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Abstract

This thesis introduces an original Multi-Task Sparse Fitted Q Iteration algorithm,

and includes a theoretical analysis on its performance guarantees, as well as the

introduction of a new optimization method to efficiently compute it and experiments

to validate it. The powerful modeling tools of Markov Decision Processes and

function approximation allows Reinforcement Learning algorithms to efficiently solve

complex control problems defined on continuous domains. One main drawback of

function approximation, and therefore also of Approximate Reinforcement Learning

techniques, is the large number of samples needed for the learning process as the

dimensionality of the problem increases. Using a restricted class of approximators,

such as the linear models used in this thesis, can provide good results with a number

of samples linear in the number of features. A restricted model introduces bias, so a

common approach is to use a large number of features to describe the problem, in

the hope that the space spanned by this features will contain a good representation.

To avoid overfitting the large number of parameters introduced, many regularization

techniques can be used. In particular, when the representation is sparse in its

parameters, the approximator can exploit a number of parameters exponential in

the number of samples, as long as most of the parameters will be equal to zero. In

this thesis we will further increase this bound by solving together a set of tasks that

share a common sparse representation. This property, called group sparsity, will

allow us to keep increasing the number of features past the exponential limit as long

as suitable new tasks are added linearly. This group sparse approach will allow us to

efficiently express the problem as a sequence of optimization problems with matrix

norm regularization. In addition we will also explore the possibility of learning a

new group sparse matrix representation when the original problem is apparently not

group sparse. This expands the algorithm potential applications to settings that are

not group sparse, but admits a group sparse representation.

I





Estratto in Lingua Italiana

Questa tesi si centra sull’introduzione di un nuovo algoritmo Multi-Task basato su

Sparse Fitted Value Iteration. Include un’analisi teorica delle performance del nuovo

algoritmo, una metodo per risolvere l’associato problema di ottimizzazione e una

valutazione sperimentale.

Il paradigma del Reinforcement Learning (RL), o apprendimento per rinforzo,

è uno dei grandi campi di interesse del Machine Learning. Particolarmente adatto

a descrivere l’interazione tra un agente e il suo ambiente, il RL trova nei Markov

Decision Process (MDP) uno strumento di modellazione particolarmente potente per

descrivere una ampio spettro di problemi di controllo. Nella prima parte del Capitolo

2 introdurremo una panoramica dei metodi più tradizionali per RL, a partire dai

metodi di Dynamic Programming basati sulla esatta conoscenza delle dinamiche

dell’MDP, per poi passare a risolvere tali problemi attraverso forme approssimate che

usano campioni derivanti dall’interazione per raccogliere l’informazione necessaria

all’apprendimento di una politica ottima. Una grande limitazione di questi approcci

è la necessità di rappresentare esattamente delle value function per ogni possibile

stato del sistema. Quando il numero di questi stati cresce, i costi computazionali e

di memoria delle tecniche di RL e DP basate su rappresentazione esatta esplodono a

proporzioni ingestibili.

L’aggiunta dell’uso di approssimazione di funzioni permette agli algoritmi basati

sul Reinforcement Learning di risolvere efficientemente complessi problemi di controllo

con un numero di stati elevato, o addirittura infinito. Questo è per esempio il caso

di tutti quegli stati che per vari motivi possono essere rappresentati efficientemente

solo con variabili di stato continue. Nella seconda parte del capitolo 2 introdurremo

perciò le più importanti tecniche di Approximated Reinforcement Learning. Tra

queste, gli algoritmi della categoria Fitted Value Iteration forniranno la base per lo

sviluppo del nuovo metodo presentato in questa tesi.

Uno dei principali svantaggi dell’uso di approssimatori, e quindi delle tecniche di

Approximated Reinforcement Learning, è il rapido aumento del numero di campioni

necessari ad apprendere quando la domensionalità del problema cresce. Questo prob-

lema, riferito spesso come curse of dimensionality, restringe il campo di applicabilità

di queste tecniche a problemi in cui ottenere una grande quantità di campioni non

è un problema. Un metodo per cercare di evitare questa esplosione di complessità
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è restringere la classe di funzioni che l’approssimatore di un algoritmo di Approxi-

mated RL (ARL) può rappresentare. Con questa restrizione si cerca di sacrificare

la possibilità di rappresentare qualsiasi funzione senza distorsioni, in cambio di una

riduzione nella difficoltà dello stimare i parametri associati con il modello introdotto.

Per esempio, l’uso di un modello lineare come quelli scelti in questa tesi, permette

di ottenere buoni risultati finchè il numero di campioni rimane lineare rispetto al

numero di parametri usati nell’approsimatore. Il problema della regressione lineare

sarà il centro del Capitolo 3.

Per evitare di introdurre un errore irriducibile troppo grande, dovuto alla scarsa

capacità di approssimazione del modello, una scelta comune è introdurre una grande

quantità di parametri, nella speranza che con una ricca descrizione si riesca ad

approssimare bene le funzioni necessarie. Questa esplosione nel numero di parametri

reintroduce la curse of dimensionality, e rende impossibile trattare problemi con molti

paramtri senza correre il rischio di avere un overfitting dell’approssimatore ai dati.

Per risolvere questo problema una grande varietà di tecniche di regolarizzazione delle

soluzioni sono state proposte nel campo della regressione lineare. Tra queste sono di

particolare interesse quelle che riescono ad indurre nella soluzione una sparsità dei

parametri, che corrisponde ad ottenere una soluzione con molti dei parametri uguali

a zero. Porre un parametro a zero equivale ad escluderlo dal problema, e questo

aiuta a ridurre il numero di dimensioni effettivamente coinvolte nella soluzione del

problema. Tra i risultati conosciuti in letteratura, presenteremo nel Capitolo 3 dei

bound per questi approssimatori lineari sparsi, che riescono a superare il limite del

numero lineare di parametri e possono utilizzare un numero di parametri esponenziale

rispetto al numero di campioni, a patto di avere poi una soluzione sparsa che sia

ancora lineare nel numero di campioni.

Il punto di partenza di questa tesi è l’idea di spingere ancora oltre questo limite

sfruttando un concetto di sparsità diverso, la sparsità di gruppo. Nei problemi

Multi-Task di RL, un insieme di MDP che condividono similarità viene risolto

in contemporanea, in modo da sfruttare le similarità per estrarre informazione e

ottenere una soluzione finale migliore di quella che si sarebbe ottenuta considerando

ogni Task separatamente. In particolare, l’assunzione di questa tesi è che i vari

Task condividano una rappresentazione sparsa comune, e che quindi sia possibile

ottenere una soluzione sparsa a livello di gruppi di variabili simili tra Task, e non

semplicemente una soluzione sparsa per ogni singolo Task. Il risultato principale del

Capitolo 4 è quindi la derivazione a partire da risultati nel campo della regressione

con soluzioni sparse a gruppi, di bound teorici sulla performance del nuovo algoritmo,

Sparse Fitted Q Iteration. In particolare considerare multipli Task allo stesso tempo

permetterà di superare il numero esponenziale di parametri, a patto di mantenere

una rappresentazione sparsa comune e aggiungere Task in numero lineare.

Uno dei requisiti più stringenti di questa formulazione è la presenza di una

rappresentazione sparsa a livello di gruppo. Nel Capitolo 5 riporteremo un utile
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algoritmo chiamato Multi-Task Feature Learning, in grado non solo di calcolare

una regressione sparsa per problemi dotati della necessaria struttura, ma anche

potenzialmente di trovare una tale rappresentazione partendo dai dati, sotto una

serie di condizione meno restrittive. Nel corso del capitolo presenteremo alcune

modifiche a questo algoritmo per renderlo più simile alla formulazione usata nei

risultati teorici, e un modo efficiente per risolverlo.

Infine nel Capitolo 6 svolgeremo alcuni esperimenti su problemi artificiali per

verificare se le condizioni necessarie per il buon funzionamento degli algoritmi proposti

si verificano in simulazioni concrete.
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Chapter 1

Introduction

Among the various successful Machine Learning fields, the Reinforcement Learning

(RL) framework is one of the most promising. The reason for this success is partly

caused by the main application of RL, complex control problems where a complete

description of the dynamics is too hard or impossible. In these cases, RL techniques

will use approximations and sampling to build a model of the system accurate enough

to allow the derivation of optimal policies for its control. RL is not limited to Machine

Learning application, but has been successfully introduced in operational research,

economy and general AI. An RL approach [55] is particularly suited to describe all

kinds of interaction between a decision-making agent and its environment. Through

the use of a suitable feedback function, a large class of problems can be modelled and

solved using Dynamic Programming (DP) and RL techniques. Among these modeling

techniques, one of the most powerful and studied is the Markov Decision Process

(MDP) [43]. An MDP describes the interaction of the agent with the environment as

a sequence of states and actions, and the key assumption of the Markov property for

the problem allows to efficiently find an optimal solution, or a near-optimal solution

when it is impossible to correctly represent an optimal solution. In the first part of

the thesis we will introduce a small number of key DP and RL techniques useful to

understand the different approaches used to solve MDPs, and therefore be able to

give some context for the introduction of the original algorithm introduced in this

thesis.

We will start with DP methods, that allow to solve MDPs when full knowledge

about the model is available, with both the transition probabilities from one state to

the others, and the feedback function. This class of basic techniques introduce the

fundamental distinction between Value Iteration algorithms [61], that seek to find a

good approximation of the value of each state in order to extract a good policy for

the task, and Policy Iteration algorithms [48], that instead try to find the optimal

policy that the agent should follow by incremental improvements.

Satisfying DP’s requirements in a practical setting is usually hard, because these

techniques assume access to information that in practice is difficult to model exactly,
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2 Introduction

and also need to be able to correctly represent this information for all states, a

problem hardly feasible when the number of state is large.

To relax the first of the two requirements, tabular RL techniques choose to build

an optimal solution incrementally, using samples from the transitions and rewards

instead of requiring access to the true model. As the number of samples grows,

the estimate used by the various tabular RL algorithms becomes more and more

accurate, and an optimal solution can be found without explicitly solving the whole

planning problem.

Relaxing the second assumption is a harder but necessary improvement. Limiting

RL to problems where the value functions need to be exactly represented for each

state greatly reduces the potential application of these techniques. When the number

of states becomes too large, computational costs and memory occupation of tabular

based DP and RL techniques quickly grow and explode to unfeasible proportions.

Through the introduction of function approximation, RL algorithms can exceed

this limitation and efficiently solve complex control problems with a large number of

states, or even an infinite number of states. This is for example the case for all those

problems whose state can only be efficiently represented with the use of a continuous

state variable. After tabular techniques we will then introduce some of the most

important Approximated Reinforcement Learning (ARL) algorithms [30]. Among

them, the Fitted Value Iteration framework [16] will receive particular attention, and

will form the basis for the development of Sparse Fitted Q Iteration, the original

algorithm proposed in this thesis.

One of the main disadvantages connected to the use of function approximation, and

therefore to Approximated RL methods, is the rapid growth of the number of samples

necessary to successfully carry out the learning process as the dimensionality of the

problem increases. This drawback, often referred to as the curse of dimensionality,

severely limits the potential application of these methods to problems where collecting

a large amount of samples is not too difficult. When it is impossible to collect more

data, such as historical data that are in the past, or it is dangerous to collect samples,

such as when using an expensive and fragile piece of equipment, it is desirable to use

more sample efficient techniques. For example considering the contribution of all the

samples at the same time can improve performances [31].

One method to avoid a complexity explosion is to restrict the class of functions

that the approximator is capable of representing. With this restriction a bias due

to the model assumptions is introduced that potentially makes it impossible for the

approximator to find a good set of parameters to fit the target function. On the other

hand the number of samples necessary to estimate the parameters is usually smaller

for more biased estimators [9]. This dilemma, called the bias/variance trade-off, is

central to this thesis. For example, the introduction of a linear model, as the one

chosen in the original contribution of this thesis, allows the approximator to find

a solution even with a small number of samples, as long as this number remains
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linear w.r.t. the number of parameters [22]. The problem of linear regression will

be introduced in detail, and several common techniques used to solve it will be

considered.

To avoid introducing too much bias, due to a model with low representation

capabilities, a common choice is to introduce a large number of parameters, with the

hope that with enough parameters it will be possible to obtain a richer description

and correctly represent the target function. If the problem is easy to model, it is

possible to correctly choose the features to include among the parameters, such

as higher order polynomial for physics problems or frequency counts for natural

language processing. But in the most common RL setting, where the RL framework

is used to find a good solution in an unknown environment, this is not possible, and

it is likely that the introduction of a large number of parameters will cause a large

amount of redundancy. Most of the parameters introduced will not be meaningful to

the solution of the problem, but need to be included because the best subset is not

known in advance. The explosion in the number of parameters effectively triggers

again the curse of dimensionality, and makes it hard to solve problems with a large

number of parameters without risking obtaining an approximation that is heavily

overfitted to the data. To solve this problem many techniques for the regularization

of the solutions have been proposed in the linear regression field. Among these, a

particular interest is dedicated to those techniques ([57]) that find a solution that

has a sparse parametric representation, or in other words a solution that contains

many parameters exactly equal to zero.

When a parameter of the model is set to zero its contribution to the construction

of the solution is effectively removed from the problem, and this helps to reduce the

number of dimensions involved in the approximation. Among the known results in

literature, we will present bounds for this class of sparse linear approximators ([5]),

and we will see that they can surpass the linear limit in the maximum number of

features. In particular, they allow the problem to have an exponential number of

parameters compared to the number of samples, as long as the solution can still be

represented using a small subset linear in the number of samples. The starting point

of this thesis is the idea of pushing even further this limit, exploiting a different

concept of sparsity called group sparsity.

In Multi-Task RL problems ([32]), multiple MDP problems are solved at the

same time. The underlying assumption is that the various MDPs share some form of

similarity. Solving them together allows to extract as much information as possible

from each task, and share it with other tasks. The goal is to obtain a better final

solution compared to the one we would obtain by considering each task separately. In

particular the main assumption of this thesis is that the various tasks share a sparse

common representation, and therefore it is possible to obtain a sparse solution at

the level of groups of variables similar across tasks, and not simply a sparse solution

for each task ([65]). The main result of this thesis is then the derivation, starting



4 Introduction

from useful results in the field of group sparse regression ([35]), of a theoretical

bound on the performance of the new proposed algorithm, Sparse Fitted Q Iteration.

In particular considering multiple tasks at the same time will allow this technique

to surpass the exponential number of unnecessary features that limited single-task

sparse regression, as long as we maintain a group sparse representation and new

tasks are added linearly.

The introduction of a group sparse assumption is a strong but necessary limit for

the theoretical analysis. When the data do not present themselves as group sparse,

this assumption does not hold, even if the underlying structure has some kind of

intrinsic sparsity. To reduce this drawback, we considered the possibility of learning

a sparse representation starting from the data when the original representation might

be not suitable. To this end, we will use a popular feature learning algorithm, Multi

Task Feature Learning [1], that can potentially improve performances if a group

sparse representation is not present but can be derived. We propose a modification

of this algorithm to make it more similar to the formulation used in the regression

results, and provide an efficient way to solve the resulting optimization problem.

Finally, we will carry out some experiments on artificial settings, to confirm that

the theoretical properties of the proposed algorithm are verified in actual simulations.

Mission The goal of this thesis is to investigate the consequences of introducing an

assumption of group sparsity in an Approximated Reinforcement Learning problem.

In particular we seek to improve the performances of ARL algorithms as the number

of unnecessary features included in the model exceeds the exponential limit permitted

by sparse, single-task techniques. Therefore we will formulate this problem in a

multi-task setting and obtain improved theoretical guarantees on the performance of

the algorithm.

Motivations In many realistic problems it is often unknown which underlying

features are needed to build a good representation of the environment’s state. If the

right features are not included, the learning process will surely fail, and to avoid this

a common choice is to introduce a large number of features, to increase the likelihood

of correctly representing the necessary functions. Typical examples of these problems

are localization, where selecting the coarseness of the localization grid is often a

sensible problem, or physical problems with a large number of sensors, where only a

small subset of measurements is really relevant to the problem. The introduction of

a large number of parameters increases enormously the quantity of data that needs

to be collected in order to successfully learn a good solution, due to a phenomenon

called curse of dimensionality. Sparse approximations have proved themselves to be a

good solution to high-dimensional problems. Several results exist for RL algorithms

that exploit sparse solutions for the single-task setting. Multi-task approaches have

proved themselves useful in the past, and we will investigate the introduction of a
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multi-task, group sparse assumption, already popular in the regression setting, to

RL.

Contributes The main contribution of this thesis is the introduction of a new

Multi-Task RL algorithm called Sparse Fitted Q Iteration, its theoretical analysis,

the derivation of an efficient implementation and an experimental validation of its

performance. For the theoretical aspects, we provide a bound on the performance of

the algorithm that, as long as suitable new tasks are introduced, is independent on

the number of unnecessary features included in the model. This bound can be seen as

a direct extension to the multi-task setting of similar results obtained for single-task

RL algorithms. For the algorithmic contribution, we introduce a modification to

a Multi-Task Feature Learning algorithm to closely match the assumptions of the

bound. The introduction of feature learning to the SFQI algorithm can improve

performances in scenarios that are not group sparse but have a suitable sparse

representation. Finally, we provide experimental validation of the new technique.

1.1 Overview

We will now give a short overlook of the structure of this thesis. There are three

main parts that compose the structure of this thesis. In the first part we introduce

some initial results regarding RL techniques and regression. In particular we will

introduce previous works that share similarities with this thesis, and the fundamental

results that are preliminary to the derivation of the main results. In the second

part we introduce SFQI and derive all the main contributions of this thesis. We

will introduce other preliminary results recently proposed, and derive the main

algorithmic definition of SFQI, its theoretical guarantees, and an extension with

feature learning techniques. In the third part we will provide some experimental

examples, and possible future directions for improvement.

In Chapter 2 we introduce MDP problems and preliminary results on their

solution. This chapter will also define the notation used in the thesis regarding MDP

problems and RL techniques. The important distinction between Policy Iteration

techniques and Value Iteration techniques is introduced at the beginning of this

chapter. In Section 2.4 we give a small introduction to function approximation,

that will be later expanded in Chapter 3, and introduce several key algorithms

for Approximated Reinforcement Learning. We conclude the section with a small

overview of the Multi-Task approach to RL, and the improvements that it can

provide.

In Chapter 3 we will introduce the linear regression setting and fully explain linear

approximation. The beginning of the chapter focuses on the statistical justification

for regression, and fully explain some details regarding function approximation that

were implied in the previous chapter. After introducing regression as a statistical
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problem we turn to the optimization approach to find the solutions to the various

formulation of regression used in this thesis. The large family of linear Least

Squares regression is considered, and some preliminary results on its potentials

as an approximation tool are reported. As we mentioned, to obtain solutions

where the Least Squares solution is not well-defined, we resort to the optimization

tools and introduce several different regularization techniques, giving an intuitive

interpretation of their underlying principles. This section introduces also the notation

for the regression and optimization problems used in the main result. At the end of

the section, several regularized RL algorithm will be introduced, both for PI and VI.

For some of them we provide known theoretical results that we will later compared

with SFQI.

In Chapter 4 the full description of SFQI is given with Algorithm 4.1. After

having defined its basic formulation, we introduce additional recent results that will

be used in the derivation of a bound for the performance of SFQI. We begin by

introducing bounds on the performance of a generic Fitted Value Iteration, first

proposed in [35]. These bounds depend on some mild assumption on the properties

of the MDP. In particular a weak form of stability for the MDP transition is assumed,

in order to guarantee that the error introduced by the approximations used at each

step does not diverge. The other main assumption is a condition introduced in [35],

that guarantees that the particular data provided to the function approximator is

informative enough to reconstruct a good representation of the target function. The

main result of the chapter is formulated and proven in Section 4.4. Exploiting the

group sparseness of the solutions produced by the Group Lasso optimization problem

we obtain a bound that scales favorably with the number of tasks. As we already

mentioned this is a new, multi-task bound that has a more general application than

previous results on single-task RL. A comparison with existing methods to show the

main differences is included.

In Chapter 5 we consider an extension to the regression problem introduced in the

previous chapters. In particular to relax the strict assumption of group sparsity we

use the Multi-Task Feature Learning algorithm proposed in [1] to try to learn such a

representation when the original features are not sparse. This approach should make

the SFQI algorithm capable of dealing with a larger class of problems, not only those

that are sparse but all problems that admit a sparse representation. We propose an

original modification to the MTFL problem to formulate it as an exact extension

of Group Lasso. With this modification the algorithm can follow the indications

provided by theoretical results when used without the feature learning extension.

Since introducing a new algorithm to exactly compute a Group Lasso solution is

itself interesting, we compare the new MTFL-GL method to other optimization

techniques.

In Chapter 6 the algorithms introduced are evaluated in an experimental setting

to test whether the assumptions underlying the method hold, and in Chapter 7 we
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make some final considerations and point at possible future developments.





Chapter 2

Markov Decision Processes:

Introduction and Fundamental

Results

This chapter introduces the formal definition of a Markov Decision Process (MDP),

and the most important classes of algorithms that have been devised to solve such

problems. As we will see, MDPs are suitable to represent a large class of control

problems, and under certain assumptions they can be solved to an exact result, or

to an approximately optimal solution when an optimal solution is impossible to

obtain with the available data or would require computational costs not satisfiable

in practice.

In particular, in Section 2.1 we will introduce the definition of the problem, as

well as the first theoretical results on its solution. In Section 2.2 we will present some

of the first Dynamic Programming algorithms proposed to find an exact, optimal

solution, under the requirement of full access to all the information underlying the

MDP, as well as a the possibility of precisely represent this model. In Section 2.3 we

will instead introduce algorithms that do not need full information of the model, as

long as an exact representation of it can be stored. Model-free tabular Reinforcement

Learning techniques work with just sampled data from the MDP, and we will see that

they still obtain performances asymptotically optimal. In Section 2.4 we will relax

the exact representation requirement to allow MDPs to model problem with infinite

states. Approximate Reinforcement Learning techniques find an approximately

optimal solution, where the quality of the solution depends on the precision of our

approximation. Under this class, we will introduce the Fitted Q Iteration algorithm

in Section 2.4.4, that will be central to the rest of this thesis. Lastly, in Section 2.5,

we will introduce the problem extension of solving not a single MDP, but a set of

them. This multi-task approach can prove itself beneficial, for example when each

single task has a scarce amount of available data for its solution.

9
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2.1 Markov Decision Processes

A Markov Decision Process is a useful modeling tool for the description of the

interaction that a decision-making agent has with its environment. The MDP

describes this interaction in terms of the environment’s state evolution in response

to the actions taken by the agent. The agent will apply some decision rule, usually

based on the state of the system, in order to reach its goal. This goal is represented

under the form of a quantitative feedback that the environment gives to the agent

in response to its actions. Therefore, solving the MDP means finding the optimal

decision rule that will maximize this feedback.

This task is complicated by the fact that the actions that the agent takes influence

the evolution of the state of the system, and therefore the optimal strategy will

need to take into account the consequences of the present actions on the future of

the system. Each of these actions represents the result of a decision that the agent

made before executing the action. Decisions are made at time steps called decision

epochs. Given a set T of decision epochs, we can consider two cases: T can be a

continuous, infinite set of time instants, or it can be a, finite or infinite, set of distinct

discrete instants. The continuous time setting will not be discussed in this thesis,

since a discrete model of the time still allows to describe a large set of problems. For

example the discrete nature of computer’s operations makes all digitally controlled

systems discrete. If our set T is finite, we can annotate the sequence of steps

T = 0, . . . , i, . . . , N , and we call this setting finite horizon. We can then extend the

notation to the infinite horizon setting with T = 0, . . . , i, . . . , N,N ≤ ∞.

We will now formally define all the other properties, and the notation necessary

to represent them, starting with discrete-space MDPs, to extend it later to the

continuous-space case. For a more complete exposition of MDPs, and the techniques

used to solve them, many good references are available such as [55, 12, 47, 4]

2.1.1 Discrete-Space Markov Decision Processes

We begin by introducing a distinction between continuous-state and discrete-state

MDPs. In a discrete-state MDP, the number of possible states that the system can

assume is finite. Therefore each state can be represented as a member s of a finite

set S, with cardinality |S|. This is for example the case in simple problems such as

small games like Tic-Tac-Toe or larger ones like chess, where the number of possible

board states is finite. In a continuous-state MDP instead, at least one of the features

that needs to be represented in order to identify the state can take a value in an

infinite set. For example the distance to a goal on a line is a real number, and can

take infinitely many values. In this case we use x ∈ X to represent the state. The

same distinction can be done with the actions, but in this thesis we will concentrate

on the case when the number of available actions to the agent is finite. Therefore we

introduce an assumption on A
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Assumption 2.1.1. A is a finite set.

We will indicate with A = |A| the cardinality of the discrete action set.

A discrete-space, discrete-action MDP, also called countable MDP, is defined as

a tuple M = (S,A, P,R, γ). Over the course of the decision epochs, at each time

step i, the system is represented by a state si ∈ S, and an action ai is selected from

the finite set of available actions A. For the sake of simplicity we consider the case

when all actions are available to the agent at each time step. A trajectory can now

be defined as the collection of the states visited by the MDP at each time step, and

the respective actions taken. Formally, a trajectory is defined as

hi = (s0, a0, s1, a1, . . . , si−1, ai−1, si).

The space of all possible trajectories is defined as Hi : (S ×A)i−1 × S.

2.1.2 Transitions

When the agent at time i takes an action, the system transitions into a new state.

We denote M (·) as a space of probability distributions over some space, and µ(·)
as a distribution from M . We also define B (·) as the space of bounded measurable

functions over some space. Given a Borel set b ⊆ S, the transition probability kernel

is a function P : S × A × B → [0, 1], with B the set of all possible b. For a given

state si and an action ai at time i,

P(si+1 ∈ b|si, ai) = P (b|si, ai).

Intuitively it represent the probability of transitioning into a new state si+1 af-

ter taking action ai in state si. In an equivalent formulation we can write

si+1 ∼ P (·|si, ai) The definition we have given of the transition probability ker-

nel makes use of the main assumption of MDPs, which gives the name to the model.

For any function associated with the MDP, that function is said to satisfy the Markov

property if the influence the past can have on present results is limited, or in other

words if the last state describes sufficiently the system to make previous records

not useful. In the case of the transition kernel, the next state depends only on the

current action and the current state, and not on the whole history hi of the process

up to that point. Formally,

P(si+1 ∈ b|hi, ai) = P(si+1 ∈ b|si, ai).

2.1.3 Reward

The feedback that the environment gives to the agent at each time step can now be

formally defined. The reward kernel function R : S×A → R expresses quantitatively

this feedback. Under normal conventions, a positive reward represent a positive
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feedback, such as earning a sum or improving some performance index, while a

negative reward represent a negative feedback, such as a loss or a failure. At each

time step the agent collects a reward ri after having executed an action in a state.

The goal of an agent is to maximize some performance index based on the rewards

that he collects along his trajectories. For example one might want to maximize the

total sum of the rewards, or it’s average over time. We will see in Section 2.1.5 several

common choices. The reward in many problems is not a deterministic quantity, but

instead can have random fluctuations. We take into account this when defining

R(s, a) = E [r(s, a)]. Moreover we make another assumption on the rewards,

Assumption 2.1.2. Every reward kernel function R is bounded by some rmax.

Without loss of generality we will assume that rmax = 1.

2.1.4 Policies

The main objective when solving an MDP is to derive a decision rule ζ that maximizes

some performance index. A decision rule is intuitively defined as the method used

to select the next action given our current trajectory. This can be written as

ζ : Hi →M(A), where the action ai is then selected according to this distribution.

