet boundary conditions at bath

values for all the involved quantities.
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Γc e l l

Γs u b

Figure 4.1.9 – Two dimensional geometry for the axisymmetric problem: cross section in the
r-z plane including the electrolyte surrounding the cell. Dimensions: R = 15µm and X =R .
The cell is approximated as an ellipsoid with the major semiaxis equal to R and the other
one equal to R/2. The cleft is the line between Γc e l l and Γs u b : its height is δJ = 100 nm.

z

r0

W

δj

cleft zoom

Figure 4.1.10 – Mesh for the axisymmetric geometry of Fig. 4.1.9: the mesh is refined all around
the cell. On the right: zoom of a part of the cleft zone, where the mesh is structured and refined
at the boundaries. The mesh is generated with the software Gmsh.

The mesh used in the numerical computations is shown in Fig. 4.1.10 and is unstruc-

tured because of the cell curvature. However, we use a structured mesh in the cleft

between the cell and the chip (its height is δj = 100 nm) in order to independently

control the refining in the r and in the z directions and to achieve a more detailed

description of this area. This is required because we are considering a multiscale

problem: the domain is quite big but the most interesting phenomena take place in

a thin part, three orders smaller than the cell radius. The number of nodes is more
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than 10000.

The first case we investigate is the same studied in radial coordinates above, neg-

lecting the capacitive couplings and using a constant trasmembrane current. As one

can observe in Fig. 4.1.11, the results are in good agreement with the ones presented

in [38] and with the ones presented in Fig. 4.1.3-4.1.6. The area where most of the

phenomena occur is the thin sheet of electrolyte between cell and chip, in the rest of

the domain the decay to electroneutrality is very fast. Another parametric analysis

is presented (see Fig. 4.1.12), with a variation of the size of the domain: the increas-

ing trend found for ϕ and c i is smaller here than in Fig. 4.1.7 and it stops varying

long before than in the one dimensional model. This confirms that the one dimen-

sional approximation is quite inaccurate when it does not account for the electrolyte

all around, where the ions can actually flow.
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Figure 4.1.11 – Spatial distribution of ϕ and of c i in a configuration with X = R : the only region of
interest for the phenomena is the thin cleft between cell and substrate.
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Figure 4.1.12 – Parametric analysis of the potential and of the potassium concentration at the centre
of the junction as a function of the size of the domain.
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Figure 4.1.13 – Spatial diastribution of the potential ϕ, of the concentration c i and of the total
charge density ρ, in a configuration with X = R with a capacitive coupling between cell and elec-
trolyte (CM = 1×10−2 F m−2) ans substrate and electrolyte (CS = 0.3×10−2 F m−2). Results obtained
with a depolarizing pulse keeping Vc e l l = 50 mV.

With the geometry presented in Fig. 4.1.9, we solve the same problem as before,

but modeling the transmembrane currents with both the Goldman-Hodgkin-Katz

model and the resistive model described in Section 2.2.4. We also increase the model

complexity simulating a voltage-clamp stimulation from the cell (the same depolar-
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ization of [5]): we account for the cell and for the electronic substrate with two capa-

citive couplings at the two boundaries Γc e l l and Γs u b (see Section 2.2.4). Fig. 4.1.13

shows the results obtained with the GHK model. We notice a consistently higher vari-

ation of the quantities in the cleft than before (ion injection from the membrane is

here better represented) and also steep layers due to the capacitive couplings and

charge screening effects. Now the electrolyte away from the cleft is not everywhere

electroneutral, but there is a little more evident decay nearby the cell.

4.2 Stimulation in complex configurations

In the present work we have started our analysis from a single cell on an electronic

substrate and we have also studied in Section 4.1 a three dimensional geometry con-

sidering the electrolyte all around the cell. We now investigate configurations with

more than just one cell and/or more than just one electrode, to understand the beha-

vior of these type of couplings and the mutual influence between one bio-electronic

device and another one in its neighborhood.

The results presented in this section are obtained solving the PNP system (2.4) in
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Figure 4.2.1 – Spatial diastribution of ϕ, of c i and of the total charge density ρ in the portion of
electrolyte between cell and substrate. Results at the end of a transient, after an impulse applied to
the cell as in [5]. GHK model for the transmembrane currents. Cell radius: R = 10µm.
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a two dimensional cross section of the three dimensional geometry, knowing that if

we take into account the effect of the capacitive couplings we have to expect steep

layers at these boundaries, as seen in Fig. 4.1.13 and as also described in [3]. In [3],

the author shows some results in a x-z plane of the electrolyte cleft under the cell

and in Fig. 4.2.1 we reproduce these results using cylindrical coordinates. This is

actually a zoom of the cleft area of Fig. 4.1.13 and it is our starting point to proceed in

approaching more complex configurations. We also see that the hypotheses on the

distributions along the z-direction introduced in Section 2.3.1 are verified.

