
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

ANALYSIS AND OPTIMIZATION OF AN
EXPERIMENTAL APPARATUS TO TEST
ACTIVE SAFETY SYSTEMS IN VEHICLES

Relatore: Prof. Alessandro COLOMBO

Tesi di Laurea di:
Andrea RIZZI, matricola 766468

Anno Accademico 2012-2013

Ai miei genitori

Ringraziamenti

Innanzitutto un grazie sentitissimo al Professor Alessandro Colombo e alla
Professoressa Domitilla Del Vecchio, non solo per i preziosi suggerimenti ma
anche per avermi regalato la fiducia e l’occasione di fare quest’esperienza
ed arricchirmi così tanto dal punto di vista professionale e umano. Un
abbraccio infinito va a Giulia che nel sopportare e supportare senza sosta il
mio girovagare ha dimostrato di avere la pazienza di una santa. Alla fine di
tutto farò in modo che ne sarà valsa la pena. Un’altro grazie immenso ai miei
genitori, sempre pronti a rendermi la vita più facile e rasserenarmi a discapito
di tutto. A tutti i miei parenti, mio fratello, nonni, zii e cugini che sono
sicuro non hanno dubitato di me neanche per un secondo. A Barbalenzio,
Casto e Daniele che grazie a Dio sembrano essere stati creati per non farmi
studiare. Ai compagni di avventura svedesi ormai sparpagliati per l’Europa:
Fabio, Ale, Gio, Loris, David. Alla mia squadra, per le battaglie in mezzo
al campo e le risate in pizzeria negli ultimi 13 anni.

A tutti voi grazie. Non varrei la metà di quello che sono senza di voi.

I

II

Abstract

This work describes various solutions adopted for the creation of a labo-
ratory environment suitable for experimental testing of algorithms for ve-
hicle collision avoidance. Moreover, the results obtained from the test of
an algorithm for robust multi-agent collision avoidance at intersections are
reported. In the first place, a model of the vehicle available in the lab is
developed. A through analysis of the disturbances affecting the modeled
system is performed to identify and quantify the sources of noise. The envi-
ronmental factors and the eventual errors in the parameters calibration are
included in the model as additive disturbance terms, and a predictor based
on this model that assumes constant motor input and constant disturbances
is implemented. Secondly, various techniques are adopted to reduce the pre-
viously identified disturbances and to allow a less conservative prediction.
Finally, the aforementioned algorithm is successfully tested in the laboratory
with two computer-driven vehicles.

III

IV

Sommario

Questo elaborato presenta il lavoro di analisi ed ottimizzazione di un appa-
rato sperimentale per test di sicurezza attiva su veicoli. In particolare viene
testato un algoritmo per la prevenzione di incidenti agli incroci basato su
scheduling e caratterizzato da robustezza ai disturbi.

L’algoritmo preso in considerazione richiede di effettuare una predizio-
ne dello stato futuro dei veicoli. A questo proposito viene sviluppato un
modello delle macchine disponibili in laboratorio che fornisce la base per la
realizzazione del predittore (Capitolo 2). I fattori di disturbo agenti sul siste-
ma vengono identificati ed incorporati nel modello come termini di disturbo
additivi.

Diverse tecniche sono adottate con il fine di ridurre l’effetto di questi di-
sturbi e rendere la predizione meno conservativa e compatibile con lo spazio
limitato disponibile all’interno del laboratorio per l’esecuzione dell’esperi-
mento (Capitolo 3). Il controllore dello sterzo è riprogettato con l’obiettivo
di minimizzare l’impatto della dinamica laterale su quella longitudinale. Gli
effetti dovuti alla capacità che filtra l’alimentazione e ai disturbi dipendenti
dal percorso (inclinazione del testbed e angolo di curvatura) vengono ridot-
ti da un compensatore applicato al segnale d’ingresso del motore elettrico.
Infine, gli errori di misura su posizione e direzione dei veicoli sono limitati
da opportuni filtri.

I risultati sperimentali derivanti dalla minimizzazione dei disturbi e il
test dell’algoritmo sono illustrati nel Capitolo 4. L’esperimento con due
veicoli è portato a termine con successo.

Si descrive inoltre l’architettura e il funzionamento di un simulatore rea-
lizzato durante lo svolgimento del progetto che virtualizza l’ambiente di
laboratorio e che può essere utilizzato per l’identificazione dei disturbi e per
velocizzare l’implementazione, il debug e la verifica delle soluzioni adottate
in laboratorio (Capitolo 5).

Si raccolgono infine nel Capitolo 6 le informazioni che descrivono l’utiliz-
zo pratico dei vari script implementati per la semplificazione di determinate
procedure in laboratorio.

V

VI

Contents

1 Introduction 1

2 Predictor 3
2.1 Laboratory environment . 3
2.2 Basic model . 4
2.3 Prediction . 6
2.4 Disturbance boundaries calibration 6

3 Disturbances analysis and reduction 9
3.1 Lateral and longitudinal dynamics coupling 9

3.1.1 Disturbance estimation 10
3.1.2 Steering model . 11
3.1.3 Steering controller design 13
3.1.4 Controller calibration 16

3.2 CPS measurement error . 16
3.2.1 Position linear correction 16
3.2.2 Heading filtering . 17

3.3 Other disturbances . 19
3.3.1 Effect of steering and testbed slope 19
3.3.2 Effect of the power filter capacitor 19
3.3.3 Mathematical formulation of the engine compensator . 22

3.4 On-line estimation of the motor gain 23

4 Experimental results 25
4.1 Disturbances minimization . 25
4.2 Algorithm testing . 28

5 Simulator 29
5.1 Architecture and features . 29
5.2 User guide . 30

6 Laboratory manual 33
6.1 Software overview . 33

6.1.1 Code organization . 33

VII

6.1.2 Summary of changes 33
6.2 Software configuration . 35
6.3 Car software . 36
6.4 Scripts . 37

6.4.1 Debug information visualization 37
6.4.2 Model parameters identification 39
6.4.3 Path-dependent disturbance identification 41
6.4.4 Tools for quantitive estimation of residual disturbances 44

6.5 CPS linear correction configuration 45
6.6 Path specification syntax . 46

6.6.1 Steering compensator directives 46
6.6.2 Path-dependent disturbance specification 46

6.7 Troubleshooting . 47

7 Conclusions 49

Bibliography 51

VIII

List of Figures

2.1 Lab vehicle, paths and cameras 4
2.2 Block diagram representation of the longitudinal model. . . . 5
2.3 Example of bad disturbance boundaries 7

3.1 Causes of non-zero dproj . 9
3.2 Coordinate system and example of trajectory 10
3.3 Lateral distance x of the car in time on path fig8CL with the

old steering controller. 10
3.4 Steering model of the car. 11
3.5 Block diagram representation of the lateral model. 13
3.6 Error of the position measured by the CPS 17
3.7 Car speed response to PWM and steering step input 20
3.8 Effect of capacitor on the car speed dynamics 21
3.9 Path-dependent disturbance dependencies 22
3.10 Speed dynamics variation with battery charge level. 23

4.1 Heading filtering . 26
4.2 Distance from path . 26
4.3 Final disturbances on the car speed. 27
4.4 Compensator and path-dependent disturbances with and with-

out engine compensator . 27
4.5 Trajectory of the two cars . 28

6.1 Example of how to choose the four points for CPS linear cor-
rection configuration. 44

IX

X

List of Tables

3.1 Steering model identification 12
3.2 Steering model validation for car 2. 12
3.3 Steering model validation for car 3. 13

4.1 Summary of disturbances norms 25

XI

XII

Chapter 1

Introduction

The project aims to create a laboratory environment suitable for experi-
mental testing of algorithms for vehicle collision avoidance at intersections.
In particular, a robust multi-agent collision avoidance algorithm based on
scheduling is implemented and tested [1]. This algorithm extends a tech-
nique presented in a previous work [2] and puts the system in an envi-
ronment which interacts with vehicles and influences their dynamics. As
a consequence, the method requires the prediction of the future state of
human-driven vehicles in an environment affected by disturbances. The list
of subgoals thus includes modeling of the system, analysis of noise sources,
and disturbances minimization.

The thesis is organized as follows. Chapter 2 introduces the laboratory
environment, defines the equations that model the system and shows the
methods used for the prediction of vehicles state. Chapter 3 describes the
analysis, identification and reduction of the system disturbances. Experi-
mental results obtained from algorithm testing and disturbances minimiza-
tion are shown in Chapter 4. During the whole process, a simulator of the
laboratory environment has been used to speed up the identification of the
problems and the development of solutions. The design and basic usage
of such a simulator is described in Chapter 5. Finally, Chapter 6 presents
a practical guide to the newly implemented features of the lab for future
reference.

1

2

Chapter 2

Predictor

The collision avoidance algorithm which is tested requires the estimation
of the future state of the car and the time at which the vehicle enters and
exits the intersection. To this end, I present a model-based predictor which
is described in this chapter. In the first place, a description of the labora-
tory environment is given. Secondly, the car model is presented together
with an overview of the disturbances caused by the environment and the
model imperfections. Finally, the methods adopted for the prediction are
explained.

