

POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Managing futsal competitions and related events

(Sports Manager)

Relatore: Prof.ssa Franca Garzotto

 Tesi di Laurea di:

 Marko Brčić

 Matricola n. 764920

Anno Accademico 2013-2014

To my family

i

Contents

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Outline ... 2

2 Background ... 3

2.1 Entity Framework .. 3

2.1.1 Introduction .. 3

2.1.2 Code first .. 3

2.1.3 Data Annotations or Fluent API .. 4

2.1.4 Migrations .. 5

2.1.5 Eager, Lazy and Explicit loading.. 6

2.2 Web API ... 8

2.2.1 Introduction .. 8

2.2.2 Controllers and basic CRUD operations ... 8

2.2.3 Defining routes ... 10

2.2.4 Http Clients ... 10

2.3 Windows Store applications .. 11

2.3.1 Introduction .. 11

2.3.2 Variety of technologies for building apps .. 11

2.3.3 Developing for both Windows Phone and Windows store application 11

2.3.4 Windows Store ... 12

2.3.5 Publishing to Windows Store ... 12

2.3.6 Deploying Enterprise applications ... 12

3 Sports Manager application ... 13

3.1 Functional requirements ... 15

3.1.1 Competition administrator role ... 16

3.1.2 Match commissioner role .. 17

3.1.3 Match statistician role .. 18

ii

3.1.4 Match reporter role.. 19

3.2 Non-functional requirements .. 20

3.2.1 Ability to work offline ... 20

3.2.2 Syncing local data ... 20

3.2.3 Touch interface .. 20

3.2.4 Security ... 20

4 User experience and interaction design .. 21

4.1 Menu Bar Highlighting ... 21

4.2 Switch competition view ... 22

4.3 Competition view... 22

4.4 Switch event view .. 23

4.5 Event view .. 23

5 Architecture .. 24

5.1 Database layer ... 25

5.1.1 Competition core tables ... 27

5.1.2 Competition schedule tables .. 28

5.1.3 Match core tables ... 29

5.1.4 Competition and sport rules tables .. 30

5.1.5 Competition users and mailing lists tables .. 31

5.2 Model layer (Entity Framework).. 32

5.3 Controller layer (Web API) ... 34

5.4 View layer (Windows 8.1 application) ... 35

6 User manual ... 37

6.1 Choose and manage competition .. 37

6.2 Choose and manage competition event ... 38

7 Conclusion .. 39

8 Appendices ... 40

8.1 Appendix A: Versioning system details ... 40

8.2 Appendix B: Development tools used ... 40

8.3 Appendix C: Visual Studio solution projects .. 41

iii

8.4 Appendix D: List of figures ... 42

8.5 Appendix E: List of tables ... 42

8.6 Appendix F: List of code examples .. 43

9 Bibliography .. 44

10 Internet resources .. 46

iv

Abstract

Tablet devices are becoming more and more popular each day. It’s because they are

thinner and lighter than laptops while on the other hand their power and performance is

catching up with the performance of desktop and laptop computers. Including the touch

interface, which was introduced few decades ago but nowadays is common, working with

tablets on the go has become so natural and has brought the technology even closer to users as

an omnipresent part of their everyday lives.

In this work we will present the application called Sports Manager developed for

Windows 8.1 tablet devices. It is a robust application, built with latest Microsoft technologies.

The application manages futsal competitions and futsal events. It is built with a later intent to

support more sports, but for now futsal is chosen as primary sport for prototype version since

futsal is author’s primary sport passion.

Microsoft and its operating systems (from version 8.0) developed for tablets maybe

stood up on the wrong foot when they first showed up (as version 8.0). It is because they

brought up a new experience and a completely new way of thinking to their current windows

users, while on the other hand being incomplete and unfinished solution, with basic apps

missing a lot of common features and mysterious ways of switching from new Start menu and

windows store apps to normal desktop mode (on non RT devices).

With the first update (8.1 version) Microsoft went back to the right track. They improved

a lot of things and made transition and learning process more smother for the current desktop

and laptop users.

Windows store will, no doubt about it, grow each year, presenting more and more

quality applications to the users. It is ahead of us to see if they will manage to compete on the

current tablet market with strong players like Google’s Android and Apple’s iOS operating

systems designed for touch devices.

v

Sommario

 Dispositivi tablet stanno diventando sempre più popolare ogni giorno. E' perché sono più

sottili e leggeri di computer portatili, mentre d'altra parte il loro potere e le prestazioni sta

recuperando terreno con le prestazioni dei computer desktop e laptop. Compreso l'interfaccia

touch, che è stato introdotto qualche decennio fa, ma al giorno d'oggi è comune, lavorando con

compresse in movimento è diventato così naturale e ha portato la tecnologia ancora più vicino

agli utenti come una parte onnipresente della loro vita quotidiana.

In questo lavoro presenteremo l' applicazione denominata Direttore Sportivo sviluppato per

Windows 8.1 dispositivi tablet. Si tratta di un'applicazione robusta, costruita con le più recenti

tecnologie Microsoft. L' applicazione gestisce le competizioni di futsal e di futsal. E 'costruito con

un intento più tardi per sostenere più sport, ma per ora futsal viene scelto lo sport principale

per la versione del prototipo in quanto il futsal è la passione sportiva principale dell'autore.

Microsoft ei suoi sistemi operativi (dalla versione 8.0) sviluppati per le tavolette forse si alzò in

piedi con il piede sbagliato la prima volta che si presentò (nella versione 8.0). E 'perché hanno

portato una nuova esperienza e un modo completamente nuovo di pensare ai propri utenti di

Windows correnti, mentre d'altra parte essendo la soluzione incompleta e incompiuta, con

applicazioni di base manca un sacco di caratteristiche comuni e modi misteriosi del passaggio

dal nuovo avvio menu e Windows Store applicazioni in modalità desktop normale (sui dispositivi

non RT).

Con il primo aggiornamento (versione 8.1) di Microsoft è tornato in pista giusta. Hanno

migliorato un sacco di cose e fatti di transizione e di apprendimento processo più soffocare per

gli attuali utenti di desktop e laptop.

Negozio di Windows, non c'è che dire, crescere ogni anno, presentando sempre più applicazioni

di qualità per gli utenti. E ' più avanti di noi per vedere se riusciranno a competere sul mercato

tablet attuale con giocatori forti come Android di Google e sistemi operativi iOS di Apple ha

progettato per i dispositivi touch.

