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Sommario

La gestione ottima energetica degli edifici è un tema che ha attirato di recente

l’attenzione della comunità scientifica internazionale. Questo interesse è

motivato in particolare dalla crescente necessità di poter modulare i carichi

nella rete elettrica in modo da evitare squilibri tra produzione e consumo di

energia, compensando appunto con la flessibilità del carico l’aleatorietà nella

produzione sempre più diffusa di energia da fonti alternative, quali l’eolica

e la solare. La disponibilità di apparati “smart” per attivare/disattivare

in remoto le utenze domestiche e per il rilevamento a distanza dei consumi

rende possibile poter concepire soluzioni innovative al problema.

In questo lavoro di tesi si studia il problema del condizionamento di un

edificio, utilizzando il set-point di temperatura come variabile di controllo

per modulare e traslare nel tempo il carico termico e quindi il corrispondente

contributo all’equazione di bilancio energetico di esercizio. Flessibilità ag-

giuntiva alla modulazione del carico termico, e alla conseguente richiesta di

energia elettrica alla rete, viene introdotta considerando un serbatoio ter-

mico “attivo”, mentre l’edificio contribuisce svolgendo il ruolo di serbatoio

termico “passivo”, non direttamente manipolabile. Il problema si traduce

in un problema di ottimizzazione con vincoli, affetto da incertezza dovuta

a disturbi quali il livello di occupazione dell’edificio e la radiazione solare

esterna.

Nella prima parte del lavoro si affrontano aspetti modellistici, effettuando

in particolare una modellizzazione dettagliata della struttura dell’edificio,

che impatta direttamente sulle sue caratteristiche come serbatoio termico.

Tecniche di riduzione d’ordine e di approssimazione funzionale vengono uti-

lizzante per ridurre la complessità del modello e rendere le grandezze che poi

compaiono nel problema di ottimizzazione vincolata convesse rispetto alle

variabili di ottimizzazione. Nel caso in cui si faccia riferimento ai disturbi

nominali, il problema di ottimizzazione vincolata risultante è convesso, con

un numero finito di vincoli, e semplice da risolvere. Per tenere conto dei dis-

turbi è possibile utilizzare vincoli in probabilità, dove si richiede che il vincolo
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sia rispettato per tutte le realizzazioni dei disturbi ad eccezione di un insieme

con una certa probabilità prefissata. Il problema chance-constrained risul-

tante non è più convesso, e viene risolto in modo approssimato – con garanzie

sulla qualità della soluzione ottenuta – mediante l’approccio a scenario. Da

notare che la soluzione a scenario implementa una legge di controllo con

compensazione diretta di quella parte dei disturbi che sono misurabili. Le

prestazioni delle due leggi di controllo sono state valutate su un esempio

numerico. I risultati ottenuti sono promettenti.



Abstract

Optimal energy management of buildings is a research theme that has re-

cently attracted the attention of the international scientific community. The

interest in this topic is raised by the need of flexible electrical loads that can

be modulated so as to compensate the possible unbalance between energy

production and consumption caused mainly by the stochastic behavior of

renewable energy sources. The availability of smart appliances and meter-

ing systems controlled remotely paves the way for conceiving and developing

innovative solutions to the problem.

In this work, we study the optimal energy management of a building

cooling system with thermal storage. In the proposed solution, the building

temperature set-point is taken as control input, which allows to modulate

and shift in time the cooling load during the reference time horizon of in-

terest. The “passive” thermal storage effect of the building structure is

considered jointly with the “active” one due to a thermal storage unit intro-

duced to provide additional flexibility to the system. The optimal energy

management problem is formulated as a constrained optimization problem

affected by uncertainty due to the presence of disturbances acting on the

system such as, e.g., the building occupancy and the solar radiation.

Modeling issues are addressed first. In particular a detailed model for the

building structure is adopted, which leads to a description of the building

thermal characteristics as “passive” storage. We take advantage of model

order reduction and functional approximation techniques in order to re-

duce the size of the problem and provide a convex formulation. In the case

of nominal disturbances affecting the system, the constrained optimization

problem is convex, subject to a finite number of constraints, and, hence,

easy to solve. In order to take into account disturbances, we opt for a prob-

abilistic formulation where constraints are required to be satisfied for all

disturbance realizations, except for a set of predefined probability measure.

The resulting chance-constrained optimization problem is not convex and it

can be approximatively solved (providing guarantees on the quality of the
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solution) via a randomized method known as scenario approach. Notably,

the scenario-based solution implements a disturbance compensator. Perfor-

mance of the proposed control strategies is evaluated in a case study, and

results appear promising.
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Chapter 1

Introduction

Almost 40% of the US overall electricity consumption can be attributed to

buildings, almost a half of this fraction being used by cooling, heating and

air conditioning systems (HVAC) [1] in order to guarantee living comfort

conditions. In the perspective of the smart grid challenge of integrating re-

newable energy production and distributed energy generation in the current

grid, buildings can be viewed as big consumers that can actively contribute

to the electrical energy demand/generation balance. Effective building en-

ergy management strategies should be implemented to increase efficiency

and eventually track some energy consumption profile, which is possibly

modulated during the day in order to avoid peaks in the demand. The in-

troduction of active thermal storage systems can be particularly useful in

this respect, since they can shift around in time the electrical energy request

from the grid, thus reducing absorbtion peaks, and they also allow cooling

systems to work closer to their highest efficiency condition [3], [2], [4]. On

the other hand, studies on the “building thermal mass” have shown that it

can be exploited as a (passive) thermal storage to delay the building heat

release and effectively reduce the overall exchanged heat quantity [5], [6],

[7].

In most of the works in the literature on building cooling systems with

thermal storage, control at the level of the energy management system in-

volves acting directly on the cooling system, its flows and temperatures. The

resulting building temperature behavior is determined based on a detailed

model of the system. Comfort conditions are robustly guaranteed against

modeling errors and disturbances by means of a secondary controller (usu-

ally of the PID type) as shown in Figure 1.1. In [7] it is argued that this

configuration leads to unpredictable and hardly quantifiable behaviors in the

presence of disturbances. Indeed control design is performed with reference
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to nominal conditions and involves determining the best operative condi-

tions of every subsystem composing the cooling system, which makes the

problem hard to tackle via stochastic optimal control methods in realistic

cases where the model size is large.

Figure 1.1: Classical energy management system

In this thesis, we propose a different approach to the energy manage-

ment problem for a building cooling system: we set as control input to be

optimized the building temperature set-point and then compute the cooling

energy needed for the actual building temperature to track it (Figure 1.2).

To this purpose, we resort to a description of the cooling system of “black

box” type: we suppose that it is controlled in an optimal way, relegating

issues related to the nonlinear characteristics of the system to this sublevel,

[8], [9].

Figure 1.2: Proposed energy management system
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The cost function adopted to optimize efficiency or to track some energy

consumption profile is defined based on the thermal energy balance within

the building, and readily accounts for thermal effects related to the building

structure and thermal phenomena related for example to occupancy and

radiation through glazed surfaces. The thermal model of the building is

derived based on [10] and can make explicit the dependence of the thermal

heat exchange as a function of indoor and outdoor temperatures and others

environmental conditions. Similarly, a description of the active thermal

storage in terms of energy exchange is introduced.

Much effort is spent to derive a convex description of the overall prob-

lem, which indeed translates into an easily computable solution if reference is

made to the system operating in nominal conditions only (certainty equiva-

lence solution). Results are presented for different variants of the energy

management problem, describing the main advantages in using different

components and/or strategies as in [11]. Performance degradation is ex-

perienced when (non-nominal) disturbances act on the system. A stochastic

approach implementing a disturbance compensation mechanism and provid-

ing guarantees on constraint satisfaction in probability is hence conceived.

The resulting optimization problem is not anymore convex because of the

probabilistic constraints, but it can be reduced to a convex one by resorting

to a randomized approach known in the literature as “scenario approach”,

[12] and [13]. From some preliminary results, the scenario solution appears

promising.

Figure 1.3: Energy management system with disturbance compensation
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Chapter 2

Modeling

In this chapter, we address the modeling of the building cooling system with

thermal storage to the purpose of optimal energy management. This in-

volves defining the control variables, which include the building temperature

set-point. The model consists of a thermal energy balance equation for the

building, a description of the thermal storage in terms of energy flows, and a

model of the chiller in terms of electrical energy needed to provide the cooling

energy for tracking the temperature set-point.

2.1 Temperature set-point as control input

In this work the set-points for the temperatures of the zones in a building or

a set of buildings are considered as control inputs. By zone we mean a spa-

tially defined part of a building, composed by one ore more rooms, sharing

well stirred and uniform air at the same temperature. Zone temperatures

are assumed to track the set-points. This entails that the cooling system

(e.g., a chiller, a chiller plant composed of multiple chillers) is effective in

promptly and precisely regulating the temperature inside the zones. In or-

der to make this last assumption reasonable, constraints will be added to

limit the maximum cooling energy request and this will indirectly affect the

set of admissible temperature set-points.

The reason why we make use of temperatures as control variables is

that, irrespectively of the method used to solve the optimal management

problem, the zone temperature must be comfortable: even if unpredictable

events occurs (i.e. a window that is opened) or if errors exist in the model of

the building (due to changed destination of use perhaps), the temperature

must always lie inside a suitable interval that is defined by constraints. The

low level control system is in charge to track the temperature set-point and
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the cooling power needed is estimated in the optimization process and never

directly imposed by the high level controller itself, which ensures robustness

in the temperature regulation.

The temperature set-point is specified by setting its values every ten

minutes and considering a piecewise linear interpolation. In formulas:

T (t) = Ti + (Tf − Ti)
t

∆t

where ∆t = 10 minutes. With this choice we can easily express constraints

related to people comfort and provide a closed-form expression for the cost

function. More specifically, the temperature derivative has to be suitably

bonded in order to avoid too rapid changes in temperature that can be

perceived by people as uncomfortable. As for the closed-form for the cost

function, we will take advantage of the fact that the time derivative of the

temperature is constant and given by:

Ṫz =
Tf − Ti

∆t
(2.1)

2.2 Thermal energy balance equation

The thermal equation that governs the overall system is:

Qz = Qw +Qi +Qp −Qc (2.2)

This equation represents a power balance that always holds and takes into

account different effects, for all of these effects it will be provided a math-

ematical formulation in the next sections, here they are just briefly intro-

duced:

• Qz : Represents the thermal power associated to the zone own thermal

capacity. The effect considered here is both related to the dynamics

of the air contained in rooms and the stuff. We will form now call

simply room both air and stuff contained. To increase and decrease

the temperature of rooms requires energy, this energy is provided or

subtracted by the elements described on the right hand side of the

equation;

• Qw : Thermal power exchanged between zones and walls. This element

is considered critical for the purpose of the work since we are exploring

a solution such that building thermal inertia is exploited. Most of

the environmental factors considered as outdoor temperatures, solar

radiation and wind effects act on the system through this term;
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• Qi : Thermal power generated by all the non human sources in zones.

This term takes into account the presence of machines, computers,

lighting system and everything produces heat and can be considered

relevant. Into this term it is also considered the effect of radiation

trough windows;

• Qp : Thermal power generated by humans. Due to the conceptual and

technical relevance of this factor (that, like the previous factors, could

have been saw as an internal gain) we decide to threat this disjointly

from other heat sources;

• Qc : Cooling power injected into the zone. Positive values means sub-

tracted heat. Constraints ensures that the cooling system can provide

as much power as needed in order to climate the rooms, this is actually

the only term directly controlled by the cooling system through low

level control action;

For the optimization point of view what we are more interested in is to give a

formulation that estimates the quantity of cooling energy needed to impose

a certain temperature variation when certain environmental condition holds.

We are thus more interested in the following reformulation of the problem:

Qc = Qw +Qi +Qp −Qz (2.3)

Moreover we will consider, making use of some assumptions and approxima-

tions, the cooling energy request instead of the power request. The energy

associated to the sample interval i is intended to be the amount of energy

needed to linearly track the temperature of the zone starting from the initial

value T (i) (initial temperature condition for sample interval i) to the final

condition T (i + 1) (final temperature set point for sample interval i) over

the sample time ∆t:∫ t+∆t

t
Qcdt =

∫ t+∆t

t
(Qw +Qi +Qp −Qz)dt

from the this equation we introduce the energy notation:

Ec = Ew + Ei + Ep − Ez (2.4)

We will last derive for each element a finite horizon formulation.

2.2.1 Wall-zone energy contribution

In this section a formulation of the energy interaction in between the building

and zones is derived. A suitable procedure to build up a power thermal
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model for a generic building is provided and then manipulated in order to

express the energy quantity over some finite horizon.

We look for low order building models able to accurately predict the

future heat demand of the building with the minimum computational effort.

The fact that buildings are complex, large, interconnected systems united

to the fact that heat exchange is a nonlinear and spatially distributed phe-

nomenon makes the thermal model really challenging to derive. Moreover

the existing trade off in between detailed characterization and computational

effort makes the problem of providing a suitable control oriented model even

harder. Many papers investigates this topic making use of varied method-

ologies, each with their assumption, advantages and drawbacks.

Review on building modeling

The development of a control-oriented simplified model for buildings plays

a basic role when an optimal control policy is considered, moreover a good

description of buildings dynamics is mandatory for simulation purposes and

first time verifications. For these and more reasons many different mod-

eling techniques has been proposed in literature that, roughly speaking,

can be divided in two categories. In the first category we can find mod-

els made starting from physical prime equations. This methodology allows

the designers to end up with a detailed thermal description of the building

without performing any identification, on the other hand the methodology

deeply relies on the knowledge of materials and building structure and en-

forces designers to go deep down in technical details. Usually such models

are produced assembling simple subsystems mutually physically interacting,

this can usually be done making use of computer tools (Trnsys and Ener-

gyPlus among many) and models are very reliable and detailed. For this

reason these models and this way of modeling is more commonly used for

simulations purposes. Moreover, despite their reliability, the more detailed

such models are the less suitable they will be for control purposes either be-

cause of their non explicit formulation or because of their high dimensional

and non linear expressions. The second approach is a data driven one: it

provides models in an explicit form resorting on identification techniques.

A data collection is needed and thus experiments on the building must be

performed, this may be difficult especially due to the stochastic nature of

the non controllable signals involved). Identification can be made in many

different way, from gray to black box, from linear to non linear procedures,

until making use of neural networks and genetic algorithms. A short list of

the most investigated modeling approaches in thermal building engineering
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follows:

• Subspace method (4SID): is a statistical based black-box identification

method that easily handle a large amount of data, it has been demon-

strated [15] that 4SID is suitable even for the identification of a large

office building.

• Prediction error method (PEM): it tunes a pre-specified model, usually

an autoregressive moving average with external input (ARMAX), so

that the one step ahead prediction error is minimized. Despite its

simplicity this method is well suited for the identification of linear

parametric models able to precisely predict temperature and humidity

values of zones over an hourly horizon[16], conversely, buildings inner

energy is less well grasped by them.

