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Sommario

Gli strumenti musicali acustici sono caratterizzati dallo specifico modo con cui
interagiscono con l’ambiente circostante. Diversi studi sono stati e sono tutt’ora fatti
sulla natura di questa interazione, su come questa si traduce in termini musicali, fisici
e percettivi. Lo scopo di questo elaborato è definire un sistema che stimi il pattern
di radianza di uno strumento, che è la funzione che descrive la dipendenza angolare
dell’energia che questo irradia, e che costituisce uno degli aspetti più importanti
della sua caratteristica interazione con l’ambiente. In particolare, il nostro scopo è
progettare un sistema che lavori con più camere plenacustiche, dispositivi composti
da una griglia di microfoni sincronizzati in grado, per mezzo di una serie di strumenti
analitici, di misurare il campo sonoro, parametrizzarlo e determinare le caratteristiche
della scena acustica.

Prendiamo come punto di partenza un sistema sviluppato nel 2013 presso l’Image
and Sound Processing Group del Politecnico di Milano: in quel lavoro, la stima è
effettuata usando una singola camera plenacoustica e un sistema separato per stimare
la posizione nello spazio e l’orientamento dello strumento mentre viene suonato da
un musicista.

L’idea fondamentale del nostro lavoro è che la tecnica può essere migliorata
aggiungendo una seconda camera, in modo tale da permettere al musicista di
muoversi in maniera più naturale e rendere più veloce il processo di acquisizione. Con
questa tesi intendiamo esplorare più a fondo le potenzialità dell’analisi plenacustica,
studiando come l’aggiunta di una seconda camera influenza le tecniche plenacustiche
esistenti, e come l’interazione fra più camere può essere sfruttata per progettare
un sistema autosufficiente, in grado sia di misurare il pattern di radianza che di
stimare la posizione dello strumento. Presentiamo l’estensione formale al caso multi
camera delle esistenti tecniche plenacustiche a camera singola, così come le tecniche
di localizzazione, calibrazione e stima del pattern di radianza che abbiamo studiato
per affrontare il problema in analisi.
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Abstract

Acoustic musical instruments are characterized by their own specific way of interacting
with the sourrounding environment. A variety of different studies have been and are
still being made on the nature of this interaction, on how it translates into musical,
physical and perceptual terms. The purpose of this work is to devise a system that
estimates the radiation pattern of an instrument, which is the function that describes
the angular dependence of the energy it radiates, and constitutes one of the most
important aspects of its peculiar interaction with the environment. In particular,
we aim at designing a system that relies on multiple Plenacoustic Cameras, devices
composed by a set of synchronized microphones that are capable, by means of a
series of analytic tools, of measuring the soundfield, parameterize it and assess the
features of the acoustic scene.

We take as a starting point a system developed in 2013 at the Image and
Sound Processing Group of Politecnico di Milano: in that work, the estimation is
performed by using a single plenacoustic camera and a separate system for tracking
the instrument position and orientation in space while it is played by a musician.

The founding idea of our work is that the technique can be improved by adding a
second camera, in order to allow the musician to move in a more natural way as well
as to shorten the acquisition process. With this thesis we intend to further explore
the potentialities of plenacoustic analysis and study how the addition of a second
camera impacts on the existing plenacoustic techniques, and how the interaction
between multiple cameras can be exploited to design a self-contained system that
is capable of both measuring the radiation pattern and estimate the instrument
position in space. We present the formal extension of the existing single-camera
pleancoustic techniques to the multiple-camera scenario, as well as the localization,
calibration and radiation pattern measurement techniques that we have devised to
address the problem at hand.
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Chapter 1

Introduction

One of the most fascinating aspects of acustic musical instruments is that they exist
to interact. They interact with people and with the environment in a very spe-
cific, complex way, and yet this interaraction is somehow transformed and rendered
accessible to anyone; it is translated into a language that everyone is capable of
understanding, that everyone perceives in a personal yet universal manner. Studying
and modeling this interaction means exploring a whole universe, both from the
musical and scientific points of view; determining the characteristics of an instrument
means being able to devise ways to best record and amplify it, to assess what kind
of environments are best suited to accommodate a live performance or a recording
session. It can also mean being able to reproduce these characteristics, integrate
them into synthesis and rendering systems in order to emulate the behaviour of
real instruments in different contexts. Furthermore, a low level analysis of these
characteristics can be brought into the manufacture process, which can be engineered
in order to match the needs and requiremens of musicians and makers.

The aspects related to these studies are manifold, and cross over a variety of
different disciplines. In this work, we focus our attention on one of the many possi-
bile studies: the estimation of the radiation pattern of acoustic instruments. The
radiation pattern is the description of the way in which the instrument radiates in
all directions the environment in which it is immersed. This pattern can be very
regular for some kind of sources, but when dealing with musical instruments it
generally changes significantly as a function of the direction and of the frequency.
The radiation pattern estimation problem has been addressed in the literature several
times, with an incredible variety of approaches that depend on the intent of the
studies. So, before undertaking a study in this field, the first thing to do is determine
the kind of result that one aimes at. In this thesis, we take as starting point the work
done by [13]: in that work, the aim is to estimate the radiation field of an instrument
(specifically, a violin) in the context of an actual performance. This means that
the instrument is played by a musician that performs a musical piece standing in
front of an acquisition device. While it could seem like the most natural way of
accomplish the task, this approach is in fact quite new in the literature. Capturing
a real performance in order to estimate the radiation pattern is not an easy task,
due to the fact that the musician is moving, and so is the instrument itself. All the
existing works before [13] consider the instrument is in a fixed position and design
the measurement system accordingly. A part of these works, such as [19], [4], [3],
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[7], work in an "artificial" context: the instrument excitation is not provided by a
musician, but through external loudpeakers pointed at the soundboard, mechanical
bows or hammers that strike the instrument bidge. These approaches aim at esti-
mating the radiation pattern with a high precision, in order to assess its acustical
interaction with the surrounding environment only as a function of its phisical and
mechanical characteristics. Also in [13] the aim is to study the interaction with the
environment, but unlike the aforementioned methods, the instrument is regarded
more as an acoustic entity that also interacts with the musician, rather than simply
a sound source. Other works, such as [6], [7] and [14], follow the same idea: in
these cases the presence of the musician actually influences the measurement, as
his body absorbs or reflects a certain portion of the radiation of the instrument in
a frequency-dependent fashion. Moreover, his arm provides (in the specific case
through the bow) an excitation that is almost unreproducible artificially. However,
as they again fix the instrument in space, the musician is not free to move: this
fact greatly affects the naturalness of the perfomance, producing a result that is
accurate in terms of measurements, but still not fully realistic. [13] overcomes this
issue by exploiting a tracking system to determine the position in space of the
instrument throughout the performance. By doing so, the resulting radiation pattern
measurement takes into account all the aspects of a real performance. The tracking
is performed though an infrared strucured light camera (Microsoft Kinect) and a
gyroscope fixed on the instrument.

The acquisition of the soundfield produced by the instrument is accomplished
by a grid of microphones (called plenacoustic camera), that captures the acoustic
scene and analyzes it with the tools provided by plenacoustic analysis, a subject of
research currently pursued at Politecnico di Milano. Plenacoustic analysis relies on a
representation of the soundfield based on acoustic rays, which is mapped onto a series
of plenacoustic images. These images, through the use of beamforming techniques,
provide information about the energy coming from all directions towards the camera.
The plenacoustic camera is therefore conceived as window on the acoustic scene,
and, in our case, a point of view on the radiance pattern of the instrument. The idea
in [13] is that by letting the musician move freely, different portions of the radiation
pattern are presented to the plenacoustic camera; the more the musician moves, the
wider is the observed pattern. This means that this aspect is not only beneficial
under the points of view expressed so far, but is also a key requisite, since not all the
pattern can be observed unless the musician moves enough. Freedom of movement
might therefore turn into a restrictive constraint: the musician might have to move
in an excessive way in order to allow the camera to pick the energy coming from the
instrument at all angles, thus nullifying the very foundation of the system.

Our starting idea to improve that system is simple, and quite straightforward:
the same system can be much more effective if two plenacoustic cameras are used
simultaneously to observe the acoustic scene from two distinct points of view. In
this way, two completely different portions of the pattern can be measured at a time,
allowing the musician to move with far less contraints. We can observe how this
immediately introduces a positive side effect: two points of view allow the system
to acquire a double amount of data, rendering therefore the acquisition process
much faster. The extension to a multiple-camera scenario of the system presented
in is actually quite straightforward and only requires some minor modifications.
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As a matter of fact, it only needs to integrate the information coming from the
two cameras: the rest of the system (source tracking, pattern estimation) remains
unvaried.

What we decided to explore, however, is a more specific aspect of this extension.
We started by acknowledging that the system developed in [13] exploits only a very
limited set of the tools provided by plenacoustic analysis. As we mentioned earlier,
plenacoustic analysis relies on plenacoustic images: these images constitute a key
tool, as they translate the complex information about the soundfield into a compact
representation that, as well as being easy to inspect, enables the use of computer
vision tools to perform advanced analysis of the acoustic scene. With some very
easy-to-implement techniques, acoustic entities such as sources and reflector can be
detected and localized on the acoustic scene. Therefore, in our case, besides being
able to retrieve information about the energy coming from the instrument towards
the camera, we could also be able to detect its presence and estimate its position
in space, thus removing the need for an external tracking system. In the case of a
single-camera based system, however, source localization proved to be not enough
reliable due to the fact that the state of the art plenacoustic localization techniques,
while providing a good estimation on the direction of the source, are not accurate in
the estimation of the position when the source is far from the camera. Moreover,
these techniques only work in two dimensions and are inapplicable to the context of
a source free to move in three-dimensional space.

Our work aims at devising the multiple-camera plenacoustic tools necessary to
build a fully plenacoustic radiation pattern estimation measurement system. We
take as starting point the available pleancoustic imaging techniques first introduced
in [12] (here presented in depth in Chapter 3), then investigates how the addition
of a secondary camera affects those techniques. The multiple-camera paradigm
is explored at different levels in Chapter 4. First, in Section 4.1, we see how two
or more cameras interact in plenacoustic terms and how the pleancoustic images
they generate can be combined into a single coherent view. We start from the
two-dimensional acoustic rays-based representation of the soundfield (called reduced
ray space) that was used so far to both display the plenacoustic images and perform
analysis, and devise a new suitable way of managing it to fit the multiple-view model.
We explain how this is done by passing to the full projective ray space for all the
processing aspects, and how the reduced ray space can be considered only to display
the plenacoustic images and perform the strictly computer vision-related part of the
analysis.

The main implication of this change is presented in Section 4.2, where the
single-camera source localization technique presented in Section 3.3 is extended to
the multiple-camera case. The technique that we have devised retains the reduced
ray-space representation, adequately modified to fit the multiple-view model, to
display the plenacoustic image and obtain a first estimation of the source position,
but takes into account the combined projective ray space for the actual estimation
process. We explain the reasons for this change, presenting a series of issues deriving
from the addition of more observation windows, as well as the course of action that
we chose to address these issues. We also explain why the new method allows a more
accurate source localization thanks to the different directional information obtained
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through the multiple cameras composing the system.
Since the extension to the multiple-camera scenario requires that the position

in space of the distributed cameras is known, in Section 4.3 we also introduce a
method for calibrating the system (i.e. for estimating the relative position of the
cameras) though a plenacoustic approach. At the end of the chapter, in Section 4.5,
we finally extend the newly introduced concepts to a three-dimensional scenario:
the three-dimensional source localization method takes a set of 2D localizations
provided by the system and geometrically estimates the global 3D position. Once
the multiple-camera paradigm has been explored, in Chapter 5 we show how the
concepts apply to the radiation pattern estimation system, which we reformulate in
order to take advantage of the newly devised pleanacoustic methods.

In Chapter 6 we first present a series of simulative and experimental results. The
former, aim at testing the effectiveness of the multiple-camera plenacoustic methods
devised in this work, the latter show the perfomance of our first implementation of
the fully plenacoustic multiple-camera radiation pattern measurement system. This
implementation exploits the newly introduced methods to measure the radiation
pattern of an acoustic source in fixed position.

Before presenting our studies, in Chapter 2 we provide some theoretical back-
ground on acoustics and we devote a part of the thesis (specifically Chapter 3) to a
detailed dissertation on the state of the art plenacoustic concepts that we use as a
foundation for all our work.
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Chapter 2

Background

In this first chapter we start by putting a mathematical foundation that will be
useful for the rest of the thesis, and provide a synthetic dissertation on the concepts
of farfield and nearfield radiation, directivity patterns and multipoles. We then
proceed with an overview of some meaningful works related to the pattern radiation
estimation problem that will serve as a basis for comparison with our work. We also
give a first glimpse on plenacoustic analysis, a core aspect of our study that will be
exhaustively covered in Chapters 3 and 4. Eventually, we provide a description of
the concepts of projective geometry that we will use extensively in our work.

2.1 Foundamentals of Acoustics and Directivity Pat-
tern

In this section we introduce the Rayleigh integral, which is a widely used model
in the sudy of the radiation field, then we cover some basics on farfield radiation
and multipoles.

2.1.1 Rayleigh Integral

Let us consider the Kirchhoff-Helmholtz Integral:

P (x, ω) =
∮
∂S

(
∂

∂nG(x|ξ, ω)P (ξ, ω)−G(x|ξ, ω) ∂
∂nP (ξ, ω)

)
dξ. (2.1)

where x = (x, y, z)T is a 3D point in spatial coordinates, ω the pulsation measured
in rad/s and P (x, ω) is the Fourier transform of the pressure p(x, t) [20]. G(x|ξ, ω)
is the Green’s frunction, which for all sources at location ξ ∈ S in free field is defined
as

G(x|ξ, ω) = 1
4π

e−jk|x−ξ|

|x− ξ| , (2.2)

where k = ω/c is the wave number (with c speed of sound in the medium).
The Kirchhoff-Helmholtz Integral states that the sound pressure is completely

determined within a volume free of sources, if sound and velocity are known on all
points on its surface S. This means that any sound field can be reconstructed if the
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sound pressure and the acoustic velocity are restored on all points of the surface of
its volume (which is the underlying principle of holophony).

