
POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione

Master of Science in Automation Engineering

A Modelica library For Mixed-Phasor- and Time-domain

Simulation Of Electric Networks

Supervisor: Prof. Alberto LEVA

Master Thesis by:

Ahmadreza ARFAEI

Matr: 764493

2013-2014

2

3

Acknowledgements

First of all I would like to express my utmost gratitude to my supervisor Professor

Alberto Leva for his guidance, encouragement and useful Hints. His valuable ad-

vices and consistent availability are indispensable.

I owe my deepest gratitude to all my professors Specially Professor Frannco

Zappa and Professor Ricardo Scattolini.

Thanks to my father Hossein, who has always been a role model for me in my

life, to my mother Zarrintaj who has supported me in everything.

Finally, special thanks to my MohammadAli Aghakhani,Ali javadizadeh and

ShahabReza Besharat and many others who walked with me all the way along for

consistent cheering and supporting.

4

Chapter 1

Introduction

This chapter briefly introduces the context of the presented work and states the

main problem addressed, and sketches out the organization of the document.

1.1 Overview

Electricity production continues to grow around the world and Global electricity

production increases by 2.4 percent per year over the projection period, from

16,424 billion kilowatt-hours in 2004 to 30,364 billion kilowatt-hours in 2030. In

such a scenario , The business energy market is in desperate need of reform.

Growth trend of the market is main reason for which modeling and

simulation are become matter of research interest nowadays. On the other hand

integrating such new methods via some novel and revolutionary technological

advances bringing up the efficiency and decrease computational efforts.

The past few years have seen countless research topics on utilizing

renewable energy sources (such as solar thermal and photo-voltaic sources) due

to depletion of fossil fuels and their high environmental impacts. Thus each plant

turns out to be a power producer. The main problems with these energy sources

are cost and availability.

5

 Smart grids promise to facilitate the integration of renewable energy and

will provide other benefits as well. This technologies can help provide real-time

readings of the power line, enabling utilities to maximize flow through those lines

and help alleviate congestion. As smart grid technologies become more

widespread, the electrical grid will be made more efficient, helping reduce issues

of congestion. Sensors and controls will help intelligently reroute power to other

lines when necessary, accommodating energy from renewable sources, so that

power can be transported greater distances, exactly where it's needed.

In favor of the smart grid technology, the energy production is distributed

among many producers rather than massive plants. In some regions, individuals

can contribute to energy production on the distribution grid by generating

electricity at their home for example, solar on rooftops. Where

available, enhanced net-metering incents consumers to sell power back to the grid

during peak pricing hours. so consumers make money and utilities are able to

better manage peak demand. Whole neighborhoods could become solar or wind

generation plants, introducing excess power back into the grid to meet demand.

Of course there is much more to the idea of smart grid than the matter just

explained, but accepting this fact is enough to realize what is relevant in the

context of this dissertation.

Distributed generation(DG) , as a new form of clean energy generation ,

provides flexible power supply support for electric power system. But DG

capacity generally is smaller, lower voltage levels, and it is incorporated into

electric power system at distribution network side. Therefore, DG incorporated

into electric power system has brought many unprecedented problems, DG has a

negative effect on power system stability, power system control and protection.

Of course, a distributed network can be modelled and simulated, to

examine the couplings among its smart grids, and the effects of the attachments

http://www.itsyoursmartgrid.com/about/faq.html#metering

6

and detachments of smart grids with respect to the network. Based on the outcome

of the simulations, the attachments and detachments of smart grids can then be

scheduled properly if this is possible, and convenient control solutions can be

devised and assessed in the opposite case, in order to prevent -or at least mitigate-

hazardous failures. Hence, the task of simulating the effects of smart grids on the

network holds a particularly relevant importance.

1.2 Background And Motivation

Simulation of AC network split into three operating points : Rapid transient

,quasi-stationary and steady-state. Analysis of AC network could be carried out

by in either time domain and phasor domain .consequence of adoption of phasor-

based approach is highly efficient simulation with less computational effort.

In the first case, rapid transient, there is completely different story and

obviously the frequency is not a constant term. Therefore dynamic models are

considered and network has to be analyzed in time domain.

 In second case, quasi stationary, phasor approach can be extended by

means of so called “swing equation” which turn algebraic phasor framework to a

dynamic one, introducing machine angle as the state variable.

AC quantities , such as currents and voltages, are expressed with an

amplitude and phasor . Meanwhile in steady-state point it is obvious that the

network frequency is constant. Thus we can shift into the phasor representation.

Let’s consider the network in stationary mode .All signals expressed in

phasor domain. As a consequence computation power and memory allocation

reduced which brings up computational efficiency. If the frequency is influenced

by some abrupt event , like opening or closing switches , phasor model cannot be

7

utilized and then time domain representation adopted which describe voltages and

current in more details. The main idea behind the mixed approach is to utilize

impedance relations when the frequency is constant as in the case of phasor type

simulators, and to utilize differential equations in time domain when the system

is transposed to non-sinusoidal signals as in the case of transient type simulators.

Usually phasor type Modelling is preferred over the transient type due to

the its better computational efficiency when the simulation size is great. The

phasor type simulators are constructed based on the assumption of constant

frequency and consequently neglect the transients [4]. As mentioned, the phasor

type simulators are preferable when the magnitudes and the phases of voltages

and currents at the line frequency are of the interest.

