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Abstract

Space trajectories optimization can be tackled with either direct or indi-
rect methotds. Both need a first guess solution, but indirect methods tend
to be more sensitive to the first guess selected. This work aims at mitigat-
ing the typical issues related to the application of indirect methods and at
defining some general rules, able to keep valid in very heterogeneous mission
scenarios. One of the most significant expedients in this direction is the use of
polar coordinates, which have shown much more regular trends with respect
to Cartesian coordinates.

The work considers time-fixed, low-thrust trajectories and particular at-
tention is payed to variable-specific impulse engines: by varying the amount
of energy dedicated to radio frequency heating and the amount of propel-
lant delivered for plasma generation, they are capable of generating either
low-thrust, with high–specific impulse exhaust or relatively high-thrust, with
low–specific impulse exhaust.

Thanks to optimal control theory, ordinary differential equations for the
states and co-states are derived in a minimum-energy problem. Then the
attention is focused on the initialization of the co-states. Crucial in this
sense were an Adjoint Control Transformation (ACT) and the use of a Polar
Curve Fit (PCF).

The ACT links the initial co-states to some more predictable variables,
such as the initial thrust angles. Tipically, the initial co-states are computed
more easily in trasfers with a low time of flight. It was observed that, if
expressed in polar coordinates, the co-states show an exponential trend as
function of the fixed time of flight. So, once the initial co-states of a transfer
with a reduced time of flight have been obtained, it is possible through the
PCF to immediately get the initial co-states for the same transfer but with
an increased time of flight.

Once solved the minimum-energy problem, the work addresses the maxi-
mization of the final mass. In addition to the previous equations for position
and velocity (and their co-states), a mass variation equation appears. Opti-
mal control theory generates a different control law, but the introduction of
some helpful assumptions allows to rapidly get a solution for the maximum-
final-mass problem.

Then the problem of the saturation of the control is addressed: thrust
magnitude is constrained to be lower than an assigned upper bound limit.
This is a common but difficult-to-manage problem, as numerical instabilities
tipically occur. Nevertheless, a proper combination of simple and multiple
shooting techniques allows to succesfully overcome these problems.

Finally, the performances of the method are assessed on some transfer test
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cases, including LEO to LEO, LEO to GEO and Earth to Mars transfers,
and a critical analysis of the results is carried out.

The developed method turns out to be effective and robust for all these
heterogeneous test cases.

Keywords: Trajectory Optimization, Indirect Methods, Low-Thrust, Op-
timal Control



Estratto della Tesi

L’ottimizzazione di traiettorie spaziali può avvenire attraverso due principali
categorie di metodi: diretti e indiretti. Nei primi è più facile trovare una
soluzione di primo tentativo, i secondi permettono di ottenere soluzioni molto
più accurate ma richiedono una soluzione di primo tentativo molto vicina a
quella ottimale e quindi difficile da trovare. L’obiettivo della tesi è abbattare
le difficoltà applicative dei metodi indiretti e definire quindi delle procedure
valide in scenari di trasferimento anche molto diversi tra loro. Uno degli
accorgimenti più importanti in questo senso è l’uso di coordinate polari: le
variabili che definiscono posizione e velocità del satellite hanno dimostrato
andamenti molto più regolari se espresse in un sistema di riferimento sferico
anziché cartesiano.

Vengono analizzate traiettorie a tempo di trasferimento fissato e a bassa
spinta, ovvero facenti uso di propulsione elettrica, la tecnologia più promet-
tente in termini di consumi e flessibilità di impiego. In questa categoria di
propulsori, particolare attenzione viene posta verso i motori a impulso speci-
fico variabile, ovvero motori elettromagnetici che, regolando l’energia atta a
riscaldare in radio frequenza il propellente e la quantità di gas da destinare
alla generazione di plasma, sono capaci di funzionare sia in modalità di alta
spinta (e basso impulso specifico) che bassa spinta (e alto impulso specifico).

Tramite le teorie del controllo ottimo vengono dapprima trovate le equa-
zioni differenziali ordinarie di stati e costati che regolano una soluzione di
minima energia. Successivamente l’attenzione si concentra sull’inizializza-
zione dei costati. Fondamentali in questo senso sono la Adjoint Control
Transformation (ACT) e l’uso di un Polar Curve Fit (PCF).

L’ACT definisce delle leggi che legano i costati iniziali con i valori di
alcune variabili fisiche più facilmente determinabili, ovvero gli angoli che
caratterizzano la direzione del vettore di spinta.

In generale i valori dei costati iniziali sono più facili da trovare in trasfe-
rimenti con un ridotto tempo di volo. Si è notato però che molti costati, se
espressi in coordinate polari, manifestano un andamento esponenziale in fun-
zione del tempo di trasferimento fissato. Quindi, una volta trovati i costati
iniziali di un trasferimento con un basso tempo di volo, è possibile determi-
nare per interpolazione (PCF ) i costati iniziali di un trasferimento con un
tempo di volo sempre più lungo.

Risolto il problema della minimizzazione di energia, viene affrontato quel-
lo della massimizzazione della massa finale. In aggiunta alle precedenti equa-
zioni di posizione e velocità (e relativi costati) compare anche l’equazione di
variazione della massa. Le teorie del controllo ottimo danno vita a leggi di
controllo diverse dal caso precedente, tuttavia l’introduzione di alcune ipotesi
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semplificatrici permette di trovare molto rapidamente una prima soluzione
al problema di massimizzazione della massa finale.

Successivamente viene affrontato il problema di saturazione del controllo,
ovvero lo studio di trasferimenti dove la spinta è vincolata a non superare
un valore di soglia prestabilito. Questo è un problema tanto comune quanto
di difficile implementazione date le instabilità numeriche che tipicamente
insorgono. Ciò nonostante, l’opportuno uso di tecniche di single e multiple
shooting permette di superare con successo tali difficoltà.

A questo punto vengono presi in considerazione alcuni casi studio, quali
i trasferimenti tra LEO e LEO, tra LEO e GEO e tra Terra e Marte, e viene
presentata un’analisi critica dei risultati.

Il metodo descritto nel corso della tesi si dimostra valido e robusto anche
per trasferimenti così eterogenei.

Parole chiave: ottimizzazione di traiettorie, metodi indiretti, bassa spinta,
controllo ottimo
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Chapter 1

Introduction

Since the Deep Space-1 probe [1] successfully completed its mission much
more beyond the best expectations, electric thrusters represent a main propul-
sion technology for long-duration space missions. Despite the evident benefits
that this class of thrusters can generate in terms of cost saving and flexibility,
low-thrust trajectory optimization can often result very tricky as it involves
the solution of a two-point boundary value problem at least, characterized
by a set of non-linear coupled differential equations. This problem can be
faced according to different techniques but the most desirable ones in terms
of accuracy of the solution are represented by the indirect methods.
The objective of this thesis is to provide a robust algorithm capable of op-
timizing space trajectories in low-thrust propulsion and in particular the
optimiziation is related to the propellant consumption in a time-fixed space
transfer.
The work focuses on the use of variable specific impulse engine, as it has been
demonstrated [2] that they always guarantee a greater propellant saving with
respect to constant specific impulse thrusters.

1.1 State of the Art

The indirect method finds its theoretical foundation in the works of Lawden
[3], Bryson and Ho [4], Breakwell [5] and Pontryagin [6], whose Maximum
Principle represents the master key for space trajectory optimization. Start-
ing from these theoretical basis, lot of researchers tried to perform a space
trajectory optimization with low-thrust propulsion, like Petropulos and Rus-
sel [7] who studied a minimum-fuel transfer with a circular-restricted-three-
body (CR3B) dynamic model, in the Sun-Earth and Jupiter-Europa frames.
As they used a constant specific impulse model for the engine, they ended

1



2 Chapter 1. Introduction

up with a bang-bang control law for the thrust, which has been parametrized
with the initial co-states and expressed as a feedback law through the primer
vector theory. Caillau, Bonnard and Picot [8] focused on an Earth-Moon fuel-
optimal transfer in a CR3B model, performing a continuation on the mass pa-
rameter: the shooting function of an Earth-L2 transfer gives a good approxi-
mation of the shooting function of the Earth-Moon transfer. Peng, Zhao, Gao
and Wu [9] studied time-fixed transfers between different Halo orbits around
the same Lagrangian point exploiting the invariant stable manifolds theory.
They investigated the possibility of linearizing the optimal control through
a Linear Quadratic Regulation and compared it with a non-linear optimal
control solution. They concluded that, in order to get a fuel-optimal solu-
tion, it is indispensable to take into account all the non-linearities because
their consideration permits to get appreciable fuel savings. Caillau, Daud
and Gergaud [10] formulated a minimum-time solution for CR3B problems
by introducing a discrete and a differential homotopy. Thanks to the theory
of conjugate points, they were able to get second order optimality conditions
for the extremals.
Apart from works about Halo-orbit transfers, some authors focused on the
indirect optimization of interplanetary trajectories. Casalino and Colasurdo
[11] compared the benefits in terms of mass saving when using Constant-
Specific-Impulse thrusters, Variable-Specific-Impulse ones or dual-mode thru-
sters, which operate only at two discrete values of specific impulse. Vadali,
Nah and Braden [12] studied a LEO-to-LMO transfer and Ranieri [13] tried
to overcome the simplifications they introduced. Mainly, he took into ac-
count the gravitational fields of all the three primary attractors (Sun, Earth
and Mars) and considered also the phase of Earth escape and Mars capture
that involve spiral trajectories. The techniques Ranieri coinceved for the ini-
tialization of the co-states have been greatly exploited in this thesis. Hull [14]
studied different mission scenarios and addressed the conversion of optimal
control problems into parameter optimization ones.
In the recent years, also Politecnico di Milano has focused the attention on
space-trajectory indirect optimization. Rasotto [15], formulated a code ca-
pable of facing fuel-optimal transfers in two-body and three-body dynamics,
including the possibility of performing intermediate fly-by, rendez-vous and
gravity assist.

1.2 Motivation of the work

The traditional shortcoming of indirect methods is the difficulty of generating
an accurate first guess, which is crucial to ensure convergence. In addition,
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Figure 1.1: Low-thrust transfer from a GTO to an Halo orbit around L1 performed
with Rasotto’s code. It can be observed that the thrust magntiude was kept con-
stant during the first 60 days.

the more the dynamic equations are non-linear, the more converging to the
optimal solution is difficult.

In Rasotto’s work [15], non-linearities hindered the method to converge
when the spacecraft starting orbit was too close to the primary attractor,
so that he could not find the expression of the optimal control law in the
first part of the mission. More precisely, during the first 60 days of a GTO-
to-Halo-orbit transfer he forced the thrust to be constant in magnitude and
alligned to the velocity direction (Figure 1.1).

1.3 Proposed Solution

As a support to Rasotto’s work, this thesis tries to reduce the sensitivity
to non-linearities, especially for low orbits, by introducing polar coordinates
instead of Cartesian ones. It can be tought, indeed, that a more proper
choice of the reference frame for the position and velocity variables could
help indirect methods to more easily converge to the optimal solution.

Moreover, a variable specific impulse engine is proposed to model the
thruster. In this case, the optimization of the propellant consumption pro-
duces a continuous control law (Section 2.2.2) instead of “bang-bang” control
law that results with a constant specific impulse engine (Section 2.2.1).

