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A B S T R A C T

Modern embedded systems design increasingly couple hardware accelerators and
processing units to obtain the right balance between energy efficiency and platform
specialization. In this context High Level Synthesis (HLS) design flows can signifi-
cantly reduce the effort needed to design these architectures. This thesis introduces
a new HLS methodology that supports the synthesis of tightly coupled clusters of
accelerators suitable to be used as building blocks for architecture design with the
introduction of PorkSoC, a templated System on Chip (SoC) suitable for automatic
generation. The proposed methodology introduces the concept of non-inlined func-
tion call and of function pointers to the traditional HLS methodology to synthesize
cluster of accelerators able to call other accelerators to perform their computation
without the mediation of a General Purpose Processor (GPP).
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1
I N T R O D U C T I O N

This chapter is an introduction to the work done. It starts with a brief premise on
the motivation of this thesis. Then it continue describing the problem addressed
and giving a brief description of the proposed solutions. Finally it presents briefly
the results obtained. Last section of the chapter overviews the structure of the
thesis.

1.1 premise

Modern embedded system design is increasingly exploiting architecture hetero-
geneity to build faster and more power efficient systems. High-end products like
smartphones and tablets typically include in their architecture hardware accelera-
tors. The design of this kind of systems is generally complex. The design process,
testing and validation of these architectures require big efforts from designers.

The adoption of High Level Synthesis (HLS) design flows can help to lower the
complexity and the cost of the design of such architectures. For this reason, the
current generation of HLS tools is constantly gaining market shares supported by
the appealing features of recent tools.

Recently third party companies, such as Berkeley Design Technology Inc. (BDTI)
[BTD], have started offering tool certification programs for the evaluation of HLS
tools in terms of quality of results and usability. For example, BDTI has evalu-
ated the usability and the quality of results offered by AutoPilot in synthesizing
accelerators for Digital Signal Processing (DSP) applications. The comparison has
been made against mainstream DSP processors. Results have show that accelerators
synthesized by the HLS tool have 40X better performance of the DSP implementa-
tion. Moreover, the Field Programmable Gate Array (FPGA) resources utilization
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introduction

obtained with the HLS tool are comparable with hand-written Register Transfer
Level (RTL) designs.

In this context, this thesis extend the current HLS methodologies proposing an
architecture supporting the synthesis of accelerators using a new non-inlined call
mechanism, the introduction of function pointers and a System on Chip (SoC)
designed to be generated inside a hybrid HLS flow.

1.2 the problem

The usual approach in HLS is to translate each function in a module implementing
the corresponding Finite State Machine with datapath (FSMD) [GR94]. When the
FSMD reach a function call, it transfer the control to an instance of the corresponding
module and wait for the computed result. This approach implies that a distinct
module instance is needed for each called function inside the data-path of its
caller. In some sense this approach is similar to function inlining in compilers.
The advantage of this approach is that each function call has no cost in terms of
performance at the expense of duplication and therefore area consumption.

This implementation strategy has another non negligible drawback. In this model
a function is seen as mere computational object that taking input values from
input ports produces a results on the output port. This approach does not allow
to associate addresses to the synthesized function and this makes impossible to
implement language features like function pointers and everything that relies on it.

This work proposes a methodology that improves the usual implemented model
defining addresses for function and implementing a new call mechanics that support
this model and improves resource sharing trading some clock cycles.

1.3 proposed solutions

The proposed methodology takes inspiration from the design pattern of memory
mapped peripherals widely adopted in the computer architecture world. This
architectural solution consists of a set memory mapped registers used to configure
the behavior of the unit, to pass inputs and retrieve outputs. This architectural
pattern carries the advantages of clearly defining the interface between software
and hardware layers without imposing complexities on the programming model.

The implemented solution translates function inputs and the return value as
memory mapped register plus a control register used to start the computation.
This strategy is not followed globally but only applied to marked function in the
behavioral description leaving freedom to designers to easily explore different
solutions. As a final step the generated accelerators are connected through a shared
bus that can be easily connected to a more complex architecture.
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1.4 results

This methodology has been implemented inside Bambu which is the HLS tool
of the PandA framework 1. All the generated accelerators and the final architec-
ture are Wishbone B4 (WB4) [Ope10] compliant which is a widely adopted bus
communication protocol inside the open hardware community.

Integration in a more complex architecture has been tested inside PorkSoC.
PorkSoC is a minimalistic SoC, based on the OpenRisc Or1k processor, that has
been developed during this work.

1.4 results

The evaluation of the performance obtained with the architecture defined by the
proposed methodology has been performed using the study case of chapter 7. In
the considered study case, results show that the proposed methodology allows
to obtain area savings of around the 15% of the logic elements contained in the
targeted FPGA over the design synthesized using the traditional methodology. The
area savings obtained come at the cost of the overhead of the non-inlined function
call mechanism introduced by the proposed methodology. The overhead of the non-
inlined call mechanism can be divided in two components. The first component is
due to the new parameter passing mechanism and it is proportional to the number
of the function parameters to be transferred. The second constant component is
due to the introduced notification mechanism. The final result is that the propose
methodology trades off the introduction of the overhead of the non-inlined call
mechanism to obtain a smaller architecture. This approach can make the difference
synthesizing big accelerators with complex call graphs. In these cases the difference
can be between faster designs that does not fit in the targeted FPGA and slower one
that does fit in it.

A more detailed discussion of the results obtained can be found in chapter 7.

1.5 structure of the thesis

Following chapters describe in more details the proposed methodology and give a
detailed overview of the implemented solutions.

chapter 2 contains a presentation of the current state of the art.
chapter 3 presents the proposed methodology and gives insights about the

motivation of the step followed during the design of the presented solution.
chapter 4 describe the design of the bus interface built around accelerators

synthesized by the PandA framework.
chapter 5 goes into the detail of the implementation of non-inlined function call

and function pointers.

1 More information can be found at http://panda.dei.polimi.it
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introduction

chapter 6 presents PorkSoC, the SoC that has has been designed for automatic
generation. PorkSoc has also served as testing environment for the integration of
the synthesized accelerators inside more complex architectures.

chapter 7 presents simulation and synthesis results.
chapter 8 concludes the thesis with final discussion on the obtained results and

gives an overview of the possible future developments.
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2
S TAT E O F T H E A RT

This chapter starts giving an introduction to HLS. Then it continues giving an
overview of the tools implementing HLS flows. Finally, it presents the state of the
art of the target architecture and pointer synthesis.

2.1 introduction to high level synthesis

HLS investigates techniques and methodologies that translate algorithmic descrip-
tions given in a high level language to a hardware micro-architecture description
implementing the input algorithm. In a typical HLS flow, the source language is a
restricted dialect of a high level programming language (e.g. C/C++ Mathlab) used
to capture the behavioral description of the design. The output of the flow will be in a
Hardware Description Language (HDL) (e.g. Verilog, VHDL) capturing the RTL
description of the resulting micro-architecture.

Front-end Optimizer Allocation

SchedulingBindingCode
Generator

source IR

HDL

Figure 2.1: HLS flow
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The architecture of a HLS tool follows the usual organization of a compiler tool.
The first component of the chain is the front-end. Front-ends in compiler technology
have the responsibility of performing lexical and syntactical analysis. The output
produced by the front-end is an intermediate representation (IR) used as as input
language by the compiler optimizer. The optimizer performs program analysis and
transformation on the IR with the aim of producing a semantically equivalent but
improved IR. In this context all code optimization algorithm known from compiler
literature can be used. After the optimizer there is the HLS back-end.

The back-end contains several steps that transforms the optimized IR into an RTL
representation. This representation is enriched with detailed implementation infor-
mation needed for the generation of a FSMD in a hardware description language.
The process of generating the FSMD includes several steps but of the whole process
three can be considered critical: allocation, scheduling and binding.

Allocation selects functional units to be used to performs the operation contained
into the IR. Usually synthesis tools have a library of components to choose from.
The library usually contains multiple modules that can perform an operation of the
IR with different area and timing. The allocation process is generally constrained
by some performance goal of the design.

Scheduling maps each operation of the IR to the clock cycle when it will be
executed. In HLS this is called control step. It is important to notice that more than
one operation can be mapped to the same control step as far as data dependencies
are met. This can be a challenging task especially when memory operation are
involved. Another constraint that has to be taken into account is the resource
availability determined during the allocation step.

Binding maps operation to a functional unit and values computed to storage
resources. The mapping is computed with the objective of minimizing the number
of needed hardware resources trying to share them whenever possible.

It is important to note that those three steps are dependent to each other. A
consequence of this tight relation is that an optimal solution of one of those step can
lead to a sub-optimal one of the others. This is known as the phase ordering problem.

The last block of the tool chain is the code generator. This will produce the
Verilog or VHDL source to be synthesized. As said it is usually in a FSMD form
that is obtained by the previous step. The datapath is obtained by the allocation
and binding decisions. The controller is obtained by the scheduling and binding
decisions.

This concludes the brief description of the HLS flow. A more deep and detailed
discussion of problem and solution can be found in [WCC09].
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2.2 panda and high level synthesis

PandA is a framework developed as research project at Politecnico di Milano. Its
primary goal is to provide an environment to experiment with new ideas and
methodologies in the hardware-software co-design field.

The PandA framework hosts a set of tools, named after wild beasts and vegetation,
each covering a piece of the proposed work-flow. Following this convention the tool
implementing HLS is named Bambu.

Bambu receives as input a behavioral description of an algorithm expressed in
the C language and generates a Verilog1 RTL description as output. The HDL
description follows best-practices for FPGA design and is vendor independent. This
design choice has permitted to easily integrate back-ends for RTL synthesis tools
for Altera, Lattice and Xilinx FPGAs.

Bambu implements the HLS flow as described in the overview of section 2.1. The
following subsections give a more detailed description of how the flow has been
implemented inside Bambu.

2.2.1 Frontend analysis

Bambu relies on the GNU Compiler Collection (GCC) for the early stages in the
compiler pipeline. The source language is parsed and translated in a Static Single
Assignment (SSA) IR called GIMPLE. GIMPLE is the IR used by GCC to perform
optimization in the compiler middle-end. The result of the middle-end optimization
inside GCC is fed as input to the front-end of Bambu for additional analysis and
transformation passes specific to the HLS flow. For example the tool computes
in this stage Control Flow Graph (CFG), Data Flow Graph (DFG) and Program
Dependency Graph (PDG) that will be used in following stages to extract parallelism
from the sequential description.

2.2.2 Resource allocation

The resource allocation step maps operation contained in the IR to Functional
Units (FUs) contained in the resource library. The mapping is done taking into
account type and size of operands. The library can contain multiple FUs with
different timing and area usage that can be allocated for a given operation. In this
case the tool takes a decision based on the constraints and objectives given by the
designer.

1 Bambu generates also functional units in VHDL when floating point operations are involved. The
generation of floating point units is performed using the flopoco library.
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2.2.3 Scheduling

The objective of this step is to build a scheduling of the operation that satisfy the
given constraints (e.g. timing constraints and resource availability). The scheduling
algorithm implemented inside the tool is a priority list-based one. In priority
list-based algorithms, operations have priorities used to decide the scheduling. The
algorithm proceeds iteratively mapping each operation to a control step of the final
FSMD.

2.2.4 Module binding

The module binding step associates physical FUs to operations. The objective of
this step is to maximize resource sharing among operations taking into account that
concurrent operations need different FUs. Bambu solve this problem reducing it
to a weighted graph coloring problem. In the implemented formulation weights
represent the convenience of sharing the same FU for two given operations. Weights
are computed taking into account timing and area characteristics of each FU.