Focusing on two mention cases above , it become highly profitable and

favorable that merge two models and write both equations to a single component

which could switch back and forth between two phasor and time description

possibly in automatic manner.

the main issue is how to join two modelling approach in a library of object-

oriented (that is context-independent) models of some mostly used components

in electrical systems. Managing the switch between two domain is a bit tricky in

object-orienting modeling and simulation approach. events triggering actions

which lead to transition from time to phasor and vise-versa are mostly local.

1.3 Outline of the Thesis

This disertation is organized as follows. Chapter 2 addresses a Modelica

library which is formed by set of components .This modelica library targeted to

the purpose of this work, to be consecutively prolonged from a proof of concept

8

to a production tool. Chapter 3 provide more simulation examples of proposed

approach to report the obtained advantages and to illustrate the viability of the

proposed approach. Chapter 4 ends this thesis with some conclusion and sketches

out future work.

APPROACH???????

2.1 FOREWORD

The increasing availability of high performance relatively low cost computers in

recent years has presented exciting new opportunities for power utilities to use

9

advanced computer based modelling, system analysis and optimization strategies

for the management of systems.

These have ranged from expert system methodologies, neural networks to

the application of object oriented methods to power networks covering switching

operations, protection, restoration, fault-diagnosis and the integration of

advanced Energy Management Systems (EMS)

The growing number of customers and the various supporting technologies

has resulted in large and extremely complex networks. In the past, system

administrators and planners had an overview of the technological criteria for the

design, expansion and maintenance of the network. However, it is now much

more difficult to manage these tasks because of the greater network complexity

and the increasing amount of data to be processed.

As electricity supply is a dynamic sector, it is essential that the network

model under development be representative and easy to maintain and extend. It

was decided to use object-oriented techniques for the development of a unified

network model; the resulting model being implemented in a database system.

The basic structure of an electrical power system can be considered to

consist essentially of a set of nodes and links. The node could be a component of

a power system, such as a generator, transformer, switchgear etc. A link is a

conductor which connects nodes together. Therefore, an overhead transmission

line and underground cables etc. could be elements within a link. A specific

example of an electrical power network is shown in Figure 2.1

10

Figure 2.1: Power network is shown as nodes and links

In any real case, an electric distribution network comprises a high number

of smart grids. For the sake of scheduling the detachments/connections of smart

grids to the network, observing their coupling with each other and their combined

effect on the whole network, the network needs to be simulated as a whole entity.

In addition, the reliability analysis of the power grids is difficult since they

are made up from thousands of components. Even though the failure modes of

the each component may be known, in a power grid these values can differ since

they are not independent from each other.

2.1. OBJECT-ORIENTED MODELLING

This section introduces the basic principles of object-oriented modelling . In an

object-oriented model, the object and their associations correspond directly to real

world entities and their relationships. As a result, the object model is highly

modular and closely resembles the real network.

 These characteristics make the model easy to understand, maintain and

extend. A major difference between object-oriented modelling and other

11

approaches is the inclusion of the dynamics of a system in the objects. Objects

are therefore self-contained structures and the resulting system is highly modular.

Modularity significantly enhances the maintainability and extendibility of

the system. Further on-going development of the object model is possible, even

after it has been installed, because the object schema can be continuously evolved.

2.1.1. MODELICA LANGUAGE

Because of the open architecture of Modelica which allows to modify the existing

components, thus there is the possibility of employing impedance relations

although Modelica is design for PDEs originally, the proposed mixed approach

can be implemented in Modelica.

The importance of the openness of the simulation tool to possible

modifications increases as models and control methods on the electric network

are being evolved regularly, thus a general model is out of topic. Together with

its open source nature, Modelica and the other simulation tools developed on it

respond to the demands and expectations from a simulation tool stated in [2]. The

advantages of Modelica over many other simulation languages at dealing with

components from many engineering domains [3] gives the possibility of

extending the electrical domain modeling to multi domain modeling with internal

control algorithms when needed.

Another advantage of Modelica is the object oriented principle and the

casual modeling. While object-oriented concepts enable proper structuring of

models, the capability of non-causal modeling makes it easy to model for example

power lines which are quite cumbersome to model using block-oriented

languages such as Simulink [18]. As a consequence, from the viewpoint of this

12

work, Modelica solves the systems in object oriented fashion, if one can achieve

modeling the impedance relations in the same style as in the section 3.2, it is even

possible to model the networks with the most cumbersome and complex

mathematical expressions. That is to say for the author's convenience, Modelica

is preferable over the modeling and simulation tools that use block diagrams

when dealing with complex topologies.

In synthesis, the suggested mixed approach which has phasor models and

time-domain ones co-exist, using the former type when frequency is constant and

switching back/forth to the other when this is not (temporarily) true owing to

some abrupt event, is not implemented in the conventional simulation

environments.

2.2. STRUCTURE OF THE LIBRARY

The library compromise of the most primitive models, like resistors,

capacitors, inductors, grounds and power sources and etc. Thus validating the

approach in the component level and then increases complexity step by step until

the level of complex topologies like the whole electrical network is achieved.