4.2.1 Cell to chip stimulation

The geometry of this first case is represented in Fig. 4.2.2: there are one cell and two

electrodes, one placed under the centre of the cell and the other one at a distance W

from the cell. The goal of the conducted simulations is to study the current measured

by the second electrode after a voltage-clamp stimulation of the cell.

This geometrical model lends itself to the use of cylindrical coordinates, inter-

preting the left vertical side of the boundary as a symmetry axis. Approximating the

cell as a half sphere or ellipsoid, one can rotate the domain in Fig. 4.2.2 around the

chosen axis and be able to represent the whole three dimensional thin sheet of elec-

trolyte we are interested in. This is of course an ideal representation of the actual

structure because in this way the second electrode is all around the cell, but it can

still be a sound model to gain accurate physical results.
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Rc e l l

Rs u b 2Rs u bW
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ΓN

ΓN Γs 2

δj
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L e l
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Figure 4.2.2 – Domain with two electrodes for a cell to chip stimulation. The figure is not in
scale for ease of representation (in reality: δj = 100 nm, Rc e l l = 10µm, Rs u b = 1.5µm). The
width l of the part of electrolyte on the right is fixed at 20µm: we need to set on Γb the usual
“far field” conditions.
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The applied boundary conditions refer to (2.22)-(2.23). Moreover, this configur-

ation is the one we use to test and study the parameters introduced in Section 2.2.4

to model the boundary part Γe f . A parametric analysis conducted with the variation

of C ∗, v ∗ and of the width W leads us to obtain confidence intervals for these two

artificial constants, in order to get physically acceptable solutions. After that, we use

the procedure discussed at the end of Section 2.2.4, comparing this terms with the

current injected from the membrane and with the cell capacitive coupling. This way,

we are able to choose the fractions 1/κ of the membrane current fluxes and of the

capacitance. The resulting best-fitting values used in all our simulations are v ∗K =

1×10−5 m s−1 and C ∗ = 1×10−5 F m−2.

As one can observe in Fig. 4.2.3, varying the distance W brings noticeable dif-

ferences in the spatial distribution of the quantities of interest, especially ϕ. The
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Figure 4.2.3 – Spatial distribution of the potential ϕ with different domains: the distance between
the cell and the second gate is on the left W = 15µm and on the right W = 30µm. In both cases:
δj = 100 nm.
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Figure 4.2.4 – Spatial distribution of the concentrations c i with a distance between the cell and the
second gate W = 15µm and δj = 100 nm.
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Figure 4.2.5 – Parametric semilogarithmic analysis for ∆Vs 2 as a function of the
distance W. Results for three different values of the cleft thickness δj , obtained
with a depolarizing pulse with Vc e l l = 50 mV.

potential relaxes to a neutral state with a 1/r decay. At a distance W around 15µm

the influence on the second electrode is still evident, because it is not already de-

cayed at the bath value of reference, but it is completely different when this distance

increases, as one can see in Fig. 4.2.3-(b). The concentrations c i are shown in Fig.

4.2.4, and both their values and their distributions are very close to the case with

only the cell (of Fig. 4.2.1), with steep layers near Γc because of the strong coupling,

and with a decay to their bath value almost at the end of the attached area.

The parametric analysis we have carried out is reported in Fig. 4.2.5, where we

show the variation of the following computed integal mean

∆Vs 2 =

´
Γs 2

�

ϕ
�

�

Γs 2
−Vs 2

�

dγ

|Γs 2|
,

which measures the difference of potential between substrate and electrolyte at the

second gate. The current at the electrode can be obtained multiplying∆Vs 2 by a spe-

cific conductance g s (for a physical value of g s see [5]). We conduct the same analysis

for three different values of the cleft thickness δj (50, 100 and 150 nm) and for each

fixed δj , we observe a fast and almost exponential decreasing when considering a

farther electrode.

Moreover, as one can observe in Fig. 4.2.6, a smaller value of δj gives rise to an

increase of the potassium concentration and consequently of the potential in the

portion of electrolyte under the cell, but the phenomena tends to take place only in
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Figure 4.2.6 – Spatial distribution of the potential ϕ with different domains: the distance between
the cell and the second gate is set at W = 15µm, but on the left we have a cleft thickness δj = 50 nm
and on the right δj = 150 nm.

this little part. The decay to the bath values of the quantities is faster in the config-

uration with δj = 50 nm, as shown by the spatial distribution of ϕ in Fig. 4.2.6-(a).