2.2.5 Register binding

This step associates a physical register to each storage value contained in IR op-
erations starting from the information given by the Liveness Analysis. Again the
problem is reduced to a graph coloring problem on the conflict graph representing
liveness overlapping between SSA temporaries. Must be noticed that the same
problem is solved inside the back-end of a software compiler with the additional
constraint that the number of available registers is bounded by the number of
registers of the target architecture. HLS does not have this constraint because tools
can add additional registers to the architecture when necessary.

2.2.6 Interconnection

This step starts from the work done by previous steps and builds the logic needed
to interconnect resources. It introduces all the required logic to implement resource
sharing and it binds control signals that will be set by the controller.

2.2.7 Memory architecture

The step of memory allocation takes care of where each variable is allocated. With
respect to each function a variable can be allocated internally to the data-path
or externally. Internally allocated memories are accessed directly through the

8
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data-path while externally allocated memories are accessed through a memory
interface.

The memory interface is composed of two chains, one for masters and one for
slaves. The chain is closed by a global external interface that determines if the
address accessed is internal or external to the core. A more detailed description of
the memory architecture can be found in [PFS11].

2.3 high level synthesis tools

One of the most important feature of the current generation of HLS tools is the
adoption of C-like (i.e. C, C++ and SystemC) specification as input of the synthesis
flow. The introduction of support of C-like specification has contributed to increase
the HLS user base. In fact, a C based specification language extends the range of
potential user to designers more familiar with programming languages than with
HDLs. It also facilitates complex tasks like HW/SW codesign, HW/SW partitioning
and design space exploration. It allows to use compiler technologies to performs
design optimization. For this reason several HLS flows have been implemented on
top of compiler tools (i.e. Bambu, LegUp and AutoPilot).

Another important key aspect that has influenced positively the evolution and
adoption of HLS flow is the rise of FPGA devices. In the last years, FPGAs have
improved in capacitance, speed and power efficiency. For this reason many HLS
tools have been designed specifically targeting FPGAs, i.e. LegUp [Can+11], GAUT
[CM08], ROCCC [Guo+08], SPARK [Gup+04] and Trident [TGP07] [Tri+05].

The past generations of HLS tools have failed to gain significant market shares
despite the interest of the industries and research communities. A good survey of
the history and the reasons of the failures of HLS technology of the past can be
found in [MS09] and [CCF03].

The current generation of HLS is instead increasingly gaining success in the
industry world mostly because the current generation has:

• better support of the C based input language

• better quality of results

• motivated the adoption of the new design methodologies in the industry
world with its better results and usability.

Most widespread HLS tools include AutoESL’s AutoPilot (after its acquisition
from Xilinx is known as Vivado HLS), Cadence’s C-to-Silicon Compiler [Cad08],
Forte’s Cynthesizer [CM08], Mentor’s Catapult C [Bol08], NEC’s Cyber Work-
bench [CM08], and Synopsys Synphony C [Syn] (formerly, Synfora’s PICO Express,
originated from a long-range research effort in HP Labs [Kat+02]).

9
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2.3.1 Bambu

The current generation HLS tools accept as input a dialect of the C/C++ language
that include only a subset of the language features. For example common restrictions
are on the usage of pointers and some commercial tool requires that every pointer
must be statically resolved at compile time. Bambu tries to not impose such
restriction on the designer by generating architectures capable of dealing with
language construct that other tools simply consider illegal. In this spirit this work
add the last missing feature to cover the whole C language: function pointers.

Another language feature relevant to this work is the concept of function and its
translation to hardware modules. The HLS flow, as implemented inside Bambu,
translates each function in a module that takes function parameters as input and
eventually produces one output at the end of the computation. The computation
inside the function module is implemented by the means of a FSMD. Function calls
are translated instantiating the called function module inside the data-path of the
caller. When a function is called multiple times inside the body of a function it
is possible to share the instantiated function module in order to save area. If the
same function is called inside the body of another function an additional instance
of the callee is needed and it will be included into the data-path of the caller. This
mechanism is similar to function inlining in software compilers with the difference
that the inlined function can be shared inside a hardware module, if called multiple
times. This is what can be considered as the state-of-the-art approach to function
calls translations and it is the strategy used by every tool.

2.3.2 Legup

LegUp [Can+11] is an open source HLS tool being developed at University of
Toronto. As stated on the homepage of the project2 its long-term goal is to make
FPGA programming easier for software developer. Moreover this project is tradi-
tionally used by PandA as a term of comparison.

LegUp is similar to Bambu in terms of functionality and proposed methodology.
The first notable difference between the two tools is that LegUp uses the LLVM
infrastructure to build the HLS flow. But this is not the only difference.

At the architectural level the distinguishing difference is the memory architecture.
While both tools have the concept of local memory and external memory, they
differ radically in the architecture and decoding mechanism. Particularly the key
difference is that LegUp reserves the higher bit of the address to store a tag that is
uniquely bound to each memory allocated into the architecture.

Another notable difference between the two tools is that LegUp offers what they
call hybrid flow. The hybrid flow synthesize an architecture that contains a TigerMIPS

2 http://legup.eecg.utoronto.ca
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processor with a set of accelerators built from marked functions and offers to
designers an easy way to test HW/SW partitioning. The PandA framework does
not implements currently an equivalent of the Legup hybrid flow.

A noticeable missing feature of the tool is the lack of support for floating point
operations.

2.3.3 Vivado HLS

One of the tools that can be considered state-of-the-art in the industry world
is Vivado HLS by Xilinx. This section presents some information of the HLS
methodology extracted from the documentation of the product.

Xilinx has released a short manual [Xil13] with the goal of introducing FPGA
design with their HLS synthesis tool, Vivado HLS, to software engineers. The
document explains general concepts of hardware design and covers feature and
limitation of the implemented HLS flow. Unfortunately, it does not give any insight
of the implementation details.

Two of the concepts presented inside the document are of interest to our discus-
sion: functions and pointers.

The description given about function is quite vague but it is clear that inside the
framework their treatment is similar to the one implemented for loops. It is clearly
stated that for each function it is created an independent hardware module. Those
modules can be instantiated multiple times and can execute in parallel.

It also presents the memory allocation policy of the tool warning the reader that
any dynamic allocation mechanism is not supported. Moreover, it explains that
pointers can be used for two types of memory access: internal and external.

Pointers declared inside the body of a function are permitted when pointing
internally allocated objects. Constraints are sightly different when the pointer is
declared in a function parameter. In fact, any pointer access on function parameters
must imply an internal allocated object or an external memory that will be accessed
through an external bus protocol such as the Advanced eXtensible Interface (AXI).
Moreover, the tool imposes that any pointer accessing internal objects must be
statically resolvable at compile time. The following quote from [Xil13] clarifies the
previous statement of what is considered to be legal by Vivado HLS in terms of
pointers to internally allocated objects.

The HLS compiler supports pointer usage that can be completely an-
alyzed at compile time. An analyzable pointer usage is a usage that
can be fully expressed and computed in a pen and paper computation
without the need for runtime information.
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2.4 target architecture

Modern systems design is increasingly moving to heterogeneous architecture to
exploit the performance and the energy efficiency of such systems. The design of
such large systems has exposed the limitations of traditional system architectures
favoring the emergence of new architectural solutions. For example, architecture
composed with hundreds of simple cores connected together have exposed scalabil-
ity issue in the interconnection of such a number of cores. In order to address this
problem, many architecture have defined tightly coupled clusters of accelerators
and used them as building blocks [Mel+12] [Bur+13] [Plu] [Cor].

There are essentially two different approaches in defining the interaction between
accelerators included in this kind of architecture. The first makes use of a shared
memory communication mechanism. The second approach makes use of specialized
instructions specifically defined to communicate with hardware accelerators.

An example of the first solution is presented in [Bur+13] and [Bur+12]. In these
two works the authors defines the architecture of an heterogeneous shared memory
clusters and its OpenMP based programming model. The defined clusters includes
General Purpose Processors (GPPs) and hardware accelerators and a shared memory.
Inside the cluster, the connection between accelerators and the cluster interconnect
is mediated by the Data Pump module. This modules multiplexes data accesses
to/from the accelerators. It has been introduced to allow to include a great number
of accelerators without increasing the complexity of the interconnection. The
communication between GPPs and hardware accelerators is performed by means
of memory mapped registers. Other works have approached the scalability issue
with the introduction of hardware modules hiding the increasing latency between
the shared memories and the processing units. The work of Burgio et al. defines
an architectural solution that is similar to the one proposed in this thesis. The two
key difference between the proposed architecture and the one defined in [Bur+13]
are the absence an equivalent of the Data Pump and the possibility to synthesize
clusters that do not include GPPs.

An example of the second approach is the Molen architecture [Vas+04] [PBV07].
In this two works the authors define the architecture of the Molen machine and its
programming paradigm. The works of Vassiliadis et al. and Panainte, Bertels, and
Vassiliadis are in the context of Reconfigurable Computing (RC). Their works start
analyzing the common issue of the RC programming models. Then they define a
set of specialized instruction to reconfigure the programmable logic included into
the design and to communicate with loaded accelerators. In particular parameter
passing and result retrieval is performed by means of two specialized instructions
that moves data between the GPP register file and the XREGs File. The XREGs File
is a set dedicated register for input and output of hardware accelerators. Even in
this case the GPP and the reconfigurable unit have access to a shared memory. The

12
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design proposed with the Molen architecture overcome some of the limitation of the
previous works using the same approach. For example, their works does not suffers
of the op-code space explosion because they do not use a different specialized
instruction for each accelerator that can be configured in the programmable logic
included inside the design. Another important improvement is that their proposed
solution does not have any limitation on the number of input and output that
accelerators can have.

Both the Molen architecture and the template architecture defined in [Bur+13]
include mechanism to perform accelerator call with the cooperation of a GPP. As
it will be exposed in chapter 3, this thesis overcome this limitation building a
mechanism that allows accelerators to make use of other accelerators to perform
their computation without the need of a GPP.

2.5 synthesis of pointers

The semantic of pointers, as defined by the C language, represents the address of
data in memory. This definition starts from the assumption that the target architec-
ture consists of a single contiguous memory space containing all the application
data. Unfortunately this assumption is not valid in HLS and the treatment of
pointers have required special attentions from designers. In fact, in hardware data
may be stored in registers, memories or even wires.

Moreover, pointers can be used to read and write the data they point to but also
to allocate and de-allocate memory dynamically.

The synthesis of pointers and their optimization has been analyzed in [SSDM01]
and [SDM01]. These two works defines the foundations of the synthesis and
optimization of pointers in the current HLS methodologies.

[SSDM01] analyzes the operations that can be performed through pointers in
the C programming language and propose strategies for their synthesis. The three
operation taken into account by this work are loads, stores and dynamic memory
allocation and de-allocation.

For the treatment of loads and stores the authors distinguish between two situa-
tions: pointers to a single location and pointers to multiple locations. Pointers to a
single location can be removed replacing loads and stores operation with equivalent
assignment operation to the pointed object. In the case of pointers to multiple
locations, load and store operations are replaced by a set of assignments in which
the location is dynamically accessed according to the pointer value. Addresses
(pointer values) are encoded using two fields: a tag and an index. The tag is
used to recognize the memory storing the accessed data. The index is used as
offset to retrieve the data from the memory. With this strategy, loads and stores
can be removed using temporary variables and branching instructions. [SDM01]
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defines analysis and transformations that can be performed in order to optimize
the synthesis of loads and stores operation through pointers.

The dynamically memory allocation and de-allocation is addressed using both
hardware and software memory allocators. [SSDM01] concentrates on the hardware
solution giving hints on a possible software strategy. The proposed solution makes
use of a hardware module implementing the malloc and free operation. The
proposed module is able to allocate storage on multiple memories in parallel. As a
consequence of this design choice the dynamically allocated space is partitioned
into memory segments.

