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Grazie ad Alessandro, compagno di mille avventure solastiche e non, senza
di te di certo mi sarei goduto meno tutto questo percorso.

Grazie a Marta, per gli innumerevoli aiuti e consigli che mi hai dato,
rivelandoti una splendida persona su cui poter sempre contare.

Grazie a Paolo, o forse dovrei dire al professor Camassa, per essere stato
il primo a trasmettermi la passione per la matematica e a scorgere in me
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Riassunto

In questo lavoro verrà presentata una classe di modelli bayesiani per l’analisi
di dati longitudinali non decrescenti. In particolare, in questo elaborato
verranno analizzati dati relativi alla crescita di bambini affetti da leucemia
linfoblastica acuta (LLA). Il data set raccoglie dati relativi all’altezza di ogni
paziente misurata dal pediatra in istanti di tempo con cadenza media attorno
ai 6 mesi. Oltre all’altezza, per ogni paziente è segnalato il tipo di tratta-
mento a cui è stato sottoposto, dividendo i pazienti in tre categorie. Studi
medici hanno ipotizzato un rallentamento del processo di crescita per i pazi-
enti sottoposti a sedute di radioterapia (gruppi 2 e 3); uno degli obiettivi di
questo lavoro è la verifica di tale ipotesi tramite opportune analisi statistiche.

Si tratta di rappresentare le curve di crescita, per ogni paziente, con
un vettore (Yt, t ∈ {t1, ..., tn}). Si assume che Yt, l’altezza di ogni paziente
all’istante t, sia pari ad un fattore di scala J , costante nel tempo, moltiplicato
per l’integrale, rispetto al tempo, di un processo stocastico costante a tratti; il
tempo non è lineare, ma è riparametrizzato con una funzione di time-scaling.

Assumeremo che la funzione di time-scaling sia nota, oppure sia parametriz-
zata linearmente, e in questo caso i parametri che la rappresentano verrano
stimati.

I parametri da cui dipende la verosimiglianza dei dati sono vari: alcuni
sono intesi come variabili latenti, come il numero o la frequenza dei salti
del processo di nascita e morte; altri invece sono parametri di interesse (sui
quali faremo inferenza), come il fattore di scala J e la funzione di time-
scaling. Entrambi i modelli verranno poi estesi al caso di dati raggruppati, per
trattare il problema medico preso in esame. Seguendo l’approccio bayesiano
verrà assegnata una distribuzione a priori per il vettore di parametri.

Valuteremo le inferenze bayesiane per tale classe di modelli, utilizzando
due diversi tipi di algoritmi per il calcolo della distribuzione finale: un al-
goritmo Gibbs sampler e uno di tipo ABC (Approximate Bayesian Compu-
tation). In particolare, porremo attenzione al confronto dei parametri per
gruppo (cioè la diversa terapia per i pazienti), verificando che tale differenza
viene confermata dalle nostre stime.
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Abstract

In this work a class of Bayesian models will be introduced to analyze non-
decreasing longitudinal data. In this thesis we will analyze data related to
the growth of children affected by acute lymphoblastic leukemia (ALL). The
data set collects information about measurements on height for every pa-
tient, taken at diagnosis approximately every 6 months. Besides the height,
for each patient is reported the type of treatment to which it was subjected,
dividing the data in three categories. Previous studies on the effects of cra-
nial radiation on height suggested that radiation (used in groups 2 and 3)
contributed to decreased expected height. One of the goals of this work is to
verify this hypothesis with proper statistical analyses.

We are representing the growth curves, for each patient, with a vector
(Yt, t ∈ {t1, ..., tn}). We assume that Yt, the height of each patient at time t,
is equal to a scale factor J , time independent, times the integral of a piecewise
constant stochastic process; time is not linear, but is reparametrized with
a time-scaling function. We will assume that this functions is known, or
linearly parametrized, and in this case the parameters of which is composed
will be estimated by statistical analyses.

The conditional likelihood depends on various parameters, some of them
are latent variables, such as the number or frequency of jumps of the birth-
death process; on the other hand we have parameters of interest (on which
we are interested to make inference), like the scale factor J and the time-
scaling function. Both models will be extended to the case of grouped data,
to treat the specific medical problem. Following the Bayesian approach we
will assign a prior distribution to the vector of parameters.

We will compute the Bayesian inferences for this class of models, us-
ing two different kinds of algorithms to evaluate the final distribution: a
standard Gibbs sampler and an ABC (Approximate Bayesian Computation)
algorithm. In particular, we will focus attention on comparing parameters
between groups (each of them represents a different therapy used on pa-
tients) and we will verify the hypothesis of different growth trends for the
three groups.
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Introduzione

In questo lavoro verrà presentata una classe di modelli bayesiani per l’analisi
di dati longitudinali non decrescenti. I dati longitudinali sono un caso par-
ticolare di misure ripetute, nel caso in cui le variabili di interesse sono state
misurate per ogni soggetto o unità sperimentale in diversi istanti di tempo
successivi o in condizioni ‘sperimentali’ diverse. In particolare, siamo inter-
essati a studiare dei dati longitudinali non decrescenti, che sono solitamente
chiamati curve di crescita.

In questo elaborato verranno analizzati dati relativi alla crescita di bam-
bini affetti da leucemia linfoblastica acuta (LLA). Questi dati sono stati resi
disponibili dal Dana Farber Cancer Institute (Boston, USA) e sono stati in-
viati dalla prof.ssa Maria Durbán, una degli autori di Durbán et al. (2004),
al prof. Michael Peter Wiper. In uno studio clinico sono state raccolte infor-
mazioni sulla crescita di 618 pazienti durante un periodo di tempo che va da
Novembre 1987 a Dicembre 1995. Il data set raccoglie dati relativi all’altezza
di ogni paziente misurata dal pediatra in istanti di tempo con cadenza media
attorno ai 6 mesi. Oltre all’altezza, per ogni paziente è segnalato il tipo di
trattamento a cui è stato sottoposto, dividendo di fatto i pazienti in tre cat-
egorie: quelli curati senza radioterapia, quelli sottoposti a un trattamento di
radiazioni considerato standard e quelli a cui sono state applicate radiazioni
iper-frazionate. Studi medici precedenti hanno ipotizzato un rallentamento
del processo di crescita per i pazienti sottoposti a sedute di radioterapia; uno
degli obiettivi di questo lavoro è la verifica di tale ipotesi tramite opportune
analisi statistiche.

I modelli considerati sono due e presentano una simile struttura della
distribuzione condizionale dei dati. Entrambi i modelli condividono alcuni
parametri e, ovviamente, il modo di interpretare i dati, che sono curve di
crescita. La curva di crescita di ogni paziente è rappresentata da un vet-
tore (Yt, t ∈ {t1, ..., tn}). Si assume che Yt sia proporzionale, tramite un

fattore di scala aleatorio J , all’integrale
∫ G(t)

0
Us ds. Qui {Us, s ∈ (0, G(t))}

è un processo di nascita e morte con tasso λ, con spazio degli stati S =
{0, 1, 2, ...k}, k ∈ N. G(t) invece è una funzione continua non-decrescente,
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che chiameremo di time scaling. Dunque ad ogni istante di tempo, assumer-
emo che l’altezza di ogni paziente sia pari ad uno stesso fattore di scala J
(che non dipende dal tempo) per l’integrale rispetto al tempo di un processo
stocastico costante a tratti; il tempo non è lineare, ma è riparametrizzato
con la funzione G(t).

In particolare, il primo modello che abbiamo considerato assume che
la funzione di time scaling sia nota, mentre nel secondo la funzione viene
parametrizzata e i parametri che la compongono, incogniti, saranno oggetto
di analisi statistiche.

I parametri da cui dipende la verosimiglianza dei dati sono vari: al-
cuni sono intesi come variabili latenti, come il numero o la frequenza dei
salti del processo di nascita e morte; altri invece sono parametri di inter-
esse (sui quali andremo a fare inferenza), come il fattore di scala J e la
funzione di time-scaling. Entrambi i modelli verranno poi estesi al caso di
dati raggruppati, per trattare il problema medico preso in esame. Seguendo
l’approccio bayesiano verrà assegnata una distribuzione a priori per il vet-
tore dei parametri. Le inferenze sono costruite sulla base della distribuzione
finale, cioè la distribuzione condizionale dei parametri, date le osservazioni.

In sintesi, lo scopo di questa tesi è verificare se un tale modello sia ra-
gionevole per dati che sono curve di crescita, e in particolare per il data set
relativo alla crescita di bambini affetti da LLA. Ci siamo concentrati sulla
stima bayesiana dei parametri J e G(t). Particolare attenzione è stata posta
nella stima dei parametri all’interno dei tre gruppi in cui i dati sono stati
suddivisi. Prima di applicare i modelli proposti ai dati clinici a disposizione
è stata ‘testata’ la validità dei modelli con un’analisi effettuata su un data
set costruito ad hoc, simulando i dati dalla densità condizionale del mod-
ello bayesiano scelto, e fissando i parametri del modello. Dopo questa prima
fase, in cui i modelli sono stati leggermente modificati (per adattarsi al prob-
lema preso in esame), è stata condotta l’analisi bayesiana sui dati ‘reali’,
confrontando le stime a posteriori dei parametri dei citati gruppi. Per ogni
modello le stime a posteriori sono state ottenute attraverso due metodi: il
metodo MCMC standard e il metodo ABC (Approximate Bayesian Compu-
tation).

Entrambi gli algoritmi sono stati implementati utilizzando il software R

(R Development Core Team, 2009). Sono stati scritti i codici per effettuare
le simulazioni di tipo Markov Chain Monte Carlo (MCMC), cioè simulazioni
di traiettorie da una catena markoviana, aperiodica ed irriducibile, la cui
distribuzione limite è la posterior del modello considerato. La preparazione
dei dati e l’analisi degli output sono state effettuate utilizzando il pacchetto
mcmc. Sempre in R sono stati scritti i codici per le simulazioni di tipo ABC,
utilizzando gli stessi modelli bayesiani.
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Nel Capitolo 1 vengono richiamate anzitutto le nozioni probabilistiche
riguardanti le catene markoviane, che sono alla base della modellizzazione
delle nostre curve di crescita. In seguito viene introdotto il modello di nascita

e morte per costruire Yt = J
∫ G(t)

0
Usds e vengono calcolati i momenti del

processo. Infine si presenta il concetto di divisione aleatoria di un intervallo
e viene calcolata la densità di probabilità della statistica di ordine k-esimo
su un campione n-dimensionale sull’intervallo, secondo l’approccio descritto
in David and Nagaraja (2003); la conoscenza della distribuzione di questa
quantità sarà utile in seguito, quando verrà costruita la legge condizionale
delle osservazioni dati i parametri, del modello bayesiano proposto qui.

Nel Capitolo 2 sono descritti i due modelli bayesiani utilizzati nel corso
del lavoro; cioè la legge condizionale dei dati, dato il vettore dei parametri, e
la prior scelta per i parametri stessi. Nello stesso capitolo è stato incluso un
paragrafo che illustra gli algoritmi utilizzati per ottenere le stime a posteriori
dei parametri; in particolare si fa un richiamo generale sui metodi MCMC
spiegando nel dettaglio l’algoritmo utilizzato nel lavoro: il Gibbs sampler
con passi di Metropolis-Hastings. Questo genere di algoritmo è basato sul
campionamento di ciascuno dei parametri di interesse θi a partire dalle loro
distribuzioni full conditional, cioè dalle distribuzioni a posteriori condizionali
L(θi|θ−i) dati tutti gli altri parametri e le osservazioni. Pertanto nel capitolo
sono calcolate le full conditional dei due modelli proposti e vengono presentati
gli pseudocodici utili a capire gli algoritmi utilizzati.

Il Capitolo 3 presenta una tecnica diversa per ottenere le distribuzioni a
posteriori dei parametri, il cosiddetto metodo ABC (Approximate Bayesian
Computation). In questo capitolo vengono introdotti alcuni algoritmi alla
base di questo metodo, seguendo le trattazioni di Marjoram et al. (2003)
e Marin et al. (2011) sull’argomento. Infine vengono illustrati gli algoritmi
ABC utilizzati nele nostre applicazioni.

Il Capitolo 4 contiene tutte le applicazioni: si descrive il procedimento
per simulare i dati dalla distribuzione condizionale delle osservazioni quando
i parametri sono fissati e vengono descritte alcune simulazioni di prova e
successivamente è presente un’ampia descrizione dei data set utilizzati per
le inferenze, il primo proveniente dai dati relativi alla crescita dei pazienti e
il secondo simulato usando la procedura appena descritta. Poi è riportata
l’analisi bayesiana dei parametri nei due modelli, utilizzando sia i dati simu-
lati che quelli reali. L’ultima parte del Capitolo 4 riporta le stime a posteriori
dei parametri utilizzando gli stessi modelli ma con approccio ABC.

Questa tesi sviluppa alcuni aspetti dei modelli presentati nel Capitolo 4
della tesi di dottorato di Ana Paula Palacios [vedi Palacios (2012)]. In par-
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ticolare il modello di partenza era stato applicato a un problema di crescita
di una colonia batterica. In questo lavoro il modello di Palacios (2012) è
stato modificato ed esteso introducendo nuovi parametri, come quelli che
costituiscono la funzione di time-scaling ; la legge condizionale dei dati, con-
dizionatamente ai parametri, cos̀ı risulta diversa da quella di Palacios (2012)
per due aspetti: qui la funzione di time-scaling è incognita (ma è stata con-
siderata lineare a tratti) e i dati sono raggrupati (e quindi il nostro è un
modello gerarchico).
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Introduction

In this work a class of Bayesian models will be introduced to analyze non-
decreasing longitudinal data. Longitudinal data are a specific case of repeated
measurements, in which the variables are measured for each subject or sper-
imental unit in different subsequent times. In particular, we are interested
in studying non-decreasing longitudinal data, which are often named growth
curves.

In this thesis we will analyze data related to the growth of children af-
fected by acute lymphoblastic leukemia (ALL). This data was collected at
Dana Farber Cancer Institute (Boston, USA) and was sent to prof. Michael
Peter Wiper from prof. Maria Durbán, one of the authors of Durbán et al.
(2004). In one of the clinical trials carried out a total of 618 children were
treated between November 1987 and December 1995 with three different
central nervous system therapies: intrathecal therapy alone (no radiation),
intrathecal therapy with conventional cranial radiation, and intrathecal ther-
apy with twice daily radiation. Measurements on height and weight were
taken at diagnosis and approximately every 6 months thereafter. Previous
studies on the effects of cranial radiation on height suggested that radiation
contributed to decreased expected height, since cranial radiation has been
associated with the development of growth hormone deficiency. One of the
goals of this work is to verify this hypothesis with proper statistical analyses.

We will introduce two models, with a similar structure of the conditional
distribution of the data. Both models share some parameters and the way
of interpreting data, that are growth curves. The growth curve for each
patient is represented by a vector (Yt, t ∈ {t1, ..., tn}). We assume that Yt
is proportional, through a random scale factor J , to the integral

∫ G(t)

0
Us ds.

Here {Us, s ∈ (0, G(t))} is a birth-death process of rate λ, with state space
S = {0, 1, 2, ...k}, k ∈ N. G(t) is a non-decreasing continuous function,
which we will call time-scaling function.

