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Computer vision techniques are becoming more and more used in modern technological objects
that we use daily; one of the most promising applications of it is robotics, which thanks to the
continuous hardware improvements in the embedded and mobile fields managed to use more
and more complex algorithms in order to make automata more intelligent and reactive to the
world that surrounds them.

This thesis project wants to show the applications of SLAM algorithms (Simultaneous Local-
ization and Mapping) and in particular Visual SLAM for robots controlled by ARM system-on-
chips and microcontrollers, taking as a sample use case a competitive game between two robots
for the control of a playing field filled with obstacles.





1. Introduction

1.1. General description of the work

This project is aimed at investigating the potentiality and possible implementations of Simul-
taneous Mapping And Localization (SLAM) algorithms for autonomous robots using low-end
embedded hardware. SLAM is a very active field of research that aims to let a robot be aware of
its surroundings and navigate in an environment without previous knowledge of it, by detecting
and then tracking interesting features using the sensors at the robot’s disposal; in particular,
visual SLAM is based only on the input coming from one or more cameras, devices that have
become common and ubiquitous thanks to the rise and the advancements of mobile computing
technologies.

1.1.1. What is a Robogame

The most suitable application testbed for SLAM is a Robogame; Robogames are interactive
games with autonomous robots, which should involve human players both physically and be-
haviorally. The main objective of this field of research is the experimentation of new techniques
and algorithms concerning computer vision, artificial intelligence and robotics in order to deliver
engaging games, which should be implemented on reasonably cheap devices in order to make the
games themselves affordable.

1.2. Scientific and technological issues

The biggest challenge that this work tries to tackle is to make the robot aware of its own position
within its environment: this is exactly what SLAM algorithms attempt to do. This is very rele-
vant for the robotics research community because it is a fundamental step to build robots that
can be truly autonomous from direct human control.

Given the complexity of these algorithms, the limited computational capabilities that are
inherent to embedded devices have been certainly an obstacle during the development of the
project.

Another challenging aspect is, of course, the design of an artificial intelligence routine that is
adequate for the purposes of the game.

1.3. Structure of the thesis

The thesis is organized as follows. Firstly, an analysis of the implemented game is presented,
including its rules, purpose, preparation and evolution. Then, the requirements and the logical
project of the implementation are presented, highlighting the scientific aspects where I have
mostly focused. Next, the existing hardware devices and software packages used to produce this
project are introduced, and then details about the software architecture and implementation
will be given. Finally, the experimental results obtained with the implemented prototype are
presented, as well as possible future improvements.
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2. Problem analysis

In this chapter, the analysis of the designed game is presented: first the rules of the game are
reported, then their representation as a finite state machine is introduced.

2.1. Game description

2.1.1. Rules, participants and setting

2.1.1.1. Players and playing field

The game is focused on the capture and retention of a flag placed within the playing area, dubbed
Control Point, which is contested between two robotic players, Red and Blue, that are identical
with the exception that the former is autonomously controlled by an AI system and the latter is
controlled by a human player through a standard gamepad for videogames.

The playing field, which is setup at every match by the human player, is divided into four
parts:

• the Red and Blue Homefields, which act as a shelter for their owners, repairing any damage
they might have sustained in combat;

• the Midfield, where the core of the game takes place; it is filled with visual obstacles which
can provide cover for guerrilla actions such as ambushes;

• the aforementioned Control Point, situated in an arbitrary position within the Midfield.
To make things interesting, more than one Control Point areas could be layed out by the
human player, but only one will be activated by the game controller application.

Both players at the beginning of the match start in their Homefields, and from there they begin
to explore the game arena. Obviously, the autonomous robot is put at a disadvantage, as it does
not know where the Control Point could exactly be.

2.1.1.2. Capturing, neutralizing and contending the Control Point

The Control Point starts out as being neutral; whenever one of the robots is in its immediate
vicinities, a 5-seconds timer starts; if the robot manages to stay close to the flag for all that time,
it captures the Control Point. From this moment for every second that the flag is in possession
of the player, it will gain a point.

When the current owner of the Control Point is not defending and its foe comes close to the
control zone, the flag starts to be neutralized: if the robot is able to make its stand for at least
5 seconds without getting critically damaged – see section 2.1.1.3 on the following page – and
without letting the other robot coming close, the neutralization process gets completed: from this
instant, the original holder of the flag stops gaining points and the flag goes back to a neutral
state, ready to be recaptured again.

If both players are close to the flag, it is said to be contested – in this case, neutralization or
capture operations are halted and reset, although the current player owning the flag will keep
on earning points toward the final victory.

17
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2.1.1.3. Combat and retreat

Both robots are equipped with a “rifle”, and thus are able to shoot each other, granted that they
have a visual on their target and both robots are outside of their Homefields.1

To hit its opponent a robot has to move in a position so that the enemy lies within a reticule
in the center of its camera’s image and then issuing a shoot command. If this is satisfied the
opposing robot is said to be hit, and enters into retreating mode: it cannot be hit anymore, but
it is forced to move back to its Homefield without being able to do anything else until this is
accomplished.

A robot can shoot only when the opponent is in its viewing range, and only every 2 seconds to
allow the weapon to reload.

2.1.1.4. Victory conditions

To win a match, one of the robots should reach the threshold of 30 score points before the other
robot does, within the game time limit of 5 minutes. If after such a time no robot has managed
to reach the threshold, then the robot that scored most points wins. If both robots have the same
score, then the game is declared as draw.

2.1.2. Evolution of the game

The evolution of the game has been designed through a finite state machine, with respect to
the position of the robots within the playing field and to the current state of the Control Point;
this is represented in Figure 2.1 on page 21, where states in which no one controls the Control
Point are filled in white; states in which either Red or Blue control the CP are filled with the
corresponding color; states in which either Red or Blue are close to the CP have a border colored
in the same way; finally, if the CP is contested, the border is colored in green. Moreover, for
additional clarity, the final state is not represented.

For the sake of keeping the game description simple enough and not to explode the state
machine into hundreds of nodes, there are actions that do not trigger an actual state transition,
as their event wouldn’t bring a critical change to the gameplay. An example of this could be a
robot shooting its opponent: if the shot hits the target then its health is decreased by one point,
but all rules given for the state would still be valid.

To keep track of the exact current situation of the game, some variables can be defined, both
for each player and for the game as a whole.

For a more in-depth description of the state machine, including its states and transitions,
please refer to Appendix A on page 67.

2.2. Possible and desirable behaviors for the robots

Given the structure and the game mechanics of Robotic Battlefield Control, there are many pos-
sible strategies that can be implemented for the autonomous robot, either more defensive or
more aggressive: in the first case the artificial intelligence will try to avoid a frontal confronta-
tion with the human player as much as it can, trying instead to find good places from where it
can setup ambushes or from where it can have a good visual of the surroundings; in the second
case, the AI will decide to attempt a frontal assault to the Control Point, uncaring of possible

1This limitation has a very simple reason: as each Homefield acts as a repair area, they could act also as a perfect
camping ground from where to snipe the opponent without fear of retaliations and for the sake of the game such
a situation is not desirable.
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traps that could be orchestrated by the opponent. In this section, the various aspects that should
be taken into consideration when planning a strategy for the game are explained.

2.2.1. Exploring and moving into the the game world

Exploration can be done in different ways, depending also on the conformation of the playing
field.

In places where there are many obstacles, a player should take advantage of those to conceal
itself from the sight of its opponent while moving, but at the same time limiting its own aware-
ness of the surroundings. Moreover, extra caution has to be taken when entering very narrow
paths that could finish with a dead end: these are very complicated to handle for autonomous
robots, especially if it wishes to reach a point just beyond the obstacle; to see an example of this,
refer to section 3.3 on page 32.

In zones that don’t offer much cover, it is always advisable to drive along the shortest route
from the starting point to the goal, since from a tactical point of view, the player is going to be
exposed visually to the opponent, which could then fire upon it.

2.2.2. Capturing, defending and neutralizing the Control Point

The Control Point is obviously the cornerstone of the game, and around it revolves much of the
tactical reasoning behind the implementation of a strategy. First of all, no matter what kind of
policy is chosen to explore and traverse the playing field, the primary task for any player is to
find out where the flag is, since it is vital to capture it in order to win the game.

Once the strategic location is found and captured, the robot has to decide how to defend it.

• the first possible solution is to stay in the immediate vicinities of the Control Point so that
the player can intervene as soon as the opponent gets too close to it; this approach has
the advantage that the presence itself of the player is deterring the possibility that the CP
falls into the enemy’s hands – since if it enters the flag area, the flag itself would become
contested – but it has the disadvantage that the defending robot will be vulnerable to sneak
attacks from angles where it is not looking, so the player will have to pay attention to have
its sides and/or its back covered, or at least do not stay still in the same position for too
much time;

• another solution is to leave the Control Point area and look for higher grounds, or for a
position in the playing field that allows the robot to keep track visually of what is happening
in the surroundings of the flag. This approach has the advantage that the position of the
defending player is less obvious for the opponent, but at the same time it leaves the Control
Point unguarded and, if something happens, the defender’s reaction time will be much
greater than what it could be if it was closer to the flag2.

On the other hand, as an attacker the player will have to consider whether it is best to go
straight to the flag and try to neutralize or capture it as soon as possible, or try first to locate
where the enemy could be, “destroy” it and then proceed to the neutralization or capture. The
former method is quicker, avoiding to give away too many points to the opponent, but it is riskier
as there are more chances for the defender to sneak undetected and kill the attacker averting
the assault completely; the latter strategy is more defensive and probably has more chances of
success, but at the cost of giving more of an edge to the defender in terms of points toward victory.

2Note that even if the defender robot is not present at the CP, it still gains points toward victory. This stops only
after the opposing robot successfully neutralizes the Control Point.
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2.2.3. Shooting

Shooting tactics depend on two parameters: the shooter’s movement and its distance from the
target – to see how the game simulates this, refer to section 3.2 on page 31.

Therefore the shooting player has to take into consideration whether it wants to get more
close up to have better chances to hit the other robot – risking to be spotted and shot down in the
meantime – or whether it should keep moving or stay still while pulling the trigger – risking to
miss the target and to be detected without gaining any advantage over the enemy.

2.2.4. Retreating

Retreating doesn’t involve any particular tactic, besides that a retreating robot should follow the
shortest route from where it is to its homefield, in order to resume playing as soon as possible.
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Figure 2.1.: The state machine graph for Robotic Battlefield Control.
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3. Requirements and logical project of
the implementation

In this chapter, I will explain the project requirements that have been highlighted by the analysis
of the game that I have implemented, together with the purposes of the Robogames effort as a
whole; please refer to section 1.1.1 on page 15 to know more about it.

3.1. The perception of the robot’s own position

One of the major challenges was to make the robot aware of its own position in the playing
field, since it can change at every game and therefore it is highly de-structured and no strong
assumption can be made about it: this means that at the beginning of the match, the autonomous
robot knows nothing about the environment surrounding it, besides what it knows thanks to the
rules of the game (see section 2.1.1 on page 17):

1. it is standing in its own Homefield;

2. somewhere there is an opponent robot and another Homefield that only it can access;

3. somewhere there is a Control Point that needs to be captured and defended.

Given that the game is intended to be played indoor or in restricted outdoor environments, it
was clear that a technique that is able to cover large-scale territories wasn’t needed nor usable:
a GPS (Global Positioning System) uplink requires the robot to remain outdoor so that it could
“see” and connect to the network of GPS satellites that are placed all over Earth; moreover the
accuracy that is provided by the system is too coarse for it to be adequate to the purposes of
the game. Another possibility was to use beacons, but I didn’t choose to use it in order not to
structure the environment too much and not to require an initial calibration for the robot.

The next idea was to use IR (Infra-Red) sensors make a scan of the robot’s immediate sur-
roundings, eventually assembling them on an array that could continuously cycle back and forth
in order to get readings of many points in space at different angles with respect to the robot’s
current bearing. This approach however still has severe shortcomings, because infrared sensors
cannot discern between two different obstacles; the only thing they can perceive is the distance
to any object that is directly in front of them. This is an information that could be used to esti-
mate the robot’s odometry – that is, the distance travelled between two points in time – in case
the obstacle density of the environment is fairly high, but it is not enough to build a map of
the surroundings sufficiently detailed for the robot to plan routes within the environment that
has been already explored. Despite this, I have kept IR sensors to help the robot navigating its
immediate surroundings – read section 3.3.2 on page 33 for more details.

