
POLITECNICO DI MILANO
Facoltà di Ingegneria Industriale

Corso di Laurea Magistrale in Ingegneria Aeronautica

Investigation of the flow
past an open three-dimensional cavity

Relatore: Prof. Franco AUTERI

Tesi di laurea di:
Matteo RIGHI
Matr. 783323

Anno Accademico 2012 - 2013





ad Elisa, mia costante





Il primo ringraziamento va al professor Franco Auteri, mio relatore in questo
lavoro di Tesi. La sua disponibilità smisurata e la sua passione per quello che
insegna mi hanno permesso di capire come poter affrontare i problemi che si
possono incontrare in un lavoro come questo e di crescere dal punto di vista
professionale. A lui tutta la mia stima.
Ringrazio anche Vincenzo Citro, i cui consigli nell’ultima parte del lavoro
sono stati fondamentali sia per il calcolo che l’interpretazione dei risultati.
Un ringraziamento va ai miei compagni di tesi. Il grande supporto e l’amicizia
che ci lega hanno reso davvero tutto più facile.
Infine, il più grande ringraziamento va a mia mamma: senza di te nulla
sarebbe stato possibile.





Abstract

The aim of the present work is to describe the behaviour of an incompressible
boundary layer flow over three-dimensional, open cavities with different aspect
ratios. The principal interest of the work concerns the global stability analysis
of the flow.

The numerical simulations are carried out with the open source solver
NEK5000, which is based on a SEM method for the spatial discretization and
on a BDFk-EXTk scheme for the time discretization. For the two-dimensional
problems of the flow around a cylinder and the boundary layer flow over an
open cavity, results are obtained in good agreement with those available in
the literature for both the base flow and the eigensolution calculation.

A detailed analysis of the flow morphology for the cavity with three aspect
ratios is provided and the present results are compared with experimental
results available in literature. The calculation of the eigenvalues of the
linearised Navier–Stokes problem is carried out for the flow in the cavity
with aspect ratio one for Re = 7000. The results must be considered as
preliminary and further work is necessary for their validation. However,
the good agreement with the stability results for the two-dimensional open
cavity and the three-dimensional lid-driven cavity allows to conclude that the
computed modes are sound from a physical viewpoint.
Keywords: three-dimensional open cavity, linear stability, Görtler vortices,
unsteady instability, NEK5000.





Sommario

In questa tesi viene decritto il comportamento di un flusso incomprimibile
all’interno di una cavità tridimensionale caratterizzata da diversi allungamenti.
L’interesse principale di questo lavoro riguarda l’analisi di stabilità globale.

Le simulazioni numeriche sono state eseguite mediante il solutore open
source NEK5000, che si basa sul metodo agli elementi spettrali per la di-
scretizzazione spaziale e sullo schema BDFk-EXTk per la discretizzazione
temporale. Per i problemi bidimensionali del flusso attorno ad un cilindro e
all’interno di una cavità aperta sono stati ottenuti risultati in buon accordo
con quelli presenti in letteratura sia per il flusso base sia per il calcolo delle
autosoluzioni.

È stata eseguita inoltre un’analisi dettagliata della morfologia del flusso
in cavità con tre diversi allungamenti, ottenendo un buon accordo con i
risultati sperimentali disponibili in letteratura. Gli autovalori sono stati
calcolati per il flusso base in una cavità con allungamento unitario e per
un numero di Reynolds pari a 7000. Questi ultimi risultati devono essere
considerati preliminari e ulteriori analisi sono necessarie per la loro validazione.
Tuttavia, il buon accordo con i risultati di stabilità riguardanti la cavità aperta
bidimensionale e la cavità chiusa tridimensionale permette di concludere che
i modi calcolati sono fisicamente plausibili.
Parole chiave: cavità aperta tridimensionale, stabilità lineare, vortici di
Görtler, instabilità instazionaria, NEK5000.
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Introduction

One of the most important aspects that influences the economic performances
of the global airline industry is the fuel costs. The 2014 IATA fuel fact sheet
highlights that the fuel bill of the global airline industry is forecast to total
$214 billion in 2013, which is an increase of $4 billion over 2012 and is 5
times 2003’s fuel bill ($44 billion). At the same time, the net industry profits
show an increase in the two past years starting from the $7.4 billion in 2012
and arriving to the $12.7 billion expected in 2013. In order to maintain
the positive trend registered from 2010 and forecast also for the 2014, the
introduction of new technologies reducing the fuel consumption and, as a
consequence, the fuel bill is necessary. An important contribution to the
fuel cost could come from reduction of the aerodynamic drag, which is the
most important responsible of the fuel consumption, since the 50% of the
consumption is due to skin friction drag, compared to the 30% coming from
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2 Introduction

lift-induced drag.
Therefore, the study of flow within and over an open cavity, which as

all the large scale roughness elements promote instability and transition to
turbulence with a consequent increase of drag, is very interesting because it
represents a prototypical fluid dynamic problem. Examples of cavity flow
can be the flow over a small hole in the surface of a wing or the flow over
joints, bays, and so on. Investigating this kind of flows is extremely important
since it can be a source of noise and of unsteady loads and vibrations and
they can promote instability and transition to turbulence. If we consider just
the aeronautical applications, it can be observed that several devices both
in the external and internal aerodynamic surfaces of an aircraft, from the
aerodynamic view point, behaves as cavity flows. For instance, we can cite
the holes for screws and rivets, the cavity which is formed between the flaps
and ailerons and the rest of the wing when these devices are activated, the
wheel wells and holes for the pressure probes.

While the aeronautical applications often involve transonic Mach numbers,
in this work we will assume the incompressibility of the flow. There are two
main reasons that support this simplification. First, while the Mach number
of the flow out of the cavity could be quite large, the Mach number within
the cavity itself is by far lower, since the cavity flow is driven by the shear
stress near to the wall and not directly by the external flow. Second, some
of the phenomena that can be observed in cavity flows for quite high Mach
numbers can be observed also for low Mach numbers, where the incompressible
hypotheses is valid. Therefore, it is interesting to investigate this regime.

In this work, the attention is concentrated on a three-dimensional cavity of
fixed square section and variable span. While the study of the cavity flow has
been the subject of several investigations in the past, the literature is mainly
concerned with closed cavities or two-dimensional flows. To the author’s best
knowledge, the stability of the flow in and over a three-dimensional cavity
has never been investigated before by numerical techniques.

Cavity flow

The behaviour of a two-dimensional and compressible cavity flow is well
described by Yamouni, Sipp and Jacquin [34] and Colonius [12] as the sum of
two physical mechanisms which are responsible of the instability.

The first one, described by Rossiter [28], is the feedback aeroacoustic
mechanism or flow acoustic resonance due to the small flow disturbances
which arise before the cavity and that are amplified in the shear layer across the
cavity mouth through the Kelvin-Helmholtz instability. These disturbances
are convected downstream and the successive interaction with the trailing
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edge of the cavity implies the formation of an irrotational and unsteady field,
which can be seen as an acoustic wave system, that propagates upstream
in the flow and that further excites the disturbances at the leading edge
and in the shear layer. If these acoustic waves are able to increment the
strength of the disturbances, and this is possible if the frequencies of the
disturbances and the acoustic waves are integer multiples, then a resonance
condition can occur at a determined frequency. So, this first mechanism
can be seen as a feedback loop that causes the instability of the flow and
it was denoted by Rowley, Colonius and Basu [29] as shear-layer mode.
Several semi-empirical formulas can be found in the literature to calculate
the resonance frequency which depends on parameters like the Mach number,
the boundary layer momentum thickness and the dimensions of the cavity. In
an incompressible regime the propagation speed of the acoustic waves tends
to infinity and so the feedback to the leading edge is essentially instantaneous
and purely hydrodynamic (it is sometimes termed “pseudosound mechanis”).
In this regime some experiments realized confirm this instability mechanism.
Chatellier, Laumonier and Gervais [9] observed at very low Mach number
that the oscillations are driven by convective waves and they confirmed the
presence of a feedback mechanism at the cavity mouth. More recently, Basely
et al. [3] obtained the same results by a PIV measurements.

The second mechanism is the wake mode, identified for the first time by
Gharib and Roshko [18] during some experiments in the incompressible regime
for the axisimmetric cavity. As the length to depth ratio or the Reynolds
number increase, they found that the oscillating flow over the cavity is more
similar to the wake behind a bluff body, like a cylinder, than a free shear
layer and that this mode is associated to an important increase in drag, due
to the difference in pressure between the upstream and downstream walls
of the cavity. Rowley, Colonius and Basu [29] observed that this mode is
characterized by a large scale vortex that departs from the leading edge
causing a flow separation. A second separation occurs at the cavity trailing
edge where the vortex is ejected. During the evolution of this vortex a strong
back-flow is present in the cavity and this is probabily the feedback mechanism
that causes the instability of the flow, that is reached when the oscillation
amplitude of the wake mode is such that the recirculating flow is sufficiently
strong. The mode frequency is independent on the Mach number of the flow,
therefore, this is a non-acoustic or hydrodynamic instability. Experiments for
the rectangular cavity do not give good results about this mode because three-
dimensional effects and turbulent boundary layer, which are often present
in an experimental set-up, induce a decrease in the oscillation amplitude so
that the instability condition is not reached. Further observations about this
mode can be found in the works by Shieh and Morris [30] and Cain et al. [6].
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Rowley, Colonius and Basu [29] showed that a transition between the
shear-layer mode and the wake mode is possible and it can occur when the
length of the cavity becomes large compared with the upstream boundary
layer thickness, or when the Mach or Reynolds numbers are increased. This
transition may be related to an absolute instability mechanism and, in
particular, to the fact that the region of reverse flow in the wake mode
is larger compared to that of the shear-layer mode.

These two physical mechanisms play a role in both the two-dimensional and
the three-dimensional flow. In the 3D case, a third mechanism that depends
on the strength of the recirculation flow near the cavity walls and that involves
centrifugal forces has to be considered. Bres and Colonius [5] performed a
stability analysis to three-dimensional perturbations of a two-dimensional
flow field exploiting the Rayleigh discriminant criterion to provide a sufficient
condition for the instability. Good agreement with these numerical results was
obtained by Faure et al. [16] during some experiments about the development
of the flow in a rectangular cuboid cavity for different Reynolds numbers
and cavity shapes. Finally, Zhang and Naguib [35] studied experimentally
the effects of the finite cavity width on the self-sustained oscillations in a
low Mach number flow comparing the results obtained with an axisymmetric
cavity. The experiments show that the walls cause a strong amplification of
the pressure oscillations measured on the cavity floor at a distance of one
depth from the side walls.

As in the cylinder case, the results of the stability analysis are exploited
to perform passive or active control and suppression of the oscillations of the
flow in the open cavity. An overview of the proposed methods can be found
in the article by Cattafesta et al. [8].

Stability review

The dynamics of a cavity flow can be described by the Navier–Stokes equations
and the behaviour of the system can be seen as a global oscillator characterized
by a spatial distribution of fluctuating structures called global modes. Starting
from the studies of Chomaz [10], a system with these characteristics can be
analysed at local level determining an internal and self-sustained resonance
condition at a precise frequency that arises when a region of absolute instability
of sufficient size develops [19]. These local properties can be connected to the
behaviour of the global system through the WKBJ approach, which is valid
for slowly evolving flows and which allows to identify a specific position in
the instability region that acts as a wavemaker, i.e. a region in the flow field
where the physical mechanisms that cause the resonance and the instability of
the system are localised. However, for the cavity problem studied in this work,
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this theory does not give good results because the hypotheses of the WKBJ
approach are not verified, in particular since there are important non-parallel
effects.

Hence, to examine the stability characteristics of the flow in an open
cavity a global approach based on the structural sensitivity analysis can be
used, as proposed by Giannetti and Luchini [19] for the investigation of the
flow past a two-dimensional circular cylinder. A similar analysis concerning
the sensitivity to perturbations in the base flow was used by Marquet, Sipp
and Jacquin [24] to perform a passive control of the cylinder wake by the
introduction of a steady force acting on the base flow. Starting from a
DNS (direct numerical simulation) this method employs a numerical modal
analysis with a linearized theory. In particular, it consists of a linearization
of the Navier–Stokes equations and the subsequent resolution of a generalized
eigenvalue problem imposing homogeneous Dirichlet conditions on the domain
boundary and a random perturbation superimposed to the steady flow as
initial condition. The resulting spectra permits to understand if the flow
is stable or not, while the eigenvectors corresponding to the most unstable
eigenvalues are useful to localize the regions responsible of the instability.

An important tool necessary for the aforementioned analysis is the adjoint
eigenvalue problem. In fact, the structural sensitivity analysis requires both
the least stable eigenfunctions of the direct Navier–Stokes operator, which
describe the flow oscillations, and the eigenfunctions of the adjoint operator.
In fact, Chomaz [10] asserts that the wavemaker can be identified as the
overlapping area between the direct and the adjoint eigenvectors and this is
confirmed by the results published by Giannetti and Luchini [19].

Aim of the study and work structure

The principal objective of this work of thesis is to understand the behaviour
of the flow over an open, three-dimensional cavity, and, in particular, to
investigate the principal stability characteristics, examining the shape of the
unstable global modes.

The work is structured as follow:

• The first chapter introduces the principal tools applied for the stability
analysis. The theoretical constructs of structural sensitivity and recep-
tivity, which are the basis of the global stability analysis, are illustrated
in detail;

• The second chapter briefly describes NEK5000, the open source solver
utilised for the computation of the base flow and the eigensolutions of the
system. In particular, both the spatial and the temporal discretization
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strategies will be explained as well for the eigenvalues computation.
In the last part of this chapter the validation of the code is done by
the comparison of the results about the two-dimensional cylinder and
the two-dimensional open cavity with those present in the papers by
Giannetti and Luchini [19] and by Sipp and Lebedev [32];

• The third chapter delineates the morphology of the flow over the cavity
with aspect ratios AR = 2 and AR = 3. After a short description of
the mesh, of the boundary and initial conditions and of the incoming
boundary layer, the principal vortical structures that characterize the
flow are introduced. The final section of this chapter is dedicated to
the explanation of the principal properties of the flow in unsteady
conditions;

• The last chapter presents the stability results obtained for the cavity
with AR = 1 for Re = 7000. In particular, since the absence of
references about eigensolutions relative to three-dimensional cavity in
literature, the obtained results are compared with those about to the
two-dimensional open cavity an the lid-driven cavity, confirming that
the spectrum and the eigenvectors computed have a physical sense.



1 | Mathematical model

The motion of a viscous newtonian fluid in an open cavity can be repre-
sented by the velocity and pressure fields b = (u, p), whose behaviours are
described by the three-dimensional, unsteady, incompressible Navier–Stokes
equations [26]:

∂u
∂t

+ (u · ∇)u− 1
Re
∇2u +∇p = 0

∇ · u = 0,
(1.1)

which can be written in compact form

∂b
∂t

= F(b). (1.2)

In these equations Re denotes the Reynolds number, u denotes the velocity
field, whose components are u in the stream-wise x direction, v in the cross-
stream y direction and w in the wall-normal z direction and p denotes the
reduced pressure. The Reynolds number is defined as:

Re = L U∞
ν

(1.3)

where L is the reference length corresponding to the dimension of cavity
in x direction, U∞ is the modulus of the free-stream velocity and ν is the
kinematic viscosity of the flow. In order to find a solution to the equations, it
is necessary to introduce appropriate initial and boundary conditions. On
the surface of the cavity, a no-slip and no-penetration condition is imposed

u = 0 on Γc ∀t, (1.4)

while on the inflow boundary and as initial condition, the Blasius bound-
ary layer velocity distribution is assigned. The Blasius profile is the two-
dimensional solution of the Prandtl boundary layer equations over a semi-
infinite plate for a uniform free-stream velocity. Finally, to remove the



8 Mathematical model

indeterminacy of the of the pressure field , a value for p has to be imposed in
one point of the domain.

For the non-linear system (1.2), different equilibrium solutions may exist
whose stability properties have to be investigated separately. In this thesis,
after a linearization of the Navier–Stokes equations, the Lyapounov indirect
method will be applied for which it will be necessary to calculate the eigenvalue
of the system in the equilibrium point.