[SSDM01] and [SDM01] does not take into account the synthesis of function point-
ers. The reason behind this missing is that traditionally HLS considers functions
as computational units taking inputs and producing outputs that do not have a
location in memory.

This thesis extends on these works proposing a methodology that includes
accelerators in a memory mapped architecture and defines mechanisms to use
function pointers for accelerator invocation.

2.6 function calls

The are two traditional synthesis methods to performs function calls: inlining as
performed by a software compiler and the inlining as performed HLS tools.

The inlining method used by software compilers replaces function call with
the body of the called functions. In HLS, it has the advantage of keeping the
datapath small because it exposes more resource sharing opportunities during the
synthesis. In fact, performing the inlining of all the functions of a design gives the
possibility to share resources between functions boundaries. The inlining has also
the advantage of removing any kind of performance degradation caused by module
communication. Unfortunately, the inlining approach increases the area and the
delay of the controller due to the explosion of its number of states.

The inlining method used by HLS tools instead produces a different module for
each function contained in the design. The synthesized modules are then included
inside the datapath of its callers. This approach as the advantage of synthesizing
smaller function modules. This is reflected in the size the function module controller
that is smaller and faster than in the previous case. In the rest of this thesis this is
the approach referenced as inlined call mechanism.

[Har+06] starts from this premises and defines a mechanism of function merging
to be associated to the inlining mechanism of HLS tools. Function merging allows
the synthesized module to increase the resource sharing inside the synthesized
module without incurring in the drawback of the inlining mechanism. The work of
Hara et al. proposes an Integer Linear Programming (ILP) formulation to decide
the merging strategy.
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The work of Hara et al. proposes a solution to increase resource sharing at fine
grain level. The methodology proposed in this thesis instead proposes a coarse
grain approach that can be supported by the methodology proposed in [Har+06].

15





3
M E T H O D O L O G I E S

This chapter presents the methodology followed during the design and the imple-
mentation of the proposed solutions. It starts giving an overview of the overall
methodology. Then it defines all the concepts introduced by methodology.

3.1 methodology introduction

The purpose of the methodology proposed by this thesis is to introduce the concept
of non-inlined function calls and function pointers to the framework of HLS. As
introduced in section 1.2, HLS tools translate functions to FSMD. With the current
methodologies, function calls are translated instantiating the module implementing
the called function into the data-path of the caller. The implication of this method-
ology is that the module of a function is instantiated into the data-path of its callers.
This approach limits the resource sharing of function modules to the possibility of
multiple calls from the same caller. This thesis proposes a new methodology that
extends the current approach with the possibility of inter-procedural sharing of
function modules. The final result of the new methodology will be an architecture
interconnected through a bus. The accelerators composing the architecture will
be able to call other accelerators using the mechanism defined by the methodol-
ogy. Figure 3.1 shows a block diagram of the final architecture containing two
accelerators.

In order to obtain the desired result, this thesis defines a suitable interface for
the accelerators, a call mechanism and a notification mechanism. The definition of
this concepts suggests the introduction of function pointers and their architectural
meaning in the context of HLS. The following sections introduce the newly defined
entities and mechanisms.
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Bus Interconnection

Accelerator
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Accelerator
B

Accelerator Bus

External
interface

Figure 3.1: Block diagram of the proposed architecture

3.2 accelerator interface

The first entity that must be defined is the accelerator interface. It is the fundamental
building block underpinning other concepts defined by the introduced methodology.
Its definition must fulfill two requirements. First, the defined interface must
enable to easily plug synthesized accelerator in bigger modular design. Second,
it must ensures ease of use from hardware and software components. These
characteristics will enable to integrate the proposed methodology in more complex
hardware/software co-design flows.

The architectural solution proposed for the accelerator interface definition is the
usage of memory mapped registers. This is a well established architectural design
pattern in the industry world. It is used for example in computers to access the
video card and other peripherals. The pattern is extremely simple. The interface
exposes a pool of registers that are mapped into the address space of the architecture.
The exposed registers can be of three kind: input, output and control registers.
Input and output register are used to pass and retrieve data through the interface.
Control registers are used to set operating modes.

Following the pattern just described, the proposed interfaces includes a set of
input registers, an output register and a control register. The set of input registers
stores input values necessary to the accelerator. The output register stores the return
value of the computation performed by the accelerator. The control register allows
to start the computation and to monitor its state.

To better explain the proposed solution lets look at how the behavioral description
of Listing 3.1 translates to the memory mapped interface of an accelerator.
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Sum control register
Input a
Input b

Output register

Accelerator
base address

Figure 3.2: Memory mapped interface of function sum

int sum(int a, int b)
{
return a + b;

}

Listing 3.1: Example behavioral description

The behavioral description of the accelerator sum in Listing 3.1 gives all the
needed information to define its interface. The function sum takes as input two
integer values and produces as output another integer value. This information
translates in a memory mapped interface that contains four registers. The first
register is the control register. Its address will be associated to the function. It will
be the first thing allocated inside the address space of the accelerator. The second
and third registers are used to store the two inputs of the function. The last one
is return value. It will store the result at the end of the computation. Input and
output registers are optional because functions may not need inputs and may not
have return values.

Traditionally HLS tools translates function input and output as module ports. In
this case the interface may be implemented as a wrapper around the synthesized
accelerators. The same strategy has been adopted to integrate the methodology into
the PandA framework.

3.3 wrapping accelerators

One of the most important design choice of the PandA framework is to be vendor
agnostic in all its part. This choice was made in order to avoid problems that can
arise by product discontinuity. For this reason, and in the spirit of supporting the
open-hardware community, the implemented solution makes use of the WB4 bus
protocol instead of other available proprietary alternatives.

The WB4 protocol can be considered the de facto standard for what concern com-
munication protocols inside the open-hardware community. The WB4 specification
has been developed and is currently maintained at OpenCores [Ope10].

The standard flow implemented in Bambu translates function to accelerators with
a minimal interface. This interface contains a set of ports for inputs and for return
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value, a set of control signal (i.e. clock, reset and start) and, when needed, a set of
ports used for memory operations.

The current memory architecture is based on the work described in [PFS11] as
detailed in section 4.1.

The bus interface and the communication protocol defined by the minimal interface
for memory operations and by the WB4 specification are very similar. For this
reason the accelerator WB4 interface has been implemented as a wrapper layer
around the minimal interface accelerator. The wrapper logic can be decomposed in
three elements: a set of registers, a controller and the interconnection logic. The
set of register is used to implement the memory mapped interface described in
section 3.2. The controller is a state machine activated by the control register used
to start and notify the end of the computation. Wrapped accelerators may need
to access the external bus or may need to connect with the internal slave chain
during the computation. The interconnection logic takes care of discriminating
bus access types and dynamically build the needed connection to complete the
communication.

3.4 function call mechanism

Once defined the accelerator interface, it can be defined the call mechanism using
the memory mapped interface of the accelerator. The first operation that the caller
must perform is passing parameters to the accelerators. In a memory mapped
architecture, this step is performed by a series of write operation to the addresses of
the accelerator input registers. After that, the caller can start the computation. The
command that start the computation is a write operation to the control register. The
caller has two options at this stage. It can write zero or a notification address inside
the control register. The meaning of the notification address will be explained in
subsection 3.4.1 while introducing the notification mechanism.

Following the analogy of the software function call, the described mechanism is
equivalent to fill the activation record of a function and then jump to the address of
its first instruction.

When an accelerator completes the computation, the caller get notified by a
change in the state of the control register and, if activated, by the notification
mechanism. The notification mechanism can be deactivated in order to implement
different hardware-software interaction models (i.e. interrupt driven). The default
hardware behavior always activate the notification mechanism.

At this point the caller can read the return value from the callee interface and
continue its computation.

Figure 3.3 shows the inlined function call mechanism and its architectural equiva-
lent. HLS flows tools traditionally synthesize functions as modules having input
ports for function parameters and an output port for the return value. The call is
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int funA(int a, int b)
{
// ...

}

int funB{int a, int b)
{

// ...
funA(a, b);
// ...

}

(a) code

funA

funB data-path

Inputs

Output

Start

(b) architecture

Figure 3.3: Synthesis of inlined call mechanism

performed asserting the start signal of the called function FSMD and keeping its
input stable until the computation is complete. Using this methodology, the module
of the caller function contains an instance of the module of the called accelerator.

In order to distinguish between the inlined and the non-inlined function call
mechanism, the methodology defines the hwcall attribute. The hwcall attribute
is used to mark the functions that are synthesized as top accelerators and that use
the non-inlined function call mechanism. Calls to marked function are translated
using a builtin function hiding the implementation details of the call mechanism.
Listing 3.2 and Listing 3.3 show the transformation performed on the call to function
sum.

__attribute__((hwcall))
int sum(int a, int b)
{

return a + b;
}

int funA(int a, int b, int c)
{

int e;

e = sum(a, b);
return c * e;

}

Listing 3.2: Before transformation

__attribute__((hwcall))
int sum(int a, int b) { ... }

void
__builtin_wait_call(void *, ...);

int funA(int a, int b, int c)
{
int e;
__builtin_wait_call(

sum, 1, a, b, &e);
return c * e;

}

Listing 3.3: After transformation

The __builtin_wait_call function is a var-arg function. The first argument
is the address of the accelerator to be invoked. The second argument is a Boolean
flag that used to distinguish if the return value of the called function must be stored
or not. Subsequent arguments are the input to pass to the called function. When
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void __builtin_wait_call(void * fun, ...)
{
sendParameters(fun);
startComputation(fun, CALL_SITE_ADDRESS);
waitNotification();
if (was_rhs_of_assignment())
{

readReturnValue();
writeReturnValue();

}
return;

}

Listing 3.4: Pseudo code of the builtin function

the second parameter is one, the last argument passed to the builtin function is
the address of the variable where the return value must be stored at the end of the
computation.

Listing 3.4 shows in a C-like pseudo code macro operation that an hardware imple-
mentation of the __builtin_wait_call performs. The instantiated Intellectual
Property (IP) performing the hardware call will start passing all the input parame-
ters to the called accelerator using the architecture bus (sendParameters(fun)).
Then it starts the computation writing in the control register of the called accelerator
the notification address associated with the call site of the replaced function call
(startComputation(fun, CALL_SITE_ADDRESS)). The call site address is an
address allocated for the instruction calling the __builtin_wait_call. Its value
is defined during the memory allocation step. After that, the IP waits the notification
message declaring the end of the computation (waitNotification()). If the orig-
inal function was in the right-hand side of an assignment (was_rhs_of_assignment()),
the __builtin_wait_call will read the return value (readReturnValue())
from the called accelerator and it stores its value to the left-hand side (writeResultValue).

3.4.1 Notification mechanism

The introduction of non-inlined function calls carries with it the definition of a
notification mechanism for computation completion.

The interface definition of section 3.2 specifies that the information of the status
of the accelerator is exposed through the control register. Using this information,
a simple notification mechanism could be to let the caller periodically check the
control register of the callee. Unfortunately this strategy does not scale with the
number of hardware callable accelerators. In fact, the periodical check of callers can
congest the bus. Moreover due to bus congestion, called accelerators may be unable
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to perform memory operations needed to complete the computation. In the end,
the polling strategy can lead to deadlocks.

The proposed methodology solves this problem with the introduction of notifi-
cation addresses. Performing the hardware call, the caller can ask to be notified
by the callee when the computation is done. At the end of its computation, the
callee will notify the caller performing a write operation to the notification address
provided during the non-inlined function call. The notification address is associated
during the memory allocation step with the call site of the function. Giving different
address to each call site helps to distinguish between calls to the same function that
are performed in the same caller. The allocation of the notification address does not
impose the allocation of a memory or a memory mapped register.