3.1.1. Simultaneous Localization And Mapping

The problem of maintaining a representation of the working environment of a robot as it explores
it is called Simultaneous Localization And Mapping (SLAM) [30]. The basic idea behind it is to
track a sparse stochastic map of high quality and reliable features [31] using the information
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obtained from its sensors that can be used to describe the environment that surrounds the robot
and to work out the position of the robot itself within this environment at the same time; in this
way, the robot is able to navigate its surroundings and move among the obstacles between itself
and its goal.

For those who are not familiar with the topic, it is strongly suggested to read Davison’s original
articles [30, 31] as well as Ceriani’s PhD thesis [24]; in the remainder of this section I will only
talk about the specific algorithms and techniques that have been adopted for the implementation
of SLAM in this system.

3.1.1.1. Visual SLAM and MonoSLAM

One of the kind of sensors that can be used in a SLAM algorithm is a camera; this particular
instance of the problem is called Visual SLAM and has been one of the hot topics of robotics and
computer vision researches since the last decade. There are two main reasons to use cameras as
sensors for SLAM:

• first of all, they have a great intuitive appeal since sight is one of the primary senses
animals and humans alike use to orient themselves;

• cameras are compact, non-invasive, and well-understood thanks to extensive scientific re-
search [31] – and today also cheap and ubiquitous, in contrast with equipment such as laser
sensors [33] that are more expensive, bulkier and require more power to work.

However, one of the biggest issues of using cameras is the inherent impossibility to recover both
the range and the bearing of a scene feature when using a single image. The case of using
one single camera is known as the Monocular SLAM problem [23, 31], which is opposed to the
stereo- and multi-camera approaches, that can take advantage of epipolar geometry [38] to re-
construct the three-dimensionality of the observed scene with a certain degree of confidence. A
single camera actually allows quite accurate measurement of bearing, but it only allows a uni-
form uncertainty on the depth of the feature, being its position equally likely along the entire
viewing ray. For this reason, in Monocular SLAM the observer needs to gather data from differ-
ent points of view in order to develop a stronger confidence about the feature position [23]. This
is the main reason why, in Visual SLAM, the map of landmarks1 is inherently stochastic and not
deterministic.

It should be pointed out that there is a marked difference between Visual Odometry and Visual
SLAM: the former – also called Structure from Motion – is about working out the trajectory of the
camera and to reconstruct the three dimensional structure of the scene [66], and it is something
that traditionally has been done offline through batch processes, while (Visual) SLAM aims to
be an online algorithm [30], working in real-time and with the goal of reaching an efficiency
such that it is possible to process the video stream at a sufficiently high rate (e.g., 30 frames per
second) [31].

It is also important to notice that the uncertainty about the estimates of any two scene fea-
tures, observed from the same pose, is not uncorrelated as one might expect, because the pose
where the observations have been gathered is uncertain as well. Moving from a pose to another,
the new point of view of the scene might let the robot examine only a subset of the scene fea-
tures that were previously observed; the estimates of both the newer features and the robot pose
itself can be updated by integrating the new measures; this in turn updates also the scene fea-
tures that were seen previously. Moreover, the correlation between the estimates of the features
grows with the subsequent observations. After some time the features and the robot pose will be
correlated to each other [32, 23].

1From here onwards, landmark indicates a registered feature within the SLAM system.
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Robotic Battlefield Control is bound to be set in room-sized environments which makes the
repeated localization of the same features within the scene relatively easy and, therefore, helps
the system to reduce the inevitable drift of the stochastic map of landmarks from the ground
truth [31]. This is called loop closure and the approach I have followed to tackle it is discussed
in details in section 3.1.1.7 on page 31.

3.1.1.2. Filtering: Extended Kalman Filter

As the state of the system is not completely known, new information has to be incorporated
iteratively and this data has to be assumed as incomplete and prone to errors. This procedure is
called filtering or estimation and throughout the years many techniques have been formulated to
address this problem. When modelling the error within the currently available information with
Gaussian noises, the Kalman Filter [27, 58] – part of the recursive Bayesian estimators family
– in its extended variant (EKF) can be used to solve the SLAM problem; the extended variant
of the filter is necessary due to the non-linear nature of the dynamic part of the state transition
relationship with respect to the state variables and from the non-linearity of the measurement
equation [23]. Other Bayesian estimators are the Unscented Kalman Filter [17, 26, 40] and
Particle Filters [19, 56].

Current Visual SLAM systems based on the EKF have to deal with several shortcomings, such
as:

• a limitation on the number of landmarks that can be treated at the same time, due to the
computational complexity given by the upkeep of the coupled pose and scene covariance;
these landmarks could be just a few, maybe even limited to those that can be seen in the
current view. In some unfortunate cases these are too few to fully determine the pose with
an acceptable confidence [66], increasing the overall uncertainty;

• for the same reason the map of the scene cannot be too big [66]; however this particular
issue has been solved thanks to sub-mapping – that is, dividing the overall scene into
multiple local maps [48];

• it has been shown that the Extended Kalman Filter suffers from inconsistency due to lin-
earization errors [18]. In fact, when the angular uncertainty grows beyond just a few de-
grees the filter becomes overconfident and underestimates the uncertainty of the estimates
it produces [66].

Alternative methods to filtering are represented by non-linear optimization procedures [61] such
as what has been presented in [42, 62] and more pertinently to SLAM in [43, 65], which has been
demonstrated to obtain good results; however, I have decided to use the EKF approach because:

• it is a more established and simpler technique with a lot of research already been done on
it;

• as stated before the game doesn’t need to map a large area, and therefore the number of
landmarks that have to be treated should not be too large;

• the parametrization I have chosen, which I am going to present in the next section, miti-
gates linearization errors in a way similar to what non-linear optimization techniques do.

3.1.1.3. Parametrization: World-centric

A first big distinction in SLAM parametrization is the coordinate system that is going to be kept
as reference. In the world-centric approach the initial pose of the robot becomes the origin of the
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global reference system and every actor within the map – the robot’s pose and all the landmarks
– are related to this reference. This is the simplest approach computationally-wise, but also has a
tendency to increase pose uncertainties constantly, until one of the previously-seen landmarks is
detected again, triggering a loop closure [39]. On the other hand, a robot-centric approach takes
the current pose of the robot as reference; this implies that all landmarks’ poses are recalculated
at every loop in light of the new pose of the robot. This technique has demonstrated to mitigate
the uncertainty that is typical of the world-centric approach, but with a high increase in the
computational cost of the algorithm [24].

Given the limited hardware that the robot uses, I have decided to adopt a world-centric refer-
ence for the SLAM implementation.

3.1.1.4. Parametrization: Framed Inverse-Depth

The second choice in SLAM parametrization is how we encode the information about the robot’s
and the landmarks’ poses.

Using Euclidean coordinates would be the most intuitive idea, however, as Davison has shown
in his original work [30], this is not possible without delaying the initialization of the landmarks
as 3D features until some parallax has been acquired, meaning that the camera has to move
enough so that the uncertainty about the depth of the 3D point is below a reasonable thresh-
old. Unfortunately delayed initialization hampers data association when the feature has been
observed very few times, exactly when it is most important to get it right [23].

yW
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zF
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Pπ

P3D
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t

Figure 3.1.: Visual representation of the FHP
and FID parametrizations.

Undelayed initialization has five solutions,
which differ in how 3D points are represented
in the filter state. Here, I will show only the
Framed Inverse-Depth (FID) technique, pre-
sented by Ceriani and others in [23].

The FID parametrization is based on the
previous Framed Homogeneous Point (FHP)
representation proposed by Ceriani in [25],
which in turn extends the concept of anchor
point introduced by Solà in the Anchored Ho-
mogeneous Point (AHP) parametrization [59].
In FHP the anchor consists, for every regis-
tered feature y, of the full camera pose Γ =[
tTqT

]T– t being the translation and q the ro-
tation of the camera with respect to the world
reference – in which the landmark has been
added into the filter; the feature is then fully
identified by its viewing ray rC in the cam-
era frame and by the inverse distance ω along
the ray itself. Only the first two components
pπ = [u, v]T of the viewing ray are saved, as the third is always equal to 1 in the camera frame,
and they are equal to the point coordinates on the normalized and undistorted image plane.

yFHP =
[
tTqTpTπω

]T (3.1)

yFID =
[
tTqTω

]T (3.2)

The real difference between FHP (Eq. 3.1) and FID (Eq. 3.2) is that the latter saves the
viewing ray out of the filter; this is feasible because, if the camera is calibrated correctly, the
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camera image has a sufficiently high resolution and is not much noisy, then pπ can be assumed
as accurate enough even at landmark initialization time. This has three main benefits:

1. The representation of a single landmark is more compact;

2. The filter’s consistency is not potentially harmed by a wrong estimation of the viewing ray
due to errors of the camera pose being erroneously compensated by changes in the viewing
ray itself [23];

3. When more than one feature is initialized with the same camera frame, they all have the
same values in the covariance matrix of the filter, thus making it rank deficient. Further-
more this introduces singularities in the covariance matrix, making it not invertible. To
solve this issue, when adding multiple features from the same position they should share
the same common frame – making the overall representation even more compact [23].

As in FHP, the feature initialization (Eq. 3.3) is a linear operation, meaning that no information
about uncertainty is dropped because of linearization.

ynewFID =
[
tT ,qT , ω0 � ‖rc‖

]T (3.3)

To conclude, the feature estimate of landmark yi with camera pose Γ at time t is given by Eq.
3.4:

feat3DFID (Γ, yi) = R(qt)
T

(
ω (t− tt) + R (q)

[
pπ
1

])
. (3.4)

Finally it is possible to see that FID – and also FHP – refine past camera poses every time
a registered feature gets updated by the Kalman filter. This looks like a violation of the EKF
assumption that the current pose is a summary of the whole camera trajectory, but what really
happens is a recursive filtering and smoothing of selected past camera poses and 3D features,
giving a result that is comparable to non-EKF, optimization-based approaches [23].

For all the reasons I have mentioned, I have decided to adopt the Framed Inverse-Depth
parametrization for my project.

3.1.1.5. Feature detection: FAST

Real-time feature detection and tracking [55] is a very important part of the visual SLAM prob-
lem, as we need to achieve good and robust results using the least possible resources, as SLAM
is an extremely intensive application per se. Robustness in feature detection means to be able
to deal with unmodelled clutter in the scene environment and with motions such as rapid trans-
lations, rotations and accelerations that can hamper the system by inducing large prediction
errors. To tackle these issues Rosten and Drummond [49, 50] proposed to combine two popular
approaches to tracking, point-based and line-based, both of which have their own advantages
and disadvantages.

Point trackers:

1. are robust to large, unpredictable inter-frame movements since point features have strong
characteristics that make them easily recognizable; however, these characteristics can vary
greatly due to the sudden change in the scene structure due to motions and therefore ob-
taining a static point cloud for large scenes is considered as not feasible [49];

2. produce measurement errors that approach a Gaussian distribution, as they are largely due
to pixel quantization and therefore they are independent from each other; nonetheless the
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Figure 3.2.: FAST feature detection.

posterior measurement covariance is inaccurate, because the errors in the 3D point cloud
are not independent [49].

On the other hand, edge trackers:

1. are very stable under a wide range of lightning conditions and perspective changes [49];

2. need a 3D edge model of the object to be tracked, which however can remain static because
of the above point [49];

3. highly invariant features are not discriminative and therefore we need strong prior infor-
mation about the model’s pose to avoid incorrect edge correspondences – and even given
this, edges can still be detected incorrectly, leading to pose estimates with large errors [49].

The result of the two researchers’ work culminated into the proposal of the Features from
Accelerated Segment Test (FAST) feature detector. To assess whether pixel p represents a feature
or not, FAST examines a circle of 16 pixels – i.e. a Bresenham circle of radius 3 – surrounding it:
if the intensities of at least 12 contiguous pixels are all above or all below the intensity of p by
some threshold t, then p is declared a feature. For each pixel x ∈ {1, . . . , 16} on the circumference
having intensity Ix, its state Sx with respect to intensity Ip can be either

Sx =


darker : Ix ≤ Ip − t
similar : Ip − t < Ix ≤ Ip + t

brighter : Ip + t ≤ Ix
. (3.5)

In the example of Figure 3.2, p is not considered a feature because only 9 pixels on the circum-
ference are lighter than p itself.

To run the test in a shorter time, at first only the pixels at the cardinal points are examined,
since the aforementioned condition can be true only if at least three of these points are either all
brighter or darker than p.