We can classify decision rules according to their properties: Markovian versus history-

dependent and deterministic versus stochastic or randomized. A decision rule is

Markovian if it follows the Markov property, that is if the action is chosen only

depending on the current state and not on the whole trajectory. A deterministic

decision rule is a degenerate stochastic decision rule, where the distribution from

which to sample the action is all concentrated in a single action. A policy is a

collection of decision rules that are followed at each time step

π = (ζ0, ζ1, . . . , ζi).

where each decision rule belongs to the same class. A policy itself can be classified as

stationary or non-stationary, where the decision rule of a stationary policy does not

change over time. Given this classification, we can see that the most general policy

class is stochastic and history-dependent. All the possible sets are

ΠHR,ΠMR,ΠSR history-dependent, Markovian and stationary randomized

policies.

ΠHD,ΠMD,ΠSD history-dependent, Markovian and stationary deterministic

policies.

These classes inclusion graph is

ΠSD ⊂ ΠSR ⊂ ΠMR ⊂ ΠHR

ΠSD ⊂ ΠMD ⊂ ΠMR ⊂ ΠHR
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ΠSD ⊂ ΠMD ⊂ ΠHD ⊂ ΠHR

In the rest of this thesis we will consider only stationary policies, referred as π :

S × A → M(A). If the policy is stochastic we write ai ∼ π (·|xi), while for a

deterministic policy we can write ai = π (xi).

2.1.5 Optimality

A definition can now be given for the performance indexes that guide the search

for the optimal policy. As we said before, the goal of the agent is to maximize the

accumulated rewards. A simple approach is to simply maximize the expected sum of

the rewards collected along the trajectory obtained by starting from state s0 and

following policy π. Given a distribution over initial states µ, we want to find

max
π∈Π

E
ai∼π
si∼P

[
N∑
i=0

ri|s0 ∼ µ

]
,

where the expectation takes into consideration the randomness of the transitions,

policy choices and the rewards themselves. This approach has a clear shortcoming,

when the MDP has an infinite planning horizon, and the agent can collect reward

forever, this quantity is not bounded. Another objective that is defined for the

infinite-horizon case is the expected average reward objective

max
π∈Π

E
ai∼π
si∼P

[
N∑
i=0

ri
N
|s0 ∼ µ

]
.

If the rewards are bounded, as N → ∞ the whole quantity will remain bounded,

under some mild assumptions on the properties of the MDP. This approach puts the

same weight on rewards that are received in the short-term and on those that can

be obtained only with a longer effort. If instead we want to value more short term

rewards, such as in the case when prolonged trajectories risks entering a state from

where it is impossible to recover, we can use the expected discounted reward

max
π∈Π

E
ai∼π
si∼P

[
N∑
i=0

γiri|s0 ∼ µ

]
.

Again this quantity is bounded even in the infinite-horizon setting, as long as the

rewards are bounded, and the γ constant, called the discount factor, is strictly

included between (0, 1). The discount factor intuitively represent an indication of

the probability that a trajectory will not terminate at each step. γ = 0 implies a

single step trajectory, while γ = 1 an infinite one. For the rest of the thesis we will

consider the expected discounted return under the assumption

Assumption 2.1.3. 0 < γ < 1.
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The performance of policy π w.r.t. some distribution µ is then defined as

Jπµ = E

[
N∑
i=0

γir(si, ai) : ai ∼ π(·|si), si+1 ∼ P (·|si, ai), s0 ∼ µ

]
.

We add another assumption that will be assumed to hold for the rest of the thesis.

Assumption 2.1.4. The reward kernel function R(s, a) and transition kernel func-

tion P (·|s, a) do not vary over time.

Under these assumptions, it is guaranteed that an optimal randomized stationary

policy π∗ = supπ∈ΠSR J
π
µ exists, and moreover there is also at least one optimal

deterministic policy.

2.1.6 Value Functions and Bellman Equations

In the definition of the performance of a policy Jπ, a starting distribution µ is used.

Since the Jπ captures the value of a policy, the value of a state is obtained by selecting

µ(s) = 1. This function is called Value function, and corresponds to the expected

discounted reward the agent will obtain starting from state s and following policy π.

It is defined as

V π(s) = E

[
N∑
i=0

γir(si, ai) : ai ∼ π(·|si), si+1 ∼ P (·|si, ai), s0 = s

]
.

Separating the first argument from the rest, we can obtain the recursive definition of

the Value function

V π(s) =E

[
r(s0, a0) +

N∑
i=1

γir(si, ai) : ai ∼ π(·|si), si+1 ∼ P (·|si, ai), s0 = s

]
= E
a∼π(·|s)

[R(s, a)] + E
s′∼P (·|s,a),
a∼π(·|s)

[
γV π(s′)

]
.

This recursive equation is called Bellman equation. It can be expressed as an affine

linear operator T π, called the Bellman operator,

(T πV )(s) =
∑
a∈A

π(s, a)

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

]
. (2.1.1)

It can be shown that the Bellman operator is a contraction, that is,∥∥T πV − T πV ′∥∥∞ ≤ γ ∥∥V − V ′∥∥∞ ,
and therefore with the application of the Banach fixed point theorem, it is possible

to prove that V π is the unique fixed point of the Bellman operator [25]. The Value
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function of the optimal policy π∗ is called the optimal Value function, and is denoted

as V ∗ = V π∗ . It can be shown that this Value function is the fixed point of another

operator, called optimal Bellman operator,

(T ∗V )(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

]
. (2.1.2)

This operator is nonlinear, and corresponds to taking the greedy action w.r.t. to the

current values of the Value function. A useful property of the optimal Value function,

that follows directly from its definition is V ∗(s) ≥ V π(s) for all states s and policies

π. Another useful representation of the value of a policy is the so called Q-function,

or Action-Value function, which represents the expected discounted reward the agent

will gain by selecting action a in state s, and then following policy π. It is defined as

Qπ(s, a) = E [r(s, a)] + E
s′∼P (·|s,a),
a′∼π(·|s′)

[
γQ(s′, a′)

]
.

Its corresponding Bellman operator is

(T πQ)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)

[∑
a′

π(s′, a′)Q(s′, a′)

]
, (2.1.3)

and the optimal Bellman operator

(T ∗Q)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)

[
max
a′

Q(s′, a′)

]
. (2.1.4)

The Q-function is connected to the Value function by the relationship∑
a∈A π(s, a)Qπ(s, a) = V π(s), and from this relationship we can easily see that

any policy that satisfies
∑

a∈A π(s, a)Q∗(s, a) = V ∗(s) is guaranteed to be optimal.

This property allows us to extract an optimal policy from Q∗ easily, simply taking the

action that maximizes Q∗ in each state. We call a policy π+(s) = arg maxa∈AQ(s, a)

a greedy policy w.r.t. to Q, and therefore the optimal policy is greedy w.r.t. to Q∗.

2.1.7 Continuous Markov Decision Processes

Equivalent results to the discrete Bellman operators can be derived for the continuous-

space MDPs. Integrals take the place of summations over states, and the following
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definitions hold

(T πV )(x) =
∑
a∈A

π(x, a)

[
R(x, a) + γ

∫
x′∈X

P (x′|x, a)V (x′)

]
, (2.1.5)

(T ∗V )(s) = max
a∈A

[
R(x, a) + γ

∫
x′∈X

P (x′|x, a)V (x′)

]
, (2.1.6)

(T πQ)(x, a) =R(x, a) + γ

∫
x′∈S

P (x′|x, a)

[∑
a′

π(x′, a′)Q(x′, a′)

]
, (2.1.7)

(T ∗Q)(x, a) =R(x, a) + γ

∫
x′∈S

P (x′|x, a)

[
max
a′

Q(x′, a′)

]
. (2.1.8)

Because the MDP can assume an infinite number of states, the exact representation

at each state that could be stored for the Value function of countable MDPs cannot

be physically contained in the finite memory of a computer. As we will see in

Section 2.4, algorithms try to overcome this limitation by storing approximations of

these function as close as possible to the true values.

2.2 Dynamic Programming

The first class of algorithms that we will introduce make use of the knowledge of the

entire MDP model. This means that they assume access to the true definition of

the R and P functions. Exploiting this knowledge with a countable MDP allows

these techniques to find the guaranteed optimal policy. Depending on the method

used to compute the policy, these methods can be classified into Policy Iteration and

Value Iteration methods. We will now give an example of a method belonging to

each category using the appropriate Bellman operators.

2.2.1 Model-Based Policy Iteration

The first class of Dynamic Programming techniques we introduce is called Policy

Iteration, because it iterates through a sequence of policies in order to find the

optimal policy π∗. Each step is composed of two phases, called policy evaluation and

policy improvement.

The policy evaluation steps consist in computing an evaluation of the latest

policy in the sequence, under the form of V πk or Qπk . After the Value function

of the current policy is computed, it is used to select a new, improved policy. We

will consider Policy Iteration with the use of Q-functions for the policy evaluation

step, but with the use of the model, passing from a Q function to a V function is

straightforward. Policy iterations then alternate between computing a new Qk, then

an improved πk+1, until the policy cannot improve anymore and we converged to the

optimal policy π∗.

π0 → Qπ0 → π1 → Qπ1 → · · · → πK → QπK → π∗ → Q∗
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Algorithm 2.1 Policy Iteration with Q-function

input: P,R, γ

output: π∗, Q∗

Initialize π0

do

Policy Evaluation: Repeat Qk ← T πkQk until convergence.

k ← k + 1

for all s ∈ S do

Policy Improvement: πk(s, a) = 1 : a ∈ arg maxa∈AQk−1(s, a)

end for

while πk 6= πk−1

Algorithm 2.1 details these steps of PI. Concretely, the policy improvement step

consists in selecting the greedy policy w.r.t. the last Q-function computed. This

greedy policy is not guaranteed to be unique, but ties can be broken arbitrarily.

Improvement of the value of the policy is guaranteed by the policy improvement

theorem

if ∀ s ∈ S E
a∼πk+1(·|s)

[Q(s, a)] ≥ V πk(s) then ∀ s ∈ S V πk+1(s) ≥ V πk(s).

Since the greedy policy satisfies the hypothesis, the V function, and therefore the

Q-function, will be monotonically increasing. When πk = πk+1 we can stop iterating,

because the new policy will induce the same Qπk function, which in turn will induce

the same policy. More steps are not needed anyway, because when we obtain the

same policy twice, it means the policy cannot be improved anymore and we reached

π∗.

Regarding the policy evaluation step, exploiting the knowledge of the MDP, we

can simply repeatedly apply the appropriate Bellman operator until convergence.

That is, given an initial Q0 we repeat

Qi+1(s, a) = (T πkQi)(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)

[∑
a′

πk(s
′, a′)Qi(s

′, a′)

]
for all states and actions, until Qi+1 = Qi. Due to the contraction properties we

mentioned in Section 2.1.6, we will converge to Qπk .

2.2.2 Model-Based Value Iteration

As we saw in the previous section, Policy Iteration exploits the Bellman operator

to find the Qπ of a policy, and then uses the actions that maximize this function to

build a new policy.

A different approach to solve an MDP, when again full knowledge of the model is

provided, is to try to find the optimal Q∗ directly, without computing intermediate
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Algorithm 2.2 Q-iteration

input: P,R, γ

output: Q∗

Initialize Q0

do

k ← k + 1

for all s ∈ S, a ∈ A do

Qk(s, a) = R(s, a) + γ
∑

s′∈S P (s′|s, a) [maxa′ Qk−1(s′, a′)]

end for

while Qk 6= Qk−1

policies. That is, instead of applying the Bellman operator, we iteratively apply the

optimal Bellman operator to some initial Q-function, until this sequence converges

to Q∗. This simple method, called Q-iteration, is reported in Algorithm 2.2.

From the optimal Q∗ a policy can then be easily extracted. An equivalent

technique can be used for V function since the use of the model allows us to

connect the two functions, and the only difference is that we will iterate T ∗V from

Equation 2.1.2 instead of T ∗Q from Equation 2.1.8. The use of a Q-function simply

makes extracting the final policy more intuitive.

The termination criteria given in Algorithm 2.2 is satisfiable only asymptotically,

and difficult to use in practice. A more practical approach is to terminate when

|Qk − Qk−1| falls under a tolerance threshold or after a set number of iterations.

Several ways to set the number of iterations can be considered, but a known result

regarding VI ([16]) gives us a method to select a sensible number in terms of how

much error we can commit in the estimation. This error is bounded by

‖Vk − V ∗‖∞ ≤ 2
γkrmax
(1− γ)2

, (2.2.1)

and we can select an appropriate k based on it.

Policy Iteration and Value Iteration are both Dynamic Programming techniques

that converge to the optimum. One clear difference is in their computational cost. At

each step, VI need to iterate over |S||A| possible state actions, and for each of these

to make a summation over |S| states, computing a maximum over |A| actions at each

step. The overall complexity of a single iteration is therefore O(|S|2|A|2). Policy

iteration instead has a fixed cost of |S||A| for the policy improvement step, which

is shadowed by the cost of a policy evaluation step. The only difference between a

policy evaluation step and a Q-iteration step is that we do not need to iterate over the

actions to find the maximum, but simply select the a action of the deterministic policy.

PI iteration therefore has a computational complexity of O(L|S|2|A|) where L is the

number of times the Bellman operator needs to be applied to obtain convergence

of the Qπ estimate. Because the Bellman operator is a contraction, a bound like
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Equation (2.2.1) can be derived, and it is interesting to compare this computational

cost with the O(|S|3|A|3) cost of directly solving the Bellman linear equation system

and compute Qπ single-shot. For a more detailed explanation refer to [9].

Since neither PI nor VI has a clear advantage computationally, both are viable

solutions to solve an MDP. Their main drawback is the requirement of the full

knowledge of the underlying problem. We will see how RL techniques try to solve

this problem by finding an approximate solution, that will slowly converge to the

true solution given enough data.

2.3 Reinforcement Learning With Tabular Representa-

tion

The techniques we will present in this section are model-free, tabular based RL

algorithms. Model-free means that they do not depend on the knowledge of the

transition and reward model to build the estimates needed to find optimal policies

and value functions. Instead these quantities are slowly approximated making use of

samples obtained directly from the MDP. Asymptotically in the number of samples

and iterations, these methods will converge to an optimal solution. The optimal

solution is obtained because we are still considering a finite state space, and we are

using a tabular representation to exactly keep track of the values of each function

and policy, for each state-action pair.

When the number of states becomes too large, or even infinite, this tabular ap-

proximation cannot be used anymore, and we will introduce in Section 2.4 algorithms

that instead use function approximators to build estimates on continuous values.

In this chapter, the Policy Iteration and Value Iteration techniques that we

introduced in the previous section are extended using the Temporal Difference

approach. In this approach an initial estimate of a function is iteratively refined by

updates that make use of the previous estimate and the new data. This quantity

is called temporal difference, and can be interpreted as a gradient step, or as an

estimate of a mean value. More specifically, if we want to estimate a Qπ function we

will compute for each state and action

Qi+1(s, a) = Qi(s, a) + α [(T πQi)(s, a)−Qi(s, a)] .

The term between brackets is the temporal difference. Written in this form it can be

interpreted as a finite difference between Qi and the desired function, the fixed point

of T πQ. If instead we want to see it as an average between the current estimate and

the objective we write it as

Qi+1(s, a) = (1− α)Qi(s, a) + α(T πQi)(s, a).

Since RL algorithms do not have access to the true model, they rely on the use

of samples to estimate the Bellman operator, and substitute the (T πQi)(s, a) term
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with ri + γQi(s
′, a′), where each algorithm will provide a method to choose s′, a′.

This approach is similar to Monte Carlo methods, in the sense that it uses rewards

from the trajectories to estimate its values. Using an estimate of Qi to build a new

improved estimate is instead more similar to Dynamic Programming. In general we

say that an algorithm bootstraps if it uses the current estimation to build better

estimates.

TD methods can be extended to propagate rewards more into the past with a

technique called eligibility traces. This makes TD more similar to Monte-Carlo, and

is called TD(λ). When the Temporal Difference only updates the state-action that

collected the immediate reward, and therefore propagates rewards only for one step,

the method is called TD(0).

We can also classify algorithms as on-policy or off-policy. An on-policy algorithm

evaluates and improves the same policy that it will use for data collection. That is,

the latest policy computed by the algorithm is used to collect additional data, and

then the same policy is modified using the data collected. Another option is to use a

separate policy to collect data, and to perform all the computation necessary to find

the optimal policy and value function on a separate set of variables. This approach

is called off-policy.

A similar classification, based on how much data is collected before processing, is

on-line versus off-line. An on-line algorithm process data sequentially as they are

collected. An off-line, or batch, algorithm collects all its data before performing its

computation without further interaction with the system.

We will now introduce two basic TD algorithms that extend PI and VI, SARSA,

an on-line, on-policy Policy Iteration algorithm, and Q-learning, an on-line, off-policy

Value Iteration algorithm.

2.3.1 Model-Free Policy Iteration

The first algorithm we will introduce is called SARSA [48]. The name derives from

the notation of the samples necessary for its execution: (si, ai, ri, si+1, ai+1).

First we need to introduce the definition of an ε-greedy policy. An ε-greedy

policy, w.r.t. some Q-function, is a policy that chooses the greedy action in state s

with probability (1− ε), and execute a random exploratory action otherwise. In the

algorithm we indicate a ∼ Greedy(Q, s, ε) to indicate an action chosen using this

policy.

The method is presented in Algorithm 2.3. At each time step SARSA(0) executes

a previously decided action, collect its reward and observes the next state. It then

chooses an ε-greedy action, and uses it to compute a single temporal difference step,

as well as storing it to execute it later. One strong difference between SARSA and PI

is that instead of waiting for a full policy evaluation, in SARSA a single state-action

value is updated with a single sample. Because the ε-greedy policy makes its choices

based on the Q-function, this update also changes the policy that will be used to
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Algorithm 2.3 SARSA(0)

input: γ, αi, εi, s0

output: Q∗

Initialize Q0

i← 0

a0 ∼ Greedy(Q0, s0, ε0)

do

Execute ai, obtain ri, si+1

ai+1 ∼ Greedy(Qi, si+1, εi+1)

Qi+1(si, ai)← Qi(si, ai) + αi [ri + γQi(si+1, ai+1)−Qi(si, ai)]
i← i+ 1

while i ≤ N

select future actions, and this corresponds to an implicit policy improvement step.

This approach of only executing a few updates on the Q-function before doing a

policy improvement, instead of executing the full policy evaluation step, is referred

to as Generalized Policy Iteration. GPI has PI at one end of the spectrum, where the

policy evaluation step is carried out completely, and algorithms that only execute a

single iteration of policy evaluation like SARSA at the other.

Because in the end SARSA needs to obtain the greedy policy w.r.t. Q∗, letting

the ε term decay over time makes the ε-greedy policy become more and more greedy.

Conversely, a necessary assumption for convergence to the optimum is that each

state-action pair will be visited asymptotically infinitely many times. This trade-off

between making greedy choices to maximize short term reward, and make suboptimal

choices in order to gain new information on unknown parts of the MDP is called the

exploitation/exploration trade-off. The problem of efficiently exploring the agent’s

possible options, without suffering too much regret caused by the suboptimal choices

is an open question. Exploration parameters, such as the value of ε need to be

carefully selected, and are often chosen using external knowledge or heuristics. A

simple choice is ε = 1
i , where in the beginning we will explore more, while later we

will focus on exploiting. Another possibility is to avoid forced exploration altogether,

and instead start with a Q-function that is a large upper bound of the true value.

This principle, called “optimism in face of uncertainty”[3], motivates the agent to

try often unknown state-actions, without an explicit need for forced exploration.

Another necessary constraint is on the αi values

∞∑
i=0

α2
i <∞,

∞∑
i=0

αi →∞,

and is again satisfied by αi = 1
i .

A drawback of SARSA is its sample inefficiency. Transition are used only to

update a single state-action, and then thrown away. In order to use samples to
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Algorithm 2.4 SARSA(λ)

input: γ, αi, εi, s0, λ

output: Q∗

Initialize Q0

for all s ∈ S, a ∈ A do

e(si, ai)← 0

end for

i← 0

a0 ∼ Greedy(Q0, s0, ε0)

do

Execute ai, obtain ri, si+1

e(si, ai)← e(si, ai) + 1

ai+1 ∼ Greedy(Qi, si+1, εi+1)

δ ← [ri + γQi(si+1, ai+1)−Qi(si, ai)]
for all s ∈ S, a ∈ A do

Qi+1(s, a)← Qi(s, a) + αiδe(s, a)

e(s, a)← γλe(s, a)

end for

i← i+ 1

while i ≤ N

update more than one state-action, eligibility traces seek to distribute the reward

to all the state-actions that participated in the trajectory that collected the reward.

Concretely a decaying factor e(s, a) is introduced, and each time the trajectory passes

through a state-action, its factor is increased, or sometimes simply set to a maximum.

At each time step, all the factors decay, therefore only states that were recently

visited will be marked as contributors to the collection of the reward. This results in

SARSA(λ), reported in Algorithm 2.4

2.3.2 Model-Free Value Iteration

We will introduce in this section a TD extension of VI, called Q-learning [61]. Unlike

SARSA, this is an off-policy method, because the temporal difference will not use

T πQ as its target, but rather T ∗Q, as VI did in Dynamic Programming. Unlike

DP, we will not use the model, but transitions from the MDP. The details are

given in Algorithm 2.5. An interesting property of off-policy algorithms is that the

exploration can be carried out efficiently with an exploratory policy, while learning

the optimal policy on the samples collected. Therefore the exploratory value ε is

not constrained to decrease over time as in SARSA. Instead, we now have problems

introducing eligibility traces, because we cannot assign merit to a state-action pair

that is the result of an exploratory policy that does not correspond to the value we are
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Algorithm 2.5 Q-learning

input: γ, αi, εi, s0

output: Q∗

Initialize Q0

i← 0

do

ai ∼ Greedy(Qi, si, εi)

Execute ai, obtain ri, si+1

Qi+1(si, ai)← Qi(si, ai) + αi [ri + γmaxa′∈AQi(si+1, a
′)−Qi(si, ai)]

i← i+ 1

while i ≤ N

estimating. One approach, although inefficiently, solves this problem by truncating

all eligibility traces every time an exploratory move is performed. This results in

Watkins’ Q(λ).

All the algorithms presented this far still rely on iterating over all possible states

of the MDP, and are guaranteed to converge because the Q-function can be exactly

represented in a table for a finite number of states. When the number of states is

too high, these methods suffer an explosion in time execution and quickly become

unfeasible. Therefore even if a continuous variable can be discretized, a discretization

too fine can give rise to an enormous number of states that are impossible to manage.

In order to solve this challenge, RL techniques that use an additional approximation

to represent the state were devised. In the next section we will introduce some of

these techniques and their properties.

2.4 Reinforcement Learning With Function Approxima-

tors

All the methods we introduced so far explicitly depends on the cardinality of the state

space. For policy evaluation and improvement steps, their pseudocode includes an

iteration over all states. When the number of states becomes too large, for example

as Computer Go’s 10170 states, such iterations become too long for real-world

applications. Even when the states are not iterated over, the tabular representation

we have used so far is a much more restrictive constraint in modern computer than

the computation time, because storing information for all the states in memory

is often impossible. It is important to keep in mind in all these discussions the

consideration we made in the beginning, that many real world problems cannot be

represented with a finite number of states at all. For example, all problems that are

described by at least one continuous variable cannot be solved with DP or tabular

RL. To solve this larger class of MDPs, a trade-off between the quality of the solution,
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and the representation and computation complexity of the problem must be made.

We will now present extensions to Policy Iteration and Value Iteration that

rely on approximating the Value and Action-Value functions, rather than exactly

representing them in a tabular fashion. This poses a new problem: these methods

needs to learn some value function from the data, but also to learn how to represent

that function using a member of some restricted class of functions F . We will

introduce a classification of the possible F as parametric, non-parametric, linear and

non-linear approximators. How well the methods will perform often depends on some

measure of how well the chosen functional space can approximate the true value

function, with results varying from failing to converge to any solution, to convergence

to some suboptimal alternative, or even to a policy that correctly takes the optimal

action.

In Section 2.4.1 we will introduce some preliminary classifications and results

on function approximation. In Section 2.4.2 and Section 2.4.3 we will introduce the

extension of PI and VI to continuous state space, as well as new techniques based on

TD. A particular attention is given to Fitted Q Iteration in Section 2.4.4, due to the

fact that this algorithm is the basis for Sparse Fitted Q Iteration, the main original

contribution of this thesis.

2.4.1 Function Approximators

The problem of function approximation can be formulated, with a basic approach,

as the search over some space of functions F , of a function F capable of closely

representing some target function that is of interest, but that cannot be fully

represented. Another problem that arises in the stochastic setting is that we might

have incomplete knowledge of the function’s shape, and only have some noisy samples

to test the quality of our approximation. This second case, usually referred to as

regression, changes its goal to finding a function that closely represents the mean of

the target function, to take into account the lost information due to noise and the

limited number of samples.

In both cases we are interested in finding a compact representation of the function,

using some kind of loss function to quantify the fidelity of the representation, where

the loss function L is computed according to some distribution that represent our

interest in representing the function closely over different parts of its domain. If we

consider the more realistic case when we only have access to a dataset D = (yi, xi) of

samples of the target function, regression or function approximation can be stated as

F = min
F ′∈F

L(F ′,D).

The highest level distinction we can make when deciding which function space F
consider for our problem, is parametric vs non-parametric. In parametric function

spaces, the member functions of the set are described as a combination of a small
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number of parameters. The number of parameters and how they combine is set

in advance, and will not depend on the actual data from D. A non-parametric

function approximator will instead modify the space of functions it can represent

using information from the dataset, and therefore it is not known in advance how

it will represent the target function. Both of these methods have advantages and

disadvantages, and there is not a clear dominance of one over the other.

2.4.1.1 Parametric Approximation

We will begin by describing parametric approximation, where the number and use of

each parameter is decided in advance. Given a vector of such parameters w ∈ Rd,
and a target function we want to approximate, for example a Q-function Q ∈ Q,

then F ∈ F is a mapping F : Rd → Q. The expressiveness of the possible functions

belonging to F depends on the parameters, and those are set in advance, before any

data from the dataset is ever seen. This does not mean that parametric approximation

suffers some kind of limitation. In [11], it is proven that given enough parameters,

one of the most traditional parametric approximators, a feed-forward neural network,

can represent any continuous function on a bounded set up to any desirable precision.

In general anyway the compact representation will not allow us to fully represent any

function in Q, because a form of approximation is always present and contributing

to errors.

The mapping from the parameters to the function needs not to be linear. Neural

networks [10, 40], that we already mentioned, are highly non-linear. But the class

of approximator that use a linear combination of the parameters as a mapping has

received a particular attention due to their simplicity, that helps derive theoretical

results and is favorable to direct computation and optimization.

A linear parametric approximator defines its mapping as the sum of the parame-

ters, also called weights, wi multiplied by a set of functions of the input φi(x) where

x ∈ X is the independent variable over which the represented function is defined.

F (x) =

d∑
i=1

φi(x)wi.

In a more compact notation we can define the vector

φ(x) =


φ1(x)

φ2(x)

. . .

φd(x)

 .
Each function φi is called Basis Function, or feature, and evaluating F (x) corresponds

to preparing the features φ and computing the inner product φ(x)Tw. The criteria



26 Markov Decision Processes: Introduction and Fundamental Results

for selecting the best function approximator given a dataset {(yi, xi)}ni=1 becomes

ŵ = arg min
w

n∑
i=1

L(yi, φ(xi)
Tw).