In particular, the first model we considered assumes that the time-scaling
function is known, while in the second one the function is parametrized
and the parameters of which is composed of will be estimated by statistical
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analyses.
The conditional likelihood depends on various parameters: some of them

are latent variables, such as the number or frequency of jumps of the birth-
death process; on the other hand we have parameters of interest (on which
we are interested to make inference), like the scale factor J and the time-
scaling function. Both models will be extended to the case of grouped data,
to treat the specific medical problem. Following the Bayesian approach we
will assign a prior distribution for the vector of parameters, which includes
J , some scalar parameters which represent G(t) and some latent variables.
Inferences are built basing on the final distribution, namely the conditional
distribution of the parameters, given the observations.

To sum up, the aim of this thesis is to verify if this certain model is
reasonable for growth curve data and, in particular, for our data set related to
the growth of children affected by ALL. We computed the Bayesian estimate
of the parameters J and G(t), focusing on how parameters change within the
three groups in which the data set is divided. Before applying the proposed
models to the real data set, the robustness of the models has been tested
through an analysis driven with a simulated data set, built by sampling data
from the conditional likelihood of the data (fixing the parameters). After
this first step, in which our models were properly modified (to adapt to
this specific study case), we led to the analysis on real data, comparing
the posterior estimates of the parameters of every group. For both models
the posterior estimates were obtained by two methods: the classic Bayesian
approach and the ABC method (Approximate Bayesian Computation).

All the models were implemented using the R software (R Development
Core Team, 2009). We wrote the codes to run every Monte Carlo Markov
Chain simulation, that are simulation of trajectories from a Markovian chain,
aperiodic and irreducible, which limiting distribution is the posterior of the
selected model. Preparation of the data and output analysis were driven
using the mcmc package. The codes for ABC simulations were also written in
R.

In Chapter 1 we start with a brief theoretical review about Markov chains,
which are the starting point for modeling our growth curves. Afterwards we
introduce the birth-death process for the data and the moments of the pro-
cess are computed. In the end we present the topic of the random division of
an interval and we compute the probability density of the k-th order statis-
tic over a n-dimensional sample on a time interval, following the approach
described in David and Nagaraja (2003); the knowledge of this distribution
will be useful when we will define the conditional distribution of the data,
given the parameters, for the two Bayesian models.
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In Chapter 2 we describe in detail the two Bayesian models used through-
out this work; namely the conditional distribution of the data, given the pa-
rameters vector, and the prior distribution of the parameters. In the same
chapter there is a section which introduces the algorithm used to obtain the
posterior estimates of the parameters, in particular, there is a general re-
view of MCMC methods focusing on the algorithm used in this work: the
Metropolis-Hastings within Gibbs sampler. This type of algorithm is based
on sampling each parameter θi from its full conditional distribution, that is
the conditional posterior distribution L(θi|θ−i) given all the parameter and
the observations. Therefore, in the chapter we computed the full condition-
als of the two proposed models and wrote all the pseudocodes in order to
understand the algorithms used.

In Chapter 3 we introduce a different technique to get the posterior distri-
bution of the parameters, the so called ABC method (Approximate Bayesian
Computation). In this chapter we show some basic ABC algorithms, follow-
ing Marjoram et al. (2003) and Marin et al. (2011). Then we move to explain
the ABC approach regarding our study case, describing the algorithms used
in our applications.

Chapter 4 contains all the applications: we first describe the procedure to
simulate data from the conditional likelihood. Afterwards there is a detailed
description of the data sets used for inference purposes, the first one from
clinical data and the second simulated using the just mentioned algorithm.
In addition, the posterior estimates of the parameters are reported, for each
model using both simulated and real data. The last part of Chapter 4 con-
tains the posterior estimates of the same parameters using ABC approach
instead of the ordinary MCMC.

This thesis develops some aspects of the models presented in Chapter 4 of
the doctoral thesis by Ana Paula Palacios [see Palacios (2012)]. In particular,
the starting model was applied to a bacterial growth problem. In this work,
the model of Palacios (2012) has been modified and extended by introducing
new parameters, such as the ones which constitute the time-scaling function;
the conditional distribution of the data, given the parameters, is different
from the one described in Palacios (2012) for two aspects: first because the
time-scaling function is unknown (we assumed it piecewise linear), secondly,
in this case data are grouped (and so we are dealing with a hierarchical
model).
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Chapter 1

Probabilistic background

In this chapter we will introduce all the concepts needed to fully understand
the upcoming statistical analysis.

We will start with a review of Markov chains theory, focusing on the most
important properties that are exploited throughout the following chapters.
Then, we will introduce the growth curve model and compute its moment
generating function. After all we will lay the foundations for computing the
model likelihood by describing how to obtain the distribution of the k-th
order statistic over a sample of n random values on a finite interval.

1.1 Markov chains theory

Here we will describe what is a Markov chain. In particular, we will define
both discrete-time and continuous-time Markov chains and show their basic
properties.

Definition 1. A random process is a collection of random variables indexed
by some set T , taking values in some (countable) set S.

• T is the index set, usually time.

• Each i ∈ S is called state and S is called the state-space.

We classify random processes according to both the index set (discrete or con-
tinuous) and the state space (finite, countable or uncountable/continuous).

Definition 2. A random process is called a Markov process if, conditional
on the current state of the process, its future is independent of its past.
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More formally, {Xt} is Markovian if has the following property:

P(Xtn = in |Xtn−1 = in−1, ..., Xt1 = i1) = P(Xtn = in |Xtn−1 = in−1) (1.1)

for all finite sequences of times t1 < ... < tn ∈ T and of states i1, ..., in ∈ S.

Definition 3. A Markov chain Xt is said to be time-homogeneous if

P(Xs+t = j |Xs = i)

is independent of s. When this holds, putting s = 0 gives

P(Xs+t = j |Xs = i) = P(Xt = j |X0 = i).

1.1.1 Discrete-time Markov chains

If we assume that the process changes from one state i to another state
j only at fixed time epochs (n = 1, 2, 3, ...) we can say that {Xn}n≥0 is a
discrete-time Markov chain or briefly DTMC.

To define correctly a DTMC we need to introduce the initial distribution
ν. We say that ν = (νi, i ∈ S) is a measure on S if 0 ≤ νi ≤ ∞ for
all i ∈ S. If in addition the total mass

∑
i∈S νi equals 1, then we call ν a

distribution. Then ν defines a distribution, the distribution of X. We think
of X as modelling a random state which takes the value i with probability
νi.

We can write the probabilities of transition from one state to another

pij = P(Xn+1 = j |Xn = i), i, j ∈ S, ∀n ∈ N.

By collecting all the probabilities in a matrix we obtain the so called one-step
transition matrix P = (pij, i, j ∈ S), this matrix has the property that every
row (pij, j ∈ S) is a distribution.

We shall now formalize the rules for a Markov chain by a definition in
terms of the corresponding matrix P.

Definition 4. We say that {Xn}n≥0 is a discrete-time Markov chain with
initial distribution ν and transition matrix P if

1. X0 has distribution ν;

2. for n ≥ 0, conditional on Xn = i,Xn+1 has distribution (pij, j ∈ S)
and is independent of X0, ..., Xn−1

24



Class structure

It is sometimes possible to break a Markov chain into smaller pieces, each
of which is relatively easy to understand,and which together give an under-
standing of the whole. This is done by identifying the communicating classes
of the chain.

We say that i leads to j and write i→ j if

P(Xn = j |X0 = i, for some n ≥ 0) > 0.

We say i communicates with j and write i↔ j if both i→ j and j → i.
The relation ↔ satisfies the conditions for an equivalence relation on S,

and thus partitions the state space into communicating classes. A chain or
transition matrix P where the state space consists of a single communicating
class is called irreducible.

Classification of states

Let {Xn}n≥0 be a Markov chain with transition matrix P. We say that a
state i is emphrecurrent if

P(Xn = i for infinitely many n) = 1.

We say that i is transient if

P(Xn = i for infinitely many n) = 0.

Thus a recurrent state is one to which you keep coming back and a transient
state is one which you eventually leave for ever.

Recurrence and transience are class propertier, for instance if two states
are in the same communicating class then they are recurrent/transient to-
gether. We therefore speak of recurrent or transient classes.

Invariant distributions

Remember that a measure ν is any row vector (νi, i ∈ S) with non-negative
etries. We say ν is invariant (but also the terms stationary or equilibrium
are used) if

νP = ν.

The follow results explain the terms stationary and equilibrium.

Theorem 1. Let {Xn}n≥0 be Markov(ν,P) and suppose that ν is invariant
for P. Then {Xm+n}n≥0 is also Markov(ν,P).
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Theorem 2. Let S be finite and let p
(n)
ij be the probability to move from

state i to state j in n steps, namely p
(n)
ij = P(Xm+n = j |Xm = i). Suppose

for some i ∈ S that

p
(n)
ij → πj as n→∞ for all j ∈ S.

Then π = (πj, j ∈ S) is an invariant distribution.

1.1.2 Continuous-time Markov chains

In most of the real applications we cannot consider time as an equally spaced
grid of points, we have to leave the assumption that events happen only at
prescribed time points and deal with a continuous time.

It may be slightly more difficult to deal with continuous-time Markov
chains (CTMC) because there is no real equivalent to the one-step transition
matrix from which one can calculate all quantities of interest.

The study of CTMCs is based on the transition function. If we denote
by pij(t) the probability of a process starting in state i being in state j after
elapsed time t, then we call P (t) = (pij(t), i, j ∈ S, t > 0) the transition
function of that process. P (t) is difficult to write down in all but the simplest
of situations. However it is proved that there exist quantities qij, i, j ∈ S
satisfying

qij = p′ij(0
+) =

{
limt→0+

pij(t)

t
, i 6= j,

limt→0+
1−pii(t)

t
, i = j.

We call the matrix Q = (qij, i, j ∈ S) the q-matrix of the process and we
can interpret it as follows:

• for i 6= j, qij ∈ [0,∞) is the instantaneous rate the process moves from
state i to state j,

• qi = −qii ∈ [0,∞] is the rate at which the process leaves state i.

We also have that
∑

j 6=i qij ≤ qi.

When we formulate a model, it is Q that we can write down, so the
problem now is to recover P (·) from Q = P ′(0). If we have a q-matrix
Q, then the transition function P (t) must satisfy the so called Kolmogorov
backward equations

P ′(t) = QP (t), t > 0,
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and may or may not satisfy the forward Kolmogorov equations

P ′(t) = P (t)Q, t > 0,

with the initial condition P (0) = I.

There is always one such transition function, but there may also be in-
finitely many such functions, so Q does not necessarily describe the whole
process.

Interpreting the Q-matrix

Suppose X0 = i, then we have that the holding time Hi in state i is expo-
nentially distributed with parameter qi.

P(Hi ≤ t) = 1− e−qit, t ≥ 0.

That is why we are speaking about transition rates, the diagonal entry −qii
represents the expected time spent in state i before jumping to another state.

The process could jump into any other communicating state, the proba-
bility that the process jumps to state j is qij/qi.

Limiting behaviour

As with discrete-time chains, the class structure is important in determining
what tools are useful for analysing the long term behaviour of the process.
The notions of recurrence/transience and irreducibility are the same as in
the discrete case.

If the state space is irreducible and positve recurrent, the limiting distri-
bution is the unique (up to constant multiples) solution π = (πi, i ∈ S) such
that

πQ = 000,

where 000 is a vector of zeros. If
∑

i πi < ∞, then π can be normalised to
give a probability distribution which is the limiting distribution. (If π is not
summable then there is no proper limiting distribution.)

Poisson processes

Poisson processes are some of the simplest examples of continuous-time Markov
chains. Such proceses are the natural probabilistic models for any uncoordi-
nated stream of discrete events in continuous time.
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Given a right-continuous process {Xt}t≥0 we can obtain its jump times
J0, J1, ... and their respective holding times S1, S2, ... These quantities are
obtained by

J0 = 0, Jn+1 = inf{t ≥ Jn : Xt 6= XJn}

for n = 0, 1, ... where inf ∅ =∞, and, for n = 1, 2, ...,

Sn =

{
Jn − Jn−1 if Jn−1 <∞
∞ otherwise.

In other words, jump times mark the times in which the process jumps from
any state to another, while holding times are the length of intervals between
two subsequent jumps.

The discrete-time process {Yn}n≥0 given by Yn = XJn is called the jump
chain of {Xt}t≥0.

Now we can give a definition of the Poisson process in terms of jump
chain and holding times. A right-continuous process {Xt}t≥0 with values in
{0, 1, 2, ...} is a Poisson process of rate λ (0 < λ < ∞) if its holding times
S1, S2, ... are independent exponential random variables of parameter λ and
its jump chain is given by Yn = n. The associated q-matrix is given by

Q =


−λ λ

−λ λ
. . . . . .

 .

A simple way to construct a Poisson process of rate λ is to take a sequence
S1, S2, ... of independent exponential random variables of parameter λ, to set
J0 = 0, Jn = S1 + ...+ Sn and then set

Xn = n if Jn ≤ t < Jn+1.

Another important result is a property that we will exploit in the next chap-
ters: if {Xt}t≥0 is a Poisson process of rate λ, then it has stationary indepen-
dent increments, and, for each t, Xt has Poisson distribution of parameter
λt.

An increment over any interval (s, t] is Xt−Xs. We say that {Xt}t≥0 has
stationary increments if the distribution of Xs+t−Xs depends only on t ≥ 0.
We say that {Xt}t≥0 has independent increments if its increments over any
finite collection of disjoint invervals are independent.

28



Figure 1.1: Birth-death process.

1.2 A birth-death model for non decreasing

curves

Consider a birth-death process (BDP), {Ut : t ≥ 0}, that is a special case of
a continuous-time Markov process where the state transition are of only two
types: an increase of the state variable by one and a decrease of the same
amount (births and deaths).

Then if our process Ut is in the state i, after an exponential amount of
time it will move to one of the neighbouring states i→ i− 1 or i→ i+ 1.

Once the space state S = {0, 1, 2, ..., k} is defined we can uniquely deter-
mine the process giving the generator matrix, Q, and the initial distribution
of the process, ννν0.

This is the typical generator matrix for a BDP:

Q =



−λ λ 0 0 · · · 0
µ −(λ+ µ) λ 0 · · · 0
0 µ −(λ+ µ) λ · · · 0
...

...
...

...
...

...
0 · · · 0 µ −(λ+ µ) λ
0 0 · · · 0 −µ µ


which is a tri-diagonal matrix, where the parameters λ, µ > 0 are, respec-
tively, the insantaneous birth and death rates. This means that each time
the process enters in the state i the amount of time it spends before making
a transition to a neighbour state is a random variable, say T , exponentially
distributed with parameter ξ = λ + µ. Then the process enters in the state
i+ 1 with probability λ

(λ+µ)
or in the state i− 1 with probability µ

(λ+µ)
. Ob-

viously, in the edge states (0 and k), the only chain transition possible is to
the right/left neighbour.

