
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Dipartimento di Energia

Corso di Laurea Magistrale in Ingegneria Energetica

MULTI-DIMENSIONAL STEADY STATE

IN-CYLINDER FLOW SIMULATION

BY AN OPEN-SOURCE CFD CODE

Relatore: Prof. Federico PISCAGLIA

Correlatore: Ing. Andrea MONTORFANO

Tesi di Laurea di:

Jacopo ZISA Matr. 770978

Anno Accademico 2012-2013

You say the hill’s too steep to climb, climb it!

”Fearless” - Pink Floyd

Ringraziamenti

Desidero ringraziare il professor Federico Piscaglia e l’ingegner Andrea Mon-

torfano per le conoscenze che hanno saputo trasmettermi, per la disponibilità

e la pazienza dimostrata ogni volta che mi hanno visto entrare nel loro uffi-

cio, seguendomi in ogni passo di questo lavoro con preziosi consigli.

Ringrazio i miei genitori e mio fratello che mi hanno sempre sostenuto in

ogni occasione, permettendomi di completare il corso di studi e raggiungere

un obbiettivo importante come questo.

Un ringraziamento particolare va alla mia ragazza, per l’aiuto immenso

che mi ha dato e se questo pezzo di carta è scritto, buona parte del merito

è suo.

Infine, last but not least, ringrazio i miei compagni tesisti Mattia e Tom-

maso, che hanno condiviso con me questo percorso e mi hanno permesso di

sdrammatizzare ogni momento.

III

Contents

Ringraziamenti III

Abstract XI

Sommario XIII

1 Introduction 1

2 Governing Equations and The Finite Volume Method 3

2.1 Governing Equations . 3

2.1.1 Continuity equation 4

2.1.2 Momentum equation 5

2.1.3 Energy equation . 6

2.1.4 State equation . 6

2.2 The Finite Volume Method 6

2.2.1 Time discretization . 7

2.2.2 Space discretization 8

2.2.3 Equations discretization methods 9

2.2.4 Interpolation methods 11

2.2.5 Solution of linear equations systems 12

2.3 RhoSimple Scheme . 18

2.4 Turbulence modeling . 22

2.4.1 Reynolds Average Navier Stokes 23

2.4.2 k-omega SST . 26

3 Experimental Tests 27

4 Simulation Setup 31

4.1 Boundary and initial conditions 32

4.2 Numerical schemes . 34

4.3 Solution and algorithm control 35

V

4.4 Flow straightener modeling 37

5 Mesh Generation 39

5.1 Discretization of spatial volume and mesh quality metrics . . 39

5.2 Mesh generation with the snappyHexMesh 42

5.2.1 BlockMesh . 42

5.2.2 Basic controls and geometry 44

5.2.3 CastellatedMesh . 45

5.2.4 Surface snapping . 47

5.2.5 Layer addition . 48

5.2.6 meshQualityControls 54

5.3 checkMesh . 57

6 Simulation Results 59

6.1 Unsteady simulations . 61

6.2 Steady state simulations . 73

6.2.1 In-cylinder velocity field 73

6.2.2 Valve flow . 75

6.2.3 Streamlines vs Vector plot 79

6.2.4 Velocity field vs Static pressure contours 83

6.2.5 Velocity maps . 87

6.2.6 Discharge coefficient 91

6.2.7 Tumble number . 93

6.2.8 Convergence results 95

7 Conclusions 99

Bibliografia 101

List of Figures

2.1 A cell in three dimension and neighboring nodes 7

2.2 Notation in the finite volume discretization 9

2.3 Gradient correction for non-orthogonal mesh 10

2.4 Cartesian notation for a control volume in two dimensions . . 11

2.5 Time averaging for a statically steady flow 24

3.1 Flow bench scheme . 28

3.2 Linearized . 29

4.1 OpenFOAM directory structure 31

4.2 Process scheme . 34

4.3 Porous media within the cylinder 37

5.1 Initial configuration of cylinder head 40

5.2 Steady state flow configuration of cylinder head 40

5.3 Mesh orthogonality quality metrics 41

5.4 Mesh skewness quality metrics 41

5.5 Mesh aspect ratio quality metrics 42

5.6 Mesh smooth transition . 42

5.7 Background mesh . 43

5.8 succession mesh refinements 47

5.9 Feature angle control . 47

5.10 Medial axis definition for surface layer growth 51

5.11 Detail valve layer zone . 52

5.12 Detail valve layer zone . 53

5.13 Face concavity . 55

5.14 Cell pyramid volume . 55

5.15 Face triangular decomposition 55

5.16 Face weight calculation . 56

6.1 Section plane . 60

6.2 Points distribution within the cylinder 62

VII

6.3 Velocity maps rhoPimple vs rhoSimple 62

6.4 Vector plot and streamlines rhoPimple vs rhoSimple 63

6.5 Velocity and static pressure contours rhoPimple vs rhoSimple 64

6.6 Valve flow rhoPimple vs rhoSimple 65

6.7 Unsteady velocity components 66

6.8 Unsteady pressure . 67

6.9 Unsteady enthalpy . 68

6.10 Unsteady kinetic turbulent energy 69

6.11 Unsteady specific turbulence dissipation rate 70

6.12 Valve flow rhoPimple vs rhoSimple 71

6.13 In-cylinder velocity field . 74

6.14 Low valve lift valve flow . 76

6.15 Medium valve lift valve flow 77

6.16 High valve lift valve flow . 78

6.17 Low valve lift streamlines vs vector plot 80

6.18 Medium valve lift streamlines vs vector plot 81

6.19 High valve lift streamlines vs vector plot 82

6.20 Low valve lift velocity field vs static pressure contours 84

6.21 Medium valve lift velocity field vs static pressure contours . . 85

6.22 High valve lift velocity field vs static pressure contours 86

6.23 Low valve lift velocity maps 88

6.24 Medium valve lift velocity maps 89

6.25 High valve lift velocity maps 90

6.26 Discharge coefficient . 92

6.27 Tumble number . 94

6.28 Convergence results for lift 1 - 3 mm 96

6.29 Convergence results for lift 4 - 6 mm 97

6.30 Convergence results for lift 7 - 9 mm 98

List of Tables

4.1 Boundary condition 1 (BC1) 32

4.2 Boundary condition 2 (BC2) 32

4.3 Turbulence boundary condition 33

4.4 Temperature boundary condition 34

4.5 Residual control . 36

4.6 Under-relaxation factors . 36

IX

Abstract

In this work, a series of steady state flow simulations, with the CFD soft-

ware OpenFoam, is carried out for several valve lifts in order to describe air

movement characteristics in cylinder and intake port of a spark ignition en-

gine. In-cylinder flow is studied by means of steady state RANS turbulence

models, using the finite volume method. Investigation is aimed at analyzing

the generation and the evolution of flow field during the intake stroke and

checking the ability to realize arranged motions in the cylinder. The set-

ting of numerical simulation model is consistent with boundary conditions

of steady state flow experimental tests in order to compare the results, rep-

resented by discharge coefficient and tumble coefficient. Simulation results

show that tumble is the main in-cylinder flow motion and tumble vortex

grows in size and intensity by the increasing air entering through the valves.

Moreover, discharge coefficient and tumble coefficient can be compared with

experimental tests with good matching.

Keywords: CFD, OpenFOAM, discharge coefficient, tumble coefficient,

steady state flow

XI

Sommario

I miglioramenti nella potenza di calcolo hanno portato a rapidi progressi

nella simulazione fluidodinamica computazionale (CFD) dei motori a com-

bustione interna (MCI). L’utilizzo di simulazioni fluidodinamiche consente

una maggiore comprensione della dinamica del flusso all’interno dei MCI.

Ogni nuovo progetto sviluppato è il frutto di un lavoro parallelo tra la parte

di simulazione e le prove effettuate attraverso un banco di flusso. Uno dei

principali vantaggi della CFD rispetto ai test sperimentali consiste nel fatto

che non è necessario costruire modelli in scala di solito estremamente costosi

e che presentano spesso condizioni di funzionamento difficili da replicare. La

CFD permette inoltre di ridurre la quantità di prove sperimentali portando

ad una riduzione dei tempi e quindi dei costi. L’obiettivo di questa sim-

ulazione è proprio quello di riprodurre una prova di flussaggio stazionario

ricavando i parametri più significativi per la motoristica, ovvero il coeffi-

ciente d’efflusso della valvola e l’intensità del vortice di tumble che si genera

nel cilindro. Per poter analizzare in modo completo la fase di aspirazione

e per tracciare i grafici del coefficiente d’efflusso e di intensità del vortice

di tumble, la geometria di cui si dispone è rappresentata da un modello

con differenti valori di alzata della valvola; nello specifico le alzate di cui si

dispone vanno da 1 mm a 9 mm. In tal modo, impostando il flussaggio su

ogni alzata, è possibile ricostruire il comportamento del fluido durante tutta

l’aspirazione. Una volta ultimate tutte le simulazioni i risultati acquisiti

verranno confrontati con quelli raccolti dalle indagini sperimentali.

Per questo lavoro di tesi si è utilizzato OpenFOAM , un software con

licenza GNU GeneralPublicLicense, per il quale è possibile sviluppare au-

tonomamente applicazioni e librerie personali. Le librerie sono scritte in lin-

guaggio C++ e possono essere riferite a due principali categorie: i solutori

che hanno implementato al loro interno le equazioni necessarie a risolvere

specifici problemi e le utility, applicazioni accessorie necessarie per la ma-

nipolazione dei dati sia per quanto riguarda il pre − processing sia per il

post− processing.

XIII

Una delle prime operazioni da eseguire per procedere con l’analisi flu-

idodinamica è la preparazione della geometria, che consiste nella creazione

della griglia di calcolo tramite l’identificazione di volumi di controllo sul do-

minio. La griglia può essere più o meno raffinata, presenta cioè zone più fitte

rispetto ad altre, a seconda dell’accuratezza richiesta. In generale si cerca

di ottenere una griglia più fitta nelle zone dove sono presenti i maggiori

gradienti, in modo da avere una rappresentazione il più possibile vicina al

fenomeno reale. Tuttavia è importante ottimizzare il dominio di calcolo in

modo da avere soluzioni in tempi accettabili. Data la complessità della ge-

ometria della testa cilindro fornita attraverso file CAD sono state necessarie

molte prove per l’ottenimento di un risultato soddisfacente per la simulazione

CFD. La geometria è data da un cilindro completo di valvole di aspirazione

e condotto. Si tratta quindi dello stesso assemblato di cui si dispone nel caso

di una prova sperimentale. Prima di tutto è stata creata una background

mesh di celle esaedriche con l’utility blockMesh, definendo un grado di raffi-

namento generale, viene lasciato agli step successivi l’eventuale raffinamento

locale. Successivamente si è passati ad utilizzare l’utility snappyHexMesh

per ottenere una mesh conforme ai tipici valori di qualità richiesti da una

simulazione CFD su una geometria complessa. Questa utility viene con-

trollata attraverso il dizionario snappyHexMeshDict associato, a cui ven-

gono forniti i parametri necessari per ogni step di generazione della griglia

di calcolo e viene eseguito un ciclo qui descritto. Il primo step riguarda

la generazione di una castellatedMesh, che rappresenta una griglia di cal-

colo con l’introduzione del raffinamento locale ma senza morphing della

testa cilindro, eliminando le celle esterne alla geometria in analisi. Il se-

condo step, detto snap, procede con la generazione della mesh con mor-

phing della geometria che consiste nello spostamento dei vertici delle celle

sul confine della castellatedMesh sulla superficie del file STL. In questa fase

viene successivamente rilassata la mesh interna basandosi sull’ultimo sposta-

mento dei vertici delle celle di confine. Vengono inoltre identificati i vertici

che causano una violazione dei parametri di qualità imposti nella sezione

MeshQualityControl. Infine viene ridotto lo spostamento di questi vertici

dal loro valore iniziale e si ripete il ciclo fino al raggiungimento dei paramenti

di qualità richiesti. L’ultimo step riguarda il layerAddition. In quest’ultima

fase viene aggiunto un layer di celle sulle patch di contorno. Si tratta di un

processo opzionale che introduce ulteriori celle esaedriche allineate con le

superfici. L’inserimento del boundary layer comporta il restringimento della

mesh al confine con la superficie di contorno per permettere l’inserimento di

queste celle. La mesh generata consiste in una griglia di calcolo non strut-

turata, costituita prevalentemente da esaedri regolari, mentre le restanti

celle risultano essere dei tetraedri. I principali parametri da controllore

nello sviluppo di una mesh sono la skewness, la non-ortogonalità e aspect

ratio. Il primo parametro misura il grado di deformazione della cella. Il

secondo descrive la giacitura normale o inclinata alla faccia del segmento

che congiunge due centri cella adiacenti. L’ultimo indica il rapporto tra

lunghezza massima e minima dei lati di una cella.

Per risolvere un sistema di equazioni differenziali alle derivate parziali

è necessario assegnare le condizioni al contorno in modo opportuno. Tutte

le simulazioni sono state effettuate in due fasi. Nel primo step viene fis-

sato il salto di pressione pari a 1.1 come condizione al contorno, in modo

da ricavare la portata circolante. In questo caso, una condizione di pres-

sione totale è stata fissata nella patch di inlet e una condizione di pressione

statica nella patch di outlet (BC1). Nel secondo step la portata massica

appena calcolata viene applicata come condizione al contorno di inlet, man-

tenendo quella già assegnata precedentemente come condizione al contorno

di outlet (BC2). L’utilizzo del secondo setting di condizioni al contorno per-

mette di raggiungere una migliore convergenza sui residui e generalmente

una migliore stabilità alle prime iterazioni. Le grandezze del modello turbo-

lento, quindi k ed ω sono state inizializzate con riferimento alla letteratura.

Questa inizializzazione tuttavia, specialmente per le basse alzate delle val-

vole (1 mm, 2 mm, 3 mm), ha portato ad un arresto della simulazione nelle

prime iterazioni, mentre per le alzate medie e grandi (da 4 mm a 9 mm), la

simulazione ha raggiunto la convergenza. Successivamente a questa prima

fase di prove, come spiegato in precedenza, le nuove condizioni al contorno

BC2 sono state aggiornate con i nuovi valori di portata, k ed ω. Questi

nuovi valori delle grandezze turbolente sono stati ricavati mediando i valori

delle celle sulla patch di outlet dopo che la simulazione ha raggiunto la con-

vergenza. Quindi, al fine di inizializzare nel modo corretto anche k ed ω alle

basse alzate delle valvole, è stata eseguita una estrapolazione lineare con il

valore di portata massica interpolato. Conoscendo i valori esatti sia di k ed

ω sia della portata alle alzate 4 mm e 5 mm e il valore interpolato di portata

all’alzata 3 mm, attraverso una estrapolazione lineare sono stati ricavati i

valori di k ed ω per l’alzata 3 mm della valvola e sono stati assegnati alle

condizioni al contorno BC1.