13

Chapter 2

Introducing The Modelica Library

This chapter starts with a description of the library structure as resulting from the

proposed approach . Then follows by illustrating some examples the idea of co-

existing time and phasor domain at component level.

As anticipated, phasor models in Modelica are not a novelty [1, 2], and as

such, the proposals that we are making with this paper are to be integrated in the

scenario depicted by works like the ones just quoted.

However, this study has some specific peculiarities, a discussion on which

(and the consequently proposed solution) provide the main contributions of this

work. Specifically, three aspects are herein addressed:

 creating models that contain both a phasor and a time domain

description of a given component.

 managing the transition (changeover) between the two at the

component level.

14

 managing the decision to make a changeover at the overall

model level.

For simplicity, at this point, the transitions between domains are depended

on the system level, thus the user controls the switching rather than an event

enforces it.

Figure 2.0: Illustration of the the developed library

We now consider the problem of mixing phasor and time domain

descriptions in the same component model, and of managing at that level the

changeover between the two.First, physical connectors are needed to be defined.

To this end, a positive/negative phasor and time domain pin is straightforwardly

defined.

15

2.0. The Approach

The need for modelling in the context of (AC) electric networks and their

management has been recognized since long time ago. The introduction of

renewable energies and distributed generation has then increased the interest on

the matter in the last decades, and further impulse to the mentioned research has

been coming from smart grids. Nowadays, simulation models of electric networks

are also often combined with those of the generator’s prime movers to form multi-

physics, multi-scale and potentially large overall models, for which the object-

oriented paradigm of Modelica is particularly suited.

In such cases, however, the electric part of the model is often the bottleneck

for simulation efficiency, and the reason for that is structural. In extreme

synthesis, in fact, an AC network can be modelled at three levels. The most

efficient one from the computational standpoint is provided by phasors : this

framework allows to write an algebraic model, that however is valid only in the

hypothesis of a single, constant frequency for all the network. Small fluctuations

of “local” frequencies are allowed by the so-called “swing equation” formalism,

Quite intuitively, the idea of using phasor models in Modelica is not new,

but to the best of the authors’ knowledge, to date no attempt was made to have

phasor and time domain descriptions co-exist at the component level. For

example, in [1] the idea of coupling phasor-domain and “transient” models is

introduced, but the connection between the two relies on causal signals, making

it difficult to represent it at the individual component level, especially for what

concerns the domain changeover. Another interesting paper is [2], where however

no changeover to time domain is considered, and the possibilities of phasor-based

modelling are exploited via a convenient use of the swing equation. As such, even

a minimal literature analysis like that reported indicates that the problem

16

addressed herein is of both theoretical and practical interest, and that the

attempted solution has some novelty characteristics.

2.0.1 System-level modelling

We now move to the problem of managing the changeover between the time

domain and the phasor representation at the level of the entire simulation model,

i.e., of the network—in synthesis, thus, we specify how the Timedom flag is

handled. Switching from phasor to time domain is generally the consequence of

some abrupt event known to at least one component, like for example a closing

or opening switch. It is thus assumed that in such a case, the affected component

directly sets the flag to true, causing the changeover instantaneously.

A bit more difficult is conversely the reverse changeover, since to make it

feasible, all the currents and voltages need settling to a sinusoidal regime. The

decision is in this case taken on the basis of local signaling from the components,

and of a unanimity verification mechanism at the system level.

2.0.2 Local signalling of sinusoidal regime

Also in this case, like it was for the component-level changeover management

shown in Section 3.1, the main goal of model design is to avoid unnecessary

events, for efficiency reasons.

Suppose therefore that we need to detect if a certain variable x(t) – voltage

or current – is “sufficiently” close to a sinusoid with frequency freqHz, assumed

for the moment of zero mean for simplicity (releasing this is straightforward, see

later on). Filtering x(t) through the continuous-time transfer function

17

F(S) :=
𝑋𝑓(𝑠)

𝑋(𝑠)
 = (

1

𝜋𝑓̥

𝑠

1+ 𝑠
𝜋𝑓̥
+ 𝑠2

(2𝜋𝑓̥)2

) (2.0)

produces an output xF(t) equal to the input x(t) if and only if the frequency of the

latter is exactly 𝑓 , which is apparently set to freqHz.

Figure 2.1: frequency detector – Bode plots of F (jw)

Parameter nF is used to enhance the attenuation of the frequency response

F (jw) as the input frequency moves away from fo, and a value of two (or three at

most) proved enough in practice. The operation of F(s) is shown by the Bode

plots of Figure 2.1, obtained with fo = 50 Hz and nF = 2.

The output of F(s) in (2.0) is then used, together with its input, to form the

signal

18

s(t) =
1+𝑥𝑓̥(𝑡)

2

1+𝑥(𝑡)2
 (2.1)

which is structured so as to inherently avoid division by zero errors, and finally

s(t) is lowpass-filtered by the unity-gain first-order block

D(s):=
𝑌(𝑠)

𝑆(𝑠)
 =

1

1+𝑠
𝑘𝑓̥

2𝜋𝑓̥

 (2.2)

where parameter kf is used to control the achieved smoothing (a value of

ten is a good default). As a result, y(t) will signal the required condition on x(t)

by taking a value very close to the unity, with small fluctuations.