The growth processes that we are interested to study are nearly always
represented with a continuous curve. Therefore, the most natural and simple
way to obtain a continuous (and non decreasing) curve from a piecewise
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Figure 1.2: One possible realization of the Ut process.

constant process is by doing the cumulative integral. We define a continuous
state process, {Vt : t ≥ 0} such that

Vt = J

∫ t

0

Usds , (1.2)

where J is a positive constant.
The stochastic process Vt defined in (1.2) is called subordinator and rep-

resents the basis for our growth curve model. The last step in modeling the
curve consists of a deterministic time change, we finally define our stochastic
growth process {Yt : t ≥ 0} as

Yt = VG(t) (1.3)

where Vt is as defined in (1.2) and G(t) is a continuous non decreasing func-
tion.

The time transformation is important to get a process similar to the
observed data, different kinds of growth curves present typical shapes that
differ on the context (e.g. bacteria growth, children growth, crack size tests,
pollutant concentration in a source of water etc).

It is not recommended to model specific sets of data with the raw process
Vt, because it presents a very generic shape. Then, especially when we are
facing at data presenting different growth phases, we need to apply the de-
terministic time change. This is done in order to improve the model, because
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Figure 1.3: One possible realization of the Vt process.

passing from Vt to Yt = VG(t) we will get a curve more similar to the function
G(t).

We will also see how the time change function should be chosen, because
there is a relationship between the function G(t) and the mean of the process.
Keeping in mind this we can ‘tune’ our model, by changing the G function,
to make it more accurate.

1.3 Moments of the growth process

In this section we compute the moments of the process {Yt}, introduced in
(1.3). As we use a deterministic time change, it is sufficient to compute the
expected trajectory of the subordinator, mV (t) = E[Vt] , and then to apply
the time transformation to it.
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The expected trajectory can be computed as

E[Vt] = E

[
J

∫ t

0

Us(ω)ds

]
=

∫
Ω

J

∫ t

0

Us(ω)ds dP (ω)

= J

∫ t

0

∫
Ω

Us(ω)ds dP (ω)

= J

∫ t

0

E[Us]ds , (1.4)

that is Fubini’s theorem to change the order of the integration.

Now we left only the computation of the expected trajectory of the process
Ut, we consider only the case in which Ut is in stationary state (irreducible
chain with all states positive recurrent).
In this case the Markov chain has a stationary distribution given by

Πi =

(
λ
µ

)i
∑k

h=0

(
λ
µ

)h for i = 0, ..., k. (1.5)

Then η := E[Ut] =
∑k

i=0 iΠi and therefore

E[Vt] = J

∫ t

0

E[Us]ds

= JE[Ut]t

= Jη t .

Finally, to obtain the mean trajectory we just have to change the time,

E[Yt] = Jη G(t) . (1.6)

For what concerns the higher order moments we can compute the Laplace
transform of the subordinator, L{f(Vt)} = f ∗V (s) = E[e−sVt ]. Then it is
straightforward to obtain f ∗Y (s) by applying the time change, and finally we
can compute the n-th moment of the process exploiting a property of the
Laplace transform:

E[Xn] = (−1)n
dnf ∗X(s)

dsn

∣∣∣
s=0

(1.7)
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where X is a random variable and f ∗X(s) its Laplace transform. The Laplace
transform can be computed as

f ∗V (s) = E[e−sVt ] = E[e−sJ
∫ t
0 Urdr]

=
k∑
i=0

Πi e
−sJ

∫ t
0 i dr

= Π0 + Π1 e
−sJ

∫ t
0 1 dr + ...+ Πk e

−sJ
∫ t
0 k dr

= Π0 + Π1 e
−sJt + Π2 e

−2sJt + ...+ Πk e
−ksJt (1.8)

where Πi are the stationary probabilities computed in (1.5).

To get the Laplace transform of {Yt} we just have to apply the already
mentioned time change to the transform of the subordinator {Vt}.

f ∗Y (s) = f ∗V (s)
∣∣∣
t=G(t)

= Π0 + Π1 e
−sJG(t) + Π2 e

−2sJG(t) + ...+ Πk e
−ksJG(t) .

(1.9)
Once we have obtained this expression we have everything we need to calcu-
late any moment of the process for every parameter choice (remember that
the probabilities of the stationary distribution depend on the birth/death
rates), just by applying the (1.7).

1.4 Random division of an interval

In this section we present a topic that will be useful later while computing the
likelihood function of the model. Then, we need to introduce the distribu-
tion of the k-th order statistic over a sample, following David and Nagaraja
(2003).

Suppose that n points are dropped at random on the unit interval (0,1). The
ordered distances of these points from the origin are denoted by u(i) (i =
1, 2, ..., n) and let wi = u(i) − u(i−1) (u(0) = 0) be the interval between
them. Then the random variables U(1), U(2), ..., U(n) are distributed as n
order statistics from a uniform U(0, 1) parent, that is, with joint pdf equal
to n! over the simplex 0 ≤ u(1) ≤ u(2) ≤ ... ≤ u(n) ≤ 1. Correspondingly, the
pdf of the wi is

f(w1, w2, ..., wn) = n! wi ≥ 0,
n∑
j=1

wj ≤ 1 . (1.10)

33



The distribution is completely symmetrical in the wi. Indeed, if we define

wn+1 = 1−
n∑
j=1

wj (1.11)

we have the (degenerate) joint probability density function (j = 1, 2, ..., n, n+
1)

f(w1, w2, ..., wn, wn+1) = n! wi ≥ 0,
n+1∑
j=1

wj = 1 (1.12)

which is still symmetrical in all wj. It follows that the joint distribution of
any k of the Wj (k = 1, 2, ..., n) is the same as that of the first k, and in
particular that the distribution of the sum of any k of the Wj is that of

U(k) = W1 +W2 + ...+Wk (1.13)

namely

fU(k)
(u) =

1

B(k, n+ 1− k)
uk−1(1− u)n−k 0 ≤ u ≤ 1 . (1.14)

The Wjs are commonly referred to as spacings.
The random division of the interval may in fact originate from a Poisson

process, such as our problem, with events occurring in some interval of time.
Then, the distribution of the k-th order statistic, U(k), in the interval [0, T ]
is a scaled beta distribution, B(k, n+ 1− k):

fU(k)
(u) =

1

B(k, n+ 1− k)

uk−1(T − u)n−k

T n
0 ≤ u ≤ T . (1.15)
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Chapter 2

Bayesian inference

In this chapter we will present two Bayesian models for the growth curve
process: a basic approach and a more sophisticated one. Then, we will
focus on the problem of estimating the model parameters from the data,
for this purpose, we are interested in computing the posterior distribution
of the parameters given the data. Since the direct computation will not be
possible, we will introduce a very popular computational method, the MCMC
algorithms, to obtain samples from the target distribution.

2.1 Preliminary assumptions

Assume that we observe the heights, q1 < ... < qn of a child at a sequence of
time points, say 0 < t1 < ... < tn.

In the model defined by (1.3), the likelihood function is analytically un-
available, but for the case of two state in the Markov process Ut, we can
find an explicit expression for the likelihood when conditioning on the initial
state and the number of jumps in successive time intervals. Therefore, from
now on, we shall consider just the process with two states, S = {0, 1}, and
with equal jump rate for birth and death (λ = µ).

Our simplified model can be written as:

Q =

(
−λ λ
λ −λ

)
S = {0, 1}

Yt = VG(t) = J

∫ G(t)

0

Us ds λ, J > 0 (2.1)

where Q is the generator matrix of the process Ut and S is the state space.
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First we have to transform the data from heights at time t to increments
of height during the (transformed) time interval.

y1 = q1

yi = qi − qi−1 , i = 2, ..., n

g1 = G(t1)

gi = G(ti)−G(ti−1) , i = 2, ..., n (2.2)

Then, for i = 1, ..., n, yi is J times the total (transformed) time spent in state
1 in interval i, so that we can write

yi = Jgi1, where gi = G(ti)−G(ti−1) = gi0 + gi1

gi is the size of the i-th transformed time interval and gi0 (gi1) is the to-
tal transformed time spent in state 0 (1) in interval i. This allows for the
computation of the conditional likelihood.

2.2 Model A, a basic approach

In this first model we suppose that G is a known function. Let the initial state
at the start of the first time interval be s1 and let mi represent the number
of jumps made by the process in the i-th time interval for i = 1, ..., n.

2.2.1 Conditional distribution of data

From now on we consider the increments of height (defined in (2.2)) as our
data, we are also considering the time intervals after the transformation made
by using G(t).

Then, the likelihood function is:

f(y|J, λ, s1,m1, . . . ,mn) =
1

Jn

n∏
i=1

f(gi1|J, λ, si = mod(si−1 +mi−1, 2),mi)

(2.3)
where mod(a, b) represents a modulo b and gi1 = yi/J is the time spent in
state 1 in interval i. The densities of the gi1s are conditionally independent
given the state at the start of interval i and the number of state transitions
in the interval.

Now consider two cases: when mi is odd and when mi is even. Consider
now the different time intervals in each state.
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• If mi is odd, the process spends half of the time intervals in state 1 and
the remainder in state 0 and therefore, the distribution of the sum of
(mi + 1)/2 intervals is equal to the distribution of the order statistic
U((mi+1)/2) as defined in (1.15), that is:

f(gi1|mi, λ) =
1

B(mi+1
2
, mi+1

2
)

g
(mi+1)/2−1
i1 g

(mi+1)/2−1
i0

gmii
(2.4)

• If mi is even, then the process spends mi/2 + 1 time intervals in the
state at the start of the interval and mi/2 in the other state. Therefore,
from (1.15),

f(gi1|λ, si,mi) =
1

B(mi
2

+ si,
mi
2

+ 1− si)
g
mi/2+si−1
i1 g

mi/2−si
i0

gmii
(2.5)

where gi0 = gi − gi1.

We can notice that the distribution of the time spent in the state 1 in the
i’th interval is a scaled Beta distribution (with range [0, gi]) with parameters
that depends on the latent variables mi and si.

Multiple observations

Here above we computed the likelihood function for a single observation, that
is one vector of increasing values y which represents the sampling of a growth
curve at fixed time epochs. When we are facing at multiple observations we
can easily extend our thoughts and consider the likelihood for the whole set
of curves.

Let Y be a m × n matrix, where m is the number of different growth
curves and n is the length of the time grid where the curves were evaluated.
We can arrange our data set in this fashion:

Y =

 y1
...

ym

 =

 y11 . . . y1n
...

...
ym1 . . . ymn

 ,

where each row of the matrix represents a single growth process.
We can consider the reailzations of the different processes all independent,

thus it is straightforward to write down the distribution of the whole data
set Y conditioning on the parameters, the only difference is that in this case
we have to take into account a greater number of mj’s and s1’s because of
the greater number of processes considered.
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f(Y|J, λ, s1,M) =
m∏
j=1

f(yj|J, λ, s1j,mj)

=
m∏
j=1

{
1

Jn

n∏
i=1

f(gji1|J, λ, s1ji,mji)

}

=
1

Jmn

∏
i,j

f(gji1|J, λ, s1ji,mji), (2.6)

where M is a matrix (same dimensionality as Y) which includes the number
of jumps for every interval and for every curve, namely {M}ji = mji =
number of jumps in the i’th interval of the j’th curve.

2.2.2 Choosing the prior distribution

We are assuming that the time scale function G(t) is known and fixed. This
function represents a sort of average behaviour of the growth process, if we
have specific information about the process (e.g. an opinion of an expert) we
can use a specific function. Otherwise G(t) can be estimated from the data
itself.

The other parameters that remain unknown are:

• J , jump size

• λ, jump rate

• s1, a binary value representing the initial state of the process

• m = (m1,m2, ...,mn)′, a n−dimensional vector containing the number
of jumps per time interval

It would be easier for computational reasons to assume that the parame-
ters are all independent from each other, to write down a prior distribution
that is the product of all the marginal priors. This is just partially applicable
in our study case, because we have to keep in mind that there is a strong
dependence between every mi. Apart from this correlation, we can assume
that the initial state and the jump size are independent from all the other
variables. Therefore, the prior distribution can be written in this form:

π(J, λ, s1,m) = π(J) π(s1)π(λ,m) = π(J) π(s1) π(m|λ)π(λ) (2.7)

• J ∼ Gamma(η, τ)
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• λ ∼ Gamma(α, β)

• s1 ∼ Be(p)

• π(m|λ) =
∏n

i=1 π(mi|λ) =
∏n

i=1 Poi(λgi)

where gi = G(ti)−G(ti−1).

The natural choice for the prior of s1 is a Bernoulli distribution, and in
particular we fixed p = 1/2 because we do not have any information about a
more likely starting point for our process.

The jump size J has to be positive, so we chose a Gamma distribution for its
prior. We can tune the parameters η and τ depending on our prior knowledge
about the jump size. In most of the cases we will choose a non informative
prior because the lack of information, this can be easily done by choosing
small values (less than the unit) both for η and τ .

As we have already explained, the mi are independent and identically dis-
tributed. They follow a Poisson distirbution with a mean value that is the
product of the jump rate and the length of the time interval (after the trans-
formation).

For what concerns λ, we chose a Gamma distribution because this kind of
prior is partially conjugated. This means that, as we will see, the conditional
posterior distribution of λ will also belong to the Gamma family. This fact
will speed up any simulation algorithm because we will only have to update
the parameters of the distribution instead of calculating a new one.

2.3 Model A.2, grouped data

As we will see later, in our practical case, we have to work with a grouped
data set. Every growth curve has a label indicating the group which the data
belongs to. In this section we will write down the likelihood function and
the prior in the case of a known time scale function. We will see how the
parameters shall be modified to introduce the variability between groups.

2.3.1 Conditional distribution of data

The main difference between this model and model A is that now we are
assuming three different jump sizes, one for each group. From now on we are
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assuming that the number of groups is K and, for simplicity, that in every
group we have N curves, made by n observation.

Our parameter set is (J, λ,M, s1), where

• J = (J1, ..., JK) is a K-dimensional vector containing the jump sizes for
each group.

• λ is the jump rate, equal for every group.

• M = {M1, ...,MK} is a set of K matrixes, each composed of N rows
and n columns. Every matrix Mj contains all the number of jumps
for every curve belonging to the j-th group. Every row of the matrix
represents a single curve, while every column represents a time interval.

• s1 = (s11, ..., s1K) is a collection of K vectors of length equal to N .
s1j contains the information about the initial state for every curve in
group j.

Assuming the independence both within the groups and between them it
is straightforward to compute the likelihood. It is just the product of the
likelihood of every growth curve data, paying attention to which group the
data belongs to.

f(Y|J, λ,M, s1) = f(Y1|J, λ,M, s1)...f(YK |J, λ,M, s1)

= f(Y1|J1, λ,M1, s11)...f(YK |JK , λ,MK , s1K)

=
K∏
j=1

f(Yj|Jj, λ,Mj, s1j) (2.8)

where Y = {Y1, ...,YK} is the whole dataset, divided into groups. The same
division was also made for the latent variables, the number of jumps and the
initial state. The three functions are the already shown likelihood in the case
of multiple observations (see (2.6)), with the respective parameters for each
group.

2.3.2 Choosing the prior distribution

We are doing the same assumptions, in terms of independence, as we did for
model A. The only difference is that in this case we have to manage a higher
number of parameters, thus the resulting prior distribution will have a higher
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dimensionality but in the specific will remain very similar to the one chosen
in model A.

