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Abstract

Several applications of computational fluid dynamics require to simulate many different
possible realizations of a system, thus yielding relevant computational challenges and,
very often, large demand on computational resources. This is the case, for instance, of
optimization, control and design problems in aerodynamics. A possible way to alleviate
this computational burden is provided by reduced order models (ROMs), that is, low-
dimensional, efficient models which are fast to solve, but also able to approximate well
the underlying high-fidelity simulations.

In this work we analyse and implement a Reduced Basis (RB) method for the rapid
and reliable solution of potential flows past airfoils, parametrized with respect to the
angle of attack and the NACA number identifying their shape. This method allows
to capture the essential flow features by means of a handful of degrees of freedom,
and to keep under control the error with respect to a high-fidelity solution, all over the
parameter space.

For the construction of our RB method we rely on a high-fidelity approximation
technique given by an Isogeometric Boundary Element Method (IGA-BEM), thus lead-
ing to a very efficient Isogeometric Reduced Basis (IGA-RB) Method for the reduction
of shape-dependent problems. We have decided to rely on a Galerkin-Boundary El-
ement Method because it enables a preliminary reduction of the problem dimension,
through a suitable boundary integral formulation, and the chance to treat external flows
in (possibly) infinite domains. On the other hand, Isogeometric Analysis allows a direct
interface with CAD tools, in view of possible extensions to complex applications of in-
dustrial interest. Moreover, in order to ensure a suitable Offline/Online decomposition
between ROM construction and evaluation, a suitable Empirical Interpolation Method
has been applied.

We have adopt two different strategies for the construction of the reduced spaces,
namely the Proper Orthogonal Decomposition (POD) and a Greedy algorithm, by show-
ing the main analogies and differences for the case at hand, and their computational
performances. Finally, we validate the results – obtained both with the high-fidelity
IGA-BEM method and the reduced order models – with respect to experimental data
and numerical codes (Xfoil), showing in both case a great agreement.
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Sintesi

In questa tesi viene analizzato e implementato un metodo a basi ridotte per la soluzione
rapida e affidabile del flusso a potenziale intorno a profili alari parametrizzati in fun-
zione dell’angolo d’incidenza del profilo e del numero NACA identificativo della loro
forma. Questo metodo consente di catturare le caratteristiche essenziali del comporta-
mento di un sistema descritto da un modello differenziale parametrizzato riducendone
il costo computazionale e mantenendo sotto controllo l’errore rispetto alla soluzione
ottenuta mediante un metodo ad alta precisione (high-fidelity), come il metodo degli
elementi finiti o degli elementi al contorno.

L’idea generale alla base della riduzione di modello consiste nel risolvere il prob-
lema combinando un insieme di soluzioni calcolate per particolari valori dei parametri
con un metodo di approssimazione ad alta precisione. In questo modo, la dimensione
del problema ridotto è data dal numero di queste soluzioni (o funzioni di base), che in al-
cuni casi può essere molto piccolo poichè un esiguo numero di modi riesce a descrivere
in modo opportuno il comportamento del sistema, al variare del valore dei parametri.

Nei metodi a basi ridotte è dunque possibile suddividere la risoluzione di un prob-
lema in due fasi: una fase offline (computazionalmente onerosa), in cui si costruisce lo
spazio ridotto, ovvero si calcola un insieme di funzioni di base risolvendo il problema
per valori appositamente selezionati dei parametri, e una fase online (poco costosa) in
cui è possibile ottenere una soluzione per valori arbitrari dei parametri, in tempo pres-
soché reale, mediante una proiezione di Galerkin sullo spazio ridotto.

Questa metodologia è particolarmente efficace in tutti quei casi in cui è necessario ri-
solvere il problema un gran numero di volte (ad esempio in problemi di ottimizzazione)
oppure nei casi in cui è necessaria una stima certificata della soluzione in tempo reale
(ad esempio in problemi di controllo).

Per l’approssimazione numerica del problema e la costruzione delle funzioni di base
nel modello ridotto, si utilizza in questo lavoro un metodo isogeometrico (isogeomet-
ric analysis, IGA) agli elementi al contorno (boundary element method, BEM), basato
sulla formulazione integrale, grazie al quale si può discretizzare e risolvere il problema
solo sul bordo del dominio. In questo modo possediamo uno metodo numerico in grado
di trattare flussi esterni, oltre che di ridurre di una dimensione il modello completo per
la descrizione del flusso attorno al profilo, ottenendo dunque un’ulteriore diminuzione
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di complessità. Per quanto riguarda la costruzione di uno spazio ridotto, numerosi ap-
procci sono possibili, a seconda del tipo di problema in esame. Nel caso di problemi
parametrizzati gli approcci più utilizzati (e studiati in letteratura) sono un algoritmo di
tipo greedy (basato su una stima a posteriori dell’errore) e la decomposizione ortogo-
nale (o proper orthogonal decomposition, POD). Sottolineamo infine che il metodo a
basi ridotte non sostituisce il metodo agli elementi al contorno utilizzato per approssi-
mare numericamente il problema in esame, piuttosto è costruito su di esso: in questo
modo, la soluzione ridotta non approssima direttamente la soluzione esatta del prob-
lema, quanto piuttosto la soluzione approssimata ottenuta con il metodo BEM.

Gli elementi di novità del lavoro sono molteplici:

i. abbiamo sviluppato un metodo isogeometrico agli elementi al contorno (IGA-
BEM) efficiente per la soluzione del flusso attorno al profilo;

ii. tramite una procedura di interpolazione empirica, abbiamo ridotto il costo com-
putazionale di assemblaggio delle matrici nel metodo IGA-BEM;

iii. abbiamo costruito un metodo a basi ridotte (reduced basis, RBM) sfruttanfo sia
un approccio di tipo POD che un algoritmo di tipo Greedy (IGA-BE-RBM);

iv. infine, abbiamo validato le soluzioni ottenute con il modello ridotto con dati sper-
imentali provenienti dalla letteratura, mostrando un ottima capacità di previsione
dei risultati da parte dei metodi implementati.

Riportiamo in seguito la struttura dell’elaborato.
Nel capitolo 1 viene introdotto il modello per la descrizione di un flusso intorno a un

profilo alare, che sotto opportune condizioni si può ridurre ad un problema di Poisson
con condizioni al contorno miste e una condizione di Kutta che assicura la buona po-
sizione del problema in domini bidimensionali. Sfruttandone la sua formulazione inte-
grale, il problema viene riscritto solo sul bordo del dominio (boundary integral equation,
BIE). Forniamo inoltre una formulazione variazionale di questo problema, necessaria
per la costruzione di un metodo di approssimazione numerica basato su una proiezione
di Galerkin.

Tale metodo è descritto nel capitolo 2. In particolare, consideriamo un metodo
isogeometrico agli elementi di contorno (IGA-BEM), che si differenzia dalle tecniche
più classiche (come quelle basate sulla distribuzione di vortici sui pannelli) sia per
l’approssimazione della geometria che per la procedura di discretizzazione.

L’ingrediente fondamentale di questa tecnica è la possibilità di utilizzare le stesse
funzioni per la descrizione della geometria computazionale e della soluzione del prob-
lema differenziale. Ciò comporta notevoli vantaggi del punto di vista dell’accuratezza,
e la possibilità di trattare geometrie di interesse industriale. I risultati ottenuti con
il metodo IGA-BEM sono stati confrontati e validati con dati sperimentali e risultati
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provenienti da altri metodi numerici, mostrando un’ottima qualità delle soluzioni ot-
tenute con la tecnica implementata.

Essendo interessati alla descrizione del flusso attorno a un profilo alare al variare
della sua forma e dell’angolo di incidenza, introduciamo nel capitolo 3 una formu-
lazione parametrizzata del problema. In questo modo, è possibile descrivere le caratter-
istiche (o input) fisiche e geometriche del problema mediante parametri (variabili) nel
problema differenziale. Grazie alla descrizione isogeometrica del dominio, l’equazione
può essere formulata su una configurazione di riferimento (in questo caso il segmento
[0, 1]), in cui le caratteristiche fisiche e geometriche sono espresse mediante funzioni
dei parametri che compaiono nei coefficienti del problema differenziale. Ciò risulta in-
dispensabile, nella costruzione del modello ridotto, per poter combinare soluzioni del
problema corrispondenti a differenti configurazioni geometriche. Tuttavia, come spesso
accade nel caso di parametrizzazioni geometriche, la dipendenza parametrica nel prob-
lema differenziale risulta di tipo non affine, ovvero i coefficienti del problema dipen-
dono, oltre che dai parametri, anche dalle coordinate spaziali. Ciò rende più complicata
la separazione delle componenti parametriche dagli operatori differenziali, necessaria
per poter disporre di una procedura offline-online efficiente. Per ovviare a questo fatto,
e poter dunque costruire un modello ridotto per la soluzione efficiente del problema
parametrizzato, consideriamo una tecnica di interpolazione empirica. Ciò permette di
approssimare gli operatori parametrizzati mediante un’opportuna combinazione lineare
di operatori indipendenti dai parametri, e poter dunque estrarre la dipendenza paramet-
rica dagli integrali che definiscono tali operatori (dipendenza affine). Questo passo è
fondamentale per sfruttare a pieno la divisione offline-online dei metodi di riduzione
del modello e ottenere quindi un algoritmo efficiente dal punto di vista computazionale.
Inoltre, questa procedura rende più rapido l’assemblaggio delle matrici del problema
IGA-BEM, che risulta di norma particolarmente oneroso nel caso di questi metodi.

Nel capitolo 4 vengono presentati due metodi a basi ridotte per la soluzione di prob-
lemi differenziali parametrizzati, basati su due diversi approcci per la costruzione di uno
spazio di basi ridotte. Nel primo caso consideriamo un algoritmo basato sulla decom-
posizione ortogonale (proper orthogonal decomposition, POD), nel secondo invece un
algoritmo di tipo greedy. In entrambi i casi è possibile costruire una base a partire da
un insieme di soluzioni del problema BEM calcolate per opportuni valori dei parametri.
Nel primo caso occorre calcolare un vasto numero di tali soluzioni, e operare una de-
composizione ai valori singolari della matrice delle soluzioni. Qualora i valori singolari
evidenzino un decadimento esponenziale, trattendendo pochi vettori singolari della de-
composizione è possibile ottenere in modo immediato una base ridotta per il problema.
Nel secondo caso è possibile selezionare, in maniera adattiva e ottimale, alcuni valori
dei parametri, e calcolare solo le soluzioni corrispondenti a questi valori. Per operare
tale scelta occorre tuttavia ricorrere a un opportuno stimatore (a posteriori) dell’errore,
la cui valutazione potrebbe risultare onerosa rispetto al calcolo delle soluzioni richieste
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per la POD, in questo caso poco costosa dal momento che il problema IGA-BEM non
ha dimensioni elevatissime.

I risultati ottenuti con il metodo BEM, già validati da confronti con dati sperimentali
e dati provenienti da altri algoritmi, sono infine confrontati con quelli provenienti dai
metodi a basi ridotte nel capitolo 5, mostrando un’ottima accuratezza anche in questo
caso. Di conseguenza, riusciamo a certificare la bontà di tali metodi non solo nei con-
fronti del metodo IGA-BEM, ma anche con dati sperimentali.

Il lavoro svolto ha dimostrato che l’accoppiamento di un modello isogeometrico
agli elementi di contorno con un metodo di riduzione del modello porta a ottimi risultati
in termini di accuratezza e velocità di soluzione, nel caso della soluzione di flussi a
potenziale intorno a profili alari.

Una naturale evoluzione di quanto presentato in questo elaborato è l’estensione al
caso di problemi in tre dimensioni, considerando eventualmente un modello fisico più
complesso, che possa tenere conto della presenza dello strato limite e riuscire a preve-
derne il comportamento. Un’altra possibilità, infine, è rappresentata dallo studio di
problemi non stazionari a dall’estensione a questo caso della metodologia IGA-BE-
RBM considerata in questo lavoro.
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Introduction

In this Master Thesis we analyse and implement a reduced basis method for the rapid
and reliable solution of potential flows past airfoils, parametrized with respect to the
angle of attack and the NACA number identifying their shape. This method allow us
to capture the essential features of our system, described by a parametrized differential
model, by improving computational performances and by keeping the approximation
error between the reduced order solution and the full order (or high-fidelity) one under
control.

The general idea behind reduced order models (ROMs) is to solve the problem com-
bining the solutions of the full-order (or high-fidelity) problem for some properly se-
lected values of the parameters. In fact, we assume that the behaviour of a system
can be well described by a small number of dominant modes. This assumption usually
holds in several real world applications. Under this assumption, it is possible to split
the numerical approximation in two stages. We first solve the full-order problem only
for some instances of parameter values, through a computationally demanding Offline
stage, in order to construct a reduced space of basis solutions. In this way, it is possible
to perform many low-cost, reduced-order simulations during a very inexpensive Online
stage for new instances of the parameter values. In fact, we express the reduced solu-
tion as a linear combination of the basis solutions and compute it through a Galerkin
projection onto this reduced space.

For the numerical approximation of the problem and the construction of the reduced
order model basis functions, we use an isogeometric boundary element method (IGA-
BEM) based on a boundary integral equation. This allows us to discretize and solve
the problem only on the boundary of the domain at hand, decreasing by one the dimen-
sionality of the problem, and thus leading to a further reduction of the computational
complexity.

We highlight that reduced basis methods do not replace the boundary element method.
Rather, they build upon, and are measured against (regarding accuracy), a given high-
fidelity approximation method: the reduced basis solution does not approximate directly
the exact solution, but rather a ‘given’ boundary element solution.

Several novel aspects are proposed in this work. In particular:
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i. we have implemented an efficient isogeometric boundary element method;
ii. through the empirical interpolation method, we have reduced the computational

cost related to the assembling of the discrete model matrices;
iii. we have built a reduced-order model by exploiting a propero orthogonal decompo-

sition (POD) strategy and a greedy algorithm for the basis selection, thus yielding
a IGA-BEM method.

iv. finally, we have validated the results obtained through our ROMs with experi-
mental data coming from literature, showing a great agreement and a remarkable
computational reduction.

State of the art
This work is based on the coupling of different techniques in an innovative way. Thus,
we now provide a brief state of the art of all the main ingredients we deal with, namely
panel/boundary element methods, geometry description and parametrization and re-
duced order models.

Panel/boundary element method
Panel methods have been widely accepted as a useful tool for aerodynamic and hydro-
dynamic design since pioneering work of Hess and Smith (1962) [25]. A large number
of different panel methods have been developed for a variety of applications (Hess 1975
[24]). Until Morino (1974) [46] introduced a panel method based on Green functions
in which the primary unknown is the potential, most of the previous works were based
on a velocity-based formulation, in which the boundary condition on the body surface
is satisfied through the direct computation of the velocity. The Morino potential-based
formulation is known to be more stable, and hence more suitable for numerical com-
putation than the velocity method, since the potential is one order less singular than
the velocity. A good discussion on the potential-based panel method may be found in
Kerwin et al. (1987) [34]. The low-order panel method assumes that the potential is
constant over a panel, and hence, to get the velocity distribution on the body surface,
this method requires a finite difference scheme, which inevitably introduces numerical
differentiation error. This error is most significant near the trailing edge and at the tip of
the lift-generating surface, and leads ultimately to the degradation of the accuracy of the
low-order method. In [41] (2003) and [35] (2007) Lee et al. developed a higher-order
panel method, which allows to improve the prediction of the velocity and pressure in
these regions, by employing B-spline basis functions to represent both the geometry and
the potential. Since the derivatives of the basis functions can be obtained exactly, there
is no need to rely on numerical differentiation to compute the velocity field from the
potential, and so that the inherent limit of the low-order panel method can be resolved.
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This is one of the reasons why we have decided to adopt an isogeometric approach to
develop our framework. A detailed description of the higher-order panel method based
on B-splines was first given by Hsin et al. (1994) [29] and by Maniar (1995) [43] for
the two dimensional and three dimensional case respectively.

Geometrical description and parametrization
The isogeometric analysis (IGA) concept for the discretization of partial differential
equations (PDEs), introduced by Hughes et al. in [30], was developed for the inte-
gration between finite element analysis (FEA) and conventional computer aided design
(CAD) tools. The most attractive feature of IGA is its ability to maintain the same exact
description of the computational domain geometry throughout the analysis process for
the PDE solution space, by using the same class of functions used for geometry param-
eterization in CAD. IGA is often seen as a generalization of standard FEMs, allowing
to employ more regular functions are employed. The additional regularity leads to other
advantages with respect to FEA, such as better convergence properties and the ability
to treat higher order problems (see, for example, the book by Cottrell et al.. [15] for a
comprehensive list of references on the argument).

Nevertheless, while there is a huge amount of literature related to the finite element
isogeometric analysis (FE-IGA), only few works deal with boundary element methods
(BEM) and boundary integral equations (BIE). Isogeometric boundary element method
(IGA-BEM) is very attractive for the solution of homogeneous elliptic PDEs since it
requires the solution of integral equations only on the boundary of the domain, which
is typically the only information provided by standard CAD tools. In two dimensional
problems, there are some works on potential flows, such as [48], [41] and [59]. Three
dimensional applications are of great interest in the maritime community, and there are
some works based on panel methods to study marine propellers [35] or the wavemaking
resistance problem [8].

Furthermore, isogeometric analysis is also attractive for the study of problems de-
pendent on geometric parameters. In fact, we can change the geometry with not much
effort by changing the position of some control points. Among the shape parametriza-
tion techniques we recall the Free-Form Deformation (FFD), which is based on tensor
products of splines and gives a global non affine transformation map [44]. Another
well-known technique is related with Radial Basis Functions (RBF), which is a general
paradigm for interpolation of scattered data in high dimensions.