With some passages we can rewrite (2.1) as:

P (x, ω) = 1
4π

∫
S

(
jωρ0Vs(ω)e

−jkr

r
+ PS(ω) ∂

∂n
e−jkr

r

)
dS (2.3)

where ρ0 is the density, r is the distance from the surface point to the observation
point and VS , PS respectively the sound particle velocity and the pressure on S.

x

y

vn(x,y)

Figure 2.1. Baffled Piston Representation

Now, to approximate the behaviour of a source, we consider a baffled piston
of area S mounted on an infinitely large hard wall in the x, y plane. The source
generates plane waves and it is defined by the boundary condition that normal
velocity is null (vn = 0). So the contribution of the surface sound pression of the
second addend of (2.1) is null, leading to

P (x, ω) = jωρ0
2π

∫
S

(
Vn(x, y, 0, ω)e

−jkr

r

)
dS. (2.4)

The previous formula is referred to as the Rayleigh Integral and is widely used to
study the radiation field of distributed acoustical source since it relates the velocity
on the surface to the acoustic pressure radiated. Basically, it states that the radiation
of any planar source is determined from the two-dimensional Fourier transform (on
x, y) of its normal velocity distribution. Considering the spherical coordinates

x = r sin θ cosφ,
y = r sin θ sinφ,
x = r cos θ,

(2.5)

we can write (2.4) as
p(r, θ, φ) = jωρ0

2π D(θφ). (2.6)

where D(θ, φ) is the directivity function defined as

D(θ, φ) = e−jkr

r
FxFy[vn(x, y, 0)] (2.7)
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that, being phase and distance independent, is often used to plot the directivity
characteristics of a source. The directivity function of acoustic pressure radiation is
measured in Pascal-meters and specifies who the pressure is distributed as a function
of θ, φ at a give distance r (i.e. on a sphere around the source), at a certain frequency
ω. Once the Fourier transform of the velocity pattern is computed for a given source
distribution on a plane, these equation provide the directivity for any frequency.

2.1.2 Farfield Radiation and Spherical Waves

Two main regions can be distinguished depending on the distance of the point
of observation from the radiator. In the nearfield (or Fresnel) region, the radiator
produces a more or less collimated beam which can be approximated as a perturbed
plane wave. On the other hand, in the farfield (or Fraunhofer) region, the radiator
produces a diverging spherical wave whose sound pressure magnitude decreases
linearly with distance, and it can be approximated as a point source with a given
radiation pattern.

The condition for a finite sized radiation to be considered a point source is that
the distance r of the point of observation from the source is large with respect to
both the emitted wavelength and the radius of the bounding sphere of the radiatior:

r >> λ (2.8a)
r >> a. (2.8b)

A point source emits ideal spherical waves: the spherical geometry provides a finite
and compact expansion of wavefronts which allos us to gain an understanding of
expanding waves. Furthermore, compact realistic vibrators are more closely modeled
with sperical wave expansions that with planar expansions [20]. The acoustic wave
equation given in spherical coordinates (2.5), for a homogeneous fluid with no
viscosity, is

1
r2

∂

∂r

(
r2∂p

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂p

∂θ

)
+ 1
r2 sin2 θ

∂2p

∂φ2 −
1
c2
∂2p

∂t2
= 0. (2.9)

Its solution is given by separation of variables:

p(r, θ, φ, t) = R(r)Θ(θ)Φ(φ)T (t), (2.10)
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which leads to four ordinary differential equations:

d2Φ
dφ2 +m2Φ = 0; (2.11)

1
sin θ

d

dθ
sinθ

dΘ
dθ

+
[
n(n+ 1)− m2

sin2θ

]
Θ = 0; (2.12)

1
r2

d

dr

(
r2dR

dr

)
+ k2R− n(n+ 1)

r2 R = 0; (2.13)

1
c2
d2T

dt2
+ k2T = 0. (2.14)

We can combine the angle functions (2.11) and (2.12) into a single function Y m
n

called spherical harmonic:

Y m
n (θ, φ) ≡

√
(2n+ 1)
dπ

(n−m)!
(n+m)!P

m
n (cos θ)ejmφ, (2.15)

where P is the Legendre polynomial. It can be demonstrated that any solution to
(2.9) for traveling waves can be written as

p(r, θ, φ) =
∞∑
n=0

n∑
m=−n

Amnh
(1)
n (kr)Y m

n (θ, φ), (2.16)

where Anm are complex constats and h(1)
n is the spherical Hankel function of the

first kind. Therefore, any arbitrary function on a sphere g(θ, φ), like any farfield
radiation pattern of a finite sized source, can be expressed with a combination of
spherical harmonics

g(θ, φ) =
∞∑
n=0

n∑
m=−n

AmnY
m
n (θ, φ) (2.17)

2.1.3 Multipoles

Radiation from bodies of finite extent can be characterized by sums of multipoles.
We start by considering the simplest multipole, the monopole, which is an ideal
point source. It is said to be omnidirectional, meaning that its associated radiation
is independent of angle, like an ideal spherical harmonic of m,n = 0. Its pressure is
given by

p = −iρ0ck

4π Qs
eikr

r
, (2.18)

where Qs is the volume flow. This formula is derived by considering a small oscillating
spherical cavity in the farfield, and same assumptions can be made for any real
source that can be approximated with a spherical cavity. We can extend what we
have shown at the beginning of 2.1.2, by saying that the angular distribution of
radiation for a finite sized source is governed by the relation that links the size of
the radiator to λ′ = λ/2π (with λ the radiated wavelength). If the radiator is much
smaller than λ′, the details of its structure become unimportant: the radiator can
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be approximated with a monopole, because parts of the surface that move outward
are compensated by others which move inward at the same moment. On the other
side, if the radiator is large, individual regions of the surface will radiate more or
less independently, interfering with each other and producing "beams" that spread
out with distance. The result is that radiation pattern gets more complex. For a
sphere-like source, the transition from the "small radiator" to the "large radiator"
regime occurs when its radius r is equal to the wavelength λ′ emitted, so at a
frequency f = c/λ′.
Sound fields other than omnidirectional can be obtained by superposing two or more
monopoles. For simplicity, we can discuss the radiation field of a dipole, i.e. a pair
of two identical point sources opposite in phase and separated by a short distance
d. If we take Ds = Qsd (called dipole strength), from (2.4) we can obtain that the
radiated pressure of a dipole is

p(r, θ, φ) = −ρ0ck
2Ds cos θ

(
1 + i

kr

)
eikr

4πr . (2.19)

Since the dipole is oriented along the z axis, the directivity pattern is independent
of φ and depends only on cos θ as shown in fig. 2.3, with a classic figure-8 pattern,
like an ideal spherical harmonic of m = 0 and n = 1. In the same way, many
monopoles can be arranged with different configurations in order to create multipoles
with different radiation patterns, each defined by a different spherical harmonic.

y

Y01

x

z

Figure 2.3. Dipole

While those that we have seen so far are ideal radiators, many compact acousic
sources produce sound fields that can be represented in spherical coordinates in the
same way as simple multipole sources. Also for very complex sources such as musical
instruments, it is possibile to make deductions about farfield directivity based on
some standard cases.

2.2 Related Work
We have already outlined in chapter 1 the work made in [13], which can be

considered, for the present work, the state of the art. However, many approaches to
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radiation pattern estimation have been devised in the literature over the years, each
one based on different assumptions and aimed at different goals. The list of available
examples is long and its in-depth analysis is out of the scope of our work. In this
section we therefore present only a few meaningful examples of radiation pattern
measurement systems, from both the hardware and computational point of views.

2.2.1 Measuring Musical Instruments Directivity Patterns With
Scanning Techniques

The approach of [7] is to adopt a scanning techinque that uses a fixed reference
microphone close to the source and a pressure microphone that moves across a
planar surface at distance R from the source. The idea is that the transfer functions
between the fixed and moving sensors give a time independent ratio which carries
information about the directivity of the sound source. If we represent the sound
source as a set of monopoles closely distributed in space, the pressure field can be
described with

p(θ, φ, r, t) = A
r
D(θ, φ)ej(ωt−kr), (2.20)

where A represents the time-independent term that relates source characteristics
(such as volume velocity, specific acoustic impedance and wave number) at given
position θ, φ, r (azimuth, elevation, distance from source and measurement plane) and
angular frequency ω. D(θ, φ) is the directivity term that can be considered unitary
for monopoles or equal to the first order Bessel function if the source behaves like a
baffled piston. For musical instruments, though, it cannot be described using general
analitic expressions: a specific measurement is needed to characterize complex sound
sources. For the reference mic, they write the expression of pressure as:

p(θ̂, φ̂, r̂, t) = pref (t) = Bej(ωt−kr̂). (2.21)

Then, they map the values of the meausured pressures across the measurement plane
onto a sphere of radius R:

psph(θ, φ, t) = p(θ, φ, r, t)
(
R+ ∆r
R

)
ej∆r

= A
r
D(θ, φ)ej(ωt−kr)

(
R+ ∆r
R

)
ej∆r,

(2.22)

∆r being the euclidean distance between the corresponding sphere projection and
the measurement position. At this point, to define time harmonic excitation, they
relate (2.20) and (2.21) by computing the transfer function:

H1 = F{psph(θ, φ, t)}
F{pref (t)} = D(θ, φ)

(
A(ω)
B(ω)

e−jkR

R

)
. (2.23)

Since H1 is independent from the position of the moving sensor, it could be seen as
a scaled version of the directivity term D(θ, φ)

H1 = γ(ω)D(θ, φ), (2.24)
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where γ(ω) is a scaling factor depending on the position of the reference sensor, the
radius R and the source charateristics. Measuring the transfer function between
fixed and projected signal leads to a time independent expression for calculating the
directivity of any sound source.

2.2.2 Method for Measuring Violin Sound Radiation Based on
Bowed Glissandi and Its Application to Sound Synthesis

The system implemented in [6], relies on a set of microphones arranged in a
spherical-like fashion, with the source positioned at center of the sphere. The source
is a violin in fixed position, played by a violinist. Calibration of the system is
performed through lasers and an OptiTrack system of 6 cameras. To measure the
directivity pattern of the violin, transfer functions between the microphones and a
reference pickup placed at the bridge of the violin are computed. To do so, the violin
Body Frequency Response (BFR) is obtained through signal deconvolution computed
on a frame-by-frame basis. The violinist plays a very slow glissando on the G string.
Both the reference signal x(t) obtained with the bridge pickup (referenced to as
the excitation signal) and the signals y(t) obtained through microphones (response
signals) are divided in frames that exhibit an almost-stationary content. After
aligning in time the frames of x(t) and y(t) (the known reference-to-microphone
delay is compensated), the signals are windowed and expressed in the spectral domain
as X(f, k), Y (f, k), with f, k being the frame index and frequency bin respectively.
The frame-by-frame decovolution is computed as

|HBFR(f, k)| = |Y (f, k)|
max(|X(f, k)|, b) ,

ϕ[HBFR(f, k)] = ϕ[Y (f, k)]− ϕ[Xs(f, k)] + 2πm,
(2.25)

with b a threshold set to 10−5. The magnitude is then averaged across all frames as

|HBFR(k)| =
∑N
f=1wf (k)20 log1 0|HBFR(f, k)|∑N

f=1wf (k)
. (2.26)

The weight wf (k) is the input signal energy at frame f and bin k. The ratio between
BFRs shows the radiation ration at different directions.

2.2.3 Method for Measuring Acoustic Radiation Fields

In [18], the measurement of the radiation field is performed through a mechanical
boom system that allows two microphones to move on two concentric spherical
patterns centered at the source location. The aim is to measure the acoustic field
that is here parameterized as an expansion in sperical waves of the acoustic pressure:

p(r, θ, φ) =
∑
L,M

(
aL,MhL(kr)bL,MhHL (kr)

)
YL,M (θ, φ) (2.27)

where YL,M (θ, φ) is a sperical harmonic and hL(kr) a sperical Hankel function of
the first kind, defined as

hL(x) = (−x)L
(
d

dx

)L(
ejx

jx

)
. (2.28)
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The Hankel function represents an outgoing spherical wave, while its complex
conjugate represents the relative incoming wave. The idea behind the method
is that if we know the value of p(R1, θ, φ) at all points of a sphere of known
radius R1, the expansion of the function in spherical harmonics yelds values of
aL,MhL(kr)bL,MhHL (kr) for every L,M . Repeating the measure on a second sphere
of radius R2 yelds another linear combination of the coefficients, which allows to
compute their values. After completing the measurement with the microphones
over various combinations of θ, φ, obtaining the complex amplitudes F (θ, φ) of the
microphones signals, the coefficient of the expansion can be computed as

CL,M =
∫ π

0
P(θ)G(M ; θ) sin θdθ (2.29)

where P is the normalized associated Legendre function and

G(M ; θ) = (2π)−
1
2

∫ 2π

0
e−jMφF (θ, φ)dφ. (2.30)

At this point, knowing the radii, frequency and speed of sound, the coefficients a, b
can be computed from the expansion.

2.3 First Glimpses on Plenacoustic Analysis
It should be clear that no universal approach to the problem exists. All the

techinques present in the literature differ in a variety of aspects. Mainly, they
differ in the the mathematical models they exploit for their analysis, which, as
a consequence, impose specific measurement systems. Our system relies on a
plenacoustic representation of the soundfield. Plenacoustic analysis is a novel
soundfield imaging method first proposed in [12], whose goal is to capture the
acoustic radiance over a given aperture (Observation Window) facing the acoustic
scene. The soundfield is captured by one or more microphone arrays (referred to
as plenacoustic cameras) and is parameterized through a representation based on
acoustic rays. Any ray is represented as a vector in a space called ray space of
coordinates

l = (l1, l2, l3)T (2.31)

and is associated to an energy value computed through beamforming techniques.
One of the key features of plenacoustic imaging is the compact visualization of this
information: a reduced version of the ray space is visulized as a 2D image (called
plenacoustic image or soundfield image) where acoustic primitives such as sources,
receivers and reflectors are represented by geometric primitives such as lines and
points. The plenacoustic image, in addition to providing a means to easily inspect
this complex load of information, also allows us to use computer vision tools to
perform a set of analyses on the soundfield in a very compact way. The problem of
localizing a source or a reflector, as an example, reduces to the problem of estimating
parameters of the geometric primitives in the image.