2.1 Laboratory environment

The testbed consists of a 40m2 surface where the vehicles are free to move.
This surface is covered by 6 cameras mounted on the ceiling which send the
images to three computers for further processing. Positions and directions
of the cars are extracted from the received frames with the help of computer
vision and specific symbols mounted on the top of the vehicles. The whole
system composed by cameras and computers will be referred in the following
as Camera Positioning System (CPS). The information is then made avail-
able to the vehicles used in the experiment through a UDP/IP connection.
Each camera has a number from 0 to 5 and it is responsible for a portion of
the testbed (see Figure 2.1b).

The base of the vehicles available in the lab is a Tamiya scaled RC car
chassis equipped with a DC motor. A microcontroller with 2 PWM channels
is used to control the motor and the steering. A motherboard and a hard
disk are installed on the top of the car and run Ubuntu or Fedora [4]. A C
program is executed on the on-board computer which takes care of opening a
connection and exchanging information with the CPS, and sends the desired
input signal to the microcontroller. The speed of the car is measured by an
encoder mounted on the rear axis. There are 6 vehicles in the laboratory,
each of them numbered from 1 to 6.

3

(a) (b)

Figure 2.1: (a) The vehicle used in the laboratory and (b) the paths followed by
each car. The path in blue is called “fig8CL”, the red one is “fig8AL” and the black
one is “fig0”. There are six cameras in the lab that are numbered from 0 to 5. Each
camera is responsible for the area labeled with the correspondent number in (b).

The path followed by each car is specified in a file contained in the
vehicle hard disk as a sequential list of points. Three paths are used for
the experiment which are called “fig8AL”, “fig8CL” and “fig0” (see Figure
2.1b).

The CPS and the vehicles involved in the experiment communicate
through UDP/IP protocol. The CPS not only has to send to cars the infor-
mation extracted from camera frames (e.g. position, direction, etc.), but it
is also responsible of relying the information that is only available locally on
the vehicles on-board computers. This includes the car speed which is mea-
sured by the encoder, the motor gain parameter which is estimated online
(see Section 3.4), and the driver desired motor input.

The two flows of information (from CPS to car and from car to CPS) are
asynchronous. The CPS keeps in memory the most recent states sent by the
vehicles but if a long delay occurs in one of the car, the information sent to
the others by the CPS becomes quickly out-of-date and the algorithm can
encounter problems.

2.2 Basic model

The model of the vehicle is based on the decoupling of the lateral and lon-
gitudinal dynamics of the car with respect to the path. In other words, the
model assumes the vehicle to follow exactly its path and it treats the effects
of the lateral dynamics as a disturbance. Under this hypothesis, the state
of the car can be described by its longitudinal components only (i.e. its
unidimensional position and speed along the path). The car is represented

4

by the the system of equations
ẏ(t) = v(t) + dproj(t)
v̇(t) = av(t) + b+ fu(t) + dsteer(t) + dslope(t) + dcap(t)
ym(t) = y(t) + dmeas,y(t)
vm(t) = v(t) + dmeas,v(t)

(2.1)

where y(t) is the unidimensional position along the path, ym(t) is its mea-
surement, v(t) is the car speed (the one measured by the encoder), and u(t)
is the PWM signal given as input to the DC motor. The parameter b ac-
counts for friction, f is the gain of the motor while the dX(t) terms represent
various sources of additive disturbance. In particular they account for

• dproj : the fact that the vehicle does not follow perfectly its path (see
Section 3.1). In other words, it describes the weaving of the car around
its prescribed path.

• dmeas,y and dmeas,v: the measurement error of the CPS and the encoder
(see Section 3.2).

• dsteer: the effect of the steering on the speed (see Section 3.3.1).

• dslope: the fact that the testbed is not perfectly flat (see Section 3.3.1).

• dcap: the disturbance caused by the capacitor that filters the power
(see Section 3.3.2).

Figure 2.2 gives a block diagram representation of the model. The magnitude
of the disturbance terms was too high to allow an useful prediction with this
model, thus a reduction of these disturbances was necessary. A more detailed
explanation of these terms and the solutions adopted for their minimization
are illustrated in Chapter 3.

Figure 2.2: Block diagram representation of the longitudinal model.

5

2.3 Prediction
The algorithm requires two types of prediction: the car state in the next
clock cycle, and the time at which the vehicle reaches a certain point of the
path, in particular when the car enters and exits the intersection.

The first type of prediction is easily done by integrating the system of
equations (2.1). Defining dy = dproj and dv = dcap + dslope + dsteer, given
the current measured state (ym(k), vm(k)), the solution can be computed
analytically{

y(k + 1) = ym(k) + avm(k)+b+f ·u(k)+dv
a2 (eaτ − 1)− b+f ·u(k)+dv

a τ + dyτ

v(k + 1) = vm(k)eaτ + b+f ·u(k)+dv
a (eaτ − 1)

(2.2)
where u(k) is the motor input, τ is the clock cycle time. Note that dv and dy
are assumed to be constant terms, but their value is unknown at the time of
prediction. To solve this problem, boundaries for disturbances [dmin, dmax]
are determined (see Section 2.4) and the prediction is performed in the
worst and best case scenario obtaining an interval of states [ymin, ymax] and
[vmin, vmax] rather than a single one.

The second problem can be formulated as finding the time t such that y =
y(t), where y is monodimensional coordinate of the position that must be
reached by the vehicle on its path. Let the motor input and the disturbances
be constant. If t0 = 0, then according to the model t is the solution to the
equation

y(t) = ym(0) + avm(0) + b+ fu+ dv
a2 (eat − 1)− b+ fu+ dv

a
t+ dyt (2.3)

which is mixed exponential in t and must be solved numerically. The
Newton-Raphson method is used to this end. It should be noted that for this
type of prediction not only we do not know the dynamics of disturbances
dv(t) and dy(t), but also u(t) in the time interval [0, t] is unknown. Indeed,
the driver can potentially change motor input signal at each clock cycle.
To simplify, the algorithm tackles the problem by assuming both input and
disturbances to be bounded u(t) ∈ [umin, umax], d(t) ∈ [dmin, dmax]. These
boundaries are then used together with Equation (2.3) to obtain an interval
of time [tmin, tmax] in which the vehicle may occupy the intersection [1].

2.4 Disturbance boundaries calibration
The upper and lower bounds for the disturbances as they are defined above
are very high. dy(t) can reach 250−300mms while du(t) can get up to 350mm

s2 .
These boundaries makes the prediction too conservative for the experiment
to work on the testbed. Indeed, as soon as a car exits the intersection and
makes a brand new prediction, the algorithm detects an inevitable collision,

6

Figure 2.3: The red dot is the actual car position. The blue interval represents the
robust interval of measured positions while the green one is the interval of positions
predicted in the previous step. Boundaries that are not correctly defined may cause
the intersection between the predicted and the measured interval to be empty.

consequently the safe input remains undefined and the code makes the cars
stop. The confined space available for the experiment makes it difficult to
solve the problem by changing the paths drastically. However, what we
truly care is to be able to predict the time at which a car enters and exits
the intersection. This fact can be exploited to determine less conservative
boundaries.

Let tf be the time at which the car enters (or exits) the intersection. We
define dy,min and dy,max as the disturbances bounds such that

∫ tf

t0
v(t) + dy,mindt ≤

≤ y(tf) =
∫ tf

t0
ẏ(t)dt =

∫ tf

t0
v(t) + dy(t)dt ≤

≤
∫ tf

t0
v(t) + dy,maxdt (2.4)

for every t0, state x0 = (y0, v0), input u(t) and disturbance dy(t). One
can define dv,min and dv,max similarly. It should be noted that defining
the boundaries in this way allows the state to get temporarily outside its
predicted boundaries in the interval (0, tf). In other words, we do not care
what happens between t0 and tf as long as we know that the prediction will
be correct at the intersection.

Conversely, the measurement disturbance boundaries are not affected by
the same problem and they are defined as the actual minimum and maxi-
mum measurement error made by the CPS and the encoder for y(t) and v(t)
respectively. However, with dy(t) and dv(t) boundaries defined as in Equa-
tion (2.4), the one-step prediction solved by the system (2.2) may be wrong

7

because the boundaries the predictor uses are not the actual upper and
lower bounds of the system. As an example, consider Figure 2.3. The algo-
rithm determines the interval of possible positions of the vehicle [ymin, ymax]
by comparing the prediction performed at the previous step (green interval)
with the uncertain measurement given by the CPS (blue interval). The state
of the car is assumed to be in the set obtained as the intersection between
these two estimates (in the figure represented by [A,B] at time kT). How-
ever, since the disturbances used for the prediction underestimate the actual
maximum boundary, the actual vehicle position (the red circle) can change
faster than expected by the algorithm. If the car position is too far from the
predicted one, the intersection between the two intervals becomes empty.
This is the case in Figure 2.3 at time (k+ 1)T . Assuming the distance from
the predicted state and the actual state to be bounded, one can circumvent
this problem by increasing the measurement uncertainty boundaries beyond
the actual ones (i.e. by increasing the size of the blue interval).

After acknowledging the complexity of estimating quantitatively the
boundaries by analyzing algorithmically the experimental data without over-
estimate them, I adopted a trial and error approach to determine the bounds
with the help of the simulator.

8

Chapter 3

Disturbances analysis and
reduction

The magnitude of the disturbances sketched in Section 2.2 is too high to
allow an useful prediction. This chapter explains in details the sources of
disturbance and the techniques adopted to reduce their effect. The results
of this work are presented in Chapter 4.

