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AABBSSTTRRAACCTT  

This thesis focuses on reactive transport modeling of bimolecular homogeneous irreversible reactions 

of the kind A+B�C at Darcy scale. The state of the art model adopted in this situation is advection 

dispersion reaction equation (ADRE). This, assuming the complete mixing between reactant 

concentrations at pore-scale, leads to over-prediction fo the reaction product formation. Here we 

investigate five different continuum models proposed in recent literature. These include single (Porta et 

al. ,2012; Sanchez-Vila et al. ,2010; Hochstetler and Kitanidis, 2013) and multicontinuum (double rate 

mass transfer, DRMT) approximations . The appropriateness of these models is investigated upon 

performing a quantitative comparison with the results of avaliable pore-scale numerical simulations of 

the reactive transport process for two porous medium scenarios characterized by different degree of 

geometry complexity (Porta et al. 2013). The assessment for single continuum models is performed 

through the following three-steps procedure: i) different values for each parameter included in the 

model are selected; ii) model is solved for each possible combination of parameter values selected; iii) 

the appropriateness of each computed solution is evaluated through different criteria which quantify the 

error between pore-scale and continuum-scale simulation results. The models assessment provides a 

detailed study which provides key information in view of  model calibration. Main results of this work 

show that the pore-scale geometry complexity has a key influence on model performances. Moreover, 

we show that the quantification of incomplete mixing effect through an effective parameter is necessary 

to capture system behavior at the continuum scale, in the presence of complex porous scenarios.Our 

results suggest that the theoretically-based model proposed by Porta et al. (2012) is able to reproduce 

the key behaviors observed in pore scale simulations.Finally, the implementation of a double rate mass 

transfer model shows promising features that lead to overcome single continuum models limitations. 
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AABBSSTTRRAACCTT  ((IITTAA))  

L’argomento di questa tesi è la modellazione alla scala di Darcy del trasporto reattivo caratterizzato da 

una reazione bimolecolare omogenea e irreversibile del tipo A+B�C. Attualmente, il modello ADRE 

(Advection Dispersion Reaction Equation) viene comunemente utilizzato in questo contesto. Tale 

modello assume che, alla scala di poro, le concentrazioni dei reagenti si mescolino completamente 

portando ad una sovrastima della formazione del prodotto di reazione. In questo lavoro vengono 

analizzati cinque diversi modelli continui proposti in letteratura. Tra questi ci sono modelli a continuo 

singolo (Porta et al. 2012; Sanchez-Vila et al. 2010; Hochstetler and Kitanidis 2013) e multiplo 

(Double Rate Mass Transfer Model, DRMTM). Confrontando quantitativamente i risultati di 

simulazioni numeriche eseguite alla microscala su geometrie più o meno complesse (Porta et al 2013), 

viene verificata l’attendibilità dei modelli. Questa valutazione, per modelli a continuo singolo, viene 

effettuata con la seguente procedura: i) vengono selezionati diversi valori per ogni parametro presente 

nel modello; ii) il modello viene risolto con ogni combinazione dei valori scelti dei parametri, iii) 

l’attendibilità di ogni risoluzione viene valutata quantificando, con diversi criteri, l’errore commesso 

nell’approssimare i risultati delle simulazioni numeriche. Questa valutazione fornisce un’analisi 

dettagliata che consente di dedurre informazioni importanti per la calibrazione dei modelli. Da questo 

studio si evince che la complessità della geometria del mezzo ha un’influenza importante sulle 

performance dei modelli. Inoltre, per riprodurre il comportamento del sistema alla scala di continuo in 

scenari porosi complessi è necessario quantificare l’effetto del mescolamento incompleto tramite 

parametri effettivi. Le analisi effettuate suggeriscono che il modello proposto da Porta et al (2012) è in 

grado di riprodurre alcuni comportamenti cruciali del sistema che sono osservati nelle simulazioni alla 

microscala. Infine l’implementazione del modello DMRTM ha rivelato caratteristiche promettenti che 

permetterebbero di superare alcuni dei limiti caratterizzanti i modelli a continuo singolo.  
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IINNTTRROODDUUCCTTIIOONN  

The term “reactive transport” is commonly used in Environmental and Earth sciences to indicate all the 

subsurface flow processes in which transport of dissolved species is coupled with chemical, 

mechanical, physical and biological transformations. That means that reactive transport definition 

includes a wide variety of complex natural processes occurring in subsurface flows. Nowadays, 

understanding reactive transport dynamics is becoming an important task due to the fact that many 

processes of practical interest depend on these natural phenomena. In particular, reactive transport has a 

crucial role in the following applicative fields: 

� Environmental contamination: groundwater pollutants normally undergo to reactive transport 

and understanding it is crucial in order to control, monitor and forecast contaminats spreading 

in acquifers (Bear and Cheng, 2010).  

� Global change: CO2 storage provides one of the possible techniques to mitigate CO2 and 

possible related effects on global climate changes. This technique consists in injecting CO2 into 

geological formations. Saline acquifers appear particularly interesting for their important 

storage capacity. When CO2 is injected into the acquifer it undergoes to a complex rective 

transport. Understanding this process is fundamental for evaluating the feasibility of this 

technique and possible connected risks (Zengh at al. 2008; Audigane et al. 2007) 

� Oil reservoir efficient exploitation: an established practice in oil extraction is to inject chemical 

species (e.g. surfactants) that are able to reduce the oil surface tension and improve oil recovery. 

A solution of reactive matter is injected into the reservoir and flows interacting with fluid and 

solid phases in the subsurface. Understanding this process is very important in order to optimize 

oil recovery (see e.g. Delshad et al., 2002).  

The reactive processes which are coupled to flows in natural subsurface environments, as the ones 

exemplified above, are very complex and they can be hardly reproduced through laboratory 

experiments. Moreover, the direct monitoring of their evolutions in space and time is hardly feasible 

due to the difficulties and costs of field data retrieval. Thus, conceptual and mathematical models for 

reactive transport description are required both for practical and research purposes. A reliable reactive 

transport model, indeed, would allow not only forecasting the natural phenomena and controlling 
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contaminant spreading, but it is also a crucial research tool for understanding the evolving dynamics of 

coupled natural processes (Steefel et al., 2005). 

In order to develop conceptual and mathematical models, the key processes that characterize reactive 

transport must be identified and understood. Due to their complexity, actual natural phenomena do not 

represent the most suitable reference cases for basic theoretical, numerical and experimental 

investigations. As a consequence, many studies presented in literature (Gramling et al., 2002; Porta et 

al. 2013; Edery et al.,2010, Kapoor et al., 1997; Anmala and Kapoor, 2013;Hochstetler and Kitanidis, 

2013, Sanchez-Vila et al., 2010; Rubio et al., 2008, Raje and Kapoor, 2000; De Anna et al., 2013) have 

focused on a very simple benchmark problem, an homogeneous bimolecular irreversible reaction of the 

kind A+B�C in a fully saturated domain. This is also the problem setting that is considered in this 

work. In spite of its simplicity, this setting allows investigating the coupled effect of flow and reaction 

processes inside the porous domain. 

In this simple case, observing reactive transport at pore-scale level, three physical processes are 

identified: advection, diffusion and reaction. These processes have been modeld pore-scale and 

different modeling approaches are already successfully implemented. In principle, if the geometry of 

the system was known, we would be able to completely model the reactive transport in porous domain. 

However the limitations in computer power and characterization techniques do not allow implementing 

pore-scale modeling approaches at Darcy or field scale. As a consequence, for practical purposes, 

macro-scale models are formulated in order to capture the average evolution of the system neglecting 

the detailed description of the porous medium geometry. On the other hand, these models cannot 

neglect the effects of pore-scale structure on the coupled transport and reaction processes. Indeed, the 

reactive transport evolution observed in heterogeneous systems is significantly different from the one 

observed in homogeneous ones. In particular, and the pore scale flow field typilcally includes local 

velocity fluctuations, which may yield to segregate reactants plumes and limit the reaction occurrence. 

This phenomenon is usually referred as incomplete mixing effect. Neglecting this effect generally 

yields overestimation of the reaction rate observed in real systems and to inaccurately represent average 

features of reactive transport phenomena. Indeed, this represents the main limitation of the Advection 

Dispersion Reaction Equation model (ADRE) which is the state of the art tool for macro-scale 

modeling of reactive transport. 
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Moving from this, many alternative models relying on different conceptual approaches have been 

proposed in order to provide a formulation able to embed the incomplete mixing effects. As a 

consequence of this vital research activity, the investigation of reactive transport modeling tools 

appears multifaceted and this topic is still a open field of discussion. In this context a structured 

comparisons among the different available model formulations is currently lacking and is the primary 

scope of this work. This analysis is valuable in order to identify the most promising directions for 

future research efforts. According on this purpose, this work is focused on five different models which 

rely on a common conceptual approach including the classical ADRE: the continuum approach.  

This approach allows describing the spatial and temporal solutes concentration distributions according 

to a system of partial differential equations (PDEs) which represents the mass balances of chemical 

species. In this way, an approximate description of  reactive transport processes can be obtained using 

established numerical methods normally implemented for PDEs systems. The effects of pore-scale 

processes, e.g., incomplete mixing and solute spreading due to hydrodynamic dispersion, are then 

embedded into the equation formulation through one or more effective parameters.. Each model 

included in our study presents a different formulation of the reaction term and as rendered by an 

incomplete mixing model. Using a set of pore-scale numerical simulation performed for different 

porous scenarios, the solutions yielded by different models are analyzed in order to: 

• Evaluate the importance of embedding the incomplete mixing effect into the formulations; 

• Investigate the importance of pore-scale structure on model performances; 

• Assess the capability of different reactive term formulations to capture the reactive transport 

dynamic features; 

• Compare solutions given by different models in order to discriminate which one allows to better 

performances. 

In this work we consider a comparison among several continuum approximation, where the porous 

medium is treated as a single homogeneous continuum characterized by effective parameters. In 

addition to these modeling options we consider a double continuum approximation, i.e. a modeling 

framework. This yields an alternative conceptualization of incomplete mixing effect: the Double Rate 

Mass Transfer model (DRMT) which has been little explored, so far.  
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Our analysis allows identifying the main strengths and limitations of each of the considered models and 

assessing which are the most promising modeling options for continuum representation of pore-scale 

reactive processes. As a consequence, our work provides a significant and innovative contribution to 

reactive transport modeling research: it provides the first structured assessment of different models and 

identifies the most promising directions to follow for further advancements.  

The structure of this thesis is here described. In the first part (Chapter 1) we introduce the framework 

and the state of the art of the field in which our work is contextualized. In Chapter 2 materials and 

methods are presented and in particular: i) the specific problem setting and the description of the 

validation data; ii) the analysis of conceptual and mathematical formulation of each continuum model 

evidencing the differences in reaction term definition, iii) the numerical tools for model solution. The 

results presentation is gathered in Chapter 3-Chapter 5 and is divided in three different sections: the 

first one (Chapter 3) is dedicated to validation and comparison of the model for a simple and ordered 

porous medium domain; the second one is addressed to models assessment in a complex and disordered 

porous medium domain (Chapter 4); the third is focused on a quantiative comparison between all the 

considered models limited to the challenging case of a disoredered pore-scale geometry. Conclusion 

and future possible research direction highlighted by our work are reported at the end of the thesis.  
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CChhaapptteerr  11  BBIIMMOOLLEECCUULLAARR  RREEAACCTTIIVVEE  TTRRAANNSSPPOORRTT  IINN  PPOORROOUUSS  MMEEDDIIAA::  

CCOONNCCEEPPTTUUAALL  FFRRAAMMEEWWOORRKK  AANNDD  SSTTAATTEE  OOFF  TTHHEE  AARRTT  

1.1 Types of chemical reactions 

Physical, chemical, and biological processes influence and control solute and particle matter fate and 

transport in the subsurface. In Earth and environmental sciences, the term “reactive transport” generally 

indicates all the processes through which a chemical is transported and simultaneously physically or 

chemically transformed. Many different types of reactive processes can take place in an aquifer and ; 

these fall into three broad categories: physical, chemical and biochemical transformation. We define a 

physical transformation a process in which the substance chemical composition remains unchanged 

while its physical properties change (e.g. phase transitions). A chemical transformation, instead, 

implies that the reactants evolve into new chemical substances. Finally, a transformation is 

“biochemical” if it is mediated by organisms. Among chemical reactions, Rubin (1983) classifies the 

group of “sufficiently fast” reversible reactions and “insufficiently fast” and/or irreversible reactions. 

The first group of reactions proceeds very fast and equilibrium is essentially immediately reached 

compared to the other system processes. As a consequence, assuming that local chemical equilibrium 

always exists at every point of the system leads to negligible error in process modeling. On the other 

hand, the “insufficiently fast” and/or irreversible reactions evolutions are function of time through a 

kinetic law. Note that a reaction rate is not absolutely slow or fast, but it depends on the problem that 

we are considering. A reaction can be fast compared to a process or slow compared to another one. The 

kinetic rate ( k ) quantifies the amount of mass transformed as function of time and it is an important 

parameter in order to understand the velocity of the reaction compared to other processes. Both 

sufficiently fast/reversible and insufficiently fast/irreversible reactions can be homogeneous or 

heterogeneous. A reaction in which the reactants are in the same phase are called homogeneous, while 

heterogeneous reactions involve reactants in different phases. Finally heterogeneous reactions, may or 

may not involve or not the solid grain surface: reactions such as adsorption or ionic exchange take 

place on the grain surface, while classical heterogeneous reactions (precipitation, complex formation, 

reduction, dissolution and oxidation) involve different phases without necessarly interacting with the 

solid grains. This classification proposed by Rubin (1983) is summarized in Figure 1.1. 
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Figure 1.1 Classification of chemical reactions useful in solute transport analyses (Rubin, 1983). 

In this wide and multifaceted scenario, we will deal with the specific problem of a chemical, 

homogeneous and irreversible reaction. A detailed explanation of the problem setting chosen is provide 

in section 2.1. First though, we will review the literature associated with modelling these processes to 

help frame the novel contributions of this thesis. 

1.2 Introduction to benchmark problem and motivations 

In this work we consider a column of porous domain fully saturated with a solution of a chemical A. A 

solution of B is injected from a boundary of the column. A bimolecular irreversible homogeneous 

reaction takes at the interface between A and B producing C. A more detailed explanation of the 

problem setting is provided in section 2.1.  

This configuration is interesting for two reasons: 

� It is representative of a replacement scenario which may describe practical remediation 

techniques. For example, the in situ injection of remedial reactants has shown remarkable 

results for its efficiency and low costs. It consists in injecting a reactant that can transform the 

contaminant which is present in the groundwater into a harmless substances as for example 

oxidation of hydrocarbons (e.g. Kluck and Achari, 2004) 

� It is often considered in experimental and modeling works as benchmark problem (Gramling et 

al., 2002; Porta et al. 2013; Edery et al.,2010, Kapoor et al., 1997; Anmala and Kapoor, 

2013;Hochstetler and Kitanidis, 2013, Sanchez-Vila et al., 2010; Rubio et al., 2008, Raje and 

Kapoor, 2000; De Anna et al., 2013) 
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1.3 Pore-scale processes and governing equations 

At the pore-scale, the solutes undergo three different processes: 

� Advection: since the liquid phase flows, the solutes are transported by the flow along 

streamlines. 

� Molecular Diffusion: advection alone does not capture the solute behavior at a local level since 

the solute spreads tranverse to the fluid direction as consequence of molecular diffusion which 

arises from the random thermal motion of the solute. The net flux follows the concentration 

gradient resulting in chemical migration from regions of higher to lower concentraions. 

� Reaction: when the reactants meet, they undergo to a chemical reaction. The reactants A and B 

are consumed while the product C is generated. 

The three processes listed before are simultaneous phenomena and affect local concentration 

distributions of the three chemical species. Advection and diffusion regulate the mixing of the solutes 

allowing the reaction to take place. Mathematically the problem can be described by: 
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The symbol ^ indicates that the variable is dimensional; ˆ ( , , )ic i A B C=  [mol/m
3
] represents the 

dissolved solute concentration; ˆ ( , , )iD i A B C= [m
2
/s] is the molecular diffusion coefficient which is 

assumed to be equal for A, B and C ˆ ˆ ˆ ˆ( )A B C mD D D D= = = . The term ˆˆ
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 indicates the advective 

term; indeed it is proportional to the advective velocity field û
�
 [m/s]. The latter is governed by the 

Navier-Stokes equation (Citrini and Noseda, 1987). However, flow in porous media can be often 

assumed to be laminar and the fluid density constant. In these conditions, the Navier-Stokes equation 

reduces to the Stokes equation: 
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where p̂  [Pa] is the fluid pressure; µ̂  [Ns/m
2
] is the viscosity; ρ̂  [kg/m

3
] is the density and ĝ

�
 [m/s

2
] is 

the gravity vertically directed. The term 
2ˆ ˆ

îD c∇  models molecular diffusion employing Fick’s law. The 

reaction term ÂBr  is modeled as sink/source term into the equations: it is always negative for reactant 

species while it is always positive for the product since the reaction is irreversible. Here, it is assumed 

that the reactants are locally completely and instantaneously well mixed and so that we can model ÂBr  

as: 

 ˆˆ ˆ
AB A Br kc c=  (1.3) 

where k̂  [m3/(mol s)] is the intrinsic reaction rate as measured in well-stirred batch reactor. 

Equation (1.1) needs to be completed with appropriate initial and boundary conditions. The 

Equation (1.1) can eventually be recast into a dimensionless form by introducing the following 

dimensionless quantities:  
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where: 

� Pe is the Péclet number which is the ratio between the advective characteristic timescale and 

diffusive characteristic timescale; 

� Da indicates the Damköhler number which is the ratio between the reaction characteristic 

timescale and diffusion characteristic timescale; 

� t is the dimensionless time; 

� Û  [m/s] indicates the modulus of the averaged seepage velocity vector in the fluid phase; 

� u
�

 is a unitary vector directed as the averaged fluid velocity; 

� ŵ  [m] indicates the characteristic pore-scale spatial dimension; 

� ˆ
mD  [m2/s] is the diffusion coefficient and it is supposed to be equal for all the solutes for the 

sake of simplicity; 

� k̂  [m3/(s mol)] is the intrinsic reaction kinetic constant; 
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� 
�

0

l

C  [mol/m
3
] is the characteristic concentration value fixed with boundary or initial 

conditions inside the liquid phase.  

Introducing the quantities of Eq. (1.4), the dimensionless formulation of Eq. (1.1) is: 
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In addition, we introduce the definition of advection (
Ât  [s]), diffusion (

D̂t [s]) and reaction (
R̂t  [s]) 

timescales: 
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Using Eq. (1.6) , we can define Pe, Da  and t  differently from Eq. (1.4): 
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Equations (1.1) and (1.5) well describe the physical processes observed in a homogenous liquid domain 

and can be considered in principle correct inside the single pores. Modeling difficulties arise when 

these local processes are observed from a up-scaled point of view in which liquid and solid phases 

cohexist and interact. Rective processes observed in a porous domain at Darcy-scale or field scale 

evolve in every different way compared to pore-scale level. Advection, diffusion and reaction 

processes are influenced by the presence of the porous domain and the pore-scale chemical species and 

local velocity distributions affect the phenomena evolution at upper-scale levels. As a consequence up-

scaling model from pore-scale is not trivial since the local effects must be embedded into the up-scaled 

model in order to interpret the reactive process observed in real porous domain.  

The first model proposed was the Advection-Dispersion-Reaction Equation (ADRE) which assumes 

that reactant are locally well mixed and the reaction evolves similar to a well-mixed batch reactor. 
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However, the limitations of this model have been soon identified since it leads to overestimation of the 

reaction rate when chemical reactive species are segrated due to the presence of porous domain 

(Gramling et al .2002; Raje and Kapoor, 2000). 

Considerable research effort has been spent in order to understand which are the significant local 

effects that govern the reaction processes from a physical point of view and must be embedded in up-

scaled model. In the literature, the two main approaches are used to investigate reactive mechanisms 

and the governing phenomena at pore-scale: physical experiments and pore-scale modeling.  

1.3.1 Experimental results 

Running a physical experiment is an immediate way to explore the dynamics and evolution of reactive 

processes. Raje and Kapoor (2000) and Gramling et al. (2002) proposed two different techniques and 

their results have been often used as validation/calibration data for up-scaled reactive transport models 

(e.g. Sanchez-Vila et al., 2010; Rubio et al., 2008; Edery et al, 2010). More recently, 

De Anna et al. (2013) developed a new experimental setting in which concentration and product 

formation can be measured with high spatial resolution. The problem setting is common and similar to 

one considered in this thesis, i.e. an homogenous irreversible bimolecular reaction. 

Raje and Kapoor (2000) studied reactive transport in a glass bead pack with a fixed radius of 1.5 mm. 

The column was cylindrical where the length is 18 cm and the diameter is 4.5 cm. Two runs were 

performed: 

� Run 1: the column is initially saturated with a solution of 1,2-naphthoquinone-4-sulfonic acid 

(NQS) while a solution of aniline (AN) is injected by the left boundary of the domain; the 

initial concentration of both the solution is equal to 0.5 mM (Pe= 442.3 and Da= 492.3).  

� Run 2: the setting is turned upside down compared to Run 1, i.e. the AN solution fills the 

column while NQS solution is injected; the initial concentration of the solutions is 0.25 mM 

(Pe= 1046.5, Da= 245.9). 

The reaction between AN and NQS is bimolecular and irreversible and the reaction product is 1,2-

naphthoquinone-4-aminobenzene (NQAB). The color changes during the reaction. As a consequence it 

is possible to measure the chemical concentrations at the end of the column. Even if the experiments 

results are provided in terms of averaged concentrations at column end , Raje and Kapoor (2000) first 
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pointed out the distance between the well-mixed assumption and the real process taking place into the 

column. Moreover the different flux and reaction conditions allowed exploring the influence of Pe and 

Da on reactive transport evolution.  

Gramling et al. (2002) designed a different experimental apparatus which could acquire more 

information than Raje and Kapoor (2000), as average chemical species distribution within the domain. 

Gramling et al. (2002) investigated the reaction between N2EDTA and CuSO4 which change color. 

Images at different times are captured in which the change in light absorbance is measured and is 

related to the concentration of different species. Indeed, images are discretized in pixels (0.3x0.3 mm) 

and each pixel color intensity (from 0 to 4095) is converted into relative light absorbance value (A/A0) 

using the Scanalytics, Inc. software program IP Lab. In this way, Gramling et al. (2002) established a 

proportionality between absorbance and the amount of product generated and reaction product profiles 

as function of time are obtained. Gramling et al. (2002) conducted different experiments for diverse 

flow conditions (Q=2.7 ml/s, Q=16 ml/s, Q=150 ml/s) in glass chamber filled with grains of pure 

cryolite. The cryolite diameter is 1.19-1.41 mm. The chamber is 30 cm long , 5.5 cm high and 1.8 deep. 

The chamber is initially saturated with a solution of N2EDTA (C0=0.02 M). a solution of CuSO4. The 

imaging of the experiment at different times is reported in Figure 1.2. Confirming the results of Raje 

and Kapoor (2000), it is observed that the product profiles estimated assuming the complete mixing of 

reactants are overestimated compared to experimental results. 
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Figure 1.2 Reaction between 0.02 M CuSO4 and 0.02 M EDTA,4- producing a zone of CuEDTA2- in the chamber (Gramling et al. 

2002). 

Recently, De Anna et al. (2013) performed two experiments in a very small synthetic column porous 

domain (160x100 mm) with very high spatial resolution leading to very detailed knowledge of pore-

scale spatial concentration distributions. The first run investigated non-reactive transport using a 

solution of Fluorescein sodium salt which emits photons if invested by radiation with a wave length of 

494 nm. The solute spatial concentration is detectable through a high resolution camera since it is 

proportional to the photons emitted.  

The second run concerned to the reactive transport between bis (2,4,6-trichlorophenyl) oxalate (TCPO) 

and 3-aminofluoranthene (3-AFA) and hydrogen peroxide (H2O2). This reaction is particularly 

interesting since it is chemiluminescent and the light produced is proportional to the amount of reaction 

that takes place.each reaction produces a photon and photons locations are captured using a camera 

which is very sensible to light and high resolution. Recording the spatial light distribution provides the 

spatial distribution of reaction rate.  

The results produced by De Anna et al. (2013) are particularly interesting since they are able to 

characterize mixing and reactive transport at intra-pore level providing better understanding of the 

basic mechanisms. All these experience are used to contextualize the problem we are dealing with and 

to provide a physical counterpart in order to explain the results.  
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1.3.2 Pore-scale modeling 

Pore-scale modeling solves Eq. (1.1) numerically in the pore space. The great advantage of this 

approach is to provide more detailed information on the solute concentration fields compared to 

experiments where local values are difficult to measure. Experimental observations are usually limited 

reporting only averaged data (see Gramling et al.,2002 and Raje and Kapoor, 2000) or investigating 

very small systems (see De Anna et al. ,2013). Then pore scale simulations configures as a 

complementary approach to physical experiments in order to test and chellenge different theories. The 

pore-scale modeling uses one of two different methods: Eulerian and Lagrangian. 

The Eq. (1.1) describes the solute mass balances referring to an infinitesimal volume and it is function 

of continuous variables in space and time. The Eulerian method approach recasts the Eq. (1.1) into a 

numerical model, written in terms of many discrete values of these variables, defined at specified 

points in space and time. The solution of the system in every point of the domain is then approximated 

interpolating the discrete values computed. In other words, a partial differential equations system is 

approximated by a set of linear algebraic equations which computes the system solution only on 

discrete points of space and time (Bear and Chen, 2010). Eulerian methods are nowadays well-

established techniques and are commonly implemented to solve flow (Navier-Stokes and Stokes 

equations). They have also been employed in literature to solve reactive transport at pore-scale level 

avoiding physical experiments. 

For example Anmala and Kapoor (2013) presented solutions to Eq. (1.1) using a standard, centered, 

finite difference method (Ames, 1992) while Hochstetler and Kitanidis (2013) performed the reactive 

transport through finite element multiphysics software COMSOL 4.1.  

In constrast, in the Lagrangia approach, the equations are solved on a coordinate system that moves 

with the fluid. Typically it is not possible to model each solute molecule, so the solute plume is 

represented by set of particles moving in the flow domain. Each one of these particles represents a 

given solute mass and the process is described from the prospective of the single particle. Typically the 

Lagrangian method is called particle tracking random walk, although other types of Lagrangian 

approach are possible – such as using streamlines (Crane and Blunt, 2000).  

Here we report a detailed explanation of a particle tracking random walk method since the validation 

data used in this thesis (see section 2.2) are simulated through this technique. 
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The solute concentration plume is outlined as a collection of N particles and each particle is associated 

to a fraction of the total mass of the chemical specie. The time is discretized into M time-steps. We 

assume that the velocity field ˆ( )u x
��

 is known (i.e. the flow field has been previously solved). Each 

particle moves due to advection and diffusion. Advection is model as a deterministic process since 

particle moves along the velocity streamlines, as the velocity field is known. The diffusion process, 

instead, is conceptually modeled as a stochastic process similar to the Brownian motion. As a 

consequence the step in space done by each particle is made by a deterministic step along the 

streamline and a random step as showed in Figure 1.3 and expressed by the following equation: 

 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )i ix t t x t u x t P x+ ∂ = + ∂ +
� � � � ��

 (1.8) 

 

Figure 1.3. Outline of random walk transport modeling. 

Here, x̂
�

 is the particle position referred to a fixed coordinate system; 
ît  is the time at the i-th timestep; 

t̂∂  is the length of the time-step; ˆˆ ˆ( )u x t∂
� �

is the particle movement due to advection and ˆ( )P x
��

 indicates 

the particle displacement due to diffusion. Different expressions have been proposed for computing the 

diffusive step ˆ( )P x
��

appearing in Eq.(1.8). For example, Bijeljic  et al. (2004) modeled the diffusion as 

a random step in a random direction defined by the coordinates of a the spherical coordinate system: 
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ˆˆ( ) cos( )sin( )

ˆˆ( ) sin( )sin( )

ˆˆ( ) cos( )

P x

P y

P z

λ θ ϕ

λ θ ϕ

λ ϕ

=

=

=

 (1.9) 

 where λ̂  indicates the random length of the diffusive step centered on the mean value of 

ˆ ˆˆ ˆ2 (  ,   )m mD t D molecular diffusion t length of timestep∂ = ∂ =  in a Cartesian coordinate system;ϕ  and θ  

are randomly chosen angles.  

A slightly different, although mathematically equivalent, approach for diffusion modeling is employed 

in Porta et al. (2012b), Porta et al. (2013) and Chaynikov (2013) previously proposed (e.g Salles et al., 

1993):  

 ˆˆ( )P x dδ=
� ��

 (1.10) 

where δ̂  is the module of the diffusive displacement equal to ˆ ˆ6 mD t∂ . The direction of the diffusive 

step is random and defined by the vector d
�

. 