1.1 Linearization of Navier–Stokes equations
To investigate the linear stability properties of a steady solution, the Navier–
Stokes equations must be linearized. Assuming the existence of a steady
solution B = (U, P ) of the system, called base flow, such that F(B) = 0, the
generic solution of the Navier–Stokes equations can be expressed as the sum
of a steady part given by the base flow and a small unsteady perturbation as

u(x, y, z, t)→ U(x, y, z) + u(x, y, z, t), (1.5a)
p(x, y, z, t)→ P (x, y, z) + p(x, y, z, t), (1.5b)

where u and p, in these formulae, represent the unsteady perturbation fields.
Now, substituting the generic solution b(x, y, z, t)→ B(x, y, z) + b(x, y, z, t),
given by the (1.5), in the Navier–Stokes equations (1.1) and neglecting all
the quadratic terms, the following linearized system is obtained

∂u
∂t

+ (U · ∇)u + (u · ∇)U− 1
Re
∇2u +∇p = 0

∇ · u = 0,
(1.6)

which describes the evolution of the perturbed flow field b(x, y, z, t).
To complete this system the appropriate initial and boundary conditions

are introduced

u(r, 0) = u0(r) for t = 0 (1.7a)
u(r, t) = uw(s, t) on Γc ∀t (1.7b)
b(r, t)→ 0 as r→∞ ∀t, (1.7c)

where r and s are two generic vectors which represent the position inside the
domain and along the border, while u0 is the initial condition and uw is the
value of the velocity perturbation on the cavity surface Γc. The condition
(1.7c), which asserts that the perturbation field has to vanish as r→∞, is
strictly related to the fact that the initial condition u0 has a compact support.
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As in eq. (1.1), the indeterminacy of the perturbed pressure field can be
eliminated specifying the value of the the pressure in a generic point of the
domain.

The linearized Navier–Stokes equations (1.6) (LNSE in the following) can
be rewritten in an equivalent but more compact form as

∂u
∂t

+ L (U, Re)u +∇p = f(r, t)

∇ · u = Q(r, t),
(1.8)

where L (U, Re) represents the linearized Navier–Stokes operator

L (U, Re) = (U · ∇). . . + (. . . · ∇)U− 1
Re
∇2. . . . (1.9)

Finally, in the right-hand side of the LNSE (1.8), two new terms are introduced
and, in particular, f(r, t) represents the effects of an external force and Q(r, t)
takes into account a possible volume source in the flow field. Like the initial
condition, both f and Q have a compact support in accordance with the
far-field radiation condition (1.7c).

1.2 Adjoint Navier–Stokes equations
A useful tool in the analysis of the stability of a flow is the adjoint operator [23].
For instance the eigenmode of the adjoint operator are useful to locate the
wavemaker region of the flow by investigating the structural sensitivity and
to study the receptivity of the system. The adjoint operator is, in fact, an
operator whose eigenfunctions are orthogonal to all but one eigenfunctions of
the direct operator and it plays an important role in many applications, like
optimization and control. It can be defined as follow:

Definition 1 (Adjoint operator) Consider the linear operator M such
that M : D(M ) ⊆ X → Y , where X and Y are Hilbert spaces and D(M ) is
the operator domain. A necessary and sufficient condition for the existence of
the adjoint operator M + of M is that the closure of D(M ) is coincident with
X. It can be defined in this way: v ∈ X is in the domain D(M ) of M if and
only if there exists v+ ∈ X such that, for all u ∈ D(M ), (M u, v) = (u, v+),
where (u, v) denotes the L2 inner product between u and v. Then M +v = v+

and so:

(M u, v) = (u,M +v). (1.10)
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In the case of a finite-dimensional linear operator, that can be described
as a matrix, the adjoint operator is the Hermitian matrix (conjugated and
transposed matrix). For more information about the adjoint operator and its
applications one can refer to [14]. A simple and useful example to understand
the procedure to get the adjoint operator is the following. Let us consider
the second order linear and differential operator

M = f
d2 . . .

dx2 + g
d . . .

dx
+ h . . . (1.11)

defined for x ∈ (a, b), where f , g and h are constant coefficients. Applying
the operator to a function u ∈ H1 and employing the L2(a, b) inner product
with another continuous function v, it results:

(Mu, v) =
∫ b

a
vMu dx =

∫ b

a

(
v f

d2u

dlx2 + v g
du

dx
+ v h u

)
dx =

=
[
f v

du

dx
− f u dv

dx
+ g u v

]b
a

+
∫ b

a

(
f
d2v

dx2 − g
dv

dx
+ h v

)
u dx.

(1.12)

In the right-hand side the term in the square brackets is called bilinear
concomitant, while the integral contains the adjoint operator applied to the
function v, that is

M + = d2(f . . .)
dx2 − d(g . . .)

dx
+ h . . . . (1.13)

Since the construction of M + starting from M is based on (1.10), the bilinear
concomitant evaluated on the endpoints of the domain must vanish. This
represent a compatibility condition that relates the boundary conditions of
the direct and the adjoint problem in order to define the adjoint operator of
the system.

In the case of the linearized Navier–Stokes equations, the adjoint operator
is defined starting from the generalized Lagrange identities, described for
example by Ince [21], which are obtained applying differential identities to
the product of functions and operators. An example can be given considering
the ∇ operator and the functions v (vector) and q (scalar):

∇ · (qv) = q∇ · v + v · ∇q. (1.14)

In order to apply the generalized Lagrange identities, the first of the
Navier–Stokes equations in homogeneous form (1.6) is multiplied by a vector
field v, while the second equation by a scalar field q, that form the generic
field c = (v, q). The mathematical steps necessary to treat each term are
reported hereafter.
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• Unsteady term

v · ∂u
∂t

= ∂(v · u)
∂t

− u · ∂v
∂t

(1.15)

• First advection term

v · [(U · ∇)u] = vrUs
∂ur
∂xs

=

= ∂(vrUsur)
∂xs

− urvr
∂Us
∂xs
− urUs

∂vr
∂xs

=

= ∇ · [U(u · v)]− u · [(U · ∇)v]

(1.16)

• Second advection term

v · [(u · ∇)U] = vrus
∂Ur
∂xs

=

= us
∂Ur
∂xs

vr = u · [(∇U) · v]
(1.17)

• Viscous term

v · ∇2u = vr
∂2ur
∂xs∂xs

= vr
∂

∂xs

(
∂ur
∂xs

)
=

= ∂

∂xs

(
vr
∂ur
∂xs

)
− ∂ur
∂xs

∂vr
∂xs

=

= ∂

∂xs

(
vr
∂ur
∂xs

)
− ∂

∂xs

(
ur
∂vr
∂xs

)
+ ur

∂2vr
∂xs∂xs

=

= ∇ · [(∇u) · v]−∇ · [(∇v) · u] + u · ∇2v

(1.18)

• Pressure term

v · ∇p = ∇ · (pv)− p∇ · v (1.19)

• Incompressibility term

q∇ · u = ∇ · (qu)− u · ∇q (1.20)
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Assembling all these terms, the following identity is obtained:

v ·
[
∂u
∂t

+ (U · ∇)u + (u · ∇)U− 1
Re
∇2u +∇p

]
+ q∇ · u+

+u ·
[
∂v
∂t

+ (U · ∇)v− (∇U) · v + 1
Re
∇2v +∇q

]
+ p∇ · v =

=∂(u · v)
∂t

+∇ ·
[
U(u · v) + 1

Re
(∇v) · u− 1

Re
(∇u) · v + pv + qu

]
.

(1.21)

In order to compute the L2(Ω) product and to apply the adjoint definition
(1.10), this identity is integrated over the domain R × Ω, where R is the
domain for the time variable t, while Ω is the domain for the position vector
r. Exploiting integration by parts and the divergence theorem, thanks to the
imposed boundary conditions and supposing that the perturbation field decays
for t→ ±∞, the right-hand side of the equations (1.21), which corresponds
to the bilinear concomitant, is null, while the left-hand side becomes

∫
R×Ω

{
v ·
[
∂u

∂t
+ (U · ∇)u + u · ∇)U

]
+ 1
Re
∇v · ∇u+

− p∇ · v + q∇ · u
}

+

+
∫
R×Ω

{
u ·

[
∂v

∂t
+ (U · ∇)v− (∇U) · v

]
− 1
Re
∇u · ∇v+

− q∇ · u + p∇ · v
}

= 0.

(1.22)

The first integral can be seen as the weak formulation of the LNSE, and,
consequently, the second integral is the weak formulation of the adjoint
equations from which it is possible to extract the strong formulation of the
adjoint Navier–Stokes equations

∂v
∂t

+ (U · ∇)v− (∇U) · v + 1
Re
∇2v +∇q = 0

∇ · v = 0,
(1.23)

and the adjoint of the linearized Navier–Stokes operator, which reads

L +(U, Re) = (U · ∇). . . − (∇U) · . . . + 1
Re
∇2. . . . (1.24)
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Also for the solution of the adjoint problem it is necessary to introduce the
appropriate boundary conditions, which are very similar to the ones of the
direct problem. They can be expressed as

v(r, t) = 0 on Γc ∀t (1.25a)
c(r, t)→ 0 as r→∞ ∀t. (1.25b)

where the first one is a homogeneous condition imposed on the cavity surface,
while the second one implies that the adjoint field has to vanish for r→∞.

1.3 Structural sensitivity
The first step necessary to investigate the stability of a base flow is the global
linear stability analysis. This analysis starts writing the perturbations in the
form of global modes as

u(r, t) = û(r) exp(σt) (1.26a)
p(r, t) = p̂(r) exp(σt), (1.26b)

where σ is the complex eigenvalue associated with the complex eigenfunction
b̂ = (û, p̂). Now, substituting û and p̂ in the LNSE (1.8), the direct eigenvalue
problem is obtained

σû + (U · ∇)û + (û · ∇)U− 1
Re
∇2û +∇p̂ = 0

∇ · û = 0,
(1.27)

and, for its resolution, the following boundary conditions are imposed

û(r, t) = 0 on Γc (1.28a)
b̂(r, t)→ 0 as r→∞. (1.28b)

The non-trivial solutions of this problem are the sets of direct global modes
and, associated to each mode, the eigenvalue σ = λ+ iω gives information
about the growth rate with its real part λ and about the oscillation frequency
with its imaginary part ω. Since the problem is linearized, the stability of the
system can be studied looking at the real part of the eigenvalue: if Re(σ) < 0,
the associated mode is stable, while if Re(σ) > 0 the mode is unstable. In
this last case the mode grows with an exponential trend until the non linear
effects become important.

So, first of all, it is necessary to calculate the eigenvalue with the largest
real part, termed σ1, because it is the most unstable if Re(σ1) > 0 or the
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least stable if Re(σ1) < 0, and, therefore, this is the eigenvalue which controls
the behaviour of the system. At this point, it is interesting to analyse how
the eigenvalue σ1 is sensitive to a perturbation

σ1 → σ1 + σ′1, (1.29)

where σ′1 denotes the perturbation of the eigenvalue. By investigating the
sensitivity of the least stable eigenvalue to a localized feedback will highlight
the region of the flow where the instability mechanisms of the system acts.

The introduction of a disturbance in the flow field causes modification of
the generic direct eigensolution

σ → σ + σ′, (1.30a)
û→ û + û′, (1.30b)
p̂→ p̂+ p̂′, (1.30c)

where the perturbations are second order terms. Substituting the (1.30) in
the direct eigenvalue problem (1.27) and neglecting the quadratic terms, this
equation for σ′ is obtained

σû′ + L (U, Re)û′ +∇p̂′ = −σ′û−L ′(U′)û

∇ · û′ = 0,
(1.31)

where L is the linearized Navier–Stokes operator (1.9), while L ′ is the
perturbed Navier–Stokes operator defined as

L ′(U′) = (U′ · ∇) . . .+ (. . . · ∇)U′. (1.32)

In order to calculate the perturbation σ′ of the eigenvalue it is necessary
to introduce the adjoint eigenvalue problem, whose generic solution, called
global adjoint mode, can be expressed as

v(r, t) = v̂(r) exp(−σt) (1.33a)
q(r, t) = q̂(r) exp(−σt), (1.33b)

where σ is the same eigenvalue of the corresponding direct global mode. The
adjoint eigenvalue problem is obtained introducing the (1.33) in the adjoint
Navier–Stokes equations (1.23) and can be written in this form

−σv̂ + L +(U, Re)v̂ +∇q̂ = 0

∇ · v̂ = 0.
(1.34)
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Now, the generalized Lagrange identities are applied to the direct eigen-
value problem obtaining an equation very similar to (1.21), where u and p are
replaced with the direct eigenfunctions û and p̂, while v and q are replaced
by the adjoint eigenfunctions v̂ and q̂

v̂∗·
[
σû + L (U, Re)û +∇p̂

]
+ q̂∗∇ · û+

+û·
[
−σv̂∗ + L +(U, Re)v̂∗ +∇q̂∗

]
+ p̂∇ · v̂∗ =

= ∇·
[
U(û · v̂∗) + 1

Re
(∇v̂∗) · û− 1

Re
(∇û) · v̂∗ + p̂v̂∗ + q̂∗û

]
.

(1.35)

In order to compute the L2(Ω) inner product, in the previous equation the
adjoint eigenfunctions are introduced as their complex conjugate according
to the definition of the L2(Ω) inner product because, in general, they are
complex functions. The integration over the domain Ω leads to this new
equation

∫
Ω

{
v̂∗·
[
σû + L (U, Re)û +∇p̂

]
+ q̂∗∇ · û

}
=

=
∮
∂Ω

n̂·
[
U(û · v̂∗) + 1

Re
(∇v̂∗) · û− 1

Re
(∇û) · v̂∗ + p̂v̂∗ + q̂∗û

]
,

(1.36)

where the right-hand side is obtained applying the divergence theorem. Since
homogeneous boundary conditions are imposed for direct and adjoint eigen-
functions, the right-hand side is null and the previous equation becomes

∫
Ω

{
v̂∗ ·

[
σû + L (U, Re)û +∇p̂

]
+ q̂∗∇ · û

}
= 0. (1.37)

This last result is now substituted in the perturbed direct eigenvalue problem
such that the equation (1.31) results∫

Ω
v̂∗ ·

[
−σ′û−L ′(U)û

]
= 0 (1.38)

and inverting this relation it is possible to calculate the modulus of σ′

|σ′| =

∣∣∣∫
Ω
v̂∗ ·L ′(U)û

∣∣∣∣∣∣∫
Ω
v̂∗ · û

∣∣∣ . (1.39)



16 Mathematical model

If the perturbation is localised in a point of the flow field, it can be
expressed in the form of a Dirac delta function δ and, thus, the perturbed
operator becomes

L ′ = δ(x− x0, y − y0, z − z0)L (1.40)

where x0, y0 and z0 are the coordinates of the perturbation point and L is a
tensor whose dimension is equal to the number of space dimensions. Thanks
to the Dirac delta function properties, the modulus of the perturbation (1.39)
can be written as

|σ′| = |v̂
∗(x, y, z)Lû(x, y, z)|∣∣∣∫

Ω
v̂∗ · û

∣∣∣ (1.41)

and the application of the Cauchy-Schwarz inequality leads to the following
relation

|σ′| ≤ ‖L‖‖v̂
∗(x, y, z)‖‖û(x, y, z)‖∣∣∣∫

Ω
v̂∗ · û

∣∣∣ , (1.42)

which permits to define the structural sensitivity parameter

s(x, y, z) = ‖v̂
∗(x, y, z)‖‖û(x, y, z)‖∣∣∣∫

Ω
v̂∗ · û

∣∣∣ . (1.43)

Where s(x, y, z) is maximum, the system will be more sensitive to the per-
turbation and, consequently, in these points the wavemaker, i.e. the region
where the instability mechanism acts, is localized. In particular, the variation
of the eigenvalue with larger real part is proportional to the product between
the direct and the adjoint eigenvector of the least stable mode.