Clearly, plenacoustic analysis provides all the tools we need for our goal, since
it allows us to measure the acoustic energy coming from all angles in proximity of
the plenacoustic camera. We are then able to detect a sound source, estimate its
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Figure 2.4. A Plenacoustic Image

position and evaluate the acoustic energy it radiates: we already have the building
blocks to the system we want to implement.

While all these concepts will be covered in depth in the next chapters, this very
brief introduction allowed us to introduce the representation of the soundfield based
on acoustic rays. Since this aspect is the key to all our studies, we provide also a
review of projective geometry, which is essential for managing acoustic rays.

2.4 Projective Geometry

To manage the soundfield representation based on acoustic rays, we need pro-
jective geometry. To introduce projective geometry, we start from the familiar
Euclidean geometry. Euclidean geometry is troublesome in one major aspect: we
need to keep making an exception to reason about some of the basic concepts, such
as intersection of lines. Two lines almost always meet in a point, except if they are
parallel. This exception is commonly worked around by stating that such parallel
lines meet at infinity. However this statement conflicts with the dictum that infinity
does not exist. We therefore enhance the Euclidean plane by adding those points at
infinity where parallel lines meet, and resolve the difficulty with infinity by calling
them ideal points. Under this perspective, the projective space is just an extension
of the Euclidean space in which two lines alway meet in a point, which may be at
infinity.

2.4.1 Homogeneity, Points and Lines

Part of this extension is the adoption of homogeneous coordinates. A point in the
projective space is represented by a equivalence classes of coordinate triples, where
the two triples p = (x, y, 1)T , kp = (kx, ky, k)T represent the same point for any
k 6= 0. Given (kx, ky, k) we can get its inhomogeneous coordinates back by dividing
by k and removing the last coordinate. More generally:

p = (x1, x2, x3)T ⇐⇒ p =
(
x1
x3
,
x2
x3

)T
. (2.32)
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Defining points at infinity should now be straightforward: a point a infinity is
any point whose third homgeneous coordinate is 0, which corresponds to a point
p = (x1/0, x2/0)T . The points at infinity in the two-dimensional projective space
form a line called line at infinity. However all the considerations made so far are
not bound to two dimensions: by representing points as homogeneous vectors, any
Euclidean space Rn can be extended to a projective space Pn. Note that throughout
this thesis we adopt the convention of representing points in R2 (i.e. in inhomogeneous
coordinates) with an italic-bold face, while points in P2 with a bold face as done in
equation (2.32).
The same concept can be applied to lines. Equations l1x + l2y + l3 = 0 and
kl1x+ kl2y+ kl3 = 0 (with k 6= 0) represent the same line on a plane. Thus any line
can be identified by the vectors l = (l1, l2, l3)T and kl = k(l1, l2, l3)T . Again, two
such vectors related by an overall scaling are considered as beign equivalent. We can
therefore state that the set of equivalence classes of vectors in R3 − (0, 0, 0)T forms
the projective space P2 (the point (0, 0, 0)T is excluded since it does not represent
any line nor point).
Adopting homogeneous vector representations for lines and points allows us to
perform some meaningful operations in a very compact way. As an example, we can
state that a point p lies on a line l if and only if

pT l = 0, (2.33)

i.e. if and only if their inner (scalar) product is equal to zero. Also the intersection
between lines is quite straighforward: two lines l and l′ intersect in the point

p = l× l′ =

∣∣∣∣∣∣∣
i j k
l1 l2 l3
l′1 l′2 l′3

∣∣∣∣∣∣∣ (2.34)

where the × operand stands for vector (cross) product.

2.4.2 Projectivies and Isometries

Projectivities (also called projective tranformations or homographies) are map-
pings of points in P2 to points in P2 that preserve lines. It is possible to prove that
any linear transformation on homogeneous 3-vectors represented by a non-singular
3×3 matrix is a projectivity. Let p1,p2,p3 lie on a line l, i.e. lTpi = 0 for i = 1, 2, 3.
If H is a non-singular 3× 3 matrix, we can observe that lTH−1Hpi = 0. Thus the
points Hpi all lie on the line H−T l, and collinearity is preserved by the transforma-
tion.
A generic projectivity can be therefore written asx′1x′2

x′3

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33


x1
x2
x3

 (2.35)

or more compactly
p′ = Hp. (2.36)
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As for lines, we have just seen that if points xi lie on a line l, then the transformed
point lie on the line l′ = H−T l. Thus under the point transformation p′ = Hp, a
line l transforms as

l′ = H−T l. (2.37)

In our thesis we limit our focus on projectivites to the special case of isometries.
Isometries are defined as transformations of the plane R2 that preserve Euclidean
distance and are represented as:x′y′

1

 =

cos θ − sin θ ∆x
sin θ cos θ ∆y

0 0 1


xy

1

 (2.38)

or more concisely in block form as

p′ =
(

R t
0T 1

)
p (2.39)

where R is a 2× 2 orthogonal rotation matrix and t a translation 2-vector. Being a
composition of a rotation and a translation and orientation-preserving, isometries
are defined as Euclidean transformations.

2.5 Conclusions
This chapter served as a first overview of the various aspects related to our work.

Even though the underlying mathematical model is very complex and not easy to
manage, the choice of plenacoustic analysis allows us to address the problem of
radiation pattern estimation in an incredibly compact way. However, only a very
limited set of the tools provided by plenacoustic analysis were exploited in [13]: our
main goal in this thesis is to dig further in the possibilities provided by this kind
of analysis, see how the plenacoustic tools can be used in a more effective way in
the context of the radiation pattern estimation problem. We start from the idea
that using more than one plenacoustic camera enables a faster and easier acquisition
process with respect to [13], then we explore how this choice impacts on the available
plenacoustic techniques. In the next chapter we provide an overview of plenacoustic
analysis as it was proposed in [12], then we proceed with the description of the core
aspect of our studies: multiple-camera plenacoustic imaging.
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Chapter 3

Single-Camera Plenacoustic
Imaging

In section 2.3 we provided a first introduction on plenacoustic analysis and explained
why it is suitable for addressing the radiation pattern estimation problem. In [13],
plenacoustic analysis is exploited only for evaluating the energy radiated from the
source, while in our work we intend to use it in wider scope. In this chapter we
present the state of the art of plenacoustic analysis as it was introduced in [13],
focusing on the aspects related to our ploblem. This will set a foundation for the
the next chapter, where we will present the improvement and modifications that
we have apported to these concepts and techniques in order to accomodate the
multiple-camera scenario that we intend to adopt.
First we introduce the plenacoustic function, whose measurement through an array
of microphones allows us to perform a detailed analysis of the acoustic scene. Then
we explain the key concepts of ray space and plenacoustic image, as well at the
techinque for single-camera source localization that we will later expand to the
multiple-camera case.

3.1 Plenacoustic Function

The plenacoustic function can be thought of as a parameterization of the sound
field, and it is a function that describes the acoustic radiance in every direction
through every point in space. This means that, in the case of a 2D geometric domain,
it can be written as a function f(x, y, φ, ω, t) of position (x, y); direction φ; frequency
ω and time t. In order to measure the plenacoustic function in a single point we can
center a microphone array (an acoustic camera) in that location and estimate the
acoustic radiance along all look directions through beamforming. Extending this
measurement to a larger observation window (e.g. a segment in 2D geometry) would
mean performing the same acoustic radiance estimation process on a whole set of
points. To do so, a new kind of device is needed: we refer to this extension of the
acoustic camera as the plenacoustic camera or soundfield camera. As a first step,
however, we then need a simple way to parameterize and represent in a compact
way the data that this device would capture, in order to be able to analyze the
substantially larger information gathered on the global acoustic scene. In order to
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get a more compact representation we drop the dependecy on time (t) and frequency
(ω). If the hypotheses of validity of geometrical acoustics hold, we can adopt a
representation based on acoustic rays.

3.1.1 The Ray Space

An acoustic ray is defined as an oriented line that identifies a planar acoustic
wavefront component and is inherently perpendicular to it. This means that it can
be graphically represented simply by means of a line l1x+ l2y+ l3 = 0 of parameters
l = (l1, l2, l3)T . We here define the ray space P as the projective space P2 of points
of coordinates l = (l1, l2, l3)T that correspond to lines with same parameters in the
geometric space. Recall that, as stated in 2.4, for any k 6= 0, the two vectors l and
kl represent the same line, i.e. the same ray. However, since we need to take into
account also the orientation of rays, we adopt the convention of representing rays
going towards the observation window from the positive half-space with k > 0 and
rays going in the opposite direction with k < 0.

Rather than visualizing the whole 3D ray space, [12] resort to the reduced ray
space, which is the 2D space obtained by cutting the ray space with a plane. As
an example, if we choose to cut with the l2 = 1 plane, every point in the reduced
ray space is described by the coordinates (m, q) = (−l1/l2,−l3/l2) which, of course,
corresponds to representing lines in the geometric space in their slope–intercept form
y = mx+ q. Note that the information about orientation is lost in this simplification,
as aray travelling on the two directions of the same line are represented with the
same parameters. We deal with this issue by only taking into account those rays
which are directed to the observation window (OW) from the positive half-space, i.e.
those with k > 0.

3.1.2 Parameterization of a Source

Representing acoustic primitives such as sound sources and receivers in the
ray space means defining the set of rays that are originated or received at their
location. As an example, let us analyze a sound source, which is of capital interest
in our case. A source can be represented in the geometric space by a point A of
inhomogeneous coordinates pA = (xA, yA)T and homogeneous coordinates pA =
(xA, yA, 1)T . Equivalently, it can be thought as the set of all lines passing through it.
The region of the ray space describing the parameters of such lines is called the dual
IpA

of the source and is defined as

IpA
=
{
l ∈ P|pTAl = 0

}
, (3.1)

which corresponds to a plane passing through the origin and with parameters specified
by the vector pA. This plane divides P in two half-spaces P+

pA
and P−pA

defined as

P+
pA

= {l ∈ P|pTAl > 0} (3.2a)

P−pA
= {l ∈ P |pTAl < 0}. (3.2b)

P+
pA

corresponds to all the rays that, along their travel, leave pA on the left, whereas
P−pA

corresponds to those that leave pA on the right. We can see that in the reduced
ray space, the plane IpA

, being cut with another plane, becomes a line.
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Figure 3.1. Source and Rays in Geometrical and Reduced Ray Space

3.1.3 Visibility Region and Region Of Interest

The OW can be seen in the geometric space as a segment pApB, whose endpoints
pA, pB have as duals in the ray space the planes IpA

, IpB
. The rays crossing the

OW can be of two types: 1) those that have pA on the left and pB on the right and
2) those that have pA on the right and pB on the left. Recalling the definition of
P+

p and P−p for a generic point p, it is easy to verify that images of the rays of the
two type are respectively:

I(1)
pApB

= P−pB
P+

pA
(3.3a)

I(2)
pApB

= P−pA
P+

pB
(3.3b)
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The two wedge-shaped regions correspond therefore to the rays directed towards
the two sides of the OW. We define with visibility region V the wedge-shaped region
corresponing to the set of rays that cross the OW from the sensitive side of the
aperture. If we want to assess what portion of the radiance produced by an acoustic
primitive (e.g. a sound source) can be picked up by the OW, we only need to find
which of the rays coming from it fall into V. The set of these rays is referred to as
the Region Of Interest (ROI) of a source p, and is defined as:

Rp = V ∩ Ip. (3.4)

(a) (b)
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Figure 3.3. Region of Interest of a Source

3.2 Measurement of the Plenacoustic Function

In this section we introduce the concept of plenacoustic image (or ray-space
image) as the ray-space representation of the sound field and we explain how this
image is computed. As stated in 3.1.1, to visualize of the ray space it is necessary to
cut it with a prescribed plane in order to lose one dimension and be able to report
the information on a 2D image. We here adopt the same notation that is used in
[12]: the cutting plane is l2 = 1 so that the reduced ray space corresponds to the
(m, q) space. The OW is considered to lie on the y axis between q0 and −q0, having
therefore a strip-shaped visibility region.

3.2.1 The Plenacoustic Image

The plenacoustic function f(x, y, θ) can be mapped onto the ray space by imposing
x = 0 (the OW is on the y axis), θ = arctan(m), −π/2 ≤ θ ≤ π/2 and y = q, leading
to p(m, q) = f(0, q, arctan(m)). For our purpose we discard the phase information
and work with power images such as P (m, q) = |p(m, q)|2.
Consider a source at p and its ROI Rp in the reduced ray space: as the points of
the segment correspond to the only rays that illuminate the OW, these are the only
points where the ideal ray-space image takes on non-zero values. The pleanacoustic
function in those points can be determined using the radiance beampattern bp(θ) of
the source, which is the distribution of acoustic radiance produced by the source,
as a function of the angle θ = arctan(m). The invariance of the acoustic radiance
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Figure 3.4. Reduced (m, q) space

along the ray allows us to write

pp(m, q) =
{
bp(arctan(m)) (m, q) ∈ Rp

0 elsewhere (3.5)

In the case of multiple sources the complex contributions of each of them sum up
to form the plenacoustic image. The details of the effects of reflection, though, are
not very relevant to our problem, so we refer to [12] and [15] for this matter. The
plenacoustic image that we just described is obviously a simplification of reality since
both the scene is idealized (no diffraction or diffusion phenomena) and the camera is
idealized (no issues of limited resolution or aliasing phenomena). The former aspect
can be neglected, as in [12] it was assessed from preliminary measurements that the
diffraction and diffusion generates features in the ray-space image whose magnitude
is small with respect to direct path radiation or first-order reflections. The latter,
on the contrary, needs further investigation.