Bimolecular reaction can be modeled defining a probability that the reaction takes place between two 

reactant particles which encounter each other, as in Porta et al. (2012b), Porta et al. (2013) and 

Chaynikov (2013). Here we briefly recall this modeling approach. These authors discretized the domain 

into a regular cubic mesh and correlated the reaction probability to the reactant concentrations, particles 

residence time in a cube and the reaction kinetic coefficient using: 

 
0

0

ˆ ˆˆ ( ) ( )

ˆ ˆˆ ( ) ( )

A B i C i

B A i C i

RP kc c K T K t

RP kc c K T K t

δ

δ

=

=
 (1.11) 

where ( , )iRP i A B=  represents the reaction probability of component i; the factor ( )C iT K is the fraction 

of the time step t̂δ  spent by the particle in cube iK ; 0̂c  is the initial concentration while 

( )( , )i ic K i A B=  is the dimensionless ratio among the reactant concentration and its initial value inside 

the cube iK . 
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They derived Eq.(1.11) by integrating the reactants evolution in time: 
 

0

0

ˆ ˆ ˆˆ ˆ( )
ˆ

ˆ ˆ ˆˆ ˆ( )
ˆ

A
B A

B
A B

dc
kc c t c

dt

dc
kc c t c

dt

= −

= −

 (1.12) 

After computing the advective and diffusive displacement, for each particle of A at each time-step, a 

number ( RN ) is randomly generated using an uniform distribution: 

� If ARN RP>  the reaction doesn’t take place: 

� If ARN RP<  the reaction takes place and the particle of A is replaced by a particle of C 

randomly assigned to a position along the previous step of A. 

This approach is an interesting tool since it conceptually very simple and easy to implement; moreover 

we are able to follow the fate of each particle allowing a better understanding of the processes that are 

taking place in the porous medium. As a consequence, it could be a valid alternative to complex 

experiments for the investigations and simulations of reactive transport in different conditions and 

porous medium scenarios.  

On the other hand, the random walk approach suffers of some problems (Salamon et al., 2006). 

Concentrations computed through the random walk approach are characterized by random fluctuations. 

This limitation can be overcome increasing the number of particles, but this can be computationally 

expensive, or by introducing a smoothing function to estimate concentrations. Errors due to 

concentrations computation are propagated step by step. 

1.3.3 Evidence of experiments and pore-scale modeling investigations 

Integrating the results obtained though the different approaches proposed in previous section, it is 

possible to determine how the presence of porous medium affects the evolution of bimolecular reactive 

transport.  

Raje and Kapoor (2000) verifed that the intrinsic kinetic rate provides a good description of the 

reaction evolution in a well-mixed system. However, Raje and Kapoor (2000) and Gramling et al. 

(2002) registered a significant discrepancy between the expected amount of mass product in condition 
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of complete mixing and the real mass product recorded. The conclusion is that incomplete mixing takes 

place and the effective kinetic rate in real porous media differs from the intrinsic one measured in a 

batch reactor. The incomplete mixing (or “segregation”) can more or less affect the experiment 

depending on the relative importance of reaction process compared to advection-diffusion spreading. 

Raje and Kapoor (2000) showed that the assumption of complete mixing induces bigger error for 

reaction-dominated transports (Da>Pe) as opposed to advection dominated ones (Da<Pe), as depicted 

in Figure 1.4. 

 

Figure 1.4  Variation of the product concentration at the end of the column for Da>Pe (left) and for Da<Pe (right), (Raje and 

Kapoor, 2000) 

De Anna et al., 2013 provided further insight into the observations of Raje and Kapoor (2000) and 

Gramling et al. (2002). They observed the spreading of the non-reactive plume which is commonly 

represented by a phenomenon called hydrodynamic dispersion. Through this, we lump the effects of 

three different phenomena, depicted in Figure 1.5, that arise due to the presence of the pore-system 

(Bear and Cheng, 2010): 

� Molecular diffusion inside the pore channels; 

� The effect of velocity gradient along the pore channel traverse directions to the advective 

direction; 

� The change in magnitude and direction of velocity streamlines in pore channels due to the 

diverse diameters of the microscopic tubes and the pore-structure. 
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Figure 1.5. Dispersion due to mechanical spreading (a,b), and molecular diffusion (c), (Bear and Cheng, 2010). 

Hydrodynamic dispersion is classically assumed to be a Fickian process similar to molecular diffusion. 

However, for times shorter than the characteristic transport time over a typical scale of heterogeneity, 

De Anna et al., 2013 clearly showed that the behavior of solute spreading cannot be captured by a 

Fickian hydrodynamic dispersion mechanism. Indeed, the solute plumes tend to be distorted but not 

mixed. Figure 1.6 shows that the solute front has a lamellar shape: the solute rapidly spread but it is not 

well mixed since the solute concentration presents significant variations in a single pore-space. The 

importance and evidence of this irregular front shape mainly depends on the flow field and porous 

medium heterogeneities features (Chen and Meiburg,1998). 

 

Figure 1.6 The concentration field of a conservative tracer (De Anna et al., 2013). 

De Anna et al. (2013) also showed, through their experiments, that the fingering of solutes influences 

the reaction inside the pore spaces. Figure 1.7 shows that the irregular shape of reactants limits the 

reactive process in stretched regions where A and B are in conctact.  
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Figure 1.7. Field of light intensity produced by chemiluminescent reactions at the reactants fronts, (De Anna et al. 2013) 

Numerical simulations provide further insight into the analysis provided by the experimental results. 

Pore-scale numerical simulations confirm the irregular shape of solute fronts and, as a consequence of 

the reactive zone (see Figure 1.8).  

 

Figure 1.8. Snapshots of normalized concentrations of the reactants A (a) and B (b) and the product C (c) (Hochstetler and 

Kitanidis, 2013). 

Thanks to pore-scale modeling, the concentration fields are accurately known in each point of the 

domain and this allows us to analyze fluctuations in reactant concentrations. A negative cross-

correlation between reactant concentrations has been observed for the specific problem setting of 
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homogeneous irreversible bimolecular reaction. This is particularly well depicted in Porta et al. (2013) 

who computed the logarithm of the reactant product. Figure 1.9 and Figure 1.10 show that this quantity 

is not homogeneously distributed at the interface between the two reactants meaning that inside the 

porous medium the degree of mixing varies significantly. Anmala and Kapoor (2013) analyzed the 

time evolution of concentration fluctuations. They found that these fluctuations progressively vanish 

with time and the velocity of this process is macroscopically governed by the dispersion which 

characterizes the reactant concentration spreading.  

 

Figure 1.9 pore-scale distribution of mixing intensity, log (CACB), for Pe=96, Da=1038, and φ =0.36 at tD=0.2 (left), tD=6 (right). 

Solid lines indicate the position of the cross sections considered in Figure 1.10 (Porta et al.,2013). 

 

Figure 1.10 Traverse profiles of the product CACB for tD =6, Pe=96 and Da=1038. Location of the different cross sections is 

indicated in Figure 1.9 (Porta et al.,2013). 
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1.4 Darcy-scale modeling 

Practical problems involving reactive transport processes at field or Darcy scale usually cannot be 

modeled using a direct pore-scale solution. Indeed, complete knowledge of the soil pore geometry is 

impossible and pore-scale transport simulation at field or Darcy scale is not affordable from a 

computational viewpoint (Dentz et al., 2011). As a consequence, continuum- scale models are needed 

in which the relevant pore scale processes are lumped into up-scaled parameters. These are typically 

difficult to characterize due to multi-scale heterogeneities. In particular, in reactive transport a key 

point is played by the parameterization of mixing and reaction: this entails the representation of 

dispersive process and mixing behavior to quantify effective reaction observe in real media. Indeed, the 

difference between mixing and spreading, as pointed out by De Anna et al. (2013), assumes a crucial 

role in up-scaled reactive modeling: while spreading indicates the spatial extent of the of the 

concentration field, mixing is the quantification of the homogeneity inside the plume 

(Dentz et al., 2011). Darcy/field scale models need to take into account these coupled processes 

quantifying the effects of incomplete mixing and non-Fickian dispersion behavior on effective rate 

kinetics.  

Diverse approaches have been proposed to tackle this issue. In the following we summarize the results 

related to two main conceptual approaches which have been applied at the Darcy-scale: continuum 

models and continuous time random walks (CRTW). An alternative approach, which hasn’t been 

explored in the case of bimolecular homogeneous irreversible reaction, is the Dual Rate Mass Transfer 

model (DRMT) and it presented in section 1.4.3. 

1.4.1 Continuum approach 

The continuum approach is based on the assumption that the porous medium is replaced by an effective 

continuum. As a consequence of this assumption, the porous medium is outlined as a series of 

overlapping and interacting continua which represent the different phases present in the real domain 

(Figure 1.11). In this framework, it is possible to describe the behavior of each phase in terms of 

continuous variables (for example solute concentrations, fluids velocity, fluids pressures, etc) which are 

functions of space and time. Since the variables describing each phase are assumed to be continuous in 

space and time, it is possible to associate an averaged value of these variables over a representative 

elementary volume (REV) at each point of the domain.  
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The pore-scale features are embedded into up-scaled effective parameters. Through this approach we 

lose information about the microscopic values of the variables and geometrical configuration within 

each phase (Bear and Cheng, 2010).  

 

Figure 1.11. Continuum models assumption is outlined: the different phases present in the porous medium are schemed as 

overlapping continua. Each one of the continua represents one of the phases included in the actual domain. 

According to the continuum approach, reactive transport is modeled using a system of coupled Partial 

Differential Equations (PDEs): each PDE represents the mass balance of a solute involved in the 

transport for each continuum. The following equation indicates the general mathematical structure of 

the mass balance referred to the i-th solute in the j-th continuum (or j-th phase):  

 

ˆ( )
ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ( , , , ) ( , , , )

ˆ

j

j iC
f t x y z s t x y z

t

ϕ∂
= ∇ ±

∂
 (1.13) 

where:  

� The hat (^) means that the variables are dimensional while the absence of the hat means that the 

variables are dimensionless; 

� ˆ
j

i
C  indicates the volume averaged concentrations in j-th phase of i-th solute; 

� f̂  represents a flux term describing and dispersive transport of the i-th solute in the j-th 

continuum; 

� ŝ  is a source term which includes all the chemical or physical transformations that generate an 

increment or decrement of the solute concentrations. This term measures, for example, the 
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effects of adsorption on solid, exchange of solute mass between different continua, chemical 

and biochemical reactions and so on;  

� t̂ indicates time; 

� x̂ , ŷ and ẑ indicate spatial coordinates; 

� j
u
�

indicates the averaged velocity vector that characterized the j-th phase; 

� 
j

ϕ represents the volume fraction occupied by the j-th phase over the entire domain. 

The ŝ  and f̂  are expressed as function of effective parameters which lump the microscopic velocity 

field variations and local concentration distributions and, as consequence, they describe the 

hydrodynamic dispersion and incomplete mixing processes. Considering a bimolecular irreversible and 

homogeneous reactions in fully saturated porous medium Eq. (1.13) reduces to: 

 

ˆ( )
ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ( , , , ) ( , , , )   , ,

ˆ

l

i
C

f t x y z s t x y z i A B C
t

φ φ
∂

 = ∇ ± = ∂
 (1.14) 

The symbol φ  indicates the porosity of the porous medium and ˆ
l

i
C  is the volume averaged 

concentration of solute ( , , )i i A B C=  in the liquid phase. 

As stated before, the ADRE model is the standard model for reactive transport and it relies on the 

continuum approach. This model assumes that reactants undergo a complete and instantaneous mixing 

within the REV which is much bigger than the characteristic pore-scale dimension. As a consequence 

the source term is function only of the intrinsic reaction rate (the one observed in a batch reactor). The 

dispersion term is assumed to be Fickian and the dispersion coefficient of all reactive species is 

assumed equal to conservative tracer. Gramling et al. (2002) tested the ADRE model against 

experimental data revealing its limits, a discussed above. The comparison is shown in Figure 1.12. 

Gramling et al. (2002) showed that the ADRE model over-predicts product concentrations since the 

complete pore-scale mixing does not occur; neglecting incomplete mixing can significantly affect 

model predictions.  
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Figure 1.12 Model predicted and imagined CuEDTA-2 (relative to the initial reactant concentration C0=0.02 M) in the chamber. 

(a) Three times at flow rate Q ) 2.67 mL/min. (b) Three flow rates at pore volume) 0.45, (Gramling et al., 2002). 

However, in some cases, the ADRE can be considered a reliable model for describing the averaged 

behavior of a reactive process. Battiato et al. (2011) demonstrated that the ADRE model adequately 

represents narrow range of situations which are often not satisfied in practical conditions. This scenario 

have stimulated researchers to look for new continuum models. Two are the possible approaches: 

theoretical up-scaling and effective models. 

1.4.1.1 Theoretical up-scaling 

While different effective models based on empirical formulations have been largely proposed (see 

section 1.4.1.2), a theoretical up-scaling of reactive transport continuum model has been recently 

proposed by the work of Porta et al. (2012a) filling a gap in the reactive transport literature. 

Porta et al. (2012a) relied on the Volume Averaging technique to derive continuum equations starting 
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from balances valid at the pore-scale within a specific phase (Whitaker, 1999). In this work the authors 

upscaled Eq. (1.1) and formally derived a continuum model formulation. They proposed a non-local 

continuum model where the dispersive term embeds the non-Fickian behavior of dispersion and the 

reaction term takes into account the small scale concentration fluctuations and the incomplete mixing 

effect. However these non-local effects vanish at late time and the Porta et al. (2012a) model turns into 

the ADRE model. Up to now the appropriateness of this model has been tested only for a plane channel 

flow in Porta et al. (2012b) and for a regular porous medium scenario in Porta et al. (2013). 

Thanks to this theoretical analysis, Porta et al. (2012a) underlined that the time-dependency of the 

dispersive process can’t be neglected and the Fickian analogy does not capture the actual behavior of 

the system, at least for short times, in agreement with the observations of De Anna et al. (2013). Then 

the authors showed that the formulation of the up-scaled model depends on relative importance of the 

reaction process compared to advection. Indeed, the transport is coupled with reactant fluctuations 

when Da>>Pe, i.e in reaction-dominated transport, as already observed in experimental and micro-scale 

simulations. Porta et al. (2012a) formally demonstrated that the intrinsic reaction rate and a constant 

dispersion coefficient do not properly model the reactive transport, while a time dependent effective 

reaction rate (Rubio et al, 2008 ; Sanchz-Vila, 2010) is consistent with these theoretical analysis. 

Moreover, Porta et al.(2012a) suggested that possible dispersion and reaction time-dependent 

parameters can properly approximate the non-local terms which are not computationally trivial. The 

up-scaled model formally validates the finding of Anmala and Kappor (2013) who observed from 

numerical pore-scale simulations that the macroscopic kinetic is dependent on averaged concentration 

gradient. In Porta et al. (2013), the up-scaled model derived is compared against pore-scale numerical 

simulations and the experimental observations derived in effective models. Non-local effects vanish for 

long times as already observed in previous numerical pore-scale simulations (Kapoor et al. 1997, 

Anmala and Kapoor, 2013, Hochstetler and Kitanidis, 2013) and the long-term product generation is 

independent of Da; it is controlled only by Pe. Moreover, if Da is sufficiently small the impact of 

incomplete mixing is not evident since the mixing is not the limiting process and the ADRE model 

properly reproduces the transport. Finally, Porta et al. (2013) concluded that considering a steady 

formulation of the theoretical model leads to negligible or modest error (less than 10%) on reaction rate 

predictions compared to pore-scale numerical simulation in a regular and homogeneous porous 

medium. 
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1.4.1.2 Effective models  

Hochstetler and Kitanidis (2013) and Rubio et al. (2008) proposed two different models both based on 

the previous analyses driven by Kappor et al. (1997) who investigated reactive transport through 

numerical simulations. Kapoor et al.  observed the evolution of solute concentration fields in the 

presence of a bimolecular second-order reaction and explored the concept of “Segregation Intensity”, 

first introduced by Danckwerts (1952). The Segregation Intensity is defined as a quantification of 

incomplete mixing, due to the presence of porous medium, and it depends on space and time. 

Kapoor et al (1997) proposed the following definition for the Segregation Intensity ( S ): 

 

ˆ ˆ

ˆ ˆ

l l

A A

l l

A B

C C

S

C C

=

� �

 (1.15) 

Hochstetler and Kitanidis (2013) empirically modeled Segregation Intensity as a constant while 

Rubio et al. (2008) defined Segregation Intensity as a function of time. They both used S  as reducing 

correcting factor for the ADRE kinetics term to take into account the incomplete mixing process. 

Focusing on Rubio et al. (2008), they proposed a heuristic model for the S as a function of time with 

four free parameters. The dispersion coefficient considered is the one proposed by 

Gramling et al. (2002) for a conservative tracer, while the fitting parameters for S model are estimated 

by trial and error using the Gramling et al. (2002) experimental results. As shown in Figure 1.13, the 

inclusion of segregation effects in the reactive term leads to a better predictions of experimental data. 

However it must be taken into account that they introduced several free parameters and that increases 

the complexity of the calibration and optimization procedure.  
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Figure 1.13. Concentration of product as a function of the position inside the tube at 916 s. Experimental data were taken from 

Gramling et al. (2002) ,(Rubio et al . 2008). In this figure, the analytic solution corresponds to solution of ADRE; Num. Solution 

without Segregation refers to a numerical solution of ADRE with a new integration scheme proposed by Rubio et al. (2008); Num. 

Solution with Segregation indicates the numerical solution of the new continuum model proposed by Rubio et al. (2008). 

Hochstetler and Kitanidis (2013) solved the reactive transport in a virtual two-dimensional pore-scale 

porous medium using a finite element multiphysics software. In analogy to Rubio et al. (2008) and 

Gramling et al. (2002), the dispersion coefficient is estimated independently from reactive process 

solving a non-reactive tracer transport in the chosen domain. Using the numerical solution they 

estimated an effective up-scaled kinetic constant (
effk ) and analyzed the relationship between the 

intrinsic kinetic rate ( k ) and 
effk which is expression of the Segregation Intensity. The result of this 

analysis is an empirical relationship between k  and 
eff

k  through two fitting parameters. Their work 

confirms once again that the intrinsic kinetic constant clearly overestimates real product concentrations 

and an effective parameter that models incomplete mixing is necessary for a good agreement between 

experimental/numerical data and up-scaled model predictions . 

Sanchez-Vila et al. (2010), matched the experimental results of Gramling et al. (2002), using another 

ADRE based continuum model. They assumed that: i) the dispersion term is Fickian, as in the ADRE, 

but the effective dispersion is no longer calibrated through a non-reactive tracer experiment; ii) the 

reactive term is proportional to the reactant concentrations product and it depends on time according to 

a power law. As it is shown in Figure 1.14, the Sanchez-Vila et al. model well reproduces the reaction 



Assessment of continuum models for reactive transport in porous media 

 

 

Ceriotti Giulia  47 

 

product concentration profiles apart from the tails; it also captures the main feature of global product 

evolution against time (Figure 1.15). 

 

Figure 1.14. Best fit (of Gramling et al. (2002) experiment) obtained with the kinetic reactive transport model for four different 

times (610, 916, 1114, and 1510 s). CuEDTA2- concentration for the experiment conducted with a flow rate of 2.67 mL/min. the 

first and third curves starting from the left are used for calibration . the  remaining two curves are predictions, used for 

model validation. The curves corresponding to ADRE model considering instantaneous equilibrium are reported for comparative 

purposes (Sanchez-Vila et al. 2010). 

 

Figure 1.15. Total mass of CuEDTA2- produced as a function of time compared to that predicted by our Sanchez-Vila et al. model 

for a flow rate of 2.7 mL/min. The curve corresponding to the ADRE model considering instantaneous equilibrium is reported for 

comparative purposes. (Sanchez-Vila et al. 2010). 
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All the models reported provide a way to explore the reactive transport modeling problem. However 

these formulations are all affected by the same limitation: they all involve matching parameters which 

are not obtained through a rigorous theoretical derivation. 

1.4.2 Continuous time random walk (CTRW) approach 

This approach is a generalization of the particle tracking random walk techniques introduced in section 

1.3.2. The solute transport is modeled in a Lagrangian framework where space-time particle transitions 

are characterized by probably density functions (pdfs). In this way, it possible to model slow and fast 

reaction (Dentz et al, 2011). The crucial point of this methodology is the definition of the pdf to use for 

spatial and time description. In literature, this approach has been first implemented for non-reactive 

transport. For example, Berkowitz and Scher (1997) analyzed the evolution of a solute plume in a 

fractured medium finding good agreement between CTRW results, experimental data measured in real 

fractured medium and particle tracking random walk simulations. Cortis et al. (2004a) tested the 

CRTW approach for conservative transport in a homogenous medium focusing attention on the 

predictability of early and late-time behavior. Analyzing a series of tracer breakthrough experiments in 

a one-dimensional (1D) flow field, they showed that the CRTW method can be helpful in capturing the 

solute tails compared to the Advection-Diffusion-Equation model (i.e. the classical continuum Darcy 

scale model for non-reactive transport) as illustrated in Figure 1.16. 

 

Figure 1.16. Comparison of measured vs fitted breakthrough curves for a typical short column experiment. The quantity j 

represents the normalized flux-averaged concentration. Dots: measured chloride breakthrough curve, for a fine sand. (Cortis et 

al, 2004a) 
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For reactive transport, Dentz and Berkovitz (2005) and Dentz and Castro (2009) applied the CRTW to 

describe the effect of adsorption in porous media solute transport while Edery et al. (2010) focused on 

the same benchmark problem analyzed in this thesis, i.e. homogeneous irreversible bimolecular 

reactive transport. In Edery et al. (2010) each particle motion is governed by the following equations: 

 
( 1) ( ) ( ) ( 1) ( ) ( )

,
N N N N N N

s s t tξ τ+ += + = +  (1.16) 

Where s identifies the particle space coordinates and t is the time; N counts the simulation steps; ξ and τ 

are random increments of space and time respectively. The spatial step is computed as function of a 

random length and random angle. The pdf laws for space and time increments distribution are assumed 

independent and equal to: 
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−
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where: 

� p(s) indicates the length of spatial increment; it depends on λs which is an unknown parameter 

which can be estimated starting from the first and second moment of particle spatial location in 

time; 

� Ω(θ) defines the angle distribution and it is assumed to be Gaussian with µ and σ as mean and 

standard deviation respectively; 

� Ψ(t) is the pdf chosen for time distribution and it assumed to be a truncated power law (TPL) to 

simulate non-Fickian transport; it depends on β and C: the first two are fitting parameters while 

t1 and t2 are characteristic transition time and cutoff time to Fickian transport, respectively, as 

defined in Berkovitz et al. (2006). 

At each simulation step, the distance among all possible couples of reactant particles are checked and if 

the distance is less than a fixed value R the reaction takes place; A and B are removed from the 

simulation and a new particle of C is placed in the average location between A and B positions.  
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We can observe good agreement between TPL-CRTW and Gramling et al. (2002) experiments: the 

TPL-CRTW matches both the peaks and the tails of product profiles (Figure 1.17) and it captures the 

global features of the system since it captures the total mass production (Figure 1.18).  

 

Figure 1.17. Particle tracking simulations (jagged line) with the slight Fickian TPL time distribution of b = 1.96, t1 = 6.6 s, t2 = 105 

s, ls = 18.2 cm−1, and R = 0.3 cm, compared to the experimental measurements (dotted profile) of Gramling et al. (2002), showing 

the relative concentration of C particles at times (a) t = 619 s, (b) t = 916 s, and (c) t = 1510 s, (Edery et al., 2010) 

 

Figure 1.18 Total mass production given from the particle tracking simulations (dash‐‐‐‐dotted line) with the marginally Fickian 

TPL time distribution of b = 1.96, t1 = 6.6 s, t2 = 105 s, ls = 18.2 cm−1, and R = 0.3 cm, compared to the experimental measurements 

(dotted profile) and the ADRE (solid line) standard pore‐‐‐‐scale mixed (SPSM) model of Gramling et al. (2002), (Edery et al., 

2010) 

The implementation of two pdf functions, that can be freely chosen, guarantees high flexibility to 

CRTW approach. It has been shown that TPL works well to interpret a large set of experimental 
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results; however, these results are not supported by theoretical analysis. Moreover, the link between 

pore-scale dynamics and effective parameter R, which needs to be calibrated against experimental data, 

is not established yet.  

1.4.3 Dual Rate Mass Transfer Model (DRMTM) 

The Dual Rate Mass Transfer Model (DRMTM) was first proposed to describe the transport in 

fractured porous media. In these systems, the fractures are preferential channels for the fluid advective 

flux. In the porous medium, due to its low porosity compared to the fractures, the fluid is practically 

immobile and dissolved species  move only due to diffusion processes. Even as the liquid phase is 

physically a single phase, it is worthy to represent the liquid phase within the pore-space through two 

apparent phases: the immobile phase and the mobile phase. The two apparent phases can exchange 

solute mass through diffusion process since they are in contact. At the continuum-scale, two different 

overlapping  continua correspond to the apparent phases since a single continuum could not capture the 

deeply different behavior of the two apparent phases (Huang at al., 2003). Heterogeneous porous 

media are comparable to fractured systems. Figure 1.19 shows that the velocity inside the real porous 

media channels varies enormously. Looking at Figure 1.19, we can identify channels which correspond 

to preferable pathways for contaminant and solutes transport. This fact is due to the pore sizes and 

geometrical configuration of the system: some pores, which are dead-end or very small, are almost 

inaccessible to advective flux and “stagnant”; some others are larger and easily permeable.  

 

Figure 1.19. The flow field computed on: (a) a sand pack;(b) a Bentheimer sandstone; (c) Portaland limestone. The colour scale 

indicates the normalized flow field: blue is slow, while green and red are fast from Blunt et al. (2012).  

This type of approach has been already implemented to describe evolution of sorpion processes and 

surface reactions (e.g.Van Genuchten et al,1976; Haggerty and Gorelik, 1995). However, this modeling 
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approach seems, in theory, suitable also to describe bimolecular homogeneous irreversible reactions in 

heterogeneous domain where the segregation of reactant between the mobile and immobile phases 

yields to incomplete mixing effect and limits the product generation. 

1.5 Contribution of the thesis  

The overview presented above shows that many different approaches and models are available for 

Darcy-scale reactive transport. Continuum and CRTW are two popular- and sometimes competing-

approaches to this problem. In particular, Edery et al. (2010) affirmed that an ADRE based continuum 

model can not appropriately capture the main features of incomplete mixing processes. For these 

reasons, we focus our attention on five continuum models in different porous scenarios to explore if the 

reactive transport can be effectively described through this type of model. Particular attention is given 

to the model presented in Porta et al. (2012a) since it is supported by a formal and rigorous 

formulation. We test this model for a disordered porous medium case study and compare it to other 

empirical ADRE-based models. In addition to that, we present a first application of Double Rate Mass 

Transfer Model (DRMTM), explained in section 2.4, to the case of bimolecular reactions.  

We first investigate how each model embeds the effects of incomplete mixing into effective 

parameters. Then we face the parameter calibration problem. We develop a preliminary analysis in 

which we explore how up-scaled effective parameters can be conditioned relying on diverse 

information on the system behavior. Our calibration data set is pore-scale numerical simulations, so in 

practice we have access to very detailed information, typically not available in laboratory experiments. 

This allows us to test the significance of different kinds of calibration data for parameter estimation. 

We analyze the impact of different pore-scale structures on continuum models parameters. The 

different models are compared in terms of their capability to depict features of reactive transport. 
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CChhaapptteerr  22  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS::  PPRROOBBLLEEMM  SSEETTTTIINNGG  AANNDD  MMOODDEELLSS  

IIMMPPLLEEMMEENNTTAATTIIOONN    

In this chapter we illustrate the methodological structure and framework of the work in five parts: 

� We introduce the context to the problem (section 2.1); 

� We present the data that we use to assess continuum-scale reactive transport model included in 

our work. The data chosen are the micro-scale numerical simulation results performed by Porta 

et al. (2013) and by Chaynikov (2013 ) which consider bimolecular reaction (section 2.2). 

� As shown in the previous Chapter, different approaches have been formulated to model 

bimolecular reactive transport. In our work we focus on four single-porosity continuum models 

(section 2.3). In addition we want to explore the suitability of Dual Rate Mass Transfer Model 

(DRMTM). This type of model is conceptually different from single-porosity continuum 

models but it is always based on the continuum approach (see section 2.4). Then, we provide a 

detailed conceptual and the mathematical framework of these models. 

� In section 2.5, we clarify the procedure used to numerically implement and solve the models.  

� Finally, we present a summary of methodologies (section 2.6) in which we describe how the 

puzzling elements presented before contribute to the thesis results development. The quantities 

and the criteria used for model assessment are definite. 

