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Abstract

Analyzing and processing the dynamic structure of today’s data repre-

sents a challenge for developers which prompts them to explore alter-

native methods with respect to the standard ones. In this work we will

present the benefits and the potential of the novel Graph databases, ca-

pable of handling complex data better than the traditional approaches.

Relational databases for example, seem to not scale the task in the

new emergent challenges. On March 2, 2009, the Foreign Intelligence

Surveillance Court (FISC) found that the NSA had failed to comply with

court ordered restrictions on searching "BR metadata," telephone busi-

ness records containing information about American as well as foreign

citizens. The NSA claimed that "from a technical standpoint, there was

no single person who had a complete technical understanding of the BR

FISA system architecture." Motivated by this court sentence, after an

accurate simulation of a telephone dataset, we then present an applica-

tion that, using graph databases, ensures that only a specific number of

entries is permitted to be queried. Then, we introduce another feature

of this application which allows to perform run time queries designed to

modify the dataset in real-time.



Riassunto

Al giorno d’oggi, analizzare ed elaborare le struttere dinamiche dei dati

moderni rappresenta una importante sfida per gli sviluppatori che li sp-

inge ad esplorare sempre più, nuove tecnologie. Intorno agli inizi degli

anni 2000, prende piede il movimento NOSQL("not only SQL"), sorto

appunto dall’esigenza di garantire atomicità, consistenza, isolamento e

durabilità ai dati con strutture più complesse rispetto a quelle viste sino

a quel punto. In questa tesi illustriamo i benefici dei moderni Graph

Databases, capaci di gestire dati a struttura complessa con risultati più

perforamanti rispetto agli approcci tradizionali. Il nostro lavoro è stato

motivato dalla sentenza della Surveillance Court (FISC) del 2 marzo

2009 in cui si affermava che la National Security Agency (NSA) non

aveva mantenuto le restrizioni previste dalla corte durante le analisi dei

"BR metadata", registrazioni telefoniche contenenti informazioni su cit-

tadini americani e stranieri. La NSA si giustificava affermando che "dal

punto di vista tecnico, non c’era nessuno che avesse una totale compren-

sione dell’architettura BR FISA".

In questa tesi, dopo un’accurata simulazione di un dataset telefonico,

presentiamo una applicazione che, sfruttando le potenzialità dei graph

databases, assicura che solo uno specifico numero di "records" sia au-

torizzato ad essere consultato, in linea con la sentenza di corte sopra

menzionata. Una ulteriore funzionalità dell’applicazione permette in-

oltre di effettuare query a run-time con lo scopo di modificare il dataset

in tempo reale.





Chapter 1

Introduction

During the past decade in the world of computer science we have wit-

nessed significant changes in how data is perceived. The vast amount

of information that today fills the web demands new complex data struc-

tures; moreover, an inverse proportion exists between complex struc-

tures and resources utilized for storing them. This fact motivates pro-

grammers to pursue constant optimization during their analysis.

In most cases, the first challenging task that developers encounter

is storing these complex structures and in particular focusing on which

database schema is best to adopt for the application scope.

Historically, analysts have learned different databases models: the

Hierarchical model, the Network model and the Relational among oth-

ers. Relational databases have been leading the market for the past

fifty years, along with the SQL query language. As it often happens

in the market, the most successful product is not the best solution for

each application. This reason expedited the movement NOSQL(not only

SQL) in the early 2000s. The name tried to give a name to the need

of a growing number of non-relational, distributed data stores; people

in the NOSQL enviroment claimed that traditional relational database

systems several times did not provide atomicity, consistency, isolation

and durability guarantees which are fundamental for any type of appli-

cation. It has been decades since the relational model default has kept

developers from individuating their real back-end requirements. The

NoSQL movement instead, has offered programmers the chance to dis-

cover what they actually require from databases, and to find out that

there is no one solution that fits all. From the advent of the relational

model, several things have changed. Firstly, data generated and pro-

cessed by modern applications increased exponentially; on the contrary,



the wait for the queries response time had dropped to sub-second units,

contrasting from the 80s when "calculators" were computing for entire

days; another important aspect has changed: the data structure. Data

today is completely dynamic and developers are increasingly unwilling

to force a specific structure on data a priori.

Figure 1.1: Data representation in terms of size and complexity

One NoSQL technology that has emerged a couple of years ago is

the graph database. Graph database are often found in scenarios where

the data model is considerably connected, including social, telecommu-

nications, logistics, master data management, bioinformatics and fraud

detection. Graph databases partially recall the network database model

mentioned above. The main difference is that network databases are still

mostly based on a hierarchical data model in terms of parent-child rela-

tionships. This also means that in network databases we cannot relate

arbitrary records to each other, which makes it hard to work with graph-

oriented datasets. For example, we may use a graph database to analyze

what relationships exist between entities. Another difference is that net-

work databases use fixed records with a predefined set of fields, while

graph databases use the more flexible Property Graph Model which we

present in chapter 4.

In this work we manage data with a complex and highly connected

structure. Our dataset simulates a telephone graph following a power

law where each node represents a user and each edge represents a call

made between two users. After having thoroughly explained in chapter
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3 why graph databases best fit our dataset compared to the relational

databases, we implement an application which performs queries on an

embedded graph database modifying at run time the structure of the

dataset.