1

1 Introduction

1.1 Motivation

With an increase of popularity in using tablets among common people there is a great

need for developing applications for tablet platforms. Even if the windows operating system still

doesn’t hold a significant market share, we believe that it will since a lot of users are familiar

with windows operating systems in general. Therefore Windows 8.1 was chosen as targeting

platform for the application.

The idea for the application came from the author’s participation in the European

Universities Championships (EUC) in futsal in which he participated as an assistant technical

delegate providing help in organizing the competition in general and also keeping the match

records during assigned competition matches. Usually these competitions were, like any

common competitions, organized with duration of 2 weeks more or less. They were very intense

with the matches and dozen matches were played per day organized in different halls.

The goal of the application is to allow users to manage competitions and related events.

The functional requirements arise of the centralized service with whom many clients need to

interact. These clients need to be robust so that in case of no connection to the internet, they

can still collect data from the competition events and synchronize when the connection to the

internet becomes available. With these requirements in mind, instead of building the web

application, the proper choice was to build client application for a specific platform. If the idea

shows to be good, the client application can be extended to more than one platform.

The choice of technologies and frameworks went in favor of Microsoft and its latest

technologies, Entity Framework, Web API, and Windows Store applications. The language used

is C#.

2

1.2 Outline

This work is structured as follows.

In section 2, Background, we will start by introducing the technologies used in developing

the application. We will also for every mentioned technology show the example of usage in our

application. The technologies are, in order of mentioning in our work, Entity Framework, Web

API, Windows Store applications.

In section 3, Sports Manager Application, we will provide functional and non-functional

requirements for our application Sports Manager. We will start by providing the designed use

cases of the main functionalities in the application and afterwards we’ll enumerate non-

functional requirements.

In section 4, User experience and interaction design, we will talk about layout of our user

interface and good practices that we’ve used.

In section 5, Architecture, we will describe the architecture of the application, and in detail

each layer one by one, from lower layers to upper layers of the architecture. Layers of the

application are database layer, model layer, controller layer and view layer.

In section 6, User manual, we will describe briefly two main user scenarios in our

application.

In section 7, Conclusion, we will put final word on the whole work, directions and ideas for

the improvement of the application.

In section 8, Appendices, we will provide additional short information about the versioning

system which hosted the application during development process, also we will name

development tools used throughout the project, and finally we will provide short list of figures,

tables and code samples for better navigation through our work.

In sections 8 and 9, Bibliography and Internet resources, we will provide a list of resources

that helped in making our work.

3

2 Background

2.1 Entity Framework

2.1.1 Introduction

Entity Framework (EF) is an object-relational mapper that enables .NET developers to

work with relational data using domain-specific objects. It eliminates the need for most of the

data-access code that developers usually need to write. The latest stable version is 6.1 and this

version we used in our application.

There are few basic development workflows that can be chosen depending on the

current implementation of the database and the entity framework tools we want to use.

Database state Model Code

New database Model First
- Create model in designer
- Database created from model
- Classes auto-generated from

model

Code first
- Define classes and mapping in

code
- Database created from model
- Use Migrations to evolve

database

Existing database Database first
- Reverse engineer model in

designer
- Classes auto-generated from

model

Code first
- Define classes and mapping in

code
- Reverse engineer tools available

Table 1. Existing development workflows in Entity Framework

2.1.2 Code first

It is the approach where we write the classes in code first. There is also one class which

needs to derive the DbContext class and define all the sets of our context. After the classes are

written, with automatic or custom migrations we can later update or create the database and

the according model.

4

2.1.3 Data Annotations or Fluent API

Data annotations or fluent API are used to define the mappings between the classes

defined in DbContext and tables in the database. The two approaches are different in a way that

data annotations are defined as annotations in the classes of the entities, while on the other

hand fluent API mappings are defined in separate classes.

Both choices have their advantages. Using data annotations, we can see directly in the

entity class the defined mappings, while on the other hand, greater readability is accomplished

if the details of the mappings between entity classes and database tables we move to a

completely separate classes, and therefore we keep entity classes more cleaner and readable.

 public class Blog

 {

 public int BlogId { get; set; }

 public string Name { get; set; }

 public virtual List<Post> Posts { get; set; }

 }

 public class Post

 {

 public int PostId { get; set; }

 public string Title { get; set; }

 public string Content { get; set; }

 public int BlogId { get; set; }

 public virtual Blog Blog { get; set; }

 }

 public class BloggingContext : DbContext

 {

 public DbSet<Blog> Blogs { get; set; }

 public DbSet<Post> Posts { get; set; }

 }

Code Example 1. Code first Entity Framework workflow

5

2.1.4 Migrations

 Migrations are database updates and can be done automatically by data context on its

loading. It is sometimes dangerous to enable this setting also in the production environment, so

manually writing migrations and running them on a willing occasion is the preferable way.

namespace MigrationsDemo.Migrations

{

 using System;

 using System.Data.Entity.Migrations;

 public partial class AddBlogUrl : DbMigration

 {

 public override void Up()

 {

 AddColumn("dbo.Blogs", "Url", c => c.String());

 }

 public override void Down()

 {

 DropColumn("dbo.Blogs", "Url");

 }

 }

}

// Configure the primary key for the OfficeAssignment

modelBuilder.Entity<OfficeAssignment>()

 .HasKey(t => t.InstructorID);

// Map one-to-zero or one relationship

modelBuilder.Entity<OfficeAssignment>()

 .HasRequired(t => t.Instructor)

 .WithOptional(t => t.OfficeAssignment);

// Configure the primary key for the OfficeAssignment

modelBuilder.Entity<OfficeAssignment>()

 .HasKey(t => t.InstructorID);

// Map one-to-zero or one relationship

modelBuilder.Entity<OfficeAssignment>()

 .HasRequired(t => t.Instructor)

 .WithOptional(t => t.OfficeAssignment);

public class Passport

{

 [Key]

 public int PassportNumber { get; set; }

 [Key]

 public string IssuingCountry { get; set; }

 public DateTime Issued { get; set; }

 public DateTime Expires { get; set; }

}

Code Example 3. Data annotations example

Code Example 4. Database migration example

Code Example 2. Fluent API example

6

2.1.5 Eager, Lazy and Explicit loading

Eager loading is the process whereby a query for one type of entity also loads related

entities as part of the query. Eager loading is achieved by use of the include method.