3.2.2 The Real Plenacoustic Camera

Following the idea presented in section 3.1, a real plenacoustic camera can be
thought of as an array of acoustic cameras placed on a grid that samples the OW. If
the acoustic scene is static and the source signal stationary, we could employ a single
acoustic camera and slide it along the OW. However, since it is safe to assume that
in a real situation those two conditions are unlikely to be satisfied, we can exploit a
single spatially extended microphone array and resort to a single-shot acquisition
of the acoustic scene. The configuration best suited to our studies is a Uniform
Linear Array (ULA). Let us consider an array of M microphones placed on the y
axis between y = q0 and y = −q0. The wth microphone is in

mw =
(

0, q0 − 2q0(w − 1)
M − 1

)T
, w = 1, . . . ,W. (3.6)

In a sub-array of J (odd) microphones centered at mw, the sensors are located at
mj and acquire signals sj(t), where the index j is

j = w − J − 1
2 , . . . , w + J − 1

2 . (3.7)
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We process sj(t) with a filter bank to obtain sj(ωk), ωk being the the central frequency
of the kth suband (k = 1, . . . ,K). The obtained signals are used to compute the
psuedospectra hw(θ, ωk) through a Minimum Variance Distortionless Response
(MVDR) beamformer for each sub-array and for each frequency ωk. Depending on
the needs, the wideband version of the pseudospectrum can be obtained as

Hw(θ) =
K∏
k−1

hw(θ, ωk), w = J + 1
2 , . . . ,W − J + 1

2 , (3.8)

w being the index of the sub-array and θ the direction of arrival (on the derivation of
h(θ, ωk) we invite the reader to refer to appendix A). Once computed, the single-band
or wide-band pseudospectra must be mapped onto the ray space. We recall that the
pseudospectrum Hw(θ) measures the power distribution of rays passing through the
location mw of the wth microphone. An acoustic ray passing through mw and with
angle θ has parameters

m = tan(θ) , qw = q0 − 2q0
w − 1
W − 1 (3.9)

therefore we can write

P (m, qw, ωk) = hw(arctan(m)),
P (m, qw) = Hw(arctan(m))

(3.10)

which are respectively the wide-band and single-band (centered at ωk) plenacoustic
images. The former work directly on the pseudospectra and is useful when measuring
the energy coming from a source at known θ, the latter performs a weighing on the
sub-bands and, being more robust, is mainly used for source localization (we cover
this topic in the next Section).

The real plenacoustic images that we obtain differ from the ones we would obtain
with the ideal pleacoustic camera introduced in section 3.1 for two reasons: it is
sampled along q (due to limited number of sub-arrays) and it is blurred along m
(due to the limited number of sensors in each sub-array). In Figure 3.5 we show how
a real plenacoustic image looks like. The image exhibits a ridge in the same location
of Ip, which is the dual of the source p. The ridge is, in fact, a blurred version of the
visible portion of Ip and the magnitude of the blurring varies with both q and m.
This is due to the fact that the ULA does not exhibit a uniform resolution over θ:
the farther the point from the source, the larger the incidence angle, the greater the
blurring. Another visible anomaly is the large bright area in the lower left corner of
the image: this is caused by angular aliasing, which is a consequence of the fact that
the signal has frequency content that goes beyond the spatial Nyquist frequency
(again, please refer to appendix A for further details on the spatial signal processing
concepts).

3.3 Single Camera-Based Localization

One of the key analytic tools provided by plenacoustic analysis is source localiza-
tion. To our purposes, being able to estimate the source position is essential, since
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Figure 3.5. Real Plenacoustic Image

it allows us to drop the need for external devices to perfom the task exploiting the
same set of tools that we use for radiation pattern estimation. The technique here
presented is referred to a single-camera scenario, as it was introduced by [12]. In the
next chapter we will explain how this techinque is expandable to a multiple-camera
scenario.

Let us consider again the real pleanacoustic image shown in figure 3.5. It should
now be clear that if we didn’t know a priori the source position we could estimate it
by finding the parameters of the line on which the ridge appears to lie, which is, as
we now know, the reduced representation of dual plane Ip of the source itself. While
by direct inspection it’s quite easy to detect this line, the accurate estimation of its
parameters is not so immediate. A first approach is to find a global maximum of
the acquired image and threshold all the values proportionally to this maximum in
order to find peaks: the rays associated to these peaks should be the ones that are
originated at the source location. Through a linear regression on the coordinates of
the rays we could find an approximation of the lines parameters. However it is clear
that this approach would not be effective, as an example, in the case of figure ??:
peaks would be detected also on the aliasing area, where the magnitude of the rays
power is visibly comparable to the magnitude of the rays we are actually interested
in. This, along with the possible presence of peaks generated by noise, makes the
simple tresholding approach inapplicable.

The solution to this issue is found in the Hough Transform, a technique that
recognizes special configurations of points in an image representable as a matrix
exploiting their parametric representation. The Hough Transform estimates the
parameters x̂, ŷ of Ip, thus determining the set I of indices that identify the rows of
the ray-space image where the source is present (visible). We then determine the set
of maxima (one per row) on the image:

L =
{

(mi, qi) : |mix̄− ȳ + qi|√
1 +m2

< ε, i ∈ I
}

(3.11)

where i is the index of the sub-array (row of the ray-space image) and ε a given
threshold. Let us consider a source in p = (x, y)T . We know from 3.1.2 that the
set of rays departing from it is described by the equation Ip =

{
l ∈ P|pT l = 0

}
. If
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we consider the reduced ray space (m, q), the same set of rays is described by the
equation mx− y + q = 0, which can be rewritten as

mTp = −q, m = [m,−1]T . (3.12)

Then, the system of equations 
mi1p = −qi1
...
miN p = −qiN

(3.13)

is defined, where i1, . . . , iN are the indices in I. The system can be rewritten in
matrix form as Mp = q. At this point, the estimate p can be found through a linear
regression

p̂ = (x̂, ŷ)T = (MTM)−1MTq. (3.14)

Note that this approach indirectly estimates the parameters of the plane Ip relying
on its reduced representation.

3.4 Conclusions
We have just introduced a series of concepts that constitute the very foundation

of all the studies we have made in this thesis. Plenacoustic analysis is the cardinal
element of both the radiation pattern measurement and the source localization
problems. The parameterization of the plenacoustic function introduced in 3.1 is an
essential starting point for addressing the problems at hand: the ray space-based
representation enables an easier and more immediate analysis of the acoustic scene,
and provides a solid basis for an advanced processing of the data acquired by the
array. Furthermore, the source localization technique presented in 3.3 is a solid
starting point for devising a system capable of localizing the source with the same
data used for the radiation pattern measurement. In the next chapter we delve
into the details of our studies. We start from the problem of finding a suitable
representation of rays and we apply this representation to the problem of acquiring
a plenacoustic image from multiple views. We then discuss the problem of localizing
sources from such images and, finally, introduce the problem of localizing sources in
the three-dimensional space from multiple 2D localization.
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Chapter 4

Multiple-Camera Plenacoustic
Imaging: Localization and
Autocalibration

As already explained in the introduction to this thesis, the ability to simultaneously
observe the source from different points of view is beneficial to the radiation pattern
estimation problem. While the details of this aspect will be explained later in Chapter
5, in this chapter we explore what has been the actual focus of our study: how
the introduction of a secondary camera affects the plenacoustic imaging techniques
introduced in [12]. After a discussion about the modifications that we need to bring
in order to acquire plenacoustic images with multiple cameras, we focus on the
problem of source localization from multi-view images. In particular, we see how
to manage the multiple OWs both in the geometric space and in the projective
ray space, knowing their position and pose relative to a reference frame. Also,
we explain how the information about their position can be retrieved through an
autocalibration method that we have developed by exploiting the newly acquired
multi-view tools. Being the presented methods based on plenacoustic techniques that
work in two dimensions, the whole study was made under the same conditions and is
therefore not applicable to 3D localization problems. To overcome this issue and be
able to actually make use of these techniques in the context of a radiation pattern
measurement system, we devised a method that estimates the three-dimensional
position of the source based on the two-dimensional estimates provided by single
arrays individually.

4.1 From Single-Camera to Multiple-Camera Plenacous-
tic Imaging

When dealing with multimple cameras we are as a first thing dealing with
multiple reference frames, one attached to each camera. This means that, besides
the global reference frame (x, y) we need to introduce the local reference frames
(x(i), y(i)), i = 1, . . . , C, with C being the total number of cameras present in the
acoustic scene. The superscript (i) is used from here on to specifiy that we are
working in the ith camera reference frame. All the concepts introduced in chapter
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3 are clearly still valid and can be applied to every single camera in our system.
We only need to consider them as a series of different OWs, each with a local
projective ray space P(i) and its own local visibility region V(i). In this section we
explain how we have extended the concepts presented for the single-camera case to a
multiple-camera case. First of all we illustrate how the local information of a camera
can be combined with the information derived by all the other cameras composing
the system. Secondly, we see how this new set of information is visualized on the
plenacoustic image. At the end of the section we explain how the acquisition and
combination of the plenacoustic images is performed.

x(1)

y(1)

OW1

x(2)
y(2)

OW2

x

y
k2l=-k1l

k1l

Figure 4.1. Global and Local Reference Frames

4.1.1 Fusion of Visibility Regions of Different Observation Win-
dows

Every camera observes the acoustic scene from its point of view. It is clear that,
to work with the information provided by different cameras, we need to combine
these points of view into a single coherent view. Specifically, we need to bring all the
local visibility regions into a global reference frame in order to have a shared point
of view that we are able to analyze in its entirety. This is done by transforming each
ray in the local visibility region through an homography. Referreing to what was
explained in 2.4.2, a generic ray l(i) = (l(i)1 , l

(i)
2 , l

(i)
3 )T in the ith OW local reference

frame can be related to the ray li = (l1i , l2i , l3i)T in the global reference frame by:

li = H(i)−T

l(i), (4.1)

where
H(i) =

(
R(i) t(i)

0 1

)
. (4.2)

R(i) and t(i) are respectively the two dimensional rotation matrix and the translation
vector that lead from the ith local to the global reference frame. Notice that in
equation (4.1) we consider the inverse-transpose of the matrix H(i): the reason to
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this is explained (and proven) in section 2.4.2.
Now, if V(i) is the visiblity region of the ith OW in the local reference frame and

Vi is the same visibility region considered in the global reference frame, we can state
that the global visibily region is the union of all Vi

V =
N⋃
i=1
Vi (4.3)

In the global reference frame, the ROI of a source p is therefore defined as

Rp =
N⋃
i=1
Rp,i =

N⋃
i=1

Vi ∩ Ip, (4.4)

where Ip is the dual of the source p in the gloal reference frame and Rp,i the ROI
of the source over the ith OW visibility region. Now, in order to visualize the global
plenacoustic image, referred to as the joint plenacoustic image, we cut the global
projective ray space with a prescribed plane, as explained in 3.2.

(a)

p
C

p
D

p
A

p
B 2

1

Geometric space

V1

V2

I

Reduced Ray Space

(b)

R

p
S

p  ,1
S

R p  ,2
S

p 
S

Figure 4.2. Acoustic Scene

4.1.2 Joint Plenacoustic Image

We saw in section 3.2.1 that the plenacoustic image is the mapping of the
plenacoustic function onto the ray space. In the single-camera case, as done in
[12], the mapping is performed directly onto the specific reduced ray space (m, q).
However, adopting the slope-intercept representation y = mx+ q of rays prevents
the ability of representing rays that are parallel to the y axis. In the single-camera
case that is not an issue: since the global and local reference frame of the OW
coincide, the rays parallel to the y axis are also parallel to the OW and cannot
therefore be picked up by the camera, thus removing the need of representing them.
The extension to the multiple-camera case on the other hand requires that those
rays are representable as well, since they might be picked up by some camera in
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arbitrary position in the global reference frame. We therefore need to explain how
the mapping of the plenacoustic function is made onto the projective ray space.
Consider a ray l passing through p = (x, y)T with direction θ. Its parameters are

l1 = k sin(θ),
l2 = −k cos(θ),
l3 = k

(
y cos(θ)− x sin(θ)

)
,

(4.5)

with k > 0. The plenacoustic image p(l), again defined as the mapping of the
plenacoustic function onto the ray space, is

p(l) =

 f
(
x,− l1x+l3

l2
,−sgn

(
sin(θ)

)
arccos(l2)

)
, l2 6= 0

f
(
− l1
l3
, y, π2

)
, l2 = 0

(4.6)

with f the plenacoustic function. Let us consider, as an example, the acoustic scene
in figure 4.2. Two OW’s lying on the segments pApB and pCpD observe a source
pS that is radiating the scene. For simplicity and without loss of generality, we
assume the reference frame to be centered on the first camera, with pApB on the
y axis. Taking one of the cameras reference frame as the global reference frame
is an useful simplification that we will adopt in many occasions from here on. In
this case, the chosen camera is referred to as the reference camera with the other
camera is referred to a the secondary camera. As a consequence to this choice, the
camera visibility region is strip-shaped, exaclty like in the case presented in 3.2.1.
On the other hand, the second OW has a single-wedge shape. Always under the
hypotheses of validity of the Radiance Invariance Law, we write the contribution to
the plenacoustic image ppS

(l) of the source pS in the projective ray space as

ppS
(l) =

{
bpS

(sgn
(
sin(θ)

)
arccos(l2)) l ∈ RpS

0 elsewhere (4.7)

Now that we have seen the features of a joint plenacoustic image, we want to show
how it is actually captured and managed in a multiple-camera system.

4.1.3 Acquisition and Fusion of Multiple Plenacoustic Images

Consider the signal acquisition and plenacoustic image computation procedure
introduced in 3.2.2. The camera works in its own reference frame, unaware of
its position in the world system. We choose to use the same approach also when
dealing with multiple cameras. This is beneficial since it allows us to go through
the acquisition stage without a prior calibration of the system. As a matter of fact,
we will see in 4.3 how we can calibrate the system starting from the individual
plenacoustic images that we have captured.

We then proceed as in 3.2.2, considering that each camera lies on the y(i) axis
between y(i) = q

(i)
0 and y = −q(i)

0 in its reference frame, acquiring the signal and
computing the power plenacoustic image P (i)(m(i), q(i)) = |p(m(i), q(i))|2. Again,
computing the pseudospectra on a sub-array basis, we can write

P (i)(m(i), q(i)
w ) = H(i)

w (arctan(m)), (4.8)
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q
(i)
w being the y coordinate of the center of the wth sub-array in the local frame of
the ith camera. Once computed, we need to map P (i)(m(i), q(i)) into P (i)(l(i)), i.e.
transform the local reduced ray spaces to the local projective spaces. This operation
corresponds to going from a non-homogeneous to a homogeneous representation.
Using the equivalency m = −l1/l2, q = −l3/l2 (cfr. section 3.1.1), we write:

P (i)(l(i)) = P (i)
(
− l

(i)
1

l
(i)
2
,
−l(i)3

l
(i)
2

)
. (4.9)

Then, we map the local ray space P (i)(l(i)) onto the global one. Using (4.1):

Pi(l) = P (H(i)−T l(i)). (4.10)

The global plenacoustic image is then

P (l) =
N⋃
i=1

Pi(l). (4.11)

This final equation considers that the visibility regions of the camera are disjointed,
i.e. no ray is seen by both cameras simultaneously. In our case this assumption
is valid, since the cameras composing our system are purposely non-overlapping
(otherwise they would capture the same portion of the source radiation pattern). A
real joint plenacoustic image is shown in Figure 4.3.