2.1 Problem setting 

We focus the attention on a simple reactive transport case study: a homogeneous and irreversible 

reaction. We consider a generic bimolecular reaction of the kind A+B�C that is often referred in 

scientific literature as benchmark problem. We assume that initially a porous domain is fully saturated 

by a solution of component A with a spatially homogeneous concentration. Fluid containing a 

homogenously dissolved chemical B is injected through the left domain boundary ( inΓ ). Both the 

solutions are dilute, meaning that the fluid density is constant and equal to the water density. The fluid 

phase flows in the pore space under the action of a steady and laminar velocity field û
�
. When A and B 

meet, C is produced at the interface in the liquid phase. The velocity field and the solid phase are not 

affected by the reaction. The upper (
upΓ ) and lower ( lowΓ ) boundaries of the column and the solid-
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liquid interface ( s l−Γ ) are impermeable to the flux and to solutes. A concise sketch of the case study 

described is presented in Figure 2.1. 

 

Figure 2.1 Sketch of the case study initial and boundary conditions and system coordinates. 

2.2 Pore-scale validation data  

Micro-scale numerical simulation results performed by Porta et al. (2013) and Chaynikov (2013 ) are 

here used to validate a continuum-scale reactive transport model. Pore-scale data refer to particle 

tracking simulations of reactive transport in two-dimensional disaggregated porous media for different 

combinations of Da and Pe. The reaction is of the kind A+B�C where A, B and C are three different 

dilute chemical species. The porous media are fully saturated with a solution containing the reactant A 

while a solution containing B is progressively injected. C in generated at the interface . The grains of 

the porous media are outlined as arrays of cylinders and the medium is constituted of periodic cells. We 

consider two structures: 

� Porous medium scenario 1: The porous medium in which the reaction takes place is very simple 

and regular as shown in Figure 2.2. The porosity is fixed at the value of 0.36. the symbol w 

indicates the characteristic length of the porous medium which represents the averaged distance 

between the centers of two consecutive cylinders along the x direction. Table 2.1 reports the 

combinations of Da and Pe which have been investigated with this geometry: the results of 

these simulations have been presented in Porta et al. (2013) and Chaynikov (2013). Results of 

simulations with nonreactive tracers are also available for the investigated Pe numbers. 
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Figure 2.2. Outline of porous medium scenario 1. 

Table 2.1. Combination of Da and Pe numbers which have been investigated with porous medium scenario 1. 

Pe=6, Da=8 Pe=6, Da=64.8 Pe=6, Da=1038 

Pe=24, Da=8 Pe=24, Da=64.8 Pe=24, Da=1038 

Pe=96, Da=8 Pe=96, Da=64.8 Pe=96, Da=1038 

 

� Porous medium scenario 2: The porous medium is no longer regular but the cylinders are 

irregularly distributed in space as shown in Figure 2.3. The porosity is fixed at the value of 0.6. 

This is a more complicated geometry in which both cavities and fast flowing channels influence 

the reaction and the transport evolutionary features. Table 2.2 reports the combinations of Da 

and Pe which have been investigated with this geometry: the results of these simulations have 

not yet been presented. The particle tracking algorithm is analogous to the one applied to the 

porous scenario 1. A non reactive tracer simulation was also run. 
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Figure 2.3. Outline of porous medium scenario 2. 

Table 2.2. Combination of Da and Pe numbers which have been investigated with porous medium scenario 2. 

Pe=6, Da=8 Pe=6, Da=64.8 Pe=6, Da=1038 

Pe=24, Da=8 Pe=24, Da=64.8 Pe=24, Da=1038 

 

Since we are considering 1D continuum models, the pore-scale simulation results have been averaged 

along the cross-sectional sections indicated in Figure 2.2 and Figure 2.3 through dashed black lines. In 

the following discussion, the pore-scale cross sectional averaged data will be referred as “pore-scale 

data”.  

2.3 Single-porosity continuum models 

We consider a porous medium that is fully saturated and the fraction of volume occupied by the liquid 

phase corresponds to the porosity of the porous medium (φ ); adsorption and biochemical reactions are 

supposed to be absent and the solid grain are impenetrable to water and to solutes. The latter implies 

that no solute concentration is expected into solid phase and the model is limited to liquid phase. 

Moreover the solid grains geometry is not affected by the reaction that takes place only in the liquid 

phase; hence the porosity can be considered constant in time. In our case study, the domain is one-

dimensional (along the axis x) and only three solutes are involved in the reactive process: the reactants 

A and B and the reaction product C. As a consequence, the PDEs system presents three 1-D equations: 
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where φ  indicates the porosity and ˆ
l

i
C  is the volume averaged concentration of solute i in liquid 

phase. We associate the following set of boundaries and initial conditions related to the case study 

analyzed: 
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The s term is defined positive for the product while it is negative for the reactants. Indeed, since the 

reaction is irreversible, C can only be formed while A and B are always consumed. For the sake of 

simplicity of numerical implementation, we define two conservative components D=B-A and E=B+C 

which allow us rewriting Eq. (2.1) in the following form that will be often used in the next paragraphs: 
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with the following boundaries and initial conditions: 
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Notice that the mass balances of D and E can be solved separately. 
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We investigate four different continuum models reviewed in literature that are all based on a system of 

PDEs structured as Eq. (2.1) or equivalently as Eq. (2.3): 

� MODEL 1: the advection-dispersion-reaction model (ADRE); 

� MODEL 2: the model formulated by Porta et al. (2012a); 

� MODEL 3: the model formulated by Sanchez-Vila et al (2010); 

� MODEL 4: the model formulated by Hochstetler and Kitanidis (2013). 

Each one of the listed models provides a different formulation. In the next paragraphs the conceptual 

formulations of these models will be explored: the dimensional and the dimensionless formulations will 

be presented pointing out the hypotheses assumed.  

2.3.1 MODEL 1: ADRE 

The advection-dispersion-reaction equation (ADRE) is a standard continuum model for reactive 

transport. Starting from the pore scale mass balance equations defined in Eq. (1.1),we can derive the 

ADRE formulation implementing the volume averaging method (Whitaker, 1999) and imposing the 

following hypotheses: 

� Spatial scale separation;  

� Da Pe�  that means that the reaction process is slow compared to advection and dispersion 

processes; 

� Time is assumed sufficiently large to consider a steady state closure (Porta et al.,2012). 

In the ADRE model the cross-correlation between the reactants concentration fluctuations in the 

reactive term is assumed to be negligible and the reactive term is then approximated by: 

 ˆ ˆˆ ˆˆ ˆ ˆ ˆ
l l l l

l l

A B B A A B
k C C C C k C C+ � � �  (2.5) 

where k̂  represents the intrinsic kinetic reaction rate derived from well-mixed batch tests.  

As we can see the structure of the ADRE model reflects the general continuum model structure 

Eq. (2.1) where the f and s terms are: 
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The parameter D̂ is the dispersion coefficient that embeds the effect of molecular diffusion and the 

hydrodynamic solute dispersion. The effective parameter D̂ is constant in space and time.  

We rewrite Model 1 using the dimensionless quantities reported in Eq. (1.4) and employing the 

conservative components D and E: 
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where the D  is the ratio between the dimensional dispersion coefficient and the dimensional diffusion 

coefficient. 

2.3.2 MODEL 2: Porta et al. (2012a) 

In this work we dedicate particular attention to the model presented by Porta et al. (2012a). This model 

is particularly interesting since it is formally derived by up-scaling the pore-scale system equation (1.1) 

using the volume averaging method. For details about the volume averaging implementation, see Porta 

et al. (2012a). 

Referring to the conservative components, the s  term is absent and the format of f  term is the 

following one: 
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where * indicates the convolution and *

U
D  is: 
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V  is the averaging volume, lsA  is the liquid-solid interface within the averaging volume and ib  is a 

closure variable ( Porta et al. 2012a; Porta et al.,2013). Regarding the reactive specie B the format of 

f  and s  depends on the relative importance of Da compared to Pe: 
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Following Porta et al. (2013) we can break Eq. (2.14) into two parts 1r  and 2Ur : 
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The term 2Ur  includes the closure variable Db  which embeds the effects of small scale fluctuations 

and, as a consequence, the effects of incomplete mixing. Due to the convolutions, the equations are non 

local in time meaning that the transport and the reaction at time t depend on the previous history of the 

system. Porta et al. (2012a) demonstrated that nonlocal effects tend to vanish with time and the 

standard formulation of Advection-Dispersion Equation (ADE) for conservative components and 

ADRE (see Eq. (2.8)) for reactive species are recovered in long times for Da Pe� .  

The inclusion of the convolution in the equations turns them into integral-differential equations the 

solution of which is computationally expensive. In this work, we do not include a fully nonlocal 

solution, but we resort to two simplified approximations of Equations (2.11)-(2.14) . The two 

simplified formulations will be referred as Model 2 and Model 2b in the following.  

MODEL 2 

A first possible simplification of Porta et al. (2012a) model can be done if we assume that the system 

parameters attained an asymptotic value. In this case, the convolution can be substituted by a Fickian 

term. The conservative components are then described by the ADE model. Concerning the reactive 

specie B, if Da Pe� the ADRE model is recovered while if Da Pe� : 

 ( )
1

1

l l

B DC C
f M D

Pe x x

  ∂ ∂
 = + −  

 ∂ ∂   

 (2.17) 

 ( ) ( )

2

1

l

l l l D

B B D

CDa
s C C C M M B

Pe x

  ∂ = − − + −  
  ∂  

 (2.18) 

where B  is the asymptotic value of 
2

l

D
b in the asymptotic regime.Since we approximate the 

convolution of Model 2 reaction term to a constant parameter, it is possible that for short times the 

absolute value 2r  is bigger than 1r  leading to a negative reaction rate. In order to avoid this physically 

impossible result, we solve Model 2 imposing that: 

� If 2 1r r>  then 0s = , i.e. reactants do not mix at all; 

� If 2 1r r<  then 1 2s r r= + . 
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MODEL 2B 

In Model 2b, we simplify Porta et al. (2012a) model formulation (reported in Eq. (2.11)-(2.14)) 

assuming that the flux and the reaction terms are function of time but they don’t depend on the previous 

history of the system. In this case convolutions are approximated as follows: 

 

2 2

* ( )

l
l l

D D

D

C C
b B t

x x

   ∂ ∂
  =  
   ∂ ∂   

 (2.19) 

 ( )* 1 * ( )

l l

D D

U

C C
D D t

t x x

 ∂ ∂∂
−   =

 ∂ ∂ ∂ 
 (2.20) 

where ( )B t and ( )D t  are: 

 
1

2

( ) (1 exp( ))

( ) (1 exp( ))

B t B a t

D t D a t

= − −

= − −
 (2.21) 

Substituting Eq.(2.19)-(2.21) into Eq. (2.9)-(2.14) we obtain the formulation of Model 2b for 

conservative and reactive solutes. The exponential formulation of Eq. (2.21) is suggested by the 

analyses done by Porta et al. (2013). In Figure 2.4 we can observe that B and D present an exponential 

growth for short times and then they reach a steady asymptotic value and, as consequence Eq. (2.21) 

can well interpret the time evolution of the parameters. In Figure 2.4, B and D trends are expressed as 

function of diffusive timescale ( Dt ). 

 

Figure 2.4 Evolution of the (a) longitudinal dispersion coefficient DU*and (b) b2
D with tD forφ =0.25 (Porta et al., 2013). Here b2

Dx 

is the square value of the closure variable along the x-axis and corresponds to B(t). 
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2.3.3 MODEL 3: Sanchez-Vila et al. (2010) 

Model 3 was proposed in Sanchez-Vila et al. (2010) after pointing out the limitations of ADRE model. 

We will first report the original dimensional formulation, then we provide its dimensionless 

counterpart. Sanchez-Vila et al. (2010) defined a new continuum model based on the ADRE aiming at 

interpreting the experimental data reported in Gramling et al (2002). While the f  term remains 

unchanged compared to Model 1, they assumed that the s  term can be modeled as: 

 ˆ ˆ ˆ
l l

A B
s C Cβ=  (2.22) 

where β̂  is a time dependent coefficient expressed by the following equation: 

 0
ˆ ˆ ˆ m

tβ β −=  (2.23) 

and it embeds the effect of incomplete mixing. Parameters 0β̂  and m  are explicitly defined as 

calibration parameters. Contrasting other approaches (Gramling et al.,2002, Rubio et al., 2008; 

Hochstetler and Kitanids, 2013), Sanchez-Vila et al. (2010) considered the dispersion coefficient as a 

calibration parameter. The authors presented a conceptual explanation of their model that is briefly 

reported here. Since the fluid velocity can exhibit large variations at the pore-scale, a real porous 

medium can be schemed as a two regions mass transfer model (introduced in section 1.4.3): the 

immobile zones are constituted by dead-end pores and relative slow fluid velocity conduits (compared 

to the mean Darcy velocity) while the mobile zones are represented by the fast flowing conduits. 

Immobile and mobile zones exchange mass due to advection and diffusion processes and, depending on 

the importance of these processes, the mixing between reactants can be more or less fast. Because of 

that, the presence of these immobile zones delays the mixing processes between the reactants and 

influences the entity of reaction rate. As a consequence the mass transfer rate between the immobile 

and mobile zones assumes a key role in the reactive transport. In this framework, Sanchez-Vila et al. 

(2010) include the effect of the mass transfer rate into the reaction term through the parameter β̂ . The 

mathematical form of β̂  is based on Haggerty et al.(2004).  
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Sanchez-Vila et al. (2010) performed the calibration and validation process as follows: 

� Among the experimental results proposed by Gramling et al. (2002), two sampling product 

profiles are selected (at t=610 s and t=1114 s); 

� The parameters D̂, 0β̂  and m  are adjusted manually against the two sampling profiles; 

� Using the calibrated parameters (reported in Table 2.3), a validation of the model is performed 

against the product profiles at t=916 s and t=1510 s. 

Sanchez-Vila et al. (2010) observed agreement between their model predictions and experimental data 

and demonstrated that continuum models are able to capture reactive transport features. Moreover, they 

highlighted that the calibrated dispersion coefficient is lower than the conservative one proposed by 

Gramling et al. (2002). 

Table 2.3. Parameters calibrated by Sanchez-Vila et al. (2919) for the experiment performed by Gramling et al. (2002). 

D̂ 1.30*10
-3 

0β̂  240 L/(mol s) 

m  0.93 

 

The parameter β̂  has the same dimension of k̂ , the intrinsic reaction rate. We can define a 

dimensionless form of β̂  as: 

 
ˆ

k̂

β
β =  (2.24) 

We rewrite Model 3 using the dimensionless quantities reported in Eq. (1.4) and in Eq. (2.24) and 

employing the conservative components D and E: 

 

2

2

2

2

1
( 1)  i=E,D

ˆ ˆ

1
( 1) ( )

ˆ ˆ

l l l

i i i

l l l

l l lB B B

B B D

C C C
D u

t Pe x x

C C C Da
D u C C C

t Pe x x Pe
β

∂ ∂ ∂
= + −

∂ ∂ ∂

∂ ∂ ∂
= + − − −

∂ ∂ ∂

 (2.25) 
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2.3.4 MODEL 4: Hochstetler and Kitanidis (2013) 

Model 4 is based on the Segregation Intensity concept formulated by Kapoor et al. (1997). Starting 

from the Segregation Intensity ( S ) reported in Eq. (1.15), Hochstetler and Kitanidis (2013) defined the 

effective reaction rate ( ˆ
effk ) and the effectiveness factor (E) as: 

 ( )ˆ ˆ1effk S k= −  (2.26) 

 
ˆ

1
ˆ
effk

E S
k

= = +  (2.27) 

Introducing the effective reaction rate, Hochstetler and Kitanidis (2013) recasted the ADRE model  

into the following model: 

 

2

2

ˆ ˆ ˆ
ˆ ˆ ˆˆˆ   , ,

ˆ ˆ ˆ

l l l

l li i i

eff eff eff A B

C C C
u D k C C i A B C

t x x

∂ ∂ ∂
= − + ± =

∂ ∂ ∂
 (2.28) 

Hochstetler and Kitanidis (2013) developed an empirical formulation of E  applying this procedure: 

� A conservative transport problem is solved in a virtual two-dimension domain with the 

following features (Figure 2.5): the system dimensions are L=7.45 cm and H=1.54 cm, the 

grains are represented as circles with a fixed diameter of 0.5 mm, the circles are first placed in 

space according to a regular grid and then randomly displaced around their original locations, if 

any overlapping of cylinders occurs a conglomeration is formed; 

� The Break-Through Curves (BTCs) of cross-sectionally averaged concentrations are measured 

at different distances from the inlet; 

� Using the tracer BTCs at a distance equal or bigger than 4 cm from the inlet, the BTCs data are 

fitted to the ADE model where the Darcy velocity ( ˆ
eff

u ) and the dispersion coefficient ( ˆ
effD ) are 

the fitting parameters; Hochstetler and Kitanidis (2013) assumed that the transport regime can 

be considered asymptotic at that distance from the inlet; 

� The reactive transport problem described by Eq. (1.1) is solved in the same virtual two-

dimension domain for different values of constant intrinsic rate ( k̂ );  
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� The BTCs of the averaged cross sectional reaction product concentrations are computed at 

different distances from the inlet boundary; 

� The BTCs of reaction product concentrations are fitted to Eq. (2.28) using ˆ
effk  as fitting 

parameter while ˆ
eff

u and ˆ
effD  are the ones estimated for non-reactive transport; 

� The evolution of ˆ
effk  as function of k̂  and the cross section distance from the inlet is analyzed 

(Figure 2.6a) and the evolution of the effectiveness factor E as function of Da  is derived 

(Figure 2.6b); 

� Looking at Figure 2.6b, Hochstetler and Kitanidis (2013) finally proposed this empirical 

formulation of E: 

 E
Da

γλ

λ
=

+
 (2.29) 

 where γ  and λ  are dimensionless calibration parameters. 

� Hochstetler and Kitanidis (2013) calibrated the parameters γ  and λ  against the curve reported 

in Figure 2.6b obtaining the values reported in Table 2.4 for the specific case study analyzed in 

their work. 

Table 2.4 Calibrated parameters for the specific case analyzed by Hochstetler and Kitanidis, (2013). 

ˆ
effu  2.88*10

-5
 [m/s] 

ˆ
effD  1.08*10

-8
 [m

2
/s] 

γ  0.94 

λ  11.2 
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Figure 2.5 Porous medium domain with flow and transport boundary condition. The grains are with and the pore-space is gray. 

 

Figure 2.6. The effective reaction rate constants fitted from product ( C) BTCs for a range of intrinsic rate constants 

(from 0.01 M-1s-1) computed at different cross sections. The effective rate constant versus the intrinsic rate constants (a),and the 

mean effectiveness factor plus/minus one standard deviation versus the Damkhöler number (b), from Hochstetler and Kitanidis 

(2013). 

According to Eq. (2.28), the f  term is analogous to Eq. (2.6), i.e. the ADRE flux term. Introducing the 

correcting factor E  as defined in (2.27), we express the s  term as: 

 ( )ˆ l l

A Bs Ek C C=  (2.30) 
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We rewrite Model 4 using the dimensionless quantities reported in Eq. (1.4) and employing the 

conservative components D and E: 

 

2

2

2

2

1
( 1)  i=E,D

ˆ ˆ

1
( 1) ( )

ˆ ˆ

l l l

i i i

l l l

l l lB B B

B B D

C C C
D u

t Pe x x

C C C Da
D u E C C C

t Pe x x Pe

∂ ∂ ∂
= + −

∂ ∂ ∂

∂ ∂ ∂
= + − − −

∂ ∂ ∂

 (2.31) 

2.4 MODEL 5: Dual Rate Mass Transfer Model  

We have introduced the concenptual framework of this model in section 1.4.3. At the continuum-scale, 

we can model reactive transport within a double porosity medium as a system of coupled PDEs 

(labeled here as Model 5). Two equations are needed to describe the space-time evolution of each 

dissolved specie, i.e. one in the mobile and one in the immobile region. We adopt here the following 

mathematical formulation (Bear and Cheng, 2010):  

 

2

2

2

2

ˆ ˆ ˆ
ˆ ˆ ˆˆˆ  i=A ,B

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆˆˆ

ˆ ˆ ˆ

ˆ
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ˆ

ˆ

ˆ

m m m

m m

m m m

m m
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im im
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m m m

m mi i i

m m im m m Mob m m A B m m

m m m

m mC C C

m m im m m Mob m m A B

im

im imi

m im A B im im

im

C

C C C
s v D D k C C

t x x

C C C
s v D D k C C

t x x

C
s k C C

t

C
s

t

φ φ φ

φ φ φ

→

→

→

∂ ∂ ∂
= − − + −

∂ ∂ ∂

∂ ∂ ∂
= − − + +

∂ ∂ ∂

∂
= −

∂

∂
=

∂
ˆ ˆ ˆ

im im

im im

m im A Bk C C→ −

 (2.32) 

where: 

� The transport and the reaction for the species in the mobile phase are modeled as in the ADRE 

model, i.e. we assume that the reactants are well mixed within the rwo separated phases; 

� In the low velocity region, advection and dispersion are assumed neglected; 

� The two continua can exchange solutes and the mass transfer is modeled as a source term m ims →  

which measures the amount of solute mass that moves from mobile region (m) to immobile (im) 

one; 
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� MobD  is the ratio between the dispersion coefficient in the mobile region and the diffusion 

coefficient; 

� mφ  represents the fraction of void volume in the porous medium associated to mobile phase, i.e. 

the mobile porosity; 

� ˆ
m

v  indentifies the average seepage velocity in the mobile region; 

� ˆ
m

m

i
C  and ˆ

im

im

i
C  are the volume averaged solute concentrations in the mobile phase and in 

the immobile phase respectively. 

The mass transfer process ( m ims → ) is commonly expressed as (Bear and Cheng, 2010): 

 ( )ˆ ˆˆ  i=A,B,C
m im

m im

m im im i i
s Z C Cφ→ = −  (2.33) 

where imφ  represents the fraction of void volume in the porous medium associated to immobile regions. 

The parameter Ẑ  is the mass transfer rate and it quantifies the mass transfer velocity between the 

immobile and mobile phases. As Ẑ  increases, the system tends to behave a single-domain model where 

the porosity tends to φ  and, on the other hand, when Ẑ  gets close to zero the system can be modeled as 

a single-domain model where the porosity is equal to mφ  (Zheng and Wang, 1999). 

We define the dimensionless volume averaged seepage velocities in mobile ( m
v ) and in immobile 

( im
v ) regions as: 

 
ˆ

ˆ
m

m

v
v

U
=  (2.34) 

 
ˆ

ˆ
im

im

v
v

U
=  (2.35) 

where îm
v is the averaged dimensional seepage in the immobile water and it is has been assumed 

equal to zero.  
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We define the dimensionless characteristic fluid velocity ( û ) of the porous medium as: 

 
m m im im m mv v v

u
φ φ φ

φ φ

+
= =  (2.36) 

We will now reformulate the Eq.(2.32)-(2.33) using the dimensionless quantities of Eq. (1.4) and 

Eq. (2.36) and the conservative components E and D. 
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∂ ∂ ∂
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∂ ∂ ∂

∂ ∂ ∂
= − − − + + + −

∂ ∂ ∂

∂
= −

∂

∂
= − −

∂ ( )ˆ ˆ
im im im

im imim

B B D
C C C−

 (2.37) 

where IMβ is the ratio between the immobile porosity and mobile porosity while Z  is the mass transfer 

Ẑ  multiplied to 
Ât  in order to get an dimensionless mass transfer. 

2.5 Model implementation  

In this section we illustrate the numerical code used for models implementation. The PDEs systems are 

solved through the implementation of the PDEPE Matlab function. This member of the Matlab toolbox 

is suggested in Matlab User’s Guide for solving flows in porous media and diffusive problems (Partial 

Differential Equation Toolbox™ User’s Guide, 2013). The PDEPE function solves initial-boundary 

value systems of parabolic-elliptic PDEs in 1-D. The user is required to define the PDEs structure, the 

spatial mesh (xmesh) and the times (tspan) at which he/she is interested to the solution of the problem. 

The PDEPE Matlab function operates a discretization in space of the PDEs to obtain Ordinary 

Differential Equations (ODEs). The resulting ODEs are then integrated to obtain the solution at the 

tspan required by the user. The time integration is done by the ode15s Matlab function. Notice that the 
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ode15s does not integrate the solution on the time steps required by the user but it adapts the time step 

and the formula automatically for the integration. The code ode15s is a quasi-constant step size 

implementation of the Numerical Differentiation Formulas (NDFs). This family of numerical methods 

is a modification of Backward Differentiation Formulas (BDFs), (van Schijndel et al, 2000). The BDFs 

are implicit and linear multi-steps methods: they approximate the derivative of the solution at time-step 

h using the information computed at the time-step h itself and at n previous time-steps. 

Before implementing this code for solving the models, we verified the suitability of the code to the 

simulation of transport codes. In particular, we compared the solution given by the PDEPE function 

against analytical solutions of: 

� Ogata and Banks (1961) in section 2.5.1; 

� Huang et al.(2000) analytical solution for double porosity model in section 2.5.2. 

The results showed in the next paragraphs confirmed the suitability of this tool for the problems of 

transport in porous media. 

2.5.1 Ogata and Banks (1961) 

Ogata and Banks proposed the analytical solution in 1961 for the Advection-Diffusion Equation (ADE) 

with the following assumptions (Ogata and Banks, 1961): 

� the porous medium is homogeneous and isotropic and no mass transfer takes place between the 

liquid phase and the solid phase; 

� the porous medium is fully saturated; 

� the flow is considered unidirectional and the velocity is constant along the flow field; 

� the solute is conservative. 

Then the problem is formulated as: 

 
2

2

dC C C
D v

dt x x

∂ ∂
= −

∂ ∂
 (2.38) 
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The following boundaries and initial conditions are associated to Eq. (2.38): 

 

0(0, )    0

( ,0) 0    0

( , )
0    0

( , )
0    0

C t C t

C x x

C t
t

x

C t
t

x

= ∀ ≥

= ∀ ≥

∂ +∞
= ∀ ≥

∂

∂ −∞
= ∀ ≥

∂

 (2.39) 

where D [m
2
/s] is the dispersion coefficient, ( , )C t x  [mol/m

3
] is the solute concentration in the fluid, v  

[m/s] is the average fluid velocity while x  [m] and t  [s] are the spatial and temporal coordinates. 

The analytical solution proposed by the authors is: 

 
0

( , ) 1
exp

2 4 4

C x t x vt vx x vt
erfc erfc

C DDt Dt

 − +    
= +     

     
 (2.40) 

We implement the problem Eq. (2.38)-(2.39) with the PDEPE Matlab function for different values of D 

and different x step lengths ( x∆ ) while v  is constant and equal to 0.6 m/s. Table 2.5 reports the 

combinations of D and x step lengths investigated. 

Table 2.5. Combination of D and x step lengths analyzed in the comparison between the Ogata-Banks analytical solution and 

PDEPE Matlab function solution. 

D=2×10
-2

 cm
2
/s; x∆ =0.01 cm; D=5×10

-2
 cm

2
/s; x∆ =0.01 cm; D=10×10

-2
 cm

2
/s; x∆ =0.01 cm; 

D=2×10
-2

 cm
2
/s; x∆ =0.05 cm; D=5×10

-2
 cm

2
/s; x∆ =0.05 cm; D=10×10

-2
 cm

2
/s; x∆ =0.05 cm; 

D=2×10
-2

 cm
2
/s ; x∆ =0.1 cm; D=5×10

-2
 cm

2
/s; x∆ =0.1 cm; D=10×10

-2
 cm

2
/s; x∆ =0.1 cm; 

 

We computed the error ( err ) between the Ogata-Banks analytical solution ( ANALYTICALC ) and the 

PDEPE solution ( PDEPEC ) at t=5 s using: 

 ( )
2

1

nx

jPDEPE jANALYTICAL

j

err x C C
=

= ∆ −∑  (2.41) 
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where x∆  is the x step length; nx  is the number of x-steps in the domain; 
jANALYTICALC .and 

jPDEPEC  are 

the concentration solute value computed at j-th x step for Ogate-Banks solution and PDEPE solution 

respectively. 

Figure 2.7 shows the error trend as function of x∆  and D. We can observe the PDEPE solution 

converges to the analytical solution with the x∆  decrement with almost quadratic convergence. For 

0.01 cmx∆ = the error is very small and can be considered a digital error. 

 

Figure 2.7. Error trends as function of D and x step-length. 

2.5.2 Ciriello et al (2013) 

Ciriello et al. (2013) implemented the analytical solution for the dual porosity model proposed by 

Huang et al.(2000) in which a conservative solute undergoes to advection and dispersion process. A 1D 

computational domain is considered where a conservative solute is injected from the left boundary as 

depicted in Figure 2.8. The mathematical description of the problem is the following one: 

 

( )

* 2

2

*
*

( , ) ( , ) ( , ) ( , )
(1 ) '

( , )
1 ( , ) ( , )

C x t C x t C x t C x t
f f D q

t t x x

C x t
f K C x t C x t

t

∂ ∂ ∂ ∂
+ − = −

∂ ∂ ∂ ∂

∂
 − = − ∂

 (2.42) 

Here we adopted the symbols used in Ciriello et al.(2013):  

� K [1/s] is the rate mass transfer between the mobile and immobile phases; 

� f  is the fraction of mobile pore space in the porous medium; 
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� C [mol/m3] and *C [mol/ m3] are the mobile and immobile concentrations respectively; 

� 'D  [m
2
/s] is the longitudinal dispersion; 

� t  [s] and x [m] are the temporal and space coordinates; 

� q  [m/s] is the Darcy velocity.  