Lazy loading is the process whereby an entity or collection of entities is automatically

loaded from the database the first time that a property referring to the entity/entities is

accessed. When using POCO entity types, lazy loading is achieved by creating instances of

derived proxy types and then overriding virtual properties to add the loading hook. For example,

when using the Blog entity class defined below, the related Posts will be loaded the first time

the Posts navigation property is accessed:

using (var context = new BloggingContext())

{

 // Load all blogs and related posts

 var blogs1 = context.Blogs

 .Include(b => b.Posts)

 .ToList();

 // Load one blogs and its related posts

 var blog1 = context.Blogs

 .Where(b => b.Name == "ADO.NET Blog")

 .Include(b => b.Posts)

 .FirstOrDefault();

}

public class Blog

{

 public int BlogId { get; set; }

 public string Name { get; set; }

 public string Url { get; set; }

 public string Tags { get; set; }

 public virtual ICollection<Post> Posts { get; set; }

}

Code Example 6. Lazy loading example

Code Example 5. Eager loading example

7

Even with lazy loading disabled it is still possible to lazily load related entities, but it must

be done with an explicit call (Explicit loading). To do so you use the Load method on the related

entity’s entry. For example:

using (var context = new BloggingContext())

{

 var post = context.Posts.Find(2);

 // Load the blog related to a given post

 context.Entry(post).Reference(p => p.Blog).Load();

 // Load the blog related to a given post using a string

 context.Entry(post).Reference("Blog").Load();

}

Code Example 7. Explicit loading example

8

2.2 Web API

2.2.1 Introduction

Restful services have become very popular. Their main popularity is the accessibility

from different platforms. It is crucial in today’s development to target as many platforms as

possible and at the same time reuse the developed components or layers if possible. Restful

services are based on HTTP protocol, and use it as a mean of communication between clients

and API. A lot of languages have become popular because they were based on the restful API

paradigm, one of the most known development technology is ruby on rails.

Web API is Microsoft’s answer, for the increased popularity in restful services, developed

for .NET platform. It is an extension to MVC paradigm added for ASP.NET technology. It brings

restful aspect to the whole idea.

2.2.2 Controllers and basic CRUD operations

Controllers are classes in Web API responsible for managing HTTP requests. Each

controller is bound to a URI. Depending on the parameters appended to the URI and the type of

HTTP request issued, different methods of controller are called. In the following table we show

to relation between CRUD operations and HTTP request type:

CRUD HTTP request type

Create POST

Read GET

Update PUT

Delete DELETE
Table 2. Relations between CRUD operations and HTTP request types

In the following table you can see how different URIs can be mapped to different

resources of an entity (for example product entity):

Action HTTP method Relative URI

Get a list of all products GET /api/products

Get a product by ID GET /api/products/id

Get a product by category GET /api/products?category=category

Create a new product POST /api/products

Update a product PUT /api/products/id

Delete a product DELETE /api/products/id

Get a list of all products GET /api/products
Table 3. Example of actions and related URI resources for product entity

9

How the implementation of products controller looks in code, we will show you in the

following example. Take into consideration that repository object is instance of class defined for

handling the requests to the data layer. We also excluded the implementation of the Delete

method, but from the rest of the example you can get the idea how it would look.

public class ProductsController : ApiController

{

 public IEnumerable<Product> GetAllProducts()

 {

 return repository.GetAll();

 }

public Product GetProduct(int id)

{

 Product item = repository.Get(id);

 if (item == null)

 {

 throw new HttpResponseException(HttpStatusCode.NotFound);

 }

 return item;

}

public IEnumerable<Product> GetProductsByCategory(string category)

{

 return repository.GetAll().Where(

 p => string.Equals(p.Category, category, StringComparison.OrdinalIgnoreCase));

}

public HttpResponseMessage PostProduct(Product item)

{

 item = repository.Add(item);

 var response = Request.CreateResponse<Product>(HttpStatusCode.Created, item);

 string uri = Url.Link("DefaultApi", new { id = item.Id });

 response.Headers.Location = new Uri(uri);

 return response;

}

public void PutProduct(int id, Product product)

{

 product.Id = id;

 if (!repository.Update(product))

 {

 throw new HttpResponseException(HttpStatusCode.NotFound);

 }

}

}

 Code Example 8. Web API controller example

10

2.2.3 Defining routes

In order to have the proper binding of URIs to controllers, you need to define the routes

in WebApiConfig static class which you can find in the App_Start folder of the project. In there

you should define all the routes of you Web API service.

We will show you in the following code sample how the route should look like for our

Products controller:

2.2.4 Http Clients

Since we have a Web API service, now we have to connect to the service from our

clients. We can use HttpClient class implemented in C# language since we are developing a c#

client. In other languages on other platforms we can also assemble an HTTP client for our API

service with a great ease, because all languages have pretty strong support for initializing HTTP

requests.

Creating a requests to our Web API becomes pretty straightforward. In the following is a

sample request from our HTTP client to our Web API service:

config.Routes.MapHttpRoute(
 name: "Products",
 routeTemplate: "api/products/{id}",
 defaults: new { controller = "products", id = RouteParameter.Optional }
);

using (var client = new HttpClient())

{

 client.BaseAddress = new Uri("http://localhost:9000/");

 client.DefaultRequestHeaders.Accept.Clear();

 client.DefaultRequestHeaders.Accept.Add(new

MediaTypeWithQualityHeaderValue("application/json"));

 // New code:

 HttpResponseMessage response = await client.GetAsync("api/products/1");

 if (response.IsSuccessStatusCode)

 {

 Product product = await response.Content.ReadAsAsync>Product>();

 Console.WriteLine("{0}\t${1}\t{2}", product.Name, product.Price, product.Category);

 }

}

 Code Example 10. Web API client call example

Code Example 9. WebApiConfig example of defining routes

11

2.3 Windows Store applications

2.3.1 Introduction

Microsoft’s answer for increase in popularity of Application stores is Windows store.

Apple joined the store for smartphones and tablets, while Microsoft has separated stores, one

for tablet/desktop applications and one for smartphone applications. It is not such a big

difference from user’s perspective. Probably from the sales point of view joint store is better

idea, so we don’t know why Microsoft didn’t try to make joint store for his applications,

including other products as well.

Windows store applications have support in remarkable .NET environment, including

support in pretty advanced developing tools offered for years from Microsoft. One step further

was made providing the users even wider choice of technologies for building windows store

applications.

2.3.2 Variety of technologies for building apps

In standard offerings to Visual Basic, C#, C++, Microsoft had added yet another very

popular language nowadays, JavaScript. Let’s take a look in the following table which developing

technologies are offered to developers:

Programming Language Layout technology

C# XAML

C++ XAML

Visual Basic XAML

JavaScript HTML
Table 4. Technologies and languages available for developing windows store apps

There are also examples of making runtime components in one of these technologies

and using them from another programming language. So as you can see, take whatever

language you are most familiar with and make the application using it.