Figure 4.3. Real Joint Plenacoustic Image

The setup is the same of Figure 4.2, where one of the cameras is taken as
reference. We call reference plenacoustic image the plenacoustic image computed by
the reference camera, and secondary plenacoustic image the other one. We can see
that the distance between peaks in the secondary image is dilated: this is an intrinsic
issue of the reduced ray space representation. In the next chapter we explain how
we manage the new features of the plenacoustic image in the relevant context of
source localization.
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4.2 Multiple Camera-Based Source Localization
Source localization is an essential tool to our purpose. In this section we explore

how the ability of observing the source from different points of view affects the
localization process. Firstly, we explain in detail how the information obtained with
the muliple-camera system impacts on the localization method introduced in 3.3,
then we illustrate the modifications that we have applied to the method in order to
take into account the features of the joint plenacoustic image. For the moment, all
the considerations made are still in two dimensions. We extend to the 3D case at
the end of this Chapter.

4.2.1 Source Position Estimation Improvement Through Multiple
DOA Information

The plenacoustic methods for source localization presented in Chapter 3 rely
on the detection and parameters estimation of a line in the plenacoustic image.
The (almost) collinear peaks detected on the image, however, result very close to
each other and to the origin. This fact affects the estimation of the line’s angular
coefficient which reflects on an inaccurate estimation of the source distance. What
is affected in a lesser way is the DOA estimation. Let us see why. Consider a source
in position pS = (x, y)T and its dual line in the reduced ray space is

IpS
: q = −xm+ y. (4.12)

Notice from (4.12) that the angular coefficient of Ips
is x. We assume that it is

estimated with an error εx: the estimated line, which still intersects the m axis in
the point m0 = (y/x, 0)T , is represented by the equation

q = −(x+ εx)
(
m− y

x

)
(4.13)

and has q−intercept

q0 =
(

0, (x+ εx)y
x

)T
. (4.14)

The estimated coordinates of the source are therefore

x̂ = (x+ εx) , ŷ = (x+ εx)y
x
. (4.15)

We can observe that the distance d =
√
x̂2 + ŷ2 is estimated with an error factor

(x+ εx)/x. In fact, if we carry out a few calculations, we obtain

d =
√

(x+ εx)2 +
(
(x+ εx)yx

)2
= · · · = x+ εx

x

√
x2 + y2. (4.16)

However if no other error is brought by the estimation, the DOA of the source
results:

θ = arctan
(
ŷ

x̂

)
= arctan

(
(x+ εx) yx
x+ εx

)
= arctan

(
y

x

)
(4.17)



4.2 Multiple Camera-Based Source Localization 31

which is evidently the correct DOA. It is proven in [11] that the error εx is almost
negligible when the source is close enough to the array (i.e. both DOA and distance
are correctly estimated) while it get more and more relevant as the source distance
increases.

This is where the secondary camera steps in: a double, independently retrieved
information on the DOA can clearly lead to a better estimate of the distance. In
plenacoustic terms, the problem reduces to devising a method that exploits the
information coming from the two cameras to more accurately estimate the line’s
parameters in the ray space. Note that the same concept applies to the full ray
space: if the homogeneous-coordinates peaks are close to each other, the parameters
estimation of the plane they lie upon might not be very accurate. The rays observed
by the two cameras form two completely separated clusters. As shown in Figure
4.4, the more this clusters a far apart, the less a peak localization error affects the
parameters estimation.

(a)

(b)

Figure 4.4. Regression error. The dashed line is the one to be estimate through linear
regressione, the solid one is the resulting estimation in the case of a) a single cluster, b)
two distant clusters

4.2.2 Weighed Hough Transform

We know from section 3.3 that the parameters estimation process of the reduced
representation of Ip starts with the Hough Transform. Through some preliminary
experiments, we have noticed that the this step might be troublesome in many
situations. Let us consider again Figure 4.3. We explained that, when passing to
the reduced ray space, the peaks distance is dilated. The peaks farthest from the
center of the image generate curves with a steep slope in the Hough-Transform
image. The result is show in Figure 4.5(a): thanks to the favorable SNR (10dB), the
plenacoustic image shows no peaks due to noise contribution, therefore the curves
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in the parameters-space image are relative only to actual peaks. We can see that
the dual curves of the peaks far from the origin exhibit a steep slope and form a
cross-like intersection with the curves relative to the other peaks. This is nothing
but another way of looking at the concepts introduced in the previous section: the
two points of view allow us to better address the estimation process.
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(a) Hough Transform, 10dB SNR
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(b) Hough Transform, -20dB SNR, unweighed
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(c) Hough Transform, -20dB SNR, weighed

Figure 4.5. Hough Transform Images

Now, consider the same scenario but with a low SNR (-10dB): in this case the
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Hough-Transform image (shown in Figure 4.5(b)) exhibits several additional curves
generated by the noise peaks, some of which are detected in the reference image
and some in the transformed secondary image. The result is a tangle that creates
numerous intersections and, as a consequence, renders the detection very difficult.
We can see that the global maximum of the image might be found at a radiacally
wrong location: this error propagates to the clusting algorithm, that erroneously
selects noise peaks for the final regression.

Instead of changing the thrersholds for peak detection over the plenacoustic
image, we opted for a method that takes into account the magnitude of a peak
along with its position. The method defines a set of weights for the curves in the
parameters space correponding to the peaks, that takes into account the number of
peaks per pseudospectrum (i.e. the likely noisiness) and the ratio between peaks
magnitude. The weight w(v) for a peak of magnitude v is computed as

w(v) = wmax − wmin
2o

[
− cos

(
π

v − vmin
vmax − vmin

+ 1
)]o

+ wmin (4.18)

where o is an order computed as

o = round(0.4Np). (4.19)

Np is the number of peaks in each pseudospectrum; vmax, vmin the maximum and
minumum magnitude values of the peaks in the image; wmax, wmin the maximum
and minimum weights, set to

wmax = 10(Np+1),

wmin = 1.
(4.20)

The result of the weighing is shown in Figure 4.5(c).

4.2.3 Localization in the Projective Ray Space

After having detected Ip through the Hough Transform, the next step to the
estimation process sees a clustering algorithm and a linear regression on the selected
points. However, in this case, we do not consider the inhomogeneous coordinates
(m, q) as done in [12]. We choose to consider the homogenous coordinated instead,
for a twofold reason. First, as explained in 4.1.2, some rays (specifically those parallel
to the y axis, with l2 = 0) tend to infinity as a consequence of the passage to the
reduced ray space. This means that they must be discarded when computing the
plenacoustic image, resulting in a reduced number of points to feed the regresson
with. The second reason is more practical. Consider again the (m, q) reduced ray
space. The inhomogeneous coordinates of the points in that space are obtained
as (m, q) = (−l1/l2,−l3/l2). As l2 gets small, the more a rounding error becomes
relevant and is amplified over the resulting reduced coordinates.

Thefore, after detecting the line in the reduced space by means of the Hough
Transform, the clustering and the linear regression are accomplished by taking
into account the homogeneous coordinates l = (l1, l2, l3)T of the rays. The set of
rays passing trough a point p = (x, y, 1)T is described by the equation lTp = 0 or
l1x+ l2y + l3 = 0. We write

l1x+ l2y = −l3 (4.21)
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which can be rewritten as

lT1,2p = −l3, l1,2 = [l1, l2]T . (4.22)

Following the same idea presented in 3.3, equation (3.14) can then be rewritten as:

p̂ = (x̂, ŷ)T = (LT1,2L1,2)−1LT1,2l3, (4.23)

where

L1,2 =


l1i1

l2i1...
...

l1iN
l2iN

 , l3 = −


l3i1...
l3iN

 . (4.24)

The estimate p̂ represents parameters of the plane IpS
, i.e. the coordinates of the

source position. We notice that to perform source localization, we built the joint
plenacoustic iamge assuming that the positions of the cameras in the reference frame
are known. However, retrieving a precise information of this kind is usually not
a trivial task. This is why we devised a plenacoustic method for calibrating the
system.

4.3 Autocalibration
In this section we present the autocalibration method that we have developed

in the context of this thesis. We have just stated that the position of the cameras
composing the system is likely to be unknown a priori. Manual measurement of the
rotation matrices R(i) and of the translation vectors t(i) would be quite inaccurate.
Various methods for calibrating distributed microphones array exist (e.g [16]), but,
again, we opted for a solution that exploits the tools we already employ for our goal.

Referring to equation (2.38) presented in section 2.4.2, we can state that a point
p(i) in the ith camera local frame is related to the point pi in the global reference
frame by:

pi = H(i)p(i). (4.25)

This time, however, rather than providing a general definition of H(i) we actually
define its elements:

H(i) =

cos(ρi) − sin(ρi) ∆xi
sin(ρi) cos(ρi) ∆yi

0 0 1

 (4.26)

where ρi and (∆xi,∆yi) are respectively the rotation angle and the x, y translation
that lead from the local frame to the global reference frame. The equation (4.25) is
still valid if we consider sets of points P(i) instead of a single one

Pi = H(i)P(i) , (4.27)

with P(i) = [p(i)
1 ,p(i)

2 , . . . ,p(i)
K ] and Pi = [p1i ,p2i , . . . ,p3i ].

Now, suppose that the cameras perform localization on K different sources
independently. Each camera produces a set of estimated positions p̂

(i)
1 , p̂

(i)
2 , . . . , p̂

(i)
K
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relative to its reference system. If we consider the homogeneous coordinates p̂(i) of
the estimations and collect them in a set P̂(i), we can rewrite (4.27) as

P̂i = H(i)P̂(i), (4.28)

where P̂i is the set of (for now, unknown) homogeneous estimates in the reference
frame corresponding to the local estimates P̂(i). The idea is that if we take one
of the cameras as reference and decide that its local frame is the reference for the
whole system, then the K source position estimates that it has produced are in fact
P̂i = [p̂1i

, p̂2i
, . . . , p̂Ki

]. Finding H(i) from (4.28) is then a LS problem, solved by
inverting P̂i.

However this approach would be quite redundant since it considers H(i) as a
matrix of uncorrelated coefficients. If we look closely at the systemx̂1i x̂2i . . . x̂Ki

ŷ1i ŷ2i . . . ŷKi

1 1 . . . 1

 =

cos(ρi) − sin(ρi) ∆xi
sin(ρi) cos(ρi) ∆yi

0 0 1


x̂

(i)
1 x̂

(i)
2 . . . x̂

(i)
K

ŷ
(i)
1 ŷ

(i)
2 . . . ŷ

(i)
K

1 1 . . . 1


(4.29)

it is clear that only 4 parameters need estimating (cos θ, sin θ, ∆x and ∆y). Therefore
we write explicitly the system asx̂ki

= cos(ρi)x̂(i)
k − sin(ρ)ŷ(i)

k + ∆xi
ŷki

= cos(ρi)ŷ(i)
k + sin(ρ)x̂(i)

k + ∆yi
. (4.30)

In matrix form, we can write

(
x̂ki

ŷki

)
=
(
x̂

(i)
k −ŷ(i)

k 1 0
ŷ

(i)
k x̂

(i)
k 0 1

)
cos(ρi)
sin(ρi)

∆xi
∆yi

 (4.31)

or, more compactly:
P̃′ = P̃C (4.32)

with P̃′ ∈ R2K , P̃ ∈ R2K×4 and C ∈ R4. Due to dimension requirements, P̃ must
have at least 4 rows, i.e. at least 2 different estimated source positions must be
taken into account. Once that requirement is met, P̃ is invertible (rows and columns
are all independent), therefore we are able to calculate all the coefficients we need
simply as

C = P̃−1P̃′. (4.33)
Note that, since the position estimations are likely to present errors, even if the
system is fully determined with two points it is advisable to use as more points as
possibile, so that the linear regression produces a more accurate estimation of the
coefficients. In that case the system becomes overdetermined and the regression can
be performed as

C = P̃†P̃′ = (P̃T P̃)−1P̃T P̃′. (4.34)
Now that we have computed the angle ρi and the translation ∆xi,∆yi we can build
the rotation matrix R(i) and the translation vector t(i) that compose the matrix
H(i). In other words, we have all the information we need about the position and
pose of the ith camera with respect to the reference camera frame.
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4.4 Three-Dimensional Localization From Multiple 2D
Localizations

So far, we have seen how we have extendend the single-camera plenacoustic
imaging techniques of [12] to a multiple-camera scenario. We have defined the
enlarged set of primitives, the relationship between the cameras and the world
system, we have explained how to perform a more accurate source localization
and how to calibrate the system using the newly introduced plenacoustic concepts.
However, this extension is still not enough to fit into the wider context of radiation
pattern estimation. This is to the fact that, so far, the plenacoustic camera has been
considered to be an uniform linear array working in two dimensions.

The main issue is in the source localization technique: when source localization
is performed, the 3D space is cut with the plane on which both the source and
the array lie. This means that, assuming that the microphones pickup pattern is
omnidirectional, the source needs not be right in front of the array to be detected
and localized, but in any case the estimated position is basically always assumed in
front of the array.