3.1 Lateral and longitudinal dynamics coupling

The car steering controller is not refined enough for the car to follow the
path perfectly. The main implication is ẏ(t) 6= v(t). Indeed, in the model
ẏ(t) = v(t) + dproj(t). In order to fully understand what gives rise to a non-
zero dproj(t), one should consider that the path followed by cars is composed
by a polygonal chain. For example, in Figure 3.1 the car goes through
the trajectory A-B-C-D. While in sections A-B and C-D, the value of ẏ is
simply the projection of v(t) on the path, in section B-C the vehicle position

Figure 3.1: Causes of non-zero dproj .

9

(a) (b)

Figure 3.2: (a) coordinate system and (b) example of trajectory on path fig8CL.

is projected on the path always in the same point P so ẏ = 0. Similar
considerations lead to conclude that the unidimensional speed ẏ reaches
infinity when a car cuts a corner.

3.1.1 Disturbance estimation

In order to quantitatively estimate dproj , let us consider the path in Figure
3.2b which is half of fig8CL and has a total length of S1D = 9465.53mm. In
the following the coordinate system will be relative to the path as represented
in Figure 3.2a. In other words, y(t) represents the position along the path
while x(t) the lateral distance from the path. If the car actually goes through
S2D millimeters, the average unidimensional speed from the beginning to the
end of the path is given by

¯̇y = v̄ +
(
S1D
S2D

− 1
)
v̄ = v̄ + d̄proj .

Figure 3.3: Lateral distance x of the car in time on path fig8CL with the old steering
controller.

10

The first term of the sum is the actual average speed of the car as measured
by the encoder, the second one can be considered as a disturbance term due
to the projection on the path of the actual car speed. Assuming the car to
maintain a lateral distance of x = 20cm, it is easy to compute a value for
S2D and obtain

d̄proj = 0.25v̄.
In other words the disturbance on the unidimensional speed would be 25%
of the actual car speed. It is clear that the lateral dynamics considerably
affects the longitudinal components of the car state. As a matter of fact, the
old steering controller keeps the car at an approximately constant lateral
distance of about 20cm during the experiment (see Figure 3.3). Thus it
becomes necessary to design a new and more effective controller.

3.1.2 Steering model

Let us consider the simplified model of the vehicle in Figure 3.4, where w is
the wheelbase and δ is the steering angle. The dynamics is actually affected
by some slip angles which is assumed to be negligible for the purpose of this
model. We want to determine the curvature radius of the center of the car
(i.e. R) because that is the position tracked by the CPS. We assume also
that the steering angle δ(t) can change instantaneously and is proportional
to the steering input or, in other words, that δ(t) = αu(t), where α is refered
to as steering factor and u(t) ∈ [−100, 100] is the steering input. With some
simple trigonometry one can obtain

Rr = w

tan(αu)
which means that

R =

√
R2
r + w2

4 =
√

w2

tan(αu) + w2

4 . (3.1)

Figure 3.4: Steering model of the car.

11

Car 1
Input Diameter right Diameter left Error right Error left
100 1360mm 1380mm 4.02mm -5.98mm
90 1450mm 1420mm 39.18mm 54.18mm
80 1710mm 1680mm 8.90mm 23.90mm
70 1940mm 1880mm 21.56mm 51.56mm
60 2400mm 2290mm -38.88mm 16.12mm
50 2980mm 2960mm -92.27mm -82.27mm

Table 3.1: Results of the experiments with car 1 for steering factor identification.
All measures are reported in millimeters. Measured diameters for right and left
turns is separated. The error in the table is the difference between the radius (not
the diameter) predicted by the model and the real radius.

The wheelbase can be directly measured on car. The only unknown param-
eter of the model is the steering factor α.

In order to determine α, one can run car 1 on circles with constant steer-
ing input and manually measure the diameter of the circle it goes through.
Results of this experiment are reported in the Table 3.1. The steering factor
is then easily computed by minimizing the mean error. This leads to the
value α = 0.2116466582.

The model is validated with cars 2 and 3. Data is reported in Tables 3.2
and 3.3 which show an average radius error of respectively 70.57mm and
−58.17mm.

It should be noted that the reported error refers to curvature radius not
diameter. This means that when car 2 completes a semicircle, on average
the model mispredicts its position by 7.057cm · 2 = 14.114cm. According
to the partial data gathered, the misprediction can be up to 36cm. Still, it
is not required for the model to be perfect. Indeed the main idea behind
the steering controller is to associate a reference steering input given by the
identified model with a PD that corrects its error over time. Considering
that it takes about 4 seconds for the car with steering input 50 and motor
input 150 to complete the semicircle, the PD would have 4 seconds to correct
an error of 36cm.

Car 2
Input Diameter right Diameter left Error right Error left
100 1340mm 1370mm 14.02mm -0.98mm
90 1340mm 1370mm 94.18mm 79.18mm
80 1520mm 1600mm 103.90mm 63.90mm
50 2440mm 2730mm 177.73mm 32.73mm

Table 3.2: Steering model validation for car 2.

12

Car 3
Input Diameter right Diameter left Error right Error left
100 1670mm 1560mm -150.98mm -95.98mm
90 1670mm 1560mm -70.82mm -15.82mm
80 1830mm 1720mm -51.10mm 3.90mm
50 2730mm 3030mm 32.73mm -117.27mm

Table 3.3: Steering model validation for car 3.

After some tests, it seems that the curvature radius is not affected by
the motor input. The curvature radius of car 1 saturates for input above
100 (i.e. signals 110 and 120 gives exactly the same curvature radius). For
cars 2 and 3 this happens even before, at input 90. However, the current
diameter of the curved part of path fig8 is about 148cm. This means that
car 1 and 2 can follow it, while car 3 cannot.

3.1.3 Steering controller design

The linear model used for the steering controller design is shown in the block
diagram in Figure 3.5 where U(s) is the desired lateral distance from the
path (which is always 0), C(s) = c

s is the constant compensation term of the
controller computed by using the steering model presented above,M(s) = m

s
is a constant term that accounts for the error of the model used to determine
the compensation, Φ(s) is a disturbance term that models the curve in the
path, w is the wheelbase, α is the steering factor, δ ∈ [−100, 100] is steering
input and X(s) is controlled variable, the lateral distance from the path.

The model does not take into account the measurements disturbances
and it considers disturbances associated with the actuator, projection on the
path and slip angles negligible.

Figure 3.5: Block diagram representation of the lateral model.

13

Distance from the path

Defining β as the direction of the vehicle in radians, and given Equation
(3.1) we have that

β̇(t) = v(t)
R(t) = 2v(t)tan(αδ(t))

w
√

4 + tan2(αδ(t))
.

The linear approximation of this function at the point z = (δ = 0, v = v0) is

dβ̇ = f(z) + df

dv
(z) · dv + df

dδ
(z) · dδ

= 0 + 0 + 2v0
w

α(1 + tan2(0))
√

4 + tan2(0)− 0
4 + tan2(0) dδ

= αv0
w
dδ

(3.2)

whose Laplace transform is

B(s) = αv0
ws

∆(s).

Given the direction in radian of path φ(t), the car direction β(t) and its
speed v(t), the distance from the path x(t) follows

ẋ(t) = v(t)sin(β(t)− φ(t))

whose linearization at the point z = (β = 0, φ = 0, v = v0) is

ẋ = v0dβ + v0dφ (3.3)

or
X(s) = v0

s
B(s) + v0

s
Φ(s).

The controller

The controller is a PD in the form

δ(t) = k1ė(t) + k2e(t) = k1(ẋ(t)− 0) + k2(x(t)− 0) = k1ẋ(t) + k2x(t).

Using Equation 3.3 we can write

δ(t) = k1v0(β(t)− φ(t)) + k2x(t).

14

Static analysis

Putting it all together, one obtains the system represented in Figure 3.5.
We want the distance from the path x(t) to be 0 thus U(s) = 0. Calling the
controller K(s) and the system G(s), we can write the transfer function

X(s) = − 1
1 +K(s)G(s)

v0
s

Φ(s).

When the path does not have curves, its direction φ(t) is constant or in
other words Φ(s) = q

s , with q constant. In this case we obtain

X(s) = −qv0w

ws2 + αv2
0k1s+ αv2

0k2

and for the final value theorem we can say that limt→∞ x(t) = 0. However,
if there is a curve with constant curvature radius Φ(s) = q

s2 is a ramp. In
this case

X(s) = −qv0w

s(ws2 + αv2
0k1s+ αv2

0k2)

which means that
lim
t→∞

x(t) = − qvow

αv2
0k2

.

To reduce the final error we can add a constant compensation term to the
controller which assumes the form

∆(s) = (k1s+ k2)X(s) + c

s
.

In this way we obtain

X(s) = −qv0w + αv2
0c

s(ws2 + αv2
0k1s+ αv2

0k2)
.

Recalling that during a curve φ(t) = q · t, if the curve has curvature radius
R, we can compute q as

q =
π
2
πR
v0

= v0
2R

so, in order to cancel the final error

c = w

2Rα.

If we consider the error in the model M(s), the Laplace transform of the
system becomes

X(s) = −qv0w + αv2
0c+ αv2

0m

s(ws2 + αv2
0k1s+ αv2

0k2)
.