Comparing the value and the time derivative of y2(t) to suitable thresholds,

where squaring the signal is to avoid the events that would be generated if its

absolute value were conversely taken, is therefore a means to detect that x(t) is

close enough to a sine wave with frequency freqHz.

Figure 2.2: frequency detector test – Modelica diagram

To show the efficacy of the proposed technique, and also its autonomy with

respect to the rest of the proposed modelling paradigm, Equations (2.0) through

(2.2), together with the mentioned thresholding mechanism, were turned into a

FreqDetector block, that is used in the model of Figure (2.2) together with

19

components from the Modelica.Electrical library (its use in the presented one,

with the actual introduction of phasor modelling, will be illustrated later on).

Figure 2.3: frequency detector test – simulation results

Figure 2.3 shows a sample simulation test. Detailed figures are inessential for its

purpose, apparently, but as can be seen, the need for time domain modelling as

caused by the switch closing and opening is detected correctly, especially for the

transition toward (the possible use of) phasor mode. Recall that the symmetric

transition is in any case guaranteed by the locally originated signaling.

This is because the phasor to time domain transition must be instantaneous

to preserve accuracy, while if the time to phasor domain on is delayed with

respect to the time when it is acceptable, the only relevant effect is some waste of

CPU time. It is worth noticing that the 5s simulation of Figure 2.3 involves only

14 state events, which would apparently not be true if the possibility of switching

to phasor mode were identified based on zero crossing counters, or similar

20

methods. Note also that the proposed technique introduces some additional state

variables, but these pertain to linear, time invariant, causal blocks cascaded to the

physical model. The resulting simulation overhead is thus modest, and in any case

much lower than that of zero-crossing or similar methods.

The default values chosen allow for a safe transition toward phasor

modelling, without bounces and within a reasonable time. In the presence of an

essentially constant-frequency behavior interspersed with abrupt events that

make the frequency content of the involved signals radically different from the

(quasi-stationary) one, this is a good compromise between fast transition to

phasor mode (which undoubtedly favor’s simulation efficiency) and possibly

undue switching of the two modes (which conversely may be detrimental owing

to re-initializations). Also, the presented detection method is inherently

normalized, since so are all the involved quantities (except times, of course).

 This makes the selected default values for the involved parameters valid in

a wide operating range, and for an equally wide variety of network physical

parameters. To manage a possible nonzero average of u(t), finally, the proposed

filtering path is implemented as a series of transfer function blocks from the

Modelica Standard Library, and signal s(t) in 2.1 is formed by taking the output

of the first block in the place of u(t). This ensures that the average of the signal

taken as input settles to zero with a dynamics comparable to that of the transients

superimposed to its steady-state sinusoidal behavior, and at the same time

preserves the exploitation of the unity-magnitude and zero-phase frequency

response values at the sought frequency so as to realize the envisaged detection

system.

21

2.0.3 System-level handling of TimeDom

To manage the TimeDom flag at simulation time, denote respectively with Npt

and Ntp the number of elements entitled to cause a changeover toward time

domain mode (typically, switches), and that of elements the voltage across which

is to be checked to approve the reverse transition.

From a conceptual standpoint this set could well be the totality of the

present passive components, but for optimization reasons the user can be allowed

to introduce “frequency probes”, based on the described FreqDetector

component, only where deemed necessary.

At the present state of the library development, this architectural choice is

still open: most likely, however, based on the experience that is being gathered,

the final solution will be to distinguish a “basic” mode, where any passive

component has a detector, and an “expert” one, where the user is free to configure

the mechanism at his/her best convenience.

In any case, assuming – in principle, as the implementation described in

the following section is different for efficiency reasons – two Boolean vectors

P2T and T2P, of length Npt and Ntp respectively, to be declared at the outermost

model level, and omitting trivial details on the inner/outer manner they are

managed, the following procedure for handling TimeDom is adopted.

1. The simulation starts out in time domain mode,for the safe side

(possibly, in the future, unless differently specified in the “expert” mode).

All the elements of P2T and T2P are conveniently initialized (at present, to

false).

22

2. All entitled elements manage their local time domain flag based on the

contained FreqDetector element, and the system-level T2P vector collects

them all.

3. If at the system level time domain mode is in use,and all the elements of

T2P are true, then the system switches to phasor domain mode.

4. If at the system level phasor mode is in use, any transition to true of at

least one element of P2T causes a changeover to time domain mode, with

the required re-initializations.

2.0.3 Modelica implementation

The solution just described serves the intended purpose, and the realised one is

totally equivalent from a conceptual and functional standpoint.

However, if said solution were implemented literally, some deviation from

a totally object-oriented setting would be involved, since any component

participating in either of the two mentioned Boolean vectors, would have to

contain suitable parameters to indicate which position in said vectors pertain to

it. The responsibility of setting those indices correctly would stand with the user,

being possibly complex and cumbersome to manage for large models.

In addition, and most important, even if the management of the mentioned

indices were somehow automated, some model connections would in this way be

realised, that do not fall under a proper connector abstraction.