The parametric analysis reflects this result: in Fig. 4.2.5 we see that the value of∆Vs 2

decreases with the cleft thickness, at every chosen W. A physical explanation for this

latter result can be found by applying the definition of electrical resistance to the

considered portion of electrolyte. We are allowed to do that, because the electrolyte

solution is an electrical conductor, therefore we have

Re l =ρe l
L e l

Se l
,

where ρe l is the electrolyte resistivity, L e l is the amplitude of the domain (see Fig.

4.2.2) and Se l is a y-z cross section of the electrolyte, linearly proportional to the cleft

thickness δj . A smaller value of δj brings then a bigger resistance Re l , resulting in the

faster decay of the potential, as shown in Fig. 4.2.6.

4.2.2 Cell to cell stimulation

The second configuration studied in the cross section of a general three dimensional

domain is depicted in Fig. 4.2.7. In this case, we want to characterize the influence

that one cell can have on another one placed in its neighborhood. This configuration,

in principle, cannot be studied using cylindrical coordinates, because the left part of

the boundary is not the symmetry axis of a rotational solid. To overcome this prob-

lem and to use cylindrical coordinates in axial symmetry, we apply a substructuring
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Figure 4.2.7 – Domain with two cells and two electrodes. The figure is not in scale for ease of
representation (in reality: δj = 100 nm, Rc e l l = 10µm, Rs u b = 1.5µm). Γi nt e r f is an artificial
boundary introduced to divide the domain into two identical parts.
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Figure 4.2.8 – Schematics for the geometry with two cells: cross section in the x-y plane of
the three dimensional configuration, studied in the computational domain z-r depicted in
Fig. 4.2.7. We divide it into two parts, each one with its symmetry axis and with its radial
coordinate r.

method (see Section 3.4).

In order to do that (referring to Fig. 3.4.1), we artificially introduce a new side

Γi nt e r f , dividing the domain into two parts that geometrically are identical, and we

use the left and the right sides of the boundary as symmetry axis for each part. Fig.

4.2.8 shows a representation of a cross section in the x-y plane of the entire three di-

mensional problem. The two axis lie on the symmetry planes depicted in Fig. 4.2.8

and Γi nt e r f lies on the artificial interface plane. Then, we solve in a monolithic fash-

ion the same model in each of these two parts (boundary conditions are applied as

in Fig. 4.2.7, referring to (2.22)-(2.23)), using the interface conditions (3.34)-(3.35) on

Γi nt e r f and thanks to this procedure we are able to describe the coupling between

two cells considered to be geometrically identical. The accuracy of this approxima-
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Figure 4.2.9 – Left: intra-cellular potential of equilibrium (corresponding to a non-opening of the
transmembrane channels) as a function of the distance W. Right: spatial distribution of ϕ in an
equilibrium configuration (the cells are not polarized), obtained solving the PNP system with the
addition of (4.3), with a chosen W = 50µm.

tion increases the larger the distance W is.

In all the models of the present work we are considering the intra-cellular poten-

tial as a function constant in space. This is of course an approximation, which has to

be carefully dealt especially in this case: in a full description one should study the po-

tential not only in the external electrolyte, but also inside the cell. In order to perform

a cell to cell stimulation, we need to set the intra-cellular potential of the second cell

at a non-polarized value (corresponding to a state of equilibrium, without the open-

ing of the transmembrane channels, that gives the so called “resting membrane po-

tential”). This value can be computed by setting to zero the integral mean on Γc 1 and

Γc 2 of transmembrane currents, in the following way (when using a resistor model)

´
Γc 1

�

Vc 1− ϕ
�

�

Γc 1
+ Vt h

z K
ln

c c 1
K

cK |Γc 1

�

dγ

|Γc 1|
=

´
Γc 2

�

Vc 2− ϕ
�

�

Γc 2
+ Vt h

z K
ln

c c 2
K

cK |Γc 2

�

dγ

|Γc 2|
= 0. (4.3)

Therefore, a new unknown variable Vc e q = Vc1 = Vc2 is introduced. We need to com-

pute this intra-cellular potential using the usual PNP model with the addition of (4.3),

having then a closed system to solve. The Vc e q computed as a result of this problem is

shown in Fig. 4.2.9-(a) for different distances W between the two cells. When the cells

are close to each other, this potential is low because they have a big mutual influence,

but when the distance becomes larger than two cells diameters, the intra-cellular po-

tential stabilizes itself around a value of−90 mV, which is near to the physical values

of equilibrium reported in [5, 13, 54]. Fig. 4.2.9-(b) shows the spatial distribution of
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the potential ϕ in the electrolyte when we solve this particular “equilibrium prob-

lem”: the profile is flat except for the steep layers near Γc 1 and Γc 2 resulting from the

strong coupling with the cells, and the value of ϕ is around −6.8 mV. The negative

sign is due to the fact that the cells are at a non-polarized state, which is obtained

with a negative Vc e q .