1.1 Motivation behind this work

On March 2, 2009, the Foreign Intelligence Surveillance Court (FISC)

found that the NSA had failed to comply with court ordered restrictions

on searching "BR metadata", telephone business records containing in-

formation about American as well as foreign citizens. The NSA claimed

that "from a technical standpoint, there was no single person who had

a complete technical understanding of the BR FISA system architec-

ture."(Page 8 of Docket Number: BR 08-13.)1 A series of Foreign Intelli-

gence Surveillance Court (FISC) documents concerning the US National

Security Agency’s use of bulk telephony metadata was recently declas-

sified and released. A March 2, 2009 order from the FISC is particularly

interesting. It reveals that the NSA was querying all the identifiers on

an NSA alert list against BR metadata that it received daily. The FISC

ruled that this violated previous FISC orders, and that the NSA was

entitled to query only identifiers for which there was a "reasonable ar-

ticulable suspicion" (RAS) that the identifier was relevant and related to

terrorist activity. Only about 2000 of the identifiers on the alert list had

been determined to have RAS. One of the more remarkable justifications

that the NSA gave for its actions was that "from a technical standpoint,

there was no single person who had a complete technical understand-

ing of the BR FISA system architecture.". Judge Walton noted that the

NSA’s explanations "strained credulity" and that "the court is exception-

ally concerned about what appears to be a flagrant violation of its order

in this matter".

To build a technical understanding of the ruling and the NSA’s argu-

ments, we must first interpret certain key terms: "BR metadata", "RAS".

BR stands for "Business Records". For telephony, according to the de-

classified documents, metadata includes the sender/receiver, originating

device, time of conversation, call duration, and the trunk number, (i.e.,

the point at which a cell-phone conversation enters the main phone sys-

tem, which identifies the location to within about a square kilometer.6)

1Extracted by A Modest Proposal to the NSA Chris Kanich, Alessandro Panebianco,

Robert H. Sloan, Richard Warner, and Lenore D. Zuck
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RAS is "reasonable articulable suspicion" that a phone number under

investigation is "relevant and related to terrorist activity". The NSA

queried the BR metadata using identifiers that were not RAS-approved,

and misrepresented its query practices to the court by describing them

as consistent with the above requirements.

At least recently, the FISC allowed quite generous searches from RAS

identifiers. An August 2013 Obama administration white paper on the

bulk collection of telephony metadata together with a recent report from

the Privacy and Civil Liberties Oversight Board (PCLOB), make it clear

that the NSA is currently allowed to search in the BR metadata up to a

distance of three from RAS identifiers, referred to as three "hops". In

other words, treating the BR data as an undirected graph whose nodes

are phone numbers and whose edges are phone calls, the NSA can ex-

amine the record of any phone call both of whose phone numbers are

within three edges of a RAS phone number.

Given this scenario we then propose a technique that would allow

the NSA to ensure compliance as well as proofs of compliance. We then

propose algorithms to help explain how identifiers might be added to the

RAS list.

1.2 Goals of this thesis

1.2.1 Approach

After the generation of a dataset (which is described in the next subsec-

tion), we focus on finding the best database candidate to help us simu-

late the query process described in the motivation section. We end up

choosing the novel Graph Databases which perfectly meet our demands

and lead us to perform our analysis with solid results. In particular, we

use Neo4j, a highly scalable, robust (fully ACID) native graph database.

In order to reproduce the entire query process, we decided to develop a

Java application along with with the Neo4j APIs. Our choice was driven

by the fact that the Java APIs offered by Neo4j were perfectly docu-

mented and simultaneously well performing. We exhibit performances

in chapter 5.

1.2.2 Dataset

One of the goals of this dissertation is to remain consistent with the

scenario described in the court sentences we examined generating an

4



accurate phone dataset. A handful of papers written in the past fifteen

years analyze various telephone call graphs. For this investigation, we

base primarily on Aiello et al., who found that the telephone call graph

data they examined (calls for one day), treated as an undirected graph,

had a power law degree distribution with a power law exponent of 2.1

and an average degree density of 3.16. A brief overview of the power

law is presented in Chapter 2.

1.2.3 Run time actions

Having considered the scenario described in the motivation section, we

added some functions to our Java application in order to perform run

time actions on the dataset. In line with the court sentences, we pro-

pose a mechanism that detects special paths in the phone dataset and

automatically labels them, creating an automatic addition of an identi-

fier to the RAS list. The full implementation in described in chapter 4.

1.3 Organization of the thesis

The following chapters of this dissertation are organized as follows.

Chapter 2 presents a background knowledge of Graph Theory that we

consider necessary to have a full understanding of the whole thesis;

a brief description of the Power Law graphs will conclude the second

chapter. Chapter 3 will be dedicated to the approach we followed and

the reasons why we decided to use Graph Databases. In Chapter 4 we

describe the implementation phase, starting from the generation of the

dataset and ending with the creation of a Java application that interacts

with the graph databases and performs run-time actions. Chapter 5 ex-

hibits the results we obtained with our experiments and finally, chapter

6 presents our conclusions which end this dissertation.
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Chapter 2

Background

2.1 Graph Theory

Graph databases find their origin in the Graph theory; basic mathemati-

cal concepts have been used to define the original schema of this novel

technology. In this chapter we are presenting the main aspects which

the reader should possess in order to have a full understanding of this

dissertation.

2.1.1 Graphs

The first concept we analyze is what a graph is. A graph can be broadly

defined as a representation of a network, "a collection of objects con-

nected in some fashion". In our case for example we use the idea of

graph to represent a network of telephone calls.

With node, or vertex, we refer to each object in a graph. The connec-

tions between nodes are called edges or links. Every edge connects one

node to another.

Formally, we define a graph G as an ordered pair G = (V,E) where V

is a set of nodes, or vertices, and E is a set of edges (links). The elements

of E are 2-element subsets of V.

In this dissertation, each node represents a user and each edge is a

call between a pair of users. To define who calls who, we need to recall

the definition of undirected and directed graphs.