The following boundaries and initial conditions are associated with Eq. (2.42): 
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 (2.43) 

where L  is the domain length and it is supposed to be long enough in order to avoid that the right 

boundary condition affects the evolution of concentration in space. 

 

Figure 2.8. Double porosity problem scheme. 

To obtain the analytical solution, Equations (2.42)-(2.43) are transformed into Laplace space: 
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 (2.44) 
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Equation (2.44) is completed by the following boundary conditions: 
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where c�  and *
c�  are the transformed variables of c  and *

c  respectively; u  is the Laplace parameter and 

(1 )

(1 )

f f u K
u

f u K
ξ

− +
=

− +
. 

The analytical solution of Eq. (2.44) is: 
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where: 
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The analytical solution in the Laplace space is then numerically inverted using the algorithm of Stehfest 

(1970). 

We implement the Eq. (2.42)-(2.43) with the PDEPE Matlab function for different values of K  and 

different x step lengths ( x∆ ) while the others parameters are constant and representative of a real 

laboratory scale setting . Table 2.6 reports the combinations of K  and x step lengths investigated while 

Table 2.7 indicates the constant values of the others considered parameters. 
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Table 2.6. Values of K and x step lengths analyzed in the comparison between the Ciriello et al. (2013) analytical solution and 

PDEPE Matlab function solution. 

K=1×10
-5

 1/s; x∆ =0.001 m K=5×10
-5

 1/s; x∆ =0.001 m; K=2×10
-6

 1/s x∆ =0.001 m; 

K=1×10
-5

1/s; x∆ =0.0005 m; K=5×10
-5

 1/s; x∆ =0.0005 m; K=2×10
-6

 1/s; x∆ =0.0005 m; 

K=1×10
-5

 1/s; x∆ =0.00001 m; K=5×10
-5

 1/s; x∆ =0.00001 m; K=2×10
-6

 1/s; x∆ =0.00001 m; 

K=1×10
-5

1/s; x∆ =0.00005 m; K=5×10
-5 

1/s; x∆ =0.00005 m; K=2×10
-6

 1/s; x∆ =0.00005 m; 

 

Table 2.7. Ciriello et al. (2013) model parameters. 

Parameters Value 

'D  6.31×10-8m2/s 

q  4.356×10
-5

m/s 

f  0.36 

 

We compute the error ( err ) between the analytical solution ( ANALYTICALC )and the PDEPE solution (

PDEPEC ) at t=40 s using (2.41) where x∆  is the x step length; nx  is the number of x-step in the 

domain; 
jANALYTICALC .and 

jPDEPEC  are the concentration solute value computed at j-th x step for 

analytical solution and PDEPE solution respectively. Figure 2.9 and Figure 2.10 show the error trends 

as function of x∆  and K  for the mobile and the immobile phase respectively. We can observe the 

PDEPE solution converges to the analytical solution with the x∆  decrement. For 0.01 cmx∆ = the 

error attains negligible values. In Figure 2.9, we observe that the rate of convergence to the analitycal 

solution decreases for small x∆ . This can be explained considering that the analytical solution to 

which we are referring, is actually obtained through Laplace solution numerical inversion.  
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Figure 2.9. Error trends as function of K and x step-length 

for the mobile solute concentration. 

 

Figure 2.10. Error trends as function of K and x step-length 

for the immobile solute concentration.  

2.6 Summary of methodologies 

All the elements presented in this chapter are necessary to obtain the desired results proposed in section 

1.5. A scheme of the thesis methodological procedure is outlined in Figure 2.11. 

First model mathematical and conceptual formulations are defined (in Figure 2.11 n=1,2,3,4,5). The 

models are then contextualized to the specific benchmark problem introducing some boundary and 

initial conditions inferred from the problem setting chosen. The models are then implemented and 

numerically solved using a Matlab tool (PDEPE function). The solution depends on the value assigned 

to the parameters (in Figure 2.11 generically identified by the symbol “p”) included in the model 

formulation. Two different approaches are used to define the values of the parameters depending on the 

porous medium scenario analyzed: 

� Porous medium scenario 1: the parameters values of Model 1 and Model 2 have already been 

computed by Porta et al. (2013) for this specific porous scenario. As a consequence, we solve 

Model 1 and Model 2 as function of the values suggested by Porta et al. (2013).  

� Porous medium scenario 2: in this case different combinations of the parameters for each 

model have been proposed and each model is solved as many times as the number of parameter 

values combinations.  
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�  

� Figure 2.11 Outline of the methodological procedure. 

2.6.1 Definition of pore-scale quantities for model assessment 

As previously stated, the pore-scale simulations are run on a bidimensional domain indicated in Figure 

2.1 and recalled in Figure 2.12. The geometrical dimensions of the domain are indicated in Figure 2.12 

with the labels H (along the y coordinated) and L (along the x coordinate corresponding to the direction 

of the averaged fluid velocity). 

 

Figure 2.12 Outline of the problem setting and geometrical dimensions.  
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We assess the different model numerical solutions using the following quantities computed on pore-

scale data:  

� Concentration profiles ( AC , BC , CC ): section averaged concentration distributions along x 

direction direction recorded at time t�  computed as: 

 ( , ) ( , , )   , ,
i i

H

C x t c x y t dy i A B C= =∫� �  (2.47) 

where H indicates the dimension of the 2D-domain along the y direction considered in pore-

scale simulations; 

� Global product ( CG ): time-evolution of the integrated product concentration within the entire 

domain computed as: 

 ( ) ( , )C C

L

G t C x t dx= ∫  (2.48) 

where L is the domain dimension alng the x direction; 

� Global rate ( CR ): time-evolution of the reaction rate integrated within the entire domain 

computed as: 

 
( )

( ) C

C

dG t
R t

dt
=  (2.49) 

� Peak product concentration ( maxCC ): evolution maximum value of product concentration 

registered as function of time: 

 
max ( ) max[ ( , )]

C
C t C t x=  (2.50) 

To smooth local oscillations of the concentration profile  product concentration peak is 

computed by averaging 41 data centered around the maximum value. 
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2.6.2 Criteria for models assessment 

The models assessment and comparison, on the basis of the quantities introduced in section 2.6.1, is 

done computing four different functions, which quantify the difference between continuum and pore-

scale model results. We label those functions as “objective functions” in the following, as they are 

proposed as candidate objective function for reactive transport model calibration. The first objective 

function we consider ( 1f ) computes the means squared error yielded by continuum model 

concentration profile predictions with respect to pore-scale data: 

 

2

_ _

1
1 _

( ) ( )  

( )  , ,   1, 2,3,4,5

N

ni k ni PS

n
i k j

C t C t

f t i A B C k
N

=

 − 
= = =
∑

 (2.51) 

where 
1 _ ( )
i k

f t  is the first objective function computed for the chemical species i  profiles given by the 

Model k  at time t ; 
_ ( )

ni k
C t  is the concentration predicted by Model k  for the chemical i  at time t ; 

_ ( )
ni PS

C t  is the concentration derived by pore-scale averaged data of the species i ; N is the number of 

data considered. Eventually, the function 1f  definition is applied to global product ( CG ) in the 

following form: 

 

( )
2

_ _

1
1 _

N

Cn k Cn PS

n
GC k

G G

f
N

=

−

=
∑

 (2.52) 

where 
1 _GC k

f  is the first objective function computed for the global product given by the Model k  at 

time; 
_Cn k

G  is the global product given by the Model k ; 
_Cn PS

G  is the global product given by pore-

scale data; 

The second objective function ( 2f ) considered in this analysis is: 

 

2

_ _

1
2 _

log( ( )) log( ( ))

( )  , ,   1, 2,3,4,5

N

ni k ni PS

n
i k

C t C t

f t i A B C k
N

=

 − 
= = =
∑

 (2.53) 
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which is computed for the chemical species i  profiles yielded by the Model k  at time t . Eq. (2.53) is 

similar to Eq. (2.51) but, instead of linear concentrations, the mean squared error is computed on the 

logarithmic values of concentrations.  

Then, we introduce a third objective function ( 3f ) which relies on the definition of the survival 

function ( SF ): 

 
_

_ _

( ) 1 ( )  ,   1, 2,3,4,5

( ) 0.5 ( ) 1,2,3,4,5

i i k

C k C k

SF t C t i A B and k

SF t C t k

= − = =

= − =
 (2.54) 

where 
_ ( )

i k
SF t indicates the survival function computed for the chemical species i  profile predicted by 

Model k  at time t  and 
_ ( )

i k
C t  is the concentration profile of chemical i  at time t  predicted by the 

Model k  at time t . Similarly, we can define the survival function computed on pore-scale cross 

sectional averaged concentrations: 

 
_ _

_ _

( ) 1 ( )  ,

( ) 0.5 ( )

B PS i PS

C PS C PS

SF t C t i A B

SF t C t

= − =

= −
 (2.55) 

where 
_ ( )

i PS
SF t indicates the survival function computed for the chemical i  on pore-scale cross 

sectional averaged concentrations at time t  and 
_ ( )

i PS
C t  is the pore-scale cross-sectional averaged 

concentration of chemical i  at time t . The third objective function 3f  is defined including Eq. (2.55)-

(2.54): 

 

2

_ _

1
3 _

log( ( )) log( ( ))

( )    , ,   1, 2,3, 4,5

n

in k in PS

n
i k

SF t SF t

f t i A B C k
N

=

 − 
= = =
∑

 (2.56) 

where 
3 _ ( )

i k
f t  is computed for the chemical species i  profiles predicted by the Model k  at time t . 

Finally the fourth objective function is the sum of 
2 _i k

f  and 
3 _i k

f : 

 
4 _ 2 _ 3 _( ) ( ) ( )  , ,   1, 2,3,4,5

i k i k i k
f t f t f t i A B C and k= + = =  (2.57) 
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CChhaapptteerr  33  RREESSUULLTTSS  11::  PPOORROOUUSS  MMEEDDIIUUMM  SSCCEENNAARRIIOO  11    

We analyze here the pore-scale setting (see section 2.2) investigated in Porta et al. (2013). The main 

findings of their analysis, are briefly recalled below, as they are useful for our successive results 

elaboration and discussion. Then, we compare the results obtained by implementation of Model 1 and 

Model 2 with those yielded by pore scale simulations 

3.1 Summary of results by Porta et al. (2013)  

Using the detailed numerical simulations performed on this porous medium scenario, the authors 

explored three main aspects: i) the evolving dynamics of reactive process in this porous medium; ii) the 

time evolution of D and B appearing in Model 2 formulation; iii) the reliability of Model 2 reaction 

term (Eq. (2.14)) in describing the reaction observed in pore-scale simulations.  

The evolution in time of global quantities (global product and global reaction rate) shows that at early 

times the reaction process depends on Da  value while for later times it is governed by Pe  number 

becoming independent of reaction constant. In Figure 3.1, the time evolutions of global quantities is 

compared to expected evolutions in asymptotic regime which have been determinated in 

Porta et al. (2012b): 

� global product asymptotically evolves proportional to the to the square root of time ( CG t∝ ); 

� global reaction rate is asymptotically inversely proportional to the square root of time (

1
C

R
t

∝ ). 

Through this comparison, Porta et al. (2013) showed that the system tends to the asymptotic behavior 

more or less quickly depending on the Da  number (Figure 3.1).  

Even as incomplete mixing process does not strongly affect global quantities, it has a key influence on 

the local fluctuations of reactants concentrations and on the shape of the mixing zone. 

Porta et al. (2013) showed that Da  critically impacts the local reactant mixing degree and in particolar 

demonstrated that the incomplete mixing at the pore scale is proportional to both Pe and Da numbers. 
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In practice this means that the most interesting and challenging reactive transport setting for continuum 

scale models corresponds to combinations of high Pe and Da numbers. 

 

Figure 3.1 Global product (G*C) versus tD* ( 2

*
ˆˆ ˆ

D
t tD w= ) in logarithmic (a) and linear (b) scales. Numerical results are for Da =8.2 

(○), 64.8 (□), 1038 (∆). Black, grey and empty symbols are associated with =0.25, 0.36 and 0.5, respectively. the solid line 

corresponds to asymptotic behavior (Porta et al., 2013). 

Porta et al. (2013) computed the time-evolution of D (Figure 3.2a) and B (Figure 3.2b) using pore-

scale data showing that both the parameters increase with time and rapidly reach an asymptotic value. 

This suggests that non-local effects are negligible in this specific porous medium. 

 

Figure 3.2 Evolution of the (a) longitudinal dispersion coefficient DU*and (b) b2
D with tD for φ=0.25 (Porta et al., 2013). Here b2Dx 

is the square value of the closure variable along the x-axis and corresponds to B. 

Finally, Porta et al. (2013) demonstrated the appropriateness of the reaction rate term proposed in their 

model in capturing local and global features of reactive transport nevertheless nonlocal effects are 

neglected (see Eq.(2.18)). As explained in section 2.3.2, Porta et al. (2013) reaction term can be broken 

into two different parts: 1r  and 2Ur (see Eq.(2.15) and Eq. (2.16)). The term 2Ur  can be computed by 

resolving a pore-scale closure problem, which is derived through Volume Averaging of pore scale 
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equations. This yields an approximation of the averaged reactant cross-covariance appearing in up-

scaled reaction term: 

 
2

l

A B

Da
r c c

Pe
= � �  (3.1) 

Porta et al. (2013) compared 2Ur  to 2r  computed on pore-scale data. Figure 3.3 shows that 2Ur  (Figure 

3.3b) captures the salient features of 2r  (Figure 3.3a) local distribution. Hence Porta et al. (2013) 

showed that the global reaction rates obtained integrating  and 2Ur  within the all domain well-

approximated the ones computed through pore-scale data.  

 

Figure 3.3 Spatial distribution of a) r2 and b) its approximation r2U in a unit cell at reaction front (Porta et al. 2013). 

3.2 Qualitative Model 1 and Model 2 comparison 

In this chapter we provide an advancement of the work presented in Porta et al. (2013) by providing 

the direct solutions of Porta et al. (2012a) model and Model 1 at the continuum-scale and comparing 

the results with those yielded by pore-scale simulations. Among the numerical simulations presented in 

Porta et al. (2013), we focus here only on the one characterized by largest Pe =96 and Da =1038, i.e. 

the combination of maximum Pe  and Da  numbers. Indeed, as stated above, in this conditions, 

reactants exhibit an higher degree of incomplete mixing. As a consequence, this combination of 

parameters, among those considered in Porta et al. (2013), poses the greatest challenges to continuum 

models. The characteristics of the simulation considered in the following are reported in Table 3.1. 

1r
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Since the analysis of Porta et al. (2013) demonstrated that dispersion and reaction convolutions have a 

limited impact in this specific problem setting, we solve the approximation of Porta et al. (2012a) 

model proposed in section 2.3.2 using the asymptotic values of dispersion (D) and B computed by 

Porta et al. (2013) and reported in Table 3.2. 

Table 3.1 Numerical pore-scale simulation conditions in porous medium scenario 1. 

Pe  96 

Da  1038 

φ  0.36 

ˆ
m

D  2.0000e-9 [m
2
/s] 

ŵ  7.2000e-004 [m] 

ˆ
l

u  2.6667e-004 [m/s] 

k̂  4.0046 [m
3
/(mol s)] 

 

Table 3.2 Values of D and B computed by Porta et al. (2013) for porous medium scenario 1. 

*D  45.591 

B  0.399 

 

Model 2 predictions are then compared to pore-scale cross sectional data in order to assess the validity 

of the Volume Averaged formulation. We compare the results of Model 2 to those of Model 1 (i.e., the 

ADRE) solution in order to investigate the importance of incomplete mixing term on the modeling of 

process at continuum scale. The comparison between Model 1, Model 2 and pore-scale data is 

presented in term of the quantities introduced in section 2.6: global mass of the reaction product ( CG

)indicated in Eq. (2.48), chemical concentration profiles ( , ,A B CC C C ) definted in Eq. (2.47); time-

evolution of product peak concentration ( maxC ) according to Eq.(2.50) and  the global reaction rate (

CR ) computed as reported in Eq. (2.49). 
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3.3 Qualitative analysis of Models results against pore-scale simulations 

We move from the analysis of global quantities such as global product and global reaction rate, as 

defined in Eq. (2.48)-(2.49). As shown in Figure 3.4, Model 1 and Model 2 predictions of CG  are 

almost indistinguishable for 010t >  and tend to diverge when t  approaches to zero. Even as Model 1 

and Model 2 global products present different behaviors for short times, we cannot discriminate which 

one of the two solutions better interprets the pore-scale data since these are available only for 

dimensionless times larger than 1. Model 1 global product is consistently bigger than Model 2 global 

product for short times. For 010t > , Model 1 and Model 2  both well predict the pore-scale global 

product. Similar considerations can be drawn from Figure 3.5 where global reaction rate CR  is 

depicted. Model 1 global reaction rate starts to increase earlier and reaches an higher peak compared to 

Model 2 global reaction rate. For 010t > , both the Models recover the asymptotic behavior 
1

C
R

t
∝  

and well reproduce the results yielded by pore-scale simulation. 

 

Figure 3.4 Model 1 and Model 2 global product predictions compared to pore-scale sectional averaged data. The graph on the 

right is equivalent to the one on the left but axes are expressed in logarithmic scale in order to give relevance to short times global 

product behavior.  
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Figure 3.5 Model 1 and Model 2 global reaction rate compared to pore-scale sectional averaged data. 

In Figure 3.6 we depict the Model 2 global reaction rate decomposed in: 

 ( )1
1

l l l

C B B D

L L

Da
R r dx C C C dx

Pe
= = − −∫ ∫  (3.2) 

 ( )
2

2 2
2 1

l

D

C U

L L

C
R r dx M M B dx

x

∂
= = −

∂∫ ∫  (3.3) 

The difference between 1CR  and 2CR  leads to Model 2 global reaction rate already plotted in Figure 

3.5. Even as the mathematical formulations of Model 1 reaction term and 1r  are equivalent, they lead to 

different global reaction rates time-evolutions since reactants concentrations rendered by two models 

are different. As we can see in Figure 3.6, when 2 1C CR R> , Model 2 global reaction rate is zero 

otherwise it is equivalent to 1 2C CR R− . For 0t → , 2CR  tends to infinite since it is proportional to 

2

DC

x

∂ 
 

∂ 
which is infinite at 0t =  according to the initial conditions of the problem at hand. 
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Figure 3.6 Model 1 compared to Model 2 global reaction rates time-evolutions. For the latter the contribute of R1 and R2 are 

depicted. 

The detailed pore-scale numerical simulations allow to test Model 1 and Model 2 predictions against 

cross section-averaged concentration profiles, computed through Eq.(2.47). In Figure 3.7-Figure 3.10, 

we present reactant concentration profiles at four different times ( 1.93;9.63;57.77;481.40t = ). For each 

time we report a zoomed image of reactant mixing zone (i.e., where the two reactants coexist). The 

following Figure 3.7-Figure 3.10 display the concentration profiles in a coordinate system integral to 

the advective front ( ADx ) defined as: 

 
ˆˆ

ˆ

l

AD

u t
x x

w
= −  (3.4) 

According to (3.4), the origin of x-axis identifies the position of the advective front in dimensionless 

coordinates. 
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Figure 3.7 a) Reactant concentration profiles given by Model 1 and Model 2 at t=1.93 comapred to pore-scale cross sectional 

averaged data. b) A zoomed image of reactant mixing front delimited by dashed black line in figure a).  

 

Figure 3.8 a) Reactant concentration profiles given by Model 1 and Model 2 at t=9.63 comapred to pore-scale cross sectional 

averaged data. b) A zoomed image of reactant mixing front delimited by dashed black line in figure a). 
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Figure 3.9 a) Reactant concentration profiles given by Model 1 and Model 2 at t=57.77 comapred to pore-scale cross sectional 

averaged data. b) A zoomed image of reactant mixing front delimited by dashed black line in figure a). 

 

Figure 3.10 a) Reactant concentration profiles given by Model 1 and Model 2 at t=481.40 comapred to pore-scale cross sectional 

averaged data. b) A zoomed image of reactant mixing front delimited by dashed black line in figure a). 

The linear profiles depicted in Figure 3.7a-Figure 3.10a at different times show that outside the mixing 

zone the reactant profiles yielded by Model 1 and Model 2 are superimposed for all considered time 

levels. Those both well describe the evolution in space of the two reactant concentrations. On the other 

hand, within the mixing zone, where the reaction takes place, the difference between Model 1 and 

Model 2 results is detectable as shown by Figure 3.7b-Figure 3.10b. The comparison of Figure 3.7b-

Figure 3.10b highlights that the difference between reactant profiles given by Model 1 and Model 2 

progressively reduces until becoming negligible for long times, as the system trends to the asymptotic 

regime. In Figure 3.7b, which depicts reactant profiles within the mixing for short times (i.e., t=1.96), 
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even as the two model show different behaviors, it is not possible to discriminate between the two 

model performances. Indeed, comparing BC  pore-scale cross sectional averaged data to profiles given 

by the two models, we observe that both Models do not capture the system behavior within the mixing 

zone for short times. Concerning AC  profiles, it is hard to qualitatively establish if the Models are 

capturing its evolutions and which one of those better interprets pore-scale cross sectional averaged 

data. Indeed the backward tail of the concentration AC  exhibits larger oscillations than BC . These 

oscillations are due to the amount of particles which are entrapped in dead end pores characterized by 

low fluid velocity (Porta et al. 2013). Figure 3.8 and Figure 3.9 , which display reactants profiles at 

intermediate times (t=9.63 and t=57.77), suggest that Model 2 solution better interprets pore-scale cross 

sectional averaged data since it provides better fitting of data compared to Model 1. In Figure 3.10b, at 

late time, the difference between reactant profiles yielded by Model 1 and Model 2 has almost 

completely vanished and the two model performances are comparable in reproducing pore-scale cross 

sectiona averaged data.  

These results show that the two models are equivalent outside the mixing zone. This can be explained 

by observing that the formulation of dispersive transport which is identical in the two models. The 

continuum models results differ in the mixing region, due to the different formulation of the reaction 

term. 

Figure 3.11- Figure 3.14 display the product concentration profiles ( CC ) at the same times considered 

in Figure 3.7-Figure 3.10 (i.e., 1.93; 9.63; 57.77; 481.40t t t t= = = = ). Results are shown by considering 

both linear and logarithmic axes scales. The linear ones depict only a limited area around the product 

peak indicated in the red broken lines in Figure 3.11a- Figure 3.14a. Model 2 differs from Model 1 only 

in a very limited region around product concentration peak mainly detectable for short times. As time 

increases, the difference between Model 1 and Model 2 product concentration profile predictions 

becomes negligible. Logarithmic plots in Figure 3.11 and Figure 3.12 suggests that the dispersion 

parameter used in Models solutions overestimates the effective dispersion observed for earliest times.  

Figure 3.15 clarifies the difference between concentration peak yielded by Model 1 and Model 2. 

Those are compared to pore-scale averaged data one computed by Eq. (2.50). In Figure 3.15, we 

observe that Model 1 peak evolution is always above the Model 2 one for short times refleticting the 
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differences observed in Figure 3.11b-Figure 3.14b. Even as the discrepancy between the two model 

peak evolutions for short times, those both approach the same asymptotic value for long times. The 

comparison between the curves yielded by the two models suggests that Model 2 shows a better 

performance in interpreting 
maxC  data for t < 10

2
. Even as the overall Model 2 peak prediction is better, 

a overestimation of pore-scale cross sectional averaged data is yielded by Model 2 for few initial times.  

This qualitative analysis suggests that the solutions of the two Models are good at reproducing pore-

scale simulation data apart from short times features. However, some figures (e.g. Figure 3.8b, Figure 

3.9b and Figure 3.15) show that Model 2 yields to a better fit of pore-scale cross sectional averaged 

data.   

 

Figure 3.11 a) Product concentration profiles given by Model 1 and Model 2 at t=1.93 in logarithmic scale compared to pore-scale 

cross sectional averaged data. b) a zoomed image of product peack delimitated in figure a) by dashed red line in linear scale.  
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Figure 3.12 a) Product concentration profiles given by Model 1 and Model 2 at at t=9.63 in logarithmic scale compared to pore-

scale cross sectional averaged data. b) a zoomed image of product peack delimitated in figure a) by dashed red line in linear scale. 

 

Figure 3.13 a) Product concentration profiles given by Model 1 and Model 2 at at t=57.77 in logarithmic scale compared to pore-

scale cross sectional averaged data.b) a zoomed image of product peack delimitated in figure a) by dashed red line in linear scale. 



Assessment of continuum models for reactive transport in porous media 

 

 

Ceriotti Giulia  95 

 

 

Figure 3.14 a) Product concentration profiles given by Model 1 and Model 2 at at t=481.40 in logarithmic scale compared to pore-

scale cross sectional averaged data.b) a zoomed image of product peack delimitated in figure a) by dashed red line in linear scale. 

 

Figure 3.15 Comparison between pore-scale cross sectional averaged data product concentration peak and product peak 

evolution yieleded by Model 1 and Model 2. 

3.4 Model 1 and Model 2 assessment 

In this section a quantitative assessment of the two model performances is provided. This is perfomed 

through the objective functions 
1f  (see Eq. (2.51)), 

2f  and 
3f  introduced in section 2.6.  

The data considered for the computation of 1f  are selected according to the following criteria: 

� Concerning CC , we do not consider the part of domain where pore-scale data are equal to zero; 
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� Concerning BC , we do not include the part of domain where pore-scale data are equal to zero 

and where pore-scale data fluctuate around the mean value of one. 

Figure 3.16 exemplifies BC  data selection for the computation of 1f . In Figure 3.16, BC  pore-scale 

cross sectional data at t=57.77 are plotted: the selected data are highlighted through a darker color. 

 

Figure 3.16 An exemple of CB pore-scale data selection at t=57.77 for Eq. (2.51). 

We neglect here AC  concentration profiles as they exhibit an oscillatory behavior in the mixing zone, 

which does not allow to discriminate between the two model performances. 

The function 2f  allows to stress the error committed on the concentration tails approaching to zero. As 

shown in Figure 3.7-Figure 3.10, this is helpful to appreciate the differences between reactant Model 1 

and Model 2 predictions in the crucial mixing zone, where the chemical reaction occurs. On the other 

hand, Eq. (3.4) emphasizes the tails of the distribution of CC which are located outside the mixing 

region and consequently mainly influenced by the dispersive process (see Figure 3.11-Figure 3.14). 

Hence we expect the function 
2 _ ( )

C k
f t  allows to assess the quality of the model performance in 

reproducing the dispersion of the reaction product concentration CC (see Figure 3.11-Figure 3.14). The 

data considered for the computation of 2f  are selected according to the following criteria: 

� Concerning CC , we do not consider the part of domain where pore-scale data are equal to zero; 
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� Concerning BC , we include only the part of domain in which mixing between reactant takes 

place, i.e. we exclude all the location in which 0A BC C = ; indeed Model 1 and Model 2 

predictions show a different behavior only in this region. 

Figure 3.17 exemplifies the data selection of CB for the computation of 2f . In Figure 3.17, BC  pore-

scale cross sectional data at t= 57.77 are plotted: the selected data are highlighted in black. 
A

C  data are 

plotted with the illustrative purpouse to dispay where both 
A

C  and BC  assume non-zero values.  

 

Figure 3.17 An exemple of CB pore-scale data selection at t=57.77 for Eq. (2.53). The CA pore-scale cross sectional averaged data 

are reported to highlight where both CA and CB are non zero values. 

Finally, we compute the third objective function ( 3f ) which is expected to emphasize the model 

performances in predicting the product peak height and the two reactants dispersion outside the mixing 

zone. For this pourpose, we first conmpute the survival function ( SF )  

The survival function provides the complement to one of the chemical concentration profiles. An 

example is shown in Figure 3.18 where  is applied to Model 1 and 2 solutions and to pore-scale 

cross-sectional averaged concentrations. Figure 3.19 and Figure 3.20 show that the survival functions 

in logarithmic scale allow to highlight the importance of the values close to the product concentration 

peak for 
CC ( Figure 3.19) and the two reactant tails outside the mixing zone as exemplified in Figure 

3.20.  

3f
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The data considered for the computation of  are selected according to same criteria used for
 1f . 

 

Figure 3.18 Survival functions of a) reactants concentration profiles and b) product concentration profile yielded by Model 1, 

Model 2 and pore scale cross sectional averaged data at t=481.40. 

 

Figure 3.19 Logarithmic value of survival functions of reactants concentration profiles yielded by Model 1 and Model 2 and pore-

cale cross sectional averaged data at t=481.40. 