A commonly used and intuitive feature is the Radial Basis Function. An RBF

φi(x) is defined as a function of the distance between the state x and a center c that

identifies the RBF. A popular choice of RBF, that we will also use in the experiments,

is the Gaussian RBF

φi(x) = exp
(
−(x− c)TD−1(x− c)

)
.

Here D is a semi-definite positive matrix that scales and rotates the norm of (x− c).
RBF can be seen as a continuous version of tile coding, another popular choice of BF

([62]). Tile coding is a complete partition of the space into tiles, where the whole set

of tiles is called tiling. For each tiling, only one tile is active at a time, whereas more

than one GRBF is usually active due to the continuous property of the exponential.

In practice, multiple overlapping tiling are often used to improve precision. Other

popular choices of BF are state aggregation ([52]) and Kuhn triangulation ([41]).

2.4.1.2 Non-Parametric Approximation

Non-parametric approximators, despite their name, still make use of parameters.

The main difference with parametric approximators is that the number of parameters,

as well as their role in the approximation, changes to adapt to the data available in

the dataset.

One of the typical example of non-parametric approximation is Kernel-based ap-

proximation. Continuing with the example of approximating a Q-function, in a Kernel

model we introduce a set of functions over two state-action samples (s, a), (s′, a′)

K
(
(x, a), (x′, a′)

)
: (X ×A)× (X ×A)→ R,

called Kernels. The functions must satisfy several assumptions, refer for example

to [53], and if these assumptions are met then Mercer’s Theorem applies and the

Kernel can be interpreted as an inner product in some high-dimensional or even

infinite dimensional space [38]. Therefore applying a Kernel to a couple of samples

is equivalent to applying a dot product to some mapped samples in a much richer

feature space. The points are said to be embedded in this new feature space, usually

a Reproducing Kernel Hilbert Space, and non-linear relationships among the points

in the original space might be represented through simple linear dot product in the

mapped space. One straightforward application of Kernels, for which the dataset

is necessary, is the construction of BFs based on the samples {xi}ni=1, and then use

these BFs in a linear combination to build a function approximator

F (x′, a′) = Kw =

n∑
i=1

K(x′, a′, xi, ai)wi.
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As we can see, the number of parameters scales with the number of samples n,

and the BF themselves adapt to the samples present in D. Therefore the shape of

the approximation space F will change and adapt to the samples. This allows for

a greater flexibility, at the expense of an increased complexity of the analysis of

these techniques. Kernel approximations have been successfully used in a number of

applications, most notably Support Vector Machines [53, 27], and Gaussian Processes

[45]. Other non-parametric approximators are regression trees [7], used for example

in the original Fitted Value Iteration paper [16].

2.4.1.3 Remarks on Parametric vs. Non-Parametric Approximation

Both parametric and non-parametric approximators have strong points. One of

the drawbacks of parametric approximators, and especially of linear parametric

approximators, is their lack of flexibility. In the case of linear approximation, once a

set of BF has been chosen, either the target function lies in the plane defined by the

combination of the BF, or no amount of information on the target function will allow

the approximator to accurately represent it. This problem often pushes researchers

in the direction of highly increasing the number of BF, in order to increase the

likelihood that the target function will be representable.

The increase in complexity introduces two challenges. Because it is not known a

priori which BF are really needed to represent the function, the function approximator

has a large number of parameters not needed to correctly represent the target

function. This can lead to overparametrization of the function, which in turn poses

computational and algorithmic problems. Another important problem is that the

complexity of the F functions increases with the number of parameters, and several

associated numbers, such as covering number and sample complexity, increase quickly

with it. The necessity of managing this high number of superfluous parameters is

the motivation of this thesis. The introduction of regularization can help linear

approximator cope with a large number of useless BF, and allows for the simple

analysis of linear approximation to be used even when a large feature space is needed.

On the other hand non-parametric approximation can represent complex functions

using only a small number of parameters thanks to the adaptation capabilities

provided by Kernels. But this increase in flexibility is counterbalanced by a much

harder theoretical analysis, that leads to far rarer convergence results for non-

parametric algorithms. Another problem is that the size and complexity of the

problem increases with the number of samples. This leads to computational problems

when the datasets are large, that can be partially solved by carefully selecting only a

subset of the samples as members of Kernel functions [15].
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2.4.2 Continuous-State Policy Iteration

Several algorithms for Policy Iteration with function approximation have been

proposed. We will present one of the most representative, Least Square Policy

Iteration [30].

Policy Iteration is composed of a policy evaluation step, followed by a policy

improvement step. When the number of actions is finite, policy improvement with

access to a Q-function is immediate, and reduces to a simple iteration over the

actions looking for the best action. We will then initially describe LSPI with use of

Q-functions in discrete action settings, and comment later on possible extensions.

The main difference with a standard PI problem is that the policy evaluation

step is now based on approximations of functions. This means that if before we used

to apply the Bellman operator to an exact representation Qi to obtain a new exact

representation Qi+1 we now have to take into consideration that the resulting function

obtained with the application of the Bellman operator might not be representable

with functions from F . Therefore we need an additional step, where after computing

the new target function with the Bellman operator, a suitable approximation Q̂ needs

to be found to closely represent it. Formally, we define Q̂i ∈ F , and at each step

need to find

Q̂i+1 = arg min
Q̂∈F

‖Q̂− T πQ̂i‖2.

The ‖Q̂−T πQ̂i‖2 quantity is called the Bellman error. A main drawback of following

the Bellman error as an indicator to choose the best representation is that it is a

biased penalty of the error committed when estimating the Bellman operator through

sampling. In particular if we introduce an approximated Bellman operator T̂ π

E
[(
Q̂(s, a)− T̂ πQ̂i(s, a)

)2
]

=
(
Q̂(s, a)− T̂ πQ̂i(s, a)

)2
+ V ar

(
T̂ πQ̂i(s, a)

)
.

The Bellman error prefers functions with low variance. A simple way to correct this

problem is to introduce a projection step before the estimation. Given a projection

ΠF , the new minimization becomes

Q̂i+1 = arg min
Q̂∈F

‖Q̂− (ΠF ◦ T π)Q̂i‖2.

This projected Bellman error can be always reduced to zero, because the target

function is now projected on F .

A popular choice of projection is the weighted Least Squares projection. LSPI

uses this projection with parametric linear function approximators. Because we

consider LSPI with Q-functions, the Basis Functions will be functions over state-

actions φi(x, a), and as we did in Section 2.4.1, we will form a φ ∈ Rd vector. The
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approximation is then defined as Q̂i(x, a) = φ(x, a)Tw. A weighted Least Squares

projection, with weights µ, onto this space is defined as

ΠF Q̂(x, a) =φ(x, a)Tw∗,

w∗ = arg min
w

n∑
i=1

µ(xi, ai)
(
φ(xi, ai)

Tw − Q̂(xi, ai)
)2
.

Our choice of using µ, a symbol we use for distribution, to denote the weights will

be justified later in the exposition of LSPI. For a limited number of samples the

projection has a closed form solution ([30]). Given samples (xi, ai)i=1,...,n, we define

the matrices

∆µ = Diag(µ(xi, ai))
n
i=i : Rn×n,

Φ =


φ(x1, a1)T

φ(x2, a2)T

...

φ(xn, an)T

 : Rn×d,

ΠF =Φ(ΦT∆µΦ)−1ΦT∆µ.

The combination of linear approximator, projected Bellman error, and weighted

least square projection is the basis of the two policy evaluation algorithms we will

introduce for use with LSPI. LSTD-Q is a policy evaluation algorithm for Q-functions

with a closed form solution, while LSPE-Q uses an almost identical derivation, but

computes its solution in an iterative fashion.

To understand the quantities that are approximated by these algorithm we

will first define them for countable MDPs with full model knowledge. We already

introduced the Φ matrix, that can be constructed for all S ×A state-action couples.

The same can be done for the ∆µ matrix. We will further define P π ∈ R|S||A|×|S||A| as

the matrix whose (i, j)-th component correspond to the (si, ai), (sj , aj) state action

couples, and corresponds to

P π
i,j = P (sj |si, ai)π(sj , aj).

Lastly, we slightly abuse the notation and define R ∈ R|S||A| as the average reward

for each state-action. The Bellman operator can be then defined as

(T πQ) = R+ γP πQ.

The policy evaluation step is optimized by the fixed point of the projected Bell-

man error. Reminding the definition of the projection operator, and the linear

approximation, this can now be expressed in terms of matrices.

ΠFT
πQ̂ = Q̂,

Φ(ΦT∆µΦ)−1ΦT∆µ(R+ γP πΦw) = Φw.
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Algorithm 2.6 LSTD-Q

input: γ, φi, π,, samples (xi, ai, x
′
i, ri)

N
i=1

output: ŵ

Initialize A0 ← 0,B0 ← 0, c0 ← 0

for i← 1, . . . , N do

Ai = Ai−1 + φ(xi, ai)φ(xi, ai)
T

Bi = Bi−1 + φ(xi, ai)φ(x′i, π(x′i))
T

ci = ci−1 + φ(xi, ai)ri
end for

Solve 1
NANw = 1

N γBNw + 1
N cN

This is a linear equation in d variables and can be solved with any standard technique.

In particular the system that needs to be solved can be rewritten as

Aw = γBw + c,

A = ΦT∆µΦ, B = ΦT∆µP
πΦ, c = ΦT∆µR,

where A,B ∈ Rd×d, c ∈ Rd. Therefore even when the number of states and actions

increases, for example when they become infinite, the approximation will remain

finite in terms of how many BFs we intend to use. Of course in RL problems we

do not have access to the P π matrix, and in continuous setting it is impossible to

perform the matrix multiplications necessary to construct the linear system. In

[31] Lagoudakis and Parr prove that these matrices can be built incrementally by

iterating over all states and actions, and using a single state-action couple at a time

to build a partial representation. This opens up the possibility to using state-action

sampling instead than complete loops over all possible state-actions pairs to obtain

an approximate solution that will converge to the real solution as the number of

samples increases. This convergence was proved in [29] for LSTD and [64] for LSPE.

One of the necessary condition for convergence is that the weights µ used for the

projection are equal to the steady-state distribution of the MDP under policy π, and

for this reason we used the µ notation. Another important assumption is that all

the state-action pairs must be associated to non-null probability of being selected,

otherwise some parts of the MDP might remain unexplored and their values could

fail to converge. Therefore, a certain degree of exploration must be present in the

policy, which for example eliminates deterministic policies.

The full description of the two methods are reported in Algorithm 2.6 and

Algorithm 2.7.

Both methods use a normalization term on the various vector and matrices to

compensate the slow increase in magnitude that the matrices follow as the number

of samples grows up. This is just a modification to improve numerical stability, while

the initialization of A0 in LSPE to a small d.p. constant is due to the fact that the
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Algorithm 2.7 LSPE-Q

input: γ, φi, π, α, samples (xi, ai, x
′
i, ri)

N
i=1, a small positive constant δ

output: ŵN
Initialize A0 ← δI,B0 ← 0, c0 ← 0

for i← 1, . . . , N do

Ai = Ai−1 + φ(xi, ai)φ(xi, ai)
T

Bi = Bi−1 + φ(xi, ai)φ(x′i, π(x′i))
T

ci = ci−1 + φ(xi, ai)ri
ŵi = ŵi + α(w − ŵi−1) subject to 1

iAiw = 1
i γBiŵi + 1

i ci
end for

Algorithm 2.8 LSPI

input: γ, φi, samples (xi, ai, x
′
i, ri)

N
i=1

output: π̂K
Initialize π̂0

for k ← 1, . . . ,K do

ŵk ← LSTD-Q run with policy π̂k−1

π̂k(x)← arg maxa∈A φ(x, a)Tŵk
end for

matrix has to remain d.p. at each iteration.

With the policy evaluation step solved with any of these methods, LSPI is defined

in Algorithm 2.8. The implementation is straightforward and follows closely a normal

PI scheme, we also reported the simpler case where the same samples are reused

at each iteration. It is interesting to note that the full policy is never explicitly

constructed, but is implicitly encoded as the greedy policy w.r.t. Q̂i. We still need

to explicitly compute optimal actions for each sample in the dataset, because these

actions are needed for the execution of LSTD.

2.4.3 Continuous-State Value Iteration

As we presented extensions of PI in the previous section, there are many examples of

Approximate Value Iteration algorithms. We will introduce a version of Q-learning

that makes use of linear parametric approximators in this section, and give some

more details to Fitted Value Iteration in the next one.

Approximate Q-learning follows the interpretation of the Temporal Difference

as a finite difference between a target and the current approximation. In the ideal

case this target is the optimal Action-Value function Q∗, so that at each step we

want to reduce
[
Q∗ − Q̂i

]
. Of course we do not have access to the real Q∗, so we are

going to approximate it with the optimal Bellman operator. Because the goal is to

obtain an approximation that is close to the target, we can take the derivative w.r.t.
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Algorithm 2.9 Q-learning with linear approximation and gradient descent

input: γ, αi, εi, x0, φi
output: wN

Initialize w0

i← 0

do

ai ∼ Greedy(Q̂i, xi, εi)

Execute ai, obtain ri, xi+1

wi+1 ← wi + αi
[
ri + γmaxa′∈A φ(xi+1, a

′)Twi − φ(xi, ai)
Tw
]
φ(xi, ai)

i← i+ 1

while i ≤ N

the parameters, and perform a series of steps of gradient descent in the parameter

space until we converge. Because Q-learning was an on-line algorithm, this extension

will also process a single sample (xi, ai, xi+1, ri) at a time. The update rule uses

a simple squared loss to measure the distance between the target and the current

approximation,

Q̂i+1(xi, ai) =Q̂i(xi, ai)−
1

2
αi

∂

∂w

[
Q∗(xi, ai)− Q̂i(xi, ai)

]2

=̃Q̂i(xi, ai) + αi

[
ri + max

a′
Q̂i(xi+1, a

′)− Q̂i(xi, ai)
]
∂Q̂i(xi, ai)

∂w
.

The only requirement for the convergence to a local optima of this gradient descent

version of Q-learning is that the function approximator is differentiable in the

parameters. Various class of function approximators have been used together with

this method, such as fuzzy rule-bases, neural networks and linear approximators.

This last class of approximators is used in Algorithm 2.9 to give an example

of a possible implementation. The use of linear parameters simplifies the update.

The algorithm still needs an exploratory policy to collect samples, because, as in

Approximate Policy Iteration, information from the whole state space is needed to

ensure that the approximations are meaningful.

A major drawback of Q-learning is its sample inefficiency. Many techniques have

been developed to increase its performance, such as eligibility traces or experience

replay. A completely different approach is to evaluate all the available data at the

same time with a batch method. Fitted Value Iteration, that will be introduced in

the next section, is one of the main examples of this approach.

2.4.4 Fitted Q Iteration

Fitted Q Iteration is a really successful off-line, off-policy, Approximated Value

Iteration algorithm. Originally proposed in a variant that used regression trees [16],

it has been successfully adapted with a variety of function approximators, such as
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Algorithm 2.10 Fitted Q Iteration

input: D0 = (xi, ai, x
′
i, ri)

N
i=1, λ,γ,tol,K

output: Q̂K
Initialize Q̂0 ← 0 , k = 1

do

Build new dataset Dk ← (xi, ai, xi, ri + γmaxa′ Q̂k(x
′
i, a
′))

N

i=1

Compute Q̂k by regression on Dk
while ‖Q̂k − Q̂k−1‖2 ≥ tol and k < K

neural networks [46], kernel approximation [17] and tile coding [59]. In the original

method proposed in this thesis, Sparse Fitted Q Iteration, we use a regularized linear

approximator with the same framework.

Approximate Value Iteration can be decomposed in a sequence of operators

similarly to what we introduced for Approximate Policy Iteration. We have the

approximator operator F , the optimal Bellman operator T ∗ and the projection

operator ΠF . For the parametric setting, and usually also for the non-parametric

setting, we want to compute a fixed point of the combination of these operators

wk+1 = (ΠF ◦ T ∗ ◦ F )wk.

In the model-free, approximated setting, we assume that we do not have access

to all of these operators, and that we cannot exactly represent intermediate steps.

It is therefore advantageous to compute as many steps as possible implicitly, and

to approximate the steps that we cannot compute exactly. Regarding the second

problem, we can approximate the first two operators in a similar manner as we did

in other approximated methods.

Given a set of samples (xi, ai, x
′
i, ri)

N
i=1 and an approximation of a Q-function Q̂,

we can obtain samples Q̂† of T ∗ ◦ F as

Q̂†i = ri + γmax
a′

Q̂(x′i, a
′).

As the number of samples increases, the average of the samples Q̂† will converge

to its mean, the true value of T ∗Q̂. This takes care of two of the three operators.

The projection step is carried out with any desired regression method, as long as the

regression estimates the mean of the regression target. For example Least Squares

regression, that will be introduced in detail in Chapter 3 satisfies this condition.

Fitted Q Iteration is reported in detail in Algorithm 2.10. At the first step we

build an approximation of the immediate reward function. At each subsequent step

we use this approximation to build a new dataset where the reward is substituted

with an approximated discounted sum of rewards. Intuitively at each step we are

exploiting the definition of action-value function as a sum of discounted rewards to
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propagate these rewards for one MDP transition, and build a new representation of

this intermediate function.

When all the three operators are contractions, the algorithm is guaranteed to

converge. The optimal Bellman operator is a contraction, so the convergence of

the whole algorithm depends on the contraction of both the approximator and the

regression algorithm. When these condition are met, additional results can be derived

on the optimality of the solution. Given the set of all fixed points of (ΠF ◦ T ∗ ◦ F ),

we define an error ε that measures the minimum distance between the optimal policy

Q∗ and the closest of these points. That is, ε measures the minimum possible error

the algorithm can obtain. The error when the algorithm converges to the optimal

fixed point is then bounded by

‖Q∗ − Q̂∗‖∞ ≤
2ε

1− γ
.

When we cannot guarantee contraction properties, the algorithm might not

converge. Another approach to prove convergence without contraction assumptions

is derived in [42]. This is the approach we will use to guarantee that with high-

probability Fitted Q Iteration converges to a near-optimal solution as long as the MDP

satisfies certain assumption reported in Section 4.2, and that the error committed

when approximating the function is not too large.

2.5 Learning with Multiple Tasks and Transfer Learn-

ing

All the algorithms we have considered this far aim to solve an MDP problem using

data collected from it. When the information on the single problem is rich enough,

these techniques have excellent guarantees and quickly find optimal or near-optimal

solutions.

In many real world scenarios, this abundance of information is hard to satisfy.

Many practical applications are examples of this problem. Historical data is in the

past, and it is often impossible to collect more. Even problems that take place in the

present can have limitation on the number of samples that can be collected. One

reason might be that executing all possible actions is strictly impossible, like testing

too many treatments on a patient group. Another is when the collection itself might

be costly or dangerous, for example when a complex and fragile piece of machinery

is involved. One last example is in problem such as game playing, when we want to

learn a good strategy as quickly as possible to avoid the risk of losing any chance

of winning. In all this cases there is a need for efficient solution that can extract as

much information from the samples as possible.

An orthogonal and interesting approach is instead the one used in Multi-Task

Learning. Because we have a small quantity of samples, and obtaining more samples
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is costly or impossible, a different solution is to look at alternative tasks that are

similar enough to the current task to provide additional information useful to solve

the initial problem. A simple and intuitive example is a set of MDPs that share their

dynamics but not their reward functions. If it is possible to share information about

the dynamics among the various tasks, the samples from each task can be pooled

together to improve the average performance, or even the performance of each tasks.

A similar goal is central to Transfer Learning. As the name suggests it aims to

bring information from one domain, the source task, to another domain, the target

task. The two tasks can be extremely different as long as the transfer procedure can

extract information for the target task from the samples available to the source task.

The fields of Multi-Task learning and Transfer Learning are mature and many

results from all kind of Machine Learning methods, Supervised, Unsupervised and

Reinforcement Learning, are available. For what regards this thesis we are interested

in Transfer and Multi-Task techniques for Reinforcement Learning. The reason for

this interest is that the main result of this thesis, a Multi-Task Fitted Value Iteration

algorithm, can be better compared to other RL methods. We will present a few

methods of interest, the reader can refer to [56] or [32] for a more detailed survey.

We first formalize the notation necessary for our setting. In a Multi-Task

Reinforcement Learning problem we are faced with T different tasks, each an MDP

defined by Mt = (St,At, Pt, Rt, γt). Our goal is to improve the average performance

across all tasks, or in a more restrictive setting, to strictly improve the performance

of each task taking advantage of the shared information. The negative case when

the addition of more tasks is detrimental to the overall performance is referred to as

negative transfer.

A first interesting result regarding countable MDPs is given in [8], within a

framework called PAC-MDP sample complexity. Their staring point is an algorithm

called E3, the Explicit Explore or Exploit algorithm. Unlike SARSA or Q-learning,

E3 tries to build a model representation of the MDP, and uses confidence bounds

on this model to control the exploration of the MDP and the exploitation of the

constructed model. In other words E3 tries to address the exploration/exploitation

dilemma. Because it is defined on a countable MDP, the sample complexity of E3 is

in the order of O(
∑T

t=1 b|St||actionspacet|), where the b factor represent an upper

bound on the number of possible future state every transition can reach. This bound

shows a direct dependence on the dimensionality of the MDPs, which is expected

for countable MDPs, and also scales linearly with the number of tasks, because E3

was introduced as a single task algorithm. By carefully exploiting the Multi-Task

setting [8] can guarantee performance improvement with no negative transfer. In

particular their algorithm expects to receive as tasks a number of MDP. Information

sharing comes from the assumption that the MDPs are sampled from a small number

of possible MDP classes C. The algorithm then initially treats each MDP as an

unknown, single task problem, and runs E3 to estimate its model. Once the model
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is defined well enough, the MDPs can be clustered into classes, and the information

among each class can be shared. The sample complexity after the initial estimation

phase reduced to a factor independent of the dimensionality of the tasks and the

number of tasks, driven instead by the number of classes. This shows that at the

single class level, the sharing of samples provide an improvement.

An approach based more on the idea that the value functions of the various tasks

share a common representation structure is explored in [33]. While Sparse Fitted Q

Iteration assumes that the value function can be represented as a linear combination

of a small subset of features that is shared across tasks, Bayesian Multi-Task RL

models the value function with a Gaussian Process, and the approximation used is

a linear combination of features where the weights w are sampled from a Gaussian

distribution w ∼ N (τ,Σ). The model of the reinforcement is then R = Φw−γΦ′w+ε

where ε is a zero mean noise. Using standard Bayesian inference it is possible to

estimate the most likely parameters for the distribution of w according to the data.

But if access to several similar task is possible, trying to estimate some hyper-

parameters that control the distribution of the τt and Σt parameters of each task

might be more efficient. This is the principle of the Single-Class Multi-Task Bayesian

RL algorithm, that establish hyper-priors ψ = (τ, k, ν,Σ, α, β) and then uses an

Expectation Maximization algorithm to find a good set of hyper-parameters to

fit the data. This approach allows all the samples from all tasks to influence the

hyper-parameters, and therefore the learning will be more efficient than learning each

class separately. Using of the right conjugate priors allows the E-step and M-step

of Expectation Maximization to be carried out efficiently. A further generalization

can be obtained if we consider more than one class of similar tasks, and establish

an additional hyper-prior distribution over the possible classes. This results in the

Multi-Class Multi-Task Bayesian RL. The main advantage of the multi-class approach

is that new MDPs can be quickly identified as members of one of the classes using

the class prior, and performance can improve. A similar approach is taken in [63].



Chapter 3

Linear Regression and

Regularization

In Chapter 2 we introduced Markov Decision Processes, and some of the techniques

available to solve them. Among them Fitted Q Iteration, introduced in Section 2.4.4,

forms the basis of the original contribution of this thesis, Sparse Fitted Q Iteration.

Fitted Q Iteration is a flexible framework, where the flexibility derives from the

possibility of freely choosing the class of approximating functions used with the

algorithm. In SFQI’s case, the chosen function approximator is a linear function

approximator with non-linear Basis Functions. This allows the method to use a rich

description of the problem through complex features, while maintaining the simplicity

of a linear approach. The projection step required by FQI needs to estimate the mean

of a set of Qi samples as a random variable dependent on the linear approximator

parameters. The use of a squared loss to penalize errors in the estimation completes

the definition of a Least Squares linear regression problem. Because the motivating

problem of this thesis is to solve a set of MDP problems where each of the separate

problems does not provide sufficient information to be solved alone, we will see that

in these cases Ordinary Least Squares regression cannot perform the projection step

required by FQI. For this reason in this chapter we will also introduce regularized

alternatives to the OLS problem, that can help cope with the scarcity of samples.

In detail, we will introduce the regression and linear regression problems in

Section 3.1. Particularly, in Section 3.1.3 we introduce the Ordinary Least Squares

regression problem, and some methods to solve it. In Section 3.2 we will detail several

regularized variations of the Least Squares regression problems. Regularized tech-

niques can help solve underconstrained problems where the number of observations

vastly exceeds the number of regression variables. At first we introduce methods

that operates similarly on all variables, and later more advanced methods that can

operate on groups of variables instead. This group level techniques help us introduce

a multi-task approach in regularized regression. Finally, in Section 3.3 we introduce

37
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several existing methods that make use of regularization techniques in Approximate

Reinforcement Learning.

3.1 Regression

In mathematics the problem of finding the function f in a function space F that

best represents another function is called function approximation. In the exact

setting this is the field of approximation theory, where we know the exact shape

of the function we need to approximate, and are interested in the approximation

for reasons such as obtaining a compact representation or a form that allows for

easy computation. Examples of this field are interpolation techniques, or famous

approximation equivalences such as the Fourier transform.

When the function itself is unknown, we can still hope to recover an approximation

through the analysis of some samples. Under a common assumption, the samples

themselves are now just the image of randomly sampled points, and are therefore

themselves random variables. In addition to this, the application of the function

might introduce some error, for example due to the fact that we cannot exactly

measure its results. In statistical decision theory this problem is called regression, in

particular we want to find the regression function f that minimizes the prediction

error on future samples.

We will now formally define this problem and some initial results regarding its

solution. For a more detailed introduction refer to [22].

3.1.1 Problem Definition

We assume that given a random input vector X and some random target variable Y ,

for each realization {yi, xi}ni=1 the relationship

yi = f∗(xi) + ε

holds, where ε is a zero mean error.

A regression function f is a function that minimizes the expected prediction error

w.r.t. some loss function

EPE(f) = E [L(Y, f(X))] =

∫
x,y
L(y, f(x))Pr(dx, dy).

Using a squared loss, and Bayes rule we can derive

EPE(f) = E
X

E
Y |X

[
(Y − f(X))2|X

]
. (3.1.1)

To minimize this quantity we can simply obtain the function that is pointwise equal

to the conditioned expected value of Y given X

f(x) = E [Y |X = x] .
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This is what we introduced in Fitted Q iteration when we anticipated that the

regression problem seeks to find the mean of the target variable.

A simple way to estimate this conditional mean is to use a k-nearest neighbor

approximation. In k-nearest neighbor approximation f(x) is simply the average of

the yi associated with the k closest xi samples to x. As the number of samples n

grows to infinity, and k grows as well, this quantity converges to the true expectation.

On the other hand, in real problems we cannot obtain infinite amounts of data

to build the average. In addition to this, as the number of dimension grows, the

neighborhood of a point x grows to include larger and larger parts of the whole space.

It is easy to picture this curse of dimensionality when we think of an evenly spaced

line against an evenly spaced cube.

In this finite setting, a dilemma called bias-variance trade-off arises.