Having determined the value of the intra-cellular potential for each configura-

tion, we can now study the influence of the stimulated cell on the other one, which

should be considered set at the corresponding Vc e q value with a voltage-clamp tec-

nique. We study a stimulation consisting of the usual depolarizing pulse keeping the

first cell intracellular potential at 50 mV.

Fig. 4.2.10 shows the spatial distributions of the potentialϕ and of the potassium

concentrations for two different distances W between the two cells. The channels of
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(a) ϕ with W = 20µm
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(b) cK with W = 20µm
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(c) ϕ with W = 70µm
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(d) cK with W = 70µm

Figure 4.2.10 – Spatial distributions of ϕ and of cK after a stimulation of the first cell with a pulse of
Vc e l l = 50 mV, keeping the second cell at Vc e q with a voltage clamp tecnique. Results for two different
distances between the cells: W = 20µm and W = 70µm.
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jtm i
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Figure 4.2.11 – Parametric semilogarithmic analysis for the transmembrane currents
j t m

i , i = 1, 2 of the two cells as functions of W. j t m
1 is entering into the electrolyte, j t m

2

is entering into the second cell. Results obtained with a depolarizing pulse Vc 1 = 50 mV
and with Vc 2 = Vc e q . The values reported are in V because we are considering j t m

i /g K ,
where g K is the specific membrane conductance.

the first cell are always open and are injecting a K+ current in the electrolyte, because

of the depolarization. This causes an increase of the potassium concentration and of

ϕ in the considered domain, which may lead, in turn, to the opening of the channels

of the second cell. In Fig. 4.2.10-(b), where the cells are at a distance W = 20µm,

we observe that there is an evident depletion in the spatial distribution cK under Γc 2.

This is due to the fact that the potassium current here is entering into the second

cell: as physically expected the potassium is injected by one cell and collected from

the other one. In the case of a larger W (Fig. 4.2.10-(c)-(d)), the value of the potential

in the electrolyte is lower and there is practically no current entering into the second

cell, because here the ions are free to flow in a larger portion of electrolyte.

A parametric analysis is carried out in Fig. 4.2.11, where we study the decreasing

of the integral mean of the transmembrane current entering into the second cell as a

function of the distance W . The decay is very fast and exponential, while the integral

mean of the transmembrane current injected by the stimulated cell stabilizes itself

around 9 A m−2 (which is computed multiplying the value reported in Fig. 4.2.11 by

the potassium membrane specific conductance g K = 250 S m−2). The two lines in-

tersect at a distance W ' 25µm. This is of course unphysical, because it means that

in the second cell is entering more potassium than the quantity coming out from the

first one.

We can give an interpretation of this behavior by some considerations on the
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modeling hypotheses. Firstly, the axial symmetry is an approximation and is defin-

itely not valid when we consider a geometry with a small distance W between the two

cells. Secondly, when we study two cells, we need to remember that the transmem-

brane channels are located all over the membrane (not only in the attached part)

and the ions can be injected and collected not only in the cleft area. Therefore, in

a configuration where the two cells are very close to each other, the considered do-

main does not properly account for the entire phenomena and the modeling of Γe f

introduced in Section 2.2.4 is no longer a good approximation. In this specific case,

one should solve the model in the whole surrounding electrolyte and, particularly,

describe the ion flow in the portion of electrolyte placed between the two cells, be-

cause it is expected that almost the same amount of potassium injected by the first

membrane sould be collected from the second one.

4.3 Reduced order models

In this section we illustrate the results obtained solving the reduced models intro-

duced in Section 2.3 in order to decrease the computational effort of a three di-

mensional discretization. We have derived two dimensional equations in the middle

plane of the electrolyte cleft and now we validate this averaging procedure.

4.3.1 Reduced model with approximation of the bound-

ary layers

The reduced models of Section 2.3.1 are derived in the x-y middle plane of the elec-

trolyte cleft. As in most of our simulations, the configuration we want to study is

axisymmetric. Therefore, as schematically depicted in Fig. 4.3.1, we can reduce the

computational domain Ω2D to a one dimensional manifold Ωr a d , describing the vari-

ation along the radial direction of the quantities of interest. The two dimensional

spatial distributions of these latter can be obtained with a rotation of Ωr a d around

the centre of the cell.