As far as the initial guess is concerned, two techniques are used: the
Adjoint Control Transformation (ACT) and the Polar Curve Fit (PCF). The
first one permits to link the initial co-states, which are difficult to estimate,
to the thrust angles. The second one helps to find the optimal values for
the initial co-states when the time of flight is relatively high thanks to a
continuation process.
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1.4 Structure of the dissertation
Chapter 2 describes the main features of the indirect method and continues
with the definition of the dynamic equations expressed in polar coordinates in
a restricted two-body problem. Then, the attention moves to the optimal con-
trol theory and consequently to the derivation of the control law, firstly for a
minimum-thrust-acceleration problem (Case A), then for a maximum-final-
mass problem (Case B). Different models for the thrusters are investigated
and in particular a Variable-Specific-Impulse engine and a Constant-Specific-
Impulse one.
Chapter 3 describes the techniques adopted to solve the optimal control prob-
lem, particularly the simple shooting and the multiple shooting methods. As
far as the Case A is concerned, the Adjoint Control Transformation and the
Polar Curve Techniques are exploited to initialize the co-states, whereas for
the Case B the introduction of a simplifying assumption helps to find an
accurate first guess for the initial co-states and the optimal control law in a
minimum-propellant-consumption problem. The section concludes explain-
ing how to overcome the numerical difficulties when the control saturation is
introduced.
Chapter 4 describes the code validation phase and then the test cases. More
specifically, LEO to LEO, LEO to GEO and Earth to Mars are investigated
and a critical analysis of the results is performed.
The dissertation ends with Chapter 5, where the validity of the method is
discussed and the future developments to be carried are suggested.



Chapter 2

Optimal Control Theory

Optimization problems require the construction of a cost function which in-
cludes the quantities to be minimized, as for instance the thrust acceleration
or the propellant consumption, and a set of optimality conditions which must
be satisfied to ensure optimality. Indirect methods proceed to the differen-
tiation of this cost function through the calculus of variations, ending up
with a set of Euler-Lagrange equations which form a boundary value prob-
lem. This boundary value problem has an equal number of unknowns and
constraints to be fulfilled such as targeted position and velocity conditions.
Furthermore, the obtained set of Euler-Lagrange equations includes not only
the time variation of the states (position, velocity and mass) but also of the
co-states, unphysical variables which mainly help to find the optimal control
law, as it is more accurately shown in Sections 2.1 and 2.2. The Euler-
Lagrange equations indeed consist in a set of coupled ordinary differential
equations where only state and costates appear and, as the order of these
ODEs is equal (or can be conducted) to one, only initial conditions are re-
quired to solve the problem. As the initial states are generelly known, the
main difficulty consists in finding the right initial co-states that guarantee
the fulfillment of the constraints. A relevant attention was indeed spent in
this direction along the dissertation.

As mentioned before, in order to counteract the effects of the nonlinear-
ities, a spherical reference frame is used. Figure 2.1, taken from [13], shows
the difference with a classical x − y − z Cartesian frame. The origin of the
system always hosts the primary attractor, x and y axis define its equato-
rial plane and z completes the right-handed triad. In the spherical sketch,
instead, an angle θ spans in the equatorial plane till the projection of r is
reached, where r represents the distance of the spacecraft from the primary
attractor. Finally, φ represents the out-of-plane angle.

5
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Figure 2.1: Spherical Reference Frame

Altough all the equations will be formulated through polar coordinates, it
would not be difficult at all to eventually convert them to the corresponding
Cartesian expressions.
When addressing optimal control, the first step consists in describing the
dynamics of the system through a state representation which involves only
ordinary differential equations of the first order.
Then, it has to be set the cost function J to minimize. In this work, two
cases are considered: the minimization of the accumulated thrust acceleration
(briefly case A) and of the fuel consumption (briefly case B). The minimiza-
tion of the fuel consumption is more commonly investigated, but this first
case is easier to menage and helps the definition of the first guess needed by
the two-point-boundary-value solvers.
Whatever the selected cost function is, the following relation is always valid,

J = G+

∫ tf

t0

[H − λT ẋ] dt (2.1)

where:

• G is the Boltza function and collects the portion of the cost function
and of the constraints related to a discrete time, for instance the final
time;

• H is the Hamiltonian and collects the portion of the cost function and
of the constraints related to the whole time span.
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• λ represents the co-states, the unphysical variables introduced to for-
mulate the problem as a boundary value one and to consequently get
the expression of the optimal control law.

• ẋ represents the time variation of the states.

Observe that this work always treats fixed-time transfers, so t0 and tf are
known a priori.
As a result of this, the expression of both the Boltza function and of the
Hamiltonian are evaluated by the user according to the selected cost function
J and the constraints to impose.
Then, by minimizing the cost function with respect to the state and to the
control variables, it is possible to end up with the following relations which
allow to determine the expression of the co-states time variation and of the
optimal controls:

λ̇ = −Hx
T (2.2)

Huc = 0 (2.3)

where uc is the vector containing the control variables.

2.1 Case A: minimization of thrust accelera-
tion

In this case, the state variables x are the position and velocity variables:

x =


r
θ
φ
vr
vθ
vφ

 (2.4)

The dynamic equations will be derived according to a Restricted Two-
Body Problem (RTBP) model, where only one primary attractor is consid-
ered and the second body, the spacecraft, has a mass considerably lower with
respect to the first body. The model can be refined by introducing the grav-
itational effects of other attractors. Exploiting the cardinal law of dynamics,
it is possible to define the state variation in time. The reader is referred to
[13], pp. 33-34, if interested in the mathematical derivation.
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ẋ =


vr

vθ/rcosφ
vφ/r

(vθ
2 + vφ

2)/r − µ/r2 + aur
vθ(vφtanφ− vr)/r + auθ

−(vrvφ + vθ
2tanφ)/r + auφ

 (2.5)

In the above equations, a represents the thrust acceleration magnitude,
whereas ur, uθ and uφ are the three components of the unit vector u which
defines the thrust direction. These are actually the control variables included
in the vector uc and the goal is to determine the expression which minimizes
the desired cost function.
Leaving aside for the moment the possible presence of constraints, the Equa-
tion 2.1 can be rewritten in this case as∫ tf

t0

[−1

2
a2] dt = G+

∫ tf

t0

[H − λT ẋ] dt (2.6)

where G is equal to zero and the coefficient 1
2
has been introduced in order

to facilitate the subsequent derivations, without compromising of course the
validity of the method.
Rearranging Equation 2.6 it is possible to determine the expression of the
Hamiltonian for case A:

H = λT ẋ− 1

2
a2 (2.7)

Now, it is possible to apply Equations (2.2) and (2.3) in order to get the
expressions for λ̇ and all the compoments of uc:

λ̇r

λ̇θ
λ̇φ
λ̇vr
λ̇vθ
λ̇vφ


=



(λθvθ + λφvφcosφ)/(r
2cosφ) + λvr [(vθ

2 + vφ
2)/r2 − 2µ/r3]+

λvθ(vθvφtanφ− vrvθ)/r
2 − λvφ(vrvφ + vθ

2tanφ)/r2

0
(λvφvθ

2 − λvθvθvφ)1/cos
2 φr − λθvθtanφ/(rcosφ)

−λr + (λvθvθ + λvφvφ)/r
[λvθ(vr − vφtanφ) + 2λvφvθtanφ− λθ/ cosφ− 2λvrvθ]/r

(λvφvr − λφ − 2λvrvφ − λvθvθtanφ)/r


(2.8)

uc =


a
ur
uθ
uφ

 =


λv

λvr/λv
λvθ/λv
λvφ/λv

 (2.9)
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where λv is equal to
√
λ2vr + λ2vθ + λ2vφ .

Substituting the expressions of the optimal control variables in the 2.4 we
get:

ẋ =


vr

vθ/rcosφ
vφ/r

(vθ
2 + vφ

2)/r − µ/r2 + λvr
vθ(vφtanφ− vr)/r + λvθ

−(vrvφ + vθ
2tanφ)/r + λvφ

 (2.10)

Equations 2.10, togheter with the 2.8, form a set of differential equations
of the first order expressed only in function of the states x and co-states λ.
Now, the situation is the one depicted in Figure 3.1 and the next step consists
in finding a way to estimate the values of the co-states at the initial time t0.
For this purpuse the Adjoint Control Transformation (ACT) is used, which
is introduced in Section 3.1.1.

In this work, two kinds of mission are considered: an escape and a orbit-to-
orbit transfer in a Restricted-Two-Body dynamics. In the following sections
the attention is focused on how to communicate to the solver the proper
constraints to be fulfilled in order to perform the desired kind of mission.

2.1.1 Escape

An escape is a trajectory that targets a fixed level of energy (generally equal
to zero) with respect to the primary attractor. In Figure 2.2 it is shown a
125-days Earth escape, targeting a zero-energy condition.

When dealing with constraints in a discrete time, as the final time, the
Bolza Function G is involved.

In case an escape is performed, G takes the form:

G = ρεf (εf − εtar) = ρεf (
v2f
2

− µ

rf
− εtar) = ρεf (

v2rf + v2θf + v2φf
2

− µ

rf
− εtar)

(2.11)
where ε represents the energy, µ the standard gravitational parameter of

the considered main attractor and ρεf the energy multiplier.
Thanks to the optimal control theory, the following relation holds:

λf = GT
xf

(2.12)

In the case of an escape, Equation (2.12) reads:
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Figure 2.2: 125-days Earth escape



λrf
λθf
λφf
λvrf
λvθf
λvφf


=


ρεfµ/r

2
f

0
0

ρεfvrf
ρεfvθf
ρεfvφf

 (2.13)

Observe that as λ̇θ = 0 (Equation 2.8) and λθf = 0, λθ will be constant
and equal to zero along the transfer.

As a result, the number of unknowns matches the number of constraints:

z =



λr0
λφ0
λvr0
λvθ0
λvφ0
ρεf

 ; c =



εf − εtar
λrf − ρεfµ/r

2
f

λφ
λvrf − ρεfvrf
λvθf − ρεfvθf
λvφf − ρεfvφf


= 0 (2.14)

Now, an estimate of z is required to initialize simple shooting. The ques-
tion arises spontaneously, that is how to initialize ρεf . The following approach
is used in this work: firstly, the ACT is applied to estimate the initial posi-
tion and velocity co-states. At this point, the complete set of ODEs (2.10)
and (2.8) is integrated, so that estimate of λrf and rf is available as well. Fi-
nally, the value of ρεf which fulfills the second constraint of Equation (2.14)
is computed:
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ρεf =
λrf r

2
f

µ
(2.15)

2.1.2 Orbit-to-Orbit transfer

An Orbit-to-Orbit transfer is a mission that links two fixed orbits. The
starting orbit is defined by properly setting the initial position and velocity,
while the target orbit is imposed through the Boltza function:

G = ρrf (rf − rtar) + ρφf (φf − φtar) + ρvrf (vrf − vrtar)+

+ ρvθf (vθf − vθtar) + ρvφf (vφf − vφtar)(2.16)

Of course the additional term ρθf (θf − θtar) must be considered if a par-
ticular point on the final orbit is targeted. Again, applying Equation (2.12),
it is possible to get an expression for the final co-states:

λrf
λθf
λφf
λvrf
λvθf
λvφf


=



ρrf
0
ρφf
ρvrf
ρvθf
ρvφf


(2.17)

Keeping the assumption that θf is not constrained, it results that λθ = 0
in all the time domain, being λ̇θ and λθf equal to zero. Consequently, the
unknowns z and the constraints c take the following form:

z =



λr0
λφ0
λvr0
λvθ0
λvφ0
ρrf
ρφf
ρvrf
ρvθf
ρvφf


; c =



rf − rtar
φf − φtar
vrf − vrtar
vθf − vθtar
vφf − vφtar
λrf − ρrf
λφf − ρφf
λvrf − ρvrf
λvθf − ρvθf
λvφf − ρvφf


= 0 (2.18)
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Again the problem is how to initialize the multipliers ρrf , ρφf , ρvrf , ρvθf
and ρvφf . As for the escape problem, the ACT is used to estimate the position
and velocity initial co-states. Then the full set of ODEs (2.10) and (2.8) is
integrated to get the approximated values of the final co-states and finally
find the “ρ∗ multipliers” which fulfill the last constraints c:


ρrf
ρφf
ρvrf
ρvθf
ρvφf

 =


λrf
λφf
λvrf
λvθf
λvφf

 (2.19)