To overcome this relevant problem, the described solution is therefore

implemented as follows. First, a ChangeoverMgmt connector is defined as

shown below

23

connector ChangeoverMgmt

flow IntegerNtp "# o f T >P voters" ;

flow Real ForceP2T ;

flow Real AllowT2P ;

Modelica.SIunits.Frequency freqHz ;

Boolean TimeDom ;

Real dum " Squelch balancing warnings " ;

end ChangeoverMgmt ;

Listing 2.0 : the ChangeoverMgmt connector

Each component participating in the changeover decision (i.e., each model of

reactive elements or of commuting ones like switches), and also each generator,

is endowed with such a connector, named in the following C; also, all those

models take the TimeDom flag and the (nominal) frequency from that connector.

Reactive components (the Inductor model is an example) furthermore

contain the code :

C.Ntp = 1 ;

C.Fo r ceP2 T = 0 ;

. . .

C.AllowT2P = if C.TimeDom and not

FD.TimeDom

then -1 else 0 ;

Listing 2.1 : inductor ChangeoverMgmt management

24

The first line reported in Listing 2.1 provides the Supervisor component,

described later on and that also has a ChangeoverMgmt connector to which

those of all network elements are connected, with the number of those elements

that vote for the time domain to phasor mode transition.

The second line means that the component, given its role, is not entitled to

force a transition from phasor to time domain model. The last reported line,

finally, casts the vote when this is required.

Models of commuting components (like switches) conversely contain the code

parameter Real Tsw = 0 . 0 1 ;

parameter Real thrsw = 0 . 0 1 ;

. . .

Real xsw (start = 1) ;

. . .

xsw +Tsw * der (xsw) = if control

then 1 else 0 ;

C.ForceP2T = if control

and xsw <1 thrsw

or not control

and xsw> thrsw

then 1 else 0 ;

Listing 2.2 : model of switches

When the Control input (the switch command) commutes, the introduced

dynamic variable xsw is used to generate a square pulse with a minimum of state

events, and this is in turn used – see the last line in Listing 2.2 – to signal that the

component intends to force a transition from phasor to time domain mode.

25

Finally, the Supervisor component is implemented as per Listing 2.3 below.

model Supervisor

parameter Frequency fo = 5 0 ;

Interfaces.Changeover Mgmt C;

Boolean P2T , T2P ;

equation

C.dum = 0 ;

P2T = C.ForceP2T >0.5 ;

T2P = C.AllowT2P > C.Ntp 0.5 ;

C.f reqH z = fo ;

algorithm

when T2P and not P2T then

C.TimeDom : = false ;

end when ;

when P2T then

C.TimeDom : = true ;

end when ;

initial equation

C.TimeDom = true ;

end Supervisor ;

Listing 2.3 : supervisor

The initial equation makes the simulation start in time domain, as specified

in Section 2.0.3. Then, thanks to the Flow connections, variables ForceP2T and

AllowT2P respectively sum the forcing to time domain mode requests, and the

permission for phasor mode votes. based on that, when ForceP2T is at least 0.5,

then at least one component is forcing time domain mode.

26

Analogously, when AllowT2P exceeds the number of voters (collected in

the Npt connector variable) minus 0.5, then all said voters are permitting the

transition toward phasor mode. Finally, the two when clauses in the algorithm

section manage the TimeDom flag, triggering events only when necessary.

2.1 The library structure

As anticipated, the presented ideas were applied to create the first nucleus of a

Modelica library for mixed phasor and time domain modelling of electric

networks.

2.1.1 Pins

Pins are used as connectors in the Modelica language that take part nearly in all

components when they are formed. The pins in the MSL are consisted of two

variables, the potential at the pin, the voltage and its current.

For the mixed approach, the voltage and the carried current are time

domain quantities and phasor domain quantities are needed to be defined in the

pin model. The pins carry the information related to the complex quantities in the

rectangular form. Given a pin labeled as “a” ,”a.Vre” stands for the real part of

the complex potential, “a.Vim” stands for the imaginary part of the complex

potential in the pin. “a.Ire” carries the information of the real part of the complex

current which is a flow variable whereas “a.Iim” is the imaginary counterpart of

the complex current. The time domain quantities of the MSL pin model are

preserved in the mixed library pin model. In the end the modified pin model has

six quantities compared with the MSL pin model which has two quantities.

27

Although the content of the pins are the same, two different pin models are

coded for the approach, positive pin and negative pin.

Figure 2.4: Illustration of the Pins in the developed library

As we can see in figure 2.4 , positive pin is colored as blue and negative

pin colored as red to distinct the connection in a clear way. A positive phasor

and time domain pin is straightforwardly defined as:

connector ptPin "phasor or time domain positive pin"
 SI.Voltage Vre "V phasor, real part";
 SI.Voltage Vim "V phasor, imaginary part";
 SI.Voltage v "v(t),time domain";
 flow SI.Current Ire "I phasor, real part";
 flow SI.Current Iim "I phasor, imaginary part";
 flow SI.Current i "i(t),time domain";
end ptPin;

Listing 2.4: connectors

28

2.1.2 Sinusoidal Voltage Source

Electrical networks can be classified in the field of AC signals mostly due to the

majority of the generated and transferred power is in AC signals excluding the

renewable power supplies.

In order to mimic the alternating behavior of the signals, the circuits must

be fed by sinusoidal sources. The MSL provides a sinusoidal voltage source

model which has the path: Modelica.Electrical.Analog.Sources.SineVoltage.