Following the approach of Luchini and Bottaro [23], the structural sen-
sitivity parameter can be computed even considering generalized, discrete
direct and adjoint problems

Ab̂ = σMb̂ and ĉ∗A = σĉ∗M, (1.44)

where A is the discrete matrix that describes the dynamics of the system
while M is the discrete mass matrix.

The differentiation of the direct and the adjoint eigenvalue problems gives

|σ′| = ĉ∗δAb̂
ĉ∗Mb̂

, (1.45)
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and, if δA is a localized perturbation, the previous identity can be rewritten
in the following form

|σ′| = ĉ∗i b̂j

ĉ∗Mb̂
δAij. (1.46)

The perturbation δAij represents the effect of a localised force in a point
i which is held proportional to the velocity perturbation in a point j, for
example thanks to a feedback mechanism. In this way, the previous equation
can be seen as the discrete form of the equation (1.41), and, in addition to
underline that the structural sensitivity is proportional to the product of the
direct and adjoint eigenfunctions, it permits to evidence that the sensitivity
parameter s quantifies the effect of the perturbation of the system, taking into
account the influence of the perturbation of the matrix A, which describes
the dynamic of the system.

1.4 Receptivity

The structural sensitivity permits to investigate the effects of a localized
velocity feedback on the linearized Navier–Stokes equations, but other types
of disturbance can act on the system. Thanks to the receptivity it is possible
to study the effects of external forcing and initial and boundary conditions
on the asymptotic behaviour of the system. An interesting tool useful for the
analysis of the response of a linear dynamic system is the Laplace transform,
which, when it is applied to the linearized Navier–Stokes equations (1.8) with
the initial and boundary conditions (1.7), gives



σû + (U · ∇)û + (û · ∇)U + 1
Re
∇2û +∇p̂ = f̂ + u0

∇ · û = Q̂

û(r, σ) = ûw(s, σ) on Γc ∀σ

b̂(r, σ)→ 0 as r→∞ ∀σ,

(1.47)

where “ ˆ ” indicates the generic transformed quantity while σ is the Laplace
variable. The system can also be rewritten in this matrix form

[
σ + L (U, Re) ∇

∇· 0

] [
û
p̂

]
=
[
f̂ + u0

Q̂

]
, (1.48)
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Figure 1.1. Bromwich integration path.

and thanks to the Mellin transform the response of the system in the time
domain is[

û
p̂

]
= 1

2πi

∫ γ+i∞

γ−i∞
eσt

[
σ + L (U, Re) ∇

∇· 0

]−1 [f̂ + u0

Q̂

]
dσ, (1.49)

where γ is a real number such that all the singularities of the system are on
the left of the integration path, which is also called Bromwich path, as is
shown in figure 1.1. In particular, γ has to be larger than the real part of σ1
which is the singularity associated to least stable mode that dominates the
response of the system for large time. In fact, if Re(σ1) > 0 the response will
diverge with an exponential trend, while if Re(σ1) < 0 the response will decay
as exp(σ1t) and, therefore, the long time behaviour of the flow is characterized
by the nature of σ1.

Thanks to the integration properties of the analytic functions, the Bromwich
path can be modified and, in particular, it can be moved on the left such that
the first singularity σ1 is out of the path (see figure 1.1). In order to maintain
the same value of the integral (1.49), it is necessary to consider the residual
of σ1 and the response of the system becomes[

u
p

]
=Res

(
eσt

[
σ + L (U, Re) ∇

∇· 0

]−1 [f̂ + u0

Q̂

])
+

+ 1
2πi

∫ γ1+i∞

γ1−i∞
eσt

[
σ + L (U, Re) ∇

∇· 0

]−1 [f̂ + u0

Q̂

]
dσ,

(1.50)

where, for long time, the second term of the right-hand side is null while the
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first term can be related to the most unstable eigenvalue σ1 in this way

Res(σ1) = lim
σ→σ1

(σ − σ1)
(
eσt

[
σ + L (U, Re) ∇

∇· 0

]−1 [f̂ + u0

Q̂

])
. (1.51)

This limit is calculated thanks to the adjoint operator. Starting from the
generic adjoint eigenfunction {vi, qi} relative to the eigenvalue σi, the Laplace
transform and the successive integration of the equation (1.21), which was
obtained applying the generalised Lagrange identities to the Navier–Stokes
equations, gives

∫
Ω

(
v̂∗i ·

[
σû + (U · ∇)û + (û · ∇)U− 1

Re
∇2û +∇p̂

]
+ q̂∗i∇ · û

)
+

+
∫

Ω

([
−σiv̂∗i + (U · ∇)v̂∗i − (∇U) · v̂∗i + 1

Re
∇2v̂∗i +∇q̂∗i

]
· û +∇ · v̂∗i p̂

)
=

=
∫

Ω

(
(σ − σi)v̂∗i · û +∇ ·

[
v̂∗i · ûU− 1

Re
(∇û) · v̂∗i + 1

Re
(∇v̂∗i ) · û + p̂v̂∗i + q̂iû

])
.

(1.52)

The second line of the left-hand side corresponds to the adjoint eigenvalue
problem and, consequently, is zero. Considering the linearized and transformed
equations (1.47) the first line of the left-hand side can be rewritten in a different
form such that the previous equation becomes∫

Ω

[
v̂∗i · (u0 + f̂) + q̂∗i Q̂

]
=
∫

Ω
(σ − σi)v̂∗i · û+

+
∫

Ω
∇ ·

[
(v̂∗i · û)U + 1

Re
(∇v̂∗i ) · û−

1
Re

(∇û) · v̂∗i + p̂v̂∗i + q̂∗i û
]
.
(1.53)

Applying the divergence theorem to the second integral of the right-hand side
and considering homogeneous conditions on the boundary for vi and that the
adjoint field has to decay for r →∞, an equation for û is obtained

(σ − σi)
∫

Ω
v̂∗i · û =

∫
Ω
Fi −

∫
∂Ω
Bi, (1.54)

where Fi = v̂∗i ·(u0 + f̂)+ q̂∗i Q̂ and Bi = n̂ ·
[

1
Re

(∇v̂∗i ) · ûw+ q̂∗i ûw
]
, which take

into account the effects of the external forcing and the boundary conditions,
respectively. If the problem is diagonalizable, i.e. the eigenfunctions form a
complete orthogonal set, û can be expressed as the linear combination of the
direct eigenfunctions ûj in this way

û(r, σ) =
∞∑
j=1

Âi(σ)ûj(r) (1.55)
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where Âj are multiplicative coefficients. Considering that v̂i is the Laplace
transform of the generic adjoint eigenfunction, the properties of orthogonality
between the direct and adjoint eigenfunctions and the previous expansion
permit to rewrite the left hand side of the equation (1.54) as

(σ − σi)Âi(σ)
∫

Ω
v̂∗i · ûi, (1.56)

from which the i-th coefficient of the linear combination (1.55) is computed

Âi(σ) =

∫
Ω
Fi −

∫
∂Ω
Bi

(σ − σi)
∫

Ω
v̂∗i · ûi

. (1.57)

For the study of the long time behaviour of the system, the application of
the equation (1.51), where the only effect of the eigenvalue with the largest
real part was considered through its residual, gives this form for the coefficients
in time

Ai(t) = lim
σ→σ1

(σ − σ1)eσt

∫
Ω
Fi −

∫
∂Ω
Bi

(σ − σi)
∫

Ω
v̂∗i · ûi

, (1.58)

and so

Ai(t) =



0 if σi 6= σ1

eσ1t

∫
Ω
F1 −

∫
∂Ω
B1∫

Ω
v̂∗1 · û1

if σi = σ1.
(1.59)

Since A1(t) depends linearly on the forcing, each term of the numerator
can be studied separately from each other and, considering also in this
case localized forcing, the amplitude of the coefficient will be determined
by the local value of v̂∗1 and q̂∗1. Considering, for example, the effect of an
external force, it can be noticed how the projection of f̂ in the direction of
the eigenfunction v̂1 associated to the most unstable eigenvalue plays an
important role. In fact if the system is forced by a force orthogonal to v̂1, i.e
f̂ has the shape of one of the other direct eigenfunctions, its effect on the long
time behaviour is null. So, if f, Q, u0 and uw are taken such that they are
orthogonal to the eigenfunction associated to σ1, their effect for long time is
null and, consequently, to understand how external forcing and initial and
boundary conditions affect the system response, the integration path has to
be further moved excluding also the eigenvalue σ2.
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A last important remark concerns the definition of long time. In fact, it is
important to remember that the original Navier–Stokes system is non-linear
and so a long time is such that the non-linear effects do not affect the system
response when the system is unstable.
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For the simulation of the flow inside the open cavity the NEK5000 package
has been used. NEK5000 is an open source computational fluid dynamic
solver developed by Paul Fischer, Lee Ho, Einar Rønquist and others at the
Mathematics and Computer Science Division of Argonne National Laboratory.
This code, which is written in Fortran77/C with the MPI standard for
parallelism, is based on the spectral element method (SEM) and it models
incompressible, steady and unsteady flows, passive scalar transport, heat
transfer problems and time-dependent geometries.

In this section the most important features of this code will be briefly
described. For more information, the reader can refer to the NEK5000 manual
and web site (http://nek5000.mcs.anl.gov/index.php/Main_Page).

2.1 Spatial discretization

In order to approximate the solution of the Navier–Stokes equations (1.1) by a
spectral method, the spatial domain of the problem is divided into hexaedral
elements generating an unstructured mesh. In particular, in NEK5000, a spec-
tral element method (SEM) is implemented and the solution is approximated
with high order polynomials. In this way, the method is characterized by the
high accuracy typical of spectral methods, by a relative low computational
cost and, at the same time, by a good geometric flexibility, which is instead
typical of the methods that use meshes of tetrahedral elements, like FEM
(finite element methods). In the following the spectral element method will
be introduced (refer to [27] and [7] for a more complete and detailed review
of these methods).

http://nek5000.mcs.anl.gov/index.php/Main_Page
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2.1.1 Spectral element method
Consider the mono-dimensional Poisson equation defined on the domain
Ω = (−1, 1)

−d
2u

dx2 = f(x) in Ω

u(0) = u(1) = 0
(2.1)

whose discrete formulation is: find u ∈ XN
0 such that∫ 1

0

dv

dx

du

dx
dx =

∫ 1

0
vfdx ∀v ∈ XN

0 (2.2)

where XN
0 = {φj(x), φ(0) = φ(1) = 0 for j = 1, n} is the finite-dimensional

trial space. If the solution and the external forcing of the problem are
approximated as

u(x) =
n∑
j=1

φj(x)ûj and f(x) =
n∑
j=1

φj(x)fj (2.3)

where ûj and fj are the expansion and forcing coefficients respectively, it is
possible to rewrite the variational problem in the following matrix form

Aû = M f (2.4)

where A and M are the stiffness and the mass matrices, whose coefficients
are defined as

Aij =
∫

Ω
φ′jφ

′
idΩ and Mij =

∫
Ω
φjφidΩ (2.5)

and û and f are the vectors containing the unknown coefficients and of the
external forcing.

For the implementation of the numerical scheme it is now important to
select the approximation space and a basis. In particular, the mathematical
space will influence the convergence of the discrete solution, while the basis
functions influence the complexity and the performance of the method. For
spectral element methods the space XN of the approximate solution is the
space of the piecewise polynomial functions of degree N defined on each
element Ωe, e = 1, ..., E, of the discretization. Typically, the degree N of
these polynomials is in the range [5, 15]. In this space, the classical choice for
the approximation basis is represented by nodal Lagrangian polynomials L(x)
based on the Gauss–Legendre–Lobatto (GLL) or on the Gauss–Legendre (GL)
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quadrature points, which are polynomials characterized by the orthogonality
property with respect to the L2(Ω) inner product∫ 1

−1
Li(x)Lj(x)dx = δij (2.6)

where δij stands for the Kronecker delta.
The GLL and GL quadrature points are very useful because they yield

relatively well conditioned linear systems. Unfortunately, increasing the
degree N of the Lagrangian polynomials the condition number suffers a slow
increase. These points are selected also because they permit to approximate
the integrals in the variational formulation with the Gauss quadrature rules.
Considering a reference element Ω̂ in the range x = (−1, 1) the quadrature
points can be classified as follow:

• Gauss–Legendre points: they are calculated as the zeros of the N -degree
Legendre polynomial. Since they are all inside the element, a Lagrangian
basis built on them does not guarantee the continuity of the solution
between two successive elements. Considering a generic M -degree
polynomial q(x), the integral of this function in the reference domain
can be approximated as∫ 1

−1
q(x)dx =

N∑
k=0

ρkq(ξk) (2.7)

where ξk are the quadrature points, ρk are the quadrature weights and N
is the degree of the approximation functions. With the Gauss–Legendre
quadrature points it is possible to integrate exactly all the polynomials
with a degree M < 2N + 1;

• Gauss–Legendre–Lobatto points: to guarantee the continuity of the
basis functions between two successive elements, these quadrature points
are calculated imposing that the first and the last points are in corre-
spondence of the element extremes and, therefore, ξ1 = −1 and ξN = 1.
The other points are located in correspondence of the zeros of the
first derivative of the N -degree Legendre polynomial. In this way the
continuity of the solution can be automatically satisfied but, since the
position of two of the quadrature points is fixed varying N , it is possible
to integrate exactly all the polynomials with a degree M < 2N − 1.
Since they are useful to impose the continuity of the approximation,
the GLL points are commonly used to build the polynomial basis.

Looking at matrix coefficients defined in (2.5), it is apparent that a diagonal
approximate mass matrix is obtained if a GLL quadrature formula is employed
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to approximate the integrals and if the Lagrangian basis is defined on the
same quadrature nodes. Furthermore, with GLL points, the stiffness matrix
is obtained exactly since the function to be integrated is a polynomial of
degree 2N − 2. The stiffness matrix is however full.

2.1.2 Convergence
The indisputable advantage of the spectral element methods with respect to
the finite element method is that the rate of convergence of the numerical
solution depends only on the regularity of the exact solution and on the
degree of the interpolant polynomials. In particular, if the degree N of
the polynomials is varied, the higher is the solution regularity, the higher
is the rate of convergence. Considering that the solution of the Navier–
Stokes equations is smooth when the boundary is also smooth, the rate
of h-convergence depends only on the polynomial degree, while the rate of
p-convergence is exponential. So, in NEK5000, an increase of the elements
number E permits to have an algebraic decrease of the numerical error, like
E−N , while, if the solution is smooth, an increase of the polynomial degree
N induces an exponential decrease of the error, like e−αN .

2.2 Temporal discretization
Beside the spatial discretization obtained by the spectral element method,
to obtain the fully discrete equations it is necessary to introduce a time
discretization. Owing to the presence of the non-linear term the use of an
implicit time integration scheme, like the Crank–Nicolson scheme or a BDF
scheme (backward differentiation formula), which are not subject to instability
problems, can be very expensive since it requires the solution of a non-linear
and non-symmetric problem at each time step.

To fix this problem, in NEK5000 it is been chosen to use a BDF scheme of
order k (with k = 1, 2 or 3) for the generalized Stokes operator, while, to avoid
the solution of the non-linear system, the convective term is approximated
with a Richardson extrapolation of order k. In this way, the scheme, which is
named BDFk-EXTk, is explicit and formally k-order accurate in time.