The multipliers estimation process presented above already demonstrated
to be valid during the test phase. However, an alternative approach has
been developed. By carefully studying Equation (2.18) it is evident that
the “ρ∗ multipliers” do not affect the constraints related to the final states,
as it occurred for instance for the escape case, where ρεf was multiplied by
different position and velocity final states (Equation (2.14)). This means
that for the Orbit-to-Orbit transfer the “ρ∗ multipliers” can be eliminated by
the optimization process, so reducing the unknowns and the constraints to:

z =


λr0
λφ0
λvr0
λvθ0
λvφ0

 ; c =


rf − rtar
φf − φtar
vrf − vrtar
vθf − vθtar
vφf − vφtar

 = 0 (2.20)

If these constraints are fulfilled, then the remaining ones will be automat-
ically fulfilled too and the “ρ∗ multipliers” will be obtained (if their values
are still of interest) for free by equaling them to the respective final co-states:


ρrf
ρφf
ρvrf
ρvθf
ρvφf

 =


λrf
λφf
λvrf
λvθf
λvφf

 (2.21)

Of course, if the number of unknowns and constrained is halved, the solver
will succeed more easily and rapidly in the optimization process.
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2.2 Case B : minimization of the propellant con-
sumption

The Case A represents a minimum-energy solution and is not able to manage
the variation of the spacecraft mass due to the propellant comsumption.
Furthermore, it is not so likely that the user is interested in the minimization
of the thrust acceleration but rather in the propellant consumption. Despite
all this, the Case-A solution permits to get a very accurate initial guess
for the Case-B problem, which is in general more difficult to implement.
As the matter of facts, one more state variable is involved, the mass, and
consequentely another co-state is introduced:

x =



r
θ
φ
vr
vθ
vφ
m


;λ =



λr
λθ
λφ
λvr
λvθ
λvφ
λm


(2.22)

The complete set of state equations is:

ẋ =



vr
vθ/rcosφ
vφ/r

(vθ
2 + vφ

2)/r − µ/r2 + aur
vθ(vφtanφ− vr)/r + auθ

−(vrvφ + vθ
2tanφ)/r + auφ
−T/c


(2.23)

where T is the thrust and c the exhaust velocity, which can be expressed
as 2P/T or Ispg, where P represents the power of the engine, Isp its specific
impulse, and g the gravity surface acceleration.

In order to get an expression for the co-state time variation and then for
the optimal control law, it is indispensable to write the cost function J and
deduce the Hamiltonian H. Observe that, contrary to what happens in Case
A, a discrete quantity is optimized in Case B: the final mass mf (minimizing
the fuel consumption is indeed the same as maximizing the final mass of
the spacecraft). As a consequence, mf will belong to the Boltza function G
rather than to the Hamiltonian. Referring to Equation (2.1) it follows that
G = mf and H − λT ẋ = 0, so for the Case B the Hamiltonian is equal to:
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H = λT ẋ (2.24)

At this point, before evaluating the co-states variation and the optimal
control law, it is convenient to write the state equations (2.23) in a more
compact form, exploiting the vector notation: ṙ

v̇
ṁ

 =

 fr
fv + au
−T/c

 (2.25)

where the vectors r and v include respectively the position and velocity
variables. So, the Hamiltonian takes the following form:

H = λT ẋ = λr
T fr+λv

T (fv + au)+λm(−T/c) = λr
T fr+λv

T fv+aλv
Tu−λmT/c

(2.26)
Even if the Hamiltonian has a different expression in the Case A and

B, it can be easily demonstrated that the optimal control law given by the
application of Equation (2.3) yelds again the so-called Lawden’s law [3]:

u =
λv
λv

(2.27)

As a consequence, Equation (2.26) can be formulated as:

H = λr
T fr + λv

T fv + aλv − λmT/c (2.28)

where a = T/m.
It is now possible to obtain the co-states time variation by applying Equa-

tion (2.2):



λ̇r

λ̇θ
λ̇φ
λ̇vr
λ̇vθ
λ̇vφ
λ̇m


=



(λθvθ + λφvφcosφ)/(r
2cosφ) + λvr [(vθ

2 + vφ
2)/r2 − 2µ/r3]+

λvθ(vθvφtanφ− vrvθ)/r
2 − λvφ(vrvφ + vθ

2tanφ)/r2

0
(λvφvθ

2 − λvθvθvφ)/(rcos
2 φ)− λθvθtanφ/(rcosφ)

−λr + (λvθvθ + λvφvφ)/r
[λvθ(vr − vφtanφ) + 2λvφvθtanφ− λθ/ cosφ− 2λvrvθ]/r

(λvφvr − λφ − 2λvrvφ − λvθvθtanφ)/r
aλv/m


(2.29)

Be observed that the expressions for the position and velocity co-states
time variation are identical to the Case A.
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As far as the optimal control law is concerned, it depends on the selected
model for the engine. This work takes into account a Constant Specific
Impulse (CSI) engine and a Variable Specific Impulse (VSI) one [2].

2.2.1 Constant Specific Impulse engine

In the CSI engine the control variables are:

uc =

[
u
T

]
(2.30)

In order to get the optimal control law, it is convenient to arrange the
Hamiltonian expression (2.28) as follows:

H = λr
T fr + λv

T fv + S · T (2.31)

where S is the switching function and is equal to:

S =
λv
m

− λm
c

(2.32)

As mentioned, the Pontryagin maximum principle [6] states that in order
to get the optimal control law, the Hamiltonian must be maximized with
respect to the control variables (Equation (2.3)). For a CSI engine, this
leads to a bang-bang control law:

T =

{
Tmax, if S ≥ 0

0, if S < 0
(2.33)

This law predicts that the thrust can only be null or maximal (from here
the name switching function), genereting a discontinuous control law. The
presence of these discontinuities produces a lot of problems in the implemen-
tation phase, so that Rasotto [15] could not perform an optimal control law
for orbits close to the primary attractor.

2.2.2 Variable Specific Impulse engine

In the VSI engine there is one more control variable, as the specific impulse
can vary to optimize the propellant consumption:

uc =

uT
P

 (2.34)
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In order to get the optimal control law, it is convenient to arrange the
Hamiltonian expression (2.28) as follows:

H = λr
T fr + λv

T fv +
T

m
λv −

T 2

2P
λm (2.35)

The application of Equation (2.3) here produces a switch on the power
level according to the value of the mass co-state

P =

{
Pmax, if λm ≥ 0

0, if λm < 0
(2.36)

However, the mass co-state time derivative is always positive as can be
noted in Equation (3.32) and it will be also shown in Section 3.3 that its
initial value can be set as positive. This implies that λm ≥ 0 during the
whole mission and consequently there will be no switches for a VSI: the
power is always kept at its maximal value Pmax and the control law results
to be continuous.

Finally, as far as the thrust is concerned, the application of Equation (2.3)
leads also to:

T = λv
Pmax
mλm

(2.37)

and consequently:

a = λv
Pmax
m2λm

(2.38)

Substituting this optimal expressions of T and a respectively in the last
formulations of ṁ and λ̇m (Equation (2.23) and Equation (3.32)), it is ob-
tained that:

ṁ = −λ2v
Pmax
2λ2mm

2
(2.39)

λ̇m = λ2v
Pmax
m3λm

(2.40)

It is worth observing that in the case of a VSI engine, the resulting thrust
is continuous and can be equal not only to zero and Tmax (as for a CSI engine),
but to all the values included in the interval [0;Tmax].
All the next considerations will be formulated with the assumption that the
spacecraft has a VSI engine.



Chapter 3

Numerical techniques, initial
guess identification and control
saturation

As sketched before, a boundary value problem arises when applying the in-
direct method. The most common scenario for space-trajectory optimization
involves a fixed initial condition for the state variables (position, velocity and
mass) and a desired target orbit, which implies conditions on the final values
of the position and velocity variables. These final constraints are provided
to the solvers as boundary constraints.
In addition, it is requested to find the solution which minimizes the desired
cost function. Within the indirect approach to optimal control, this is gener-
ally guaranted by expressing the control variables (the thrust magnitude and
its direction) as function of the co-states, according to the optimal control
theory explained in Chapter 2. Indirect methods do not rely on evaluating
the cost function at each iteration, but rather on updating and consequently
adjusting the unknowns (states and co-states) according to the current error
with respect to the target and optimality conditions.

Consequently, calling x the state variables and λ the co-states ones, the
situation depicted in the Figure 3.1 is usually achieved, where the subscripts
0 and f refer respectively to the initial and the final time, whereas tar stays
for “targeted condition”. As the integration of coupled first order ODEs are is
involved in the solution process, the full set of initial conditions to integrate
the system is needed. As far as the ODEs integration is concerned, a 4th

order variable step Runge-Kutta method was used.
The boundary-value-problem solver aims at determining the values of

the unknown initial co-states λ0 that allow to get the desired final states
values xftar . A shooting technique can be used to find λ0. In the simple

17
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and control saturation

Figure 3.1: Two-Point Boundary Value Problem

Figure 3.2: Simple Shooting techinque

shooting (Figure 3.2) all the ODEs are integrated till the final time and the
difference between the final values of the states (xf ) and the target states
(xftar) is evaluated. If this offset results to be lower than a fixed tollerance,
the method has succeeded, otherwise it updates the initial costates and the
control using first order corrections.

Unfortunately, the initial co-states that the simple-shooting solver should
use as initial guess must be accurate. In order to do this an Adjoint Control
Transformation (ACT) is performed (Section 3.1.1).

The effectiveness of the simple shooting technique can be increased by
dividing the integration time into smaller intervals and, in correspondence
of the internal boundaries, by forcing the variables to fulfill continuity con-
straints. This is the case of the multiple shooting technique (Figure 3.3).

With the shooting techniques, the dynamics is so transcribed in a set of
equality constraints [18]. As far as the control law is concerned, each time
interval is divided into smaller steps through the introduction of internal
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Figure 3.3: Multiple Shooting techinque

nodes. Then the process goes on looking for the node interpolation which
allows to propagate the state xi to the targeted condition x(i+1)tar .

Multiple shooting is capable of returning more accurate solutions than
simple shooting. However, on the other hand, it requires more computational
effort: simple shooting solver only needs as input an estimation of the initial
co-states, whereas multiple shooting requires a first guess solution in the
entire integration time and the definition of the internal targeted conditions.

As a result, a combination of the two techniques was adopted in this
work, which turns out to attain the fulfillment of the constraints. It consists
of estimating the initial co-states through the ACT, refining them with a
simple shooting technique, propagating the ODEs with the obtained initial
conditions and, finally, using this solution as first guess for the multiple
shooting solver.

The presented algorithm enabled the solution of all the test cases shown
in Chapter 4.