3f
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Figure 3.20 Logarithmic value of survival functions of product concentration profiles yielded by Model 1 and Model 2 and pore-

cale cross sectional averaged data at t=481.40. 

The functions 1f , 2f  and  are evaluated at different times (comprised between 1.93 and 481.40) in 

order to identify which one of the two models minimizes the objective functions and, as a consequence, 

better predicts the pore-scale averaged data. 

Figure 3.21a-Figure 3.23a depict the results related to the concentration of the reactant B. In particular 

Figure 3.21a shows the comparison between 
1 _1B

f  and 
1 _ 2B

f . The two functions show a decreasing 

trend, in particular they both assume a value of 0.35 at the first considered time and then decrease to 

negligible values (0.032). This is consistent with the observation of Figure 3.7b and Figure 3.11b, 

which show that both models fail to reproduce the early behavior of the distribution of CB. The 

comparison of the two curves displayed in Figure 3.21a does not disclose any meaningful result, since 

the difference between the two model results is hardly detectable . This result is consistent also with the 

observation that the results of the two models appear undistinguishable when we consider the full 

concentration profiles in a linear scale. Figure 3.22a shows the comparison of the two model 

performances evaluated through the logarithmic function 2Bf . Here we observe a clear difference 

between the two model results: Model 2 better predicts B profile, as 
2 _ 2B

f  < 
2 _1B

f  besides the first 

point (t=1.93) for which the both functions assume the maximum value. The latter result is consistent 

with the qualitative discussion provided in section 3.2, showing that both the models do not capture BC

concentration tail at t=1.93 (Figure 3.7). The comparison between the time evolutions of the two 

3f
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functions
3 _1B

f and 
3 _ 2B

f  is shown in Figure 3.23a. The two functions decrease in time and are basically 

superimposed. This result is justified observing that these functions tend to emphasize the model results 

outside the mixing region, i.e. where the concentration profile tend to 1. Hence, this result confirms that 

the performance of the two models is basically identical outside the mixing region, as already 

suggested by Figure 3.23a  

Figure 3.21b-Figure 3.23b display the same type of results, but computed by means of the product 

concentration CC. The comparison between 
1 _1C

f  and 
1 _ 2C

f  (Figure 3.21b) suggests that Model 2 better 

predicts product concentration profile (Figure 3.21b). On the contrary the curves which describe the 

time evolution of 
2 _1C

f  and 
2 _ 2C

f  are superimposed for the whole considered time window. This is 

consistent with the observation that this function emphasizes the errors related to the prediction of the 

two tails of CC distribution. This behavior is linked to the dispersive process, which is treated in the 

same way in the two considered models. The comparison between 
3 _1C

f  and 
3 _ 2C

f  is reported in Figure 

3.23b. We recall that function 
3 _C k

f  is designed to emphasize the error in correspondence of the mixing 

zone, where the peak of CC is located. As such, our result provides a quantitative assessment of the 

qualitative results discussed in previous section, in that Model 2 is significantly more accurate than 

model 1 for early times and then the two models reach a similar asymptotic behavior at long times. The 

increment of both 
3 _1C

f  and 
3 _ 2C

f  for long times is due to the presence of intense peak oscillations 

appearing for long times in pore-scale averaged data. In general, the results presented in Figure 3.21-

Figure 3.23 show that (i) model 2 better predicts pore-scale averaged data in the mixing region, (ii) the 

two models provide the same results outside the mixing region. 
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Figure 3.21 The figure shows f1 computed for Model 1 and Model 2 on a) CB concentration profiles and a) CC concentration 

profiles. 

 

Figure 3.22 The figure shows f2 computed for Model 1 and Model 2 on a) CB concentration profiles and a) CC concentration 

profiles. 
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Figure 3.23 The figure shows f3 computed for Model 1 and Model 2 on a) CB concentration profiles and a) CC concentration 

profiles. 

3.5 Results discussion 

The results shown in this Chapter move from the analysis provided in Porta et al.(2013). In particular 

our aim is to compare the results yielded by continuum models and pore-scale simulations for a very 

simple pore scale geometry. Our results show that the evolution of global quantities, such as the global 

mass of C generated by the reaction, is governed by dispersion and poorly influenced by incomplete 

mixing. Porta et al.(2013) showed that incomplete mixing always takes place at the pore scale, but the 

presented results show that its effect on continuum scale models is negligible in the presence of this 

simple geometrical configuration. As a consequence both Model 1 and Model 2 capture global 

quantities behavior, in spite of the different formulation assumed for the reaction and transport terms 

inside the mixing region (see Eq.(2.18) and Eq. (2.7)). We emphasize that in this simple pore-scale 

setting the ADRE accurately reproduces the phenomenon, even in conditions where it should not be 

reliable according to theoretical up-scaling (Battiato et al.,2011; Porta et al. 2012a). 

A detailed inspection of cross-sectional averaged quantities as chemical concentration profiles allows 

to observe that incomplete mixing effect can be identified by focusing on the reactant concentration 

tails in mixing zone and in the predicted product peak height. Qualitative analyses and errors 

assessment shows that Model 2 implementation leads to a better prediction of pore-scale cross sectional 

averaged data. This result is quantitatively assessed upon considering different objective functions, i.e., 

different ways of quantifying the model error. In particular our results show that the difference of the 
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continuum models prediction within the mixing zone is emphasized when the concentrations are 

compared in a logarithmic scale, i.e. focusing on the small values assumed by concentration in the 

mixing region. Both the models appear not to capture reactive transport evolving dynamics for short 

times overestimating:  

� Concentration profiles dispersion (Figure 3.7)  

� Product peak concentration (Figure 3.15). 

This discrepancy between initial actual dispersion of pore-scale data and continuum model prediction 

one can be ascribed to the fact that nonlocal effects are neglected while computing the dispersive and 

reactive terms. The over-prediction of Model 1 product peak concentration must be identified with the 

absence of an incomplete mixing term that quantifies the local degree of mixing between reactants. 

Model 2 improves the product peak concentrations prediction getting closer to pore-scale averaged 

data. However a peak overestimation is registered for initial times. This porous medium setting, due to 

its simplicity, does not provide decisive evidences to demonstrate how Model 2 allows an advancement 

in predicting reactive transport compared to the standard formulation provided by Model 1. 

However, since different authors prove that Model 1 generally over-predicts the amount of global 

product and product concentration for mixing limited systems (e.g. Gramling et al. 2002, Raje and 

Kapoor 2000), Model 2 is showing here promising results and encouraging further investigations in 

more complex scenarios, which are analyzed in detail in Chapter 4. 
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CChhaapptteerr  44  RREESSUULLTTSS  22::  PPOORROOUUSS  MMEEDDIIUUMM  SSCCEENNAARRIIOO  22    

In this Chapter we present and discuss models assessment referring to porous medium scenario 2 (see 

section 2.2). We focus on a single dataset, obtained by the combination of the largest Pe  and Da  

available from pore-scale simulations. Indeed, as anticipated in Chapter 3, these are the conditions in 

which incomplete mixing effect is relevant. The characteristics of the simulation considered are 

reported in Table 4.1. 

Table 4.1 Numerical pore-scale simulation conditions considered in porous medium scenario 2. 

Pe  24 

Da  1038 

φ  0.6 

ˆ
mD  2.0000e-9 [m

2
/s] 

ŵ  8.0000e-005 [m] 

ˆ
l

u  6.2220e-004 [m/s] 

k̂  324.38[m
3
/(mol s)] 

 

We first present a qualitative analysis of reactive transport evolving features observed in pore-scale 

simulation with the aim of providing a preliminary investigation which supports the following model 

assessments and discussion. Then, the criteria for choosing datasets for model assessment are presented 

and the datasets chosen are illustrated. The last part of the Chapter is dedicated to model assessment, 

i.e. the model performance are evaluated comparing model solutions to pore-scale dara and assuming 

range of variations for the models parameters. In this part the models analysis is presented divided in 

two different sections: the first one related to single continuum models and the second one dedicated to 

DRMT model. For the latter, only a preliminary analysis of chemical profiles and global product 

sensitivity to different parameters is performed since the numerical computation of Model 5 solution is 

particularly time consuming compared to the single continuum Models 1-4. The different models 

features will then compared and discussed in Chapter 5 on the basis of results presented herein. 
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4.1 Qualitative analysis of pore-scale simulation  

We present here a first qualitative analysis of different quantities evolutions observed in pore-scale 

simulation. This allows identyfing the main evolving dynamics of reactive transport in the specific 

conditions considered (see Table 4.1). This preliminary investigation helps in defining criteria for 

selecting datasets used in the following model assessment and in interpreting models assessment 

results. 

Pore-scale simulation data are investigated referring to the quantities definited in Chapter 2: global 

mass of the reaction product ( CG ) indicated in Eq. (2.48), chemical concentration profiles ( , ,A B CC C C ) 

definted in Eq. (2.47). The global reaction rate ( CR ), instead, is no longer included in the following 

analysis since it is simply computed deriving global product in time. This means that it does not add 

significant contribution to the discussion since it contains the same information of global product time-

evolution. 

Relying on non-reactive transport simulation performed in porous scenario 2, we derive the non-

reactive dispersion coefficient according to the following procedure. Particle tracking simulation allow 

knowing the exact position of each one of the particle as function of time. Thanks to this information, it 

is possible to compute the square averaged particle displacement as function of time. This quantity is 

linked to dispersion value according to the following equation: 

 
2 ˆ ˆˆ ˆ( ) 2x x Dt− =  (4.1) 

The dimensionless dispersion value is computed dividing D̂  to molecular diffusion ( ˆ
mD ). Figure 4.1 

illustrates the time-evolution of dimensionless dispersion D as function of time. We observe that, at 

t=57 s which corresponds to the duration of reactive transport simulated, the system hasn’t reached the 

asymptotic regime. Indeed the dispersion value has not reached a constant value. The crossing point of 

the two solid black lines indicates the value of dimensionless dispersion at t=57s which is equal to 741. 



Assessment of continuum models for reactive transport in porous media 

 

 

Ceriotti Giulia  106 

 

 

Figure 4.1 Dimensionless dispersion evolution as function of time computed square averaged particle displacement of non-

reactive particle tacking simulation. 

Figure 4.2 depicts the global product computed on product pore-scale cross sectional averaged 

concentrations. According to Porta et al (2012b), in asymptotic regime, the global product time 

evolution is proportional to the square root of time ( CG t∝ ). This asymptotic trend is represented by 

a solid black line in Figure 4.2. Comparing pore-scale global product time-evolution and the expected 

asymptotic trend for long time, Figure 4.2 confirms numerical findings showed in Figure 4.1. Indeed, 

we observe that the system has not reached the asymptotic regime yet but global product shows to 

increase faster than the expected asymptotic behavior for the longest available time steps.  

 

Figure 4.2 Global product time-evolution obsedved in pore-scale simulations compared to the asymptotic behavior. 
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We provide now a brief analysis of the time-evolution of chemical species concentration profiles. In 

Figure 4.3-Figure 4.5 we report the pore-scale cross-sectional averaged concentration of A and B at 

three different times ( 24.89;223.96;447.93t = ) in order to synthetically illustrate reactant 

concentration history. For each considered time level, a zoomed image of the mixing zone is reported 

where reactants concentrations are plotted in logarithmic scale. This allows highlighting the region 

close to the reaction where the reactant concentration values are close to zero. In general, we observe in 

Figure 4.3-Figure 4.5 that the initial steep reactants profile progressively smooth due to dispersion 

process. Looking at Figure 4.3a and Figure 4.5a, we observe that AC  and BC  show an oscillatory 

behavior manly concentrated on the backward tail, i.e. xAD<0. In particular AC  profiles present relevant 

peaks and localized increase of concentration. On the contrary, BC  profiles present the opposite 

behavior showing localized decrease of section averaged concentration. These oscillations are due to 

the presence of immobile regions inside the domain due to system geometry, which includes cavities 

where the solute A is trapped. Notice that the oscillations are periodic reflecting the periodical structure 

of the domain (see section 2.2). Since at the beginning the porous medium is fully saturated with AC  

solution, solute, which is initially located in dead end pores or slow velocity fluid regions, tends to 

remain trapped in them. This solute slowly transfers to high velocity fluid channels manly because of 

diffusion. On the other hand, BC  solution, which is injected into the domain, preferably occupies high 

velocity throats and slowly diffuses into almost immobile zones. Figure 4.4a and Figure 4.5b put in 

evidence that AC  is not the mirror image of BC  and vice versa. Indeed, AC  profiles appear to be steeper 

than BC  ones. Since the steepness intensity of the concentration profile typically depends on the 

dispersion process, we can deduce that BC  disperses quicker than AC  shaping a smoother profile. This 

may be explained by the fact that BC  preferentially occupies mobile zone rather than almost-immobile 

ones and, moving fast, it undergoes to a faster spreading process. Looking at Figure 4.3b-Figure 4.5b, 

where the logarithmic scale emphasizes reactant profiles in mixing zone, we can analyze the time-

evolution of the reactive front location (indicated through dotted line in Figure 4.3b-Figure 4.5b). We 

identify the front location with the point in which AC  and BC  profiles cross each others. We observe 

that the reactive front location is not coincident with advective front, i.e. it is not located at xAD ≈ 0, as 

observed in th case of the simple Scenario 1 (see Chapter 3, Figure 3.7-Figure 3.10). Figure 4.3b-
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Figure 4.5b display a different behavior, i.e. the two reactant concentration profiles cross each other in 

a location translated respect to xAD=0. A comparison between reaction front positions in Figure 4.3b-

Figure 4.5b shows that the distance between the reaction front and the mean traveled distance 

computed according to the average fluid velocity xAD increases as the time increases. This result shows 

that the reactive front moves faster than the mean advective velocity. 

 

Figure 4.3 a) Reactant concentration profiles at t =24.89. Figure b) provides zoomed image of the reactant mixing front evidenced 

in figure a) through a dashed black line at t=24.89. The dotted line in figure b) indicates the position of the reactive front. 

 

Figure 4.4 a) Reactant concentration profiles at t=223.97. Figure b) provides zoomed image of the reactant mixing front evidenced 

in figure a) through a dashed black line at t=223.97. The dotted line in figure b) indicates the position of the reactive front. 
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Figure 4.5 a) Reactant concentration profiles at t=447.93. Figure b) provides zoomed image of the reactant mixing front evidenced 

in figure a) through a dashed black line at t=447.93. The dotted line in figure b) indicates the position of the reactive front. 

In Figure 4.6-Figure 4.8 we provide a synthetic history of CC concentration profiles evolution at the 

same times considered in Figure 4.3-Figure 4.5. At each time, we report the product concentration 

plotted in both logarithmic and linear scales. Product concentration profiles share some features with 

reactant profiles confirming the observations done previously. 

 

Figure 4.6 Product concentration profile in a) linear and b) logarithmic scale recorded at t=24.89. 
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Figure 4.7 Product concentration profile in a) linear and b) logarithmic scale recorded at t=223.97. 

 

Figure 4.8 Product concentration profile in a) linear and b) logarithmic scale recorded at t=447.93. 

 

Figure 4.6-Figure 4.8 display that CC  profile width increases with time due to dispersion process and 

the peak height significantly increments between t=24 and t=223 and then continues to raise slower 

until t=447. Focusing on CC  profile shape, Figure 4.6a-Figure 4.8a show that CC  presents peaks of 

high concentration on the tail slower than the reactive front (for xAD<0), similarly to AC . We can 

interpret these oscillations as the an amount of reaction product generated in immobile regions which 

remains entrapped for long times in these zones. In Figure 4.6b-Figure 4.8b, the logarithmic scale 
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evidences that CC  profiles are not symmetric with respect to the peak concentration. Product tail 

slower than advective front is less steep compared to the faster one. Moreover, we can observe that 

product concentration peak position is translated if compared to advective front position, similarly to 

the reactive front identified in Figure 4.3-Figure 4.5. Figure 4.9 evidences the correspondence between 

CC  peak and reactive front location at t=447: AC , BC  CC  profiles are plotted and a vertical black 

arrow connects the advective front and the product peak. This result shows that the peak position of CC  

profile tends to move faster than the advective front, reflecting the reactive front displacement.  

 

Figure 4.9 Pore-scale averaged data of CA, CB and CC concentration at t=447. The black arrow evidences that the peak position 

corresponds to the reactive front one. 

We clarify the latter observation in Figure 4.10 where the product concentration peak position (i.e. the 

reactive front) as function of dimensionless time is compared to the advection front position. Advection 

front position linearly evolves in time since the average fluid velocity is constant. Since the peak 

concentration is affected by oscillations (see Figure 4.6-Figure 4.8), its position does not linearly 

evolve with time. However, a linear fit of the product concentration peak position as function of time  

allows evidencing the averaged trend. The slope of product concentration peak position fitting line and 

advection front position line quantifies the velocity of peak displacement and advective front 

respectively. Figure 4.10 shows that the peak position fitting line is characterized by an higher slope 

compared to advection front position one meaning that concentration peak and reactive front move 

faster that the advective front as observed in Figure 4.6b-Figure 4.8b.  
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Figure 4.10 Time-evolution of product concentration peak position recorded in pore-scale cross sectional averaged data is 

compared to time-evolution of advective front position. 

We remark that, by definition, single continuum models assume that reaction front coincides with 

advection front and that the reaction front advances at the average fluid velocity. Figure 4.11, for 

illustrative purposes, compares chemical cross-sectional averaged data to ADRE model (Model 1) 

prediction assuming D=450 (manually calibrated) at t=447. A solid red line evidences the ADRE 

reactive front position (coincident to advective front) while a red dashed line indicates the reactive 

front position observed in pore-scale simulation. 

 
Figure 4.11 Pore-scale averaged data concentration at t=447 compared to Model 1 solution solved with D=450 (manually 

calibrated). The solid and dashed red lines indicate the position of advective front and reaction dront position , respectively. 
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Even if the discrepancy between the predicted and the actual reactive front could appear negligible, we 

can not ignore it in the following model assessment. Indeed this would lead to a systematic error, which 

would prevent a detailed analysis of the reactants concentration tails in the vicinity of the reaction 

front.  

For this reason in all the single-continuum model assessment we assume that the solutes are transported 

by averaged reaction front velocity observed in pore-scale simulation (
p

u ). The latter is estimated from 

the slope of peak position fitting line plotted in Figure 4.10. The dimensional and dimensionless 

reaction front pore scale averaged velocities are reported in Table 4.2 compared to averaged advection 

velocity. 

Table 4.2 Comparison between dimensional and dimensionless reaction front and advective velocities. 

p
u  1.0560 

ˆ
p

u  6.5702e-004[m/s] 

l
u  1 

ˆ
l

u  6.2220e-004[m/s] 

 

4.2 Dataset selection for models assessment 

For model assessment, we do not consider all the pore-scale cross sectional averaged data available for 

this scenario. Indeed, for each quantity considered, introduced in section 2.6, we selected only a limited 

number of data (from 10 up to 40) that allow capturing the overall behavior of the quantity analyzed 

excluding the noise due pore-scale cross-sectional data fluctuations and zero data. 

Concerning to CG , we select ten data equally distributed in time. The selection is illustrated in Figure 

4.12. In the following, the selected data of CG  will be referred as 1CG . 
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Figure 4.12 On the global product evolution observed in pore-scale simulation, the data chosen for the model assessment are 

evidenced. 

Regarding the chemical concentration profiles, we define, instead, different datasets according to 

diverse criteria depending on the different models characteristics. The criteria, explained in the 

following, are based on the considerations done in section 4.1. 

As observed in section 4.1, AC , BC  and CC  are characterized by concentration fluctuations due to the 

presence of immobile regions, where local velocities are negligible. Single continuum models, due to 

their mathematical definition, are not able to capture and predict the amount of solute trapped in 

immobile regions since all the solutes is assumed to move under the effect of a single averaged 

advective velocity. As a consequence, single porosity models always predict symmetric CC  profiles 

with respect to peak position and AC  profile prediction is always the mirror image of BC  one with 

respect to reactive front. Because of that, in choosing a suitable datasets for single porosity models, the 

concentration oscillations appearing on the backward tails have been excluded. 

Moreover, single continuum models presented in section 2.3 can be distinguished in: i) Model 1, Model 

2 and Model 4 group where the reaction terms include time-independent parameters and ii) Model 3 

where the reaction parameter is time-dependent. In chosing dataset for the first group of models we 

consider two profiles for each chemical both at late time (  398.16t =  and 447.93t = ) on the 

hypothesis that the value of reaction and dispersion parameters are more established for long time. For 

Model 3, instead, we consider two profiles for each chemical species: the first one at 24.88t =  and the 
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second one at 447.93t = ; the times selected are, on purpose, very far with respect to each other in 

order to generate a dataset sensitive to reaction parameter time-evolution. In both cases, we select 20 

points for each profile considered leading to a dataset composed of 40 for each chemical species. In the 

following, the data selected for of AC , BC  and CC  pore-scale data will be referred as indicated in Table 

4.3. In Figure 4.13-Figure 4.15 the data selected are plotted compared to all profile data. 

Table 4.3 Concentration profile dataset labels definitions. 

Concentration Profile Dataset label 

iC  at t=24.88 (i=A,B,C) 1iC  (i=A,B,C) 

iC  at t=398.16 (i=A,B,C) 2iC  (i=A,B,C) 

iC  at t=447.93 (i=A,B,C) 3iC  (i=A,B,C) 

 

 

Figure 4.13 Comparison between pore-scale averaged concentrations data and selected datasets for a) reactant profiles and b) 

product profile at t=24.88. 
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Figure 4.14 Comparison between pore-scale averaged concentrations data and selected datasets for a) reactant profiles and b) 

product profile at t=398.16. 

 

 

Figure 4.15 Comparison between pore-scale averaged concentrations data and selected datasets for a) reactant profiles and b) 

product profile at t=447.93. 

For Model 5 (DRMTM) assessment, instead, different data are selected. As shown in section 2.4, the 

DRMT Model allows interpreting , on average, time and spatial evolution of solute entrapped in 

immobile regions. Hence we define a new dataset, specific for DRMT Model, including concentration 

oscillations appearing on backward tails of concentration profile, corresponding to dissolved matter 

moving slower than the advective front. We consider profiles at  398.16t =  and 447.93t = . Similarly 

to single continuum models, we select 20 data for each chemical profile. In the following, the specific 
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data selected on AC , BC  and CC  profiles for Model 5 will be referred as reported in Table 4.4. In 

Figure 4.16 and Figure 4.17 the data selected are presented against all profile data.  

Table 4.4 Defintion of labels for concentration datasets.  

Concentration Profile Dataset label 

iC  at t=398.16 (i=A,B,C) 4iC  (i=A,B,C) 

iC  at t=447.93 (i=A,B,C) 5iC  (i=A,B,C) 

 

 

Figure 4.16 Comparison between pore-scale averaged concentrations data and selected datasets for a) reactant profiles and b) 

product profile at t=398.16 for DRMT Model. 
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Figure 4.17 Comparison between pore-scale averaged concentrations data and selected datasets for a) reactant profiles and b) 

product profile at t=447.93 for DRMT model. 

We summerize the different data selected for the diverse types of models in three dataset indicated in 

Table 4.5. 

Table 4.5 Datasets summarizing table. 

DATASET 1 (Single contiuum model; time-

independent reaction paramenter: Model 1,2,4) 

1

2, 2, 2

3, 3, 3

C

A B c

A B c

G

C C C

C C C

 

DATASET 2 (Single contiuum model; tme-dependent 

reaction parameter: Model 3) 

1

1, 1, 1

3, 3, 3

C

A B c

A B c

G

C C C

C C C

 

DATASET 3 (DRMT: Model 5) 

1

4, 4, 4

5, 5, 5

C

A B c

A B c

G

C C C

C C C

 

4.3 Single continuum models assessment 

In this section we present the results related to single continuum models assessment. Each model 

depends on one or more parameters. For each parameter we define a range where the optimum 

parameter value is expected to be included. This identifies a region of interest, i.e. the so-called 

parameters space. The parameters ranges are then discretized and the model solution is computed for a 

grid of selected parameter combinations. Model solutions are used to evaluate the ability of each 
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combination of parameters in approximating concentration profiles and the global product time 

evolution observed in pore-scale simulation, i.e. the results identified in Figure 4.12-Figure 4.17. This 

evaluation is performed through the computation of the objective functions defined in section 2.6  in 

order to quantify the error committed by the model predictions compared to datasets presented in 

section 2.6.  

In this section we compute the evolutions of 2f  (see Eq. (2.53)), 3f  (see Eq.(2.56)) and 
4f  (see Eq. 

(2.57)).  

We do not consider 1f  (see Eq.(2.51)) for concentration profiles analyses since this linear criterion has 

shown to be little sensitive to concentration tails which are in our case crucial zones, as explained in 

Chapter 3. We implement 1f  only for comparing global production time evolution predictions against 

1CG  dataset (see Eq. (2.52)). 

In the following, for each one of the single continuum models, we analyze the distribution of the 

objective functions within the selected paramente spaces. In this analysis we investigate if: 

� the objective function used is a suitable candidate for the parameters estimation and models 

calibration procedures; indeed calibration algorithms are based on the minimization of an 

objective function and the calibration algorithm capability to correctly and precisely estimate 

the model parameters strongly depends on the evolution of objective function itself. In order to 

be suitable for e process, the objective function should be characterized by: i) the presence of 

only one minimum in the parameter space since the presence of local minima can lead to a 

wrong parameter estimation ii) a gradient close to zero only around the minimum value since 

this allows providing a more precise parameters estimation (Carrera and Neuman, 1986). 

� the objective function chosen leads to a correct interpretation of the reactive transport process. 

This analysis also provides a first estimation of dispersion and incomplete mixing parameters which 

allows comparing goodness of the different models at describing reactive transport. This comparison 

will be discussed in Chapter 5. In this sense the analysis proposed here provides a preliminary 

investigation for optimal calibration of the selected continuum models. 
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4.3.1 MODEL 1:ADRE 

As explained in section 2.3.1, Model 1 formulation depends only on a single effective parameter: 

dispersion ( D ). According to the hypothesis that reactants are completely well-mixed, the reaction 

term (see Eq.(2.7)) depends only on the intrinsic constant reaction rate. The averaged solute transport 

velocity is fixed and assumed equal to 
p

u  as explained in section 4.1. The value of dispersion may 

exhibit large variations depending on the system transport conditions (the Pe number) and on pore-

scale geometry. The longitudinal coefficient D  at least is equal to zero meaning that the mechanical 

dispersion is negligible and spreading is only governed by molecular diffusion. No upper boundaries of 

D  can be defined since it can assume very high values depending on the porous medium geometry and 

associated flow field. As a consequence, dispersion parameter range varies from zero up to infinite. 

Upon preliminary tests, we limit the wide parameter space to a smaller range [ ]200,800D∈  for the 

problem at the hand. We recall that D is here a dimensionless parameter expressing the magnitude of 

the dispersion coefficient normalized by molecular diffusion, 

To evaluate the model performance, we follow a three-step procedure: i) we sample D in the range 

considered as reported in Table 4.6; ii) we solve Model 1 for each dispersion value sampled; iii) we 

compute the objective functions using DATASET 1 for each solution performed in order to study the 

evolution of objective functions in the parameter space. 

Table 4.6 Sampled value of dispersion parameter within 200 and 800. 

D sampled value 

200 300 350 400 450 500 550 600 650 700 750 800 

 

As shown in literature (i.e. Gramling et al. 2002; Raje and Kapoor 2000; Sanchez-Vila et al. 2010), 

Model 1 generally overestimates the product peak height and the reaction product concentration. This 

is due the assumption of completely well-mixed reactant mixing zone and leads to an overestimation of 

reaction rate. However, as shown in Chapter 3, Model 1 can provide a good fit of concentration profiles 

outside the mixing zone since dispersion is the prevalent process which governs solute transport in this 

zone. 
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In Figure 4.18 3 _1A
f , 3 _1B

f and 2 _1C
f  evolutions are plotted as function of dispersion. As shown in 

Chapter 3 these objective functions provide meaningful information for the characterization of the 

dispersion coefficient. 

 

Figure 4.18 Evolution of f3A_1, f3B_1 and f2C_1 in Model 1 as function of D. 

The functions 3 _1 3 _1,
A B

f f  and 2 _1C
f  present a similar behavior approaching a minimum for the 

considered values of D. However the three function identify three different optimum dispersion values: 

3 _1Af  approaches its minimum (0.0056) for D= 400; 3 _1Bf  reaches the minimum (0.0075) in D=650 

and 2 _1Cf  presents a higher minimum (0.059) in D=500. This result is consistent with the observations 

done in section 4.1. Indeed, since BC  preferentially occupies fast velocity region, this solute tends to 

spread quicker compared to AC . The higher value of D suggested by 3 _1Bf  compared to the one 

indicated by 3 _1Af  reflects this physical process. In section 4.1, we also observe that the two CC  profile 

tails present different dispersion behavior. The function 2 _1Cf  identifies D= 500 which is an 

intermediate value among AC  dispersion and BC  dispersion, capturing an averaged behavior between 

the two tails. These observations are confirmed in Figure 4.19, where product concentrations at t=447 

for different values of dispersion are compared against 3CC  data in logarithmic scale. We observe that 

the left tail tends to be well fitted by D=650 while the right one by D=400. This result is in agreement 

with finding of section 3.3 evidencing the asymmetric behavior of CC . As a consequence, the 
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minimum observed value of the error function is found for an intermediate value of the parameter. 