E
[
(Y − f(X))2

]
= E

[
(Y − f∗(X) + f∗(X)− f(X))2

]
= E

[
ε2
]

+ E
[
(f∗(X)− f(X))2

]
+ 2E [(Y − f∗(X))(f∗(X)− f(X))] .

The third term is equal to 0, and the first term is the irreducible error our regression

will commit. Applying the same decomposition to the second term we obtain

E
[
(Y − f(X))2

]
= E

[
ε2
]

+ E
[
(f∗(X)− E[f(X)])2

]
+ E

[
(E[f(X)]− f(X))2

]
.

The second term, called bias, measures the minimum distance between the best

function approximation possible in F and the true function. In the limit for example

k-nearest neighbor is an unbiased approximator. The third term is the variance of

the approximator. When we have infinite samples this term disappears, but the main

drawback of k-nearest neighbor is that when the number of samples is limited this

term can be large. Depending on the situation it might be better to introduce some

bias, or in other words choose an approximator that makes erroneous assumptions

and cannot represent exactly the function, in exchange for a large reduction in

variance when the number of samples is limited.

Reduction of variance is the reason why we introduce model assumptions in the

form of limiting the approximator to be a linear combination of BFs. As we will

see this reduces the variance as the number of samples grows, but the variance still

depends on the number of BFs that we use to approximate. Therefore another trade-

off between sample size and number of features must be considered. Regularization

will help in achieving a better bound on the number of features.

3.1.2 Linear Regression

In linear regression we make the assumption that the target variable is a linear

combination of the inputs. For simplicity we will consider now only deterministic

BFs, and will avoid writing φ(x), assuming that the samples have been already
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mapped. The model reduces to

yi = xTi w
∗ + ε.

We also assume Gaussian i.i.d noise ε ∼ N (0, σ2). While the choice of Least

Squares and Gaussian noise can seem arbitrary, it can be cast in the larger framework

of Maximum Likelihood Estimation. Instead of the EPE, the MLE goal for a model

yi = fw(xi) + ε is to maximize

MLE(w) =
n∑
i=1

logPrw(yi),

where Prw is the probability distribution of the target samples according to cur-

rent approximator parameters w. If we choose this conditional distribution to be

Pr(Y |X,w) = N (fw(X), σ2), we obtain again the least square criterion to maximize

the problem.

Using the definition of EPE from Equation 3.1.1, we can take the derivative w.r.t.

w, and obtain a closed form solution

w = E
[
XTX

]−1
XTY.

Already the simple linear structure allows us to compute a solution efficiently. Because

we assume that the model is valid, the bias term is 0. The EPE error will then

be equal to the irreducible noise plus the variance of the predictor. Without too

stringent assumptions, it can be shown that for a random sample x0, this quantity

converges to

E
x0

EPE ∼ σ2d

n
+ σ2.

The variance is proportional to the ratio of the dimension of the feature vector

and the number of samples. Compared to the curse of dimensionality explosion

that k-nearest neighbors had, we traded a reduction in variance with the possible

introduction of a bias.

We will see now how to estimate the w vector using all the available data, in

order to reduce the variance, with a procedure called Ordinary Least Squares.

3.1.3 Ordinary Least Squares

The simple structure of the linear estimator allows for a closed form solution to the

n sample problem of linear regression with Least Squares penalty. Formally, we want

to minimize

ŵ = arg min
w

n∑
i=1

(yi − xTi w)2.
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Because we assume that the dataset is now a fixed, single realization of samples

extracted from the distribution, we do not need the random variables X and Y any-

more. Instead we will indicate with X ∈ Rn×d the matrix whose row Xi corresponds

to the i-th sample, and with Y ∈ Rn the vector whose i-th component is the yi
sample. The problem can be rewritten as

ŵ = arg min
w

(Y −Xw)T(Y −Xw). (3.1.2)

This is a convex optimization problem, and the solution can be found by looking for

the value that makes the derivative of the objective null. By taking the derivative

w.r.t. to w, and equating it to 0 we obtain

∂

∂w
= XT(Y −Xw) = 0,

XTXw = XTY.

The first equation clearly characterizes the solution. The solution is the vector that

makes the residuals (Y −Xw) perpendicular to the subspace of Rd that composes

the column range of X. In other words, the solution will be the orthogonal projection

of the target Y onto the space of linear functions F spanned by X. When the XTX

matrix is non-singular, the unique solution is

ŵ = (XTX)−1XTY,

ŷ = XT(XTX)−1XTY.

The projection matrix XT(XTX)−1XT is similar to the matrix used in Section 2.4.2.

This illustrates the main drawback of Ordinary Least Squares. When the matrix

XTX is singular, the projection is not unique and there is not a definite solution

to the problem. In particular, whenever the number of samples n is smaller than

the number of features d, this problem will arise. Even with more samples than

features, the matrix might still be singular if the samples are not well distributed, or

alternatively the matrix might be close to singular and the inverse operator might be

numerically unstable. This relegates OLS to problems where the number of samples

is larger than the number of features, and the samples are of good quality. We will

see how the introduction of regularization mitigates this problem and allows different

formulations that can find a Least Squares solution with the additional introduction

of constraints on the solution found.

3.2 Regularization

Regularization is a term introduced in mathematics, optimization and machine

learning to indicate all the techniques that use additional model assumptions to solve

more robustly ill-posed problems, or select a single solution out of a large or infinite
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set of candidates. In this thesis ill-posed usually refers to matrix inversion problems

where the matrix is singular or close to singular.

More formally, a regularized problem introduces a regularizer or penalty function

Ω(·) : F → R that expresses an additional goal in the optimization problem of

finding the squared loss minimizer. The new optimization problem will then have

as a minimum a new solution that will minimize a balanced objective composed

by both the loss function and the penalty function. The balance between the two

objectives is controlled by a regularization parameter λ, with λ = 0 corresponding to

the unregularized problem and λ =∞ corresponding to optimizing only the penalty

function. The regression problem becomes

f : arg minL (f, Y ) + λΩ (f) .

Different choices for the Ω penalty produce vastly different optimization problems.

We will now introduce some of the most representative penalty functions and the

corresponding optimization problems. In Section 3.2.1, simple `2 regularization is

introduced, to obtain minimum norm solutions. Then in Section 3.2.2 a non-linear

`1 penalty results in the LASSO problem, where for the first time we seek to obtain

sparse solutions. Finally, in Section 3.2.3 we introduce a combination of these two

techniques, to obtain solutions that are sparse at the level of groups of variables.

This will allow us to model problems where more than one task is present and solve

them efficiently using samples from all the tasks.

3.2.1 Minimum Norm Solutions with `2 Regularization

When the XTX matrix is singular, its null-space, or kernel, is not limited to a single

vector, but is a subspace. If we define A = XTX, b = XTY , then the vector b either

lies in the range of A, or it does not. If b /∈ Ran(A), then the system has no solution.

If instead b ∈ Ran(A) then any vector w = v + z such that Av = b and z ∈ Ker(A)

is a solution. Therefore OLS with a singular matrix will either have no solution or

infinite solutions. As we said, every time the number of samples is smaller than the

number of features the A matrix will be singular.

We will consider first the case when b ∈ Ran(A). Among the infinite Least

Squares solutions we want to pick one. Minimum norm Least Squares decides to pick

the solution w with minimal norm ‖w‖2. A straightforward way to express this is

through a penalty Ω(w) = ‖w‖22. This formulation allows for a concise representation

taking advantage of the fact that ‖w‖22 = wTw using the standard definition of `2
norm for vectors on a Euclidean space. The final formulation using a squared loss is

usually called Ridge regression [23]

ŵ = arg min
w

‖Y −Xw‖22 + λ ‖w‖22

= arg min
w

(Y −Xw)T(Y −Xw) + λwTw.
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Ridge regression is a shrinkage method. That is, the values of the single regression

variables wi are shrinked toward zero by the penalty. This will select among the

infinite solutions the one with minimum norm. It can be shown that as λ increases,

the norm of the Ridge solution shrinks. At the two extremes we have λ = 0, where

the infinite OLS can assume an infinite norm, and λ =∞ where the regularization

selects w =̃ 0. One of the main advantages of this formulation, is that with a similar

derivation based on the convexity of the function and the null derivative in the

minimum, we obtain a closed form solution.

∂

∂w
(Y −Xw)T(Y −Xw) + λwT = 2XTXw + 2λw − 2XTY = 0,

ŵ = (XTX + λI)−1XTY.

As we can see the inverse is now based on a perturbation of the original A matrix.

The addition of a small identity matrix guarantees that the matrix that is going to

be inverted will be non-singular. Therefore the solution of a Ridge problem exists

regardless of the X samples.

It is interesting to rewrite the formula of the Ridge solution in terms of the

singular values of the X matrix. Given a singular value decomposition X = UΣV T,

the values σi are called singular values of the matrix X. The ridge solution can then

be expressed as

Xŵ = UΣ(Σ2 + λI)−1ΣUTY =
d∑
i=1

vi

(
σ2
i

σ2
i + λ

)
vTi X

TY.

Ridge regression shrinks the singular values proportionally to the value of λ. Because

the singular values σ2
i are equal to the eigenvalues of XTX, and XTX/n converges

to the covariance matrix, we can give an interpretation of Ridge regression in terms

of Principal Component Analysis. The eigenvectors vi correspond to the Principal

Components, and Ridge regression shrinks the magnitude of the associated eigenvalues

by a factor smaller than 1. The values that will be shrinked proportionally less

are the ones associated with the largest eigenvalues, that in turn correspond to the

directions with the largest sample variance. Ridge regression then implicitly reduces

the regression coefficients in the direction of the least variance. This reduction in

variability is often quantified as a number called effective degrees of freedom, that is

strictly decreasing as λ increases.

3.2.1.1 Tikhonov Regularization

Introduced in [58], Tikhonov regularization is a more general formulation, that

includes Ridge regression as a special case. In particular, when the various features

that compose the X matrix are not on the same scale, simply penalizing their

magnitude might pose problems. A superfluous variable that is large might greatly
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increase the norm penalty, forcing the regularization to penalize also important

variables. For this reason, many techniques assume, without loss of generality, that

each feature vector is normalized so that they all have the same order of magnitude.

An alternative solution is to modify the problem to use a different penalty function.

Tikhonov regularization makes use of a Tikhonov matrix Γ to build a weighted norm

of the objective. The objective becomes

ŵ = arg min
w

‖Y −Xw‖22 + λ ‖Γw‖22

= arg min
w

(Y −Xw)T(Y −Xw) + λwTΓTΓw,

ŵ = (XTX + λΓTΓ)−1XTY.

When Γ = I, we recover the Ridge regression. Other choices of penalty can for

example scale the features penalties to take into account difference in magnitude, or

even more complicated approaches.

The main drawback of Tikhonov regularization, and therefore Ridge regression, is

that the derivative of the regression variables wi is linear. This means that when the

variables are close to 0, the derivative quickly decreases, until shrinking further the

variable has little effect on the objective function. Therefore, while Ridge regression

succeed in shrinking the variables toward zero, it will not make the last step and

completely zero out parts of the w vector. In other words, the solution will be small

but not sparse. This means that compared to OLS, we can obtain solutions even

when n < d, and we will obtain more stable results numerically, but the number of

dimensions we can manage still needs to be linear in the number of sample. In the

next section we will see how the use of a non-linear `1 norm will allow us to manage

exponentially many features in the number of samples, as long as the underlying

true solution is sparse.

3.2.2 Sparse Solutions with `1 Regularization

The simplicity of linear approximators allows to obtain closed form solutions such

as in the Ridge problem, and convergence results for algorithms based on it. More

importantly, linear models have an intuitive interpretation and the values that the

weights assume can give insight on the relationship of the input features with the

target variable that the regression seeks to estimate.

Among these relationships, one of the most indicative is the association of a 0

weight with a feature. Zeroing out a parameter implies that the corresponding feature

has no influence on the result of the prediction. A solution where only a small subset

of important variables are not zeroed is called sparse, and it is extremely useful when

one of the goal of the regression is to find which are the influential variables in a

problem, as well as their influence. The problem of selecting only a subset of useful

features in a machine learning problem is referred to as feature selection. Another
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Figure 3.1: Visualization of various norms. The surface corresponds to the ‖w‖ = 1 ball, where

w ∈ R3.

possible goal is to instead learn a useful feature representation. As we will see in

Chapter 5, Multi Task Feature Learning is a Least Squares approximator that tries

to learn features during the minimization problem. Feature learning and feature

selection are two techniques commonly used in dimensionality reduction.

The use of `1 regularization can act as a soft version of feature selection, where

the features are shrinked all the way until the 0. Among all existing methods, one of

the most popular `1 regularized Least Squares problems is the variant called Lasso.

It has received extensive study and wide practical use. We will now introduce it and

some interesting results on its ability to recover a sparse representation underlying

the function.

3.2.2.1 Lasso

The original Lasso problem, proposed in [57], is defined as

ŵ = arg min
w

‖Y −Xw‖22 + λ ‖w‖1 .

The difference between the `2 norm penalty and the `1 norm penalty can be visualized

by looking at the possible values of two variables w1, w2 given their unit norm. In

Figure 3.1, we can see that the `2 norm corresponds to a circle, or in general as we

will see to an ellipsoid. The `1 norm instead corresponds to the smallest convex

envelope around the set of 0, 1 values. In particular, it is the smallest envelope

that remains convex. In practice this characteristic will make it more likely for the

projection of the regression vector on this convex set to hit the set on one of the

extremities, where some of the values are exactly zero.

This is not only important because we obtain a sparse solution. When the number

of samples is much smaller than the number of features, OLS cannot find a solution,

and even the solution that Ridge regression finds can be too biased. But if we

assume that the underlying true representation is sparse, or in other words the true

generating vector w∗ has d components but only s non-zero components, we can

reduce the complex d dimensional problem, for which we do not have enough samples,
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to a smaller s dimensional problem that can be solved. Under several complex

assumptions, but not for a too restrictive class of problems, Lasso can effectively

operate in the smaller space and recover the true vector w∗ with high probability. In

[5], a bound on the error of the reconstruction is given with the form

‖X(w∗ − ŵ)‖2 ≤ C
s log(d)

n
(3.2.1)

for some large constant C. In other words, Lasso is not constrained to have the

same order of magnitude for the total feature d and samples n, but it can introduce

exponentially many useless features. This is a big improvement over OLS and Ridge,

because the limitations of linear approximation can be reduced with the use of a

large dictionary of Basis Functions.

Computing the Lasso is not as simple as computing an OLS or Ridge solution.

Over the years several proposed techniques improved performance. Among them

it is important to mention Least Angle Regression, or LARS, introduced in [13].

Following a different theoretical principle and interpretation than the Lasso, LARS

is an active set technique that starts with a single active variable, the one most

correlated with the target, and slowly increases the magnitude of the variables in

the active set. The variables are increased in a way that keeps their correlation with

the residual r = y − ŷ = y −Xŵ equal. As the values in the active set converge to

their OLS value, their correlation with the residual reduces, until a variable outside

the active set is a better predictor than the ones in the active set. At this point

the new variable is introduced and the process continues. The only modification

necessary to obtain a Lasso solution is that in LARS variables can change sign freely,

while to obtain a Lasso path variables that hit 0 are excluded from the active set.

LARS is an extremely efficient method that brings solving a Lasso problem in the

same cost range as an OLS solving cost. In particular the update direction is given

by δ = (XTX)−1XTr. Moreover it can compute the whole solution path of Lasso

efficiently, that is it finds the Lasso solution for all possible λ.

Another interesting solution is proposed in [6]. This article generalizes an iter-

ative algorithm called Shooting Lasso to execute updates in parallel. Under mild

assumptions, parallel updates, if carried out not too many at a time, do not conflict

with each other, and the whole algorithm converges to a Lasso solution. Parallel

techniques are extremely important when considering the direction that modern com-

puting is taking, with computer system that are enormous distributed aggregation of

heterogeneous units.

All the techniques presented this far treat the penalization of each regression

variable indiscriminately. More general techniques can treat different variables

differently, in order to better tune the direction of the regularization. In the case of

this thesis, we have an underlying assumption of similarity within a group of tasks.

We can then group these variables according to the task, and obtain better results

than if we simply tried to obtain a sparse solution. This different level of sparsity,
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called group sparsity, can be induced with the use of mixed `2,1 norms. In the next

section we will introduce a problem that makes use of them, and methods for its

solution.

3.2.3 Group Sparse Solutions with Mixed `2,1 Regularization

When the number of variables exceeds the number of samples, the choice of `1
regularization helps to find an underlying sparse structure that allows for a good

solution to emerge. On the other hand, when the number of variables exponentially

exceeds the number of samples, then even Lasso regression cannot recover the true

solution.

An interesting case is when we have previous knowledge on the relationship

between the variables. For example we might know that a group of variables are

useful only together, so we are not interested in setting them to zero separately, but

to set them to zero either all together or not.

In particular, for the main results of this thesis, we expect the w regression

variables to be the concatenation of {wt}Tt=1 vectors, each corresponding to a different

problem or task. In this multi-task approach each regression problem is defined on the

same space, that is, each vector wt ∈ Rd is combined with the same Basis Function.

In other words, the various tasks share the same features, but the samples that

generate these features will be different for each task. In particular, each weight wit
corresponds to the same feature φi applied to sample xit. If we believe that a feature

is important across all tasks, we can express this with a group {wi,1, . . . wi,T }di=1 that

includes all the weights corresponding to the same feature across tasks. With this

setup, if all the tasks share a low-dimensional representation of dimension s, then

only s of the groups will be non-zero. This idea of group sparsity produces a different

result compared to simply applying Lasso to each task separately, and as we will see

in Section 4.3, this can allow us to break through the limits that Lasso has in terms

of useless dimensions. We will now introduce the Group Lasso problem, and leave

more of the theoretical analysis associated with it for the next chapter.

3.2.3.1 Group Lasso

We will now introduce the formal description of a Multi-Task Group Lasso problem.

It is a particular case of a Group Lasso problem where each group has the same

number of variables, and can be expressed more concisely using a matrix `2,1 norm.

In particular we consider t = 1, . . . , T tasks, and for each task a vector of regression

variables wt, input samples Xt and target samples Yt, as well as a regularization

parameter λ. The W ∈ Rd×T regression variable matrix is constructed such that its

columns are the wt vectors. The groups are identified as the rows of the W matrix

wi, such that each groups corresponds to the same feature across tasks. The penalty

is formalized as the `1 norm of the `2 norm of the groups, or in other words as the
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Figure 3.2: Visualization of ‖W‖2,1 penalties.

sum of the `2 norm of the rows of W . As specified in Appendix A, this is denoted

as ‖W‖2,1. We gave a visualization of this norm in Figure 3.1, and we provide an

additional intuition of the ‖W‖2,1 in Figure 3.2, where the first matrix, which is

group sparse, has only a few non-zero lines, while the dense second matrix has values

evenly distributed across all groups.

In detail, the Group Lasso problem is defined as

Ŵ = arg min
W

T∑
t=1

‖Yt −Xtwt‖22 + λ

d∑
i=1

∥∥wi∥∥
2

= arg min
W

T∑
t=1

‖Yt −Xtwt‖22 + λ ‖W‖2,1 .

Initially introduced in [65], the Group Lasso minimization problem is centered on a

particular property of the ‖wt‖2 function. Unlike the ‖·‖22 of a Ridge regression, the

simple 2-norm is not differentiable in 0. Therefore for this particular case we have to

consider not its derivative but its subgradient. The subgradient, a generalization of

the derivative for non-differentiable functions, is often used in convex optimization.

The subgradient ∂f(w)
∂w0

at a point w0 is defined as any vector v such that for all other

vectors w

f(w)− f(w0) ≥ vT(w − w0).

Intuitively, the subgradient is a lower bound on the growth rate of a convex function

in any direction. It can be represented as a supporting hyperplane in w0 such that the

image f(w) of every other point in the domain is above the plane. The subgradient

is not always unique, and the set of all possible subgradients is called subdifferential.

In convex optimization, a sufficient and necessary condition for the optimality of a

solution, is that the subdifferential of the objective function at the solution point
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Algorithm 3.1 Block Gradient Descent Group Lasso

input: X,Y, λ, tol, stepsize α

output: Ŵ

Initialize Ŵ

do

Ŵold = Ŵ

for i← 1, . . . , d do

if
∥∥∥XiTr−i

∥∥∥
2
≤ λ then

ŵi ← 0

else

do

ŵiold = ŵi

ŵi ← max

(
1− αλ

‖ŵi+αXiTr−i/n‖2
, 0

)
(ŵi + αrT−iX

i/n)

while ŵiold = ŵi

end if

end for

while
∥∥∥Ŵold − Ŵ

∥∥∥
2,1
≥ tol

contains the null vector. When the convex function is differentiable in a point, then

its subdifferential contains only the derivative.

The subdifferential of ‖·‖2 is

∂ ‖w‖2
∂w

=

 w
‖w‖2

if w 6= 0

z : ‖z‖2 ≤ 1 if w = 0
.

As we will see, this property allows the case wi = 0 to be treated differently during

the optimization, and allows entire blocks to be set equal to zero.

As an example, we introduce a Block Gradient Descent algorithm, presented

in [51], that can be used to compute a Group Lasso solution. The details are

included in Algorithm 3.1. The name Block Gradient derives from the fact that the

algorithm iterates among groups, each called block, updating each block iteratively.

In particular, given a block-diagonal matrix X composed by the Xt matrices, Xi

is the submatrix composed by the columns associated with the i-th groups, which

corresponds to the i-th feature across tasks, and to the wi row of the W matrix.

The r−i vector represents the behaviour of the whole predictor without considering

changes to wi, and is defined as r−i = Y −
∑

j 6=iX
jwj

T
. We have an outer loop that

iterates over all groups until convergence, and an inner loop that updates iteratively

a single block, again until convergence. The sparsity property is introduced by the

condition ‖XiTr−i‖2 ≤ λ, that forces the whole group wi to 0 if satisfied. With some

simple optimizations, the computational cost of the algorithm is dominated by the
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computation of the residuals and the gradient direction, and is in the order of O(nd)

for each iteration of the single block descent.

This algorithm is intrinsically iterative. Even if matrix multiplications can be

easily parallelized, and run in parallel on most modern linear algebra implementations,

the loops need to update a single group at a time, because the direction of the upgrade

depends on the values of the other blocks. When the updates are serial, convergence is

guaranteed. As we will see, in Chapter 5 we introduce a modified Multi-Task Feature

Learning algorithm that uses Group Lasso penalties and can compute solutions to

the Group Lasso problem. Although the computational cost of a single iteration

might be higher in our method, we will see that the most costly operation can be

carried out separately for each task, and is therefore straightforward to parallelize.

3.2.4 Extensions of Group Sparse Solutions

Algorithm 3.1 is actually a specialized version of a more general method introduced

in [51]. In the original paper the method is introduced to solve a Sparse Group Lasso

problem, an extension of Group Lasso where sparsity is induced not only at the

group level, but also inside each group. The modified formulation is

Ŵ = arg min
W

T∑
t=1

‖Yt −Xtwt‖22 + λ

(
d∑
i=1

(1− α)
∥∥wi∥∥

2
+ α

∥∥wi∥∥
1

)
.

The addition of an `1 norm on the vectors will induce sparsity, but this modification

does not have a rich theoretical analysis as the standard Group Lasso has. Because

in Chapter 4 we will use some of this analysis to give performance bounds on the

original algorithm of this thesis, we chose not to use Sparse Group Lasso.

The theoretical results on Group Lasso led us instead to consider another variant,

described in [1]. Multi-Task Feature Learning solves a Group Lasso problem, while

additionally being able to learn a suitable representation for the features. When run

without the feature learning approach, it computes the same solution path as the

Group Lasso, but as we will see its path is much longer. In order to obtain a more

similar result, we modified MTFL to use Group Lasso penalties, and will introduce

the new algorithm in Chapter 5.

3.3 Regularized Approximate Value Iteration

The introduction of regularization is a natural step in Approximate Value Iteration

techniques. All the techniques we introduced in Section 2.4.3 rely on some form

of representation, and almost all of the methods, especially the most flexible ones,

have the risk of overfitting their solution to the data, or be unable to obtain a

solution when the data are scarce. We already mentioned that many forms of

regularization exist, for example the choice of a subset dictionary for kernel-based
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methods using a non-parametric approximator [14]. In this section we will introduce

more regularized techniques, that are in some way similar to the technique proposed in

this thesis. In particular in Section 3.3.1 we will see how regularization is introduced

to Least Squares Temporal Difference problems, and in Section 3.3.2 we will see

how introducing regularization to a non-parametric approximator helps producing

guarantees for Fitted Value Iteration.

3.3.1 Regularized Policy Iteration

In this thesis, we are interested in methods that use linear regression for their function

approximation. In particular, we expect some kind of Least Squares linear regression

problem, with or without regularization. Prime candidates for this type of problem

are the various versions of Least Squares Temporal Difference used in Approximate

Policy Iteration methods based on LSPI, and Fitted Value Iteration methods that

uses linear approximators. The main difficulty in introducing regularization to LSPI is

that the method has a clear interpretation as the fixed point of the projected Bellman

error. As the name implies, the weighted Least Squares projection is essential to the

interpretation of the algorithm, and simply replacing a Least Squares problem with

another variant such as Lasso or Ridge will not work in a straightforward way. This

is for example the approach taken in [34]. LARS-TD [28] is instead an algorithm

that takes the approach of building a different projection problem

f(w) = arg min
u

1

2
‖Φu− (R+ γΦ′w)‖22 + λ ‖u‖1 ,

and seeks to find the fixed point ŵ = f(ŵ). In the original paper it is shown that

this does not correspond to a standard Lasso problem, or any clear optimization

problem at all, but that using necessary and sufficient conditions for the subgradient

of the convex projection problem it is possible to characterize the solution. The

authors then derive a modified LARS algorithm to satisfy these conditions and find

a solution. The method is interesting for two principal reasons. Because it makes use

of a LARS inspired optimization, it is very computationally efficient, in the order of

O(nds3). The other is that it uses a `1 based optimization, and therefore is trying

to obtain the sample complexity advantage of a sparse solution. In particular, a

simpler `2 regularized version of the same LSTD problem is introduced in the same

paper. On the other hand, even considering the fact that this `2 regularization allows

for a closed form solution, and is therefore extremely computationally efficient, the

advantages of finding a sparse solution impact the TD algorithm in the same way

as Lasso error bounds outperformed Ridge regression when the number of features

greatly exceeds the number of samples.

In particular, a theoretical analysis for the finite sample case is provided in [19].

The main bound in the paper is
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Theorem 3.3.1 (Performance Guarantees for Lasso-TD [19]). Let {xi}ni=1 be a

trajectory generated by the MDP. Given the true Value function V π and a linear

approximation of it Φŵ obtained with Lasso-TD we assume that the empirical Gram

matrix 1
nΦTΦ satisfies the (3, Sw) assumption. Then for any other vector u that also

satisfies the assumption, and for any δ > 0, with probability 1− δ, we have

‖V π − Φŵ‖n ≤
1

1− γ
inf
u

[
‖V π − Φu‖n +

12γVmaxL
√
s

ψ

(√
2 log(2d/δ)

n
+

1

2n

)]

where ‖V π − Φw‖n is the empirical norm
(

1
n

∑n
i=1(V π(xi)− Φ(xi)w)2

)1/2
.