2.2.1 Stability
The consequence of the Richardson extrapolation is that the numerical inte-
gration method is semi-implicit and, therefore, it suffers a limitation on the
time step ∆t to avoid numerical instabilities. In particular, it is important
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Figure 2.1. Absolute stability region for the BDF3-EXT3 time integration
method.

to guarantee that the method is stable and that the numerical solutions are
accurate also for ∆t sufficiently large. To this aim, we consider the model
problem given by

∂y

∂t
= λy

y (0) = y0 = 1
(2.8)

whose exact solution is

y = y0e
λt = eλt (2.9)

which is null for t→∞ when λ ∈ C is a complex number with negative real
part. Applying the numerical integration method to the modal problem, it
is possible to identify the absolute stability region which is given by the set
of values in the λ∆t complex plane where the method is absolutely stable,
i.e. the discretized solution goes to zero when the numerical integration time
step goes to infinity. As it is shown in figure 2.1, since the BDF3-EXT3
scheme is explicit, the absolute stability region is given by a limited portion
of the complex plane and this implies that this integration method is only
conditionally absolutely stable. So, the only way to have a stable method is
to impose a maximum limit on the value of the time step ∆t, which, looking
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at the figure 2.1, is

∆t < z̃

max|λ| (2.10)

where z̃ represent the critical value for λ∆t given by the intersection of the
absolute stability region with the imaginary axis (for BDF3-EXT3 it is indi-
cated with the star in the figure and is equal to 0.6339) while max|λ| depends
on the numerical method used for the spatial discretization. Considering, for
example, a simple convection problem characterized by a convective velocity
equal to d and discretized with a spectral element method, the maximum
value for the module of λ is given by

max|λ| = S
|d|

∆xmin
(2.11)

where S depends on the order N of the approximation polynomials and it
ranges from 1.52 when N = 3 to 1.16 when N = ∞ while ∆xmin is the
minimum spatial discretization interval which scales with O (N−2) because of
the clustering of the GLL points near the boundaries of the reference interval.
Substituting these results in the previous equation we obtain

∆t < z̃∆xmin
Sd

⇒ ∆t d
∆xmin

< C (2.12)

which represent the CFL condition that imposes a limit on the maximum
value of the time step. In the case of Navier–Stokes equations the limit on
the time step is

∆t < C min
{

∆x
|u|

,
∆y
|v|

,
∆z
|w|

}
(2.13)

where C is the Courant number.

2.3 Application to the Navier–Stokes equa-
tions

The application of temporal discretization described in the previous section
to the Navier–Stokes equations (1.1) leads the following system

Hun +∇pn = β1ũn1 + β2ũn2 + β3ũn3

∇ · un = 0
(2.14)
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where un and pn are the velocity and pressure fields at the time n, while H is
the Helmholtz operator

H = (− 1
Re
∇2 + β0

∆t) (2.15)

and β0, β1, β2 and β3 are the four coefficients derived from the BDF3-EXT3
temporal scheme. The right-hand side of the first equation of the system
(2.14) is composed by the inhomogeneous terms ũnl deriving from temporal
discretization which are computed as the solution of a pure convection problem
with an explicit Runge–Kutta scheme

∂ũl
∂t

+ u · ∇ũl = 0

ũl(x, tn−l) = u(x, tn−l)
(2.16)

In the following these three terms are rewritten in a compact form as f.
Now, in order to find a discrete solution to the Navier–Stokes equations, it

is necessary to introduce the SEM spatial discretization. The introduction of
the Gauss quadrature rules for the approximation of the L2(Ω) inner products
in the weak formulation of the equations (2.14) leads to this new problem:
find u ∈ XN and p ∈ Y N such that

1
Re

(∇u,∇v)GLL + β0

∆t(u,v)GLL+

−(p,∇ · v)GL = (f,v)GLL ∀v ∈ XN

−(q,∇ · u)GL ∀q ∈ Y N

(2.17)

where (·, ·)GLL and (·, ·)GL denote the Gauss-Legendre-Lobatto and the Gauss-
Legendre quadrature points, respectively.

When discretising the Navier–Stokes equations by the Galerkin method, an
instability can arise which leads to spurious pressure oscillation. This instabil-
ity can be avoided if the inf-sup condition, named LBB after Ladyzhenskaya,
Babuska and Brezzi, is satisfied. Considering a polynomial approximation for
the Navier–Stokes unknowns, this condition implies that the polynomial space
used to approximate the velocity has to be sufficiently reacher with respect to
the space employed to approximate the pressure. This can be achieved using
different grids for the two discrete fields. In the case of NEK5000, where the
spectral element method is implemented, if N -degree polynomials are used to
approximate the velocity field, (N − 2)-degree polynomials have to be used
for the pressure.
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2.4 Time splitting
As shown by Couzy [13], the previous discrete system can be rewritten in
matrix formulation as[

H −HQDT

−D 0

]{
ûn

p̂n − p̂n−1

}
=
{
M f +DT p̂n−1

fp

}
+
{
r
0

}
(2.18)

where D is the matrix associated to the gradient differential operator, H is
the discrete Helmholtz operator, r is a residual term defined as

r = (HQ− I)DT (p̂n−1 − p̂n) (2.19)

and Q is an auxiliary matrix for which two choices are possible. The first
one imposes Q = H−1 in order to have a null residual, while the second one,
which is more computational convenient, defines Q as

Q = ∆t
β0
M−1 (2.20)

and, consequently, the residual term becomes

r = δt

β0Re
AM−1DT (p̂n − p̂n−1) = O(∆t2). (2.21)

Since the discretized velocity field is multiplied by H which is dependent on
∆t, the effective error due to the truncation of the residual term is proportional
to O(∆t3), and so, also if a BDF3-EXT3 scheme is implemented, the method
is globally second-order accurate in time. The application of the Gauss
elimination leads to the last formulation of the Navier–Stokes system, which
was proposed for the first time in the paper by Blair Perot [4]H −∆t

β0
HM−1DT

0 F

{ ûn
p̂n − p̂n−1

}
=
{
M f +DT p̂n−1

g

}
(2.22)

where

F = ∆t
β0
DM−1DT (2.23)

and g takes into account the inhomogeneous term for the pressure after the
Gauss elimination. Once g computed, it is necessary to solve two systems
to advance in time the Navier–Stokes equations: the first one involves the
pressure and the operator F , while the second one involves the discrete velocity
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field û and the Helmholtz operator H. Both systems are solved with iterative
techniques and, since H is a diagonally-dominant matrix, the second system
is well conditioned and the solution is obtained by the Jacobi-preconditioned
conjugate gradient method. For the pressure, the operator F , which can be
seen as a Poisson operator, has a conditioning number independent on ∆t
and Re and the solution of this system is obtained by an overlapping additive
Schwarz preconditioner which is well described by Fisher in [17].

2.5 Eigenvaule problem
In order to determine the onset of the instability of the flow over the open
cavity, the indirect Lyapounov method is applied, which consists of computing
the spectra and looking at the sign of the eigenvalue with maximum real part.
Furthermore, the receptivity and the sensitivity analysis require the direct
and adjoint eigenvectors of the system.

2.5.1 Direct modes
To obtain the direct eigenfunctions for the open cavity flow, it is necessary to
solve the discretized eigenvalue problem (1.27), which, after the calculation
of the base flow W, can be rewritten as[

A(Re,W) + σM
]
w = 0. (2.24)

In the previous equation w represents the direct eigenvector and A is the
matrix obtained from the linearization of the Navier–Stokes equations which
describes the evolution of the linearised system. If a numerical quadrature
formula with GLL points is adopted, M, that is the lumped mass matrix, is
diagonal and its elements assume a value different from zero and dependent
on the quadrature formula if the corresponding row is relative to one of the
velocity components.

Since the matrix A is very large, the solution of the previous problem
requires iterative techniques such as those based on the Arnoldi algorithm.
In particular, to compute the eigenfunctions for the open cavity flow, the
ARPACK library is used (http://www.caam.rice.edu/software/ARPACK/).
This library contains a collection of subroutines useful to solve large-scale eigen-
value problems which are based on a variant of the Arnoldi algorithm called
Implicitly Restarted Arnoldi Method. One of the most important characteris-
tics of the ARPACK package is that it implements an implicit restart in order
to limit the memory requirement. In particular, since this problem is solved on

http://www.caam.rice.edu/software/ARPACK/
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a multi-processor machine, the parallel version of ARPACK, called PARPACK,
is used (http://www.caam.rice.edu/~kristyn/parpack_home.html).

2.5.2 Adjoint modes
As previously recalled, the receptivity and the sensitivity analysis require to
compute also the adjont eigenfunctions of the system. A first possibility is to
consider the discretized direct eigenvalue problem (2.24) and to calculate the
adjoint eigenvectors as the left eigenvectors of this problem. In practice, this
is equivalent to solve a direct eigenvalue problem for the transposed matrix
of the (2.24) equation. A second possibility is to discretise the continuous
adjoint problem (1.34) obtained in the first chapter and then apply the
Arnoldi method to the new problem. These two approaches are equivalent
at convergence, hence when discretization errors annihilate. In this thesis
the second approach will be used and, in particular, the discretized adjoint
problem can be written as

ŵH

[
A+(Re,W) + σM

]
= 0 (2.25)

and it is solved again with the ARPACK package.

2.6 Code validation
Before computing the base flow and performing the stability analysis for the
open cavity problem, it is useful to test the methods previously described
for a well known problem, such as the flow around a 2D cylinder. The
results obtained with NEK5000 will be compared with well established results
available in the literature.

Author CD

Dennis & Chang (1970) 1.52
Fornberg(1980) 1.50
Ye et al (1999) 1.52
Kim et al (2001) 1.51
Giannetti & Luchini (2007) 1.54
Current 1.56

Table 2.1. Cylinder drag coefficient for Reynolds number 40.

http://www.caam.rice.edu/~kristyn/parpack_home.html
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Figure 2.2. Cylinder flow: velocity streamlines at Reynolds number 40.

The cylinder problem is solved on a grid of size [−15 : 15]× [−15 : 35] with
the cylinder centre placed in the origin of the reference frame. First, the base
flow is solved in this domain for a Reynolds number equal to 40. The velocity
streamlines are shown in figure 2.2 and can be successfully compared with the
result obtained by Penza [25] whose calculations are performed with a finite
element method and the numerical library Trilinos. Another important result
confirming the validity of this code is obtained by comparing the predicted
drag coefficient CD with several results available in the literature, see table
2.1. In particular, it can be notice that the CD calculated with NEK5000 is
very similar to those obtained with other numerical techniques with small
differences probably due to the domain size and boundary conditions.

It is also important to verify the solution of the eigenvalue problem
performed combining NEK5000 and ARPACK. The flow spectrum obtained
at Re = 40 is reported in figure 2.4. Also in this case the comparison with the
results by Sipp and Lebedev [32] is very good. In particular the three most
unstable eigenvalues, which are marked by circles in figure 2.4, are very close
to those calculated by Penza. This result confirms the reliability of the method
even if not all the eigenvalues are accurately reproduced, since, as a matter
of fact, these three eigenvalues are numerically stable while the others are
strongly dependent on the mesh refinement and on the discretization method.
In the same figure the eigenvalues obtained solving the adjoint problem are
also reported for comparison. Except for the two most unstable eigenvalues
that match very well the ones computed solving the direct problem, the other
eigenvalues are less accurate. This is caused by the poor conditioning of these
eigenvalues due to non-normality of the operator and by the fact that the
discretised continuous adjoint problem has been solved instead of the discrete
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Figure 2.3. 2D cavity flow: velocity streamlines at Reynolds number 4135.

adjoint problem. Finally, figure 2.5 shows the horizontal component of the
velocity for the most unstable direct and adjoint modes for the cylinder flow
at Re = 40. The first result is well comparable with the direct eigenfunction
calculated by Penza at Re = 40 while the second result is very similar to
the one obtained by Sipp and Lebedev [32] at Re = 46.6, despite a large
difference in the respective Reynolds numbers.

A second and most useful code validation is done comparing the results
obtained for a two-dimensional cavity characterized by a unitary length and
depth to the ones described in the paper of Sipp and Lebedev [32]. The actual
computation is based on the domain illustrated in the figure 2.3 which differs
from the one utilized by Sipp and Lebedev [32] by a shorter distance between
the inflow boundary e upstream edge of the cavity and by a longer height
of the domain. Furthermore, both in the present work and in the work of
Sipp and Lebedev the incoming flow is characterized by a laminar boundary
layer, which can be assimilated to a Blasius profile. In figure 2.3 the velocity
streamlines inside the cavity are shown and the principal vortical structures
can be recognised.

For a Reynolds number based on the cavity length of 4140, Sipp and Lebe-
dev have obtained a spectra which exhibits a marginally stable eigenvalue
characterized by Im(σ) = ±7.5. For a validation of the code, a computa-
tion for Re = 4135 in the present geometry is done, that gives the spectra
reported in figure 2.6. The result obtained is well comparable with the
one of Sipp and Lebedev and, specifically, it is possible to notice the pres-
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Figure 2.4. Cylinder flow: direct ( ) and adjoint ( ) eigenvalues at Re = 40.
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Figure 2.5. Cylinder flow: real part of the horizontal component of the velocity
field for the most unstable direct eigenfunction (left) and real part of
the horizontal component of the velocity field for the most unstable
adjoint eigenfunction (right) at Re = 40.

ence of two complex-conjugate eigenvalues with a negative real part and
with Im(σ) = ±5.3132, which are probably the eigenvalues that becomes
marginally stable for Re = 4140. This can be highlighted also looking at the
corresponding eigenvectors (figure 2.7) that are very similar to those reported
in the paper of Sipp and Lebedev. In the paper of Barbagallo, Sipp and
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Figure 2.6. 2D cavity flow: direct ( ) and adjoint ( ) eigenvalues at Re = 4135.
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Figure 2.7. 2D cavity flow: real part of the vertical component of the velocity
field for the most unstable direct eigenfunction (left) and real part
of the vertical component of the velocity field for the most unstable
adjoint eigenfunction (right) at Re = 4135.

Schmid [2] the eigenvalues of the cavity flow at Re = 7500 are shown for a
geometry identical to the one utilized in the paper of Sipp and Lebedev. Also
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in this case, the reported spectra and the one calculated in this thesis have
approximately the same trend.

This positive comparison between the results of Sipp and Lebedev and
those obtained with NEK5000 is very important for two reasons. First of all,
since the results obtained are in accordance with other results already present
in literature, the eigensolution computation performed with NEK5000 works
fine. Second, since the mesh utilized for the three-dimensional computation
is obtained thanks to a spanwise extension of the two-dimensional mesh
with the introduction of the cavity lateral walls, it is plausible that the
three-dimensional results will be correct.
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This chapter focuses on the principal aspects of the flow morphology in the
cavity with AR = 2 and AR = 3 varying the Reynolds number. After a
briefly description of the geometry and the boundary conditions imposed, the
main structures characterising the flow will be introduced. In particular, the
formation of longitudinal vortices due to centrifugal forces and the behaviour
of the flow in unsteady conditions will be analysed.

3.1 Mesh and boundary condition
In figure 3.1 a schematic, three-dimensional view of the open cavity is shown,
illustrating the geometry of the problem in the case of cavity with aspect
ratio equal to 2.

Figure 3.1. Three-dimensional view of the open cavity geometry with apesct
ratio 2.
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AR domain dimensions elements cells points
1 [-1.0, 5.0] × [-4.0, 4.0] × [-1.0, 4.0] 68320 8540000 14757120
2 [-1.0, 5.0] × [-4.5, 4.5] × [-1.0, 4.0] 99520 12440000 21496320
3 [-1.0, 5.0] × [-5.0, 5.0] × [-1.0, 4.0] 130720 16340000 28235520

Table 3.1. Domain dimension, number of elements, cells and points for the differ-
ent aspect ratios.

In this thesis, the open cavity flow is solved for three different aspect
ratios, defined as

AR = W

L
= dimension in y (spanwise) direction

dimension in x (streamwise) direction . (3.1)

In particular, the streamwise dimension L, which is the reference length for
the calculation of the Reynolds number, is kept constant and equal to 1,
while, to modify the aspect ratio, the spanwise dimension W is progressively
increased. The depth of the cavity is kept equal to 1 for all the aspect
ratios. The distance between the windward edge of the cavity and the inflow
boundary is also 1, while the distance from the leeward edge of the cavity
and the outflow boundary is set to 4. Finally, the distance from the cavity
and the lateral planes delimiting the computational domain is 3.5 in all the
computation and the height of the domain is equal to 4.