2.1.2 Undirected and Directed

In an undirected graph the edges of a graph are unordered pairs of

nodes so for example if in an undirected graph we write we write {2,3}



to indicate the edge that connects node 2 to node 3 it will not be different

from the form {3,2}

In a directed graph instead we take into account the direction of the

edge, this is the reason why we graphically substitute edges with arrows

(and we usually use parenthesis instead of brackets to denote ordered

pairs). An edge (2,3) starts from node 2, ends at node 3 and it will have

the exactly opposite meaning of an edge (3,2). An example of directed

graph is shown in figure 2.1

In this dissertation we refer to directed graphs where a user (node)

A calls a different user (node) B if there is an edge that starts from A

(initial vertex) and finishes at B (terminal vertex). Follows the reason

why we do not allow loops which are cases where initial vertex and

terminal vertex coincide; it would not make sense for someone to call

her own number.

Figure 2.1: An example of directed graph

2.1.3 Neighborhood and Degree

Another aspect which we are interested to recall is the neighborhood

and degree of a node.

We define two vertices adjacent if there is a common edge that con-

nects them. The degree of a vertex is the total number of vertices ad-

jacent to the vertex. In an equivalent way, we can define the degree of

a vertex as the cardinality of its neighborhood. We use the degree of a

node or equivalently, its neighbors, to generate our dataset. The details

of the implementation are described in chapter 4.
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2.1.4 Density and Average Degree

We also want to recall the concept of density of a graph and average de-

gree, since during the generation of our dataset we follow the work done

by Aiello et al. which gives us the guidelines to set these parameters for

our phone graph.

The density of a graph G = (V,E) measures how many edges are in

set E with respect to the maximum possible number of edges between

vertices in set V. The density in a directed graph, which has no loops,

can have at most |V| * (|V| - 1) edges, so the density of a directed graph

is |E| / (|V| * (|V| - 1))

The average degree of a graph G represents another way to measure

how many edges are in set E with respect to the number of vertices in set

V. The average degree of a graph G represents another way to measure

how many edges are in set E with respect to the number of vertices in

set V.

2.1.5 Paths

As we already mentioned in the introduction of this dissertation one of

the goals of this thesis is to find specific patterns in the graph. When we

write the word pattern we explicitly refer to the definition of path in a

graph. We can think of a path as a way of walking the graph in a unique

way, starting from an origin and finishing to a specific destination. More

formally we define a path P as an ordered list of directed edges: P =

((n1,n2),(n2,n3),...,(nk,nk+1)). The initial node of the first edge of a path

is the origin and the second node of the last edge is the destination. The

origin along with the destination are called endpoints of the path.

2.1.6 Distance

A fundamental concept for this work is the distance in a graph. As we

explained in the previous chapter, we know that NSA is currently al-

lowed to search in the BR metadata up to a distance of three from RAS

identifiers, referred to as three "hops".

In a graph G, the distance d(x,y) between two nodes x and y is the length

of the shortest path from x to y, considering all possible paths in G from

x to y. The distance between any node and itself is 0. If there is no path

from x to y then distance d(x,y) is infinity.

In our case we apply this definition to our phone dataset and we want

to recall that 2 vertices distant 1-hop is equivalent to say that the same

8



2 vertices have a distance equal to 1.

2.2 Power law graphs

For the simulation of the phone dataset we focus primarily on the model

presented in the paper by Aiello et al.; they demonstrate the consistency

of the model they propose with the behavior of certain massive graphs

derived from telecommunications data.

Aiello et al. show that the degree sequence of so called call graphs is

nicely approximated by a power law distribution. They define call graphs

as graphs of phone calls handled by groups of telephony carriers for a

given time period. This definition perfectly matches with our scenario,

since we simulate call graphs extracted by presumably all the carriers

of the USA. Aiello et al. also state that there are three standard models

for what they call uniform random graphs. Each has two parameters.

The first parameters controls the number of nodes in the graph and the

second one controls the density, or number of edges. Following their

example, the random graph model G(n, m) assigns uniform probability

to all graphs with n nodes and m edges while in the random graph model

G(n, p) each edge in an n node graph is chosen with probability p. In

this dissertation we are implicitly using this model through the python

library igraph. The details are described in chapter 4.

Aiello et al. use a random graph model that was originally derived

from massive graphs generated by long distance telephone calls. They

explain that these so-called call graphs are analyzed in different time

intervals. Our dataset wants to simulate all the calls made in one day

since the bulks of data given to the NSA, as stated in the court sentences,

were released every day. Summarizing, the structure of our dataset

consists of an edge in the graph for every finished phone call: every

phone number which either sends or receives a call is a node in the

graph and finally when a node originates a call, the edge is directed out

of the node and contributes to that node’s outdegree.

9



Chapter 3

Approach

In this chapter we illustrate the approach we have followed to implement

our solution. We explain the process that took us to adopt the graph

databases for our application and we show how we have adapted the

Neo4j graph databases for our purposes.

3.1 Graph Databases

3.1.1 Reasons behind the adoption of Graph Databases

When relational databases were first designed, their main scope was to

manage structures similar to what real existing paper forms looked like:

tables for the major part. At the same time, relational database design

had to make sure that relationships among those tables were able to

model the real world situations. The drawbacks was that relationships

were only a metaphore of joining tables which obviously put some limits

on the potential of relational databases, like for example the necessity

of elucidate the semantics of those relationships, or weighting them de-

pending on their strenght. Another difficulty was that datasets were also

not simple, there were often large and not uniformly distributed tables

that had to be joined causing a heavy work for the entire model. The

large increase of connected data led to a consequent growth of the num-

ber joins which impacted negatively on performances of the relational

databases, creating the need for a new business change.