3.4.2 Simulation of the call mechanism

Caller builtin Callee

__builtin_wait_call
sendParameters()

startComputation()

notify()

readReturnValue()

writeReturnValue

Figure 3.4: Sequence diagram of the notification mechanism

The diagram in Figure 3.4 shows the complete sequence of events happening
during a non-inlined function call. When the control flow of the caller reach the
call site of the original function call, it starts the execution of the IP implementing
the __builtin_wait_call. The IP start writing parameters to the registers of
the called accelerator. Then, it starts the computation of the callee writing the
notification address into the callee control register. The notification address used is
the address associated with the call site of builtin call. When the callee completes
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void sort(char * vector, size_t n,
int (*compare)(int a, int b))

{
// ...
for (...)
{

if (compare(vector[i], vector[i-1]))
{
// ...

}
}
// ...

}

int less(int a, int b){ return a < b; }
int greater(int a, int b){ return a > b; }

int f(int a)
{
char vec[] = { ’b’, ’c’, ’a’ };
if (a)
sort(vec, 3, less);

else
sort(vec, 3, greater);

}

Listing 3.5: Function call using function pointer

its work, it send the notification message performing a write operation at the
notification address stored in the control register. The builtin module then retrieve
the return value and write it to the variable used by the caller to store the return
value of the original call. This last step is performed only when the original call
was a right-hand-side of an assignment. After that, the builtin module return the
control to the caller.

3.5 function pointers

The presented methodology supports function pointers. In the context of the
proposed architecture, a function pointer is the first address of the memory mapped
interface of the accelerator. As described during interface definition, the first address
of the memory mapped interface corresponds to the address of the control register.

According to the proposed methodology, function calls through function pointers
can be performed using the defined call mechanism.

Listing 3.5 shows an example using function pointers. The function sort use
a function pointer to call a compare function passed as parameter. This call is
translated injecting the __builtin_wait_call described in section 3.4. In this
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void sort(char * vector, size_t n,
int (*compare)(int a, int b))

{
// ...
for (...)
{
__builtin_wait_call(

compare, 1, vector[i], vector[i-1], &tmp);
if (tmp)
{

// ...
}

}
// ...

}

int less(int a, int b){ return a < b; }
int greater(int a, int b){ return a > b; }

int f(int a)
{

char vec[] = { ’b’, ’c’, ’a’ };
if (a)
sort(vec, 3, less);

else
sort(vec, 3, greater);

}

Listing 3.6: Transformed function call using function pointer
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case the, its first parameter will be the compare function pointer. Listing 3.6
show the result of the transformation of the call through compare. The difference
between this case and the previous one is that the value of the compare function
pointer is passed at run-time. Its value will determine the accelerator invoked inside
the architecture.

3.6 testing environment

Mechanism defined in the proposed methodology have been tested using PorkSoC
as a playground. PorkSoC is a System on Chip designed to be automatically
generated. The long term goal is to include it in a hybrid HLS flow. A detailed
discussion of its design can be found in chapter 6.

PorkSoC has been used also to test the accelerator integration inside a more
complex designs. As part of the testing, we had the opportunity to verify the
interaction between accelerators and software executed by the processor included
in PorkSoC.
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4
W I S H B O N E W R A P P E R

This chapter gives a detailed description of the design and implementation of the
WB4 wrapper that the proposed methodology builds around accelerators synthe-
sized by Bambu. The chapter starts giving a description of the minimal interface
and the protocol used by its memory interface. Then it continues presenting the
WB4 interface and the communication protocol. The chapter ends describing the
details of the implementation of the wrapper circuit.

4.1 minimal interface

In the PandA framework the minimal interface is the interface obtained following
the standard synthesis flow of hardware accelerators. It has been designed to be
extremely simple in order to obtain maximum performance from the synthesis flow.
The architecture of the accelerators is organized in two daisy chains. One for masters
components and one for slaves components. The two chains are used to perform
internal and external memory operation. During external memory operation, master
and slave chains of an accelerator have direct access to the minimal interface and,
through it, to the outside world. During internal memory operation the two chains
are closed on each others to build the communication channel.

Figure 4.1 shows a block diagram of the architecture. The accelerator funC
contains two functional units used to perform memory operation (LD/ST) and two
functional units to compute function funA and funB. The bus merger has the task
to forward requests from internal module through the exposed interface.

The minimal interface of synthesized accelerators is dynamically generated. The
generation starts from the signature of the synthesized function and from the
information of the memory allocation. Its interface signals can be organized in four
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Figure 4.1: Block diagram of the minimal interface

int funA(int a, int b) {}

void funB(int a, int b) {}

void funC(){}

Listing 4.1: Example of function with different input output interface

sets: control signals, accelerator inputs and output, master chain signals and slave chain
signals.

Of the four sets, only the set of control signals is always included in the interface.
The set of control signals contains four elements: clock, reset, start_port, done_port.
The clock and reset have the usual meaning. The other two control signals allows to
start (start_port) and get notified (done_port) when the computation is done.

The other three sets are optional and they are included when needed by the syn-
thesized accelerator. Their inclusion and their content depends from the signature
of the function being synthesized and from the decision taken during the memory
allocation step of the synthesis flow. Their meaning and their inclusion policy will
be explained in the following subsections.
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4.1.1 Inputs and Output of the accelerator

The first optional part of the minimal interface is the set of module ports that
represents inputs and the output of the synthesized function. Listing 4.1 shows all
the possible cases that can happen.

The first case is represented by the function funA. This function represents all
the functions that take any given number of arguments and produce a return value.
In this case the accelerator with the minimal interface will have one input port for
each parameter and one output port, named return_port, that will contain the return
value.

The opposite case is represented by the function funC. In this case the function
does not need any inputs and does not produce any output. The minimal interface
of the synthesized accelerator will reflect this characteristic. As a consequence, the
generated minimal interface for the accelerator will not have any ports for inputs
and output.

The last case represented by funB lays in between the two preceding. In this
case the function has a list of inputs but does not have a return value. This will
be reflected into the minimal interface including an input port for each function
parameter but omitting the return_port.

4.1.2 Master chain signals

Master chain signals are the portion of the interface that is used to start memory
operations. Their inclusion in the interface is conditioned by the kind of operation
included in the synthesized function and by the decision taken during memory
allocation. The need or not of these signals depends on where the memory allocation
step has allocated memories that the synthesized accelerator accesses during the
computation. Essentially there are two cases that make this interface needed. The
first case is that the synthesized function need to access memory located higher in
the hierarchy. The other case is that the accelerator may access memories outside
the boundaries of the accelerator.

Master chain signals can be organized in two distinct sets. The first is composed
of the following signals:

mout_data_ram_size Size of the data to be read or written by the master initiating
the bus cycle. The size is transmitted as the number of bit to be read or written.

mout_wdata_ram The data to be written. This is meaningful only during a write
cycle.

mout_addr_ram The address of the data to be read or written.

mout_we_ram Asserted during write cycles otherwise set to zero.

29



wishbone wrapper

mout_oe_ram Asserted during read cycles otherwise set to zero.

For each of the previous signals exist an equivalent input signal used to build the
master chain. A master making a request will use these output signals to start a
bus cycle.

The other set is the return channel of the communication. It contains the in-
formation coming back from the addressed slave. It contains the following two
signals:

m_data_rdy Acknowledge signal for the master waiting the completion of the
requested read or write operation.

m_rdata_ram Data read from the selected address. Contains a meaningful value
only at the end of a reading cycle.

4.1.3 Slave chain signals

Like the master chain signals, even the slave chain signals are included by the
minimal interface generation step on a need basis. Again the inclusion or not
depends on the decisions taken during the memory allocation step of the synthesis.
They will be included when the synthesized accelerator contains memories that
must be accessible through the architecture bus.

Slave chain signals can be organized in distinct sets. The first set is used to
propagate the request coming from the master chain inside the slave chain. It
includes the following signals:

s_data_ram_size Size of the data involved in the operation. The size is transmitted
as the number of bit to be read or written.

s_wdata_ram The input data to be written in the destination address.

s_addr_ram The destination address for the current operation.

s_we_ram Input to be asserted to perform write operation otherwise set to zero.

s_oe_ram Input to be asserted to perform read operation otherwise set to zero.

The other set is used to send back the response to the master chain. It includes
the following two signals:

sout_data_rdy Acknowledge signal for the master waiting the completion of the
requested read or write operation.

sout_rdata_ram Data read from the selected address. Contains a meaningful
value only at the end of a reading cycle.
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4.2 wishbone 4 protocol basics

This section presents the features of the WB4 protocol used by the implementation
of the wishbone wrapper. The interested reader can find the complete specification
of the interface and its bus cycles inside the wishbone specification [Ope10].

The wishbone specification is very general. Its generality lays on the absence of
architectural constraints imposed by the specification other than a precise definition
of the interfaces and the communication protocol.

The specification defines the three entities that are involved during the commu-
nication: the wishbone master, the intercon and the wishbone slave. Wishbone
masters and slaves are object implementing the wishbone master and slave interface
respectively. The intercon is a wishbone module that interconnects master and slave
interfaces. Figure 4.2 gives a schematic view of the interconnection in a wishbone
bus.

The specification does not prescribe any particular topology for the interconnec-
tion or any specific interconnection mechanism. The choice is left to the architecture
designer but any possible interconnection mechanism is compliant with the spec-
ification. Inside the specification document there are outlined a few possible
architectural solution for the implementation of the intercon including: point-to-
point connection between wishbone masters and slaves, crossbar and a shared
bus.

The specification precisely defines the communication protocols between wish-
bone masters and slaves defining bus cycles. According to the definition given
by the specification, a bus cycles is the process whereby digital signals affect the
transfer of data across a bus by means of an interlocked sequence of control signals.
The specification defines two bus cycles: the wishbone classic bus cycle and the
wishbone registered feedback bus cycle. Moreover, the wishbone classic bus cycle
has two possible variants: the standard bus cycle and the pipelined bus cycle.
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The wishbone specification does not impose to support every variant of the
communication protocol. In order to be compliant with the specification, it is
enough to support only the wishbone bus cycle chosen by the designer.

The following subsections describe the wishbone interface as implemented by
the wrapper logic built around Bambu synthesized accelerators and the classic bus
cycle in the standard version.

4.2.1 The interface

The wishbone specification defines a rich interface in order to support all the
defined bus cycles. An interface is not required to implement all of them to be
compliant with the specification. But at the same time the specification defines
the minimal set of signals that master and slave interface must have to implement
the communication protocol. The wrapper wishbone has been designed to use the
wishbone classic bus cycle. Its interface exposes only the minimal set of signals
necessary to implement the communication protocol.

The following subsection give the definition of the used signals following the
organization of the WB4 specification. The specification organizes the signal de-
scription in three groups: signal common to master and slave, master signal and
slave signal. The description will follow the same organization and the same name
convention of the wishbone specification.

Signals common to master and slave

clk_i The clock input coordinates the activity of internal logic with the interconnect.
According to the specification all output signals must be registered with the
clock and all the input must be stable before the rising edge.

rst_i The reset input force the interface to restart. At the same time all the internal
state machines must be set to their initial state.

dat_i The data input is used to transfer binary data.

dat_o The data output is used to transfer binary data.

Master signals

ack_i The acknowledge input. Its assertion indicates the normal termination of a
bus cycle.

adr_o The address output is used to pass addresses.

cyc_o The cycle output. Its assertion gives the start to the communication. The
cycle output must be asserted during whole bus cycle.
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sel_o The select output indicates where valid data is expected on dat_i during a
read operation or where valid data is put on dat_o during a write operation.
Its size is determined by the granularity of the port.

stb_o The strobe output identifies a valid data transfer. This signal has an impor-
tant role in more complex bus cycles. In our discussion it will be asserted
always when cyc_o is.

we_o The write enable output identifies read and write operation. This signal is
asserted during write operations and negated on read operations.