Intuitively, the (3, Sw) assumption is a constraint on the ability of the Φ matrix

to support a good representation of the target function. We will see a similar

assumption, with a longer comment, in Section 4.3.1. Lasso-TD is just the name

used for an `1 regularized LSTD in the theoretical paper, and solves essentially the

same fixed point problem of LARS-TD. Therefore we can easily see from the bound

that when the assumptions are met LARS-TD can perform well. If we take the

squares of both sides, the error grows approximately linearly in s and log(d). This is

the same growth rate that a single Lasso problem has on a regression problem. This

relationship derives from the properties of `1 regularization, and the fact that the

proof of Theorem 3.3.1 makes uses of several error bounds designed for Lasso similar

to Equation 3.2.1, mostly introduced in [36]. It will be interesting to compare this

result with the bounds for the multi-task setting we will introduce in Section 4.4.

A similar approach to LARS-TD is taken in [24]. The idea of finding the fixed

point of a regularized projection operator combined with the Bellman operator makes

it impossible to formulate the resulting problem as a standard regression problem.

The authors in [24] choose instead to consider separately the problem of finding the

projection and finding the fixed point of LSTD, and apply different regularization

to each operator, an `2 regularization to the projection and an `1 regularization to

the fixed point problem. The resulting mixed `2/`1 problem can be interpreted as a

standard Lasso problem, and solved efficiently with any standard method that can

solve Lasso.

3.3.2 Regularized Value Iteration

We already mentioned choosing a subset of samples in order to reduce overfitting

in kernel modeling. Since kernel models can be expressed as a linear combination

of kernels, with Kw being the approximator evaluation, standard regularization

techniques on the w vector of weights can be applied. A remarkable result concerning

regularization with kernel models is the representer theorem.

Theorem 3.3.2 (Representer Theorem). Given a Reproducing Kernel Hilbert Space

K based on the Mercer kernel K, a strictly monotonically increasing penalty function
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Ω and a loss function L, the problem

f̂ = arg min
f

n∑
i=1

L(yi, f(xi)) + λΩ(‖f‖K)

admits a solution in the form

f̂(x) =

n∑
i=1

K(x′, xi)wi.

This theorem gives us guarantees on the representation power of kernel modeling,

giving a sufficient condition for the kernel model to be able to exactly represent

the solution based on the samples provided to the algorithm. Of course since this

problem requires regularization it does not imply that any function can be surely

represented with kernels, but only a regularized approximation. For a full exposition

on kernel methods, the reader can refer to [49].

This regularization problem is used in [17] to compute a regularized function

approximation of the Q function in a Fitted Q Iteration framework. The exact

problem is defined as

Qk+1 = arg min
Q∈K

1

n

n∑
i=1

[
ri + γmax

a′∈A
Qk(x

′
i, a
′)−Q(xi, ai)

]2

+ λ ‖Q‖2K .

Introducing the matrices K : Ki,j = K(xi, ai, xj , aj) and K ′ : K ′i,j = K(x′i, a
′, xi, ai)

and with the definition of the approximator Qi = Kw and the norm ‖Q‖2K = wTKw

the resulting problem is

wk+1 = arg min
w

∥∥R+ γK ′wk −Kw
∥∥2

2
+ λwTKw

=(K + λI)−1(R+ γK ′wk).

Using this approximator, the author derives performance guarantees for the algorithm

following a similar derivation to [35]. Since in Section 4.2 we will use the same starting

point to derive the main result of this thesis, we will just report the performance

bound for Kernel Fitted Q Iteration.

‖V ∗ − V πK‖ρ ≤

2

(1− γ)2

[
γK/2 ‖V ∗ − V0‖∞ + C

[
c1λ max

k=1,...,K
‖T ∗kQ0‖2K +

c2V
4
max

nλd/l
+
c3 log(1/δ)

nV 4
max

]2
]
.

c1, c2, c3 are universal constants, while the C constant depends on the MDP and

will be later defined as the MDP’s discounted-average concentrability of future

state distribution. The l variable in the bound correspond to a bound on the

Lipschitz smoothness of the function. From the bound we can see that the non-

parametric algorithm strikes a balance between the representation error induced by the
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λ ‖T ∗kQ0‖2K term and the complexity of the approximator. Optimal rates for λ can be

used to optimize the bound, that at this point depends on the original dimensionality

d only through complex relationships. This is a clear example of the power of

non-parametric approximation, and of its drawbacks in terms of interpretability.



Chapter 4

Sparse Fitted Q Iteration

4.1 Sparse Fitted Q Iteration

The main contribution in this thesis is the development and theoretical analysis of a

new regularized Fitted Value Iteration algorithm. In particular our goal is to exploit

an assumption of group sparsity in the underlying problem. As we introduced Fitted

Q Iteration in Section 2.4.4, we will now detail the proposed algorithm.

4.1.1 Problem Formulation

SFQI is a multi-task Fitted Value Iteration algorithm, where the approximation of

the Action-Value function is carried out with a group regularized linear approximator.

In particular, we assume we have a set of T tasks, each with its own underlying

MDP Mt. All the MDPs share the same continuous features, so that each state

space Xt is a subspace of Rd. We assume all tasks have the same action space A.

Most importantly, each task has a different reward space Rt and dynamics Pt. From

each task we receive a set of n samples {xi, ai, x′i, ri}i=1...n, and the goal is to learn

a policy πt for each task in order to maximize the expected sum of the discounted

rewards Jπ = E
[∑n

i=0 γ
iri
]
. SFQI is a linear FQI algorithm, in the sense that it is

assumed that the various Qk that the algorithm will approximate at each iteration

can be represented as a linear combination of the features.

The regression algorithm will minimize a squared loss in order to perform at each

step a regression, and compute set of unknown regression parameters wt ∈ Rd for

each task. Moreover we expect the number of features d to be much higher than

the number of samples n. For this reason a simple OLS Equation (3.1.2) cannot

solve the regression problem, and a regularized approach is needed. We introduced

in Section 3.3, methods using `1, `2 and mixtures of these norms to solve single-task

MDPs. One of the goal of SFQI is to exploit instead the information coming from all

of the tasks to uncover some kind of structured sparsity in the solution. We expect

that the various Qt functions can be represented as a linear combination not only

55
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of a sparse subset of the d features, but that this subset is shared among all the

tasks. In other words, we expect the solution to be sparse in the group sparse sense

that we introduced in Section 3.2.3. More in detail, we will compute T separate

representation of Qt functions, each parametrized with a vector wt. If we merge

together the wt weights as a matrix

W =


w1,1 w1,2 . . . w1,T

w1,1 w1,2 . . . w1,T
...

... . . .
...

wd,1 wd,2 . . . wd,T

 ,
we want to penalize the weights as groups corresponding to the same feature, in our

case rows wi of the W matrix. This corresponds to a l2,1 penalty, that we intend to

use to set to zero most of the weights in the solution. With the choice of a quadratic

loss and a l2,1 regularization, the optimization problem reduces to a Group Lasso

problem.

4.1.2 Algorithm Overview

We can now formally define the SFQI algorithm that is summarized in Algorithm 4.1.

Since this is a Fitted Value Iteration, we will follow a similar structure to Algo-

rithm 2.10, but this time we can fully characterize the approximation step. The basic

structure of a discrete action FQI algorithm is preserved, but we need to make some

small adjustments to take into account the multiple tasks.

Again we will obtain a different approximator for each discrete action a ∈ A, so

if the cardinality of the available actions is |A|, we have |A|T vectors wa,t, divided in

Wa matrices. For the regression we merge the datasets {{xit, ait, x′it, rit}i=1...n}1...T
into matrices and vectors, where each row corresponds to a sample, and obtain

Xa,t, X
′
a,t ∈ Rna,t×d, Ra,t,∈ Rna . It is clear that we need at least one sample for each

action in each task, otherwise the regression itself is not well defined.

When performing linear regression, a common and important detail is the addition

of an artificial constant feature to the problem. This permits the regression algorithm

to model an offset in the value of the Q function, which is an essential property in

real applications. But if we introduce such a constant to our regularized problem,

it will then incur in regularization, and this is usually a serious drawback in cases

where the value function takes large values, and the weight of the offset needs to

be large. An alternative solution, which is preferable in our case, is to subtract its

average from the target of the regression, and then add it again when evaluating

the function. This has the advantage of not being penalized by the regularization

parameter, and is therefore a better choice. For this reason at iteration k we will

also store a Ba,t,k ∈ R bias for each action and task. The algorithm returns the

last weights Wa,K , Ba,t,K , that can be used to evaluate the policy in a new state by

simple multiplication.
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Algorithm 4.1 SFQI

input: Xa,t, X
′
a,t, Ra,t, λ,γ,tol,K

output: Wa,K , Ba,t,K
Initialize Wa,1 = 0 for all actions, Ba,t,1 = 0 for all tasks and actions, k = 1

do

for a← 1, . . . , |A| do

Wa,k−1 ←Wa,k

for t← 1, . . . , T do

Ba,t,k−1 ← Ba,t,k
end for

end for

k ← k + 1

for t← 1, . . . , T and a← 1, . . . , |A| do

T̂Qa,t ← Ra,t + max
a′

γ
(
X ′a′,twa′,t,k−1 +Ba′,t,k−1

)
Ba,t,k ← 1

na,t

∑
T̂Qa,t

T̂Qa,t ← T̂Qa,t −Ba,t,k
end for

for a← 1, . . . , |A| do

Wa,k ← arg minW
∑

t ‖TQa,t −Xa,twt‖22 + λ ‖W‖2,1
end for

while (max
a
‖Wa,k −Wa,k−1‖2 ≥ tol or max

a,t
‖Ba,t,k −Ba,t,k−1‖2 ≥ tol) and k < K

From the layout of the algorithm, it is clear that when T = 1, this method is

equivalent to a Lasso regularized Fitted Q Iteration. We expect therefore SFQI

to improve the limits of simply applying Lasso to each separate task. From the

bounds in Equation 3.2.1, we know that the simple Lasso regression can recover a

good solution when the number of features is exponential in the number of samples.

We will show in Section 4.4 that SFQI can surpass this limit. The addition of

multiple tasks introduces a novel source of information that can improve the quality

of the solution, but this improvement cannot be measured on a single task basis.

The motivating idea for SFQI is to improve the average performance across tasks,

and does not exclude that a single task will perform slightly worse. This overall

improvement in performance is the metric we will use when validating our results in

the experimental section.

The choice of a Group Lasso problem as the regularization problem is motivated

by recent results on the reconstruction capabilities of this approximation technique.

We will introduce these results in Section 4.3, and as we will see, the group sparse

assumption plays a central role in the error bound. The introduction of more tasks

to SFQI does not guarantee the absence of negative transfer if the new tasks do
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not share the same sparsity. To provide a partial solution to this problem, we

can maintain the multi-task approach, while trying to expand the group sparsity

assumption to a larger class of problems. This modification can be included in SFQI

in a straightforward way by substituting the Group Lasso problem with some other

multi-task method. In particular we will consider problems that are not sparse, but

admit a sparse representation after a linear transformation of the parameters.

Having introduced the algorithm we can now derive some theoretical results

on the quality of the policies computed by it. In order to do this we first need to

introduce some preliminary results from [42, 35].

4.2 Finite Time Bounds for Fitted Value Iteration

We introduce now some notation and definitions from [42], that will give us the

basis to proceed in the derivation of bounds on the policy performance. A space

of bounded measurable functions over our state space X , B (X ) is considered, and

we are interested in functions bounded by 0 < Vmax < +∞. As we observed in

Section 2.1.5, under mild assumptions an optimal policy can be found for an MDP,

and when the number of actions is finite, we can always express it as a deterministic

policy. A reduced form can merge the continuous transition kernel P and the policy

π into another transition kernel P π (dy|x) = P (dy|x, π(x)). Two new operators

are then introduced, a right-linear operator P π : B(X ) → B(X ) and a left-linear

operator over the space M(X ) introduced in Section 2.1.2, P π : M(X )→M(X )

(P πV ) (x) =

∫
y
V (y)P π(dy|x),

(µP π) (dy) =

∫
x
P π(dy|x)µ(dx).

Intuitively the first operator corresponds to computing the expected value of V after

executing one step under policy π, while the second operator filters a distribution

over states, for example the starting distribution, trough a single step of the policy.

An operator resulting from a chain of transitions can also be formulated

(P π1P π2) (dz|x) =

∫
y
P π2(dz|y)P π1(dy|x)

where the policy π is allowed to change between steps. It is important to note that

the P π operator allows us to express the T π operator concisely,

(T πV )(x) = R(x, π(x)) + γ(P πV )(x). (4.2.1)

We can now introduce the main assumptions used in [42], the original paper.
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4.2.1 Assumptions

First we introduce some regularity assumptions on the MDP itself:

Assumption 4.2.1. X is a bounded, closed subset of some Euclidean space.

To introduce the next assumption the ‖·‖p,µ of a function is defined as ‖f‖pp,µ =∫
|f(x)|pµ(dx). In the course of the proof we will use this norm to bound the error

introduced at each step by approximations, and its propagation through the steps of

the MDP. If p =∞ we recover the known supremum-norm bounds [16], but, with

pointwise comparisons, better bounds on the error can be derived. For this reason

an assumption is needed that limits how much a sequence of steps of the MDP under

a sequence of policies πk can change a distribution ρ w.r.t. a reference distribution

µ. To do this an assumption is imposed on the Radon-Nikodym derivative of the

sequence of distributions generated by the application of P πk to ρ w.r.t. µ.

Assumption 4.2.2 (Discounted-average concentrability of future state distributions).

Given ρ, µ and an arbitrary sequence of policies πk
K
1 , we assume that the distribution

ρP π1P π2 . . . P πK is absolutely continuous w.r.t. µ. Then we assume that

c(K)
def
= sup

π1...πK

∥∥∥∥d (ρP π1P π2 . . . P πK )

dµ

∥∥∥∥
∞

(4.2.2)

satisfies

Cρ,µ
def
= (1− γ)2

∑
m≥1

mγm−1c(m) < +∞.

Assumption 4.2.2 is a limit on the growth of the deviation of the reference

distribution at each step. That c(m) grows when m increases is acceptable, as long

as the geometric discount rate of γ can keep these deviations under control, resulting

in a finite Cρ,µ. Several interpretations can be given for this coefficient, and in [42]

the proposed one is a comparison with the top-Lyapunov exponent of the MDP. If

the exponent is positive the trajectories of the MDP are sensible to perturbations,

while if the exponent is negative the system is stable. They prove that when the

exponent is negative then Cρ,µ is finite.

4.2.2 Policy Performance Guarantees

We can now describe the main results needed from [42]. The problem considered is

the estimation of the final performance of a policy πK obtained after K iterations

of Approximate FVI, in comparison with the optimal policy. To measure the

performance, the optimal value function V ∗ is compared with the value function

obtained, under a desired norm. That is, the quantity ‖V ∗ − V πK‖p,µ is bounded.

At every step of the iteration a policy πk greedy w.r.t. Vk is built. The proof begins

by deriving bounds on V ∗ − V πK .
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Theorem 4.2.3.

V ∗ − V πK ≤ γ(I − γP πK )−1

{
K−1∑
k=0

γK−k
[
(P π

∗
)K−k + P πKP πK−1 . . . P πk+1

]
|εk|

+ γK+1
[
(P π

∗
)K+1 + P πKP πK−1 . . . P π0

]
|V ∗ − V0|

}
. (4.2.3)

Proof. T ∗Vk − T π
∗
Vk ≥ 0 since at the k-th step the value function might not have

converged to its true values yet, so choosing the real optimal action might not coincide

with the action selected by the optimal Bellman operator. At each step a function

approximation is performed, and this operation introduces an approximation error.

Therefore we cannot substitute Vk+1 = T ∗Vk but need to introduce an error function

εk such that Vk+1 = T ∗Vk + εk. With this basic substitution, the Bellman equation

(4.2.1) we can derive

V ∗ − Vk+1 = T π
∗
V ∗ − T ∗Vk + εk = T π

∗
V ∗ − T π∗Vk + T π

∗
Vk − T ∗Vk + εk

≤ R+ γP π
∗
V ∗ −R− γP π∗Vk + εk = γP π

∗
(V ∗ − Vk) + εk.

By induction on the sequence Vk

V ∗ − VK ≤
K−1∑
k=0

γK−k−1(P π
∗
)K−k−1εk + γK(P π

∗
)K(V ∗ − V0). (4.2.4)

Since πk is the greedy policy w.r.t. Vk, we have T ∗Vk = T πkVk, moreover due to the

optimality of V ∗, T ∗V ∗ − T πkV ∗ ≥ 0, and we can derive

V ∗ − Vk+1 = T ∗V ∗ − T ∗Vk + εk = T ∗V ∗ − T πkV ∗ + T πkV ∗ − T ∗Vk + εk

≥ R+ γP πkV ∗ −R− γP πkVk + εk = γP πk(V ∗ − Vk) + εk.

Again by induction

V ∗ − VK ≥
K−1∑
k=0

γK−k−1(P πK−1P πK−2 . . . P πk+1)εk + γK(P πK−1P πK−2 . . . P π0)(V ∗ − V0).

(4.2.5)

Lastly, from all the previous inequalities and T ∗Vk − T π
∗
Vk ≥ 0 we have

V ∗ − VK = T π
∗
V ∗ − T π∗VK + T π

∗
VK − T ∗VK + T πKVK + T πKV πK

≤ γP π∗(V ∗ − VK) + γP πK (VK − V ∗ + V ∗ − V πK ).

(I − γP πK )(V ∗ − V πK ) ≤ γ(P π
∗ − P πK )(V ∗ − VK).

The operator (I − γP πK )−1 can be expressed as
∑

m≥0 γ
m(P πK )m, and is therefore

invertible and monotonic, so with a multiplication by (I − γP πK )−1 we preserve the

inequality. We obtain

V ∗ − V πK ≤γ(I − γP πK )−1P π
∗
(V ∗ − VK)

− γ(I − γP πK )−1P πK (V ∗ − VK).
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Using Equation (4.2.4) and Equation (4.2.5), and taking the absolute value of both

sides we obtain Equation (4.2.3).

We can now describe the main result of [42].

Theorem 4.2.4. For any number of steps K, and under Assumption 4.2.2, if at

each step the approximation error |V̂ − T ∗V | < ε, then we have

‖V ∗ − V πK‖22,ρ ≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
1

1− γK+1
Cµ,ρε

2 +
(1− γ)γK

1− γK+1
(2Vmax)2

]
.

(4.2.6)

Proof. We begin the proof by introducing some shorter notation, to rewrite Equa-

tion (4.2.3) in a simpler form.

V ∗ − V πK ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εk|+ αKAK |V ∗ − V 0|

]
,

with

αk =
(1− γ)γK−k−1

1− γK+1
, for 0 ≤ k < K, and αK =

(1− γ)γK

1− γK+1
,

Ak =
1− γ

2
(I − γP πK )−1

[
(P π

∗
)K−k + P πKP πK−1 . . . P πk+1

]
, for 0 ≤ k < K,

AK =
1− γ

2
(I − γP πK )−1

[
(P π

∗
)K+1 + P πKP πK−1 . . . P π0

]
.

We have that

‖V ∗ − V πK‖22,ρ =

∫
ρ(dx)|V ∗(x)− V πK (x)|2

≤
[

2γ(1− γK+1)

(1− γ)2

]2 ∫
ρ(dx)

[
K−1∑
k=0

αkAk|εk|+ αkAk|V ∗ − V 0|

]2

(x)

≤
[

2γ(1− γK+1)

(1− γ)2

]2 ∫
ρ(dx)

[
K−1∑
k=0

αkAk|εk|2 + αkAk|V ∗ − V 0|2
]

(x),

where the first inequality follows from Theorem 4.2.3, and the second is an application

of Jensen’s Inequality applied to the convex function (
∑
xi)

2. We can bound

|V ∗−V 0| ≤ 2V max and under Assumption 4.2.2 we have ρAk ≤ (1−γ)
∑

m≥0 γ
mc(m+

K − k)µ and obtain

‖V ∗ − V πK‖22,ρ

≤
[

2γ(1− γK+1)

(1− γ)2

]2
K−1∑
k=0

αk(1− γ)
∑
m≥0

γmc(m+K − k)‖εk‖22,µ + αk(2Vmax)2

 .
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By the substitution of α, the definition Cµ,ρ = (2−γ)2
∑

m≥1mγ
m−1c(m) and taking

ε = maxk ‖εk‖pp,µ we obtain Theorem 4.2.4

‖V ∗ − V πK‖22,ρ ≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
(1− γ)2

1− γK+1

K−1∑
k=0

∑
m≥0

γm+K−k−1c(m+K − k)‖εk‖22,µ +
(1− γ)γK

1− γK+1
(2Vmax)2


≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
1

1− γK+1
Cµ,ρε

p +
(1− γ)γK

1− γK+1
(2Vmax)2

]
.

This result gives us insight on the performance of Fitted Value Iteration. The

concentrability coefficient Cρ,µ acts as a filter between the performance loss, measured

according to ρ, and the error, measured according to µ, and expresses the intensity of

the propagation of the error across iterations. The second term, depending on Vmax,

quickly reduces with the number of iterations K, and can be made small, at the risk

of raising the maximum ε at some iteration. In order to quantify this error in term

of number of samples, we will introduce in the next section further assumption on

the Vk functions, and exploit them to obtain new bounds.

4.3 Oracle Inequalities under Group Sparsity

Before proceeding with the main result of this chapter, we must introduce another

prerequisite result from [35]. The main assumption of this work is an underlying

group sparsity in the functions that need to be approximated at each time step. Such

a structure can be exploited with the Group Lasso regularization as explained in

Section 4.1.1. Several guarantees were derived for this class of regularized problems,

and we will now repeat the ones useful for our derivation, and adapt them to our

notation. For the full proof, refer to the original paper.

4.3.1 Assumptions

We consider the problem of simultaneously perform linear regression on T tasks,

indexed by t ∈ NT . Each task has a set on n samples, organized in a matrix Xt,

where each row xit corresponds to a sample. We consider the case when the design

matrix Xt is deterministic, but as the authors mention, an extension to random

matrices follows standard procedures. Without loss of generality, we assume that

each column of the Xt matrix, corresponding to a particular feature, is normalized

so that (1/n) Diag
(
XT
t Xt

)
= I. We construct a larger, block-diagonal matrix

X ∈ RTn×Td out of the Xt matrices, which will be the design matrix in our regression

problem. The unknown regression parameters are T d-dimensional vectors, wt, that
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we stack together in a w ∈ RTd vector. As in Section 3.1.2 we assume Gaussian,

i.i.d noise with distribution N
(
0, σ2

)
. In our multi-task setting, the variables across

tasks corresponding to the same feature are grouped together, and we obtain a

partition of NTd into d separate groups. Given a subset of these groups J ⊆ Nd we

introduce wJ : (wtI{t ∈ J}), where I is the indicator function. Finally we introduce

J(w) = {t : wt 6= 0}. We can now formulate the main assumption needed to guarantee

precision in the reconstruction of the original sparse vector w∗.

Assumption 4.3.1 (Restricted Eigenvalues (RE) Assumption). There exists a

positive number κTd = κTd(s) such that:

min

{
‖X∆‖2√
n ‖∆J‖2

: |J | ≤ s,∆ ∈ RTd\{0}, ‖∆Jc‖2,1 ≤ 3 ‖∆J‖2,1
}
≥ κTd, (4.3.1)

where Jc denotes the complement of the set of indices J .

Intuitively, this assumption gives us a weak constraint on the representation

capability of the data. In an Ordinary Least Squares problem, the rank of the matrix

XTX must be strictly greater than 0. This can be expressed also as ‖X∆‖2 > 0,

because the minimum quantity that this norm can take is equal to the norm of the

vector ∆ multiplied by the smallest singular value of X. In a Group Lasso setting,

the number of features d is usually much larger than the number of samples, and

the matrix X surely has some zero values. This assumption forces a much weaker

assumption using a method similar to the definition of a matrix norm. If we refer to

Appendix A, we can see that the condition
‖X∆‖2√
n‖∆J‖2

is similar to an induced norm,

with the difference that the denominator has only the ∆J . This vector is composed

only by the non-zero groups of variable, and intuitively this norm will be larger than

the smallest eigenvalue of the part of the matrix X related to the non-zero groups.

κTd is therefore a lower bound on the capability of the matrix X to represent a

solution not for the full OLS problem, but only for the sparse subset that compose

the true solution.

Verifying whether this assumption holds on the actual data is not straightforward,

but a number of sufficient conditions for its satisfaction exists. The positivity of the

minimal eigenvalue of XTX is of course usually not suitable. Many assumptions can

guarantee the RE assumption, alternatives are proposed in [18] and [5].

4.3.2 Approximation error Bounds

We can now introduce the main result in the original paper.

Theorem 4.3.2. Considering the multi-task setting defined in Section 2.5, with

d ≥ 2 and T, n ≥ 1. Set

λ =
2
√

2σ√
nT

(
1 +

δ log d

T

) 1
2

,
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where δ > 5
2 , and set φ as the largest eigenvalue of XTX. Given |J(w)| as the

cardinality of J(w), if |J(w∗)| < s and Assumption 4.3.1 holds with κTd = κTd(s),

then with probability at least 1− 2d1−2δ/5

|J(ŵ)| ≤ 64φ

κ2
Td

s (4.3.2)

If in addition κTd(2s) > 0, then with the same probability

1

T

T∑
t=1

‖w∗t − ŵt‖
2
2 =

1

T
‖w∗ − ŵ‖22 ≤

1280σ

κ4
Td(2s)

s

n

(
1 +

δ log d

T

)
. (4.3.3)

This theorem provides us with insight on the main factors that we need to

consider when building our approximations. From the bound we can clearly see

a direct dependence of the error on the number of nonzero features in the sparse

representation. This is expected, because, fixed everything else, if we need to estimate

more parameters we need additional information. This is clearly balanced by the

number of samples at the denominator. The κ constant plays a scaling role, where

better conditioned X matrices will result in larger constant, and therefore smaller

bound. A similar but inverse role is played by the variance of the noise, that can

increase the error. Both these quantities are difficult to estimate, and even more

difficult to control. Ultimately when the sparsity assumptions that are at the basis

of SFQI are met, they are just given constants.

The most important part of the bound is the δ log d
T . As expected, if we want to

increase our confidence, the error bound worsen. But what is most interesting is the

comparison of this bound with the equivalent result for LASSO, which to us is just

Group Lasso with T = 1. As we previously mentioned in Equation (3.2.1), LASSO

scales in the number of true features s and in the logarithm of total features log(d).

This bound on Group Lasso instead tells us that as long as the number of tasks

remains in the same order of magnitude as log(d), our error will remain more or less

constant. Of course introducing a new task means introducing n new samples to the

overall problem, and when samples are scarce this might be a problem. But as long as

we keep adding tasks, we can exponentially increase the number of features without

incurring the same problems that LASSO faces. One last remark is that although

introducing new tasks can compensate the addition of more features, we must not

forget that introducing a new task might increase the s factor, if the new task does

not share the same sparsity pattern as the rest of the group. This limitation is what

we seek to alleviate by learning a sparse representation, as we will see in Chapter 5.

4.4 Finite Time Bounds for Fitted Q Iteration under

Group Sparsity

We can now state the main result of this thesis regarding the optimality of the policies

obtained after K steps of Fitted Q Iteration with group regularization. We will
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modify the results from Section 4.2 to use the Q action-value function instead of the

V value function, and then derive some bound on the overall error committed at each

step by all tasks using Equation 4.3.3. This will give us an explicit formula in terms

of n, d and T that can help us guide when making choices in practical applications.