15

If we set c so that the effect of q is canceled, then the error is caused only
by m. By applying the final value theorem one obtains

lim
t→∞

x(t) = m

k2

thus the final error depends only on k2 as reasonable to expect. Recalling
that m must be a steering input, it is easy to compute its maximum value.
By looking at the maximum error in the validation data in Table 3.2, I
obtained m = 13.3045.

3.1.4 Controller calibration

The transfer function has a pole in 0 and a pair of complex poles for

|k1| <
√

4w
αv2

0
k2.

Poles are

p1,2 = −αv
2
0k1

2w ± i

√
4wαv2

0k2 − α2v4
0k

2
1

2w
We want the final error ef , the settling time ts and the frequency of

oscillation ωd to be low or, in other words, we want to keep low the quantities
ts = −4.6

Re(p) and ωd = Im(p). With k1 = k2 = 0.3 and v0 = 800mms we obtain
ef = 44.34mm, ts = 3.37s and ωd = 0.9314.

3.2 CPS measurement error

3.2.1 Position linear correction

The position of the car on the testbed computed by the CPS is affected
by a considerable error. I made some manual measurement of this error by
finding the real position with the measuring tape and checking the computed
position on the CPS and I found it to be up to 25cm. Moreover, when the
tracking of a car passes from a camera to another, the global coordinates
“jump” because the position error in the transition point is different for the
two cameras. From the experiments on path fig8, this leap can be up to
35cm. This negatively affects the ability of the car to accurately follow a
path which is a crucial aspect in limiting disturbances.

Figure 3.6 represents how the error varies when we move along a direction
in camera 5. In order to understand the graphics, it must be said that a
position on the testbed can be indicated in two different coordinate systems.
The global coordinate system specifies a certain position with an absolute
planar vector (xglob, yglob), where xglob and yglob are expressed in millimeters.
On the other hand, a local coordinate system (xloc, yloc) can be associated to

16

(a) (b)

Figure 3.6: How the measurement error on xglob changes when we set yloc and we
move along the xloc axis on camera 5 (a). How the measurement error on yglob

changes when we set xloc and we move along the yloc axis on camera 5 (b). The
notation xloc indicates the x coordinate in pixels in the local coordinate system of
the camera (i.e. the horizontal one), while xglob is the x coordinate in millimeters
in the global coordinate system.

the frames of each camera, and each vector represents the distance in pixels
from the origin. Very similar trends where observed with camera 2.

To reduce the error, I applied a linear correction to the computed global
coordinates error along both directions. The estimated error is given by

e = a · xloc · yloc + b · xloc + c · yloc + d.

The parameters a, b, c, d are computed by the CPS on startup by loading a
file where the actual global coordinates of four points must be saved. The
procedure that must be followed to configure this file is described in Section
6.5.

3.2.2 Heading filtering

Since the CPS extrapolates the car heading from two subsequent positions,
the measurement error affects the computed direction too. In particular,
when the car tracking passes from a camera to another and a jump occurs
in a random direction, the measured heading is considerably compromised.
This has a heavy negative effect on the steering controller ability to follow
the path. I have thus implemented a model-based filter to eliminate heading
jumps. The filter is applied in the car, not in the CPS because it needs the
speed from the encoder. In short, the filter detects when a leap occurs and
uses the model heading instead of the measurement when that happens.

First the measured heading subject to leaps is computed as

γmeas = arctan

(
x2(kτ)− x2((k − 1)τ)
x1(kτ)− x1((k − 1)τ)

)

17

Algorithm 1 Filter the car heading to remove jumps
if |γmeas − γmodel| > k1 then
γ = γmodel

else if |γmeas − γmodel| > k2 and |distmeas − distmodel| > h · distmodel
then {This is the uncertain case}
γ = γmodel

else
γ = γmeas

end if

where kτ is the current step and (x1, x2) represents the car position in the
absolute coordinate system. The predicted direction for the current step is

γmodel = v((k − 1)τ)τ
R

where R is the curvature radius which can be substitute by Equation (3.1)
to obtain

γmodel = 2v((k − 1)τ) · tan(c · δ((k − 1)τ))τ
w
√

4tan2(c · δ((k − 1))

where c is the steering factor and w is the wheelbase of the car. Then we
compute the measured distance that the car has covered from the previous
step

distmeas =
√

(x1((k − 1)τ)− x1(kτ))2 + (x2((k − 1)τ)− x2(kτ))2

and the predicted covered distance

distmodel = v((k − 1)τ)τ.

The algorithm works as shown in Algorithm 1.
Some leaps occur more or less in the direction of the car but they can be

still detected because the car covers a much longer (or shorter) distance than
it should. The second if-statement detects this kind of leaps. Thresholds
k1, k2 and h have been determined empirically to be respectively 30degrees,
20degrees and 0.35.

One way to interpret this filter is to consider it as a simple camera change
detector that applies a Kalman filter with time-varying error covariance.
The measurement error covariance is 0 when camera change is not detected
(i.e. the Kalman filter keeps the measurement) and non-zero otherwise. On
the contrary, the a priori estimate error covariance is 0 when camera change
is detected (i.e. the Kalman filter keeps the model) and non-zero otherwise.

18

3.3 Other disturbances

In this section dcap, dslope and dsteer from Figure 2.2 are discussed and ana-
lyzed. These terms represent respectively the disturbances on the car speed
caused by the power filter capacitor transient, the testbed inclination and
the steering.

3.3.1 Effect of steering and testbed slope

I made car1 run on circles for 50 seconds with fixed PWM and steering input
for a total of 16 runs. Every run was performed starting from the same
battery voltage of 16.7V . All the images below are obtained by filtering the
encoder signal with a moving average window to discard the high frequency
components of the noise.

Figure 3.7 shows the speed response to PWM and steering step input.
It is clear that the relationship between PWM and velocity is quite linear
(Figure 3.7a). For some reason, when the steering input is high, the speed
observed with PWM 140 is slightly lower than expected. The reason why
the steady state speed slowly decreases in time will be clarified in Section
3.3.2. On the other hand, the steering effect on speed seems to be a little
bit more complicated (Figure 3.7b). Velocities observed for steering 92 and
120 are always very close. This may be due to the fact that curvature radius
for the two steering input are very similar. Still the speed is not linear with
respect to the curvature radius because the discrepancy between the speed
for steering 36 and 64 (which I measured to have respectively a curvature
radius of roughly 200cm and 100cm) tends to be reduced when the PWM
decreases.

As a final observation, it should be noted the presence of an oscillation
in the speed dynamics whose frequency increases with the speed. This os-
cillation is caused by the fact that the testbed is not completely flat. There
are slight slopes that can be easily observed with a spirit level.

In conclusion, the car speed depends indeed linearly on the PWM input
signal as it is modeled. Moreover the steering and the testbed slope introduce
a complex dynamics that is not taken into account by the model and should
be considered as disturbance.

3.3.2 Effect of the power filter capacitor

After gathering the first experimental data as described in Section 3.3.1, I
further investigated the reason why the car speed slowly decreases in time.
New data was acquired by running car 1 on a circle for a much longer time
(between 200 and 250 seconds) with constant steering and engine input.
The steering has always been set to −64. The starting position of the car
has always been about (3000, 3600) in global coordinates so that the effect

19

(a)

(b)

Figure 3.7: (a) speed-PWM relationship for different steering values and (b) speed-
steering relationship for different PWM values.

20

(a) (b)

Figure 3.8: Speed dynamics of car 1 after being run 3 times in a row (a) or twice
with a 200 seconds pause in between (b).

associated to the testbed inclination would be similar in all experiments.
The battery voltage was measured both before turning the car on, and with
the car on but just before it started moving. Various experiments with
different configurations of battery voltage and PWM input were explored.
The full data gathered and the detailed description of how the experiments
were performed are available to the laboratory team.

Figure 3.8 summarizes the main results. In the first experiment (Figure
3.8a), car 1 was run 3 times in a row. It is very evident that in the first run
the speed reaches a peak and slowly decreases to a steady state value. The
speed recorded during the second and third run starts more or less from this
steady state value. Figure 3.8b was obtained instead by running the vehicle
for about 200 seconds, pausing it for another 200 seconds and then starting
it again. Here the car speed has the same dynamics in both runs.

This behavior is likely caused by the capacitor that filters the power
source. When the car is not running the circuit is in a steady state condition
but when it runs the equilibrium moves and the capacitor slowly discharges.
The same behavior was confirmed by experiments with both cars 2 and 3.
Recalling Equation (2.1), the actual speed dynamics may thus be described
by

v̇(t) = av(t) + b+ fu(t) + dsteer(t) + dslope(t) + dcap(t)

= av(t) + b+ fu(t) + dsteer(t) + dslope(t) + ge−
t
τ u(t)

= av(t) + b+ (f + ge−
t
τ)u(t) + dsteer(t) + dslope(t)

(3.4)

where the motor gain decreases exponentially to reach the steady state value
f with time constant τ , and g is a parameter defining the amplitude of the
exponential decay. Further investigations showed that the PWM does not
affect neither τ nor g.

21

(a) (b)

Figure 3.9: Dependency of path-dependent disturbance on time (a) and unidimen-
sional position (b).