2.3.3 Developing for both Windows Phone and Windows store application

Microsoft also made possible to develop and reuse libraries of code between windows

phone and windows store applications. This is a great improvement in development for these

platforms. They are called Portable class libraries.

Few days ago they even published that with new Visual Studio 2013 update it will be

possible to develop unified experience across Windows Phone 8.1 and Windows 8.1, and that

joint template for developing this experience will be offered in development tools.

12

2.3.4 Windows Store

Windows Store is marketplace for Windows 8.0 and Windows 8.1 applications for

desktop and tablet devices. Currently it offers more than 150,000 applications and it’s still

growing in numbers in Microsoft’s pursuit to catch up with prominent stores like Google Play

and App Store. If you submit your app to the store, your app will be available to a large

population of people situated in more than 200 countries.

2.3.5 Publishing to Windows Store

Before publishing to windows store you can do two things that are rather important:

1. Run your app regularly through the Windows App Certification Kit

2. Reserve the name of the app (reservation lasts for one year)

3. Choose your markets and languages

There is a checklist you need to go through during application’s publishing process:

1. Selling details – like price tier, free trial period, release date, choosing markets,

choosing category and subcategory

2. Services – like in-app purchases

3. Ratings – age ratings and rating certificates

4. Cryptography

5. Packages

6. Description – in each language that app supports

7. Note to testers – providing info to certification testers

2.3.6 Deploying Enterprise applications

Sometimes you don’t want for your app to be available through Windows Store. Reasons

can be numerous. Your app connects to some service and you want to make additional

configurations or preparations, or contract definitions before installing and enabling your app

on client’s devices.

With enterprise applications, you also have a greater control of releasing new updates to

your clients, and sometimes that is a crucial step when you need to deploy also your web

service and you want for your clients to have according version of Windows Store application

delivered at the same time. Waiting for store to certificate and publish your app can complicate

your plans of delivering the new updates to your clients as soon as possible.

13

3 Sports Manager application

The Sports Manager application’s greater goal is to be a robust application for managing

competitions and competition events for different sports. In scope of this work, it is developed

for primary sport, futsal, as a sport on which the whole idea will be tested. After futsal, there

are numerous team sports to which the application can be extended like football, basketball,

handball, volleyball, rugby, etc.

The idea for the app came to author from repetitive participation in futsal competitions

organized as separate European universities championships or as part of European universities

games organized by different hosts in coordination with European Universities Sports

Association (EUSA). At the beginning, the author went to these events as competitor, but on

later occasions also as a match commissioner or assistant technical delegate in futsal which has

the responsibilities of to a great extent helping and giving assistance in organizing the detail and

events around the whole competitions.

Figure 1. Sports Manager application logo

14

The competitions through which the author participated are:

 4th European Universities Futsal Championship, Izola (Slovenia), July 23-29,

2007

o as a competitor from University of Zagreb

 5th European Universities Futsal Championship, Wroclaw (Poland), July 14-19,

2008

o as a competitor from University of Zagreb

 7th European Universities Futsal Championship, Zagreb (Croatia), July 18-25,

2010

o as a match commissioner from the host’s organization side

 1st European Universities Games, sport futsal, Cordoba (Spain), July 13-23,

2012

o as assistant technical delegate

 9th European Universities Futsal Championship, Malaga (Spain), July 21-28,

2013

o as assistant technical delegate

 2nd European Universities Games, sport futsal, Rotterdam (Netherlands), July

24 – August 8, 2014

o as assistant technical delegate

15

3.1 Functional requirements

In the system four roles will exist in order to distribute work equally and to allow greater

separation of concerns. It is better to divide work into more roles because in that case each user

with just one role can concentrate more and perform better in the smaller scope of his

responsibilities. In the following table we will enumerate the roles and describe each of the

roles in our system.

Application Role Role description

Competition Administrator The competition administrator is responsible
for generally inserting the competition
participants and events and has the possibility
to print different type of documents or reports
for the competition.

Match Commissioner The match commissioner is responsible for
entering all the main information regarding the
specific match, match participants, match
events, etc. He is also capable of printing the
match record.

Match Statistician The match statistician has the ability to enter
additional match events related to additional
statistics which can be provided for the match.

Match Reporter The match reporter has the ability to pull
details about a match or competition and
report to social media or other stakeholders
interested in information about the
competition.

Table 5. Application roles and their descriptions

In the next chapters we will graphically display possibilities of each application role

through the means of UML use case diagrams. There it will be much easier to distinguish the

responsibilities among roles and see the differences in the capabilities of each role. You will also

be able to see the separation of concerns in the responsibilities granted.

16

3.1.1 Competition administrator role

Figure 2. Competition administrator role use case

17

3.1.2 Match commissioner role

Figure 3. Match commissioner role use case

18

3.1.3 Match statistician role

Figure 4. Match statistician role use case

19

3.1.4 Match reporter role

Figure 5. Match reporter role use case

20

3.2 Non-functional requirements

3.2.1 Ability to work offline

The application will be used in the environment where more than few thousand people

including spectators can be situated in few hundred meters. In those conditions, if the devices

will be connected on the mobile operator networks, they can often be without enough signal or

connection to send data to server in real time. Either if devices are connected to wireless access

points, the chances of constant connection and quality signal are extremely poor.

Therefore the ability to store data locally is of great importance. Because of that, the

choice of robust client is chosen before the option of standard web client that runs in browser.

3.2.2 Syncing local data

Because the data are stored locally, it is important that the syncing feature is available at

predefined periods, or on the events of restored network connection. The framework for

syncing the locally stored data needs to be built.

3.2.3 Touch interface

The simplicity of use and the option of having mobile device which can be easily

transferred to a place of better overview of the pitch or the competition event is mandatory so

the choice of tablet devices with touch interface came as first choice.

3.2.4 Security

The application needs the authentication system and authorization system to make

possible only for authorized personnel to insert and change the data related to competition and

related events. The option of auditing the changed data is a possibility at later stage of

application development because it will greatly improve the identification and sanctioning of

security breaches if and when they happen.

21

4 User experience and interaction design

While designing the interaction in our application we tried to put main effort to the

following features:

 Maintain consistency throughout the system

 Interactive behavior on user interface events

 Make the interface intuitive

 Highlight the features and information that are important to user

4.1 Menu Bar Highlighting

Figure 7. Highlighted example of menu button

In the following four sections we will provide figures of simple but intuitive design of our

pages where you can on real examples see the consistency in the design throughout the system

and also how important information needs to be highlighted and noticeable to user.