The last issue to tackle is the non-maximal points suppression, that is the pruning of those
features that are adjacent to another feature with a stronger corner response function V , which
in FAST’s case is the sum of the absolute difference between the pixels in the contiguous arc and
the center pixel p, that is
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V = max

 ∑
x∈Sbright

|Ix − Ip| − t,
∑

x∈Sdark

|Ix − Ip| − t

 (3.6)

where Sbright and Sdark are respectively the set of brighter and darker pixels on the circumfer-
ence of candidate feature p.

In the tests run by Rosten and Drummond by using a PAL video source [50], FAST managed
to obtain impressive results on newer and older hardware alike – up to 80 times faster than
SIFT [45], 38 times faster than the Harris edge detector [37] and 6 times faster than SUSAN [57]
– and it was the only algorithm able to achieve real-time computation capability on both the
tested systems.

3.1.1.6. Data Association: One-point RANSAC

As the new camera pose and landmark prediction is prone to error, a method for associating
these estimates to actual image features is needed. A first quick data association technique is to
search for a feature that has a high cross-correlation value – i.e., it is similar to – the registered
one within the bounding box defined by the uncertainty of the landmark pose itself and the
jacobian of the prediction; however this procedure can easily lead to wrong associations that will
harm the data consistency and accuracy of the whole filter. This problem highlights the necessity
of an algorithm that retains only the features that concur with a certain movement hypothesis,
the so-called inliers, while rejecting all the others, the outliers.

For this purpose, a technique like the Random Sample Consensus (RANSAC) [34] can be uti-
lized: the core idea behind it is to compute model hypotheses from randomly-sampled minimal
sets of registered features and then verify these on the other landmarks; the hypothesis that
shows the highest consensus is then selected as the solution. The number of hypotheses nhyp
necessary to ensure that at least one spurious-free hypothesis has been tested with probability
p can be calculated with

nhyp =
log (1− p)

log (1− εm)
(3.7)

where ε is the inlier ratio and m is the minimum number of features necessary to instantiate
the model [29]; The usual approach is to adaptively compute this number of hypotheses at each
iteration, assuming the inlier ratio is the support set by the total number of selected features in
this iteration [38].

For the unconstrained motion with 6 degrees of freedom of a calibrated camera, it has been
shown [46, 60] that m = 5 points are needed to solve the relative pose problem; this can be
intuitively understood by noticing that since the parameters we need to determine are six –
three rotations and three translations – the sixth can be found out once the other five are given.
However less data can be used in several circumstances:

1. if movement is constrained like on a car [53] proceeding on a planar surface, where the
degrees of freedom of motion are reduced to two – that is, the rotation angle and the radius
of curvature – therefore reducing the required number of points to m = 2 for planar motion
[47] and m = 1 for planar and non-holonomic motion [52].

2. if extra information for the camera motion is introduced, specifically the probability distri-
bution function that the EKF propagates over time, without adding any kind of constraint
over the camera movement itself [28].
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Algorithm 3.1 One-point RANSAC
1: function onePointRansac(xk|k−1,Pk|k−1, th,hk|k−1,Sk|k−1, zic)
2: begin
3: nhyp = 1000

{Phase one: pick low-innovation inliers by running random hypotheses}
4: zli_inliers = [ ]
5: for i = 0 to nhyp do
6: zi = select_random_match(zic)
7: xi = EKF_state_update(zi,xk|k−1)
8: hi = predict_all_measurements(xi)
9: zthi = find_matches_below_a_threshold(zic,hi, th)

10: if sizeof(zthi ) > sizeof(zli_inliers) then
11: zli_inliers = zthi {zthi is now the current best hypothesis}
12: ε =

sizeof(zli_inliers)
sizeof(zic)

13: nhyp = log(1−p)
log(1−ε)

14: end if
15: end for

{EKF update of the filter using low-innovation inliers}
16:

[
xk|k−1,Pk|k−1

]
= EKF_update(zli_inliers,xk|k−1,Pk|k−1)

{Phase two: rescue high-innovation inliers}
17: zhi_inliers = [ ]
18: for every match zj above threshold th do
19: [hj ,Sj ] = measurement_prediction(xk|k,Pk|k)
20: υj = zj − hj
21: if υTj S

−1
j υj < χ2

2,0.01 then
22: zhi_inliers = [zhi_inliers; zj ]
23: end if
24: end for

{EKF update of the filter using high-innovation inliers}
25: if sizeof(zhi_inliers) > 0 then
26:

[
xk|k,Pk|k

]
= EKF_update(zli_inliers,xk|k,Pk|k)

27: end if
28: end

Both conditions are satisfied by my project’s requirements, but of course the second one bears
the most significance as it allows the exploitation of the EKF characteristics, without forcibly
restraining movement to be planar.

The algorithm integrates itself into the EKF loop after the prediction phase and a first, coarse
data association between the landmarks registered within the filter and the features that can be
seen on the current image. The procedure is divided into two main phases:

1. Initially (Algorithm 3.1, lines 3-14), several random movement hypotheses are run; this is
accomplished by picking zi from the set of individually compatible matches zic that have
been found previously, and then run an EKF update of the sole state vector2 in a tempo-
rary variable xi, then predicting the pose of registered features hi, and then finding all
the matches zthi that fall below threshold th, for example 1 pixel. These are called low-

2This is where the algorithm differs more other RANSAC-based techniques: not only the assumed matches zic, but
also the entire prior knowledge given by the EKF state vector is involved.
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innovation inliers. If zthi is bigger than the last best hypothesis’ consensus zli_inliers, then
it is taken as the new best hypothesis and therefore nhyp gets recalculated according to
the new ratio between the current number of inliers and the total number of assumed
matches. The hypotheses loop terminates once at least nhyp iterations have been done. The
(real) state vector and covariance matrix of the filter are then updated (line 16).

2. After this (lines 17-24) the algorithm tries to rescue high innovation inliers by cycling
through every match zj above threshold th, predicting where it should be in the image ac-
cording to the updated vector state and covariance matrix, and then executing a chi-square
test between the feature position and the prediction to check for individual compatibility.
All the matches that pass the test are included in zhi_inliers and then are used to update the
filter once again (lines 25-27).

3.1.1.7. Algorithm complexity, map reliability and loop closure

The complexity of EKF-based SLAM techniques grows quadratically with the number of fea-
tures stored within the filter; therefore keeping anything beyond a hundred landmarks within
it can be taxing for a laptop computer – let alone for an embedded device – to the point that the
computation speed decreases so much that 30 frame per second can’t be processed anymore.

Framed Inverse-Depth already tries to minimize this by sharing the camera frame pose for
all the features that have been acquired in that frame, but of course features that haven’t been
seen in a long time will be eventually removed by a filter clean-up policy. This has two reasons
to exist:

1. sometimes the filter adds features that are not easily re-detectable because of different
and changing light conditions or because of noise in the camera’s output images. If these
landmarks are kept within the filter, their uncertainty grows for every iteration in which
they stay as unobserved, therefore littering the filter with useless data;

2. features within the filter that haven’t been recognized since many cycles will increase their
uncertainty over time.

Both these issues can potentially hamper the reliability of the map itself, so there is the need
to keep the landmarks within the EKF filter current, while retaining information that can be
considered reliable – even if kept outside of the filter as fixed data, therefore losing information
about the correlation with all the other features currently processed in the filter itself.

A solution of this problem can be to separate the mapping and the pose tracking tasks, in a
similar way to what Klein and Murray proposed in their PTAM (Parallel Tracking And Map-
ping) [41] algorithm: the map would be sparse and made of the sum of the landmarks that are
either currently in or out of the filter; when an out-of-filter feature is seen again, the information
regarding its pose and its relative uncertainty can be used to update the robot’s current pose.

3.2. The autonomous robot’s decisions

The autonomous robot needs to take a lot of decisions and plan its actions accordingly:

• To what the other player is doing;

• To the current state of the game, which indicates what is possible to do and what is not;

• To the position of the robot itself within the playing field.
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Some of these actions are forbidden: for example, a robot should not collide with an obstacle,
and it cannot shoot an opponent while either player is standing in its own homefield (see sec-
tion 2.1.1.3 on page 18); therefore, the artificial intelligence routine, given the constraints defined
by the gameplay mechanics and physical space, has to plan the actions that it can possibly ac-
complish. The idea is then to be able to react to what happens in the game world, but also to be
able to come up with a strategy to win the game.

3.3. The autonomous robot’s movements

The autonomous robot needs to have two kinds of movement planning procedures: the first one
is localized in a shorter time-frame, in order to avoid colliding into obstacles, both static and
dynamic ones, not just to preserve the integrity of the robot itself but also for the safety of the
users and the environment.

The other path planning procedure should aim to reach a long-term goal – such as reaching
the Control Point – but it has to take into consideration the obstacles and dead-end paths that
are present between the robot’s current position and the goal itself. The space of all the possi-
ble states or configurations of the robot is called configuration space, and it generally has more
dimensions than the cartesian physical space in which the robot moves: as an example, 3D move-
ment has a 6-dimensional C-space in which we have to consider the three carthesian coordinates
x, y and z and three bearings, one for each axis: ϕ, ψ and θ.

3.3.1. Path planning: obstacles and dead-end paths

Path planning is interested in finding a path between a starting configuration S and a goal con-
figuration G, while remaining in the C-space subset Cfree which is known to be free of obstacles.
The fact that the autonomous robot moves in a completely unknown environment makes im-
possible for it to use a predetermined map, and since the sensors on the robot do not permit to
create a detailed obstacles map, the only feasible thing to do would be to use the potential fields
method [36]. The pivotal part of the algorithm is the definition of a heuristic potential function U
that estimates the distance from any configuration to the goal; this function is composed of an at-
tractive term Uattr, which is a C-space metric that becomes bigger as the configuration gets closer
to G, and a repulsive term Urep that penalizes configurations that come too close to obstacles;
these potentials define a force F obtained from their negated gradients. A possible formulation
then could be

Uattr (x) =
1

2
ξP 2

goal (x) (3.8)

Urep (x) =

1
2η
(

1
Pobstacle(x)

− 1
Pthreshold

)2
if Pobstacle (x) ≤ Pthreshold

0 otherwise
(3.9)

U (x) = Uattr (x) + Urep (x) (3.10)

F (x) = Fattr (x) + Frep (x) = −∇U (x) =

∣∣∣∣∂U∂x
∣∣∣∣ (3.11)

where ξ, η > 0 and Py (x) is the euclidean distance between the current robot configuration x
and object y. Equation 3.9 considers a Pthreshold so that the algorithm won’t take into considera-
tion obstacles that are too far from the robot.
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Figure 3.3.: The local minima problem in potential field path planning.

However, using potential fields has the shortcoming that robots can become trapped in local
minima generated by dead-ends and particularly wide walls that reside on the shortest path to
the goal (Figure 3.3) that is normally selected by a best-first search algorithm.

To alleviate this, Barraquand and Latombe [20, 21, 44] proposed the randomized potential
field approach, which uses random walks to attempt to escape local minima when best-first
search becomes stuck: essentially the robot performs a random series of moves until U has been
lowered by a certain threshold or a certain number of moves have been attempted; if after a
certain number of attempts the robot is still stuck, it backtracks to a previous position and then
restores the best-first policy for choosing the next move.

A modification of this algorithm could be the following (Algorithm 3.2 on the following page):
if the goal location is unknown, follow a certain exploration policy, or if it is known follow a best-
first search; in either case, if there is an obstacle ahead – i.e. get_next_waypoints() returns
an empty set – follow the obstacle on the right until a timeout, and then go back to use the
potential fields planning again.

3.3.2. Measuring distance: IR range finder sensors

Figure 3.4.: A Sharp IR
range finder.

Infra-red range finders (Figure 3.4) are simple and economic sen-
sors that allow the detection of the distance to an object in their
view (analog range finder) or a high or low signal indicating that
said object is respectively closer or farther than a predefined dis-
tance (digital range finder).

All IR range finders use triangulation to compute the distance
or the presence of objects in the field of view (Figure 3.5 on
page 35): an IR light emitter releases an impulse, which trav-
els along the field of view until it hits an object or indefinitely; in
the former case, the light is then reflected and received by a small
CCD array on the sensor itself. The incident angle radius of the
reflected light varies with the distance d to the object, and since
the distance between the emitter and the receiver is known, it is
possible to easily compute d. This method of ranging is relatively immune to interference from
ambient light (being only affected by strong IR emissions like direct sun) it is also indifferent to
the color of the object being detected.