Here, we propose a different approach based on B-spline functions and IGA, which
allows us to change all the control points position simply by two parameters, thanks to
a least square procedure. This feature makes our shape parametrization technique quite
different from other geometrical maps, which typically require more parameters to treat
a class of shapes/deformations of comparable complexity. In our specific case, IGA
allows us to reconstruct profiles within the NACA 4-digits series in an exact fashion,
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thus enabling to compare our computational results with experimental data, tipically
available for several airfoils of the NACA family .

Reduced order models
Numerical methods for Computational Fluid Dynamics are by now essential in engi-
neering applications dealing with flow simulation and control. Despite the constant in-
crease in available computational power, some problems and/or applications can still be
very demanding. This effort is even more substantial whenever we are interested in the
repeated solution of the fluid equations for different values of model parameters, such as
in flow control or optimal design problems (many-query contexts), or in real-time flow
visualization and output evaluation. These problems represent a remarkable challenge
to classical numerical approximations techniques. These methods require huge compu-
tational efforts, thus making both many-query and real-time simulations unaffordable.
For this reason, we need to rely on suitable Reduced-Order Models (ROMs) – that can
reduce both the amount of CPU time and storage capacity – in order to enhance the
computational efficiency.

During the last three decades, several efforts in theoretical foundation, numerical
investigation and methodological improvements of reduced order models have allowed
to tackle several problems arising in fluid dynamics. In fact, in the 1980s the reduction
strategies were mainly based on ad hoc choices of the basis functions, without the bene-
fit of a formal algorithm. Recent years have seen considerable progress in this field, with
several classes of methods emerging. In [9], Benner et al. give a general overview on re-
duction methods. In this work, we limit ourselves to describe and use two (indeed, very
popular) methods for choosing the basis on which to build the reduced order models,
namely the Proper Orthogonal Decomposition (POD) and the (greedy) reduced basis
(RB) methods. They have been historically introduced and developed to address dif-
ferent kind of problems: POD has been typically applied to time-dependent problems,
whereas greedy RB to parameter dependent problems.

In both cases, the main idea is that the solution of a problem can be obtained by
a linear combination of well-chosen solutions for specific choices of the parameters.
In particular POD techniques reduce the dimensionality of a system by transforming
the original unknowns into new variables (called POD modes or principal components)
such that the first few modes retain most of the energy present in the system. POD was
introduced in the context of turbulence by Lumley; focusing on fluid dynamics applica-
tion of POD, we recall the works of Ravindran [52] for optimal control, of Kunish et al.
[36] and of Bui-Thanh et al. [13] for blade optimization.

On the other hand, the initial ideas related to parametrized problems grew out of
two related research topics dealing with linear/nonlinear structural analysis in the late
70’s. In the next decade, different applications, such as incompressible Navier-Stokes
equations, have been tackled. As already mentioned, the choice of the solutions was
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not optimal and adaptive. Finally, in the last decade, much effort has been devoted
to the development of a posteriori error estimation procedures, in particular rigorous
error bounds, and effective sampling strategies ([61]) such as the so-called greedy al-
gorithms. Also an a priori theory for RB approximation is available, dealing with a
class of single parameter coercive problems [42] and more recently extended also to the
multi-parameter case [11]. Thus, if early work on the RB method did not fully exploit
the Online-Offline procedure, much work has been devoted to the efficient splitting of
this two steps.

Most of the RBM applications deal with physical or engineering parameters, such
as viscosity, transport velocity, Peclet number, Biot number, Young modulus or thermal
conductivity. There are a few applications dealing also with simple geometrical param-
eter, such as a length or a thickness that characterize the problem ([50]). The application
to complex geometry parametrization is, hence, quite innovative and very recent [? ].
This is the case of the solution (here through an isogeometric approach) of the problem
of potential flows about parametrized airfoils. In [22] Günther has employed a method
RBM for the shape optimization of racing car components, where the parameters are
only the angle of attack and the thickness of symmetric airfoils. In [53] Rozza treats
potential flows but he does not tackle the lifting problem. We highlight that in this work
we present for the first time ever the coupling of isogeometric analysis with a reduced
basis method, and the possibility to recover solutions of physical meaning.

Furthermore, historically RB methods have been built upon finite element discretiza-
tion. Only a few applications of RB methods have been developed for boundary element
methods. We recall the work of Fares et al. [18], Ganesh et al. [19] and Hesthaven et al.
[26] for the electric field integral equation. In these works, the parametric dependence
is always related to physical parameters. In our work, for the first time ever, we provide
an application of ROM to BEM with (complex) geometric parameter dependence.

Thesis structure
The work has been organised as follows.

In chapter 1 we introduce the physical model. Under proper assumptions, the flow
about an airfoil can be described by a Poisson problem with mixed boundary conditions
and a suitable Kutta condition on the trailing edge of the airfoil, in order to ensure
the well posedness of the problem in two dimensional domains. Exploiting its integral
formulation, we can solve the problem only on the boundary of the domain (boundary
integral equation). Moreover, we provide a variational formulation of this problem,
which is necessary to build a numerical approximation method based on a Galerkin
projection.
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Potential flows over Ω

Boundary Integral Equation over Γ

Boundary Integral Equation
in the reference domain [0, 1]

Weak formulation of BIE

Numerical approximation

Fundamental solution G

Isogeometric analysis

Galerkin Boundary Element Method

Figure 1: Block diagram of chapter 1 and 2.

This method is described in chapter 2. In particular, we consider an isogeometric
boundary element method (IGA-BEM). This technique differs from the classical ones
(such as those based on the distribution of vortices on the panels) both in terms of
geometry approximation and of the discretization procedure. In fact, we use the same
basis functions to describe the geometry and the solution; this enhances the accuracy of
the numerical method compared to computational cost. In figure 1 we show the block
diagram that summarizes the steps carried out in the first two chapters.
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µ dependent potential flows over Ω

Boundary Integral for-
mulation + IGA + BEM

µ dependent high-fidelity
model (IGA-BEM)

Affine parametric dependence

Reduced Order Model

Empirical Interpolation Method

Greedy RBM or POD

Figure 2: Block diagram of chapter 3 and 4.
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In chapters 3 and 4 we derive the parametrized problem and its reduction, following
the steps shown in figure 2. Since we are interested in the description of potential flows
about an airfoil by considering different shapes and angles of attack, we introduce in
chapter 3 a parametrized formulation of the problem. Thus, we can describe physical
and geometrical features of the problem through parameters in the differential problem
(figure 3). Thanks to the isogeometric description, we can reformulate the problem on a
reference domain [0, 1] where differential operators depend on input parameters through
suitable parametrized coefficients. This is necessary for the construction of the reduced-
order model, in order to combine solutions of the problem correspondent to different
geometry configurations. However, as it often happens for geometrical parametriza-
tion, the parametric dependence in the differential problem is non affine, that is, the
problem coefficients depend not only on the parameters, but also on the spatial coordi-
nates. Thus, it is not immediate to split parameters from differential operators of the
problem. To overcome this problem, and to build an efficient ROM for the solution of
the parametrized problem, we consider an empirical interpolation technique, in order
to approximate the parametrized operators through a linear combination of parameter
independent operators. In this a way, we can extract the parameter dependence from
the integrals defining these operators. This operation plays a key role in order to exploit
the Offline-Online stratagem and minimize the marginal cost associated with each On-
line evaluation. Moreover, we highlight that the empirical interpolation method itself
reduces the computational cost associated with the assembling of BEM matrices, which
is normally very expensive.

In chapter 4, we present two different ROMs for the solution of parametrized differ-
ential problems, based on two different approaches for the construction of the reduced
basis space. First, we consider the Proper Orthogonal Decomposition (POD), then
a greedy RB method (RBM). In both cases, it is possible to build a basis from some
snapshots of the high-fidelity model, chosen for properly selected parameters values. In
the first case it is necessary to compute a wide number of snapshots, and then apply a
Singular Value Decomposition of the snapshots matrix. If the singular values show an
exponential decay, a few singular vectors immediately provide a reduced basis for the
problem at hand. In the second case it is possible to select, in an adaptive and optimal
way, the parameter values for the construction of the basis, and compute only the snap-
shots correspondent to these values. To carry out this selection in an efficient way, we
need to rely on a suitable a posteriori error estimator.

Finally, in chapter 5, we compare the results obtained with our ROMs to the ones
obtained through the high-fidelity BEM, validated with experimental data and other
computational tools. In particular, we show that the reduced order models are reliable
not only with respect to high-fidelity model, but also with respect to experimental data.
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Figure 3: Examples of parametrized airfoil of the NACA 4-digits family.

The work carried out has shown that coupling an isogeometric boundary element
method with a reduced order method for potential flows about an airfoil problem gives
great results in term of accuracy and solution velocity.

A natural evolution of this work is the extension of the proposed framework to three
dimensional problems, possibly with a more complex physical model, that should han-
dle the presence of boundary layers. Another possibility is given by the study of un-
steady problems, which would entail the combination of POD and RBM for the sake of
time-parameter sampling in the reduced space construction [50].
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Chapter 1

Boundary integral formulation of
potential flows

In this chapter we derive a model for the description of potential flows about an air-
foil and a formulation of this problem through a suitable boundary integral equation
(BIE). First, we briefly show how under certain flow conditions, Navier-Stokes equa-
tions simplify to Laplace equation for a potential field. We introduce suitable boundary
conditions and a Kutta condition on the trailing edge of the airfoil, in order to ensure the
well posedness of the problem in two dimensional domains. Then, we derive a boundary
integral equation to express the perturbation potential. Finally, we show how to rewrite
the boundary integral equation in weak form, in view of using Galerkin method for the
numerical approximation. The aim of this procedure is to simplify the description of
potential flows: on the one hand, the reduction to a boundary integral formulation has
the advantage of diminishing the dimensionality of the problem by one; on the other
hand, it yields a correct treatment of problems in infinite domains. Finally, we write
the BIE in a reference domain and we introduce its variational formulation, in view of
the use, for the numerical solution, of an isogeometric approach based on a Galerkin
projection.

1.1 Basic notation and governing equations

We now provide a brief derivation of a potential model for the description of a flow
about airfoils. In order to describe the motion of a incompressible viscous Newtonian
fluid in a spatial domain Ω ⊆ R2, we should solve the incompressible Navier-Stokes
equations

∂V

∂t
+ (V · ∇)V +

∇p
ρ
− ν∇2V = g

∇ · V = 0
(1.1)
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where V and p denote the fluid velocity and pressure respectively, ρ the fluid density, g
the external forces (for unit of mass) and ν the kinematic viscosity. The first equation of
(1.1) is the momentum balance equation whereas the second one expresses the as mass
conservation, which, for incompressible flows, translates into the well-known incom-
pressibility condition. Usually, it is very expensive to solve Navier-Stokes equations.
Thus, we aim at simplifying the problem, by using a less complex model.

By neglecting the viscous term−ν∇2V in (1.1), we obtain the so-called Euler equa-
tions

∂V

∂t
+ (V · ∇)V +

∇p
ρ

= g

∇ · V = 0.
(1.2)

We remark that, by neglecting viscosity, the model can capture inviscid features, as
lift, but not viscous effects, like turbulence and boundary layers. Moreover, we further
assume that the fluid motion is irrotational, so that ψ ≡ ∇ × V = 0. This ensures the
existence of a scalar function Φ such that V = ∇Φ. Φ is known as (kinetic) potential
or simply potential. From (1.2) we can write the following system

∂Φ

∂t
+

1

2
|∇Φ|2 +

p

ρ
+ χ = C(t)

∇2Φ = 0,
(1.3)

where g ≡ −∇χ, χ is the external (conservative) force potential and C(t) an arbitrary
function not depending on space. The first equation of (1.3) is the so-called Bernoulli
equation, whereas the second one is the Laplace equation. Moreover, we want to focus
on steady flows, and to neglect body forces. In fact, in several aerodynamics problems
g is the gravity force, and it does not affect the solution of the problem. System (1.3)
thus becomes

1

2
|∇Φ|2 +

p

ρ
= C

∇2Φ = 0.
(1.4)

Under the assumption of irrotational motion, we find the potential Φ from the incom-
pressibility condition, that is now represented by Laplace equation. Once the potential
has been determined, we can find the pressure from the first equation of (1.4). Since
(1.4) is a linear problem, we can express the potential as

Φ = φ∞ + φ = V ∞ · x+ φ, (1.5)

where V ∞ is the inflow velocity of the fluid, φ is denoted as perturbation potential and
x is the vector of the spatial coordinates. In the following we will solve the perturbation
potential problem; in fact, exploiting the linearity of Laplace operator∇2, we have that

∇2Φ = 0↔ ∇2φ = 0. (1.6)

Once we have obtained the perturbation potential φ, we can easily recover the full po-
tential Φ. For the complete treatment of this derivation, we refer to [7].
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Γf

Ω

r

Γ∞

Figure 1.1: Original domain Ω.

1.1.1 Boundary, wake and Kutta conditions
Our aim is to describe potential flows about an airfoil, exploiting Laplace equation (1.6),
in the domain Ω. We denote Ω ⊂ R2 as a planar region surrounding the airfoil delimited
by the outer boundary Γ∞ and the airfoil boundary Γf (figure 1.1), and by ∂Ω the
boundary of Ω.

In order to solve the problem, we need to introduce a set of suitable boundary con-
ditions. Far from the airfoil, we want the perturbation potential to be zero. Therefore,
we impose a homogeneous Dirichlet boundary condition on Γ∞, that is,

lim|r|→∞u(r) = 0 on Γ∞. (1.7)

On the other hand, on the airfoil Γf , we impose a non penetration condition

∇Φ · n = 0 that is V ∞ · n+∇φ · n = 0; (1.8)

hence, we have
∂φ

∂n
= −V ∞ · n on Γf . (1.9)

The problem to be tackled thus reads: given V ∞, find φ such that

−∇2φ = 0 in Ω
∂φ

∂n
= −V ∞ · n on Γf

lim|r|→∞φ(r) = 0 on Γ∞.

(1.10)

The solution of (1.10) has always null circulation, which is not physical. From the
mathematical standpoint, in order to overcome this problem, we need to introduce a cut
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Γw

Γf

Ω

r

Γ∞

TE+

TE−

Γw+

Γw−

Figure 1.2: Domain with the wake.

Γw in the domain (figure 1.2). This operation makes the domain Ω simply connected
and allows the potential φ to be discontinuous when crossing the cut. This cut is nothing
but the well-known wake of the airfoil. From the physical standpoint, we can model the
flow by considering the airfoil as a smooth surface Γf with a sharp trailing edge TE,
and by assuming that the vorticity is concentrated on an infinitely thin wake Γw (that
is, a vortex sheet) detaching from the trailing edge. Here the vorticity is released into
the fluid as a jump in the potential φ. Thus, the flow is almost everywhere irrotational,
except on the wake.

Hence, let us define:

- Γw+ and Γw− as

Γw+ := Γw +
ε

2
n and Γw− := Γw −

ε

2
n, (1.11)

such that
limε→0Γw+ = limε→0Γw− = Γw, (1.12)

where n is the versor normal to Γw;
- TE+ and TE− as

TE+ := TE +
ε

2
n and TE− := TE − ε

2
n, (1.13)

such that
limε→0TE

+ = limε→0TE
− = TE. (1.14)
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We allow the solution on the trailing edge and wake to be discontinuous, that is,

φ(TE+) 6= φ(TE−)
φ(Γw+) 6= φ(Γw−).

(1.15)

In particular, since we deal with a steady flow, on the wake we simply impose the
potential jump to be equal to the one at the trailing edge, that is,

[φ] = φ(TE+)− φ(TE−) on Γw, (1.16)

where, form now on, we will use [·] to express the jump operator, defined as the differ-
ence between the quantity · on Γw+ and Γw− . We denote equation (1.16) as the wake
condition, which represents the equation to be solved on the wake. We highlight that on
the wake we consider only the potential jump and not the potential itself. In section 1.2
we will show how we end up with a problem where the unknowns are the potential φ
and the potential jump [φ] on Γf and Γw, respectively.

On the wake, we impose a Neumann boundary condition for the potential jump. In
fact, we impose that there is no mass accumulation in the wake, that is,

[∇φ · n] =

[
∂φ

∂n

]
= 0 on Γw. (1.17)

The problem we have derived so far thus reads: given V ∞, find φ such that

−∇2φ = 0 in Ω
[φ]− φ(TE+) + φ(TE−) = 0 on Γw
∂φ

∂n
= −V ∞ · n on Γf[

∂φ

∂n

]
= 0 on Γw

lim|r|→∞φ(r) = 0 on Γ∞.

(1.18)

Problem (1.18) leads to in an infinite number of solutions, differing by a solution φ0,
satisfying the same Neumann boundary conditions, but showing a non null circulation
around the airfoil (see [33] for further details). Only one of them is physically plausible.
A possible way to overcome this inconvenient, and to select the physical solution of the
potential φ solving (1.18), is to introduce the well-known Kutta condition (see e.g. [6]
for a detailed review about this condition).

The Kutta condition can be of kinematic or dynamic type. The former enforces the
velocity at the trailing edge by requiring that it is zero in the steady flow. Since this
requirement is too strong in the numerical sense (and too far from the real flow obser-
vations), we shall consider a weaker condition by requiring that the velocity amplitude
coincides on the upper and lower sides of the trailing edge, that is,

V (TE+) = V (TE−). (1.19)
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Equivalently, we may ask that

(τ · (V ∞ +∇sφ))+ = −(τ · (V ∞ +∇sφ))−, (1.20)

where τ denotes the unit tangential vector along the surface, pointing in the counter-
clockwise direction, ∇s is the superficial gradient operator, V = |∇Φ| and the super-
script + and − refer to TE+ and TE−, respectively. The definition of superficial gradient
applied to the potential φ is given by

∇sφ := ∇φ− (n · ∇φ)n, (1.21)

where n is the versor normal to the curve, I − (n ⊗ n) is the projection operator and
I is the identity operator. We can see condition (1.19) as a constraint ensuring that the
pressure jump on trailing edge is zero. This is nothing but the so-called dynamic Kutta
condition.