Since for the approximation of the Navier–Stokes equations (1.1) a spectral
element method is used, the mesh necessary for the discretization of the open
cavity domain is an unstructured mesh characterised by hexahedral elements.
For a better distribution of the mesh elements, it is useful to introduce the
Roberts stretching transformations, which cluster the elements near the cavity
edges and increase the resolution near the singularities of the domain. There
are three kinds of Roberts stretching transformations, whose implementation
is described in detail in [33]. The preprocessor PRENEK of NEK5000 employs
only the first one of these transformations and this is done introducing a ratio
coefficient in the ocavity.box file as it is explained in the appendix A. After the
mesh has been produced, the effective number of points used in computation
depends on the degree of the polynomial bases. Since the distance between the
lateral edges of the cavity and the boundary of the domain is kept constant
irrespective of the aspect ratio of the cavity and since the resolution of the
cavity is kept approximately unvaried, the number of the elements of the
discretization grows with the aspect ratio. The number of elements, cells and
points for the investigated aspect ratios is reported in table 3.1 considering
spectral elements of the degree 6.
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Figure 3.2. Orthographic projections of the open cavity domain.

Before the results are analysed, it is important to define the boundary
conditions imposed to solve the base flow and the eigenvalue problem. Re-
ferring to figure 3.2 where the three orthogonal views of the open cavity are
shown, the boundary conditions for each boundary surface are reported in
the following.

• Γin (inflow boundary): for the base flow the inflow velocity is given by
the Blasius profile, which is the solution of the boundary-layer Prandtl
equations over a two-dimensional, semi-infinite plate held parallel to
a uniform flow characterized by a velocity equal to U [26]. Since the
plate is semi-infinite, the problem is not characterized by a reference
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length and this suggests to assume that the x component of the velocity
field is dependent on a unique and non-dimensional variable η called
similarity variable and defined as

η = y

√
U

νx
(3.2)

which is, in its turn, dependent on the coordinate x and z. From this,
it is possible to write the u component of the velocity field as

u = Uf ′(η) (3.3)

where f(η) is an unknown function. The substitution into the Prandtl
boundary-layer equation gives the Blasius equation

f
′′′(η) + 1

2f(η)f ′′(η) = 0 (3.4a)

f(0) = 0 f ′(0) = 0 f ′(∞) = 1 (3.4b)

where the boundary conditions are obtained from the ones imposed on
u, i.e. a no-slip condition on the plate and an asymptotic condition for
z →∞. The solution to the Blasius equation is obtained numerically.
Exploiting the definition of the similarity variable, the numerical solution
is transformed as a function of x and z and is scaled on the cavity
geometry through an interpolation on the grid nodes.
To compute the eigenvalues, a homogeneous Dirichlet condition is
imposed. To summarize:

U⇒ Blasius profile for the base flow (3.5a)
u = 0 for the eigenvalue problem; (3.5b)

• Γout (outflow boundary): to compute the base flow the following outflow
condition is imposed

∂U

∂x
= 0 and P = 0 (3.6)

while, for the eigenvalue problem, a homogeneous Dirichlet condition is
imposed

u = 0; (3.7)
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• on the lateral boundary Γright and Γleft a symmetry condition is imposed

∂U

∂y
= 0, V = 0, ∂W

∂z
= 0 for the base flow (3.8a)

∂u

∂y
= 0, v = 0, ∂w

∂z
= 0 for the eigenvalue problem; (3.8b)

• Γup (upper boundary): outflow normal condition;

• Γlow (lower boundary): this boundary represents the wall of the cavity
and, therefore, a no-slip condition is imposed for both the base flow
and the eigenvalue problem:

U = 0 for the base flow (3.9a)
u = 0 for the eigenvalue problem. (3.9b)

3.2 Aspect ratio 2 and 3
The base flow for both aspect ratios is computed for several Reynolds numbers
in the range [2000, 7000] to investigate two types of instability that may
characterize the dynamical system. The first kind of instability is a centrifugal
instability which occurs at low Reynolds numbers and whose effects are
particularly evident in the xy plane, where a series of counter-rotating vortices
are observed. The appearance of the counter rotating vortices is surely related
to an instability when a two dimensional flow is considered, while in the three
dimensional case this is just a hypothesis. The second kind of instability is an
unsteady instability which brakes the time invariance symmetry of the flow.

An indicator is needed to assess the convergence of the calculation of
the base flow and, in this case, the L2(Ω) norm of the velocity increment
field normalized with respect to the time step dt is used. The iteration is
stopped when the norm of the velocity increases between two successive steps
falls below a predetermined value. By looking at this indicator, it is also
possible to define if the solution has suffered an unsteady instability. In fact,
the flow is stable if the oscillations of the indicator have the same order of
magnitude of the precision adopted in NEK5000 to solve the system equations,
while, if the oscillations are at least one order of magnitude greater than the
machine epsilon, the flow is considered unstable. In particular, in this case,
the period of the observed oscillations can be used to evaluate the frequency,
and therefore the imaginary part, of the most unstable eigenvalue of the
system.
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3.2.1 Boundary layer
For open cavities flows it is important to characterise the boundary layer at
the upstream edge of the cavity. As said in the first section of this chapter,
the initial and boundary conditions for the velocity field imposed at the inflow
boundary correspond to the velocity profile given by the Blasius solution to
the Prandtl boundary-layer equations.
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Figure 3.3. Velocity profile u plotted at the cavity upstream corner in the sym-
metry plane (x = 0, y = 0, 0 < z < 2) for Re = 6500.

In figure 3.3, the x component of the velocity field is plotted versus z on
the vertical line at the symmetry plane cavity upstream edge (x = 0, y = 0,
0 < z < 2). The most important characteristic of the velocity profile is the
slight velocity overshoot present at zm = 0.13067, where u = um = 1.0048.
This phenomenon can be explained considering that the slow downstream
thickening of the boundary layer induces a velocity w > 0 in z direction.
For example, in the case of Blasius boundary layer on a semi-infinite plate
the induced transverse velocity is equal to w = 0.86

√
(νu/x), which is a

decreasing function of x. Considering that the external flow is irrotational,
the out of plane vorticity, defined as

ωz = ∂w

∂x
− ∂u

∂z
(3.10)

is null and, therefore, since the derivative of w in downstream direction is
negative, the derivative of u in z direction has to be negative too, confirming
in this way the maximum peak for the velocity.

For a more detailed characterization of the cavity boundary layer, the
momentum thickness defined as

θ =
∫ ∞

0

u(z)
uext

(
1− u(z)

uext

)
dz, (3.11)
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Figure 3.4. Boundary layer momentum thickness for −1 < x < 0 and y = 0 for
Re = 6500 ( ) and for the Blasius solution ( ).

which is equal to 0.014238 at the upstream cavity corner (figure 3.3), is
shown in figure 3.4 for −1 < x < 1 and y = 0 for the flow at Re = 6500.
As a reference, the momentum thickness relative to the Blasius boundary
layer solution is also plotted on the same figure. Since the Blasius solution
is valid only for Re → ∞, the numerical and the exact solutions does not
correspond exactly, but since the two curves match reasonably well it is
possible to conclude that the boundary layer in the numerical simulations
has a behaviour similar to a Blasius boundary layer and, therefore, the inlet
boundary condition is definitely reasonable and the incoming flow is laminar.

3.2.2 Flow morphology in the xz plane
Since most of the results available in the literature are about the two dimen-
sional open cavity, it is natural to start the analysis of the base flow by looking
at the xz symmetry plane. For all the Reynolds numbers studied in this
thesis, the flow in this plane is characterized by a large scale vortex, which is
usually called primary vortex (PV in figure 3.5). For both the cavities with
AR = 2 and AR = 3, this vortex occupies the largest part of the xz symmetry
plane and it is characterized by the higher velocity and the higher rotational
kinetic energy respect to the other vortical structures observable in this plane
inside the cavity. The presence of the primary vortex is in accordance with
the numerical and the experimental results described in other works about
the open cavity with a square cross-stream section, like the visualizations
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Figure 3.5. Schematic view of the vortical structures characterizing the symmetry
plane of the cavity.

by Faure et al. [15] for the cavity with aspect ratio equal to 6, that are well
comparable with the results obtained in this thesis.

It is interesting to note that the flow inside the primary vortex behaves
like a rotating solid. This can be observed looking at the figure 3.6 where the
velocity profiles along the centrelines of the cavity symmetry plane are shown
for Re = 3000 and Re = 6500. On the horizontal centreline (0 < x < 1, y = 0,
z = −0.5) the vertical component of the velocity field w is plotted versus x
and two regions with different behaviours can be highlighted: the first one,
which develops near the cavity walls, is a boundary layer region while in the
second one w varies approximately linearly with x and, therefore, a solid body
rotation is observed. On the vertical centreline (x = 0.5, y = 0, −1 < z < 4)
the horizontal component u of the velocity field is plotted versus z. In this
case, starting form the bottom of the cavity, it is possible to recognise a
boundary layer region, a rigid body rotation in the central region, a shear
layer characterized by a strong velocity gradient just at the top border of the
cavity and, finally, a uniform flow outside the cavity.

Always looking at the symmetry plane, it is possible to identify three
other rotational structures, usually called secondary vortices, whose presence
is strongly dependent on the Reynolds number of the flow. The first one is the
counter-rotating vortex SV1. As it is shown in figure 3.5, this vortex is placed
in the downstream bottom angle of the cavity and, for both aspect ratios, its
dimension in the x direction decreases when the Reynolds number is increased,
while its extension in the z direction increases with the Reynolds number.
The second counter-rotating vortex, denoted SV2, is a small scale secondary
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Figure 3.6. Streamwise and vertical velocity profiles in the cavity symmetry plane
for Re = 3000 ( ) and Re = 6500 ( )

vortex which appears for quite high Reynolds numbers. For example, for the
case of AR = 2, the Reynolds number for which this structure first appears
is approximately 6750. The presence of this vortex is probably due to the
fact that an increase of the Reynolds number, namely a reduction of the the
viscous effects, entails a decrease of the capability of the primary vortex to
drag the fluid particles near the cavity walls. The weaker intense dragging
effect leads to more extended separation and counter-rotating regions. Finally,
another secondary structure can be observed in the symmetry plane: the
counter-rotating vortex SV3 in the up-stream bottom angle of the cavity. This
vortex is quite similar to SV1 but is usually characterized by lower velocities.

Figure 3.7 shows the possible morphological configurations which are
identified in the xz symmetry plane for the different Reynolds numbers
analysed. In particular, three different groups can be recognised :

• the first group is characterized by the primary vortex PV and by the
two secondary vortices SV1 and SV3. For AR = 2 this configuration
is found for Reynolds lower than 3100 while, for AR = 3 for Reynolds
lower than 3000;

• the second group is characterized by the presence of the primary vortex
VP and just one vortex, SV1. For AR = 2 this morphology is found
for Reynolds number in the range between 3200 and 6500, while, for
AR = 3, it is found for Reynolds between 4000 and 6375;

• the third group presents the secondary vortex SV2, in addition to the
primary vortex VP. This configuration, for AR = 2, is observed for
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Figure 3.7. Flow behaviour in the y = 0 planes for Re = 3000, Re = 6500 and
Re = 7000.

Reynolds numbers higher than 6750 and, for AR = 3, for Reynolds
numbers higher than 6500, for which, as we will see, the flow is charac-
terized by an unsteady instability. As observed for the vortex SV3 in
the first group, also in this case the size of the secondary vortex SV2
increases as the Reynolds number is increased.

The presence of different morphological configurations of the vortical
structures in the symmetry plane can be explained remembering that the
studied geometry is three-dimensional owing to the important influence of
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Figure 3.8. Flow behaviour in the y = const. planes for Re = 6500 for different
values of the y coordinate.

the lateral walls of the cavity, which modify the morphology of the flow.
Moreover, the instabilities, if present, could have an important influence on
the behaviour of the flow with respect to the two-dimensional case. In order
to understand how the three-dimensionality of the domain influences the flow
inside the cavity, it is useful to observe the flow field on the y = const. planes
for different values of the y coordinate.

In the case of Re = 3000, the flow morphology is the same in all the planes
with a gradual decrease of the size of the two secondary vortices caused by the
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effect of the no-slip condition imposed on the cavity lateral walls. Figure 3.8
shows the views of the y = const. planes for y equal to 0.1, 0.35, 0.5 and 0.75
for Re = 6500 . In this case it is possible to notice that the flow passes through
different morphological conditions as the y coordinate is varied. In particular,
between y = 0 and y = 0.36 two different morphologies are present, which
can be found also for greater values of y. The reason for this behaviour is
that the flow is characterized by the appearance of three-dimensional vortical
structures visible in the xy and yz planes, which are not present for lower
Reynolds numbers. The same behaviour can be observed also for Re = 7000.

3.2.3 The appearance of longitudinal vortices
In order to understand the variation of the flow morphology along the y
axes, it is necessary to explore not only the y = const. planes previously
analysed, but also the z = const. and x = const. planes. Only in this way
it is possible to understand the effects of the three-dimensionality of the
domain and appreciate how the presence of vortical structures influences the
behaviour of the flow.

Starting the analysis of the morphology of the flow in the xy plane, three
different behaviours are observed as the Reynolds number is varied. For low
Reynolds numbers, the flow is characterized by large three-dimensional vortical
structures that are generated by the three-dimensionality of the geometry
and which occupy all the cavity. In these conditions no longitudinal vortex
structures are present. When the Reynolds number thresholds Re = 3200
for AR = 2 and Re = 4000 for AR = 3 are exceeded, it is possible to
observe the appearance of spanwise rows of longitudinal vortices on both the
upstream and the downstream walls of the cavity, which seem to imply the
appearance of an instability for the flow. In particular, this seems to be a
steady and three-dimensional centrifugal instability substantially independent
on the Mach number, analogous to the one reported in the paper of Bres and
Colonius [5]. In the last case, for a Reynolds number greater than 6750 for
AR = 2 and 6500 for AR = 3 well defined patterns are no longer observable
and the flow is characterized by one isolated pair of counter-rotating vortices
departing from the cavity upstream wall.

The first behaviour previously described is observed, for the cavity with
aspect ratio 2, for Reynolds numbers from 2000 to 3100. In figure 3.9 the
velocity streamlines in the z = −0.5 plane for Re = 3000 are shown. Looking
at the figure it is possible to notice the large scale vortical structures previously
described, that are similar to those observed in the visualizations by Faure
et al. [16]. These large scale vortices develop near the lateral edges of the
cavity and are originated by the presence of the lateral walls where a no-slip
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Figure 3.9. Representation of the streamlines of the velocity component in the
plane at z = −0.5 (top) and in the plane at x = 0.5 (bottom) for
Re = 3000.

condition is imposed. The direct consequence of this behaviour can be found
remembering that the morphology of the flow remains approximately constant
in the spanwise direction, but for a slight variation of the centre of the main
vortex and of the the size of the secondary vortices. The streamlines of the
velocity component in the yz plane for Re = 3000 (figure 3.9) show that, also
in this case, the only vortical structures that characterize the flow in this
plane are the corner vortices caused by the interaction between the flow and
the lateral boundary of the domain where a no-slip condition is imposed. In
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Figure 3.10. Representation of the streamlines of the velocity component in the
plane at z = −0.5 (top) and in the plane at x = 0.5 (bottom) for
Re = 5000.

fact, near each one of the two bottom angles of the cavity, we can observe
the presence of a large scale vortex associated with another small scale and
counter-rotating vortex. All these structures are visible approximately in the
range 0.5 < x < 0.7, which is the range of the x coordinate where the effects
of the upstream and downstream walls are less intense.

The second behaviour observed, i.e. the development of well defined
patterns of spanwise rows of longitudinal vortices, is, instead, characteristic
of Reynolds numbers in the range 3200 <= Re <= 6500. These vortices are
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Figure 3.11. Representation of the streamlines of the velocity component in the
plane at z = −0.5 (top) and in the plane at x = 0.5 (bottom) for
Re = 6500.

probably originated by the centrifugal effect in the shear layer produced by
the main vortex, which is more intense as the Reynolds number is increased.
To appreciate this phenomenon the streamlines associated with the velocity
component in the plane z = −0.5 are shown in figure 3.10 and 3.11 for
Reynolds numbers equal to 5000 and 6500, respectively. The first aspect to
be noticed from these figures is that the dimension of the longitudinal vortices
is not constant in y direction. In fact, starting from the centre of the cavity
and approaching the cavity walls, where the three-dimensional effects are
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Figure 3.12. Representation of the xy plane at z = −0.5 and the yz plane at
x = 0.5 of the open cavity with AR = 3 for Reynolds number 6250.
Since the solution is symmetrical, only the planes for y > 0 are
shown.

more intense because of the no-slip condition, the size of the counter-rotating
vortices decreases.