 

(b)(a)

Figure 4.6. Position of a source in 3D space with respect to a ULA (a) and relative
localization in 2D (b)

This is an intrinsic issue of the method, due to its reliance on DOA estimation.
In the light of this observation, the multiple-camera localization method presented
in section 4.2 results to be inapplicable to sources that do not lie on the same plane
on which both reference and seconday arrays lie. This means that a source in an
arbitrary position in 3D space cannot be correctly localized. Furthermore, as it was
proposed in [13], the plenacoustic camera should be a grid of microphones rather
than a ULA. We therefore need to make a step further and extend the techniques
presented so far to a three-dimensional scenario.
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The key aspect of the approach that we adopt is to consider an N by W
microphones camera as a set of N vertically aligned ULAs of W microphones
each. Our system is composed by two of these cameras (even though there might
teoretically be any number), identical in terms of number of microphone and distance
between them. Every camera is assumed to be perfectly vertical and to have the
same elevation from the ground (so that the corresponding arrays in every camera
lie on the same horizontal plane). Starting from this point, we studied a method
to derive the 3D source position starting from the 2D estimates provided by arrays
composing the cameras.

4.5 3D source position estimation

It is clear that under the perspective suggested in the previous chapters the
2D estimated coordinates p̂(i) = (x̂(i), ŷ(i))T generated by the ith array are to be
treated carfully when passing to 3D space: while the displacement on the y axis
is not affected and ŷ(i) is valid, x̂(i) actually represents the distance of the source
and not its x coordinate. In other words, we are only able to tell that the source
lies on a circle of radius x̂(i) centered at (0, ŷ(i))T on the array. Let us consider

Figure 4.7. Circles of radius x̂(i) centered on the arrays. Example with N=2 arrays.

an N ×W microphones camera as suggested in the previous chapter. Following
the aforementioned considerations, we build a geometrical representation of the
scene: since we only have one coordinate (ŷ(i)) and a distance information (x̂(i))
for each array composing the camera, the 3D localization problem is transformed
in the geometrical problem of finding the intersection of the circles build over that
information. We define C as the total number of cameras in the system. The
(inhomogeneous) 3D coordinates of the centers of the arrays in the global reference
frame are ci,n, while Θi,n represents their orientation.
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4.5.1 Geometrical Representation

First of all we compute the points p̂i,n in the global reference frame corresponding
to the points p̂(i,n) in the ith camera local frame. As already explained in the previous
chapter, this is done through the isometry:

p̂i,n = H(i)p̂(i,n). (4.35)

We go to 3D space by assigning the z coordinate of the relative array to the
estimations, leading to

p̂′i,n =

x̂i,nŷi,n
czi,n

 . (4.36)

Then we need to build the circles passing through p̂′i,n and centered on the array.
In the 3D space a circle is obtained as the intersection of a sphere and a plane. We
build the spheres centered on the arrays centers ci,n and have radii

di,n = ‖ci,n − p̂′i,n‖. (4.37)

As for the planes, they must be normal to the vertical plane on which the arrays lie.
If Θi,n is the array orientation, the plane coefficients are

nxi,n = cos(Θi,n + π/2),
nyi,n = sin(Θi,n + π/2),
nzi,n = 0.

(4.38)

To obtain the circle, for every array i we define the function fS describing the
sphere centered in ci,n and the function fP describing the plane of coefficients
(nxi,n, n

y
i,n, n

z
i,n) and passing through p̂′i,n, then we build the system{

fS : (x− cxi,n)2 + (y − cyi,n)2 + (z − czi,n)2 = d2

fP : nxi,n(x− x̂i,n) + nyi,n(y − ŷi,n) = 0
. (4.39)

The previous equation system represents a single circle built for the nth array of
the ith camera. Considering a global system for evey array of evey camera, we are
setting up a non-linear problem of finding a common solution to all the equation, i.e.
of finding the point where all the circles intesect. The problem can be addressed
with the Gauss-Newton algorithm for non-linear least squares approximation.

4.5.2 Gauss-Newton Algorithm

Our goal is to find a solution p̄ that minimizes the error ‖r(p̄)‖2 = ‖f − d‖2,
where

f =



fS(c1,1)

fP (p̂1,1)
...

fS(cC,N )

fP (p̂C,N )


d =



d2
1,1

0
...

d2
C,N

0


(4.40)
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The solution p̄ is the 3-vector representing the inhomogeneous cartesian coordinates
of the source.

We choose the estimate p̂′i,n with minimum norm as the initial solution p̄(0) to
feed the algorithm with

p̄(0) = arg min
p̄′i,n

(‖p̄′i,n‖). (4.41)

This is due to the fact that this particular estimate is more likely to have x and
y coordinates close to the actual 3D position. Inizitalizing p̄(k) = p̄(0), the Gauss-
Newton algorithm can now be implemented as follows:

while ‖p̄(k+1) − p̄(k)‖ > tc do

• Linearize r near current iterate p̄(k):

r(p̄) ≈ r(p̄(k)) + D(p̄(k))(p̄− p̄(k)) (4.42)

where D is the Jacobian whose elements are D|ij = δri/δp̄j ;

• compute next iteration p̄(k+1) as the Least-Squares solution of
||A(k)T p̄− b(k)||2:

p̄(k+1) ← (A(k)TA(k))−1A(k)T b(k) (4.43)

where: A(k) = D(p̄(k)) and b(k) = D(p̄(k))p̄(k) −
[
f(p̄(k))− d

]
;

• Increment counter
k ← k + 1

end
Algorithm 1: Gauss-Newton Algorithm

Note that in our case the Jacobian matrix D is defined as:

D =



δfS(c1,1)
δx̄

δfS(c1,1)
δȳ

δfS(c1,1)
δz̄

δfP (p̂1,1)
δx̄

δfP (p̂1,1)
δȳ

δfP (p̂1,1)
δz̄

... ... ...

δfS(cC,N )
δx̄

δfS(cC,N )
δȳ

δfS(cC,N )
δz̄

δfP (p̂C,N )
δx̄

δfP (p̂C,N )
δȳ

δfP (p̂C,N )
δz̄



(4.44)

Since the algorithm does not guarentee convergence, the threshold tc must be set
in advance in order to obtain an estimate in a finite number K of iteration. The
outupt value p̄ = p̄(K) is the 3D source position estimate we are looking for.
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4.6 Conclusions
In this chapter, we have covered the core aspect of our studies, that is the exten-

sion of plenacoustic analysis to a multiple-view model, presenting the key concepts
and introducing the new formal notation. Part of this study is the multiple-camera
source localization method, that improves its single-camera counterpart by exploting
the ability of observing the source from different points of view. Furthermore, the
autocalibration method that we have devised allows us to immediately report the
study to a real context: in our case, being able to calibrate the system accurately is
essential, since both the source localization and radiation pattern estimation methods
require that the relative position of cameras is known. The final step towards a
completely plenacoustic analysis-based radiation pattern estimation system is the
3D source localization technique presented in the last section of this Chapter. Once
all of these aspects have been addressed, we can move forward and show how the
new concepts integrate to the system first introduced in [13]: in the next Chapter
we see how this integration is done and how the resulting system benefits in terms
of compactness.
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Chapter 5

Radiation Pattern Estimation

In the previous chapters we introduced the plenacoustic tools already available in
the literature as well as the novel approaches that we have studied with the aim of
improving the technique for radiation pattern estimation devised in [13]. Multiple-
camera plenacoustic imaging enables a more precise analysis of the soundfield,
allowing us to perform a more reliable source localization. Thanks to the method
presented in Section 4.5 we are able to estimate the 3D position of a source integrating
2D plenacoustic techniques with some geometric considerations.
In this chapter we see how the newly devised methods can be applied to the multiple-
camera radiation pattern system that we intend to investigate in this thesis. We
explain how the technique of [13] is reformulated by taking into account the fully
plenacoustic approach. Since the focus of our work is mainly on the multiple-view
extension of plenacoustic imaging, we here refer to a slightly more basic system:
the source is considered controlled in position and in terms of signal emission (a
loudspeaker or an instrument in fixed positions) and the aspects related to frame
selection and dynamic compensation that are included in [13] are not covered, as they
are not very relevant to our problem. The idea is that the source emits a signal in a
fixed position, then it is rotated arbitrarily and possibily into another position before
emitting another signal. In this sense, we explore a first approximation of an actual
moving source. We explain how the position over the acquisitions can be estimated
with the methods we have devised and presented in the previous Chapter. Also,
we explain how this information can be combined with the orientation information
provided by an external device (a gyroscope). After setting the basic notation that
will be used throughout the chapter, we explain in a progressive fashion how the
whole acquired signal is managed and analyzed.

5.1 General Setup

We consider a two-cameras setup where each camera is composed by N arrays of
W microphones stacked to form a rectangular grid (where the vertical and horizontal
distance between microphones is equal). We identify one of the two cameras to be
the reference. The origin of the whole reference system is the center of the bottom
array of the reference camera and is defined by the inertial unit vectors i, j, k. In
the global reference system, we consider the inhomogeneous 3D coordinates of the
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centers ci,n of the individual arrays as defined in Section 4.5. We here also define
the global 3D position of each microphone as:

mi,n,w =

m
x
i,n,w

my
i,n,w

mz
i,n,w

 (5.1)

where i = 1, 2 is the camera index; n = 1, . . . , N the array index; w = 1, . . . ,W the
microphone index. Each microphone acquires synchronously the signal si,n,w(t).

Single-band Plenacoustic

 Images computation

Wideband Plenacoustic 

Image Computation

2D Source Localizations

3D Source Position 

Estimation

Energy Measurement and 

Mapping to Source Refrence 

Frame

Gyroscope data

Figure 5.1. General Setup

5.2 Source Position and Orientation Estimation
As a first step, we compute the pseudospectrum with each array n independently

through a MVDR beamformer (cfr. Appendix A) on the signals si,n,w(t). 2D source
localization is then performed as in 3.3 to obtain the individual 2D source position
estimates:

P̂i = [p̂i,1, . . . , p̂i,N ]. (5.2)
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Using the method described in Section 4.5 we derive the global 3D source position
estimate

p̄ =

x̄ȳ
z̄

 . (5.3)

The relevant aspect of this steps is that the plenacoustic images here computed
are also used during the energy measurement step. While the position is estimated
through plenacoustic methods, we still need an external device for determining the
source orientation with respect to our system.

The orientation of the source is obtained as a combination of its rotation about
three axes. The value of these rotations, respectively called pitch (ψ), yaw (ϕ) and
roll (µ), may be obtained through a gyroscope. The details on this kind of device
and on how to manage the data it outputs is be provided in Section 6.2. For the time
being we only need to take for granted that (ψ,ϕ, µ) are known for every t and that
their value is 0 when the source is aligned with the whole system’s reference frame.
We therefore compute the global orientation by rotating the source’s reference frame
by the obtained angles. To do so, initially assuming that the source is located at the
origin of our reference system, we apply three successive algebraeic rotations to the
inertial vectors i, j,k. These rotations about the inertial axes x, y, z are respectively
defined as:

Rψ =

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 , (5.4)

Rϕ =

cosϕ − sinϕ 0
sinϕ cosϕ 0

1 1 0

 , (5.5)

Rµ =

1 0 0
0 cosµ sinµ
0 − sinµ cosµ

 . (5.6)

Combined in the presented order, they provide the complete rotation matrix R =
RψRϕRµ, which can now be applied to the intertial unit vectors leading to

i′ = Ri, j′ = Rj, k′ = Rk. (5.7)

Lastly, we translate by the source position estimate x̄ to obtain the complete
rototranslated source reference frame described by the inertial unit vectors:

ī = i′ + x̄, j̄ = j′ + x̄, k̄ = k′ + x̄. (5.8)

5.3 Energy Measurement
Once all the information about source position and orientation is obtained, we

can proceed with measuring the energy it radiates in all those directions that are
visible to our plenacoustic cameras. At first we see how to retrieve this information
from the plenacoustic images already acquired for source localization. Then, by
mapping the energy information to the source reference frame and compensating for
the source distance we can derive the global source radiance pattern.
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5.3.1 Energy Measurement from Plenacoustic Images

What we have at this point is a set of plenacoustic images, one for each ULA.
We here consider K single-band plenacoustic images rather than the wideband
version used for localization (cfr. 3.2), so that for a given k̄ we have a relative
image P (i,n)(θ, ω̄k). As explained in 3.2.1, the plenacoustic image is composed by
the pseudospectra hw(θ, ωk) computed for each sub-array w. We know that the
peak in the pseudospectrum is the value of the energy coming from the direction θ̄
of the source. Therefore, considering the wth sub-array of the nth array in camera
i, we define the ray originating at the source location and directed to the central
microphone mw as:

vi,n,w = mi,n,w − x̄ with |vi,n,w| = ri,n,w, (5.9)

ri,n,w being the distance between the source and the central microphone. We define
the energy associated to this ray as

e(vi,n,w, ωk) = P (i,n,w)(θ̄, ωk) (5.10)

where P (i,n,w)(θ̄, ωk) is the kth band plenacoustic image computed at the sub-array
w of array (i, n). Each sub-array is then able to observe a different ray coming from
the source location and provide information about its energy. This means that the
two N ×W microphones grids are able to observe 2 × N × (W − J + 1) rays for
each acquisition, with J the number of microphone in a sub-array. We can see how
the extension to a multiple-camera setup is beneficial to our problem: thanks to
the acoustic-rays based representation of the soundfield peculiar to plenacoustic
imaging, we are able to extend our OW to multiple separate points of view, in a
straighforward way and with no modification to the underlying model. Furthermore,
in the case of a real musical performace, this addition allows the musician to move
in a natural way, without the need of eccessively rotating about himself in order to
present all the pattern to the plenacoustic cameras.

5.3.2 Mapping to Source Reference Frame

In order to obtain a radiation pattern, the information gathered so far must be
expressed in the source reference frame. We have a set of rays vi,n,w, one for each
sub-array, associated to an energy measure e(vi,n,w). If we define the wth microphone
reference frame with the three unit vectors (̂i, ĵ, k̂), we can write (dropping the indices
for the sake of simplicity of notation)

v = v̂xî + v̂y ĵ + v̂zk̂. (5.11)

We perform the reference frame change with

v̄ =

v̄x̄v̄ȳ
v̄z̄

 =

 î · ī ĵ · ī k̂ · ī
î · j̄ ĵ · j̄ k̂ · j̄
î · k̄ ĵ · k̄ k̂ · k̄


v̂xv̂y
v̂z

 (5.12)
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where (̄i, j̄, k̄) are the source reference frame’s unit vectors computed in 5.2. The
above equation simplifies inv̄x̄v̄ȳ

v̄z̄

 =

 īx̄ īȳ īz̄
j̄x̄ j̄ȳ j̄z̄
k̄x̄ k̄ȳ k̄z̄


v̂xv̂y
v̂z

 . (5.13)

We then convert the vector into spherical coordinates in order to map the energy
information on a sphere centered in x̄:

θ̄ = arctan
(
v̄ȳ
v̄x̄

)
, (5.14)

φ̄ = arctan
(

v̄z̄√
v̄2
x̄ + v̄2

ȳ

)
, (5.15)

r =
√
v̄2
x̄ + v̄2

ȳ + v̄2
z̄ . (5.16)

Finally, we define the energy associated to these coordinates as:

e(θ̄, φ̄, r, ωk) = e(vi,n,w, ωk). (5.17)

The energy values e(θ̄, φ̄, r, ωk), though, do not yet constitute a radiation pattern for
a twofold reason: they are mapped onto difference distances r from the cameras and
they do not take into account dynamic variations of the signal. In the next section
we refine the definition of the energy value e taking into account these two factors
in successive steps.