Finally, we can summarize the problem we have derived so far as follow: given V ∞,
find φ such that

−∇2φ = 0 in Ω
[φ]− φ(TE+) + φ(TE−) = 0 on Γw
∂φ
∂n

= −V ∞ · n on Γf[
∂φ
∂n

]
= 0 on Γw

lim|r|→∞φ(r) = 0 on Γ∞,

(1.22)

subject to the constraint

VTE+ − VTE− = 0 onTE. (1.23)

Problem (1.22) is well posed because of the presence of the Kutta condition, which
ensures the uniqueness of the solution. Further details on the formulation and the well
posedness of problem (1.22) can be found e.g. in [28].

1.2 Boundary integral formulation of Laplace equation
In order to use a boundary element method for the numerical solution of (1.22), in
this section we introduce a boundary integral formulation of the Laplace equation. We
remark that this strategy allows to decrease the dimensionality of the problem by one,
as well as to treat problems set in infinite domains like in our case.

This procedure will lead to an integral problem, whose solution gives the potential φ
on the boundary Γf . On Γw we compute the solution by (1.16); once we have computed
the distribution of the potential on Γ, defined as Γ = Γf ∪Γw, we are able to recover the
velocity all over the domain Ω and to compute some outputs of interest. To this end, we
operate a sequence of formal transformations of Laplace equation, by assuming to deal
with regular functions.
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Let us multiply Laplace equation (that is, the first equation of (1.22)) by a function
(so far arbitrary) G, and integrate over the domain:∫

Ω

−∇2φG = 0 ∀G. (1.24)

By integrating by parts twice in (1.24) and using the divergence theorem, we obtain∫
Ω

∇φ∇G−
∫
∂Ω

G
∂φ

∂ny
= 0 ∀G (1.25)

that is, ∫
∂Ω

φ
∂G

∂ny
−
∫

Ω

φ∇2G−
∫
∂Ω

G
∂φ

∂ny
= 0 ∀G, (1.26)

where ny is the normal to ∂Ω pointing outwards the domain. Since we have assumed
that on the boundary Γ∞ the potential φ→ 0 as well as the flux ∂φ

∂ny
→ 0 as r →∞, we

can simplify (1.26) and obtain∫
Ω

φ∇2G =

∫
Γ

φ
∂G

∂ny
−
∫

Γ

G
∂φ

∂ny
. (1.27)

Let us now choose a particular function G : R2 → R such that

−∇2G(x− y) = δ(x− y); (1.28)

G is called Green’s function and represents the fundamental solution of the Laplace
equation, that is, the potential Φ(x) given a pointwise source δ(x− y) concentrated at
y. Here δ(x− y) denotes the Dirac delta distribution. In the case of a kinetic potential
G is nothing else but the Rankine source [7]. In the two dimensional case, G takes the
following form:

G(x− y) = − 1

2π
ln|x− y|, (1.29)

so that
∂G(x− y)

∂ny
=

1

2π

x− y
| x− y |2

ny. (1.30)

Hence, we can rewrite (1.27) as

φ(x) =

∫
Γ

G
∂φ

∂ny
−
∫

Γ

φ
∂G

∂ny
; (1.31)

note that this equation is valid for any x ∈ Ω. We call the two integrals∫
Γ

G
∂φ

∂ny
and

∫
Γ

φ
∂G

∂ny
(1.32)
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single layer potential (SLP) and double layer potential (DLP), respectively.

In particular, it can be shown that the SLP is continuous as the point x approaches
and then crosses Γ. By contrast, as x crosses Γ, the DLP undergoes a jump discontinuity
(see e.g. [58]). If we assume that Γ is smooth, when x approaches Γ from outside Ω,
we find

limx→Γ+

∫
Γ

φ(y)
∂G(x− y)

∂ny
dy =

∫ PV

Γ

φ(y)
∂G(x− y)

∂ny
dy − 1

2
φ(x), (1.33)

whereas when x approaches Γ from inside Ω

limx→Γ−

∫
Γ

φ(y)
∂G(x− y)

∂ny
dy =

∫ PV

Γ

φ(y)
∂G(x− y)

∂ny
dy +

1

2
φ(x), (1.34)

where the superscript PV means that we are taking the principal value of the integral 1.
We can now rearrange the terms of (1.31) in the following form

1

2
φ(x) =

∫
Γ

G
∂φ

∂ny
−
∫ PV

Γ

φ
∂G

∂ny
. (1.36)

Instead, when Γ is not smooth (this is e.g. the case of a corner point like the trailing
edge), we must modify (1.36) as follows:

αφ =

∫
Γ

G
∂φ

∂ny
−
∫ PV

Γ

φ
∂G

∂ny
, (1.37)

where the quantity α is the fraction of the angle (respectively solid angle), in the two
dimensional (respectively three dimensional) case, by which the point x sees the fluid
domain Ω. If the boundary is smooth, the angle, in the two dimensional case, is equal
to π, and thus we find back α = 1

2
.

For the problem at hand, we can rewrite the SLP and DLP separately. Let us define

u :=

{
φ on Γf

[φ] on Γw
, (1.38)

and

h :=

{ ∂φ
∂ny

on Γf[
∂φ
∂ny

]
on Γw

, (1.39)

1By principal value of the integral, we mean∫ PV

Γ

φ(y)
∂G(x− y)

∂ny
dy := limε→0

∫
Γ\Bε

φ(y)
∂G(x− y)

∂ny
dy, (1.35)

where Bε is the ball of radius ε centered in x ∈ Γ.
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where [φ] and
[
∂φ
∂ny

]
are constant real functions on Γw. Exploiting the Neumann bound-

ary conditions expressed by (1.9) and (1.17), we can write

h =

{
−V ∞ · n on Γf

0 on Γw.
(1.40)

Thus, the two integrals appearing in (1.37) become∫
∂Ω

G
∂φ

∂ny
=

∫
Γf

G
∂φ

∂ny
+

∫
Γw+

G
∂φ

∂ny
+

∫
Γw−

G
∂φ

∂ny

=

∫
Γf

G
∂φ

∂ny
+

∫
Γw

G

[
∂φ

∂ny

]
=

∫
Γ

Gh (1.41)

and ∫ PV

∂Ω

φ
∂G

∂ny
=

∫ PV

Γf

φ
∂G

∂ny
+

∫ PV

Γw+

φ
∂G

∂ny
+

∫ PV

Γw−

φ
∂G

∂ny

=

∫ PV

Γf

φ
∂G

∂ny
+

∫ PV

Γw

[φ]
∂G

∂ny
=

∫ PV

Γ

u
∂G

∂ny
, (1.42)

respectively. If we exploit the boundary condition over Γf and Γw in (1.37), we can
reformulate problem (1.22) as follows: given h, find u such that

α(x)u(x) +

∫ PV

Γ

u(y)
∂G(x− y)

∂ny
dy =

∫
Γ

G(x− y)h(y)dy on Γf

u(x)− u(TE+) + u(TE−) = 0 on Γw (1.43)

subject to the following constraint, representing the Kutta condition:

τ (TE+)·∇su|TE++τ (TE−)·∇su|TE− = V ∞·(τ (TE+)+τ (TE−)) onTE. (1.44)

In particular, α is almost everywhere equal to 1
2

on the airfoil Γf .
Thus, we end up with an integral equation, which we can solve on the boundary Γf ,

an algebraic equation, which can be solved on Γw, and a constraint, which has to be
satisfied on the trailing edge. For the sake of simplicity, from now on, we will omit the
superscript PV representing the principal value integral in (1.43), so that∫

Γ

u(y)
∂G(x− y)

∂ny
dy :=

∫ PV

Γ

u(y)
∂G(x− y)

∂ny
dy. (1.45)
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Figure 1.3: Mapping of [0, 1] in Γ.

1.3 BIE in a reference domain
In view of setting an isogeometric boundary element method, it is more convenient to
formulate the BIE (1.43) over the reference configuration [0, 1]. In order to map the
boundary Γ in the interval [0, 1], let us introduce a change of coordinates, from the
original domain Γ to a reference one. Further details can be found e.g. in [15].

Let us denote by c : (0, 1) \ {sf} → Γ ⊂ R2 the map giving the transformation of
coordinates (see figure 1.3), with c′ > 0 (hence invertible), such that

Γ = c(s), s ∈ (0, 1) \ {sf}. (1.46)

In particular we want to map the interval (0, sf ) and (sw, 1) with sf ≡ sw in Γf and Γw,
respectively, that is,

Γf = {c(s)|s ∈ (0, sf )}
Γw = {c(s)|s ∈ (sw, 1)} . (1.47)

Moreover, we want TE+ and TE− to be

TE+ = lims→0+c(s)
TE− = lims→s−f

c(s). (1.48)

respectively. From now on, for the sake of readability, we will omit the limit and we
will simply write

c(0) = lims→0+c(s)
c(sf ) = lims→s−f

c(s)

c(sw) = lims→s+wc(s).

(1.49)

In this way, by walking through the airfoil in counter clockwise direction from TE+

to TE−, (0, sf ) is mapped onto the airfoil. As already shown in section 1.1, the airfoil
and the wake are geometrically coincident at the trailing edge, that is,

c(0) ≡ c(sf ) ≡ c(sw), (1.50)
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but we allow the solution u at the trailing edge to be discontinuous, that is,

u(0) 6= u(sf ) 6= u(sw). (1.51)

Therefore, we can write f̃ = f ◦ c such that

f̃(s) = f(c(s)) = f(x) |Γ; (1.52)

thus we have
x = c(s); y = c(q), (1.53)

where s and q are reference variables. Let us apply now the change of coordinates to
the integrals appearing in (1.43): we obtain∫

Γ

u(y)
∂G(x− y)

∂ny
dy =

∫ 1

0

u(q)
∂G

∂nq
(c(s)− c(q))J(q)dq∫

Γ

G(x− y)h(y)dy =

∫ 1

0

G(c(s)− c(q))h(q)J(q)dq, (1.54)

where J is the determinant of the Jacobian of the transformation.
We can now rewrite problem (1.43) in the following way: given h, find u such that

αu(s) + (Nu)(s) = (Dh)(s) in(0, sf ) (1.55)
u(s)− u(0) + u(sf ) = 0 in(sw, 1), (1.56)

subject to the constraint

τ (0) · ∇su|0 + τ (sf ) · ∇su|sf = V ∞ · (τ (0) + τ (sf )) on {0, sf}, (1.57)

where the operators N and D are defined as follows:

(Nu)(s) :=

∫ 1

0

u(q)
∂G

∂nq
(c(s)− c(q))J(q)dq (1.58)

(Dh)(s) :=

∫ 1

0

G(c(s)− c(q))h(q)J(q)dq, (1.59)

In the next section we will use these operators to define the bilinear form of the
variational formulation of problem (1.55). Moreover, in the next chapter we will exploit
the isogeometric framework to characterize the map c, and then to define a parametrized
description of the computational domain.
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1.4 Weak formulation and well posedness
The reduced order models developed in this work are built over a Galerkin boundary ele-
ment method (Galerkin-BEM) for the numerical approximation of the boundary integral
equation. The Galerkin boundary element method is based on the variational (or weak)
formulation of the integral equation. Thus, in view of the numerical approximation, we
introduce in this section the weak formulation of (1.55).

Let us introduce the Sobolev space V := H
1
2 ([0, 1]\{sf}) and its dual V ′. Functions

in V constant on the wake look like the one depicted in figure 1.4.

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

sf
s

f
(s

)

Figure 1.4: General function f(s) ∈ V .

In the variational formulation we condense (1.55) in a single bilinear form. If we
introduce the indicator function χA defined as

χA(s) =

{
1 for s ∈ A
0 otherwise , (1.60)

we can write the variational formulation of (1.55) as follows: given h ∈ V ′, find u ∈ V
such that

a(u, v) = d(h, v) ∀v ∈ V (1.61)

with the constraint that

VTE+ − VTE− = 0 on {0, sf}, (1.62)

where
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a(u, v) := αm(u, v) + n(u, v)

+ w(u, v). (1.63)

The bilinear forms

m(·, ·) : V × V → R
n(·, ·) : V × V → R
w(·, ·) : V × V → R
d(·, ·) : V ′ × V → R (1.64)

appearing in (1.63) and (1.61) are given by

m(u, v) :=

∫ 1

0

v(s)u(s)χ[0,sf ](s)ds ∀u, v ∈ V

n(u, v) :=

∫ 1

0

v(s)(Nu)(s)χ[0,sf ](s)ds ∀u, v ∈ V

w(u, v) :=

∫ 1

0

v(s) [u(s)− u(0) + u(sf )]χ[sf ,1](s)ds ∀u, v ∈ V

d(h, v) :=

∫ 1

0

v(s)(Dh)(s)χ[0,sf ](s)ds ∀v ∈ V, h ∈ V ′. (1.65)

We can provide an alternative formulation, which includes the Kutta condition as a
constraint enforced through a Lagrange multiplier π ∈ R:{

a(u, v) + b(v, λ) = d(h, v) ∀v ∈ V
b(u, π) = V ∞ · (τ (0) + τ (sf )) ∀π ∈ R, , (1.66)

where
b(u, π) =

[
τ (0) · ∇su|0 + τ (sf ) · ∇su|sf

]
π. (1.67)

Problem (1.66) is typically referred to as a saddle point problem.
In the next chapter, we will exploit (1.65) and (1.61) to derive a Galerkin method for

the numerical solution of the problem at hand.
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Chapter 2

Numerical approximation:
isogeometric boundary element method

In this chapter we present a boundary element method (BEM) for the discretization of
potential flows based on the Boundary Integral Equation (1.55) obtained in the previous
chapter. In section 2.1 we give a general introduction to isogeometric analysis. In view
of setting a parametrized version of this problem, by taking into account shape variations
of the airfoil within the 4-digits NACA family, we introduce an isogeometric descrip-
tion of the geometry in section 2.2. We introduce an isogeometric boundary element
method (IGA-BEM) based on a Galerkin projection for the numerical approximation
of potential flows in section 2.3 by deriving the corresponding discretized formulation
of the problem and showing its peculiarities. Finally, starting from the solution on the
boundary, we show how to recover the solution (in terms of velocity and pressure) in the
whole domain around the airfoil, as well as some physical outputs of interest in section
2.5.

2.1 Isogeometric description with B-splines

In view of taking into account shape variations of the airfoil, we adopt an isogeometric
description of the geometry. In fact, isogoemetric analysis allows to easily change the
shape of a profile and to deal always with smooth geometries.

In traditional Finite Element Analysis (FEA) we use low-order Lagrange polyno-
mials defined on a suitable triangulation of the domain (or mesh) as basis functions,
whereas computer aided geometry modeling is based on techniques like spline func-
tions. As a matter of fact, a model conversion is necessary if we have to analyse a
geometry by FEA that has been designed in a computer aided design (CAD) program.
The main property of spline functions is their capability to represent the exact geome-
try; this is one of the main reasons why splines are nowadays widely used in the CAD
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Figure 2.1: Control polygon and B-spline curve for NACA 4412 airfoil geometry;
coarse knot vector.

context. For the same reason, IGA provides advantages concerning accuracy compared
to computational cost, since it does not introduce mesh errors.

We now characterize the geometrical map introduced in section 1.3 to rewrite the
problem over the reference configuration [0, 1]. We recall that our goal is to express the
boundary Γ as the image of the interval [0, 1] through a map c : [0, 1] → Γ ⊂ R2 (as
shown in section 1.3).

We introduce a set of control points {P i}Ni=1, P i ∈ R2, and a set of B-splines basis
functions {ξi(s)}Ni=1 defined recursively as follows:

ξi,0(s) =

{
1 θi ≤ s ≤ θi+1

0 otherwise, (2.1)

where

ξi,k(s) =
s− θi

θi+k − θi
ξi,k−1(s) +

θi+k+1 − s
θi+k+1 − θi+1

ξi+1,k−1(s) k = 1 : p; (2.2)

here

- p is the polynomial order of the chosen basis functions;
- θ = {θ1, θ2, ..., θn+p+1}, θi ∈ R, is called knot vector, and it is a non-decreasing

set of coordinates in the s parameter space.

Then, we can define the map c as follows:

c(s) =
N∑
i=1

ξi(s)P i, P i ∈ R2. (2.3)

The choice of θ affects the continuity of the basis function and, as a consequence,
the continuity of the B-spline curve. A knot vector is said to be open if its first and
last knot values appear p+ 1 times. Basis functions formed from open knot vectors are
interpolatory at the ends of the parameter space interval, [θ1, θn+p+1] but they are not, in
general, interpolatory at interior knots.
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Figure 2.2: The seven cubic B-spline basis functions for the open knot vector θ =
{0, 0, 0, 0, 1, 2.5, 5, 6, 6, 6, 6}.

Let us recall some peculiarities of the basis functions:

- the basis {ξi}Ni=1 constitutes a partition of unity, that is,
∑N

i=1 ξi(s) = 1 ∀s ∈
[0, 1]. Each basis function is pointwise nonnegative over the entire domain, that
is, ξi(s) ≥ 0 ∀s ∈ [0, 1] (see figure 2.2);

- the support of the B-spline functions of order p is always given by p + 1 knot
spans, that is, B-spline functions have a compact support;

- basis functions of order p have p −mi continuous derivatives across the knot θi,
where mi is the multiplicity of the value of θi in the knot vector. The use of a
non-uniform knot vector, thus, allows to obtain a richer behaviour of the B-spline
than the one obtained from a uniform knot vector;

- the derivatives of B-spline basis functions can be efficiently evaluated in terms of
B-spline lower order bases. In this way, we can write:

dkξi,p(s)

dks
=

p!