Every sensor is designed to react within a certain distance range, for example from 10 to 80
cm. Since trigonometry is involved, the function that maps distance to the sensor’s returned
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Algorithm 3.2 Potential Field path planning
1: function potentialF ieldP lanning (x, goal, ξ, η, startT ime, timeout)
2: begin
3: waypoints = get_next_waypoints()
4: if sizeof(waypoints) > 0 and goal is known then
5: Ubest = get_potential (x,goal, ξ, η)
6: wpbest = [ ]
7: for wp in waypoints do
8: Uwp = get_potential (wp,goal, ξ, η)
9: if Uwp > Ubest then

10: Ubest = Uwp

11: wpbest = wp
12: end if
13: end for
14: return wpbest
15: else if sizeof(waypoints) > 0 and goal is not known then
16: return exploration_policy (waypoints)
17: else
18: if startT ime ≡ 0 then
19: startT ime = get_current_time()
20: end if
21: if get_current_time() ≥ startT ime+ timeout then
22: startT ime = 0
23: return potentialF ieldP lanning (x,goal, ξ, η, startT ime, timeout)
24: else
25: wp = follow_obstacle_on_right (waypoints)
26: return wp
27: end if
28: end if
29: end

signal is non-linear, and presents two critical zones: the first one is when the object is very close
to the sensor, since the signal drops sharply and it can be confused with a longer range reading;
the second one is when the object is very far, as minimal variations of signal intensity can mean
a non-insignificant distance variation. To address these issues it is advisable to pass-through
the signal either by hardware or software means, in order to reject any reading that is either too
close to the minimum range or too far to have a reliable reading.

Another issue of these sensors is that the IR beam width is pretty narrow, and therefore they
need to be used in arrays – and possibly even on a swivelling platform – if the user desires
to sense distances from a multitude of directions. This issue is particularly problematic if the
obstacles are relatively thin, as the sensor needs to be exactly on the obstacle’s path to see it.

3.4. Recognizing areas and actors

There is the need to recognize interactive components and actors – i.e. robot players – of the
game, differentiating them from the rest of the environment and possibly without using any
additional hardware component than what it is used by the robot already. Coloring them with
a specific hue, it is then possible to filter every other color out. In this way, it is then feasible to
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Figure 3.5.: How IR range finders work.

recognize items and actors just by visual means.
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4. Preexisting components

In this chapter, I present the existing hardware and software components that have been used
to create Robotic Battlefield Control along with the guidelines and motivations that led me to
those decisions. Their application will be explained throughout chapter 5.

4.1. Design and development philosophy

One of the core ideas behind Robogames is to use cheap, off-the-shelf technology wherever possi-
ble in order to decrease the overall cost of the game itself – so that it could be affordable for most
of the potential consumers – but of course must be balanced with the features and characteris-
tics that these technologies deliver to the developer, so that he or she is not too constrained in
what can be possibly done. This has influenced many of the design choices that have been made
to make Robotic Battlefield Control a reality:

• Small, embedded computing platforms have been favored over more complex solutions like
mini-PCs; thanks to the mobile computing revolution brought by smartphones and tablets,
most modern System-on-Chips have comparable computing power to what small notebook
computers can provide, yet consuming only a fraction of the power that is necessary to
operate them;

• Computing power shouldn’t be laid to waste; this means that software has to be as lean
and clean as possible, and existing solutions that are too bulky or too expensive on the
requirements costs had to be discarded;

• Ad-hoc solutions should be designed and implemented if no existing product can satisfy the
needs of the project.

4.2. Hardware components

4.2.1. Arduino

Arduino [2] is a single-board microcontroller, designed and manufactured in Italy, with both the
purpose of teaching microelectronics and the creation of interactive objects and environments.
There are many board variants tailored to different needs and kind of applications, but they
share the same base concept: an AVR microcontroller or an ARM system-on-chip that can be
programmed through an USB connection and the RS-232 protocol on a standard personal com-
puter, without the need of a chip programmer. Every board presents to the user a host of input
and output pins and ports, both analog and digital, to connect sensors, actuators and any other
electronic equipment or device.

Moreover, Arduino boards can be complemented with shields, printed circuit expansion boards
that integrate perfectly with the original PCB and offer additional features such as GPS anten-
nas, LCD displays, network adapters and more.

The most popular Arduino model is the Arduino Uno (Figure 4.1), and it is the one I have
chosen for the project: it is based on the ATmega328 microcontroller, which can be powered

37



Andrea Salvi, Matr. 721247

Figure 4.1.: Arduino Uno, revision R3. Figure 4.2.: Pin-out diagram of an Arduino
Uno.

either directly via the USB communication cable or a jack to a 7-12V external power source; it
sports 14 digital General Purpose Input/Output (GPIO) pins and 6 analog input pins.

Figure 4.3.: The PWM driver
used for the robot.

It has to be noted (Figure 4.2) that 6 digital pins are able
to send Pulse-Width Modulated (PWM) signals that can be
used to control servos and wheel engines. However, since the
wheel motors require more current than the maximum 40
mA that a single Arduino pin can provide, the PWM signals
provided by the board have been input to two external PWM
drivers (Toshiba TB6612FNG, Figure 4.3), one for the right
wheels and one for the left ones, that could be connected di-
rectly to the battery pack that powers the whole robot.

4.2.1.1. Programming for an Arduino: sketches

A piece of software written for Arduino is called a sketch,
and it is written in a programming language based on Pro-
cessing, which is very C-like – and indeed, the user’s code
is automatically converted to standard C++ before compila-
tion by the development toolchain. In a nutshell, a sketch is
composed of two main functions: setup() and loop(). The
former is run only once when the board is powered up, for
tasks such as pin initializations; then the latter function is run in an infinite loop until the board
gets powered down. Sketches can also link to external libraries and headers, as long as they are
known to the Integrated Development Environment (IDE).

4.2.1.2. Communications

Arduino can communicate with other hardware in a variety of ways:

• through an RS-232 compatible serial connection via USB or via the first two digital GPIO
pins;

• through Inter-Integrated Circuit (I2C) connections, also via GPIO digital pins;
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Figure 4.4.: A RaspberryPi, in its B variant.

• through any device available to the microcontroller via connected shields, such as wired
and wireless Ethernet adapters.

4.2.2. RaspberryPi

The Raspberry Pi [9] is a credit-card sized, single-board computer developed by the Raspberry
Pi Foundation in the United Kingdom. It has been designed initially to be used for teaching
computer science and programming in schools, but it has been rapidly shown also to be a good
platform for embedded electronics projects.

The original goal of the board influenced much the design of the board, which had to be as
cheap as possible; the RasPi is manufactured in two configurations, Model A and Model B, which
are largely the same but differ in a few key areas. The core of the system is the Broadcom
BCM2835 System-on-Chip, which includes an ARMv6 processor clocked at 700 MHz, a Video-
Core IV Graphics Processing Unit and 512 MB of RAM. Other features include a USB 2.0 port
(two for Model B boards), a 3.5 mm jack audio out port a Composite and an HDMI video ports.
It uses an SD card for booting and persistent data storage, and it can be powered either via a
standard microUSB phone charger or a standard USB cable connected to a self-powered hub.

The RaspberryPi runs many flavors of Linux distributions, including the Debian-based Rasp-
bian [11], the Fedora-based Pidora [8], ArchLinux [1] and others. For this project I have chosen
to use Raspbian as it is the most mature and stable available environment.

4.2.2.1. Programming for a Raspberry

Programming can be done in any language which has a compiler or cross-compiler toolchain [10]
for the Linux on ARMv6 architecture; therefore, development can be done either directly on the
machine or on an external computer with any IDE.

4.2.2.2. Communications

Every RaspberryPi has a number of integrated input/output ports:

• a Fast Ethernet port (only for Model B boards);
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Figure 4.5.: An ODROID-U2 board without (on the left) and with (on the right) its heatsink case.

• 17 GPIO pins, with support for I2C, Serial Peripheral Interface (SPI) and Universal Asyn-
chronous Receiver/Transmitter (UART) protocols.

It has to be noted that these capabilities can be expanded through the use of USB-based network
adapters, such as Wi-Fi or Bluetooth ones.

4.2.3. ODROID

ODROID [4] boards are a series of compact single-board computers developed by the South Ko-
rean company Hardkernel. They are more expensive than the RaspberryPi but also more pow-
erful, integrating multi-core ARM processors and more RAM, and are therefore able to achieve
notebook-grade computing performances.

The model of the board I have used is the ODROID-U2 (Figure 4.5), which features a Samsung
Exynos 4412 Prime Quad-core CPU clocked at 1.7 GHz, a Mali-400 GPU and 2 GB of DDR2 RAM.
Similarly to the Raspberry, it uses a microSD card for booting and persistent data storage. Other
features include two USB 2.0 ports, a 3.5 mm jack audio out port and a Micro HDMI video port.
The device needs to be powered by a 5V, 2A power source.

All ODROID boards can run the ARMv7 versions of the Android or Ubuntu Linux operating
systems.

4.2.3.1. Programming for an ODROID

As for the RaspberryPi, software for ODROID boards can be developed in any programming
language supported by the running OS.

4.2.3.2. Communications

To communicate with other devices, the ODROID-U2 board integrates only a Fast Ethernet port
and an UART socket. However, as with Raspberries USB network adapters can be use to extend
the networking capabilities of the device.

4.2.4. The robot chassis: ArduQuad

The chosen robot chassis is the model Pirate from DFRobot, which sports a 4WD, differential
drive motor system which is also Arduino-ready. It has lots of space where to put additional
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Figure 4.6.: The Pirate robot chassis, without any component mounted with the exception of
motors and wheels.

hardware, and – last but not least – it is very cost effective. For this and future Robogames
projects, I have called this platform ArduQuad.

4.3. Software components

4.3.1. OpenCV

OpenCV (Open Source Computer Vision Library) [7] is a free software
project originally led by Intel – and now by the Willow Garage robotics
research lab and the Itseez company – to create a computer vision and ma-
chine learning library to foster machine perception techniques and their
applications in scientific research and commercial products.

The library is highly modular, and offers a wide range of highly optimized
algorithms for algebra, image processing and analysis, cameras calibration,
object detection, and computational photography; it has been used exten-
sively by both well-established companies like Google, Yahoo, Microsoft,
Intel, IBM, Sony, Honda, Toyota and by the robotics scientific community, which keeps on ex-
panding the library itself with newer algorithms. Most of these procedures can take advantage
of CUDA [6] or OpenCL [63] General Purpose GPU (GPGPU) acceleration routines when present
and supported by the hardware.

OpenCV is compatible with most current desktop and mobile operating systems such as Win-
dows, Mac, Linux, Android and iOS; it is written in C and C++, but has a lot of bindings for a
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host of other languages such as Python, Java, MATLAB, C# and others.

4.3.2. Libav / FFmpeg

Libav [5] is a collection of free software programs and libraries to process and play multimedia
streams, including those from web cameras. It originated as a fork of the FFmpeg project, whose
API is very similar and mostly compatible with the original one; however, Libav developers don’t
want to retain this compatibility with FFmpeg, and the two libraries might irreparably part
ways in the future.

I have chosen Libav over FFmpeg as it is readily available for Debian and Debian-based Linux
distributions, while the adoption of FFmpeg would have required a recompilation of several
key system components – since both frameworks share the same names for their libraries and
cannot therefore coexist on the same system – that I assessed as unnecessary, given that the two
libraries for now give the same kind of performances.

4.3.3. TinyXML2

TinyXML2 [64] is an open-source XML parser library written with the precise purpose of being
small and fast, and therefore adequate for use on embedded systems. It is based on the Doc-
ument Object Model (DOM) concept, and it offers full UTF-8 text support – although it lacks
the capability of parsing either DTD or XML schema definitions. It is written in C++ and eas-
ily embeddable in any project as it is composed of only two files, a header and the matching
implementation file.

As the limitations of the library are not relevant for my project, I have selected this library
over more complete – but also more cumbersome – libraries like Apache Xerces or libxml2.

4.3.4. YARP

YARP (Yet Another Robot Platform) [16] is a set of libraries, protocols, and tools to keep software
modules and devices used on a robot cleanly decoupled, by giving to the user a way to communi-
cate in a way that abstracts from the underlying network, hardware, operating system and the
rest of the software architecture used by the robot. Software modules then can be also shared
among projects and switched with other ones as new requirements arise and new hardware com-
ponents are introduced: all these parts – whether physical or logical – can change rapidly, but
the interfaces that keep them together are far more stable. This is even more true for robot
software, as it is typically hardware-specific and task-specific.

Therefore, there is a need to:

1. factor out the details of the data flow between programs from their source code, so that the
algorithms used for specific tasks can be changed quickly as long as the communication
interface is known;

2. factor out the details of devices used by the program from their source code, so that new
components can be introduced without much effort.