• Deterministic semi-physical modeling (DSPM): is a gray-box identifi-

cation technique that makes use of a resistance-capacitance network

paradigm to describe the building dynamics. An advantage of this

method is to be physical meaningful. Parameters involved are identi-

fied as equivalent resistance and capacitance. This approach has been

investigated in a lot of papers[17] providing very good results and

taking advantage of various identification techniques such as genetic

algorithms as well as neural networks.

For the purpose of this work we decided to make use of a modeling

technique of the first type. According to the work presented in Kim &

Braun[10] we built up a linear model making use of a mono dimensional

finite volume discretization of the structure, this lead to an high dimensional

linear model that has been successively reduced using proper algorithms.

As Kim & Braun already shown in this way it is possible to end up with

low order models (magnitude of one tenth or more of the initial one) that

are however well representative of thermal dynamics up to frequencies of

our interest. Needless to say that whatever model can be well suited for

the control issue provided that it is affine in the control variable and that

it takes explicitly into consideration disturbances, if this conditions holds,

for any dimensionally comparable systems, the control can be implemented

expecting similar results in terms of feasibility and performances.

1-D finite volumes model

The model is made assembling simple subsystems, the simplest subsystem

composing our building is the wall. As a wall is intended a uniform and
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geometrically defined portion of the structure that is in contact on both sides

and over its whole surface with a defined environment that could either be

one conditioned zone or the outside. We consider each wall to be composed

by vertical layers (”slices”), each of them with its own width and material

composition that is supposed to be uniform within the volume. In this way

we discretize each wall in finite volumes having the characteristic that their

main thermal time constant is considerably smaller than the entire wall one:

the more thin slices are the more the model will capture thermal dynamics

to the detriment of the size of the model that grows. The discretization

we made is mono dimensional (1-D) and resorts on the assumption that

thermal flows are mono directional (i.e. heat flows only perpendicular trough

the wall surface) and thus that the temperature is uniform over the slice

surface. Notice that 2-D or 3-D finite volume discretization are also possible,

they can capture even better the thermal dynamics in the presence of hot

spots or in correspondence of wall junctions, windows and forth and son

on. However, the more complications introduced by 2-D or 3-D procedures

appears unjustified for the overall optimization point of view and for the

purpose of this work. Thermal exchange considered is conductive through

the wall volumes, convective on both the wall sides and radiative on external

surfaces. No radiative exchange is considered on internal surfaces assuming

that the inner side of the wall will face other bodies having almost its same

temperature (null net radiative thermal exchange). We assume also the

external surface to be gray and opaque: diffusivity is equal to absorbivity and

equal for every direction, we will consider instead two different absorption

coefficients for longwave and shortwave radiation. Next step is to write down

the energy balance for each finite volume i (each slice). In order to increase

systematic no different formulations are provided for inner or outer volumes,

i.e. the following formulation holds for each slice in each wall and case by

case some equation components will be null. The balance can be expressed

as:

CiṪi = (kLi + hLi )Ti−1 − (kLi + kRi + hLi + hRi )Ti + (kRi + hRi )Ti+1+

+Qgi + αS,iQ
SWR
i + αL,iQ

LWR
i +Qr(Ti)

(2.5)

where:

• Ti = temperature of the node i;

• Ti±1 = temperature of the node that follows or precede i;

• Ci = thermal capacity of the material composing the node, it is ex-

pressed as the product of density, specific heat and width of the node;

Ci = ρiciwi
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• kLi = coefficient of conductive exchange on the left side of the node:

it is calculated as the conductivity of the Left surface of the ith node

over the distance between the center of the node i and i− 1;

@Ni−1 ⇒ kLi = 0

• kRi = coefficient of conductive exchange on the left side of the node:

it is calculated as the conductivity of the Left surface of the ith node

over the distance between the center of the node i and i− 1;

@Ni+1 ⇒ kRi = 0

• kLi = convective heat transfer coefficient at the left side of the node i,

it is equal to zero if there is no convection acting on the left surface;

• kRi = convective heat transfer coefficient at the left side of the node i,

it is equal to zero if there is no convection acting on the right surface;

• Qgi = internal thermal power generation inside nodei, it can be used

for modeling radiant heating systems, however it is always zero in our

work;

• αS,i = coefficient that takes into account wall sun exposition of the

wall and short wavelength absorption rate, its value can be expressed

as the product of coefficients that represents respectively: shortwave

absorbivity, shadowing and view factor;

αl = α̃sαw(t)αv(t)

• αL,i = coefficient that takes into account wall sun exposition of the

wall and long wavelength absorption rate, its value can be expressed

as the product of coefficients that represents respectively: longwave

absorbivity, shadowing and view factor;

αl = α̃lαw(t)αv(t)

• QSWR
i = incoming short wavelength radiation power (measured data);

• QLWR
i = incoming long wavelength radiation power (measured data);

• Qr(Ti) radiative emission radiation linearized around the mean emis-

sion temperature:

Qr(Ti) = −4σεlT̄
3
i Ti + 3σεlT̄

4
i
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Using this complete definition (2.5) we can write down the equation gov-

erning the temperature dynamics of a generic wall n composed by m layers

assuming as control variable the zones temperatures and as disturbances the

other inputs:

Cn
wṪn

w = An
wTn

w + Bn
wTz + Wn

wd (2.6)

This matrix formulation is easily obtainable just considering the balance

equation for each volumes composing the wall, according to the order:

zonea - volume1 - . . . - volumem - zoneb

Notice that inner layers has no convective neither radiative energy exchange,

that a zone can be the outdoor and that inner heat generation (useful to

model floor heating systems) is not used in our work and thus always zero.

The dynamics matrix is expected to be tridiagonal and Cnw to be diagonal.

If for example we define a wall, discretized in m layers, that has on the left

side the zone number two (zonea = zone2) and that it is a boundary wall

(zoneb = outdoor), the matrix will be:

Cw =

C1 · · · 0
...

. . .
...

0 · · · Cm


[m×m]

Aw =



−(kR1 + h1) kR1 0 0 · · · 0

kL2 −(kL2 + kR2 ) kR2 0 · · · 0

0 kL3 −(kL3 + kR3 ) kR3
. . . 0

...
...

...
. . .

. . .
...

0 0 0 · · · kLm −(kLm + hm)− 4σαL,mT̄
3
m



Bw =


0 h1 · · · 0

0 0 · · · 0
...

... ·
...

0 0 · · · 0


[m×nz]

Ww =


0 0 0 0
...

...
...

...

0 0 0 0

hm αs αl 3σεlT̄
4
m


[m×4]

The input vector is composed by the nz zone temperatures:

Tn
w =

[
Tn1 · · · Tnm

]T
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Disturbances are instead all the inputs related to the environment such as

the outdoor temperature, the radiation exchanges with the ground and the

sky expressed by the longwave radiation term and the global radiation ex-

pressed by the shortwave. All of these factors are stochastic, they represents

environmental conditions in which contest the building operates.

d =
[
Tout QLWR QSWR 1

]T
The last step consists in defining the output transformation: for our control

purpose we are interested in tracking the thermal power exchange between

walls and zones, this can be directly done with a proper choice of the output

transformation of the model. Such a power exchange can be expressed for

every wall n and every zone i as:

Qwn = Swnhwn(Twn − Tzi)

where Sw is the wall surface and hw is its associated internal convective

exchange coefficient. The overall thermal power released or absorbed by the

building is the sum of the contribution of each wall-zone exchange. The

resulting output transformation takes thus the linear form:

Qw = DwTw + EwTz

Where Dw and Ew are suitable matrix that links walls and zones according

to the shared surface. In our example they will be:

Dw =


0 0 · · · 0

sh1 0 · · · 0

0 0 · · · 0
...

... ·
...

0 0 · · · 0


[nz×m]

Ew =


0 0 0 · · · 0

0 −sh1 0 · · · 0

0 0 0 · · · 0
...

...
... ·

...

0 0 0 · · · 0


[nz×nz]

We can compose now all the n walls forming the building just grouping

the matrix calculated for each wall. C and A composes into block diagonal

matrix and B, W and D into vectors:C
1
w · · · 0
...

. . .
...

0 · · · Cnw

 Ṫw =

A
1
w · · · 0
...

. . .
...

0 · · · Anw

Tw +

B
1
w
...

Bn
w

Tz +

W
1
w

...

Wn
w

 d

Qw =
[
D1
w · · · Dn

w

]
Tw +

n∑
i=1

EiwTz
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The system is described into the canonical linear fashion:{
Ṫw = ATw + BTz + Wd

Qw = DTw + ETz
(2.7)

As a result of the modeling process we have a linear MIMO (multi input

multi output) system describing the thermal heat power transmitted by the

structure to each zone with imposed zone temperatures as control inputs

and outdoor temperature and solar radiation acting as disturbances.

Model order reduction

We take advantage of results in state space model reduction methods in

order to generate a linear model that can be easily handled when address-

ing control design. Typically, computational load grows linearly with the

model order and super-linearly with the length of the prediction horizon

considered. Procedures of model reduction is of great interest in control

engineering for the possibility to light systems controllers and easily handle

models, nowadays model reduction is performed trough special algorithms

appositely made up and on stage of development. Model reduction is called

balanced if the full propriety of observability and reachability (controllabil-

ity) of the original system is preserved. For a given transfer function W (s)

of McMillan’s order n and chosen the desired order r, the model reduction

algorithm based on Hankel’s single value decomposition (HSVD) finds out

the matrix Ŵ (s) such that the Hankel norm:

||W (s)− Ŵ (s)||H

is minimized[18] (i.e. the lower order transfer function that best fit the

original one in the Hankel’s sense.) The algorithm essentially truncates the

states that less contributes to the system dynamics evaluating such contri-

bution via the Schmidt’s single value decomposition obtained trough the

Hankel’s operator. Notice that the reformulated states of a reduced system

are not the same as the starting states, but they become meaningless. In

Kim & Braun [10] it is shown how a physics-based reduced order model can

properly work and being representative of the real dynamics, in particular

the model reduction factor can be more than ten.

Model discretization

Thanks to the particular shape of the zones temperature evolution (control

input) it is better to perform a first-order hold sampling discretization [33].
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Consider the continuous-time system described by (2.7), if we assume that

the input signal is piecewise affine in between the sampling instants its

integration over one sample period gives:

x(k+∆t) = eA∆tx(k)+

∫ k+∆t

k
eA(k+∆t−s)B

[
u(k)+

s− k
∆t

(
u(k+∆t)−u(k)

)]
ds

Hence x(k + ∆t) = Θx(k) + Γu(k) + 1
∆t

Γ1

(
u(k + ∆t)− u(k)

)
y(k) = Dx(k) + Eu(k)

where

Θ = eA∆t

Γ =

∫ ∆t

0
eAsdsB

Γ1 =

∫ ∆t

0
eAs(∆t − s)dsB

Replacing the coordinates by ξ = x−γ1u(k+∆t)/h and then recalling ξ = x

we obtain the standard model:{
x(k + 1) = Ax(k) +Bu(k) +Wd(k)

Qw(k) = Cx(k) +Du(k) + V d(k)

Notice that the sampled-data system has a direct term even if E = 0. First-

order hold sampling is particularly useful when approximating continuous

transfer functions by sampled systems, because a piecewise affine curve is a

good approximation to a continuous function.

In figure (2.1) it is shown a simple test performed on a model with the aim

to investigate the effects of order reduction and discretization process. The

structure is the one used in next for test and described in subsection (2.6).

The structure starts in a thermal equilibrium state and is feed by constant

suitable disturbances during the whole time, at time 600s the temperature

rises about 1K in 10 minutes and, as a consequence, the heat quantity

released from walls varies and has been calculated. As we can see the first

order hold discretization of the reduced model reproduces almost exactly

the real behavior, zero order hold discretization is slightly less precise, this

is due to the particular linear shape of the input that is taken into account

in the first case. Even if the temperature variation would not be linear,

but for example exponentially varying, it has been seen that f.o.h. is better

representative of the real behavior.



26 CHAPTER 2. MODELING

Figure 2.1: Wall response to linear temperature variation

State reconstruction

In order to implement an optimal control policy over a finite horizon we

need to get access to a measure of the initial state. Unfortunately the heat

exchange between zones and walls is not a measurable quantity and thus

the state can not be reconstructed from measures of it. However, recalling

equation (2.2) we can

Qz = Qw +Qi +Qp −Qc

notice that the only term that is not quantifiable and actually unpredictable

is the one that is related to people. The heating contribute due to people is,

needless to say, null where no people is present. Example of these periods

can be during the night or soon in the morning, this observation holds also

for the inner energy production due to general inactivity of machines and

the switch off of lights. In night periods generally, or whenever it exists

period where uncertain quantities are negligible, knowing the cooling power

provided and the temperature variation of the room is enough to get read

of the heat exchanged with the building. From it and through disturbances

measurements it is possible to reconstruct the states:

x(k) = C−1(Du(k) + V d(k)−Qw(k))

A more precise states estimation can be derived making use of more compli-

cated tools as the Kalman filter or taking advantage of specific temperature
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measurements. In a particular case, namely when the system is at a steady

state and the inputs are stationary, the state can be calculated also imposing

the stationarity condition:

x̄ = (I −A)−1(Bū+Wd̄)

This is however an unrealistic condition for the building since it will generally

never reach a real equilibrium condition due to non stationarity of involved

inputs.

Wall-zone energy exchange

As discussed in section (2.2.1) it is possible to describe thermal interaction in

between a building and living zones making use of a multiple input multiple

output linear discrete time model:{
x(k + 1) = Ax(k) +Bu(k) +Wd(k)

Qw(k) = Cx(k) +Du(k) + V d(k)

Inputs are the temperatures of zones and outputs are the thermal power

exchanged zone by zone assumed to be positive when heat flows from the

structure to the zone. Disturbances are also involved, namely the outdoor

temperature and the value of shortwave and longwave radiation incident on

the external surfaces. Recall that, due to state order reduction methods

involved, states are physically meaningless and in particular they are not

representative of temperature values. The difference equation of the system

can be iteratively solved explicitly for M samples, here some iterations:

Qw(1) = CAx0 + CBu0 + CWd0 +Du(1) + V d(1) (2.8)

Qw(2) = CA2x0 + CABu0 + CAWd0+

+CBu(1) + CWd(1) +Du(2) + V d(2)
(2.9)

Qw(3) = CA3x0 + CA2Bu0 + CA2Wd0 + CABu(1)+

+CAWd(1) + CBu(2) + CWd(2) +Du(3) + V u(3)
(2.10)

We can describe the evolution of our system over the time defined by M

samples in a matrix compact way simply defining the following vectors of
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state, initial conditions, inputs and disturbance signals:

Qw =


Qw(0)

Qw(1)
...