(p− k)!

k∑
j=0

αk,jξi+j,p−k(s), (2.4)

with

α0,0 = 1 αk,0 =
αk−1,0

si+p−k+1 − si

αk,j =
αk−1,j − αk−1,j−1

si+p+j−k+1 − si+j
j = 1 : k − 1 αk,k =

−αk−1,k−1

si+p+1 − si+k
.
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In the following we show some peculiarities of the B-spline functions which are
relevant to the setting of a geometrical parametrization to deal with a class of shapes,
like the NACA family:

- an affine transformation of a B-spline curve is obtained by applying the transfor-
mation directly to the control points;

- a B-spline curve will have at least as many continuous derivatives across an ele-
ment boundary as its basis functions have across the corresponding knot value;

- due to the compact support of the B-spline basis functions, moving a single con-
trol point can affect the geometry of no more than p+ 1 elements of the curve.

Moreover, let us now provide the expression of the superficial gradient (1.21) in the
isogeometric framework, which will be deeply exploited in the following. Exploiting
the properties of B-splines, we can also write

∇su := J−1(s)u′(s)τ (s) (2.5)

where J(s) is the determinant of the Jacobian of the transformation, u′(s) is the first
derivative of the potential and τ (s) is the versor tangent to Γ. We will exploit this
formula to express Kutta condition in section 2.3 and the pressure coefficient in section
2.5. A detailed description of B-spline properties can be found e.g. in [15].

2.2 B-splines description of NACA 4-digits profiles

Let us now focus on the description of the airfoil geometry, given by the NACA 4-digits
family and its angle of attack α, by taking advantage of the isogeometric framework
addressed in the previous section. For the detailed description of NACA airfoils, see
e.g. [2].

For this kind of airfoils, the shape can be expressed analytically as a function of the
maximum camber, the maximum camber location and the maximum thickness of the
airfoil. In fact, the first digit indicates the maximum value of the mean-line ordinate
in percentage of the chord, the second integer indicates the distance from the leading
edge to the location of the maximum camber in tens of the chord, whereas the last two
integers indicate the section thickness in percent of the chord. Thus, for example, the
NACA 4412 has 4% camber located at 40% of the chord from the leading edge, and is
12% thick. The wing section is obtained by combining the camber line and the thickness
distribution as shown in figure 2.2.
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Figure 2.3: 4-digits NACA profiles are expressed as function of their maximum camber,
maximum camber location and maximum thickness.

Figure 2.4: Schematic representation of the construction of the airfoil given the analytic
expression of its thickness yth, mean line yc and camber θ.

Hence, by denoting (xU , yU) and (xL, yL) the points on the upper and lower surface
of the airfoil respectively, we can write (see figure 2.2){

xU = x− ythcosβ
yU = yc + ythsinβ (2.6)

and {
xL = x+ ythcosβ
yL = yc − ythsinβ. (2.7)

The thickness distribution yth, the camber line yc and the angle β are given by:

yth = 5τc(0.2969

√
x

c
− 0.126

x

c
− 0.3537

(x
c

)2

+ 0.2843
(x
c

)3

− 0.1015
(x
c

)4

) (2.8)

yc =


m

p2

(
2p
x

c
−
(x
c

)2
)

for
x

c
≤ p

m

(1− p)2

(
1− 2p+ 2p

x

c
−
(x
c

)2
)

for
x

c
≥ p

(2.9)

β =


atan

(
2m

cp2

(
p− x

c

))
for

x

c
≤ p

atan
(

2m

c(1− p)2

(
p− x

c

2
))

for
x

c
≥ p,

(2.10)
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where c is the airfoil chord length,m is the maximum camber, p is the maximum camber
location and τ is the maximum thickness.

In order to provide a B-spline description of the airfoil shape, we start from a knot
vector θ and a set of basis functions {ξi(s)}Ni=1, by choosing the control points {P i}Ni=1

through a suitable least-square procedure.
Let us denote by γ a set of points on the airfoil distributed according to their arc

length

γ =

 γ1
...
γM

 =

 x1 y1
...

...
xM yM

 with M ≥ N (2.11)

and denote by c(s), s ∈ [0, 1] the B-spline description of the airfoil Γf . In order to find
the control points position by a least-square procedure, we want to find

arg min{P i}Ni=1

M∑
i=1

1

2

∣∣∣∣∣γi −
N∑
j=1

P jξj(si)

∣∣∣∣∣
2

(2.12)

where si := i
M+1

for i = 1, · · · ,M . The minimum of the quadratic functional in (2.12)
yields to the following first-order optimality condition:

∂

∂P j

(
M∑
i=1

1

2

(
γi −

N∑
k=1

P kξk(si)

)
·

(
γi −

N∑
l=1

P lξl(si)

))
= 0 for j = 1, · · · ,N

(2.13)
that is

∂

∂P j

M∑
i=1

((
N∑
l=1

P lξl(si)

)
·

(
N∑
k=1

P kξk(si)

)
− γi ·

(
N∑
k=1

P kξk(si)

))

=
M∑
i=1

N∑
k=1

P kξk(si)ξj(si)−
M∑
i=1

γiξj(si) = 0 for j = 1, · · · ,N , (2.14)

where (·, ·) denotes the (Euclidean) scalar product in R2. If we defineB such that

Bij := ξj(si), (2.15)

equation (2.13) translates to
BTBP = BTγ, (2.16)

where

P =

P 1
...
PN

 . (2.17)
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System (2.16) gives nothing but the so-called normal equations related to the least
square minimization (2.12).

Hence, given γ, we obtain automatically the control points position P (for null
angle of attack) by solving (2.16). Exploiting the properties of the B-splines (provided
in the previous section), we can easily apply a rotation to the control polygon in order
to rotate the airfoil according to its angle of attack and to obtain the airfoil geometry
for the problem at hand. The possibility to modify the airfoil control points position
simply by changing its NACA 4-digits number and the angle of attack will be broadly
exploited in chapter 3 for the construction of a parametrized formulation, in order to
describe potential flows in varying domains.

2.3 Isogeometric Galerkin Boundary Element Method
In this section we derive a numerical approximation of the variational formulation (1.61)
based on a Galerkin boundary element method. We apply a Galerkin method for its su-
perior properties of stability, consistency and convergence, compared to the alternatives,
such as collocation [56]. Basically, we restrict the solution of (1.61) to live in the finite
dimensional space V h ⊂ V , V h′ ⊂ V ′, so that the problem becomes: given hh ∈ V h′ ,
find uh ∈ V h such that

a(uh, vh) = d(hh, vh) ∀vh ∈ V h. (2.18)

Here we can express

uh(x) =
N∑
j=1

ϕj(x)uj, (2.19)

where ϕj(x) and uj are called basis functions and degrees of freedom (DOF), respec-
tively; N denotes the dimension of V h. By choosing vh(x) = ϕi(x) for i = 1 : N ,
(2.18) rewrites as the following linear system:

N∑
j=1

a(ϕj, ϕi)uj = d(hh, ϕi), i = 1, · · · ,N . (2.20)

The main idea behind isogeometric analysis is that the basis functions used to de-
scribe the geometry can also be employed as basis functions to express the (approxi-
mate) solution of the differential method (this is nothing but the so called isogeometric
concept). By following this approach, we can express the solution of (2.18) as

uh(s) =
N∑
i=1

ξi(s)ui, (2.21)
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that is, we define the finite dimensional space V h ⊂ V as follows:

V h = span{ξi, i = 1 : N}. (2.22)

Thanks to the properties of B-splines, if we take p+1 times the knot sf in the knot vector
θ, we allow the solution to be discontinuous in sf . In the same way, the approximate
version of the Neumann boundary condition is given by

hh(s) =
N∑
i=1

ξi(s)hi. (2.23)

Here ui and hi are respectively the control values of the potential u and of the Neumann
boundary condition h. Moreover, let us denote by Nf and Nw the number of basis
functions for the airfoil and the wake, respectively.

2.3.1 Assembling of the linear system

In order to show how to assemble the linear system (2.20), let us recall that (2.18) can
be expressed as

αm(uh, vh) + n(uh, vh) + w(uh, vh) = d(hh, vh) ∀vh ∈ V h. (2.24)

where m(u, v), n(u, v), w(u, v) and d(h, v) are defined in (1.65).
Thus, by exploiting (2.21) and (2.23), and the definition of indicator function (1.60),

the linear system (2.20) can be written as follows:

Âu = f̂ , (2.25)

where u = (u1, · · · , uN ) ∈ RN is the vector of the degrees of freedom of the Galerkin-
BEM solution,

Â =

[
αM +N

W

]
, f̂ =

{
d
0

}
(2.26)

and

Mij = m(ξj, ξi) =

∫ 1

0

ξi(s)ξj(s)ds, for i = 1 : Nf , j = 1 : N

Nij = n(ξj, ξi) =

∫ 1

0

ξi(s)(Nξj)(s)ds, for i = 1 : Nf , j = 1 : N (2.27)

Wij = w(ξj, ξi) =

∫ 1

0

ξi(s)[ξj(s)− ξj(0) + ξj(sf )]ds, for i = Nf + 1 : N , j = 1 : N
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are the elements of the (rectangular) matricesM f ,N andW , respectively, whereas

di = d(hh, ξi) =

∫ 1

0

ξi(s)

(
D
N∑
j=1

ξj(q)hj

)
(s)ds, for i = 1 : Nf (2.28)

are the components of the vector d. Here M f , N and W represent the airfoil mass
matrix, the Neumann matrix, and the wake condition matrix, respectively. Note that
the indicator function χA plays a fundamental role in the splitting of matrix Â in two
(rectangular) submatrices.

We can proceed to the imposition of the Kutta condition (1.20) at the trailing edge.
We recall that Kutta condition can be written as

(τ · (V ∞ +∇sφ))+ = −(τ · (V ∞ +∇sφ))−, (2.29)

where τ denotes the unit tangential vector along the surface, pointing in the counter-
clockwise direction,∇s is the superficial gradient operator, V = |V | and the superscript
+ and − refer to TE+ and TE−, respectively. As shown in section 2.1, the superficial
gradient in the isogeometric framework can be written as (see equation (2.5)),

∇su(s) · τ = J−1u′(s). (2.30)

where J(s) is the determinant of the Jacobian of the transformation and u′(s) is the first
derivative of the potential. Hence, we can express the (dynamic) Kutta condition as

J−1(0)u′(0) + J−1(sf )u
′(sf ) = −(τ (0) + τ (sf )) · V ∞. (2.31)

We can enforce this condition as a constraint for linear system (2.25) by using the
Lagrange multiplier method. Exploiting the property of the B-splines derivatives shown
in section 2.1, we can set

k =
N∑
i=1

J−1(0)ξ′i(0) + J−1(sf )ξ
′
i(sf ) (2.32)

Hence, by introducing a Lagrange multiplier λ, system (2.25) becomes[
Â kT

k 0

]{
u
λ

}
=

{
f̂

−(τ (0) + τ (sf )) · V ∞

}
. (2.33)

This is nothing but the algebraic formulation related to the saddle point problem (1.66).
System (2.33) can be represented in a more compact form as

Au = b. (2.34)

From now on, we will focus on (2.34).
For the solution of linear system (2.34) we use the Matlab \ solver since its dimen-

sion is, for the problem at hand, quite small. Once we have solved (2.34) we can recover
the approximate solution uh(s) by equation (2.21).
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Some properties of BEM

We now provide some general considerations and remarks related to the Boundary Ele-
ment Method. BEM can be used to find solutions of boundary value problems in exterior
unbounded domains. Since we want to solve the potential u only on the boundary of
the domain, BEM requires the discretization of the geometry only into boundary ele-
ments. This decreases dramatically the number of degrees of freedom of the system to
be solved.

On the other hand, dealing with the boundary element method entails some compu-
tational bottlenecks, since the matrix A is full, and assembling its terms can be rather
expensive because the integrals are very complicated and can contains singularities (in-
tegrands of O(ln(r)), O(1/r), O(1/r2) inside (Nu)(s) and (Dh)(s)) that are numeri-
cally expensive to be evaluated. These singularities can greatly affects the accuracy of
the numerical solution. Moreover, since the matrix A is full, also the solution of the
linear system can be very expensive, when dealing with a large dimension approxima-
tion space. The fact that the system matrix is dense is usually considered a drawback
of BEM, however, for isogeometric methods, it has its positive side: high order and low
order B-splines produce the same matrix bandwidth, making high order B-splines the
ideal candidates for isogeometric BEM approximations. On the contrary, in finite ele-
ment methods, for example, this is not the case: high order B-splines effect the sparsity
of the matrix more than the low order ones.

Concerning integration techniques, we adopt the so-called Telles algorithm [60],
briefly explained in next section. This algorithm is self-adaptive, improves the accuracy
of Gaussian quadrature schemes within the near-singularity range and which is by far
more efficient (in terms of computational cost) than classical techniques used for the
evaluation of singular integrals (see e.g. [37]).

2.4 Numerical evaluation of boundary element integrals
For the sake of numerical evaluation of integrals over the interval [0, 1], we usually adopt
quadrature formulas, such that∫ 1

0

f(t)dt ≈
Nq∑
q=1

f(tq)wq, (2.35)

where tq and wq are properly chosen points, called quadrature points, and coefficients,
called quadrature weights, respectively. Usual quadrature formulas, such as Gauss ones
(see e.g. [51]) are based on polynomial integration.

When f(t) is singular in s (as the example depicted in figure 2.4) with well defined
improper integral, that is,

limt→sf(t) =∞ (2.36)
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Figure 2.5: Function f(t) singular in t = s.

but

limt→s

∫ 1

0

f(t) <∞, (2.37)

we need to exploit special techniques for the evaluation of integrals.
The so-called Telles algorithm [60] is one of these techniques, which allows to re-

move the singularity by a local change of coordinates. Let us consider a third-degree
polynomial regular transformation ξ(η) : [0, 1]→ [0, 1]; t = ξ(η)

ξ(γ) = aη3 + bη2 + cη + d, (2.38)

such that the following requirements are met:

ξ′′(η) = 0 ξ′(η) = 0 ξ(0) = 0 ξ(1) = 1, (2.39)

where η is simply the value of η which satisfies s = ξ(η). Thus, we can write∫ 1

0

f(t)dt =

∫ 1

0

f(ξ(η))ξ′(η)dη (2.40)

where ξ′(η) is nothing but the determinant of the Jacobian of the transformation ξ(η).
Thanks to requirements (2.39), ξ′(η) is null in the singularity position η. Such a property
cancels the singularity and then standard Gaussian integration can be employed, so that

∫ 1

0

f(ξ(η))ξ′(η)dη ≈
Nq∑
q=1

f(ξ(ηq))ξ
′(ηq)wq. (2.41)
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The coefficients of (2.38) are given by:

a =
1

Q
, b = −3η

Q
, c =

3η2

Q
, d = −b, (2.42)

where Q = 1 + 3η2 and

η = 3
√
st∗ + |t∗|+ 3

√
st∗ − |t∗|+ s, (2.43)

where t∗ = s2 − 1.
Hence, for the numerical evaluation of variational forms m(u, v), n(u, v), w(u, v)

and d(h, v) in (1.65), we use the standard Gauss quadrature formula, whereas for (Nu)(s)
and (Dh)(s) in (1.65) we use the Telles quadrature formula.

2.5 Post processing
Once we have computed the solution u on the boundary Γ by solving system (2.34), we
have to post process it in order to evaluate both the velocity field all over the domain Ω,
and some outputs of interest, such as pressure and lift coefficients.

Let us recall the definition of the pressure coefficient Cp:

Cp =
p− p∞
1
2
ρ∞V 2

∞
, (2.44)

where p is the pressure, p∞, ρ and V∞ are the upstream infinity pressure, density and
velocity magnitude. By applying the Bernoulli equation to a streamline between the
upstream infinity and a point on the airfoil surface, we obtain

p+
1

2
ρV 2 = p∞ +

1

2
ρV 2
∞ so p = p∞ +

1

2
ρV 2
∞ −

1

2
ρV 2 (2.45)

so that, exploiting (2.45), we can write the pressure coefficient as follows:

Cp = 1− V 2

V 2
∞

= 1− |∇Φ|2

V 2
∞

. (2.46)

Let us focus on ∇Φ, and let us analyse how it can be written, exploiting some
properties ensured by the isogeometric framework. In particular, we can express

∇Φ = ∇sΦ = ∇su+∇s(V ∞ · x)

= J−2u′(s)
∂c(s)

∂s
+ J−2V∞

∂cx(s)

∂s

∂c(s)

∂s
(2.47)
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where u′(s) is the first derivative of the potential, J is the Jacobian of the transformation,
∂c(s)
∂s

and ∂cx(s)
∂s

are the first derivatives of the mapping and of the first component of the
mapping c(s). Hence we obtain

|∇Φ|2 = J−4

(
u′(s) + V∞

∂cx(s)

∂s

)2
∂c(s)

∂s

2

= J−2

(
u′(s) + V∞

∂cx(s)

∂s

)2

, (2.48)

so that the pressure coefficient can be evaluated by introducing (2.48) in (2.46), and
by exploiting the representation of the derivatives of u in the isogeometric framework
(see section 2.1). The pressure coefficient is one of the most important outputs related
to airfoil characterization, since it gives local informations about the behaviour of the
pressure and (through Bernoulli equation) about the velocity field close to the airfoil.