YARP is then an attempt to make robot software that is more stable and long-lasting.
The components of YARP are divided into three separated libraries:

• libYARP_OS, which is the core of the middleware and interfaces with the underlying op-
erating system to implement OS-neutral data streaming across different programs and
machines on the same network.
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• libYARP_sig, that performs audio-visual signal processing tasks;

• libYARP_dev, which provides drivers for common robot devices such as framegrabbers,
digital cameras, motor control boards, etc.

For my project I have used only the first two libraries, as all the hardware devices, except for
the gamepad and the camera, are handled at a lower level by the Arduino board. I have decided
to use YARP instead of Robot Operating System middleware [12] because the latter, even if
much more powerful, is also much more complex and requires a lot of computational power, that
neither the RaspberryPi or ODROID can fully provide.

4.3.5. Mr. BRIAN

Mr. BRIAN (Multilevel Ruling Brian Reacts by Inferential ActioNs) is a decisional engine for
behavior-based autonomous agents, developed within the developed within the AIRLab of Po-
litecnico di Milano. The engine was designed to be as general as possible, abstracting over
application environments and structure of the agents in order to be usable in many different
situations, with no assumptions over the tools and libraries used to build the application logic.

4.3.5.1. Behaviors

A behavior is a simple functional unit that cares about the completion of an elementary goal,
basing its decisions on inputs coming from sensors or the robot’s knowledge base. In complex
systems, autonomous agents have to deal with more than one behavior in order to achieve a
particular set of tasks.

Behaviors are modular: each of them is unaware what the other behaviors are designed for,
or which behaviors are proposing a certain action. They are organized into a hierarchical struc-
ture according to their priority, so that each behavior reacts not only to contextual information
but also to actions proposed by lower-level – i.e., less critical – behaviors that could potentially
interfere with its own goal. In this way, a behavior knows what the other lower-level behaviors
would like to do, and it can try to achieve its goal while trying to preserve the actions proposed
by others as much as possible.

Therefore, behaviors work cooperatively to generate the global behavior of the robot, which
is composed of high level commands that have a correspondence to specific set-points for the
actuators of the robot.

4.3.5.2. Fuzzy Predicates

Mr. BRIAN uses fuzzy logic predicates [67] to represent the activation and motivation conditions
of behaviors, as well as its internal knowledge; each predicate is a triple composed of a label,
a truth value that is computed by a fuzzy evaluation of a crisp – i.e., non-fuzzy – value or a
composition of other fuzzy predicates, and a reliability value that takes into account the quality
of the data source (which could be noisy, for example as in sensor data).

There are two kinds of fuzzy predicates in Mr. BRIAN:

1. ground fuzzy predicates are related to data directly available to the agent through its input
interface, and have a truth value corresponding to the data’s degree of membership with
respect to a labelled fuzzy set;

2. complex fuzzy predicates are compositions of fuzzy predicates obtained by fuzzy logic oper-
ators.
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Source Filter Mapper Actor Renderer

Figure 4.7.: The VTK visualization pipeline.

4.3.6. wxWidgets

wxWidgets [15] is a cross-platform widget toolkit and tools library for creat-
ing Graphical User Interfaces (GUIs) abstracting from the underlying op-
erating system and GUI Application Programming Interface. It supports
Windows, Mac, Linux/Unix and more exotic operating systems such as OS/2
and AmigaOS, and renders the user interface with the native toolkit that
is available on each of these platforms.

The library is written in C++ but several wrappers for Python, Perl and C# are also avail-
able. GUIs can also be designed through XML-based files that can be manipulated either from
a plain text editor or from specific GUI designer applications such as wxGlade [14]; by using ex-
ternally defined interfaces, programs do not have to be recompiled and linked every single time
the interface itself is changed.

Beyond pure and simple GUI functionality, the library gives the user other cross-platform
features such as network programming, multi-threading, image loading and saving in many
popular formats and database support, but thanks to wxWidgets’ modular approach, only the
parts that are of interest for the developer can be used.

Initially developed at the University of Edinburgh for scientific research purposes, wxWidgets
is now widely used by enterprises, other education centers and users worldwide.

4.3.7. VTK

The Visualization ToolKit, or VTK for short [13] is an open-source, freely available library and
toolset for 3D computer graphics, image processing and visualization, supporting a wide variety
of visualization algorithms including scalar, vector, tensor, texture, and volumetric methods. It
is cross-platform and runs on Windows, Mac, Linux and other Unix-like operating systems; it
is written in C++ but also offers several wrappers for interpreted languages including Tcl/Tk,
Java, and Python. It has a suite of 3D interaction widgets, but it can also integrate with other
widget toolkits such as GTK, QT and wxWidgets.

The library was designed around a few core goals [54]:

• to conceive the library as many simple and well defined modules, to ensure maximum
flexibility and ease of integration into larger systems;

• to base it on standard components and languages to encourage the software’s adoption;

• to try to abstract from the underlying 3D rendering library – currently OpenGL – as much
as possible, as they are in constant evolution and might be superseded by other libraries in
the future.

The core concept in VTK is the visualization pipeline (Figure 4.7), which consists of five main
stages, stacking on each other:

1. sources which provide initial data input – a geometry and its associated topology – either
from files or generated programmatically;
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2. filters that can modify source data in some way, like resize, interpolation and merge opera-
tions;

3. mappers that basically convert geometry and topology data into renderable 3D objects;

4. actors which are instances of an object defined by a mapper;

5. renderers and renderer windows that constitute the user’s actual viewport of the 3D scene.

4.3.8. CMake

CMake [3] is a cross-platform, open-source program to manage the build
process of software using a compiler- and OS-independent method. The
main idea behind CMake is to create platform-specific makefiles depending
on software structure and requirements specifications written in CMake-
specific configuration files; this approach makes software portability and
also cross-compilation a much easier task.

Other CMake features include:

• the handling of both in-place and out-of-place builds; the ability to
build a software project outside the source tree is a key feature, ensuring that if a build
directory is removed the source files remain unaffected;

• system introspection, i.e. it is able to determine automatically what
the target system could and could not do –similarly to what the auto-
tools suite and the pkg-config system utility do on Linux;

• the ability to write configuration files for IDEs, such as Visual Studio
on Windows and Eclipse on Linux;

• a less convoluted and more powerful language to define software projects
than what most platform-specific makefile specifications can offer.

Since almost all the tools and libraries I have used offer native support to CMake, it was sensible
for me to use it as well for my software project.
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5. The project architecture

In this chapter I introduce the overall software-hardware architecture that has been created for
the project, firstly with a general overview and then presenting each component separately.

5.1. Overview

Supervisor

Hardware level

Software level

RBCControl

G a m e s t a t e

Arduino

MotorsRBCArduQuad

IRSensors

Camera

RBCSightG a m e p a d

RBCBrain

RBCBase

Figure 5.1.: The project architecture. Dashed lines represent remote connections, solid ones are
local connections and dotted ones denote class hierarchy.

The project’s architecture structure is divided into three main blocks:

1. the hardware level of the robot, focused on actuating motors and reading sensors;

2. the software level of the robot, whose purpose is to act as a decision-making center, ana-
lyzing visual perceptions and the overall game situation. This of course is not true for the
human-controlled robot, as it is controlled from a gamepad;

3. the game supervisor, which is implemented on an external computer, housing the game
state machine and controlling all robots involved in the game. The game state machine
is not replicated on each robot and it is instead centralized in the controller so that there
cannot be any confusion about the current state of the game that could be introduced in a
completely distributed system by message passing latencies between the playing robots.

This subdivision wasn’t tailored only to the specific game I wanted to implement, but thought to
be as general as possible in order to maximize flexibility and reuse of the architecture.
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5.2. The robot hardware level

Figure 5.2.: The UML ac-
tivity diagram
for the Arduino
firmware code.

The robot hardware level is centered around an Arduino Uno
board (see section 4.2.1 on page 37) that receives distance read-
ings from the IR sensors mounted on the robot chassis (see sec-
tion 4.2.4 on page 40), and commands the PWM drivers that in
turn actuate the wheel motors.

The control loop is based on a message-passing paradigm be-
tween the Arduino firmware and the RBCArduQuad library –
which is explained later in section 5.3.3 on page 50. The loop (Fig-
ure 5.2) has two operation modes, stand-by and active: when on
standby, the microcontroller stays still and it awaits for a START
signal coming from the serial connection to the higher logic rou-
tines; as soon as this message arrives the robot enters in active
mode, in which it receives sensors readings, sends a move request,
and then waits until a timeout to receive a command back. If
this command is a HALT, then the Arduino falls back into stand-
by mode, otherwise if it is a MOVE command, it actuates motors.
Then, no matter if a command has been received or not, the mi-
crocontroller sends the sensors feedback to the higher logic, and
repeats the loop.

The command synchronization is necessary because otherwise
the higher level logic might send move commands at a far too
high rate for Arduino to process, effectively overflowing the serial
communication buffers and therefore crashing the connection.

5.3. The RBC Framework

The robots are equipped either with a RaspberryPi (see sec-
tion 4.2.2 on page 39) or an ODROID (see section 4.2.3 on page 40)
embedded computer which run the software level of the architec-
ture – what I call the RBC Framework – that is constituted by a
set of loosely coupled Units – i.e. modules – that work together to
form the application logic of the robot.

Communication (Figure 5.1 on the preceding page) between
these modules is achieved through passing of XML-based text
messages via the YARP framework (see section 4.3.4 on page 42),
which is able to abstract over the actual medium used to deliver
the messages: data passed between units on the same machine
are passed via shared memory buffers, while if it is sent to re-
mote machines are transferred via the TCP network protocol. The
presence of a name-server1 enables the communication system to
function similarly to the publish-subscribe paradigm, as in with-
out the modules even being aware of how each other are made or
composed of, besides the exchanged data format.

In this way, Units can be freely distributed on a number of dif-
ferent machines if it is ever needed to do so by specific hardware or application constraints.

1The name-server is launched by the RBCControl application, which is explained in section 5.3.5 on page 52.
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5.3.1. RBCBase

RBCBase – as the name suggests – is the foundation of all the other modules, as it defines the
basic structure and features of a Unit class and the messages serialization and marshalling
mechanism.

A Unit is in practice a named thread that refers to a certain robot, and it can be in three possi-
ble execution modes: stopped, running and terminating; the third state exists to allow a delayed
de-initialization of the thread itself, due to the different scheduling policies the underlying oper-
ating system might have. Once started with the start() method, the Unit will periodically call
a loop() method until either the stop() method is invoked or the Unit itself gets deleted.

Each Unit has also a bidirectional port, named as /robotName/unitName : this is where all
outgoing data will be written by the Unit itself, and the place where other Units will send data to
it. To check for new messages, Units have to call the receiveMessages(bool block) method,
which can be called either in blocking or non-blocking mode according to the passed argument;
in the former case, the Unit will wait indefinitely for at least one message to arrive, while in
the latter one the method will return immediately if no messages are present in the buffer; the
handling or rejection of each message is done through the parseMessage(const char* xml)
method, which must be implemented by every subclass of Unit.

5.3.1.1. Anatomy of a message

Messages are encapsulated in YARP yarp::os::Bottle objects, and each instance can contain
a number of XML-based messages. The simplest form of a message is:

<message robot="MyRobot" sender="MyUnit" time="1394552610" id="1"/>

where Unit MyUnit of robot MyRobot has sent a message with an ID value of 1. The ID value is
crucial as a message structure can be reused to carry the same kind of data but with different
meanings, for example the position of another robot or the position of certain landmarks within
the physical environment.

A message can also have a body containing arbitrary data, for example:

<message robot="Player" sender="ArduQuad" time="1394552610" id="100">
<arduquadData>

<irReads irFront="32.41" irRear="25.54"
irFrontRight="0.0" irFrontLeft="10.12"/>

<movement thrust="0" dir="S"/>
</arduquadData>

</message>

which carries the distances read by the IR sensors on the ArduQuad chassis, together with the
thrust and direction values of the motors.

The serialization and marshalling of these messages is done through the XMLMessage class
and its derivatives, which use TinyXML2’s facilities (see section 4.3.3 on page 42) to achieve this;
the library implements various subclasses already, but the user can define new ones.

5.3.2. RBCBrain

RBCBrain is the module that acts as the robot’s strategy planner and executor. Its pivot is Mr.
BRIAN (see section 4.3.5 on page 43) which acts as decisional engine, taking information from
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ArduQuad’s sensors, the environment map (explained in section 5.3.4.4 on page 52) and the
game supervisor (see section 5.3.5 on page 52); its tasks include:

• game strategies, i.e. deciding what to do in order to win the game: in the case of Robotic
Battlefield Control, find the Control Point, capture it and defend it;

• react to events that happen in the environment: for example, the visual contact of an op-
posing robot;

• decide where to go next and avoid obstacles.