The considered domain Ωr a d is the union of two different parts Ωc e l l
r ∪Ωe f

r : the

first portionΩc e l l
r represents the area where the cell is attached, the second one Ωe f

r is

instead the free part of extracellular fluid. This latter division is essential, because the

coupling with the cell results in a distribution along the z-direction that is different

from the one in the free part, as explained in Section 2.3.1. In the description of the



90 CHAPTER 4. NUMERICAL SIMULATION OF BIO-ELECTRONIC INTERFACES

r
Ωr a d

Ω2D
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Ωc e l l
r Ωe f

r

Figure 4.3.1 – The one dimensional radial domain is Ωr a d =Ωc e l l
r ∪Ωe f

r , introduced for
the intrinsic axial symmetry of the two dimensional domain Ω2D . With a rotation of
Ωr a d around the centre, the entire Ω2D is obtained.

results of Section 4.2, we have pointed out how the strong coupling with the cell and

the electronic substrate gives rise to steep boundary layers in the spatial distribution

of the potentialϕ and of the concentrations c i near the membrane and the oxide (see,

for example, Fig. 4.2.1). When solving model (2.36) in Ωr a d , although the description

is in the middle plane of the cleft with averaged variables, we are able to account for

this behavior computing the top and the bottom values of the quantites of interest.

We start focusing our attention only on the attached part Ωc e l l
r , in order to repro-

duce the two dimensional results of Fig 4.2.1 with this reduced model. In our nu-

merical computations, we choose a boundary layer thickness H ' 2λDe by e ' 1.6 nm,

which is physically correct and is also in good agreement with the results obtained in

the simulations of the previous sections. Fig. 4.3.2 shows the radial distributions of

the averaged values ϕ and c i , but also the radial distributions of ϕt op , c t op
i and ϕbot ,

c bot
i , which are the values respectively at the boundaries Γc e l l and Γs u b at z =±δj /2

of the three dimensional domain. We can also reconstruct the z-dependence of the

potential and of the concentrations for a fixed point r̄ , only having the averaged and

the top and bottom values, with the following post-processing formulas:

ϕ(r̄ , z ) = ϕ(z , r̄ )+
�

ϕt op (r̄ , z )−ϕ(r̄ , z )
H

�

�

�

�

�

z∈Ω1

+
�

ϕ(r̄ , z )−ϕbot (r̄ , z )
H

�

�

�

�

�

z∈Ω3

(4.4a)

c i (r̄ , z ) = c i exp

�

−z i
ϕ(r̄ , z )−ϕ(r̄ , z )

Vt h

�

, (4.4b)

where Ω1and Ω3 are the boundary layers subdomains (see Fig. 2.3.2). The recon-

struction of ϕ(r = 0, z ) and of cK (r = 0, z ) is illustrated in Fig. 4.3.3 and we see that

the major term in the electrolyte system behavior is the capacitive coupling with the
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cell membrane.
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Figure 4.3.2 – Radial distribution of ϕ and of c i in Ωc e l l
r (here

�

�Ωc e l l
r
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�= Rc e l l = 10µm). To account

for the boundary layers: distributions of the top and the bottom values ϕt op , ϕbot , c t op
i and c bot
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Figure 4.3.3 – Distributions along the z-direction for the potential and the potassium concentration
at r = 0 using (4.4).
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Figure 4.3.4 – Spatial distribution of ϕ and of c i in the domain Ωr a d =Ωc e l l
r ∪Ωe f

r (results obtained

with
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�Ωe f
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� = 10 ·
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�Ωc e l l
r
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� = 10 ·Rc e l l = 50µm). To account for the boundary layers: distributions of

the top and the bottom values ϕt op , ϕbot , c t op
i and c bot

i .

These results are in good agreement with those obtained in the axisymmetric

two dimensional computations of the previous sections, telling us that the proposed

model reduction produces sensible results in the attached area.

Then, we solve the reduced model accounting also for the free part of electrolyte

in the neighborhood of the cell, in such a way that the computational domain is the

entire Ωr a d = Ωc e l l
r ∪Ωe f

r . As explained in Section 2.3.1, in Ωe f
r we assume that the

quantities of interest do not vary along z, as shown for example by the spatial dis-

tributions of Section 4.2.1. This modeling assumption evidently results in the radial

distributions of Fig. 4.3.4: the potential ϕ and the concentrations c i are perfectly su-

perimposed on the distributions of the top quantities in the free part. We observe a

1/r decay inΩe f
r , as expected, thanks to the introduction of the parameters C ∗ and v ∗

describing the artificial electrolyte-electrolyte coupling, whose values are taken as in

Section 4.2.1.
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Therefore, we can say that the model mathematically derived in Section 2.3.1 is

valid, because it gives results comparable with the ones obtained when solving a

three dimensional model, but with a much smaller amount of degrees of freedom.

One could then use this model to reproduce also the interactions between multiple

cells and multiple electrodes, gaining a lot of computational time.

4.3.2 Area-contact lumped models

We discuss now the results of the solution of the model described in Section 2.3.2: we

are able to successfully reproduce the results obtained by Brittinger and Frohmerz in

[5], computing the spatial distribution of the potentialϕ
�

x , y
�

and the time variation

of the concentrations c i .