Ultimate tutte le simulazioni, grazie a questo lavoro è stato possibile

descrivere il comportamento del flusso d’aria nella sezione di aspirazione

di un motore ad accensione comandata per diverse alzate delle valvole. I

risultati ottenuti possono essere giudicati affidabili, confrontati con le prove

sperimentali, sopratutto per le alzate intermedie (da 3 mm a 7 mm) con

un buon confronto delle mappe di velocità all’interno del cilindro. A con-

ferma del buon lavoro svolto, anche l’andamento del coefficiente di efflusso

e del numero di tumble è comparabile in maniera più che discreta con le

prove sperimentali in questo range di alzate. Le differenze riscontrate tra

i risultati numerici e quelli sperimentali sono da attribuire a diversi fat-

tori. Le simulazioni di CFD sono approssimazioni del fenomeno fisico per

cui anche i risultati saranno approssimati e limitati dalle risorse disponibili.

A causa delle moderate risorse hardware a disposizione e della complessità

della geometria analizzata, è stato necessario trovare un compromesso tra

raffinamento della mesh e tempo di calcolo. Con modelli di turbolenza di

tipo k - ǫ o suoi modelli derivati, griglie più lasche possono essere utiliz-

zate, tuttavia per garantire una y+ > 30 le dimensioni delle celle non risul-

tavano più compatibili con il raffinamento richiesto dalla sezione ristretta

della valvola. Inoltre questo modello di turbolenza descrive in maniera poco

completa flussi caratterizzati da elevati gradienti di pressione e ricircoli. Il

modello di turbolenza k - ω si è dimostrato adatto e flessibile per questo tipo

di lavoro. Parlando della generazione della mesh, l’uso di snappyHexMesh

ha portato ad avere alcuni problemi legati al fatto che è una utility basata su

un processo di modellazione della mesh iterativo e automatico. Il problema

principale è dovuto al fatto che la deviazione angolare della direzione del

flusso dal vettore che congiunge i due centri cella può generare diffusione

numerica. Un progetto di mesh con celle orientate nella stessa direzione

del flusso, nella zona ristretta della valvola, potrebbe rappresentare una

soluzione a questo problema. Tuttavia, aggiungere il boundary layer senza

prima aumentare il raffinamento a parete, ha generato delle celle distorte

con valori di non-ortogonalità e skewness molto alti. Procedendo invece con

un ulteriore raffinamento a parete, la mesh non presentava più celle distorte

ma un numero di elementi eccessivo per i mezzi di calcolo a disposizione.

Inoltre, le differenze osservate comparando i risultati possono anche essere

causate da un leggera differenza della geometria CAD, rispetto alla flow

box testata sul banco fluidodinamico, in quanto si sono rese necessarie delle

modifiche per adattare la geometria alle prove di simulazione.

Per tutte queste ragioni, è possibile affermare che la progettazione di un

particolare dispositivo preveda uno percorso condotto parallelamente tra le

simulazioni numeriche e le indagini sperimentali, in modo da ottenere un

studio più completo del fenomeno investigato.

Chapter 1

Introduction

Improvements in computer processing power and fluid simulation codes have

resulted in rapid advancements in computer-based engine simulation. The

use of three-dimensional computational fluid dynamic (CFD) codes allows

for greater understanding of flow dynamics in internal combustion engine

system, before any prototype is manufactured. In fact, many manufacturers

are routinely using CFD as part of their engine design process. Steady state

CFD simulation comparison with steady state flow bench results has been

widely applied in academic and industrial research. A key advantage of

numerical simulation compared to experimental tests is that in the first case

it is not necessary to build scale models, usually extremely expensive, or

fulfill analysis of systems in difficult conditions to replicate. This reduces

the amount of experimental tests necessary to develop a new product, which

ultimately reduces cost and time.

In this work, a series of steady state flow cold simulations is carried out

for nine valve lifts (1 mm to 9 mm), in order to describe air movement

characteristics in cylinder and intake port of a spark ignition engine. In-

vestigation is aimed at analyzing the generation and the evolution of flow

field during the intake stroke at different valve lifts and checking the ability

to realize arranged motions in the cylinder. The setting of numerical sim-

ulation model is consistent with boundary conditions of steady state flow

experimental tests in order to compare the results, represented by discharge

coefficient and tumble coefficient.

The intake mass flow rate by an internal combustion engine (ICE) is one

of the most important factors for an engine project. Valves and ducts play

an important role in the design of internal combustion engines, and influence

the performance in the period they are open. The steady state flow data

are representative of the dynamic flow behavior of the valve in an operating

engine. It has been shown that over the normal speed range, steady flow

discharge coefficient results can be used to predict dynamics performance

with reasonable precision. The intake system is efficient when there is a

minimal difference between the geometrical passage area and the effective

flow area.

A practical approach to improve the engine stability is to shorten the

combustion duration. This can be achieved by enhancing the tumble motion

within the engine cylinder, which enhances the flow turbulence. Generating

a significant vortex flow inside the ICE cylinder during the intake process

produces high turbulence intensity during the later stages of compression

stroke leading to burning rate. With steady state simulations it is possible

to describe the variation in size and intensity of tumble vortex for each valve

lift.

OpenFoam (Open Field Operation And Manipulation) is the compu-

tational fluid dynamic software used in this simulation. OpenFOAM is a

toolbox based on C++ libraries, that is able to simulate numerically all

the physical phenomena related to the mechanics of continuous. In particu-

lar, it allows the following applications: reactive fluid dynamics of complex

fluid, turbulent flow with heat transfer, conjugated calculations and solid

mechanics. The software is provided with several pre-configured solvers,

utilities and libraries and it can be used as any other typical commercial

package for numerical simulation. However, unlike the commercial codes,

OpenFOAM is open, not only in terms of source code, but even in its hier-

archical structure and design, in such a way that all its solvers, utilities and

libraries can be modified according to the needs of the user.

The thesis is organized according to the following pattern. Firstly the

physics of the problem and the numerical approach to model it are pre-

sented. Than a brief introduction reports the experimental investigation.

Afterwards simulation setup is discussed, in order to explain boundary con-

dition, numerical schemes, numerical solution and algorithm control. Mesh

generation chapter illustrates grid generation and mesh quality metrics pa-

rameters. Subsequently the numerical results are shown in several images

that describe the motion features and numerical and experimental results

are compared. Finally, in the conclusions section an evaluation of the work

and future developments are presented.

2

Chapter 2

Governing Equations and

The Finite Volume Method

2.1 Governing Equations

The Fluid behavior could be described by a system of three equations: con-

tinuity equation, momentum equation and energy equation. An equation of

state is added to them and, due to the fact that air is the working fluid, the

equation of state is considered as ideal gas. The Navier-Stokes equations

for fluid are written following the Eulerian approach, therefore the variables

(p,u,T, etc.) and fluid proprieties (rho, µ, etc.) are expressed as a function

of space and time, and their balance is evaluated on a fixed volume of space

traversed by the fluid. In this case the fluid motion is described by a system

of partial differential equations. Another way to write the N-S equations is

the Lagrangian approach, where the volume on which to write the balance

is deformable and in motion with the fluid itself. The Eulerian Approach is

made possible by the theorem of transformation (or Leibnitz), which allows

to write correctly, even for a fixed space control volume, the substantial

derivative that is formulated for a volume integral with the body in motion.

There is not a right or wrong approach, but it depends on the typology of

problem to solve. In this case it is preferred the Eulerian approach because

it is possible to separate time dependence from spatial dependence. For

steady state problem like in this case, the contribution of time variation is

null. In contrast, using the Lagrangian approach, even in presence of steady

state phenomena, dependence on time remains because it is connected to

the integration volume that must be followed and which varies in function

of time.

It is possible to write the conservation equation of the generic physical

property ϕ, defining Ω as control volume delimited by boundary surface S,

n as the surface normal vector of S, u as the fluid velocity and Qϕ as the

generic source of ϕ.

d

dt

∫

Ω

ρϕ(x, t) dΩ =

∫

Ω

Qϕ dΩ (2.1)

the first member of the equation (2.1) represents the total variation in

time of ϕ:

d

dt

∫

Ω

ρϕ(x, t) dΩ =
∂

∂t

∫

Ω

ρϕ(x, t) dΩ+

∫

S
ρϕ(x, t)u · ndS (2.2)

Then equation (2.1) can be rewritten as:

∂

∂t

∫

Ω

ρϕ(x, t) dΩ+

∫

S
ρϕu · ndS =

∫

Ω

Qϕ dΩ (2.3)

This general formulation does not allow to find the value of ϕ in all

points of the domain. Referring to the Gauss theorem in order to move

from surface integrals to volume integrals:

∫

S
ρϕu · ndS =

∫

Ω

∇ · (ρϕu)dΩ (2.4)

Finally, if control volume is constant with time, it is possible to express

the balance equation for ϕ in the indefinite form, that is expressed by the

partial derivatives without reference to a particular volume:

∂ρϕ

∂t
+∇ · (ρϕu) = Qϕ (2.5)

2.1.1 Continuity equation

Continuity equation can be obtained by putting in equation (2.5) ϕ =1 and

Qϕ = 0 because there are not source terms for the mass, then:

∂ρ

∂t
+∇ · (ρϕu) = 0 (2.6)

If the fluid is incompressible (ρ = constant), the equation can be simpli-

fied as:

∇ · u = 0 (2.7)

4

2.1.2 Momentum equation

Momentum equation of a compressible fluid can be written as:

∂

∂t

∫

Ω

ρudΩ+

∫

S
ρuu · ndS =

∫

S
σ · ndS +

∫

Ω

ρfdΩ (2.8)

this equation can be rewritten with Gauss theorem as:

∂ρu

∂t
+∇ · (ρuu) = ∇ · σ + ρf (2.9)

where f represents body forces acting on the fluid contained in the con-

trol volume and σ is the stress tensor. The stress tensor depends on two

contributions, viscous and pressure effects and it can be defined as:

σij = (−p+ 2λ∇ · u)δij + τij (2.10)

where δij is Kronecker’s delta. τij is the viscous stress tensor, which

depends on the fluid type. Introducing Newtonian fluid hypothesis, stress

tensor can be rewritten as:

τij = 2µSij + λSkkδij (2.11)

where Sij is the rate of strain tensor defined as:

Sij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

(2.12)

the hydrostatic part of stress tensor can be written as:

1

3
σkk = −p+ λSkk +

2

3
µSkk (2.13)

For incompressible fluids, since continuity equation (2.7), the hydrostatic

part of σij is identically equal to the pressure p.

For compressible fluids ∇ · u 6= 0 and since Stokes hypothesis, it is

assumed that:

λ+
2

3
µ = 0 (2.14)

so that the viscosity enters only the deviatoric part of σ and the hydro-

static part is equal to the thermodynamic pressure everywhere. With these

considerations, the momentum equations can be written as:

∂ρu

∂t
+∇ · (ρuu) = ∇p+∇ · (µS) + ρf (2.15)

5

2.1.3 Energy equation

Energy equation can be written in enthalpy form. Defining specific enthalpy

as:

h = u+
p

ρ
(2.16)

and introducing Fourier’s Law for heat transfer by conduction:

q = −k∇T (2.17)

where k is thermal diffusivity:

k =
µcP
Pr

(2.18)

and µ is dynamic viscosity, cP is specific heat at constant pressure and

Pr is Prandtl number. Finally, energy equation can be written as:

∂ρh

∂t
+∇ · (ρuh) =

∂p

∂t
+∇(k∇T) + u · ∇p+ σ : ∇u (2.19)

Where ∂p/∂t+u·∇p is the work made by pressure forces and σ:∇u is

the work made by viscous stresses.

With the further hypothesis of constant specific heat, for incompressible

fluid, the energy equation can be rewritten in temperature terms:

∂ρT

∂t
+∇ · (ρuT) = ∇ · (µPr∇T) (2.20)

2.1.4 State equation

The air state equation must be added to the first three equations: since air

can be considered as ideal gas.

p

ρ
= RairT (2.21)

2.2 The Finite Volume Method

Equations system described in section 2.1, are solved with numerical meth-

ods. The solution method used is the finite volume method, which is based

on the solution of the equations in integral form [1] [2]. Referring to a

governing equation for generic property ϕ:

∂

∂t

∫

Ω

ρϕdΩ+

∫

S
ρϕu · ndS =

∫

S
Γ∇ϕ · ndS

∫

Ω

Qϕ dΩ (2.22)

6

where Γ represents ϕ diffusivity and Qϕ is a generic source term.

The first step consists in the discretization of the computational domain

in a finite number of control volumes, which constitute the mesh. At the

center of control volume the computational node is defined and it is calcu-

lated as center of gravity of the volume, on which equations are solved. The

variables in these points represent the cell mean value. By adding the equa-

tions of all the cells, the equation (2.20) is obtained. Since the contributions

of the integrals on the internal faces cancel out each other, just the integral

remains on the boundary, while the contributions of volume integrals add up

to a global single term. In this way the conservation property is guaranteed

on each volume, as well as it is guaranteed at a global level over the whole

domain.

A three-dimensional grid is used to discretize the domain. A typical

control volume is shown in Figure 2.1

Figure 2.1: A cell in three dimension and neighboring nodes

2.2.1 Time discretization

This is a brief introduction of simple methods for temporal discretization.

The time derivative term is usually discretized by means of a finite-difference

ratio. The simplest scheme is the Euler one:

∂ϕ

∂t
≈

ϕn − ϕn−1

∆t
(2.23)

7

where the superscript n denotes the time-step number and ∆ t is the

duration of the time step itself. Euler is a first order accuracy scheme. More

sophisticated methods can be used, one of them is the backward differencing

scheme (second order):

∂ϕ

∂t
=

3ϕn − 4ϕn−1 + 4ϕn−2

2∆t
(2.24)

2.2.2 Space discretization

After defining the grid, the second step is to discretize the equations in

order to solve the algebraic equation system. Flow through the volume face

is defined as:

∫

S
fdS =

∑

k

∫

Sk

fdS (2.25)

Surface integral is equal to the sum of the integrals on each face of the

control volume. f is a generic function that refers to convective or diffusion

term of equation (2.22). To approximate the integral for generic function f,

a simple second order method called midpoint rule can be used, for which

the integral of the k-th surface of f function is equal to the product of the

integrand function at the center of surface k (fk) by the area of the same

surface:

∫

S
fdS = fkSk (2.26)

The value of f at the face center is not known, it must be interpolated

from the value of the node, placed at the cell center. To ensure the same

order of accuracy, interpolation must be at least second order. There are

other interpolation methods with greater accuracy, that require knowledge

of more than one point on the surface, but they are difficult to implement.

A similar procedure is carried out for volume integrals that appear in the

equation (2.22). Also in this case, a second order approximation is sufficient

and suitable. With midpoint rule the volume integral is equal to the product

of the mean value of integrand function by the control volume.