To do this, the hierarchical structure of Mr. BRIAN’s behaviors is exploited: game strategies
have the lowest priority, as they are broad, long-term goals that could be overrided by more
impelling needs and opportunities given by events triggered by external actors and restrictions
imposed by the robot knowledge or by the conformation of the playing field; finally, the obstacle
avoidance routines have the outmost importance, as the robot needs to do it regardless of any
other policy.

5.3.3. RBCArduQuad

RBCArduQuad is the module that acts as a bridge between the higher-level logic and the robot’s
hardware level.

The Serial class provides a serial RS-232 communication link with the Arduino board and
methods for reading messags and writing commands on the link. Messages are in the form

COMMAND [; ARGUMENT]* <newline>

Where COMMAND is a character signifying a command (for example ’a’ to acknowledge a previously
received message, ’m’ to issue a motor actuation order) followed by a list of optional arguments
separated by semicolons, and then terminated by a newline character. There is also a helper class
called RobotStats that parse status messages coming from the Arduino, containing information
such as the IR sensor readings, the current direction and power applied to the motors on a scale
from 0 (still) to 255 (full throttle).

An instance of each of these classes is used by the ArduQuadUnit class to communicate with
the Arduino board, transmitting to and receiving messages from the robot’s decisional center
(explained in section 5.3.2 on the previous page).

5.3.4. RBCSight

RBCSight is the module that is concerned about everything related to vision: video stream pro-
cessing, SLAM (see section 3.1.1 on page 23), Visual Odometry and the environmental map. The
pivotal center of the module is the CameraUnit class, which initializes all other classes that are
relevant to these purposes and provides visual information to RBCBrain.

5.3.4.1. Video stream processing

Video streams, whether coming from a real camera or a recorded video file, are managed by im-
plementations of VideoInput (Figure 5.3), namely Camera and FileReader; these classes can
then use either OpenCV (see section 4.3.1 on page 41) or libav (go to section 4.3.2 on page 42) as
a backend to provide actual video stream reading capabilities. Frames can be either returned di-
rectly in the form of a OpenCV cv::Mat object or as an RGB image that can be streamed through
a YARP network ports. The latter approach is exactly what it is used in the framework: in this
way multiple programs across the network – such as RBCControl, explained in section 5.3.5 on
page 52 – can visualize the video stream with ease if they ever need to.
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Figure 5.3.: UML Class diagram for the video stream handling classes.

RBCControl
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Figure 5.4.: A robot video stream is transmitted over the network so that it can be used by mul-
tiple programs and modules.

5.3.4.2. SLAM and Visual Odometry

SLAM is implemented using the world-centric, Framed Inverse-Depth algorithm presented in
section 3.1.1.4 on page 26. It massively uses OpenCV’s functions and classes to execute all algr-
braic calculations. The implementation is divided in three main classes: Slam, FID2DSlam and
LandmarkData. Slam provides a template for world-centric SLAM implementations and meth-
ods that are common to every possible implementation such as feature recognition, image patch
matching and bounding box calculations; FID2DSlam is the actual implementation of the FID
algorithm presented earlier, and finally LandmarkData is a helper class that stores information
about landmarks such as their anchor’s position within the EKF filter.

5.3.4.3. Robots and items recognition

To make a robot easily recognizable by other robots, it is dressed with a specific color hue so that
it can be detected through blob recognition techniques. RBCSight accomplishes this by using
OpenCV’s functions to threshold only certain ranges of HSV color-space values, which are given
to the robot by the game supervisor at the beginning of the match. Once the three components
– Hue, Saturation (colorfulness) and Value (brigthness) – are filtered in three separated binary
images, they are combined through a bitwise AND operator to obtain a final binary picture that
identifies the blob.

This technique is less accurate but faster than Connected Component Labelling [51], as la-
belling requires further steps such as extracting edges with detectors such as Canny [22], con-
nectivity checks on every pixel of the image: the robot is not interested in finding all blobs in the
image, but only those that it is interested in.
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5.3.4.4. Environment map

The environment map is tightly tied to the SLAM classes, as its landmarks are composed of
both visual features that are still within SLAM’s EKF filter, and features that have been re-
moved from the filter itself. This information is then enriched with datacoming from the blob
recognition classes, for example the position of the Control Point.

5.3.5. RBCControl

RBCControl is a desktop application to create and supervise a robotic game developed with the
RBC Framework. It allows the user to define connections to robots and edit a game definition
through the Gamestate library explained in section 5.4, and it is written using the wxWidgets
(see section 4.3.6 on page 44) and VTK (see section 4.3.7 on page 44) libraries for visualization
tasks, as well as YARP to handle network connections.

5.3.5.1. Robot initialization and handling

RBCControl relies on Gamestate’s actor definitions (see section 5.4.1) to store information about
robot initialization; this allows the user to edit most aspects of the game through a single inter-
face.

The application identifies each robot through a unique name, and remotely executes robot
applications through SSH connections; once this connection is established and the robot program
is running, RBCControl connects to two robot-provided YARP ports, /<RobotName>/log and
/<RobotName>/Brain, respectively in order to receive the program’s textual log produced by
FFLog (read section 5.5 on page 56) and to send commands and data to the application itself.

5.4. Gamestate

Gamestate is a library to define and execute gameplay logic for robot games, in the form of a
finite state machine (FSM). Although as it was initially thought to be used by RBCControl, it can
be easily used stand-alone in other projects. A state machine can be either defined programmat-
ically or through an XML textual description; the resulting FSM can then be saved to an XML
file for later use.

The central class of Gamestate (Figure 5.5 on the facing page) is StateMachine, which allows
the user to fire Events triggered by players, start, stop and reset the FSM. A peculiar feature of
Gamestate is that a state machine can be multi-layered: an action in the current state can make
a call to another graph, allowing therefore the game to be divided in different sub-sections while
keeping the overall structure of the single graphs relatively simple. To track where the game is
at, the class uses an execution stack with pointers to the current Graph and State. Finally, by
exploiting the Observer design pattern [35], StateMachine allows subclasses of Observer to
subscribe and be notified when important things happen, such as the notification of an event or
the value change of a variable.

5.4.1. Actors

To define players, interactable objects and zones, Gamestate uses instances of the Actor class.
Every object has a unique name, a type and a series of attributes stored as string key-value pairs,
to allow maximum flexibility in their use.

Each Actor can then be bundled into a Group; every instance of this class is homogeneous –
a group can contain either only players, items, etc. – so players can then form up into teams and
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Figure 5.5.: The UML class diagram for the main classes of the Gamestate library.
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other objects can be clustered into sets. Finally, if needed a Group can decide to activate only a
part of its members, to introduce a degree of variability ad uncertainty in games: as an example,
in Robotic Battlefield Control the player can lay out multiple Control Points, but only one will be
activated by the game.

5.4.2. Variables

Variables in Gamestate are defined by the abstract class Variable, which at the core treats
all variables as integer numbers, but their behaviors can be very different. For example, an
EnumVariable acts like an enumeration in programming languages – in which only a few
select values are valid, while subclasses of ThreadVariable such as CounterVariable and
TimerVariable increase or decrease their value independently of what happens during the
game, and can trigger Events when their maximum or minimum value is reached. This behav-
ior can also be achieved by IntVariable instances.

Variables are handled by VariableManager helper class; to permit read-only access to Variable
instances from external software components, the class implements the VariableReader inter-
face.

5.4.3. Graphs

Every Graph object is identified with a unique name and has an initial state which acts as the
entry point of the graph itself, as with standard finite state machines. Graphs are managed
through the GraphManager helper class, and can hold two kinds of objects: states and behavior
sets, both of which contain a number of state updates.

5.4.3.1. States

A State is one of the possible situations or stages of the game. It is represented by an ID number
which is unique within the Graph, and can be set as either final or non-final.

Non-final states represent normal situations that can happen as the game unfolds, while final
states are the exit points of a graph: when the game evolution reaches a final state of the main
game graph, the game is considered over and a winner – or a draw – can be declared; if the final
state belongs to any other graph, then the execution of the current graph is terminated and the
previous graph is resumed (more on this in section 5.4.4 on page 56).

5.4.3.2. OnEnter Updates, OnEvent Updates and Behavior Sets

State updates come in two flavors: OnEnter and OnEvent.
OnEnterUpdates are triggered as soon as the game enters in a new state. This kind of update

can act only on Variable values or behaviors, such as setting a new current value or stopping
or restarting a timer.

On the other hand, OnEventUpdates respond to a specific Event being triggered, and in
addition to updating variables’ values they allow the game to move either to another State or
to another Graph. Since updates of this kind can be often repeated in distinct groups within the
same graph, they can be defined in behavior sets.

Each BehaviorSet instance is named and can be referenced in any State that has been
defined within the Graph where the set is declared. As an example, Robotic Battlefield Control
implements a behavior set named “combat”, in which all Events related to fighting actions are
enclosed: in this way the definition of states in which combat between robots is allowed is much
simpler and without repetitions that could also make the definition itself more prone to error.
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Figure 5.6.: The UML class diagram for Conditions and Conditioned Objects within Gamestate.

5.4.3.3. Conditioned Objects

Some classes within Gamestate are conditioned (Figure 5.6), meaning that they are logic-wise
in a true state only when a certain boolean expression is satisfied. Expressions are written in a
very C-like syntax: an example taken from Robotic Battlefield Control could be

red.visual_enemy_contact == 1 and blue.activity != 6

meaning “Blue is in Red’s sight and Blue is not fleeing”.
This kind of condition is particularly useful for state updates, since the user can then define

subtle behavior nuances depending on the variables’ actual value, without having to define many
states or behavior sets with only slight changes. When a ConditionedObject has no expression
attached to it, it is always considered as true/enabled.

5.4.3.4. Outcome and Victory Conditions

All final State objects2 can define an Outcome of the game; outcomes are essentially a list of
VictoryCondition instances – one for every participating player or team – that are checked

2Of course, outcomes make sense only for final states that reside in the main graph of the game.
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once the final state itself is reached. Obviously, there can be only a single winner party; if any of
these conditions is not met, then the game is declared a draw.

5.4.4. Events and Event Handling

Events in Gamestate are represented by numeric IDs, and they can either be fired by a value
variation of a Variable, or by the user directly.

Once StateMachine receives an event notification (Figure 5.7 on the next page) through the
method fireEvent(), it checks whether the event is valid in the current State; if it is, the state
machine’s Variable objects are modified according to the OnEvent updates declared for that
event. If no transition is defined in the update, then the event handling procedure terminates,
otherwise the ExStack object is updated according to the kind of transition – either to a new
State or Graph.

If there has been a transition, what happens next depends on the kind of State that has been
reached:

• if the new State is marked as non-final, then its OnEnter updates are executed and the
handling procedure ends;

• if the new State is final and it is located in a subgraph – that is, a graph called by an-
other graph – then the Graph execution is considered over, its pointer removed from the
ExStack and the previous Graph is resumed, executing the OnEnter updates of its last
visited State;

• if the new State is final and it is located in the main Graph, then the game is declared to
be over.

5.5. FFLog

The Fast and Flexible Log library, or FFLog, is a very small and expandable logging utility that
allows a program to redirect its textual messages to the console, a file, a network socket and any
other I/O software facility.

The main class of the library is Log, and offers a series of methods to write messages with a
different level of criticality – debug, information, warning and error messages – which allows
for C-like string formatting; only the messages that are at least as critical as the current log
level will be posted. The LogPolicy interface is inherited by classes that want to supply a way
for FFLog to write messages: examples of this are ConsoleLogPolicy, FileLogPolicy and
YarpLogPolicy, and users can easily define more policies in their own programs.
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Figure 5.7.: The UML activity diagram for event handling.
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6. The implementation

In this chapter I show the results of what I managed to achieve during the development of the
project.

Most of the time was spent on developing the SLAM algorithm, as there are no concrete C/C++
implementations of it which does not involve the use of bulky frameworks such as the Robot
Operating System, and the core goal of the project was to make everything as light as possible
in order to make computations for the autonomous robot feasible directly on its computer board,
without the intervention of an additional remote computer – as for navigational purposes, the
autonomous robot should be in theory independent from everything else.

6.1. The game logic

6.1.1. Gameplay

The gameplay mechanics are implemented through a Gamestate state machine, as explained in
appendix A on page 67. It has to work on an external computer, as having it running on robots
would bring synchronization issues between the two participants.