Slave signals

ack_o The acknowledge output. The slave interface assert this signal to indicate
the normal termination of a bus cycle.

adr_i The address input is used to pass addresses.

cyc_i The cycle input indicates that a valid bus cycle is in progress.

sel_i The select input indicates where valid data is expected on dat_o during a
read operation or where valid data is put on dat_i during a write operation.
Its size is determined by the granularity of the port.

stb_i The strobe input when asserted indicates that the slave is selected. Slaves
must respond to other wishbone signal only when this is asserted.

we_i The write enable input identifies read and write operation. This signal is
asserted during write operations and negated read operations.

4.2.2 The wishbone classic bus cycle

The wishbone classic bus cycle is the simplest communication method described
inside the specification document. According to the specification, every wishbone
bus cycle is initiated by the master interface asserting the cyc_o signal. When the
cyc_o signal is not asserted all other master signal must be considered invalid. On
the other side, slave interfaces respond to slave signals only when the cyc_i is
asserted.

All the bus cycles define a handshaking protocol between master and slave
interfaces. The timing diagram in Figure 4.3 shows the handshaking protocol for
the standard version of the wishbone classic bus cycle with a synchronous slave
from the master perspective. As shown in Figure 4.3 the master interface assert
the stb_o signal when it is ready to transfer data to the slave. The stb_o signal
will remain asserted until the slave interface assert the ack_i signal to terminate
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clock
cyc_o
stb_o
ack_i

Figure 4.3: Wishbone handshake protocol

the bus cycle. On the rising edge of the ack_i signal, the master interface will
de-assert the stb_o signal. This gives control over the data transfer rate to both
master and slave interfaces.

The following two subsection presents the standard single write cycle and the
standard single read cycle.

4.2.3 The standard single write cycle

clock
cyc_o
stb_o
we_o

addr_o 0xG00DF00D

dat_o 0xG00DCAFE

sel_o 0xF

ack_i

Figure 4.4: Wishbone standard write cycle

The timing diagram in Figure 4.4 shows a standard single write cycle from the
master interface perspective. The bus cycle works as follow.

When a master is ready to perform a write operation it set to a valid address
the adr_o signal and to the appropriate value the dat_o and sel_o signals.
Concurrently it assert the we_o, cyc_o and stb_o signals. After that the master
start monitoring the ack_i signal waiting for the slave response.

The selected slave will decode the inputs and register value of the dat_o signal.
As soon as the operation is completed the slave asserts the ack_i signal to notify
the master.

When the ack_i signal is asserted, the master de-asserts stb_o and cyc_o
signals concluding the bus cycle.
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4.2.4 The standard single read cycle

clock
cyc_o
stb_o
we_o

addr_o 0xG00DF00D

dat_i 0xBEAF

sel_o 0xF

ack_i

Figure 4.5: Wishbone standard read cycle

The timing diagram in Figure 4.5 shows a standard single read cycle from the
master interface perspective. The bus cycle works as follow.

When a master is ready to perform a read operation it sets to a valid address
the adr_o signal and to the appropriate value the sel_o signal. Concurrently
it negates the we_o signal and asserts cyc_o and stb_o signals. After that the
master start monitoring the ack_i signal waiting for the slave response.

The selected slave will decode the inputs coming from the master. As soon as the
requested data is ready, it will output the value to the dat_i signal. At the same
time it asserts the ack_i signal to notify the master it has done.

When the ack_i signal is asserted the master register the value of the dat_i
signal and de-asserts str_o and cyc_o signals concluding the bus cycle.

4.3 wb4 wrapper circuit

The minimal interface and the WB4 interfaces have multiple common characteristics.
Both protocols have dedicated lines to transmit data, data size and addresses. Both
make use of an acknowledge line. The main design difference between the two com-
munication protocol is mechanism that start bus cycles. The minimal interface bus
cycle starts when the initiator assert one the line Min_we_ram and Min_oe_ram.
The wishbone communication protocol makes use of two control lines cyc_o and
stb_o. The wrapper circuit makes use of the similarities between the two commu-
nication protocols to build the wishbone interface on top of the minimal interface
of synthesized accelerators. At the same time, it introduces connection logic and
IPs designed to handle the difference between the two communication protocols.

The wrapper circuitry can be organized in three entities: a pool of memory
mapped registers, the interface controller and the interface interconnection logic. In
the previous chapter, section 3.2 explains how the pool of memory mapped registers
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Figure 4.6: Wishbone interface controller state machine

is allocated. The following subsections explain the implementation details of the
wishbone interface controller and the interconnection logic.

4.3.1 The wishbone interface controller

The wishbone interface controller is directly tied to the control register exposed by
the memory mapped interface of the accelerator. The control register exposes to
users the current operating state of the accelerator and, at the same time, acts as a
locking mechanism.

Figure 4.6 shows the state machine of the controller. chapter 5 will extend the
controller to build non-inlined function calls.

The controller in Figure 4.6 has three states. The starting state (A) represents that
the accelerator is doing nothing an can start new a computation. An hypothetical
caller can fill the memory mapped register of the input parameters with the appro-
priate value and then let the computation start writing in the control register. The
write operation in the control register (W) makes the controller move to the second
state (B) starting the computation raising the start_port (S) signal of the minimal
interface. The controller stays in B until the accelerator asserts the done_port
signal (D) then it moves to the third state (C) de-asserting the start_port signal.
The controller moves to the initial state after the control register gets read. After
that the accelerator is ready to start a new computation again.

4.3.2 The interconnection logic

As described in section 4.1, the minimal interface is generated dynamically accord-
ing the needs of the synthesized function. For this reason the wishbone interface
and the glue logic between the two interfaces is also generated on the need. The
following paragraphs describe only the complete interconnection logic represented
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Figure 4.7: Wrapper logic for the DataRdy signal

in the circuit of Figure 4.9. The uncovered cases can be obtained removing not
needed parts from the described circuit.

The circuit built around the minimal interface has two tasks. The first is to build
the mapping between minimal interface signals and wishbone signals. The second
is to connect master and slave chains of the minimal interface when necessary.

The RangeChecker is a module that constantly check if the address coming from
the Mout_addr_ram resides in the memory space of the accelerator or outside. The
RangeChecker has three inputs: an address and the starting and ending addresses
of the internal range. The result of the check is used as control signal into the
multiplexers that build the interconnections.

DRSToS and SToDRS are two modules used to convert respectively from the
Mout_data_ram_size to the sel_o format and from the sel_i back to the
S_data_ram_size format.

The multiplexer logic is similar for each of the interconnected signals. The
thesis describes in detail only the weMux functionality. The behavior of the other
multiplexers can be deduced from this.

The weMux connects the Mout_oe_ram signal to the corresponding S_we_ram
signal from the master chain or the result of the or connected to port 1. As said, the
selection is controlled by the RangeChecker module. If the destination address is
internal the multiplexer will close the connection on the master chain otherwise it
will select the signal coming from the wishbone slave interface. The output of the
or port at input 1 of the multiplexer is asserted only during wishbone write cycles.

Figure 4.7 and Figure 4.8 present two other important aspects of the wrapper
circuit.

The circuit in Figure 4.7 shows how the wrapper performs the interconnec-
tion of the acknowledge signals. The circuit is made by a cascade of a demul-
tiplexer and a multiplexer controlled by the output of the RangeChecker mod-
ule. The multiplexer–demultiplexer chain will close the connection between the
Sout_DataRdy and the M_DataRdy signals when the destination address is inter-
nal to the accelerator. Otherwise the Sout_DataRdy signal will be used to respond
to slave cycles from the wishbone interface while the M_DataRdy signal will be
connected to the acknowledge signal coming from the wishbone master interface
(ack_i).
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Figure 4.8: Wrapper logic for stb_om and cyc_om signals

The circuit in Figure 4.8 shows the logic that controls the stb_o and cyc_o of
the wishbone master interface. The circuit reflects the fact that a wishbone bus cycle
starts when the underlying master of the minimal interface starts a read or write
operation on an externally allocated object.
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5
F U N C T I O N C A L L S A N D F U N C T I O N P O I N T E R S

This chapters presents the architectural solutions implemented inside the PandA
framework to build non-inlined function call mechanism as described in chapter 3.
The discussion starts giving an overview of the implementation of the architecture
proposed by the methodology. Then it continues explaining transformation and
analysis added to the HLS flow to support the methodology. The chapter ends
presenting the details of the architecture generation.

5.1 architectural overview

WB4 Intercon

Accelerator
A

Accelerator
B

Accelerators top module

External master
and slave WB4

interfaces

Figure 5.1: Block diagram of the implemented architecture
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The architecture built of interconnected accelerators exposing memory mapped
interfaces presented in section 3.1 is very general. Lots of the architectural details
are unspecified leaving to the designer various degrees of freedom during its
implementation. In fact, a designer approaching its implementation must define:

• the architecture interconnection

• the internal communication protocol

• the external interface

• the external communication protocol

Figure 5.1 shows the block diagram of the architecture as implemented inside the
PandA framework.

Accelerators composing the architecture expose interface defined by the method-
ology and implemented as described in chapter 4. Accelerators are built with a
WB4 interface and for this reason the internal communication protocol chosen is
Wishbone B4. The whole architecture is synthesize inside a top module that can be
used as a building block of more complex architecture.

5.1.1 The wishbone interconnection

The internal interconnection is implemented using a shared bus. The module
implementing the WB4 intercon is composed by two cooperating entities: the
connection logic and an arbiter. Figure 5.2 shows a block diagram of the internal
structure of the wishbone interconnection.

Figure 5.2: Block diagram of the wishbone interconnection

The arbiter has the task of deciding which of the master initiating a connection
takes the grant to use the shared channel. The decision of the arbiter is influenced
by:

• the initiation requests coming by masters interfaces (cyc_o signal);

• the last granted master.

The arbitration logic always decide in favor of the last granted master when it is
claiming the bus in subsequent clock cycles. This policy is implemented in order to
support the pipelined version of the WB4 classic bus cycle. In case the previously
granted master has released the bus, the arbiter decides in favor of first found
master reclaiming the bus. The order of scanning is the order of the master interface
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5.2 non-inlined function calls

void funA(int a, int b)
{
// ...

}

int funB(int a, int b)
{
// ...
funA(a, b);
// ...

}

void funC(int a, int b)
{
// ...
funA(a, b);
// ...

}

Listing 5.1: Example of non-inlined calls

ports. This means that master connected to interface with lower indexes have higher
priority.

The decision process lasts one clock cycle. Once the decision is taken, the
interconnection logic connects the granted master with its requested slave. Having
to wait for one clock cycle for the arbiter, the interconnection logic has been enriched
with a set of registers between master and slaves interfaces. This registers break
critical paths allowing to obtain higher clock frequencies.

During architecture generation, the intercon is configured to expose two addi-
tional interfaces: a master and a slave interface. These two interfaces are used to
give access to the architecture to and from the outside world. For example, the
testing infrastructure uses the master interface to perform the call that start the
computation. At the same time, the slave interface is used to connect a memory
controller implementing a RAM to the design under test. The two additional ports
can be used to connect the generated architecture to an higher level intercon. This
allows to build a hierarchical architecture made of tightly-coupled shared-memory
clusters as described in [Bur+13].

5.2 non-inlined function calls

The function call mechanism described in section 3.4 introduces the non-inlined
function calls to the HLS methodology. Non-inlined function calls can be used to
reduce the number of instantiated modules inside the synthesized architecture with
the advantage of reducing the area occupation inside the FPGA.
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Listing 5.1 shows a situation where this strategy can be applied. Lets suppose
that the final architecture must contain accelerators computing funA, funB and
funC. A design synthesized using the current HLS methodology will contain three
instances of the module implementing funA. The first instance is needed to directly
compute funA. The other two instances are included inside the data-path of the
modules that will compute funB and funC.