Qw(M)

 u =


Tz(1)

Tz(2)
...

Tz(M)

 d =


d(1)

d(2)
...

d(M)


where Tz(τ) is a vector containing all the temperature references at time τ

of each zone (assumed that for reference temperature is intended the final

temperature that as to be reached by the zone at the end of the period):

Tz(τ) = [Tzone1(τ), · · · , Tzonen(τ)]T

and where d(τ) is a vector containing all the disturbances acting on the

system at the instant time τ (disturbances are assumed to be piecewise

constant over the sample time):

d(τ) = [Tout(τ), QLWR(τ), QSWR(τ), 1]T

The vector of the initial condition brings information about the starting

values of states, temperatures of each zones and disturbances:

x̄0 =
[
x0 u0 d0

]T
Resuming, the system evolution over M samples can be expressed in a com-

pact fashion as an affine system in temperature references and disturbances

Qw = F̄x̄0 + Ḡu + H̄d

merely defining matrix:

F̄ =


C D V

CA CB CW

CA2 CAB CAW
...

...
...

CAM CAM−1B CAM−1W



Ḡ =



0 0 · · · 0 0

D 0 · · · 0 0

CB D · · · 0 0

CAB CB · · · 0 0
...

... ·
...

...

CAM−2B CAM−3B · · · CB D
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H̄ =



0 0 · · · 0 0

V 0 · · · 0 0

CW V · · · 0 0

CAW CW · · · 0 0
...

... ·
...

...

CAM−2W CAM−3W · · · CW V


The zone-wall heat exchange must then be integrated over the period ∆t in

order to obtain the energy value. Hidden dynamics exists because of under

sampling of Qw and, even if their contribution is lost, we can faithfully

approximate Qw to be linear varying within the sampling period and with

this assumption directly calculate the exchanged energy using the trapezius

method. This is it thanks to the imposed linear variation for temperatures

and resorting on the first order hold discretization of the system (figure(2.1)).

In figure(2.2) it is depicted the energy error introduced approximating the

wall-zone energy exchange making use of the trapezius method for the same

example as in (2.2.1), in confirmation of our suppositions we can see that

the error is really low and vanishing, less than one percent energy error is

introduced for the first sample period. We have to rewrite the system in

Figure 2.2: Error introduced by trapezius method.

order to explicitly express the energy quantity:

Ew(τ) =
∆t

2
(Qw(τ) + Qw(τ + 1))
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making use of the affine vectorial expression:

Ew = Fx̄0 + Gu + Hd (2.11)

F =
∆t

2


C + CA D + CB V + CW

CA+ CA2 CB + CAB CW + CAW

CA2 + CA3 CAB + CA2B CAW + CA2W
...

...
...

CAM−1 + CAM CAM−2B + CAM−1B CAM−2W + CAM−1W



G =
∆t

2



D 0 · · · 0

D + CB D · · · 0

CB + CAB D + CB · · · 0

CAB + CA2B CB + CAB · · · 0
...

... ·
...

CAM−3B + CAM−2B CAM−4B + CAM−3B · · · D


[M ·nz×M ·nz]

H =
∆t

2



V 0 · · · 0

V + CW V · · · 0

CW + CAW V + CW · · · 0

CAW + CA2W CW + CAW · · · 0
...

... ·
...

CAM−3W + CAM−2W CAM−4W + CAM−3W · · · V


[M ·nz×M ·nz]

Through formulation (2.11) we express the thermal energy contribution due

to heat exchange with the building.

Sample-variant model composition

Matrix in expression (2.11) had been composed considering the system to

be time invariant. In a deeper and more detailed description it could be

not. For two many reasons: the first one is related to the main radiative

temperature of the external surface around which the Plank’s equation had

been linearized. Simulations showed that this is a relevant parameter in the

model. The second is related to the external convective exchange coefficient

that is tightly related to the wind strength and in general with the air

motion and composition (humidity conditions can be relevant too). A more

detailed model could compose the horizon matrix considering mean radiative

temperature and convective exchange coefficient nominal profiles describing

thus a time variant system. In order to do formulate the equations we can

consider some iterations of the state difference equation:

X(1) = A0X0 +B0u0



2.2. THERMAL ENERGY BALANCE EQUATION 31

X(2) = A1A0X0 +A1B0u0 +B1u(1)

X(3) = a2A1A0X0 +A2A1B0 +A2B1u(1) +B2u(2)

In general the following general expression can be derived:

X(n) =

(n−1∏
i=1

Ai

)
X0 +

n−1∑
j=0

( n−1∏
i=j+1

Ai

)
Bju(j) (2.12)

Q(n) = Cn

(n−1∏
i=1

Ai

)
X0 +

n−1∑
j=0

(
Cn

n−1∏
i=j+1

Ai

)
Bju(j) +Dnu(n) (2.13)

According to these relations it is possible to fill newly the matrix F, G,

H ending up with a sample-variant model. For the sake of simplicity we

will not implement this solution in our work even if it remains a suitable

procedure to increase generality and precision of the problem formulation.

Convective heat exchange coefficient

The convective heat exchange of the exterior building surface related to

the air flow along it is usually modeled by the convective heat transfer

coefficients (CHTCs) whom links the convective heat flux normal to the wall

to the difference between the surface temperature of the wall and a reference

temperature. As reference the outside T∞ temperature, correspondent to

the measured temperature, is generally assumed. In this way the convective

heat flux is expressed by the equation:

Qh = h(Ts − To) (2.14)

CHTCs for buildings are often correlated to the wind speed at a reference

location (i.e. the mean wind speed 10 meters high from ground). Especially

the correlations derived by Jürges[19] have been used extensively for building

applications: a linear correlation exists at low speeds (also accounting for

buoyancy effects) and a power-law correlation holds for forced convection:

h = 4.0Ws + 5.6 Ws < 5m/s

h = 7.1W 0.78
s Ws > 5m/s

Thereby it is difficult to choose a suitable value for the wind speed since it

will be representative of a single and almost arbitrarily chosen point (where

data is collected). Nevertheless, a lot of valuable information about CHTCs

was obtained from flat-plate experiments, for example the influence of sur-

face roughness on it, and the obtained correlations were for a long time

considered sufficient for practical purposes. Many information about con-

vective energy transfer as well as more detailed models can be found in

literature[20].
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2.2.2 People energy contribution

Occupancy imply heat production and in crowded places this can be a crit-

ical factor: think for example to hospitals, offices or wherever many people

lives all together. Some of these places are not suitable for application of

optimal thermal regulation (optimal thermal control of undergrounds could

be unfeasible or even meaningless) despite that, even where occupancy is

hardly quantifiable, the thermal energy produced by people has huge im-

portance and it can and should be taken into account. Heat produced by

people is often considerable, and if it is, it can even be tapped: for example

it has been implemented in a train station in Stockholm a system that makes

use thermal energy produced by passers to warm the commercial building

aside the station[21], this technology allows 25% electricity savings to heat

it. In many places as for example theaters, university classes, canteens, and

many others, the occupancy (expressed in number of people and time of oc-

cupancy) can be estimated providing useful information: for example being

aware of the number of people expected to attend a lecture may be useful

allowing considerations about cooling policy (i.e. precooling or energy stor-

age). Another way to make use of occupancy information is that to relax or

not comfort constraints: if some rooms in a huge hotel are not booked there

may be convenience to erase comfort constraints in order to save.

People heat production is directly related to the body surface area and it

is expressed by radiation, convection, and evaporation. Conduction alone is

usually insignificant and often taken into account only in combination with

convection, a very important form of heat loss. They are both function of

body surface area, dry bulb air temperature, and the heat transfer coeffi-

cient, which also depends on the ambient air motion (2.2.1). The radiative

heat transfer in between two objects is independent of the dry bulb temper-

ature but related to the objects temperature and to the properties of their

surfaces only. Water evaporation is a very important means of heat loss

too, the latent heat of evaporation of water at normal body temperature

is 0.58kcal/g, so that with the evaporation of each gram of water from the

body surface, the body loses 0.58kcal of heat. This water loss occurs mostly

through sweating, but also through water that is breathed out or diffuses

through the skin. The rate of evaporation depends on the relative humid-

ity (RH) of the air, and only occurs when RH < 100%[22]. In order to

quantify how much heat does the body produces the Basal Metabolic Rate

(BMR) was introduced, it is defined as the heat production of a human in

a thermoneutral environment (33oC) at rest mentally and physically more

than 12 hours after the last meal. The standard BMR for a 70 kg man is



2.2. THERMAL ENERGY BALANCE EQUATION 33

approximately 1.2 W/kg, but it can be altered by changes in active body

mass, diet, endocrine levels. Summing up all of these considerations it is

clear that too many factors are involved to make a deep estimation, but,

for the purpose of our work, it is enough to consider the relationship in be-

tween environmental temperature and produced heat. The most used model

in that sense express the overall people heat production as the non linear

function of temperature and occupancy profile:

Qp(t) = np(t)(p1Tz(t)
2 + p2Tz(t) + p3)

Parameter values are:

p1 = −0.2199

p2 = 125.125

p3 = −1.7685 · 104

Since the temperature follows the relation (2.1) and, as the occupancy pro-

file, is linear varying, the expression can be rewritten as:

Qp(t, τ) =

(
np(τ) + (np(τ + 1)− np(τ))

t

∆t

)(
p1

(
T (τ)− (T (τ + 1)− T (τ))

t

∆t

)2

+

+p2

(
T (τ)− (T (τ + 1)− T (τ))

t

∆t

)
+ p3

)
(2.15)

and thus the thermal energy produced by people in the period can be ex-

pressed with the non linear function of temperature and occupancy profile:

Ep(τ) =

∫ ∆t

0
Qp(t)dt

Ep(τ) = aiT (τ)2 + biT (τ + 1)2 + ciT (τ) + diT (τ + 1) + eT (τ)T (τ + 1) + f

where:

ai = −∆tp1

(
(n(τ + 1)− n(τ))

1

12
+

1

3
n(τ)

)
bi = −∆tp1

(
(n(τ + 1)− n(τ))

1

4
+

1

3
n(τ)

)
ci = −∆tp2

(
(n(τ + 1)− n(τ))

1

6
+

1

2
n(τ)

)
di = ∆tp2

(
(n(τ + 1)− n(τ))

1

3
+

1

2
n(τ)

)
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ei = −∆tp1

(
(n(τ + 1)− n(τ))

1

6
+

1

3
n(τ)

)
f = ∆tp3

(
(n(τ + 1)− n(τ))

1

6
+ n(τ)

)
We have now to extend this formulation in order to take into considerations

many zones. The main solution should be to give an occupancy profile zone

by zone. With the aim of ease the computational effort in the stochastic

optimization process that we will face we do not make use of a probabilistic

description of the occupancy of every single zone in the building, but we

introduce many distribution coefficients αz instead. These coefficients de-

scribes the spatial distribution of people inside the building and can even

be time-varying: zones that are supposed to be more crowd will have higher

coefficient, provided that the sum of them is one. Probabilistic description

can be however be formulated for different spaces or areas (each of them may

include more zones) that are different by nature as for example commercial

and offices areas of the same building, with this description we have high

degree of generality in modeling the people heat production.
np,1
np,2

...

np,n

 =


α1

α2

...

αn

np s.t. Σn
i=1αi = 1

Expressing n̄p := α · np and evaluating the coefficients accordingly with the

bar notation we can express the problem of estimating the thermal energy

produced from people over the time horizon ofM sample period as a function

of the desired profile temperature in the compact way:

P (M)
p = uTM(np)u + [1, · · · , 1](N(np)u + P)

where:

M =



b1 + a2
1
2e2 0

1
2e2 b2 + a3

1
2e3

. . .

0 1
2e3 b3 + a4

. . .
. . .

. . . 1
2eM

1
2eM bM



N =


d1 0 0

c2 d2 0

0
. . .

. . .
. . .

cM dM

 P =


f1 + c1T0 + a1T

2
0

f2

...

fM
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Unfortunately, despite his accuracy, this formulation shows up to be concave,

thus not easy to optimize and not suitable for our control purposes. However,

having a look at the non linear expression of the internal thermal power

production we can observe that its behavior is almost linear in the range we

are interested in (figure 2.2.2), we can claim that since during occupancy

time the zone temperature is enforced to lie inside the comfort range that

is approximately 20 ÷ 24oC. The linearized expression around the average

temperature T̄z is:

Qp ≈ np(2p1T̄zTz + p2Tz − p1T̄
2
z + p3) = np(p̃2Tz + p̃3)

where

p̃1 = 0

p̃2 = 2p1T̄z + p2 = −4.6159

p̃3 = p3 − p1T̄
2
z = 1.4515 · 103

It is possible to reuse the procedure described above just substituting tilde

values in it, as a results the M matrix will be null and the internal energy

produced by people will be described by the linear function of the zone

temperatures:

Ep = N(np)u + P (2.16)

Notice that the matrix N depends on the occupation profile.

Figure 2.3: Nonlinear and linearized human heat production function
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2.2.3 Internal energy contribution

Many other types of heat sources can be present in a building, what we

want to model here are just the simplest. For some of them it is possible

to quantify their heat contribution thanks to their continuous and uniform

availment, others may be instead related to occupancy or business needs: it

is the case of machinery and industrial devices. Another relevant internal

gain factor, different by nature, is related to the radiation absorbed trough

windows. These two phenomena will be addressed in this section.

Light and devices

• Energy emission by electric lamps: a large part energy consumed by

lamps is emitted as heat (about 95% for ordinary incandescent lamps

and 79% for fluorescent lamps) and the remaining just a little part is

emitted as light, which, moreover, when incident on surfaces is con-

verted into heat too. Consequently, almost the total wattage of all

lamps in the building when in use, must be added to the Qi.

• The heat gain due to appliances (machinery, computers, etc.) should

also be added to the Qi. If an electric motor and the machine driven

by it are for example both located (and operating) in the zone, a term

proportional to the wattage of the motor must be included in order to

estimate the percentage of heat energy release into the space. Most

of the technological transformations (welding, drilling, milling, . . . )

produces heat, most of electronic devices produces heat too.

Radiation trough windows

The use of daylight as the primary light source in building is not just as-

sumed to minimize the use of electricity for lighting but mainly for the

beneficial effects in terms of workspace productivity and human health [23].

Physically, daylight is just another source of electromagnetic radiation in the

visible range and thus tightly related to the Shortwave radiation. Its effect

is very consistent so that many strategies had been developed to contain it,

the simplest is to make use of window blinds: when they are used regula-

tion is often human made and generally carried out to avert the discomfort

produced by direct radiation and over-light, even if effective this technique

is unpredictable and not much advisable for the workspace amenity point

of view. The development of new glazing materials provides solutions for

the uncontrolled influx of solar energy modulating the passage of radiation
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by intercepting part of it and allowing only a certain component to pass in

order to guarantee visual comfort[24].