6.1.2. The autonomous robot AI

The autonomous robot’s artificial intelligence is divided into two main blocks: the Mr. BRIAN
decisional engine and the path planner. The former executes all the behaviors that are required
for the robot to win the game while abiding by its rules, while the latter implements the potential
fields algorithm explained in section 3.3.1 on page 32 and bases its decisions on data provided
by RBCSight’s environmental map (section 5.3.4.4 on page 52), and it is launched whenever Mr.
BRIAN requests a new waypoint where to move.

6.1.2.1. Mr. BRIAN behaviors

Mr. BRIAN’s behaviors are divided into four priority levels; in this section I will list all of these
behaviors, together with their activation conditions (cando and want, which respectively denote
the possibility and the actual wish of fulfilling a certain action) and the variables they set when
they are activated. For a full list of variables and variable types, please refer respectively to
table 6.1 on the next page and table 6.2 on page 61.

• Level 1: this is the least important level, and it is used for short-term navigation purposes.

– GoToWaypoint: the robot moves towards the current waypoint. If the robot is not
aligned with the waypoint’s bearing, it carries out an on-place rotation until its head-
ing is aligned with it; when it moves forward, its speed decreases proportionally with
the proximity of an obstacle.

cando: whenever a waypoint is set (WaypointDistance is different from Unset);

want: always;

variables: LeftEngines, RightEngines.
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VARIABLE TYPE DESCRIPTION

IN
P

U
T

ObstacleFront IRLongRange The distance, in meters, from an IR sensor to
an obstacle. The range depends on the variable
type.

ObstacleBack IRLongRange
ObstacleFrontLeft IRShortRange
ObstacleFrontLeft IRShortRange

WaypointDistance Distance The beeline distance, in meters, from the
robot’s current position to the current waypoint.

WaypointBearing Heading

The bearing, in degrees, of the current waypoint
with respect to the robot’s current heading. In
other words, objects that are directly in front of
the robot have a bearing of 0°, objects that are
to the right have a bearing of 90°, and so on.

CPStatus Ownership The current ownership of the Control Point.
SelfActivity Activity The current activity of the robot.
SelfOutcome Outcome The current game outcome for the robot.

SelfSeesEnemy Boolean Set to true whenever the robot sees its
opponent, false otherwise.

SelfPosition Position The playing field zone where the robot
currently is.

SelfActivity Activity The current activity of the robot.

SelfKnowsCP Boolean Set to true if the robot knows the location of the
Control Point, false otherwise.

O
U

T
P

U
T

Destination Position
Tells where the robot wants to go. Not that this
doesn’t indicate a precise waypoint, just a
region of the playing field.

RequestWaypoint Boolean
Set to true whenever the decisional engine
requests a new waypoint to the path planner,
false otherwise.

Shoot Boolean Set to true when the robot wants to shoot its
weapon.

LeftEngines Speed The speed at which the left wheel motors
should rotate.

RightEngines Speed The speed at which the right wheel motors
should rotate.

Table 6.1.: The variables used in the definition of Mr. BRIAN’s behaviors for the game.
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VARIABLE TYPE UNIT MF NAME MF TYPE VALUE

IRLongRange m

Unknown Singleton 0
VeryClose Trapetium [0.10, 0.15, 0.20, 0.25]

Close Trapetium [0.20, 0.25, 0.40, 0.45]
Far Trapetium [0.40, 0.45, 0.50, 0.50]

IRShortRange m
Unknown Singleton 0

Close Trapetium [0.05, 0.05, 0.10, 0.15]
Far Trapetium [0.10, 0.15, 0.15, 0.15]

Distance m

VeryClose Triangle_OL [0, 0.05, 0.20]
Close Trapetium [0.05, 0.20, 0.45, 0.50]
Far Trapetium [0.45, 0.50, 0.80, 0.90]

VeryFar Triangle_OR [0.80, 0.90, 1]

Heading deg

North1 Trapetium [0, 0, 30, 60]
East Trapetium [30, 60, 120, 150]

South Trapetium [120, 150, 210, 240]
West Trapetium [210, 240, 300, 330]

North2 Trapetium [300, 330, 360, 360]

Ownership enum
Neutral Singleton 0

Blue Singleton 1
Red Singleton 2

Outcome score
Losing Triangle_OL [-30, -5, 0]
Draw Triangle [-10, 0, 10]
Far Triangle_OR [0, 5, 30]

Activity enum

Move Singleton 1
Capture Singleton 2

Neutralize Singleton 3
Defend Singleton 4
Retreat Singleton 5
Contest Singleton 6

Position enum

RedHomefield Singleton 0
BlueHomefield Singleton 1

Midfield Singleton 2
CP Singleton 3

Boolean enum False Singleton 0
True Singleton 1

Speed enum

VeryHighBck Singleton -255
HighBck Singleton -191
MedBck Singleton -127
LowBck Singleton -63

Halt Singleton 0
LowFwd Singleton 63
MedFwd Singleton 127
HighFwd Singleton 191

VeryHighFwd Singleton 255

Table 6.2.: The variable types used in the definition of the autonomous robot’s behaviors.
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Figure 6.1.: Fuzzy membership functions of several fuzzy variables.

– RequestWaypoint: the robot asks for a new waypoint.

cando: always;

want: when the current waypoint has been reached (WaypointDistance is VeryClose);

variables: RequestWaypoint.

• Level 2: this level of behaviors is used for strategic reasoning: depending on the current
game situation, the robot will activate the most appropriate behavior.

– SearchForCP: the robot searches for the position of the Control Point.

cando: always;

want: only when the Control Point location is still unknown (SelfKnowsCP is set to
false);

variables: Destination.

– SearchForOpponent: the robot searches for the opposing robot.

cando: always;

want: the Control Point must be under the robot’s control (CPStatus is set to Red)
and the robot is winning the game (SelfOutcome is clearly Winning);

variables: Destination.

– CaptureCP: the robot captures or neutralizes the Control Point.

cando: when the robot knows the Control Point location (SelfKnowsCP is set to true)
and the CP does not belong to Red;

want: the robot is not at the CP position already;

variables: Destination.

– DefendCP: the robot defends a currently owned Control Point.

cando: when the robot knows the Control Point location (SelfKnowsCP is set to true)
and the CP belongs to Red;

62



CHAPTER 6. THE IMPLEMENTATION

want: the robot is not winning the game (SelfOutcome is either Losing or Draw)
and the robot is not already at the CP position;

variables: Destination.

– ShootOpponent: the robot shoots at its opponent; the robot might want to rotate in
order to aim to its enemy.

cando: whenever the robot sees its opponent (SelfSeesEnemy is set to true);
want: always;
variables: Shoot, LeftEngines, RightEngines.

• Level 3: this level is used to override any strategic reasoning.

– Retreat: the robot returns back to its Homefield.

cando: always;
want: when Activity is set to Retreat and the robot is not at its Homefield already.
variables: Destination.

• Level 4: this is the most important level, as it is used to avoid collisions with objects.

– DoNotCollide: the robot halts in order to prevent a collision with an obstacle.

cando: always;
want: whenever either ObstacleFront or ObstacleRear are VeryClose.
variables: LeftEngines, RightEngines.

6.2. SLAM on the development computer

When run on my development computer (Figure 6.2), the SLAM algorithm managed to achieve a
decent performance by finding and tracking 20 to 30 features with a frequency of 15 frames per
second. In the figure, all features recognized in the frame by FAST are marked in blue, while
features that are currently in the filter and have been successfully detected by the algorithm are
marked in green. Red squares indicate where the algorithm presumed to find the landmarks,
while the magenta boxes are their respective bounding boxes.

Odometry is quite accurate, as it can predict with a 2-3 centimeters resolution the fact that
the camera moves back and forth between two points of the plane.

Figure 6.2.: A frame captured by the camera while running my SLAM implementation.
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7. Conclusions and future developments

Both the ODROID and the RaspberryPi platforms proved to be not good candidates for the im-
plementation of a visual SLAM algorithm. The causes are mainly two:

1. The overhead introduced by an off-the-shelf USB web camera is high relatively to the com-
putational power of the ARM chips present on both computer boards: on the Raspberry,
the CPU topped 60% usage just with the RBCSight module running without SLAM (see
section 5.3.4 on page 50). This is probably due to the current implementation state of USB
Video Class (UVC) webcam drivers in the Linux kernel – version 3.10.25 for the Raspberry,
3.8.13 for the ODROID – and most importantly the overhead generated by the USB port
drivers, even when using a modest resolution such as 432x240 pixels; this is also verifi-
able when examining the performances of the USB wi-fi network adapters, which often
drop packets and are able to produce a throughput that is a fraction of what the network
itself can support; this happens also when using drivers provided directly by the network
interface producers.

2. The core of the EKF-SLAM algorithm isn’t really prone to parallelization, as the sequence
of operations that has to be carried out is strictly sequential in nature. The only operation
that can be carried out in parallel is the map construction (see section 3.1.1.7 on page 31),
as pose tracking requires read/write access to the whole EKF filter data. This of course
taxes the processor, and is an hindrance for the exploitation of multi-core architectures
such as the Samsung Exynos found on the ODROID.

Despite my efforts to mitigate these two issues, I have not managed to find a solution that could
bring a reliable visual SLAM implementation on embedded devices.

7.1. Future developments

Of course, the SLAM algorithm has lots of room for improvement: for example it should exploit
the sparseness of certain matrices used by the SLAM algorithm [23], but in my opinion the fun-
damental problem of the algorithm is its lack of parallelizable parts. Therefore, my conclusion is
that EKF-SLAM is not adequate either for ODROID, nor for RaspberryPi boards and that there
is a need for new proposals that can exploit multi-core architectures if we want to see this kind
of technology running on embedded architectures, which are clearly trending towards clusters of
many-core processors, together with the rise of technologies such as OpenCL which is enabling
general-purpose computation capabilities (GPGPU, General Purpose Graphics Processing Unit)
on programmable video chipsets.
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A. The Robotic Battlefield Control state
machine

In this appendix I explain how the state machine of the game is implemented through the
Gamestate state machine library (see section 5.4 on page 52).

A.1. Variables

Variables in the game are of two types, player or global. The former are related to a player
exclusively (and therefore are named in a dot-notation fashion, like red.position), while the
latter are variables that refer to the game as a whole. Table A.1 on the next page reports all
variables that are used in the Robotic Battlefield Control game.

A.2. States

The states of the game are roughly in three subgraphs, depending on the current status of the
Control Point, which starts out as being neutral – i.e. no one is controlling it, and therefore no
one is gaining points. In the following sections I will list all of the states, expliciting the value of
variables when the state forces them to have a certain value and omitting them when this is not
the case. The overall graph of the state machine can be seen in Figure 2.1 on page 21.

A.2.1. Neutral Control Point

Ss: Beginning of the match (not shown)

Red: position = Homefield, score = 0, activity = Explore,
visual_enemy_contact = false

Blue: position = Homefield, score = 0, activity = Explore,
visual_enemy_contact = false

Game: game_time = 0, cp_timer = 0, cp = Neutral

S0: Both players are in home field

Red: position = Homefield, activity = Explore, score < max

Blue: position = Homefield, activity = Explore, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Neutral
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NAME TYPE VALUES DESCRIPTION

position enum

“Red Homefield”,
“Blue

Homefield”,
“Midfield”,

“Control Point”

Player variable. The position
of the player within the playing
field.

activity enum

“Move”,
“Capture”,

“Neutralize”,
“Defend”,
“Retreat”,
“Contest”

Player variable.What the
player is doing at the moment.
Notice that Move does not nec-
essarily mean that the robot is
moving: it can be doing anything
that is not mentioned in the other
possible activities. Shooting
is not mentioned as a possible
activity as it is an instantaneous
action.

visual_enemy_contact bool true or false
Player variable. Indicates
whether the robot is seeing its op-
ponent.

score int [0, max_score =
80]

Player variable. Indicates the
advancement toward the game’s
goal for a player.

cp_timer timer [0, max_time =
5]

Global variable. Indicates the
amount of time passed since a CP
capture or neutralization attempt
by a player.

cp enum “Neutral”, “Red”,
“Blue”

Global variable. Indicates
which player owns the Control
Point.

game_time timer
[0,

game_timeout =
600]

Global variable. Indicates how
many seconds have passed since
the start of the game; when it
reaches its threshold, the match
is declared over.