The proposed methodology offers the possibility to synthesize a design containing
only one instance of the module implementing funA. Using this methodology, funB
and funC will perform the function calls to funA using the mechanism defined in
section 3.4.

In the context of PandA, the implementation of non-inlined function calls is built
starting from three passes.

The first pass is implemented inside a GCC plugin. The plugin containing an
attribute definition and a transformation pass. The attribute defines the concept of
hardware call. The transformation pass inject a builtin function that implements
the non-inlined function call mechanism.

The second component is an analysis pass implemented inside the front-end
of Bambu. The transformation pass performed by the plugin hides function calls
behind a builtin function. The front-end analysis performed augment the call graph
adding the missing edges disappeared after the transformation.

The third component is the architecture generation step in the HLS back-end.
The implementation generate a WB4 interconnection suitable to connect all the
accelerators and to give access to/from the outside world.

The following sections present the details of their design and implementation.

5.3 source code transformation

PandA implementation of the non-inlined function calls mechanism makes use of
a GCC plugin that defines an attribute and include a transformation pass. The
attribute defined is called hwcall. This attribute is used to mark explicitly function
that are synthesized as hardware accelerators. Marking a function definition or a
function declaration with the attribute triggers the transformation pass.

Listing 5.2 and Listing 5.3 show the effect of the transformation. To better
understand the transformation performed by the pass, lets see how Listing 5.2 is
translated into Listing 5.3. The transformation search for function calls to function
marked with the hwcall attribute. When it finds one, it replaces the original call
with a call to the __builtin_wait_call builtin function. The injected builtin
function is a var-arg function hiding the implementation of the non-inlined function
call mechanism. The first argument of the __builtin_wait_call is a function
pointer pointing to the function to be called. The second argument is a Boolean flag.
It is used to discriminate the meaning of the last parameter passed to the builtin
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5.3 source code transformation

__attribute__((hwcall))
int sum(int a, int b)
{

return a + b;
}

int funA(int a, int b, int c)
{

int e;

e = sum(a, b);
return c * e;

}

Listing 5.2: Before transformation

__attribute__((hwcall))
int sum(int a, int b) { ... }

void
__builtin_wait_call(void *, ...);

int funA(int a, int b, int c)
{
int e;
__builtin_wait_call(

sum, 1, a, b, &e);
return c * e;

}

Listing 5.3: After transformation

function. There are two cases: the original function call is in the right-hand-side
of an assignment or not. When the original call is in the right-hand-side of an
assignment, the last parameter of the builtin function is the address of the variable
storing the return value of the called function. As is shown in Listing 5.3 the second
parameter of the __builtin_wait_call wait call is one and the last parameter
is the address of variable e. Between the second and the last parameter, the builtin
function takes as input all the variable that were passed to the original function call.
When the original function call is not in the right-hand-side of an assignment, the
last parameter of the builtin function will be the last argument of the original call.

This implementation strategy allows to use the same transformation to implement
hardware calls from hardware and software components. In fact, the transformation
pass will only declare the builtin call leaving to the designer the responsibility of
its implementation. For what concern the hardware implementation, the IP library
of the PandA framework already contains an IP implementing the builtin. During
the synthesis flow all function calls to the builtin will be translated using the imple-
mented IP. Moreover, the designer has the freedom to change its implementation
using a different IP library.

As said, the builtin function takes a variable number of arguments that are
unknown until synthesis time. This implies that the IP implementing the builtin non-
inlined function mechanism must be dynamically generated during the synthesis.
The builtin IP generation makes use of the IP specialization process offered by the
PandA framework. When the synthesis flow encounters a __builtin_wait_call,
it invokes the specialization process. This generates a new functional units taking as
input the exact number and types of arguments of the synthesized builtin call. The
generated functional unit implements a state machine that performs the non-inlined
function call. Figure 5.3 shows the generated state machine for a function taking an
argument and returning a value.

45



function calls and function pointers

waitstart

sendParameter

startComputation

waitNoti f ication readReturnValue

writeReturnValue

done

Figure 5.3: Builtin state machine of a function that takes a parameter and has a
return value

The specialized __builtin_wait_call is also able to perform non-inlined
function calls using function pointers. This functionality is implemented using
relative addressing to access the accelerator memory mapped interface. This
requires that the memory mapped interface of accelerators having the same types
as input and outputs have the same relative addressing between registers. This
property is guaranteed by the implemented memory allocation algorithm.

Listing 5.4 shows the same example of chapter 3. The first argument passed to
the builtin function is the address contained in the compare function pointer. As
introduced in section 3.5, the address associated to the function is the address of the
accelerator control register that is the first element of the memory mapped interface.

The framework is also able to generate a software implementation of the builtin
function during the testbench generation. In that context, the software implemen-
tation of the builtin is used in the process of automatic generation of testbench
stimuli.
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void sort(char * vector, size_t n,
int (*compare)(int a, int b))

{
// ...
for (...)
{
__builtin_wait_call(

compare, 1, vector[i], vector[i-1], &tmp);
if (tmp)
{

// ...
}

}
// ...

}

int less(int a, int b) { return a < b; }

int f()
{

char vec[] = { ’b’, ’c’, ’a’ };
sort(vec, 3, less);

}

Listing 5.4: Function call using function pointer

5.4 front-end analysis

The transformation described in section 5.3 has the effect of changing the call graph
of the original code. Due to the fact that the builtin function injected is declared
but not defined, the information of the original function call is lost.

funA

sum

(a) before

funA

__builtin_wait_call

(b) after

Figure 5.4: Call graph before and after transformation

Figure 5.4 shows how the transformation modifies the call graph of the code
in Listing 5.2. The missing information of __builtin_wait_call calling sum
has the consequence that the HLS flow will not include sum during the synthesis
despite its presence in the source code. The reason of this exclusion is that sum is
not reachable navigating the call graph from the top function (funA).
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To restore the information lost during the transformation pass, the HLS flow was
enriched with an analysis pass adding the missing information to the call graph.

funA

__builtin_wait_call

(a) before

funA

__builtin_wait_call

sum

(b) after

Figure 5.5: Call graph before and after front-end analysis

Figure 5.5 shows how the analysis pass effects the call graph of the transformed
code of Listing 5.3. The analysis search calls to the __builtin_wait_call. When
it finds one, it adds an edge between the __builtin_wait_call function and
the function passed as its first argument.

At the end of the analysis, all the function called through the non-inlined function
call mechanism will be included again in the call graph and the HLS flow will
perform their synthesis as top modules having WB4 interfaces.

5.5 architecture generation

Once that the analysis has completed its work, the HLS tool starts the synthesis
flow in order to build the architecture of Figure 5.1.

The first step of the architecture generation is the synthesis of the accelerators to
be included in the final design. The architecture will contain accelerators for the top
function and for functions marked with the hwcall attribute. All the synthesized
accelerators expose a WB4 interface generated following the steps described in
chapter 4. In order to support the notification mechanism, the synthesis flow of
accelerator with the wishbone interface wrapper has been extended with new
features.

First, accelerator wrapper has been extended to include the notify_caller
IP. This IP implements the notification mechanism of the proposed methodology
described in subsection 3.4.1. The notification mechanism is implemented by means
of a little state machine performing a write operation of the wishbone classic bus
cycle. The destination address used is the notification address stored in the high bits
of the control register of the accelerator interface. Figure 5.6 shows the implemented
state machine.

The second feature is the introduction of a new memory allocation policy.
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waitstart

noti f y

done_port

Figure 5.6: notify_caller state machine.

Once that the synthesis of the accelerators composing the final architecture is
completed, it is performed the generation of the architecture of Figure 5.1.

The generation step starts instantiating the top module and modules of function
called using the non-inlined call mechanism. Then it instantiate the WB4 intercon.
The instantiated WB4 intercon contains all the needed master and slave interface to
connect the accelerator composing the architecture plus a master and a slave WB4

interface. The two additional master and slave interface are used to give access to
the generated architecture from/to the outside world.

The whole architecture is synthesized as a module exposing a master and a slave
interface directly connected to the additional interface of the WB4 intercon. All
the core included into the generated architecture are relocatable in memory using
module parameters. This allows to specify the new base address of each module
included. This characteristics makes the generate modules easy to use and integrate
in more complex modular designs like SoC.

5.5.1 The new memory allocation policy

The original memory allocation algorithm implemented inside the PandA frame-
work starts deciding the accelerator where each object must be allocated inside the
architecture. The policy implemented allocates memory objects in the common
ancestor of the function modules using them. After that, the memory allocation
policy starts assigning addresses to each object one function at time but without
following any particular order.

Unfortunately, the original implemented algorithm does not guaranties that
address space contiguity when generating the architecture for non-inlined function
calls. The address space contiguity is a fundamental property needed by the WB4

intercon present in the PandA IP library. For this reason, the allocation policy has
been changed with a new one giving this guarantee.
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funA

funBfunC

funD

Figure 5.7: Call graph example for the allocation policy

The newly implemented policy performs a partition of the object to be allocated
taking into account the accelerator that will contain them. After that it start
allocating the WB4 interface registers and continues with all the object allocated
inside the accelerator and its called function. This will guarantee that address
spaces of the accelerators included in the final architecture will not be overlapping.

Figure 5.7 shows an example of call graph that allows to better explain the
allocation policy. Lets suppose that funA must be synthesized as an hardware
accelerator and that funC has been marked to use the non inlined function call
mechanism. At the end of the synthesis, the generated architecture will contains
two top accelerators one for funA and one for funC. At this point we can ideally
partition the call graph cutting all the edges in the backward star1 of the funC node.
The two sub-graphs obtained represent the partitioning of function modules in top
accelerators. The requirement of the interconnection logic is that all the memories
that are reachable through the interface of an accelerator must be in a compact
range. This implies that memories allocated inside function modules contained
in a partition cannot be allocated in between memories contained inside function
modules of other partitions.

The new memory allocation policy computes the call graph partitioning and
subsequently perform the memory allocation one partition at time. Partitions are
processed performing the allocation of memories considering on function at time
starting from the top of the sub-graph. This guaranties address space contiguity.

1 Given a graph G = (N, E) and a node i of the graph, the backward star of i is the set δ−(i) = {(x, y) ∈
E : y = i}.
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6
P O R K S O C

This chapter introduce PorkSoC, the System on Chip built to test the integration
of synthesized accelerators. The chapter starts explaining why it has been imple-
mented another SoC instead of using one already available. It continues stating
the architecture requirements and then giving an overview of the built architecture.
Finally, it presents a study case with the obtained results.

6.1 motivation

The long term goal in having a SoC as part of the PandA framework is the introduc-
tion of a hybrid HLS flow. The hybrid HLS methodology will enable the generation
of an application specific heterogeneous multi-core architecture. The generated
heterogeneous multi-core architecture will contain a GPP and a set of hardware
accelerator connected through a WB4 intercon. The hardware accelerators will be
synthesized using the methodology proposed in this work. This long term goals
motivates the introduction of PorkSoC into the framework. In the short term the
SoC will be used to test the integration and the interaction between accelerators
and the GPP.

During the design of the SoC, the choice of which GPP to include has led to a
critical analysis of the available alternatives. The final decision has been in favor of
the Or1200 processor.

The industry already supports methodologies allowing to build heterogeneous
multi-core architectures. In fact all the three leading companies in the FPGA market
offer a soft-core IP ready to be included into designs.

Xilinx offers MicroBlaze [Xil]. Microblaze is a 32-bit Reduced Instruction Set
Computing (RISC) soft-core that is included free with some of the Xilinx tools. It
has an Harvard architecture and it is highly configurable. It can be configured to
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include a Memory Management Unit (MMU), instruction and data caches or to
have different pipeline depths.