Indeed, D=500 is suggested by criterion 2 _1Cf as the best fitting parameter for CC  profiles. In Figure 

4.20, the survival functions of AC  and BC  Model 1 solutions for different dispersion values are 

compared to the survival functions of 3AC  and 3BC . Figure 4.20 shows that 3 _1Af  and 3 _1Bf correctly 

estimate the dispersion value since the 3AC  and 3BC are well fitted with D=400 and D=650 

respectively. Finally, Figure 4.21 depicts a zoomed image of reactants concentration in logarithmic 

scale near to the reactive front at t=447. Figure 4.21 shows that Model 1 is not able to capture 

concentration profiles in the mixing zone. Indeed, profiles are almost insensitive to dispersion value 

where the two reactants overlap and all the solutions plotted largely underestimated the 3AC  and 3BC  

datasets. 

 

Figure 4.19 Product concentration profiles predicted by Model 1 for different dispersion value in logarithmic scale at t=447 

compared to CC3 dataset.  
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Figure 4.20 Survival function (SF) of Model 1 reactant profiles solution performed for different values of D at t=447 in 

logarithmic scale compared to survival function of CB3 and CA3 data.  

 

Figure 4.21 Model 1 reactant profiles solutions zoomed to the mixing zone computed for different values of D at t=447 are 

reported against CB3 and CA3 data in logarithmic scale. 

In Figure 4.22, we report the evolution of 1GCf  as function of D. The function 1GCf  clearly identifies a 

global minimum in correspondence of D=350 which is smaller than the corresponding values found 

with 
3 _1A

f , 3 _1Bf  and 2 _1Cf . In order to investigate the reliability of this value, in Figure 4.23 we 

compare the global product time-evolution predicted by three different Model 1 solutions (S1, S2, S3) 

computed for different values of D. The values of D corresponding to S1, S2 and S3 are indicated in 
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Figure 4.22 by dashed black lines. Notice that S2 corresponds to D=350 which is the value estimated 

by 1GCf .  

 

Figure 4.22 f1GC Evolution as function of D computed for Model 1 solutions. The dashed black lines indicate the solutions plotted 

in Figure 4.23 

 

Figure 4.23 Global product evolution predicted by three Model 1 solutions relying on different dispersion value compared to GC1 

data. The dispersion values corresponding to S1, S2 and S3 are indicated bydashed black lines in Figure 4.22.  

In Figure 4.23, we observe that the solution S2 which appears to minimize the error function 1GCf  

actually is not correctly interpreting the data. Indeed S2 global product overestimates data for short 

times and underestimates them for long times. That means that D=350 does not capture the asymptotic 

behavior through which the global product observed simulation trends. Since global product evolution 
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is mainly governed by dispersion process, this result suggests that the dispersive process does not reach 

the asymptotic behavior for the problem at the hand. This is consistent with the previous theoretical and 

numerical results. Indeed, as shown in Figure 4.1 in previous section, the duration of pore-scale 

reactive transport simulated is too little to reach the asymptotic dispersion value. The analysis of pore-

scale global product evolution (Figure 4.2) confirms that, at late time, it does not evolve as the square 

root of time which identifies the theoretically expected trend in asymptotic regime (Porta et al. 2012b). 

From this analysis we can conclude that 1GCf  does not provide good estimation of asymptotic 

dispersion parameter for the ADRE model. 

4.3.2 MODEL 2: Porta et al. (2012) 

As explained in section 2.3.2, Model 2 formulation includes two parameters: the hydrodynamic 

dispersion coefficient D which models the dispersion and mixing processes and B which embeds the 

effect incomplete mixing between reactants according to Eq.(2.18) which is here recalled: 

  

 ( ) ( )

2

1

l

l l l D

B B D

CDa
s C C C M M B

Pe x

  ∂ = − − + −  
  ∂  

 

As shown in Chapter 3, the relevant differences between Model 1 and Model 2 predictions appears in 

the reactant mixing zone where the reaction takes place. Far from the reaction front, the two models 

show a similar behavior. For this reason, we investigate the evolution of objective functions on a 

similar range of D values considered in Model 1 ( [300,820]D∈ ). This range is discretized as reported 

in Table 4.7. 

The parameter B is defined positive meaning that it cannot assume negative values but, in principle, it 

does not present an upper boundary. Note that parameter B can be estimated by pore-scale solution to 

closure problem, as mentioned in Chapter 3. Here this parameter is assumed to be unknown, since the 

pore-scale solution of the closure problem is not available for the geometry at the hand. The results in 

Chapter 3 show that the influence of parameter B is almost limited to the mixing zone. Upon 

preliminary simulations we limit the B range to the interval [110,500]. The latter is discretized as 
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reported in Table 4.7. Note that the solution of the model is provided on a grid of 14×14=196 

combinations.  

Table 4.7 Sampled values of dispersion (D) and incomplete mixing parameter (B). 

D sampled values 

300 340 380 420 460 500 540 580 620 660 700 740 780 820 

B sampled values 

110 140 170 200 230 260 290 320 350 380 410 440 470 500 

 

According to what observed in section 4.1, the averaged solute transport velocity is fixed and assumed 

equal to 
p

u . 

Figure 4.24a and Figure 4.24b represent the contour plots of the logarithmic error functions 
2 _ 2A

f  and 

2 _ 2B
f  within the parameters space identified in Table 4.7. 

 

Figure 4.24 Evolution of f2A_2 a) and f2B_2 b) as function of B and D. The dashed red lines labeled T1, T2, L1 and L2 indicate the 

four cross sections of f2A_2 and f2B_2 depicted in Figure 4.25. 

Figure 4.24 allows understanding the qualitative evolutions of 
2 _ 2A

f  and 
2 _ 2B

f  as function of different 

combinations of D and B. We can notice that 
2 _ 2A

f  and 
2 _ 2B

f  are sensitive to B parameter. The darker 

color (corresponding to smaller errors) is associated only to a limited range of B values. Concerning 

2 _ 2A
f , it reaches its lower value for [300,450]B ∈  while 

2 _ 2B
f  is minimized for [200,350]B ∈ .  
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On the other hand, it appears that 
2 _ 2A

f  and 
2 _ 2B

f  show a mild dependence on D. Indeed, chosen a 

value of B, 
2 _ 2A

f  and 
2 _ 2B

f  seem indifferent to a change in D value. However this is not true since, 

analyzing the specific values assumed by the functions for each combination of D and B, a global 

minimum does exist for a specific value of dispersion (D= 500 for 
2 _ 2A

f  and D= 740 for 
2 _ 2B

f ). This 

can be shown by analyzing the values assumed by the two functions along different cross sections 

within the parameters space. Figure 4.25 depicts vertical (T) and horizontal (L) sections of 
2 _ 2A

f  and 

2 _ 2B
f . The sections depicted in Figure 4.25 are indicated in Figure 4.24 by the two red dashed lines 

labeled as T1 and L1 for 
2 _ 2A

f  and as T2 and L2 for 
2 _ 2B

f . The cross-section positions of T1, T2, L1 

and L2 are chosen depending on the locations of 
2 _ 2A

f  and 
2 _ 2B

f  minima, i.e. their crossing point of 

T1 and L1 identifies the parameters combination in which 
2 _ 2A

f  is minimized (Figure 4.24a) and, 

similarly the crossing point of T2 and L2 indicates the location of 
2 _ 2B

f  minimum (Figure 4.24a).  

Figure 4.25a allows indentifying the optimum value of dispersion coefficient while Figure 4.25b allows 

detecting the value of B that minimize 
2 _ 2A

f  and 
2 _ 2B

f  (B=350 and B= 230 respectively). Figure 4.25a 

and Figure 4.25b show that both the parameters influence the function value but that the criteria 

considered are strongly sensitive to B and slightly to D. Figure 4.25a evidences that, even if minima are 

detected, 
2 _ 2A

f  and 
2 _ 2B

f  display small variations for a large interval of D values. As explained in 

section 4.3, this feature is not desirable for an objective function involved in the calibration process, 

since it would lead to parameters estimates plagued by considerable uncertainty. On the other hand, 

Figure 4.25b shows that 
2 _ 2A

f  and 
2 _ 2B

f  are reliable functions for incomplete mixing parameter 

estimation: the global minima are easy detectable since the function gradients increase rapidly also for 

little displacement of D from the minimum. This different sensitivity to B and D is due to formulation 

of 
2f (see Eq. (2.53)). Investigating the logarithmic values of concentration, 2f  gives more relevance to 

reactant tails in the mixing zone where the curves are largely influenced by the incomplete mixing local 

reaction parameter and only slightly by dispersion. Indeed, the errors performed on data far from the 

reactive front, which are affected by dispersion values (D), poorly influence the 
2 _ 2A

f  and 
2 _ 2B

f  

evolutions. 
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Figure 4.25 Evolution of a) f2A_2 and b) f2B_2 as function of D and B along the sections T1, T2 and L1, L2 indicated in Figure 4.24 

through red dashed lines. 

The lowest reached values of  
2 _ 2A

f  and 
2 _ 2B

f  and the corresponding combination of the parameters B 

and D for which they are reached are reported in Table 4.8. 

Table 4.8 f2A_2 and f2B_2 minimum values and the combination of B and D for which they are reached 

Function Minimum  (D;B) 

2Af  0.026 (500;350) 

2Bf  0.011 (740;230) 

 

Confirming what observed in Model 1 analysis, the two reactants are characterized by different 

behaviors and as a consequence 
2 _ 2A

f  and 
2 _ 2B

f  identify two diverse combinations of values as 

optimal (Table 4.8). Moreover we note that the minimum computed value of 
2 _ 2A

f  is approximately 

double the minimum value attained for 
2 _ 2B

f , i.e. in general the error associated to prediction of CB is 

smaller than that associated to CA.  

In order to test the parameter estimations performed, in Figure 4.26, we plot the survival function of 

reactant profiles solutions (at t=447) computed with the two combinations of D and B reported in Table 

4.8. These solutions are compared to the datasets 3AC  and 3BC . We observe that D=740 

overestimates the longitudinal dispersion observed for 2BC  and, similarly, D=500 for 2AC .  
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In Figure 4.27 a zoomed image of reaction zone is presented and chemical concentrations are 

represented in a semi-logarithmic scale. The 2AC  data present an oscillatory behavior. However 

imposing B=350, Model 2 is able to capture the averaged trend of 2AC  data. The data of 2BC  datasets 

are characterized by smaller oscillations and are particularly well predicted by Model 2 solution with 

B=260 since Model 2 solution and 2BC  data are really close. The absence of strong oscillations on 

2BC  data explains why the 
2 _ 2B

f  minimum value is consistently lower than 
2 _ 2A

f  one (see Figure 4.25 

and Table 4.8). 

 

Figure 4.26 Survival function (SF) of reactant profiles given by the two Model 2 relying on different D and B values compared to 

survival function of CA3 and CB3 data.  
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Figure 4.27 Reactant profiles in the mixing zone given by two Model 2 solutions relying on different D and B values compared to 

survival function of CA3 and CB3 data. 

On the basis of the results presented above, we analyze the distribution of 4f  evolution as function of 

parameters to improve the estimation of longitudinal dispersion. In the following we analyze the 

evolution of 
4 _ 2A

f  (Figure 4.28a), 
4 _ 2B

f  (Figure 4.28b) and 
4 _ 2C

f  (Figure 4.30) as function of D and B.  

 

Figure 4.28 Evolutions of f4A_2 (a) and f4B_2 (b) as function of B and D. The dashed red lines labeled as T3, T4, L3 and L4 indicate 

the four cross sections of f4A_2 and f4B_2 depicted in Figure 4.29-. 

The functions 
4 _ 2A

f  and 
4 _ 2B

f  show common features: the contour lines shape shows that of 
4 _ 2A

f  and 

4 _ 2B
f  exhibit a convex shape and are characterized by a single minimum. As a consequence, we can 

affirm that 
4 _ 2A

f  and 
4 _ 2B

f  are sensitive to both B and D values identifying a global minimum for a 
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single combination of parameters. Analyzing the single values that 
4 _ 2A

f  and 
4 _ 2B

f  assume for all the 

different combination of B and D we observe that: 

� 
4 _ 2A

f  reaches its minimum (equal to 0.0664) where D=380 and B=380; 

� 
4 _ 2B

f  is minimized if D=660 and B=230; its lowest value is 0.0399. 

In Figure 4.28 
4 _ 2A

f  and 
4 _ 2B

f  minimum locations are identified by the crossing points of two couples 

of red dashed lines labeled T3 and L3 in Figure 4.28a and T4 and L4 in Figure 4.28b.   

To evidence the evolution of 
4 _ 2A

f  and 
4 _ 2B

f  and the minima reached, in Figure 4.29a we analyze the 

trends of 
4 _ 2A

f  and 
4 _ 2B

f  along T3 and T4 respectively as function of D. Similarly, 
4 _ 2A

f  and 
4 _ 2B

f  

evolutions are investigated along L3 and L4 respectively as function of B in Figure 4.29b.  

 

Figure 4.29 Evolution of a) f4A_2 and b) f4B_2 as function of D and B along the sections T3, T4 and L3, L4 indicated in Figure 4.28 

through red dashed lines. 

Comparing Figure 4.29a to Figure 4.25a, we can observe that 
4 _ 2A

f  and 
4 _ 2B

f  present a more general 

gradient as a function of D if compared to 
2 _ 2A

f  and 
2 _ 2B

f  (compare Figure 4.25 to Figure 4.29). As 

previously observed 
2 _ 2A

f  and 
2 _ 2B

f  are practically flat characterized by a gradient close to zero for a 

large range of dispersion values. As a consequence, 
4 _ 2A

f  and 
4 _ 2B

f  are more sensitive to dispersion 

parameter and more suitable for the estimation of dispersion parameter than 
2 _ 2A

f  and 
2 _ 2B

f . 
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Increasing the sensitivity to D does not lead to depletion in function sensitivity to B. Indeed, Figure 

4.29b shows that the optimum value of B is clearly identified for values similar to those obtained 

through the criteria 
2 _ 2A

f  and 
2 _ 2B

f . As already observed, Figure 4.29 evidences that performing 

estimations on AC  and BC  profiles separately, leads to different parameter estimations. In agreement 

with previous results in section 4.3.1and section 4.1, AC  profiles are characterized by a steeper 

gradients as compared to BC  ones, which lead to the identification of a smaller optimal dispersion 

coefficient for CA than for CB. The dispersion parameter estimations are close to ones obtained for 

Model 1.  

In Figure 4.30 we present 
4 _ 2C

f  evolution as function of parameters and the crossing point of the two 

red dashed lines (L5 and T5) illustrates 
4 _ 2C

f  minimum position (D=460 and B=290). For similar 

reasons presented for criteria 
4 _ 2A

f  and 
4 _ 2B

f , the function 
4 _ 2C

f  configures as a valuable objective 

function for the calibration of the two selected parameters, B and D. We observe that 
4 _ 2C

f  identifies a 

third different combination of D and B as optimum which corresponds to an intermediate solution 

between 
4 _ 2A

f  and 
4 _ 2B

f  parameter estimations (compare Figure 4.30 to Figure 4.28).  

 

Figure 4.30 Evolution of f4C_2 as function of B and D. The dashed red lines labeled T5 and L5 indicate the position of the function 

minimum value. 

To conclude this analysis, we select different Model 2 solutions along the section T4 and L3 in order to 

investigate the behavior of the corresponding predicted chemical concentrations as function of the two 

unknown parameters. The combinations of parameters chosen are indicated in Figure 4.29 through 
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dashed black lines and by a label. For the sake of clarity, all the solutions considered are listed in Table 

4.9 and identified in Figure 4.31 with the corresponding labels and parameter combinations.  

Table 4.9 Combination of parameter of Model 2 solutions analyzed in Figure 4.32 and Figure 4.33 with associated labels. 

Label solution (D;B) 

S2.1 (340;230) 

S2.2 (660;230) 

S2.3 (820;230) 

S2.4 (380;140) 

S2.5 (380;290) 

S2:6 (380;380) 

 

 

Figure 4.31 Evolution of f4A_2 (a) and f4B_2 (b) as function of B and D. The dashed red lines labeled as T3,T4, L3 and L4 indicate 

the four cross sections of f4A_2 and f4B_2 depicted in Figure 4.29. White dots indicate the solutions reported in Table 4.9 within the 

space of the parameter and the correspondent labels.  

In Figure 4.32 and Figure 4.33 different Model 2 solutions are compared to 3AC  and 3BC  data in 

order to allow performing a qualitative sensitivity analysis of chemical profiles to parameters. 
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Figure 4.32 a) Reactant profiles yielded by S2.1, S2.2 and S2.2 compared to CA3 and CB3 data at t=447. Figure b) provides a 

zoomed image of reactive zone delimitated in figure a) by dashed black line. 

 

Figure 4.33 a) Reactant profiles yielded by S2.4, S2.5 and S2.6 compared to CA3 and CB3 data at t=447. Figure b) provides a 

zoomed image of reactive zone delimitated in figure a) by dashed black line. 

In Figure 4.32 we compare S2.1, S2.2 and S2.3 reactant profiles predictions at t=447 against 3AC  and 

3BC  data. Figure 4.32b is a zoomed image of reactant mixing zone delimitated by black dashed line in 

Figure 4.32a. We observe that the dispersion coefficient strongly influences the chemical profiles only 

outside the mixing zone confirming previous findings of Chapter 3. Figure 4.33, instead, reports S2.4, 

S2.5 and S2.6 reactant profiles predictions at t=447 against 3AC  and 3BC  data. Figure 4.33b is a 

zoomed image of reactant mixing zone delimitated by dashed line in Figure 4.33a. Figure 4.33a shows 
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that parameter B does not influence the solution outside the mixing zone (for xAD<0 and xAD>60) and its 

effect is visible only within the reaction zone (0<xAD<60): if B increases, reactant concentration profiles 

assume larger values. This allows modeling incomplete mixing effects, i.e. the inhibition of the reaction 

process due to pore-scale segregation of reactants. In Figure 4.32b, it appears that reactant profiles 

sensitivity with respect to dispersion coefficient is quite limited. However, an important influence does 

exist and it is disclosed on product profiles. Figure 4.34a depicts different Model 2 product profile 

solutions at t=447 for different values of D while B is fixed equal to 230. Here we observe that, as 

expected, increasing dispersion leads an increment of product profile spreading and on the maximum 

observed product concentration. In Figure 4.34b we present a zoomed imaged of the product 

concentration peak indicated by a dashed red line in Figure 4.34a. For fixed B and time, the product 

concentration peak is proportional to D meaning that incomplete mixing affects the product generation 

with less intensity. This influence can be explained looking at Model 2 reaction term mathematical 

formulation. Looking at Eq. (2.18), we can notice that the source term s  embedding the incomplete 

mixing effect depends on 

l

D
C

x

∂

∂
, i.e. on the longitudinal gradient of the conservative component D. 

The time evolution of this gradient is in turn dependent on dispersion parameter. That means that when 

dispersion increases, 
l

D
C  spreads quicker and its gradient along x rapidly smoothes with time in the 

mixing zone. As a consequence the incomplete mixing effect decreases rapidly proportional to the 

decrement of conservative component CD gradient with time allowing to higher product concentration 

peak and lower reactants concentrations in the mixing zone independently from B value.  
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Figure 4.34 a) Product profiles yielded by S2.1, S2.2 and S2.2 at t=447. Figure (b) provides a zoomed image of peak zone 

delimitated in figure a) by dashed red line. 

Figure 4.35 depicts the 1GCf  evolution as function of the two parameters. Figure 4.35 evidences that 

1GCf  shows its lower value for D=380. This value is very close to the one estimated in Model 1 for the 

same objective function considering the same dataset (see Figure 4.22). According to the 

considerations done in section 4.3.1, we recall that D=380 is an incorrect estimation of the dispersion 

parameter not capturing chemical real spreading process.  

 

Figure 4.35 Evolution of f1GC as function of B and D.  
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4.3.3 MODEL 3: Sanchez-Vila et al. (2010) 

As shown in section 2.3.3, Model 3 depends on three effective parameters: D, 0β̂  and m. Notice that 

0β̂  is dimensional while D and m are dimensionless according to Eq. (2.24) and Eq. (2.23). The 

formulation of Model 3 dispersive term (Eq. (2.25)), which includes the parameter D, is similar to 

Model 1 and Model 2. Indeed in all the three model dispersion process is assumed to be Fickian. For 

this reason, Model 3 is expected to have a behavior similar to Model 1 and Model 2 outside the mixing 

zone, where the incomplete mixing does not affect the solution (see Chapter 3 and section 4.3.2). As a 

consequence we can assume that dispersion estimation in Model 3 would lead to similar values 

estimated for Model 1 and Model 2. Then we select only three fixed values of dispersion (D=400, 

D=500, D=600) and focus the analyses on the role of 0β̂  and m which affect profile solutions close to 

reactive front. The choice of the three dispersion values is based on the estimations performed for 

Model 1 (see section 4.3.1) and for Model 2 (see section 4.3.2). According to these results, it possible 

to conclude that: i) a dispersion value close to 400 can depicts AC  profiles; ii) a dispersion value close 

to 600 fits BC  concentration profiles; ii) a dispersion value close to 500 captures the CC  average 

spreading.  

The two parameters 0β̂  and m  are included in Model 3 reaction rate described by Eq. (2.22)-(2.23) 

here recalled: 

 0
ˆ ˆl l l lm

A B A Bs C C t C Cβ β −= =  

Those are both positive and no upper boundaries are identified. This means that 0β̂  and m can assume 

any positive value. Upon preliminary solutions of Model 3, we have limited the theoretically infinite 

parameter space to finite domain in which the combination of fitting parameters is included for the 

problem at the hand. The value of 0β̂  varies in [0.0324,649] and m  in [0,1] . These intervals are then 

discretized as shown in Table 4.10 and a Model 3 solution is numerically computed for each one of the 

77 parameters combinations. 
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Table 4.10 Value of Model 3 parameter sampled for objective function evolution analysis. 

0β̂  sampled values 

0.03 3.24 9.73 19.46 32.43 97.31 194.62 324.37 421.68 

m  sampled values 

0.005 0.010 0.030 0.060 0.100 0.500 0.800 1.000 

 

The results in section 4.3.2 show that the objective function 2f  should provide a reliable criterion for 

the identification of optimal parameters which governs the reaction process in the mixing region. The 

2 _ 3A
f  and 

2 _ 3B
f  evolutions are investigated in the following. Here we also present the function 

3 _ 3C
f . 

As shown in Chapter 3, it allows stressing the discrepancy between CC  predictions and concentration 

observed in pore-scale data only in the region centerd on the peak. Indeed, CC  profiles far from the 

reaction front are not interesting in this analysis since it is governed practically by dispersion alone 

which is constant. For objective function computation, we use DATASET 2 (see Table 4.5) for the 

reasons explained in section 4.2. 

In the following, only function evolutions computed with D=500 are reported and commented since 

results for D=600 and D=400 are analogous and lead to similar considerations. 

In Figure 4.36a, Figure 4.36b and Figure 4.37, we depict 
2 _ 3A

f , 
2 _ 3B

f  and 
3 _ 3C

f  evolutions as function 

of the two parameters 0β̂  and m  logarithmic values. The locations of lower values (i.e. the darker 

areas in Figure 4.36a, Figure 4.36b and Figure 4.37) and the contour lines shape, suggest that 
2 _ 3A

f , 

2 _ 3B
f  and 

3 _ 3C
f  evolutions in parameter space are “U-shaped”. Indeed, the three function reach their 

lower values along a strip centered in 0
ˆlog( ) 1β =  for 

2 _ 3A
f  and 

2 _ 3B
f  and in 0

ˆlog( ) 0.5β =  for
3 _ 3C

f . 

That means that the three functions are sensitive to the parameter 0β̂ . As a consequence,
2 _ 3A

f , 
2 _ 3B

f  

and 
3 _ 3C

f  represent good objective functions for the estimation of 0β̂ .  
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Figure 4.36 Evolutions of a) f2A_3 and b) f2B_3 as function of parameters. The red dashed lines indicate the position of function 

sections reported in Figure 4.38 and Figure 4.39. 

 

Figure 4.37 Evolution of f3C_3 as function of parameters. The red dashed line labeled as L8 indicates the position of the function 

section reported in Figure 4.39. 

In Figure 4.38 we depict the evolution of 
2 _ 3A

f  as function of 0
ˆlog( )β  along three sections T6, T7 and 

T8 indicated by red dashed lines in Figure 4.36a. Figure 4.38 confirms that 
2 _ 3A

f  an easily detectable 

minimum for 0β̂  exists since the three curves all present a marked concavity. The three sections 

considered correspond to diverse values of m as shown in Figure 4.36a. As a consequence, the 

minimum reached by 
2 _ 3A

f  appears to be almost independent of the assumed m value. Similar 

investigations on Figure 4.36 and Figure 4.37 lead to analogous considerations on 
2 _ 3B

f  and 
3 _ 3C

f  

behaviors. Then, to better understand the influence of m, the trends of 
2 _ 3A

f , 
2 _ 3B

f  and 
3 _ 3C

f  are 

analyzed as function of m along three longitudinal sections L6, L7 and L8. The longitudinal sections 
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considered are indicated in Figure 4.36 and Figure 4.37 using dashed red lines and correspond to 

optimum value of 0β̂  identified by each function. Figure 4.39 reports 
2 _ 3A

f , 
2 _ 3B

f  and 
3 _ 3C

f  along L6, 

L7 and L8 respectively. The functions 
2 _ 3A

f , 
2 _ 3B

f  and 
3 _ 3C

f  show a common behavior: as m 

decreases, the functions value decrease. However, for values of m smaller than 0.06 (corresponding in 

Figure 4.39 to log (m) =-1.22) the three curves assume a constant value and the three criteria are 

insensitive to m value. Parameter m quantifies the dependence of reaction rate on time (Eq. (2.22)-

(2.23)). Our results suggest, instead, that the dependence on time of the reaction constant as formulated 

in Model 3 does not provide a significant improvement in fitting concentration profiles observed in 

pore-scale simulations. As a consequence, Model 3 tends to assume a formulation close to the ADRE 

model one where the reaction term is proportional to an effective reaction rate smaller than the intrinsic 

one. 

 

Figure 4.38 Evolution f2A_3 as function of log (β0) along the three traverse sections T6, T7 and T8 indicated in Figure 4.36a 

through red dashed lines. 
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Figure 4.39 Evolutions of f2A_3, f2B_3 and f3C_3 as function of m along the longitudinal cross sections L6, L7 and L8 

respectively. The locations of L6, L7 and L8 are indicated in Figure 4.36 and Figure 4.37. 

The negligible influence of m can be highlighted also analyzing concentration profiles. We select three 

Model 3 solutions (labeled as S3.1, S3.2 and S3.3) computed for a fixed value of 0β̂ =9.73 and different 

values of m. The solutions selected are indicated in Figure 4.39 through black dashed lines. For the 

sake of clarity, we report the three solutions selected with the corresponding parameter combinations 

and labels in Table 4.11 and Figure 4.40.  

Table 4.11 Combination of parameter of Model 3 solutions analyzed in Figure 4.42 and Figure 4.42 with the corresponding labels. 

Solution label (D, 0β̂  , m) 

S3.1 (500, 9.73,0.005) 

S3.2 (500, 9.73,0.06) 

S3.3 (500, 9.73,1) 
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Figure 4.40 Evolution of f2B_3 as function of parameters. The red dashed lines indicate the position of function sections reported in 

Figure 4.38 and Figure 4.39. The white dots indicate the Model 3 solutions investigated in Figure 4.42 and Figure 4.42 and the 

corresponding labels. 

The chemical species profiles at t=447 corresponding to S3.1, S3.2 and S3.3 are plotted in Figure 4.41 

and Figure 4.42 and are compared to pore-scale averaged concentrations. In particular, Figure 4.41 

depicts the reactant profiles: we observe that even as m changes its value, no influence is visible on 

reactant concentrations and S3.1, S3.2 and S3.3 are practically coincident. Similar considerations are 

derived looking at Figure 4.42a where the three product profile predictions corresponding to S3.1, S3.2 

and S3.3 are illustrated and compared to 3AC  and 3BC . Indeed, since the overall profiles are mainly 

influenced by dispersion, as shown in section 4.3.2, the parameter m is expected to influence only the 

mixing zone and the height of the peak of the CC concentration profile. In Figure 4.41b, we present a 

zoomed image of the reactive zone delimited in Figure 4.41a through a black dashed line. Slight 

sensitivity to m is registered on reactant profiles in the mixing zone. Indeed as m decreases, profiles get 

closer to pore-scale data coherently to curves presented in Figure 4.39 suggesting that a lower value 

than 0.005 would lead to a slight improvement of data fitting. Figure 4.42b zooms in the product 

profiles centered on the peak as indicated in Figure 4.42a through red dashed line. Figure 4.42b 

underlines that a decrement of m value of two hundred of times (from 1 to 0.005) leads to almost 

imperceptible increment (approximately 1%) of peak height. The latter consideration is an additional 

confirm of the negligibility of time-dependence of reaction term.  
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Figure 4.41 a) Reactant profiles given by S3.1, S3.2 and S3.2 at t=447. Figure(b) provides a zoomed image of mixing zone 

delimitated in figure a) by dashed black line. 