∫

Ω

QϕdΩ = Qϕ∆Ω (2.27)

In this case, since the mean value is placed on the center of control

volume, then one does not need to interpolate. More accurate interpolation

methods require knowledge of more values of Q in the volume and not only

8

in the cell center and this is generally obtained with either interpolation or

shape functions.

2.2.3 Equations discretization methods

Discretization of the governing equations [3] [4] allows to turn a system of

partial differential equations into a system of algebraic equations that can

be expressed as:

[A]x = b (2.28)

Figure 2.2 shows the notation of geometric parameters; P and N are

nodes in cell centers, f is the common face to two cells and Sf is its normal.

d indicates the distance between P and N and df is the distance between

the common face f and the cell center N.

Figure 2.2: Notation in the finite volume discretization

Gradient can be discretized by applying the Gauss theorem:

∫

Ω

∇ϕdΩ =

∫

S
ϕdS =

∑

f

Sfϕf (2.29)

If face-normal gradient is needed, it can be computed directly as a finite

difference between cell-centered values:

(∇ϕ)f =
ϕN − ϕP

|d|
(2.30)

9

In this way the gradient is measured along the line connecting the cells,

it is linearly interpolated from the center to the cell face, but the accuracy is

penalized if the mesh is non-orthogonal. In this case it is possible to intro-

duce an additional explicit term that performs a correction, interpolating

the gradients of the cell centers. Referring to Figure 2.3 it is possible to

write:

(S · ∇ϕ)f = A(ϕN − ϕP + k(∇ϕ)f (2.31)

with

A =
|Sf |

2

Sfd
(2.32)

and

k = Sf −Ad (2.33)

Figure 2.3: Gradient correction for non-orthogonal mesh

Divergence terms can be discretized by applying Gauss theorem:

∫

Ω

∇ ·ϕdΩ =

∫

s
dS · ϕ =

∑

f

Sf · ϕf (2.34)

Laplacian term is integrated on the volume and it can be discretized as:

∫

Ω

∇ · (Γ∇ϕdΩ) =

∫

s
dS · (Γ∇ϕdΩ) =

∑

f

∇fSf · (∇ϕ)f (2.35)

Γ is the diffusive term. Γf is linearly interpolated for orthogonal mesh,

otherwise it is possible to apply a correction similar to the previous for the

gradient.

10

2.2.4 Interpolation methods

Variables values are placed at the center of control volume and, in order

to solve the governing equations, the values at face ceters are required in

several places. Upwind Difference Scheme (UDS) is a very simple and first

order interpolation method. The upwind differencing takes into account the

flow direction when determining the value at a cell face: the convected value

of Φ at a cell face is taken to be equal to the value at the upstream node.

With reference to Figure 2.4, Φe can be assumed as :

Φe =

{

ΦP if(u · n)e > 0

ΦE if(u · n)e < 0

Figure 2.4: Cartesian notation for a control volume in two dimensions

The advantage of this scheme lies in the fact that it meets boundedness

criterion and it does not generate oscillating solutions. This method intro-

duces the numerical diffusion problem, however quite refined mesh can be

used to obtain solution accuracy. This can be demonstrated with Taylor

series expansions of Φe in the neighborhood of the point P:

Φe = ΦP + (xe − xp)

(

∂Φ

∂x

)

P

+ (xe − xp)
2

(

∂2Φ

∂x2

)

P

+O(∇x3) (2.36)

Where O (∇x3) are higher order terms. Upwind scheme is a first order

approximation, so its truncation error depends on the second derivative, that

11

is similar to diffusive flux of governing equation. The numerical diffusion

coefficient Γnum
e can be defined as:

Γnum
e = (ρu)e

∆x

2
(2.37)

This factor has significant influence on the numerical solution, particu-

larly in three-dimensional problems with oblique flow to the mesh, where,

in addition to the diffusion along the flow direction, it generates a diffusive

contribution also in the normal direction to it. This effect decreases with

increasing grid refinement.

Central Difference Scheme (CDS) is a second order method. It consists

in a linear interpolation between two cell centers in order to obtain face

value request.

Φe = ΦEλe +ΦP (1− λe) (2.38)

With λe called interpolation factor and defined as:

λe =
xe − xP
xE − xP

(2.39)

It is precise method even if less stable than upwind method. Linear Upwind

Difference Scheme (LUDS) is a second order scheme and, unlike Upwind

first order scheme, it evaluates a variable with linear extrapolation on two

upstream nodes according to the direction of the fluid. With reference to

Figure 2.4:

Φe =

{

4ΦP−ΦW

3
if(u · n)e > 0

4ΦE−ΦEE

3
if(u · n)e < 0

This scheme is more accurate than a first order method; however it is

possible that oscillatory solutions are generated.

2.2.5 Solution of linear equations systems

In this section the algorithms for solving linear systems are described in a

concise way. For a more complete discussion, refer to [1, 3].

The discretized equations can be rewritten in a more compact matrix

form as:

[A]ψ = b (2.40)

where [A] is a relatively sparse matrix of known coefficient, ψ is a column

vector of unknowns, and b is a column vector of known quantities.

12

For the solution of the system of linear equations such as equation (2.40),

two main types of methods are used. The former are direct methods. They

give the exact solution of the system after a number of operations. The latter

are iterative methods, for which the solution is approximated by successive

corrections. These two main types of methods are described below.

Direct methods allow to get the solution of the system without the ex-

plicit calculation of the inverse matrix of [A]. One of the most widespread

methods is Gauss Elimination. Its basis is the systematic reduction of large

systems of equations to smaller ones. In this procedure, the elements of the

matrix are modified but the dependent variable names do not change. In

the first phase, rows are properly combined in order to obtain an upper tri-

angular matrix. This is the most computationally heavy step, proportional

to n3/3 where n x n is the matrix dimension. The phase that has just been

described is called forward elimination. In the second phase the term con-

tained in the last row is replaced in the rows above, in order to solve the

equation in one unknown for all the rows and reach the solution.

Another direct method is LU Decomposition. Considering algebraic sys-

tem (2.40) the matrix A can be factored into the product of lower [L] and

upper [U] triangular matrices:

[A] = [L][U] (2.41)

To make the factorization unique, it is required that the diagonal ele-

ments of L, lii, all be unity; alternatively, the diagonal elements of U could be

required to be unity. The existence of this factorization allows the solution

of the system of equation (2.40) in two stages:

[U]ψ = y (2.42)

[L]y = b (2.43)

The vector y is first calculated in equation (2.42) and then it is sub-

stituted in equation (2.43), in order to determinate the unknown vector ψ.

The advantage of LU factorization over Gauss elimination is that the fac-

torization can be performed without knowing the vector b. As a result, if

many systems involving the same matrix are to be solved, considerable sav-

ings can be obtained by performing the factorization first; the system can

then be solved as requires.

Any system of equations can be solved by Gauss elimination or LU de-

composition. Unfortunately, the triangular factors of sparse matrices are

not sparse, so the cost of these methods is quite high. Furthermore, the

13

discretization errors are usually much larger then the accuracy of the com-

puter arithmetic so there is no reason to solve the system that accurately.

Solution to somewhat more accuracy than that of the discretization scheme

suffices.This leaves an opening for iterative methods. They are necessarily

used for non-linear problems, but they are just as valuable for sparse linear

system. In an iterative method, after a solution is guessed, the equation is

used to systematically improve it. If each iteration is cheap and the number

of iteration is small, an iterative solver may cost less than a direct method.

In CFD problems this is usually the case. Iterative methods consist in the

generation of a sequence of vectors ψm (m iteration index) that converges

at the exact solution:

lim
m→∞

ψm = ψ (2.44)

the recursive resolution scheme is:

ψm+1 = [B]ψm + g (2.45)

where [B] and g are dependent on the [A] and q, they must satisfy the

consistency condition:

ψ = [B]ψ + g (2.46)

Referring to equation (??), g is defined as:

g = [I −B][A]−1b (2.47)

the error after m time step is:

em = ψ −ψm (2.48)

and the residual:

rm = b− [A]ψm (2.49)

Iterative methods generate a sequence of approximate solutions to the

system that (hopefully) converge to the exact solution. After m iterations,

an approximation to the exact solution is obtained as:

[A]ψm = b− rm (2.50)

The purpose of iteration procedure is to drive the residual to zero; in the

process, also the error tends to zero. To see how this can be done, consider

an iterative scheme for a linear system; such a scheme can be written:

14

[M]ψm+1 = [N]ψm +B (2.51)

An obvious property that must be demanded to an iterative method is

that the converged result satisfies equation (2.40). Since, by definition, at

convergence, ψm+1 = ψm = ψ we must have:

[A] = [M]− [N] and B = b, (2.52)

or more generally,

[P][A] = [M]− [N] and B = [P]b, (2.53)

where [P] is a non-singular pre-conditioning matrix.

There are many iterative methods, but only those that have been actu-

ally used in this study will be described. The resolution with Gauss-Seidel

Method requires as pre-conditioning matrix [P] the lower triangular part of

[A]. This method converges if [A] is strictly row diagonally dominant or if it

is symmetric positive definite matrix; it converges very quickly, twice as fast

as the Jacobi method but this is not a sufficient improvement to be useful.

In this section, a class of methods based on techniques for solving non-

linear equations is presented. These methods begin by converting the orig-

inal system of equations into a minimization problem. Suppose that the

original system of equation to be solved is given by equation (2.40) and that

the matrix [A] is symmetric and its eigenvalue is positive; such a matrix is

called positive definite. For positive definite matrices, solving the system of

equations (2.40) is equivalent to the problem of finding the minimum of:

F =
1

2
ψTAψ −ψTb. (2.54)

The oldest and best method for seeking the minimum of a function con-

sists in steepest descents. The function F may be thought as a surface in

(hyper)-space. At that point, we find the steepest downward path on the

surface; it lies in the opposite direction to the gradient of the function. We

then search for the lowest point on that line. By construction, it has a lower

value of F than the starting point; in this sense, the new estimate is closer to

the solution. The new value is then used as the starting point for next iter-

ation and the process continues until it converges. Unfortunately, although

it is guaranteed to converge, steepest descents often converges very slowly

because the method tends to use the same search directions over and over

again. Many improvements have been suggested. The easiest ones require

the new search directions to be as different as possible from the old ones.

15

Conjugate Gradient Method is based on a remarkable discovery: it is possi-

ble to minimize a function with respect to several directions simultaneously

while searching in one direction at a time. This is possible thanks to a clever

choice of directions. While the conjugate gradient method guarantees that

the error is reduced on each iteration, the size of the reduction depends on

the search direction. It is not unusual for this method to reduce the error

only slightly for a number of iterations and then find a direction that re-

duces the error by an order of magnitude or more in one iteration. It can be

shown that the rate of convergence of this method depends on the condition

number k of the matrix where:

k =
λmax

λmin
(2.55)

and λmax and λmin are the largest and the smallest eigenvalues of the

matrix. Although the conjugate gradient method is significantly faster than

steepest descents for a given conditioned number, this basic method is not

very useful. This method can be improved by replacing the problem whose

solution is sought by another one with the same solution but a smaller

condition number. This is called preconditioning. One way to precondition

the problem is to pre-multiply the equation by another matrix. Since this

would destroy the symmetry of matrix, the preconditioning must take the

following form:

[P]−1[A][P]−1 = [P]−1b (2.56)

In this description, rk is the residual at the kth iteration, pkis the kth

search direction, zk is an auxiliary vector and αk and βk are parameters used

in constructing the new solution, the residual, and the search direction. The

algorithm can be summarized as follows:

• Initialize by setting: k=0, ψ0 = ψin, r
0 = b− [A]ψin,p

0 = 0:

• Advance the counter: k = k+1

• Solve the system: [M]zk = rk−1

• Calculate: sk = rk−1zk

βk = sk/sk−1

pk = zk + βkpk−1

αk = sk/(pk · [A]pk)

ψk = ψk−1 + αkpk

rk = rk−1 − αk[A]pk

16

• Repeat until convergence

This algorithm involves solving a system of linear equations at the first

step. The matrix involved is [M] = [P]−1, where [C] is the pre-conditioning

matrix, which is in fact never actually constructed. For the method to be

efficient, [M] must be easy to invert.

The conjugate gradient method previously described is applicable only

to symmetric systems. In order to apply this method to systems of equations

that are not necessarily symmetric, it is necessary to convert an asymmetric

problem to a symmetric one. The following method, called bi-conjugate

gradient, results:

• Initialize by setting: k=0, ψ0 = ψin, r
0 = b− [A]ψin,b− [A]ψin,

p0 = p0 = 0:

• Advance the counter: k = k+1

• Solve the system: [M]zk = rk−1, [M]zk = rk−1

• Calculate: sk = rk−1zk

βk = sk/sk−1

pk = zk + βkpk−1

pk = zk + βkpk−1

αk = sk/(pk[A]pk)

ψk = ψk−1 + αkpk

rk = rk−1 − αk[A]pk

rk = rk−1 − αk[A]Tpk

• Repeat until convergence

The second algorithm requires almost exactly twice as much effort per

iteration as the standard conjugate gradient method but it converges in

about the same number of iteration.

The final method for solving linear system to be discussed in this study

is the multi-grid method. A multi-grid method, employing grids of different

mesh size, allows to solve all wave-length components and provides rapid

convergence rates. The multigrid strategy combines two complementary

schemes. The high-frequency error components are reduced applying iter-

ative methods like Jacobi or Gauss-Seidel schemes. For this reason, these

methods are called smoothers. On the other hand, low frequency error com-

ponents are effectively reduced by a coarse-grid correction procedure. Since

17

the action of a smoothing iteration leaves only smooth error components, it

is possible to represent them as the solution of an appropriate coarser sys-

tem. Once this coarser problem is solved, its solution is interpolated back to

the fine grid to correct the fine grid approximation for low-frequency errors.

2.3 RhoSimple Scheme

The computational code used is OpenFOAM. It provides different types of

solvers as well as offering the possibility to modify or create them according

to the user’s needs. For this work rhoSimpleFoam solver has been used; it

is a steady state solver for laminar or turbulent compressible flow.