With this term the radiative thermal fluxes trough windows is thus taken

into account. Since we have not access to experimental models of high-tech

glazed facades we consider the most of the shortwave radiation incident

windows surfaces to be absorbed by rooms, in fact we make use of high

transmissivity coefficients for glasses assuming that the most of radiation

concentrated on the visible spectra can reach the inside environment and

gets absorbed by the air directly or by walls and objects.

Qi(t) = αsΣi(AiτiKi(t))QSWL(t)

where some simple but conceptually meaningful parameters are considered:

• α : mean absorptivity of the space (≈ 0.9);

• τi : transmissivity of window i (≈ 0.86);

• Ai : area of the ith window;

• Ki : coefficient that takes into account radiation incidence, sun view

factor and shading effect for the window. This coefficient varies both

over the day and the year;

• QSWL : shortwave solar radiation value [W/m2];

Yet data suggest that more than 30% of all energy use in building may nev-

ertheless be attributed to undesirable heat transferred through windows and

to artificial lighting. The energy related to this contributions is expressed

on future through the vector:

Ei =
[
Ei(1) · · · Ei(M)

]T
(2.17)

2.2.4 Zone dynamics energy contribution

In the process of heating or cooling a zone we have to consider the amount

of energy that is related to the thermal inertia of the air inside the zone and

the zone itself. This contribution can be written as:

−Cz
Tf − Ti

∆t

where Cz represents the heat capacity of the zone. It is straightforward to

rewrite this equation in the compact matrix formulation in order to consider
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many zones and to express the energy quantity over the whole prediction

time (M samples of width ∆t):

Ez = Zu + U (2.18)

where

Z =


−Cz 0

Cz −Cz 0

0 Cz −Cz 0
. . .

. . .
. . .

. . .


[M×M ·n]

U =


CzT0

0
...

0


[M×1]

Estimating the Heat Capacity of a zone

To find a value of the heat capacity of a room we will need to take two main

contributing factors into account:

• Heat capacity of the wet air within the zone: its specific heat depends

on many factors, the main one is the humidity value that describes

the quantity of steam mixed with dry air. We consider humidity to

be treated by the air conditioning system so that its value can be

considered stationary at a comfortable level. With this assumptions

the steam content is almost constant and the specific heat coefficient

of wet air can be assumed to be:

cwa ≈ 1870
J

KgK

Another approximation is introduced considering the air density to be

constant even if it is temperature dependent in real:

ρwa ≈ 1.2
Kg

m3

At this point, defining V the volume of the zone, its heat thermal

capacity can be calculated as:

Cz,wa = ρwa · cwa · V

• Heat capacity of the stuff contained into the zone (belongings, furni-

ture, etc. . . ). Referring to the concept of thermal mass that describes

how the mass of buildings provides ”inertia” against temperature fluc-

tuations (sometimes known as the thermal flywheel effect) for calcu-

lating the contribution of the stuff we approximate the specific heat

capacity of all of objects to be of the similar of that of water:

cs ≈ 4200
J

KgK
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Moreover if we assume that the volume occupied by the stuff is of the

order of 1% of V and that the stuff average density is 1000 times bigger

than air one we have:

Cz,s ≈ 20Cz,wa

We will then assume the following expression for the heat capacity of the

zone:

Cz ≈ 20 · ρwa · cwa · V ≈ 44880 · V

2.3 Thermal storage

In this work a technological component that can accumulate, store and re-

lease thermal energy is called thermal storage. There are several different

kinds and several designs for thermal energy storage (shortly TES), the most

common and easiest TES can be seen as tanks containing some thermody-

namic fluid at some temperature. Energy is pumped inside in the sense

that the contained fluid is cooled down (or heated if we want to store heat),

stored through the liquid heat capacity and drawn through energy exchange

with some cooling system fluid. Therefore many different implementations

exists according to different destinations of use: there may be differences

between Heat Thermal Energy Storages and Cold Thermal Energy Storage

especially when the fluid is supposed to work in a range of temperatures for

which a phase transition happens (the so called Latent TES) or not (Sensible

heat TES). Many different fluids can thus be used: from water (near solid-

ification conditions or not) to Phase Change Materials (PCM), each with

its own applications, strengths and drawbacks. We simply refer to a generic

controlled water Thermal Energy Storage subsystem simply characterizing

it through some physical meaningful parameters and his operating modes.

The thermal storage operates in just three different modes:

• charging mode;

• storing mode;

• discharging mode;

Parameters that qualifies the storage are instead:

• Maximum energy content Smax;

• Minimum energy content Smin;

• Losses coefficient a;
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• Maximum discharging rate Sd;

• Maximum charging rate Sc;

The water is extensively used as thermodynamic fluid in thermal storages

since it has a good specific heat capacity, it is cheap and easy to find in

nature and furthermore it can be used both for cold and heat thermal stor-

ages. Water has an intrinsic tendency to stratify due to buoyancy forces

that tend to create different layers of water at different temperatures: the

coldest layers lay at bottom of the storage while the warmest ones move to

the top, due to their different specific weights. Cold water gets in (during

the charging phase) or gets out (during the discharging phase) from the

bottom of the tank while warm water does it from the top. As a result

of this stratification process two different water blocks at almost constant

but different temperatures get formed. In between of them a region, called

thermocline region, appears where the temperature of water changes steeply.

The more the thermocline region is narrow, the better the two blocks are

insulated between each other and more it is possible to extract energy from

the storage[25]. Mixing among water blocks is promoted by:

• Turbulent flows entering or leaving the storage: designers’ effort is

intended to avoid them, in some solution heat exchangers are directly

plugged inside the tank;

• Inlet temperature variations: the optimal working temperature of the

chillers thermovector fluid is however almost constant, there is conve-

nience to maintain it stationary;

• Small temperature difference between the cold and the warm layer: in

some solutions the ’non-storing block’ is maintained trough exchange

at a fixed temperature (i.e. the external environment one) in order to

maintain stratification;

• Small height/diameter ratio of the tank: a high ratio improves the

stratification but increases also the external surface of the tank and

related losses due to heat exchange with the external environment (if

the the storage volume is kept fixed);

Thermal storages are becoming widely used in medium size grids thanks

to the possibility both to dump energy consumption for thermal regulation

and for the possibility to optimize it, moreover using them is in some case

the only way to take advantage of renewable as for example thermal solar

and geothermic or to easy plug in electrical solar energy via thermal energy
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transformation. Their importance is even more evident in a smart grid con-

text where electrical energy management and regulation are critical issues.

In a cooling scenario for example, the presence of a CTES in a microgrid

can yield many advantages:

• Shift the production of cooling energy to electrical consumption off-

peak hours;

• Allow chillers to operate at high-efficiency conditions.

• Limit energy peaks power request with benefits both for power pro-

duction and distribution network systems (i.e. to light grid worse case

load conditions);

A thermal storage is usually used in practical according to several strategies:

• If its storing capacity is big enough to supply energy all over the con-

ditioning period during the day (i.e. during the occupation time of

a building) it can be defined a working period in which the storage

provides all the energy needs and a off period in which the storage is

completely charged in the optimal way (i.e. during the night at the

maximum efficiency of chillers). The main advantages of this strategy

are that electrical energy consumption is completely avoided during

the day,that a lower chillers power size is needed and that the schedul-

ing logic is easier. Despite all these characteristics, drawbacks are the

needs of storage to be over dimensioned in order to allow this policy to

be robust, problematics related to the size of the storage arises since

it may be excessive for cost or technical reasons. Moreover store en-

ergy means to face energy losses that usually are proportional to the

quantity of stored energy itself. Last but not least is the fact that

the thermal energy needs are not equally distributed over the year but

the system has to be dimensioned over the peak period even if normal

working load if far lower from it, this may lead to important system

efficiency losses.

• The chillers plant can be forced to work according to an on-off logic

being idle or working in its most efficient conditions: using this policy

we do not discriminate energy consumption over the day and we make

use of storage just as a support, we can hardly predict electrical energy

consumption and, moreover, it is very difficult to size both chillers and

storage in order to pursue process optimization. Notice that storage

does not take part directly and that that no scheduling is generally

needed.
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• In a third case no predefined working conditions is implemented: the

thermal capacity is limited but, nonetheless, the chillers contribution

is lowered as much as possible during peak-hours making use of a

flexible scheduling policy that interchange operating modes and duty

rates. This is the most complicated operating way since it requires

a cost estimation but it is also the most suitable for control design.

Notice that the previous two policies can be seen as subcases of this

one: when respectively the overall thermal needs are less than the

storage energy capacity and when cooling needs are really close to the

optimal chiller operating conditions.

Modeling

It follows a brief overview on TES modeling:

• The simplest model available is the fully mixed where the temperature

in the storage is supposed to be homogeneous, this model is described

through the differential equation:

Cs
dTs
dt

= ṁcp(Ti − Ts)−Kout(Ts − To)

where Cs denotes the thermal capacity of the storage, Ts the tem-

perature of the fluid, ṁ the mass flow and Kout the heat exchange

coefficient of the external surface with the environment.

• The fully stratified model describes the storage so as to be divided

in a certain number of different and non-mixing layers, each one of

them has different temperature and different heat exchange rate with

the external environment but none with adjacent layers of water. If

an inlet water temperature variation happens, then the entering block

of water occupies the position where its temperature is the closest to

adjacent layers;

• The model proposed by Sharp[26] is a stratified one. Unlike the fully

stratified one, the heat exchanges between adjacent layers are here

taken here into account. Even if the turbulence effect is not explicitly

considered, increasing the number of layers it is possible to obtain

temperature profiles that are similar to the ones that does it.

• Gahajar ’s model[27] considers a constant inlet water temperature but

taking into account the effects of turbulence: this is done varying

the diffusivity coefficient depending on storage geometric and thermo-

dynamic characteristics like the fluid flow, Reynolds and Richardson
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numbers and the shape and position of the inlet. Gahajar’s model is

one that better predicts the shape of the thermocline in the condition-

ing context.

To incorporate a detailed model of the thermal storage in our work is

by the way unfeasible for two reasons: the first one is because to grasp

the inner dynamics of the storage will require a much shorter sample time

compared to other relevant dynamics involved as for example occupancy or

building heat transportation are. This will inexorably lead to an extremely

expensive computational cost. The second motivation is related to major

(and unjustified) difficulties introduced for the optimization procedures. We

highly resort instead on the separation principle on the same way we do for

the chillers description: we consider the thermal storage to be a controlled

subsystem where some kind of optimization logic (that makes use of look-up

tables perhaps) and low level controllers regulates the system properly, as

a result the system may be considered as a black box having as input the

energy request, as output the energy drawn and as state the energy content.

For our point of view it does not matter how the energy is provided (i.e.

exchange temperature in between thermovector and thermodynamic fluids,

mass flow rate, . . . ) but just how much we can resort on. The easiest

model consistent with this description is an autoregressive exogenous model

ARX(1,1):

Qs(τ + 1) = aQs(τ) + s(τ) (2.19)

where Qs is the stored energy, a is a coefficient to introduce losses and s

is the inlet or outlet energy according to his sign. The evolution over M

sample times of the storage energy content can be expressed in the compact

way: 
Qs(1)

Qs(2)
...

Qs(M)

 =


1 0 · · · 0

a 1 · · · 0
. . .

. . .
. . . 0

a(M−1) a(M−2) · · · 1

 ·

s(0) + aQs(0)

s(1)
...

s(M − 1)


2.4 Chiller

As almost every technology also an HVAC plant has his maximum efficiency

in correspondence of a nominal working load, the so called working point.

When the system operates in different conditions in respect to the nomi-

nal one the performances may decrease quickly introducing as consequence

an overconsumption. This effect must be taken into account, otherwise the
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entire optimization process would be nullified by such factors. The power

absorbed from chillers can be expressed according to the Ng-Gordon formu-

lation as:

Ql =
a1ToTcw + a2(To − Tcw) + a4ToQc

Tcw − a3Qc
−Qc

The Ng-Gordon model[28] is based on both entropy and energy balances and

thus incorporates both the first and the second laws of thermodynamics, the

performance equation is expressed through physically meaningful parame-

ters: apart from the cooling power, the absorbed power depends either from

the stochastic variable To (outdoor temperature) and from Tcw that is the

temperature of the cooling water. The latter can be assumed to be regu-

lated by low level controllers so that it is maintained almost at prescribed

fixed value, the first is instead more relevant for our description since it is

already a disturbance acting on the building model but we will keep it fixed

resorting to its limited importance. To find out an expression for the en-

ergy absorbed in the period is however difficult due to non linearities that

has to be integrated over the time, to overcome the problem we decided to

approximate cooling power to his average value over the period:

El =
a1ToTcw∆t + a2(To − Tcw)∆t + a4ToEc

Tcw − a3
∆t
Ec

− Ec (2.20)

With the aim of optimize we need a suitable convex formulation that would

be not much computationally heavy, quadratic forms and quartic appears to

be the most qualified candidates, in particular we look to the quartic form:

El = c1E
4
c + c2E

2
c + c3 (2.21)

To choose the best interpolating coefficients the weighted least squares tech-

nique had been used trying the best fit in the most critical point like around

zero and near the best COP values, coefficients are easily calculated trough

normal equations: c1

c2

c3

 = (T TT )−1T T

El,1...

El,n



T =

E
4
c,1 E2

c,1 1
...

...
...

E4
c,n E2

c,n 1


In figure (2.5) we can see that the quartic approximation fits very well

the real function all over his definition range and especially where the COP
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Figure 2.4: Chiller efficiency

Figure 2.5: Chiller COP
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Figure 2.6: Chiller error

assumes his higher values, in figure (2.6) the error percentage is depicted

showing again how the curve is well approximated. On figures is also plot-

ted the second order polynomial approximation that despite its simplicity

lacks in precision. Last, for big cooling systems chillers bench are normally

employed: this choice allowed to increase modularity and performances by

the means of optimal cooperation policies obtained through ad hoc algo-

rithms or making use of lookup tables. This kind of optimization can be

considered to be at a lower level in respect to ours, that works considering

an equivalent description of the optimized chiller bench, namely a single

equivalent chiller.

2.5 Disturbances

Disturbances acting on the system are of two different types differentiated

according to the way they interacts with zones. Environmental disturbances

are outdoor temperature and radiation quantities, they do not influence

directly the zones temperatures but indirectly by the means of the building

structure. Occupancy and inner energy production, on the contrary, directly

act within zones making necessary a prompt compensation reaction from the

cooling system.