3.1 Case A: initial co-states identification

3.1.1 Adjoint Control Transformation

As sketched before, although the co-states are useful to get the optimal con-
trol law, they have no physical meaning and so it is very difficult to predict
them. In order to estimate their initial value and enable the solution of the
boundary value problem it is crucial to link them to phyisical variables, such
as the thrust angles. This is possible thanks to the Adjoint Control Trans-
formation (ACT) [16] [17] [2].
The first step consists in introducing the vehicle-centred reference frame
shown in Figure 3.4, where the two angles α and γ are used to define the
thrust direction. The aim of the ACT is to express the co-states as function
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Figure 3.4: Vehicle-Centred Reference Frame

of these angles and their time derivative.
The thrust unit direction vector u can be forumlated as:

u =

uruθ
uφ

 =

cosαcos γsinαcos γ
sin γ

 (3.1)

So, rearranging the last three equations of Equation (2.9) as

λv = λvu (3.2)

it is possible to write the following relation:λvrλvθ
λvφ

 = λv

uruθ
uφ

 = λv

cosαcos γsinαcos γ
sin γ

 (3.3)

However, λv is equal to the thrust acceleration (see Equation (2.9)). Thus,
the velocity co-states can be finally expressed as:λvrλvθ

λvφ

 = a

cosαcos γsinαcos γ
sin γ

 (3.4)

This formulation is exploited at the initial time and it shows that, giving
an estimation of the initial values of the acceleration a and of the thrust
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angles α and γ, it is possible to evaluate the initial velocity co-states.
A similar procedure can be used to derive the position co-states.
Let us start by differentiating Equation (3.2) in time:

λ̇v = λ̇vu+ λvu̇ (3.5)

Moving to the scalar notation:

λ̇vrλ̇vθ
λ̇vφ

 = λ̇v

uruθ
uφ

+λv
u̇ru̇θ
u̇φ

 = λ̇v

cosαcos γsinαcos γ
sin γ

+λv
−α̇sinαcos γ − γ̇cosαsin γ
α̇cosαcos γ − γ̇sinαsin γ

γ̇cos γ


(3.6)

But, thanks to the optimal control theory, it was already found an expres-
sion for λ̇vθ , λ̇vr and λ̇vφ . Taking it from Equation (2.8) and then substituting
the expression of λvθ , λvr and λvφ stated in Equation (3.3):

λ̇vrλ̇vθ
λ̇vφ

 =

 −λr + (λvθvθ + λvφvφ)/r
[λvθ(vr − vφtanφ) + 2λvφvθtanφ− λθ/ cosφ− 2λvrvθ]/r

(λvφvr − λφ − 2λvrvφ − λvθvθtanφ)/r

 =

 −λr + λv
r
(sinαcos γvθ + sin γvφ)

− λθ
rcosφ

+ λv
r
[sinαcosα(vr − vφtanφ) + 2sin γtanφvθ − 2cosαcos γvθ]

−λφ
r
+ λv

r
(sin γvr − 2cosαcosαvφ − sinαcos γtanφvθ)

 (3.7)

The last operation to perform consists now in matching the second mem-
bers of Equation (3.6) and Equation (3.7). After a little bit of algebra, it is
possible to end up with the following expressions:

λr = λv[(sinαcos γvθ + sin γvφ)/r + α̇sinαcos γ + γ̇cosαsin γ]−λ̇v[cosαcos γ]
(3.8)

λφ = λv[sin γvr − sinαcos γtanφvθ − 2cosαcos γvφ − γ̇cos γr]− λ̇v[sin γ]
(3.9)

λ̇v = λv[
(vr − vφtanφ)

r
+ 2

tan γtanφ

sinα

vθ
r
− 2cotα

vθ
r
+ γ̇tan γ − α̇cotα]+

-λθ[ sec γsecφrsinα
](3.10)
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or, remembering that λv = a :

λr = a[(sinαcos γvθ + sin γvφ)/r + α̇sinαcos γ + γ̇cosαsin γ]− λ̇v[cosαcos γ]
(3.11)

λφ = a[sin γvr − sinαcos γtanφvθ − 2cosαcos γvφ − γ̇cos γr]− λ̇v[sin γ]
(3.12)

λ̇v = a[
(vr − vφtanφ)

r
+ 2

tan γtanφ

sinα

vθ
r
− 2cotα

vθ
r
+ γ̇tan γ − α̇cotα]+

-λθ[ sec γsecφrsinα
](3.13)

At this point, particular attention must be payed for λθ. It has been
demonstrated in Section 2.1.1 that, if the final value of θ is not constrained,
then λθf = 0. But, as it is known from Equation (2.8), λθ keeps constant
in time, it is possible to state that also λθ0 is equal to zero. If so, it is easy
to note from Equation (3.13) that λ̇v will be only a function of the initial
acceleration, the thrust angles and the initial position and velocity which are
assumed to be known. Consequently, the same considerations will hold also
for λr and λφ, as can be easily figured out from Equation (3.11) and Equation
(3.12).
As far as the physical input variables of the ACT are concerned, it will be
shown in Chapter 4.2 how to reasonably initialize them according to the
specific mission. Assuming that the final value of θ is not constrained and
consequently that λθ is always equal to zero, the Adjoint Control Transfor-
mation can be resumed by Figure 3.5.

Otherwise, an estimate of λθ0 is required and it cannot be evaluated
through the ACT as the number of unknown co-states must be equal to the
physical variables introduced.

3.1.2 Polar Curve Fit

Unfortunately, sometimes the estimation of the initial co-states performed
through the ACT is not accurate enough to make simple shooting solver
converge. This happens mainly when the selected time of flight is very high
and, while the thrust angles are relatively easy to estimate, the initial ac-
celeration is not. In this case the regularity of polar coordinates plays a
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Figure 3.5: Adjoint Control Transformation scheme

Figure 3.6: Optimal λvθ0 trend

fundamental role in helping the simple shooting technique implementation.
In Figure 3.6 it is shown the trend of the values assumed by the optimal
λvθ0 according to the selected time of flight for an Earth-escape trajectory.
It can be observed that an exponential-law curve accurately interpolates the
experimental optimal co-states represented by the round points. This regular
trend can be obtained only through the use of polar coordinates and pertains
to most of the co-states, as shown in Chapter 4. But the thrust acceleration
is function of the velocity co-states, so if they have a regular trend, the initial
acceleration too will follow an exponential curve, as can be noted in Figure
3.7. This is a very good point, because the initial acceleration is the most
difficult to be guessed among the parameters required by the ACT.

Considering that the lower is the time of flight, the easier are the solver
computations, it is strongly recommended to reduce the time of flight if sim-
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Figure 3.7: Optimal a0 trend

ple shooting keeps failing. It is highly probable, indeed, that the input a0 is
far from the optimal one. So, it is convenient to start from a lower time of
flight, get the optimal a0 and use it as initial guess for a new integration with
a slightly increased time of flight. Thanks to the interpolation process, few
values allow to get a good estimate of the optimal initial acceleration for the
desired time of flight. Observe that this technique is conceptually identical
to a continuation method.
A short example is presented to better explain the PCF technique. Imagine
one wants to perform an Earth escape in 30 days and that the initial thrust
angles are correctly estimated, so only the evaluation of the initial acceler-
ation is missing to exploit the ACT. After lot of attempts, simple shooting
keeps failing as the inputed a0 is highly inaccurate. At this point the user
resorts to the PCF techinique and starts to considerably reduce the time of
flight, setting it to 3 days for instance. Few attempts allow simple shooting
to converge to the optimal a0 and this value is marked in the graph of Figure
3.8.a. Now, the time of flight is slightly increased to 5 days and inputing
an accurate a0 is even easier than before as it is reasonably to imagine that
this value will be close to the one found for the 3-day transfer. Once sim-
ple shooting finds the optimal initial acceleration for the 5-day escape, it is
marked too in the graph of Figure 3.8.b. The two optimal a0 are so interpo-
lated with a polar curve (Figure 3.8.c) and this allows to significantly reduce
the search space for an accurate guess of the a0 related to the 30-day escape.
If simple shooting still goes in trouble, it is suggested to get other values for
the optimal initial acceleration (for instance at 8, 10 and 15 day) before per-
forming the interpolation. The quality of the curve fit will certainly increase
and consequently the accuracy of the search space for the 30-day-escape a0,
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Figure 3.8: Application example of the PCF technique

as shown in Figure 3.8.d.

3.2 Case A: complete algorithm

Now that all the techniques exploited in Case A have been described, they
are collected and resumed in the following algorithm (Figure 3.9):

1. set the aimed time of flight (TOF), the initial state x0, the tollerance
toll that the constraints shall not overcome (see Step 5) and the target
condition (“tar ” in Figure 3.9) that consists in the final level of energy
εtar for an escape (Section 2.1.1) and in the final state variables in case
of an orbit-to-orbit transfer (Section 2.1.2);

2. define the unknowns z and the constraints c according to the selected
kind of transfer;

3. estimate:

(a) the initial thrust angles α0, α̇0, γ0 and γ̇0;

(b) the initial acceleration a0;

4. apply the simple shooting technique:
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(a) input a0, α0, α̇0, γ0 and γ̇0 to the ACT (Section 3.1.1) in order
to get the initial co-state vector λ0. As the matter of facts, the
initial thrust angles and acceleration take the place of the initial
co-states in the z vector; if z also includes some “ρ∗ multipliers”,
they are estimated thanks to the techniques explained at the end
of Section 2.1.1 and 2.1.2 (Equation (2.15) and (2.19));

(b) now that all the unknowns have been initialized, simple shooting
can be run. The ODEs (2.10) and (2.8) are integrated starting
from [x0,λ0];

(c) simple shooting optimizes the input z in order to get the optimal
zopt that fulfills the constraints c;

5. once simple shooting finishes to work, the optimized unkwnowns zopt
are obtained and the constraints c are evaluated. The maximum norm
of c, must be lower than the fixed tollerance toll. If so, the algorithm
jumps to Step 6, otherwise:

(a) considerably reduce the time of flight;

(b) proceed with the PCF technique explained in Section 3.1.2;

(c) obtain a new estimate of the initial acceleration a0 for the TOF
set at Step 1 and repeat the passages from Step 4.a;

6. input the resulting initial thrust angles and acceleration (part of the
zopt vector) to the ACT in order to get the corresponding optimized
initial co-states λ0opt ;

7. integrate the ODEs (2.10) and (2.8) starting from [x0,λ0opt ] and get
x(t), λ(t);

8. apply the multiple shooting technique:

(a) use the expression of x(t), λ(t) found with the simple shooting as
first guess for the multiple shooting;

(b) define the internal intervals and force state and co-state variables
to fulfill continuity conditions;

(c) run multiple shooting to refine the initial guess solution in order
to perfectly fulfill the constraints c;

9. once multiple shooting finishes the optimization process, if all the con-
straints are equal to zero, then the obtained solution is the optimal one
and the algorithm ends; otherwise:
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10. reduce the tollerance toll and repeat the passages from Step 5.a.
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Figure 3.9: Algorithm in Case A



3.3. Case B : initial co-states identification 29

3.3 Case B : initial co-states identification

As already mentioned, the Case-A solution is exploited as first guess for the
Case B, particularly for the initialization of the co-states. At this purpose, the
relations that link the two different cases are needed and a method inspired
by Ranieri’s work [13] is used.

As, similarly to the minimum-energy solution, only position and velocity
variables are involved, the Case-A solution lacks of an expression for ṁ and
λ̇m.

The first step consists so in equaling the control law of the two cases:{
aA = aB

uA = uB
(3.14)


λvA = Pmax

m2λm
λvB

λvA
λvA

=
λvB
λvB

(3.15)

By solving this very simple system of equations, it results that:

λvrB =
m2λm
Pmax

λvrA (3.16)

λvθB =
m2λm
Pmax

λvθA (3.17)

λvφB =
m2λm
Pmax

λvφA (3.18)

and of course:

λvB =
m2λm
Pmax

λvA (3.19)

Then, replacing this expression of λvB in Equation (2.39):

ṁ = − Pmax
2λ2mm

2
λ2vB = − Pmax

2λ2mm
2

m4λm
2

P 2
max

λ2vA = − m2

2Pmax
λ2vA (3.20)
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In this way, it is evident that the mass variation is not dependent on λm
anymore.