The algorithm that has been employed differs from SIMPLE (Semi Im-

plicit Method for Pressure-Linked Equations) used for incompressible flow,

since it is necessary to solve the energy equation in addition to the con-

tinuity and momentum equations. The simulations are characterized by a

high compression ratio and the geometries analyzed have narrow passages,

such as the throat section of the valve seat. This aspect creates problems

of stability of the SIMPLE algorithm which has to be modified to achieve

the convergence. This is a brief introduction of SIMPLE algorithm, which,

shares some steps with the rhoSimpleFoam algorithm, that will be shown

later. In the Navier-Stokes equations it is possible to see that there is not an

independent pressure equation, however it appears in the gradient form in

the momentum equation. Therefore a relation defining a field pressure that

satisfies the continuity equation is needed; it is called Poisson equation. The

divergence is estimated from the momentum equation (2.9) and, taking into

account that the density is constant through continuity equation, Poisson

equations can be obtained as:

∂

∂xi

(

∂p

∂xi

)

= −
∂

∂xi

[

∂(ρuiuj)

∂xj

]

(2.57)

where the outer derivative of the pressure is a divergence originated from

continuity equation and the inner derivative is a gradient originated from

momentum equation. Due to the presence of non-linear terms that depend

on each other, the resolution of the pressure field cannot be made directly,

but the predictor-corrector iterative method must be used. For steady state

problems, it is preferred to use implicit schemes, because they have less

stringent limits on the time step used and allow to achieve convergence

faster than explicit schemes. For each generic m-iteration the discretized

equation to solve is:

18

Aui

P um∗

i,P +
∑

l

Aui

l um∗

i,l = Bm−1
ui

−

(

δpm−1

δxi

)

P

(2.58)

where P is the index of the compute node, l is the index of the center

of the cell adjacent to that of the center P, B integrates source term and

external forces but not the pressure, A is the matrix of coefficients of the

algebraic system like [A]u = b−∇p.

Velocity can be calculated as:

um∗

i,P =
Bm−1

ui
−
∑

l A
ui

l um∗

i,l

Aui

P

−
1

Aui

P

(

δpm−1

δxi

)

P

(2.59)

or more compactly:

um∗

i,P = ũm∗

i,P −
1

Aui

P

(

δpm−1

δxi

)

P

(2.60)

The velocity calculated on the derived pressure from the previous itera-

tion is a predicted value and it must be corrected to satisfy the continuity

equations. Correction is introduced as:

umi,P = um∗

i,P + u′i,P (2.61)

velocity corrected equation as the following is obtained:

um∗

i,P = ũm∗

i,P −
1

Aui

P

(

δpm

δxi

)

P

(2.62)

where pm is the corrected pressure at the current iteration m and is

corrected as:

pm = pm−1 + p′ (2.63)

the corrected velocity is introduced in discretized continuity equation:

(

δρumi
δxi

)

P

(2.64)

the pressure correction p′ is obtained as follows:

δ

δxi

[

ρ

Aui

P

(

δp′

δxi

)]

P

=

[

δ(ρum∗

i)

δxi

]

+

[

δ(ρũ′i)

δxi

]

(2.65)

The velocity correction term ũ′i is unknown, and in SIMPLE algorithm

is neglected, whereas in other methods it is estimated. When the pressure

correction term p′ is obtained, it can be substituted in (2.63) in order to

19

calculate the pressure field at the current iteration. SIMPLE algorithm

does not converge rapidly, because term ũ′i is neglected; in this situation

instability is likely to be generated. It is useful to introduce under relaxation

factor αp after correction pressure value p′ is calculated. pm is rewritten as:

pm = pm−1 + αpp
′ (2.66)

In the same way an under relaxation factor for αu is introduced in order

to guarantee the stability of the solution. To solve a compressible flow prob-

lem it is necessary to solve not only continuity and momentum equations

but also energy and state equations. This operation is required because in

compressible flow the heat production by the viscous term can be consid-

erable, as well as the importance of the conversion of kinetic energy into

internal energy during the motion and vice versa. In this algorithm, density

is obtained from continuity equation, temperature is calculated from energy

equation and discretized momentum equation for m th-iteration is modified

compared to the previously presented one:

um∗

i,P =
Bm−1

ui
−
∑

l A
ui

l um∗

i,l

Aui

P

−
∆Ω

Aui

P

(

δpm−1

δxi

)

P

(2.67)

As already mentioned in the SIMPLE for incompressible flow, um∗

i,P is a

predicted velocity and it does not satisfy the continuity equation. Referring

to control volume shown in Figure 2.1, the mass balanced through the face

is calculated as:

(ρm−1 − ρm∆Ω)

∆t
+ ṁ∗

e + ṁ∗

w + ṁ∗

n + ṁ∗

s = B∗

m (2.68)

density and velocity are based on the previous iteration values. The

mass flow rate for e-face is estimated as:

ṁ∗

e =

∫

Se

ρu∗ · n ≈ (ρu∗ · n)eSe (2.69)

In equation (2.68) B∗

m does not allow to fulfill the continuity equation.

In compressible problem, the mass flow is dependent on variable density and

face normal component of the velocity un. In this case both variables must

be corrected. The flow after correction at m-th iteration can be formulated

as:

ṁm
e = (ρm−1 + ρ′)e(u

m∗

n + u′n)eSe (2.70)

where ρ′ and u′n represent respectively the density and velocity correc-

tion. The mass flow correction is defined as:

20

ṁ′

e = (ρm−1Su′n)e + (um∗

n Sρ′)e + (ρ̃′u′nS)e (2.71)

The term marked with a tilde is higher order and tends to zero faster

than the others; for this reason it can be neglected. In the first term on right

hand side there is only velocity correction, while density is the calculated

value at the previous iteration. The flow can be corrected defining the

velocity correction through pressure gradient correction as already done for

incompressible flow:

(ρm−1Su′n)e + (um∗

n Sρ′)e = (ρm−1S∆Ω)e +

(

1

Aun

P

)

e

(

δp′

δn

)

e

(2.72)

The coefficient Aun

P is the same for each Cartesian component of the

velocity, so it is possible to substitute Aun

P =Au
P

The second term on right hand side is the result of compressibility, then

it is necessary to express density correction as function of pressure correction

term as for velocity. Solving energy equations, the temperature is known

and considered fixed at each iteration; therefore, it is possible to calculate:

ρ′ ≈

(

∂ρ

∂p

)

T

p′ = Cρp
′ (2.73)

where for ideal gas:

Cρ =

(

∂ρ

∂p

)

T

=
1

RT
(2.74)

It is possible to write the second term correction as:

(um∗

n Sρ′)e =

(

Cρṁ
∗

ρm−1

)

e

p′e (2.75)

The corrected mass flow rate on the e face can be rewritten as:

ṁ′

e = (ρm−1S∆Ω)e

(

1

Aun

P

)

e

(

δp′

δn

)

e

+

(

Cρṁ
∗

ρm−1

)

e

p′e (2.76)

The values of p′ at faces center and the gradient normal component at

the faces are unknown, then they are interpolated as seen before in finite

volume method.

The continuity equation with corrected terms can be rewritten as:

ρ′P∆Ω

∆t
+ ṁe + ṁw + ṁn + ṁs +B∗

m = 0 (2.77)

21

Replacing density and flow correction term with the relation previously

described, in function of pressure correction, the algebraic system of equa-

tions can be written as:

AP p
′

P +
∑

l

Alp
′

l = −B∗

m (2.78)

From this relation it is possible to obtain pressure correction value p′p for

mth-iteration. This algorithm is repeated until the equations comply with

a certain tolerance set. For under relaxation factor the same relation for

incompressible flow is applied. In addition, even variables ρ and e or h are

under-relaxed.

2.4 Turbulence modeling

Most flows encountered in engineering practice are turbulent and therefore

require different treatment. Turbulent flows are characterized by the follow-

ing properties [5]:

• They are highly unsteady.

• They are three-dimensional.

• They contain a great deal of vorticity. Indeed, vortex stretching is one

of the principal mechanisms by which the intensity of turbulence is

increased.

• Turbulence increases the rate at which conserved quantities are stirred.

Stirring is a process in which parcels of fluid with differing concen-

trations of at least one of the conserved properties are brought into

contact. The actual mixing is accomplished by diffusion. This process

is called turbulent diffusion.

• By means of the processes just mentioned, turbulence brings fluids

of differing momentum content into contact. The reduction of the

velocity gradients due to the action of viscosity reduces the kinetic

energy of the flow; in other words, mixing is a dissipative process.

The lost energy is irreversibly converted into internal energy of the

fluid.

• It has been shown that turbulence flows contain coherent repeatable

structures and essentially deterministic events that are responsible for

22

a large part of the mixing. However, the random component of tur-

bulent flows causes these events that differ form each other in size,

strength, and time interval between occurrences, making their study

very difficult.

• Turbulent flows fluctuate on a broad range of length and time scales.

This property makes direct numerical simulation of turbulent flow very

difficult.

Before proceeding to the discussion of numerical methods for these flows,

it is useful to introduce a classification scheme for the CFD approaches to

predict turbulence flows.

• The method used for this work is based on equations obtained by aver-

aging the equations of motion over time, over a coordinate in which the

mean flow does not vary, or over an ensemble of realizations. This ap-

proach is called one-point closure and leads to a set of partial differen-

tial equations called the Reynolds-averaged Navier-Stokes (or RANS)

equations. These equations do not form a closed set so this method

requires the introduction of approximations (turbulence model).

• Large eddy simulation (LES) solves largest scale motions of the flow

while approximating or modeling only the small scale motion.

• Direct numerical simulation (DNS) in which the Navier-Stokes equa-

tions are solved for all of the motions in a turbulent flow.

2.4.1 Reynolds Average Navier Stokes

In a statically steady flow, every variable can be written as the sum of a

time averaged value and a fluctuation about that value:

Φ(xi, t) = Φ̄(xi) + Φ′(xi, t) (2.79)

where

Φ̄(xi) = lim
T→+∞

1

T

∫ T

0

Φ(xi, t)dt (2.80)

Here t is the time and T is the averaging interval. This interval must

be large compared to the typical time scale of the fluctuations; thus, we are

interested in the limit of T → +∞, Figure 2.5. If T is large enough, Φ̄ does

not depend on the time at which the averaging is started.

23

Figure 2.5: Time averaging for a statically steady flow

If the flow is unsteady, time averaging cannot be used and it must be

replaced by ensemble averaging:

Φ̄(xi, t) = lim
T→+∞

1

N

N
∑

n=1

Φ(xi, t) (2.81)

where N is the number of members of the ensemble and must be large

enough to eliminate the fluctuations’ effects. This type of averaging can be

applied to any flow. We use the term Reynolds averaging to refer to any of

these averaging processes; applying it to the Navier-Stokes equations, the

Reynolds-averaged Navier-Stokes (RANS) equations are obtained. From

equation (2.80), it follows that Φ̄′ = 0. Thus, averaging any linear term in

the conservation equations simply gives the identical term for the averaged

quantity. From a quadratic nonlinear term we get two terms, the product

of the average and a covariance:

uiΦ = (ūi + u′i)(Φ̄ + Φ′) = ūiΦ̄ + u′iΦ
′ (2.82)

The last term is zero only if the two quantities are uncorrelated; this is

rarely the case in turbulent flow and, as a result, the conservation equations

contain terms such as u′iΦ
′, known as the turbulent scalar flux,. These cannot

be represented uniquely in terms of the mean quantities.

For incompressible flows without body forces, the averaged continuity

24

and momentum equations can be written in tensor notation and Cartesian

coordinates as:

∂(ρūi)

∂xi
= 0 (2.83)

∂(ρūi)

∂t
+

∂

∂xj
(ρūiūj + ρuiuj) = −

∂p̄

∂xi
+

∂τ̄ij
∂xj

(2.84)

where τ̄ij are the mean viscous stress tensor components:

τ̄ij = µ

(

∂ūi
∂xj

+
∂ūj
∂xi

)

(2.85)

The presence of the Reynolds stress and turbulent scalar flux in the con-

servation equations means that the latter are not closed, i.e. they contain

more variables than equations. Closure requires the use of some approxi-

mations, that follow Reynolds stress approximations, which, in turn usually

take the form of the mean quantities.

It is possible to derive equations for the higher order correlations, e.g.

for the Reynolds stress tensor, but they still contain more (and higher-order)

unknown correlations that require modeling approximations. These equa-

tions will be introduced later but the important point is that it is impossible

to derive a closed set of exact equations. The approximations introduced are

called turbulence models in engineering. To close the equations it is neces-

sary to introduce a turbulence model. To see what a reasonable model might

be, it can be observed that in laminar flows, energy dissipation and transport

of mass, momentum, and energy normal to the streamlines are mediated by

the viscosity, so it is natural to assume that the effect of turbulence can be

represented as an increased viscosity. This leads to the eddy-viscosity model

for the Reynolds stress:

ρuiuj = µt

(

∂ui
∂xj

+
∂uj
∂xi

)

−
2

3
ρδijk (2.86)

and the eddy-diffusion model for a scalar:

ρujφ = Γ
∂φ

∂xj
(2.87)

equation (2.86) k is the turbulent kinetic energy:

k =
1

2
u′iu

′

i (2.88)

The last term equation (2.86) is required to guarantee that, when both

sides of the equation are contracted, the equation remains correct. Although

25

the eddy-viscosity hypothesis is not correct in detail it is easy to implement

and, with careful application, can provide reasonably good results for many

flows.

2.4.2 k-omega SST

The SST k-ω turbulence model [6] is a two-equation eddy-viscosity model.

The first transported variable is turbulent kinetic energy k. The second

transported variable in this case is the specific dissipation ω. It is the variable

that determines the scale of the turbulence, whereas the first variable, k,

determines the energy in the turbulence. The shear stress transport (SST)

formulation combines the best of two worlds. The use of a k-ω formulation

in the inner parts of the boundary layer makes the model directly usable all

the way down to the wall through the viscous sub-layer, hence the SST k-ω

model can be used as a Low-Re turbulence model without any extra damping

functions. The SST formulation also switches to a k-ǫ behavior in the free-

stream and thereby avoids the common k-ω problem that the model is too

sensitive to the inlet free-stream turbulence properties. Authors who use

the SST k-ω model often merit it for its good behavior in adverse pressure

gradients and separating flow. The SST k-ω model does produce a bit too

large turbulence levels in regions with large normal strain, like stagnation

regions and regions with strong acceleration. This tendency is much less

pronounced than with a normal k-ǫ model. The kinematic eddy viscosity is

defined as:

νT =
a1k

max(a1ω, SF2)
(2.89)

The turbulent kinetic energy can be expressed as:

∂k

∂t
+ Uj

∂k

∂xj
= Pk − β∗kω +

∂

∂xj

[

(ν + σkνT)
∂k

∂xi

]

(2.90)

The specific dissipation rate:

∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj

[

(ν + σωνT)
∂ω

∂xi

]

+ 2(1− F1)σω2
1

ω

∂k

∂xi
∂ω∂xi (2.91)

For the closure coefficients and auxiliary relations refer to [6]

26

Chapter 3

Experimental Tests

The laboratory of fluid dynamics at Centro Ricerche Fiat is able to perform

several kinds of tests concerning the fluid dynamics characterization of dif-

ferent systems, measuring mass flow rate and pressure drop thus providing

fundamental parameters for the design. The intake systems are the most

tested devices. These experimental tests evaluate the permeability and the

ability to produce organized motions within the cylinder. The purpose of

these tests is to provide the curves of the discharge coefficient or tumble

coefficient as a function of valve lift, and to determine whether the test

configuration can lead to an improvement of the ability to produce orga-

nized motion without compromising the discharge coefficient and thus the

permeability.