π(J, λ,M, s1) = π(J)π(M|λ)π(λ)π(s1)

= π(λ)
K∏
j=1

π(Jj)π(Mj|λ)π(s1j). (2.9)

This means that a priori the parameters are independent even at group level,
for example the jump size for group i is independent not only from λ or s1 of
the same group, also from all the other jump sizes. We are keeping the same
distribution for the parameters, for the Jj-s is a Gamma, for Mj a product
of independent Poisson and for s1j a Bernoulli. In conclusion,

• Jj ∼ Gamma(ηj, τj), with j = 1, ..., K.

• λ ∼ Gamma(α, β).

• {Mj}pq|λ ∼ Poi(λgq), for all p = 1, .., N .

• (s1j)p ∼ Be(θ), for all p = 1, ..., N .

2.4 Model B, parametrizing G

In this section we propose another model. Up to now, we have always con-
sidered the G(t) function fixed, now we are assuming that the function has
unknown parameters. The original model now has been modified, by elimi-
nating the jump rate λ (fixing it equal to 1), and extended by parametrizing
the function G(t).

2.4.1 The choice of the time scale function

We have already discussed the strong relationship between the time scale
function G(t) and the mean of the process, in fact the growth process {Yt}
has a mean trajectory that is proportional to the G function.

Then choosing a good time scaling is important to make the model adapt
to the specific data, shaping the curves generated by the model as the avail-
able ones.

The data are sequences of observations over time, so we need to interpo-
late the growth curves for each individual and then taking the mean curve.
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Figure 2.1: An example of a time scale function.

Observing the three groups of data (growth curves of children treated
with different therapies) we realized that the growth trend is quite linear,
but it seems that there is a decreasing of the growth speed after the first ten
years of life (we will deeply analyze the data set in the last chapter).

So for a first approximation we chose to find a parametric curve as our
G(t), the simple shape of the curve is a broken line with one corner point,
that is the simplest way to represent the general trend of the children growth.

G(t) =

{
a+ bt, for t ≤ t∗

c+ dt, for t > t∗,
(2.10)

where the corner point is t∗ = c−a
b−d .

2.4.2 Conditional distribution of data

Given the parameters of the time scale function, the likelihood for the data
of this model is exactly the same as the one in the previous model.

f(y|J,G, s1,M1 = m1, . . . ,Mn = mn) =
1

Jn

n∏
i=1

f(gi1|J,G, si = mod(si−1+mi−1, 2),mi)

(2.11)
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With G we mean the knowledge of all the parameters that define the function,
namely (a, b, c, d, t∗). Also remember that gi1 = y1/J .

As in the previous model we have to distinguish two cases to explicit each
of the n independent terms in the productory.

• If mi is odd,

f(gi1|mi, G) =
1

B(mi+1
2
, mi+1

2
)

g
(mi+1)/2−1
i1 g

(mi+1)/2−1
i0

gmii
(2.12)

• If mi is even,

f(gi1|si,mi, G) =
1

B(mi
2

+ si,
mi
2

+ 1− si)
g
mi/2+si−1
i1 g

mi/2−si
i0

gmii
(2.13)

where gi0 = gi − gi1.

Remember that, as we did for model A (see (2.6)), we can easily extend the
likelihood in the case of multiple observations.

2.4.3 Choosing the prior distribution

To complete the Bayesian model we have to choose a suitable prior distribu-
tion for the set of parameters, that are

• J , jump size

• G, time scale function

• s1, a binary value representing the initial state of the process

• m = (m1,m2, ...,mn)′, a n-dimensional vector containing the number
of jumps per time interval

The time scale function is of this form (see figure 2.1)

G(t) =

{
a+ bt, for t ≤ t∗

c+ dt, for t > t∗

To avoid overparametrization issues we choose to take one of the five param-
eters (a, b, c, d, t∗) as known given the other four.

The time scale function is proportional to the mean of the growth pro-
cess, in our study case we are assuming a mean that increases linearly with
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two different speeds, the turning point is represented by t∗ while the slope
parameters (b, d) give us information about the two speeds. Therefore, these
three variables must be involved in the analysis.

We choose to put a prior on the set (a, b, d, t∗) and later compute
c = a+ (b− d)t∗ .

We are assuming that some parameters are independent from the others,
namely we consider two blocks that are independent from each other: (J, s1)
and (G,m).

Let’s consider the first block: we don’t have reasons to think that the
jump size J infects in any way the initial state s1 neither vice versa.

On the contrary we can not assume the independency within the second
block because the number of jumps in each interval is distributed as a Poisson
with a parameter that is the length of the transformed time interval. mi|G ∼
Poi(gi), gi = G(ti)−G(ti−1).
Since the transformation depends on the scale function we conclude that m
and G are dependent, thus we are setting the prior distribution in this way:

π(J, s1,m,G) = π(J, s1) π(m,G) = π(J) π(s1) π(m|G)π(G) (2.14)

• J ∼ Gamma(η, τ)

• s1 ∼ Be(p)

• π(m|G) =
∏n

i=1 π(mi|G) =
∏n

i=1 Poi(gi)

• π(G) = π(a) π(b) π(d)π(t∗) =
∏

j Gamma(αj, βj)

For the priors of s1 and J we are keeping the same assumptions as in model
A.

Thus, the natural choice for the prior of s1 is a Bernoulli distribution with
mean equal to 1/2 and for the jump size J is a Gamma distribution. We have
already discussed about the choice of the distribution and the possibility to
tune the parameters η and τ in order to add our prior knowledge about the
jump size to the model.

A similar choice was made for the four parameters that make up G, ev-
ery of them must be strictly positive because of their meaning. The two
slope parameters, b and d, since the time scale has to be non decreasing, as
the whole process. It is obvious that also the changing slope time t∗ has to
be positive. Finally we have that a > 0 because a is related to the mean of
the process at time zero (G(0) = a), thus it has no sense to assume that the
growth process starts with a negative mean value.
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2.5 Model B.2, grouped data

In this section we extend model B for grouped data, the idea is the same as
for model A.2 but fixing λ and parametrizing G(t).

2.5.1 Conditional distribution of data

We are assuming a data composed of K groups of N curves. Each curve
is sampled in an equally spaced time grid, thus every curve is made by n
observations.

In this case the parameter set is (J,G,M, s1), where

• J is the jump size, equal for each group.

• G = {G1, ..., GK} is the set of K time scale functions (all following
(2.10)), one for each group. Every function is parametrized in the
same way, Gj = (aj, bj, dj, tj

∗), where cj = aj + (bj − dj)tj∗.

• M = {M1, ...,MK} is the same set of K matrices defined in model A.2.

• s1 = (s11, ..., s1K) is a collection of K vectors of length equal to N .
s1j contains the information about the initial state for every curve in
group j.

We kept the same jump size for all groups because, as we will see in the
following examples, it is sufficient (and easier) to assume three different time
scale functions to study the variability of the data between groups.

We are assuming (as we did for model A.2) the independence of all these
parameters, both within the groups and between them. Then, we can obtain
the likelihood function as

f(Y|J,G,M, s1) = f(Y1|J,G,M, s1)...f(YK |J,G,M, s1)

= f(Y1|J,G1,M1, s11)...f(YK |J,GK ,MK , s1K)

=
K∏
j=1

f(Yj|J,Gj,Mj, s1j) (2.15)

where Y = {Y1, ...,YK} is the whole dataset, divided into groups. The same
division was also made for the latent variables, the number of jumps and the
initial state. The three functions are the already shown likelihood in the case
of multiple observations (see (2.6)), with the respective parameters for each
group.
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2.5.2 Choosing the prior distribution

In this case of grouped data we deal with multiple time scale functions. We
can keep all the assumptions did for model B and adding a higher dimensional
prior for G.

π(J,G,M, s1) = π(J)π(M|G)π(G)π(s1)

= π(J)
K∏
j=1

π(Mj|Gj)π(Gj)π(s1j). (2.16)

All the parameters are independent between groups. Within every group the
only dependency that we have to take into account is the one between Gj

and Mj.

• J ∼ Gamma(η, τ).

• π(Gj) = π(aj) π(bj)π(dj) π(tj
∗), all the four parameters are indepen-

dent from each other, for all j = 1, ..., K.

– aj ∼ Gamma(αa, βa).

– bj ∼ Gamma(αb, βb).

– dj ∼ Gamma(αd, βd).

– t∗j ∼ Gamma(αt∗ , βt∗).

• {Mj}pq|λ ∼ Poi(λgq), for all p = 1, .., N .

• (s1j)p ∼ Be(θ), for all p = 1, ..., N .

2.6 Markov chain Monte Carlo (MCMC) al-

gorithms

In this section we will explain why we needed to use MCMC methods and
how they work.

In particular, we will focus our attention to two algorithms: the Metropolis-
Hastings and the Gibbs sampler.
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2.6.1 Monte Carlo principle

Our principal aim from now on will be to get as more information as we can
of the parameters of the model (that in this section we will indicate with
θ) given a certain data set, say y. In other words, we are interested to the
random variable θ|y = y .

Here a simple idea can be helpful: anything we want to know about a
random variable can be learned by sampling many times from its density.
This is known as the Monte Carlo principle.

Unfortunately, in our study case we do not know the density of θ|y, in
most of the practical cases the posterior distribution is analytically unavail-
able because of a too high computational task.

The key mathematical tool that can avoid this problem is a Markov chain,
we will see how it is possible to generate Markov chains that have a given
target density, π(θ|y), as the Markov chain’s invariant density. The impor-
tant fact to keep in mind here is that the Monte Carlo principle applies even
when the samples are not independent, but form a Markov chain.

2.6.2 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm defines a set of ‘jumping rules’ that gen-
erate a Markov chain on the support of π(θ|y). At the start of iteration k,
we have θ(k−1) and we make the transition to θ(k) as follows:

1. sample θ∗ from a ‘proposal’ distribution Q(θ∗|θ(k−1))

2.

r ← π(θ∗|y)Q(θ∗|θ(k−1))

π(θ(k−1)|y)Q(θ(k−1)|θ∗)
(2.17)

3. α← min(r, 1)

4. sample U ∼ U(0, 1)

5. if U ≤ α then

6. θ(k) ← θ∗

7. else

8. θ(k) ← θ(k−1)

9. end if
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The quantity r is called acceptance ratio, it means that if r > 1 then the
algorithm makes the transition θ(k) ← θ∗ with probability 1; otherwise we
make the transition with probability r (remember that Pr(r ≤ U) = r if
U ∼ U(0, 1)).

The overall performance of the algorithm is strongly influenced by the
choice of the candidate density Q, that is the key to the algorithm.

Theoretical results prove that using this scheme we can generate a Markov
chain that has the posterior density π(θ|y) as its invariant distribution.

2.6.3 Gibbs sampling

When θ is high dimensional, as if often the case in many statistical models,
sampling from the posterior density π(θ|y) could be too hard even for the
Metropolis-Hastings algorithm, because finding a good joint proposal density
could be complicated.

In these cases we avoid the problem of the high dimensionality by sam-
pling from a series of inter-related, easier and lower-dimensional densities
instead that from the posterior density. We will see how to do this such
that the resulting sequence of sampled values {θk} is a Markov chain with
stationary distribution π(θ|y).

The idea behind the Gibbs sampler algorithm is that joint probability
densities can be completely characterized by their component conditional
densities. So, rather than sample from the target density, we will sample from
the lower-dimensional full conditional densities that together characterize the
joint density.

Consider partitioning the parameter vector θ into d blocks or sub-vectors,
θ = (θ1,θ2, ...,θd)

′. Then the Gibbs sampler works as follows, with k index-
ing iterations:

1. for k = 1 to K do

2. sample θ
(k+1)
1 from g1(θ1 |θ(k)

2 ,θ
(k)
3 , ...,θ

(k)
d ,y).

3. sample θ
(k+1)
2 from g2(θ2 |θ(k+1)

1 ,θ
(k)
3 , ...,θ

(k)
d ,y).

4. ...

5. sample θ
(k+1)
d from gd(θd |θ(k+1)

1 ,θ
(k+1)
2 , ...,θ

(k+1)
d−1 ,y).

6. θk+1 ← (θ
(k+1)
1 ,θ

(k+1)
2 , ...,θ

(k+1)
d )′

7. end for
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2.6.4 Combined use of both algorithms

Gibbs sampling can be considered a variant of the Metropolis-Hastings al-
gorithm in the sense that each component of θ is updated sequentially and
the implicit proposal distributions are simply the full conditional densities
π(θj|θ(k−1)

−j ,y). With this choice, from (2.17), r = 1 and each candidate
point is always accepted.

The Metropolis-Hastings algorithm is often used in conjunction with a
Gibbs sampler for those components of θ that have conditional distribution
that can be evaluated, but can not be sampled from directly, typically because
the distribution is known only up to a scale factor. This is exactly our study
case, in fact the Bayes theorem for continuous parameters says that

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

∝ f(y|θ)π(θ), (2.18)

the constant of proportionality is Ω =
[∫
f(y|θ)π(θ)dθ

]−1
= [mY (y)]−1,

that is the reciprocal of the marginal distribution of y.
Therefore, even if we don’t know the exact density (we know it up to a

scale factor Ω) we can use anyway the Metropolis-Hastings algorithm because
in the computation of the acceptance rate r we do not need to know Ω since
it will be simplified. From (2.17),

r =
π(θ∗|y)Q(θ∗|θ(k−1))

π(θ(k−1)|y)Q(θ(k−1)|θ∗)
=

��Ω f(y|θ∗)π(θ∗)Q(θ∗|θ(k−1))

��Ω f(y|θ(k−1))π(θ(k−1))Q(θ(k−1)|θ∗)

All that is required is that we have some approximating density Q from which
it is possible to sample, and then it will be able to evaluate the ratio r with
the sampled candidate point.

In the following sections we will make a large use of this technique, we
will use Gibbs sampler algorithms with Metropolis-Hastings steps in order
to sample from the full conditional distributions that are not analytically
obtainable.

2.7 Posterior distribution for model A

The original intent was to simulate from the posterior density using the Gibbs
sampler algorithm, that is basically sampling the parameters one at time
from their full conditional distribution and then update the values. Since we
do not have all the explicit forms of the conditional posterior distributions,
we are using some Metropolis-Hastings steps within the Gibbs sampler to
simulate from the unknown densities.
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2.7.1 Conditional posterior distributions

Jump rate λ

π(λ|y, J, s1,m) ∝ f(y|J, λ, s1,m)π(λ|J, s1,m)

∝ f(y|J, λ, s1,m)π(m|J, λ, s1)π(λ|J, s1)

∝ π(m|λ)π(λ)

We can get an explicit form for this density by making some computations:

π(m|λ)π(λ) =

{
n∏
i=1

Poi(λgi)

}
Gamma(α, β)

∝

{
n∏
i=1

(λgi)
mie−λgi

mi!

}
λαe−βλ

∝ λ(α+
∑
mi)e−(β+

∑
gi)λ

that is the kernel of a gamma distribution, thus

λ|y, J, s1,m ∼ Gamma(α + nm̄, β + nḡ)

where y = (y1, ..., yn)T , m = (m1, ...,mn)T with mean m̄ and finally, ḡ =
1
n

∑n
i=1 gi.