We know that depending on the scope od the application we have

consequences on the design of the final schema, obtaining some quite

simple queries and some others more complicated:



1. Difficulty is proportional to the number of JOIN tables since they

combine business data with foreign key metadata.

2. The foreign key constraints bring additional maintenance and de-

velopment overhead only to run the database.

3. Not uniform tables often contain null columns which need to be

checked in the code although a schema already exists

4. Several expensive joins are needed just to discover what a cus-

tomer bought.

5. Queries like "what articles did a person buy?" are less expensive

than "which person bought this product who also bought that arti-

cle?" and this is what a typical recommendation system is all about.

An index can be added but the recursive queries like "Which per-

son bought this article who also bought that article" tend to be

pretty heavy as the recursion grows.

In this dissertation we face the quintessential of connected domains, a

call graph; as we previously mentioned relational databases often con-

flict with highly connected domains. In order to emphasize this obser-

vation we show a simple but effective example of query with connected

data.

3.1.2 SQL example

For this example we refer to a simplified social network-like dataset con-

taining users and their friend relationships. In a relational database, we

should typically have two relational tables for storing social network

data: one for storing user information, and another one that stores the

relationships between users (see figure 3.1)

How our actual tables with data look like is shown in table 3.1 and

table 3.2.

To draw a parallel with our phone dataset, there would be a table for

storing user information such as phone number, device number, trunk

number, etc. and another one for storing calls between users. We prefer

to use social network dataset because we consider it to be the most

simple example to understand and at the same time, the closest to our

analysis.

Listing 3.1: SQL code defining tables for social network data
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Figure 3.1: Relationship between the user and the friend table

Table 3.1: table_user

id_key name_user

1 Alex

2 Bob

3 Carl

5 Dan

6 Erin

Table 3.2: table_user_friend

id_key user_a user_b

100 1 2

101 3 5

102 4 1

103 6 2

104 4 5

105 1 4

1 create table table_user ( #A
2 id_key bigint not null,
3 name_user varchar(255) not null,
4 primary key (id_key));
5

6 create table table_user_friend ( #B
7 id_key bigint not null,
8 user_a bigint not null,
9 user_b bigint not null,

10 primary key (id_key));
11

12 alter table table_user_friend #C
13 add index FK417045CBC6132571 (user_a),
14 add constraint FK417045CBC6132571
15 foreign key (user_a) references table_user (id_key);
16

12



17 alter table table_user_friend
18 add index FK417045CBC6132572 (user_b),
19 add constraint FK417045CBC6132572
20 foreign key (user_b) references table_user (id_key);

#A Table definition for storing user information

#B Table definition for storing friendship relations

#C Foreign key constraints

The table table_user stores columns with information, table table_user_friend

instead contains two columns pointing to table table_user using a for-

eign key relation. Both the primary key and the foreign key columns are

indexed for faster search operations; this is a common way to proceed

with relational database models.

The next step is how we query some data. For example, it is pretty

straightforward to retrieve direct friends of a particular user:

1 select distinct user_b from table_user_friend where user_a = 1;

We are interested in retrieving all friends of some user’s friend. This

is when commonly we have to use a JOIN between the table_user_friends

and itself.

In this thesis we focus on queries which explore the database in

depth, meaning that we are interested in knowing which people a user

called and in turn, which people these people called and so on. This is

a first sketch of what the concept of "hops" is but we will define it more

formally in the next chapter. In the social network example this type of

query is the popular friends of friends query. To perform such a query to

find friends of friends of a user, we would need another join operation:

To retrieve a four hops query we would need to perform four joins. Five

hops would mean five joins and so on.

This approach is the typical correct approach that a SQL developer

would follow but the drawback is that if for example we are only inter-

ested in getting only one user’s friend of friends, we would perform a

join for all the data contained in the table_user_friend table and then

throw away all the entries which we are not interested in. If we con-

sider a modest data set this concern would not exist, although we know

that for a big and connected dataset as in our case the call graph, the

performances would tremendously decrease. In order to show this flaw

in relational databases we have run the friends of friends query on a

modest dataset of only one thousand users, and we set an average of

each user having fifty friends. Mathematically speaking, we multiply
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1000 times fifty and we have around fifty thousand tuples.

The only thing we try to optimize is adding an index that we have by

the way defined in the SQL code above showed. We have launched the

friends of friends query with number of hops equal to two, three, four,

five. In the table 3.3 we illustrate the execution time for each of those.

Table 3.3: Execution time: friends of friends query.

# Hops Execution time(in seconds) for 1000 users Records returned

2 0.032 ~900

3 0.244 ~999

4 10.676 ~999

5 96.541 ~999

Results in table 3.3 show how with the number of hops up to two and

three, SQL seem to lead to sound performances (considering also that

we have added indexes). What we notice with four and five is instead a

considerable decrease of performances reaching more than ten seconds

for the first query and more than a minute and a half for the second one

even though the number of rows returned is the same.

Inefficiency of SQL joins

As we mentioned earlier joining several tables and discarding most of

the results does decrease the performances with a relational database

system. We have noticed it in the example from the previous section,

especially when we brought our query to reach five hops of distance

from the user. We retrieved around fifty thousand of entries but we

discarded almost the entire result set for in the end getting only about

1000 entries. We now start introducing Neo4J and show what results

brings with the same dataset.

3.1.3 Neo4j

Since Neo4j is a graph database it structures data as a graph, using

nodes for vertices and relationships for edges. We then represent users

as nodes and if two of them are friends there will be a relationship that

connects them that represents the friendship relationship. The real big

difference with the relational databases is the way data are queried:

Neo4j refers to a concept named graph traversal, taken from graph the-

ory and bases its fundamental concepts around it. It represents the al-
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ternative candidate of using the SQL joins on rows and columns, opening

a novel way to retrieve data.