2.5. DISTURBANCES 47

Figure 2.7: Solar spectrum and atmospheric filtering

2.5.1 Solar Radiation

The major Earth’s energy source is solar radiation that represents almost

all the energy entering the atmosphere, other contributes as for example the

one of internal Earth’s heat are surely negligible. This radiation is generated

by the Sun and propagates trough space as electromagnetic wave at speed

of light. It is described by his wavelength λ and frequency f , the relation

λf = c holds. Solar radiation has components at every energy level, in fact

it covers the whole electromagnetic spectrum from γ to x-ray, from UV to

visible and IR, until micro and radio waves, by the way, solar radiation is

received on the Earth’s surface after undergoing various mechanisms of at-

tenuation, reflection and scattering in the atmosphere. Consequently, two

types of radiation affects the Earth’s surface: a first one received straight

from the sun without change of direction called beam radiation, and a second

whose direction has been changed by scattering and reflection called diffuse

radiation. The sum of these two types is known as total or global radia-

tion. Global solar radiation that reaches the ground (due to the atmosphere

transparency this part represents almost 50% of the total incident radiation)

gets mostly absorbed by oceans, biosphere, lithosphere and cryosphere and

just a minimum part gets reflected. According to the first law of thermo-

dynamic radiation that reach ground undergoes heat (the most) and work

(the less) transformations. In order for the energy balance to be satisfied

(on long time at least), absorbed heat has to be sent back to space as ra-
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diative emissions and, due to the enormous difference that exists in between

their temperatures, Sun emission frequency bands (≈ 6000K) and Earth’s

(≈ 255K) are different. The Sun has his peak value on visible (λ ≈ 0.5mm)

as Earth emissions are concentrated in the infrared band (IR, λ ≈ 10mm),

most of the outgoing energy is concentrated in between 4 and 60 mm wave-

length value and thus are completely IR. These considerations allows us to

split radiative contributions into two main categories:

• Short wave radiation or solar radiation (λ < 4mm);

• Long wave radiation or ground radiation (λ > 4mm);

To estimate radiative iteration due to neighboring buildings and surrounding

environment is very complicate. Therefore, the reflected component from

the surrounding ground surface is generally taken for simple calculations

or neglected, in our case we will take this effect into consideration through

measurements instead.

The way which solar radiation interacts with the Earth determines not

just the quantity of absorbed energy but also the way it is distributed into

atmosphere, thermal stratification of air, ground temperature, humidity con-

ditions, until to wind formation and a lot of phenomena much important for

life. It is glaring that a complete description of factors that condition this

interaction is unfeasible, that is also the main reason why solar radiation

effect is so difficult to predict and to be taken into account. It follows a

brief description of three of these factors, the most important in our work:

• The Zenit angle Z is defined as the angle in between the normal di-

rection to the surface and the Earth-Sun direction, it influence the

diffuse-beam shortwave ratio. Roughly speaking from this parameter

depends the quantity of atmosphere that the light must cross in or-

der to reach the ground. It depends on the latitude, solar declination

and from solar hours. The nature of the effect introduced by the Zenit

angle is however astronomical, and thus deterministic and predictable.

• Albedo is the phenomenon that determines the quantity of solar ra-

diation reflected back to space from atmosphere and thus taking not

part to the energy balance. The Albedo effect is determined by the

thermo-chemical condition of the atmosphere above the interested

area, namely: the concentration of steam, aerosols, particles, pollu-

tion and many others are that are not easily neither quantifiable nor

to be taken into account.
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Figure 2.8: Interactions of solar radiations

• Energy reflected (shortwave) and emitted by ground (longwave) is ab-

sorbed, re-emitted and reflected back to ground from the sky, the

quantity of this energy depends on weather conditions like type and

quantity of clouds, the air density and its composition;

Even if the most of variability of solar radiation is determined by astro-

nomical reasons, Albedo and weather conditions generates oscillations that

may be considered as noise and that can be really influential on the thermal

energy state of buildings.

In our work we will make use of data records of shortwave (beam and

diffuse) radiation and longwave radiation.. The reasons why we consider

the two contributions separately are both because admissivity coefficients

of materials are not the same for different values of the wavelength radia-

tion and because we are interested in the net quantity of energy exchanged

as longwave radiation. The impact of solar absorption coefficient of exter-

nal wall on building energy consumption were investigated in literature[29].

From literature[30] we took the admissivity values αl = 0, 90 and αs = 0, 60

where the meaning of notation is straightforward. The needs to consider

the net value of longwave energy exchange can be explained considering the

instantaneous balance equation on the external surface:

αsQSWR + αlQLWR +Qh +Qc − εlσT 4
s = 0
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where Qh and Qc are convection and conduction heat fluxes, QSWR and

QLWR are respectively short and long wave radiation values, σ is the Stefan-

Boltzmann constant, Ts is the temperature of the surface. εl is the emis-

sivity coefficient that, for gray bodies as we assume ours, can be defined to

be equal to admissivity. The main advantage in employing measured val-

ues is the easy way to consider incoming longwave radiation in the model,

usually this quantity is taken into account defining equivalent temperatures

for emitting sky and ground. Models exists in literature that defines suit-

able values for the emission temperature of the sky[31], despite that, they

are approximations and calls for other measurements (i.e. humidity, steam

partial pressure, . . . ). Far more difficult is to quantify the emitting temper-

ature of ground where as ground is intended to be not just the grass but

miscellaneous like surrounding buildings, trees and so forth and so on.

According to Plank’s equation, energy associated to radiative emissions

depends to the forth power of the surface temperature, we will make use of

its linear approximation around the mean radiative temperature T̄s:

αlσT
4
s ≈ 4εlσT̄

3
s Ts − 3σεlT̄

4
s (2.22)

Usually solar radiation incident on the Earth’s surface is measured on a

horizontal surface, external surfaces of buildings receiving solar radiation are

generally tilted (except for the flat roof, which is a horizontal), consequently,

it is required to estimate radiation on such surfaces from the data measured

on a horizontal surface. Moreover the view factor of Sun changes during year

and day long, this has to be taken into account too in a complete model. To

do that a coefficient is introduced for each surface:

α̃l = αlαtαw (2.23)

• αl = admissivity coefficient of the material;

• αt = coefficient to take into account that the surface is tilted;

• αw = time dependent coefficient that takes into account the view factor

(shading);

The latter coefficients can be estimated making use of computer toolboxes,

often used in architecture design and environmental simulations.

Radiation data

In figures (2.9)(2.10) typical data records are presented: they are represen-

tative of two scenarios that corresponds respectively sunny and cloudy days.

It is available to us the following measures:
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Figure 2.9: Sunny day radiation data

Figure 2.10: Cloudy day radiation data
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• SW Global : shortwawe global radiation, the sum of direct (’SW DIR

cosz’) and diffuse radiation (’SW diffuse’);

• LWi : longwave downwelling from Sky;

• LWo : longwave upwelling from Ground;

As we can see the amount of shortwave radiation energy is tightly related to

atmospheric conditions, the energy amount is moreover really consistent and

rapid changing, in particular direct term generates high gains when the Sun

shine, becoming almost null otherwise. Longwave contribution is instead

less varying although absolutely important. Notice that after sunset there

is no shortwave radiation as well as longwave remain almost constant, this

observation could be taken into account when estimation of the state of the

wall-zone exchange model is performed.

2.5.2 People occupancy

In this thesis, we model the number of occupants np living the building

through a birth-death process with time varying birth (arrivals) and death

(departure) rates. Assuming that initially the building is empty, we can

define np as follows:

np(t) = max(∆IN [t0, t]−∆OUT [t0, t], 0)

where ∆IN [t0, t] denotes the number of arrivals within [t0, t] and ∆OUT [t0, t]

the number of departures within [t0, t]. They are independent Poisson pro-

cesses with time varying rates lambdaIN (·) and λOUT (·), that is:

Pr(∆IN = k) =
e
−

∫ t
t0
λIN (η)dη

(
∫ t
t0
λIN (η)dη)k

k!

Pr(∆OUT = k) =
e
−

∫ t
t0
λOUT (η)dη

(
∫ t
t0
λOUT (η)dη)k

k!

given that

E[∆IN [t0, t]−∆OUT [t0, t]] =

∫ t

t0

λIN (η)dη −
∫ t

t0

λOUT (η)dη

we can define the rates λIN and λOUT based on a nominal occupancy profile

n̄p(t), t ∈ [t0, tf ], as follows:

λIN =

{
n̄p(t) n̄p(t) > 0

0 n̄p(t) 5 0
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Figure 2.11: Some realizations of occupancy profile

λOUT =

{
n̄p(t) n̄p(t) < 0

0 n̄p(t) = 0

In figure (2.11) some realizations of the occupancy is depicted, the nominal

profile is a typical occupancy profile for a public workplace where the most

of variability is due to customers affluence during openings hours 9-12, 14-17

(for example a bank or a mail office). At noon, offices are closed and most

of employee are supposed to leave the building for lunch.

2.6 Description of a case study

The test building is a simple structure representative of a typical medium-

size office building. It is 20m×20m wide, 9m high structure on three floors.

Even if it is not an existing building it is however representative of some

interesting phenomena:

• Its Sun exposure is different for each facade due to their different

orientation, this is relevant in particular for shortwave solar radiation

and inner gain trough windows;

• Each facade is equal and comprehensive of 200m2 of glazed surface,

the rest is walling. External walls are composed by a core layer of

concrete, an inside layer made by inner bricks (for wiring and utilities)
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Figure 2.12: Building schema

and an outer layer of insulation panels. The first is characterized by

its high thermal capacity, the latter by its high thermal resistance;

• The presence of floors models the thermal inertia of internal walls, they

are important since their thermal evolution is completely determined

by the movement of zones temperatures;

• A flat roof, due to its large area, is an important heat exchange con-

tributor. Conversely we do not take into account neither the effect

of the ground conductive exchange nor the presence of unconditioned

zones. They however can be easily pugged in treating them in the

same way outdoor temperature is treated;

• The building living space can be considered as a single zone equally

regulated or divided in three different zones, one for each floor as in

figure(3.14). These two policy will be exploited in two different case

study looking for the existence of advantages in dividing the building

in more zones;

Physical characteristics of used materials are listed next:
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Material density specific thermal finite volumes

heat conductivity width
Kg
m3

J
Kg

W
mK m

concrete 2400 880 1.6 0.025

insulation 30 2100 0.026 0.01

walling 1200 840 0.36 0.02

substrate 1000 880 0.84 0.02

Wall’s composition is different for boundary walls, roof and floors: (bound-

aries walls and roof are described from inner to outer layers)

Wall type material width material width material width

boundary brick 5cm concrete 25cm insulation 8cm

roof concrete 20cm insulation 10cm cover 5cm

floor concrete 20cm substrate 5cm / /

In what concerns view factors they are in first time estimated on the base

of their orientation, longwave is divided into upwelling (ground view factor)

and downwelling (sky view factor) too:

Wall Global Downwelling Upwelling

orientation shortwave longwave longwave

up 0.8 0.8 0

nord 0.3 0.6 0.5

est 0.5 0.6 0.5

sud 0.8 0.6 0.5

west 0.5 0.6 0.5

The full building model ends up to be of order 119 but reducible without

lacking in precision to order 22 by the means of HSVD reduction methods

(subsection 2.2.1) performing thus a model reduction of magnitude 1/5th.

Other parameters used for the definition of the structure are listed next:
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Parameter Value Description

σ 5.67 · 10−8 Stefan-Boltzmann constant

T̄ 296 K Mean radiative temperature

hin 18 Internal convective heat exchange coefficient

hout 15.35 External convective heat exchange coefficient

αs 0.6 Shortwave admissivity coefficient

αl 0.9 Longwave admissivity coefficient

αz 0.8 Mean admissivity of the space

τw 0.65 Transmissivity of windows

2.7 Concluding Remarks

We provided models for all the main components of the building cooling

problem. Thanks to the assumed characteristic for the control inputs to be

linear varying we could end up with an affine formulation for the cooling

energy needs through the definition of the thermal energy balance equation.

Thermal balance equation is composed by four terms that was examined

disjointly: the most interesting contribution is related to the thermal energy

exchange with the building, which expression was formulated starting from

a finite volumes discretized model of the building structure. Technological

components such as the thermal storage and the chiller was introduced, for

the latter an important result is represented by the possibility to model it

making use of a quartic equation that is convex. To summarize, the main

results that should be highlighted are:

• All the proposed models are convex: this propriety is particularly im-

portant for optimal control problems issues since convex means solv-

able in many cases. Convex optimization can be performed efficiently

making use of well developed methods and toolboxes, convexity is even

more important when stochastic formulations of the problem are in-

troduced;

• All the introduced approximations are reasonable;

• The way the building model is built up is modular and general. It’s

possible to model the same building with different degrees of detail as

well as it’s possible to define freely the number and the shape of zones;

• Stochastic factors can enter models directly (i.e. radiation and occu-

pancy) or via the definition of parameters (i.e. external convective
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exchange coefficients and its relation with wind). To better take into

account the latter it was outlined the possibility to make use of a time

variant matrix horizon composition;
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Chapter 3

Control

In this chapter we address the optimal energy management problem based

on the model in Chapter 2. Optimal energy management is formulated as

a finite horizon optimal control problem with a suitably defined cost func-

tion, subject to certain constraints. Optimization results for the certainty

equivalence-based solution are presented and analyzed, discussing possible

variants and enlightening the flexibility and modularity of the proposed method.

Considerations about the performance degradation of the certainty equivalence-

based solution when considering stochastic disturbances naturally lead to a

stochastic finite horizon formulation of the control problem, which can be

solved via the scenario approach to stochastic optimization.

3.1 Control problem formulation

The aim of the proposed control problem formulation is that to optimize in

the future a specific performance criterion choosing (among a suitable set)

the best values for control variables. The optimization process makes use of

a cooling problem description obtained composing models of interacting sub-

systems, described in the previous chapter, to calculate future moves in the

independent variables. The resulting predicted behavior can be requested

to satisfy some constraints. To choose the length of the predicted horizon is

a critical point due to the existing trade off in between computational effort

and grasped dynamics: zone-wall main thermal constant are of the order

of many hours (four or even nine hours depending on insulation degree and

composition of walls in general) and thus a sufficiently long optimization

horizon is mandatory to exploit the structure thermal mass in the context

of a continuously implemented optimization policy. As proposed in [6] we

decided to implement a control policy over one day (i.e. temperatures and

59
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storage contributions are implemented in open loop over one day), as a dif-

ference in our work the optimization horizon is two days long. The main

reason for this latter choice is that both to better exploit thermal mass effect

and to drop the needs of too restrictive closure constraints for the problem:

in the context of a continuously implemented optimization process closure

constraints (apart ensuring feasibility for the optimization process) takes

the duty to drive the system till suitable end conditions that will be starting

conditions for the next day optimization. This problem can be tackled as in

[7] making use of an MPC control strategy, however that choice calls for the

possibility to precisely observe the building thermal state at every moment

and requires much more computational needs to be implemented in practice.

The closed loop formulation is obtained through a sort of receding horizon

paradigm and actually represents a compromise in between strategies used

in [6] and [7]: optimal control is calculated for a two days long horizon but

implemented for one day only, until when optimization is performed newly.