Initial state s1

P (s1 = 1|y, J, λ,m) =
f(y|J, λ, s1 = 1,m)P (s1 = 1)

f(y|J, λ, s1 = 1,m)P (s1 = 1) + f(y|J, λ, s1 = 0,m)P (s1 = 0)

=
f(y|J, λ, s1 = 1,m) p

f(y|J, λ, s1 = 1,m) p+ f(y|J, λ, s1 = 0,m) (1− p)

= p̂

Sampling

It is easy to sample from the full conditionals of λ and s1, because they are
known distributions (a Gamma and a Bernoulli), the only computational task
is to update the parameters but we can easily obtain independent samples.
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Number of jumps in the i’th interval mi

π(mi|y, J, λ, s1,m−i) ∝ f(y|J, λ, s1,m)π(mi|J, λ,m−i, s1)

∝ f(g·1|J, λ, s1,m)π(mi|λ)

∝
n∏
j=1

f(gj1|J, λ, sj,mj)π(mi|λ)

∝ f(gi1|J, λ, si,mi)π(mi|λ)
n∏

j=i+1

f(gj1|J, λ, sj,mj)

where g·1 = g11, ..., gn1.

We took away the first i terms of the productory because within them there’s
no dependency on mi . We can not do the same with the rest of the terms
because every sj with j > i depends on mi , remember the relationship
sk = mod(sk−1 +mk−1, 2).

Sampling

For the mi-s we need to use a Metropolis step. Given a current value mi, we
generate a candidate from a shifted Poisson (to force the value to be ≥ 1 not
as usual ≥ 0) with mean mi − 0.5. Therefore the proposal density is

P (m̃i|mi) =
e−(mi−0.5) (mi − 0.5)(m̃i−1)

(m̃i − 1)!
, m̃i ≥ 1 (2.19)

Then we compute the new set of initial states s̃i+1 = si + m̃i, s̃i+2 = s̃i+1 +
Mi, ...s̃n = s̃n−1 + mn−1. Now we can accept the proposed candidate with
probability equal to

ARm = min

{
1,
f(gi1|λ, si, m̃i)π(m̃i|λ)

f(gi1|λ, si,mi)π(mi|λ)

n∏
j=i+1

f(gj1|λ, s̃j,mj)

f(gj1|λ, sj,mj)

P (mi|m̃i)

P (m̃i|mi)

}
(2.20)

Jump size J

π(J |y, λ, s1,m) ∝ f(y|J, λ, s1,m)π(J |λ, s1,m)

∝ 1

Jn
π(J)

n∏
i=1

f(gi1 = yi/J |λ, J, si,mi)
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Note that the time spent in state 1 in the i’th interval must be less than the
total interval length, so that gi1 < gi for i = 1, ..., n hence

yi
J
< gi ⇒ J >

yi
gi

∀i = 1, ..., n (2.21)

defining J0 = maxi=1,...,n{yigi} we have that J > J0 .

Sampling

For the jump size we are assuming a gamma prior, J ∼ Gamma(η, τ).
Then, we can use a Metropolis step to generate a candidate value. Generate
log(J̃ − J0) ∼ Normal (log(J − J0), σ2) where σ2 can be adjusted to achieve
an acceptable acceptance rate. Now we accept the proposed candidate with
probability proportional to

ARJ = min

{
1,
π(J̃)

π(J)

Jn

J̃n

n∏
i=1

f(g̃ij|λ, si,mi)

f(gij|λ, si,mi)

(J̃ − J0)

(J − J0)

}
(2.22)

where g̃i1 = yi/J̃ and gi1 = yi/J for i = 1, ..., n.

2.8 The algorithm - model A

We can summarize the algorithm here as follows

• Fix the function G.

• Compute the transformed times g1 = G(t1), g2 = G(t2)−G(t1), ..., gn =
G(tn)−G(tn−1).

• Compute J0 = maxi{yi/gi}

• Set initial values J (0) > J0, λ(0), s
(0)
1 , m(0).

• For i = 1, ..., n compute g
(0)
i1 = yi/J

(0).

• h = 0. Repeat until convergence is reached:

– Generate λ(h+1) ∼ f
(
λ|y, J (h), s

(h)
1 ,m(h)

)
.

– Generate s
(h+1)
1 ∼ P

(
s1 = 1|y, J (h), λ(h+1),m(h)

)
.

– For i = 1, ..., n, generate m
(h+1)
i from

P (mi|y, J (h), λ(h+1), s
(h+1)
1 ,m

(h+1)
1 , ...,m

(h+1)
i−1 ,m

(h)
i+1, ...,m

(h)
n ).
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– Generate J (h+1) from f(J |y, λ(h+1), s
(h+1)
1 ,m(h+1)).

– For i = 1, ..., n compute g
(h+1)
i1 = yi/J

(h+1).

– h = h+ 1.

2.9 Posterior distribution for model B

Even in this case it is too difficult to compute directly the posterior distribu-
tion, using the Bayes theorem. Therefore, we are using the same tool to get
a random sample from the posterior distribution, a Gibbs sampler algorithm
with Metropolis Hastings steps.

2.9.1 Conditional posterior distributions

Initial state s1

P (s1 = 1|y, J,G,m) =
f(y|J,G, s1 = 1,m)P (s1 = 1)

f(y|J,G, s1 = 1,m)P (s1 = 1) + f(y|J,G, s1 = 0,m)P (s1 = 0)

=
f(y|J,G, s1 = 1,m) p

f(y|J,G, s1 = 1,m) p+ f(y|J,G, s1 = 0,m) (1− p)

= p̂

Sampling

As already mentioned, it is straightforward to simulate a random sample of
s1 from its full conditional distribution.

Number of jumps in the i’th interval - mi

π(mi|y, J,G, s1,m−i) ∝ f(y|J,G, s1,m)π(mi|J,G,m−i, s1)

∝ f(g·1|J,G, s1,m)π(mi|G)

∝
n∏
j=1

f(gj1|J,G, sj,mj)π(mi|G)

∝ f(gi1|J,G, si,mi)π(mi|G)
n∏

j=i+1

f(gj1|J,G, sj,mj)
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where g·1 = g11, ..., gn1.

We took away the first i terms of the productory because within them there’s
no dependency on mi . We can not do the same with the rest of the terms
because every sj with j > i depends on mi , remember the relationship
sk = mod(sk−1 +mk−1, 2).

Sampling

The simulation of the mi-s is exatcly the same as in the previous model,
that is a Metropolis Hastings method to simulate from the full conditional
obtained before. The proposal distribution for new mi

(k) is a shifted Poisson
(to force the value to be ≥ 1 not as usual ≥ 0) with mean mi − 0.5. Then
the proposal density is

P (m̃i|mi) =
e−(mi−0.5) (mi − 0.5)(m̃i−1)

(m̃i − 1)!
, m̃i ≥ 1 (2.23)

We accept every mi candidate with probability equal to

ARm = min

{
1,
P (mi|m̃i)

P (m̃i|mi)

f(gi1|G, si, m̃i)P (m̃i|G)

f(gi1|G, si,mi)P (mi|G)

n∏
j=i+1

f(gj1|G, s̃j,mj)

f(gj1|G, sj,mj)

}
(2.24)

where s̃j are the new initial states, since proposing a new candidate value
for the number of jumps in the i-th interval could change the following ini-
tial states: s̃i+1 = mod(s̃i + m̃i, 2), s̃i+2 = mod(s̃i+1 + mi+1, 2), ..., s̃n =
mod(s̃n−1 + m̃n−1, 2).

Time scale function parameters G

π(G|y, J,m, s1) ∝ f(y|J,G, s1,m)π(G|J,m, s1)

∝ f(y|J,G, s1,m)π(m|J,G, s1)π(G)

∝ f(g·1|J,G, s1,m)π(m|G)π(G)

∝ π(G)
n∏
i=1

f(gi1|J,G, si,mi)π(mi|G)

Note that mi|G ∼ Po(gi), where gi is G(ti)−G(ti−1).
If we focus on the single parameter, its full conditional is straightforward
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π(Gi|G−i,y, J,m, s1) ∝ f(y|G, J,m, s1)π(Gi|G−i, J,m, s1)

∝ f(g·1|G, J,m, s1)π(m|G, J, s1)π(Gi|G−i, J, s1)

∝ π(Gi)
n∏
j=1

f(gj1|G, J,mj, sj)π(mj|G)

with Gi we mean any of the four parameters that make up the function,
namely (a, b, d, t∗), while G−i is the set of the three remaining parameters.

Sampling

For what concerns the parameters of the function (a, b, d, t∗) we decided to
simulate them one at time with four consequential steps, the reason of this
choice is because by simulating the whole set of parameters some problems
of acceptance could arise, because it is more complicated to work in a four
dimensional space. Therefore, we simulate the parameters from their full con-
ditional densities one at time and at every step we update the G(t) function
with the eventually accepted parameted.

Since every parameter has to be strictly positive, we chose a proposal dis-
tribution that is a lognormal with mean equal to the previous sampled value
and an adjustable standard deviation in order to achieve a good acceptance
rate.
Given a current value Gi = γ, we generate a candidate G̃i ∼ logN (log γ, σ2),
thus the proposal density is

P (G̃i|Gi = γ) =
1

G̃i σ
√

2π
e−

(log G̃i−log γ)
2

2σ2 , G̃i > 0 (2.25)

After choosing the proposal distribution we have to compute the acceptance
rate for the parameters, but there is always the same constraint shown in the
previous model that has to be satisfied. Thus, right after generating a new
candidate we have to check if it satisfies the condition. If we put in evidence
the gi value (the only that depends on the parameters), we obtain the right
constraint:

g̃i >
yi
J
, ∀i (2.26)

where g̃i is G̃(ti)− G̃(ti−1)
Then, in conclusion, we have two acceptance/rejection steps for these pa-
rameters, one related to the constraint imposed by the model and the second
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due to the Metropolis step (here below we have its acceptance rate).

ARGi = min

{
1,
P (Gi|G̃i)

P (G̃i|Gi)

π(G̃i)

π(Gi)

n∏
j=1

f(gj1|G̃, J,mj, sj)π(mj|G̃)

f(gj1|G, J,mj, sj)π(mj|G)

}
(2.27)

where G is the current set of parameters, while G̃ is the updated set of
parameters (in practice we are changing only one of the four Gi at time).

Jump size J

π(J |y,G, s1,m) ∝ f(y|J,G, s1,m)π(J |G, s1,m)

∝ 1

Jn
π(J)

n∏
i=1

f(gi1 = yi/J |G, J, si,mi)

Sampling

The last parameter to be sampled is the jump size J . We follow the previous
algorithm procedure to sample from its full conditional distribution.

Given the current value J we generate J̃ from a lognormal distribution,
imposing the constraint, shown in (2.21), that J̃ > J0.
In other words we generate log(J̃ − J0) ∼ Normal (log(J − J0), σ2) where σ2

can be adjusted to achieve an acceptable acceptance rate. Therefore, the
proposal density function is

P (J̃ |J) =
1

(J̃ − J0)σ
√

2π
e−

(log J̃−log J)2

2σ2 , J̃ > J0. (2.28)

In conclusion, we accept the candidate J̃ with a probability equal to

ARJ = min

{
1,
π(J̃)

π(J)

Jn

J̃n
(J̃ − J0)

(J − J0)

n∏
i=1

f(g̃i1|G, si,mi)

f(gi1|G, si,mi)

}
(2.29)

where g̃i1 = yi/J̃ and gi1 = yi/J for i = 1, ..., n.

2.10 The algorithm - model B

• Set initial values for the time scale function G(0): a(0), b(0), d(0), t∗ (0).

• Compute c(0) = a(0) + (b(0) − d(0))t∗ (0).
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• Compute the transofmed times g
(0)
1 = G(0)(t1),

g
(0)
2 = G(0)(t2)−G(0)(t1), ..., g

(0)
n = G(0)(tn)−G(0)(tn−1).

• Compute J
(0)
0 = maxi{yi/g(0)

i }.

• Set initial values for the other parameters: J (0) > J
(0)
0 , s

(0)
1 ,m(0).

• For i = 1, ..., n compute g
(0)
i1 = yi/J0.

• h = 0. Repeat until convergence is reached:

– Generate s
(h+1)
1 ∼ P

(
s1 = 1|y, J (h),m(h),G(h)

)
.

– For i = 1, ..., n, generate m
(h+1)
i from

P (mi|y, J (h), s
(h+1)
1 ,m

(h+1)
1 , ...,m

(h+1)
i−1 ,m

(h)
i+1, ...,m

(h)
n ,G(h)).

– Generate G(h+1) by updating its parameters one at time:

∗ Generate a(h+1) from π
(
a|y, J (h), s

(h+1)
1 ,m(h+1), b(h), d(h), t∗ (h)

)
.

∗ Generate b(h+1) from π
(
b|y, J (h), s

(h+1)
1 ,m(h+1), a(h+1), d(h), t∗ (h)

)
.

∗ Generate d(h+1) from π
(
d|y, J (h), s

(h+1)
1 ,m(h+1), a(h+1), b(h+1), t∗ (h)

)
.

∗ Generate t∗ (h+1) from π
(
t∗|y, J (h), s

(h+1)
1 ,m(h+1), a(h+1), b(h+1), d(h+1)

)
.

∗ Compute c(h+1) = a(h+1) + (b(h+1) − d(h+1))t∗ (h+1).

∗ Set G(h+1) = (a(h+1), b(h+1), d(h+1), t∗ (h+1)).

– For i = 1, ..., n, update the transofmed times g
(h+1)
1 = G(h+1)(t1),

g
(h+1)
2 = G(h+1)(t2)−G(h+1)(t1), ..., g

(h+1)
n = G(h+1)(tn)−G(h+1)(tn−1).

– Generate J (h+1) from π
(
J |y, s(h+1)

1 ,m(h+1),G(h+1)
)
.

– For i = 1, ..., n, compute g
(h+1)
i1 = yi/J

(h+1).

– h = h+ 1.
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Chapter 3

Approximate Bayesian
Computation (ABC)

In this chapter we will have a look at the Bayesian inference from a different
point of view, when the likelihood function is not available, introducing the
so called approximate Bayesian computation (ABC) following Marjoram et
al. (2003) and Marin et al. (2011).

3.1 Introduction

Many stochastic simulation approaches for generating observations from a
posterior distribution depend on the knowledge of the likelihood function. In
complex probability models the likelihood function is either difficult to derive
analytically or computationally prohibitive to evaluate. However, in some of
these cases, it may be straightforward to simulate data from the likelihood
itself. ABC methods, also known as likelihood-free techniques, provide a
solution to those complex problems in which arise calculation problems to
obtain the likelihood.

Under the Bayesian point of view, we imagine data y generated from a
modelM determined by parameters θ, the prior density of which is denoted
by π(θ).

The posterior distribution of interest is π(θ|y), which is given by

π(θ|y) = f(y|θ)π(θ)/f(y),

where f(y) =
∫
f(y|θ)π(θ) dθ is the normalizing constant.

In most of the contexts it is impossible to get such posterior distributions,
and stochastic simulations are widely applied to generate observations from
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the target distribution. Perhaps the simplest apporach for this is the rejecton
method :

1. Generate θ from π(·).

2. Accept θ with probability h = f(y|θ); repeat until the required

number of samples is reached.

Following this scheme, we can get observations that follow the posterior
distribution π(θ|y), for details see Ripley (1982).