Altera offers Nios II [Alt]. It is a family of three configurable 32-bit RISC Harvard
architecture cores. The first architecture is a six stage pipeline optimized for
performance with an optional MMU or Memory Protection Unit (MPU). The
second architecture is optimized for smallest size. The third option lays in between
balancing performance and size of the core.

Lattice offers LatticeMico32 [Lat]. It is a 32-bit RISC Harvard architecture with
a six stage pipeline. It optionally can include caches, with various sizes and
arrangements, and pipelined memories. LatticeMicro32 has a dual wishbone
interface for data and instruction bus.

Besides industry products there are also alternatives coming from academia and
the open-hardware community. Of all the available alternatives two have been taken
into account for the inclusion inside the SoC.

The first one is SecretBlaze [Bar+11]. SecretBlaze is an open-source processor de-
veloped at LIRMM. It is a 32-bit RISC Harvard processor with a five stages pipeline.
Its Instruction Set Architecture (ISA) is compatible with Xilinx’s MicroBlaze ISA.
The second one is Or1200. It is a 32-bit RISC Harvard processor with a five stage
pipeline. It can be configured to include instruction and data caches and MMUs,
a ticktimer, floating point units and power management unit. According to the
project page it has been implemented in various commercial Application Specific
Integrated Circuits (ASICs) and FPGAs.

6.2 architecture requirements

To better understand the architecture requirements it is important to understand
some facts about the PandA user base. PandA is a research project developed at
Politecnico di Milano quite exclusively by researchers and students. While the main
core of the user base is still from academia it is gaining the attention of industry
people and of the open hardware community. For this reason the design of the
architecture must take into account that some of the intended audience of the tool
may not have access to expensive commercial tools and devices. Requirements will
reflect this background consideration.

The first requirement is that all of the IPs used to build the architecture must
be open-source. For this reason it has been chosen to use IPs freely available at
OpenCores. This will avoid problems with products discontinuity and to respect
the vendor agnostic philosophy of the PandA framework.

The second requirement is that the designed architecture must be modular and
easily extensible with accelerators. In the spirit of design for the future, this will
help to purse the long time goal of implementing a hybrid HLS flow inside the
PandA framework. Moreover, this characteristic will help to achieve the short
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term goal of building a good testing framework usable to refine the methodology
proposed in this thesis.

The last important requirement is that the complete design should fit inside small
FPGAs that are usually affordable for students.

A few final words must be spent on the choice of the GPP at the light of the
just stated requirements. The two main alternatives were SecretBlaze and Or1200.
While both architecture are well supported by toolchains and debugging software,
SecrectBlaze has a not negligible drawback in this context. It is modeled using
VHDL while accelerators produced by the PandA framework are modeled using
Verilog. This implies that the simulation of an architecture containing SecretBlaze
and accelerators produced by PandA needs the support of a simulation tool capable
of mixed HDL simulation. All the leading commercial tools are capable of such
a kind of simulation but none of the freely available versions and open-source
alternatives are. This mostly motivates the choice of Or1200 over SecretBlaze but
there other advantages.

6.3 porksoc base architecture

Before going into the details of the PorkSoC architecture, it is important to motivate
the choice of designing a SoC from scratch instead of using some of the already
available SoC based on the same architecture.

After a careful analysis of the available options two alternatives have emerged:
OrpSoC and MinSoC. OrpSoC is a SoC designed to be a feature rich testing
environment for the OperRisc architecture. MinSoC instead is the Minimalistic
OperRisc SoC. It is designed to fit in small FPGAs. Of these two alternatives,
MinSoC is the nearest to fulfill the requirements stated in section 6.2. In fact, it
has positively influenced the design and implementation of PorkSoC. The main
problem with MinSoC design is that it is not intended to be automatically generated.
The availability of unused wishbone interface in the intercon included in MinSoC
makes it a potential candidate to solve the short term goal of accelerator testing.
On the contrary it is impossible to use this design to solve the long term goal of
SoC generation. The main reason is that the size of the intercon is fixed and can
not scale with the number of accelerators to be included into the design.

This consideration and the requirements stated in section 6.2 have led to the
current implementation of PorkSoC. PorkSoC is a highly configurable System on
Chip based on the OperRisc architecture.

Figure 6.1 shows the base architecture of PorkSoC. Blue components are manda-
tory to implement a SoC based on the Or1200 processor. The two gray components
are not strictly necessary but can be useful in interfacing with the SoC and for
debugging purposes.
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Figure 6.1: PorkSoC base architecture

The block diagram of Figure 6.1 shows that Or1200 has three interfaces. Two
wishbone interfaces are connected to the wishbone intercon and are used to access
data and instruction memory. The third interface is for debugging support and is
connected to the Advanced Debug Interface module. The Advanced Debug Interface
is a component that control the execution of the processor during debugging. This
enable to control program execution using software debugger like GNU Project
Debugger (GDB). The Advanced Debug Interface is also connected to the wishbone
intercon in order to have access to memories connected to the architecture. The
Advanced Debug Interface module is controlled by the JTAG tap module that
receives debugging commands from the software debugger.

Instruction memory and data memory is implemented with as a Random Access
Memory (RAM). The whole memory is allocated inside the FPGA instead of using
external resources. This design choice makes unnecessary the use of instruction and
data caches. The reason is that synthesis tools translate both with the same FPGA
resources so they have the same access times voiding the advantages of caches
usage. The size of the memory instantiated can be configured during component
instantiation.

The two optional component are a Universal Asynchronous Receiver/Transmitter
(UART) controller and a General Purpose Input/Output (GPIO) controller. The
UART controller is a hardware module that translates data between parallel and
serial form. It is usually used in conjunction with other communication standards
allowing data transfer through serial ports. The GPIO controller is a hardware
module that allows the user to interact with a set of external pins. The user by
means of the GPIO controller can read or write logical values on the pin. In order
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to perform read or write operation on pins, the user must configure pins working
direction (input or output) using a memory mapped control register of the GPIO
controller. It has been included because during the debugging of such systems can
be very useful to have visual feedback turning on and off LEDs.

6.4 extending the architecture with accelerators

In order to easily extend the base architecture of PorkSoC the intercon is not stati-
cally defined. It is generated to host the connection of the needed number of master
and slave interfaces. In its base configuration of Figure 6.1, the PorkSoC intercon-
nect need to expose three master interfaces and two slave interfaces. The three
master interfaces are needed for modules that are capable of initiating wishbone
bus cycles. There are two of them, the Or1200 and Advanced Debug Interface, but
three interfaces are needed because Or1200 uses different interfaces to interact with
data memory and instruction memory.

Extending PorkSoC base architecture with additional accelerators is a three step
process. The first step is the implementation of the accelerators to be included.
They can be automatically generated with an HLS tool or not. In any case the
accelerator must expose a wishbone interface. The second step is the instantiation
of the accelerator inside the top module of PorkSoC and its configuration. The
third and final step is performing the connection between the accelerator and the
intercon.

At the current stage, the inclusion of an accelerator into the PorkSoC architecture
must be performed by the designer. The long term goal is to automate the process
with the introduction of an hybrid HLS flow inside the PandA framework.

6.5 experiments

PorkSoC has been used to test accelerators integration during the development of
the methodology proposed in this thesis. The following paragraphs will present
an experiment conducted to test the call mechanism of accelerators from software
executed by the Or1200 processor. The accelerator used to conduct the test was
synthesized by a function computing the crc32 of an input string. The crc32

computation is performed by the accelerator by means of a table allocated in RAM.
Listing 6.1 shows the source code used in our experiment. The program entry

point is the function main. The first three function calls inside main are service
routines used to initialize the environment. The gpio_init function initializes the
GPIO controller. The next function calls to int_init and int_add initialize the
interrupt controller and define an interrupt handler for the GPIO.

The following function call to crc32 is the core of the test application. At the
beginning of Listing 6.1, the declaration of the function crc32 is marked with the
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__attribute__((synthesize))
ulong crc32(ulong crc, unsigned char* buf,

ulong offset, ulong len,
ulong crc32tab[]);

int main() {
gpio_init();

int_init();
int_add(GPIO_IRQ, &gpio_interrupt, NULL);

int crc =
crc32(10, "0,1,2,3,4", 0, 5, crc_32_tab);

REG32(GPIO_BASE + RGPIO_OE) = 0x000000ff;
REG32(GPIO_BASE + RGPIO_OUT) = crc;
or32_exit(0);

}

Listing 6.1: Test program for crc32

attribute hwcall. The attribute defines that the marked function is implemented
as an hardware accelerator. The presence of the attribute is used to trigger a
transformation pass implemented as a GCC plugin, as discussed in section 5.3. The
transformation pass translates calls to marked functions with the instruction needed
to call the underlying accelerator.

Listing 6.2 shows the pseudo-code of the transformation made on the original
function call by the pass. The first operation performed by the transformed code
is parameter passing. Each of the function parameters is written inside the corre-
sponding memory mapped register of the accelerator. Then the computation is
started writing into the accelerator control register. After that the program enters a
busy waiting loop. The software stays into the loop until the accelerator notifies
the end of the computation. The program get notified of the computation end by
reading the accelerator control register. At the exit of the waiting loop, the software
retrieves the return value of the computation reading the memory mapped register
of the accelerator that stores it.

As shown in Listing 6.2, the current implementation of the accelerator call
mechanism in software is performed with the injection of a busy waiting loop during
the transformation pass. Simulation and testing on FPGA have demonstrated that
the GPP does not send request faster enough to cause bus congestion. Polling is
not the only mechanism that can be used to implement the hardware-software
interaction mechanism with accelerators. All the synthesized accelerators expose
interrupt lines that can be connected to the interrupt controller of the GPP. This
means that, with the support of an operating system, the GPP can schedule other
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int main() {
// ...
// ulong crc = crc32(
// 10, "0,1,2,3,4", 0, 5, crc_32_tab);

*REG32(CRC32_PARAM1_ADDRESS) = 10;

*REG32(CRC32_PARAM2_ADDRESS) = "0,1,2,3,4";

*REG32(CRC32_PARAM3_ADDRESS) = 0;

*REG32(CRC32_PARAM4_ADDRESS) = 5;

*REG32(CRC32_PARAM5_ADDRESS) = crc_32_tab;

*REG32(CRC32_CTRLREG_ADDRESS) = START;
while (*REG32(CRC32_CTRLREG_ADDRESS) != END);
ulong crc = *REG32(CRC32_RETVAL_ADDRESS);
// ...

}

Listing 6.2: Call mechanism code

Total logic elements 7,940 / 18,752 ( 42 % )
Total combinational functions 7,183 / 18,752 ( 38 % )
Dedicated logic registers 3,405 / 18,752 ( 18 % )
Total registers 3405

Total pins 36 / 315 ( 11 % )
Total virtual pins 0

Total memory bits 133,376 / 239,616 ( 56 % )
Embedded Multiplier 9-bit elements 8 / 52 ( 15 % )
Total PLLs 1 / 4 ( 25 % )

Table 6.1: Synthesis report for PorkSoC + crc32 on the DE1

tasks in parallel with the accelerator computation and get notified of its end by
means of an interrupt.

The program in Listing 6.1 ends by writing one byte of the result of the crc32
through the GPIO. This operation lights up some LEDs of the testing board as a
visual feedback.

6.6 synthesis results

The synthesis of the PorkSoC architecture with the crc32 accelerator has proved
some of the strength of the design and has pointed out some of its actual limitations.

The report in Table 6.1 shows the area occupation of the architecture inside the
used FPGA. The report indicates that the synthesized architecture uses roughly
half the resources available on the FPGA included in the Altera DE1 board. The
Altera DE1 board contains an Altera Cyclone II FPGA that is one of the smallest
and cheapest FPGA on the market. The synthesis proves that the design satisfies the
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small footprint requirement stated in section 6.2. Also it shows that the remaining
resources on the FPGA are enough to include other accelerators to the architecture.