Now that the mass and velocity co-states of Case B have been linked
to the Case-A solution, only a relation for the position co-states is missing.
In order to get it, the first step consists in expressing the ODEs related to
position and velocity co-states as function of λB:



λ̇rB

λ̇θB
λ̇φB
λ̇vrB
λ̇vθB
λ̇vφB


=



(λθBvθ + λφBvφcosφ)/(r
2cosφ) + λvrB [(vθ

2 + vφ
2)/r2 − 2µ/r3]+

λvθB (vθvφtanφ− vrvθ)/r
2 − λvφB (vrvφ + vθ

2tanφ)/r2

0
(λvφB vθ

2 − λvθB vθvφ)/(rcos
2 φ)− λθBvθtanφ/(rcosφ)

−λrB + (λvθB vθ + λvφB vφ)/r

[λvθB (vr − vφtanφ) + 2λvφB vθtanφ− λθB/ cosφ− 2λvrB vθ]/r

(λvφB vr − λφB − 2λvrB vφ − λvθB vθtanφ)/r


(3.21)

Exploiting Equation (3.16), Equation (3.17) and Equation (3.18), it can
be easily demonstrated that

λ̇rB =
m2λm
Pmax

λ̇rA (3.22)

λ̇θB =
m2λm
Pmax

λ̇θA (3.23)

λ̇φB =
m2λm
Pmax

λ̇φA (3.24)

and consequently:

λrB =
m2λm
Pmax

λrA (3.25)

λθB =
m2λm
Pmax

λθA (3.26)

λφB =
m2λm
Pmax

λφA (3.27)
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At this point, in order to get the initial co-states, Equations (3.25)-(3.27)
and Equations (3.16)-(3.18) are evaluated at the initial time. So, for the
position and velocity co-states, it results that:

λv,rB0
=
m2

0λm0

Pmax
λv,rA0

(3.28)

As far as λm0 is concerned, it can be set to any positive value, as it has been
shown in Equation (3.20) that under the presented assumptions its value
does not affect the states but just scales the co-states values.
It is worth observing that in Case B, G is equal to the Bolza function of Case
A (Equation (2.11) for the escape and Equation (2.11) for the orbit-to-orbit
transfer) increased by the term mf :

GB = GA +mf (3.29)

Thus, when applying Equation (2.12), one more constraint with respect
to Case A arises:

cB =

[
cA

λmf − 1

]
= 0 (3.30)

Imagine now that the initial mass multiplier λm0 is set to one. As the mass
co-state increases in time, after the ODEs integration λmf will be equal to a
positive constant K greater than one. One could think that setting λm0 = 1
is wrong, but actually this choice only scales the co-states and does not affect
the optimization process: in such a way the optimized cost function J will
be equal to Kmf . As K is a constant, optimizing Kmf is in practical terms
the same as optimizing mf . So, again, setting λm0 equal to one is correct
and allows the fulfillment of all the Case-B constraints [2].

Now that all the initial co-states are known, the full set of the following
states and co-states ODEs can be integrated:

ṙ

θ̇

φ̇
v̇r
v̇θ
v̇φ
ṁ


=



vr
vθ/rcosφ
vφ/r

(vθ
2 + vφ

2)/r − µ/r2 + λvrBPmax/(λmm
2)

vθ(vφtanφ− vr)/r + λvθBPmax/(λmm
2)

−(vrvφ + vθ
2tanφ)/r + λvφBPmax/(λmm

2)

−λ2vBPmax/(2λ
2
mm

2)


(3.31)
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λ̇rB

λ̇θB
λ̇φB
λ̇vrB
λ̇vθB
λ̇vφB
λ̇m


=



(λθBvθ + λφBvφcosφ)/(r
2cosφ) + λvrB [(vθ

2 + vφ
2)/r2 − 2µ/r3]+

λvθB (vθvφtanφ− vrvθ)/r
2 − λvφB (vrvφ + vθ

2tanφ)/r2

0
(λvφB vθ

2 − λvθB vθvφ)/(rcos
2 φ)− λθBvθtanφ/(rcosφ)

−λrB + (λvθB vθ + λvφB vφ)/r

[λvθB (vr − vφtanφ) + 2λvφB vθtanφ− λθB/ cosφ− 2λvrB vθ]/r

(λvφB vr − λφB − 2λvrB vφ − λvθB vθtanφ)/r

λ2vBPmax/(λmm
3)


(3.32)

Observe that, thanks to Equation (3.28), once the Case A is solved, one
only needs to set the initial mass of the spacecraftm0 and the engine maximal
power Pmax to immediately get the solution for the “unconstrained”-Case-B
problem, that is the case in which any control saturation is imposed. From
now on, the “constrained” solution will instead refer to a solution that inculdes
a control saturation.

3.4 Case B : optimal control law estimation

It is worth observing that, in order to obtain an unconstrained-Case-B so-
lution, there is no need at all to estimate the co-states, as, exploting the
previous assumptions and relations, the state equations can be written in
the following form:

ẋ =



vr
vθ/rcosφ
vφ/r

(vθ
2 + vφ

2)/r − µ/r2 + λvrA
vθ(vφtanφ− vr)/r + λvθA

−(vrvφ + vθ
2tanφ)/r + λvφA

−m2λ2vA/(2Pmax)


(3.33)

If instead a constrained solution is of interest, all the λB must be taken
into account, making so their ODEs integration and consequently the esti-
mation of their initial values necessary, as shown in Section 3.3. Moreover, in
order to compute the constrained solution, the unconstrained one is inputed
to the solver as first guess.
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3.4.1 Control saturation

In the followings, the procedure to set an upper limit to the thrust is pre-
sented. Observe that the same method can be applied with very slight and
intuitive modifications to impose a lower limit to the thrust, bounds on the
specific impulse or on the acceleration.
A sort of decoupling between the states and the co-states variables is per-
formed. Indeed, in the state ODEs, the co-states do not appear anymore and
the control is expressed as function of the thrust:

ṙ

θ̇

φ̇
v̇r
v̇θ
v̇φ
ṁ


=



vr
vθ/rcosφ
vφ/r

(vθ
2 + vφ

2)/r − µ/r2 + Tr/m
vθ(vφtanφ− vr)/r + Tθ/m

−(vrvφ + vθ
2tanφ)/r + Tφ/m

−T 2/2Pmax


(3.34)

At this point both the state and the co-states ODEs are integrated but
at each time step the following algorithm must be performed.

Firstly, the thrust components are set to:

Tr =
λvrPmax
λmm

(3.35)

Tθ =
λvθPmax
λmm

(3.36)

Tφ =
λvφPmax

λmm
(3.37)

Then the current value of the thrust is computed:

T =
√
T 2
r + T 2

θ + T 2
φ (3.38)

Finally, if T ≥ Tmax the thrust components are re-scaled:

Tr =
Tmax
T

Tr (3.39)

Tθ =
Tmax
T

Tθ (3.40)

Tφ =
Tmax
T

Tφ (3.41)
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and then the full state of ODEs is ready for the integration in the next time
step.

3.5 Case B : complete algorithm

Now that all the techniques exploited in Case B have been described, they
are collected and resumed in the following algorithm (Figure 3.10):

1. set the initial mass m0 and the maximum power level Pmax achievable
by the engine;

2. assume that the control laws for Case A and B are the same (Equation
(3.15));

3. thanks to this assumption:

(a) set λm0 = 1, as its value does not affect the states and control
profiles but only scales the co-states (see Equation (3.20));

(b) recover an expression for the initial position and velocity co-states
λBv,r0

once the optimal λAv,r0
are known (Equation (3.28));

4. integrate the ODEs (3.31) and (3.32) starting from x0 and λB0 , with
λB0 = [λBv,r0

;λm0 ]. As a result, the “unconstrained ” solution is ob-
tained, that is the solution of Case B with any imposed control satu-
ration;

5. in order to get a “constrained ” solution, start setting the maximum
achievable thrust Tmax;

6. apply multiple shooting techinique remarking that:

(a) the state ODEs must be decoupled from the co-states, expressing
them as function of the control variables (Equations (3.34));

(b) the transformations described by Equations (3.35), (3.36) and
(3.37) must be performed at each time step, computing so the
current value of the thrust (Equation (3.38));

7. if the current thrust is greater than the fixed Tmax, then:

(a) re-scale the thrust components according to Equations (3.39),
(3.40) and (3.41);
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otherwise skip Step 7.a and go directly to Step 8:

8. integrate the full set of ODEs (3.31) and (3.32) till the subsequent time
step and repeat passages from Step 6.b till the final time is reached;
then:

9. if multiple shooting successfully converges, the obtained solution is the
optimal constrained one, otherwise:

10. augment Tmax and repeat passages from Step 6.
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Figure 3.10: Algorithm in Case B



Chapter 4

Test Cases

This Chapter presents and critically discusses the analyzed test cases, which
are the Earth escape, the LEO-to-LEO, the LEO-to-GEO and the Earth-to-
Mars transfers (respectevely Section 4.3, Section 4.4, Section 4.5 and Section
4.6). Before addressing test cases, the parameters used for the astronomical
quantities and the Adjoint Control Transformation are reported in Section
4.1 and Section 4.2, respectively.

4.1 Common parameters setting

For the sake of completeness and to allow other researchers to reproduce the
results shown in this thesis, Table 4.1 reports the most relevant constants
and coefficients used by the author during the computation phase.

4.2 Angles used for the ACT

The angles inputed as first guess to the Adjoint Control Transformation are
here shown and discussed. In the presented missions the trajecory is always
planar as both the starting and target orbits lie on the same plane. This
means that the out-of-plane angle γ (see Figure 3.5) is always equal to zero,
as well as its time derivative γ̇. As far as the initial value of the in-plane
angle α is concerned, in all the test cases the starting orbit is circular. Thus
the velocity is initially tangential and so aligned with the eθ unit vector. It
is assumed that the thrust is aligned with the velocity vector at the initial
time t0. As a result, α0 can be considered equal to π/2. In addition, its time
derivative α̇0 can be initialized to zero, imagining that the thrusters do not
significaly change their direction in the first seconds of the mission.

37
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Symbol Description Value

µEarth Gravitational Parameter of the Earth 3.986 · 105km3/s2

µSun Gravitational Parameter of the Sun 1.32712440018 · 1011km3/s2

gEarth Gravity Surface Acceleration of the Earth 9.81 · 10−3km/s2

gSun Gravity Surface Acceleration of the Sun 274.0 · 10−3km/s2

AU Astronomical Unit 149.6 · 106km

dSun−Earth Sun-Earth distance 1AU

dSun−Mars Sun-Mars distance 1.52AU

Table 4.1: List of relevant constants and coefficients

The presented values represent a first guess for the optimal thrust angles,
which are subsequently optimized thanks to simple shooting.

4.3 Code Validation

As stated in Chapter 1, Ranieri’s work [13] is the main reference for this
thesis. He treated an Earth-Mars optimal transfer with low-thrust propulsion
and divided the integration of the trajectory in three distinct phases: the
Earth escape, the Eliocentric leg and the Mars capture. Earth escape is
intended to be a transfer which starts from a LEO and targets a condition
of zero energy with respect to the Earth, whereas the “capture” represents
exactly the opposite: starting from a condition of zero energy with respect
to Mars, the spacecraft has to reach a fixed LMO (Low Mars Orbit). In
both the first and the last phase, a spiral trajectory is obtained and Ranieri
noted that, for such kind of trajectory, a polar coordinate frame considerably
reduces the numerical difficulties. He showed indeed the regularity trend of
the co-states with respect to the fixed time of flight, so that it was possible
to apply a Polar Curve Fit (PCF) to quickly estimate them. This work
investigates if the regularity of the polar coordinates and the PCF remain
valid for other kinds of transfers, mainly between two circular orbits around
the same primary attractor. As a first step, the approach developed in this
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Figure 4.1: Earth escape: trajectory comparison between Ranieri’s result (left) and
Catucci’s one (right)

work is validated against one of the results obtained by Ranieri. A 150-days
Earth escape is chosen as test case, starting from a circular orbit with a
semi-major axis equal to 7500km.

In Figure 4.1 the trajectory obtained by Ranieri and the author are shown.
It can be easily observed that the two trajectories are very similar. The small
difference can be related to the fact that Ranieri does not report the true
anomaly of the starting point on the LEO. So a different initial condition
might have been selected in this work. Despite this, the obtained result has
been considered satisfactory.

In Figure 4.2 the acceleration profiles obtained by Ranieri and the author
are compared. As can be seen, the control profiles are very similar.

In addition, as the selected time of flight is relatively high, a polar curve
fit was performed. Figure 4.3 - 4.6 show the obtained results for the PCF
and compare them with Ranieri’s ones. The parameter called R2 describes
the accuracy of the interpolation: the more R2 is close to one, the more
the curve fit is accurate. Although the PCF has been performed till a time
of flight equal to 150 days, for the sake of clarity the graphs have been
zoomed showing a reduced x-axis. Despite some slight difference for the
numerical values, the trends are qualitatively identical. Only λvr0 shows a
more significant difference but, as Ranieri himself highlights, it is the most
irregular co-state.