The physical region chosen for the numerical simulations is a two dimensional

domain, but, accordingly with [5] and with the model reduction operated in Section

2.3.2, we study only the part of the electrolyte covered by the cell. This is due to the

fact that here the concentrations are not space dependent, but only evolve in time in

the electrodiffusion model: therefore the ion flow in the surrounding electrolyte bath

cannot be described at this point.

The model depends on several different physical parameters (reported in Table

4.1) which are the same used in [5]: we are considering a cleft with a thickness δj

of 70 nm. The radius of the cell-chip adhesion area is around 15µm, therefore the

junction forms an extended planar electrical core-coat conductor. The cell we are

studying is a HEK293 (Human Embryonic Kidney) with only K+ channels and the

simulated experiment is a depolarization with a patch pipette of the intracellular po-

tential (a 50 ms pulse from Vc e l l =−84 mV to Vc e l l = 50 mV, shown in Figure 4.3.6-(a)).

Besides K+, the other ion species considered in these simulations are Cl−, Na+, Ca2+,

Mg2+ and HEPES−.

Parameter Value Parameter Value Parameter Value Parameter Value

δJ 70 nm c b a t h
K 5 mM c c e l l

K 140 mM g K
M 250 S m−2

A J 200µm c b a t h
C l 145.6 mM c c e l l

C l 144 mM g i
M ∀i 6=K+ 0 S m−2

CM 1µF cm−2 c b a t h
N a 135 mM c c e l l

N a 5 mM T 298.16 K

CS 0.3µF cm−2 c b a t h
C a 1.8 mM c c e l l

C a 5 mM εr 80

Vb a t h 0 V c b a t h
M g 1 mM c c e l l

M g 2 mM

VG 0 V c b a t h
H E PES 5 mM c c e l l

H E PES 5 mM

Table 4.1 – Physical parameters used in the electrical and in the electrodiffusion models.



94 CHAPTER 4. NUMERICAL SIMULATION OF BIO-ELECTRONIC INTERFACES

Electrical model

The electrical model is the simplest one can think of. It reproduces the extracellular

voltage caused by the electrical current charging the cell-chip capacitance at con-

stant ion concentrations. In [5] the authors compute VJ as shown in (2.43); in the

present work, we are solving equation (2.39) keeping the concentrations constant at

their bulk values to find at each time step the spatial distribution of the cleft potential

ϕ
�

x , y
�

(represented in Figure 4.3.5 at two different time levels) and then computing

its integral mean to compare the results with those of [5].

The cell-chip contact is described by the capacitances CM and CS of membrane

and substrate, respectively. The global conductance in (2.40) is not varying in time

and is computed in the following way

σe l =
M
∑

i=1

σi =q
M
∑

i=1

|z i |µi c b a t h
i δJ

using the constant concentration values of the considered ion species. We obtain a

value around 2.38µS, which is close the value used by Brittinger and Fromherz of

g J = 2.1µS. The dynamics is then determined by an electrical time constant, which

is for us τ = (CM +CS)/σ ' 1.0944µS: therefore the transient is really fast, as one

can observe in Figure 4.3.6. When the cell is depolarized, almost instantaneously the

potential goes to a value around 2 mV, which is a little less than the result VJ ' 3 mV

obtained in [5]. The reason of this difference is due to the fact that we are comparing

an integral mean of a spatial distribution over all the domain and a quantity VJ which
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[µm][µm]

(a) ϕ at t=10 ms

[µm][µm]

[m
V
]

(b) ϕ at t=100 ms

Figure 4.3.5 – Spatial distribution of the cleft potential ϕ in the circular domain: on the left after
10 ms (cell just depolarized: Vc e l l = 50 mV); on the right after 50 ms (Vc e l l = −84 mV).



CHAPTER 4. NUMERICAL SIMULATION OF BIO-ELECTRONIC INTERFACES 95

(a) Intracellular potential Vc e l l (b) Cleft potential ϕ

Figure 4.3.6 – Left: depolarizing pulse of intracellular potential Vc e l l . Right: integral mean of ϕ
obtained with the electrical model.

is not space dependent.

Electrodiffusion model

When the K+ channels open, the ion concentrations in the junction change: the elec-

trodiffusion model is a simplified description of the time variation of c i , cosidering

them as constant in space. The results of Brittinger and Fromherz are obtained solv-

ing (2.44a)-(2.44b), while we use the model presented in (2.46a)-(2.46d) to compute

the spatial distribution of the potential ϕ but also the variation of the lumped con-

centrations c i .