As the Reynolds number is increased the number of longitudinal vortices
increases due to the more intense effects of the centrifugal force. This
behaviour can be appreciated comparing figure 3.10 and 3.11. For both
Reynolds numbers, two rows of counter-rotating vortices are visible in the
plane z = −0.5: for Re = 5000 (figure 3.10) the first one is characterized by
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Figure 3.13. Helicity field for Re = 6500 in the cavity with AR = 2.

three vortex pairs and the second one, which develops for larger values of the
x coordinate, by only one pair, while for Re = 6500 (figure 3.11) the first one
is characterized by four vortex pairs and the second one by two vortex pairs.

From a further comparison of the flow at Re = 6500 with the flow at
Re = 6000 (not shown in this thesis), it is evident that if the Reynolds number
increases the vortical structures tend to compress in x direction and, at the
same time, to elongate in spanwise direction. This changing of morphology
was observed by Faure et al. [15] in their experimental paper on the cavity
with aspect ratio 6 where they underlined the deformation of the vortical
structures as the Reynolds number is increased.

The streamlines of the velocity component in the plane x = 0.5 are
reported for Re = 5000 and Re = 6500 in 3.10 and 3.11, respectively. The
vortex structures that can be observed in this plane are in accordance with
the structures present in the xy plane. In particular, the flow at Re = 5000 is
characterised by one row with three counter-rotating vortex pairs, while the
flow at Re = 6500 is characterised by one row with four counter-rotating pairs
of vortices. In figure 3.12, the velocity streamlines in the planes at z = −0.5
and x = 0.5 of the cavity with AR = 3 are shown for Reynolds number 6250.
Also in this case, the longitudinal vortices are clearly visible in both planes
and, by a comparison with the cavity with AR = 2, it is evident that an
increase of the spanwise dimension of the cavity leads to an increased number
of counter-rotating vortices. In particular, looking at the x = 0.5 plane, it is
possible to recognise twelve longitudinal vortex, two more than in the cavity
with AR = 2 for Re = 6500. The annular shape of these vortical structures
is highlighted by figure 3.13 where the positive and negative contour surfaces
of the helicity field h = u · (∇× u) = ±0.1 for the flow at Re = 6500 in the
cavity with aspect ratio 2 are plotted.

The vortices previously described can be classified as Görtler vortices.
These vortical structures are typical of flows characterized by a Taylor-Görtler
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instability, which is a centrifugal and steady boundary-layer instability that
develops near walls that are concave in the direction of the free-stream flow,
such as in the Taylor–Couette flow, and which leads to the formation of
counter-rotating, streamwise oriented vortices. In an inviscid flow, a useful
tool to investigate if the flow is prone to a centrifugal instability is the
Rayleigh discriminant, that is strongly dependent on the velocity gradient in
wall-normal direction. In particular, the region of potential instability for the
flow is where the velocity decreases as the wall is approached. Considering
the open cavity problem, the curvature is no longer imposed by the boundary
geometry, but is caused by the presence of the primary vortex VP and of the
secondary vortices. Looking at the velocity profiles, reported in figure 3.6,
the core of this vortex behaves like a rotating solid and the velocity increases
linearly with the distance from the centre of rotation. At the same time, the
presence of the walls, where a no-slip condition is imposed, causes a rapid
decrease of the flow velocity near the boundary and, since the speed decreases
as the distance from the centre of curvature is increased, the velocity profile
may cause a centrifugal instability.

Sipp and Jacquin [31] have proposed in their work a sufficient condition
for centrifugal instability in the inviscid limit.

Theorem 1 (Rayleigh discriminant) The flow is unstable if, for each
point r0 along a generic streamline ψ0, the Rayleigh discriminant defined as

∆(r0) = 2Ω
R(r0) (3.12)

is negative.

�

In the previous formula |u| is the velocity magnitude, Ω is the y component
of the vorticity field and R is the local radius of curvature defined as

R = u3

(∇ψ) · [u · ∇u] . (3.13)

Thanks to the Rayleigh discriminant, Bres and Colonius [5] have concluded
that the presence of longitudinal vortices in their studies about the three-
dimensional instability of a two-dimensional mean flow is due to a centrifugal
instability. In particular, they have underlined the important effects of the
cavity upstream and downstream walls in the appearance of the vortex pairs
obtaining a good agreement with the results of Faure et al [15]. However,
in the geometry studied by Bres and Colonius [5], which has not lateral



3.2 Aspect ratio 2 and 3 57

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

x

z

0 0.2 0.4 0.6 0.8 1
x

Figure 3.14. Rayleigh discriminant calculated in the xz symmetry plane for Re =
3000 (left) and Re = 4000 (right). The white region correspond to
positive values and the black region correspond to negative values
of the discriminant.

walls and, therefore, is characterized by translational spanwise symmetry, the
presence of a centrifugal instability that causes a clear variation of the flow
behaviour thorough a pitchfork bifurcation has sense, as in the perfect tip
loaded beam.

Also in the the problem studied in this thesis, the cavity upstream and
downstream walls play a fundamental role in the appearance of the centrifugal
forces and, consequently, of the longitudinal vortices. In particular, applying
the Rayleigh criterion on the cavity symmetry plane for Re = 3000 and
Re = 4000, it is evident that for higher Reynolds numbers the region of
potential instability is larger than for lower Reynolds numbers, where the
viscous effects are predominant in respect to the centrifugal forces. Also if
this behaviour is comparable to the one described by Bres and Colonius it is
important to consider that in the current geometry the presence of the lateral
walls breaks the translational spanwise symmetry. Hence, the behaviour of
the system is analogous to an imperfect, rather than a perfect, tip loaded
beam and, therefore, the system is no longer characterized by a pitchfork
bifurcation, but by a progressive change of the solution as the Reynolds
number is increased. This behaviour can be deduced by the figure 3.15, that
shows the velocity streamlines in the z = 0.51 plane at five different Reynolds
numbers closed to the appearance of the longitudinal vortices. If the flow
was characterized by a centrifugal instability a sharp variation of the flow
behaviour was expected, but, as is evident from the figure, the variation of the
flow behaviour is gradual from a no vortex condition to a status characterized
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Figure 3.15. Velocity streamlines at x = 0.51 for five different Reynolds numbers.

by increasingly dimension longitudinal vortex.
In the previous paragraph, looking at the figure 3.8, the change of morpho-

logical configurations varying the y coordinate was highlighted. It is interesting
to link this modification of the secondary structures to the flow morphology
in the xy and yz planes, where for Re = 5000 and Re = 6500 span-wise rows
of vortices are observed. Specifically, it is possible to notice that approaching
the y coordinates that separate two consecutive counter-rotating vortices in
spanwise direction, there is a variation of the flow morphology in the xz plane.
So, the modification of the configuration of vortical structures in the xz plane
can be ultimately connected to the formation of the counter-rotating spanwise
vortices in the xy and yz planes and to the centrifugal forces.

3.3 Unsteady flow
In general, an increase of the Reynolds number causes the progressive desta-
bilization of the flow that leads to transition and turbulence. In the previous
section the three-dimensional centrifugal instability was investigated, while
in the following the principal aspects of the unsteady instability of the flow
over an open cavity with AR = 2 will be discussed.

It turns out that the flow over the open cavity with aspect ratio equal to
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Figure 3.16. Velocity vector field in the y = 0.25 plane plotted in six different
times of the fluctuation period.

2 shows an unsteady behaviour for Reynolds number greater than 6750. The
reason of the unsteadiness can be linked to the instability of the shear layer
between the slower flow inside the cavity and the faster flow outside of it,
through a Kelvin-Helmholtz mechanism. The Kelvin-Helmholtz instability
is related to the appearance of a vortex which, for Reynolds numbers not
very high, detaches periodically from the upstream corner of the cavity and
interacts with the downstream edge (figure 3.16).

To investigate the properties of the unsteady instability, the time history
of the vertical component of the velocity field sampled in four points situated
at z = 0 and x1 = 0.25, x2 = 0.5, x3 = 0.75 and x4 = 0.9 in the symmetry
plane is shown in figure 3.17. Starting from the first station situated just
downstream of the upstream corner, the vertical component w of the velocity
shows a time-periodic behaviour. This means that, in these conditions, the
flow starts to oscillate regularly. The frequency of the oscillation can be
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Figure 3.17. Time variation and power spectra of the vertical component of the
velocity field measured in the four stations indicated in the cavity
sketch for the flow over an open cavity with AR = 2 and Re = 7000.

computed by a Fourier transform of the velocity signal w(t) obtaining a
frequency corresponding to a Strouhal number based on the cavity length of
St = fL/U = 0.905. In the three successive stations the oscillation amplitude
progressively increases with an amplification factor between the first and the
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Figure 3.18. Time variation and power spectra of the pressure field measured in
seven stations along the streamline passing at x = 0.95, y = 0 and
z = −0.2 for the flow at Re = 7000.
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Figure 3.19. Pressure time history at the cavity downstream edge (top), pressure
field (middle) and out of plane vorticity (bottom) measured at
y = 0.25 plane for the flow at Re = 7000. The left column is relative
to the maximum of pressure while the right column is relative to
the minimum of pressure.

last station approximately equal to 8. This trend is also observable from the
spectra of w(t) which is characterized by a progressively increase of the energy
associated to the main oscillation frequency. Starting from the station 3, but
more visible in the last station, a secondary less energetic contribution due
to the non-linearity is observable for a dimensionless frequency of St = 1.81.

The unsteady behaviour of the flow in these conditions is also examined
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Figure 3.20. As in the previous figure but velocity streamlines (top) and velocity
vector (bottom).

along one of the most external streamline, which passes at x = 0.95 and
z = −0.2 of the cavity symmetry plane. Also in this case, as is shown in
figure 3.18, the main frequency of the oscillation corresponds to a Strouhal
number of St = 0.905 and, starting from the most external point of the
streamline and approaching the rotation centre of the primary vortex, the
amplitude of the pressure oscillations decreases. However, it is interesting to
note that along the streamline the phase shift measured in the various station
in essentially null.

For a more detailed analysis of the flow characteristics in unsteady condi-
tions, in figure 3.19 the pressure field and the vorticity magnitude field and
in figure 3.20 the streamlines and the vector field in the y = 0.25 plane are
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Figure 3.21. Representation of the xy plane at z = −0.5 and the yz plane at
x = 0.5 of the open cavity for Reynolds number 7000.

plotted for the solution phases corresponding to a minimum and a maximum
in the pressure value measured at the downstream edge of the cavity. The
spectral analysis of the pressure time history plotted in this figure has a
period and a fundamental frequency well comparable with the ones of the
vertical velocity signal measured in the above-mentioned four stations.

First of all, differently from what happens in a steady flow where a stag-
nation point at the downstream cavity corner was observed, if the flow is
unsteady the pressure field is characterised by large-scale pressure fluctua-
tions created by the interaction between the oscillating shear layer and the
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downstream edge, which propagate past the cavity. Since the flow remains
laminar also in these unsteady conditions, the interaction previously intro-
duced is fairly regular and, in particular, the minimum value for the pressure
is measured when the Kelvin-Helmholtz vortex, inside of which the pressure
is low, hits the cavity downstream edge. This behaviour is well observable
from the velocity streamlines plotted at the minimum of the pressure. An
important influence on the behaviour of the flow is given by the cavity down-
stream corner, whose effects were studied for the first time by Rockwell and
Knisely [22] whose observations are quite relevant for the present work. In
particular, when the Kelvin-Helmholtz vortex impacts on the cavity trailing
edge it is divided in two parts: the first one is transported inside the cavity
while the second one is convected in the channel.

The maximum of pressure is, instead, reached about half period later
when the Kelvin-Helmholtz vortex is not already created, as one can see from
the velocity streamlines associated to the pressure maximum. In fact, looking
at the flow evolution during a pressure cycle (figure 3.16), the instability
vortex is not always present past the cavity leading edge, but it develops
approximately at x = 0.75 shortly after the maximum peak for the pressure
at the downstream edge. Furthermore, since the cavity is not very long, two
successive vortices at the interface between the cavity and the channel are
never observed.

Finally, it is important to observe the morphology of the flow in the xy
and yz planes. Differently from the flows at Re = 5000 and Re = 6500,
where well organised spanwise rows of vortices are present, for these Reynolds
numbers the morphology is characterized by one symmetrical large-scale pair
of counter-rotating vortices departing from the upstream cavity wall, which
are produced by the centrifugal forces, but that evolves in coherent large-scale
and not stable structures (figure 3.21). Hence, it is possible to conclude that
in these conditions the effects of the centrifugal force are definitely reduced.





4 | Cavity with AR = 1

This chapter focuses on the stability analysis which, in this thesis, is performed
only for the three-dimensional cuboid open cavity for Re = 7000. The
justifications to this only one analysis can be found in the appendix where the
principal computational aspects about a stability study are briefly introduced.

4.1 Comparison with lid-driven cavity flow
The behaviour of the flow inside a lid-driven cavity is a problem largely
studied and a lot of experimental and numerical results can be found in the
literature. Among these results, a few concerns the stability analysis of the
three-dimensional flow. Considering the case with AR = 1, it is possible to
compare the results about the open cavity with those obtained by Giannetti,
Luchini and Marino [20] for the lid-driven cavity.

The parameter used for this comparison is the friction Reynolds number
Reτ , since the Reynolds number that characterize the the two flows are
defined in a different manner. In particular, in the case of lid-driven cavity,
the reference velocity entering the Reynolds number usually is the moving
lid velocity, which is set to 1, while, in the case of the open cavity, it is the
external velocity, which is also set to 1 for convenience. The reference length
is, in both cases, the dimension of the cavity in the stream-wise direction
that is also set to 1. Unfortunately, it is impossible to directly compare
the results obtained in two cases for the same Reynolds number because the
reference velocities are not the same. As previously said, the most appropriate
parameter to compare these two problems seems to be Reτ , which is a quantity
linked with the shear stress and so with the derivative of the stream-wise
component of the velocity vector in the direction normal to the wall.

Starting from the friction velocity uτ , the friction Reynolds number can
be written in this way:

Reτ =
√
Re

√
∂u∗

∂z∗
(4.1)
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Figure 4.1. Comparioson between the streamwise velocity profile in the lid-driven
cavity ( ) for Re = 2000 and in the open open cavity ( ) for
Re = 6500.

where u∗ and z∗ are the dimensionless quantities obtained with the reference
velocity U and the reference length L. In both the cases the derivative is
calculated along the centreline of the cavity x = 0.5, y = 0 and for −1 < z < 0,
and it is evaluated at z = 0. For the lid- driven cavity this point represent
the centre of the wall in motion and τw is the effective wall shear stress, while
in the case of open cavity, this quantity is related to the stress that drives
the motion within the cavity.

In figure 4.1 the velocity profiles of the streamwise component of the
velocity in the z direction are shown. In particular, for the lid-driven cavity,
the case for Re = 2000, which is available in the work of Giannetti, Luchini
and Marino [20] is reported, while for the open cavity the streamwise velocity
profile conveniently scaled since u assumes unitary value at the interface
between the cavity and the external channel is shown and, as the reader can
notice, they have qualitatively the same trend. Starting from these profiles,
it is first possible to calculate the derivative of the velocity in correspondence
of z = 0, which is 19.08 for the lid-driven cavity and 5.95 for the open cavity.
From these two values and from the Reynolds numbers of the two simulations,
the Reτ that characterise the two flows are 195.35 for the lid-driven cavity
and 196.66 for the open cavity, which match quite well. Also the derivative
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Figure 4.2. Three-dimensional open cavity flow withAR = 1: velocity streamlines
in the x = 0.5 plane for Re = 5000 (left) and Re = 6500 (right).

of the velocity profiles at these two Reynolds numbers (do not shown) are
qualitatively and quantitatively very similar with the main differences in
correspondence of the lower wall of the cavity.