The synthesis has also exposed some modeling issue inside Or1200. At the
first synthesis the tool was not able to synthesize a design that was working at
an acceptable clock frequency. The result was around 25MHz. By inspecting the
synthesis reports obtained by the tool and the Or1200 HDL description, some of the
problems have been pointed out. Most of them where due to the fact that Or1200 is
targeted both at ASIC and FPGA. For this reason some of the component inside the
processor were modeled using patterns from the ASIC world. The two problems
found inside the description of Or1200 are in the register file and in the multiplier.
The register file was modeled to be synchronous on both raising and falling edge
of the clock signal. This was requesting the register file to work twice faster than
the rest of the design. The multiplier was instead described using a patter from
the ASIC world that is not compliant with the FPGA best practice. The result of its
usage was that it was blocking the retiming algorithm of the synthesis tool.

Once these modeling issue have been fixed, the synthesis of the architecture has
started to obtain acceptable working frequencies. The final result obtained was
around 80MHz.
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7
D I S C U S S I O N

The chapters starts presenting a study case used to test the methodology proposed
in chapter 3. Then it continues presenting the testing environment. The final section
presents the obtained results with architecture synthesis and simulation.

7.1 study case

The study case chosen is an application of the LU factorization to solve a linear
system and compute the inverse of a matrix.

Let A be a square non singular matrix. The LU factorization decompose a given
matrix A as the product of two factors L and U.

A = L ·U (7.1)

Where L is a lower triangular matrix and U is an upper triangular matrix.
The LU decomposition can be used to solve linear systems of the form:

A · x = b (7.2)

transforming the system to the equivalent:

U · x = y (7.3)

L · y = b (7.4)

This transformation allows to split the resolution of original system of Equa-
tion 7.2 in the resolution of two triangular systems. At first it may seem that the
problem has been complicated but triangular systems can be efficiently resolved
using forward and backward substitution algorithms. These two algorithms have
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a computational complexity of O(n2) while the LU decomposition algorithm has
a computational complexity of O(n3). The cost of this resolution method is domi-
nated by the cost of the computation of the LU factorization. But this is a one time
cost. In fact, the LU decomposition of a matrix can be reused multiple times to
solve the systems having the same matrix but changing the b vector. For example,
this method can be used to compute the inverse of the A matrix solving n linear
systems using as b vector the columns of the identity matrix.

7.2 synthesis of the study case

fun

invertMatrix

Doolittle_LU_Solve

Doolittle_LU_Decomposition

Figure 7.1: Call graph of the study case

Listing 7.1 shows the core of the study case used to evaluate the performance
of the proposed methodology. The program entry point is the fun function. The
program starts computing the LU decomposition of the matrix A. The result of
the computation is stored packing the L and U matrix inside A. Then the program
continues solving a linear system calling Doolittle_LU_Solve. After that, the
program computes the inverse of A using its LU decomposition as outlined in
section 7.1.

Figure 7.1 shows the segment of interest of the call graph of the study case.

To evaluate the impact of the proposed methodology, two different synthesis
and simulation of the application in Listing 7.1 have been performed. In the first
experiment, the application was synthesized as an accelerator with the WB4 interface
using only the traditional function call mechanism. In the second experiment,
the application was synthesized using the non-inlined function mechanism for
calls to Doolittle_LU_Solve. As the call graph in Figure 7.1, this function is
shared between the fun and invertMatrix functions. Moreover, the considered
experiment setup does not include PorkSoC to better isolate results obtained
following the proposed methodology.
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int invertMatrix(float *LU, float *invA)
{

int i, j;
float I[4][4] = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0,

1}};
float resultColumn[4];

for (i = 0; i < 4; ++i)
{
int res = Doolittle_LU_Solve(LU, I[i], resultColumn, 4);

if (res != 0) return res;
for (j = 0; j < 4; ++j)

*(invA + i + j * 4) = resultColumn[j];
}

return 0;
}

//float A[4][4] = {{1, 1, 1, 1}, {1, 4, 2, 3}, {1, 2, 1, 2}, {1, 1, 1,
0}};

//float invA[4][4]= {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0,
0}};

int fun(float *A, float *invA, float *b, float *x)
{

int res = Doolittle_LU_Decomposition((float *)A, 4);

if (res != 0) return res;

// float b[4] = {63, 105, 48, 186};
// float x[4];

res = Doolittle_LU_Solve((float *)A, b, x, 4);

if (res != 0) return res;

res = invertMatrix((float *)A, (float *)invA);

return res;
}

Listing 7.1: Study case with LU decomposition and LU solve

7.3 results

The synthesis of the two experiments have shown that the non-inlined function
call mechanism produces a significant reduction of the area usage. Comparing the
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Total logic elements 37,700 / 68,416 ( 55 % )
Total combinational functions 32,096 / 68,416 ( 47 % )
Dedicated logic registers 23,389 / 68,416 ( 34 % )
Total registers 23389

Total pins 211 / 622 ( 34 % )
Total virtual pins 0

Total memory bits 20,211 / 1,152,000 ( 2 % )
Embedded Multiplier 9-bit elements 72 / 300 ( 24 % )
Total PLLs 0 / 4 ( 0 % )

Table 7.1: Synthesis report of architecture with wishbone interface on Altera Cyclone
II EP2C70F896C6

Total logic elements 25,724 / 68,416 ( 38 % )
Total combinational functions 21,834 / 68,416 ( 32 % )
Dedicated logic registers 15,914 / 68,416 ( 23 % )
Total registers 15914

Total pins 212 / 622 ( 34 % )
Total virtual pins 0

Total memory bits 12,962 / 1,152,000 ( 1 % )
Embedded Multiplier 9-bit elements 46 / 300 ( 15 % )
Total PLLs 0 / 4 ( 0 % )

Table 7.2: Synthesis report of architecture with non-inlined call on Altera Cyclone II
EP2C70F896C6

results of Table 7.1 and Table 7.2, it can be seen that the introduction of the non-
inlined function call mechanism has reduced the area occupation of the synthesized
design of about 12000 logic elements. The synthesis has been performed targeting
an FPGA of the Cyclone II family. The obtained saving on the used model correspond
to the 17% the logic elements available.

The results show that the area saving obtained with the introduction of the
non-inlined call of Doolittle_LU_Solve saves enough space to include into the
design additional components for the size a little SoC like PorkSoc.

The choice of the functions to be marked to use the non-inlined function call
mechanism becomes critical. Good candidates to use the introduced methodology
are function that performs non trivial computations and that are called by multiple
functions inside the synthesized application.

Both version of study test case have been simulated using ModelSim[Gra] by
Mentor Graphics. The measurements performed on the simulation results are
summarized in Table 7.3.

The simulation has shown that the architecture using the non-inlined function
mechanism takes 4902 clock cycles while the architecture using the inlined mech-
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inlined non-inlined speepup
fun 4552 4902 0.93

Doolittle_LU_Decomposition 899 899 1

__builtin_wait_call - 862 -
Doolittle_LU_Solve 834 834 1

invertMatrix 2814 3134 0.89

Table 7.3: Number of clock cycle of function execution measured from simulation.
Numbers for __builtin_wait_call and Doolittle_LU_Solve are measures
from the first call. Case of internal I.

anism takes 4552 clock cycles. The difference in performance between the two
architectures is caused by two factors: the non-inlined function calls overhead and
by the memory allocation strategy.

As described in section 3.4, the non-inlined function call mechanism needs a num-
ber of clock cycles proportional to the number of the function parameters to com-
plete. Measures from the simulation results have shown that the function call mech-
anism takes 14 clock cycles to start the computation of Doolittle_LU_Solve. On
the other hand, inlined mechanism can start the function computation in one cycle.

The new methodology imposes an overhead also on the function return with
the addition of the notification mechanism described in subsection 3.4.1. In this
case the overhead can change only between function with or without return val-
ues. Measures on the simulation have show that the notification mechanism
for Doolittle_LU_Solve lasts in 14 clock cycles. The cumulative overhead
introduced by the methodology for the Doolittle_LU_Solve function is 28
clock cycle. The datum can also be extracted by Table 7.3. The lines of the
__builtin_wait_call shows the number of clock cycles needed to perform
the first call to Doolittle_LU_Solve from caller perspective. The subsequent
line contains the effective number of clock cycles need to complete the computation
of Doolittle_LU_Solve. The difference between the two numbers is exactly 28.
To this overhead must be added 2 additional clock cycle to read the return value
from the memory where the builtin call stores it. This brings the total over head to
30 clock cycle per call to the Doolittle_LU_Solve function.

This justifies part of the performance lost. In fact, some simple math shows
that the call to invertMatrix is still 200 clock cycles slower than its counterpart
in the inlined test considering the 120 clock cycle of overhead of the 4 calls to
Doolittle_LU_Solve. The difference in the computation times is due to the
memory allocation strategy followed by the tool during the architecture generation.
In fact, the difference in performance between the two architecture is due to how
they have access to the I matrix. In both architecture the identity matrix is allocated
inside the invertMatrix accelerator. The difference in performance between

63



discussion

the two architectures lays in the way they access it. In fact, the version using the
non-inlined function call mechanism has to traverse the bus to read data from
it. This shows that the designer must take particular care of where memories are
allocated inside the architecture using the proposed methodology.
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C O N C L U S I O N

8.1 final considerations

As introduced in section 1.1, the contribution of this thesis to HLS is the introduction
of a new methodology supporting the synthesis of function pointers and the
definition of the non-inlined function call mechanism.

As explained in chapter 3, the new methodology defines the following entities
and mechanisms:

• the memory mapped interface for the synthesized accelerators;

• the architecture connecting together cooperating accelerators;

• the non-inlined call mechanism used by accelerators to invoke other accelera-
tors;

• the notification mechanism to notify caller accelerators of the end of the
computation in the callee;

• a SoC suitable to be generated with the introduced architecture.

The proposed methodology has been implemented inside Bambu, the HLS tool
of the PandA framework. This implementation has been used to evaluate the
overhead of the non-inlined function call mechanism and the area saving obtained
with the new methodology. A detailed discussion of the results can be found in
chapter 7. The analyzed study case has exposed the strengths and weaknesses of the
implementation of the proposed methodology. It has pointed out the areas where
the implementation can be improved in order to reduce the overhead imposed by
the non-inlined function call mechanism. For example, the WB4 pipelined classical
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bus cycle can be used to reduce the overhead of parameters passing and of the
notification mechanism.

8.2 future developments

The methodology proposed in this work lays the foundations of two main future
developments. The first is its integration in a hybrid HLS flow. The second possible
future development lay its foundation on the architectural meaning of function
pointers given by the methodology proposed in this thesis. Its definition and the
mechanism defined in this work can be the starting point to implement functionality
and libraries that needed function pointers support in HLS synthesis flows. An
important example in this context are the pthread library and OpenMP language.
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A C R O N Y M S

ASIC Application Specific Integrated Circuit

AXI Advanced eXtensible Interface

BDTI Berkeley Design Technology Inc.

CAD Computer Aided Design

CFG Control Flow Graph

DFG Data Flow Graph

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

FSMD Finite State Machine with datapath

FU Functional Unit

GCC GNU Compiler Collection

GDB GNU Project Debugger

GPIO General Purpose Input/Output

GPP General Purpose Processor

HDL Hardware Description Language

HLS High Level Synthesis

ILP Integer Linear Programming
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acronyms

IP Intellectual Property

IR intermediate representation

ISA Instruction Set Architecture

MMU Memory Management Unit

MPU Memory Protection Unit

PDG Program Dependency Graph

RAM Random Access Memory

RC Reconfigurable Computing

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

SSA Static Single Assignment

SoC System on Chip

UART Universal Asynchronous Receiver/Transmitter

WB4 Wishbone B4
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