Once we have the pressure coefficient, we can obtain the lift coefficient by integrat-
ing the expression of Cp on the airfoil surface Γf . Assuming that the profile’s chord c is
equal to 1, we can write

Cl =

∫
Γf

Cpnds · n⊥, (2.49)

where n is the versor normal to the airfoil surface and n⊥ is the versor normal to V ∞.
Alternatively, we can compute the lift coefficient through the circulation value. We

recall that the circulation on the airfoil is given by K = uNf
− u1. Thus, we can write

the lift force both as
L = −ρ∞V∞K, (2.50)

exploiting Kutta-Joukowski theorem, or as

L =
1

2
ρ∞V

2
∞Cl. (2.51)

Hence, we obtain

Cl = −2
K

V∞
. (2.52)

In chapter 5 we fully exploit these quantities to compute the Cp and Cl coming from
the high-fidelity model (IGA-BEM) and the reduced order model (IGA-BE-RBM), and
to compare them with experimental and Xfoil data.

Finally, we want also to recovery the velocity field in the whole external domain.
Recalling the boundary integral equation (1.31), we have the following representation
formula:

u(x) = −
∫

Γ

u(y)
∂G(x− y)

∂ny
dy +

∫
Γ

G(x− y)h(y)dy, (2.53)
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valid for any x ∈ Ω. By definition of potential u, the velocity is

V (x) = V ∞ +∇xu(x), (2.54)

so that

V (x) = V ∞ −
∫

Γ

u(y)∇x
∂G(x− y)

∂ny
dy −

∫
Γ

∇xG(x− y)h(y)dy. (2.55)

In the same way, we can obtain the pressure field from (2.45).
We recall that in chapter 4 we will compute an error bound for the potential u.

Similar results for the estimation of error bounds for the velocity V and pressure p
(with respect to a high-fidelity FE approximation) can be found in e.g. [53].
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Chapter 3

Parametrized formulation of potential
flows

Our ultimate goal is the efficient description of potential flows about airfoils in several
different scenarios, from both a physical and geometrical standpoint. For this reason,
we introduce in this chapter a parametrized version of (1.43), depending on two input
parameters which represent the shape of the airfoil and its angle of attack. We derive
the algebraic formulation of the parametrized problem, by highlighting the role of the
parameters. Then, we show how to express in a suitable way the parametric dependence
in the structures (matrices and vectors) of the derived problem, through the so-called
empirical interpolation method (EIM). This is mandatory in order to build a ROM able
to solve the problem for any new instance of the input parameters, in a very efficient
way. We show how to implement the EIM procedure in a BEM context in two alternative
ways. This is a further, relevant achievement of this thesis, since EIM itself manages
to reduce the computational cost related to the assembling stage of the BEM structures,
typically very expensive, in the case of multiple queries.

3.1 Parametric dependence
Let us now assume that the geometry of the problem described so far is parameter de-
pendent. This entails a parametric dependence on the whole potential flow problem,
and ultimately, on the potential φ and our output of interest. Let us define the parameter
vector

µ =

{
Naca
α

}
∈ D ⊂ R2 (3.1)

where α is the angle of attack and Naca is the four digit number used for the description
of the shape of an airfoil developed by National Advisory Committee for Aeronautics
(NACA), as explained in section 2.2.
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For each value of NACA number (for null angle of attack), we can find the position
of the control points from (2.16) by solving the normal equations

BTBP (Naca) = BTγ(Naca), (3.2)

where

P (Naca) =

P 1(Naca)
...

PN (Naca)

 (3.3)

and

γ(Naca) =

 γ1(Naca)
...

γM(Naca)

 =

 x1 y1(Naca)
...

...
xM yM(Naca)

 . (3.4)

Then, we can easily apply a rotation to the control polygon in order to rotate the airfoil
according to its angle of attack α, so that, in the end, P = P (µ). Thus, we end up with
a parametrized geometry described by

c(s;µ) =
N∑
i=1

ξi(s)P i(µ). (3.5)

In particular, we highlight that we can change all the control points position sim-
ply by two parameters thanks to the least square procedure (2.16) and the subsequent
rotation. This feature makes this shape parametrization technique quite different from
other strategies recently considered, such as Free Form Deformation (FFD) or Radial
Basis Function (RBF) [44], which would typically require more parameters to represent
shapes/deformations of comparable complexity. Moreover, the IGA parametrization we
have considered allows to recover exactly the whole family of NACA airfoils, by pre-
scribing directly its NACA number. This makes it possible to compare the results with
experimental data, tipically available for airfoils inside the NACA family, and to eas-
ily obtain a description of the flow in a very wide family of configurations simply by
prescribing one parameter. This is a very remarkable achievement of the present work.

Since we want to neglect some 4-digits NACA profile which are not interesting from
an engineering standpoint (figure 3.1), we restrict the Naca domain, namely [0000, 9999],
to 7 not connected subregions within the ranges [i208, i620], i = 0, · · · 6. We remark
that, for symmetric profile, that is, when i = 0, the second digit is meaningless. Thus,
for example, NACA 0012 profile has the very same shape of NACA 0212 one. For the
same reason, we neglect angles of attack too high and we restrict the domain of α to
[−20 deg, 20 deg].
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Figure 3.1: NACA 9120 and NACA 2160 profiles are not interesting from an engineer-
ing standpoint.

We now introduce the parametrized version of (1.22) and, after all the steps carried
out in chapter 1, we introduce the weak formulation of the parametrized problem. In the
following, for the sake of simplicity, we will only show where the parametric geometry
affects the problem at hand and, then, we just provide the final weak form.

3.1.1 Weak formulation for parametrized problem

Starting from (1.55) and (1.57), let us analyse which terms are affected by the parameter
µ:

- the mapping c is nowµ-dependent, so that the Green functionG, its derivative ∂G
∂nq

and the determinant of the Jacobian of the transformation J are nowµ-dependent:

G = G(c(s;µ)− c(q;µ))

∂G

∂nq
=

∂G

∂nq
(c(s;µ)− c(q;µ)) (3.6)

J = J(q;µ);

- the normal n and tangent τ versors to Γ are now µ-dependent, so that Neumann
boundary condition (1.40) and Kutta condition (1.19) are now µ-dependent:

h = h(q;µ)

V (TE+) = V (TE+;µ) and V (TE−) = V (TE−;µ). (3.7)

Moreover, let us introduce the parametrized operators N and D (1.58) as follows:

(Nu)(s;µ) =

∫ 1

0

u(q)
∂G

∂nq
(c(s;µ)− c(q;µ))J(q;µ)dq

(Dh)(s;µ) =

∫ 1

0

G(c(s;µ)− c(q;µ))h(q;µ)J(q;µ)dq. (3.8)
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We can now write the parametric version of the weak form (1.66) as follows: given
µ ∈ D, h ∈ V ′, find u ∈ V , λ ∈ R such that{

a(u, v;µ) + b(v, λ;µ) = d(h(µ), v;µ) ∀v ∈ V
b(u, π;µ) = V ∞ · (τ (0;µ) + τ (sf ;µ)) ∀π ∈ R, , (3.9)

where

b(u, π;µ) :=
[
τ (0,µ) · ∇su|0 + τ (sf ,µ) · ∇su|sf

]
π

d(h(µ), v;µ) :=

∫ 1

0

v(s)(Dh)(s;µ)χ[0,sf ](s)ds ∀v ∈ V, h ∈ V ′, (3.10)

and, recalling (1.63), a(u, v;µ) = αm(u, v) + n(u, v;µ) + w(u, v) where

m(u, v) :=

∫ 1

0

v(s)u(s)χ[0,sf ](s)ds ∀u, v ∈ V

n(u, v;µ) :=

∫ 1

0

v(s)(Nu)(s;µ)χ[0,sf ](s)ds ∀u, v ∈ V,µ ∈ D (3.11)

w(u, v) :=

∫ 1

0

v(s) [u(s)− u(0) + u(sf )]χ[sf ,1](s)ds ∀u, v ∈ V.

We can now derive a Galerkin method for the numerical approximation of the prob-
lem at hand.

3.1.2 Numerical approximation for parametrized problem
In this section we derive a numerical approximation of (3.9) based on a Galerkin bound-
ary element method. Following the same procedure used in section 2.3, we assume that
the solution is expressed as

uh(s;µ) =
N∑
i=1

ξi(s)ui(µ) (3.12)

and that the Neumann boundary condition is given by

hh(s;µ) =
N∑
i=1

ξi(s)hi(µ), (3.13)

so that the problem reads as follows: given µ ∈ D, hh ∈ V h′ , find uh ∈ V h, λ ∈ R
such that{

a(uh, vh;µ) + b(vh, λ;µ) = d(hh(µ), vh;µ) ∀vh ∈ V h

b(uh, π;µ) = V ∞ · (τ (0;µ) + τ (sf ;µ)) ∀π ∈ R. (3.14)
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The corresponding algebraic formulation of this problem is the following linear system:

A(µ)u(µ) = b(µ). (3.15)

the matrix A(µ), and indeed the right hand side b(µ), show a block structure, as al-
ready mentioned in section 2.3. Let us now focus on the matrix structure, in order to
better understand which submatrices depend on the parameter µ. We can write A(µ)
as follows:

A(µ) =

[αM +N (µ)]
W

kT (µ)

k(µ) 0

 , (3.16)

where

Mij = m(ξj, ξi) =

∫ 1

0

ξi(s)ξj(s)ds, i = 1 : Nf , j = 1 : N

Nij = n(ξj, ξi;µ) =

∫ 1

0

ξi(s)(Nξj)(s;µ)ds, i = 1 : Nf , j = 1 : N (3.17)

Wij = w(ξj, ξi) =

∫ 1

0

ξi(s)[ξj(s)− ξj(0) + ξj(sf )]ds, i = Nf + 1 : N , j = 1 : N

are the elements of the (rectangular) matricesM ,N (µ) andW , respectively, and

k(µ) =
N∑
i=1

J−1(0;µ)ξ′i(0) + J−1(sf ;µ)ξ′i(sf ) (3.18)

is the vector corresponding to the (Kutta) constraint.
Concerning the right hand side b(µ), we can write

b =


d(µ)

0
−(τ (0;µ) + τ (sf );µ) · V ∞

 , (3.19)

where

di(µ) = d(hh(µ), ξi;µ) =

∫ 1

0

ξi(s)

(
D
N∑
j=1

ξj(q)hj(µ)

)
(s;µ)ds, i = 1 : Nf .

(3.20)
Since some of the terms are parameter dependent and some are not we will introduce

a splitting in order to highlight this difference. We can rewrite the matrixA(µ) as

A(µ) = AM +Aw +Ak(µ) + Ñ (µ) (3.21)

where:
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- AM is the mass matrix, corrected with α on the diagonal, with null elements in
the rows and columns corresponding to the ones of the wake and Kutta condition[

αM 0
0 0

]
; (3.22)

- Aw is the wake matrix with null elements everywhere, except from the rows and
columns corresponding to the wake 0 0

W 0
0 0

 (3.23)

- Ak(µ) is the matrix with null elements everywhere except from the rows and
columns corresponding to Kutta condition[

0 kT (µ)
k(µ) 0

]
; (3.24)

- Ñ (µ) is Neumann matrix with null elements in the rows and columns correspon-
dent to the ones of the wake and Kutta condition[

N (µ) 0
0 0

]
. (3.25)

This representation will be very useful in the following. In fact, when the parameter
value changes, only Ñ (µ),Ak(µ) and b(µ) are affected by parameter variations.

In order to fully exploit the Offline-Online splitting in the ROMs presented in chap-
ter 4, we need to write system (3.15) in the form(

L∑
l=1

γl(µ)N l +AM +Ak(µ) +Aw

)
u(µ) =

M∑
m=1

γm(µ)bm, (3.26)

thus expressing the matrix Ñ (µ) and the vector b(µ) as a linear combination of µ-
dependent functions and µ-independent matrices (and vectors).

This form is obtained naturally if the problem has an affine parametric dependence.
Unfortunately, this is not our case: the isogeometric parametrization entails a non affine
parametric dependence. Thus, we need to approximate the nonaffinely parameter depen-
dent terms. This procedure is carried out by the Empirical Interpolation Method (EIM),
shown in the following section. Since we want to impose Kutta condition exactly, we
will not apply EIM to Ak(µ) but we will compute it directly during the online stage.
By doing this, we do not increase the computational cost of the online stage because the
elements related to Kutta condition are very few, and very fast to be evaluated. In our
specific case, we need to compute only four elements of Ak(µ) and one element of the
right hand side.
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3.2 Empirical Interpolation Method

The assumption of affine parametric dependence of the problem is of fundamental
importance in order to exploit the Offline-Online stratagem, and then minimize the
marginal cost associated with each Online evaluation. This is straightforward if the
problem depends affinely on the parameters. However, also nonaffine problems can be
efficiently treated in the RB framework, by relying on the so-called Empirical Inter-
polation Method. This is an interpolation method for parametric functions based on
adaptively chosen interpolation points and global shape functions, allowing to recover
the affine structure, thanks to a suitable approximation of those parameter-dependent
functions appearing in the problem operators. We remark that EIM itself enables to re-
duce the computational cost required to solve the BEM problem: in fact, it speeds up the
assembling of BEM matrices, which is an expensive part of every BEM algorithm. In
the following subsections we provide a short presentation of the Empirical Interpolation
Method based on [5].

3.2.1 Idea and formulation

Let us denote by g(x;µ) a general scalar function depending on both the spatial co-
ordinates x and the parameters vector µ. Under the assumption of affine parameter
dependence g(x,µ) can be expressed as

g(x;µ) =
M∑
j=1

γj(µ)gj(x). (3.27)

If the parametric dependence is nonaffine, we want to find an approximate expansion
of the form

gM(x,µ) =
M∑
j=1

γj(µ)gj(x) + eEIM(µ), (3.28)

where γj(µ), j = 1 : M areµ-dependent functions, gj(x), j = 1 : M areµ-independent
functions (denoted also as shape functions) and eEIM(µ) is an error term, which we
want to keep as small as possible. Being an interpolation procedure, EIM seeks a se-
quence of (nested) sets of interpolation points TM = {p1, · · · ,pM} also called magic
points, with pj ∈ Ω for each j = 1 : M , and a set of shape functions gj(x), in order to
compute (3.28) by solving the following linear system:

M∑
j=1

BM
i,jγ

j(µ) = g(pi,µ), ∀i = 1 : M, (3.29)
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where BM ∈ RM×M is defined as BM
ij := gj(pi), ∀i, j = 1 : M . Linear system (3.29),

also denoted as Lagrange interpolation problem, stems by the imposition of interpola-
tion constraints:

gM(pi,µ) = g(pi,µ) ∀i = 1 : M. (3.30)

EIM usually selects both the interpolation points and basis functions by means of a
greedy algorithm. Let us denote by ΞEIM

train ⊂ D a large training set representing a
discrete version of the parameter space, Mmax the maximum number of terms in the
expansion, ε∗EIM a prescribed tolerance. To begin the EIM procedure we have to chose
an initial parameter value µ1, define S1 = {µ1}, compute the initial basis function
ζ1(x) = g(x;µ1) and store G1 = span{ζ1}; then, for M ≥ 2, we use (3.29) to ap-
proximate each snapshot of the generating function, and choosing the parameter of the
snapshot that is the worst approximated to be

µM := arg max
µ∈ΞEIM

train

inf
v∈GM−1

||g(·,µ)− v||L∞(Ω). (3.31)

The snapshot g(x,µM) is then normalized to form the M -th basis function, that is,

SM = SM−1 ∪ µM

ζM(x) = g(x;µM) (3.32)
GM−1 ∪ {ζ1} = GM := span(ζ1, . . . , ζM).

The greedy procedure stops when the EIM error is below the tolerance ε∗EIM , for any
µ ∈ ΞEIM

train. The whole procedure is shown in the following Algorithm 1

Algorithm1

ζ1(x) := g(x,µ1); G1 := span(ζ1);

for M = 2 : Mmax

solve µM := arg maxµ∈ΞEIM
train

infv∈GM−1
||g(·,µ)− v||L∞(Ω) (linear programming)

set ζM (x) := g(x,µM ), GM := span(ζ1, . . . , ζM )

if maxµ∈ΞEIM
train

infv∈GM
||g(·,µ)− v||L∞(Ω) < ε∗EIM

Mmax = M − 1;

end;

end.

Then, we construct sets of nested interpolation points TM = {p1, · · · ,p1}, with
M = 1 : Mmax. We select the first magic point p1 and the first basis function q1(x)
normalized to 1 for the magic point p1, that is:

p1 := arg ess sup
x∈Ω
|ζ1(x)|, q1 = ζ1(x)/ζ1(p1), B1

11 = 1. (3.33)
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Then, for M = 2 : Mmax, we solve the linear system

M−1∑
j=1

σM−1
j qj(pi) = ζM(pi), i = 1, . . . ,M − 1 (3.34)

and compute the residual

rM(x) := ζM(x)−
M−1∑
j=1

σM−1
j gj(x); (3.35)

the m-th magic point is given by

pM := arg ess sup
x∈Ω
|rM(x)|, (3.36)

and then we set:

qM(x) = rM(x)/rM(pM)

BM
ij = qj(pi), i, j = 1, . . . ,M. (3.37)

All these operations are summarized in the following Algorithm 2

Algorithm2

compute p1 := arg ess supx∈Ω |ζ1(x)|;
q1 = ζ1(x)/ζ1(p1), set B1

11 = 1;

for M = 2 : Mmax

solve
∑M−1

j=1 σM−1
j qj(pi) = ζM (pi), i = 1, . . . ,M − 1;

compute (residual) rM (x) := ζM (x)−
∑M−1

j=1 σM−1
j gj(x);

compute pM := arg ess supx∈Ω |rM (x)|;
set qM (x) = rM (x)/rM (pM ), BM

ij = qj(pi), i, j = 1, . . . ,M ;

end.