 

Figure 4.42 a) Product profiles given by S3.1, S3.2 and S3.2 at t=447. Figure(b) provides a zoomed image of peak zone delimitated 

in figure a) by dashed red line. 

On the other hand, the criteria 
2 _ 3A

f , 
2 _ 3B

f  and 
3 _ 3C

f  attribute to 0β̂  an important role in fitting profile 

concentrations. In Figure 4.43 and Figure 4.44 we investigate the concentrations profile solutions at 

t=447 given by the three different values of 0β̂  listed in Table 4.12 while m is fixed to 0.005. The 

predictions are compared to 3AC , 3BC  and 3CC  data. Since the time-dependence of reaction rate is 

negligible, S3.6 is practically coincident to ADRE solution since 0β̂ = k̂ .  
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Table 4.12 Labels assigned to three different solutions of Model 3 computed for different values of β0. 

Solution Label 
0β̂  

S3.1 3.24 

S3.4 97.31 

S3.5 324.37 

 

In Figure 4.43a reactant profiles (CA, CB) corresponding to S3.1, S3.4, S3.5 are plotted at t=447 against 

3AC , 3BC  while Figure 4.44b depicts the concentration CC. No differences are visible between the 

diverse solutions. Indeed, since parameter 0β̂  is linked to reaction process and not to dispersion, its 

influence is limited to reaction zone, in agreement to previous findings. The reactants and product 

profiles sensitivity to 0β̂  in mixing zone is presented in Figure 4.43b and Figure 4.44b, respectively. 

Figure 4.43b illustrates S3.1, S3.4,S3.5 reactant profile solutions zoomed in the mixing zone 

delimitated by black dashed line in Figure 4.43a. As 0β̂  increases reactants concentrations decrease.  

Note that the value of 0β̂  can be associated to the degree of mixing observed at the pore-scale. As a 

consequence the reaction takes place faster leading lower values of non-reacted reactants in the mixing 

zone. For 0β̂ = k̂  reactants data are evidently underestimated. We observe instead that the effective 

reaction rate, which provides a better estimation of reactant concentrations, is approximately 9.73, i.e. 

almost 30 times lower than the intrinsic one (324), in agreement to previous works shown in Chapter 1. 

However, in Figure 4.43b, it seems that Model 3 is not well reproducing 3AC  and 3BC  trends since it 

is not able to capture the rapid decrement that characterizes the tails of pore-scale data for xAD>0. In 

Figure 4.44b, the sensitivity of peak height to 0β̂  is disclosed. We can observe that as 0β̂  decreases, the 

peak height reduces. 
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Figure 4.43 a) Reactant profiles given by S3.1, S3.4 and S3.5 at t=447. Figure b) provides a zoomed image of reaction front 

delimitated in figure a) by dashed black line. 

 

Figure 4.44 a) Product profiles predicted by S3.1, S3.4 and S3.5 at t=447. Figure b) provides a zoomed image of peak zone 

delimitated in figure a) by dashed red line. 

We do not present the analysis of the error related to the global mass of reaction product since this 

would lead to the same results already discussed in section 4.3.1and section 4.3.2.  

4.3.4 MODEL 4: Hochstetler and Kitanidis (2013) 

As shown in section 2.3.4, Model 4 depends on three effective parameters: D, λ  and γ . In Hochstetler 

and Kitanidis (2013) the dispersion parameter of reactive species is supposed to be equivalent of 

tracers one. Since our system hasn’t reached the asymptotic behavior, as shown in section 4.1 (Figure 
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4.1 and Figure 4.2), the dispersion coefficient is assumed equal to 741 which is the value computed 

with a non-reactive numerical simulation at t=59 s corresponding to the duration of simulated reactive 

transport (see Figure 4.1) analyzed in this Chapter.  

As dispersion parameter is fixed, the following analysis aims to investigate only λ  and γ  roles. As 

shown in section 4.3.1and 4.3.2, parameters included in reaction term tends to have an influence 

limited to reactant mixing zone and that 2f  provides a good estimation of them. As a consequence we 

chose to rely λ  and γ  estimations on 
2 _ 4A

f and 
2 _ 4B

f  computation which stress reactant prediction 

errors committed near the reactive front. Reactant profiles outside the mixing zone are not interesting in 

this case since their trends are governed mainly by dispersion which is fixed in this analysis.  

Both the parameters are defined positive. While λ  can vary from zero to infinite, the authors limited γ  

domain between zero and one. Upon preliminary simulations with different values of λ , we delimite 

the parameter space to a small interval [100,700]. The two intervals are discretized as shown in Table 

4.13 and a numerical solution of Model 4 is computed for each of the 35 identified combinations of 

parameters.  

Table 4.13 Values of γ and λ sampled for objective function computation. 

γ  sampled values 

0.2 0.4 0.6 0.8 1 

λ  sampled values 

100 200 300 400 500 600 700 

 

Figure 4.45 shows the distributions of 
2 _ 4A

f and 
2 _ 4B

f  as function of parameters. The contour line 

shapes and darker colored areas highlight that 
2 _ 4A

f and 
2 _ 4B

f  present different local minima. To verify 

if a global minimum exists, we compare the functions 
2 _ 4A

f and 
2 _ 4B

f  evolutions along the sections 

indicated in Figure 4.45 through dashed red lines.  
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Figure 4.45 Evolutions of a) f2A_4 and b) f2_B_4 as function of parameters. Red dashed lines indicate the positions of the sections 

reported in Figure 4.46. 

In Figure 4.46a 
2 _ 4A

f evolutions along L9, L10 and L11 (indicated in Figure 4.45a) are illustrated as 

function of λ . The value of 
2 _ 4A

f  is reported in logarithmic scale in order to exalt eventual differences 

when function values approach to zero. The three minima, however, are undistinguishable. Analogous 

considerations are valid for Figure 4.46b where the evolution of 
2 _ 4B

f  along L12, L13 and L14 

(indicated in Figure 4.45b) are shown as function of λ . The results show that λ  and γ  are correlated 

and that infinite combinations of these two parameters can be estimated that lead to equivalent Model 

predictions. Then it is no possible to estimate λ  and γ  relying on chemicals profiles information. This 

is consistent with formulation of effectiveness factor (Eq. (2.29)) proposed by Hochstetler and 

Kitanidis (2013) here recalled: 

 E
Da

γλ

λ
=

+
. 

Looking at this formulation, as E value is fixed, for each value of chosen value of γ  exists a value of 

λ  which allows obtaining the fixed value of E. 
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Figure 4.46 Evolutions of a) f2A_4 along L9, L10 and L11 sections indicated in Figure 4.45a and b) f2_B_4 along L12, L13 and L14 

sections indicated in Figure 4.45b. 

In Figure 4.47 the survival functions SF of reactants profiles predicted for different combinations of 

parameter indicated in Table 4.14. These solutions are compared to the survival function SF ( 3AC ) and 

SF ( 3BC ). Figure 4.47 shows that, (i) the values of λ  and γ  do not affect the solutions outside the 

mixing zone, ii) the dispersion parameter assumed according to the procedure proposed in Hochstetler 

and Kitanidis (2013) appears to be overestimated for both 3AC  and 3BC  profiles. As shown in section 

4.3.1 and section 4.3.2, CC  profile is characterized by an intermediate value of dispersion between A 

and B ones. As a consequence, D=741 overestimates CC  profile dispersion too. This suggests that the 

dispersion parameter cannot be estimated independently from reaction process.  

Table 4.14 Model 4 solutions plotted in Figure 4.47  

Solution label ( λ ;γ ; D) 

S4.1 (200;0.2;741) 

S4.2 (500;0.6;741) 

S4.3 (600;0.4;741) 
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Figure 4.47 Survival function (SF) of reactant profile solutions computed for different combinations of parameter reported in 

Table 4.14. 

To overcame this limitation in the following we fix γ =1 (following an alternative formulation of E 

proposed by Hochstetler and Kitanidis (2013)) and reintroduce D as a calibration parameter. In this 

case, we implement 
4 _ 4A

f , 
4 _ 4B

f  and 
4 _ 4C

f  which allow to characterize both the dispersive and 

reactive processes as discussed in section 4.3.2. The dispersion and λ  values investigated this analysis 

are reported in Table 4.15. A total of 60 parameters combinations have been considered for this 

analysis. 

Table 4.15 Sampled values of D and λ for objective function evolution analysis. 

D sample values 

300 400 500 600 700 800 

λ  sample values 

10 20 30 50 100 200 300 350 400 500 

 

Figure 4.48 and Figure 4.49 display the evolution of 
4 _ 4A

f , 
4 _ 4B

f  and 
4 _ 4C

f  as function of the two 

parameters are reported. The contour lines show that a global minimum can be identified for each one 

of the three functions. This proves that 
4 _ 4A

f , 
4 _ 4B

f  and 
4 _ 4C

f  are sensitive to both parameters 

investigated and may provide a reliable criterion for model calibration. In Figure 4.48 and Figure 4.49, 

the crossing points of the red dashed lines located the position of the minima.  
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Figure 4.48 Evolutions of a) f4A_4 and b) f4_B_4 as function of parameters D and λ. Red dashed lines indicate the positions of the 

minima reached by each function. 

 

Figure 4.49 Evolutions of f4C_4 as function of parameters D and λ. Red dashed lines indicate the position of the minimum reached 

by the function. 

Figure 4.48 and Figure 4.49 evidence that 
4 _ 4A

f , 
4 _ 4B

f  and 
4 _ 4C

f  indicate three different combinations 

of parameters (reported in Table 4.16) as optimum.  

Table 4.16 Combinations of parameters that optimize f4A_4, f4B_4 and f4C_4. 

Function Parameters estimate (D; λ ) 

4 _ 4A
f  (400;100) 

4 _ 4B
f  (500;20) 

4 _ 4C
f  (600;200) 
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The difference observed between the three dispersion estimations confirms the findings of section 4.1-

4.3.1-4.3.2. In order to explain the significant differences observed in λ  estimations, we investigated 

the sensitivity of concentration profiles with respect to λ . Figure 4.50 shows the reactant concentration 

profiles computed with different values of λ  (20; 100; 200) and D=500 at t=447. The solutions are 

compared to 3AC  and 3BC  data. We observe that, consistently with findings of Chapter 3, reactant 

profiles outside the mixing zone (xAD< 20 and xAD>60) are not sensitive to λ  which influences only 

reaction term and not to dispersion process. The influence of λ  is instead detectable in Figure 4.50b, 

which is a zoomed image of reactant concentration profiles in mixing zone, and in Figure 4.51b, where 

an enlarged image of product peak zone is depicted. 

As λ  decreases, the reactant concentrations values tend to increase, meaning that when λ  tends to zero 

the incomplete mixing effects increases. This finding is in agreement with reactive term defined in 

Model 4 (see Eq.(2.27)-(2.29)): as λ  gets closer to zero, the effective reaction rate ˆ
effk  assumes a 

smaller value compared to intrinsic reaction rate. However, Model 4 appears not to well-captures the 

concentration evolution in reactive zone, in particular for 3BC  data. If 3BC  data show a steep 

decrement to zero, Model 4 solution tends to be smoother and it shows a flatter profiles. For this reason 

3BC  data are in part well-fitted imposing λ =100 and in part imposing λ =200 but a unique value of λ  

cannot reproduce the full 3BC  data trend. Looking at Figure 4.51b, we observe that the peak of CC 

profile is higher when λ  increases. Figure 4.51b compares 3CC  data and the three product solutions at 

t=447 in the peak zone delimitated by read broken line in Figure 4.51a. This shows that the lower value 

obtained through 
4 _ 4C

f  for λ = 20 are essentially due to pore-scale data selected that are characterized 

by oscillations. The results in Figure 4.51b show that all three λ  estimations can be considered feasible 

and no one of the value proposed seems to provide a better interpretation of concentration peak data 

compared to the others. 
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Figure 4.50 a) Reactants concentration profiles yielded by Model 4 for different values of λ, D=500 and γ=1 at t=447 compared to 

CA3 and CB3. Figure b) is a zoomed image of reactant mixing zone delimited by dashed black line in figure a). 

 

Figure 4.51 a) Product concentration profiles yielded by Model 4 for different values of λ, D=500 and γ=1 at t=447 compared to 

CC3 data. Figure b) is a zoomed image of concentration peak delimited by dashed red line in figure a). 

4.4 MODEL 5: DRMT Model  

The numerical solution of Model 5 involves significantly larger computational costs and for this reason 

we do not provide here a complete investigation of the model performance as function of the model 

parameters. However, since this type of model has never been implemented for the case of 

homogeneous irreversible bimolecular reaction in porous media, a qualitative sensitivity analysis of 

evolving features dynamics to parameters is performed.  
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As shown in section 2.4, Model 5 depends on three different parameters: MobD , IMβ  and Z . In section  

2.4 we underline that mφ  is linked to the velocity of solute located in the mobile region ( m
v ) through 

advective velocity and porous medium porosity (Eq. (2.36)). As a consequence, since the porosity of 

the system and the advective velocity are constant, a unique value of m
v  is associated for each 

possible value of mφ . Once that mφ  is known, IMβ  is immediately derived as: 

 m
IM

m

φ φ
β

φ

−
=  (4.2) 

According to what presented above, a first estimation of IMβ  is possible assuming that m
v  is equal to 

reactive front velocity (up) observed in pore-scale simulation (see section 4.1). The parameters values 

and results of this first estimation are reported in Table 4.17.  

Table 4.17 Results of first estimation of βIM. 

l
u  1 

m
v =

p
u  1.0560 

φ  0.6 

mφ  0.57 

imφ  0.03 

IMβ  0.052 

 

We can observe that, in these conditions, the immobile region corresponds to a little fraction (5%) of 

the pore space. We then solve Model 5 with different combinations of MD  and Z . Labels and 

parameters combination corresponding to each solution are indicated in Table 4.18. 
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Table 4.18 Solutions computed for different parameters combination and corresponding labels. 

Label solution MD  Z  IMβ  

S5.1 250 0.001 0.052 

S5.2 450 0.001 0.052 

S5.3 600 0.001 0.052 

S5.4 450 0.005 0.052 

S5.5 450 0.008 0.052 

 

In Figure 4.52, reactant profiles of solutions S5.1,S5.2 and S5.3 are plotted at t=447 compared to 5AC  

and 5BC  data, which include also data depicting chemical species concentrations oscillations observed 

in Figure 4.3-Figure 4.8, differently from the data used for single continuum models assessment. In 

Figure 4.52 we can observe that, even as A and B are characterized by the same MobD  value they 

exhibit large differences between each other. Introducing an immobile phase, where solutes do not 

move by advection, delays part of the solute mass. Concerning BC , the effect of delayed solute is 

visible for xAD<0. Here the concentrations values are lower than expected since a percentage of the 

solute mass is trapped in the inlet zone. Concerning AC , instead, concentration profile shows a long 

backward tail slower than the advective front. This tail represents the amount of AC  solute entrapped in 

the immobile zone and it exhibits a slowly decreasing trend. However, independently from solute 

shapes, the profiles show a similar sensitivity to dispersion. Indeed a decrement of dispersion value 

leads to a steeper concentration curve since the spreading process in mobile phase is slower. Moreover 

Figure 4.52 shows that AC  tail distribution is not affected by dispersion value as well as the position of 

the reactive front, i.e. of the points where the two reactants profile cross each other. This is consisted 

with Model 5 formulation (Eq. (2.37)), i.e. MobD  value does not appear in immobile phases equations 

nor in the exchange term that links the mobile-immobile region concentrations. The large oscillations 

that characterize all BC  curve dataset do not allow visually selecting an optimal value for dispersion 

coefficient, since all the three solutions are feasible for BC  profile interpretation. The AC  profile, which 

presents oscillations only on the immobile tail not affected by dispersion, carries meaningful 
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information for preliminary estimation of dispersion. Indeed solution S5.2 (D=450) matches well 5AC  

data.  

 

Figure 4.52 Reactant profiles given by S5.1, S5.2 and S5.3 at t=447 compared to CA5 and CB5 data.  

In Figure 4.53 product profiles of solutions S5.1, S5.2 and S5.3 are plotted at t=447 compared to 5CC . 

The immobile concentration is visible in CC  profile in its asymmetric shape around the peak. A longer 

tail characterized the part of concentration slower than the reactive front (xAD<0) due to the reaction 

taking place in immobile phase. However the asymmetry importance is not affected by dispersion as 

peak height and position. Similarly to reactant profiles, dispersion influences the spreading of the 

concentration in longitudinal direction. Confirming what observed for AC  profile, D=450 appears to be 

the best fit for CC  well matching the forward tail of 5CC  among the ones investigated.  
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Figure 4.53 Product profiles concentration predicted by S5.1, S5.2 and S5.3 at t=447 compared to CC5 data.  

In Figure 4.54 reactant profiles yielded solutions S5.2, S5.4 and S5.5 are plotted at t=447 compared to 

5AC  and 5BC  data while Figure 4.55 depicts product profiles given by solutions S5.2, S5.4 and S5.5 

at t=447 against 5CC  data. Dispersion is fixed at 450 and the solutions are computed with different Z  

values. The parameter Z  has physical meaning which has been introduced in section 4.4. In particular, 

the dimensionless parameter Ẑ  is proportional to the velocity of mass transfer between the immobile 

and the mobile phases. According to the formulation proposed in section 2.4, we can define a 

characteristic transfer time-scale as the inverse of the mass transfer rate Ẑ . This quantifies the mean 

time necessary for solute mass transfer to take place between mobile and immobile regions. As a 

consequence, according to the definition provided in section 2.4, the dimensionless Z  represents ration 

between the characteristic time scale of the mass transfer process and the advective time scale. This 

means that fixed the average advection velocity and, as consequence the advective time scale 
â

t , an 

increment of Z  implies a faster mass transfer process. Looking at Figure 4.54 and Figure 4.55, we can 

observe that: when the mass transfer process is quick (i.e. large values of Z ) chemicals profiles are 

smoother. Indeed, the rapid transfer from mobile region to immobile one and vice versa tends to 

homogenize the mass spreading along the domain leading to more stretched and flattened concentration 

profiles. This also yields a reduction in product concentration peak, as shown in Figure 4.55. In Figure 

4.54, parameter Z  shows a significant influence on AC  slow long tail. For S5.2 ( Z =0.001) 

concentration on the tail is almost constant while it tends to decreases in space for S5.4 (Z=0.005) and 

S5.5 ( Z =0.008). From a physical point of view, this means that when the transfer process is slow, 
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immobile and mobile solutes tend to remain segregated in the two distinct phases: the mobile solute 

moves along x due to advection while the immobile one is entrapped and generates the long 

concentration tail. On the other hand, when Z  increases and the mass transfer process is quick, the AC  

tail vanishes rapidly since the solute residing in the immobile phase rapidly transfers to the mobile 

region. For the same reason we observe a delayed peak for lower Z  values in Figure 4.55. For low 

values of Z, solute is constantly displaced by 
l

mv  and the mobile concentration advances fast while 

the solute in the immobile region is not moving. Instead, if the solute mass easily transfers to immobile 

region, it advances discontinuously generating a slowing down of reaction front and peak position. In 

this case, looking at Figure 4.54, the mass transfer appears to be quite slow since the 5AC  data describe 

a long and evident tail slower that reaction front. 

 

Figure 4.54 Reactant profiles given by S5.2, S5.4 and S5.5 at t=447 compared to CA5 and CB5 data.  
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Figure 4.55 Product profiles given by S5.2, S5.4 and S5.5 at t=447 compared to CC5.  

To complete the analysis, we analyze different solutions where the immobile porosity is increased 

compared to our first estimation. In the following three different solutions, listed in Table 4.19, are 

compared against 5AC , 5BC  and 5CC  data.  

Table 4.19 Solutions computed for different parameters combination and corresponding labels. 

Label solution MD  Z  IMβ  

S5.2 450 0.001 0.052 

S5.6 450 0.001 0.078 

S5.7 450 0.001 0.15 

 

In Figure 4.56 reactant profiles given by solutions S5.2, S5.4 and S5.5 are plotted at t=447 compared to 

5AC  and 5BC  data while Figure 4.57 illustrates product profiles yielded by solutions S5.2, S5.4 and 

S5.5 at t=447 against 5CC  data. In Figure 4.56, we can observe that an increment in IMβ  value leads to 

an increment of AC  concentrations in the backward tail. Indeed IMβ  establishes the importance of the 

immobile region compared to immobile one, by definition. If IMβ  is small the amount of solute mass 

that at each time is located in the immobile region is negligible and mobile solute practically 

determinates the profile shape. As IMβ  increases, the immobile solute concentration acquires 

importance and it contributes to define concentration evolution in space . Figure 4.57 puts in evidence 
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another important aspect: when IMβ  increases, the overall product profile appears to move slower, in 

particular the peak. Indeed, as explained above, IMβ  is linked to mobile region velocity. As a 

consequence, changing IMβ  we implicitly change the mobile region velocity accordingly. For this 

reason, the concentration profiles appear to move faster compared to advection front. Actually the 

increased mobile region velocity is balanced by the long backward tails and, on average, the overall 

velocity of solutes is the same for all the solutions. 

 

Figure 4.56 Reactant profiles given by S5.2, S5.6 and S5.7 at t=447 compared to CA5 and CB5 data.  

 

Figure 4.57 Product profiles given by S5.2, S5.6 and S5.7 at t=447 compared to CC5. 

Differently from single continuum models, the parameters appear to be linked one to another, since 

they appear to contribute to characterized a single profile aspect: for example spreading is regulated 
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contemporary by MobD  and Z  while reactive front position by Z  and IMβ . For this reason it is 

expected that also global product evolution may be significantly influenced by all the parameters and 

mainly by dispersion and mass transfer rate which govern longitudinal solute spreading process. 

In Figure 4.58a global product evolutions yielded by S5.1, S5.2 and S5.3 are plotted against 1CG  

dataset. Similarly to single continuum models, dispersion, even if limited to mobile zone, significantly 

affects global product evolution. In particular, dispersion also affects the velocity of product generation 

from the very beginning since the curves characterized by higher dispersion grow faster. A different 

influence is instead observed for Z . In Figure 4.58b global product evolutions predicted by S5.2, S5.4 

and S5.5 are plotted against 1CG  dataset. For short time, global product is insensitive to Z : its value 

only affect product evolution for late times.  

In Figure 4.59 global product evolutions yielded by S5.2, S5.6 and S5.7 are plotted against 1CG  

dataset. Previous profiles analysis has shown that IMβ  is not directly linked to the solute spreading 

process. As a consequence, its influence on global product evolution which is marginal, since this 

output is mainly governed by dispersion mechanism.  

 

Figure 4.58 Global product evolutions predicted by a)S5.1, S5.2 and S5.3 and b) S5.2, S5.4 and S5.5 at t=447 compared to GC1 

data. 
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Figure 4.59 Global product evolutions predicted by S5.2, S5.6 and S5.7 at t=447 compared to GC1 data. 

4.5 Summary of results 

In this section we briefiely summarize the main results presented in this Chapter: 

• We demonstrate that the system analyzed has not reached the asymptotic behavior from both 

numerical and theoretical point of view. Pore-scale simulation analysis allows detecting the 

effects of immobile region on solutes distributions along the longitudinal direction: i) backward 

CA concentration tail is characterized by significant oscillations due to solute entrapped in 

immobile region; ii) CA and CB concentration profiles are characterized by different spreading 

processes; iii) CC concentration profiles are not symmetric; vi) the reactive front, i.e. the 

crossing point between CA and CB profiles, is not well characterized by the averaged fluid 

velocity.   

• Since the ADRE model does not include a parameter for the quantification of incomplete 

mixing effect, it leads to poor predictions of the reactants concentrations inside the mixing 

region. However, we can obtain a good fit of concentration profiles outside the mixing region, 

where dispersion is the dominant process. The functions 3 3,A Bf f  and 2Cf  provide a feasible but 

different optimal dispersion parameters due to the fact that the three solutes are characterized by 

different shapes of the concentration distributions along the longitudinal direction. To overcome 

this inconsistence, a possible solution is to assume 
CC  dispersion for characterizing, which 

allows describing an intermediate behavior of the system. On the contrary, this analysis 
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suggests that the model is not capable of reproducing the dynamics of the global product of the 

reaction. This is due to the fact that the dispersive process does not attain an asymptotic 

behavior in the scenario analyzed  

• Concerning Model 2 analysis, we can observe that the introduction an incomplete mixing 

parameter is necessary for capturing system features and concentration profiles both inside and 

outside the mixing zone. The definition of a suitable objective function is fundamental for 

approaching a correct estimation of parameters. In this section, we show that 2f  configures as a 

useful objective function for estimating parameter affecting the reaction rate and the effects of 

pore-scale reactants segregation (i.e. incomplete mixing), but it is scarcely sensitive to the 

dispersion parameter. As a consequence, criteria f2 can give reliable results in calibrating 

reaction parameters when dispersion is already known or previously calibrated. The criterion 

4f , instead, can be implemented when both dispersive and reactive parameters, are unknown 

due to its sensitivity to both D and B. Finally we underline that, in analogy to Model 1, the 

criterion 1GCf  leads to identify unreliable parameters combinations, when compared to the time 

evolution of the reactive transport process. In particular it appears that asymptotic dispersion 

value estimation is not possible relying on the available time history of the global mass of 

generated product. 

• The results presented for Model 3 suggest that the criteria used for parameters estimation are 

not able to disclose the time-dependence of the reaction constant. The parameter m, which 

establishes relation between the constant reaction rate and time, tends to zero-value. This 

suggests that Model 3 assumes a formulation close to the ADRE model where the intrinsic 

kinetic constant is replaced by a lower effective reaction rate. 

• The results concenrning Model 4 suggest that the effectiveness factor (E) formulation proposed 

by Hochstetler and Kitanidis (2013) cannot be fully calibrated relying only on profile 

concentration profiles related to a single Da number. More information are needed to perfom 

the estimation of the two parameters λ and γ. Moreover we highlight that the estimation of 

dispersion coefficient relying on conservative tracer transport leads to overestimated of it.  

• DRMTM shows an interesting potential in capturing peculiar aspects of reactive transport that 

encourage further investigations about its pertinence for homogeneous reactive transport 

description which is still an unexplored field. Even as the analysis provided is qualitative, it 
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evidences in particular that DRMT Model is able to captures the asymmetrical trends of 

concentration profiles and the effects of almost immobile regions due to porous medium 

heterogeneities. These aspects make the DRMTM solutions significantly different from single 

continuum model ones. A direct comparison between them, which helps in disclosing the 

differences, will be discussed in section 5.2.  
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CChhaapptteerr  55  MMOODDEELLSS  CCOOMMPPAARRIISSOONN  AANNDD  DDIISSCCUUSSSSIIOONN  

In this chapter, we provide a quantitative comparison between solutions yielded by the five models 

analyze individually in Chapter 4. In the first section, we focus on the single continuum models in 

order to highlight similarities and differences between models characterized by a common approach. 

Limitations of the single continuum approaches and possible solutions are also illustrated. In section 

5.2, instead, we qualitative compare Model 2 to DRMTM in order to highlight the differences existing 

between the two approaches and their peculiarities.  

5.1 Quantitative single continuum models comparison 

For all the models presented, parameters estimation has been performed relying on four different types 

of data: 
AC profiles, BC profiles, 

CC  profiles and global product evolution. As shown in sections 4.3.1-

4.3.2-4.3.3-4.3.4, according to the chemical species used for estimating parameters, we approach to a 

different estimations of dispersion and reaction parameters.  

In particular, as shown in sections 3.3 and 4.1, the forward tail of BC  profiles, which falls into the 

crucial mixing zone, shows limited oscillations of pore scale data with respect to the corresponding AC  

profiles. As concentration fluctuations generate uncertainties in dataset selection and increase the 

difficulty in discriminate between model performances, we limit models comparison to BC  profiles. As 

a consequence, among the different optimal combinations of parameter identified for each model, we 

select the ones which maximize models performances in fitting BC  profiles. In Table 5.1 we report the 

parameter estimations performed for each model in Chapter 4. For each model, we report in Table 5.1 

three different objective function values: 
2 Bf , 

3Bf  and 
4 Bf  (see section 2.6). These are computed 

relying on 3BC  and 2BC  datasets (see Figure 4.14 and Figure 4.15) . As shown in Chapter 3 and 

Chapter 4, each function allows evaluating the performances of the four models referring to a specific 

pirtions of the BC  profile: 
2 Bf  emphasizes the five models performances within the mixing zone, while 

3Bf  outside the mixing region. The criterion 
4 Bf  is given by the sum of 2Bf  and 3Bf  and evaluates the 

model performances on the overall BC  profile. 
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Table 5.1 parameters estimated for each Model and correspondent error computed on CB2 and CB3 data using f4B. 