All the presented results allow to consider the code successfully validated.
Observe that λφ and λvφ are not shown because the considered transfer

is planar and more precisely it occurs in the equatorial plane, so the out-of-
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Figure 4.2: Earth escape: acceleration comparison between Ranieri’s result (top)
and Catucci’s one (bottom)

Figure 4.3: Polar Curve Fit for the Earth escape: λr0 comparison between Ranieri’s
result (left) and Catucci’s one (right)
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Figure 4.4: Polar Curve Fit for the Earth escape: λvr0 comparison between
Ranieri’s result (left) and Catucci’s one (right)

Figure 4.5: Polar Curve Fit for the Earth escape: λvθ0 comparison between
Ranieri’s result (left) and Catucci’s one (right)

Figure 4.6: Polar Curve Fit for the Earth escape: a0 comparison between Ranieri’s
result (left) and Catucci’s one (right)
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plane position and velocity variables are always zero, as well as the related
co-states. λθ, instead, does not appear because it is always equal to zero, as
demonstrated in Section 2.1.1.
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4.4 LEO-to-LEO transfer

This Section deals with a fuel-optimal transfer (Case B) where a LEO with
an altitude h of 2122 km is targeted, starting from a LEO with h = 500 km.
The spacecraft has an initial mass m0 of 1000 kg and is supported by five
resistojet engines, whose maximum power is Pmax = 0.9 kW and which are
not able overall to overcome 0.5 N of thrust.

A constrained solution of Case B is so requested and in order to obtain it,
the minimum-thrust-acceleration problem (Case A) must be solved before.
In the followings, the complete procedure is shown step by step according to
the algorithms presented in Sections 3.2 and 3.5.

4.4.1 Solution of Case A

1. Paremeters definition:
TOF = 3 day (4.1)


r0
θ0
vr0
vθ0

 =


6878 km

0
0

7.613 km/s

 (4.2)

toll = 10−3 (4.3)

 rtarvrtar
vθtar

 =

 8500 km
0

6.848 km/s

 (4.4)

Observe that as the transfer takes place in the equatorial plane, the
variables φ and vφ are always null, as well as their co-states. Vectors x
and λ reduce so to:

x =


r
θ
vr
vθ

 ; λ =


λr
λθ
λvr
λvθ

 (4.5)

2. as there is no targeted theta position θtar, λθ will be always equal to
zero. Thus, the resulting unknowns z and constraints c are:
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z =

 λr0λvr0
λvθ0

 ; c =

 rf − rtar
vrf − vrtar
vθf − vθtar

 = 0 (4.6)

3. ACT parameters estimation:

(a) again, as the transfer is planar, the out-of-plane angle γ and its
time derivative γ̇ are always zero; on the other hand, α0 can be
set to π/2 and α̇0 to zero, for the reasons explained in Section 4.2;

(b) after few attempts, a good first guess for the initial acceleration
a0 has been found without resorting to the PCF technique. The
selected time of flight, indeed, is relatively low and simple shooting
converges quite easily to the optimal solution. As a result, a0 has
been set to 3 · 10−6 km/s2;

4. simple shooting technique:

(a) as the matter of facts, the initial thrust angles and acceleration
take the place of the initial co-states in the z vector:

z =

α0

α̇0

a0

 (4.7)

The ACT is so performed at each step inside simple shooting in
order to compute the co-state vector. For the sake of completeness,
the initial co-states resulting by inputing the selected thrust angles
and acceleration to the ACT have been evaluated: λr0λvr0

λvθ0

 = ACT (α0, α̇0, a0) =

3.322 · 10−9 km/s3

5.236 · 10−8 km/s2

3.000 · 10−6 km/s2

 (4.8)

(b) now that all the unknowns have been initialized, simple shooting
can be run. The ODEs (2.10) and (2.8) are integrated;

(c) simple shooting tries to optimize the inputed z in order to get the
optimal zopt that fulfills the constraints c;

5. once simple shooting finishes to work, the optimized unkwnowns zopt
are obtained and the constraints c are evaluated:
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zopt =

α0opt

α̇0opt

a0opt

 =

 1.569 rad
4.220 · 10−6 rad/s
2.932 · 10−6 km/s2

 (4.9)

c =

 rf − rtar
vrf − vrtar
vθf − vθtar

 = 10−3 ·

 0.389 km
−0.047 km/s
0.045 km/s

 (4.10)

The maximum constraint violation is so equal to 0.389 ·10−3 km and is
lower than the fixed tollerance toll. Consequently, the algorithm jumps
to Step 6;

6. optimized initial co-states:

λ0opt =

 λr0optλvr0opt
λvθ0opt

 = ACT (α0opt , α̇0opt , a0opt) =

3.257 · 10−9 km/s3

5.491 · 10−9 km/s2

3.000 · 10−6 km/s2


(4.11)

Note that these values are not so far from those estimated with the
ACT (Equation (4.8));

7. ODEs (2.10) and (2.8) are integrated starting from [x0,λ0opt ] and x(t),
λ(t) are obtained;

8. multiple shooting technique:

(a) the expressions of x(t), λ(t) found with simple shooting are used
as first guess for multiple shooting;

(b) the time span is divided into two intervals, so Nint = 2. Remind
that in the considered transfer only 8 variables are involved (4
states and 4 co-states), so Nvar = 8. Multiple shooting needs a
number of boundary conditions b.c. equal to Nint · Nvar = 16.
They are:
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b.c. =



r(t0)− r0
θ(t0)− θ0
vr(t0)− vr0
vθ(t0)− vθ0
r(tf )− rtar
vr(tf )− vrtar
vθ(tf )− vθtar

r(t/2−)− r(t/2+)
θ(t/2−)− θ(t/2+)
vr(t/2

−)− vr(t/2
+)

vθ(t/2
−)− vθ(t/2

+)
λr(t/2

−)− λr(t/2
+)

λθ(t/2
−)− λθ(t/2

+)
λvr(t/2

−)− λvr(t/2
+)

λvθ(t/2
−)− λvθ(t/2

+)
a(t/2−)− a(t/2+)



= 0 (4.12)

It is worth observing that the original constraints c expressed in
Equation (4.6) are included in the b.c.;

(c) multiple shooting tries to refine the initial guess solution in or-
der to perfectly fit the imposed boundary conditions b.c. (and
consequently the constraints c);

9. once multiple shooting finishes the optimization process, the constraints
c are evaluated and in this case are all fulfilled according to the multiple-
shooting default tollerance, which is equal to 10−6. The solution ob-
tained with multiple shooting represents so the optimal solution of Case
A and the algorithm for Case B (Section 3.5) can now be implemented.

4.4.2 Solution of Case B

1. parameters settings:

m0 = 1000 kg (4.13)

Pmax = 5 engine · 0.9 kW/engine = 4.5 kW (4.14)
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Figure 4.7: Control profile of one resistojet engine for a thrust-unconstrained LEO-
to-LEO transfer

2. the control laws for Case A and B are matched (Equation (3.15));

3. thanks to this assumption:

(a) λm0 can be set to any positive value, for example one;

(b) the initial position and velocity co-states are recovered:

λBv,r0
=


λBr0
λBθ0
λBvr0
λBvθ0

 =
m0

2λm0

Pmax


λAr0
λAθ0
λAvr0
λAvθ0

 =


7.238 · 10−4 kg/m

0
1.220 · 10−3 kg s/m
6.667 · 10−1 kg s/m


(4.15)

4. ODEs (3.31) and (3.32) are integrated starting from x0 and λB0 , with
λB0 = [λBv,r0

;λm0 ]. As a result, the “unconstrained ” solution is ob-
tained, that is the solution of Case B without control saturation.

Just looking at the thrust profile of one engine, it is evident that the
fixed Tmax has been overcome (Figure 4.7);

5. let us try to find a “constrained ” solution, where the maximum achiev-
able thrust for each engine is Tmax = 0.5 N ;

6. multiple shooting techinique is adopted with two time intervals; now
Nint = 2, but Nvar = 10 (five states and five co-states) so 20 boundary
conditions are needed:
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b.c. =



r(t0)− r0
θ(t0)− θ0
vr(t0)− vr0
vθ(t0)− vθ0
m(t0)−m0

λm(t0)− λm0

r(tf )− rtar
vr(tf )− vrtar
vθ(tf )− vθtar

r(t/2−)− r(t/2+)
θ(t/2−)− θ(t/2+)
vr(t/2

−)− vr(t/2
+)

vθ(t/2
−)− vθ(t/2

+)
m(t/2−)−m(t/2+)
λr(t/2

−)− λr(t/2
+)

λθ(t/2
−)− λθ(t/2

+)
λvr(t/2

−)− λvr(t/2
+)

λvθ(t/2
−)− λvθ(t/2

+)
λm(t/2

−)− λm(t/2
+)

a(t/2−)− a(t/2+)



= 0 (4.16)

(a) the state ODEs are now decoupled from the co-states, expressing
them as function of the control variables (Equations (3.34));

(b) the transformations described in Equations (3.35), (3.36) and (3.37)
are performed at each time step, computing so the current value
of the thrust (Equation (3.38));

7. if the current thrust is greater than the fixed Tmax, then:

(a) the thrust components are re-scaled according to Equations (3.39),
(3.40) and (3.41);

otherwise the procedure skips Step 7.a and goes directly to Step 8:

8. the full set of ODEs (3.31) and (3.32) is integrated till the subsequent
time step.
Passages from Step 6.b are repeated till the final time is reached;

9. multiple shooting succeeds to find the optimal solution as all the b.c.
(and consequently all the constraints c) have been conducted to zero
and the control profile of each engine does not overcome Tmax (Figure
4.8).
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Figure 4.8: Control profile of one resistojet engine for a thrust-constrained LEO-
to-LEO transfer

Figure 4.9: r-profile in a LEO-to-LEO transfer in Case B: on the top the constrained
solution and on the bottom the unconstrained one. In both the cases, the final value
of r matches the target one: 8500 km.

In the followings, all the optimal states and co-states variables are shown
for the “unconstrained” and the “constrained” solution of Case B (from Figure
4.9 to 4.14).
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Figure 4.10: θ-profile in a LEO-to-LEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. By dividing the final
value of θ by 2π, the number of revolutions can be recovered: 78.9 in the constrained
case and 78.5 and in the unconstrained case.

Figure 4.11: vr-profile in a LEO-to-LEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. In both the cases, the
initial and the final values of vr are equal to zero, as the starting and the target
orbits are circular.
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Figure 4.12: vθ-profile in a LEO-to-LEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. In both the cases, the
final value of vθ matches the target one: 6.848 km/s.

Figure 4.13: m-profile in a LEO-to-LEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. It is worth observing
that the imposition of the control saturation allows a greater propellant saving.
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Figure 4.14: Trajectory performed in a LEO-to-LEO transfer in Case B: on the left
the constrained solution and on the right the unconstrained one

4.4.3 Sensitivity to the maximum thrust

The sensitivity to the maximum thrust is investigated in this section. Par-
ticularly, the LEO-to-LEO transfer has been performed with four different
values of maximum thrust. In Figure 4.15, from top to bottom, Tmax has
been fixed to: 0.50 N, 0.52 N, 0.53 N and 0.55 N.

It is particularly interesting to compare the two cases on the top, where an
increase of Tmax from 0.50 N to 0.52 N involves a reduction of the oscillatory
behaviour of the thrust: as the matter of facts, the transfer with Tmax = 0.52
N is performed with a thrust profile almost constant in time.

On the other hand, comparing the two cases on the bottom shows that
the lower the maximum achievable thrust is, the more the “plateau” region
delates, as a greater control effort is needed to perform the transfer.
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Figure 4.15: Constrained solution of Case B for a LEO-to-LEO transfer with differ-
ent Tmax. From top to bottom the thrust profiles with: Tmax = 0.50 N, Tmax = 0.52
N, Tmax = 0.53 N and Tmax = 0.55 N
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4.5 LEO-to-GEO transfer

This section deals with a fuel-optimal transfer (Case B) where a GEO is
targeted, starting from a LEO with h = 500 km. The spacecraft has an
initial mass m0 of 1000 kg and is supported by three resistojet engines, whose
maximum power is Pmax = 1.2 kW and which are not able to overcome 0.5
N of thrust.