Figure 6. Non highlighted example of menu button

22

4.2 Switch competition view

4.3 Competition view

Figure 8. Switch competition view

Figure 9. Competition view

23

4.4 Switch event view

4.5 Event view

Figure 10. Switch event view

Figure 11. Event view

24

5 Architecture

Figure 12. Application's overall architecture

25

5.1 Database layer

The database is implemented in MS SQL Server 2012 system. The initial architecture was

created in SQL Server Management Studio’s designer view. Afterwards the updates of the

database were managed through code.

The database was created with future expansion for other sports in mind. Therefore, the

database might look overly complicated just for the scope of futsal as a sport, but take into

consideration the perspective of storing data for other sports too.

In the following we will enumerate all the tables in the database and briefly describe for

each of them the data stored:

Database table Table description

CompetitionFacilities Facilities and related data like name, latitude,
longitude, etc.

CompetitionMailingLists Mailing lists for specific competitions on which
the competition reports need to be sent

CompetitionPhases Phases of the competition

Competitions Competitions and related basic data

CompetitionTeams Teams related to specific competition

Competitors Competitors related to specific competition and
specific team

Countries Countries, their logos and shortcuts

DatabaseUpdates Database management related data and the
description of database updates

DrawPots Pots related to draws

DrawRankings Ranking of the teams participating in a draw

Draws Draws of a specific competition

GroupsCrossings Crossings defined for groups of a competition
phase

GroupsPlayingFormats Playing formats for a group

GroupTeams Competition teams situated in a specific
competition phase group

MailingListEmails Emails related to a mailing list

MatchCompetitors Roles and data related to specific match for a
competitor

MatchEquipment Equipment assigned to each of the teams for a
specific match

Matches Matches and all basic data for match

MatchEventCompetitors Competitors related to a specific match event

MatchEvents Events related to a match like points, cautions,

26

statistics, etc.

MatchReferees Referees and their roles and grades for a
specific match

MatchTeams Teams involved in a match

MatchWorkers Workers involved in a match, like commentator,
timekeeper, delegate, etc.

Organizations Organizations related to competitions

Persons All the basic data for a person to which all other
tables like referees, workers, competitors are
related to

PhaseGroups Groups of a specific competition phase

PhasePlayingDates Dates related to a competition phase

PlayingDateTimes Times for a specific date of a competition phase

PotTeams Teams situated to a pot of a specific
competition phase draw

Referees Referees and all basic data related to referees
involved in a competition

Sports Sports for which the competitions can be maid

TeamEquipment Team equipment for a specific competition

Teams Teams and basic data for each team

UserCompetitions Users privileges for accessing a specific
competition

Users All users

ValidCompetitionRules Rules valid for a specific competition that
override the general rules defined for sport

ValidRules Rule types

ValidSportRules Rules valid for a specific sport which are
effective in the competition if the rule was not
defined for that competition specifically

Workers Workers and all basic data related to workers
involved in a competition

Table 6. Database tables

27

5.1.1 Competition core tables

Figure 13. Competition core tables

28

5.1.2 Competition schedule tables

Figure 14. Competition schedule tables

29

5.1.3 Match core tables

Figure 15. Match core tables

30

5.1.4 Competition and sport rules tables

Figure 16. Competition and sport rules tables

31

5.1.5 Competition users and mailing lists tables

Figure 17. Competition users and mailing list tables

32

5.2 Model layer (Entity Framework)

The code first workflow was used in the Entity Framework. From the existing database

with reverse engineering the entity framework classes were extracted. In that process, the

significant role had the Entity Framework Power Tools extension for Visual Studio.

With the help of T4 templates, entity, context and mapping classes were generated

directly from database. The things left to do were to make the queries, and insert, update and

delete method for needed entities on top of entity framework.

In the following examples we will show the examples of queries for two main entities of

the application:

Code Example 11. Query for retrieving competition and all related data

Code Example 12. Query for retrieving all competitions

public CompetitionDC GetCompetition(int competitionID)
 {
 return smContext.Competitions
 .Where(c => c.ID == competitionID)
 .Include(c => c.Sport.ValidRules)
 .Include(c => c.Organization)
 .Include(c => c.Country)
 .Include(c => c.Workers.Select(cw => cw.Person))
 .Include(c => c.Referees.Select(cr => cr.Person))
 .Include(c => c.CompetitionTeams.Select(ct => ct.Team))
 .Include(c => c.CompetitionTeams.Select(ct => ct.Competitors))
 .Include(c => c.ValidRules)
 .Include(c => c.CompetitionFacilities)
 .Include(c => c.CompetitionMailingLists)
 .First();
 }

return smContext.Competitions
 .Include(c => c.Sport)
 .Include(c => c.Organization)
 .Include(c => c.Country);

33

Code Example 13. Query for retrieving competition event and all related data

Code Example 14. Query for retrieving all matches of a competition

public MatchDC GetMatch(long matchID)
 {
 return smContext.Matches
 .Where(m => m.ID == matchID)
 .Include(m => m.MatchCompetitiors.Select(mc => mc.Competitor))
 .Include(m => m.MatchEvents)
 .Include(m => m.MatchReferees.Select(mr => mr.Referee))
 .Include(m => m.MatchTeams)
 .Include(m => m.MatchTeams.Select(x => x.CompetitionTeam.Team))
 .Include(m => m.MatchTeams.Select(x => x.CompetitionTeam.Competitors.Select(y => y.Person)))
 .Include(m => m.MatchWorkers.Select(mw => mw.Worker.Person))
 .Include(m => m.TeamEquipments)
 .Include(m => m.CompetitionFacility)
 .Include(m => m.Competition)
 .Include(m => m.Competition.Organization)
 .Include(m => m.Competition.Sport.ValidRules)
 .Include(m => m.Competition.Workers.Select(cw => cw.Person))
 .Include(m => m.Competition.Referees.Select(cr => cr.Person))
 .Include(m => m.Competition.Country)
 .Include(m => m.Competition.ValidRules)
 .Single();
 }

return smContext.Matches
 .Where(m => m.CompetitionID == competitionID)
 .Include(m => m.MatchTeams.Select(mt => mt.CompetitionTeam.Team));

34

5.3 Controller layer (Web API)

Web API is the controller layer of our application. For each important entity or a relation

we have the according controller. In the following table we will show the controllers and related

resources for the few main entities in our application:

Controller Resources

CompetitionsController GET /api/competitions/

GET /api/competitions/{id}

POST /api/competitions/

PUT /api/competitions/{id}

MatchesController GET /api/matches/{id}

PUT /api/matches/{id}

POST /api/matches/

CompetitionMatchesController GET /api/competitions/{id}/matches/{date}

GET /api/competitions/{id}/matches/

MatchEventsController GET /api/matches/{matchID}/matchevents/

GET /api/matches/{matchID}/matchevents/{id}

PUT /api/matches/{matchID}/matchevents/{id}

POST /api/matches/{matchID}/matchevents/

Table 7. Web API controllers for main entities

35

5.4 View layer (Windows 8.1 application)

The client application was made as a Windows 8.1 application. The technologies used

were c# language and XAML for layout. The application was made with a master page layout.