3.2 The ABC method

Rubin (1984) produced in his paper a description of the first ABC algorithm.
The original ABC is in fact a special case of a rejection method where the
parameter θ is generated from the prior π(θ) and the acceptance is condi-
tional on the corresponding simulation of a sample being ‘almost’ identical
to the (true) observed sample. We can summarize this first approach in the
following way:

1. Generate θ′ from the prior distribution π(·).

2. Generate z from the likelihood f(·|θ′).

3. if z = y

4. set θi = θ′.

5. Repeat until the required number of samples is reached.

The outcome resulting from this algorithm (θ1,θ2, ...,θN) is an iid sample
from the posterior distribution since

f(θi) ∝
∑
z∈D

π(θi)f(z|θi)1y(z) = π(θi)f(y|θi)

∝ π(θi|y),

where we are assuming that y take values in D (finite or countable set).
Pritchard et al. (1999) extend the above algorithm to the case of contin-

uous sample spaces, producing the first genuine ABC algorithm, defined as
follows

1. Generate θ′ from the prior distribution π(·).

2. Generate z from the likelihood f(·|θ′).
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3. If ρ{η(z), η(y)} ≤ ε

4. set θi = θ′.

5. Repeat until the required number of samples is reached.

where the parameters of the algorithm are

• η, a function on D defining a statistic which most often is not sufficient,

• ρ > 0, a distance on η(D),

• ε > 0, a tolerance level.

The likelihood-free algorithm above thus samples from the marginal in z of
the joint distribution

πε(θ, z|y) =
π(θ)f(z|θ)1Aε,y(z)∫

Aε,y×Θ
π(θ)f(z|θ) dz dθ

, (3.1)

where 1B(·) denotes the indicator function of the set B and

Aε,y = {z ∈ D | ρ{η(z), η(y)} ≤ ε}.

The basic idea behind ABC is that using a representative (enough) sum-
mary statistic η coupled with a small (enough) tolerance ε should produce a
good (enough) approximation to the posterior distribution, namely that

πε(θ|y) =

∫
πε(θ, z|y) dz ≈ π(θ|y).

3.3 MCMC-ABC

The succes of this approach depends on the fact that the underlying stochas-
tic model M, that is the conditional density f(·|θ), is easy to simulate. In
addition it is important that data at the proposal stage are located in high
posterior probability regions; however this is very unlikely when we are simu-
lating from a non informative prior distribution π(·). To make this algorithm
more efficient, Marjoram et al. (2003) introduce an MCMC-ABC algorithm
targeting the approximate posterior distribution πε of (3.1).

1. Use the standard ABC method to get a realization (θ(0), z(0)) from

the target distribution πε(θ, z|y).
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2. for k = 1 to N do

3. Generate θ′ from the Markov kernel q(·|θ(k−1)),

4. Generate z′ from the likelihood f(·|θ′),

5. Generate u from U(0, 1),

6. if u ≤ π(θ′)q(θ(k−1)|θ′)
π(θ(k−1))q(θ′|θ(k−1))

and ρ{η(z′), η(y)} ≤ ε

7. set (θ(k), z(k)) = (θ′, z′)

8. else

9. set (θ(k), z(k)) = (θ(k−1), z(k−1)),

10. end for

The acceptance probability used in this algorithm does not involve the
calculation of the likelihood and thus satisfies ABC requirements. It also pro-
duces an MCMC algorithm which exactly targets πε(θ, z|y) as its stationary
distribution; for the complete proof, see Marjoram et al. (2003).

3.4 Calibration of ABC

As noted before, the ABC approximation depends on tuning parameters (the
summary statistic η, the tolerance level ε and the distance ρ) that have to
be chosen prior to running the algorithm.

The tolerance ε is somewhat the easiest aspect of this calibration issue in
that, when ε goes to zero, the ABC algorithm becomes exact and gives us
samples from the real posterior distribution,

πε(θ, z|y)→ π(θ|y) when ε→ 0.

As noted above, the choice of the tolerance level ε is mostly a matter of
computational power: smaller ε’s are associated with higher computational
costs and the standard practice is to select ε as a small percentile of the
simulated distances ρ{η(z), η(y)}.

Several authors have considered the fundamental difficulty associated
with the choice of the summary statistic η(y), which one would like to con-
sider as a quasi-sufficient statistic. Unfortunately for most real problems it is
impossible to find sufficient statistics. Furthermore, the summary statistics
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of interest are usually determined by the problem at hand and chosen by the
experimenters in the field.

Many simulation experiments were done comparing ABC-MCMC and
the original ABC algorithm, for details see McKinley et al. (2009). The
authors have also tested strategies to select the tolerance level, and to choose
the distance ρ and the summary statistics. The conclusions are not very
surprising, in that

1. repeating simulations of the data points given one simulated parame-
ter does not seem to contribute to an improved approximation of the
posterior by the ABC sample,

2. the tolerance level does not seem to have a strong influence,

3. the choice of the distance, of the summary statistics and of the cal-
ibration factors are paramount to the success of the approximation,
and

4. ABC-MCMC outperforms ABC.

3.5 ABC and model choice

Model choice is one particular aspect of Bayesian analysis that involves com-
putational complexity, if only because several models are considered simulta-
neously. In addition to the parameters of each model, the inference consid-
ers the model index M, which is associated with its own prior distribution
π(M = m), (m = 1, ...,M) as well as a prior distribution on the parameters
conditional on the value m of the model index, πm(θm), defined on the pa-
rameter space Θm. The choice between these models is then driven by the
posterior distribution ofM, a challenging computational target where ABC
brings a straightforward solution. Indeed, onceM is incorporated within the
parameters, the ABC approximation to the posterior follows from the same
principles as regular ABC, as shown by the following pseudo-code, where
η(z) = (η1(z), ..., ηM(z)) is the concatenation of the summary statistics used
for all models (with elimination of duplicates).

1. for i = 1 to N do

2. repeat

3. Generate m from the prior π(M = m)
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4. Generate θm from the prior πm(θm)

5. Generate z from the model fm(z|θm)

6. until ρ{η(z), η(y)} < ε

7. Set m(i) = m and θ(i) = θm

8. end for

The ABC estimate of the posterior probability π(M = m|y) is then the
acceptance frequency from model m, namely

1

N

N∑
i=1

1m(i)=m .

This also corresponds to the proportion of simulated datasets that are closer
to the data y than the tolerance ε.

3.6 Applications

In this section we apply ABC techniques to our specific medical problem.
We will use both MCMC-ABC and ABC algorithms.

3.6.1 ABC for model A

To set up an ABC algorithm we have to choose the prior distribution for the
parameters and the tuning parameters ρ, η, ε. We are using the same prior
distribution as in the Gibbs sampler for model A, thus

π(J, λ, s1,m) = π(J) π(s1) π(λ,m) = π(J) π(s1) π(m|λ) π(λ)

• J ∼ Gamma(η, τ)

• λ ∼ Gamma(α, β)

• s1 ∼ Be(p)

• π(m|λ) =
∏n

i=1 π(mi|λ) =
∏n

i=1 Poi(λgi)

where gi = G(ti)−G(ti−1).

The other choice that we have to do before running the ABC is that of
the summary statistic, the distance and the tolerance level. We decided to
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fix the tolerance a posteriori, in other words we first run the simulation for
N values and then we compute the distance and keep the values that have
a distance from the real data less than the 5th percentile. Namely ε = ρ0.05,
where ρ0.05 is the empirical 5th percentile. The distance ρ is the sum of
square distances between the values, therefore the summary statistic is just
the value itself.

To summarize we fixed:

• ε = ρ0.05,

• η(y) = y,

• ρ(η(y), η(z)) = ρ(y, z) =
∑n

i=1(yi − zi)2.

Then, in this specific case, the algorithm becomes

1. for k = 1 to N do

2. Generate J (k) from a Gamma(η, τ).

3. Generate λ(k) from a Gamma(α, β).

4. Generate s
(k)
1 from a Bernoulli(p).

5. Generate m
(k)
i from a Poisson(gi), for every i = 1, ..., n.

6. Generate z(k) from f(·|J (k), λ(k), s
(k)
1 ,m(k)).

7. Compute ρ(k) =
∑n

i=1(y
(k)
i − z

(k)
i )2.

8. end for

9. Set ε as the 5th percentile of ρ(k).

10. Select only k̂-s that satisfy: ρ(k̂) ≤ ε.

11. And we get the sample J (k̂) that is an approximation of a random

sample from π(J |y).

This approach could give us values of J very far from the ‘real’ value
because we are sampling from an arbitrary non informative prior, then it
may be hard to explore the whole state space unless we choose a very small
tolerance level, but in that case will arise computational problems.
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3.6.2 MCMC-ABC for model A

For the motivations mentioned before, we decided to improve the approach
of the simple ABC by including a Metropolis step.

This approach is very similar, the only difference is that we sample from a
proposal density (instead that from the prior) and we add an acceptance step
as in the usual Metropolis algorithm, therefore the output will be a Markov
chain because there is dependency between the samples.

In this situation we have to fix the proposal density to generate new sam-
ples of the parameters, we decided to keep using the same proposal density
used for J in the previous algorithms, that is a lognormal density with mean
equal to the previous value J (k−1) with the usual constraint that J > J0. In
this case we must fix the tolerance ε a priori, and then we decided to use the
same as in the ordinary ABC (also we kept the same distance and summary
statistic) for sake of simplicity. The scheme of this approach is:

1. Fix the initial values J (0), s
(0)
1 ,m(0).

2. for k = 1 to N do

3. Generate s
(k)
1 from a Bernoulli(p).

4. Generate m
(k)
i from a Poisson(gi), for every i = 1, ..., n.

5. Generate J̃ from the proposal density q(·|J (k−1)).

6. Generate z(k) from the lilkelihood f(·|J̃ , s(k)
1 ,m(k)).

7. Generate u from U(0, 1).

8. Compute ARJ = π(J̃)q(J(k−1)|J̃)

π(J(k−1))q(J̃ |J(k−1))
.

9. if u ≤ ARJ and ρ(z(k),y) ≤ ε

10. set J (k) = J̃

11. else

12. set J (k) = J (k−1)

13. end for
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There is a trade off between the precision of the method and compu-
tational cost: in fact the standard ABC involves less calculations than the
MCMC-ABC method, but it may require more time to run because without
the MC part the normal ABC approach will propose values from the prior
distribution, in some cases the high density region of the posterior distribu-
tion is far away from the one of the prior, thus it will take a lot of time to
get an acceptable number of samples sufficiently ‘close’ to the real data in
terms of the distance ρ.

3.6.3 ABC for model B

As we did for model A, to apply approximate bayesian computation we need
to fix the prior distribution for the parameters and the tuning parameters. In
this case we took the prior already used for traditional bayesian computations
(the Gibbs sampler algorithm for model B) and we kept the same ABC tuning
parameters that we used with model A.

π(J, s1,m,G) = π(J, s1) π(m,G) = π(J) π(s1) π(m|G) π(G)

• J ∼ Gamma(η, τ)

• s1 ∼ Be(p)

• π(m|G) =
∏n

i=1 π(mi|G) =
∏n

i=1 Poi(gi)

• π(G) = π(a) π(b) π(d) π(t∗) =
∏

j Gamma(αj, βj)

With tuning parameters namely

• ε = ρ0.05,

• η(y) = y,

• ρ(η(y), η(z)) = ρ(y, z) =
∑n

i=1(yi − zi)2.

Then the algorithm is straightforward,

1. for k = 1 to N do

2. Generate J (k) from a Gamma(η, τ).

3. Generate a(k) from a Gamma(α1, β1).

4. Generate b(k) from a Gamma(α2, β2).
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5. Generate d(k) from a Gamma(α3, β3).

6. Generate t∗(k) from a Gamma(α4, β4).

7. Generate s
(k)
1 from a Bernoulli(p).

8. Generate m
(k)
i from a Poisson(gi), for every i = 1, ..., n.

9. Generate z(k) from f(·|J (k),G(k) = (a(k), b(k), d(k), t∗(k)), s
(k)
1 ,m(k)).

10. Compute ρ(k) =
∑n

i=1(y
(k)
i − z

(k)
i )2.

11. end for

12. Set ε as the 5th percentile of ρ(k).

13. Select only k̂-s that satisfy: ρ(k̂) ≤ ε.

14. And we get the sample (J (k̂), a(k̂), b(k̂), d(k̂), t∗(k̂)) that is an approximation

of a random sample from π(J, a, b, d, t∗|y).

3.6.4 Model selection with ABC

Here we consider a wider range of models, in fact using approximate bayesian
computation we can work with all the models of which we do not know the
likelihood function but we are able to simulate data from them. In particular
we are interested in finding the optimal model in terms of number of states
{0, 1, ..., k}.

We are considering five different models in terms of state space S, every
different model has S = {0, ..., k}, where k = 1, ..., 5. For every model we
consider the function G(t) fixed after the LS estimation. In this case we have
to put a prior distribution not only on the parameter set (J,m, s1), but we
shall add the prior distribution of the model index π(M). We kept using the
same prior as in the previous examples for the parameters. For what concerns
the prior ofM, since we do not have any preferred model we decided to take
as prior a discrete uniform over the set of the five models just mentioned.

We are using the same tuning parameters as in the previous algorithms,
namely

• ε = ρ0.05, the tolerance is fixed as the 5th percentile of the distance.

• η(y) = y.

• ρ(η(y), η(z)) = ρ(y, z) =
∑n

i=1(yi − zi)2.
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The model selection algorithm includes three simulation steps: first we sam-
ple the index of the model from which we are going to simulate from, then
there is the sampling of the parameters of that specific model (in our case it is
straightforward because all the involved models share the same parameters,
that are the jump size J , the initial state s1 and the number of jumps in each
interval mi), after that there is the most important phase, sample data from
the selected model with the sampled parameters. After these three simula-
tion steps we have to choose from the whole sampled sets the ones ‘closer’ to
the real data in terms of distance ρ, to do that we are evaluating the distance
for each sampled data, ordering the data in terms of increasing distance and
taking only the first 5% of the data.

1. for k = 1 to N do

2. Generate the model index q(k) from a discrete uniform.

3. Generate J (k), s
(k)
1 ,m(k) from π(·).

4. Generate z(k) from the q(k)-th model fixing (J, s1,m) = (J (k), s
(k)
1 ,m(k)).

5. Compute ρ(k) =
∑n

i=1(y
(k)
i − z

(k)
i )2.

6. end for

7. Set ε as the 5th percentile of ρ(k).

8. Select only k̂-s that satisfy: ρ(k̂) ≤ ε.

9. Now we focus our attention to q(k̂) that is an approximation of

the posterior distribution of the models π(M = q|y).

The estimate of the posterior probability is then the acceptance frequency
of model q.
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Chapter 4

Examples and applications

In this chapter we will see some applications of the models introduced up to
now. At first we will explain in detail two different procedures to simulate
data from their conditional likelihood. After that we will describe the two
data sets used throughout all this chapter for inference purposes: one is a
real data set, while the other is a simulated one.

Our applications are basically divided into three areas: the first two con-
sists of Bayesian analysis through the standard MCMC algorithms described
in Chapter 2, applied to both the simulated and the real data set. In the last
part we will use approximate Bayesian computation applied to the simulated
data set, to compute Bayesian inference in order to compare results with the
traditional MCMC approach.