4.4.1 Performance Evaluation

As we mentioned in Section 2.1.5, and again in Section 4.1.1, the goal of a reinforce-

ment learning algorithm is to maximize the reward collected during its episodes,

taking into account a discount factor or an averaging constant if it is necessary. This

is well defined by the Jπ function and the various value functions, and is commonly

used as a measure of the quality of the policy. In a multi-task setting this simple

notion becomes more complex, because we are no longer evaluating a single task, but

need to take into account the performance of all the task simultaneously. We do not

expect SFQI to obtain an excellent performance in each of his tasks, since a single

task might be significantly harder than the others, or the scarcity of samples for that

task may be too strong for the group optimization to compensate. What we hope to

improve instead, is the average performance across all the tasks, to show that the

multi-task approach as an advantage on solving each task separately. Concretely,

what we will evaluate is the average distance from the optimal action-value function

Q∗t of the approximated value functions Qt

1

T

T∑
t=1

‖Q∗t −Q
πK
t ‖

2
2,µ .

4.4.2 Finite Time Average Bounds for SFQI

We will follow the same steps as in Section 4.2.2. The greatest difference is that

we are now working with state-action functions and not with state functions. Our

definition of the µ probability distributions and the linear operators P π need to

change to reflect this. First, we will define

µπ(x, a)
def
= µ(x)π(x, a) : X ×A → R.

The reason for this definition is that once we define the ‖·‖p,µπ of a function over

X ×A as

‖f‖pp,µπ =
∑
a

∫
x
|f(x, a)|pµπ(dx, a),

then we have that

‖V π‖µ = ‖Qπ‖µπ .

That is, in the shift from V functions to Q functions we need not only a reference

distribution over states, but a reference policy. We can then introduce two new
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operators, a right-linear operator P π : B(X × A) → B(X × A) and a left-linear

operator P π : S(X ×A)→ S(X ×A)

(P π1Q) (x, a) =

∫
y
P (dy|x, a)

∑
a′

π1(y, a′)Q(y, a′),

(µπP
π1) (dy, a′) =

∫
x

∑
a

µπ(dx, a)P (dy|x, a)π1(y, a′).

Again, intuitively the first operator corresponds to computing the expected value of

Q after executing one step under policy π1, while the second operator generates a

new µπ composed by a new µ, filtered through a single step of the model, in reference

with the new policy π1. We can easily introduce also the operators resulting from a

chain of transitions

(P π1P π2Q) (x, a) =

∫
y,z
P (dy|x, a)P (dz|y, π1(y))Q(z, π2(z)),

(µπP
π1P π2) (dz, a′) =

∫
x,y

∑
a

µπ(dx, a)P (dy|x, a)P (dz|y, π1(y))π2(z, a′)

where we allowed the policy π1, π2 to change between steps. It is straightforward

now to adapt Assumption 4.2.2

Assumption 4.4.1 (Discounted-average concentrability of future state distributions

w.r.t. a policy). Given ρπ, µπ and an arbitrary sequence of policies {πk}K1 , we assume

that the distribution ρP π1P π2 . . . P πK is absolutely continuous w.r.t. µ. Then we

assume that

c(K)
def
= sup

π
sup

π1...πK

∥∥∥∥d (ρπP
π1P π2 . . . P πK )

dµπ

∥∥∥∥
∞

(4.4.1)

satisfies

Cρπ ,µπ
def
= (1− γ)2

∑
m≥1

mγm−1c(m) < +∞.

Again this is a constraint on the growth rate of the ρ distribution’s deviation

after several steps of various policies. This time we evaluate a distribution in relation

to a policy, so we have to take the maximum deviation over all possible policies to

continue to have an upper bound. With the new definition of the P π operator, we

can again express the T π operator,

(T πQ)(x, a) = R(x, a) + γ(P πQ)(x, a). (4.4.2)

With this, Equation (4.2.4) and Equation (4.2.5) can be easily adapted to hold

Q∗ −QK ≤
K−1∑
k=0

γK−k−1(P π
∗
)K−k−1εk + γK(P π

∗
)K(Q∗ −Q0), (4.4.3)

Q∗ −QK ≥
K−1∑
k=0

γK−k−1(P πK−1P πK−2 . . . P πk+1)εk + γK(P πK−1P πK−2 . . . P π0)(Q∗ −Q0).

(4.4.4)
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and we obtain again the result of Theorem 4.2.3

Q∗ −QπK ≤ γ(I − γP πK )−1

{
K−1∑
k=0

γK−k
[
(P π

∗
)K−k + P πKP πK−1 . . . P πk+1

]
|εk|

+ γK+1
[
(P π

∗
)K+1 + P πKP πK−1 . . . P π0

]
|Q∗ −Q0|

}
. (4.4.5)

We are now ready to prove the main result of this chapter.

Theorem 4.4.2 (Finite Time Average Bounds for SFQI). For any number of steps

K, and under Assumption 4.4.1 and Assumption 4.3.1, then with probability at least

(1− 2d1−2δ/5)K we have

1

T
‖Q∗ −QπK‖22,ρπ

≤
[

2γ(1− γK+1)

(1− γ)2

]2 [
1

1− γK+1
Cµπ ,ρπC

1280σ

κ4
Td(2s)

s

n

(
1 +

δ log d

T

)
+

(1− γ)γK

1− γK+1
(2Qmax)2

]
.

(4.4.6)

Proof. We begin by reducing the notation, but this time we have to take into account

multiple tasks.

1

T

T∑
t=1

Q∗t −Q
πK
t ≤ 1

T

T∑
t=1

2γt(1− γK+1
t )

(1− γt)2

[
K−1∑
k=0

αtkAtk|εtk|+ αtKAtK |Q∗t −Q0
t |

]
,

with

αtk =
(1− γt)γK−k−1

t

1− γK+1
t

, for 0 ≤ k < K, and αtK =
(1− γt)γKt
1− γK+1

t

,

Atk =
1− γt

2
(I − γtP πKt )−1

[
(P π

∗
t )K−k + P πKt P

πK−1

t . . . P
πk+1

t

]
, for 0 ≤ k < K,

AtK =
1− γt

2
(I − γtP πKt )−1

[
(P π

∗
t )K+1 + P πKt P

πK−1

t . . . P π0t

]
.

We can then write

1

T

T∑
t=1

‖Q∗ −QπK‖22,ρπ =
1

T

T∑
t=1

∑
a

∫
x
ρπ(dx, a)|Q∗(x, a)−QπK (x, a)|2

≤ 1

T

T∑
t=1

∑
a

[
2γt(1− γK+1

t )

(1− γt)2

]2 ∫
x
ρπ(dx, a)

[
K−1∑
k=0

αtkAtk|εtk|+ αtKAtK |Q∗t −Q0
t |

]2

(x, a)

≤ 1

T

T∑
t=1

∑
a

[
2γt(1− γK+1

t )

(1− γt)2

]2 ∫
x
ρπ(dx, a)

[
K−1∑
k=0

αtkAtk|εtk|2 + αtKAtK |Q∗t −Q0
t |2
]

(x, a).
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We can bound |Q∗t − Q0
t | ≤ 2Qmaxt and under Assumption 4.4.1 we have ρπAtk ≤

(1− γt)
∑

m≥0 γ
m
t ct(m+K − k)µπ and obtain

1

T

T∑
t=1

‖Q∗ −QπK‖22,ρπ

≤ 1

T

T∑
t=1

[
2γt(1− γK+1

t )

(1− γt)2

]2
K−1∑
k=0

αtk(1− γt)
∑
m≥0

γmt ct(m+K − k)

∫
x

∑
a

µπ(dx, a)|εtk(x, a)|2 + αtK(2Qmax)2

]
.

And again using the definition of discounted average concentrability Cρπ ,µπ , we

introduce separate constants for each task Ct,ρπ ,µπ

1

T

T∑
t=1

‖Q∗ −QπK‖22,ρπ

≤ 1

T

T∑
t=1

[
2γt(1− γK+1

t )

(1− γt)2

]2 [
1

1− γK+1
t

Ct,µπ ,ρπ∫
x

∑
a

µπ(dx, a)|εtk(x, a)|2 +
(1− γt)γKt
1− γK+1

(2Qmax)2

]
.

(4.4.7)

If we could push in the summation over t, we could now exploit the group sparsity

assumption to finally bound the error across all tasks, but we cannot do so due to the

γ,Cρπ ,µπ terms that are task dependent. In this thesis we choose to simply take the

maximum across all tasks of these terms, to achieve a simpler bound. If the task are

similarly hard, then this is a reasonable choice. If one of the tasks has much worse

constants than the others, then it would be better to build some kind of weighted

average bound, and this is an interesting possibility for future development. After

taking the maximum we can push in the summation, and we just need to bound∫
x

∑
a µπ(dx, a)|εtk(x, a)|2. We rewrite it as

∫
x

∑
a µπ(dx, a) ‖εtk‖22 and exploiting

Equation (4.3.3) we obtain

∫
x

∑
a

µπ(dx, a) ‖εtk‖22 =
∑
a

∫
x
µπ(dx, a)

∥∥∥xT(w∗atk − ŵatk)
∥∥∥2

2

≤ max
a

∫
x
µ(dx)

∥∥∥xT(w∗atk − ŵatk)
∥∥∥2

2
.

We will now remove the subscript a, k since they are well defined, and introduce the
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subscript i to indicate the i-th component of a vector

∫
x
µ(dx)

∥∥∥xT(w∗t − ŵt)
∥∥∥2

2
=

∫
x
µ(dx)

( d∑
i=1

(xi(w
∗
ti − ŵti))

2

)1/2
2

=

∫
x
µ(dx)

d∑
i=1

(xi)
2(w∗ti − ŵti)2 ≤

∫
x
µ(dx)

(
d∑
i=1

x4
i

) 1
2
(

d∑
i=1

(w∗ti − ŵti)4

) 1
2

= C

(
d∑
i=1

(w∗ti − ŵti)4

) 1
2

.

Where we upper bounded
∫
x µ(dx)

(∑d
i=1 x

4
i

) 1
2

with a constant C. We will discuss

more later why this maximization is sensible. We now continue our proof with

d∑
i=1

(w∗ti − ŵti)4 ≤
d∑
i=1

(w∗ti − ŵti)4

+
d∑
i=1

d∑
j=16=i

(w∗ti − ŵti)2(w∗tj − ŵtj)2 =

(
d∑
i=1

(w∗ti − ŵti)2

)2

.

Therefore (
d∑
i=1

(w∗ti − ŵti)4

) 1
2

≤
d∑
i=1

(w∗ti − ŵti)2 = ‖w∗t − ŵt‖
2
2 .

Putting it all together and using Equation (4.3.3)

1

T

T∑
t=1

∫
x

∑
a

µπ(dx, a) ‖εtk‖22 ≤
1

T

T∑
t=1

C

(
d∑
i=1

(w∗ti − ŵti)4

) 1
2

≤ C 1

T

T∑
t=1

d∑
i=1

(w∗ti − ŵti)2 = C
1

T

T∑
t=1

‖w∗t − ŵt‖
2
2

≤ C 1280σ

κ4
Td(2s)

s

n

(
1 +

δ log d

T

)
.

We can plug this into Equation (4.4.7) to obtain Equation (4.4.6)

4.4.3 Remarks on SFQI

We will now proceed with a small discussion of the main implications of the derivation

of Equation (4.4.6).

First we clarify the assumption we introduced when we bounded
∫
x µ(dx)

(∑d
i=1 x

4
i

) 1
2
.

The main advantage of SFQI over a regular FQI algorithm is the possibility of having
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a number of features d that is exponential in the number of samples n. This is

reflected in the final bound, where the dependence in the number of samples is

logarithmic in d, but linear in C. There is a not so intuitive relationship between d

and C, in the fact that as d grows, the number of members in the summation over

d that makes up C grows. If the feature that are added are not carefully chosen,

this might imply that C grows linearly with d, defeating the purpose of SFQI. In

real applications however the features can be manipulated easily to maintain the C

number small everywhere, or at least in the areas of interest spanned by µ(dx). A

clear example is with discretization, where only a single feature, or a small subset of

soft discretized features, are active at the same time.

From the main result we can see that, as long as the initial hypotheses that each

of the Qtk(x) = xTw∗tk is satisfied, then our ability of reconstructing the original

vector does not depend on the shape of Qtk itself. Concretely, this means that our λ

could be set according only to the samples at our disposal, and not depending on

the particular iteration the approximation is in. But the main advantage of SFQI

to other, non multi-task methods, is surely the independence of the quality of the

solution from the number of dimension d, as long as the number of useful tasks at

our disposal grows linearly as d grows exponentially. This lets us overcome the limit

of standard Lasso techniques, where the maximum number of features that can be

introduced depend on the number of samples available for each task.

Lastly, another subtle interaction between this bound and the sample size comes

from the s factor. This factor quantifies the underlying real group sparsity, and

the number of samples needed grows linearly with s. This is reasonable since s

represent the true dimensionality of the problem. This also impose us constraints on

the addition of new tasks, since each new task added can in the worst case increase s

linearly, and therefore be detrimental to the learning process. One of the motivating

factor of the next chapter is exactly this problem. Since the number of samples

necessary grows linearly with the minimum lower dimensional representation, it

might be useful to learn such a lower dimensional representation, while at the same

time maintaining some similarities with the Group Lasso penalty. In Chapter 5

we will introduce a convex multi-task feature learning algorithm similar to Group

Lasso, and modifications to it to utilize the same penalties of Group Lasso in order

to have an exact extension of Group Lasso, that could provide theoretical guarantees

when used as a Group Lasso, and practical performance when solving the extended

problem.

As a comparison of our method with other regularized RL techniques, we can

easily see that in the case when T = 1, the bound reduces to something extremely

similar to the one described in Theorem 3.3.1. This is a logical consequence because

in our formulation of Group Lasso problem, a single task corresponds to a Lasso

problem, and a similar bound appears. It is interesting to notice that our bound

holds for any reference distribution that satisfies Assumption 4.4.1, so we are not
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limited to the empirical norm but have a generalization. This is at the expense of

using a stronger assumption on the data, Assumption 4.3.1, than the one used in

Theorem 3.3.1.

The other Fitted Value Iteration algorithm that we presented in Section 3.3.2

uses a non-parametric approximator, so a direct comparison is hard to formulate.

One advantage of the non-parametric setting is the weaker assumption needed for

the method to work well, due to the use of the Representer Theorem. On the other

hand, the representer theorem needs a regularized problem as its application, and

this includes the term λ in the bound. The main drawback is that we need a small

regularization to obtain a good non-parametric representation of the function, as

indicated by the (λmaxk=1,...,K ‖T ∗kQ0‖2K) term, but cannot lower the λ coefficient

too much due to the term

V 4
max

nλd/l
.

In particular, if we choose a small regularization when d is too large, and the function

to represent is not too smooth, this term explodes again with the dimensionality. In

our work we chose to restrict our class of approximator to linear combinations to

maintain a better interpretability, and to use a Multi-Task setting to avoid the curse

of dimensionality.





Chapter 5

Multi-Task Feature Learning

with Group Lasso penalties

In this chapter we will develop a novel optimization algorithm to compute an

extension of the Group Lasso problem, based on the convex multi-task feature

learning algorithm proposed in [1]. Our goal is to adapt the penalties in the original

algorithm to exactly reflect a Group Lasso penalty, in order to have a simpler way

to satisfy the theoretical results, while still retaining the possibility of learning a

feature representation that can improve the effects of the s factor on group sparsity

suggested by Equation (4.4.6).

5.1 Multi-Task Feature Learning

We introduce some additional notation for matrices classes. Od indicates the set of

all orthonormal matrices, while Sd+ the set of all symmetric, semi-definite positive

matrices, Sd++ for the definite positive ones.

In the original MTFL paper, the Group Lasso’s problem was extended to include

a feature learning objective, which resulted in the following problem

EMTFL(A,U) =
T∑
t=1

n∑
i=1

L(yti, 〈at, UTxti〉) + λ ‖A‖22,1 , (5.1.1)

min
{
EMTFL(A,U) : U ∈ Od, A ∈ Rd×T

}
. (5.1.2)

Here L is some convex loss, A is the matrix of regression variables that we commonly

call W , and U is an orthonormal matrix that represent the features learned. The

new features x′ = UTx are a linear combination of the original features. This

problem is not convex, although as we will see it is separately convex in both its

variables, and especially the minimization over U is not immediate. For this reason

the authors introduce an equivalent convex problem whose minimization results are

more practical.

73
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Figure 5.1: Visualization of group sparsity recovery using MTFL.

In the original paper no further consideration on the class of learned features is

done. To give a better understanding of the potential of MTFL we will explore the

potential transformation that can be obtained with this algorithm. In particular,

the matrices U that can be learned belong to the space of orthonormal matrices

Od. Because the matrices are orthonormal UUT = UTU = I, or in other words

all of their singular values are equal to 1. Therefore, their determinant will be 1

or -1. In linear algebra, orthogonal matrices with determinant 1 or -1 form the

orthogonal group, while the subset of matrices with determinant 1 form the so called

special orthogonal group. In lower dimensions, specifically for R2 and R3 these

groups can be intuitively associated with rotation and reflections. In particular the

special orthogonal group includes all possible transformations composed solely by

a rotation, sometimes referred to as proper rotations to distinguish them from the

rest of the orthonormal group of improper rotations composed by a rotation and

a reflection. The use of MTFL will therefore allow SFQI to be more adaptable to

these transformations, and recover a group sparse representation. The price of this

flexibility is the loss of theoretical guarantees. In particular it is not proved how

many samples are needed to correctly learn the matrix U . As we will see in the

experiments, the introduction of the U matrix in experiments where the data is

indeed rotated, improves performances, and the addition of more tasks seems to

counterbalance the difficulty of learning the transformation.

In practice, we expect MTFL to perform similarly to what is reported in Figure 5.1.

In the figure we show an initial matrix A, the non-sparse rotated equivalent UA, and

the recovered sparse matrix Â. In the case of SFQI, the rotation can happen both at

the level of the features, as well at the level of the parameters. In particular, given a

feature matrix X that can represent the target function in combination with a sparse

matrix A, a poor choice of features can result in the rotated matrix X ′ = XUT for

which the corresponding best representation is W = UA. A normal Group Lasso

method cannot easily find a good matrix W , because it is not sparse, while MTFL

can learn the right rotation U and obtain a good performance. This is for example

the case in the experiments performed in Section 6.4.
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5.1.1 Equivalent Problems

We will now skip all the formal proofs, in order not to duplicate the exposition when

we will need to follow the same pattern in the derivation of MTFL with Group Lasso

penalties. In [37] a series of equivalent problems are introduced, in order to obtain a

final problem with an efficient solution. The starting point is a dual formulation of

Equation (5.1.1)

CMTFL(W,D) =
T∑
t=1

n∑
i=1

L(yti, 〈wt, xti〉) + λ
T∑
t=1

〈wt, D+wt〉

=

T∑
t=1

n∑
i=1

L(yti, 〈wt, xti〉) + λ trace(WTD+W ) (5.1.3)

which, unlike Equation (5.1.1) is convex in its arguments, under certain assumptions.

This function, together with the assumptions, compose the formulation of Problem

(5.1.4)

min
{
CMTFL(W,D) : W ∈d×T , D ∈ Sd+, trace(D) ≤ 1,Ran(W ) ⊆ Ran(D)

}
. (5.1.4)

As we will see in the next section, the trace constraint is introduced to avoid the

matrix D+ to simply have infinite trace, eliminating the regularization term. The

range constraint instead is there due to the relationship between the optimal solutions

of the primal and dual problem. This constraint is hard to enforce, and therefore

gets substituted with a restriction of the space of matrices D from Sd+ to Sd++. Since

now the range of D is the whole Rd, the constraint is satisfied. Moreover, the matrix

D is now invertible, and we obtain Problem (5.1.5)

min
{
CMTFL(W,D) : W ∈d×T , D ∈ Sd++, trace(D) ≤ 1

}
. (5.1.5)

To solve this problem the original paper proposes an alternating minimization

algorithm, where at each step a so called W -step is performed to minimize the

regularized loss w.r.t. W , and then a D-step is performed to minimize the function

w.r.t. D. Intuitively this correspond to minimizing the objective function with

features fixed, and then use the new regression variables obtained to perform an

unsupervised learning step and learn the features. Regarding the D-step, we need

some way to guarantee that the D matrix will remain positive. For this reason the

authors introduce a perturbed version of CMTFL, and the final problem to be solved is,

Cε-MTFL(W,D) =

T∑
t=1

d∑
i=1

L(yti, 〈wt, xti〉) + λ trace(D−1(WWT + εId)), (5.1.6)

min
{
Cε-MTFL(W,D) : W ∈ Rd×T , D ∈ Sd++

}
. (5.1.7)

We can now report the Alternating Minimization algorithm Algorithm 5.1. Intuitively
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Algorithm 5.1 MTFL-original

input: Xt, Yt, λ, tol, ε, α

output: W,D

Initialize D = Id/d, k = 1

do

do

Wk−1 ←Wk

k ← k + 1

Wk ← arg minW Cε-MTFL(W,Dk−1)

Dk ←
(WkW

T
k +εId)

1
2

trace
(

(WWT+εId)
1
2

)
while ‖Wk −Wk−1‖2 ≥ tol and k < K

ε← αε

while ε > tol

the ε term plays the role of a barrier term, keeping the optimization away from a 0

trace D matrix with a trace(D−1) term, and keeping the D matrix definite positive.

Its presence is a perturbation of the original problem, and we decrease it over time

until it converges to the global optimum. Empirically, starting directly with ε = 0,

although as we will see it is not theoretically justified, still converges to the correct

solution. In the next section we will start to introduce the original adaptation of the

proof proposed in [1] to use a different penalty Ω, more similar to the Group Lasso

penalty.

5.2 Group Lasso Penalties

If we compare this problem to Group Lasso, we can quickly see that the solution

paths are similar, but with a not trivial relationship between them. If we restrict

Problem (5.1.2) to use the identity matrix as U , or in other words we do not learn

a new feature representation, we obtain a problem that is convex in A, but with

the regularization Ω(A) = ‖A‖22,1 that is the square of the Group Lasso penalty

Ω(A) = ‖A‖2,1. It is a known result of convex optimization that a necessary and

sufficient condition for the optimality of a solution is that the derivative of the

objective function in the solution must be null, or its subgradient must contain the

null vector. We can exploit this property to find the relationship between the two

problems. We will consider the case when U = I, which is the most similar to Group

Lasso, and ignore the contribution of the loss functions, since they are the same and

give the same contribution to the derivative. With λGL,W respectively a certain

regularization parameter value, and the associated Group Lasso solution, and λMTFL

the regularization parameter value that will make the MTFL solution coincide with
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W , we have

dλGL ‖W‖2,1
d ‖W‖2,1

=
dλMTFL ‖W‖22,1

d ‖W‖2,1
λGL = 2λMTFL ‖W‖2,1

λGL
2 ‖W‖2,1

= λMTFL. (5.2.1)

This means that if we compute the optimal solution to a MTFL problem without

learning the features, and tuning λMTFL with the value of a known solution to a

Group Lasso problem, we will get back to the same Group Lasso solution. In a setting

where the only way to choose λ is empirically, this is not too relevant, although it

can rise problems when λGL becomes large. In this case, the norm ‖W‖2,1 shrinks,

further increasing the magnitude of λMTFL, and choosing the possible candidates

for a cross validation test becomes harder. Moreover, if the choice of λ is guided by

some prior information, such as knowing ranges that work well for Group Lasso, or

by theoretical analysis then this highly non linear relationship can be detrimental.

Because the relationship between the solutions depends on the norm of the optimal

solution, and that, in turn, depends on the data, it is hard to relate the solutions of

MTFL and Group Lasso. In the previous Chapter we made use of several results

from the Group Lasso theoretical analysis, in particular it is not so immediate to

extend Theorem 4.3.2 to this new penalty. For this reason we decided instead to

change the optimization algorithm’s penalty to resemble the Group Lasso penalty

more closely. In the following we will provide a modified proof, with the same outline

as in [1], but solving several issues in the proof in an original way. Formally, we are

going to describe a method to minimize the following problem

E(A,U) =
T∑
t=1

n∑
i=1

L(yti, 〈at, UTxti〉) + λ ‖A‖2,1 , (5.2.2)

min
{
E(A,U) : U ∈ Od, A ∈ Rd×T

}
. (5.2.3)

5.2.1 Equivalent Problems

We begin by introducing several different equivalent formulations for Problem (5.2.3),

in order to find an equivalent formulation that can be efficiently solved. The first

equivalent formulation we propose is

C(W,D) =
T∑
t=1

n∑
i=1

L(yti, 〈wt, xti〉) + λ

(
T∑
t=1

〈wt, D+wt〉

) 1
2

=
T∑
t=1

n∑
i=1

L(yti, 〈wt, xti〉) + λ
(

trace(WTD+W )
) 1

2
. (5.2.4)
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The main difference between Equation (5.1.3) and this formulation is the presence of

a square root term in the penalty term. We will now see how this difference, in the

context of the minimization problem

min
{
C(W,D) : W ∈d×T , D ∈ Sd+, trace(D) ≤ 1,Ran(W ) ⊆ Ran(D)

}
(5.2.5)

can result in an equivalent problem to an extension of Group Lasso. First we

introduce a lemma

Lemma 5.2.1. For any b = (b1, . . . , bd) ∈ Rd such that bi 6= 0, i ∈ Nd, we have that

min


(

d∑
i=1

b2i
σi

) 1
2

: σi > 0,
d∑
i=1

σi ≤ 1

 = ‖b‖1

and the minimizer is σ̂i = |bi|
‖b‖1 .

Proof. From the Cauchy-Schwarz inequality

‖b‖1 =
d∑
i=1

σ
1
2
i σ
− 1

2
i bi

≤

(
d∑
i=1

(σi)
1
2

2

) 1
2
(

d∑
i=1

σ
− 1

2
2

i b2i

) 1
2

≤

(
d∑
i=1

σ−1
i b2i

) 1
2

.

The minimum is reobtained when the equality is valid, which is satisfied by σi = |bi|
‖b‖1(

d∑
i=1

σ
− 1

2
2

i b2i

) 1
2

=

(
‖b‖1

d∑
i=1

b2i
|bi|

) 1
2

= (‖b‖1‖b‖1)
1
2 = ‖b‖1.

We can now formally prove that

Theorem 5.2.2. Problem (5.2.3) is equivalent to Problem (5.2.5), in particular if

(Â, Û) is an optimal solution of (5.2.3), then

(Ŵ , D̂) =

Û Â, Û Diag

(
‖âi‖2
‖Â‖2,1

)d
i=1

ÛT


is an optimal solution of (5.2.5)
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Proof. Given a feasible solution of Problem (5.2.5) (W,D), let D = U Diag(σi)
d
i=1U

T

be an eigendecomposition and A = UTW . Then

(
trace(WTD+W )

) 1
2

=
(

trace
(

Diag(σ+
i )di=1AA

T
)) 1

2
=

(
d∑
i=1

σ+
i ‖a

i‖22

) 1
2

.

If σi = 0 for any eigenvalue, then ui ∈ null(D) and by the range constraint and

A = UTW we can deduce ai = 0 and exclude i from the summation. Therefore by

Lemma 5.2.1:

(
d∑
i=1

σ+
i ‖a

i‖22

) 1
2

=

 d∑
ai 6=0

‖ai‖22
σi

 1
2

≥

 d∑
ai 6=0

‖ai‖2

2
1
2

= ‖A‖2,1

and E(A,U) ≤ C(W,D). If we apply the definition of σi proposed in Lemma 5.2.1,

we see the infimum is attained, and we obtain the relationship between the optimal

solutions of the two problems. Therefore the minimum of Problem (5.2.3) does not

exceed the minimum of Problem (5.2.5). Conversely, suppose (A,U) is feasible for

Problem (5.2.3). We let W = UA and D = U Diag
(
‖ai‖2
‖A‖2,1

)d
i=1

UT. Then

(
trace(WTD+W )

) 1
2

=
(

trace(ATUTU Diag(‖ai‖+2 ‖A‖2,1)UTUA)
) 1

2

= (‖A‖2,1 trace(Diag(‖ai‖+2 )AAT))
1
2

= (‖A‖2,1
d∑
i=1

‖ai‖+2 ‖a
i‖22)

1
2

= (‖A‖2,1‖A‖2,1)
1
2

= ‖A‖2,1.