5.3.3 Distance and Dynamic Compensation

According to the Rayleigh’s Integral (2.4), a wave propagating in free field is
subjected to an amplitude attenuation of 1/r. Due to the multiple-camera setup and
the planar distribution of the microphones in each camera, sub-arrays are at different
distances r from the source. We therefore need to compensate these different losses
by multiplying the energy values e(θ̄, φ̄, r, ωk) by the squared distances r2. Doing so,
we are implicitly mapping all the values extracted with the plenacoustic cameras on
a spere of radius 1 m, thus obtaining a directivity pattern. For each sub-array w, at
each frequency band k, the energy value is defined by:

e(θ̄, φ̄, ωk) = e(vi,n,w, ωk)r2. (5.18)

Now, we need to take into account dynamic variations of the signal. This step
is of particular importance when dealing with musical instrument. The instrument
can be excited with different intensities, even if it is in a fixed positions. In the case
of musical instruments we therefore resort to a reference signal whose energy can
be used to compensate these dynamic variations (in chapter 6 we explain how to
obtain this signal).
We calculate the energy of the reference signal sr(t) as:

er =
T∑
t=1

sr(t)2, (5.19)
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then divide the extracted pseudospectrum value with it, to compensate the dynamic
changes, leading to

e(θ̄, φ̄, ωk) = e(vi,n,w, ωk)
r2

er
, (5.20)

which is the final directivity pattern value relative to sperical coordinates (θ̄, φ̄)

5.4 Fusion of Multiple Measurements
We have seen how to measure the energy radiated by the source in every direction.

If a portion of the radiance is observed more than once over the acquisitions, we
have more than one measure of the energy associated to spherical angels (θ̄, ω̄) and
frequency bin ωk. We can compute an average as

e(θ̄, φ̄, ωk) = 1
D(θ̄, φ̄, ωk)

D(θ̄,φ̄,ωk)∑
d=1

ed(θ̄, φ̄, ωk), (5.21)

where D(θ̄, φ̄, ωk) is the total number of measures for e(θ̄, φ̄, ωk) and d the index of
the single measure.

5.5 Conclusions
In this chapter we discussed how multiple-view plenacoustic imaging applies to

the problem of radiation pattern estimation and better exploits its potential. The
system is able to work with a very limited need of external devices: as a matter
of fact, except for the gyroscope that is necessary to track the source orientation
over time, it exploits the same acquisition data to both localize the source and
measure the energy coming from it at a number of different angles. The plenacoustic
imaging techniques can provide all the information needed at all the main steps of
the process, rendering the analysis more coherent and self-contained.

In the next Chapter we present some simulated and experimental data that show
how the various components of the system perform.
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Chapter 6

Implementation

After presenting our studies on multiple-camera plenacoustic imaging and the
application of these studies to a radiation pattern estimation system, we explain how
our system is implemented. At first, we present the result of a series of simulations
that we have set up in order to show the effectiveness of the techniques that we
have devised. Then we briefly present the hardware and software components of
our measurement system. At the end of the chapter we also present a series of
experimental results to confirm the validity of our system. These results are referred
to the acquisition of a loudspeaker-generated signal, and show how the radiation
pattern is estimated.

6.1 Simulations

The results presented in this section is obtained through a series of Matlab scripts
that simulate sound sources and plenacoustic cameras and process this data through
the same algorithms that are used in the context of actual acquisitions. We consider
ULAs composed of 9 microphones spaced by 0.06m, for a total array length of 0.48m.
First, we show the performance of the autocalibration method, then we cover the
source localization methods (2D and 3D).

6.1.1 Autocalibration

β

d

d

*
*
*
*
*

*
*
*
*

*
*
*
*
*

*
*
*
*

*
*
*
*
*

Figure 6.1. Autocalibration simulation setup: the stars represent the sources lattice, while
the two bars represent the ULAs



48 6. Implementation

We evaluated the autocalibration error as the mean orientation and center
position estimation error. In figure 6.1 we show the setup of the simualtion: 23
sources arranged on a lattice are positioned at distance d from both the reference
and the secondary camera. A white noise signal is generated by one source at a time
with a 10dB SNR, and the source is localized independently by both cameras. A
total of I = 50 acquisitions and localizations are performed for every source. The
autocalibration method presented in Section 4.3 is applied by taking into account a
number N = 2, . . . , 23 of localizations, chosen randomly between the available ones
iteratively for I times.
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Figure 6.2. Autocalibration errors at d=1.5m

Then, the angle β is varied and the process repeated. Once in a first simulation
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all angles of interest are covered, in a second simulation the distance d is varied as
well and the whole process is repeated from the beginning. In Figures 6.2, 6.3 and
6.4 we present the results for three values of d (d = 1m, 2m, 3m), with β varying from
π/4 to π and N from 2 to 13. We observe that the error is stable enough from about
10 sources for all distance values. In general, the error increases with the distance,
due to the fact that the perfomanes of the single-camera based localization method
decrease (as explained in 4.2.1). Note that the irregualar shape of the curves is to
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Figure 6.3. Autocalibration errors at d=2.5m

be ascribed to the error computation method explained above: the N number of
single-array localizations is chosen randomly between the the 23 ones available. This
means that if a noisy localization is included, the mean error (and STD) increases
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slightly.
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Figure 6.4. Autocalibration errors at d=3.5m

6.1.2 Multiple-Camera Source Localization

We here consider that the two cameras are perfectly calibrated, i.e. their relative
pose and position is known with no error. Again, each camera is composed by 9
microphones and is 0.48m long. First of all, we present the localization error of a
simulated source at location x = [1m, 0m]T that generates a with noise signal. We
evaluate joint-localization error as a function of the SNR, varying from −10dB to
10dB. The main goal of this simulation is to evaluate the localization error compared
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to a single-camera case, where a camera of 16 microphones performs localization on
a source at the same location. Note that the 16 microphones camera is 1m long, so
that the distance between sensors remains approximately 0.07m. In this sense, the
single camera presents a double number of sub-arrays that is double with respect
to the two smaller cameras, i.e. a double number of pseudospectra compose its
plenacoustic image. The results are shown in Figure 6.5.Firstly, as explained in
4.2.3, in the multiple-camera case is necessary to take into account the homogeneous
coordinates of the peaks in the plenacoustic image. In this simulation we clearly see
how the regression over inhomogeneous coordinates would be significantly inaccurate.
Secondly, we here confirm that the multiple-camera localization error is always
less than the single double-length camera, which is in line with what was stated
in Chapter 4. We also evaluate the performance in relation to the distance of the
source: in figure 6.6 we can see that, always following what was stated in 4.2.1, the
multiple-camera techniques are far more robust that the single-camera ones. This is
due to the fact that by combining two independent DOA information we are able to
obtain a better distance estimation as well.
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Figure 6.5. Multiple-Camera Localization Error Vs. SNR
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Figure 6.6. Multiple-Camera Localization Error Vs. Distance

6.1.3 3D Source Position Estimation

Also in this case, we consider that the cameras are correctly calibrated. The
cameras are two 4× 9 microphones grids, with sensors spaced by 0.07m horizontally
and vertically. The bottom arrays of both cameras are at 0m. The 3D source position
estimation method presented in Section 4.5 relies on the invididual 2D localizations
provided by each array composing the microphone-grid cameras. For this reason, we
simulate a source at location x = [0.2, 1.1, 0.11]T that emits a white noise signal, then
we simulate acquisition and localization on each array independently and evaluate
the error on the 3D source position estimation at varying SNR and values of β (cfr.
Figure 6.1) . We can see in Figure 6.7 that the error decreases as the SNR increases
and that it is not significantly dependent on β.
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Figure 6.7. 3D localization errors at varying SNR

6.2 Setup

6.2.1 Hardware

The system is composed by two plenacoustic cameras that we built specifically for
this application from wooden boards. A total of 64 Beyerdynamic MM1 condenser
measurement microphones is arranged in two 4× 8 microphones regular grids, with
each element spaced vertically and horizontally by 0.07m. The grids are obtained
from two wooden boards drilled to accomodate the microphones, supported by tripod
stands that are fixed so that the bottom array of each camera is at 1.46m from the
ground.

All microphones are connected to eight Aphex 188 8-channel preamplifiers whose
output is routed to two Apogee Symphony I/O 32-channel A/D audio interfaces. A
Mac Pro is used for the acquisition process.

We anticipated in Section 5.2 that, in order to track the varying orientation of
the source, we need a gyroscope. The one we use is Phidgets Spatial 3/3/3 1044,
which provides three-axes angular rate via USB.

The reference microphone is a generic piezoelectric microphone, attached close
to the bridge of the violin. Notice that the reference microphone, as explained in
Section 5.3.3, is used when dealing with an actual insturment and only provides a
reference energy signal used to compensate possible dynamic variations.

Technical specifications of all hardware components are provided in Appendix B

6.2.2 Software

The software side of the system is composed of two applications, specifically
implemented for this work. The first one, devoted to the acquisition process, is
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Figure 6.8. Block scheme of the hardware system

developed in Obj-C and features a graphical interface (Figure 6.9). This application
exploits the Portaudio framework to acquire the 64 microphone signals outputted
by the Symphony I/O interface, along with the reference microphone signal and the
gyroscope data. The microphones signals are sampled at 44.1KHz and quantized at
16bits precision. A buffer of 512 samples per each channel is saved to a raw binary
file every 0.0116s (44100samples/s × [512samples/buffer]−1). When the buffer is
saved, orientation data is retrieved from the gyroscope. This data is provided in the
form of 3-axes data rates (◦/sec) which must be integrated over time to obtain the
current heading, namely the pitch-yaw-roll values (cfr. Section 5.2). Axis a heading
at time t̄ is therefore obtained as

ηa(t̄) =
t̄∑
t=1

%a(t)×∆T (6.1)

where ηa, %a are respectively axis a heading and angular rate, t = 1, . . . , t̄ − 1 are
the time instants prior to the current one and ∆T is the integration period, which
in our case is T = 0.0116s. This solution allows us to have inherently syncronized
audio and orientation tracking signals, with an orientation information every 512
audio samples. Note that the gyroscope has a significant drift (time-dependent
increasing error), which needs to be compensated. Due to the fact that this drift is
not perfectly linear and might change depending on various factors, before starting
the acquisition the gyroscope is left in rest position for a a period of time (about 3−5
minutes) in order to obtain a reference drift value. We noticed however that this
drift actually constitutes an issue. Its variation over time is not regular and might in
some cases even change slope. Within the context of a violin perfomance, evaluating
the impact of this drift on the overall orientation tracking is nearly impossible. The
acquisition aimed at estimating the drift is a first starting point, but it proved to be
not enough in many situations. A better solution is to take into account also the
information provided by the compass (available on the same device) and integrate it
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to the gyroscope data: this allows a more reliable estimation on the whole.
Once the acquisition is completed, we therefore have three files: one for the audio

signals, one for the orientation trackings and one for the drift measurement.
These files are processed by a Matlab script, that performs all the steps presented

in Chapter 5: frames selection, source localization and orientation estimation, energy
measurement, distance and dynamic compensation. The data is then visualized
through a series of plots, as we show in the next Sections.

Figure 6.9. Acquisition application: graphical interface.

6.3 Results
In this section we present the results of the experiment that we made to validate

our radiation pattern estimation method. We estimated the two dimensional radiation
pattern of a Genelec 8020A loudspeaker (see Appendix B for specifications) at
different frequencies. The technique we used is the one presented in Chapter 5:
using multiple-camera plenacoustic methods, the system performs autocalibration,
3D localization and pattern estimation. The setup is the one presented in Section
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6.2, with the second camera centered in [−0.75 m, 1.2 m]T and the angle between
the two cameras equal to 90 ◦.

The experiment was performed into a semi-anecoic room, where walls are covered
in absorbing acoustic foam, while floor and ceiling are to be considered reflectors.
This fact influenced the results, as the vertical reflections introduced a noise that
cannot be considered negligible.

6.3.1 Autocalibration

Autocalibration was performed through a dedicated acquisition. We positioned
the loudspeaker so that the mid-range cone was at the same height of the third array
from the top of both cameras (1.53 m). Assuming that the cameras were perfectly
vertical and at the same height from the ground, there is no loss of generality in
taking into account only one ULA per camera to perform autocalibration, as only
the x, y translation and rotation need computing. We therefore applied the method
presented in Section 4.3, having a white noise emitted by the loudspeaker in 13
different positions in front of the cameras. The resulting calibration errors are:

Orientation estimation error : 2.02 ◦

Center estimation error : 0.05 m.
(6.2)

Note that this errors are computed with respect to a manual measurement of the
setup that might not be perfectly accurate itself. Furthermore, the two cameras
might have been not perfectly vertical: due to the conformation of the tripods used
to hold the cameras, a precise positioning was not possible.