This component is capable of providing the time domain signals in sinusoidal

fashion and can be used to express the time domain part of the proposed method

inn the thesis. However the proposed mixed approach also relies on the adoption

of the phasor domain equations whenever it is possible.

 For the sake of achieving the task, the MSL component is modified to

contain the phasor domain representation of the time domain signal in rectangular

form.

A sinusoidal voltage signal in a component can be represented in different

ways:

v(t) = A sin(ω t + φ) (2.1)

or

V = A˂φ (2.2)

where v(t) is the time domain voltage and V is the polar form of this voltage, ω

stands for frequency, t for time, φ for phase of the signal.

The signals in the system which have this nature, also have a constant

frequency and can be represented in this manner only when the system is at

(sinusoidal) steady-state.

29

Given the specification of the phase, amplitude and frequency of the signal,

the modified sinusoidal voltage source is introducing the time domain voltage

and current as well as the real and imaginary parts of the complex voltage and

current at its pins. The complex voltage and drawn current are always active and

derived from the specifications of the time domain signal.

 Figure 2.5: Symbol of sinusoidal voltage source

The computational efficiency is planned to be increased. The found

solution makes use of this phenomenon; if the quantity to be derived is set to a

constant somehow, the simulator will handle a deferential equation as an

algebraic equation. This method, completely goes along with the very motivation

of the methodology since solving algebraic equations are much more cost friendly

than solving differential equations.

30

For the sake of simplicity, the choice of this constant is zero. Since the

electrical components are not allowed to be put into simulation without the

existence of a voltage/current source even in the MSL, the suggested guideline is

compatible with the language itself. As a consequence of the voltages and

currents are set to zero in the sources, the components with differential equations

that have a connection with the sources, eventually discharge to zero eventually

since for the components' perspective, it is equivalent to the task of grounding the

component.

Practically speaking, as the cancellation of the time domain equations are

explained, the logic behind switching of domains can be explained. As time

domain switches to phasor domain, the transition is very straightforward. Since

the phasor equations are always active, only the representation of the sinusoidal

signal changes while killing the time domain equations. The transformation is

shown as;

v(t) = A sin(ω t + φ) → V = A< φ (2.3)

As can be seen from the relation, in polar form the dependency on time is

hidden, and both formulas actually represent the same sinusoidal signal as long

as frequency kept constant. That is the reason why frequency must be a fix value

for continuity of the phasor domain. As stated earlier, the pins contain this relation

in the rectangular form for the sake of utilization of the Kirchhoff's laws thus

there is an addition transformation from polar form to rectangular form.

All the expressions in the equation 2.3 are actually the representations of

the same sinusoidal signal. On the other hand, as phasor domain switches to time

domain, the time domain equations are activated again.

Considering they are out of phase with the phasor domain equations at the

time transition is requested -because they were already diminished to zero - the

31

action of re-initialization of the time domain equations based on phasor domain

equations is required .

Thus, this voltage generator requires an additional input for the status of

domain. At this release of the mixed library, the offset and starting time of the

signal specifications are not implemented. The nucleus code of the component,

Sine Voltage, is given below:

model SineVoltage "a source that provides sine voltage"

 parameter Modelica.SIunits.Voltage Volt = 1 "Amplitude of sine wave";

 parameter Modelica.SIunits.Angle phase = 0 "Phase of sine wave";

 outer Modelica.SIunits.Frequency freqHz;

 outer discrete Boolean TimeDom;

protected

 constant Real pi = Modelica.Constants.pi;

equation

 0=a.Ire+b.Ire "KCL for real part of the complex current ";

 0=a.Iim+b.Iim"KCL for imaginary part of the complex current ";

 cos(phase)*Volt=a.Vre-b.Vre" Real part of the complex voltage drop over the pins ";

 sin(phase)*Volt=a.Vim-b.Vim "Imaginary part of the complex voltage drop over the

pins";

 0 = a.i + b.i "KCL for time domain current ";

 if TimeDom then

 a.v-b.v=Volt* Modelica.Math.sin (2 * pi * freqHz * time + phase) " Time

domain voltage drop if phasor domain cannot be utilized ";

 else

 a.v-b.v=0 " Time domain voltage drop if phasor domain cannot be utilized ";

 end if;

end SineVoltage;
 Listing 2.5: sinusoidal voltage source

2.3. Resistor

32

Resistor is one of the fundamental components of any electrical network. The

voltage drops are calculated by using the resistance or the impedance with the

corresponding currents. In the time domain the linear resistor has the relation:

vResistor (t) = iResistor (t) R (2.4)

Equation 2.4 is included in the resistor model of MSL and expresses the electrical

relation between the pins of the resistor in the time domain.