4.1 Simulating data from the model

In this section we will explain in detail how to simulate growth curve data
{Yt}. We need to generate growth curve data, from the conditional distribu-
tion (2.11), for two reasons: first we can see how the output curve changes
when we modify some parameters in (2.11); secondly because we will need
simulated data sets to test the algorithms introduced in the previous chap-
ters.

There are two different ways of carrying out the simulation of a curve,
the first is more intuitive, while the second is more computationally efficient
but less flexible because it is applicable only in the simple model described
by (2.1).

We will make a comparison between the different simulated data sets, in
order to have a general idea of how changing the parameters in (2.11) affects
the generated data.
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4.1.1 Simulation I

Here we start from the definition of the process {Yt}, introduced in (1.3), in
order to get a procedure for simulating this kind of processes.

Remember that Yt = VG(t) = J
∫ G(t)

0
Us ds, where {Us} is a birth-death

process with equal birth and death rates λ and state space {0, 1, 2, ..., k}.
Then we know that the time between two jumps is exponentially distributed
with parameter λ and, since birth and death rates are the same, the proba-
bility to jump forward is the same of jumping backward. Therefore, since we
assume that G(t) is known, we can just sample a realization from the {Us}
process and then compute the cumulative integral, after fixing J , to get the
trajectory of the target process {Yt}.

It is straightforward to get a realization of {Us}: it is a step function
so that we only need to know the initial state, the times when the process
jumps from one state to another and the direction of the jump.

We can summarize the procedure as follows:

1. Fix the function G(t), jump rate λ, number of states k and jump

size J.

2. Sample the initial state s1 from a discrete uniform distribution

over {0, 1, 2, ..., k}, that means that P(s1 = i) = 1/k i = 0, 1, 2, ..., k.

3. Set J0 = 0 and U0 = s1.

4. Compute the time of the jumps Ji in a window of time [0, Tmax].

• while Ji < Tmax

• Sample a random time Ti ∼ Exp(λ).

• Define Ji+1 = Ji + Ti.

5. For every jump, draw a random variable to select the direction

of the jump:

• if UJi = 0 then D = 1.

• if UJi = k then D = −1 .

• else D = ±1 with probability 1/2.

• Define UJi+1
= UJi +D.

6. Ut is defined for every t ∈ [0, Tmax] as the step process starting

with a value equal to s1 and changing state every Ji as just

defined.
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7. Compute Yt =
∫ G(t)

0
Us ds.

In real applications we do not have continuous growth curves, since time
is always discretized in some way. However, using this the first type of
simulation we obtain the whole process, that can be easily evaluated at every
time to get an array of values if requested.

4.1.2 Simulation II

The second method to sample from (2.11) concerns only the two state model
S = {0, 1}, that is model A introduced in the previous chapter. For this
model we are able to compute the likelihood function given all the parame-
ters; therefore here we are using that likelihood to get random realizations
of Yt.

We start fixing the time interval [0, Tmax]; if we define

Zt = {# of jumps at time t ≥ 0},

we have that the process {Zt}t≥0 is a Poisson process of rate λ, because the
holding times of the process are exponentially distributed with parameter λ.

Exploiting the transition probability definition we can obtain the distri-
bution of mi|λ,G(t), where mi = ZG(ti) − ZG(ti−1) represents the number of
jumps inside the (transformed) i-th interval. All the increments are indepen-
dent and for each t, mi ∼ Poi(λ(G(ti)−G(ti−1)) ). From the second chapter
(see (2.3)) we know the likelihood function of y, that is the vector of the
increments of heights. Then, if we fix all the parameters we can generate a
sample from its conditional distribution. To do that we need to previously
get a sample of the mis, but it is straightforward once we know that they
follow a Poisson distribution.

This is the scheme for the second method:

• Fix the function G(t), jump rate λ, and jump size J.

• Choose the time grid {ti}i=1,...,n where to evaluate the process

{Yt}.

• Compute gi = G(ti)−G(ti−1) for all i = 1, ..., n (G(t0) = 0).

• Sample the initial state s1 from a Bernoulli(1/2).

• For i = 1, ..., n:

– sample mi from a Poisson(λgi)
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– Sample gi1 from the conditional likelihood.

– Compute yi = Jgi1

• Then define Yti =
∑

j≤i yj for i = 1, ..., n.

4.1.3 Simulated data sets from the conditional density
(2.11)

Now that we are able to simulate growth curves from the model we will focus
our attention to see how the parameters (jump rate λ, jump size J) and the
state space S influence the output curve. We are using simulation I.

In order to better understand the role of every single parameter we de-
cided to fix all of them (and the time scale function) but one and see how
the output curves change with every single parameter. In the following plots
we will see what happens when the jump size, space state and jump rate are
changing while the other parameters remain fixed.

We show realizations of from the conditional likelihood with different pa-
rameter values. Figure 4.1(d) shows several replications of the real children
growth data, while the other three plots (a)-(b)-(c) show several realizations
of the same process, changing one parameter at time. In all of these simula-
tions the time scale function G(t) was estimated by least square error method
applied to the real data, and fixed.

We can see that when the jump size is lower the mean value of the curve
is lower (remember that J is the multiplier of the integral in the definition
given by (2.1). In addition the realizations show smoother trajectories with
less variability between them when the jump size is lower.

The situation is very similar if we fix J and let the state space vary, in
fact increasing the number of states we get more variability between curves
and a higher mean value.

The jump rate does not show any evident impact on the curves. We will
see later that this parameter can be omitted from the model.

4.2 Non-decreasing longitudinal data sets

By modeling growth curves we can work with different kinds of longitudinal
data with the only constraint that the curves must be non-decreasing. This
approach is useful in clinical studies (e.g. monitoring height, weight or other
increasing variables) but also in other fields such as reliability problems or
stress tests (think for instance to a degradation process of a machinery).
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(a) λ = 1, S = {0, 1} and
J varying (J = 1 in blue,
J = 2 red, J = 3 green)

(b) λ = 1, J = 1 and S = {0, ..., k}
where k = 1 (blue), k = 2 (red), k = 3
(green)

(c) J = 2, S = {0, 1} and λ = 1
(blue), λ = 25 (red)

(d) Real growth curves

Figure 4.1: Simulations of Yt with different parameters, compared to real
data.

During the following examples we will apply all the methods and algo-
rithms introduced in the previous chapters. To compare the results and test
the performances of our different ways of modeling we will use two data sets:
the first is a real data set taken from clinical data, while the second is a
simulated data set (created using simulation II ).
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4.2.1 Simulated data set: data1

This data set is a simulated one: we used simulation II to obtain a collection
of fifty curves made by twenty observations.

This data set will be useful to test the validity of our models, because to
simulate it we fixed all the non latent parameters: J, λ,G(t). Therefore, we
will have the possibility to see if our outputs (mainly posterior distributions)
are acceptable according to the ‘real’ parameters.

In the following table there are the values that we fixed to generate the
data set. The choice of the G parameters was made after a least square
estimation over the real data set data2).

Table 4.1: Parameters fixed for the simulation of data1

parameter value
J 2.50
λ 10.00
a 63.33
b 0.64
c 124.10
d 0.11
t∗ 114.61

4.2.2 Real data set: data2

The other data set is taken from the analysis of the data collected on chil-
dren suffering from acute lymphoblastic leukemia (ALL). ALL is a form of
leukemia, or cancer of the white blood cells characterized by excess lym-
phoblasts. Malignant, immature white blood cells continuously multiply and
are overproduced in the bone marrow. ALL causes damage and death by
crowding out normal cells in the bone marrow, and by spreading (infiltrat-
ing) to other organs. ALL is most common in childhood with a peak incidence
at 2–5 years of age, and another peak in old age.

All children affected from ALL need chemotherapy into the cerebrospinal
fluid (CSF) to kill any leukemia cells that might have spread to the brain
and spinal cord. This treatment, known as intrathecal chemotherapy, is given
through a lumbar puncture (spinal tap). It is usually given twice (more often
if the leukemia is high risk) during the first month and 4 to 6 times during
the next 1 or 2 months. It is then repeated less often during the rest of
consolidation and maintenance.

76



In one of the clinical trials carried out at Dana Farber Cancer Institute
(Boston, USA), a total of 618 children were treated between November 1987
and December 1995 with three different central nervous system therapies:
intrathecal therapy alone (no radiation), intrathecal therapy with conven-
tional cranial radiation, and intrathecal therapy with twice daily radiation.
Measurements on height were taken at diagnosis and approximately every
6 months thereafter. Previous studies on the effects of cranial radiation on
height suggested that radiation contributed to decreased expected height,
since cranial radiation has been associated with the development of growth
hormone deficiency.

The purpose of this analysis is to evaluate the long-term effects of treat-
ment on the children height and on the individual growth trajectories. In
Figure 4.2 are represented the growth curve of the patients, divided into
groups. Patient in the second and third group are treated with cranial radi-
ations, one aim of the study is to statistically confirm or not the relationship
between cranial radiation and decreased expected height that has been sug-
gested in previous medical studies.

In Figure 4.2 we can see the data divided into groups, the numerosity
of the groups is not the same. Even the length of the curves is not the
same for every patient. Another important fact that we have to manage is
the presence of some measurement errors, in fact there are some decreasing
curves that we are going to delete from the original data set to build the one
used for doing analysis.

To pass from clinical data to our data set we had to make a selection from
the curves, some of them are affected by measurement errors (for instance
there are some decreasing curves, that is impossible since we are facing with
children growth curves). Thus, we first ‘cleaned’ our data set in order to
delete curves affected from an evident error. After that we selected thirty
curves from each group, we took the curves with the highest number of
observations to better interpolate values from them. At the end of this step
for every curve we interpolated twenty equally spaced points over a time grid.

In conclusion we have our real data set (from now on we are referring to
it as data2), composed of three sets of thirty curves, each made by twenty
equally spaced observations (the same time grid was used for data1).

The main difference between data1 and data2 is that the first consists
in a single group of curves, thus it will be used to test the goodness of the
models introduced, while the second data (the real one) is divided into three
groups, it will be used to study the variability between groups.
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Figure 4.2: Height of the children over time for each treatment received.

4.3 Example 1: Bayesian inference for data1

In this example we will consider data1, our simulated data set with fixed
parameters. We will estimate posterior densities of the parameters, after
that we will be able to make a comparison between the Bayesian estimates
of the quantities of interest and the ‘real’ values fixed for the simulation.

4.3.1 Posterior estimates: model A

From the previous simulations, the jump rate λ seems to be not so relevant
for the estimation of the process: we might be facing with a non identifiable
parameter. Some preliminary trials show that the Markov chain of λ is not
converging, then we computed the moment generating function of the process
and look for the contribution of the jump rate parameter in the moments of
the growth process. The result is that the jump rate does not influence any
of the moments. Therefore we cannot obtain information about it from the
data.
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Moments of the process

Here we compute the moments of the process {Yt} in the case of a two states
model (0 and 1) with equal jump rate λ for both directions of jump. Following
the general formula obtained in (1.9) we can get the moment generating
function of this special case.

In the case of the two states model the Markov process has a stationary
distribution with same probabilities Π0 = Π1 = 1

2
because the jump rate is

the same. Thus the Laplace transform is

f ∗Y (s) =
1

2
+

1

2
e−sJG(t) (4.1)

The jump rate parameter is not present in the Laplace transform, so it
also will not contribute in any of the n-th derivatives, therefore λ does not
take part in any of the n-th moments of the process, so it is impossible to
estimate it and its real value is useless for other inference purposes.

From now on we will always fix the jump rate parameter, it will be ir-
relevant for us. We chose to use a non-informative prior for J , setting the
parameters of the Gamma as (1/2,1/2). For what concerns λ, we fixed it to
1 (then the prior on λ becomes a Dirac function centered on 1).

We ran the algorithm for model A for 60,000 iterations with a burn-in
period of 10,000 iterations, for a final sample size of 50,000. The results are
summarized in Figure 4.3.

We can see that the chain has converged, the autocorrelation between
consequent samples is low enough to consider the output as independent
realizations from the posterior density of J .

The credible interval for J (with probability 95%) is (2.341, 2.686). This
interval includes the real value of J that is 2.5.

4.3.2 Posterior estimates: model B

Here we will lead to an analysis similar to the one done before. The main
difference is that now we are not estimating a time scale function a priori, but
we will try to obtain independent realizations from its conditional posterior
distribution on the data.

We will run the algorithm described for model B, with our simulated data
set.

To test the validity of model B we will apply the Bayesian algorithm and
run the Gibbs sampler for a total of 60,000 iterations, with an initial burn-in
of 10,000 iterations, for a final sample size of 50,000.
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Figure 4.3: Posterior density (left panel), traceplot (central panel) and au-
tocorrelation function (right panel) of the jump size J .

We used a non-informative prior, as for model A. To do that we just fixed
all the Gamma parameters to 1/2. Therefore we have that J, a, b, d, t∗ ∼
Gamma(1/2, 1/2), all independent.

In this model we have five non latent variables as our output from the
simulation, the jump size J and the four parameters of G(t). To make a
good inference we have to keep in mind that not all these parameters are
independent, some of them are coupled and so we will not take the parameters
as they are but we will control some combination of them, to make inference
for some important quantities of interest such as the mean value of the curve.

Rewriting the formula for the mean value of the process in function of
the parameters of the model we obtain

E[Yt] =
J

2
G(t) =

{
Ja
2

+ Jb
2
t, for t ≤ t∗

Jc
2

+ Jd
2
t, for t > t∗,

(4.2)

therefore, since we will make inference on the mean value of the curve we
will rearrange our output parameters to get a sample composed by{(

Ja
2

)(k)
,
(
Jb
2

)(k)
,
(
Jd
2

)(k)
, t∗(k)

}
. Then, as we did before, we can obtain c by

the other four parameters (a, b, d, t∗) and compute also
(
Jc
2

)(k)
.

As we can see, in many cases the estimates are very different from the
values fixed. The reason is because in this case there is an overparametriza-
tion, in fact if we change our scope and reparametrize our model in function
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Table 4.2: In this table we compare the values of the parameters, on the left
side there are the ‘real’ values fixed to generate the data set while on the
right side there are their estimates. We took as estimate the MAP for each
parameter (mean a posteriori).

parameter value estimate
a 63.33 13.71
b 0.64 0.12
c 124.1 25.95
d 0.108 0.02
t∗ 114.61 114.26
J 2.5 10.02

of the mean value we can obtain a new set of parameters and use them to
estimate the mean process E[Yt].

Table 4.3: In this table we compare the values of the new parameters, ob-
tained by simply recombine the exsisting ones in function of the mean process.

parameter real value mean st.dev. 2.5% 50% 97.5%
(Ja)/2 79.16 71.50 14.34 57.86 70.06 88.51
(Jb)/2 0.80 0.60 0.180 0.50 0.58 1.41
(Jc)/2 155.12 128.75 18.65 109.21 126.38 161.35
(Jd)/2 0.13 0.10 0.03 0.08 0.09 0.19
t∗ 114.61 114.26 3.64 110.54 114.29 119.70

Now we can work with this new set of parameters and forget about the
previous one, without loss of information. In Table 4.3 we collected the
information about this new set of parameters, the ones that make up the
mean trajectory of the process. We can see that every credible interval
contains the real value and that there is a higher influence of the standard
deviation for the parameters related to the intercept rather than the slope.