Therefore C(W,D) = E(A,U), and the two problems have the same minimum.

This proof shows that the constraints are needed due to the presence of the

pseudo inverse of D. Concretely, its presence forces us to impose a trace constraint,

to avoid the possibility of setting σi =∞ obtaining a 0 penalty term. Similarly, if

the range of W is not contained in the range of D then we can construct a D such

that W = D0 and therefore D+W = 0, again erasing the penalty term. A simple

way to resolve this problem is to restrict the space of possible D matrices, at the

expense of having to substitute the minimum with an infimum, since now solution

with σi = 0 will be only limiting points, and not part of the solution space. We

obtain a new problem formulation, and the following corollary
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Corollary 5.2.3. Problem (5.2.5) is equivalent to

inf
{
C(W,D) : W ∈d×T , D ∈ Sd++, trace(D) ≤ 1

}
. (5.2.6)

A sequence that minimizes (5.2.6) converges to a minimum of Problem (5.2.5).

Proof. From Theorem 5.2.2 and the fact that the minimum is attained.

To guarantee that the D matrix remains definite positive we again reintroduce

a perturbed version of the C function. Moreover, since we will use it in the rest of

the derivations, we substitute the generic convex loss function with the squared loss

function, and obtain

Cε(W,D) =
T∑
t=1

n∑
i=1

(yti − 〈wt, xti〉)2 + λ
(

trace(D−1(WWT + εId))
) 1

2
:

W ∈ Rd×T , D ∈ Sd++. (5.2.7)

and the final problem that we will solve

inf
{
Cε(W,D) : W ∈ Rd×T , D ∈ Sd++, trace(D) ≤ 1

}
. (5.2.8)

We diverge now from the original proof, due to the differences in the formulations.

In the original paper the optimization Problem (5.2.6) is convex, and is solved with

the alternating minimization Algorithm 5.1. Due to the presence of the square root

term in our formulation, this is not the case anymore. In the following sections

we will show how a modified version of the alternating minimization algorithm can

still obtain the global minimum, thanks to the fact that the function are separately

convex, and that the penalty term is equivalent to a convex penalty.

5.2.2 Alternating Minimization Algorithm

We will now reintroduce the alternating minimization algorithm, see Algorithm 5.1

to take into account the different penalty. As we will see in the next sections, while

the D-step remains unchanged, we will need to modify the W -step. We will leave the

details of the W -step minimization for the last section, and will instead now focus on

deriving again the formula for the D-step and prove the convergence to the global

optimum of the algorithm.

5.2.3 Feature Learning Step

We will now introduce the D-step for the objective function Cε. As we will see, it is

a convex optimization problem, and the minimum is attained with the same solution

as Cε-MTFL
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Algorithm 5.2 MTFL-GL

input: Xt, Yt, λ, tol, ε, α

output: W,D

Initialize D = Id/d, k = 1

do

do

Wk−1 ←Wk

k ← k + 1

Wk ← arg minW Cε(W,Dk−1)

Dk ←
(WkW

T
k +εId)

1
2

trace
(

(WWT+εId)
1
2

)
while ‖Wk −Wk−1‖2 ≥ tol and k < K

ε← αε

while ε > tol

Theorem 5.2.4. The minimization of D-step of Algorithm 5.2 is attained with

Dε(W ) =
(WWT + εId)

1
2

trace
(

(WWT + εId)
1
2

) .
Proof. We set C ∈ Sd+ = (WWT + εId) We can quickly check that the minimization

problem

min
{(

trace(D−1C)
) 1

2 : D ∈ Sd++, trace(D) ≤ 1
}

is convex by taking the derivative of the function w.r.t. to D two times. We follow

standard derivations, refer to [39]

∂

∂D
= −1

2

(
trace(D−1C)

)− 1
2 D−1CD−1,

∂

∂′′D
= −1

4

(
trace(D−1C)

)− 3
2 D−1CD−2CD−1 +

(
trace(D−1C)

)− 1
2 D−1CD−2,

=
(
trace(D−1C

)− 1
2 D−1CD−2

(
I − CD−1

4 trace(CD−1)

)
,

and since the second D and C matrix are d.p., and the last term is d.p. because it is

the difference of an identity matrix minus a matrix with a less than 1 trace, the second

derivative is strictly positive. If we substitute D = U Diag(σ)UT, U ∈ Od, σ ∈ Rd++,

we can then minimize w.r.t. σ and U . First, we find the infimum over σ with an
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application of Lemma 5.2.1

inf

{(
trace

(
C

1
2U Diag(σ)−1UTC

1
2

)) 1
2

: σi ∈ Rd++,
d∑
i=1

σi ≤ 1

}

= inf


(

d∑
i=1

σ−1
i ‖C

1
2ui‖22

) 1
2

: σi ∈ Rd++,
d∑
i=1

σi ≤ 1


=

(
d∑
i=1

‖C
1
2ui‖2

)
= ‖UTC

1
2 ‖2,1.

We will now minimize w.r.t. U

inf
{
‖UTC

1
2 ‖2,1 : U ∈ Od

}
= trace(C

1
2 ).

To show that the minimizing U is composed of eigenvectors of C, we need to show

that the trace(·) operator is an inner product associated with the vector space of

square matrices. This is easily shown, as the axioms required for a map to be an

inner product are satisfied by the trace

trace(AB) = trace(BA) symmetry,

trace(aAB) = a trace(BA)

trace((A+B)C) = trace(AC) + trace(BC) linearity in the first argument,

trace(AA) ≥ 0

trace(AA) = 0⇒ A = 0 positive definiteness.

Using 1 = trace(uTi ui) = trace(uiu
T
i ) and similarly uTi ui = uiu

T
i uiu

T
i we can write

‖C
1
2ui‖2 =

(
trace(uTi C

1
2C

1
2ui)

) 1
2

=
(

trace(C
1
2uiu

T
i C

1
2 )
) 1

2
(

trace(uiu
T
i )
) 1

2

=
(

trace(C
1
2uiu

T
i uiu

T
i C

1
2 )
) 1

2
(

trace(uiu
T
i uiu

T
i )
) 1

2

≥
((

trace(C
1
2uiu

T
i uiu

T
i )
) 1

2
(

trace(C
1
2uiu

T
i uiu

T
i )
) 1

2

)
=

((
trace(C

1
2uiu

T
i uiu

T
i )
) 1

2

)2

= trace(C
1
2uiu

T
i ) = uTi C

1
2ui.

Where the inequality is an application of the Cauchy-Schwarz Theorem using the

trace as an inner product. The Cauchy-Schwarz inequality is always strict except

when ui is an eigenvector of C
1
2 , in that case uTi C

1
2ui = a, and the minimum is

attained. Therefore C and D will have the same eigenvectors. D’s eigenvalues are
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decided by the minimization of Lemma 5.2.1, namely σi = ‖C
1
2 ui‖2

‖UTC
1
2 ‖2,1

, constant, so

at the minimum D will have the same eigenvalues and eigenvectors of C, with the

eigenvalues normalized to 1. The minimizer will therefore be a normalized version of

C and the minimum value will be

trace(D−1C)
1
2 = trace

 C
1
2

trace
(
C

1
2

)
−1

C

 =
(

trace(C
1
2 ) trace(C−

1
2C)

) 1
2

=
(

trace(C
1
2 ) trace(C

1
2 )
) 1

2
= trace(C

1
2 ).

Similar reasoning can be made to obtain the same results with

min
{(

trace(D+C)
) 1

2 : D ∈ Sd+, trace(D) ≤ 1,Ran(C) ⊆ Ran(D)
}
.

The difference is that, when we apply Lemma 5.2.1 we exclude from the summations

all the i whose ‖C
1
2ui‖2 = 0, and all the other σi are guaranteed to be non-zero from

the range constraint.

From this proof, when we are not learning features, and therefore the matrix D

is constrained to be diagonal, we can derive the following corollary

Corollary 5.2.5. The minimization of D-step of Algorithm 5.2, when the matrix D

is constrained to be diagonal, is attained with

Dε(W ) = Diag

(
‖wi‖ε
‖W‖ε,1

)d
i=1

.

Proof. We follow the same steps as in the previous proof when minimizing over σ,

but we cannot minimize over U since it is constrained to be the identity matrix. We

only need to apply the definition of σi from Lemma 5.2.1 σi = ‖C
1
2 ui‖2

‖UTC
1
2 ‖2,1

, where now

the ui vectors are indicator vectors, to prove the corollary.

5.2.4 Global Optimality

We will now consider the case of function C, and prove that the minimum found by

the alternating minimization algorithm is indeed the global minimum. Although

the function itself is not convex, it is separately convex, but more importantly the

minimization over D involves only the penalty term, and has a closed form solution

that we can substitute. A similar setting is described in [37] where the authors

analyze a whole family of regularized functions that have a penalty in the form of

Ω(W ) = inf {Γ(W,σ) : σ ∈ Σ} ,
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where Γ is a convex function over Σ, a convex subset of Rd. In our different case

Γ(W,D) =
(

trace
(
D−1(WWT + εId)

)) 1
a
,

and taking the infimum and setting ε = 0, after substituting the definition of D from

Theorem 5.2.4 we obtain

T∑
t=1

n∑
i=1

(yti, 〈wt, xti〉)2 + λ

trace

 (WWT + εId)
1
2

trace
(

(WWT + εId)
1
2

)
−1

(WWT + εId)


1
2

=
T∑
t=1

n∑
i=1

(yti, 〈wt, xti〉)2 + λ
(

trace
(

(WWT + εId)
1
2

)
trace

(
(WWT + εId)

1
2

)) 1
2

= Sε(W ) =

T∑
t=1

n∑
i=1

(yti, 〈wt, xti〉)2 + λ trace
(

(WWT + εId)
1
2

)
. (5.2.9)

This penalty is equivalent to a spectral penalty on the singular values σi of the W

matrix, and we will prove in the next section that is a convex function. Since this is

now a convex optimization, a necessary and sufficient condition for its optimality

is that its derivative is null in the optimum. Given matrices (Wk, DK) at iteration

k, computed according to Algorithm 5.2 we can have two situations. If the Wk

is not optimal the derivative of the convex function (5.2.9) is not zero. Therefore

we will have Wk+1 6= Wk and the algorithm will continue in its iterations. Since,

as we will see in the next section, at each step the value of the objective function

decreases, we will not consider the couple (Wk, Dk) again. If instead Wk is optimal,

then Wk+1 = Wk. Therefore also Dk+1 = Dk and we will terminate. In other words,

we cannot terminate in a local optima, because the couple (Wk, Dk) allows us to

compute the true gradient of a convex function at each step. Another interpretation

of the alternating minimization algorithm is a gradient descent in the Wk space,

where at each step a Dk matrix is computed to obtain the gradient. In the next

section we will prove that the objective function decreases with each consecutive

application of D-steps and W -steps. Therefore instead of setting a stepsize for the

gradient update, the alternating minimization algorithm simply minimizes each step

as much as possible. We will now prove that the algorithm always converges to the

minimizer of Problem (5.2.5)

5.2.5 Convergence

This section covers the main result of this chapter, the convergence of Algorithm 5.2

to a minimizer of Problem (5.2.5), and from there to a minimizer of Problem (5.2.3).

In particular we want to prove the following two theorems

Theorem 5.2.6. For every ε > 0 the sequence {(Wk, Dε(Wk)) : k ∈ NK} converges

to the minimizer of Problem (5.2.8).
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Since Problem (5.2.8) reduces to (5.2.6) when ε→ 0, and then (5.2.6) converges

to (5.2.5), we can state the following result.

Theorem 5.2.7. Consider the sequence of functions {Cε` : ` ∈ N} such that ε` → 0

as `→∞. Any limiting point of the minimizer of the sequence, under the constraints

of Problem (5.2.8), is an optimal solution to (5.2.5).

Proof of Theorem 5.2.6 and Theorem 5.2.7. For convenience we remind

Sε(W ) = Cε(W,Dε(W )) =

T∑
t=1

n∑
i=1

(yti, 〈wt, xti〉)2 + λ trace
(

(WWT + εId)
1
2

)
.

We also define a formalization of the W -step,

gε(W ) = min
{
Cε(V,Dε(W )) : V ∈ Rd×T

}
.

Since Sε(W ) = Cε(W,Dε(W )) and Dε(W ) = min Cε(W, •) we can derive:

Sε(W(k+1)) ≤ gε(W(k)) ≤ Sε(W(k)). (5.2.10)

We can also show that Sε has a unique minimum.

Proposition 5.2.8. Sε is strictly convex for every ε > 0

Proof. The term trace
(

(WWT + εId)
1
2

)
can be seen as a spectral operator, and a

convex one. Given a singular value decomposition UΣV T = W

f(σ) = trace
(

(WWT + εId)
1
2

)
= trace

(
((U Diag(σ)V T(U Diag(σ)V T)T + εId)

1
2

)
= trace

(
((U Diag(σ)V T(V Diag(σ)UT) + εUIdU

T)
1
2

)
= trace

(
((U(Diag(σ)2 + εId)U

T))
1
2

)
=

d∑
i=1

(
σ2
i + ε

) 1
2 .

To prove that f(σ) is convex, we compute the Hessian, beginning with the gradient

∂f(σ)

∂σi
=

σi

(σ2
i + ε)1/2

.

Since already the first derivative depends only on σi, the Hessian will be a diagonal

matrix with diagonal

∂f(σ)

∂2σi
=

1

(σ2
i + ε)1/2

(
1− σ2

i

σ2
i + ε

)
,

which is strictly positive for ε > 0. Therefore the Hessian will be d.p. and the

function is strictly convex.
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For the convergence of Algorithm 5.2, we also need some guarantees on gε.

Lemma 5.2.9. The function gε is continuous for every ε > 0.

Proof. We will proceed by proving that a more general function

Gε(D) = min Cε(W,D) : V ∈ Rd×T , D ∈ S++ (5.2.11)

is continuous. To do this we will follow a similar approach as in [2]. First we rewrite

Cε(W,D) to be a function of a vector w and not on a matrix W , similarly to what we

did in Section 4.3. We build again a new X matrix, which is a block diagonal matrix

with all the data matrices Xt on the diagonal, a vector Y with all the response vector

stacked, and a matrix D which is again block diagonal with T copies of the D matrix

on the diagonal. We also introduce the ε trace(D−1) = εD term, to have a shorter

notation. We can then formulate

Cε(w,D) = (Y −Xw)T(Y −Xw) + λ
(
wTD

−1
w + εD

) 1
2
.

We need now to prove that the minimum of this function is continuous w.r.t. to

D. We begin to characterize the minimum in terms of a generic loss function L(w).

Since D ∈ Sd++, the vector c = D
−1
w is uniquely identified and w = Dc. We can

then introduce the regularized loss function

Lλ(D) = min
{
L(Dc) + λ(cTDc+ εD)

1
2 : c ∈ RTd

}
This is a regularized problem with a weighted norm as its regularization, when the

matrix inducing the norm is d.p., as in our case, this problem is convex in c if the loss

itself L is convex. A convex function L admits a Legendre-Fenchel transformation

L∗, and the following relationships hold

L(w) = sup
{
wTv − L∗(v) : v ∈ RTd

}
,

L∗(v) = sup
{
wTv − L(w) : w ∈ RTd

}
.

If the loss L(w) is bounded from below, such as a square loss, then L∗(0) =

− inf
{
L(w) : w ∈ RTd

}
<∞. We can now define

h(c, v) = vTKc− L∗(v) + λ(cTDc+ εD)
1
2 ,

V = {v : L∗(v) <∞, v ∈ RTd}

and by applying Von Neumann minimax Theorem [2] we can write

Lλ(D) = min
{
L(Dc) + λ(cTDc+ εD)

1
2 : c ∈ Rm

}
= min

{
sup

{
cTDv − L∗(v) + λ(cTDc+ εD)

1
2 : v ∈ V

}
: c ∈ Rm

}
= sup

{
min

{
cTDv + λ(cTDc+ εD)

1
2 : c ∈ Rm

}
− L∗(v) : v ∈ V

}
.
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We have now to characterize min
{
wTv + λ(cTDc+ εD)

1
2

}
for a given v. First we

pass through two variable substitutions. Since the D arises from the d.p. matrix D,

the terms D
1
2 is well defined. Let D = UEUT be an eigendecomposition, then we

introduce c′ = E
1
2UTc and v′ = E

1
2UTv. The minimization problem can be rewritten

as

min
{
v′Tc′ + λ(c′Tc+ εD)

1
2

}
.

This problem is convex, and the regularizer is smooth, thus a necessary and sufficient

condition for the minimum to exist is the nullity of the derivative.

v′ + λ
c′

(c′Tc′ + εD)
1
2

= 0.

We can easily see that the vector to minimize c′ is normalized by its denominator, and

to obtain the null vector we need the c′ vector to approximate −v′. The normalization

depends on λ and ε, thus we introduce α ∈ R+, substitute c′ = −αv′ and rewrite

the equation as

v′ − λ αv′

(α2v′Tv′ + εD)
1
2

= 0

v′ = λ
α

(α2v′Tv′ + εD)
1
2

v′

1 = λ
α

(α2v′Tv′ + εD)
1
2

1 = λ2 α2

(α2v′Tv′ + εD)

α2v′Tv′ + εD = λ2α2

α2 =
εD

λ2 − v′Tv′
.

If λ2 < v′Tv′, then α2 < 0 which is impossible for real numbers. Therefore for

a solution to exists we have λ2 ≥ v′Tv′. The case λ2 = v′Tv′ is again unfeasible.

It follows that the only way to have a solution is to have λ2 > v′Tv′ = vTDv.

Geometrically, this translate into having the v vector inside the open ellipsoid defined

by D and its radius λ2. This can be interpreted as an underlying constraint on

the outer maximization problem, because if the inner problem does not have a null

derivative in some point, then it is convex and unbounded, and its objective value

will be −∞. Since the vector v = 0 satisfies the inequality, and produces a solution

with an objective function greater than −∞, the solution of the outer problem v

will never lie outside or on the surface of the ellipsoid, even without any explicit
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constraint. We can now compute the objective of the inner problem in terms of v,

−
(

εD

λ2 − ‖v′‖2

) 1
2

‖v′‖2 + λ

(
εD

λ2 − ‖v′‖2
‖v′‖2 + εD

) 1
2

= −
(

εD

λ2 − ‖v′‖2

) 1
2

‖v′‖2 +

(
λ2εD‖v′‖2

λ2 − ‖v′‖2
+

(λ2 − ‖v′‖2)λ2εD

λ2 − ‖v′‖2

) 1
2

= −
(

εD

λ2 − ‖v′‖2

) 1
2

‖v′‖2 +

(
(λ2‖v′‖2 − λ2‖v′‖2 + λ4)εD

λ2 − ‖v′‖2

) 1
2

=

(
εD

λ2 − ‖v′‖2

) 1
2

(λ2 − ‖v′‖2) =
(
εD(λ2 − ‖v′‖2)

) 1
2 =

(
εD(λ2 − vTDv)

) 1
2
.

By substituting the optimal value of α, and using the definition of the Legendre-

Fenchel dual function of the square loss

L(w) = ‖w − y‖2, L∗(v) =
1

4
‖v‖2 + yTv.

The outer optimization becomes

Lλ(D) = sup

{(
εD(λ2 − vTDv)

) 1
2 − 1

4
‖v‖2 − yTv : vTDv < λ2

}
.

We can see that the objective function is continuous, and we can also prove that

optimization problem is concave, as a sum of concave functions. −‖v‖2 − yv is

concave, and we can show that f(v) = (λ2 − vDv)
1
2 has a negative Hessian. To do

this we compute a generic xHx and prove that it is always negative

∂f(v)

∂vi
=

D
i
v

(λ2 − vTDv)
1
2

,

Hi,j =
∂f(v)

∂vi∂vj
= − Di,j

(λ2 − vTDv)
1
2

− D
i
vD

j
v

(λ2 − vTDv)
1
2

,

xHx =
∑
i,j

Hi,jxixj = − xTDx

(λ2 − vTDv)
1
2

− xTDvvTDx

(λ2 − vTDv)
1
2

< 0.

For the next result, we first need to introduce the following result

Lemma 5.2.10. For any function f(x, y), continuous in x and concave in y, then

g(x) = maxy f(x, y) is continuous in x.

Proof. From the definition of continuity

∀e ∃δ : |x1 − x2| < δ ⇒ |g(x1)− g(x2)| < e.
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We have g(x1) = f(x1, y1), g(x2) = f(x2, y2), where y1, y2 are the optimal solutions

of the maximization problem. By adding and subtracting mixed terms

|f(x1, y1)− f(x2, y1) + f(x2, y1)− f(x1, y2) + f(x1, y2)− f(x2, y2)| ≤
|f(x1, y1)− f(x2, y1)|+ |f(x2, y1)− f(x1, y2)|+ |f(x1, y2)− f(x2, y2)| ≤ e.

Since f is continuous in x, the first and third term can be bounded in term of

δ. To bound the second term first we assume f(x2, y1) > f(x1, y2), and since

f(x2, y2) ≥ f(x2, y) ∀y because of the convexity and the definition of g we derive

f(x2, y1)− f(x1, y2) ≤ f(x2, y2)− f(x1, y2) < e

due to the continuity of f . A symmetrical derivation can be followed if f(x2, y1) <

f(x1, y2).

Using Lemma 5.2.10, we can prove that Lλ(D) is indeed continuous in D. We only

need to be careful since the two functions Lλ(D1), Lλ(D2) have to follow restrictions

in the solutions based on their arguments. Due to the fact that the feasible region is

open, we can guarantee that when |D1 −D2| < δ then the optimal solutions v1, v2

are feasible for both problems. Formally we want to prove that vT1 D2v1 < λ2. Since

the ellipsoid is open vT1 D1v1 + e = λ2 for some small value e. we can then write

vT1 D2v1 − vT1 D1v1 < e,

vT1 (D2 −D1)v1 < e,

which is satisfied when δ is small enough.

We can now prove Theorem 5.2.6. By Equation (5.2.10) the sequence {Sε(Wk)

: k ∈ N} is nonincreasing, and is bounded by the loss function from below. As n→∞,

Sε will converge to some value S̃ε. Since the loss is bounded, and {Sε(Wk)} as a whole

is bounded, we can also deduce that the sequence
{

trace
(

(WkWk
T + εId)

1
2

)
: k ∈ N

}
is bounded, and therefore {Wk : k ∈ N} is bounded too. Hence there must be a

subsequence
{
W(k`) : ` ∈ N

}
which is convergent and whose limit we denote as W̃ . We

can now adapt Equation (5.2.10) to show that Sε(W(k`+1)) ≤ gε(W (k`)) ≤ Sε(W(k`)),

and therefore gε(W(k`)) converges to S̃ε. Thus, by the continuity of Sε and gε,

gε(W̃ ) = Sε(W̃ ). By the definition of gε, gε(W̃ ) is the minimum value Cε(•, Dε(W̃ ))

can take, and it is equal to S̃ε. Therefore W̃ is the minimizer of Cε(•, Dε(W̃ )).

Moreover Dε(W̃ ) is the minimizer of Cε(W̃ , •), subject to the constraints of Problem

(5.2.8). Since the regularizer in Cε is smooth any directional derivative of Cε is

the sum of its directional derivatives w.r.t. W and D [54]. Hence (W̃ ,Dε(W̃ ))

is the minimizer of Cε. Moreover since the sequence {Wk : k ∈ N} is bounded, it

converges to it as a whole and not only as a subsequence. To prove Theorem 5.2.7,

we let (W`k , Dε`k
(W`k)) be a limiting subsequence of the minimizers of {Cε` : ` ∈ N}.
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As k → ∞ the subsequence approaches its limit (W̃ , D̃). From the definition of

Sε, we can see that the function is decreasing in ε, and as ε → 0 it converges to

S = min {S0(W )}. Because Sε is continuous in both ε and W , and Sε`n → S, we

obtain that S0(W̃ ) = S.

5.2.6 Loss Minimization Step

Since we have proved that the algorithm converges to the global solution, we need

now a method to actually compute the W -step in order to run the algorithm. We

start by remarking that the problem

Cε(W,D) =
T∑
t=1

n∑
i=1

(yti − 〈wt, xti〉)2 + λ
(

trace(WTD−1W ) + ε trace(D−1)
) 1

2

is convex in W . Since this is a convex problem, we can use any off the shelf

minimizer to solve it, but generic solver, even when they have information regarding

derivatives, can be slow. For this reason we exploit the convexity, and again look

for the solution that corresponds to the null derivative. First we perform again

change of variables, introducing the matrices X,Y,D, the vector w and substituting

v = D
−1/2

w,X = XD
1/2
, εD = ε trace(D−1). We obtain

Cε(v,D) =
∥∥Y −Xv∥∥2

2
+ λ(vTv + εD)

1
2 .

By taking the derivative w.r.t. v

2X
T
Xv + λ

v

(vTv + εD)
1
2

− 2X
T
Y = 0.

Again, we could take the norm of the left hand side, and since it is a convex problem,

we could minimize it with off the shelf solvers. But another technique that proved

to work well, makes use of a single Singular Value Decomposition for each task,

and then needs only to solve a scalar iterative problem, followed by a single matrix

inversion. We know that the problem is convex, but we will now show that it is

strictly convex. A sufficient condition for strict convexity is that the Hessian is d.p..

To compute the Hessian

∂Cε(v,D)

∂vi
=
∑
n

−2xniyn + 2
∑
j

xnixnjvj + λ
vi

(
∑

j v
2
j + εD)1/2

,

∂2Cε(v,D)

∂vi∂vj
=
∑
n

2
∑
j

xnixnj −
λ

2

vivj

(
∑

z v
2
z + εD)3/2

,

∂2Cε(v,D)

∂2vi
=
∑
n

2
∑
j

xnixnj − λ
(

1

(
∑

z v
2
z + εD)1/2

− v2
i

2(
∑

z v
2
z + εD)3/2

)
,

H = 2XTX +
λ

(vTv + εD)1/2

(
I − vvT

2(vTv + εD)1/2

)
.
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which is defined for all v, and its strictly d.p.. The function will therefore have a

unique global minimum, which will satisfy the null derivative equation. We can then

introduce the Cε operator

Cεv = (2X
T
X +

λ

(vTv + ε)1/2
I)−12X

T
Y.

We can now express the operator better in terms of a singular value decomposition

X = UΣV T

v∗ = (2X
T
X +

λ

(v∗Tv∗ + ε)1/2
I)−12X

T
Y

v∗ = (2V ΣUTUΣV T +
λ

(v∗Tv∗ + ε)1/2
I)−12XY

v∗ = (2V Σ2V T +
λ

(v∗Tv∗ + ε)1/2
V V T)−12XY

v∗ =

(
V Diag

(
2σ2

i +
λ

(v∗Tv∗ + ε)1/2

)d
i=1

V T

)−1

2XY

v∗ =

V Diag

(
(v∗Tv∗ + ε)1/2

2σ2
i (v
∗Tv∗ + ε)1/2 + λ

)d
i=1

V T

 2XY.