A constrained solution of Case B is so requested and in order to obtain
it, the minimum-thrust-acceleration problem (Case A) must be solved first.
In the followings, the complete procedure shown step by step according to
the algorithms presented in Sections 3.2 and 3.5.

4.5.1 Solution of Case A

1. Paremeters definition:
TOF = 30 day (4.17)


r0
θ0
vr0
vθ0

 =


6878 km

0
0

7.613 km/s

 (4.18)

toll = 10−1 (4.19)

 rtarvrtar
vθtar

 =

 42168 km
0

3.075 km/s

 (4.20)

Furthermore the transfer takes place in the equatorial plane, so the
variables φ and vφ are always zero, as well as their co-states. Vectors
x and λ reduce consequently to:

x =


r
θ
vr
vθ

 ; λ =


λr
λθ
λvr
λvθ

 (4.21)

2. as there is no targeted theta position θtar, λθ will be always equal to
zero. The resulting unknowns z and constraints c are so:
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Figure 4.16: Polar Curve Fit for the initial acceleration a0 of a LEO-to-GEO
transfer in Case A

z =

 λr0λvr0
λvθ0

 ; c =

 rf − rtar
vrf − vrtar
vθf − vθtar

 = 0 (4.22)

3. ACT parameters estimation:

(a) again, as the transfer is planar, the out-of-plane angle γ and its
time derivative γ̇ are always zero; on the other hand, α0 can be
set to π/2 and α̇0 to zero, for the reasons explained in Section 4.2;

(b) after few attempts, it was clear that finding a good first guess
for the initial acceleration a0 was not easy. The selected time of
flight, indeed, is relatively high and simple shooting can converge
only with a very accurate first guess. For this reason, steps from
5.a to 5.c have been performed resorting to the PCF technique.
The produced curve, shown in Figure 4.16, takes the following
form: y = 6.811 · 10−5 · x−1.0842, where x represents the time of
flight, expressed in day, and y the accurate first guess of the initial
acceleration, expressed in km/s2. As a result, a0 has been set to
1.705 · 10−6 km/s2 for the considered transfer (x = 30 day);

4. simple shooting technique:

(a) as the matter of facts, the initial thrust angles and acceleration
take the place of the initial co-states in the z vector:

z =

α0

α̇0

a0

 (4.23)
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The ACT is so performed at every time step inside simple shooting
in order to compute the co-state vector. For the sake of complete-
ness, the initial co-states resulting by inputing the selected thrust
angles and acceleration to the ACT have been evaluated:

 λr0λvr0
λvθ0

 = ACT (α0, α̇0, a0) =

1.888 · 10−9 km/s3

2.976 · 10−8 km/s2

1.705 · 10−6 km/s2

 (4.24)

(b) now that all the unknowns have been initialized, simple shooting
can be run. The ODEs (2.10) and (2.8) are integrated;

(c) simple shooting tries to optimize z in order to get the optimal zopt
that fulfills the constraints c;

5. once simple shooting finishes, the optimized unkwnowns zopt are ob-
tained and the constraints c are evaluated:

zopt =

α0opt

α̇0opt

a0opt

 =

 1.553 rad
−3.661 · 10−6 rad/s
1.706 · 10−6 km/s2

 (4.25)

c =

 rf − rtar
vrf − vrtar
vθf − vθtar

 = 10−1 ·

 0.0001 km
0.844 km/s
−0.946 km/s

 (4.26)

The maximum constraint violation is so equal to 0.946 ·10−1 km/s and
is lower than the fixed tollerance toll. Consequently, the algorithm
jumps to Step 6. As shown in the next step, multiple shooting will be
able to lead to zero all the constraints;

6. optimized initial co-states:

λ0opt =

 λr0optλvr0opt
λvθ0opt

 = ACT (α0opt , α̇0opt , a0opt) =

1.889 · 10−9 km/s3

2.977 · 10−8 km/s2

1.706 · 10−6 km/s2


(4.27)

Note that these values are very close to those estimated with the ACT
(Equation (4.24));
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7. ODEs (2.10) and (2.8) are integrated starting from [x0,λ0opt ] and x(t),
λ(t) are obtained;

8. multiple shooting technique:

(a) the expressions of x(t), λ(t) found with simple shooting are used
as first guess for multiple shooting;

(b) the time span is divided into two intervals, so Nint = 2. Remind
that in the considered transfer only 8 variables are involved (4
states and 4 co-states), so Nvar = 8. Multiple shooting needs a
number of boundary conditions b.c. equal to Nint · Nvar = 16.
They are:

b.c. =



r(t0)− r0
θ(t0)− θ0
vr(t0)− vr0
vθ(t0)− vθ0
r(tf )− rtar
vr(tf )− vrtar
vθ(tf )− vθtar

r(t/2−)− r(t/2+)
θ(t/2−)− θ(t/2+)
vr(t/2

−)− vr(t/2
+)

vθ(t/2
−)− vθ(t/2

+)
λr(t/2

−)− λr(t/2
+)

λθ(t/2
−)− λθ(t/2

+)
λvr(t/2

−)− λvr(t/2
+)

λvθ(t/2
−)− λvθ(t/2

+)
a(t/2−)− a(t/2+)



= 0 (4.28)

It is worth observing that the original constraints c expressed in
Equation (4.22) are included in the b.c.;

(c) multiple shooting tries to refine the initial guess solution in or-
der to perfectly fit the imposed boundary conditions b.c. (and
consequently the constraints c);

9. once multiple shooting finishes the optimization process, the constraints
c are evaluated and in this case are all fulfilled according to the multiple-
shooting default tollerance, which is set to 10−6. The solution obtained
with multiple shooting represents so the optimal solution of Case A
and the algorithm for Case B (Section 3.5) can now be implemented.
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4.5.2 Solution of Case B

1. parameters settings:

m0 = 1000 kg (4.29)

Pmax = 3 engine · 1.2 kW/engine = 3.6 kW (4.30)

2. the control laws for Case A and B are matched (Equation (3.15));

3. thanks to this assumption:

(a) λm0 can be set to any positive value, for example one;

(b) the initial position and velocity co-states are recovered:

λBv,r0
=


λBr0
λBθ0
λBvr0
λBvθ0

 =
m0

2λm0

Pmax


λAr0
λAθ0
λAvr0
λAvθ0

 =


9.047 · 10−4 kg/m

0
1.525 · 10−3 kg s/m
8.144 · 10−1 kg s/m


(4.31)

4. ODEs (3.31) and (3.32) are integrated starting from x0 and λB0 , with
λB0 = [λBv,r0

;λm0 ]. As a result, the “unconstrained ” solution is ob-
tained, that is the solution of Case B without control saturation.

Just looking at the thrust profile of one engine, it is evident that the
fixed Tmax has been overcome (Figure 4.17);

5. let us try to find a “constrained ” solution, where the maximum achiev-
able thrust for each engine is Tmax = 0.5 N ;

6. multiple shooting techinique is adopted with two time intervals; now
Nint = 2, but Nvar = 10 (five states and five co-states) so 20 boundary
conditions are needed:



4.5. LEO-to-GEO transfer 59

Figure 4.17: Control profile of one resistojet engine for a thrust-unconstrained
LEO-to-GEO transfer

b.c. =



r(t0)− r0
θ(t0)− θ0
vr(t0)− vr0
vθ(t0)− vθ0
m(t0)−m0

λm(t0)− λm0

r(tf )− rtar
vr(tf )− vrtar
vθ(tf )− vθtar

r(t/2−)− r(t/2+)
θ(t/2−)− θ(t/2+)
vr(t/2

−)− vr(t/2
+)

vθ(t/2
−)− vθ(t/2

+)
m(t/2−)−m(t/2+)
λr(t/2

−)− λr(t/2
+)

λθ(t/2
−)− λθ(t/2

+)
λvr(t/2

−)− λvr(t/2
+)

λvθ(t/2
−)− λvθ(t/2

+)
λm(t/2

−)− λm(t/2
+)

a(t/2−)− a(t/2+)



= 0 (4.32)

(a) the state ODEs are now decoupled from the co-states, expressing
them as function of the control variables (Equations (3.34));

(b) the transformations described in Equations (3.35), (3.36) and (3.37)
are performed at each time step, computing so the current value
of the thrust (Equation (3.38));

7. if the current thrust is greater than the fixed Tmax, then:
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Figure 4.18: Control profile of one resistojet engine for a thrust-constrained LEO-
to-GEO transfer

(a) the thrust components are re-scaled according to Equations (3.39),
(3.40) and (3.41);

otherwise the procedure skips Step 7.a and goes directly to Step 8:

8. the full set of ODEs (3.31) and (3.32) is integrated till the subsequent
time step.

Passages from Step 6.b are repeated till the final time is reached;

9. multiple shooting has succeeds to find the optimal solution and the b.c.
(and consequently all the constraints c) have been conducted to zero
and the control profile of each engine does not overcome Tmax anymore
(Figure 4.18).

It is interesting to note that the thrust magnitude is oscillating and that
the frequency of the oscillations decreases in time. This seems to suggest
the existence of a relation between the thrust frequency and the distance
from the main attractor, the Earth. This is confirmed by Figure 4.19, which
shows a particular of the constrained thrust profile: the period of the last
oscillation is equal to the period of the target orbit, that is one day.

In the followings, all the optimal states and co-states variables are shown
for the “unconstrained” and the “constrained” solution of Case B (from Figure
4.20 to 4.25).

4.5.3 Sensitivity to the time of flight

The transfer has been performed with other three different times of flight
(TOF ) to show the differences in the control law when an upper bound of
0.5 N is imposed to the thrust. Figure 4.26 highlights the sensitivity to the
selected time of flight, when it is equal to (from top-left to bottom-right)
28.4 day, 30.0 day, 32.5 day and 34.0 day. It is interesting to note that if a
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Figure 4.19: Detail of the thrust trend in the LEO-to-GEO transfer. The two red
points bound the last oscillation period of the thrust profile, which is very close to
1 day

Figure 4.20: r-profile in a LEO-to-GEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. In both the cases, the
final value of r matches the target one: 42168 km.
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Figure 4.21: θ-profile in a LEO-to-GEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. By dividing the final
value of θ by 2π, the number of revolutions can be recovered: 381.8 in the con-
strained case and 381.5 and in the unconstrained case.

Figure 4.22: vr-profile in a LEO-to-GEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. In both the cases, the
initial and the final values of vr are equal to zero, as the starting and the target
orbits are circular.
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Figure 4.23: vθ-profile in a LEO-to-GEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. In both the cases, and
the final value of vθ matches the target one: 3.075 km/s.

Figure 4.24: m-profile in a LEO-to-GEO transfer in Case B: on the top the con-
strained solution and on the bottom the unconstrained one. The imposition of
the control saturation allows a greater propellant saving as the final mass of the
spacecraft is equal to 476.6 kg in the constrained case and 472.9 kg to in the
unconstrained one.
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Figure 4.25: Trajectory performed in a LEO-to-GEO transfer in Case B: on the
left the constrained solution and on the right the unconstrained one

lower time is available to achieve the target orbit, then the maximum thrust
is used for a longer period along the transfer. This can be noted from the
figure by looking at the lenght of the “plateau”, the region where the thrust
equals its maximum level.
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Figure 4.26: Constrained solution of Case B (Tmax = 0.5 N ) for a LEO-to-GEO
transfer performed (from top-left to bottom-right) in 28.4 day, 30.0 day, 32.5 day
and 34.0 day (bottom).