All tests are performed under steady state conditions and in the absence

of combustion, i.e. in conditions significantly different from those occurring

during engine operation. These results can be considered reliable only if

they meet the following assumptions:

• The unsteady flow behavior can be approximated as a succession of

steady states, one for each valve lift.

• Tests are carried out considering a pressure ratio between upstream

and downstream of β = 1.1.

• The pressure drop is assumed as constant during the intake stroke.

• The intake flow occurs during the entire valve opening and it is deter-

mined only by the valve lift.

These assumptions may seem restrictive, however, they are the basis to en-

sure a robust test work. The second assumption imposes a strong constraint

because in-cylinder pressure is variable over time, due to the piston motion,

that does not appear in steady state flow tests.

To understand the measurements and the methodology used in these

tests, first of all, it is necessary to describe the structure of the workbench.

In these tests a blow bench has been used as it is shown in Figure 3.1.

It works with an upstream pressure higher than the downstream pressure

which is equal to the ambient pressure.

Figure 3.1: Flow bench scheme

There is a plenum chamber that dampens the fluctuations of the com-

pressor, in order to ensure a steady state pressure level. The plenum must

contain a volume of air much greater than other objects, so as to consider

the average velocity of the flow negligible. The experimental results that

are obtained with these tests are steady state type and then several tests

with different valve lift are needed to characterize the fluid dynamics of the

engine ducts. The valves are moved through valve-push, the valve lift is

checked by using a dial gauge indicator placed on the top of stem of the

valve-push.

The equipment used for the experimental tests consist in a flow box with

symmetrical intake ducts. The tests are carried out on a blown bench with

expansion ratio equal to β = 1.1. The maps of the velocity fields within the

28

cylinder that are required to calculate the tumble number are obtained as

a function of the valve lift. The flow straightener shown in Figure 3.2 has

a thickness equal to 8 mm, and it is placed at the end of the cylinder. The

cylinder has a length equal to half the bore.

Figure 3.2: Linearized

The flow straightener is needed because the probe is able to measure only

the modulus of the velocity and any information about direction is lost. The

distance between the probe and the flow straightener is 5 mm, in order to

avoid any collision between the two devices.

The probe consists of an Hot-Wire Anemometer. The core of the anemome-

ter is an exposed hot wire either heated up by a constant current or main-

tained at a constant temperature. In either case, the heat lost due to fluid

convection is a function of the fluid velocity. By measuring the change in

wire temperature under constant current or the current required to maintain

a constant wire temperature, the heat loss can be obtained. The lost heat

can then be converted into a fluid velocity in according to heat transfer law.

a complete test with a matrix with length 100 mm and a pitch between

the columns of 0.5 mm lasts for approximately 45 minutes. At the end of

data acquisition the program allows to store the matrix of the voltage values

in text file, in order to make them available for post processing analysis. The

elaboration program is written in Matlab and requires the following data as

input:

• Text file with the raw data matrix [V].

• Text file containing the polynomial coefficient of probe calibration

29

curve [m/sV].

• Atmospheric pressure [Pa].

• Ambient temperature [oC].

• Plenum temperature [K].

• Plenum pressure [Pa].

• Cylinder bore [mm].

• Length and height of the area investigated [mm].

• The sampling frequency [Hz].

• The speed in the downward movement of the probe during the acqui-

sition.

• The pitch between the columns.

The program automatically calculates the number of rows, columns and

the position of the center of the matrix according to the rows and columns

coordinates, and it creates a velocity matrix from raw data and displaying

it in the form of color map. The results of experimental tests will compared

against simulation shown in Chapter 6.

30

Chapter 4

Simulation Setup

The OpenFOAM basic case directory structure, that contains the set of

files required to run application, is shown in Figure 4.1.

Figure 4.1: OpenFOAM directory structure

The constant directory contains a full description of the case mesh in a

subdirectory polyMesh and dictionaries where setting thermophysical prop-

erties and turbulence models.

The system directory contains settings for the run. It must contain

at least 3 files: controlDict where run control parameters are set includ-

ing start/end time, time step and parameters for data output; fvSchemes

where discretization schemes used in the solution may be selected at run-

time; fvSolution which contains instructions to solve each discretized linear

equation system, tolerances and other algorithm controls.

The time directory contains the dimension as well as the initial and

the boundary condition for all variables. The initial conditions are usually

stored in a directory 0.

4.1 Boundary and initial conditions

With the aim of solving a partial differential equations system, boundary

and initial conditions must be properly assigned. All simulations were made

in two steps. In the first step pressure drop coefficient = 1.1 is fixed as

boundary condition in order to find the mass flow rate. In this case the

total pressure for the inlet patch condition and static pressure for the outlet

(piston) patch are imposed (BC1), as shown in Table 4.1. In the second step

the mass flow rate, that has been found in previous simulation, is used as

inlet boundary condition, keeping the same to the outlet boundary (BC2)

Table 4.2. The second setting of boundary condition allows to obtain a

lower time step continuity error, a better convergence on the residuals and

generally a better stability for the first iterations.

quantities inlet piston(outlet) wall

p totalPressure fixedValue zeroGradient

U pressureInletVelocity pressureInletOutletVelocity noSlip

Table 4.1: Boundary condition 1 (BC1)

quantities inlet piston(outlet) wall

p zeroGradient fixedValue zeroGradient

U flowRateInletVelocity pressureInletOutletVelocity noSlip

Table 4.2: Boundary condition 2 (BC2)

For turbulent quantities, the k - ω model has been considered. Their

boundary conditions have been suggested by reference to [9] [10].

k =
3

2
u′2 (4.1)

where u′ = 0.05U

32

ω =
C

3/4
µ k1/2

l
(4.2)

where l is the mixing length, that is defined as:

l = 0.079

(

1

5
D

)

(4.3)

This setting procedure, especially at low valve lift (1 mm, 2 mm, 3 mm),

led to a simulation stop in early time step. For medium and high valve lift

(4 mm to 9 mm), the simulation has reached the solution without problems.

After that, as previously described, the new boundary conditions have been

updated with the mass flow rate and the new k, ω values. These new values

have been calculated with an utility command: patchAverage omega piston

-time 6000 and patchAverage k piston -time 6000 launched on previous

simulation. This command allows quantities estimation on piston (outlet)

patch at the end of the simulation (6000 is the maximum number of time

step).

With the aim of setting k, ω boundary condition at lower lift, a linear

extrapolation is performed with the linear interpolation mass flow rate value.

Then knowing the exact k, ω and mass flow rate values at 4 mm and 5 mm

valve lifts, and mass flow rate interpolated value at 3 mm valve lift, the

values of k, ω at 3 mm valve lift can be calculated as:

k4 − k3
ṁ4 − ṁ3

=
k5 − k4
ṁ5 − ṁ4

(4.4)

ω4 − ω3

ṁ4 − ṁ3

=
ω5 − ω4

ṁ5 − ṁ4

(4.5)

This procedure is repeated also for 1 mm and 2 mm valve lift.

Near the wall k - ω wall functions are used. Not being tied to a limited

range of y+ automatic wall treatments can be use. The boundary condition

for turbulence quantities can be schematized in Table 4.3.

quantities inlet piston(outlet) wall

k inletOutlet inletOutlet compressible::kqRWallFunction

ω inletOutlet inletOutlet compressible::omegaWallFunction

Table 4.3: Turbulence boundary condition

In these cold simulations heat transfer is not so relevant. Temperature

has been set equal to ambient temperature = 303 K for both boundary

33

condition and internal field, moreover adiabatic cylinder head walls were

considered.

quantities inlet piston(outlet) wall

T fixedValue inletOutlet zeroGradient

Table 4.4: Temperature boundary condition

The whole process can be summarized in Figure 4.3

Figure 4.2: Process scheme

4.2 Numerical schemes

The fvSchemes dictionary in the system directory sets the numerical schemes

for terms, such as derivatives in equations, that appear in applications being

run. The first time derivative (∂
∂t) terms are specified in the ddtSchemes

sub-dictionary. In this work staedyState scheme is used; it does not solve

34

for time derivatives being a steady state flow simulation.

The gradSchemes sub-dictionary contains gradient terms. cellLimited

Gaus linear and cellMDLimited Gaus linear discretizations schemes have

been chosen. The former is used in first simulation with the BC1 and it

guarantees more stability. The latter is used in second simulations with

BC2 and it is more accurate. The Gauss keyword specifies the standard

finite volume discretization of Gaussian integration which requires the in-

terpolation of values from cell centers to face centers. Therefore, the Gauss

entry must be followed by the choice of interpolation scheme; usually, as in

this case, linear is employed. Gradient limiters have been used, in order

to avoid oscillation on the gradient computations. The difference between

gradient limiters is that cellLimited clips each component of the gradient

equally, whereas cellMDLimited is a multi-dimensional limiter, whereby

the gradient is clipped in the direction normal to the cell faces.

The divSchemes sub-dictionary contains divergence terms. The Gauss

scheme is the only choice of discretization and requires a selection of the

interpolation scheme for the dependent field. For divergence terms as U, p,

k, ω, Upwind first order bounded interpolation schemes can be chosen. For

diffusive of the stress tensor linear is used.

The laplacianSchemes sub-dictionary contains Laplacian terms. Also in

this case the Gauss scheme is the only choice of discretization and requires

a selection of both an interpolation scheme for the diffusion coefficient and a

surface normal gradient scheme. The unbounded, second order, conservative

with non-orthogonal correction Gauss linear corrected scheme is used.

The snGradSchemes sub-dictionary contains surface normal gradient

terms. A surface normal gradient is evaluated at a cell face; it is the com-

ponent, normal to the face, of the gradient of values at the centers of the

two cells that the face connects. The explicit non-orthogonal correction,

corrected, is used.

4.3 Solution and algorithm control

The equation solvers, tolerances and algorithms are controlled by the fvSolution

dictionary in the system directory. The first sub-dictionary that appears in

this dictionary is solvers. It specifies each linear solver that is used for each

discretized equation. For pressure, PCG (preconditioned conjugate gradi-

ent) linear solver is used. This solution method uses diagonalincomplete−

Cholesky as preconditioner option and 10−8 as tolerance. Velocity uses

smoothSolver as linear solver and GaussSeidel as preconditioner. The

number of sweeps must be specified, by the nSweeps keyword, before the

35

residual is recalculated, following the tolerance parameters. nSweeps is

set equal to 2 and tolerance is set equal to 10−7. For kinetic turbulent

energy, turbulent dissipation rate, density and enthalpy, PbiCG (precon-

ditioned bi-conjugate gradient) linear solver is used with DILU (Diagonal

incomplete-LU) as preconditioner. Also in this case the tolerance is set equal

to 10−7.

Since the mesh has non-orthogonality value less than 60, nNonOrthogo-

nalCorrectors is set equal to 1. residualControl stops running if specified

residual level is achieved on a given field. This setting is reported in Ta-

ble 4.5.

quantities residualControl

p 10−4

U 10−4

h 10−4

k 10−5

ω 10−5

Table 4.5: Residual control

The relaxationFactor in sub-dictionary controls under-relaxation, a tech-

nique used to improve stability of a computation, particularly in solving

steady-state problems as in this case. Under-relaxation works by limiting

the amount by which a variable changes from one iteration to the next,

either by modifying the solution matrix and source prior to solving for a

field or by modifying the field directly. The under-relaxation factors used in

these simulations are defined in Table 4.6.

quantities residualControl

p 0.3

rho 0.03

U 0.5

h 0.3

k 0.5

ω 0.5

Table 4.6: Under-relaxation factors

36

4.4 Flow straightener modeling

To model the flow straightener a porous medium can be used. This is a

smarter choice than building a mesh, because the mesh would require a

lot of cells and consequently high computational hardware resources. With

porous media it is possible to replicate the straightener effect setting Darcy

Forchheimer coefficients in fvOption dictionary, contained in system direc-

tory. In order to block the flow movement in x and y direction, the Darcy

Forchheimer coefficients, in the same directions, must be very high and equal

to zero in z direction. It is placed at half bore (40 mm) from the top of the

cylinder head, in the same position of the flow straightener. Porous media

is shown in Figure 4.3.

Figure 4.3: Porous media within the cylinder

37

38

Chapter 5

Mesh Generation

5.1 Discretization of spatial volume and mesh qual-

ity metrics

Mesh generation consists in dividing the physical domain into a finite number

of discrete regions, called control volumes or cells in which the solution is

sought (domain discretization). The computational grid must be developed

trying to find the compromise between grid refinement and computing time.

Too refined meshes allow to achieve precise results, but the computing time

may become incompatible with work. The mesh density should be high

enough to capture all relevant flow features. In areas where the solution

changes slowly, larger elements can be used.

The complex intake system shown in Figure 5.1, provided as CAD file,

has required many tests in order to achieve a satisfactory simulation. In

Figure 5.2 it is possible to see plenum and cylinder have been added. The

former must contain a volume of air much greater than other objects, in

order to ensure atmospheric condition and to consider the average velocity

of the flow negligible. The latter shows a cylinder longer than experimental

tests, which does not affect the results of simulation and stability is ensured.

Generating high quality meshes is a critical step for CFD computations.

Depending on the quality of the mesh, very different results can be obtained,

which can make post-processing and interpretation of the solution a difficult

task, due to contrasting results caused by meshing issues. No single standard

benchmark or metric that can effectively assess the quality of a mesh exists,

but there are suggested practices to follow. The most common mesh quality

metrics are:

• Orthogonality.

Figure 5.1: Initial configuration of cylinder head

Figure 5.2: Steady state flow configuration of cylinder head

40

• Skewness.

• Aspect Ratio.

• Smoothness.

Referring to Figure 5.3 mesh orthogonality is the angular deviation of

the vector S (located at the face center f) from the vector d connecting the

two cell centers P and N.

Figure 5.3: Mesh orthogonality quality metrics

iface,orth =
d ·∆

|d| · |∆|
(5.1)

Mesh orthogonality affects the gradient of the face center f and it adds

diffusion to the solution.

Figure 5.4: Mesh skewness quality metrics

Skewness is the deviation of the vector d that connects the two cells P

and N to the face center f. The deviation vector is represented with ∆ and

fi is the point where the vector d intersects the face f .

iface,skewness =
∆

d
(5.2)

Skewness affects the interpolation of the cell centered quantities to the

face center f and it adds diffusion to the solution as well.

41

Figure 5.5: Mesh aspect ratio quality metrics

Mesh aspect ratio AR is the ratio between the longest side ∆x and the

shortest side ∆y

Large aspect ratio is fine if gradients in the long direction are small, but

usually high aspect ratio leads to smear gradients.

Smoothness, also known as expansion rate, growth factor or uniformity,

defines the transition in size between contiguous cells.