Since the work of Giannetti, Luchini and Marino [20] is concerned to a
cuboid lid-driven cavity and in literature eigensolution computations about
the three-dimensional cuboid open cavity are not present, the author will
utilized these results for a validation of those obtained in this thesis.

4.2 Flow morphology
The simulations for the cavity with unitary aspect ratio are performed in a
range of Reynolds number between 5000 and 7125. For this aspect ratio the
counter-rotating vortices which develops in spanwise direction are observed
again, but one great difference with respect to the results introduced in the
previous chapter can be underlined. In fact, if for the cavity with AR = 2
the number of vortex pairs increase as the Reynolds number is increased, in
this geometry only one pair spanwise vortices is observed for all the Reynolds
numbers analysed. The justification to this behaviour can be found considering
that the presence of two lateral vortices, which arise close to the cavity corners
and which are caused by the no-slip and no-penetration condition imposed to
the cavity walls, limits the available space for development and the expansion
of the Görtler vortices. For example, the figure 4.2 shows the velocity
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Figure 4.3. Three-dimensional open cavity flow with AR = 1: direct eigenvalues
for Re = 7000.

streamlines in the x = 0.5 plane for Reynolds numbers equal to 5000 and
6500. Here it is evident that only one pair of Görtler vortices is present, while
in figures 3.10 and 3.11, where the streamlines in the same plane and for the
same Reynolds numbers but for AR = 2 were showed, the increased number
of pairs of counter rotating vortices was clear.

This morphology is comparable with the results presented by Alizard,
Loiseau and Robinet [1], which show the presence of Görtler vortices inside
an open cavity with an infinite extension. Since the absence of lateral walls
in their computation, Alizard, Loiseau and Robinet [1] have found three pairs
of counter-rotating vortices. This highlights once again the importance of the
later walls and of the no-slip condition imposed on these boundaries.

4.3 Stability analysis

Once the base flow has been computed, the stability simulation is started
imposing a homogeneous Dirichlet condition on all the boundaries and super-
imposing to the steady flow a random fluctuation as initial condition. The
computation of the five eigenvalues nearest to the origin of the complex plane
gives the spectrum reported in figure 4.3. In particular, this spectrum is
characterised by a pair of complex-conjugate and one real eigenvalue with
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Figure 4.4. Three-dimensional open cavity flow with AR = 1: real part of
direct global mode corresponding to the eigenvalue σ1, visualised by
the contour of the streamwise velocity component for u = ±0.0005
(top) and direct global mode corresponding to the real eigenvalue σ2
visualised by the contour of the streamwise velocity component for
u = ±0.0003 (down).

positive real part and by a pair of complex-conjugate eigenvalues with negative
real part. This allows to conclude that in these conditions the flow is unstable
and that both oscillating and steady unstable modes could be present.
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Figure 4.5. Three-dimensional open cavity flow with AR = 1: real ( ) and
imaginary ( ) parts of the transverse velocity w measure at 0 <=
x <= 1, y = 0.25 and z = 0.

Now, it is useful to look at the spatial structures of the unstable modes
that are visualised in figures 4.4 through the isosurfaces of their streamwise
velocity component.

In the first case, the unstable mode with a non-zero imaginary part (fig-
ure 4.4) has a shape quite similar to the one obtained by Sipp and Lebedev [32]
for the two-dimensional cavity. In particular, the direct eigenfunction is main
localized in the shear layer at the interface between the cavity and the ex-
ternal flow and in the boundary layer past the cavity. It consists of vortices
that move in downstream direction and, at the same time, are dumped. In
figure 4.5, it is interesting to note the phase shift between the real and the
imaginary parts of the vertical velocity w which is probably responsible of
the activation of the downstream convection of the vortical structures. The
important difference between the spectrum computed by Sipp and Lebe-
dev [32] and the one obtained in this thesis is the frequency of the most
unstable mode. The recent study by Citro, Giannetti and Brandt [11] has
underlined that the intrinsic frequencies of the unsteady three-dimensional
modes suffer a drastic decrease. The computed values of such 3D modes
for the flow over a 2D open cavity have an order of magnitude comparable
with the one of the most unstable mode computed for the three-dimensional
cavity. In particular, the differences encountered with the results of Sipp and
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Lebedev [32] and Citro, Giannetti and Brandt [11] can be partially justified
considering the difference of the displacement thickness, which is an important
parameter for the stability properties of this kind of flow. In fact, in the
present computation, the boundary layer is characterized by a boundary layer
displacement thickness δ = 0.03624, which is about three times greater than
the one studied in the aforementioned papers.

In the second case, the steady unstable mode is localised inside the
cavity near the upstream and bottom cavity walls, where the effects of the
centrifugal forces are most important and it shows a tail in the shear layer
above the downstream wall. A useful comparison can be tried with the results
reported by Alizard, Loiseau and Robinet [1] for the infinitely extended
cavity. Considering a disturbance with wavenumber β = 2 they computed,
for Re = 4200, a spectrum characterised by an unstable steady eigenvalue
which they have linked to a centrifugal instability. Once again, the effect of
the cavity lateral walls must be considered. In fact, the mode reported in the
draft of Alizard, Loiseau and Robinet [1] and the one showed in figure 4.4
are well comparable in the centre of the cavity, but near the lateral walls the
shapes do not match. Finally, the shape of this mode is comparable to the
shape of the steady mode presented in the paper by Marino, Giannetti and
Luchini [20] about the lid-driven cavity. As well as the mode shape, also the
steady eigenvalue and the two stable complex-conjugate eigenvalues reported
here are located in the complex plane in a position similar to the one of the
eigenvalues computed for the lid-driven cavity.

The results presented in this thesis can not be validated by comparison with
established results, since no eigenvalue computations have been performed
for the three-dimensional open cavity to date. It is important to consider
that just five eigenvalues nearest to the origin of the complex plane have been
computed. Hence, it is possible that the eigenvalues showed in figure 4.3
correspond to modes which do not describe in detail the behaviour of the flow.
However, the agreement with the results of Sipp and Lebedev [32] for the
two-dimensional open cavity and of Marino, Giannetti and Luchini [20] allows
the author to conclude that the computed modes could have physical sense,
but further calculations with increasing polynomial order and for different
Reynolds numbers will be necessary.
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This thesis work has focused on the numerical investigation of a three-
dimensional, incompressible flow over an open cavity with different aspect
ratios.

NEK5000, an open source CFD solver based on the spectral element
method whose principal features are described in chapter 2 and in appendix A,
was used to perform the computations. This solver has proved to give reliable
results for the two-dimensional problems of the flow around a circular cylinder
and the flow over an open cavity. In fact, both the base flow and the
eigensolution computed for these two problems match well those presented in
the paper of Sipp and Lebedev [32].

The results obtained for the three-dimensional open cavity are in ac-
cordance with those described in the works of Faure et al. [15] [16]. In
particular, the most interesting result with respect to the flow morphology
is the observation of longitudinal pairs of counter rotating vortices due to
centrifugal forces, which develop in spanwise direction. In the case of the
open cavity with AR = 2 the presence of these vortical structures is evident
for Re ≥ 3200, while, for AR = 3, the minimum Reynolds number for which
they are visualized is 4000. A detailed analysis of the flow for Reynolds
numbers in the range [3000, 4000] has shown that the appearance of these
spanwise pairs of vortices is gradual, rather than a drastic change of the
flow behaviour. Therefore, the first conclusion to be drawn is that for low
Reynolds numbers, the three-dimensional open cavity flow is not subject to
a centrifugal instability as is reported in the paper of Bres and Colonius [5]
about an infinitely spanwise extended cavity. This is probably due to the
presence of the lateral walls which break the spanwise translation invariance.

For higher Reynolds numbers, the flow shows an unsteady behaviour. In
the cavity with AR = 2, the solution starts to oscillate for Re ≥ 6750 and
this seems to be due to a Kelvin–Helmholtz instability which develops at
the interface between the slower flow inside the cavity and the faster flow
outside of it. The unsteady behaviour is characterized by a periodic solution
with dimensionless frequency of St = fL/U = 0.905, measured at Re = 7000.
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Furthermore, it is possible to observe the formation of a Kelvin–Helmholtz
vortex that develops at x ' 0.75 and interacts with the cavity trailing edge.
Connected to this vortex is the presence of large-scale pressure fluctuations
which propagate past the cavity.

Finally, the first results about stability for the open cavity with AR = 1
are presented. The five eigenvalues nearest to the origin of the complex plane
have been computed for Re = 7000 and the resulting spectra is characterized
by a pair of complex-conjugate and a real eigenvalues with positive real
part. The mode shape relative to the first two unstable complex-conjugate
eigenvalues is well comparable with the one presented in the paper of Sipp
and Lebedev [32] for the most unstable eigenvalues, while the mode shape
of the unstable steady eigenvalue is in accordance with the shape of the
steady mode reported in the work of Marino, Giannetti and Luchini [20]
about the three-dimensional lid-driven cavity. This permits to conclude that
the stability results obtained have a physical sense, but further analyses are
necessary for the validation of the results obtained in this thesis.

5.1 Future perspectives
First of all, in order to validate the stability results described in chapter 4,
it is necessary to compute the eigenvalues for Re = 7000 with an increased
order of the polynomial bases.

Second, the stability computation should be performed for different
Reynolds numbers. This will allow to map the eigenvalues as a function
of the Reynolds number and to estimate the critical Reynolds number. The
stability for the cavities with AR = 2 and AR = 3 has to be investigated
in order to interpret the results about the unsteady flow observed for the
cavity with AR = 2 described in the section 3.3 by virtue of the computed
spectra. Furthermore, the hypothesis about the gradual insurgence of pairs
of counter-rotating vortices in spanwise direction without an instability will
be checked.

Finally, the adjoint problem has to be solved in order to identify the
wavemaker and to locate the region responsible of the instability, as explained
in the chapter 1. In addition, the paper of Giannetti and Luchini [19] explains
how the structural stability analysis results can be used to control the flow,
with the principal aim of suppressing the oscillation and to prevent instability
by an active or passive control. In particular, for the cavity problem, the
work of Cattafesta et al. [8] describes various active control techniques for
the flow over an open cavity

Thanks to the work done for this thesis, now the code to compute the
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eigensolution for the three-dimensional flow over an open cavity with NEK5000
is well functioning and the principal aspects of the computation are reported
in the appendix A. When further cpu hours will be available, the stability
analysis can carried through to completion.
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This appendix focuses on the files and the procedures necessary for a simulation
with NEK5000. In particular, the first section is dedicated to the computation
of the base flow, while the second section is concerned with the solution of
the eigenvalue problem.

A.1 Base flow computation
In order to compute the base flow for the open cavity problem (in the following
ocavity) with NEK5000, the files ocavity.rea, ocavity.usr, SIZE and ocavity.box
are necessary.

First, the file ocavity.box has to be generated. This file divides the
computational domain of the problem in macro-boxes such that the mesh
generation and the boundary condition specification are easier. This file is
built in this way:

• 1st line: name of the existing .rea file (in this case ocavity.rea);

• 2nd line: number of spatial dimensions;

• 3rd line: number of the simulation fields;

• 4th line: label “Box ” indicating that in the next lines the parameters
of the first macro-box are described;

• 5th line: number of elements in x, y and z directions.

• 6th line: value of xmin, xmax and element ratio form left to right; If the
ratio is equal to 1.0 all the elements have the same size. If it is greater
than 1.0 the elements are more refined near xmax, while, if it is less than
1.0, the elements are more refined near xmin;

• 7th and 8th lines: similar to the 6th line but referred to the y and z
directions;
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• 9th line: boundary conditions on each one of the 6 faces of the macro-box.
In this problem the boundary conditions are:

– v (velocity): Dirchlet condition with a value imposed by the
subroutine userbc in the ocavity.usr file;

– W (wall): no-slip condition → u = 0;
– O (outflow): the flow leaves the domain through this boundary
→ p = 0;

– SYM (symmetry);
– “white space”: this face is in common with two boxes.

In a three-dimensional problem the user has to specify six boundary
conditions for each box (one for each face). It is necessary to be careful
with the white spaces because genbox reads 3 spaces for each condition
and then looks for a comma. So, for example “v , , ,W ,SYM,O ” is
correctly read by the preprocessor, while “v, , ,W,SYM,O” gives an
error;

• successive lines: all the other macro-boxes are defined.

The second file is the ocavity.rea file, which contains all the information
and the simulation parameters which the user has to set for the specific
problem. In particular, for the solution of the open cavity flow, the most
relevant parameters to control the simulation are the following:

• DENSITY: density of the fluid. The suggested value is 1.0;

• VISCOS: here set to a negative value in order to provide the Reynolds
number based on the streamwise length of the cavity (always 1.0) and
the external fluid velocity. If it is set to a positive value, this parameter
corresponds to the value of the kinematic viscosity of the flow;

• NSTEP: number of time steps of the simulation. To run a simulation
with a fixed number of steps, it is necessary to impose the parameter
FINTIME = 0.0;

• DT: value of the time step

– if DT = 0.0: NEK5000 automatically calculates the time step at
each iteration according to the stability condition;

– if DT > 0.0: this value represents the upper limit of the simulation
time step and the effective value of DT is calculated at each
iteration according to the stability condition;
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– if DT < 0.0: NEK5000 fixes the simulation time step to this
specified value. In this case if the stability condition is violated
the simulation will be stopped;

• IOTIME: number of time steps between two output files are dumped;

• DIVERGENCE: tolerance for the pressure solver;

• HELMOLTZ: tolerance for the velocity solver;

• COURANT: maximum Courant number;

• TORDER: order of the BDFk-EXTk time integration scheme. It can
be alternatively set to 1, 2 or 3.

The ocavity.usr file contains some subroutines which allow the user to
manipulate the simulation variables. For example, the subroutines userbc
and useric can be used to impose the boundary and initial conditions. In
this problem, both these subroutines are built such that the external file
blasius.data, that contains the velocity Blasius profile, is read. The other
important subroutine is userchk, which is called before the time loop for every
iteration. This subroutine contains all the commands for the initialization of
the variables and for their manipulation, like the calculation of the simulation
residual for the convergence test.

Finally, the SIZE file contains all the information useful for memory
allocation. The most important parameters that the user has to set are:

• LDIM: number of spatial dimensions;

• LX1/LY1/LZ1: number of points in the x, y and z direction within each
element for the velocity field. This parameter determines the degree of
the polynomial used in the simulation;

• LP: maximum number of processors;

• LELG: maximum number of mesh elements;

• LELV: maximum number of local elements for V-mesh.
LELV = LELG ≥ int(NELGT/NP) + 1
where NELGT ≤ LELG and NP ≥ LP.

Since these files contain a lot of parameters that can be manipulated, the
best approach is to start form one of the examples that can be downloaded
from the NEK5000 website and to introduce the required modifications for
the problem that the user has to solve.
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A.1.1 Simulation run
The first step necessary for any fluid dynamic computation based on finite
elements, finite volumes or spectral elements is the generation of the mesh that
discretises of the domain. In NEK5000 the mesh generation is provided by
the preprocessor NEKTON with the command genbox and the file ocavity.box.
From the command line the user has to enter in the working directory and
type

$ genbox
input file name: ocavity .box

This first step generates a new file called box.rea which contains the same
parameters of the ocavity.rea file and all the mesh elements with the associated
boundary conditions.