3.3.3 Mathematical formulation of the engine compensator

I implemented an engine compensator which reduces the transient due to the
capacitor, and the effects of steering and testbed inclination on the speed by
introducing a compensation term in the PWM signal. Recalling Equation
(3.4) we can write

v̇(t) = av(t) + b+ (f + ge−
t
τ)(u(t) + c(t, y)) + dpath(y) (3.5)

where dpath(y) = dsteer + dslope and c(t, y) is the compensation term. Note
that dpath(y) depends on the position along the path y. This comes from
the consideration that the slope and the steering input are roughly the
same at the same point of the path. For this reason, dpath is referred to as
“path-dependent disturbance”. Indeed, Figure 3.9b plots the integral path-
dependent disturbance Dpath(y) (calculated as the subtraction between the
speed measured by the encoder and the model) against the position along
the path for different values of PWM. The dependency is clear. It should
be noted that, even if the model neglects it, the disturbance seems to be
slightly influenced by the PWM. Moreover, Figure 3.9a shows the trend of
Dpath(y) in time. As one can see, the graphic exhibits roughly the same
pattern whose period coincides with the completion of a lap.

By imposing the cancellation of the capacitor effect and dpath(y) it is
easy to obtain

c(t, y) = −ge
−t/τ + dpath(y)
ge−t/τ + f

.

An automatic procedure for the parameters calibration (i.e. g and τ) and
the estimation of dpath(y) as a linear piecewise function is available. Detailed
instructions that explain how to use the script can be found in Sections 6.4.2
and 6.4.3.

It must be noted that the engine compensator assumes that the car starts
with the capacitor in equilibrium. When the car is stopped, the capacitor

22

Figure 3.10: Speed dynamics variation with battery charge level.

starts recharging again. In order for the compensator to work, one needs
to wait until this process is completed. It takes about 200 seconds for the
transient to reach its steady state but if the car was run for a shorter time
the await can be reduced. Plug the charger to speed up the process.

3.4 On-line estimation of the motor gain
The motor gain f is not a constant parameter of the model. In the first
place, it depends on the battery charge level of the vehicle. Figure 3.10
shows how the speed dynamics change with the battery state. As reasonable,
the motor performance decreases with the voltage supplied. In parallel, the
performances of the motor can change from one day to another even if the
battery charge level is the same. It is not clear why this phenomenon takes
place but we speculated it depends on the status of the electric circuits
which is subject to forces and tensions that can slightly alter its conditions
when the car is moving. For this reasons, the motor gain is considered to
be time-dependent and it is estimated online by using the adaptive control
technique called “MIT rule” [3] which basically adopts gradient descent to
minimize a cost function. The cost function is defined as:

J = 1
2e(f)2 = 1

2(vm − vp(f))2

where vm is the measured speed, vp(f) is the speed predicted by the model
(which depends on the gain f). Applying the gradient descent method gives
the updating rule

f(k + 1) = f(k)− γe(k + 1)de
df

(k + 1).

The parameter γ is set very low since the gain does not change rapidly.

23

24

Chapter 4

Experimental results

4.1 Disturbances minimization

Position correction

The first visible improvement given by the position linear error correction
concerns the car path-following performance: the car stays much closer to
the given path. Secondly, the error of the position in camera 5 and 2 is
constantly below 10cm and rarely above 5cm. Moreover, since the absolute
position error is reduced, the “leaps” that occur when the tracking pass from
a camera to another is reduced too. Indeed, I was not able to measure a
leap above 20cm (against the 35cm without position correction).

Heading filtering

Figure 4.1 shows the heading difference in time defined as dγ = γm((k +
1)τ) − γm(kτ) where γm(t) is the measured direction of the car at time t.
As you can see, basically all the leaps, big and small, caused by the change
of the tracking camera are removed by the filter (Figure 4.1b). It is easy to
understand how important this is for path-following performances.

Input Old error norm New error norm
Position correction |e|∞ ' 35cm |e|∞ ' 20cm
Distance from path |x̄| = 173mm |x̄| = 49mm

Path-dependent disturbance |dpath|∞ ' 200mm ||dpath|∞ ' 50mm

Table 4.1: Summary of disturbances norms before and after minimization. The
average distance from the path x̄ refers to a lobe of path fig8CL.

25

(a) (b)

Figure 4.1: Heading jumps with (b) and without (a) filtering.

New steering controller

Figure 4.2 shows the measured distance from the path x(t) with the old and
the new controllers. In both cases the dynamics of x(t) is quasi periodic with
each period coinciding with a lap completion, and each half-period coinciding
with the end of a lobe on fig8CL. Notice that Figure 4.2a represents three
whole periods while in the experiment represented in Figure 4.2b the vehicle
was run for a shorter time. With the old controller the distance from the
path increases at each curve, it oscillates around 200mm and then it gets
closer to the path again in the straight section. The sinusoidal form is caused
by the fact that the car needs to steer left in the first lobe and right in the
second one. In this way the vehicle stays on the right side of the path in
the first lobe and on the left one in the second lobe. On the other hand,
with the new controller the car oscillates between the right and the left

(a) (b)

Figure 4.2: Distance from the path x(t) with the old (a) and the new (b) steering
controller of a car running on fig8CL. A negative distance means that the car is
on the left of the path with respect to the path direction, while a positive distance
represents a vehicle on the right side.

26

Figure 4.3: Final disturbances on the car speed.

side throughout the lobe of the path. This significantly reduces the average
disturbance which is particularly advantageous when it is expressed in the
form given by Equation (2.4). The average distance from the path in a lobe
can be found in Table 4.1. Moreover, the new controller keeps x(t) below
10cm. The only times when this does not hold correspond to change of
tracking camera when position leaps occur.

Compensator and path-dependent disturbances

Figure 4.4a compares the car speed dynamics predicted by the model with
the one obtained by running car 2 on path fig8CL with constant motor input
without the engine compensator described in Section 3.3.3. The superposi-
tion of the disturbance caused by the capacitor (i.e. the transient) with the
path-dependent disturbance (i.e. the quasi periodic oscillation that coin-
cides with a lap completion) is quite evident. When the engine compensator
is activated the disturbances are greatly reduced and the car speed trend

(a) (b)

Figure 4.4: Compensator and path-dependent disturbances with (b) and without
(a) engine compensator. In both cases the blue line represents the experimental
data while the green one shows the trend predicted by the car model.

27

Figure 4.5: Trajectory of the two cars (blue line) and bad set (red rectangle). On
the x-axis the position of car 1, on the y-axis the position of car 2.

assumes the shape given in Figure 4.4b. The reason why the speed is con-
stantly above the model is due to an erroneous estimation of the motor gain
parameter of the model. This is attenuated by the online estimation of the
motor gain (see Section 3.4) whose effect is shown in Figure 4.3. The spike
at the beginning is mainly due to a defect in the encoder measurement, but
after that the speed does not get further than 50mms from the model.

4.2 Algorithm testing
The test of the collision avoidance algorithm with two cars was successful.
The experiment lasted about 3 minutes and 30 seconds and the two vehicles
were run with (different) constant desired PWM. During the experiment, the
supervisor detected a collision and overwrote the desired input for 8.62% of
the time. Figure 4.5 shows an instance of the trajectories of the two cars
approaching the intersection. Notice how the slope of the curve slightly
increases in the middle section and decreases again once the intersection is
passed. Since the desired motor input is constant in both cars, the trajectory
should appear almost as a straight line (constant motor input results in
constant speed) but the supervisor corrects it to avoid the collision which is
represented in the figure by the red rectangle.

On the other hand, I was not able to make the experiment work after
adding a third vehicle. The problem is that the prediction is currently too
conservative too find a schedule able to solve certain configurations of states
of the three cars running together. This can be solved in two ways: by
decreasing the boundaries of the disturbances used by the predictor and by
lengthen the paths. Both approaches are currently being investigated.

28

Chapter 5

Simulator

The simulator emulates the laboratory environment by computing the dy-
namics of the vehicles, taking into account disturbances and noise. It allows
to qualitatively and quantitatively study the effect of isolated disturbances
on the system. Moreover it works as a first test bench for models and soft-
ware solutions deployed to vehicles and the CPS, and it makes simpler the
debugging process. This considerably sped up the software development.
Finally, since this project is the result of a collaboration between Politec-
nico di Milano and MIT, it provides the ability to simulate experiments
to those who do not have access to the laboratory situated in Cambridge,
Massachusetts.

5.1 Architecture and features

The simulator is implemented in C. It works on Ubuntu Desktop 12.04
LTS and it should not have problems also with other distros of Linux but,
since it uses the POSIX library for threading and network communication,
it cannot work on Windows unless one uses some (untested) workarounds
such as using a POSIX porting for Windows. However it should work on
Mac since it is Unix-based.

The simulator communicates to the program executed on vehicle com-
puter (called “ca2”) exactly in the way CPS does. However full virtualiza-
tion is not supported, ca2 is paravirtualized. Indeed, the software on cars
makes extensive use of a proprietary library that provide an API to commu-
nicate to the Brainstem microcontroller which would have taken more time
than what was worthy to reimplement. The program can be easily compiled
in simulator or car mode by setting the value of a macro.