3.1.4 Traversing the graph

The traversal simply consists in visiting nodes moving across their re-

lationships; it is strictly related to the graph model and it makes it the

most important feature. The most important factor for the traversals is

that queries are localized and they run only on the data that is actually

required, different from the SQL example where we have discarded the

major part of the resulting sets, thus avoiding heavy actions and leading

to a a general better performance. For this example we run a little piece

of Cypher (the graph query language created by the Neo4j development

team).

Figure 3.2: Traversing with Neo4j

For now we are interested in explaining how the query is structured.

It starts from a subset of nodes and it navigates edge by edge (relation-

ship by relationship) collecting all the nodes that match a certain pattern

specified in the query. In figure for example 3.2 we match all those users

who are up to 2 hops distant from a certain user, in this case the user

called Alex. Neo4j has been conceived to stop as soon as the traversal

impact the nodes matching a certain pattern thus there is no wasting of

space as it was for the SQL example, improving performances. There

are so many ways we can retrieve data with Neo4j and we are going to

explain some of them in the next chapter, showing the solid potential of

graph databases.

We will see in the next chapter how to handle nodes variables and

properties with Cypher but let us look at the performances so we can

make a comparison with the SQL experiment numbers. The dataset it is

exactly the same as before. Results are listed in table 3.4.

We immediately observe how results with Neo4j win over the SQL

ones, as we stated before the main improvement that is also the one
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Table 3.4: Execution time: friends of friends query with Neo4j

# Hops Execution time(in seconds) for 1000 users Records returned

2 0.041 ~900

3 0.067 ~999

4 0.072 ~999

5 0.074 ~999

we are more interested in starts when the number of hops is equal or

greater than 3. The deeper we go, the better results we get using graph

databases. We once again want to highlight that one of the main factors

which slowed down performances for the SQL queries is situated in the

query structure: for each level of depth there is a join with the table

itself to perform and this means to add extra Cartesian product opera-

tions which are known to be computationally heavy. And we also point

out that the other main cause of the bad performances is the fact that

in the SQL case, most of the resulting dataset is discarded. Opposite

is the method how Neo4j navigates the graph, avoiding the inclusion of

extra data that doesn’t belong to the actual resulting dataset. So far we

have reasoned on a quite small dataset, let us now try to enlarge the

dataset until it reaches the amount of data that we are going to use for

our application, that is to say more than one million nodes.

3.1.5 Large scale queries comparison

The dataset we have queried so far led us to certain conclusions but as

we previously mentioned in this dissertation we are interested in query-

ing big datasets, reaching and exceeding the one million nodes. We

cannot confirm yet that the principles stated in the previous section are

valid also for larger datasets, that is the reason why we now run our

last experiments increasing the number of nodes so we can fully justify

our choice of adopting graph databases for our application. We leave

everything with the same structure we have seen in the previous sec-

tion, same tables but populating the table_user with 1 million tuples;

recalling the fact that the average friends for each user is fifty users,

we touch about 50 millions tuples in the table_user_friend table. Same

schema, same queries. Table 3.5 shows the results relative to the SQL

performances.

We notice that when the number of hops is equal to two, perfor-

mances remain almost the same as the ones we have seen for the smaller

16



Table 3.5: Execution time: friends of friends query with 1 million users with SQL

# Hops Execution time(in seconds) for 1 million users Records returned

2 0.022 ~2500

3 31.244 ~125000

4 1550.349 ~600000

5 stopped after 3 hours /

dataset. Adding indexes confirm the fact that table joins successfully

speeded up. Unfortunately, when we pass to a number of hops equal or

greater than three we start loosing reasonable resulting times. We even

had to stop the query after 3 hours when we set the number of hops

equal to five. We conclude that when it is only a single join query, SQL

can be taken into account even in considerable big datasets but when

we switch to more than a single join, performances drop drastically. In

table 3.6 we show now how Neo4j performed with the same dataset.

Table 3.6: Execution time: friends of friends query with 1 million users with Neo4j

# Hops Execution time(in seconds) for 1 million users Records returned

2 0.012 ~2500

3 0.178 ~115000

4 1.423 ~600000

5 2.488 ~800000

We immediately notice how the impact of the dataset enlargement

seems to have not impacted Neo4j’s performances. Results confirm to

be solid and we see a little latency, due to the greater number of data

retrieved by the query with respect to the almost 1 thousand tuples of

the previous section example, in fact in this case the query returned

a number of rows that reached almost one million of nodes returned,

which we understand it is a big number. The winning aspect of Neo4j

in this scenario is the fact that the traversal only visits nodes which

are linked to the starting nodes and there is no need to discard any

extra node since Neo4j keeps track of every node it visits. After these

considerations we consider worthwhile to adopt the graph databases to

develop our application.
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Chapter 4

Implementation

In this chapter we analyze the details of the implementation process.

The first part is dedicated to the explanation of how the dataset is gener-

ated. Following, we describe how we implemented our Java application

to interact with the graph dataset and to search and modify particular

patterns in the graph.

4.1 Dataset

4.1.1 The Property Graph Model

We introduced the property graph model in Chapter 1; we now highlight

its salient features.

1. Nodes, relationships, and properties define the property graph.

2. Nodes include properties.

3. Relationships link and give a structure to the nodes. They have

either an outgoing direction or an ingoing direction. They can also

have a label and there is always a starting node and an ending node

for each relationship. Relationships add semantic to the structure

of the graph.

4. Relationships as well can have properties. Adding a property to

a relationship help giving extra information for graph algorithm

purposes but also , as we will see later in this dissertation, to run

constrained queries at runtime. We can think of weighted edges to

have an immediate example of a property applied on a relationship.