One page with a frame and standard button bar on top was made as master page and all the

other pages just defined the layout of the inner frame.

The communication with the server went through http communication and the format

exchanged was JSON because of the smallest size that it has compared to xml or some other

format of serialized data.

In the following example we will show the code and layout of the master page.

Figure 18. Master page layout

36

<Page
 x:Class="SportsManager.MasterPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:SportsManager"
 xmlns:cc="using:SportsManager.CustomControls"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid x:Name="MasterPageGrid" Background="black">
 <Grid.RowDefinitions>
 <RowDefinition Height="75"/>
 <RowDefinition MaxHeight="1500"/>
 <RowDefinition Height="75"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition MaxWidth="2000" />
 <ColumnDefinition MaxWidth="2000" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>

 <Frame x:Name="frameBody" Grid.Row="1" Grid.Column="1" Grid.ColumnSpan="2">
 <Frame.Background>
 <ImageBrush Stretch="Fill" ImageSource="Assets/Backgrounds/futsal_court2.jpg" AlignmentY="Center
" AlignmentX="Center"/>
 </Frame.Background>
 </Frame>
 <StackPanel x:Name="panelRightButtons" Grid.Column="1" Grid.ColumnSpan="2" Grid.Row="0" Orientatio
n="Horizontal" Height="75" HorizontalAlignment="Center" >
 <TextBlock x:Uid="test.Content"></TextBlock>
 <cc:SMButton Name="btnSwitchCompetitionUser" Click="btnSwitchCompetition_Click"
 ImagePath="/Assets/Buttons/changeUser.png"
 PressedImagePath="/Assets/Buttons/changeUser_press.png" >
 Switch competition
 </cc:SMButton>
 <cc:SMButton Name="btnSwitchEvent" Click="btnSwitchEvent_Click"
 ImagePath="/Assets/Buttons/switch.png"
 PressedImagePath="/Assets/Buttons/switch_press.png">
 Switch event
 </cc:SMButton>
 <cc:SMButton Name="btnSync"
 ImagePath="/Assets/Buttons/sync.png"
 PressedImagePath="/Assets/Buttons/sync_press.png">
 Sync
 </cc:SMButton>
 <cc:SMButton Name="btnSocial"
 ImagePath="/Assets/Buttons/social.png"
 PressedImagePath="/Assets/Buttons/social_press.png">
 Social network
 </cc:SMButton>
 <cc:SMButton Name="btnSettings"
 ImagePath="/Assets/Buttons/settings.png"
 PressedImagePath="/Assets/Buttons/settings_press.png">
 Settings
 </cc:SMButton>
 </StackPanel>
 </Grid>
</Page>

 Code Example 15. Master page layout in XAML

37

6 User manual

6.1 Choose and manage competition

View Actions

1. Click on the most left button in the menu

bar on top

2. Then the window in the next step will be

shown

1. Click on one of the rows representing the

competition that we want to choose

2. The row will be highlighted

3. Click “Open competition” situated on the

bottom of list of competitions

4. Wait for few seconds and the view in the

next step will be opened

1. There will be three columns on the screen,

one representing teams, one referees and

one workers

2. Each of the entities can be chosen and

edited

Table 8. User actions for managing competitions

38

6.2 Choose and manage competition event

View Actions

1. Click on the second from the left button in

the menu bar on top

2. Then the window in the next step will be

shown

1. Click on one of the rows representing the

event that we want to choose

2. The row will be highlighted

3. Click “Open event” situated on the bottom

of list of events

4. Wait for few seconds and the view in the

next step will be opened

1. There will be four columns on the screen,

first and third for home team, and second

and fourth for away team

2. In the left two columns, in the top part,

there are buttons for creating match

events, goals, cards, fouls, etc.

3. It is enough to choose and mark the player

from the list and click on event, and the

event will be created which will be

manifested in the third or fourth column

Table 9. User actions for managing competition events

39

7 Conclusion

We have briefly showed the technologies we’ve used in the project. They are all latest state

of the art technologies on Microsoft’s .NET platform. We also need to mention that we used the

latest stable versions of all these technologies. Regarding the application we developed, it is a

stable program for managing futsal competitions and futsal competition events. Developed for

windows 8.1 operating system, the application keeps the data locally in an xml files, and

connects to sync with service developed as Web API. Never the less, the application still needs

to pass the exhaustive testing phase, and the decision needs to be made whether to distribute

the application as an enterprise application only to customers that purchase it or through

windows store to make it available to everyone.

To conclude, the application idea is solid. There are already potential customers interested

in the idea, like European Universities Sports Association (EUSA) and International University

Sports Federation (FISU). Other potential customers for sure exist somewhere out there,

because there are millions of competitions in dozens of sports organized throughout the world.

Our mission would be to create top quality product with a lot of distinguished features and to

find the customers hiding somewhere in the real world.

Plans for the extension of the application are numerous. Firstly, the idea would be to

extend the application to support different sports, mainly team sports, but other individual

sports are not excluded. Other big milestone would be to extend the application on different

platforms, firstly Android, than if need arises, iOS. Afterwards, there are ideas for the extension

to offer to the clients to create their web site that can easily be built to use the existing web

service and underlying layers of our solution According to that idea, a Content managements

system (CMS) can be built therefore allowing us to more quickly provide the web portals as

additional product to our clients.