Two different threads constitute the server and the client part of the
simulator. The server receives messages from ca2 that are supposed to be
directed to the CPS and to the microcontroller. These include for example
the fitness estimation (CPS) and the input for steering and motor (micro-

29

controller). This information is saved in variables shared between the server
and the client. The latter takes care of simulating the dynamics of vehicles
based on the input sent by cars themselves. This is accomplished by inte-
grating a system of differential equations with the GNU Scientific Library.
The result is then sent back to cars exactly like the CPS does.

The program includes accurately in the model the effects of the capac-
itor, the ones of the lateral dynamics and the position measurement error
which includes the jumps of position caused by the change of tracking cam-
era. It also simulates the effects of the steering and the testbed slope but
it does not take into account the part of the disturbance which is unpre-
dictable. Basically it assumes the path-dependent disturbances to be the
one identified (see Section 6.4.3) which are the same that the engine com-
pensator cancels. Moreover, the encoder speed measurement noise is not
currently implemented.

Since the CPS code was Windows-specific, it was not possible to virtual-
ize that part of the laboratory like it has been done for ca2. The algorithms
are replicated and they must be updated every time the CPS is modified to
keep the simulation consistent.

5.2 User guide

Here follows a small guide on how to compile and use the simulator. All
files can be found in the main folder of the projects and all the paths below
are relative to it.

To compile both ca2 and the simulator I have implemented the shell
script “scripts/compile.sh”. First of all, check that the CODE_IN_CAR
constant in “src/car_src/const_car.h” is set to 0. This allows to compile
the code without the requirement of the Brainstem library and it configures
the sockets to connect to localhost instead of the IP addresses of the CPS
and the cars. From the main folder, just type in the console

cd scripts
./compile.sh

The two executables ca2 and simulator should appear in your main folder.
Other than the standard POSIX library, the simulator uses GSL (Gnu Sci-
entific Library) so if you have problems compiling, make sure it is installed.

From the main folder, to run a simulated experiment first run the simu-
lator.

./simulator

and then run the car code with the normal syntax on a different console.

./ca2 paths/figX_precise.txt

30

Where X can be 8AL, 8CL or 0. The suffix “_precise” in the path specifica-
tion file name differentiates it from the previous one which defines the path
with a very small number of points. The path files I have used are contained
in the folder paths/. Specifying a great number of points allows the car to
follow its path more effectively. The simulator can handle experiments with
more than a single car. You just have to compile different ca2 executable
(make sure that the constant CAR_NUM in src/car_src/const_car.h is dif-
ferent for each compiled ca2 and that NUM_CARS_EXP in src/util/constants.h
is set appropriately). Then run the simulator normally and run the car ex-
ecutables, each one on a different console and with its own path. Press the
Space key in the ca2 console to stop the car. The simulator automatically
halts when all the cars stop.

In order to speed up the computation, the information displayed during
the simulation is minimal. However both ca2 and the simulator leave a
debug file rich of data. I wrote a Python script called plot_trajectory.py
that visualize graphically the information contained in these debug files. It
can be used to speed up considerably the debugging of the experiment both
simulated and on the test-bed. See Section 6.4.1 for more information about
its usage.

31

32

Chapter 6

Laboratory manual

6.1 Software overview

6.1.1 Code organization

All the code is contained in the main folder of the project. All paths below
are to be intended relative to it. The main folder contains 4 subfolders:

• src/: contains the C code divided in 3 folders

– src/car_src/: contains the code specific for the car (i.e. the
program ca2).

– src/sim_src/: contains the code of the simulator.
– src/util/: contains the code shared between ca2 and the simu-

lator.

• scripts/: contains all the Python scripts that can be used for ex-
ample to compile the simulator, identify parameters and debug the
experiment.

• paths/: contains the new paths definition files used by the cars which
specify also the steering compensator directives and the path-dependent
disturbances functions.

• data/: various data gathered during experiments on the test-bed.

6.1.2 Summary of changes

The new version of the CPS (called AndreaCPS) is not compatible to previous
versions of ca2. Viceversa my ca2 is not compatible with previous versions
of CPS. This is because the communication protocol between CPS and ca2
is now different. In general I would suggest using AndreaCPS instead of
KevinCPS or LeoCPS because they have a bug that involves the initial target

33

detection which is corrected in the new one. I did not check CPS versions
that are older than KevinCPS but it is likely that those versions do not have
this bug since computer 1 and 2 do not send their information to computer
0 before sending them to cars.

ca2

• Grouped utility functions in a separate folder that is shared with the
simulator. This makes the code more modular.

• Reimplemented the target detection algorithm so that the car and CPS
can work with paths defined by a large number of points.

• Steering controller has been reworked, the monodimensional speed has
been substituted by the one read from the encoder, the PD has been
calibrated and a path-dependent compensator has been added. The
compensator can be configured through the path specification file (see
Section 6.6.1).

• Implemented a new filter for the heading measure to cancel the effect
of leaps (see Section 3.2.2).

• Set the limit of steering input to (-100,100) since the curvature radius
saturates above it.

• Implemented the online estimation of the engine gain parameter (see
Section 3.4).

• Implemented speed disturbances correction which uses a path-dependent
disturbance function defined in the path specification file.

CPS

• Fixed a bug that affected the initial target dectection for cars that
were not tracked by computer 0 and buffer overflow bug.

• Implemented linear error correction for the computation of camera
position. This visibly improves the path following of cars (see Section
3.2).

• The computer that sends the data to cars is now computer 1 (not the
slower computer 0 anymore). This is easily configurable through the
constant SENDER_COMP_NUM in CPS.h.

• The sender computer now knows which camera is currently tracking
which car and this information is sent to cars.

34

Communication protocol

• Now the car sends its personal data (encoder speed, estimated fitness,
desired pwm, etc.) to CPS that forwards this data to all the cars.
If the encoder of a car does not work you can set to 0 the constant
USE_ENCODER in car_src/const_car.h and the CPS will estimate the
car speed from differentials.

• Each car listens on a different port. This was required to make the
simulator handle multiple cars and I extended it to the CPS for co-
herence.

Paths

• Modified the path specification file format in order to include the steer-
ing compensator directives and the definition of the speed disturbance
function.

• Slightly narrowed the path fig0 since car3 used to go too close to the
computers where the camera distortion is very high and the tracking
was often lost.

6.2 Software configuration

There are 5 files which contain basically all the constants in the code. These
should be the ones to check whenever you want to configure something.

• car_src/const_car.h: contains the compilation options that acti-
vate/deactivate the features of the code in the car and few other con-
stants specific for the car code such as the car number, the initial pwm
and when it has to stop.

• car_src/supervisor.c: contains few types that only the supervisor
uses and the constants that define the boundaries for the disturbances.

• sim_src/const_sim.h: this contains very few simulator-specific con-
stants which include the real fitness parameters of the cars, the paths
followed by each car and whether to apply the measurement noise
during the simulation.

• sim_src/model.c: contains the amplitudes of the noise signals that
are applied to the physical quantities by the simulator.

• util/constants.h: this basically contains all the others. They range
from network configuration to control parameters to physical con-
stants.

35

The specific effect of each constant is documented in the code. Beside the
types defined in car_src/supervisor.c, all the types definition (and their
documentation) can be found in util/types.h.

6.3 Car software

Since the code of the car is split into modules, there are a couple of differences
concerning the uploading and compilation of the source code.

Create your project

The folder on cars’ computers that I have used is located at /Desktop/
brainstem/aProject/Andrea/. The structure of the code is changed so I
had to motify the makefiles to make the compilation working. As a conse-
quence, if you want to create your own folder to expand my branch of the
project you should start by copying mine.

Upload a new code version

The car source to compile and run needs both the folders car_src/ and
util/. If you write a new version of the code and you want to upload it on
the cars with sftp, you must upload both those folders. Of course you can
avoid updating both if the changes affect only the code in one of the two
folders.

Compilation and execution

The compilation and the execution of the new code does not differ from
the previous versions. Make sure that the constant CODE_IN_CAR in file
car_src/const_car.h is set to 1 and then type on the console

cd /Desktop/brainstem/aProject/Andrea
make clean
make new

in case you do not want to recompile the whole project but only the changed
files you can simply type make instead of make clean followed by make new.
To run the code type

cd /Desktop/brainstem/aDebug/aUnix/i686
./ca2 figX_precise.txt

The path specification files I have used have the suffix “_precise” in their
name in the same way of the simulator. As usual, you can find these files in
the folder /Desktop/brainstem/aDebug/aUnix/i686/.

36

6.4 Scripts
The scripts are written in Python. At the beginning of the script, after
imports there is always a “configuration” section (delimited by comments)
which contains all the (documented) constant variables that must be set
appropriately to make the script do exactly what you want.

Most of the scripts rely on the debug file that ca2 leaves after execu-
tion. As you can imagine, the parsing of the debug file is strongly de-
pendent on its format. This means that if you change the name of the
attributes written in the file for example, the script might not work as ex-
pected. The parsing does not depend on the order of the attributes so it
is safe to change it. All the scripts rely on the parser class DebugData in
scripts/util/parser.py. This design makes it easy to make adjustments
in case the file format changes. However, if you modify the internal data
structure of DebugData (e.g. change the name of one of its member vari-
ables) you will have to modify the scripts that access to that data. Check the
class documentation in the code for more information. Note that DebugData
can be used to parse only the debug file produced by ca2, not the one written
by the simulator.

The scripts often uses matplotlib to plot graphics and numpy and scipy
for advanced numerical routines. If you have problems running the scripts,
make sure these Python libraries are installed on your system.