 Figure 2.6: Symbol of resistor

In the Mixed Library, the resistor model is modified to contain the impedance

relation. Resistor is a passive component which does not change the phase

difference between the voltage and the current across its' pins. The phase

difference introduced by the resistor in the polar representation is zero. The

impedance relations across the pins of the resistor can be written as:

V <θ = I < θ ZResistor <0° (2.5)

Since the information of the complex current is available at the pins of the

resistor. The phase of the complex current is summed with 0°. so it is equal to the

phase of the complex voltage and amplitude of complex Voltage equals to the

33

multiplication of the impedance’s amplitudes and the complex current. The code

of the resistor in the mixed library is given as:

model Resistor "Resistor for both time domain and phasor approaches"

 parameter Modelica.SIunits.Resistance R = 1 "Resistance";

equation

0 = a . i + b . i "KCL for time domain current " ;

0 = a . Ire + b . Ire "KCL for real part of complex current " ;

0 = a .Iim + b .Iim "KCL for imaginary part of complex current " ;

a . i *R = a .v - b.v " voltage drop relation in time domain " ;

R* sqrt (a . Ire ^2+a .Iim ^ 2)*cos (Modelica .Math.atan2 (a .Iim , a . Ire))=

a .Vr e - b.Vre " Real p a r t o f complex v o lt a g e drop " ;

R* sqrt (a . Ir e ̂ 2+a .Iim ^ 2)*sin(Modelica .Math.atan2 (a .Iim , a . Ire))=a.Vim

- b.Vim " Imaginary part of complex voltage drop " ;

Listing 2.6: Resistor

The output must be converted into rectangular form since the complex quantities

on the pins have rectangular representation.

The proposed resistor model only needs the resistance value as an input

and there is no need for a conditional statement in the resistor model because as

anticipated in 2.5, the decaying of the time domain equations to zero is performed

implicitly by setting the voltages to zero in the sources. Time and phasor

domainequations are calculated at the same time during the whole simulation.

2.3. Capacitor

The motivation of this methodology relies on canceling the calculation of the

differential equations so the MSL capacitor needs to be modified in a way that

34

the differential equations are replaced by impedance equations. The electrical

relation can be expressed in time and phasor domain as in the equation 2.6 and

2.7 respectively .

 icapacitor (t) = C
𝑑𝑣 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟

𝑑𝑡
 (2.6)

VCapacitor < (θ - 90°) = Icapacitor < θ Zcapacitor < -90°

 (2.7)

Keep in mind that the impedance relation has a multiplicative nature, it is best

to express it in the polar form.

 Figure 2.7: Symbol of resistor

With the transformation from polar form to rectangular representation and the

radian conversion, equation 4.5 can be coded in the Modelica language as

follows:

v =a.v-b.v;

35

0 = a.i + b.i;

a.i = Capacitance*der(v);

 0=a.Ire+b.Ire;

 0=a.Iim+b.Iim;

1/(Capacitance*C.freqHz*2*Modelica.Constants.pi)*sqrt(a.Ire^2+a.Iim^2)*cos

(Modelica.Math.atan2(a.Iim,a.Ire)-Modelica.Constants.pi/2)= a.Vre - b.Vre ;

1/(Capacitance*C.freqHz*2*Modelica.Constants.pi)*sqrt(a.Ire^2+a.Iim^2)*sin(

Modelica.Math.atan2(a.Iim,a.Ire)-Modelica.Constants.pi/2)= a.Vim - b.Vim ;

Listing 2.7: equations in capacitor in both domain

But, when dealing with the differential equations, the initial values of the

equations must be known in order to integrate the equations correctly. The

continuous time variable for the capacitor is the voltage in time domain. As long

as the signal is purely sinusoidal ,the condition for the activation of the phasor

domain, the time domain voltage drop across the pins of the capacitor can be

expressed by the amplitude and the phase of the signal along with the internal

clock of the simulator.

At the instant time domain is called, the initial value of the time domain

voltage can be extracted from the phasor domain equations, and reinitialized with

this value. The re-initialization action is performed every time the transition from

phasor domain to time domain is requested. The capacitor requires the

information regarding the choice of domain, thus the status of the domain choice

is an input for the capacitor.

when all the capacitors are connected independently the system contain re-

initialization clauses at the same number of capacitors. Capacitors may be

dependent as in the case of parallel capacitors. When this is the case differential

36

algebraic index of the system is lower than re-initialization requests. This causes

a syntax error for the compilers. Modelica compilers are not capable of adjusting

themselves to deal with this problem automatically. So the user has to switch off

the re-initialization part manually . The manual control of the re-initialization is

performed by a Boolean flag called “ShallweInit”, which is also an input for the

capacitor. The command “pre” stands for the previous value of variables before

switching.

equation

 if ShallWeInit then//”flag for enabling/disabling the use of initialization by user

 for the purpose of obeying DAE index restrictions”

 when {TimeDom} then

 reinit(v,sqrt(pre(a.Vim)^2+pre(a.Vre)^2+pre(b.Vre)^2+pre(b.Vim)^2-

2*pre(a.Vim)*pre(b.Vim)-

2*pre(a.Vre)*pre(b.Vre))*sin(2*Modelica.Constants.pi*freqHz*time+Modelica

.Math.atan2(pre(a.Vim)-pre(b.Vim),pre(a.Vre)-pre(b.Vre))));

end when;

 when {dummy} then

 reinit(v,0);

 end when;

 end if;

 when time>0 then

 dummy=false;

 end when;

 Listing 2.8: code corresponds to the re-initialization process

Whenever the time domain is called, the time domain voltage at that instant

is reconstructed based on the phasor domain data. The "dummy" variable is

defiened in order to prevent the re-initialization at the beginning of the simulation.

37

In another word It guarantees the capacitor is reinitialized to zero instead of the

data acquired from the phasor domain equations when time equals to zero. The

"dummy" variable is not an input.