40

8 Appendices

8.1 Appendix A: Versioning system details

Detail Value

Type Team Foundation Server

Uri webko.visualstudio.com

Owner marko.brcic@outlook.com

Team project Sports Manager
Table 10. Versioning system details

8.2 Appendix B: Development tools used

Development tool Description

Visual Studio 2013 Microsoft’s popular and robust IDE

MS SQL Server 2012 SQL Server solution from
Microsoft, including Management
Studio for connecting to databases

Fiddler Traffic sniffer and requests
composer from Telerik used for
testing Web API

Notepad++ Simple editor for viewing xml and
json strings

Table 11. Development tools used

Visual Studio 2013 Extension Description

T4 editor Editor for t4 templates

RockMargin Code highlighter

Productivity Power Tools 2013 Set of extra commands added to
Visual studio

Nuget Package Manager Package manager

Entity Framework Power Tools Beta 4 Set of extra commands for
reverse engineering existing
database into entity framework
code first model

Table 12. Visual Studio 2013 extensions used

41

8.3 Appendix C: Visual Studio solution projects

Project name Project description

SportsManager Windows store 8.1 application
project

SportsManager.Tests Windows store 8.1 unit tests
project

SportsManager.UITests Windows store 8.1 user interface
tests project

SportsManagerAPI Web API project

SportsManagerAPI.Tests Web API unit tests project

SportsManagerEF Entity Framework project

SportsManagerModel Model and Http Client project for
different .NET project types and
platforms

SportsManagerDocumentation Project for UML documentation

DatabaseClearAndFill Project for filling database
environment with test data

Table 13. SportsManager solution projects

42

8.4 Appendix D: List of figures

Figure 1. Sports Manager application logo .. 13

Figure 2. Competition administrator role use case .. 16

Figure 3. Match commissioner role use case ... 17

Figure 4. Match statistician role use case .. 18

Figure 5. Match reporter role use case .. 19

Figure 6. Non highlighted example of menu button .. 21

Figure 7. Highlighted example of menu button ... 21

Figure 8. Switch competition view ... 22

Figure 9. Competition view .. 22

Figure 10. Switch event view .. 23

Figure 11. Event view ... 23

Figure 12. Application's overall architecture ... 24

Figure 13. Competition core tables .. 27

Figure 14. Competition schedule tables ... 28

Figure 15. Match core tables .. 29

Figure 16. Competition and sport rules tables ... 30

Figure 17. Competition users and mailing list tables ... 31

Figure 18. Master page layout ... 35

8.5 Appendix E: List of tables

Table 1. Existing development workflows in Entity Framework .. 3

Table 2. Relations between CRUD operations and HTTP request types .. 8

Table 3. Example of actions and related URI resources for product entity 8

Table 4. Technologies and languages available for developing windows store apps 11

Table 5. Application roles and their descriptions... 15

Table 6. Database tables .. 26

Table 7. Web API controllers for main entities .. 34

Table 8. User actions for managing competitions ... 37

Table 9. User actions for managing competition events ... 38

Table 10. Versioning system details ... 40

Table 11. Development tools used ... 40

Table 12. Visual Studio 2013 extensions used ... 40

Table 13. SportsManager solution projects ... 41

file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950902
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950903
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950904
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950905
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950906
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950907
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950909
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950910
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950911
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950912
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950913
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950914
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950915
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950916
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950917
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950918
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950919

43

8.6 Appendix F: List of code examples

Code Example 1. Code first Entity Framework workflow .. 4

Code Example 2. Fluent API example ... 5

Code Example 3. Data annotations example ... 5

Code Example 4. Database migration example ... 5

Code Example 5. Eager loading example ... 6

Code Example 6. Lazy loading example ... 6

Code Example 7. Explicit loading example ... 7

Code Example 8. Web API controller example .. 9

Code Example 9. WebApiConfig example of defining routes .. 10

Code Example 10. Web API client call example ... 10

Code Example 11. Query for retrieving competition and all related data 32

Code Example 12. Query for retrieving all competitions ... 32

Code Example 13. Query for retrieving competition event and all related data 33

Code Example 14. Query for retrieving all matches of a competition ... 33

Code Example 15. Master page layout in XAML .. 36

file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950933
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950934
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950935
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950936
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950937
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950938
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950939
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950940
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950941
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950942
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950943
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950944
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950945
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950946
file:///C:/Users/Marko/Google%20disk/PolimiThesis_MarkoBrcic.docx%23_Toc384950947

44

9 Bibliography

[1] Brown, Pete. Windows Store App Development (2013), C# and XAML.

[2] Moemeka, Elizabeth and Edward. Real World Windows 8 App Development with Javascript (2013),

Create Great Windows Store Apps

[3] Falafel Software. Pro Windows phone App Development,3rd edition(2013)

[4] Lee,Henry and Eugene Chuvyrov. Beginning Windows Phone App Development (2012)

[5] Lee,Henry and Eugene Chuvyrov. Beginning Windows Phone 7 Development ,2nd edition(2011)

[6] Isaacs,Scott and Burns,Kyle. Beginning Windows Store App Development(2013),HTML and JavaScript

edition

[7] Maitra,Sumit. Building a Windows 8 Store App (2013),End-to-End Windows 8 Store Application

development using C# and XAML

[8] Freeman Adam. The Definitive Guide to HTML5 (2011)

[9] Freeman,Adam. Pro ASP.NET MVC 4 (2013)

[10] Troelsten,Andrew. Pro C# 5.0 and the .NET 4.5 Framework (2012) (Expert's Voice in .NET)

[11] Jamie,Kurtz. ASP.NET MVC 4 and the Web API (2013) : Building a REST Service from Start to Finish

[12] Millett,Scott. Proffesional ASP.NET Design Patterns (2010)

[13] Badrinarayanan Lakshmiraghavan. Pro ASP.NET Web API Security (2013) :Securing ASP.NET Web

API

[14] Ugurlu,Tugberk. Pro ASP.NET API (2013) : HTTP Web Services in ASP.NET

[15] Lerman,Julia and Miller,Rowan. Programming Entity Framework: Code First (2011)

[16] Albahari,joseph and Ben. C# 5.0 in a Nutshell (2012)

[17] Lerman, Julia. Programming Entity Framework: Building Data Centric Apps with the ADO.NET Entity

Framework(2010)

[18] Lerman, Julia. Programming Entity Framework: DbContext (2012)

[19] Chadwick,Jess and Snyder,Todd and Panda,Hrusikesh. Programming ASP.NET MVC 4: Developing

Real-World Web Applications with ASP.NET MVC (2012)

[20] Skeet, Jon. C# in Depth,3rd edition (2013)

[21] Badrinarayanan Lakshmiraghavan. Practiacl ASP.NET Web API (2013)

[22] Freeman, Adam. Pro JavaScript for Web Apps (2012)

[23] Collins,Mark. Pro HTML5 with Visual Studio 2012 (2012)

45

[24] Sowell, Eric. Mobile ASP.NET MVC 5 (2013)

[25] Freeman,Adam. Pro ASP.NET MVC 5 (2013)

[26] Bewis, Tony. C# Design Pattern Essentials (2012)

[27] Johnson, Bruce. Professional Visual Studio 2012 (2012)

[28] István Novák ,Zoltan Arvai, György Balássy, David Fulop .Beginning Windows 8 Application