Figure 5.6: Mesh smooth transition

Large transition ratios between cells add diffusion to the solution; ideally

the maximum change in mesh spacing should be less than 20%:

∆y2
∆y1

= 1.2 (5.3)

5.2 Mesh generation with the snappyHexMesh

5.2.1 BlockMesh

The first step is to create a background mesh of hexahedral cells that fills

the entire region within the external boundary. This can be done using

blockMesh utility supplied with OpenFOAM. It is not necessary to create

a fine background mesh, since it will be refined by snappyHexMesh. The

background mesh shown in Figure 5.7 is generated from a dictionary file

named blockMeshDict, wherein vertices are defined:

42

convertToMeters 1;

vertices

(

(-0.074 -0.105 -0.11)

(0.038 -0.105 -0.11)

(0.038 0.217 -0.11)

(-0.074 0.217 -0.11)

(-0.074 -0.105 0.12)

(0.038 -0.105 0.12)

(0.038 0.217 0.12)

(-0.074 0.217 0.12)

);

blocks

(

hex(0 1 2 3 4 5 6 7)(56 161 115) simpleGrading (1 1 1)

);

The initial cell length is 2mm.

Figure 5.7: Background mesh

For optimum behavior cells should be close to unit aspect ratio.

For meshing the geometry, the mesh generation utility, snappyHexMesh

supplied with OpenFOAM, can be used. snappyHexMesh utility generates

3D meshes containing hexahedral and split-hexaedral automatically from

a triangulated surface geometry in Stereolithography (STL) format. The

starting mesh is refined by iterative refinement up to a mesh approximately

compliant to the surface, later the resulting split-hex mesh is morphed to

the surface. The boundary cell layers are added in the final phase.

43

The dictionary file snappyHexMeshDict consists of six main sections,

due to the large number of options which control the behavior of snappyHexMesh.

5.2.2 Basic controls and geometry

Basic controls section contains the file header and the keyword to switch

on/off the different mesh step.

castellatedMesh true;

snap true;

addLayers true;

Geometry section contains the name of the input geometries, the defini-

tion of geometry patch previously divided into STL file and it also defines

refinements zone and shape.

geometry

{

lift_0 .005. stl

{

type triSurfaceMesh;

name headCRF;

regions

{

cylinderHead

{ name cylinderHead; }

coronaCircolare

{ name coronaCircolare ; }

...

{ name ...; }

serbatoio

{ name serbatoio; }

}

}

refinementBox

{

type searchableBox;

min (-0.074 -0.063 -0.12);

max (0.038 0.025 0.0113);

}

};

44

5.2.3 CastellatedMesh

CastellatedMesh prescribes the first meshing stage, which is called refine-

ment. In this step the background mesh is refined on the basis of surface

and volume refinement settings.

castellatedMeshControls

{

maxLocalCells 1000000;

maxGlobalCells 4000000;

minRefinementCells 1;

nCellsBetweenLevels 3;

features

(

);

// Surface based refinement

refinementSurfaces

{

headCRF

{

level (2 3);

regions

{

inlet

{level (0 0); }

piston

{level (1 1); }

liner

{level (1 1); }

serbatoio

{level (0 0); }

}

}

}

resolveFeatureAngle 30;

refinementRegions

{

headCRF

{

mode distance;

levels ((1.0 0));

45

}

refinementBox

{

mode inside;

levels ((1 E15 1));

}

}

locationInMesh (-0.02 0.003 -0.025);

allowFreeStandingZoneFaces true;

}

The main control parameters of castellated section are:

• maxGlobalCells defines a control over the global mesh size. The re-

finement will stop when this number of cell is reached. maxlocalCells,

instead, defines a control over the maximum number of cells main-

tained per processor.

• minRefinementCells avoids to run too many refinement iterations

on a limited number of cells. This setting will cause refinement to

stop if number of cells to be refined ≤ minimumRefine. It was chosen

equal to 1 because higher value led to an increase of computing time

with an increase in cell quality.

• nCellsBetweenLevels command sets the number of buffer layers be-

tween different levels of refinement; even in this case a compromise

must be found between the computing time and mesh refinement.

• Surfacebasedrefinement specifies two refinement levels for every sur-

face Figure 5.8. The first is the minimum level: every cell intersecting

a surface gets refined up to the minimum level. The second level is the

maximum level of refinement. When the local curvature of the surface

produces an intersection between the cell with an angle resolveFea-

tureAngle, the maximum level of refinement is applied, as shown in

Figure 5.9.

• locationInMesh command sets the Cartesian point to retain required

volume mesh: set a point inside the stl geometry for an internal mesh

and an outside point for external mesh. This point should never be

on a face, always inside a cell. In this mesh an internal point has been

chosen.

46

Figure 5.8: succession mesh refinements

Figure 5.9: Feature angle control

5.2.4 Surface snapping

Surface snapping prescribes the second meshing step, which is called ”snap-

ping”, where patch faces are projected down onto the surface geometry. The

process performed can be summarized as:

• displace the vertices in the castellated boundary onto the STL surface;

• solve for relaxation of the internal mesh with the latest displaced

boundary vertices;

• find the vertices that cause mesh quality parameters to be violated;

• reduce the displacement of those vertices from their initial value (at

first point) and repeat from second point until mesh quality is satisfied.

// Settings for the snapping.

snapControls

{

nSmoothPatch 3;

tolerance 4.0;

nSolveIter 100;

nRelaxIter 5;

nFeatureSnapIter 1;

implicitFeatureSnap true;

explicitFeatureSnap false;

47

multiRegionFeatureSnap false;

}

The main control parameters of snap section are:

• nSmoothPatch command sets the number of pre-smoothing iterations

of patch points before projection to the surface is performed.

• tolerance scaling the local maximum edge length to define the relative

distance for points attraction to the surface. The greater the value the

easier will be to find the correspondence. However the accuracy will

be smaller.

• nSolveIter command sets the number of interior smoothing iterations

applied to snapped displacement field. With a large number of cells is

a sensitive parameter for time-consumption.

• nRelaxItercommand intervenes after the snapping iteration, when a

check of mesh is performed. If it fails, this parameter controls the num-

ber of scaling back iterations for error reduction stage. The amount

of scale displacement is defined in meshQualityControls section and

will be examined later.

• nFeatureSnapIter command checks the number of snapping itera-

tions to perform over the feature edges and it leads to a better capture

of the body edges, with a general improvement of the mesh validity.

5.2.5 Layer addition

In mesh layers section the final meshing stage is presented, which is called

layer addition. In this final meshing stage, a layer of cells is added to a

specified set of boundary patch. This is an optional stage of the meshing

process, that introduces additional hexahedral cells aligned to the boundary

surface. The methodology of mesh layer addition involves shrinking the

existing mesh from the boundary and inserting layers of cells. The steps are

the following:

• The mesh is pushed away from the surface by a specified thickness on

the normal direction to the surface.

• Solve for relaxation of the internal mesh with the latest displaced

boundary vertices.

• Check if validation criteria are satisfied, scale back the displacement

if error occurs, reducing the projected thickness.

48

• If validation criteria can be satisfied insert mesh layers.

• Global mesh quality check: if check fails, layers are removed and the

process restarts.

With this stage it has been possible to replace some irregular cells along

boundary surface generated in snap stage, with hexahedral cells aligned to

the boundary surface patch. This procedure is controlled by the settings in

the addLayersControls sub-dictionary: it starts with the specification of

the number of layers to be added on each patch.

{

// Settings for the layer addition.

addLayersControls

{

relativeSizes true;

layers

{

// cylinderHead

//{ nSurfaceLayers 3; }

coronaCircolare

{ nSurfaceLayers 3; }

...

{ nSurfaceLayers 3; }

liner

{ nSurfaceLayers 3; }

}

expansionRatio 1.15;

finalLayerThickness 0.4;

minThickness 0.1;

nGrow 0;

featureAngle 350;

nRelaxIter 8;

nSmoothSurfaceNormals 1;

nSmoothNormals 1;

nSmoothThickness 1;

maxFaceThicknessRatio 1.0;

maxThicknessToMedialRatio 1.0;

minMedianAxisAngle 90;

nBufferCellsNoExtrude 0;

nLayerIter 200;

49

// nRelaxedIter 20;

}

The main control parameters of layer section are:

• relativeSizes command sets if the final layer thickness and the mini-

mum thickness have to be defined as relative (true) to the background

spacing, or defined as absolute (false) length.

• expansionRatio command controls the ratio of heights from one layer

to the next consecutive layer in direction away from the surface.

• finalLayerThickness command sets the ratio of the final layer height

relative to the adjacent surface mesh size.

• minThickness is the specification of a minimum layer thickness below

which height layers will automatically be collapsed.

• nRelaxIter command controls the number of scaling back iterations

during the error reduction stage, as seen in the ”snapping” section.

• featureAngle command specifies a feature angle above which layers

are collapsed automatically.

• nSmoothSurfaceNormals sets the number of smoothing iterations to

be performed on the surface point normal.

• nSmoothNormals sets the number of smoothing iteration of the inte-

rior displacement field.

• nSmoothThickness is a number of smoothing operations that can be

performed on the layer thickness.

• maxFaceThicknessRatio stops layer growth on highly warped cells.

• maxThicknessToMedialRatio andminMedianAxisAngle commands

define the medial axis which is used when moving the mesh away from

the surface; it is shown in Figure 5.10. A maximum value for the ratio

of layer thickness to distance from medial axis (∆H/∆M) is set, above

which the layer thickness is reduced.

• nLayerIter command sets the maximum number of layer addition

iterations. If convergence is not reached it will exit the layer addition

loop with the currently generated layer.

50

Figure 5.10: Medial axis definition for surface layer growth

• nRelaxedIter allows to achieve convergence using a set of relaxed mesh

quality controls, if layer iteration has not succeeded in reaching a spe-

cific number of iterations (nLayerIter). With the aim of obtaining

a high quality mesh, this command is commented in order to be ne-

glected. This setup led to an increase of computing time but a better

final mesh.

snappyHexMesh steps can be summarized in Figure 5.11 and the valve

detail in Figure 5.12 .

51

(a) snappyHexMesh castellated step

(b) snappyHexMesh snap step

(c) snappyHexMesh addLayer step

Figure 5.11: Detail valve layer zone

52

(a) Valve layer 1

(b) Valve layer bottom

Figure 5.12: Detail valve layer zone

53

5.2.6 meshQualityControls

The last section involves meshQualityControls. During snappyHexMesh

operations the mesh quality is constantly monitored. If a mesh motion

or topology change introduces a poor quality cell or face, the motion or

topology change is undone to revert the mesh back to a previously valid

error free state.

meshQualityControls

{

maxNonOrtho 60;

maxBoundarySkewness 20;

maxInternalSkewness 4;

maxConcave 80;

minVol 1e-13;

minTetQuality 1e-30;

minArea -1;

minTwist 0.05;

minDeterminant 0.001;

minFaceWeight 0.05;

minVolRatio 0.01;

minTriangleTwist -1;

// Advanced

nSmoothScale 4;

errorReduction 0.75;

relaxed

{

maxNonOrtho 75;

}

}

The main control parameters of layer meshQualityControls are:

• face orthogonality and skewness features, which have already been

discussed in section 5.1.

• maxConcave, shown in Figure 5.13, performs a check of the interior

angles making up the face. The inserted value is the angle below which

concavity is allowed.

• minV ol and minArea, shown in Figure 5.14, check the minimum face

area and the minimum cell pyramid volume which is calculated as:

54

Figure 5.13: Face concavity

pyramidV olume =
1

3
(Ai · bi) (5.4)

Figure 5.14: Cell pyramid volume

• minTwist, shown in Figure 5.15, assesses that faces are decomposed

into triangular elements using the face center. The face twist is then

calculated as the normalized dot product of the cell center to adjacent

cell center vector with the triangular face area vector.

minTwist =
fi · ci
|fi||ci|

(5.5)

Figure 5.15: Face triangular decomposition

55

• minDetermint is calculated by taking the determinant of the tensor

calculated from the face area vectors. 1 means perfect hex cell, ≤ 0

illegal cell.

A =
∑

faces

|Ai| (5.6)

ti,j =
∑

faces

Aix
Ai

|Ai|
(5.7)

cellDeterminant =

∣

∣

∣

∣

ti,j
A

∣

∣

∣

∣

(5.8)

• minFaceWeight is calculated as the minimum of the projected owner

cell center to face center length or neighbor cell center to face center

length divided by the sum of the two lengths, Figure 5.16

Figure 5.16: Face weight calculation

down =
|Ai · bi|

|Ai|
(5.9)

dneigh =
|Ai · ci|

|Ai|
(5.10)

faceWeight =
min(down, dneigh)

down + dneigh
(5.11)

• minV olRatio metric is calculated as the ratio of the minimum of the

owner and neighbor volume divided by the maximum of the two.

minV olRatio =
min(Vown, Vneigh)

max(Vown, Vneigh)
(5.12)

56

• nSmoothScale applies smoothing to the displacement scaling field dur-

ing each recovery iteration.

• errorReduction command scales back the displacement field locally

where there are errors of the specified amount for each recovery itera-

tion.

5.3 checkMesh

With the aim to ensure the validity of the mesh, checkMesh utility can be

used.

Mesh s t a t s

po in t s : 1830118

f a c e s : 5006408

i n t e r n a l f a c e s : 4810747

c e l l s : 1603949

f a c e s per c e l l : 6 .12062

boundary patches : 25

point zones : 0

f a c e zones : 0

c e l l zones : 0

Overa l l number o f c e l l s o f each type :

hexahedra : 1397046

prisms : 36093

wedges : 38

pyramids : 0

t e t wedges : 736

te t rahedra : 4

polyhedra : 170032

Breakdown o f polyhedra by number o f f a c e s :

f a c e s number o f c e l l s

4 26658

5 18936

6 28242

7 33544

8 12812

9 27168

10 1044

11 323

12 12720

13 104

14 85

15 7386

16 1

17 10

18 843

21 141

24 15

Checking topology . . .

Boundary d e f i n i t i o n OK.

Ce l l to f a c e addre s s ing OK.

Point usage OK.

Upper t r i a n gu l a r o rde r ing OK.

Face v e r t i c e s OK.

Number o f r e g i on s : 1 (OK) .

Checking patch topology f o r mult ip ly connected su r f a c e s . . .