Notice that assuming the two days long optimization horizon we can better

exploit building thermal mass even considering the opportunity of forecast-

ing both weather and disturbances in general, notice also that such a long

time prediction can be performed without lacking in resolution thanks to

the convex formulation of the problem. Resuming, the resulting control ac-

tion will be calculated for 48 hours, then implemented for the successive 24

hours and then calculated newly over 48 hours: variables will be in number

of 288 temperature set points for each zone plus 288 values for the storage

contributions assuming a 10 minutes resolution. The possibility to observe

the building thermal state is critical, this can be hopefully better done when

major disturbances are less varying and better known as for example during

the night when no occupancy and no internal gains conditions hold, to the

sake of implementability of the control policy.

3.1.1 Cost function

A novel idea introduced in this work is that to weight differently each sample

in the optimization problem according to the time the sample belongs. The

motivation of doing that is to investigate the possibility to define preferential

periods where energy consumption should be concentrated, let us introduce

now the vector W used to weight each time period and explain some possible

choices for it:

1. we just want to sum every period equally in the optimization process:

W will be in this case an unitary vector. In this case the optimization

result will be the optimal energy absorption, and weighting factor is
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actually not introduced being it equal to the sum operator;

2. the incidence of energy consumption is not the same over the time from

the point of view of the dealer and we want to stimulate consumptions

in some period and avoid them in others: this is a conceivable policy in

a smart grid context with the aim to simplify the task of distribution

networks and production sources is some critical periods. W will be

in this case a vector where weights can be greater or smaller than 1

according to some criteria in order to respectively deject or stimulate

consumptions. In this case the results of optimization is not the energy

consumption anymore;

3. we want to perform optimization in order to save money: W will be in

this case a vector containing the price of energy (electricity) differenced

sample by sample. In this case the results of optimization is the total

cost of the the cooling process, this will also be our choice mainly

because we want produce tangible results.

Energy price

Energy markets have been liberalized in the most of countries, from then

they are regulated by national and international authorities that seek to

discourage volatility of prices and that forbids anti-competitive behavior in

order to protect customers from financial speculation and to guarantee the

proper work of the electrical network. Electricity price is usually negotiated

one day ahead by the major producers, production share is sold and bought

by them and its costs is constantly estimated and predicted by many market

operators. Although data are available, energy cost is usually not for final

users that mostly stipulates fixed contracts for bands. In our work we will

calculate the real market energy cost for cooling the building and we will

minimize it. The data we use describes the single national purchase cost

for end customers in Italy during the year 2012. Electricity price fluctuate

over the day and it is different day by day, fluctuations over the day is

mainly caused by the so called generation mix effect: in order to produce

a particular amount of energy many sources (as for example fossil fuels,

hydro or solar energy) can be used and in that sense mixed, all of them has

different prime production cost and optimal production rate. In figure(3.1)

the average cost profile for the month of June is presented. The price rise

starting from six in the morning until ten o’clock, after that it get lower and

decrease until two o’clock in the afternoon. Surprisingly the most expensive

time for buying energy is late in the evening. We expect chillers to work



62 CHAPTER 3. CONTROL

Figure 3.1: Energy price: daily variation

mostly where prices are lower, and to utilize stored energy in correspondence

of cost peaks.

Cost function

According to equation (2.4) we can express the cooling energy required by

each zone over the horizon M as the sum of different contributes that can be

expressed by equations (2.11),(2.16), (2.17) and (2.18). Plugging all these

equations together we end up with the affine expression of u (temperatures):

Ec = Mu + Q (3.1)

where

M = M(np) = G + N(np) + Z;

Q = Q(d) = H(d) + Fx0 + P + U + Ei(d);

To express the chiller cooling energy request we must first subtract from the

previous equation (3.1) the contribution s of the storage:

Ech = Ec − s = Mu + Q− s (3.2)

The last (3.2) represents the amount of energy that the chiller should provide

for each sample time. Notice that the contribution of the storage can be so

that the chiller duty is lighten (s > 0) or increased (s < 0) depending on the

storage operating mode. This formulation takes also implicitly into account



3.1. CONTROL PROBLEM FORMULATION 63

the disturbances realizations. We are now ready to include the relation

(2.21) to consider the efficiency of chiller to produce the required amount of

cooling energy calculating thus the energy load:

El = c1Ech
4 + c2Ech

2 + c3 (3.3)

where products are element-wise. A convex function of an affine expression

of the optimization variable is still convex, this propriety is of great im-

portance for the optimization feasibility. Finally, introducing the weighting

factor, we can express the cost function as:

cost(u, s) = W ·El (3.4)

Recall that u and s are respectively the zones temperature setpoints and the

storage contribute for each sample time and that they are the manipulable

variables in our optimization problem.

3.1.2 Constraints

Constraints are usually set when some requirements or limitations hold re-

garding both the system behavior and the inputs. The reason of constraints

may be that to prevent models to work in non representative conditions

or to pursue desired characteristics of inputs. In our work we will set the

following input constraints:

1.

umin ≤ un ≤ umax,∀n ∈ Ξ1

Zone temperatures are upper and lower bounded in every period in the

set Ξ: this constraint allows the definition of a temperature comfort

range (umin ≈ 20oC, umax ≈ 24oC) in which zone temperatures must

lie for a specified periods during the day long (i.e. period of time in

which someone lives the building). For n /∈ Ξ1 this constraint can

either be relaxed or replaced by another one less restrictive defining

for example bounding temperatures of 15 and 30 degrees over the rest

of the day;

2.

|un − un+1| ≤ ∆,∀n ∈ Ξ2

for comfort reasons it could be required the maximum temperature

derivative to be bounded during the occupancy time (defined by Ξ2),

in our work we set a maximum temperature variation of 0.5K in 10

minutes, however we will see that this constraint is never saturated.
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This is it because we considered the thermal inertia of zones to be inclu-

sive of the ’stuff’ contribution, another way to take into account ’stuff

effect’ should be to impose this constraint over the whole optimization

horizon tuning the maximum temperature variation coherently with a

suitable thermal response time of ’stuff’. Drawback of this approach is

that thermal heat energy contribution of ’stuff’ will not be quantified;

3.

|s| ≤ smax

The maximum quantity of thermal energy provided or drawn by the

storage is limited. These limitations are merely caused by the thermal

exchange process from a technological point of view. In our work we

will assume charging and discharging to have the same performances,

by the way this is not mandatory. The maximum quantity could be

easily made related with the storage energy content simply introducing

a proportional relationship with it, despite that we didn’t introduce it

due to the lack of information about real storages energy behavior;

Energy constraints are instead:

1.

(ΣnzEc)− s = Ech ≤ Emax

The overall cooling energy needs must not exceed the maximum cool-

ing capacity of the HVAC. Notice that the thermal storage can help

to provide energy if it works in discharging mode or, on the contrary,

it can be considered a cooling load if it works in charging mode;

2.

Ec,i(k) ≥ 0 ∀ i ∈ (1, · · · , nz), k ∈ (1, · · · ,M )

The cooling energy required for each zone and for each sample period

to track temperatures evolution should not be negative (i.e. HVAC

can not heat zones!). This constraint is critical in our work because

no heating sources are directly manipulable, the only way the zones

can be heated up is taking advantage of the heat produced by people

or internally generated or exchanged with the building. This last way

is the more intriguing specially because we want to investigate if the

complex and slow behavior of building can be exploited;

3.

Smin ≤ S(k) ≤ Smax ∀k ∈ (1, · · · ,M )
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Figure 3.2: Nominal Outdoor Temperature

The storage energy content S is bounded by a maximum and a min-

imum value, the minimum can either be zero (empty storage) or a

nonzero value (technological limitations). In our work we will con-

sider it to be empty, the minimum level condition is however more

coherent with the assumption that maximum energy exchange rate is

constant in respect to the storage content, this could be not.

3.2 Certainty equivalence-based solution

We aim to investigate the optimal control policy for temperatures evolu-

tion and storage contributions when nominal disturbances and occupancy

profiles are applied. For nominal disturbances we intend the average val-

ues over three months of the data we got: they are plotted in figures

(3.2)(3.3)(3.4)(3.5).

According to all the exposed considerations we can now calculate the

model predictive control policy numerically solving the convex optimization

problem making use of Matlab solvers like CVX or YALMIP. The algorithm
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Figure 3.3: Nominal shortwave radiation

Figure 3.4: Nominal longwave radiation
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Figure 3.5: Nominal Occupancy profile

for the complete problem (that makes use of the storage) is following:

min
u,s,S0

W ·El(u, s)

subject to: umin ≤ u ≤ umax
|s| ≤ smax
El ≤ Emax
Ec,i ≥ 0

Smin ≤ S ≤ Smax

3.2.1 Performance evaluation in the case study

In this section we compare many control strategies and system configurations

with the aim to rate their performances and investigate the way optimal

energy management can be pursued. Four different policies are considered:

1. Fixed : This trivial policy consists in maintaining the comfort tem-

perature of 24oC fixed during the whole occupancy time. Outside this

period, apart for a short time before occupancy starts were tempera-

ture is driven to the comfort one, the chiller operates in idle condition

providing no cooling energy to the zones. Notice that, outside the

comfort period, temperature evolves freely according to the heat ex-

changed with the other sources. Storage is unprovided in this case.
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This policy, clearly unconvenient, is representative of a real life im-

plemented unoptimized cooling strategy that looks only to maintain

comfortable living conditions. It is mainly introduced as a base case

policy in order to make comparisons with the others;

2. Fixed+Storage : The temperature is regulated as in the previous case,

as a difference in this case thermal storage is provided. This control

policy is sometimes used in rough real life applications in order to take

advantage of the thermal storage, that is fully charged during the night

and discharged during the day;

3. Optimal temperature : Temperature setpoint is chosen according to

proposed control formulation setting s = 0 as a constraint so that

storage is unused. Optimization is pursued by the means of select-

ing suitable temperatures to exploit building thermal inertia. Initial

temperature and building state are calculated iteratively letting the

system evolve over more days and iterating the control strategy as

presented;

4. Optimal temperature + Storage : The most complete case plugs the

thermal storage into optimization. Storage can supply or drawn en-

ergy freely during the whole day and its initial and final states are

optimization parameters too;

Figure 3.6: Temperature comparison
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We introduce first a brief analysis of results and then a numerical evaluation

of performances. In what concerns temperature profiles, (figure 3.6) there

are no differences (in general) when policies 1 and 2 are applied: temperature

rises when comfort period ends until the building gives heat to the zone,

during the night (when it is colder outside) the opposite occurs making

the zones cooling slowly. In the process of it temperature variations are

moderated by the presence of floors (inner walls) that, in some sense, absorbs

some of heat released from boundary walls to the zone (for the thermal

flywheel effect). When policies 3 and 4 are applied, profiles are qualitatively

defined by some phases: at the beginning a ’precooling phase’ starts far

before the comfort period, here temperature is lowered below 24oC. In a

second phase temperature rises until it stacks to the maximum allowed by

the comfort constraint. When the comfort period ends temperature rises

as well until precooling starts newly. In what concerns the chiller energy

Figure 3.7: Chillers request comparison

request (Ech, figure 3.7 ) there is a huge difference in between policy 1 and

the others, let us we go through details case by case:

1. Fixed : The cooling effort is what is needed to climate the zone: from

7 till 8 o’clock the zone is cooled down to the comfort temperature of

24oC, then all the effort is spent to maintain this temperature con-

dition compensating all the heating factors. Since there is no storage

helping, all this energy is directly provided by the chiller. During oc-

cupancy both average and peak values are high in respect to the others
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(double) and the chiller operates far over its optimal working point;

2. Fixed+Storage : The cooling effort is averaged during the day. Occu-

pancy time needs are lowered making use of the storage, during non

occupancy time cooling energy is spent to recharge the storage con-

tinuously. The amount of stored energy and the charging speed is so

that the averaged needs makes the chiller works more closer to its op-

timal working condition (figure 3.8). A second advantage is that the

maximum chiller cooling request is really lower if the storage helps,

introducing the possibility to make use of a smaller chiller.

Figure 3.8: Chiller working condition.

3. Optimal temperature : We obtain pretty similar results as in the pre-

vious case without making use of storage by the means of driving

temperature so that exchanged energy with the building is exploited.

In figure (3.9) the Wall-Zone energy exchange (Ew) is depicted: (where

Ew is below zero it means that the contribution of the building is that

to cool down the zone) the advantage of precool the zone is that to

lower the internal thermal energy content of the building (cooling it

down) in other to let it retain some heat during occupancy. When the

temperature rises (from 6 in the morning) this effect is particularly

evident being the building elevating its internal temperature accord-

ing to the new boundary conditions. Due to the long response time

to these variations (approximately 10 hours) the structure will never
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reach the steady state and for all the occupancy time the effect of pre-

cooling will light the building heating contribution. Notice also that

precooling starts really early: at 20 in the evening of the day before.

What temperature tracking is doing is nothing but making use of the

building as a thermal dumper pumping inside it some cooling energy

during the precooling phase that will be used later to dump the Ew
quantity;

Figure 3.9: Wall-zone enengy exchange comparison.

4. Optimal temperature+storage : In this case the situation is even more

complicated. The contribution of storage and temperature tracking

are interconnected: the storage is used first to boost the precooling

(from 0 to 3 a.m.), then the temperature rise makes the opportunity

to recharge partially the storage (from 5 to 12 a.m.) that will be

used again (from 12 to 17 a.m.) allowing the chiller to work in its best

conditions. It is interesting to notice that the 2 degrees wide precooling

effort and the following temperature rise allows, during the storage

recharging phase, to make the building works to cool down the zone

contrasting the inner gains, chiller will work during the whole time

at it best COP splitting its contribution in between zone cooling and

storage recharging. Another advantage in respect to the case without

optimal temperature reference tacking is that to make use of half of

the maximum storage capacity allowing a reduction of the storage size.
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Figure 3.10: Wall-zone energy exchange comparison.

Figure 3.11: Different storage usage.

Some numerical results are presented in the following table:
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F F+S O O+S

e 29.09 16.95 16.63 14.44

(0) (−37.43%) (−38.61%) (−47.1%)

(+59%) (0) (−1.89%) (−15.45%)

El[MJ ] 1219 742.3 750.5 694.4

Ech[MJ ] 1094 1330 1288 1187

Ec[MJ ] 1094 1087 1288 1076

What we notice first is that Fixed+Storage and Optimal policies are really

similar from the costs point of view, that the last policy allows us savings

about 15% in respect to the commonly used policy 2 and that policy 1 is

clearly disadvantageous. Another relevant difference in between policies 1

and 2 regards the absorbed energy: consumed electricity is almost 39% less

if the storage is used even if the cooling energy produced by the chiller is

18% more. The advantage in making the chiller works close to its optimal

COP is evident, the more cooling energy request is due to the amount of

energy lost by the storage that, in our model, is particularly relevant when

the storage is full of charge. As a difference in respect to the fixed policies,

the optimal temperature tracking policy alone requires more cooling energy

to the zone, this however allows a better distribution for the chiller load over

the day that can be translated as a more economical electricity absorption.