In Figure 4.4 we compared the two mean trajectories, in black the real
one and in red the estimate one. To build the estimate growth curve we took
the posterior mean value for every parameter and then compute analitically
the curve, following (4.2). The estimate growth curve is underestimating the
real one, but we can notice that this underestimation is related to a bad
estimate of the intercept values. In fact the slopes seem to be very similar;
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even the position of the t∗ point (where there is a change in the growth speed)
is estimated well.

Figure 4.4: Mean growth curve of the growth process (black) and its estimate
(red).

4.4 Example 2: Bayesian inference for data2

In this section we will make inference with the real data set, modeled with
models A.2 and B.2. Both models that we will test are for grouped data set,
model A.2 includes three different jump sizes and a fixed time scale function;
model B.2 expects only one jump size, the same for each group, but three
different time scale functions.

Our goal is to see possible differences between the groups, in terms of
expected growth or growing trend. Medical studies suggest that the second
and third group present a slower growth phase, because of the radiation
treatment to which the patients were exposed to.
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4.4.1 Posterior estimates: model A.2

The previous example, with a simulated data set, helped us to better under-
stand the model, then we realized that the jump rate λ can be fixed without
loss of generality or equally we can run the algorithms without monitoring
that parameter.

Now we are trying to estimate the jump size J from the real data set,
that is divided into three groups.

We will use model A.2 in this section, setting the prior as the same for
example I but with the introduction of a 3-dimensional vector of jump sizes
J, for its prior we chose the product of three Gamma with parameters (1/2,
1/2). Choosing that prior we are assuming independence between the jump
sizes of every group keeping the non-informative choice that we kept using
in all the examples.

The target distribution now is the 3-dimensional posterior of J|Y that we
can obtain by marginalizing the posterior of the parameters, resulting from
the algorithm.

We ran a total of 110,000 iterations, after a burn-in of 10,000 iterations,
so that the total sample size is 100,000.

(a) Scatter matrix (b) Three dimensional scatter plot. In black is
plotted the line J1 = J2 = J3

Figure 4.5: Two and three dimensional scatter plots of the realizations from
the posterior of (J1, J2, J3) given the data
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Figure 4.6: 95% posterior credible intervals for J1, J2, J3

From the scatter plots and the credible intervals of the jump sizes (Fig-
ures 4.5 and 4.6) we can see that the three groups seem to have different
parameters, i.e. the posterior does not concentrate on the J1 = J2 = J3 line.
In fact, if we compare the credible intervals we can notice that the second
group presents a jump size that is lower than the other two. Therefore when
we analyze our data we have to distinguish between groups, because the jump
size Ji is related to the mean of the process. We can compute the mean of
the process (see (1.6)) and obtain

E[Yt] =
J

2
G(t).

Then, if we take the three posterior means for the three groups we can say
that the mean curve is changing passing from one group to another. In this
specific example we are assuming G(t) fixed, hence we will have different
mean curves but all with the same shape. The jump size affects only the
position of the growth curve. We will see in the next example that letting
the function vary it is possible to get more satisfying conclusions. Once we
fix the shape of the mean curve by fixing G(t) we can conclude that the mean
function seem to shift between groups.
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4.4.2 Posterior estimates: model B.2

Our data set is divided into three groups, therefore we will lead to a group
analysis, imposing three different functions, one Gi(t) for every group, and
then we will analize the respective posterior distribution of the parameters
(ai, bi, di, t

∗
i ), i = 1, 2, 3. In particular, we are interested to estimate the mean

growth curve, that is given by J
2
G(t).

In this case we are not assuming three different jump sizes but a shared
one, the variability between the groups is expressed by choosing three differ-
ent time scale functions.

Our aim is to see whether or not there is a difference between the three
groups in terms of expected growth, and also if there is such difference we
are interested to know the shape of the growth curve (different parameters
mean a different growth curve). We will run the algorithm for model B.2,
using the real data set (data (1)).

The algorithm is the same described in detail in the second chapter.
We will run a Gibbs sampler within Metropolis steps to generate from all
the full conditional distribution, in this case we have more parameters to
simulate because we are assuming three functions (then twelve parameters
instead of four) but the procedure is the same, there will be a slow down
in computational speed due to the bigger state space that we are exploring.
We chose to set the prior parameters as pure non-informative, setting all the
Gamma densities with parameters (1/2, 1/2).

We ran the algorithm for 200,000 iterations after a burn-in period of
50,000, the remaining chain was thinned with a thinning interval of length
15, so that the final sample size is 10,000. We needed more iterations be-
cause there are more parameters than in the other examples, therefore the
algorithm requires more time to reach convergence.

In Figure 4.7 we can see that our output Markov chain presents a good
mixing and the autocorrelation spectrum is good enough to make good in-
ference of the J parameter. The credible interval with probability 95% is
(1.78, 2.31).

In Figure 4.9 we can compare the posterior marginal densities of the
parameters for each group. Looking at the credible intervals of the intercept
a we can see that the first group (children treated without radiation) present
a higher value than the other two groups. This means that the growth process
of the patients of group one is shifted higher than the other two mean curves.

Another very important parameter is t∗, it is a time point where the time
scale function G changes its slope. Physically it can be read as the average
age in which the children slows its growth. From the credible intervals it
is clear that this age comes first in the two groups treated with radiation

85



Figure 4.7: Posterior density (left panel), traceplot (central panel) and auto-
correlation function (right panel) of the jump size J in the case of grouped
data.

Figure 4.8: Trace plots of the parameters of G, four for every group for a
total of twelve parameters.
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(a) Intercept - a (b) Slope of the first half of the curve
- b

(c) Slope of the second half of the
curve - d

(d) Changing slope point - t∗

Figure 4.9: Credible intervals (95%) for the parameters of G(t), compared
for the three groups of curves.

(it seems that the second group, standard radiation, has the earliest age of
changing growth).

For what concerns b and d, which represent the slope of the curve in
the two different growth phases, it is harder to read the output marginal
densities. In fact we can notice a higher variability in the last two groups,
and also lower values in terms of mean and median. It might be that, as
clinical studies already confirm, the growth speed is lower in the patients
treated with radiations rather than the other patients.

To have a graphical representation easy to understand, we plotted the
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Figure 4.10: Expected growth curves of the three groups compared.

three estimates of the mean growth curves in Figure 4.10. From this plot
we can infer that the mean curve of the first group (red curve, representing
the group treated without radiotherapy) is widely higher than the other two;
considering only the patients treated with radiotherapy we can conclude that
the treatment of the third group seems to be less invasive since the expected
growth is slowed less.

We can focus our attention also to the position of the t∗ point (dashed
vertical lines), patients treated with standard radiation start to decrease
their growth speed before the others, then it comes the turning point for the
‘blue’ group (hyperfractioned radiation) and last the t∗ for the group treated
without radiations.

4.5 Example 3: ABC methods

Here we present the ABC approach to the problem. We will start applying
the ABC and MCMC-ABC methods to the data used for example 1 (using
data1), in particular, we will use ABC with both models A and B and we
will use the MCMC-ABC approach with model A. Then we will be able
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to compare performances and results of standard Bayesian algorithms and
these ones, but we are also interested to see if there will be a significant
computational improvement by using the MCMC-ABC instead of the simple
ABC.

At the end of all these comparison we will go further and move where
the traditional Bayesian approach is not applicable, because we do not have
information about the likelihood of such models as in the multi-state case
(we have the likelihood in an explicit form only when we are considering
the two-state model). Considering different models we will use the ABC for
model selection purposes testing the model selection algorithm with the real
data set (data (1)).

4.5.1 ABC for model A

In this example we will use the same simulated data set as in example I so
we can compare the two outputs, the one resulting from the Gibbs sampler
and the one resulting from ABC computation. We will use both ABC and
MCMC-ABC approaches.

We are using the algorithm introduced in the previous chapter, fixing the
prior distribution in this way:

π(J,m, s1) = π(J)π(s1)
n∏
i=1

π(mi) = Gamma(1/2, 1/2)Be(1/2)
n∏
i=1

Poi(gi).

We chose those parameters to set a non-informative prior, because we do not
have further information about the parameters and we are not sure if they
have a physical meaning.

We also ran the algorithm for MCMC-ABC. The prior distribution is the
same as before, we have to fix the proposal density to generate new samples
of the parameters, we decided to keep using the same proposal density used
for J in the previous algorithms, that is a lognormal density with mean equal
to the previous value J (k−1) with the usual constraint that J > J0. In this
case we must fix the tolerance ε a priori, and then we decided to use the
same as in the ordinary ABC (also we kept the same distance and summary
statistic) for sake of simplicity.

We ran both algorithms for a total of 200,000 iterations, and selected ε
as the 5-th percentile of the simulated distances ρ{η(z, η(y))}. In this way
we have a total sample size of 10,000. for each algorithm.

In Figure 4.11 we can see three estimates of the posterior density of
J resulting from the three different approaches: the first one is the Gibbs
sampler algorithm while the other two are the ABC and the MCMC-ABC
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respectively. The data set was simulated and the ‘real’ value of the jump size
J was fixed to 2.5.

Figure 4.11: Posterior distribution of J , using three different algorithms:
MCMC (left panel), ABC (center panel) and MCMC-ABC (right panel).

The first approach is the only one that requires the knowledge of the
likelihood function, therefore it is the more accurate but it may be very
expensive in terms of computational costs, because at every Metropolis step
within the Gibbs sampler it is required to compute the likelihood ratio (to
obtain the acceptance rate). The other two ABC methods do not require
any likelihood function.

4.5.2 ABC for model B

The same computational approach was applied to model B, in this case we
simulated 250,000 samples of (J, a, b, d, t∗) and selected the first 5% of the
data in terms of distance. Our final sample of parameters is a collection of
12,500 realizations from the approximate posterior distribution.

The prior distribution of the parameters is:

π(J,G,M, s1) = π(J)π(M|G)π(G)π(s1)

= π(J)
K∏
j=1

π(Mj|Gj)π(Gj)π(s1j),
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where J, a, b, d, t∗ were distributed as four independent Gamma distributions
with parameters (1/2, 1/2), s1 ∼ Be(1/2) and mj|G were distributed, as
usual, as independent Poisson with mean gi = G(ti)−G(ti1).

As we did for standard MCMC algorithm with model B, we are inter-
ested to estimate the mean curve. Therefore, we recombined the parame-
ters in order to obtain the quantities of interest to compute E[Yt], namely
((Ja)/2, (Jb)/2, (Jc)/2, (Jd)/2, t∗); remember that c is not a variable but just
a function of the other parameters of the G curve: c = a+ (b− d)t∗.

In the following tables we summarize the marginal posterior distribution
of these parameters and we also compare these distributions with the results
obtained using the Gibbs sampler algorithm for model B.

Table 4.4: Comparison between real values and estimate values (posterior
means) obtained respectively with MCMC and ABC algorithms.

parameter real value mcmc-estimate abc-estimate
(Ja)/2 79.16 71.5 75.83
(Jb)/2 0.80 0.60 0.42
(Jc)/2 155.12 128.75 122.18
(Jd)/2 0.13 0.10 0.09
t∗ 114.61 114.26 110.11

Table 4.5: Credible intervals with probability 95% for the recombined pa-
rameters of model B.

parameter 2.5% 50% 97.5%
(Ja)/2 32.32 77.02 120.15
(Jb)/2 0.12 0.34 1.24
(Jc)/2 77.89 118.39 181.39
(Jd)/2 0.01 0.08 0.67
t∗ 108.07 109.99 111.94

We can state that ABC is a suitable method for estimating parameters
of this model, it reaches good results compared to the standard MCMC
algorithm. In terms of computational cost, ABC requires more iterations to
get sufficiently good estimates because all the parameters were sampled from
non-informative priors without a following acceptance/rejection step, as in
the ordinary Gibbs sampler.
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(a) (Ja)/2 (b) (Jb)/2

(c) (Jc)/2 (d) (Jd)/2

Figure 4.12: Marginal posterior distributions resulting from ABC.

4.5.3 Model selection with ABC

Here we will see the problem from a different point of view. We will work on
the real data set (data2) and we wonder whether the two state model is the
‘right’ one; previously we took always that model for simplicity, because it
was the only one with an available likelihood function. We are interested to
know if there are other ‘good’ models with more than two states. To do that
we will apply ABC for model selection, working on the real data set. As in
every ABC method we will need to simulate data from every model, in the
following algorithm we will simulate from the different multi-state models by
using simulation I, since the other approach to simulate data is not suitable
for multi-state models.
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We ran a total of 250,000 simulations, to have a final sample of 12,500
observation due to the tolerance level that we set. In Figure 4.13 we can see
the posterior probabilities of each model.

Figure 4.13: Posterior probabilities of the model index; the k-th model has
state space S = {0, ..., k}, with k = 1, ..., 5.

Comparing the posterior probabilities of each model we can see that is
more unlikely that data come from a high number of state model; in fact,
almost 70% of the total mass of the posterior is concentrated on the first two
models: the two and the three state ones.

4.6 Conclusions and further work

In Chapter 4 we have applied our two Bayesian models to a real and a simu-
lated data set (respectively, data1 and data2). In particular, the analysis on
data1 showed robustness of models A and B, while the analysis on the real
data was focused on comparing the posterior estimates of the parameters for
the three groups of patients.

The analysis of the simulated data led to satisfactory conclusions regard-
ing the validity of the models, especially model A (the one with a fixed
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G(t)), which has J (the jump size) as its only variable of interest; this vari-
able was estimated correctly in our examples. For what concerns model B,
in which we introduced the parameters that characterize G(t), the analysis
was a bit more difficult, because when increasing the number of variables,
issues related to the convergence of Markov chains could arise. In our specific
case, introducing the four parameters of the time-scaling function, there is an
identifiability issue, or, from a Bayesian perspective, a multi-modality in the
posterior distribution of the parameters; to face this problem we reduced the
variability of the transition kernels in the Metropolis-Hastings steps within
the algorithms, in order to focus the exploration of the state space around
the initial values of the parameters. Given that, it is important that the
initial values are chosen in a proper way, thus we decided to estimate the pa-
rameters with frequentist techniques and use these estimates as our starting
values for the Monte Carlo algorithms.

The analysis on data2 was carried out imposing the same conditions men-
tioned above, to avoid other identifiability problems. With real data, divided
in three groups, we compared the posterior estimates and we confirmed pre-
vious studies that suggested that radiation contributed to decreased expected
height, since cranial radiation has been associated with the development of
growth hormone deficiency. In addition to having a lower average height, pa-
tients treated with radiotherapy enter in a second phase of growth, in which
the growth slows, earlier than others. In our models this second phase starts
after the time point t∗, where the G function changes its slope.

The statistical performances of our model are strongly affected by the
choice of the parametrization of the time-scaling function: in our analyses
we chose a specific linear parametrization of the curve, based on a previous
study of the data set. Further work could consists in assuming different G(t)-
s, that could be parametrized or considered as non-parametric elements. By
doing the same analysis with a wider range of time-scaling functions (model
selection via Bayes Factor or ABC) we could get more reliable results, less
related to the original choice of the function.

Further investigations could be the prediction of new observations. We
are interested to predict the growth trend for a new patient just entered in
the study; in the Bayesian context, this information is usualy obtained via
the predictive distribution L(Yn+1|Y1, ..., Yn).
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