In the following we present two different ways to apply EIM to the problem at hand.
The first one is more classical, and it deals with the application of previous algorithms
to those parameter dependent functions appearing in the integrals (3.8); the second one
deals instead with the algebraic structures related to the BEM parametrized problem,
directly. A brief comparison between the two approaches is also provided.

3.2.2 Application to potential flows about an airfoil
Let us now analyze how the EIM can be applied to the problem at hand. In particular,
we focus on the matrix Ñ (µ) and the right hand side b(µ), since AM and Aw are
parameter-independent and we computeAk(µ) during the online stage.
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We can express Ñ (µ) and b(µ) as follows

Ñij(µ) =

{∫ 1

0
ξi(s)Ψj(s,µ)ds, i = 1 : Nf , j = 1 : N

0, i = Nf + 1 : N , j = 1 : N

bi(µ) =

{∫ 1

0
ξi(s)Θ(s,µ)ds, i = 1 : Nf

0, i = Nf + 1 : N , (3.38)

where

Ψj(s;µ) = (Nξj)(s;µ),

Θ(s;µ) =

(
D
N∑
j=1

ξj(q)hj(µ)

)
(s;µ). (3.39)

For the sake of simplicity, in this section, we neglect the last column and row of
Ñ (µ), as well as the last term of b(µ), which are related to the Kutta condition; as
already mentioned, we do not apply EIM to this terms.

In order to obtain an affine expansion of Ψj(s,µ), j = 1 : N and Θ(s,µ), we
apply the Empirical Interpolation Method to these functions. The two terms can be
approximated by

Ψj(s;µ) =
L∑
l=1

γl(µ)βlj(s) and Θ(s;µ) =
M∑
m=1

γm(µ)βm(s), (3.40)

respectively. Let us analyse all the functions of (3.38) in order to better understand how
the EIM changes the building of the structures Ñ (µ) and b(µ). Let us focus only on
the non null elements. We can write

Ñij(µ) =

∫ 1

0

ξi(s)Ψj(s;µ)ds ≈
L∑
l=1

γl(µ)

∫ 1

0

ξi(s)β
l
j(s)ds

=
L∑
l=1

γl(µ)hlij, i = 1 : Nf , j = 1 : N , (3.41)

where

hlij =

∫ 1

0

ξi(s)β
l
j(s)ds, i = 1 : Nf , j = 1 : N . (3.42)

With a more compact notation, we can write the matrix Ñ (µ) as follows

Ñ (µ) =
L∑
l=1

γl(µ)N l, (3.43)
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where

N l =


hl11 · · · hl1N

... . . . ...
hlNf1 · · · hlNfN

0 · · · 0

 , l = 1 : L, (3.44)

L is the number of EIM terms,N is the dimension of the problem at hand and Nf is the
number of control values for the airfoil. In the same way, we have

bi(µ) =

∫ 1

0

ξi(s)Θ(s;µ)ds ≈
M∑
m=1

γm(µ)

∫ 1

0

ξi(s)β
m(s)ds

=
M∑
m=1

γm(µ)hmi , i = 1 : Nf , (3.45)

where

hmi =

∫ 1

0

ξi(s)β
m(s)ds, i = 1 : Nf . (3.46)

More compactly:

b(µ) =
M∑
m=1

γm(µ)bm, (3.47)

where
bm = [hm1 , · · · , hmNf

, 0]T m = 1 : M, (3.48)

and M is the number of EIM terms.
During the Offline stage, we compute the terms βl and βm, so that we need to as-

semble the structuresN l and bm only once. During the Online stage, for any new value
of the parameter µ, we solve two lower (and small) triangular system (3.29) to obtain
γl(µ) and γm(µ), and then assemble the µ-dependent structures Ñ (µ) and b(µ).

3.2.3 An alternative EIM version for matrices and vectors
Since our goal is to provide an affine approximation of matrices and vectors, instead
of simple functions, we have decided to exploit the EIM in a new way by applying it
directly to matrices and vectors appearing in our BEM parametrized formulation. As in
the previous section, let us focus on the matrix Ñ (µ) and the right hand side b(µ). We
can approximate these structures in the following form:

Ñij(µ) =

{∑L
l=1 γ

l(µ)hlij, i = 1 : Nf , j = 1 : N
0, i = Nf + 1 : N , j = 1 : N

bi(µ) =

{∑M
m=1 γ

m(µ)hmi , i = 1 : Nf

0, i = Nf + 1 : N , (3.49)
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that is,

Ñ (µ) =
L∑
l=1

γl(µ)N l, (3.50)

where

N l =


hl11 · · · hl1N

... . . . ...
hlNf1 · · · hlNfN

0 · · · 0

 , l = 1 : L, (3.51)

and L is the number of EIM basis functions,N is the dimension of the problem at hand
and Nf is the number of control values for the airfoil. In the same way, we have

f(µ) =
M∑
m=1

γm(µ)bm, (3.52)

where
bm = [hm1 , · · · , hmNf

, 0]T m = 1 : M, (3.53)

and M is the number of EIM basis functions.

Basically, the two methods differ in two aspects. On the one hand, the second EIM
strategy returns directly the structuresN l and bm. On the other hand, instead of choos-
ing some magic points for the evaluation of linear system (3.29), in the second case EIM
selects at each step a couple of magic indices (i, j). These features are neither pros or
cons of the two techniques, but from now on we will exploit the second approach to
deal with nonaffinely parametrized operators, since we noted that it selects less affine
terms, for a prescribed tolerance, by making the second strategy more efficient and it
reduces the computational cost associated with the assembling of BEM matrices and
vectors assembling, which is normally very expensive.

Once EIM procedure has been performed, we can rewrite problem (3.15) under the
following affine form:(

L∑
l=1

γl(µ)N l +AM +Ak(µ) +Aw

)
u(µ) =

M∑
m=1

γm(µ)bm. (3.54)

We have obtained so far all the necessary ingredients for the construction of efficient
reduced order models, which is the topic of the following chapter.
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Chapter 4

Reduced order models for
parametrized potential flows

In this chapter we discuss all the details related to the construction of Reduced Order
Models (ROMs) for parametrized PDEs. Following [50], [53] and [54], in section 4.1 we
introduce the basic components of a ROM. Then, in section 4.2, we show how to write
the algebraic (discrete) RB problem, given the RB basis functions. Moreover, we show
how to take advantage of an efficient Offline-Online splitting in section 4.2.1, thanks to
the Empirical Interpolation procedure introduced in chapter 3. In section 4.3 we present
two different strategies for the construction of the reduced space, namely the Proper
Orthogonal Decomposition (POD) and the (greedy) reduced basis method (RBM), this
latter procedure relying on an (a posteriori) error bound, whose main features are briefly
sketched in section 4.4. Finally, in section 4.5, we show how the problem of potential
flows about an airfoil, obtained in chapter 3, can be solved by taking advantage of these
two ROMs.

4.1 Main components of Reduced Order Models
The goal of a ROM is to compute a low-dimensional approximation of the high-fidelity
(parameter dependent) solution in an inexpensive way. The reduced solution is obtained
by a projection onto a small subspace, made by global (properly chosen) basis func-
tions, instead of a large space of local (but generic) basis functions. In fact, we assume
that the family of the full-order solutions, obtained for different values of the parameter
µ through a suitable high-fidelity approximation technique, is smooth. Therefore, we
expect any high-fidelity solution (that is, for any value of µ ∈ D) to be well approxi-
mated in terms of these (properly selected) basis functions. We can summarize the main
ingredient of a ROM as follows:

i. High-fidelity method: in our case, reduced order models do not replace our high-
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fidelity IGA-BEM approximation technique. Rather, they build upon this high-
fidelity (or full-order) approximation method. In other words, the reduced basis
solution does not approximate directly the exact solution, but rather a ‘given’
IGA-BEM solution. As seen in chapter 3, the full-order problem reads: N ), find
uh(µ) ∈ V h such that

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ V h, (4.1)

where V h is a finite dimensional space of (possibly large) dimension N . The
solution of (4.1) can be kept as close as desired to the physical solution u by
choosing a suitable discretization space.

ii. Galerkin projection: a ROM consists in selecting a (reduced) basis {ζi}Ni=1 and
finding the reduced order solution uN(µ) as a linear combination of these basis
functions. The choice of the basis functions differs for the different methods. The
space where we seek the reduced solution is

V N = span {ζi, i = 1, · · ·N} , (4.2)

with N � N 1. Therefore, the reduced order problem reads: find uN(µ) ∈ V N

such that
a(uN(µ), vN ;µ) = f(vN ;µ) ∀vN ∈ V N (4.3)

iii. Offline-Online splitting: the goal is to perform the extensive snapshots generation
only once (Offline stage), and then a rapid evaluation of the solution for any new
µ instance (Online stage). Unfortunately, although problem (4.3) is nominally of
small size N , assembling its structures (matrix and right hand side) involves en-
tities associated with our N -dimensional BE approximation space. To overcome
this problem, and then to construct a N -independent Online stage, we can rely in
our case on the EIM to recover an affine structure of our operators.

iv. Error estimation procedure: rigorous, sharp and inexpensive error bounds such
that

‖uh(µ)− uN(µ)‖V ≤ ∆N(µ) (4.4)

might be easy to characterize, depending on the problem at hand. This error bound
might be also employed to generate a clever parameter sampling for the construc-
tion of the reduced space. If we have applied an Empirical Interpolation Method
in the algorithm (which is our case) the error bound becomes more involved, in

1Each V N is a (hierarchy assumption) N -dimensional subspace of V h, and we further suppose that
V 1 ⊂ V 2 ⊂ · · · ⊂ V N ⊂ V h.
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order to take into account also the contribution of the EIM error. In this case, we
can split (4.4) in two terms, and write it as

‖uh(µ)− uN(µ)‖V ≤ ‖uh(µ)− uEIMh (µ)‖V + ‖uEIMh (µ)− uN(µ)‖V
≤ ∆EIM(µ) + ∆N(µ), (4.5)

where uEIMh (µ) is the solution of (3.54), that is, the solution of the IGA-BEM problem
once the Empirical Interpolation Method has been applied (EI-IGA-BEM).

In chapter 3 we have already provided all the details related to the high-fidelity
model. In the following, we provide more details about the other ingredients of the
construction of the ROMs.

4.2 Algebraic Reduced Basis problem
In this section, we first introduce the algebraic version of the RB method, no matters the
method we use to generate the reduced space. Then, we discuss the algebraic connection
between the reduced order problem and the high-fidelity one.

As shown in the previous section, we assume that the reduced order solution is given
by

uN(µ) =
N∑
m=1

umN(µ)ζm; (4.6)

by inserting (4.6) into (4.3) and taking vN = ζn, n = 1 : N , we obtain the RB algebraic
system

N∑
m=1

a(ζm, ζn;µ)umN(µ) = f(ζn;µ), n = 1 : N. (4.7)

Hence, we can write the algebraic reduced order problem as

AN(µ)uN(µ) = bN(µ), (4.8)

where

(AN(µ))nm = a(ζm, ζn;µ),

(bN(µ))n = f(ζn;µ) (4.9)

and umN(µ) = (u1
N(µ), · · · , uNN(µ))T is the vector of the degrees of freedom related

to the RB solution. Since each basis function ζn belongs to the BE space V h, we can
express each of them as

ζn =
N∑
i=1

ζni ξi, n = 1 : N, (4.10)
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that is, as a linear combination of the BE basis functions {ξi}Ni=1. Then, by inserting
(4.10) in (4.7), and by denoting

Z = [ζ1, · · · , ζN ] ∈ RN×N (4.11)

the matrix formed by the BEM degrees of freedom related to each basis function, we
have that

AN(µ) = ZTA(µ)Z
bN(µ) = ZTb(µ),

(4.12)

whereA(µ) and b(µ) are the structures given by the BE discretization of the problem:

A(µ)u(µ) = b(µ). (4.13)

A graphical sketch related to the assembling of RB structures is provided in figure
4.1.

AN ZT

A Z

Figure 4.1: Schematic representation of the RB matrix assembling.

We can now characterize the error between the RB solution and the high-fidelity one

eN(µ) = u(µ)−ZuN(µ) (4.14)

in terms of the high-fidelity residual of the RB solution. This latter is given by

r(µ) = b(µ)−A(µ)ZuN(µ). (4.15)

In fact, the following relation (straightforward to show) holds:

A(µ)eN(µ) = r(µ) (4.16)

In section 4.4 we will use these quantities in order to obtain a suitable error bound,
required by the greedy algorithm for the construction of the reduced space. Before doing
that, we make some comment about the efficient Offline-Online procedure.

70



4.2.1 Offline-Online procedure

System (4.8) is nominally of small size: a set of N linear algebraic equations in N
unknowns. However, the formation of the matrix and the right hand side, involves
entities associated with our N -dimensional BE approximation space. Fortunately, we
can rely on affine parameter dependence (or onto the Empirical Interpolation already
performed) to construct very efficient Offline-Online procedure. In particular, system
(4.8) can be expressed in matrix form as(

L∑
l=1

γl(µ)Al
N

)
uN(µ) =

M∑
m=1

γm(µ)bmN . (4.17)

Thus, we can write

Al
N = ZTAlZ, bmN = ZTbm. (4.18)

In this way, computation entails an expensive µ-independent Offline stage performed
only once, and an Online stage for any chosen parameter value µ ∈ D. During the
former the BE structures {H l}Ll=1 and {hm}Mm=1, as well as the basis matrix Z , are
computed and stored. In the latter, for any given µ, all the γl(µ) and γm(µ) coefficients
are evaluated, and the N ×N linear system (4.17) is assembled and solved, in order to
get the RB approximation uN(µ). Then, the full solution can be recovered simply as

u(µ) = ZuN(µ) (4.19)

The Online operation count is O(LN2) to assemble the matrix, O(N3) to invert it
and O(MN) to get the right hand side in (4.17). The Online solution requires - thanks
to the hierarchy assumption - only O(LN2

max) + O(MNmax) operations: for any given
N, we may extract the necessary RB N × N matrices as principal submatrices of the
corresponding Nmax × Nmax quantities. The Online cost to evaluate µ → uN(µ) is
thus independent of N .

4.3 Strategies for reduced order space construction

In the last decades a considerable progress has been made in strategies for reduced
order space construction, with several classes of methods emerging. In [9] Benner et al.
give a general overview about these methods. We limit ourselves to describe (and use)
two main methods for choosing the basis (and then build our reduced order models),
namely the Proper Orthogonal Decomposition (POD) and the (greedy) reduced basis
(RB) methods, which are the most suitable for parametrized problems.
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4.3.1 Proper Orthogonal Decomposition
The Proper Orthogonal Decomposition (POD) technique reduces the dimensionality of
a system by transforming the original variables into a new set of uncorrelated variables
(called POD modes, or principal components), the first few modes ideally retaining most
of the ‘energy’ present in all of the original variables. The POD method relies on the
use of the singular value decomposition (SVD) algorithm (see e.g. [62]-[49]. Consider
a discrete set of ntrain snapshot vectors {u1, · · · ,untrain} ∈ V h, and form the snapshot
matrix U ∈ RN×ntrain having them as column vectors:

U = [u1, · · · ,untrain ] ≡ [u(µ1), · · · ,u(µntrain
)]. (4.20)

The SVD of U reads

VTUW =

(
Σ 0
0 0

)
(4.21)

where
W = [ζ1, ζ2, · · · , ζN ] ∈ RN×N (4.22)

and
V = [Ψ1,Ψ2, · · · ,ΨN ] ∈ Rntrain×ntrain (4.23)

are orthogonal matrices, whereas

Σ = diag(σ1, · · · , σr) (4.24)

with σ1 ≥ σ2 ≥ · · · ≥ σr; here r ≤ ntrain is the rank of U .
For any N ≤ ntrain, the POD basis of dimension N is defined as the set of the first N

left singular vectors [ζ1, · · · , ζN ] of U , that is, the basis matrix is given by

Z = [ζ1, · · · , ζN ] ∈ RN×N . (4.25)

By construction, the POD basis is orthonormal. Furthermore, it can be shown that the
energy contained in the first N modes is

E(Z) =
N∑

i=N+1

σ2
i , (4.26)

so that the error in the POD basis is equal to the squares of the singular values corre-
sponding to the neglected POD modes. In this way, we can selectN so thatE(Z) ≤ ε∗tol,
for a prescribed tolerance ε∗tol. To do this, it is sufficient to choose N such that

I(N) =

∑N
i=1 σ

2
i∑N

i=1 σ
2
i

≥ 1− δ, (4.27)
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that is, by requiring that the energy retained by the last N − N modes is equal to δ,
being δ as small as desired; I(N) is referred to as the relative information content of the
POD basis.

Typically a POD approach to built an RB space is more expensive than the greedy
approach. As we will see, in this latter, we only need to compute the N - typically very
few – high-fidelity retained snapshots, whereas in the POD approach we must compute
ntrain – typically very many – high-fidelity candidate snapshots, as well as the solution
of a SVD problem. Besides, (4.26) provides information about the amount of energy
neglected by the selected POD modes, that is an indication in the L2-norm. On the other
hand, in the case of the greedy algorithm, we rely on an a posteriori error estimator.

4.3.2 Greedy algorithm

A greedy algorithm is a general procedure to approximate each element of a compact
set K ∈ V by a subspace of properly selected elements of K. We refer to [49] for a
general overview about the algorithm.

Let us denote by Ξtrain = {µ1, · · · ,µntrain
} a large train sample of parameter val-

ues in D which will serve to select the RB space. Moreover, let us denote by ε∗tol a
prescribed tolerance for the stopping criterion of the greedy algorithm. The idea be-
hind this sampling strategy is that, at the n-th iteration, the greedy algorithm adds to
the retained snapshots that particular candidate snapshot – over all candidate snapshots
u(µ),µ ∈ Ξtrain – which is worst approximated by the already computed basis Vn−1.