6.4.1 Debug information visualization

The script plot_trajectory.py allows to analyze offline the data of an ex-
periment. The program ca2 saves a file in the same folder of the executable
called “data_carX.txt” which contains lots of data describing position,
speed, heading, etc. of the car in each car cycle. Similarly, the simula-
tor produces a file called “debug_sim.txt”. The main difference between
the two files is that the first one reports values of the physical quantities
that are affected by measurement noise while the second one reports also
the real state of the system. Moreover, the car can record the status of the
internal variables which are unknown to the simulator.

The script normally parses only data_carX.txt and thus it can be used
to debug both simulated and experimental data. You can have a graphical
representation of the information contained in debug_sim.txt using the
command line option “-b” (see below for full description). In this case the
script integrates the information in the two files.

Configuration and usage

1. Run a simulation (or an experiment) to obtain the debug files. Do not
stop the program with CTRL+C or the debug file will not be terminated
correctly.

37

2. Open plot_trajectory.py and set the car number and the paths to
debug files you want to analyze.

3. Run the script by typing “python plot_trajectory.py” on the con-
sole.

4. Focusing the console, use keys (lowercase) ’n’ to go to the next step,
’p’ to go to the previous one, ’q’ to quit.

The script displays four plots. On the top left corner there is the path
and the trajectory of the car with some information. The little red cross
represents the target point of the path. The other 3 graphics show the
evolution of some attributes in time. You can configure which attribute to
plot with the following precedure.

• Open plot_trajectory.py.

• Use your editor’s search feature (usually CTRL+F) to find the string
“TODO”. You should find a code section titled “TODO configure which
info to plot”.

• Assign to variables graphX_vals the arrays containing the info you
want to be plotted. The array will likely be a member variable of
the class DebugData defined in scripts/util/parser.py or one of
the *_sim_vals arrays defined inside plot_trajectory.py that rep-
resents the data extracted from the simulator debug file. Check the
code documentation in DebugData and in the plot_trajectory.py
code section called “SIMULATOR DEBUG VARIABLES” for details.
Of course you can print any array-like structure as long as it has the
same length of lab_data.time.

Red crosses show the value of the specified attribute at the current step.

Command line options

• -b: parse and integrate both data_carX.txt and debug_sim.txt.
When this option is used, the trajectory shown and the information
presented in the top left corner graphic are the real one, not the ones
affected by measurement noise that cars perceive. This is useful to
check that everything is going fine with the simulator. Note that the
simulator and ca2 are asynchronous (the clock rate of the simulator
is much higher than the one of the car), thus, in order to integrate
the two files, the script must replicate/cut some data according to the
desired clock cycle specified through the option -c.

• -c (default 0.1): the time between two represented steps. For example,
if you call the script by typing python plot_trajectory.py -c1.0,
pressing ’n’ will show the status of the car 1 second later.

38

• -t (default 0.0): the initial time shown by the script. For example,
if you want to investigate an event that happened 40 seconds after
the beginning of the experiment, you can invoke the script as python
plot_trajectory.py -t40.0 instead of starting from the beginning
and press ’n’ until you reach that point.

• -s (default 20): the number of segments in the trail of the represented
trajectory.

6.4.2 Model parameters identification

The script identify_model.py allows you to identify the parameters of
Equation (3.5). Parameters a and b are used by the predictor; g and τ are
needed to cancel the capacitor effect. Given the instability of the motor gain
f , this will be estimated only for the purpose of the parameters identification
but during the experiment it will be estimated online.

To speed up the process there is a script called “identify_model.py” in
scripts/ that estimates the parameters to fit the model to the experimental
data by minimizing the mean average error. The script needs as input two
debug files from ca2 taken by running the car in circle for about 3-4 minutes
at constant PWM. The two experiments must be run at different PWM with
the same steering input. In order to ensure that the fitness parameter is the
same in both the experiments, it is important for the battery charge level
to be the same. The detailed procedure is below.

Run the car in circle: configuration

The parameters identification procedure requires to run several times the
car in circle. This section explains how to configure ca2 for this purpose.

1. Decide which constant PWM and steering signal to use for the exper-
iment.

2. Turn on the car and connect to it. You do not need to turn on the
CPS.

3. Move to the project folder (e.g. cd /Desktop/brainstem/aProject/
Andrea).

4. Open the const_car.h file with an editor (e.g. nano car_src/const_
car.h).

5. Set the constants START_PWM and START_STEER are set to the values
you have decided at step 1.

6. Be sure that the following configuration constants are set as below

39

#define DURATION_EXP 2400 // This is flexible but consider
// that the transient given by
// the capacitor ends after
// about 200 seconds

#define CODE_IN_CAR 1
#define GET_POSITIONS 0
#define USE_ENCODER 1
#define SUPERVISOR 0 // This is not mandatory but it will

// save computational resources and
// avoid printing error messages on
// the console

#define PATHPLAN_ON 0
#define DEBUG 1

7. Compile the code with make.

8. Move to the executable folder (e.g. cd ../../aDebug/aUnix/i686).

9. Put the car on the testbed and run it. You can specify any path as ar-
gument of ca2, it will be ignored (e.g. ./ca2 fig8CL_precise.txt).

10. During the whole experiment check the car. Sometimes the center of
the circle that the car follows moves, and the car may hit the whole.

Parameters identification procedure

1. Unplug the charger, use the multimeter to record the voltage level of
the battery and plug it in again.

2. Run the car in circle as described in Section 6.4.2. For the PWM
and steering input I would suggest respectively 160 and -50 (negative
values make the car steering left).

3. Connect through sftp and save the data_carX.txt file.

4. Plug the charger again and charge the battery to the same voltage
measured before the first experiment.

5. Once the voltage is the same as before, run the car in circle for the
first time. Keep the steering input at the same level (-50) but change
the PWM (I suggest 140). It is very important to run this second
experiment as soon as possible. Try to perform it the same day of the
first one otherwise the fitness parameter might have changed.

6. Collect the new data_carX.txt. Pay attention to not overwrite the
previous file or you will have to perform the first experiment again.

40

7. Open the script identify_model.py and set the configuration con-
stants. You simply have to specify whose car you want to identify the
parameters and the paths to the two debug files you just obtained.

8. Run the script identify_model.py. It will print on the console the
five parameters you need and show you a graphic with the experimental
data and the model fitting that you can use to check that everything
went fine with the identification.

9. You now have to make the rest of the code (the scripts, ca2 and
the simulator) aware of the new parameters. Open scripts/util/
model.py and set the variables a, b, g, T as documented in the code.
Similarly, open src/util/constants.h and set the constants ALPHA,
BETA, GAMMA, TAU which correspond to a, b, g and τ .

All the data used for the parameters identification are stored in data/
identification/.

6.4.3 Path-dependent disturbance identification

The script path_disturb.py identifies the function dpath(y) in Equation
(3.5) that is used by the compensator to cancel the path-dependent distur-
bances. It takes two debug files from ca2 and it prints on the console the
disturbance function in a format that ca2 understands (see Section 6.6.2).
The first debug file is obtained by running the car in circle. This is needed
in order to estimate the motor gain f . Indeed, since at this point we cannot
assume the disturbances to have average 0, the fitness online estimation does
not work. The second debug file must be obtained by running the car on
the path with the engine compensator canceling the transient due to the ca-
pacitor. The detailed procedure is below. The data used for the disturbance
function identification are stored in data/path_disturb/.

Disturbance identification procedure

1. If you did not do it yet, add to the path specification file the steering
compensator directives (see Section 6.6.1).

2. If you did not do it yet, identify the model parameters as described in
Section 6.4.2. If you have performed the model parameters identifica-
tion today, you can skip to step 6 and use the debug file obtained from
one of the two running in circle to estimate the fitness parameter.

3. Unplug the charger, use the multimeter to record the voltage level of
the battery and plug it in again.

41

4. Run the car in circle as described in Section 6.4.2. For the input signal
I suggest 140 PWM, -50 steering. The steering should be the same as
the one used for the model parameters identification. The PWM can
be different.

5. Plug the charger again, connect to the car with sftp save the file
data_carX.txt.

6. Open path_disturb.py on your computer with a text editor and fill
the configuration section. You must set ONLY_FITNESS to True and
specify the car number, the path of the path specification file, the
name of the debug file and its containing folder. It is not important
to set PATH_PATH_DATA since you do not have that file yet.

7. Run path_disturb.py. It will output the estimated fitness value.

8. Go back to the car console and move to the project folder (e.g. cd
Desktop/brainstem/aProject/Andrea)

9. Open constants.h with a text editor (e.g. nano util/constants.h).
Set the correct element of the array START_FIT to the fitness value
that the script output.

10. Open const_car.h with a text editor (e.g. nano car_src/const_
car.h and set START_PWM to the same value used for the experiment
in circle. Be sure that the following constants are set as below

#define START_STEER 0
#define DURATION_EXP 2100
#define CODE_IN_CAR 1
#define GET_POSITIONS 1
#define USE_ENCODER 1
#define SUPERVISOR 0
#define PATHPLAN_ON 1
#define STEER_COMPENSATOR 1
#define ENGINE_COMPENSATOR 2 // Set this to 2 makes the

// compensator cancel the
// capacitor effect while
// ignoring the online
// estimation and keeping the
// fitness value you just
// specified

#define DEBUG 1

11. Compile the code with make.

12. Move to the executable directory (e.g. cd ../../aDebug/aUnix/i686).

42

13. Open the path specification file and delete all the lines that start with a
’*’ character which represent the previous identified disturbance func-
tion.