We solve this nonlinear model using the staggered algorithm introduced in Sec-

tion 3.2.1. The algorithm converges in a reasonable number of iterations (less than

20 during the transients) when we use a fully nonlinear system for the concentra-

tions equations, choosing a Newton method to solve them, as explained in Section

3.2.1. The other two linearization methods for the ODE system reported in Section

3.2.1 are able to reach the same result, but the time for a simulation tremendously in-

creases, because at each time level the map needs many more iterations than before.

Moreover, in order to have a correct solution, we have to use a relaxation parameter

γ for both the potential and the concentrations according to the following strategy:

ϕ(k+1) = γϕ(k+1)+
�

1−γ
�

ϕ(k )

c (k+1)
i = γc (k+1)

i +
�

1−γ
�

c (k )i .

γ must be set equal to a value around 0.01 to obtain the correct solution. The a-
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Figure 4.3.7 – Integral mean of ϕ obtained with the electrodiffusion
model. The depolarization impulse Vc e l l applied is the same as the one
shown in Figure 4.3.6.

(a) Concentrations c i (b) Nernst potentials V i
J 0

Figure 4.3.8 – Changes of extracellular ion concentrations in the cell-chip junction and of the
Nerst potentials VJ 0 between junction and bath.

priori refined temporal discretization described in Section 3.1 is mandatory for the

convergence of the map and for an accurate tracking of the temporal evolution of

the variables. For this particular problem we have also used a monolithic algorithm

applied to the whole system (2.46a)-(2.46d): this works efficiently for this specific

case and produces results in agreement with the ones obtained with the staggered

map using the relaxation described above.

As one can observe in Figures 4.3.7 and 4.3.8, the slower dynamics is now taken

into account and both the potential and the concentrations have transients with

a time constant in the order of milliseconds, as expected (we have expressed the

changes of extracellular ion concentrations in the junction also as Nernst potentials

between junction and bath). The integral mean of the electrical potentialϕ increases
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Figure 4.3.9 – Left: electrical conductance σ of the junction, depending on ion
concentrations. Right: lumped potassium transmembrane injected current j t m

K =
g K

J M

�

Vc e l l −VJ +Vt h/z K ln(c c e l l
K /cK )

�

computed using as VJ the integral mean of ϕ.

fast to a value around 2.5 mV and subsequently decays to a stationary level around

1.5 mV. The same arguments valid for the electrical model should be applied here to

the comparison of the value computed here with an integral mean over all the do-

main and of the lumped VJ in [5].

The potassium concentration increases from 5 mM to 17 mM, giving a Nernst po-

tential V K
J ' −27 mV in the junction. The redistribution of all other ions is smaller,

with Nernst potentials determined by electrochemical equilibrium in the stationary

state as V i
J 0 = VJ − Vb a t h ' 1 mV. The decay of the electrical potential ϕ after the

initial increase is due to the enhanced potassium concentration in the junction that

lowers the driving force given by the difference VJ −Vb a t h−V i
J 0, the current across the

membrane (depending on the logarithm of the reciprocal of cK ) and also the elec-

trical resistance of the junction, which is the reciprocal ofσ (t ) =q
∑M

i=1 |z i |µi c i (t )δJ .

The time variation of these last two quantities is shown in Figure 4.3.9. The dynam-

ics of relaxation is then determined by the ion diffusion coefficients Di with a time

constant which is τi
d i f f = A J /5.78πDi in the order of milliseconds: thus the elec-

trodiffusion gives rise to a dynamics that is far slower than electrical charging, having

τd i f f �τ as one can see comparing Figure 4.3.6 with 4.3.7.

The spatial distribution of the potential ϕ is again parabolic, as for the electrical

model. In Fig. 4.3.10 one can observe that when the cell has just been depolarized

the maximum value is around 3.8 mV; after 35 ms, when the transient is already ex-

hausted, the maximum value is around 3.15 mV.
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Figure 4.3.10 – Spatial distribution of the cleft potentialϕ in the circular domain: on the left after
0.5 ms (cell just depolarized: Vc e l l = 50 mV) when the transient is just started; on the right after
35 ms when the cell is still depolarized but the transient is exhausted.



Chapter 5

Conclusions and Future Work

In the present Master Thesis we have addressed the mathematical modeling and nu-

merical approximation of bio-hybrid devices. This subject is of paramount import-

ance in the wider scientific context of neuroelectronics, where the main aim is to

actually realize devices consisting of the integration of biological tissues with solid-

state integrated electronic circuits.

In this treatise we have illustrated a suitable mathematical characterization of

bio-electronic interfaces, investigating different possible modeling hypotheses on

the coupling between the two different enviroments (cell and electronic device) and

on the derivation of model dimensional reductions, perfomed to decrease the com-

putational simulation effort. A hierarchy of multiscale models has been therefore

presented and extensively validated with a broad range of numerical computations,

obtaining sensible results and comparing them with literature and experiments. This

mathematical description has also been applied to complex configurations and has

proved to be able to simulate the interactions between multiple cells and multiple

devices. Even if the present work is far from a real world description, it can be con-

sidered a first step for the construction of mathematical models to be used in the

design of actual devices.