The greedy sampling strategy can be implemented as follows (see e.g. [50]):

S1 = {µ1};
compute uh(µ1);

V1 = span{uh(µ1)};
for N = 2, . . .

µN = arg maxµ∈Ξtrain ∆N−1(µ);

εN−1 = ∆N−1(µN);

if εN−1 ≤ ε∗tol

Nmax = N − 1;

end;

compute uh(µN);

SN = SN−1 ∪ {µN};
VN = VN−1 ∪ span{uh(µN)};

end.

(4.28)

Here ∆N(µ) is a reliable, accurate and cheap error estimator, whose construction is
the object of the following section.
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4.4 A posteriori error estimation

Effective a posteriori error bounds for the solution are crucial both for the efficiency
of the basis construction and the reliability of the RB approximation. This error bound
must show some relevant features:

i. it must be rigorous, that is, it must be valid for all N and for all parameter values
in the parameter domain D;

ii. it must be reasonably sharp. In fact, a too much conservative error bound can
yield inefficient approximations, or bring to unnecessary safety margins;

iii. it must be very efficient, that is, the online cost for its evaluation must be inde-
pendent of N .

We now provide a basic derivation of the a posteriori error bound in the case of a
linear elliptic problem from an algebraic standpoint. If we start from (4.13), we can
write the following relation:

A(µ) (u(µ)−ZuN(µ)) = b(µ)−A(µ)ZuN(µ). (4.29)

Exploiting (4.14) and (4.15) in (4.29) we can obtain the error as

‖e(µ)‖ = ‖A−1(µ)r(µ)‖
≤ ‖A−1(µ)‖‖r(µ)‖, (4.30)

where ‖A−1(µ)‖ plays the role of the stability factor. When dealing with the V-norm (or
the energy norm), the stability factor is nothing but the µ-dependent coercivity constant.

In the following, we adopt a ‘surrogate’ error estimator based only on the residual
in L2 norm:

∆N(µ) =
‖r(µ)‖2

2

‖b(µ)‖2
2

=
‖b(µ)−A(µ)ZuN(µ)‖2

2

‖b(µ)‖2
2

. (4.31)

Since we can expressA(µ) and b(µ) through the following affine expansions:

A(µ) =
L∑
l=1

γl(µ)Al, b(µ) =
M∑
m=1

γm(µ)bm, (4.32)

we can compute the norm of the residual as follows:

‖r‖2
2 = (r, r) = (b−AZuN , b−AZuN)

= (b, b)− 2 (b,AZuN) + (AZuN ,AZuN)

= Cb + Cm + Ca, (4.33)

74



where, for the sake of readability, we have omitted the dependence on µ in these terms.
Exploiting the Offline-Online splitting, we can compute Cb, Cm, Ca as follows:

Cb =
M∑
m=1

M∑
m′=1

γm(µ)γm
′
(µ)

(
bm, bm

′
)

Cm = −2
M∑
m=1

L∑
l=1

γm(µ)γl(µ)
(
bm,AlZ

)
uN (4.34)

Ca =
L∑
l=1

L∑
l′=1

γl(µ)γl
′
(µ)uTN

(
AlZ,Al′Z

)
uN ,

thus by evaluating (and then storing) all the µ-dependent quantities appearing in (4.34).
We can now summarize equations (4.33) and (4.34) in the residual final expression:

‖r‖2
2 =

M∑
m=1

M∑
m′=1

γm(µ)γm
′
(µ)bm

′T
, bm

′

− 2
M∑
m=1

L∑
l=1

γm(µ)γl(µ)
(
ZTAlT bm

)
uN

+
L∑
l=1

L∑
l′=1

γl(µ)γl
′
(µ)uTN

(
ZTAlTAl′Z

)
uN . (4.35)

Thus, during the Offline stage, we end up to evaluate

M2 terms bm
′T
bm ∈ R

M × L terms ZTAlT bm ∈ RN (4.36)
L2 terms ZTAlTAl′Z ∈ RN×N . (4.37)

Although the mere residual is not a rigorous error bound, it gives good results in the
selection of the reduced basis. Terms (4.36) are of dimension N but, for the particular
problem at hand, we have many affine terms. This increases the time needed for the
Offline stage of the greedy RB method; in chapter 5 we will provide some results and
comparisons with respect to the POD Offline stage.
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4.5 The case of potential flows about NACA profiles
In this section we apply the ideas discussed in the previous sections to our problem of
interest, given by the parametrized system (3.54). We recall that system (3.54) has been
obtained after the empirical interpolation method, and reads as:(

L∑
l=1

γl(µ)N l +AM +Ak(µ) +Aw

)
u(µ) =

M∑
m=1

γm(µ)bm; (4.38)

note that this system is of dimension N ×N .
Once we have computed the basis functions either by POD or (greedy) RB, we can

exploit (4.18) to assemble RB matrices and right hand side in order to obtain the reduced
order system(

L∑
l=1

γl(µ)N l
N +AM

N +Ak
N(µ) +Aw

N

)
uN(µ) =

M∑
m=1

γm(µ)hmN

AN(µ)uN(µ) = bN(µ), (4.39)

where

AN(µ) =

(
L∑
l=1

γl(µ)N l
N +AM

N +Ak
N(µ) +Aw

N

)

bN(µ) =
M∑
m=1

γm(µ)hmN . (4.40)

Now the system is of dimensionN×N , withN � N . In figure 4.2 we sketch the global
construction/evaluation of the proposed ROM for the parametrized problem at hand; we
recall that we decided not to apply EIM to the elements related to Kutta condition, in
order to impose this latter exactly. Moreover, the elements related to Kutta condition are
very few and very fast to be evaluated. Thus, we can compute them during the Online
stage without any sensible efficiency loss.

Once we have computed the RB solution, we can recover the full-order solution as

u(µ) = ZuN(µ), (4.41)

and through the post processing procedures shown in section 2.5 we can compute all the
outputs of interest, such as the pressure coefficient, the velocity and pressure fields all
over the domain.
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Figure 4.2: Numerical procedure for the solution of nonaffinely parametrized problems
through reduced order models.
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Chapter 5

Numerical results

In this chapter we show the results obtained through the numerical framework presented
so far, as well as some details related to its computational performance.

In particular, in order to validate the reliability of our framework in the characteri-
zation of potential flows about airfoils, we test our algorithms for two different NACA
4-digits (NACA 0012 and NACA 4412) profiles. These airfoils are well-known bench-
marks in the aeronautical literature, thus we can rely on several references in order to
evaluate the methods we have developed in this work. In particular we refer to [1], [2],
[21] and [47] for the experimental results; we refer to [17] and [41] for the numerical
results. Among numerical results considered for comparison and validation, the former
(Xfoil) deals with a classical panel method, the latter deals with a B-splines method,
more similar to ours.

First, we provide results obtained through the IGA-BEM method (section 5.1), then,
in section 5.2, we show the results of the empirical interpolation method for the affine
approximation of the parameter dependent terms of the problem, as well as the results
of EI-IGA-BEM (Empirical Interpolation, Isogeometric Analysis, Boundary Element
Method). Finally, in section 5.3, we show the results obtained with the ROMs we have
considered in this work, namely POD and RBM methods, and we compare their com-
putational performances.

Throughout the work, we have used the software Matlab [45]. We have taken this
decision mainly for two reason:

i. we could use some Empirical Interpolation Method and (greedy) Reduced Ba-
sis method libraries already implemented in Matlab [31], as starting blocks to
develop our framework;

ii. since this work deals with the coupling of different techniques for the first time
ever (such as in the case of IGA-RBM coupling and BEM-RBM coupling in pres-
ence of complex geometrical parametrization), the choice of a software that allows
easy debugging and data handling in an intuitive way is of crucial importance.
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5.1 IGA-BEM validation

In the following we present the results and comparisons for the high-fidelity method,
namely the Isogeometric Boundary Element Method (IGA-BEM).

First, after some preliminary tests, we have tuned the values of some numerical
parameters that allow to obtain good results. On the one hand, we noted that, in order to
obtain a good description of the geometry, it is sufficient to take third degree B-spline
basis functions, with 76 control points. Moreover, we noticed that the choice of the
parametrization is of fundamental importance for the accuracy of IGA-BEM, as well
depicted in figure 5.1. For this reason, we adopted an arc length parametrization.

On the other hand, for the integrals in (2.27) and (2.28), we need to take 4 Gauss
points for the external integrals and 10 Telles points for the internal integrals. We re-
call that we exploit Telles algorithm in order to overcome the problem of integration
of singular functions. As explained in [60], this algorithm is self-adaptive, improves
the accuracy of Gaussian quadrature schemes within the near-singularity range and it is
more efficient (in terms of computational cost) than other techniques used for the eval-
uation of singular integrals [37]. Since the problem at hand is subject to a constraint
(Kutta condition), the degrees of freedom are not 76, but 77. In table 5.1 we summarize
some numerical details of IGA-BEM. In particular, by taking only 77 degrees of free-
dom, we already perform a first numerical reduction, compared to the 200 degrees of
freedom necessary to Xfoil to compute the results. In fact, as already mentioned, isoge-
ometric analysis yields a remarkable improvement regarding computational efficiency
and accuracy.

Table 5.1: Choice of some relevant numerical parameters for IGA-BEM algorithm.

B-spline order 3

Degrees of freedom 76 + 1 (Kutta condition)

Parametrization of the geometry arc length

External integral quadrature formula Standard Gauss

Number of points (external integral) 4

Internal integral quadrature formula Gauss Telles

Number of points (internal integral) 10

In the following we present the results in terms of pressure coefficient, lift coefficient
and streamline visualization, as explained in section 2.5.
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5.1.1 Reparametrization of the geometry

In the isogeometric framework, there are several ways to parametrize the airfoil geome-
try. This choice effects the results, especially in terms of pressure coefficient. As can be
seen in figure 5.1, the parametrization may give an oscillation (related to the determi-
nant of the Jacobian of the mapping) in the results. In order to overcome this problem,
we have decided to adopt an arc length parametrization. Note that the lift coefficient,
which is an integral output, is less affected by these oscillations.
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Figure 5.1: Pressure coefficient for NACA 0012: uniform parametrization (left), arc
length parametrization (right); α = 0 deg.

5.1.2 NACA 0012 profile

As a first test, we consider the NACA 0012 airfoil. We remark that the most relevant
peculiarity of NACA 0012 is that it is a symmetric profile. Hence, we have to check
that at null angle of attack both the lift is null and the pressure coefficient is equal on the
lower and upper surfaces. This is the first numerical test for the validation of IGA-BEM
(figure 5.1 and 5.3). In figure 5.2, we show the comparison of the pressure coefficient
among IGA-BEM, experimental data and Xfoil calculations for some angles of attack.
We remark that we use Xfoil in its inviscid version. This is coherent with the fact that
also IGA-BEM is an inviscid model, based on the solution of the Laplace equation.
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Figure 5.2: Comparison of the pressure coefficient for NACA 0012: IGA-BEM, exper-
imental data [21] and Xfoil; α = 0 deg, 6 deg, 10 deg.
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The results obtained are very close both to experimental data and Xfoil calculations.
In figure 5.3, we show the lift coefficient curve and we compare it with experimental

data and Xfoil calculations. We note that the Xfoil curve prediction is steeper than our
prediction and experimental data.
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Figure 5.3: CL(α) curve comparison for NACA 0012: IGA-BEM, experimental data
[2] and Xfoil.

Finally, in figure 5.4, we provide the visualization of the streamlines for four differ-
ent angles of attack. This is a useful output in order to understand the general behaviour
of the flow around the airfoil.

Figure 5.4: Streamlines visualization for Naca 0012; α = −5 deg, 0 deg, 5 deg, 10 deg.
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5.1.3 NACA 4412 profile
As a second test, among several very popular NACA 4-digits non symmetric airfoils, we
have chosen the NACA 4412 profile. This choice is driven by the fact that a numerical
comparison with a similar B-spline method for this profile is available in [41]. First,
in figure 5.6, we show the comparison of the pressure coefficient among IGA-BEM,
experimental data and Xfoil calculations for some angles of attack; as before we use
Xfoil in its inviscid version. Also for the NACA 4412 profile, the results obtained are
very close to experimental data and Xfoil calculations. In figure 5.5, we show the lift
coefficient curve and we compare it with experimental data and Xfoil calculations. We
highlight that the Xfoil curve prediction is steepest than our prediction and experimental
data also for the NACA 4412 profile. Moreover, we want to test IGA-BEM with respect
to the B-splines based method presented in [41]. Thus, in figure 5.7, we provide the
pressure coefficient comparison with Xfoil and the already mentioned method [41]. We
note that there is a discrepancy in the results: this difference can be remarked also in
figure 5.5, in terms of gap between Xfoil and IGA-BEM lift coefficients. Thus, if we
compare the pressure coefficient not for a given angle of attack α but for a given lift
coefficient Cl, we recover a great accordance for the pressure coefficient curves, as
depicted in figure 5.7. Finally, we provide the flow visualization through streamlines
in figure 5.8. We remark that this is a qualitative result, which is useful in order to
understand the behaviour of the flow. The results provided so far show the reliability
of our IGA-BEM framework. This means that the implemented IGA-BEM performs
in a very good way in predicting the results in terms of pressure and lift coefficients.
Moreover, it uses less than a half of the Xfoil degrees of freedom. After the preliminary
validation of the high-fidelity method, we can proceed now with all the steps that leads
to the construction and validation of the reduced order models.
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Figure 5.5: CL(α) curve comparison for NACA 4412: IGA-BEM, experimental data
[2] and Xfoil.
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Figure 5.6: Comparison of the pressure coefficient for NACA 4412: IGA-BEM, exper-
imental data [47] and Xfoil; α = −2 deg, 0 deg, 1.87 deg.
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Figure 5.7: Comparison of the pressure coefficient for NACA 4412: IGA-BEM, B-
splines based method [41] and Xfoil; α = 5 deg (left), Cl = 1.11 (right).

Figure 5.8: Streamlines visualization for Naca 4412; α = −5 deg, 0 deg, 5 deg, 10 deg.
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5.2 Empirical interpolation method

In this section we present the results for the empirical interpolation method. First we
show how the parameter dependent terms appearing in (3.17)-(3.19) are approximated
by a series of affine terms, through the EIM procedure of section 3.2. Then, we analyse
the impact of the EIM matrix/vector approximation on the IGA-BEM high-fidelity solu-
tion, by recovering some of the results already presented for IGA-BEM. Moreover, we
highlight how the empirical interpolation method reduces the computational cost of the
problem. This is related to the efficiency of the online EIM step in building the system
structures, in particular the system matrix, in the following reduced-order models.

5.2.1 Approximation of parameter dependent terms

First of all, we show how the greedy algorithm of EIM selects the values of the param-
eter µ and how the error decrease according to the number of affine terms taken, both
for the matrix Ñ (µ) and the vector b(µ). To initialize the greedy algorithm, we have
prescribed a tolerance ε∗EIM = 10−8 and a random train of 600 parameter values. We
have decided to take a tolerance of 10−8 in order to neglect the error estimator ∆EIM

in the estimation of the ROM error in (4.5). In this way, ∆EIM is orders of magnitude
smaller than the estimator ∆N . In the following, we will provide a deeper explanation
of this.

In figure 5.9 we show the choice of the parameter values and the error (in L∞-norm)
related to Ñ (µ), respectively. In the same way, in figure 5.10 we show the choice of
the parameter values and the error (in L∞-norm) related to b(µ), respectively. We recall
that our parameter domain is made by 7 not connected subregions within the ranges
[i208, i620]× [−20 deg, 20 deg], i = 0, · · · , 6.
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Figure 5.9: EIM approximation of Ñ (µ): sample values in the parameter space (left)
and convergence of the greedy-EIM algorithm (right); ε∗EIM = 10−8.
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Figure 5.10: EIM approximation of b(µ): sample values in the parameter space (left)
and convergence of the greedy-EIM algorithm (right); ε∗EIM = 10−8.

We recall that for each retained parameter value, EIM selects a couple of magic
index i, j for the matrix (and a singe magic index i for the vector), corresponding to the
ij-th (i-th) element of the matrix (vector) to be evaluated online. We note that the greedy
algorithm of EIM selects only 132 point over 76×76 = 5776 elements of matrix Ñ (µ)
for its approximation, to reach a precision of 10−8. Concerning the matrix assembling,
this leads to a great computational saving.

On the contrary, we note that the greedy algorithm of EIM selects 40 point over 76
elements of b(µ) for its approximation, to read the same precision. Thus, concerning
the right hand side assembling, this leads to a computational saving much less tangible.

From figure 5.10, we can see that EIM tend to select the parameters close to the
boundaries of the parameter domain D. This is a typical behaviour of every greedy
algorithm.

5.2.2 Numerical results of EI-IGA-BEM
We now present the comparison between the results obtained through the EI-IGA-BEM
and the IGA-BEM, that is, between the full-order problems where the algebraic struc-
tures are assembled relying on EIM or not. First, in order to check the reliability of the
EIM, we have computed the error between the results of the two methods for a random
set Ξsample of nsample parameter, in order to estimate ∆EIM .