Table A.1.: The variables that define the state of the game in Robotic Battlefield Control.
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S1: Both players are in midfield

Red: position = Midfield, activity = Explore|Retreat, score < max

Blue: position = Midfield, activity = Explore|Retreat, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Neutral

S2: Red is in midfield, Blue is in home field

Red: position = Midfield, activity = Explore|Retreat, score < max

Blue: position = Homefield, activity = Explore, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Neutral

S3: Blue is in midfield, Red is in home field

Red: position = Homefield, activity = Explore, score < max

Blue: position = Midfield, activity = Explore|Retreat, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Neutral

S4: Red is conquering CP, Blue is in midfield

Red: position = CP, activity = Capture, score < max

Blue: position = Midfield, activity = Explore|Retreat, score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Neutral

S5: Red is conquering CP, Blue is in home field

Red: position = CP, activity = Capture, score < max

Blue: position = Homefield, activity = Explore, Health = max, score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Neutral

S6: Blue is conquering CP, Red is in midfield

Red: position = Midfield, activity = Explore|Retreat, score < max

Blue: position = CP, activity = Capture, score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Neutral

S7: Blue is conquering CP, Red is in home field

Red: position = Homefield, activity = Explore, score < max

Blue: position = CP, activity = Capture, score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Neutral
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S8: Neutral CP is disputed

Red: position = CP, activity = Explore, score < max

Blue: position = CP, activity = Explore, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Neutral

A.2.2. Red Control Point

S9: Both players are in home field

Red: position = Homefield, activity = Explore, score > 0 && score < max

Blue: position = Homefield, activity = Explore, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Red

S10: Both players are in midfield

Red: position = Midfield, activity = Explore|Retreat, score > 0 && score < max

Blue: position = Midfield, activity = Explore|Retreat, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Red

S11: Red is in midfield, Blue is in home field

Red: position = Midfield, activity = Explore|Retreat, score > 0 && score < max

Blue: position = Homefield, activity = Explore, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Red

S12: Blue is in midfield, Red is in home field

Red: position = Homefield, activity = Explore, score > 0 && score < max

Blue: position = Midfield, activity = Explore|Retreat, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Red

S13: Red is defending CP, Blue is in homefield

Red: position = CP, activity = Defend, score > 0 && score < max

Blue: position = Homefield, activity = Explore, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Red

S14: Red is defending CP, Blue is in midfield

Red: position = CP, activity = Defend, score > 0 && score < max

Blue: position = Midfield, activity = Explore|Retreat, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Red
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S15: CP is disputed (Red prevents Blue from neutralizing)

Red: position = CP, activity = Explore, score > 0 && score < max

Blue: position = CP, activity = Explore, score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Red

S16: Blue is neutralizing CP, Red is in homefield

Red: position = Homefield, activity = Explore, score > 0 && score < max

Blue: position = CP, activity = Neutralize, score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Red

S17: Blue is neutralizing CP, Red is in midfield

Red: position = Midfield, activity = Explore|Retreat, score > 0 && score < max

Blue: position = CP, activity = Neutralize, score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Red

A.2.3. Blue Control Point

S18: Both players are in home field

Red: position = Homefield, activity = Explore, score < max

Blue: position = Homefield, activity = Explore, score > 0 && score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Blue

S19: Both players are in midfield

Red: position = Midfield, activity = Explore|Retreat, score > 0

Blue: position = Midfield, activity = Explore|Retreat, score > 0 && score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Blue

S20: Red is in midfield, Blue is in home field

Red: position = Midfield, activity = Explore|Retreat, score > 0

Blue: position = Homefield, activity = Explore, score < max && score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Blue

S21: Blue is in midfield, Red is in home field

Red: position = Homefield, activity = Explore, score > 0

Blue: position = Midfield, activity = Explore|Retreat, score < max && score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Blue
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S22: Blue is defending CP, Red is in homefield

Red: position = Homefield, activity = Explore, score < max

Blue: position = CP, activity = Defend, score > 0 && score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Blue

S23: Red is defending CP, Blue is in midfield

Red: position = Midfield, activity = Explore|Retreat, score < max

Blue: position = CP, activity = Defend, score > 0 && score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Blue

S24: CP is disputed (Blue prevents Red from neutralizing)

Red: position = CP, activity = Explore, score < max

Blue: position = CP, activity = Explore, score > 0 && score < max

Game: game_time < game_timeout, cp_timer = 0, cp = Blue

S25: Red is neutralizing CP, Blue is in homefield

Red: position = CP, activity = Neutralize, score < max

Blue: position = Homefield, activity = Explore, score > 0 && score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Blue

S26: Red is neutralizing CP, Blue is in midfield

Red: position = CP, activity = Neutralize, score < max

Blue: position = Midfield, activity = Explore|Retreat, score > 0 && score < max

Game: game_time < game_timeout, cp_timer > 0 && cp_timer < max_time, cp = Red

A.2.4. Game over

S27: Game over (not shown)

red.score = max | blue.score = max | game_time = game_timeout

A.3. Transitions

A.3.1. Movement

Movement transitions determine a state change as one of the robots moves in a new zone of the
playing field.

T0: Red enters in the midfield.

T1: Red enters its home field.
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T2: Blue enters in the midfield.

T3: Blue enters its home field.

T4: Red arrives to the Control Point.

T5: Blue arrives to the Control Point.

A.3.2. Capturing and neutralizing

Any time a capture or a neutralization attempt is successful, cp_timer signals a T6 event to
announce it.

A.3.3. End-game

All end-game transitions shift the game to enter the final state (S27). T7 triggers when the game
timer expires, while T8 and T9 are triggered when respectively the Red and Blue robot reach
their score threshold.

A.3.4. Combat

Transitions that are related to combat are all self-loops – they don’t move the game execution to
a new state. To be able to fire, a robot needs to see the opponent, and this opponent has to be
healthy, i.e. its activity variable must not be set to “Retreat”.

T10: Red gets visual contact of Blue: red.visual_enemy_contact is set to true.

T11: Red loses visual contact of Blue: red.visual_enemy_contact is set to false.

T12: Blue gets visual contact of Red: blue.visual_enemy_contact is set to true.

T13: Blue loses visual contact of Red: blue.visual_enemy_contact is set to false.

T14: Red shoots and hits Blue: blue.activity is set to “Retreat”.

T15: Blue shoots and hits Red: red.activity is set to “Retreat”.
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B. The Gamestate XML file syntax

In this appendix I am going to illustrate the XML syntax to define a Gamestate state machine
by providing excerpts from the Robotic Battlefield Control state machine definition file.

B.1. The overall structure

The root element for a state machine is <stateMachine>, which takes a name and a reference
to the main graph as attributes. This element then contains lists of <actors>, <variables>
and <events>, followed by declarations of graphs.

<stateMachine name="Robotic Battlefield Control"
mainGraph="main">
<actors>

<!-- ...actor declarations... -->
</actors>
<variables>

<!-- ...variable declarations... -->
</variables>
<events>

<!-- ...event declarations... -->
</events>

<!-- ...graph declarations... -->
</stateMachine>

B.2. Actors

An actor is an item or player that has a role in the game. Each <actor> element takes a
name and a type as attributes, and can contain one or more <attribute> elements which are
key/value textual pairs. Attributes are just a mean for the user to store information about the
items and players, they are not directly used within Gamestate.

<actor name="red" type="player">
<attribute key="autonomous">true</attribute>
<attribute key="remoteCommand">

ssh $USER@$IP_ADDRESS $ROBOT_NAME</attribute>
</actor>

Actors can be put into groups; if the random attribute is set to n, then only n of all the listed
items will be activated throughout a match.
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<group type="item" random="1">
<actor name="control_point_1" type="item">

<attribute key="color">#FF0000</attribute>
</actor>
<actor name="control_point_2" type="item">

<attribute key="color">#00FF00</attribute>
</actor>
<actor name="control_point_3" type="item">

<attribute key="color">#0000FF</attribute>
</actor>

</group>

B.3. Events

Events are indicated by a simple numeric ID, with an optional textual description.
<event id="0" desc="Red enters in the midfield" />

B.4. Variables

B.4.1. Integer (int)

Integer variables are defined with <int> elements, which can be used in two ways:

1. The default variable’s behavior is to act as a boolean, accepting either 0 or 1 as possible
values. In the following example, the variable red.visual_enemy_contact is declared
like this, and is initialized with the value false.

<int name="red.visual_enemy_contact" value="0">

2. Alternatively, the user can define different minimum and maximum values for the variable;
moreover, the user can let the variable trigger an event as soon as one of the limit values
are reached, through the <onMinValueReached> and <onMaxValueReached> declara-
tions.

<int name="red.health" min="0" max="4" value="4">
<onMinValueReached event="30" />

</int>

B.4.2. Enumeration (enum)

Enumerations variables are denoted by the <enum> element and are similar to integers, but
unlike those, the user can define explicitly all the valid values, giving them also an optional
string as description.

<enum name="red.position" value="0">
<value desc="Red Homefield">0</value>
<value desc="Blue Homefield">1</value>
<value desc="Midfield">2</value>
<value desc="CP">3</value>

</enum>
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B.4.3. Timer

Timers are defined by <timer> elements, which lets the user specify a duration for the timer
itself and the event ID that should be triggered once the timer reaches the defined threshold.

<timer name="game_time" time="600" event="10" />

B.4.4. Counter

Counters, indicated by the <counter> element, are integer variables that are automatically
updated every every seconds of an amount specified by the incr parameter; when they reach
their threshold, they trigger an event specified by the argument of event.

<counter name="red.score" initial="0" threshold="30"
event="11" every="1" incr="1" />

B.5. Graphs

Each definition of a graph in a state machine is enclosed in a <graph> element, which has
a name and an initial state ID as attributes; the element then incorporates a series of
state declarations within a <states> element, followed by a list of zero or more behavior set
declarations.

<graph name="main" initialState="0">
<states>

<!-- ...state declarations... -->
</states>
<!-- ...behavior set declarations... -->

</graph>

B.5.1. States

States are defined by <state> elements, and each of them is characterized by a unique id code
and an optional textual description.

A state can have an enclosed <onEnter> element in which one or more <update> actions can
be listed; each update is defined by an action – either add, set, reset, stop, start – which result
is dependent on the kind of variable it acts upon: for instance, both “starting an integer variable”
and “adding 2 to a timer” have no sense; finally, an action can have a value that could influence
the result of the action: for example adding -2 to an integer variable will actually decrease that
variable by 2. <onEvent> updates are similar, but are triggered by an event, and in addition
they can contain either a <moveToState> or a <moveToGraph> statement.

Lastly, states can include a behavior set through the <include> elements.
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<state id="0" desc="Neutral CP, both players are in home field">
<onEnter>

<update action="set" var="red.position" value="0" />
<update action="set" var="blue.position" value="1" />
<update action="set" var="red.activity" value="1" />
<update action="set" var="blue.activity" value="1" />
<!-- no action if timer already started -->
<update action="start" var="game_time" />

</onEnter> <!-- common events -->
<!-- include a behavior set -->
<include set="common" />
<!-- onEvent updaters -->
<onEvent ref="0"> <!-- Red enters midfield -->

<moveToState ref="2" />
</onEvent>
<onEvent ref="2"> <!-- Blue enters midfield -->

<moveToState ref="3" />
</onEvent>

</state>

B.5.1.1. Final States

States can be set as final; in this case they contain an <outcome> element, which is a list of
conditioned <winner> statements that refer to a player <actor>.

<state id="27" desc="Game over" final="true">
<outcome>

<if cond="red.score == 30">
<winner ref="red"/>

</if>
<if cond="blue.score == 30">

<winner ref="blue"/>
</if>

</outcome>
</state>

B.5.2. Conditions

<onEvent> updates can be conditioned by a certain boolean expression.
<if cond="blue.activity != 5">

<onEvent ref="13">
<update action="set" var="red.visual_enemy_contact"

value="1" />
</onEvent>

</if>

B.5.3. Behavior Sets

Behavior sets are named lists of <onEvent> updates, which can be conditioned or not condi-
tioned.
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<behaviorSet name="common">
<if cond="blue.activity != 5">

<onEvent ref="13">
<update action="set" var="red.visual_enemy_contact"

value="1" />
</onEvent>
<onEvent ref="14">
<update action="set" var="red.visual_enemy_contact"

value="0" />
</onEvent>

</if>
<if cond="red.activity != 5">

<onEvent ref="15">
<update action="set" var="blue.visual_enemy_contact"

value="1" />
</onEvent>
<onEvent ref="16">
<update action="set" var="blue.visual_enemy_contact"

value="0" />
</onEvent>

</if>
<!-- Game time expired -->
<onEvent ref="10">

<moveToState ref="1000" />
</onEvent>

</behaviorSet>
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