4.6 Earth-to-Mars transfer

A fuel-optimal Earth-to-Mars transfer (Case B) is now investigated with two
kinds of thrusters: a typical resistojet and a futuristc nuclear-reactor engine,
the “VASIMR” (Variable Specific Impulse Magnetoplasma Rocket). It has
been conceived by Chang-Dyaz [21] in the ’70s but works are still in progress
to make the use of this engine feasible. “Ad Astra”, the VASIMR producer,
signed an agreement with NASA to arrange the placement and testing of
a 200-kW flight version of the VASIMR, the VF-200, on the International
Space Station (ISS) in 2015. NASA Administrator Charles Bolden said that
VASIMR technology could be the breakthrough technology that would reduce
travel time on a Mars mission from 2.5 years to 5 months [19]. The VASIMR,
indeed, has been conceived with the hope of making feasible manned inter-
planetary missions. This implies that all the transfers must be performed
as fast as possible. As shown in the following, reducing the transfer time
to 90 day for an Earth-to-Mars mission with a spacecraft capable of hosting
humans would require a 10-MW engine (with m0 = 105 kg). There is conse-
quently only one possible source: nuclear. In the past, nuclear electricity has
generally been obtained from RTGs, which rely on the heat generated by the
natural radioactive decay of plutonium. Such devices have proved crucial to
robotic space missions but are too inefficient for human flight. Far better
would be a nuclear reactor, which relies on the fission of uranium in a chain
reaction. For each kilogram of fuel, a reactor produces up to 10 million times
more power than an RTG does [20]. It is clear that the nuclear reactor tech-
nology required for such mission is not available today and major advances
in reactor design and power conversion are needed. However, a number of
serious research studies have been conducted that point to reactor and power
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Figure 4.27: Performances expected by a 10-MW VASIMR engine. By increasing
its temperature, it boosts its specific impulse (blue) and reduces fuel consumption
(yellow) at the price of less thrust (red)

conversion designs that meet the kg/kW required for such a mission [21].
Waiting for this to become real, the Earth-to-Mars test case has been

conducted in order to define a mass-power budget.
As a result, the Earth-to-Mars test case has been performed with:

• one VASIMR engine with Pmax = 10 MW, m0 = 105 kg,
Tmax = 1000 N, TOF=90 day ;

• one resistojet thruster with Pmax = 1 kW, m0 = 6 · 102 kg,
Tmax = 0.5 N, TOF=250 day ;

• six resistojet thrusters with Pmax = 1 kW, m0 = 104 kg,
Tmax = 0.5 N, TOF=350 day ;

As for the resistojets, they cannot overcome 0.5 N and so a constrained-
Case-B solution was requested to make the transfer possible for the 104-kg
spacecraft, whereas an unconstrained-Case-B solution resulted sufficient to
optimize the transer with the 600-kg spacecraft. An initial mass of 105-kg
has been instead selected for the VASIMR-engine spacecraft, as it has to host
a nuclear reactor, apart from the human crew.

The VASIMR engine can achieve very high levels of thrust and the per-
formances expected by a 10-MW engine are reported in Figure 4.27, taken
from [21].

As a consequence, Tmax has been fixed to 103 N but the VASIMR-engine
spacecraft never overcame this value, so an unconstrained-Case-B solution
was adopted.
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Figure 4.28: Thrust profiles in an Earth-to-Mars transfer obtained with (from top
to bottom) the 10-MW VASIMR engine, the 1-kW resistojet used for the 250-day
transfer, one of the six 1-kW resistojets used for the 350-day transfer.

In the test case, only the gravitational field of the Sun is considered, while
Earth and Mars are treated as point-masses whose orbits around the Sun are
assumed to be circular and co-planar.

As the previous test cases presented in Sections 4.4 and 4.5 have already
shown in detail how to follow the Case-A and Case-B algorithms, the disser-
tation will now focus only on the relevant results, comparing the solutions
obtained with the three different engines.

Figure 4.28 shows the thrust profiles, highlighting the completely different
orders of magnitude.

Figure 4.29 shows the trajectory performed in the three cases. Observe
that with a VASIMR-engine spacecraft, the transfer lasts only 90 day. On
the other hand, the resistojet-engine spacecrafts are considerably less-power
demanding, but they need more time to achieve the Mars orbit. Nevertheless,
in all the cases the transfer does not complete even one revolution around
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Figure 4.29: Earth-to-Mars transfer obtained (from left to right) with the VASIMR-
engine spacecraft (TOF=90 day), the one-resistojet-engine spacecraft (TOF=250
day), the six-resistojet-engine spacecraft (TOF=350 day).

the Sun. As no spiral dynamics is involved, the method presented in Sections
3.2 and 3.5 converged very easily to the optimal solution.

Fiugre 4.30 that shows the mass trends. As for the resistojet-engine
spacecrafts, it is worth observing that the tax to be payed for a greater
payload mass is a higher transfer time and a greater power source.
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Figure 4.30: Mass trends in an Earth-to-Mars transfer obtained (from top to bot-
tom) with the 10-MW VASIMR engine, the 1-kW resistojet used for the 250-day
transfer, the six 1-kW resistojets used for the 350-day transfer.
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Chapter 5

Conclusions

5.1 Validity of the Method

This work focused on the integration of different techniques in a unique,
robust, algorithm capable of managing spiral dynamics in low-thrust motion.

The high non-linearity of this problem has been counteracted through the
use of numerical techniques, such as simple shooting and multiple shooting.

Furthermore, test cases that relate the optimization both of the thrust
acceleration (Case A) and of the propellant consumption (Case B) have been
studied and the optimization process was performed through indirect meth-
ods. They can provide very accurate solutions (contrarily to direct methods)
but require a very precise first guess solution. At this purpose, two main
techniques were conceived: the Adjoint Control Transformation (ACT), de-
scribed in Section 3.1.1, and the Polar Curve Fit (PCF), analyzed in Section
3.1.2.

As a result, the presented method demonstrated to be:

– flexible;

– accurate;

– computationally efficient.

5.1.1 Flexibility of the method

The method can be considered flexible as it succeeded in managing hetero-
geneous mission scenarios, such as an Eart escape, a LEO-to-LEO transfer,
a LEO-to-GEO transfer, and a Mars-to-Earth transfer, which have been an-
alyzed and solved (Chapter 4) with different kinds of optimization, as both

71
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the accumulated thrust acceleration (Case A) and the propellant consump-
tion (Case B) have been optimized. Moreover, mathematical passages have
been derivated in Section 3.4 in order to quickly get a first guess solution of
Case-B problem, once Case A is solved, by only inputing the initial mass m0

of the spacecraft and the maximum power level Pmax of the engine.

Different main attractors have been considered, as both test cases where
the Earth and the Sun represented the main attractor have been analyzed.
The implemented method succeeded to identify the solution in both scenarios,
although the variables assumed values of very different orders of magnitude.

Finally, different propulsive performances have been managed, as engines
with the typical performances of a resistojet (Pmax ≈ 100 kW) and of a
futuristic nuclear-reactor engine, the “VASIMR” (Pmax ≈ 101 ÷105 kW), have
been tested. Furthermore, the implemented method enabled the introduction
of a control saturation (Section 3.4.1).

5.1.2 Accuracy of the method

The accuracy of the method addresses the capability of generating both good
first guess solutions and optimal solutions.

As far as the first guess solutions are concerned, they are recovered thanks
to the use of two conceived techniques: the Adjoint Control Transformation
(ACT) and the Polar Curve Fit (PCF). The ACT allows to estimate the
initial co-states by finding mathematical relations that link them to the thrust
angles. The PCF exploits some regularities of the problem: if the position
and the velocity variables refer to a polar coordinate frame and not to a
classical Cartesian one, most of the co-states show a polar trend with respect
to the fixed time of flight. With such technique it is possible to accurately
estimate the initial co-states also for transfers with a high time of flight,
which generally introduce more numerically difficulties.

Moreover, the optimal solutions can be considered intirinsically accurate
as they are recovered through the use of an indirect method.

5.1.3 Computational efficiency

All the test cases presented in Chapter 4 have been run on a laptop, whose
main characteristics are reported in Table 5.1.

As a result, the time elapsed in all the simulations is shown in Table 5.2,
where:
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Processor i3-2350M

Clock speed 2.3 GHz

RAM 6 GB

Operating System Windows 7

Table 5.1: Performances of the computer used for the implementation of the test
cases

• CASE A refers to the problem analyzed in Section 2.1, that is the
minimum-energy problem in which the cost function JA penalyzes the
accumulated thrust acceleration a:

JA =

∫ tf

t0

[
1

2
a2] dt (5.1)

– Simple shooting refers to the numerical technique explained in
Chapter 3 and is represented by Steps 1 to 7 in the algortihm of
Section 3.2 for the Case-A problem;

– Multiple shooting refers to the numerical technique explained in
Chapter 3 and is represented by Steps 8 to 10 in the algorithm of
Section 3.2 for the Case-A problem;

• CASE B refers to the problem analyzed in Section 2.2, that is the
minimum-propellant-consumption problem in which the cost function
JB penalyzes the final mass mf of the spacecraft:

JB = mf (5.2)

– Unconstrained refers to the case in which no control saturation is
imposed. The solution is obtained by following Steps 1 to 4 in the
algortihm presented in Section 3.5 for the Case-B problem;

– Constrained refers to the case in which a control saturation is
imposed and whose implementation has been described in Section
3.4.1. The solution is obtaiend by following Steps 5 to 10 in the
algortihm presented in Section 3.5 for the Case-B problem.
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Earth escape LEO-LEO LEO-GEO Earth-Mars

(150 day) (3 day) (30 day) (350 day)

CASE A

Simple shooting 27.5 s 2.3 s 7.3 s 0.7 s

(Steps 1-7)

Multiple shooting 28.1 s 0.7 s 9.0 s 0.5 s

(Steps 8-10)

CASE B

Unconstrained not tested 0.4 s 1.2 s 0.3 s

(Steps 1-4)

Constrained not tested 1.2 s 11.3 s 1.2 s

(Steps 5-10)

Table 5.2: Simulation time elapsed to solve the test cases. The Earth-Mars has been
analyzed with three different times of flight (TOF), but only the case with TOF =
350 day is reported in the table, as the simulation time does not significantly change
in comparison with the other two cases.
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Observe that, despite the time of flight for the last Earth-Mars transfer
is considerably high and equal to 350 day, its solution requires a low compu-
tational time due to the reduced number of trajectory revolutions. On the
other hand, the Earth escape presents the higher simulation time because of
the high number of trajectory revolutions.

5.2 Future Developments
The testing of a 200kW flight version of the VASIMR on the International
Space Station in 2015 will be fundamental to determine the future steps to
follow for the application of the VASIMR engines and consequently for the
correct estimation of the mass and power budget to set in the implementation
phase. The most crucial aspect, indeed, consists in evaluating if the results
obtained by the optimization solver can be considered realistic or not. In
other words, while the presented method is surely valid from a numerical
point of view, future developements on the design and the integration of
nuclear reactors are necessary to define the feasibility of the obtained results
when a VASIMR engine is adopted.

Waiting for this to happen, a further step might consist in testing the
presented mission scenarios not only with a variable Specific Impulse (VSI)
model for the engine but also with a Constant Specific Impulse (CSI) one.
This would allow the method to increase in flexibility as the test phase could
be extended to many other kinds of thrusters.

A further step towards a higher flexibility of the method could also ad-
dress the introduction of gravity assists during the transfer, which generally
serve to save propellant by exploiting the gravitational attraction of massive
bodies, such as planets.

As mentioned, once solved the minimum-thrust-acceleration problem (Case
A), one only needs to input into the algorithm the initial mass m0 of the
spacecraft and the maximum power level of the engine Pmax to solve the
minimum-propellant-consumption problem (Case B). The value of Pmax has
always treated as constant but in reality it varies in time according to the
current available power. Thus, a step forward can consist in elaborating a
model for the engine capable of determining the time variation of Pmax and,
consequently, the maximum achievable thrust Tmax.

Even if along the dissertation a complete 3-D formulation has been pro-
vided for all the conceived techniques, only planar-transfer test cases have
been presented. The next step shall address test cases with a three-dimensional
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dynamics.

Finally, a more accurate dynamical model shall be adopted in future
studies, including the gravitational attraction of all major bodies in the Solar
System as well as non-gravitational perturbations.
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