Model Parameters 2Bf  3Bf  
4Bf   

Model 1 D=650 0.399 0.013 0.386 

Model 2 D=660; B=230 0.012 0.008 0.020 

Model 3 D=600; m=0.05; 0β̂ =9.73 
0.040 0.044 0.084 

Model 4 D=600;γ=1;λ=200 0.012 0.044 0.056 

 

We can observe that consistent differences are registered among 4Bf  values. Model 1 presents the 

highest error. A shown in section 4.3.1, the absence of a parameter for embedding incomplete mixing 

effect disadvantages this model, since the concentration profiles within the mixing region result 

evidently underestimated independently from the dispersion value chosen (Figure 4.19). This is 

consistent with objective functions values reported in Table 5.1. The value of , which enphatizes 

the model performances outside the mixing region, is similar for the four models, while the value of 

2Bf  is much larger for Model 1 meaning that its solution badly performs within the mixing region. As 

explained above, this means that the most significant discrepancy between Model 1 (ADRE) solution 

and pore-scale cross-sectional averaged data is localized within the mixing zone. Introducing a 

quantification of incomplete mixing through effective parameters leads to a crucial improvement in BC  

profile fit leading to a lower error committed by the model solutions. In particular we observe the 

lowest 2Bf  values associated to Model 2 and Model 4. Limiting the analysis to error computation 

would lead to the conclusion that Model 2 and 4 both allow to equivalently well-predicting 

concentration profiles at t=398 and t=447. Further investigations on BC  profile solution shapes, 

presented in the following, disclose instead that significant differences exist between the two model 

performances. In Figure 5.1 BC  profiles yielded by the four models at t=447 and t=398 are compared to 

3BC  and 2BC data. 

3Bf
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Figure 5.1 a) and c) depict CB profiles given by Model 1-4 computed with the combination of parameters estimated in Chapter 4 

and reported in Table 5.1 at t=447 and t=398, respectively. b) and d) are a zoomed image of CB profiles at the reactive zone 

delimited by red broken line in figure a) and c). The exact position of the reactive front is indicated by a black dashed line. The 

solutions are compared to CB3 data in a) and b) and to CB2 data in c) and d). 

In Figure 5.1a and c model curves are almost undistinguished yielding to very similar trends outside the 

mixing zone. Indeed, as shown in Chapter 4, the different reaction term modeling approaches included 

in the four models practically do not affect concentration profiles outside the mixing zone (delimited by 

dashed red lines in Figure 5.1a and c , i.e. where dispersion process governs the solute transport. Indeed 

the four models present identical dispersion term modeling approach in this region. This explains why 

models yield to almost identical profiles outside the mixing zone and the dispersion parameter 

estimations assume very similar values. This is consistent with 3Bf  values registered (Table 5.1): all the 

models show low and comparable errors outside the mixing zone. In particular Model 3 and 4 show 
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exactly the same 3Bf  value and are characterized by the same dispersion parameter estimations 

(D=600). This suggests that the slight difference observed between 3Bf  values is due to the different 

estimated dispersion which do not lead to significant discrepancy between fitting models performances, 

as observed in Figure 5.1a and c). However, looking at 2Bf  values reported in Table 5.1, we can notice 

that a large discrepancy between the four model solutions does exist and it is localized within the 

mixing zone. This result is embedded in criterion 4Bf . This discrepancy is imputable to the different 

model trends in the mixing zone close to the reactant front (the position of which is indicated in Figure 

5.1 by black dashed line). Figure 5.1b an d depict a zoomed image of the mixing zone indicated Figure 

5.1a through black dashed line. Figure 5.1b an d disclose the different model performances in the 

reactive zone. As expected the ADRE model (Model 1) leads to a strong underestimation of 

concentration due to the assumption of complete mixing between reactants which does not occur at 

pore-scale. Model 2, 3 and 4 incomplete mixing terms allow reducing the underestimation showed by 

Model 1 as already observed according to 2Bf  values. Model 3 and 4 are both able to capture the data 

evolution preceding the position of the reactive front (xR  which is indicated by a dashed black line in 

Figure 5.1) but they do not capture the behavior of the tail for longitudinal positions larger than the 

reaction front position. Indeed, the 3BC  data are characterized by a slow decreasing trend for x<xR the 

reactive front,  while 3BC  data change completely behavior, i.e. the concentrations decrease fastly 

assuming almost a vertical trend. Model 3 and 4, instead, show smooth variation of concentration 

maintaining a slow decrement in space for x>xR. Note that Model 3 and 4 show exactly the same 

qualitative behavior even as their different reactive term modeling approaches. Actually, according to 

the findings of section 4.3.3, the parameter m , appearing in Model 3 formulation, tends to zero 

meaning that Model 3 effective reaction rate is practically constant in time. As a consequence, for this 

specific problem, Model 3 and Model 4 reactive term formulations are practically identical, i.e. the 

incomplete mixing effect is embedded in a constant effective kinetic rate smaller than the intrinsic one. 

However, in Figure 5.1b and c, they show a significant quantitative difference, even as they represent 

the practically same model. This is due to fact that only discrete values in parameter space have been 

analyzed for parameter estimations. A more precise calibration process for the two models would 

probable lead to two different λ  and 0β̂  estimated values that, however, determine the same effective 

constant rate. In general, Figure 5.1b and d suggest that embedding the incomplete mixing effect in a 



Assessment of continuum models for reactive transport in porous media 

 

 

Ceriotti Giulia  168 

 

constant effective reaction rate, lower than intrinsic one, allows improving the results yielded by the 

ADRE (Model 1) but does not yield a fully accurate interpretation of concentration tails observed in 

pore-scale simulation cross sectional averaged data. 

An outstanding and promising performance is instead shown by Model 2. Indeed even as Model 4 and 

Model 2 given solutions are affected by comparable errors within the mixing zone (see Table 5.1), the 

qualitative trend of BC  is significantly different in Figure 5.1b. Model 2 is able to capture the rapid 

decrement that characterizes the reactive front forward data (for x>xR). The slight data overestimation is 

still detectable for the lowest values of concentration. This is probably imputable to approximated 

estimations performed in this work. Future models calibration is, then, needed for a precise estimation. 

Model 2 peculiarity must be researched in its reaction term definition (Eq. (2.18)). Indeed the 

incomplete mixing quantification depends on the square value of DC

x

∂

∂
 which establishes a relation 

between the reaction  and the dispersive processes. The comparison between model solutions and pore-

scale data showed in Figure 5.1 is performed at t=447. The pore-scale averaged data at this time level 

have also been used in the estimation parameter process. As validation of results, we now compare 

model solutions against BC  pore-scale averaged data at two different times level (t=99.54 and t=373) 

not used for parameter estimations.  

 

Figure 5.2 a) CB profiles yielded by Model 1-4 computed with the combination of parameters estimated in Chapter 4 and reported 

in Table 5.1 at t=99.54. Figure b) is a zoomed image of CB profiles at the reactive zone delimited by red broken line in figure a. 

The exact position of the reactive front is indicated by a black dashed line. The solutions are compared to pore-scale cross 

sectional averaged data. 
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Figure 5.3 a) CB profiles yielded by Model 1-4 computed with the combination of parameters estimated in Chapter 4 and reported 

in Table 5.1 at t=373. Figure b) is a zoomed image of CB profiles at the reactive zone delimited by red broken line in figure a. The 

exact position of the reactive front is indicated by a black broken line. The solutions are compared to pore-scale cross sectional 

averaged data. 

In Figure 5.2 and Figure 5.3, BC  profiles given by the four models are plotted at t=99.54 and t=373, 

respectively. Model solutions are compared to pore-scale cross sectional averaged data observed at the 

same time. Figure 5.2a shows that all the models do not capture the overall BC  curve at t=99.54. A 

possible cause of this inaccuracy is the overestimation of spreading process. Outside the mixing zone, 

the transport is mainly ruled by dispersion parameter and, as a consequence, a possible explanation is 

that dispersion parameter estimated for late times does not capture dispersion process in early times, i.e. 

the curves yielded by continuum models exhibit a smaller longitudinal gradient with respect to the 

pore-scale data. As already discussed, dispersion should be treated through time nonlocal formulations, 

to capture this behavior. Disregarding such time dependence compromises the reliability of models for 

short times when the dispersion is strongly affected by non-local effects. Figure 5.2b and Figure 5.3b 

depict a focus of mixing zone delimited in Figure 5.2a and Figure 5.3a, respectively, by red dashed 

lines. Independently of the time considered, we can observe the qualitative different trend, which 

characterized Model 2 solution at t=447 (Figure 5.1b), is detectable also at t=99.54 and t=373 (Figure 

5.2b and Figure 5.3b). Since dispersion slightly influences mixing zone profiles, as shown in Chapter 4, 

the Model 1-3-4 qualitative different trends compared to pore-scale data can be ascribe only to reaction 

term mathematical formulation. Model 2 instead depicts a parallel curve to pore scale data both in 

Figure 5.2b and Figure 5.3b. However those are not well-fitted by Model 2 with the chosen estimated 

parameters. This can be ascribed to fact that all the effective parameters, in general, do not show 
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constant values in time but they depend on the time at which they are estimated. The substantial 

difference, observed in Figure 5.1b-Figure 5.3b, between Model 1-3-4 and Model 2 is that as Model 2 

qualitatively reproduces the data trend, this is not true for the ADRE-based models. Figure 5.1b-Figure 

5.3b suggest that a focused change in Model 2 parameters would probably allow to fit pore-scale data. 

On the contrary, a change in ADRE-based model parameters would translate the curves without 

capturing pore-scale trend.  

The parameter values evolution in time is shown in Porta et al. (2012a)-(2013). Indeed the model 

mathematical formulation proposed by Porta et al. (2012a) includes two convolution terms which 

indicates the non-local evolution of dispersion and incomplete mixing term. As consequence constant 

parameters are not good at capturing these evolutions. Hence, the negligence of those can lead to the 

failure in reproducing short times concentration profiles evolution in Model 2.  

Figure 5.4 displys CA profiles yielded by Model1-4 for the parameters values reported in Table 5.1 at 

t=373. Figure 5.4 shows that dispersion parameter for all the model is overestimated for CA profiles. 

This is consistent with finding of Chapter 4. Indeed, dispersion estimation for all the models indicates a 

lower value of dispersion for CA than CB. Moreover, we can notice that none of the single continuum 

models is able to capture on average the backward tail oscillations (x<xAD). 

 

Figure 5.4 CA profiles yielded by Model 1-4 computed with the combination of parameters estimated in Chapter 4 and reported in 

Table 5.1 at t=373. 
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In Figure 5.5 the global product evolutions in time given by the four models is compared to 1CG  data. 

All the considered models do not seem able to capture the pore-scale data trend. Indeed all the curves 

given by models significantly overestimate global product pore-scale evolution. As shown in Chapter 

3, global quantities are poorly influenced by incomplete mixing effect, and because of that, Figure 5.5 

suggests that the overestimation can mainly be ascribed to dispersion parameter value. Also in this 

case, the negligence of nonlocal effects in time may play a crucial role in capturing pore-scale data 

evolutions. 

 

Figure 5.5 Global product evolutions given by Model 1-4 computed with the combination of parameters estimated in Chapter 4 

and reported in Table 5.1. The solutions are compared to GC1 data. 

To test the importance of time-dependent parameter behavior, we propose here an exemplificative 

implementation of Model 2b presented in section 2.3.2. In this model the reactive and dispersive term 

convolutions are approximated by local time-dependent parameters expressed in Eq. (2.21)) and here 

recalled: 

 
1

2

( ) (1 exp( ))

( ) (1 exp( ))

B t B a t

D t D a t

= − −

= − −
 

where B and D are assumed equal to the ones that optimize Model 2 solution while 1a  and 2a  

appearing in Eq. (2.21) are manually estimated against 1CG  data. In Table 5.3 the parameter values 

estimated are reported. 
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Table 5.2 Parameters manually estimated against GC1 data.  

D  
660 

B  230 

1a  0.01 

2a  0.05 

 

Figure 5.6 depicts the evolution with time of B and D exspressed by Eq. (2.21) computed with 

parameter values reported in Table 5.3. Figure 5.6 displays that the local time dependent parameters 

progressively increase with time and an asymptotic value is approached. The velocity through which 

the asymptotic value is reached depends on the values of 1a  and 2a .  

 

Figure 5.6 Evolution of D and B with time computed with Eq. (2.21) with parameter values reported in Table 5.3. 

Figure 5.7 shows the global product evolution yielded by Model 2b and Model 2 solutions against 1CG  

data. Model 2b is able to reproduce global product evolution since the very first times and the solution 

yielded by Model 2b remarkably reduces the overestimantion performed by Model 2. This clearly 

suggests that dispersion time-evolution dependence has a key role in reproducing global model 

evolution concentration for short time.  
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In Figure 5.8a BC  profile yielded by Model 2 and Model 2b are compared against pore-scale cross 

section averaged data at t= 99.54. Time-dependent dispersion allows improving the fit of pore-scale 

cross sectional averaged concentration for short times. By considering time-dependent effective 

parameters Model 2b well reproduces BC  profile at this early time and better interprets the dispersion 

process compared to Model 2 which, as noticed before, definitely over predicts profile spreading. 

Figure 5.8b provides a zoomed imaged of BC profiles as indicated in Figure 5.8a through broken red 

line. The logarithmic concentration scale allows disclosing the differences between the two models 

solutions close to zero with the mixing zone. Figure 5.8b shows that Model 2b better interprets pore-

scale cross sectional averaged concentration. However the forward tail is still not well fitted and further 

investigations are needed to analyze this result. 

 

Figure 5.7 Global product evolutions given by Model 2b and Model 2 compared to GC1 data. 
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Figure 5.8 a)CB profiles yielded by Model 2 and Model 2b at t=99.54 compared to pore-scale cross sectional averaged 

concentrations. b) zoomed image of CB profiles within the mixing zone as indicated in figure (a) through black broken lines. 

The quantitative Model comparison presented above allows inferring significant conclusions. The 

theoretically based Model 2 shows an outstanding behavior compared to effective models previously 

proposed in literature. Its implementation has shown remarkable improvement in profiles interpretation 

well-matching the tail concentration in the mixing region. However Model 2 is still affected by 

important limitations which characterized all the single continuum models analyzed. The analysis 

suggests that the assumption of constant asymptotic value for the dispersion parameter does not allow 

interpreting global product and concentrations profiles at short times. A possible solution to this 

limitation is to approximate nonlocal effects in time through convolution term and/or time-dependent 

local expressions, as shown above in Figure 5.7. However the appropriateness of approximating 

nonlocal effects to local terms requires further investigations. Another important limitation is 

represented by the impossibility of single continuum models to depict the influence of immobile zones 

which leads to long tails of delayed solute mass, asymmetric concentrations profiles and different 

dispersion process between solutes. 

5.2 Qualitative model comparison between single continuum and DMRTM modeling 

features 

The qualitative analysis presented in section 4.4 of DRMT model allows modeling solute long tails due 

the immobile-mobile regions exchanges. On the contrary, as evidenced in section 4.2 and section 5.1, 

through single continuum models these processes cannot be described. In this section we want to 
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provide a qualitative comparison between Model 2, which has shown the most promising 

characteristics among single continuum models analyzed, and DRMT Model aiming to compare the 

performances of the two types of models. In order to perform this comparison, we select the solution 

reported in Table 5.3.  

Table 5.3 solutions of Model 2 and Model 5 for qualitative comparison. 

S2 D=460, B=290 

S5 D=450, Z=0.001, IMβ =0.078 

 

The solution S2 corresponds to the best fit given by 
4 _ 2C

f  analysis relying on CC  data profiles. It 

represents an intermediate solution between the best fit of BC  and AC  profiles which we want to 

investigate contemporary. The solution S5 have been chosen on the basis of qualitative analysis 

proposed in section 4.4.  

In Figure 5.9 AC  profiles predicted by S2 and S5 are plotted compared to pore-scale cross sectional 

averaged data at t=373. The two solutions present a significant difference only in the backward tail (for 

xAD<0). Model 5 indeed shows the capability of describing the behavior of a solute entrapped in almost-

immobile zone i.e. it captures in average the AC  pore-scale data oscillations. This feature is particularly 

interesting when dealing with reactive transport in natural porous media since it would allow capturing 

delayed reaction and related concentration plume tails which cannot be detected by single continuum 

models. The advantages of Model 2 highlighted in previous section appears here not relevant for 

correctly interpreting AC  profile due to the oscillations. Limiting the comparison to AC  it appears that 

DMRTM allows a better interpretation of the reactive transport processes. The BC  profiles given by 

Model 2 and Model 5 are shown in Figure 5.10. 

In Figure 5.10a BC  profiles predicted by S2 and S5 are plotted compared to pore-scale cross sectional 

averaged data at t=373. Figure 5.10b provides a zoomed image of BC  forward tail delimited by red 

dashed line in Figure 5.10a. Figure 5.10a shows that, similarly to AC , DRMT Model is able to 

reproduces on averaged the oscillations that characterize BC  profiles for xAD<0. Figure 5.10b suggests 
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that Model 5 qualitative trend is very different from pore scale one within the reaction zone. Similarly 

to Model 1-3-4, BC  profile yielded by Model 5 does not reproduce qualitatively the fast decreasing 

trend that characterized simulation observed data. On the contrary, as shown in section 5.1, Model 2 

qualitative well interprets the pore-scale data trend. 

 

Figure 5.9 CA profiles predicted by S2 and S5 at t=373 compared to pore-scale cross sectional averaged data. 

 

Figure 5.10 a)CB profiles predicted by S2 and S5 at t=373 compared to pore-scale cross sectional averaged data. b) a zoomed 

image of CB fast tail concentration delimited in a) by red broken line. 

Figure 5.11 displays the global product evolutions as function of time given by S2 and S5 in both linear 

(Figure 5.11a) and logarithmic (Figure 5.11b) scale. Figure 5.11 shows that S2 and S5 similarly 

overestimates global product pore-scale data for short times. For late times, instead, the two curves are 
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distinguished and S5 shows a better fit of 1CG  data. Figure 5.11b allows comparing 1CG , S2 and S5 

late time trends to the behavior associated to asymptotic regime. Figure 5.11b discloses that both S2 

and S5 yield to recast the asymptotic behavior for late times considered.  

However, as shown in section 4.4, furthers and detailed investigations are needed to precisely 

understand the key role of each parameter in Model 5. Indeed, DRMT model presents many degrees of 

freedom due to both its mathematical formulation and parameters included in it. We have provided 

only a preliminary analysis to highlight its promising features but it is not enough to clearly identify the 

potential of this model for the simulation of reactive transport processes. 

 

Figure 5.11 a) global product evolutions in time given by S2 and S5 compared to GC1 data Figure b) is equivalent to a) but axes 

are expressed in logarithmic scale. The blue broken line depicts the global product asymptotic trend.  

In conclusion, this preliminary analysis suggests that Model 2 and Model 5 are characterized by some 

advantages that can complete each other lacks. As a consequence, these preliminary results encourage 

further investigations on the potentiality of DRMT model implementation to bimolecular homogeneous 

reactive transport and eventually, the possible integration of these two models in a single one, i.e by 

modifying the structure of the reaction term in the DRMT model. This may ultimately lead to the 

formulation able to exploit the strengths of both models, which have been assessed in this Chapter. 
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CChhaapptteerr  66  CCOONNCCLLUUSSIIOONNSS  AANNDD  FFUURRTTHHEERR  RREESSEEAARRCCHH  

Our work deals with the reactive transport modeling problem in porous media. We focus on a simple 

reaction pattern involving an irreversible homogeneous bimolecular reaction of the kind A+B�C 

which takes place in a fully saturated porous medium. Different authors have already investigated this 

specific problem setting proposing diversified approaches which constitute, currently, a varied state of 

the art. We select four single-continuum models proposed in literature which present different 

modeling approaches:  

� the ADRE model which is the state of the art model for macro scale reactive transport 

simulation; 

� Porta et al. (2012a) model which is, up to now, the only formualtion that is theoretically 

derived through a formal up-scaling technique in the presence of fast reaction; 

� Sanchez-Vila et al.(2010) model which includes an effective time-dependent reaction kinetics;  

� Hochstetler and Kitanidis (2013) model in which an effective constant reaction rate replaces the 

kinetic one. 

In these models, the interaction between porous medium structure and coupled reaction and transport 

processes is embedded into effective parameters. However, each one of these models embeds a 

different strategy for representive effective reaction rates at continuum scale.  

In addition to the four models listed above, we have also considered an alternative modeling approach 

still little explored for this problem setting: the Double Rate Mass Transfer Model (DRMTM). This 

model embeds local segregation of reactants concentrations assuming that the continuum domain can 

be split into two interacting continua, i.e. a mobile and an immobile phase. Solute mass exchange is 

assumed to take place between the two regions. Through this outline of the porous domain, the 

DRMTM is able to capture the influence of the local velocity field heterogeneities on solute 

concentrations evolution in space and time.  

The conceptual and mathematical structures of these models are reviewed and numerically 

implemented in order to assess and compare different continuum-based strategies to model reactive 

transport in critical conditions characterized by high Pe and Da numbers. This comparative assessment 

relies on pore-scale numerical simulations which provide a detailed knowledge of local and averaged 
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quantities. We consider two different porous medium scenarios: in the first one pore space is 

constituted by ordered array of cylinders; in the second one more complex geometry is generated by 

disordered cylinders. The first scenario is used to compare solutions given by ADRE and 

Porta et al (2012a) models. In the second scenario each model is assessed singularly investigating the 

influence of parameters on model solutions, the appropriateness of model to describe the results 

observed in pore-scale numerical simulations. The models assessment is based on the definition of 

different criteria which quantify the difference between continuum and pore-scale model results. These 

selected criteria are investigated as possible objective functions for the future calibration process. On 

the basis of models assessment results, a quantitative comparison between single porosity models is 

performed in order to discriminate among the different model performances. Finally we provide a 

qualitative comparison between single continuum models and Double Rate Mass Transfer Model 

(DRMTM) in order to highlight the differences between the two diverse conceptual approach. 

Our results allow to:  

� Explore the influence of pore structure on models performances; 

� Assess the appropriateness of different continuum-based strategies to capture key features of 

reactive transport at continuum scale in different disaggregated porous scenarios;  

� Discriminate among different models performances 

� Investigate the suitability of different criteria for the future model calibration process; 

Concerning the first point, we conclude that the performance of a model in capturing reactive transport 

features strongly depends on the complexity of the considered porous medium geometry. In a perfectly 

homogeneous porous medium, even as flux and reaction conditions are critical and incomplete mixing 

effects are detectable at local level, averaged and global quantities are poorly affected by local 

concentration fluctuations. Moreover nonlocal effects vanish quickly and their influence on the reactive 

transport is negligible, i.e. transport and reaction parameters can be appropriately replaced by their 

asymptotic values. When the pore structure complexity increases, the local fluctuations of reactant 

concentrations are emphasized leading to detectable incomplete mixing effect in the mixing zone on 

concentration profiles and significantly affecting reaction evolution. Non local effects are no longer 

negligible since the system takes long time to recover the asymptotic behavior. In particular dispersion 

process is remarkably dependent on time and taking into account this dependency is crucial to capture 
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reactive transport features at short times. As a conclusion, the pore-scale structure significantly 

influences reactive transport evolution and the importance of nonlocal effects.  

Since the complexity of reactive transport is function of the porous medium structure, continuum 

models may or may not capture the relevant features of the phenomena depending on the porous 

medium considered. Indeed, the ADRE model, which does not include any quantification of incomplete 

mixing, well interprets reactive transport dynamics in ordered pore spaces.  

The need of including incomplete mixing effects arises when the geometry of the medium becomes 

more complex and notably embeds closed cavities and dead end pores, i.e. in the presence of an 

heterogeneous local velocity field. In such a case the standard ADRE model is no longer appropriate 

for reactive transport description. Our analysis allows concluding that including the incomplete mixing 

effects into continuum model formulation leads to improve reactive transport interpretation but the 

strategy used to embed this effect into model mathematical formulation has a crucial role for two main 

reasons: 

� Correct interpretation of the actual processes evolution; 

� Aptitude of model to calibration. 

Considering both of the two aspects, our analysis allows to deduce that Porta et al. (2012a) model 

provides an innovative and better performance in predicting averaged pore scale data within the crucial 

mixing zone where the reaction occurs compared to Sanchez-Vila et al. (2010) and Hochstetler and 

Kitanidis (2013) formulations. Independently from the time considered, the trend of reactant profiles 

yielded by Porta et al. (2012a) model allows capturing the qualitative evolution of pore-scale cross-

sectional averaged concentrations. This is due to the fact that this model is characterized by an 

innovative sensitivity to dispersion parameter compared to the other single continuum models analyzed 

(Figure 4.34). On the contrary, the effective formulations proposed in Hochstetler and Kitanidis (2013) 

and Sanchez-Vila et al. (2010) do not completely capture the overall behavior of the reactants 

concentrations which is yielded by pore scale simulations. Moreover, Hochstetler and Kitanidis (2013) 

and Sanchez-Vila et al. (2010) models exhibit difficulties in parameters identification based only on 

reactant and product profiles data requiring different or additional data. This can represent an important 

limitation for the two models implementation since normally a limited number and types of data are 

available for practical purposes.  
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Comparing DRMTM to single porosity model we can conclude that DRMTM is characterized by 

interesting and promising features which suggest further and detailed investigations. The different 

mathematical and conceptual structure attributes to the model a larger flexibility and allows capturing 

some reactive transport features observed in pore-scale simulation in disordered porous medium 

scenario: long reactant concentration tails entrapped in low mobility regions, asymmetrical 

concentration profile behaviors and the misalignment between reactive and advective fronts. Depicting 

these phenomena is instead impossible through single porosity models and this represents an important 

limitation of this approach. Thus, Double Rate Mass Transfer Model approach is a potential way for 

overcoming single continuum models limitations.  

Our analysis leads to the conclusion that a cursory definition of the criteria (or objective functions) and 

choice of the type of data can lead to imprecise or wrong parameter estimation. Suitable modifications 

of criteria definition can bring a significant improvement of criteria sensitivity to parameter. Even as a 

criteria appears insensitive to a parameter, it does not imply that model solution is equally indifferent to 

the value of that parameter. In particular, this must be taken into account when dealing with incomplete 

mixing parameter estimations. The latter ones influence only a limited portion of concentration profile 

(within the mixing zone) which is even close to zero for reactants species. As a consequence, using a 

linear objective function (e.g. Eq. (2.51)), it is almost impossible to perform a feasible estimation of 

parameters that regulate the incomplete mixing due to the low importance that these data assume in the 

overall objective function value computed.  

Moreover, our results show that the parameter estimations performed in model assessment with 

different types of data leads to different optimum parameter values. This is due to the fact that each 

type of data embeds different information on the process which we are investigating. Errors in 

calibration process arise when we try to estimate parameter with a dataset that does not contain the 

enough information about that specific parameter value we are looking for.  

All these considerations contribute significantly to define and identify the most promising directions to 

explore in future researches. Our preliminary analysis has shown that the model formulation proposed 

by Porta et al. (2012a) can represent a significant advancement in reactive transport modeling. In 

particular we emphasize that this formualtion (i) is formally derived through theoretical up-scaling; ii) 

can qualitatively capture the concentration profile trend within the mixing zone without reducing the 
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performance in describing the dispersion process. However, important limitations, that have always 

characterized all effective continuum models, affect Porta et al. (2012a) model too. In particular we 

highlight that i) negliecting nonlocal effects for dispersion process prevents the continuum models 

analyzed from being reliable at short times; ii) single continuum models, by definition, do not allow 

capturing profiles asymmetries and trapped solutes in the immobile zones. Concerning the first 

limitation, we have provided a first attempt in which dispersion is assumed time dependent according 

to a local formulation. This shows that a time-dependent local term can be a possible approximation of 

non-local effects since it allows capturing short times profile shape and well-fitting the global product 

evolution in time (Figure 5.7 and Figure 5.8). This can be a promising starting point to investigate if 

nonlocal effects can be as well-approximated by a time-dependent local term. The validation of this 

correspondence would lead to important results of practical interest since it would allow interpreting 

parameter time-dependency avoiding the explicit computation of time convolutions, which is 

computationally very expensive. 

On for the modeling of delayed transport in immobile zones, the DRMTM model has shown 

encouraging features. However, the actual role of each parameter included in it needs to be understood. 

Due to the close interconnection between parameter influences on the output solution, this is quite 

ambitious aim but it is crucial to confer manageability to this powerful modeling tool. 
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