14. Now turn off the car and let the battery charge level reach the same
value as before the first experiment (if you have just identified the
model parameters, charge it to the voltage used for the experiment in
circle you performed for the identification).

15. When it is done, run the car on the path and save the data_carX.txt
file (pay attention to not overwrite the previous one) and plug the
charger.

16. On you computer, open path_disturb.py. Set ONLY_FITNESS to
False and PATH_PATH_DATA. The other variables should be already
correctly configured from the previous execution.

17. Run path_disturb.py saving the result on a file (e.g. python path_
disturb.py » temp.txt).

18. Copy the content of the newly created file temp.txt into the path
specification file in paths/, just below the compensator directives (the
lines that start with ’#’).

19. Go back on the car console. Upload the new path specification file in
the executable folder of the car (overwriting the previous one if you
do not need it anymore).

20. Remember to set the constant ENGINE_COMPENSATOR in car_src/const_
car.h back to 1 or the fitness estimation will not be considered.

21. Turn off the car.

22. Delete the file temp.txt

When to repeat the procedure

You will have to repeat the procedure every time you

• modify the path;

• modify the steering compensator directives;

• change the model parameters.

43

6.4.4 Tools for quantitive estimation of residual disturbances

The code in scripts/util/predictor.py is a reimplementation in Python
of the supervisor algorithms in src/car_src/supervisor.c. It is very help-
ful for testing the supervisor offline instead of running the experiment on
the test-bed over and over. This allows to analyze the very same experiment
instead of a series of similar executions and it speeds up considerably the de-
bugging of the supervisor. Of course, this script is useful only as long as it is
kept updated with the changes of src/car_src/supervisor.c. The Config
section of the script contains various constants that in the car code are de-
fined in both src/car_src/supervisor.c and src/util/constants.c. Be
sure that these values are updated too if you want to use this script.

In particular, the script implements two useful routines.

• test_long_term_prediction(): test that in each point the robust
prediction (i.e. that include the effect of the disturbances) of the time
at which the car enters and exits the intersection is correct. This is
useful to check that the upper and lower bounds given to disturbances
are effective for the prediction.

• test_exact_supervisor(): simulate the execution of the exact su-
pervisor and print in detail the status of the internal variables. This
is useful to debug the supervisor.

The script test_supervisor.py is a simple piece of code that calls these
two functions. Open it, set the car number and the debug file path in the
configuration section and run it on the console to see the result of the test.

Figure 6.1: Example of how to choose the four points for CPS linear correction
configuration.

44

6.5 CPS linear correction configuration
To reduce the CPS measurement error, I applied a linear correction to the
computed global coordinates error along both directions. The estimated
error is given by

e = axlocyloc + bxloc + cyloc + d.

The parameters a, b, c, d are computed by the CPS on startup by loading
a file where the actual global coordinates of four points must be saved.
This is the procedure that must be followed to configure this file. This
procedure must be repeated for each camera. It is calibration-independent,
meaning that you do not have to repeat it if you have to perform a new
instrinsic/extrinsic calibration, but if the camera is moved, the procedure
must be repeated for that camera.

1. Set the variable RECORD_OBJECT_DATA = 1 in the file CPS.h in the
computer responsible for the camera that you want to configure and
compile it.

2. Run CPS.exe. The RECORD_OBJECT_DATA mode was designed to take
pictures of the cars symbols so it will ask you the car number and the
section number, just put a negative number. The only thing you must
insert correctly is the camera number that you want to configure.

3. Determine the four points to record. Considering the error trend, the
four points should be chosen to form the broadest rectangle of interest,
that is the rectangle with the biggest area contained in the camera view
where the car can be tracked. To clarify, an example of how to choose
the points is found in Figure 6.1. Walls, obstacles and the end of the
sections limit the rectangle. The console gives you information about
the pixel coordinates of the top left corner of the small squared boxes,
in the figure it is located close to (x2, y2). You can move that box
with keys ’a’, ’s’, ’d’ and ’w’. Write down the pixel coordinates of those
four points.

4. Now measure the global position of those four points with a measure
tape and record them. You should now have written down 4 pixel
coordinates (x1, y1, x2, y2) and 8 global coordinates, 2 for each point
of the rectangle. Pay attention when writing down the global coordi-
nates. Since the x and y axises of the local and the global coordinate
system are inverted, it is easy to make confusion.

5. Open the folder Desktop/camera_programs/AndreaCPS/calib_data.
There are 5 files called error_camx.txt, where ’x’ is the number of the
camera. Open the one that refers to the camera you are configuring.
The format of the file is very easy to understand and consistent with

45

this explanation. Write there the pixel coordinates of x1, y1, x2, y2
and the global coordinates of those points.

6. Now you can set RECORD_OBJECT_DATA to 0 and you are good to go.

6.6 Path specification syntax

The path specification file now does not contain only the points of the path
but it also specifies other path-dependent quantities that are parsed by ca2
at execution.

6.6.1 Steering compensator directives

In order to apply the steering compensation (see Section 3.1.3), the controller
must know the curvature radius of the path. The syntax used to specify is
the following.

1 648 750.07285
651 1298 -750.07285

These two lines mean that the curvature radius of the path from target
point 1 to target 648 is 750.07285mm, while from target 651 to 1298 is
−750.07285mm. Note that the steering compensator directives lines must
start with ’#’. The curvature radius specified is positive if the car must turn
right, negative to make the vehicle turn left.

6.6.2 Path-dependent disturbance specification

The disturbance dpath(y) (see Section 3.3.3) is represented by a linear piece-
wise function defined in the path specification file. The syntax is the follow-
ing.

* 50
* -1.48690195077
* -0.764317798416
* ...
* 28.9035206284]

Each line starts with a ’*’ character. The first line is the y step, all the others
are the values of the function. In the example above the step is 50mm so
dpath(0) = −1.48690195077, dpath(50) = −0.764317798416, dpath(50n) =
28.9035206284.

46

6.7 Troubleshooting
Simulator

The car does not follow the path correctly. Make sure that the paths
specified in src/sim_src/const_sim.h by the constant FILE_NAMES are
consistent with the experiment configuration.

ca2

The car does not follow the path correctly. Make sure that the con-
stant CAR_NUM in car_src/const_car.h is set coherently with the symbol
at the top of the car.

47

48

Chapter 7

Conclusions

In this work, a laboratory environment for experimental testing of algo-
rithms for vehicle collision avoidance has been analyzed and configuration.
In particular, the work has been aimed at testing a robust multi-agent al-
gorithm for vehicle collision avoidance at intersections based on scheduling.
The algorithm requires the prediction of the future state of human-driven
vehicles in an environment affected by disturbances. To this end, a model
of the cars available in the lab has been developed and a predictor based on
this model has been implemented. A through analysis of the disturbances
affecting the system has been performed to identify and quantify the sources
of noise. The environmental factors and the eventual errors in the param-
eters calibration have been included in the model as additive disturbance
terms.

Various techniques have been adopted to reduce the previously identified
disturbances. The steering controller has been reworked to minimize the im-
pact on the prediction performace deriving from the coupling between the
lateral and the longitudinal dynamics. The effects of the power filter capac-
itor and the path-dependent disturbances (which are not directly modeled)
have been corrected by means of a compensator applied to the motor input.
Filters have been applied to refine the measurement of the vehicles position
and direction. Finally, an online estimation method has been applied to
compute the motor gain on the run. All these expedients have allowed to
obtain a prediction less conservative and compatible with the limited space
available in the laboratory to perform the experiment.

A simulator which virtualizes the laboratory environment has been im-
plemented and used during the whole process to identify the elements of
disturbance in the lab and speed up the verification of the solutions.

Finally, the aforementioned algorithm has been successfully tested in the
laboratory with two computer driven vehicles. Various solutions to test the
same algorithm with three cars are currently being explored.

Future work may include experiments with a mix of human-driven and

49

computer-driven vehicles, and the refinement of the tested algorithm for ex-
ample by limiting further the number of assumptions (e.g. without knowing
ahead which way the driver chooses at the intersection) or by decentralizing
the decision process from an external supervisor to the set of computers
on-board each vehicle.

50

Bibliography

[1] L. Bruni, A. Colombo, and D. Del Vecchio. Robust multi-agent colli-
sion avoidance through scheduling. In Proc. 52nd IEEE Conference on
Decision and Control, pages 3944–3950, 2013.

[2] A. Colombo and D. Del Vecchio. Efficient algorithms for collision avoid-
ance at intersections. In Proceedings of the 15th ACM international
conference on Hybrid Systems: Computation and Control, 2012.

[3] H.P. H.P. Whitaker, J. Yamron, and A. Kezer. Design of model-reference
adaptive control system for aircraft. Report r-164, Institution Lab, MIT,
1958.

[4] R. Verma, D. Del Vecchio, and H. Fathy. Development of a scaled vehicle
with longitudinal dynamics of a hmmwv for an its testbed. IEEE/ASME
Transactions on Mechatronics, 13(1):46–57, 2008.

51