Patch Faces Points Sur face topology

al lBoundary 5020 5085 ok (non−c l o s ed s i n g l y connected)

de fau l tFace s 0 0 ok (empty)

co ronaCi r co l a r e 1914 2754 ok (non−c l o s ed s i n g l y connected)

cyl inderHead 36661 45259 ok (non−c l o s ed s i n g l y connected)

exhaustDuct 0 0 ok (empty)

exhaustValveBottom 5168 5906 ok (non−c l o s ed s i n g l y connected)

exhaustValveDiagonal 0 0 ok (empty)

57

exhaustValveSide 4027 5685 ok (non−c l o s ed s i n g l y connected)

exhaustValveStem 0 0 ok (empty)

exhaustValveTop 0 0 ok (empty)

exhSeat1 0 0 ok (empty)

exhSeat2 0 0 ok (empty)

i n l e t 2348 2443 ok (non−c l o s ed s i n g l y connected)

intakeDuct 62681 74417 ok (non−c l o s ed s i n g l y connected)

intakeSeat1 4844 6779 ok (non−c l o s ed s i n g l y connected)

intakeSeat2 10863 14584 ok (non−c l o s ed s i n g l y connected)

intakeValveBottom 8138 9446 ok (non−c l o s ed s i n g l y connected)

intakeValveDiagonal 5641 8401 ok (non−c l o s ed s i n g l y connected)

intakeValveS ide 3686 5749 ok (non−c l o s ed s i n g l y connected)

intakeValveStem 1861 2604 ok (non−c l o s ed s i n g l y connected)

intakeValveTop 7133 9222 ok (non−c l o s ed s i n g l y connected)

l i n e r 22234 23226 ok (non−c l o s ed s i n g l y connected)

ou t l e t 0 0 ok (empty)

p i s ton 0 0 ok (empty)

s e rba t o i o 13442 14966 ok (non−c l o s ed s i n g l y connected)

Checking geometry . . .

Overa l l domain bounding box (−0.0731569 −0.0595716 −0.11) (0 .0374177 0.215324 0 .109632)

Mesh (non−empty , non−wedge) d i r e c t i o n s (1 1 1)

Mesh (non−empty) d i r e c t i o n s (1 1 1)

Boundary openness (−2.1373e−16 2.83923 e−15 −1.47728e−15) OK.

Max c e l l openness = 4.28094 e−16 OK.

Max aspect r a t i o = 16.1273 OK.

Minimum fac e area = 2.12099 e−09. Maximum fac e area = 9.94223 e−06. Face area magnitudes OK.

Min volume = 5.78369 e−13. Max volume = 1.52896 e−08. Total volume = 0.00182878 .

Ce l l volumes OK.

Mesh non−o r thogona l i t y Max : 59.7834 average : 9 .48651

Non−o r thogona l i t y check OK.

Face pyramids OK.

Max skewness = 3.41741 OK.

Coupled point l o c a t i o n match (average 0) OK.

Mesh OK.

This utility is provided by OpenFOAM and produces a full report with

mesh quality metrics and element count statistics.

58

Chapter 6

Simulation Results

Figure 6.1 shows the section planes, on which the images that will be

described later are obtained. Figure 6.1a shows the valve longitudinal section

plane placed at a distance of 18 mm from the cylinder axis. Figure 6.1b

shows the transverse section plane located at 24 mm. Figure 6.1c shows the

cylinder section plane where the velocity maps have been calculated and it

is placed at a distance of 45 mm from the cylinder top.

(a) Section plane YZ

(b) Section plane XZ

(c) Section plane XY

Figure 6.1: Section plane

60

6.1 Unsteady simulations

After having carried out some preliminary numerical simulations, it has been

possible to observe that, starting from 5 mm valve lift, in numerical simu-

lations the flow velocity under the intake valve is higher than experimental

tests. This phenomenon may be detected for both tests but with different

intensity. Several simulations are carried out in this study to investigate this

flow behavior; among them, unsteady simulations have been made in order

to check if unsteady phenomena could influence the velocity flow field.

For this work an unsteady solver must be used, since steady state algo-

rithm as rhoSimpleFoam is ineffective. Among the unsteady solvers provided

by OpenFOAM, rhoPimpleFoam has been used.

rhoPimpleFoam is a transient solver for compressible flow and it uses a

PISO-SIMPLE merged algorithm. The SIMPLE algorithm is essentially a

guess-and-correct procedure for the calculation of pressure and velocities.

On the other hand, the PISO algorithm, is a pressure-velocity calculation

procedure developed originally for non-iterative computation of unsteady

compressible flows. For this simulations, working with a too small time step

is not necessary. First, the physics of this problem does not have small

timescales, then the use of low Courant number would involve an excessive

duration of the simulation.

With the aim of registering unsteady phenomena, nine points have been

probed in order to measure the velocity components, pressure, enthalpy,

kinetic turbulent energy and specific turbulence dissipation rate at each

time step. These points are placed on a plane passing through the axis of

the cylinder and orthogonal to the tumble vortex rotation axis, as shown in

Figure 6.2.

61

Figure 6.2: Points distribution within the cylinder

Figure 6.3: Velocity maps rhoPimple vs rhoSimple

62

(a) Vector plot

(b) Streamlines

Figure 6.4: Vector plot and streamlines rhoPimple vs rhoSimple

63

(a) Velocity field

(b) static pressure contours

Figure 6.5: Velocity and static pressure contours rhoPimple vs rhoSimple

64

(a) Valve flow rhoPimple

(b) Valve flow rhoSimple

Figure 6.6: Valve flow rhoPimple vs rhoSimple

65

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−25
−20
−15
−10

−5
0
5

U
x
 [

m
/s

]
y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−6
−4
−2

0
2
4
6
8

U
x
 [

m
/s

]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−2
0
2
4
6
8

10

U
x
 [

m
/s

]

y3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−35
−30
−25
−20
−15
−10

−5
0

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−60
−50
−40
−30
−20
−10

0

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−50

−40

−30

−20

−10

0

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−40
−35
−30
−25
−20
−15
−10

−5
0

U
z

[m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−70
−60
−50
−40
−30
−20
−10

0
U

z
[m

/s
]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−60
−50
−40
−30
−20
−10

0

U
z

[m
/s

]

(a) Z1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−25
−20
−15
−10

−5
0
5

U
x
 [

m
/s

]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−8
−6
−4
−2

0
2
4
6
8

U
x
 [

m
/s

]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−4

−2

0

2

4

U
x
 [

m
/s

]

y3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−16
−14
−12
−10

−8
−6
−4
−2

0

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−40
−35
−30
−25
−20
−15
−10

−5
0

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−25
−20
−15
−10

−5
0
5

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−60
−50
−40
−30
−20
−10

0

U
z

[m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−50

−40

−30

−20

−10

0

U
z

[m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−50
−40
−30
−20
−10

0
10

U
z

[m
/s

]

(b) Z2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−0.15

−0.10

−0.05

0.00

0.05

0.10

U
x
 [

m
/s

]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−0.15

−0.10

−0.05

0.00

0.05

0.10

U
x
 [

m
/s

]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−0.10

−0.05

0.00

0.05

0.10

0.15

U
x
 [

m
/s

]

y3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−0.10
−0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−0.08
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06

U
y
 [

m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−60
−50
−40
−30
−20
−10

0

U
z

[m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−35
−30
−25
−20
−15
−10

−5
0

U
z

[m
/s

]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

−30
−25
−20
−15
−10

−5
0
5

U
z

[m
/s

]

(c) Z3

Figure 6.7: Unsteady velocity components

66

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97000

98000

99000

100000

101000

102000

103000

p
 [
Pa

]
y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97000

98000

99000

100000

101000

102000

103000

p
 [
p
a
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

96000

97000

98000

99000

100000

101000

102000

103000

p
 [
Pa

]

y3

(a) Z1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97000

98000

99000

100000

101000

102000

p
 [
Pa

]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97000

98000

99000

100000

101000

102000

103000

p
 [
p
a
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97000

98000

99000

100000

101000

102000

103000

p
 [
Pa

]

y3

(b) Z2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97500

98000

98500

99000

99500

100000

100500

101000

101500

102000

p
 [
Pa

]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97500

98000

98500

99000

99500

100000

100500

101000

101500

102000

p
 [
p
a
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

97500

98000

98500

99000

99500

100000

100500

101000

101500

102000

p
 [
Pa

]

y3

(c) Z3

Figure 6.8: Unsteady pressure

67

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

306000

h
 [
J/
kg

]
y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

h
 [
J/
kg

]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

h
 [
J/
kg

]

y3

(a) Z1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

h
 [
J/
kg

]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

h
 [
J/
kg

]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000
h
 [
J/
kg

]

y3

(b) Z2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

h
 [
J/
kg

]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

h
 [
J/
kg

]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

297000

298000

299000

300000

301000

302000

303000

304000

305000

h
 [
J/
kg

]

y3

(c) Z3

Figure 6.9: Unsteady enthalpy

68

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

50

100

150

200

250

300

350

400
k
[J
/k
g
]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

50

100

150

200

250

300

350

k
[J
/k
g
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

100

200

300

400

500

600

k
[J
/k
g
]

y3

(a) Z1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

50

100

150

200

250

300

k
[J
/k
g
]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

50

100

150

200

250

300

k
[J
/k
g
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

50

100

150

200

250

300

350

400

450

k
[J
/k
g
]

y3

(b) Z2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

20

40

60

80

100

120

140

160

180

k
[J
/k
g
]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

20

40

60

80

100

120

140

160

180

200

k
[J
/k
g
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

50

100

150

200

250

k
[J
/k
g
]

y3

(c) Z3

Figure 6.10: Unsteady kinetic turbulent energy

69

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

10000

20000

30000

40000

50000

60000

70000

o
m
e
g
a
 [
1
/s
]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

5000

10000

15000

20000

25000

30000

35000

40000

o
m
e
g
a
 [
1
/s
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

o
m
e
g
a
 [
1
/s
]

y3

(a) Z1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

5000

10000

15000

20000

25000

30000

o
m
e
g
a
 [
1
/s
]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

5000

10000

15000

20000

25000

o
m
e
g
a
 [
1
/s
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

0

5000

10000

15000

20000

25000

30000

o
m
e
g
a
 [
1
/s
]

y3

(b) Z2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

o
m
e
g
a
 [
1
/s
]

y1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

o
m
e
g
a
 [
1
/s
]

y2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

time [s]

2000

4000

6000

8000

10000

12000

14000

16000

o
m
e
g
a
 [
1
/s
]

y3

(c) Z3

Figure 6.11: Unsteady specific turbulence dissipation rate

70

0 0.1 0.2 0.3 0.4

Iterations

1e-06

0.0001

0.01

1
R

es
id

ua
l

Ux
Uy
Uz
p
h
k
omega

(a) Unsteady residual plot

0 1000 2000 3000 4000 5000 6000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(b) Steady state residual plot

Figure 6.12: Valve flow rhoPimple vs rhoSimple

71

In Figure 6.3, Figure 6.4, Figure 6.5 and Figure 6.6 it is possible to ob-

serve the result of the comparison between unsteady and steady state simu-

lations at 5 mm valve lift. Figure 6.12 illustrates simulation residuals plots.

As can be seen, simulation reach convergence with lower values of residu-

als than in steady state simulation, therefore a good accuracy is expected.

Figure 6.3 shows the comparison between velocity maps. It is possible to

observe that there is almost no difference both in shape and values. Even

in Figure 6.4 there are not significant differences: indeed streamlines and

vector plots are very similar. Small difference can be noted between tumble

vortexes; tumble vortex in rhoPimple looks bigger and less rounded than in

rhoSimple simulation. The main difference detected is shown in Figure 6.5.

Static pressure contour highlights that tumble vortex intensity in unsteady

solution is less strong than in steady simulation. All these small differences

could be due to simulation convergence which in unsteady simulation is

slightly better.

In conclusion, it is possible to state that there are not unsteady phe-

nomena that in the flow field. In Figure 6.7 it is possible to observe that

for all the three components of velocity, after a brief transitional period, the

flow is characterized by steady state behavior. This feature is found also

in the other quantities analyzed. Indeed Figure 6.8, Figure 6.9, Figure 6.10

and Figure 6.11 show the same behavior as velocity for pressure, enthalpy

and both the turbulence quantities: kinetic turbulent energy and specific

turbulence dissipation rate.

72

6.2 Steady state simulations

6.2.1 In-cylinder velocity field

In-cylinder velocity field should be symmetric. Beyond checking numerical

simulation convergence through residuals, it is crucial to assess that simula-

tion motion field makes physically sense. Since intake ducts are symmetric,

the symmetry of the ingoing valve flow must be respected.

Figure 6.13 shows that symmetry is actually respected and that for low,

medium and high valve lifts proper results are obtained. Only in Figure 6.13a

it is possible to observe a slight asymmetry at 3 mm valve lift, but this

phenomenon does not compromise the results.

73

(a) Low valve lift in-cylinder velocity field

(b) Medium valve lift in-cylinder velocity field

(c) High valve lift in-cylinder velocity field

Figure 6.13: In-cylinder velocity field

74

6.2.2 Valve flow

In this section outgoing valve flow is represented. To describe this phe-

nomenon it is convenient to refer to the portion of geometry between the

valve and the flow straightener.

Low valve lifts in Figure 6.14 describe a very chaotic flow behavior,

especially for 1mm and 2mm valve lift, as shown in Figure 6.15a and Fig-

ure 6.15b. As previously discussed, it may be imputed to the low mass flow

rate.

In Figure 6.15 for medium valve lifts it is possible to observe that, start-

ing from 4mm valve lift, the flow is attached to the wall, causing less tur-

bulence near the throat and the flow behavior has changed compared to the

previous valve lifts.

High valve lifts in Figure 6.16 show that the velocity of the flow field

increases proportionally to the increase of the valve lift.

In all these figures it is possible to observe that, especially in medium

and high valve lift, there is a strong upward flow towards the valve, which is

due to the tumble motion. These phenomena will be discussed in the next

section.

75

(a) 1 mm valve lift

(b) 2 mm valve lift

(c) 3 mm valve lift

Figure 6.14: Low valve lift valve flow

76

(a) 4 mm valve lift

(b) 5 mm valve lift

(c) 6 mm valve lift

Figure 6.15: Medium valve lift valve flow

77

(a) 7 mm valve lift

(b) 8 mm valve lift

(c) 9 mm valve lift

Figure 6.16: High valve lift valve flow

78

6.2.3 Streamlines vs Vector plot

In this section streamlines and vector plot are illustrated. These results refer

to the section plane shown in Figure 6.1 a.

Figure 6.17 shows streamlines and vector plot for low valve lifts. As

previously explained, due to low mass flow rate entering the cylinder, the

motion field is very confused. This feature is easily observable in Figure 6.17a

and Figure 6.17b. Starting from 3mm valve lift, in Figure 6.17c, instead, it

is possible to see the onset of two vortexes characterizing the intake stroke.

Medium valve lifts are shown in Figure 6.18, which illustrates tumble

vortex development. The width of the main vortex, located under the ex-

haust valves, is limited by inverse tumble vortex located under the intake

valves. This phenomenon is visible in Figure 6.18b and Figure 6.18c.

High valve lifts illustrated in Figure 6.19 highlight how inverse vortex

dimension is reduced. After 7mm valve lift, the tumble vortex restart to

grow rapidly.

Tumble vortex development as function of valve lifts, is described in

tumble coefficient section below.