We recall briefly the stability estimation for linear systems in the form (2.34). For a
deeper knowledge on the matter, we refer to [51]. We can write the perturbed system,
i.e. the linear system corresponding to the EIM assembling of the operators, as

(A+ δA) (u+ δu) = b+ δb, (5.1)

and we want an estimate of δu in terms of δA and δb. Here δA and δb play the role
of EIM errors made on the approximation of the matrix A and the right hand side b,
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respectively. We can write the following stability estimate

‖δu‖
‖u‖

=
K(A)

1−K(A)‖δA‖/‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
, (5.2)

where K(A) = ‖A‖‖A−1‖ is the conditioning number of A and, for the problem at
hand,

K(A) = O(103). (5.3)

Let us assume that the train sample Ξsample properly spans D. Thus, we can obtain the
error estimations ‖δA‖ and ‖δb‖ as follows

‖δA‖ = maxi
{∥∥Ai

E −Ai
F

∥∥
L∞

}nsample

i=1
≈ O(ε∗EIM)

‖δb‖ = maxi
{∥∥biE − biF∥∥L∞}nsample

i=1
≈ O(ε∗EIM),

(5.4)

respectively. Here, with the subscripts E and F we refer to the matrix and the right hand
side of EI-IGA-BEM and IGA-BEM, respectively. For the problem at hand, (5.4) leads
to

‖δA‖
‖A‖

≈ O(10−6)

‖δb‖
‖b‖

≈ O(10−6). (5.5)

We thus can provide an estimation ∆EIM for the error ‖δu‖‖u‖ related to the EIM procedure.
In fact, exploiting (5.2), we can write:

‖δu‖
‖u‖

≤ ∆EIM ≈ O(10−3). (5.6)

We obtain the same result if we directly compute for the sample previously chosen:

‖δu‖
‖u‖

=
maxi {‖uiE − uiF‖L∞}

nsample

i=1

maxi {‖ui‖L∞}
nsample
i=1

≈ O(10−3). (5.7)

The choice of the EIM tolerance ε∗EIM = 10−8 is thus motivated by this analysis. In table
5.2 we summarize some numerical details related to the EIM procedure. As already
mentioned, EIM reduces the computational cost associated with the assembling of BEM
matrices and vectors, which is normally very expensive. We can see that, in this case,
the computational reduction is moderate. In fact, the aim to impose a strict tolerance has
leaded to the selection of many affine terms, which require more time to be evaluated.
However, we highlight that the first aim of EIM is not to reduce the computational
cost, but rather to express the non affine terms through an affine expansion, in view of
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developing efficient ROMs. For the sake of completeness, in the following we show
the results obtained by means of the EI-IGA-BEM procedure for some configurations
already analysed in the IGA-BEM framework in section 5.1. We can remark that the
reconstruction of the pressure coefficient is absolutely equivalent.

Table 5.2: Some features of the empirical interpolation method.

EIM samples number 600

EIM tolerance ε∗EIM 10−8

Number of elements of Ñ 5776

Affine matrix components L 132

Number of elements of b 76

Affine rhs components L 40

Time for structures assembling (IGA-BEM) 0.9 s

Time for structures assembling (EI-IGA-BEM) 0.6 s

{
0.1s for Ñ

0.5s for b
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Figure 5.11: Comparison of the pressure coefficient for NACA 0012: IGA-BEM and
EI-IGA-BEM; α = 0 deg, 6 deg, 10 deg.
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Figure 5.12: Comparison of the pressure coefficient for NACA 4412: IGA-BEM and
EI-IGA-BEM; α = −2 deg, 0 deg, 1.87 deg.
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5.3 Reduced Order Models
We now present the numerical results obtained through the reduced order models im-
plemented in this work, by considering first the proper orthogonal decomposition, then
what concerns the greedy reduced basis method.

We show some details about the offline construction of the reduced basis spaces, a
convergence test for the error, and some online evaluations, compared with the results
of IGA-BEM, EI-IGA-BEM and experimental data. In the end, we provide a direct
comparison between POD and RBM in terms of computational performances.

5.3.1 Proper Orthogonal Decomposition
We briefly recall the idea behind POD. Basically, during the offline stage, we first com-
pute a (large) set of snapshots and then, through a Singular Value Decomposition, we
transform the original variable into the so-called POD modes, the first few modes re-
taining most of the ‘energy’ present in the original variables. During the online stage,
through (4.27), we choose the dimensionality of the reduced basis and we solve the new
(reduced) system, thanks to a Galerkin projection.

For the problem at hand, we have taken a set of 600 snapshots and we have applied
the SVD algorithm. The resulting singular values are depicted in figure 5.13. We remark
that, through (4.26), the energy information contained in the chosen POD modes is
related to these singular values. In particular, we point out that O(10) POD modes are
sufficient in order to explain almost all the energy of the system, thanks to (4.27).
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Figure 5.13: Eigenvalues of the Singular Value Decomposition.

As a first test, we have taken a set of 50 IGA-BEM and EI-IGA-BEM solutions
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for 50 random values of the parameters in order to asses the quality of the POD ba-
sis. Then, for these parameter values, we compute the POD solution. Moreover, this
sample is the same also for the RBM convergence tests, shown later on. For all possi-
ble choices of the reduced space dimension, we compute the error (in L2-norm) for all
IGA-BEM and EI-IGA-BEM solutions in the sample. In figure 5.14 and 5.15 we show
the maximum, minimum and mean errors between POD and EI-IGA-BEM solutions,
and between POD and IGA-BEM solutions, respectively. From figure 5.14 we can see
that the error has the same shape of the SVD eigenvalues in figure 5.13, which is what
we expect.
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Figure 5.14: Error convergence between POD and EI-IGA-BEM solutions for a random
train of 50 parameter values.
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Figure 5.15: Error convergence between IGA-BEM and POD solutions for a random
train of 50 parameter values. ∆EIM does not permit to reach null error.
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From the comparison between figure 5.14 and figure 5.15 we can see where the
error between IGA-BEM and EI-IGA-BEM solutions, namely ∆EIM , affects the error
between POD and IGA-BEM solutions. We recall that POD modes are computed by
considering the SVD of a snapshot matrix, each snapshot being computed by consid-
ering the EIM approximation of the operators. In fact, if we take less than 40 basis
functions, the errors have the same trend. On the contrary, if we take more than 40
basis functions, the error between POD and IGA-BEM is not null, as it is in the case of
POD and EI-IGA-BEM. Therefore, we can say that the POD error is governed by the
reduced order technique for N < 40 and by EIM for N > 40. However, during the
online evaluations, it is sufficient to retain only 9 basis functions and this aspect will be
negligible from now on. From (4.27) we know that, if we consider 9 basis functions,
we are keeping 99.9998% of the system energy. Thus, by considering a POD tolerance
of O(10−4), we retain 9 basis solutions (or modes) in our reduced space. We provide
a comparison between the pressure coefficient computed through POD algorithm and
IGA-BEM, EI-IGA-BEM and experimental data, first for NACA 0012 airfoil (figures
5.16 and 5.17), then for NACA 4412 airfoil (figures 5.18 and 5.19). In table 5.26 we
summarize some computational details of POD, as well its efficiency parameters, in
term of time and dimension of the reduced system.

We remark that, in terms of pressure coefficient, the results are almost equal, al-
though we use about 1

10
of the degrees of freedom of IGA-BEM.

95



0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x
c

C
p

POD
IGA-BEM

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x
c

POD
EI-IGA-BEM

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

x
c

C
p

POD
IGA-BEM

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

x
c

POD
EI-IGA-BEM

0 0.2 0.4 0.6 0.8 1

−4

−2

0

x
c

C
p

POD
IGA-BEM

0 0.2 0.4 0.6 0.8 1

−4

−2

0

x
c

POD
EI-IGA-BEM

Figure 5.16: Comparison of the pressure coefficient for NACA 0012: IGA-BEM and
POD (left column), EI-IGA-BEM and POD (right column); α = 0 deg, 6 deg, 10 deg.

96



0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x
c

C
p

POD
Exp

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

x
c

C
p

POD
Exp

0 0.2 0.4 0.6 0.8 1

−4

−2

0

x
c

C
p

POD
Exp

Figure 5.17: Comparison of pressure coefficient for NACA 0012: experimental data
[21] and POD; α = 0 deg, 6 deg, 10 deg.
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Figure 5.18: Comparison of the pressure coefficient for NACA 4412: full IGA-
BEM and POD (left column), EI-IGA-BEM and POD (right column); α =
−2 deg, 0 deg, 1.87 deg.
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Figure 5.19: Comparison of the pressure coefficient for NACA 4412: experimental data
[47] and POD; α = −2 deg, 0 deg, 1.87 deg.
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5.3.2 Greedy algorithm

We now consider the numerical results obtained through the greedy algorithm. Basi-
cally, during the offline stage, at every iteration n, the greedy algorithm expands the
already computed basis Vn−1 with that solution – over all candidate u(µ),µ ∈ Ξtrain

– which is least well approximated by Vn−1, where ‘least well approximated’ has to be
intended in the sense of the error estimator ∆N . The algorithm continues to iterate un-
til the error estimator is under the required tolerance ε∗tol, all over the parameter space.
Then, during the Online stage, we solve the new (reduced) system thanks to a Galerkin
projection.

Thus, we have taken a train of 600 (random) parameter values and we have applied
the greedy algorithm with tolerance ε∗tol = 3 ∗ 10−4. Under these requirements, greedy
algorithm selects 18 basis functions. In figure 5.20 we show the resulting error esti-
mator ∆N , and how the greedy algorithm selects the parameter values for the retained
snapshots.
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Figure 5.20: Greedy algorithm: convergence of the error estimator ∆N (left), retained
snapshots in the parameter space; ε∗tol = 3 ∗ 10−4.

The greedy algorithm selects a few snapshots in any subregion of the parameter
space, thus yielding the possibility to represent all configurations as combinations of
the basis functions. Not only, just two snapshots are selected for ‘large’ angles of attack
whereas several snapshots correspond to α ≈ 0 and different NACA profiles. This
means that, between the two parameters, the reduction is harder for the shape than for
the angle of attack. This is not surprising, since the IGA parametrization entails much
more involved operations in order to describe the shape of a wide family of airfoils, than
their rotation.

As a first test, we have taken the same set of 50 IGA-BEM solutions already ex-
ploited in the POD framework and we have performed a convergence test in the same
way as in the POD case. For all possible choices of the RB space dimension, we com-
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pute the error (in L2-norm) for all IGA-BEM solutions in the sample. In figure 5.21 we
show the maximum, minimum and mean errors between RBM and IGA-BEM solutions.

We provide a comparison between the pressure coefficient computed through RBM
algorithm and IGA-BEM, EI-IGA-BEM and experimental data, first for NACA 0012
airfoil (figures 5.22 and 5.23), then for NACA 4412 airfoil (figures 5.24 and 5.25).
Also in the case of RBM, in terms of pressure coefficient the results are almost equal,
although we use about 1

10
of the degrees of freedom of IGA-BEM. In table 5.26 we

summarize some computational details of RBM, as well its efficiency parameters, in
term of time and dimension of the reduced system.
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Figure 5.21: Error convergence between IGA-BEM and RBM solutions for a random
train of 50 parameter values.
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Figure 5.22: Comparison of the pressure coefficient for NACA 0012: IGA-BEM
and (greedy) RB (left column), EI-IGA-BEM and (greedy) RB(right column); α =
0 deg, 6 deg, 10 deg.
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Figure 5.23: Comparison of the pressure coefficient for NACA 0012: experimental data
and (greedy) RB; α = 0 deg, 6 deg, 10 deg.
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Figure 5.24: Comparison of the pressure coefficient for NACA 4412: IGA-BEM
and (greedy) RB (left column), EI-IGA-BEM and (greedy) RB (right column); α =
−2 deg, 0 deg, 1.87 deg.
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Figure 5.25: Comparison of the pressure coefficient for NACA 4412: experimental data
and (greedy) RB; α = −2 deg, 0 deg, 1.87 deg.
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5.3.3 Comparison of POD and RBM computational performances
We now compare the results obtained through POD, RBM and IGA-BEM. Since the di-
mension of the high-fidelity problem at hand is quite small, we provide also some details
related to a second high-fidelity solution, obtained by considering a larger amount of de-
grees of freedom, for the sake of the comparison of numerical performances. In fact,
we remember that the choice of a boundary element method, is already a first strategy
to reduce the dimension of the full-order problem.

In figure 5.26, we compare the convergence test for POD and RBM, whereas in table
5.3 we summarize some numerical details of our ROMs. The curves in 5.26 are similar
and, as it can be also seen in figures 5.22, 5.23, 5.24, 5.25, 5.16, 5.17, 5.18 and 5.19, both
the methods give great results in terms of accuracy with respect to the high-fidelity IGA-
BEM method. Moreover, the two methods lead to a remarkable computational saving
for each input/output evaluation, which is very similar. We only point out a strong
difference between the CPU times required for the Offline stage by the two ROMs. This
aspect is related mainly to the following reasons:

i. on the one hand, IGA-BEM for two dimensional problem is a very efficient and
rapid tool, i.e., it is not too expensive to evaluate 600 solution for the POD tech-
nique. For more complex problems, performing this evaluation could be very
expensive, or even impossible;

ii. on the other hand, the number of affine terms increases dramatically the computa-
tional cost in the Offline stage of RBM. In fact, the evaluation of the norm of the
residual (4.35) is very expensive if we have several affine terms, as in our case,
and this reflects on the greedy algorithm, requiring at each step the identification
of the worst-case solution in terms of error indicator.
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Figure 5.26: Error convergence comparison between POD and RBM for a random train
of parameters.
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Table 5.3: Performance comparison among IGA-BEM, POD and RB.
Approximation data IGA-BEM 1 IGA-BEM 2

Number of parameters 2 2

Affine matrix components L 132 120

Affine rhs components M 40 41

Sample train (both POD and RBM) 600 600

IGA-BEM space dimension N 77 147

RBM space dimension N 9 9

POD space dimension N 9 9

RBM tolerance 3 ∗ 10−4 3 ∗ 10−4

POD tolerance 2 ∗ 10−4 2 ∗ 10−4

IGA-BEM evaluation time 3.6 s 8 s

RBM construction time 2h 50min 5h

RBM evaluation time 0.95s 1.9s

POD construction time 8min 16min

RBM evaluation time 1.1s 1.9s

Computational speedup RBM 3.8 4.2

Computational speedup POD 3.3 4.2

As a final, general comparison, let us consider the work by Günther [22]. In this
work, the problem of potential flows past airfoils, parametrized with respect to the angle
of attack and thickness, does not consider any lift; moreover, a finite element method
is used to compute a high-fidelity approximation. Although the problem analysed in
this work is much more involved, we can derive some general considerations. First of
all, FEM is about 10 times more expensive than BEM in this case. On the contrary,
the performance of the ROM during the online stage are comparable involving in each
case O(10) basis functions to represent parametrized solutions during the online stage.
Moreover, our framework allows to:

i. evaluate physically meaningful output thanks to our boundary integral formula-
tion;

ii. characterize a wide NACA family in exact terms from a geometrical standpoint,
thanks to our IGA parametrization and EIM approximation;

iii. perform the offline stage in a much more efficient way.
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All the ingredients considered in our framework play a key role in order to obtain
an efficient characterization of potential flows past parametrized NACA airfoils, and
related outputs of interest.

Both the ROMs implemented allow to deal with systems of O(10) starting from a
high-fidelity method with O(102) degrees of freedom, which is already a rather small
problem. However, we expect to obtain a much significant model reduction if we con-
sider a larger dimension of the high-fidelity BEM problem (see table 5.3 for a first
example), or three dimensional problems.
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Conclusions

The main goal of the present work has been the analysis and implementation of a re-
duced basis method for the rapid and reliable solution of potential flows past airfoils
parametrized with respect to the angle of attack and the NACA number identifying their
shape.

The high-fidelity model we used is an Isogeometric boundary element method (IGA-
BEM) for the solution of external flows around arbitrary geometries.The isogeometric
paradigm is very attractive when coupled with boundary element methods, because
it allows the analysis of industrial CAD designs (typically described by NURBS sur-
faces) by direct coupling with CAD data structures, without the generation of volumetric
NURBS meshes (an outstanding open problem of isogeometric finite element analysis).
We implemented a technique that allows the automatic generation of B-spline patches
describing the NACA 4-digits family of airfoils at arbitrary angle of attack.

Such a parametrization leads to a non affine parametric dependence in the boundary
integral equation that describes the differential problem, and it requires special tech-
niques in order to apply a Reduced Order Model (ROM). We used a variation of the
Empirical Interpolation Method (EIM) applied directly to the algebraic structures of
IGA-BEM, which approximates the non affine parametric dependence with an affine
one and speeds up the assembly of parameter dependent IGA-BEM matrices by one
order of magnitude.

We exploited the EIM technique applied to IGA-BEM to construct two different
reduce order models, namely the Proper Orthogonal Decomposition and the (greedy)
Reduced Basis Method.

We have successfully tested the results coming from both these techniques for two
different airfoils of the NACA 4-digits family (NACA 0012 and NACA 4412), compar-
ing both with experimental results and with other numerical tools (Xfoil and a B-splines
based method presented in [41]). These airfoils were selected because they are standard
benchmark problems in the aeronautical literature, for which several experimental data
are available. Numerical tests have shown a great agreement with both experimental and
numerical data, as well as a good computational saving with respect to the high-fidelity
model. Moreover, we noted that the empirical interpolation method itself reduces the
computational cost associated with the assembling of BEM structures. Although the
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construction of reduced spaces using POD and RBM is very different, we have not no-
ticed relevant differences in their accuracy and rapidity in the prediction of the results
of the problem at hand during the Online stage.

On the contrary, their behaviour during the Offline stage is quite different: in the
problems we analysed, POD is much faster than RBM. This difference is mostly related
to the number of affine terms and to the dimension of the full-order model. A great
number of affine terms increases dramatically the cost of RBM, and the speed at which
it is possible to solve the full order model (IGA-BEM) makes the computation of a
great number of snapshots (required by POD) a reasonable strategy, ultimately making
the use of RBM unfavorable in the case at hand.

The main achievement of this work is the coupling of reduced order models with iso-
geometric boundary elements, through a variation of the empirical interpolation method.
The work carried out shows that this coupling can be very effective, and it is of great
interest also in view of future developments.
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