These simple primitives represent all we need to create sophisticated

and semantically rich models as our phone dataset.

For telephony, according to the declassified documents, metadata

includes several fields which we include in every node of our graph.

Precisely, every node will include the following fields:

1. Call sender number;

2. Originating device number

3. Time of conversation

4. Call duration

5. Trunk number(i.e., the point at which a cell-phone conversation en-

ters the main phone system, which identifies the location to within

about a square kilometer).

In order to go further, we need a mechanism for creating, manipulat-

ing, and querying data. We need a query language. We briefly sketched

some features in the approach chapter but let us now have a better

overview of Cypher.

4.1.2 Cypher Query Language

Cypher represents an expressive and compact graph database query lan-

guage. It is specific to the Neo4j tool but the way it is conceived makes

it a perfect candidate for representing graphs using diagrams and de-

scribing them in a precise fashion. As the majority of query languages,

Cypher is made of clauses. The first thing we need is the CREATE clause

which we use for inserting data in the graph. Here is a simple example

of a Cypher query to show how we are going to implement our database.

Figure 4.1: Cypher query example
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With the CREATE clause shown in figure 4.1 we are generating

nodes in our graph, in this example two nodes are added, Alex and Ben.

We can obtain a first visualization thanks to the embedded graphic inter-

face that comes together with the Neo4j tool in figure 4.2. Please notice

that user1 and user2 are variables that will last only for one session. A

session starts when the server is started and it ends when the server is

stopped. In our case we are using these two variables to generate our

first relationship. Since our dataset, as specified previously, is dedicated

to a telephone dataset, from now on we will use only one type of rela-

tionship between nodes, "CALLS". What the reader can also notice is

that with Neo4j we can set properties on the relationship too. In this

case we fixed a time for the call happened between Alex and Ben.

Figure 4.2: Cypher example structure

We think it is also important to spend a few words on the feature

that the Neo4j team introduced in their version 2.0, that is the "label"

function.

Labels are the closest instrument to the SQL indexes, they divide set

of nodes in different groups, speeding up the whole query process and

giving a more straightforward sense to the organization of the graph.

A single node can have multiple labels by the way. In this dissertation

labels are going to be useful for our application since they are going

to allow us to perform live actions thanks to the algorithm we describe
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later in this chapter.

In figure 4.3 we show the correct syntax of how we use label in our

telephone dataset. We want to make a distinction between nodes that

are considered "reasonable articulable suspicion", meaning that they

represent phone numbers under investigation and "relevant and related

to terrorist activity", and the ones that are not RAS.

Figure 4.3: Creating a label

The node Charlie is created and it has a label added on that specifies

that it belongs to the RAS list. Like Charlie, in this thesis we label all the

nodes that belong to the RAS list so that every query we want to start

from the subset of nodes which belong to that list will be improved in

terms of speed.

The Cypher clause MATCH represent the principal method of retriev-

ing data from the database; it permits us to specify the pattern that we

want to match in a quite straight way: it uses the ASCII characters to

recall the nodes and the shapes of the relationships. For example ev-

ery node will be "framed" in two parethesis () so that it looks like the

well-known circular shape of a node. For the edges Cypher uses —>,

two dashes and a greater-than sign(or a less-than sign, it depends on

the direction of the edge) that represents the original edge shape. For

example we try to retrieve the node Charlie we have previously created.

The fact that we labeled it as a "RAS" node allows us to launch a query

where we command that we only want the labeled nodes, without speci-

fying the fact that we are looking for the user Charlie. Figure 4.4 shows

the query that retrieves the node just created using only the label.

The other important aspect we want to focus on in this thesis is how

to retrieve queries, recalling the social network example in Chapter III,

"friends-of-friends"like, which in this thesis we call a "hops-distance"

query. In particular we want to create an application that given a phone

dataset with a subset of users belonging to a certain list(the RAS list),

performs queries that return users who are k-hops distant from them.

In a more simple way, if a user A called user B and user B called user C,

user C is 2-hops distant from A. To retrieve such data with Cypher we
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Figure 4.4: MATCH labeled nodes

use the following syntax showed in figure 4.5.

Figure 4.5: MATCH friends-of-friends nodes

4.1.3 Power law graph

In this thesis one of the goals is to create the dataset that reproduces the

same scenario that NSA analysts daily faced. We want to be faithful to

the descriptions found in the papers presented to the judge describing

how the data was represented during the NSA analysis. First of all, we

have to follow a model that fits telephone data. Aiello et al. found that

the telephone call graph data they examined (calls for one day), treated

as an undirected graph, had a power law degree distribution with power

law exponent of 2.1 and average degree density of 3.16. We wrote a

Python script using the function Static_Power_Law() belonging to the

package igraph which allowed us to specify the following parameters:

1. n - the number of vertices in the graph
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2. m - the number of edges in the graph

3. exponent_out - the exponent of the out-degree distribution,

We take advantage of the Static_Power_Law() function to generate

Cypher statement which we use later to populate our graph database. In

details, we first generate the graph following the parameters suggested

by Aiello et al.; for each node of the graph just generated we print the

parallel Cypher statement which generates a node in our graph db; for

each node’s neighbor, taking advantage of the function neighbors(), we

also create the Cypher statement that generates an edge between the

node and its neighbor. It can happen that when the Python script "walks"

in a node, that node doesn’t need to be created because it was already

generated as a neighbor of another node, in that case we make sure

that only an edge is created between the node and its neighbor thanks

to the Cypher MERGE clause. From the definition, MERGE ensures that

a pattern exists in the graph: either the pattern already exists, or it

needs to be created.