6.3.2 Loudspeaker Position Estimation and Radiation Pattern Mea-
surement

The loudspeaker was positioned at [0.04 m, 0.85 m, 1.53 m]T , with the gyroscope
fixed on top of it. In an iterative fashion, the louspeaker emitted a white noise signal
of fixed length (5 s) and was rotated manually on its vertical axis of about 10 ◦
counter-clockwise. As a first step, we estimated the 3D position of the louspeaker
for each acquisition. The results of the localizations are shown in Figure 6.10 (note
that the reference camera is here considered to lie on the x axis). The dashed line
represents the sense or the rotation. We notice that the estimated positions follow
the mid-range cone of the loudspeaker as it rotates. The distance between opposite
localizations (e.g. top-left and bottom-right) is in fact approximately the width
of the chassis (10 cm). In general the localizations are consistent with the manual
rotations that we made. The localizations in the lower-left sector are also consistent,
as the last few rotations were smaller. The points on the left are more distant from
the initial position as a consequence of the loudspeaker tripod oscillation on the
vertical axis. As for the vertical estimation (b), this is also consistent with the
conformation of the loudspeaker: the distance between mid-range cone and tweeter
cone is approximately 20 cm. This means that the source is overall localized in the
middle between the two components. The residual localization error is to be ascribed
to the noise contribution of the vertical reflections of the room.

We then proceeded with evaluating the radiation pattern at six meaningful
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Figure 6.10. Estimated loudspeaker 3D positions in the (x, y) and (y, z) planes. The red
dot is the actual position of the mid-range cone.

frequencies: 125 Hz, 250 Hz, 500 Hz, 4K Hz, 12K Hz, 16K Hz. Figure 6.11 shows
the results of the experiment, compared to nominal radiation patterns provided by
the manufaturer, presented in polar diagrams. Note that we only display half of
the pattern: this is due to the fact that it is simmetric both in the specifications
and in our results. First, we focus on the low frequency patterns: we can observe
that the quasi-omnidirectionality is preserved on all three cases and that the ratio
between the three pattern is approximately the same as in the nominal patterns.
In particular, in the rear part (180 ◦) the energy values correspond with a certain
precision. The nominal high frequency patterns have a more complex shape and
are again similar to each other. We can see that also in this case the results of
our experiment overall coincide with the ones provided by the manufacturer. The
irregular lines in the results are to be ascribed mainly to low resolution: the manual
rotation of the loudspeaker was not precise and in some cases possibily too wide.
Even so, the result shows that the estimate pattern is in general very accurate.
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Figure 6.11. Loudspeaker experimental results (b) versus the spcifications provided by
the manufacturer (a)
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Chapter 7

Conclusions

Plenacoustic imaging is a powerful tool. It is capable of condensing the vast
information about the soundfield into a compact and immediate representation that
can be used at many different levels. In this thesis we have seen a meaningful
example on how the one-shot acquisition of a set of plenacoustic images allows us to
perform a series of different analyses on the acoustic scene; we are able to detect
and localize a sound source in 3D space by combining the 2D localizations of many
linear arrays, and we are also able to estimate the energy that this source radiates
towards those arrays by simply evaluating the peaks on the same plenacoustic images
used for the localization. Of course this is possible thanks to the multiple-camera
approach, that, by providing multiple views of the acoustic scene, improves the
effectiveness of the analysis tools that were available so far. The main improvement is
in source localization: single camera-based localization techniques can estimate DOA
accurately, but they do not attain very good performances in distance estimation as
the source gets farther away from the observation window. When adding more than
one point of view on the acoustic scene, the joint information on DOA compensates
significantly the distance estimation error, rendering the overall localization far
more accurate. After the study and first validation through a series of simulations,
we determined that the multiple-camera localization technique is applicable to a
radiation pattern estimation system.

The extension to a multiple-camera scenario and the integration of the new
plenacoustic techniques, allow the system to be more coherent and self-contained: the
previous hybrid paradigm, where soundfield analysis relies on information retrieved
through a depth map camera, is now replaced by a fully plenacoustic paradigm that
exploits the ray-space representation of the soundfield in all the autocalibration,
localization and pattern estimation steps. We want to stress that the application of
the concepts introduced in this work to the pattern estimation system has served
as a demonstration on how the extension to the multiple-view scenario widens the
scope of plenacoustic imaging, rendering the soundfield analysis techniques more
and more versatile. With our thesis, we laid a solid foundation for future works in
the field of plenacoustic analysis.
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Future Works
A very relevant subject that needs further investigation is the extension to three

dimensions of the plenacoustic concepts introduced in this thesis, as well as, in
general, of the ones already present in the literature. While our approach to 3D
source localization is proven valid, it still is an hybrid solution that certainly does
not completely exploit the potentialitis of plenacoustic analysis. A fully plenacoustic
approach, which was out ot the scope of this thesis, would be a useful subject for
future studies.

As far as plenacoustic radiation pattern estimation is concerned, it needs to
be extended to the context of a real musical performance. Again, this aspect was
out of the scope of our studies, and it certainly is the next step to be undertaken
in an applicative work. Another future development could be taking plenacoustic
radiation pattern estimation a step further: so far only the farfield radiation has
been evaluated, considering the instrument as a monopole. This, as explained in this
thesis, is a valid assumption in the Fraunhofer region, and enables the definition of
the overall interaction of the instrument with the sourrounding environment. If on
the other hand the plenacoustic camera was brought to the nearfield region, it would
be possible to evaluate the energy radiate by each component of the instrument.
Considering, as an example, the sound board of a violin, this kind of analysis could
even be able to determine its main normal modes of vibration.
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Appendix A

Spatial Signal Processing

For completeness’ sake we now want to elaborate the concept of pseudospectrum
that we tuched upon throught the thesis and in particular in the midst of section
3.2. Furthermore we introduce a general overview of the principles of spatial signal
processing. We here take as reference one of the ULA sub-arrays and therefore drop
the index w relative to its position in the main array. Also, for simplicity’s sake,
we’ll assume that the first microphone instead of the middle one is considered as the
reference. Let x(t) denote the value of the signal waveform sampled at the reference
point at time t and τn the time needed for the wave to travel from the reference
point to microphone j (j = 1, . . . , J). Considering microphone j and neglecting its
impulse response, its output can be written as

sj(t) = x(t− τj) + ej(t) (A.1)

where ej(t) is an additive error. The kth frequency component of the signal is

sj(t, ωk) = e−j[ωk(t−τj)+φ] + ej(t, ωk) = e−jωkτjx(t) + ej(t, ωk) (A.2)

where e−jωkτj accounts for propagation delay from the reference point to the nth
microphone. e−jωkτj evidently embeds information about the position of the source.
We collect the propagation terms of all microphones into a propagation vector

a(θ, ωk) =
(
e−jωkτ1 , . . . , e−jωkτW

)T
(A.3)

where the variable θ is the Direction Of Arrival (DOA) of the source. Now, let d
denote the the distance between two consecutive microphones and θ the DOA of the
signal illuminating the array, under the planar wave hypotesis we find that

τj = (j − 1)d sin(θ)
c

, −π/2 ≤ θ ≤ π/2, (A.4)

where c is the sound speed. The propagation vector can then be rewritten as

a(θ, ωk) =
(

1, e−jωkd sin(θ)/c, . . . , e−j(J−1)ωkd sin(θ)/c
)T
. (A.5)
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Furthermore, if λ = c/fk is the wavelength and if we define the quantity ωks as

ωks = ωk
d sin(θ)

c
, (A.6)

we obtain yet another form of the propagation vector:

a(θ) =
(

1, e−jωks , . . . , e−j(J−1)ωks

)T
(A.7)

which is completely analogous to the vector built sampling the sinusoidal signal
e−jωkt. For this analogy, the quantity ωks is referred to as spatial frequency. If we
want to sample a continuous-time sinusoidal signal with frequency fk, then, in order
to avoid aliasing effects, the sampling frequency Fs should satisfy the condition
Fs ≥ 2fk. Also in the spatial sampling a problem of minimum sampling frequency
arises. We have to guarantee that

|fkss| ≤ 1/2 ⇐⇒ d sin(θ) ≤ λ/2, (A.8)

which is always satisfied if
d ≤ λ/2. (A.9)

In other words, the ULA is perfoming a uniform spatial sampling of the wavefield
and the distance between micrphones, which can be though of as the spatial sampling
period, must be smaller than half the signal wavelength in order to avoid aliasing.
In the light of the concept of spatial sampling, we can state that there is an analogy
between temporal temporal and spatial filtering. In fact, in the same way that a
temporal filter can be designed to enhance or attenuate selected frequencies, a spatial
filter can be designed to enhance or attenuate the signal coming from selected DOA.
Being h the set of filter weights, the spatially filtered output of an array illuminated
by a narrowband wavefront with complex envelope u(t) and DOA equal to θ is given
by

sf (t, ωk) =
(

hH(ωk)a(θ, ωk)
)
u(t, ωk) (A.10)

which is the equation of the spatial filter, also called beaformer. The power E[|sf (t)|2]
of the spatially filtered signal should give a good indication of the energy coming
from direction θ:

E[|sf (t)|2] = hH(ωk)R(ωk)h(ωk), R(ωk) = E[s(t)sH(t)] (A.11)

Where R(ωk) is the covariance matrix and s(t, ωk) the kth frequency component of
the array’s output vector (

s1(t, ωk), . . . , sW (t, ωk)
)T
. (A.12)

E[|sf (t)|2] should peak at the DOA(s) of the source(s) located in the array’s viewing
field when evaluated over the DOA range of interest.
We can state that a signal coming from a DOA θ passes undistorded if

hH(ωk)a(θ, ωk) = 1. (A.13)
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In order to minimize the energy coming from all the other DOAs, we can follow
several approaches. We here present the two that are of interest for our purposes.

Delay-And-Sum (DAS) is a data independent method and has the objective of
finding h(ωk) that minimizes hH(ωk)h(ωk), subject to hH(ωk)a(θ, ωk) = 1. Assum-
ing that the steering vector has been normalized so that aH(θ, ωk)a(θ, ωk) = J we
have h(ωk) = a(θ, ωk)/W , which inserted in the power formula leads to

E[|sf (t)|2] = aH(θ, ωk)R(θ, ωk)a(θ, ωk)
J2 . (A.14)

Though we the theoretical covariance matrix cannot be exactly determined from the
available finite sample s(t)Tt=1, therefore it must be replaced by the estimate

R̂(ωk) =
T∑
t=1

s(t, ωk)sH(t, ωk). (A.15)

Omitting J2, we can write the DAS pseudospectrum function as:

hDAS(θ, ωk) = aH(θ, ωk)R̂(ωk)a(θ, ωk). (A.16)

DAS is useful when the DOA is not accurately know since it has a wider main lobe.
As an example it will be used for radiation pattern measurement, as the localization
method is not able to provide a precise DOA estimate. On the contrary, for the
plenacoustic image computation presented at the beginning of section 3.2 higher
resolution is needed. The next method is therefore used.

The Minimum Variance Distortionless Response (MVDR) beaformer is a data-
dependent method and it aims at minimizing the whole term aH(θ, ωk)R(ωk)a(θ, ωk).
The solution to this optimization problem can be written as

h(θ, ωk) = R−1(ωk)a(θ, ωk)
aH(θ, ωk)R−1(θ, ωk)a(θ, ωk)

(A.17)

which, given the same observations made for DAS, leads to the MVDR pseudospec-
trum formula:

hMVDR(θ, ωk) = 1
aH(θ, ωk)R̂−1(ωk)a(θ, ωk)

. (A.18)
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Appendix B

Technical Specifications

Loudspeakers

Table B.1. Experimental setup: loudspeakers specifications.

Model Genelec 8020A

Total Power Output RMS 20 W× 2
Total Harmonic Distortion ≤ 0.08%
Signal-to-Noise ratio ≥ 95 dB
Bass Driver 105 mm cone
Treble Driver 19 mm metal dome

Microphones

Table B.2. Experimental setup: microphone Beyerdynamic MM1 specifications.

Model Beyerdynamic MM1

Transducer type: condenser (back electret)
Polar pattern omnidirectional
Frequency range: 20 Hz to 20 kHz
Sensitivity: 15 mV/Pa (−36.5 dBV)
Max SPL for 1% THD: 128 dB
Signal-to-Noise ratio (rel. to 1Pa): 57 dB
Nominal impedance: 330 Ω
Powering: 12 V to 48 V phantom power
Connector: 3-pin XLR
Dimensions (diameter): 9 mm(head)
Dimensions (length): 133 mm
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Microphone Preamplifier

Table B.3. Experimental setup: microphone preamplifier Aphex 188 specifications.

Model Aphex 188

Gain: 26 dB to +65 dB
Input Impedance: Variable
EIN: −125 dBu
Frequency Response: Not specified by manufacturer

A/D and D/A Converter

Table B.4. Experimental setup: Symphony I/O specifications (Analog I/0).

Model Symphony I/O

32 inputs and 32 outputs
Type: Balanced through Apogee’s proprietary

Perfect Symmetry Circuitry
Level: +4 dBu nominal / −24 dBu max.

or −10 dBV nominal / +6 dBV max
Input Impedance: 10 kΩ
Output Impedance: 25 Ω

Table B.5. Experimental setup: Symphony I/O specifications (Analog to Digital).

Model Symphony I/O

Frequency response: 1 Hz to 20 kHz, +0/− 0.05 dB
Dynamic range: 120 dB (A-weighted)
THD+N @ +20 dBu −113 dB (0.00024%)

Table B.6. Experimental setup: Symphony I/O specifications (Analog Out performance).

Model Symphony I/O

Frequency response: dc to 20 kHz, +0/− 0.05 dB
Dynamic range: 129 dB (A-weighted)
THD+N @ 20 dBu −117 dB (0.00014%)
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Table B.7. Experimental setup: Symphony I/O specifications (Connections).

Model Symphony I/O

Digital I/O Ports: 25-pin female D-sub connectors
Port A: channels 1-8 I/O
Port B: channels 9-16 I/O
Yamaha pinout standard

Analog I/O Ports: 25-pin female D-sub connectors
Analog In 1-8, Analog In 9-16

Analog Out 1-8, Analog Out 9-16
Tascam pinout standard

External Clock 75 Ω BNC word clock input and output
MIDI 1 In and 1 Out, 5-pin female DIN connectors

Gyroscope

Table B.8. Experimental setup: gyroscope specifications.

Model Phidgets Spatial 3/3/31044

Max Speed (X-axis,Y-axis) ±400 ◦/s
Max Speed (Z-axis) ±300 ◦/s
Resolution (X-axis,Y-axis) 0.02 ◦/s
Resolution (Z-axis) 0.013 ◦/s
White Minimum Drift 0.0042 ◦/s
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