Development (2012)

[29] Garland,John. Windows Store Apps Succinctly

[30] Baharestani Daniel. Mastering Ninject for Dependency Injection(2013)

[31] Mark, Seemann. Dependency Injection in .NET(2011)

[32] Osherove, Roy. The Art of Unit Testing: with examples in C# (2013)

[33] MacDonald, Matthew. Beginning ASP.NET in C# (2012)

[34] Brian Driscoll, Nitin Gupta, Robert Vettor and Zeeshan Hirani. Entity Framework 6 Recipes (2013)

46

10 Internet resources

[35] App features from start to finish (XAML). Retrieved from

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn632431.aspx

[36] App features from start to finish (HTML). Retrieved from

http://msdn.microsoft.com/en-us/library/windows/apps/dn263202.aspx

[37] Installing apps on PC. Retrieved from

http://windows.microsoft.com/en-us/windows-8/apps-windows-store-tutorial

[38] Windows Store DirectX game programming environment. Retrieved from

http://msdn.microsoft.com/library/windows/apps/dn166876.aspx

[39] Publishing an app to the Windows Store. Retrieved from

http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx

[40] Apps for Windows. Retrieved from

http://windows.microsoft.com/en-us/windows-8/apps#Cat=t1

[41] Interaction with apps. Retrieved from

http://msdn.microsoft.com/en-us/windows/apps/hh974576.aspx

[42] Developing UI with XAML. Retrieved from

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465340.aspx

[43] Windows Store Apps Development. Retrieved from

http://www.microsoftvirtualacademy.com/product-training/product-windows-store-apps

[44]Windows 8 App development. Retrieved from

https://www.dreamspark.com/student/windows-8-app-development.aspx

[45] ASP.NET Web API. Retrieved from

http://www.asp.net/web-api/overview

[46] Building ASP.Net Web API Restful Service. Retrieved from

http://www.asp.net/web-api/overview

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn632431.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn263202.aspx
http://windows.microsoft.com/en-us/windows-8/apps-windows-store-tutorial
http://msdn.microsoft.com/library/windows/apps/dn166876.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://windows.microsoft.com/en-us/windows-8/apps#Cat=t1
http://msdn.microsoft.com/en-us/windows/apps/hh974576.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465340.aspx
http://www.microsoftvirtualacademy.com/product-training/product-windows-store-apps
https://www.dreamspark.com/student/windows-8-app-development.aspx
http://www.asp.net/web-api/overview
http://www.asp.net/web-api/overview

47

[47] ASP.NET MVC 5 Full tutorial about new Authentication mechanism. Retrieved from

http://forums.asp.net/t/1944903.aspx?ASP+NET+MVC+5+Full+tutorial+about+new+Authentication+mech

anizm

[48] General ASP.NET development. Retrieved from

http://forums.asp.net/default.aspx/7?General+ASP+NET

[49] Introducing Entity Framework. Retrieved from

http://msdn.microsoft.com/en-us/data/aa937723

[50] Query Optimizations. Retrieved from

http://blog.farreachinc.com/2013/09/26/entity-framework-query-optimizations/

[51] Model Mappings. Retrieved from

http://blog.farreachinc.com/2013/10/10/entity-framework-part-2-model-mappings/

[52] Performance Considerations. Retrieved from

http://msdn.microsoft.com/en-us/library/cc853327%28v=vs.110%29.aspx

[53] Improving Query Performance using Graph-Based Query. Retrieved from

http://www.codeproject.com/Articles/247254/Improving-Entity-Framework-Query-Performance-Using

[54] European University Sports Association. Retrieved from

http://www.eusa.eu/en/eusa/association/about_eusa?sso=done

[55] European University Games. Retrieved from

http://eugames2014.eu/about-the-eugames/

[56] Croatian Academic Sports Federation. Retrieved from

http://eusagames2016.com/?page_id=15

[57] International University Sports Federation. Retrieved from

http://www.fisu.net/en/FISU-today-3417.html

[58] Ninject Extensions. Retrieved from

http://www.ninject.org/extensions.html

[59] Ninject Mini Tutorial part 1 (Stephano Ricciardi). Retrieved from

http://stefanoricciardi.com/2011/01/21/ninject-mini-tutorial-part-1/

[60] Ninject Mini Tutorial part 2 (Stephano Ricciardi). Retrieved from

http://forums.asp.net/t/1944903.aspx?ASP+NET+MVC+5+Full+tutorial+about+new+Authentication+mechanizm
http://forums.asp.net/t/1944903.aspx?ASP+NET+MVC+5+Full+tutorial+about+new+Authentication+mechanizm
http://forums.asp.net/default.aspx/7?General+ASP+NET
http://msdn.microsoft.com/en-us/data/aa937723
http://blog.farreachinc.com/2013/09/26/entity-framework-query-optimizations/
http://blog.farreachinc.com/2013/10/10/entity-framework-part-2-model-mappings/
http://msdn.microsoft.com/en-us/library/cc853327%28v=vs.110%29.aspx
http://www.codeproject.com/Articles/247254/Improving-Entity-Framework-Query-Performance-Using
http://www.eusa.eu/en/eusa/association/about_eusa?sso=done
http://eugames2014.eu/about-the-eugames/
http://eusagames2016.com/?page_id=15
http://www.fisu.net/en/FISU-today-3417.html
http://www.ninject.org/extensions.html
http://stefanoricciardi.com/2011/01/21/ninject-mini-tutorial-part-1/

48

http://stefanoricciardi.com/2011/02/04/ninject-mini-tutorial-part-2/

[61] Introduction to Microsoft DreamSpark. Retrieved from

https://www.dreamspark.com/What-Is-Dreamspark.aspx

[62] Visual Studio 2013. Retrieved from

http://msdn.microsoft.com/en-us/library/dd831853.aspx

[63] Building with Visual Studio. Retrieved from

http://www.visualstudio.com/get-started/overview-of-get-started-tasks-vs

[64] Server and Cloud Platform. Retrieved from

http://www.microsoft.com/en-us/server-cloud/products/sql-server/default.aspx#fbid=j3bZqYVDzkt

http://stefanoricciardi.com/2011/02/04/ninject-mini-tutorial-part-2/
https://www.dreamspark.com/What-Is-Dreamspark.aspx
http://msdn.microsoft.com/en-us/library/dd831853.aspx
http://www.visualstudio.com/get-started/overview-of-get-started-tasks-vs
http://www.microsoft.com/en-us/server-cloud/products/sql-server/default.aspx#fbid=j3bZqYVDzkt