We decided to generate 1 million nodes in order to recreate the aver-

age daily scenario the NSA had to face. It is relevant to highlight the fact

that only 300 nodes are labeled as "RAS", meaning that they represent

the only nodes which are eligible to be queried.

All experiments were performed on an MacBook Air with 4 GB of

RAM and a 1.8GHz Intel Core i5 processor.

The output of the script is passed to the neo4j-console through the

command -file output.txt. We by the way enclose our Cypher strings

with BEGIN and COMMIT every about 1000 statements to speed up the

populating process.

4.2 Java Application

After the dataset was populated our intentions are to build an applica-

tion that interfaces with it and allow us to reproduce the query process

the NSA analysts were supposed to do according to what they said in

the court notes.

We choose to use to develop a Java application using Eclipse Stan-

dard/SDK, version: Kepler Service Release 1 and embedding Neo4j by

including the Neo4j library jars in our build.

First thing we do is open the the existing database which has been

previously filled with our phone dataset located in the variable DB_PATH.
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Listing 4.1: Embedding the db

1

2 graphDb = new GraphDatabaseFactory().newEmbeddedDatabase( DB_PATH );
3

4 registerShutdownHook( graphDb );

We also set some other properties on our code. In order to make

sure the database shuts down when the JVM exits we create a register-

ShutdownHook() ; we ensure that every operation we perform during the

query process is wrapped into a transaction thanks to the graphDb.beginTx()

function.

We then perform our queries calling engine.execute() and passing

our Cypher query. Our scope, as mentioned in several parts of this

dissertation is to query the dataset and obtaining a subset of all the

nodes(users) who are distant 3 or less hops from the nodes labeled as

"RAS". We recall that as we stated in the introduction of this thesis

from the court notes, NSA is currently allowed to search in the BR meta-

data up to a distance of three from RAS identifiers, referred to as three

"hops".

The Cypher query we are embedding in the engine.execute() func-

tion is the one showed in figure 4.6.

Figure 4.6: Cypher query

It is important to take a look at the query in the detail and analyze the

syntax used. Writing (n:RAS) we are referring to all the labeled nodes

that belong to the list of the suspects which the analysts are allowed to

query. In the square brackets we specify using the Cypher * notation

that we want to include in our result dataset all the nodes m which are

distant maximum 3 hops from the RAS n nodes.

To fetch the dataset we use a Java map interface as shown in listing

4.3.

Listing 4.2: Fetching the resulting dataset

1

2 try ( Transaction tx1 = graphDb.beginTx()){
3

4 ExecutionEngine engine = new ExecutionEngine( graphDb );
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5 ExecutionResult result = engine.execute( "MATCH (n)-[:
CALLS*1..3]->(m) return n,m" );

6

7 Iterator<Node> iteratore = result.columnAs("n");
8

9 while (iteratore.hasNext()) {
10 Node nodeType = iteratore.next();
11

12 for (String propertyKey : nodeType.getPropertyKeys())
{

13 System.out.println("\t" + propertyKey + " : " +
nodeType.getProperty(propertyKey));

14 }
15 }

In this way we have our resulting dataset in the map object and we

can analyze what our result data sets from the Java application.

4.3 Run-time actions

So far we have reached our very first goal of this work. We can cre-

ate subsets of the initial big data set and retrieve information on those

nodes. By the way it would be great to perform live actions on those

resulting data sets. We reasoned on which approach was best to follow

given the instruments that Neo4j offers, and we ended up using once

again the labeling process in a slightly different way from the one we

used previously. We want to split our query process in two steps. At first

we match the subsets as we have seen in the previous section but in-

stead of only matching them, we already label them as "target" while in

the second part of the query we perform our actions. The goal of these

actions is finding out some special paths in the subsets we obtained from

the queries above discussed. We want to create a mechanism which,

given some rules as input, automatically suggests which nodes could

represents the new RAS nodes, unloading both the judge’s work and

the analyst’s one. We are not law experts so we define just one sam-

ple action to show what implementation should be followed. Based on

the available data our first idea was labeling all those users who talked

with more than 3 RAS suspects in a short period of time, one week for

example.

Here is the code to achieve such a result:

Listing 4.3: Fetching the resulting dataset

1

2 try ( Transaction tx1 = graphDb.beginTx()){
3

4 ExecutionEngine engine = new ExecutionEngine( graphDb );
5

6 ExecutionResult result = engine.execute(
7 MATCH (n:RAS)-[r:CALLS*1..3]->(m)
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8 SET m:TEMP
9 WITH m

10 MATCH (m)-[r2:CALLS]->(q:RAS)
11 WHERE r2.time>1388534400 AND r2.time<1389052800
12 WITH m,collect([r2,q]) as paths
13 WHERE length(paths) = 3
14 RETURN m,paths
15 );
16

17 Iterator<Node> iteratore = result.columnAs("n");
18

19 while (iteratore.hasNext()) {
20 Node nodeType = iteratore.next();
21

22 for (String propertyKey : nodeType.getPropertyKeys())
{

23 System.out.println("\t" + propertyKey + " : " +
nodeType.getProperty(propertyKey));

24 }
25 }

In the next chapter we are going to present and discuss all the results

that we have obtained from our application.
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Chapter 5

Evaluation

In the following chapter we proceed showing results in terms of time

and space performances. We also add graphs which have been created

thanks to the browser interface contained in the Neo4j tool. The in-

terface has a fine design and some simple CSS rules can be applied to

modify colors and dimensions of the graph. Due to its new introduction

of this interface(available from the Neo4j 1.8 version), we notice some

graphic and control issues, which by the way did not prevent us to have

a meaningful view of the resulting graphs.