We are now going to prove that v∗ can be obtained by successive applications of

Cε. If we consider a perturbation v+, v− such that ‖v+‖2 = ‖v∗‖2 + ε > ‖v∗‖2 or

‖v−‖2 = ‖v∗‖2 − ε < ‖v∗‖2, then

‖v∗‖2 ≤ ‖Cεv
+‖2 < ‖v+‖2,

‖v−‖2 < ‖Cεv−‖2 ≤ ‖v∗‖2 .

Now defining bi = vTi 2XY and exploiting the fact that

‖v∗‖2 = ‖Cεv∗‖2 =

∑
i

((
(v∗Tv∗ + ε)1/2

2σ2
i (v
∗Tv∗ + ε)1/2 + λ

)
bi

)2
1/2

,

we can derive

‖Cεv+‖22 =
∑
i

((
(v+T

v+ + ε)1/2

2σ2
i (v

+Tv+ + ε)1/2 + λ

)
bi

)2

=
(v+T

v+ + ε)

(v∗Tv∗ + ε)

∑
i

(v∗Tv∗ + ε)

(2σ2
i (v

+Tv+ + ε)1/2 + λ)2
b2i

<
(v+T

v+ + ε)

(v∗Tv∗ + ε)

∑
i

(v∗Tv∗ + ε)

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)2

b2i =
(v+T

v+ + ε)

(v∗Tv∗ + ε)
(v∗Tv∗ + ε− ε)

= v+T
v+ + ε− ε

(
v+T

v+ + ε

v∗Tv∗ + ε

)
= v+T

v+ − ε

(
v+T

v+ + ε

v∗Tv∗ + ε
− 1

)
≤ v+T

v+.
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Conversely

‖Cεv−‖22 =
∑
i

((
(v−

T
v− + ε)1/2

2σ2
i (v
−Tv− + ε)1/2 + λ

)
bi

)2

=
(v−

T
v− + ε)

(v∗Tv∗ + ε)

∑
i

(v∗Tv∗ + ε)

(2σ2
i (v
−Tv− + ε)1/2 + λ)2

b2i

>
(v−

T
v− + ε)

(v∗Tv∗ + ε)

∑
i

(v∗Tv∗ + ε)

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)2

b2i

=
(v−

T
v− + ε)

(v∗Tv∗ + ε)
(v∗Tv∗ + ε− ε) = v−

T
v− + ε− ε

(
v−

T
v− + ε

v∗Tv∗ + ε

)

= v−
T
v− + ε

(
1− v−

T
v− + ε

v∗Tv∗ + ε

)
≥ v−Tv−.

We now need to prove that the operator will not overshoot, we do so by deriving the

following pointwise inequalities

(v∗Tv∗ + ε)1/2

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)

bi =
1

2σ2
i

2σ2
i (v
∗Tv∗ + ε)1/2

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)

bi

=
1

2σ2
i

2σ2
i (v
∗Tv∗ + ε)1/2 + λ− λ

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)

bi =
1

2σ2
i

(
1− λ

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)

bi

)
≤ 1

2σ2
i

(
1− λ

(2σ2
i (v

+Tv+ + ε)1/2 + λ)
bi

)
=

(v+T
v+ + ε)1/2

(2σ2
i (v

+Tv+ + ε)1/2 + λ)
bi

and

(v−
T
v− + ε)1/2

(2σ2
i (v
−Tv− + ε)1/2 + λ)

bi =
1

2σ2
i

2σ2
i (v
−Tv− + ε)1/2

(2σ2
i (v
−Tv− + ε)1/2 + λ)

bi

=
1

2σ2
i

2σ2
i (v
−Tv− + ε)1/2 + λ− λ

(2σ2
i (v
−Tv− + ε)1/2 + λ)

bi =
1

2σ2
i

(
1− λ

(2σ2
i (v
−Tv− + ε)1/2 + λ)

bi

)

≤ 1

2σ2
i

(
1− λ

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)

bi

)
=

(v∗Tv∗ + ε)1/2

(2σ2
i (v
∗Tv∗ + ε)1/2 + λ)

bi.

This proves that by repeatedly applying the Cε operator we will converge to the

optimal ‖v∗‖2 value, and therefore to the optimal v∗. We just need to do the necessary

inverse substitution w = Dv to obtain the optimal solution. To compute efficiently

the Cε operator, we introduce the following lemma

Lemma 5.2.11. For any λ > 0

(2XTX + λId)
−12XTY = 2XT(XXT + λIn)−1Y.
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Proof.

4XTXXT + 2λXT =4XTXXT + 2λXT

2XT(2XXT + λIn) =(2XTX + λId)2X
T

(2XTX + λId)
−12XT =2XT(2XXT + λIn)−1

(2XTX + λId)
−12XTY =2XT(2XXT + λIn)−1Y.

We can now exploit the fact that the matrix X is block diagonal, to compute each

update step separately. This is because ‖v‖22 is simply the sum of the contributions of

each task ‖vt‖22. We can exploit this, and instead of computing the necessary SVD of

X, we compute the smaller SVDs of X
T
X or XX

T
, depending on the dimensionality

of the matrices. Since now the matrices are square, the resulting problem can also

be solved as an eigenproblem, resulting in the decomposition V ΣV T. We need to

consider the fact that the values in the Σ matrix will be the square of the singular

values of X, but that is all that we need. If d ≥ nt

‖vt‖22 =
∑
i

(
(vTv + ε)1/2

(2σi(vTv + ε)1/2 + λ)

)2 (
2vTi X

T
t Yt

)2

and if d < nt

‖vt‖22 =
∑
i

( √
σi(v

Tv + ε)1/2

(2σi(vTv + ε)1/2 + λ)

)2 (
2vTi Yt

)2
.

This improves the computation on many levels. The computation of the SVD are

now done on matrices whose rank is higher, because we are reducing the problem to

a smaller dimensionality. This improves numerical precision and speed. Moreover,

we can carry out all the T SVD decompositions, the most computing intensive part,

in parallel. We can also parallelize up to a certain level the iterations of the Cε
operator, synchronizing the different updates only when a new common value for

‖v‖2 is needed, although this is not a significant improvement since all the operations

are performed on scalars.

5.3 Comparison With Existing Methods

We can now compare MTFL-GL with other Group Lasso solver, for the Group Lasso

part, and with standard MTFL for the feature learning part.

To compute the complexity of MTFL-GL we will first estimate the complexity of

the D-step and W -step separately. The D-step requires computing the square root

of the matrix WWT + εI. This can be efficiently carried out by considering that we

want to avoid computing the intermediate representation. Given a SVD of the W
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matrix UΣV T, we can apply all the spectral operators, such as the ε addition, the

trace normalization and the square root, directly to Σ, and compute the final result

UΣ′UT. The computational cost of a SVD with modern techniques for a matrix

Rd×T is in the order of O(d2T + T 3) [21]. This cost is shared by MTFL-GL, and by

the original MTFL. Since the construction of the final matrix requires computing

the multiplication of d× d matrices, and that matrix multiplication is O(d2.8), this

is a lower bound for the cost of a single iteration. Luckily, SVD decompositions can

be block decomposed, and can enjoy some level of parallelism.

In the original MTFL, the W -step could be decomposed in T separate problems

thanks to the separability of the loss function, and of the regularizer for a fixed

D. Each subproblem was equivalent to a Ridge regression, that can be efficiently

solved through a Cholesky decomposition. Using Lemma 5.2.11, the cost of solving a

single task becomes O(min(d3, n3)). All the tasks can run in parallel, to exploit the

computational power of distributed systems.

In MTFL-GL, the presence of the square root binds all the tasks together. In

particular, when D is diagonal, the W -step can be seen as a Group Lasso problem

with a single group with cardinality d × T . This is the reason why we choose

to move as much precomputation as possible outside of the Cε loop, in order to

exploit all parallelization possibilities as much as possible. Therefore, by using the

eigenvalues based formulation, the cost of a W -step of MTFL-GL reduces to the cost

of computing each separate eigenproblem for a cost similar to inversion, and in the

order of O(min(d3, n3)). The subsequent iteration to find the norm of the optimal

solution operates on scalars, and can be computed efficiently even serially. In the

end, the final solution still needs to be computed by Cholesky decomposition, and

this brings the computational cost of MTFL-GL to be at least twice as much as the

original MTFL, although in the same order of magnitude.

When computing the full feature learning problem there is not any definitive

advantage on using MTFL-GL instead of MTFL. The consideration used in Equa-

tion (5.2.1) regarding the larger sensibility of MTFL to changes in λ when operating

with extremely sparse vectors remains. This reduced sensibility is much more inter-

esting instead in the case when the choice of λ can be tuned theoretically, as it is the

case when the algorithm does not learn a feature representation.

The comparison with other Group Lasso algorithms is made more difficult by the

lack of guarantees on the convergence rate for MTFL and therefore for MTFL-GL.

We can therefore only compare some partial results on computation time of each

step. Block Gradient Descent Group Lasso, as presented in Algorithm 3.1, has an

inner loop cost of O(nd), much smaller than the cost of an eigendecomposition. but

this cost needs to be considered with the possibility of multiple evaluations in an

iteration before reaching convergence. In addition, when d � n, the O(n3) might

still be competitive. All algorithms need to compute values for each group or task,

but MTFL-GL can parallelize the heaviest computational part. Another interesting
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Algorithm 5.3 Block Coordinate Descent Group Lasso

input: X,Y, λ, tol

output: Ŵ

Initialize Ŵ , compute eigendecompositions of XTX

do

Ŵold = Ŵ

for i← 1, . . . , d do

r−i = Y −
∑

j 6=iX
jwj

T

if
∥∥∥XiTr−i

∥∥∥
2
≤ λ then

ŵi ← 0

else

Compute the root δ using Newton’s method.

Compute wi using δ

end if

end for

while
∥∥∥Ŵold − Ŵ

∥∥∥
2,1
≥ tol

consideration is that the W -step of MTFL-GL can be formulated as a single group

Group Lasso problem when ε ∼ 0, which is often the case, and therefore we can use

Block Gradient Descent to obtain an approximated solutions in O(ndT ) time.

A much more similar algorithm for Group Lasso is presented in [44]. In this work

the algorithm BCD-GL computes an eigendecomposition for each block, and instead

of iterations that cost O(nd) each, the inner loop is substituted with Newton’s

method to find the unique root of a scalar polynomial dependent on the values

obtained in the eigendecomposition.

Newton’s method is extremely fast, and each inner loop is dominated by the initial

residual computation. In practice, this method trades the multiple O(nd) iterations

for the cost of an initial eigendecomposition, executed only once. Further analysis

of this method could provide possible optimizations for MTFL-GL. In practice, the

greatest cost of MTFL-GL is the eigendecompositions that needs to be computed at

each iteration. If it was possible to exploit the properties of the D matrix, its s.d.p

and diagonality, in order to reduce this cost, a big improvement could be obtained.

Some results for SVD can be found in [20], although their main concern is over

numerical precision.





Chapter 6

Experiments

We will now analyze the performances of Sparse Fitted Q Iteration on an artificial

problem. The goal of these experiments is to verify the actual advantage of the

Multi-Task approach versus solving each task independently. In order to do this we

will consider the average regret across tasks when compared to the optimal policy.

In particular the performance index for the experiments will be

R̃π(x) = E
π∗

[
N∑
i=0

ri|x0 = x

]
− E

π

[
N∑
i=0

ri|x0 = x

]
, R̃π =

1

n

n∑
i=1

R̃π(xi).

This quantity measures how much worse our performance is compared to the optimal

policy while starting from an initial state, and averages this performance across

several states. Because we use a multi-task setting, we will consider the average

value across tasks

R̃ =
1

T

T∑
t=1

1

n

n∑
i=1

R̃πt(xi). (6.0.1)

We will now introduce a detailed description of our experiments.

6.1 Setting

We will test Sparse Fitted Q Iteration in the artificial problem usually called Chain

Walk. The agent is placed on a line and needs to reach a goal from a given starting

position. The chain is a continuous interval with range [0, 8], and the goal can be

situated at any point in the interval [2, 6]. We chose to avoid placing the goal at

one of the extremes to guarantee that both actions are useful in certain positions.

The agent has 2 actions at her disposal, a1 and a2, that correspond to a step in each

direction. When choosing action a1 the state of the environment, represented by

the agent’s position, transitions from x to x+ ε where ε is some random noise with

Gaussian distribution N (0, 0.01). Given a goal g = y, the agent receives a reward 0
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for every step, and a reward 1 when the future state x′ is close to g, according to the

formula |x′ − y| ≤ 0.5.

The dataset is collected in two steps. First, two transitions that end in the goal,

starting from a state outside the goal, taking a single step are added to the dataset.

These two samples belongs to the two different actions, to uniquely characterize

the tasks, and to provide the minimum necessary information to the algorithm. In

practice, if we do not guarantee that both actions have at least one sample for the

regression SFQI is not well defined. In addition providing reward samples for both

actions allows the agent to learn that both actions can be useful. The remaining

samples for each task, samples from 2, . . . , n are sampled uniformly from all the

states outside the goal. Each sample consists of an initial state randomly selected,

then a uniformly random action is selected and one transition is observed, adding

the future state and the reward.

The evaluation of the performance is executed by selecting m ≤ n samples out of

the training set, and running the optimal policy and each candidate policy computed

with SFQI form the starting states {xi}mi=1. The expected discounted sum of rewards

is computed with the result of this additional simulation, and the expectation is

approximated with an average over multiple restarts from xi. This evaluation process

is repeated for a series {λi}li=1 of candidate regularization.

The whole evaluation process is repeated multiple times to take into account

randomness in the generation of the samples and the results are averaged across runs.

Confidence intervals are then computed from such samples. In the end, the λi with

the best average performance across tasks is chosen.

6.2 Multi-Task Contribution

To test the first contribution of this thesis, we compare the performance of the

Multi-Task approach compared to the performances of the single task approach. In

the case of SFQI, this translates to using Group Lasso as an approximator for the

Fitted Value Iteration algorithm when testing the Multi-Task approach, and the

use of Lasso on each separate task for the other. To construct a scenario where the

bound of Theorem 4.4.2 is useful, we add noisy, unnecessary features to simulate the

introduction of many features that are not relevant to the problem. At this stage,

we preserve the group sparsity by simply appending the noise dimensions to the true

features. The noise features are uniform, random numbers between [−0.25, 0.25].

The true features are 17 uniformly spaced RBFs between [0, 8], with a spacing of 0.5.

The RBF are computed as

RBF(x, y) = exp(−(x− y)2

0.1
).

We tested the performance of Group Lasso and Lasso for varying numbers of

tasks and noise dimensions. The choice of the candidate values of λ was guided
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Figure 6.1: Results of Experiments in Section 6.2. On the y axis we have the average regret

computed according to Equation (6.0.1). On the x axis we have the total number of dimensions d,

including noise dimensions, on a logarithmic scale. For each graph T corresponds to the number of

tasks learned at the same time in the experiment.

by the conditions for Theorem 4.3.2. In particular s = 17 is the small number of

sparse features necessary to represent the function, n = 30 is the number of samples,

log(d) ∈ [0, 10] is the total number of dimensions including the noise and T ∈ [3, 10]

is the number of tasks. Therefore using

2
√

2σ√
30T

(
1 +

log d

T

) 1
2

we obtain an order of magnitude of 10−1 if we consider unit σ. Our candidate λ are

therefore chosen as logarithmically evenly distributed between 10−3 and 100.

In Figure 6.1 we report the results of this experiment.

As expected, the Group Lasso solution outperforms Lasso when the number of

tasks increases. The stability of the bound is also particularly evident in the T = 7

setting, where the performance remains stable until log(d)
T remains small, but the

performance drop for larger numbers of noise dimensions.
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6.3 Feature Learning Limits

In this section we test the intuition that the U matrix learned reflects a rotation in the

original parameters. That is, we want to test that given a sparse matrix A, and given

Y = XUA, MTFL will recover the true sparse matrix A. A similar experiment was

introduced in [1], but the analysis was different because of three factors. First, in the

original paper the method is compared to a standard Ridge regression, which is not

the most suitable comparison for a Group Lasso inspired algorithm. We include both

Group Lasso and Lasso in addition to Ridge in out MTFL comparison. Second, the U

matrix that they expect to learn is diagonal, or in other words their experiment tries

to simply do feature selection with MTFL. We will instead use a random U matrix.

Third, we will introduce a larger number of noise dimensions to the problem to

investigate its limits. In particular the experiments consists of sampling 5 parameters

{a1, . . . , a5} with a ∼ N (0, [1, 0.64, 0.49, 0.36, 0.25]). We sample T vectors, padding

them with zeroes such that at ∈ Rd. This is the sparse representation we want to

recover. The A matrix is multiplied by a random orthonormal matrix U , obtained

by orthonormalization of random uniform samples, to obtain a W matrix that is

not group sparse, and will therefore be a hard task for Lasso and Group Lasso,

while allowing MTFL to reconstruct the original matrix. For each task, 10 xi ∈ Rd

uniformly random samples between [0, 1] are selected to form the training set. 100

and 200 similar samples are drawn respectively for the validation set and test set.

Finally, the target samples are computed as yi = xiwt + ε where ε ∼ N (0, 0.01).

The results of the experiments are reported in Figure 6.2, for various numbers of

unnecessary dimensions d, at the variation of the number of tasks. The quality of

the solution recovered is measured as the Mean Residual Sum of Squares averaged

across tasks, defined as

1

T

T∑
t=1

1

n

∑
i=1

n(yi − xiwt)2. (6.3.1)

As expected MTFL outperforms the other methods. More importantly, when the

number of noise dimensions is not too high we have a clear improvement with the

introduction of additional features. Comparing the results for d = 25 and d = 100, we

see that the error increases with the number of noise dimensions and decreases with

the number of tasks. The error increases more quickly than the log(d)/T ration that

Group Lasso had for the sparse setting. This is a reasonable conjecture considering

that the task of learning d2 features is more complicated than simply learning the

sparse representation. This is easily visualized in Figure 6.3, where we plot the error

for a fixed number of tasks, 100, while the number of noise dimensions grows.
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Figure 6.2: Results of Experiments in Section 6.3. On the y axis we have the Mean Residual Sum

of Squares, computed according to Equation (6.3.1). On the x axis we have the number of tasks

learned at the same time T . For each graph d corresponds to the total number of dimensions used

for each experiment, including noise dimensions.

6.4 Feature Learning Contribution

In this setting we test the capability of MTFL-GL to efficiently learn a good feature

representation to compensate offsets in the group sparsity of the MDPs. The only

modification w.r.t. the previous experiment is in the construction of the features. In

particular, we construct a random U matrix, and use it to multiply the transitions

together with the noise dimensions xi ∈ Rd. We expect MTFL to learn a matrix

W , such that W = UTA, where A is the original matrix that ignored the noise

dimensions that would have been obtained in Section 6.2. If such learning succeeds,

the new actions will be chosen on the base of XUUTA, which is the optimal solution.

The results for various numbers of tasks are reported in Figure 6.4. As we can see,

increasing the number of tasks improves the resistance of MTFL to the number of

unnecessary dimensions, while the rotation introduces enough distortion to cause GL

to perform worse even in low dimensional settings. Moreover there seems to be no
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Figure 6.3: Results of Experiments in Section 6.3, MRSS computed while learning 100 tasks

simultaneously, at the variation of d, the total number of dimensions including unnecessary ones.
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Figure 6.4: Results of Experiments in Section 6.4 On the y axis we have the average regret

computed according to Equation (6.0.1). On the x axis we have the total number of dimensions d,

including noise dimensions, on a logarithmic scale. For each graph T corresponds to the number of

tasks learned at the same time in the experiment.

improvement to introducing more tasks, as GL will be driven by the s factor and

will not depend on the number of tasks. It is interesting to add to this last comment

the insight that s is instead growing exponentially, if the U matrix mapped exactly

the Rs original space to Rd. In particular the performance of GL decreases almost

linearly in the exponential number of features. It is possible that the linear features

produced by the rotation can be still grouped in some group sparse sense, although

larger than the optimal one. This is because the combination of true features with

noise might produce features that are still informative.



Chapter 7

Conclusions

We will now provide some final considerations on the results achieved in this thesis

and possible future developments.

7.1 Contributions

In the introduction of this thesis, the mission statement for this work was to investigate

the consequences of group sparsity in an RL setting. The exact definition of group

sparsity that we decided to use throughout the thesis is that of a shared, low-

dimensional representation that is common across a set of tasks. This makes our

work one of the first results in a joint setting that draws heavily from RL, optimization

and statistics. In particular in the RL setting the multi-task approach has started to

gain more popularity only after the Transfer Learning literature had reached a good

level of maturity. Optimization, and especially optimization applied to statistics

in the setting of regularized regression, is instead a popular field. Many recent

developments related to algorithms that compute group sparse solutions contributed

to the background of this thesis.

Among the many possible combinations of RL and optimization methods that

could prove useful in a group sparse setting, we chose to integrate FVI with a

regularized linear approximator. The simplicity of linear approximators allows for

excellent interpretability, and has also received extensive interest regarding the quality

of the approximation. This results led us to choose a Group Lasso problem as the

formalization of our group sparse assumption, in order to build results valid in an

RL settings equivalents to those already obtained for the optimization problem. The

contribution related to this goal is the performance bounds provided in Chapter 4.

The bound shows clearly that the Multi-Task approach can provide better guarantees

compared to solving each task separately, and that the sparsity assumption used in

previous single-task settings extends nicely to the group sparse setting. As far as we

know, SFQI, is one of the first RL algorithm to exploit both the multi-task properties

of a problem, as well as their sparsity. This is clear in the comparison with other,
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single-task methods such as Lasso-TD, that do not offer generalization guarantees,

or Kernel FQI, that does not have the same interpretability as parametric linear

approximators.

The theoretical results provided in this thesis also gave us a useful indication

to choose extensions to the method. The use of a multi-task approach proves in

Theorem 4.4.2 that a large number of dimension can be managed as long as new tasks

are added. But if the inclusion of a new tasks increases the s factor, or in other word

if the new task does not share features with the previous, the method will perform

poorly. This drawback could be mitigated by recovering a group sparse solution,

or in other word learn a suitable feature representation that would allow for the

group sparsity to emerge. Our solution was to extend the Group Lasso setting to a

larger Multi Task Feature Learning problem, with a small modification that included

exactly Group Lasso as a particular case, but led to several new algorithmic problems.

These new challenges have been efficiently solved in MTFL-GL. In particular the

introduction of feature learning does not imply a much larger computational cost,

because as we saw in its derivation, MTFL-GL can still obtain good performances

compared to other Group Lasso solvers. On the other hand, as proved experimentally,

the introduction of feature learning does provide a better performance when the

conditions of group sparsity are not exactly met.

Finally, the experimental section of this thesis provides a rigorous validation on a

simple artificial problem of the new theoretical and algorithmic results introduced.

While the results obtained for the group sparse setting confirm that in practice the

theoretical bounds are reflected in real problems, the new experiments on feature

learning provide insights on this alternative, more complex approach. The extended

algorithm had no guarantee, so we provided an initial experimental estimate of the

complexity of learning these features in a Supervised Learning setting, and then

tested it on a more RL oriented task. Overall the experiments shows that SFQI is

a promising method, capable of providing a performance improvement over simple

sparse regularization.

7.2 Future Developments

Based on the theoretical results several interesting problems can be derived

Weaker assumptions One of the key assumptions for the validity of our bound

is Assumption 4.3.1, the Restricted Eigenvalues assumption. In the Lasso

regression literature, the RE assumption is one of the members of a small

family of assumptions, some stronger some weaker. A comprehensive list is

given in [60]. For example Theorem 3.3.1, derived for Lasso-TD, uses the

weaker assumption called Compatibility Assumption. One interesting line of

research is to test whether weaker assumptions from the Lasso literature can

be adapted to hold for Group Lasso settings.
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Active Learning Another possible development is hinted by the content of the

assumption. A good quality representation depends on a handful of samples in

a low dimensional setting. It would be interesting to develop Active Learning

techniques that can provide guarantees on the satisfaction of this assumption.

Active Learning [50] is the framework in ML that covers all kinds of algorithms

interested in collecting good quality data for the learning process.

The other original contribution of this thesis is the derivation of MTFL-GL,

an original Group Lasso solver based on MTFL. Because computing Group Lasso

solutions is a problem that still receives attention in the optimization community, it

might be interesting to analyze its performances. Two possible paths are immediately

interesting

Convergence Rate Most optimization algorithms, such as the Newton method,

give guarantees on the convergence rate to the solution. It would be interesting

to perform a real comparison to obtain similar results for MTFL-GL. Such

results could be probably extended to MTFL.

Precomputations The main drawback of our algorithm is the need to recompute

an eigendecomposition at each step. Solving this problem using partially

precomputed solution would drastically improve performance. Partial results

regarding SVD computations are presented in [20] and could provide useful

information for this problem.

The main assumption of this work is the underlying group sparsity of the group

of tasks. With the introduction of MTFL-GL we tried to bridge the gap between the

theoretical results and an extension capable of coping with a problem that is not

group sparse but can be represented as one. Early experimental results show that

such a gap is not trivial to fill, and that the resulting performances are influenced by

a number of factors. Possible directions are

Additional Experiments The first direction of research is surely to perform more

extensive experiments. The class of representations that MTFL can recover

is not universal, so it would be important to find classes of problems that

can be recovered and classes that defeat the algorithm. Moreover additional

experimental analysis can clarify the underlying process of feature learning,

giving more insight in the number of samples and tasks needed to correctly

recover the sparse representation.

Alternative Formulations If in some cases the MTFL framework is not capable of

providing good performances, other candidates might provide good alternatives.

In our thesis we limited the representation learning as an optimization between

features. That excludes more complicated relationships across tasks. From

the ML field, [66] introduces a more general, non-convex setting that uses an
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additional matrix in the optimization process, in order to learn relationships

among tasks that are independent of feature representation. The regression

field provides many alternative extensions to Group Lasso, such as the already

mentioned Sparse Group Lasso [51] and Graph Lasso [26].



Appendix A

Norms

A.1 Vector Norm

We will report some well-known definitions about vector norms for the reader.

Definition A.1.1. Given a vector subspace Sd defined over real numbers, a norm

is a function ‖ · ‖ : Sd → R, that for any vectors x, y ∈ S, satisfies the following

properties:

‖x‖ ≥ 0, ‖x‖ = 0 iff x = 0 definite positiveness,

‖ax‖ ≤ |a|‖x‖ absolute homogeneity,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ triangular inequality.

Using this definition we can define the generic `p norm, with 1 ≤ p <∞ is

Definition A.1.2. The `p norm of a vector, with `p with 1 ≤ p <∞ is defined as

‖w‖p =

(
d∑
i=1

(|wi|p)

)1/p

From this definition we obtain the following definitions

Definition A.1.3. The `2 norm of a vector is defined as

‖w‖2 =

d∑
i=1

|wi|

Definition A.1.4. The `2 norm of a vector is defined as

‖w‖2 =

(
d∑
i=1

(
|wi|2

))1/2

=
(
wTw

)1/2

The special cases `0 and `∞ are instead defined as
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Definition A.1.5. Given an indicator function I(x) = 1 iff x 6= 0 and 0 otherwise,

the `0 norm of a vector is defined as

‖w‖2 =

d∑
i=1

I(wi)

Definition A.1.6. The `∞ norm of a vector is defined as

‖w‖∞ =
d

max
i=1
|wi|

A.2 Matrix Norms

Definition A.2.1. Given a matrix W ∈ Rd×T , composed by d rows wi, the `2,1
norm of the matrix is defined as

‖W‖2,1 =

d∑
i=1

∥∥wi∥∥
2
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