79

(a) 1 mm valve lift

(b) 2 mm valve lift

(c) 3 mm valve lift

Figure 6.17: Low valve lift streamlines vs vector plot

80

(a) 4 mm valve lift

(b) 5 mm valve lift

(c) 6 mm valve lift

Figure 6.18: Medium valve lift streamlines vs vector plot

81

(a) 7 mm valve lift

(b) 8 mm valve lift

(c) 9 mm valve lift

Figure 6.19: High valve lift streamlines vs vector plot

82

6.2.4 Velocity field vs Static pressure contours

In this section velocity field and static pressure contours are illustrated.

A strong pressure differential exists near the throat which results in

flow acceleration through the throat and hence high velocity. At lower lifts,

shown in Figure 6.20, the jet of flow coming out of the throat causes recircu-

lation below the valve head. A portion of high velocity flow out of the throat

creates a stronger tumble inside the engine cylinder at high lifts compared

to low lifts.

The pressure field describes the intensity of tumble vortex. Starting from

low lifts it is possible to observe tumble vortex intensity growing.

As described in the previous section, at medium lifts the tumble vortex

does not increase its size, but in figure Figure 6.21 it is shown that its

intensity has grown.

Figure 6.22 shows that at higher valve lifts the tumble vortex is bigger

than at previous lifts and it moves from the zone below the exhaust valve

to the zone below the intake valve, pushing the inverse vortex against the

wall.

83

(a) 1 mm valve lift

(b) 2 mm valve lift

(c) 3 mm valve lift

Figure 6.20: Low valve lift velocity field vs static pressure contours

84

(a) 4 mm valve lift

(b) 5 mm valve lift

(c) 6 mm valve lift

Figure 6.21: Medium valve lift velocity field vs static pressure contours

85

(a) 7 mm valve lift

(b) 8 mm valve lift

(c) 9 mm valve lift

Figure 6.22: High valve lift velocity field vs static pressure contours

86

6.2.5 Velocity maps

Velocity maps represent the velocity component of each cell that is parallel

to the cylinder axis. These velocities have been acquired thanks to sample

utility provided by OpenFOAM . Subsequently they have been elaborated

through python script and organized in a velocity matrix, whose size is 200

x 200.

The left side of velocity maps represents the zone below the exhaust

valve. The opposite side, instead, represents the zone below the intake

valve.

In both the experimental tests and the numerical simulations the velocity

field starts to be actually symmetric to the horizontal axis of the section from

5mm valve lift included. It is possible to observe the classic air distribution

below the exhaust valve, that represents a good direct tumble. There is an

air zone under the intake valve that contributes to generate inverse tumble

which reduces the direct tumble effect, as it is shown in streamlines and

vector plot figures.

In experimental tests this zone begins to be visible at 4mm valve lift,

increases its intensity and dimension until 7mm valve lift and decreases

dimension and intensity at 8mm and 9mm valve lift, thus favoring a more

intense tumble. In the simulations, instead, the zone under the intake valve

decreases dimension and intensity in a less considerable way compared to

experimental tests: indeed, this phenomenon occurs only at 9mm valve lift.

The valve lift lower than 5mm doesn’t present symmetry to the horizon-

tal axis. FIAT claims that these conditions are due to imperfect mechanical

manufacturing. Actually, as it is possible to observe in streamlines figures,

they are a consequence of two elements: the distance between the probe

and the honeycomb flow straightener as well as the low mass flow rate. For

1mm and 2mm valve lift it is not possible to make any other consideration

because of the low air velocity.

87

(a) 1 mm valve lift

(b) 2 mm valve lift

(c) 3 mm valve lift

Figure 6.23: Low valve lift velocity maps

88

(a) 4 mm valve lift

(b) 5 mm valve lift

(c) 6 mm valve lift

Figure 6.24: Medium valve lift velocity maps

89

(a) 7 mm valve lift

(b) 8 mm valve lift

(c) 9 mm valve lift

Figure 6.25: High valve lift velocity maps

90

6.2.6 Discharge coefficient

The discharge coefficient CD is defined as the ratio between the measured

flow rate at standard conditions and a reference mass flow rate [7].

CD =
ṁa

ṁis
(6.1)

The discharge coefficient is always less than 1 because ideal conditions

are never achieved for the following reasons:

• the fluid has real behavior;

• the velocity field in the section is nonuniform;

• heat transfer and viscous dissipation;

• the difference between the actual minimal area and the reference one.

The reference area is represented by the cross section of valve seat, which

is constant. The discharge coefficient can be rewritten as:

CD =
ṁa

Aref v̇is,specρ01
(6.2)

where v̇is,spec is defined as:

v̇is,spec = Φc

√

2
(P01 − P2)

ρ01
(6.3)

where the compressibility factor Φc is defined as:

Φc =

√

kP01

2(P01 − P2)

√

√

√

√

2

k − 1

(

P2

P01

)2/k
[

1−

(

P2

P01

)
k−1
k

]

(6.4)

The discharge coefficient depends on:

• the system geometry;

• the characteristics of the fluid;

• the velocity field.

The last point can be summarized through Reynolds and Mach non-

dimensional number. For low Mach number (Mach ≤ 0.7), the discharge

coefficient is only function of Reynolds number and becomes a constant

for highly turbulent flow. For very turbulent regimes, as in our case, the

91

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Valve lift

0.0

0.1

0.2

0.3

0.4

0.5

0.6
C
D

Numerical

Experimental

Figure 6.26: Discharge coefficient

discharge coefficient is independent from Reynolds number and hence from

the pressure ratio across the valve that is the difference of the pressure over

the valve.

Numerical discharge coefficient matches closely with experimental dis-

charge coefficient at lower lifts and starts to be over-predicted at higher

valve lifts. This could be because at higher lifts the flow starts to separate

from the wall creating turbulence near the throat. The flow thus rushing

into the chamber creates more intake upstream of the throat which results

in more air flow at high lift position of the valve.

92

6.2.7 Tumble number

An organized motion that is used in the most modern spark ignition engines

is the tumble motion [8]. The velocity maps represent the velocity field at

the output section of the cylinder. These maps show an area of high velocity

below exhaust valve, basic condition for tumble. To quantify the tumble, it

is assumed that the vortex closes on itself on the floor where velocities are

measured. The tumble vortex is developed around an axis that is orthogonal

to the cylinder axis. It is possible to assume that the rotation around this

axis occurs as rigid body motion. The tumble number is calculated as:

NT =
ωaverageD

vis
(6.5)

The problem lies in the calculation of the average angular velocity, so an

equivalent quantity is used. The first step consists in dividing the map into

two parts on the vortex rotation axis. The velocity that can be found on the

left side, creating a vortex outgoing from the left side and entering in the

right side, represents the direct tumble vortex. Referring to velocity maps

the velocity under intake valve generates the tumble inverse vortex. Each

velocity has a certain distance bi from the axis of rotation. The angular

velocity for each point can be calculated as:

ωi =
vi
bi

(6.6)

The second step is to calculate an average value for the angular velocity

of left and right side of the map:

ωsx−dx =

∑

vibi
∑

b2i
(6.7)

The average angular velocity to place in equation (??) is then:

ωaverage = ωsx − ωdx (6.8)

As shown in vector plot in Figure 6.18b, the tumble motion is developed

around an axis that is orthogonal to the cylinder axis, and it is due to

the interaction between the air flow deriving from the inlet valve and the

opposite cylinder wall. It is traditionally used to increase the turbulence

level in combustion stroke of spark-ignition engine. Generally the ability

to produce organized motion of the inlet flow corresponds to an increase

in fluid-dynamic losses and consequently results in a decrease of discharge

coefficient. This phenomenon can be observed from 7mm valve lift; the

93

tumble number in simulations increases less than in experimental tests but

the discharge coefficient is higher.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Valve lift

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
T

Numerical

Experimental

Figure 6.27: Tumble number

Analyzing Figure 6.27 and the vector plot figures it is possible to observe

as the tumble vortex is powered by the increasing air entering through the

valve. The offset between the two lines could be the result of the air velocity

below the intake valve of the numerical simulations, that is higher than

experimental tests. This implies a reduction of the main tumble vortex,

caused by the inverse tumble vortex.

94

6.2.8 Convergence results

Figure 6.28 shows low valve lifts (1 mm, 2 mm, 3 mm) residuals plots. Low

valve lifts have been the most difficult to execute. Simulations had stability

problems at early iterations, for this reason robust numerical schemes have

been used. 1 mm valve lift presents higher final residuals than all other

simulations and they have an oscillatory trend. 2 mm valve lift has been

the most problematic to simulate. The residual plot shown in Figure 6.28 b

points out a cusp in the neighborhood of the 3000th iteration. This trend

could be due to an imperfect boundary condition of k or ω. 3 mm valve lift

is more valid than previous simulations, since residuals reach convergence

before the 6000th iteration.

In Figure 6.29 medium valve lifts (4 mm, 5mm, 6 mm) residuals plots are

described. Medium valve lifts are characterized by greater stability. Plots

show that residuals achieve lower values and present less oscillatory behavior

than previous simulations. A common trait to medium valve lifts consists

in a more rapid convergence of Uz, Uy and ω, where z is the cylinder axis

direction and y is the predominant inlet flow direction.

Figure 6.30 represents high valve lifts 7 mm, 8 mm, 9 mm residuals plots.

All the features described for medium valve lifts can be applied to this case.

In particular, as shown in Figure 6.30b and Figure 6.30c, simulation residuals

have an even more linear trend.

A common aspect to all significant simulations (3mm-9mm) is that pres-

sure residual decreases more slowly than other quantities. This phenomenon

can be considered normal using these boundary conditions.

95

0 1000 2000 3000 4000 5000 6000

Iterations
1e-05

0.0001

0.001

0.01

0.1

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(a) 1 mm valve lift

0 1000 2000 3000 4000 5000 6000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(b) 2 mm valve lift

0 1000 2000 3000 4000 5000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(c) 3 mm valve lift

Figure 6.28: Convergence results for lift 1 - 3 mm

96

0 1000 2000 3000 4000 5000 6000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(a) 4 mm valve lift

0 1000 2000 3000 4000 5000 6000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(b) 5 mm valve lift

0 1000 2000 3000 4000 5000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(c) 6 mm valve lift

Figure 6.29: Convergence results for lift 4 - 6 mm

97

0 1000 2000 3000 4000 5000 6000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(a) 7 mm valve lift

0 1000 2000 3000 4000 5000 6000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(b) 8 mm valve lift

0 1000 2000 3000 4000 5000

Iterations
1e-06

0.0001

0.01

1

R
es

id
ua

l

Ux
Uy
Uz
p
h
k
omega

(c) 9 mm valve lift

Figure 6.30: Convergence results for lift 7 - 9 mm

98

Chapter 7

Conclusions

The aim of this thesis work is to describe air movement characteristics in

cylinder and intake port of a spark ignition engine, analyzing the generation

and the evolution of the flow field during the intake stroke at different valve

lifts and check the ability to realize arranged motions in the cylinder. More-

over at a later stage it aims at comparing these results with experimental

investigations ones.

Thanks to this work, as shown in Chapter 6, it has been possible to

describe the air flow behavior within the cylinder during the intake stroke

at different valve lifts. Simulation results show that tumble is the main

in-cylinder flow motion, and tumble vortex grows in size and intensity by

the increasing air entering through the valves. The comparison between

numerical and experimental tests have produced comparable results. For

intermediate valve lifts (3 mm to 7 mm) the velocity maps are satisfactorily

matched. To confirm this also the trend of discharge coefficient and tumble

coefficient can be discreetly compared in this range of lift.

The differences in results that it is possible to detect may be due to

several factors. It is needed to accept that computational fluid dynamic

simulations, in any case, are approximated and limited by the resources

availability. Because of poor hardware resources and complex geometry fea-

tures, it has been necessary to find a compromise between refinement and

computational time. With k - ǫ or its derived turbulence models, coarse

grid can be used; however to ensure y+ > 30 the cell size is not compatible

with the refinement required in the valve throat zone. Moreover, these tur-

bulence models perform poorly for complex flow involving severe pressure

gradient, separation and strong streamline curvature. k - ω SST turbu-

lence model has proven to be the most suited for this work. Referring to

mesh generation, the use of snappyHexMesh as meshing tool has led to is-

sues related to the fact that this utility is based on iterative and automatic

meshing processes. The main problem lies in the fact that the angular devi-

ation of the flow directions from the vector connecting the two cell centers

could generate numerical diffusion. Designing a mesh with cells oriented

in the same flow direction, in valve throat zone, could represent a solution

to face this problem. However, adding boundary layer, without finer wall

refinement, generates distorted cells with too high non-orthogonality and

skewness values. Proceeding with further wall refinement, instead, would

involve a doubling of the number of cells that is incompatible with compu-

tational resources. A commercial software allows to design a mesh with cells

oriented in the same flow direction, without any significant increase in the

number of cells. It could represent a possible future development for this

work.

Experimental tests cannot be completely reliable for several hypotheti-

cal reasons. Indeed, the cylinder outgoing flow tends to expand, losing the

ordered structure set by flow straightener and it could be slowed by the resis-

tance that it meets in quiet air outside the cylinder. When the flow velocity

is very low, at low valve lift (1 mm and 2 mm), the hot wire anemometer

probe is affected by the effect of natural convection and the results might

be not reliable. The size of probe and movement system inserted in the flow

field may present a certain intrusiveness and affect the results.

In addition, the difference observed in the comparison of the results may

be due to the following aspects: an error could occur in dial gauge indicator

for valve lift measurement, then there could be discrepancy in the intake

pressure measurement location between CFD simulation and flow bench

and finally, CAD geometry has been slightly modified compared to flow

box geometry tested on the flow bench, in order to adapt it to simulation

conditions.

For all these reasons, it is possible to claim that the use of numerical

simulations cannot leave aside the experimental tests and vice versa, in

order to obtain a complete multi-dimensional steady-state in-cylinder flow

study.

100

Bibliography

[1] J. H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics

Springer, 2002.

[2] H. K. Veersteg, W.Malalasekera, An introduction to Computational

Fluid Dynamics, Technical, 1995.

[3] A. Quarteroni, F. Saleri, Introduzione al calcolo scientifico, Springer,

2002.

[4] OpenFOAM 2.2.0 Programmer’s Guide, February 2013.

[5] Kundu, Cohen, Dowling, Fluid Mechanics, Academic Press, 2011.

[6] Menter, F. R., Zonal Two Equation k-ω Turbulence Models for Aerody-

namic Flows, AIAA Paper 93-2906., 1993.

[7] Frank M. White, Text book on Fluid Mechanics, Fourth Edition,

McGraw-Hill Book Company

[8] Ferrari, G., Motori a Combustione interna, Il Capitello.

[9] W.P.Jones and B. E. Launder, The prediction of laminarization with

a two-equation model of turbulence, International Journal of Heat and

Mass Tranfer 15.

[10] OpenFOAM 2.2.0 User Guide, February 2013.

101