5.1 Dataset

Figure 5.1 shows the dataset we have created before running our appli-

cation and its consequent queries. We exceed one million nodes reach-

ing almost 1,4 million nodes with the same number of properties. Mem-

ory used for storing the entire database is 371 MB which we retain to be

acceptable, considered the more than one million nodes present in the

db.

5.2 Query Process

Here we show how the queries are visualized through the interface cre-

ated and designed by the Neo4j team in the Neo4j tool versions after 1.8.

As we stated previously in this dissertation, our goal is to query around

300 nodes out of more than 1 million nodes in the dataset. Those 300

nodes should simulate the RAS list that the NSA analysts possessed at

the time of the querying process. Since we want to keep the results the

most realistic possible, we performed our queries on 10 different sets



Figure 5.1: Dimension of the dataset

containing 300 random nodes. We also choose to run the queries with

10 different sets also because as we described in the Random Graphs

section, the degree of the nodes changes depending on the node id, the

lower ids (meaning the first ones created) have a lower degree that is to

say that they have less outgoing edges from the node compared to the

higher ids nodes. We believe that adding these extra experiments we

keep our results consistent.

We started recording performances with 1000 nodes and we gradu-

ally expanded reaching the peak of nodes at 1351978 nodes. In the first

table we include the partial results with the first set of random nodes.

Please note that before we have run our experiments we were aware

that 300 nodes out of 1 million is obviously different from 300 out of

1000. In fact for the 1000,10000,100000 sets we kept the ratio as 300/1

milion when choosing the number of random nodes.

The results of the tests are shown in Table 5.1.

Table 5.1: Performances: 1 Set

# Nodes 3 Hops query 3 Hops + Action1

~1000 187s 250s

~10000 243s 356s

~100000 296s 439s

~1000000 355s 506s

~1500000 578s 845s

Instead of showing all the tables with the different 10 random nodes

sets, we show in table 5.2 the average of the ten simulations. We ran

these experiments only on the biggest dataset meaning the one with

1351978 nodes.
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Table 5.2: Performances: Average 10 sets

# Nodes 3 Hops query 3 Hops + Action1

~1500000 594s 861s

In Figure 5.2 we can visualize thanks to the Neo4j interface tool

how the results look like in a more graph theory style. As mentioned at

the beginning of this chapter there are still some issues with this tool

that have to be solved like for example the fact that the result graph is

showed in a way that cannot be controlled; actions like zooming in or

zooming out are not supported. In fact Neo4j team suggests to embed

some other graphic tool to the project like for example Gephi. The goal

of this thesis is not to create nice graphs that is why we recommend the

reader to follow the suggestion by the Neo4j team.

Figure 5.2: Graph visualization of the 3-hops query

What is represented in Figure 5.2 is the result of the query to get

all the nodes 3 hops distant from the RAS nodes. There can be several

types of structures depending on the degrees of the nodes involved in

each subset. In yellow we represent the RAS nodes, in purple all the

nodes not belonging to the RAS list.

Figure 5.3 shows an example of the run-time action result. Since

there is a node that has made a call to 3 different RAS users in a period of

1All those users who talked with more than 3 RAS suspects in a week
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time minor or equal than one week, it has been labeled with a "suspect"

label. This label in the figure is red colored while the RAS nodes are

yellow and the other nodes not having any label are colored in grey.

Figure 5.3: Graph visualization of the run-time action
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Chapter 6

Conclusions

In this dissertation we showed that processing complex structured data

led us to discover novel methods of managing data. Motivated by what

the NSA answered when the FISC in 2009 accused them to have failed

with the court ordered restrictions on querying the phone metadata,

claiming that "from a technical standpoint, there was no single person

who had a complete technical understanding of the BR FISA system ar-

chitecture" we first generated a phone call dataset following a power

law graph and then we have simulated the query process described in

the FISC court sentences. We have also presented an automatic way

to perform run time actions designed to be a valid and meaningful sug-

gestion to improve the analyst work. We performed all our experiments

using the modern graph databases which allowed us to make the whole

process scalable and at the same time easy to understand, so that a

statement such as the one made by the NSA could not be tolerated any-

more.

Although there are different database models that can be used to

manage data, we presented the reasons why we adopted the graph

databases for processing telephone data. We believe that since the

query process practically recalled the concept of distance in Graph The-

ory, we chose graph databases; they allowed us to perform straightfor-

ward queries, optimizing time and space.

We also consider our results to be consistent. As described in the

the chapter "Performances" we ran our experiments on 10 different sets,

each time extracting a subset of random nodes which ensured that there

was no bias in the nodes’ degree. Our dataset reached almost 1,5 million

nodes which we assume to be a realistic number to simulate the daily

work of a NSA analyst.



Future Works In the end, we intent to propose potential enhance-

ments that may extend our work.

Firstly, we generated our dataset trying to follow both all the descrip-

tions found in the court sentences and the material we had available but

it would be quite interesting to process and analyze "anonymized" data

from a real corporate such as AT&T.

In addition, we have showed some graph visualization of the query

system using the web interface of the Neo4j tool. We reached our demon-

strative scope but as we mentioned at the beginning of chapter 5, due

to its recent release, the graphic interface has some little bugs that did

not allow us for example to have an overall graph view. We aim to em-

bed our project with a graphic tool such as Gephi to have some more

detailed graph visualization of the data first of all and secondly, to have

a more accurate control of the entire graphic interface.

Lastly, we developed a mechanism to make run time modifies on the

entire dataset in case of a legally suspicious path in the obtained graph;

we applied our computer science knowledge to achieve such a function

but our expertises did not allow us to have a legal technical point of

view. This is why we would be interested in initiating a collaboration

with a law technical team to combine both the computer science and

the legal fields and make this instrument fully valid for important future

investigations.
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