The energy consumption due to storage losses making use of policy 4 is half

than making use of policy 2 (9, 3% vs 18%) showing another advantage in

the flexible use of the storage.

Last, it can be seen that costs and energy absorption are not equivalent

descriptions of performances: in cases 2 and 3 for example the latter is the

cheaper even if the first absorbs less electricity, this is it due to the weighing

factor that weights energy consumption differently during the day. The

way weighting factor affects the optimization and achievable performances

is analyzed next.

Weighting factor

Using optimal temperature tracking and storage configuration we implement

now solutions in which energy absorption is differently weighted sample by

sample by the means of the definition of a particular shape for the weighting

function. Two new different weighting functions are introduced, the first is

the simplest possible and simply sums each sample equally over the time.

The second one, more interesting, aim to discourage electricity consump-

tion during the period in between 12 and 17 a.m., this is done defining the
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weighting function to be one all over the time except during the penalized

period were it takes values of ten. The electricity consumption profile are

depicted in figure (3.12). What we can see is that it is possible to find

Figure 3.12: Electricity consumption for different weights

out a control strategy so that the energy absorption is the lowest possible

during the penalized period, in fact 2.4MJ corresponds to the chiller idle

condition absorption (i.e. zero cooling energy produced) and is then the less

consuming condition achievable without switching off the chiller. The main

difference in between cost-weighted and energy-weighted cases consists in

some fluctuations whose peaks are in correspondence with the local minima

of the energy cost profile (figure 3.1) and that allows to save a little:

Cooling cost [e] Absorbed Energy [MJ]

Cost-Weighted 14.96 654.43

Absorption-Weighted 15.57 623.35

Penalized-Weighted 18.10 766.42

With the absorbed energy minimization policy we spend 4% more consum-

ing 4.75% less electricity, the two quantities are by the way strictly related,

optimization produces almost the same results with both policies since they

both try to make the system works around chiller’s optimal COP condi-

tions. In the case of penalized period results are obtained specially taking
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advantage of the storage: it concentrates its cooling contribution in the pe-

nalized period charging in advance so much needed to chill the zone alone,

drawbacks on doing that is the less effective precooling action that causes

the system consume 17% more electricity and spend 21% more.

Figure 3.13: Storage usage.

Multizone

For the case in which optimal temperatures tracking alone is implemented

we make use in this subsection of a multizone description of the building.

The way zones are defined is the most natural one: we divide the build-

ing in three living zones, one for each floor as depicted in figure (3.14). In

general division criteria can be based on occupancy or destination of use

considerations, structural considerations or both of them. For example it

could be interesting to investigate the possibility to exploit architectural

aesthetic (halls, open spaces, . . . ) or functional spaces (stair cases, big con-

ference rooms, warehouses, . . . ) for optimal thermal management purposes.

In our configurations the division is made according to the building struc-

ture. Some considerations can be made regarding zones: Zone 1, thanks to

its position in the building, is little influenced by external disturbances di-

rectly and its wall-zone energy exchange is highly related to Zone 2 selected

temperatures, we assume this zone to be occupied by the half of the total

building occupancy. Zone 2, being in between the others, is highly inter-

connected with thermal conditions of zones 1 and 3, we assume this zone
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Figure 3.14: Multi zone configuration

occupied by 30% of the total building occupancy. Zone 3, being on the top

of the building and including a large roof area, is the most influenced by

external conditions, we assume this zone to be occupied by 20% of the total

building occupancy.

From the optimization process point of view the same algorithm holds,

by the way in this case we have three times more optimization variables

defining the temperature optimal profiles for each zone. Results are plotted

in figure (3.15). As we can see regime nominal profiles are really different for

Figure 3.15: Multizone configuration temperatures

the three zones, there is convenience in maintaining zone 2 colder in respect
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to others as well as in maintaining zone 1 slightly varying. The reason why

the middle zone should be strongly cooled seems to be the possibility to

exploit it (and zones’ boundary walls) as a passive storage in a similar way

we saw for walls in the single zone case. It is interesting to have a look

at cooling energy injected zone by zone (figure 3.16): as we can see zones

are cooled disjointly case by case. During unoccupancy zone 2 is cooled

strongly and alone, the existing temperature gradient with the other zones

makes them cool down too. During the most of occupancy time zone 2

temperature rise freely absorbing heat from the other zones, only the top

zone is cooled. It is also interesting that the bottom zone 1 is almost never

directly cooled implementing a sort of passive cooling solution: notice that

adding as a constraint cooling energy to be always null for a zone can model

the situation in which no cooling system is present. From a numerical point

Figure 3.16: Multizone config. cooling effort

of view results are encouraging: we can save more than 20% in respect to the

already good result achieved by the single configuration optimal temperature

profile just implementing the multizone solution. This result seems to be

due to the less needs of cooling energy.

OSZ OMZ

e 16.63 12.79 −21.1%

El[MJ ] 750.5 669.7 −14.5%

Ec[MJ ] 1288 979.9 −23.9%
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This results must of course be deeper studied in particular in what concerns

computational feasibility and the trade off it exists in between the number

of zones and introduced advantages. Another important aspect that must

be investigated is the performance degradation and practical feasibility in

real life unknown disturbances scenarios.

Disturbances effect

At this point we want to analyze what happens when real disturbances and

occupancy realizations, different from nominals, affect the system. We cal-

culate the optimal control policies making use of realizations of the whole

month of July in the case disturbances profiles are known, this is unreal-

istic in practice but represents the best performances achievable. We then

confront performances obtained when nominal control references for temper-

ature is imposed having a look at how much constraints are breached. The

constraints violation is very important because their satisfaction implicitly

models saturations that are not modeled explicitly even if they exists in prac-

tice. In particular imposing the cooling energy to the zone to be nonnegative

means that the cooling system cannot heat up the zone, if this constraint

is violated the real system cannot track the desired temperature reference

making further calculations completely unreliable. We are not interested in

quantify what happens when constraints are breached, the cost estimation

is the one ideally obtained tracking the nominal temperature reference, and

they are, again, not representative at all of the real cooling cost.

Recall: results assumes a particular initial condition that never changes,

thermal state of the building and values of initial inputs are representative

of a particular condition in which the system is. Optimization is performed

starting from such conditions over a two days horizon. Occupancy and

environmental factors changes day by day.

Results are presented in the following table where the Ec = 0 constraint

violation is presented only since the others are never violated.
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Day Optimal Cost Nominal Cost (%) Violations %

1 18,16 21,59 (+18,9) 0

2 10,68 12,06 (+13,0) 42

3 10,68 11,41 (+6,8) 42

4 13,21 15,45 (+16,9) 0

5 15,58 17,43 (+11,9) 7

6 9,80 11,23 (+14,7) 63

7 20,02 24,91 (+24,4) 0

8 23,33 29,99 (+28,5) 0

9 27,25 37,54 (+37,8) 0

10 26,16 33,03 (+26,2) 0

11 29,40 40,45 (+37,6) 0

12 24,08 33,02 (+37,1) 0

13 31,25 41,67 (+33,4) 0

14 25,33 34,31 (+35,4) 0

15 30,13 37,27 (+23,7) 0

16 21,02 25,20 (+19,9) 0

17 16,14 17,39 (+7,8) 4

18 16,46 18,86 (+14,6) 0

19 21,79 23,73 (+8,9) 0

20 11,90 12,53 (+5,3) 42

21 11,40 12,10 (+6,1) 0

22 13,69 14,20 (+3,7) 13

23 13,44 14,23 (+5,8) 21

24 11,05 11,80 (+6,8) 42

25 8,93 10,91 (+22,2) 91

26 10,34 10,72 (+3,6) 59

27 12,22 12,52 (+2,4) 37

28 8,90 11,58 (+30,1) 85

29 13,12 13,98 (+6,5) 0

30 11,86 12,44 (+4,9) 42

31 16,14 17,23 (+6,8) 0

As we can see results are not encouraging: constraints are not violated just

in few cases, these are realizations of days that show up to be the hottest

and with clearest sky. Moreover a sensible mismatch exists in general in

between achievable and obtained performances. In many cases constraints

violation doesn’t correspond to better performances for the nominal case.

The reasons for performances violations are mainly :



80 CHAPTER 3. CONTROL

1. after precooling there is not enough internal gain and wall-zone heat

exchange to rise temperature as desired;

2. after occupancy time the heat released from the building is not much

as supposed and temperature doesn’t evolve as predicted;

There is no problems to track temperatures during cooling phases, con-

straints violations exist when the amount of heat exchanged to the zone

is less than the estimated allowing not temperature to rise as desired, this

heat amount is both due to slow building thermal dynamics and fast internal

gains: in the unluckiest case environmental conditions heats less the build-

ing, occupancy are less than usual and radiation trough windows is weak

calling for less cooling effort. To explain performances degradation observe

that the main advantages in tracking a particular temperature profile are

to deject and in some sense delay the wall-zone heat contribution over the

time: in the case when conditions are close to nominal conditions the aim

of temperature tracking is to make the chiller works close to its optimal

COP working point. When we face particularly hot or cold days (being the

chillers respectively under or over dimensioned) this strategy may be not the

optimal: selected temperature profile is instead the one that avoids peaks

and holes in the chiller duty averaging the cooling load even far from the

optimal working point. For example it has been seen that from particular

starting conditions and colder days realizations ideal optimal temperature

profile may completely drop precooling phase.

Recall: Precooling is intended to be the cooling phase before occupancy

period starts. The more width of precooling is, the less Wall-zone heat

exchange will be after precooling ends. Precooling lights cooling duty during

daylight.

3.3 Scenario-based solution

The presence of disturbances affecting the state evolution is quite common

in practice, in our case they are represented by occupancy and weather

conditions as outdoor temperature and solar radiation. To account for dis-

turbances we can make use of two different approaches: robust and stochas-

tic. In the robust one a min-max approach is taken where the control cost

is optimized against the worst disturbance realization, while guaranteeing
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constraint satisfaction. Although successful in many cases, the min-max

strategy may lead to conservative results, since the disturbance distribution

is not accounted for and all disturbance realizations are treated as equally

likely. Indeed, it might be the case that low probability disturbance realiza-

tions cause a significant deterioration in the cost or even the unfeasibility of

some constraint. To overcome these limitations an average cost and prob-

abilistic constraints are typically considered in stochastic problem formula-

tions: in this setup, a violation of the constraint is accepted, although this

must happen for few disturbance realizations only, having altogether prob-

ability no greater than a chosen threshold. This rules out ”bad” situations

adversely affecting the robust approach. Moreover, probabilistic constraints

are the only way to avoid unfeasibility of state constraints when the distur-

bance has unbounded support. Unfortunately, probabilistic constraints are

in general non-convex and more difficult to treat than usual non probabilistic

constraints. The resulting finite-horizon optimization problem with proba-

bilistic constraints belongs, indeed, to the class of the chance-constrained

optimization problems,which are known to be hard to solve in general.

The way stochastic realizations that enters our optimization problem can

be divided in three types:

1. Structural. It is the case for example of wind and humidity, which

variability effects the system within the definition of parameters: hu-

midity level influences both chiller efficiency coefficients and external

convective heat exchange. These effects are taken into account respec-

tively by the means of defining time variant performances coefficients

and building model;

2. Direct. Is the case for example of solar radiation that affects the system

as an exogenous input;

3. Mixed. Is the case for example of outdoor temperature that is an

exogenous input as well may condition chiller efficiency;

In this section we tried to explore the possibility to set up and solve

the problem in a probabilistic way. In particular we propose and analyze

three different configurations for controllers: in the most complete and gen-

eral formulation ( in respect to which others controllers can be viewed as

subcases), temperature set points and storage contribution is calculated be-

ing aware of the possibility to regulate them on-line, taking advantage of

measurements of disturbances (all but occupancy). A sort of (even if not

canonical) feedforward compensator is made up in order to do that: it is

nothing but a time-variant gain which values are set by the optimization
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process. Many different configurations were tried, the ones we present here

are the more promising and have the aim to show that scenario based solu-

tions can be well suited to tackle the stochastic problem. The temperature

profile is made by a nominal profile ū calculated once plus a compensator

action that sample by sample updates the next setpoint making use of radi-

ation and temperature measures. Shortwave radiation, longwave radiation

and outdoor temperature are plugged in all together defining an equivalent

disturbance effect:

d = µswrQswr + µlwrQlwr + µToTo

where coefficients µ are the static gains of disturbances on the building model

and weights differently the respective contribution. Doing that we can drop

the number of optimization variables grasping as well the environmental

effect on building dynamics. Moreover measures used by compensator are

the discrete integral (the until-now sum) of the equivalent disturbance: this

carries informations about the disturbances effects on the building thermal

state over the time and not just punctually, in some sense it implicitly defines

how hot is the real day. The storage contribution profile is defined in the

same way as temperature but, as a difference, the compensator makes also

use of punctual measures of shortwave radiation to better take into account

the effect of solar gains trough windows. The probabilistic formulation of

the problem is:

min
ū,C1 ,̄s,C2,C3,h

h

subject to: u = ū + C1d

s = s̄ + C2d + C3Qswr

Prob(umin ≤ u(occ.) ≤ umax) > 1− ε
Prob(|si| ≤ smax) > 1− ε
Prob(W ·El,i(u) ≤ h) > 1− ε
Prob(El,i ≤ Emax) > 1− ε
Prob(Ec,i ≥ 0) > 1− ε
Prob(Smin ≤ Si ≤ Smax) > 1− ε

Where Ci are diagonal matrix containing compensator gains.

The three control set up we will examine are: the complete one that

makes use of storage and compensator, a second configuration in which

storage is unprovided and, last, a configuration with neither storage nor

compensator that try to find out an ’always feasible profile’. Problem for-
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mulation for the two subcases can be derived from the most general simply

dropping (or forcing to be zero) unprovided elements.