In the second step, the command genmap produces a proper processor
decomposition. Starting from the box.rea file previously generated, this
command has to be executed in this way:

$ genmap
Input (. rea) file name:
box.rea
Input mesh tolerance ( default 0.2):
0.2

and gives a new binary file called box.map which has to be renamed as
ocavity.map. After that, it is possible to split the information about the
simulation parameters and about the mesh contained in the box.rea file in two
different files. The first one is again the ocavity.rea file with all the simulation
parameters, while the second one is the binary file ocavity.re2 which contains
the mesh. This splitting operation can be done with the command reatore2
in this way:

$ reatore2
Input old ( source ) file name:
box
Input new ( output ) file name:
ocavity

Now the user is ready to built NEK5000. This step is necessary for every
new simulation or when the ocavity.usr or the SIZE files are changed. To
do this, it is necessary to use the script makenek which is located in the
nek5_svn/trunk/nek directory:

$ ./ path to makenek directory / makenek ocavity
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It is important to verify if this script includes the correct Fortran77 and C
compilers installed on the working machine, the correct path of NEK5000
source, the object list of additional files to compile and the optional linking
flags to some external libraries. The compilation of NEK5000 generates auto-
matically the ocavity.f and makefile files, the obj folder, and the executable
nek5000.

Finally, to run the open cavity problem with NEK5000 the user has to
type the command nekmpi for a foreground run or nekbmpi for a background
run (both files are in the folder nek5_svn/trunk7/tools/script) and to specify
the number of processors. For example, to run the test in background with 4
processors the command is:
$ ./ path to nekbmpi directory / nekbmpi ocavity 4

At the end of the simulation a series of binary files ocavity.fld?? will
be generated depending on the NSTEPS and IOSTEP parameters in the
ocavity.rea file. For the visualization of the results, one can use alternatively
two open source software: VisIt or ParaView. In both cases it is necessary to
generate a metadata file called ocavity.nek5000 which can be opened by this
software. This last file is obtained by executing the command visnek in this
way:

$ ./ path to visnek directory / visnek ocavity

A.2 Eigenvalue computation
Once the base flow is computed, the user can perform the stability analysis of
the obtained solution. The files and the steps necessary for the computation
of the eigensolution with NEK5000 are essentially the same described in the
previous two sections. In addition, three other files are needed. The first one
is the arnoldi.f file, which interfaces NEK5000 with the arpack and parpack
libraries which implement Arnoldi’s method. The proper libraries for the
restart have to be installed and referred to in the executable makenek. The
second one is the param_database.f file, that allows to read the parameters for
the eigenvalue computation, which are written in the third file ocavity.rea.usr.
In particular, in this last file, the user can specify the number of time steps
between Arnoldi calls, the maximum number of Arnoldi steps, the number of
required eigenvalues, the size of the Krylov space, the arpack tolerance and if
the computation has to be started from a restart point.

Looking at the files presented in the first section, the parameters in the
ocavity.rea file that the user has to change are:
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• DT: must be fixed to a value which guarantees the numerical stability
of the solution. A good choice is half of the minimum time step used in
the base flow computation;

• TORDER: it is better to employ a 2nd order scheme rather than a 3rd
order scheme, to have a more stable time integration scheme;

• NPERT: must be set equal to -1;

• OUTPUT FIELD SPECIFICATION - COORDINATE: for the correct
dump of the eigenvector files this parameter must be set true (T);

• RESTART: this parameter must set to 1 in order that NEK5000 can
read the baseflow field obtained from the procedure described in the
previous section. For example:

1 PRESOLVE / RESTART OPTIONS *****
re7000 . baseflow

where re7000.baseflow is the last output file of the base flow computation.

In the userchk subroutine in the ocavity.usr file, it is necessary to recall
the subroutines written in the arnoldi.f file and to change the boundary
conditions imposing a homogeneous Dirichlet conditions on all the boundaries
and the initial conditions by superimposing a random perturbation field on
the base flow.

When the simulation is finished, the output will be the eigenvalue.txt file,
which contains the real part of the eigenvalues in the fourth column and the
imaginary part in the fifth column and the egvocavity.fld?? files, in a number
equal to the number of computed eigenvalues.

Finally, it is important to consider the possibility to use the restart files
of the eigenvalues computation for a Reynolds number as the restart files for
a new eigenvalues computation for a Reynolds number closed enough to the
the first. This can be done changing the Reynolds number parameter and
the baseflow file in the ocavity.rea file. In this way, the computational time
for the eigenvalues calculation for different Reynolds numbers, which can be
very high for three-dimensional problems, can be drastically decreased.
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Il comportamento della corrente all’interno di una cavità è un fenomeno
fluidodinamico molto importante perché rappresenta il problema modello di
molte geometrie di interesse aerodinamico e fluidodinamico. Alcuni esempi
sono i fori per le viti e i rivetti, le cavità tra gli alettoni o i flap e il resto
dell’ala, i vani per i carrelli e i fori delle prese di pressione. In particolare,
il flusso in questo tipo di dominio può essere causa di rumore, di carichi
non stazionari e vibrazioni, che, a loro volta, possono generare transizione e
turbolenza con un conseguente aumento di resistenza oppure, in casi peggiori,
un danneggiamento e una perdita di efficienza del componente.

Nonostante la maggior parte delle applicazioni aeronautiche coinvolgano
flussi a numeri di Mach transonici, l’ipotesi fatta in questa tesi è quella
di flusso incomprimibile. Le ragioni principali che hanno portato a questa
scelta sono due. Per prima cosa, anche se il flusso indisturbato esterno è
caratterizzato da un numero di Mach relativamente alto, la velocità del flusso
all’interno e nelle immediate vicinanze della cavità sarà sicuramente molto
minore rispetto a quella esterna a causa della condizione di perfetta adesione
a parete che rallenta la corrente vicino all’imbocco della cavità. Inoltre, è
necessario considerare che diversi fenomeni che possono essere assimilati al
flusso all’interno di una cavità possono essere osservati anche a numeri di
Mach molto minore, per i quali l’ipotesi di incomprimibilità è valida.

In letteratura il comportamento del flusso all’interno di una cavità è un
argomento largamente trattato, ma con risultati riguardanti prevalentemente
la cavità bidimensionale o chiusa. A proposito della cavità tridimensionale
i risultati sono quasi esclusivamente sperimentali, come quelli proposti da
Faure et al. [15] e [16], riguardanti la morfologia del flusso in una cavità
caratterizzata da diversi allungamenti. Risultati riguardanti la stabilità
sono invece presenti nell’articolo di Bres e Colonius [5] nel caso di cavità
infinitamente estesa in direzione laterale e nell’articolo di Sipp e Lebedev [32]
nel caso di cavità bidimensionale.



86 Estratto in lingua italiana

Modello matematico

Il comportamento del flusso all’interno della cavità è descritto dalle equazioni
di Navier–Stokes incomprimibili

∂u
∂t

+ (u · ∇)u− 1
Re
∇2u +∇p = 0

∇ · u = 0,
(B.1)

in cui il numero di Reynolds, definito come

Re = L U∞
ν

, (B.2)

è il parametro adimensionale da cui dipende la risposta del sistema fluidodina-
mico. Per la soluzione delle equazioni di Navier–Stokes opportune condizioni
al contorno e iniziali dovranno essere imposte.

Il sistema non lineare B.1 presenta diverse soluzioni di equilibrio le cui
proprietà dovranno essere studiate separatamente. Questo studio può essere
affrontato con un approccio globale ottenuto grazie alla linearizzazione delle
equazioni nell’intorno del punto di equilibrio e all’applicazione del metodo di
Lyapounov indiretto, per il quale è necessario il calcolo degli autovalori del
sistema linearizzato nel punto di equilibrio.

Uno strumento necessario per l’analisi di stabilità globale è l’operatore
aggiunto, la cui descrizione dettagliata può essere trovata nell’articolo di
Luchini e Bottaro [23]. L’applicazione dell’operatore aggiunto alle equazioni
di Navier–Stokes permette di eseguire l’analisi di sensitività strutturale e, in
particolare, di calcolare il parametro di sensitività strutturale

s(x, y, z) = ‖v̂
∗(x, y, z)‖‖û(x, y, z)‖∣∣∣∫

Ω
v̂∗ · û

∣∣∣ . (B.3)

dove û e v̂∗ sono le autofunzioni diretta e aggiunta associate all’autovalore
con parte reale maggiore e, quindi, meno stabile. Questo risultato permette
di valutare l’effetto di una perturbazione del sistema sulla risposta dinamica
del sistema stesso.

Modello numerico

Per le simulazioni numeriche del flusso all’interno della cavità e per il calcolo
degli autovalori è stato utilizzato il software open source NEK5000, un
solutore fluidodinamico sviluppato da Paul Fisher e dai suoi collaboratori al
Mathematics and Computer Science Division of Argonne National Laboratory.
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Figura B.1. Cavità 2D: autovalori diretti ( ) e aggiunti ( ) a Re = 4135.
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Figura B.2. Cavità 2D: parte reale dell’autovettore diretto (sinistra) e aggiunto
(destra) rappresentate attraverso la componente longitudinale della
velocità relative all’autovalore più instabile per il flusso a Re = 4135.

In NEK5000 la discretizzazione spaziale è basata sul metodo ad elementi
spettrali. In particolare, per l’approssimazione del campo di velocità vengono
usati i punti di integrazione di Gauss-Legendre-Lobatto mentre per il campo
di pressione vengono usati i punti di Gauss-Legendre. Questa scelta, associata
all’utilizzo di polinomi di grado N per l’approssimazione della velocità e di



88 Estratto in lingua italiana

AR dimensione dominio elementi celle punti
1 [-1.0, 5.0] × [-4.0, 4.0] × [-1.0, 4.0] 68320 8540000 14757120
2 [-1.0, 5.0] × [-4.5, 4.5] × [-1.0, 4.0] 99520 12440000 21496320
3 [-1.0, 5.0] × [-5.0, 5.0] × [-1.0, 4.0] 130720 16340000 28235520

Tabella B.1. Dimensione del dominio e numero di elementi, celle e punti per i
diversi apstect ratios analizzati.

grado N − 2 per l’approssimazione della pressione, consente di rispettare la
condizione inf-sup e, quindi, di evitare modi spuri di pressione nella soluzione.

La discretizzazione temporale è, invece, basata sullo schema BDFk-EXTk,
dove k indica l’ordine di integrazione temporale dello schema numerico.
L’estrapolazione di ordine k permette di evitare il calcolo della soluzione
di un sistema non lineare ad ogni passo temporale, che, nel caso di utilizzo
del solo schema BDF, sarebbe presente a causa del termine non lineare delle
equazioni di Navier–Stokes.

Successivamente, l’applicazione della discretizzazione temporale alle equa-
zioni di Navier–Stokes avviene attraverso una tecnica di time splitting spiegata
dettagliatamente nell’articolo di Fisher [17].

Il calcolo delle autosoluzioni è stato eseguito grazie all’interfaccia di
NEK5000 con le librerie arpack e parpack. I risultati per la cavità bidimensio-
nale sono mostrati nelle figure B.1 e B.2 e sono in accordo con quelli presentati
nel paper di Sipp e Lebedev [32].

Morfologia del flusso

Il flusso all’interno della cavità è stato studiato per tre diversi allungamenti

AR = W

L
= dimensione laterale

dimensione longitudinale (B.4)

e le caratteristiche della mesh nei tre casi sono riportate in tabella B.1. Al
variare del numero di Reynolds sono state osservate diverse morfologie del
flusso nel piano di simmetria della cavità. In tutti i casi è possibile notare la
presenza di un vortice, detto vortice principale, che occupa la parte centrale
della cavità e che è caratterizzato da una velocità maggiore rispetto a quella
delle altre strutture vorticose secondarie presenti. In particolare, queste ultime
sono due vortici contro-rotanti che si sviluppano negli angoli sul fondo della
cavità e un vortice contro-rotante che, per numeri di Reynolds sufficientemente
alti, si sviluppa in corrispondenza del bordo d’attacco della cavità.
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Figura B.3. Cavità 3D con AR = 2: linee di corrente nel piano x = 0.5 per il
flusso a Re = 6500.

Nel caso di cavità con AR = 2, è interessante notare che per Re ≥ 3200
diverse configurazioni di vortici secondari possono essere osservate sui piani
visualizzati al variare della coordinata y. Ciò è collegabile al fatto che per
Re ≥ 3200 il flusso è caratterizzato da una serie di vortici contro-rotanti che si
sviluppano in direzione laterale e che occupano tutta la cavità (figure B.3 per
il flusso a Re = 6500). Questi vortici possono essere classificati come vortici
di Görtler e sono causati dall’effetto delle forze centrifughe che si sviluppano
vicino alle pareti della cavità a causa della forte diminuzione della velocità
dovuta alla condizione di perfetta adesione. Un’analisi dettagliata del flusso
nel range di numeri di Reynolds tra 2000 e 4000 mostra che la formazione di
questi vortici è graduale, come mostrato in figura B.4. Questo suggerisce che il
flusso non soffra di un’instabilità di tipo pitchfork come descritto nell’articolo
di Bres e Colonius [5] sulla cavità di apertura infinita, ma, al contrario, che
la soluzione presenti una condizione di pitchfork “imperfetta”. La spiegazione
di questo fenomeno può essere data considerando che le pareti laterali che
delimitano la cavità in direzione y rompono la simmetria traslazionale del
dominio. Inoltre, all’aumentare del numero di Reynolds, il numero di vortici
in direzione laterale aumenta. Infatti, per Re = 5000, si osservano quattro
coppie di vortici contro-rotanti, mentre per Re = 6500 se ne osservano cinque.
Un aumento del numero di vortici si ha anche incrementando l’allungamento,
in quanto, per AR = 3, si ha la presenza di sei coppie di vortici contro-rotanti
a Re = 6250.

Nel caso di cavità con AR = 2 la soluzione diventa instazionaria per
Re ' 6750. In queste condizioni il flusso è caratterizzato da un’instabilità
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Figura B.4. Cavità 3D con AR = 2: linee di corrente nel piano x = 0.51 per
cinque diversi numeri di Reynolds.

instazionaria dovuta a un meccanismo di Kelvin-Helmholtz che interessa lo
strato di scorrimento viscoso presente tra il flusso più lento all’interno della
cavità e il flusso più veloce all’esterno. A seguito di questa instabilità vi è la
formazione di un vortice di Kelvin-Helmholtz che si forma periodicamente
intorno a x = 0.75 e che interagisce con il bordo di uscita della cavità.
La conseguenza principale di questo fenomeno è la formazione di zone di
sovrapressione e depressione a valle della cavità.

Analisi di stabilità

Per la cavità con AR = 1, sono stati ottenuti dei primi risultati di stabilità
grazie al calcolo dello spettro e delle autosoluzioni per il flusso a Re = 7000.
Questi risultati sono sicuramente da considerare preliminari e da verificare con
nuovi calcoli eseguiti incrementando il grado dei polinomi di approssimazione
e variando il numero di Reynolds. Quest’ultima analisi permetterà anche di
ottenere una mappa degli autovalori nel piano complesso e di poter determinare
il numero di Reynolds critico. Inoltre, il calcolo delle autosoluzioni aggiunte
consentirà di eseguire l’analisi di stabilità strutturale e di determinare il
wavemaker, ovvero la regione del flusso responsabile dell’instabilità, come
descritto nell’articolo di Giannetti e Luchini [19].



91

Figura B.5. Cavità 3D con AR = 1: isosuperfici della parte reale del modo diretto
instabile e non stazionario visualizzato attraverso la componente
longitudinale della velocità per u = ±0.0005.

Lo spettro ottenuto calcolando i cinque autovalori più vicini all’origine del
piano complesso è caratterizzato da due autovalori complessi e coniugati e da
un autovalore reale con parte reale positiva. In queste condizioni il flusso è,
quindi, instabile.

La forma del modo relativo all’autovalore instabile (figura B.5) può essere
ben confrontata con i risultati presentati nell’articolo di Sipp e Lebedev [32]
per la cavità bidimensionale. L’autosoluzione è prevalentemente localizzata in
corrispondenza dello strato di scorrimento viscoso all’interfaccia tra il flusso
all’interno e all’esterno della cavità e può essere interpretata come vortici che
si muovono e, contemporaneamente, si smorzano in direzione downstream.

Come detto prima, i risultati presentati in questa tesi sono preliminari e
una verifica è sicuramente necessaria. In ogni caso, il confronto con altri pro-
blemi simili presenti in letteratura permette di concludere che le autosoluzioni
calcolate sono fisicamente plausibili.
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