Clearly, future research is needed to provide a better description of this very com-

plex multiscale/multiphysics problem. Among possible developments, we mention

a more accurate modeling of the electronic substrate, which can be useful in study-

ing different types of stimulation, for example a different polarization of the chip

influencing the cell. A model for the chemical binding mechanism of the ions to the

electronic substrate is also required, in order to fully describe the EOSFET device. An-

other important improvement in the mathematical characterization can be a coup-
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ling between electro-chemical and fluid-mechanical systems, in order to account for

the forces due to pressure differences and flow in the aqueous medium.

Lastly, a more realistic description of the problem geometry, with full three di-

mensional computations including the intracellular fluid is mandatory to faithfully

reproduce the entire phenomena. The above mentioned improvements should give

the realistic chance to go further in the study of the interactions between multiple

cells, maybe introducing a neural network and simulating a whole brain slice, as in

the experimental results of [23, 57].



Appendix A

Scaling of the PNP system

In this appendix, we describe the scaling procedure applied to the PNP system and

we provide a complete list of the values of the scaling parameters used in the pro-

cedure. The procedure can be applied on the several other models discussed in the

thesis in a way similar to that illustrated here.

In general, a closed form solution for system (2.4a)-(2.4e) is impossible to de-

termine and an approximate solution is therefore required. The first step towards a

numerically stable approximation consists in a reformulation of the system to obtain

a scaled set of equations, where variables are adimensional and normalized. This

operation is useful in numerical computations, since each problem variable has a

different unit and cannot be compared to the others (electric potential vs. ion con-

centrations) and may also have a range of variation of several orders of magnitudes,

as in the case of ion concentrations. The scaling procedure leads to a set of PDEs

where variables are dimensionless and have comparable orders of magnitude.

For each generic variable w of the system is rewritten as

w = bw ·w , (A.1)

where w̄ is the scaling constant and bw is the new scaled and adimensional variable

(for a general treatise of this procedure see [45], appendix A).

We introduce the scaling factors x , c ,ϕ and D for the main quantities in the PNP

system. Then, using (A.1) in the continuity equations (2.4a) we get

∂ (c bc i )
∂ (bt t )

+
1

x
Ódiv bfi f = 0 i = 1, ...M

from which we are able to obtain a scaled continuity equation by defining t and f in
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such a way that
c

t
=

f

x
.

In order to compute f, we need to adimensinalize the Nernst-Planck expression for

the fluxes (2.4b), getting

fi =−c
D

x

�

b∇ bc i + z i b∇ bϕ bc i

�

= bfi f i = 1, ...M .

Here we set

f=
x c D

x
,

and then we obtain the time scaling factor as follows

t =
x 2

D
.

The scaling procedure applied on the Poisson equation (2.4c) gives

−
ε

x 2
Ódiv
�

b∇
�

bϕϕ
�

�

=q
∑

i

z i bc i c ,

from which we obtain a scaled Poisson equation, upon introducing the singular per-

turbation parameter

λ2 =
ε0εr ϕ

qc x 2 .

Therefore, denoting the new scaled variables with the same symbols as in the

dimensional case, the scaled PNP system reads as follows

∂ c i

∂ t
+divfi

�

c i ,ϕ
�

= 0 i = 1, ..., M

fi
�

c i ,ϕ
�

= Di (z i c i E−∇c i ) i = 1, ..., M

λ2divE =
∑

i

z i c i

E = −∇ϕ.

The parameter λ is the scaled Debye length and can be rewritten as

λ=
�

ε0εrϕ

qc

�1/2 1

x
.

It is relevant to observe that if λ2� 1 the PNP system exhibits a singularly perturbed
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character (for a details see [43]), and the corresponding solutions may exhibit in-

ternal and/or boundary layers. The PNP system applied to our problems is singu-

larly perturbed, because a typical value is λ2 ' 10−8, therefore stable discretization

schemes must be used in the numerical approximation

We conclude the description of the scaling procedure with the following list of the

values of all the scale factors and parameters.

Scaling factor Value

x =Rc e l l 10 nm

c =NA 6.023×1023 m−3

D 2×10−9 m2 s−1

ϕ =Vt h 25.7 mV

f 1.7726×1022 m−2 s−1

t 4.9261×10−2 s

λ2 :=
εϕ

q x 2 c
1.3×10−8

j=q f 2.84×103 A m−2

E=ϕ/x 2.5693×103 V m−1

Table A.1 – Scaling factors and relevant parameters.
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