3.3.1 The scenario approach

As pointed out, introducing probabilistic constraints in the formulation of

the constrained control problem leads to a chance-constrained optimization

program that is hard to solve since it is generally non-convex except for

quite structured cases. Indeed, convexity is central for the real time com-

putation of the finite-horizon policy, since it ensures the well-posedness and

tractability of the optimization problem. The scenario approach is an inno-

vative technology that has been introduced to solve complex optimization

problems with an infinite number of constraints, a class of problems which

often occurs when dealing with uncertainty. This technology relies on ran-

dom sampling of constraints, and provides a powerful means for solving

a variety of design problems in systems and control. We consider general

chance-constrained problems:

min
α∈Rnα

l(α)

subject to: Prob(η(α, ω) 6 0) > 1− ε

α is an nα-dimensional optimization variable, whereas ω is the stochastic

uncertainty parameter with probability distribution Pω. The only assump-

tion the scenario approach relies on is the convexity of the cost l(α) and the

convexity of η(α, ω) with respect to the optimization variable α only (the

dependence on the stochastic parameter ω can be arbitrary). The scenario

approach goes as follows. Since we are unable to deal with the wealth of

constraints

η(α, ω) 6 0,∀ω ∈ Ω

we concentrate attention on just a few of them by extracting a random N

instances or ’scenarios’ of the uncertain parameter ω according to probability

P , only the constraints corresponding to the extracted ω are considered in

the scenario approach, in this way Scenario constrained program (SCP) is

a standard convex and finite optimization problem which solution can be

found at low computational cost via suitable solvers (provided that N is not
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too large).

min
α∈Rnα

l(α)

subject to: η(α, ωi) 6 0, i = 1, · · · , N

Through disregarding all constraints but N of them may appear naive, the

scenario approach stands on a very solid mathematical description:

Theorem 1 [12]. Select a ’violation parameter’ ε ∈ (0, 1) and a

’confidence parameter’ β ∈ (0, 1), being n the number of opti-

mization variables and N the number of considered scenarios,

if:

N >
2

ε

(
ln

1

β
+ n

)
(3.5)

then, with probability no smaller than 1 − β, the optimization

result satisfies all constraints in Ω but at most an ε-fraction, i.e.

Prob(ω : η(α, ωi) 
 0) 6 ε

For further details see Campi, Garatti, Prandini and the references therein.

Theorem 1 says that if N is chosen as indicated, then, the probability of

’bad scenarios’ in which constraints are violated is no greater than β. The

result holds true irrespective of P , the probability distribution of the noise

vector ω, which, hence, can be anything (as disturbances affecting our system

are). By making (3.5) explicit with respect to N according to the technique

proposed in Alamo et all.[32], it can be shown that the smallest N , say N̄

, satisfying (3.5) scales as

N = O

(
n+ ln 1

β

ε

)
(3.6)

This relationship reveals important features of the computational complexity

of the Scenario Algorithm:

• N increases logarithmically with 1/β. Hence, we can enforce a very

small value for β (like β = 10−5 or even β = 10−10 which guarantee

the achievement of Pr(ω : η(α, ωi) 
 0) 6 ε beyond any reasonable

doubt without affecting N too much.

• According to the parametrization of the control policy the dependence

on the horizon length M may pose a hurdle in the applicability of

the Scenario Algorithm, in view of the linear dependence of N on n.
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This suggests using the alternative parameterizations of the control

policy (introduced in subsection 3.3.2) with the aim of reducing the

dimensionality of the optimization variable.

A big advantage of making use of scenario approach is that a probabilistic

description of stochastic variables is not required whenever we have access of

real measurements of involved signals, in particular we do not need to aware

of correlations that exists in between of different disturbances sources. In our

work the nature of involved stochastic parameters is much complex so that

making use of real-happened realizations of them may be straightforward

and goes to simplify the problem formulation even from a practical point

of view. On the other hand the possibility to make use of forecast possible

scenarios (performed by simulations on the weather forecast type) can be

used as well.

3.3.2 Performance evaluation in the case study

The aim of this section is to evaluate the possibility to make use of the

stochastic control formulation to achieve very good performances in a real

life application counteracting the effects of stochastic components. For this

purpose we will presents reformulations for the stochastic control problem

that take advantage of the scenario approach. We make use of data not

particularly refined (i.e. plug scenarios of June for calculations at the end of

July) to provide a suitable temperature reference and disturbance feedback

parametrization. To ease computational load and in order to increase the

probabilistically satisfaction of constraints according to results of scenario

approach, we decided to solve the problem defining optimization tempera-

ture setpoints every hours instead of every ten minutes and linear interpo-

lating temperatures in between of them (figure 3.17). Unfortunately, the

amount of data we can deal with is not such much, so that results are just

qualitative. Choosing temperatures set point every hour we get a compro-

mise in between computational feasibility and qualitative description of the

problem even if, as we will see, results are not bad performances could rea-

sonably be boosted making use of more optimization variables, more and

more precise weather forecasts and so on. Notice that all the calculations

are again performed over ten minutes width sampling period so that all the

involved dynamics are grasped. It follows a description of the three control

configurations and a qualitative description of results, numerical results will

be presented and commented altogether at the end.
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Feasible temperature profile

Making use of the scenario approach we try first to find out a temperature

reference profile so that cost is minimized and constraints never breached.

Optimization variables are in this case the 48 temperature setpoints (2 days

horizon) ū that are linearly interpolated in u. The algorithm is formulated

as follows:

min
ū,h

h

subject to: umin ≤ u(occ.) ≤ umax
W ·El,i(u) ≤ h ∀i
El,i ≤ Emax ∀i
Ec,i ≥ 0 ∀i

where i are 61 different realizations of occupancy and disturbances. The

result (figure 3.17) is a conservative profile where temperature rising is dis-

couraged: precooling is evident only in relation to the initial condition (only

the first day looking at the two days horizon), temperatures are averaged

around the comfort set and it is not encouraged temperature rising after

occupancy.

Figure 3.17: Feasible temperature profile
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Disturbances compensator

Compensator is a time variant static gain whose values are defined by the

optimization processes, the overall optimization variables are thus in number

of 48 setpoints + 47 compensator gains; the algorithm is formulated as

follows:

min
ū,C,h

h

subject to: ui = ū + Cdi

umin ≤ ui(occ.) ≤ umax∀i

W ·El,i(u) ≤ h ∀i
El,i ≤ Emax ∀i
Ec,i ≥ 0 ∀i

The resulting profiles for all the realizations used in paragraph 3.2.1 are

presented in figure(3.18): as we can see there is a good variability for the

temperature profiles and differences arises for every periods in respect to

the previous simple policy. Constraints regarding both thermal comfort and

positiveness of cooling energy are again never breached. Looking at some

Figure 3.18: Compensator temperature profiles

particular profiles (figure 3.19) we can notice that there is not a general rule

according which control evolves: for the first hour all temperatures follows
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a nominal profile since there is not informations yet about disturbances

behavior, then we can see that precooling can either be boosted or slowed.

This is true also for temperature rising and especially for the ending phase

that could even presents qualitatively different behaviors.

Figure 3.19: Some compensator profiles

Storage

Last the complete formulation that uses the storage. What we were looking

for was a control policy that could ensure cooperation in between temper-

ature reference and storage usage on the same way we had seen it works

for the nominal case. Storage formulation goes to enrich the compensator

policy formulation adding storage contribution setpoints in the same way

we did for temperature setpoints. In this way we are considering a one hour

picewise constant contribute of the storage to the energy balance, this prob-

ably highly limits performances. The reason why we adopted this rough

working mode is, once again, computational and due to the scarce amount

of data used to ensure probabilistic satisfaction of constraints via scenario

approach. Also the storage takes advantage of environmental conditions

measures in the same way temperature reference does, as a difference it

shown up to be particularly convenient to make use also of the measures of

shortwave radiation that affects directly the zone as a window gain. This is

done making use of others 47 gains for the compensator and feeding it with

the punctual measures of shortwave radiation. Optimization variables are
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thus in number of 48 temperature setpoints + 47 temperature compensator

gains + 47 storage contribution setpoints + 94 storage compensator gains

and the problem formulation is:

min
ū,C1 ,̄s,C2,C3,h

h

subject to: ui = ū + Cdi

si = s̄ + C2di + C3Qswr,i

umin ≤ ui(occ.) ≤ umax∀i
|si| ≤ smax ∀i
W ·El,i(ui, si) ≤ h ∀i
El,i ≤ Emax ∀i
Ec,i ≥ 0 ∀i
Smin ≤ Si ≤ Smax ∀i

Storage content realizations are presented in figure(3.20): strong usages

Figure 3.20: Storage level realizations

(red line) or weak ones (green line) are possible, however the way storage is

used is different in respect to the nominal case since it is never used to boost

the precooling phase. It is interesting to notice that the amount of energy

charged is different case by case and that charging and discharging periods

are not fixed nor constant. In the red case the storage works charging,
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discharging and then recharging, this is not in general, in the green case for

example the storage just gets charged and then discharged. Moreover in this

latter case storage is non participating from 6 to 10.

Results

In this section numerical results are presented in order to qualitatively com-

pare performances. The optimal achievable performances (as in paragraph

3.2.1) are the best performances achievable being aware of the future values

of disturbances at the optimization time, this values are introduced as com-

parison values in order to quantify performances degradation making use of

the stochastic formulations previously presented.

• Feasible temperature reference: to the detriment of performances,

constraints are never breached by the means of selecting a temperature

profile suitable for every possible scenarios. Even if this policy may be

improved making use of more detailed and suitable weather forecasts

it seems to get worse especially when needs are high, the reason of it

should be the impossibility to heat up the zone that makes the profile

to be prudent in rising temperatures;

• Disturbances compensator: almost always the compensator config-

uration achieve better performances in respect to the Feasible control

reference configuration. In particular it does very good in hot days

obtaining performances very close to the best achievable at all. This

is not when optimal achievable costs are low (index of cold days and

low occupancy). As we can see in figure (3.22) the resulting tempera-

ture profile making use of the compensator is very close to the optimal

achievable one, they differ in particular at the beginning when there’s

not information yet about disturbances and at the end because com-

pensator is not aware about the effect of occupancy.

• Storage: Best performances are achieved making use of the storage.

Almost in the half of cases storage usage shows up to be convenient,

leading to savings in respect to optimal achievable without storage. In

the more expensive days savings are around 30% reaching 37% in the

best case. Good results are obtained also for warm days. Nothing can

be done in cold days probably because of storage losses that augments

consumptions;
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Achievable Feasible Compens. Storage

18,16 24,11 33% 19,62 8,03% 15,72 -13,43%

10,68 12,93 21% 12,84 20,29% 12,39 16,10%

10,68 12,44 16% 12,75 19,41% 12,37 15,84%

13,21 17,44 32% 16,34 23,66% 14,10 6,73%

15,58 19,48 25% 16,97 8,93% 14,15 -9,16%

9,80 12,99 33% 12,56 28,21% 11,63 18,75%

20,02 27,55 38% 21,72 8,50% 16,38 -18,20%

23,33 33,15 42% 24,35 4,40% 17,45 -25,20%

27,25 41,38 52% 28,24 3,64% 18,85 -30,83%

26,16 36,07 38% 26,98 3,15% 18,24 -30,29%

29,40 44,30 51% 30,38 3,35% 19,58 -33,40%

24,08 36,93 53% 25,14 4,38% 17,99 -25,30%

31,25 45,18 45% 31,95 2,25% 19,86 -36,44%

25,33 38,07 50% 26,04 2,79% 17,68 -30,19%

30,13 40,02 33% 30,60 1,54% 18,94 -37,16%

21,02 27,78 32% 22,21 5,66% 16,58 -21,12%

16,14 19,16 19% 17,50 8,43% 14,44 -10,51%

16,46 21,06 28% 17,80 8,13% 14,47 -12,11%

21,79 25,38 16% 22,95 5,35% 16,83 -22,76%

11,90 13,31 12% 13,49 13,42% 12,53 5,33%

11,40 13,72 20% 13,68 20,02% 12,66 11,07%

13,69 15,60 14% 15,43 12,66% 13,63 -0,47%

13,44 15,74 17% 15,13 12,57% 13,25 -1,45%

11,05 13,23 20% 13,28 20,19% 12,36 11,85%

8,93 11,56 29% 11,21 25,57% 11,33 26,92%

10,34 11,73 13% 12,75 23,23% 12,16 17,59%

12,22 13,73 12% 14,07 15,15% 12,90 5,58%

8,90 12,06 35% 11,20 25,82% 11,28 26,78%

13,12 15,69 20% 14,88 13,38% 13,27 1,10%

11,86 13,43 13% 13,52 14,02% 12,62 6,43%

16,14 18,80 17% 17,56 8,81% 14,29 -11,42%

Absorbed energy

Some considerations can be made regarding the absorbed electricity: it is

straightforward to derive probabilistic considerations regarding maximum

and minimum energy load of the building, in a smart grid context it could be
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Figure 3.21: Performances compared
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Figure 3.22: Temperature profile comparison

possible to take advantage of this feature for energy scheduling and forecasts.

In figure (3.23) we can see the maximum and the minimum electricity needs

envelope (they are both different from a single realization). The presence of

the absorption peak at 17 o’clock is caused by the switch in the operating

mode of the storage and should be discouraged in real applications. Clearly,

being aware of such estimations may be useful at a grid level.

Figure 3.23: Energy needs



94 CHAPTER 3. CONTROL



Chapter 4

Concluding remarks

We presented a novel approach to face optimal energy management of a

building cooling system with thermal storage. A main distinguishing feature

of our approach is that we adopt a model based on thermal energy balancing,

and use the building temperature set-point as control variables. The optimal

energy management problem is formulated as a finite horizon optimal control

problem and addressed according to

i) the certainty equivalence-based approach, where stochasticity in the

disturbances affecting the system is neglected and reference is made

to some nominal operating condition, and

i i) the scenario-based approach, where a finite number N of realizations

of the stochastic disturbances is considered in the control problem

solution. Theoretical guarantees on the system behavior over all dis-

turbance realizations except for a set of predefined probability can be

provided if N is suitably chosen.

Notably, in the scenario-based solution a feedforward disturbance compen-

sator is implemented, which significantly improves the controlled system

performance.

We next summarize and highlight the main advantages of the proposed

approach to the optimal energy management problem:

• Considering the cooling system as a black box allows to simplify the

optimization problem since nonlinearities are neglected, and favors a

convex formulation of the optimization problem;

• Adopting a low-order linear model for the building thermal description

allows to grasp the heat dynamics, taking explicitly into account the

95
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influence of stochastic factors, while limiting the problem size at the

same time;

• Using temperature set-points as optimization variables allows to ro-

bustly guarantee thermal comfort conditions in case of unpredicted

events or modeling errors without making use of a secondary controller

of the temperatures. Furthermore, constraints on the temperature evo-

lution can be imposed directly;

• Using a two days long prediction horizon allows to avoid the definition

of too restrictive constraints at the end of the actual time horizon of

interest (1 day);

• Adopting a stochastic approach to control design counteracts unfeasi-

bility problems and ensures performance. The design of a feedforward

compensator via the scenario approach gives a large degree of flexibil-

ity to the system.

Aspects that deserve further investigation include:

• the possibility to preserve convexity of the control problem for a more

realistic cooling system that includes chiller benches, pumps, econo-

mizers, cooling towers, . . . ;

• the introduction of a more detailed energy model for the storage sys-

tem;

• a deeper characterizations of internal gains and zones models;

• the extension to HAVC systems. This will probably call for a problem

reformulation that uses hybrid control theory.

Last but not the least, experimental tests should be carried out for assess-

ing and comparatively analyze the performance of the proposed certainty

equivalence-based and scenario-based solutions.
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