For the sake of summarizing the information up to now, in this proposed

library the capacitor model contains the inputs of capacitance value, value of the

utility frequency, status of the domain and the re-initialization flag.

However, for the implementation of switching operation between domains based

on an event as anticipated, some additions are needed. Thus advanced switching

method is realized in Mixed Library.

Nevertheless , a part of this method is coded in the capacitor model.

Whenever the time domain is activated, for every second each capacitor counts

the crossovers of the derivative of their voltages. The number of crossovers is

equal to the frequency of the capacitor. If this calculated frequency of the

capacitor is equal to the utility frequency in the system or in a admitted tolerance

the corresponding capacitor sends a token which can be interpreted as a vote to a

decision maker which named supervisor in this approach. if the complete

agreement is guaranteed , the phasor domain can be initiated.

algorithm

 when {der(v)<0 and TimeDom} then

 counter:=counter + 1;

end when;

when sample(0,1) then

 t:=max(counter);

counter:=0;

end when;

 if ((t>0) and

 (t>=1.005*freqHz or t<=0.995*freqHz)) then

s:=1;

end if;

 if (t>0) and

38

 (t<1.005*freqHz and t>0.995*freqHz) then

 s:=0;

 end if;

Listing 2.9: advance switching method for capacitor based on frequency detection

Each second, the number of crossovers is counted by the variable

“counter”, and at the end of one second the maximum number of crossovers is

stored in variable “t”, Depending on the comparison of the capacitor's frequency

with the utility frequency, the variable “s” takes the value of “1” or “0” (token

which will be sent to the supervisor component to be analyzed.)

Although in this way computational burden would be increased when timedomain

is activated with MSL capacitor. Hence to the differential equation, the

component is required to count the crossovers of the time domain voltage which

allocates more memory. Depending on the value of the utility frequency, the

efficiency will be changed.

2.3. Inductor

Again like a capacitor, inductor is going to be modified with the same

motivation.The inductance value, frequency, status of the domain, re-

initialization flag, and the number of the inductors are inputs for the inductor .

39

Figure 2.8: Symbol of resistor

In time domain and phasor domain the inductor has the relation which expressed

in 2.8 and 2.9 respectively:

 vinductor (t) = L
𝑑𝑖 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟

𝑑𝑡
 (2.8)

Vinductor < (θ + 90°) = IInductor < θ ZInductor < 90° (2.9)

The inductor introduces a positive phase shift of 90°. The time domain equations

and the phasor domain equations with the corresponding polar to rectangular form

transformation is coded as follows:

 v = a.v - b.v;

 0 = a.i + b.i;

 a.v - b.v = L*der(a.i) "inductor time domain ";

 0=a.Ire+b.Ire;

 0=a.Iim+b.Iim;

(L*freqHz*2*Modelica.Constants.pi)*sqrt(a.Ire^2+a.Iim^2)*cos(Mod

elica.Math.atan2(a.Iim,a.Ire)+Modelica.Constants.pi/2)=a.Vre-b.Vre;

40

(L*freqHz*2*Modelica.Constants.pi)*sqrt(a.Ire^2+a.Iim^2)*sin(Mod

elica.Math.atan2(a.Iim,a.Ire)+Modelica.Constants.pi/2)=a.Vim-b.Vim;

Listing 2.10: voltage-current relation in inductor expressed in modelica

And again here the re-initialization introduced below same as capacitor but

for inductor the free variable is current. And as mentioned before in the capacitor

case due to topology of the network inductors can also be dependent. So again

the user must disable the re-initialization to prevent the error.

if ShallWeInit then

 when {TimeDom} then

reinit(a.i,sqrt(pre(a.Iim)^2+pre(a.Ire)^2)*sin(2*Modelica.Constants.pi*freqHz*time+Modelic

a.Math.atan2(pre(a.Iim),pre(a.Ire))));

 end when;

 when {dummy} then

 reinit(a.i,0);

 end when;

 end if;

Listing 2.11: re-initialization of inductor’s current in time domain

Again an algorithm is developed for the implementation of the advanced

switching method.

algorithm

 when {der(a.i)<0 and TimeDom} then

 counter:=counter + 1;

end when;

when sample(0,1) then

 t:=max(counter);

counter:=0;

end when;

41

 if ((t>0) and

 (t>=1.005*freqHz or t<=0.995*freqHz)) then

s:=1;

end if;

 if (t>0) and

 (t<1.005*freqHz and t>0.995*freqHz) then

 s:=0;

end if;
Listing 2.12: advance switching method for inductor based on frequency detection

2.4. Ideal opening and closing switch

The switching behavior is controlled by input signal control. For the opening

switch if control is true then pin a is not connected with negative pin b. Otherwise,

pin a is connected with negative pin b.

Figure 2.9: Symbol of Ideal opening/closing switch

During the switching action, the opened switch has a very low conductance

Goff and the closed switch has a very low resistance Ron. Both the conductance

42

and the resistance are 1e-5 by default, but these parameters can be changed based

on the design. For simplicity, the heat dependency of the parameters is ignored.

equation

 a.i+b.i=0;

 a.v-b.v = (s1*unitCurrent)*(if control then 1 else Ron);

 a.i = (s1*unitVoltage)*(if control then Goff else 1);

 0=a.Ire+b.Ire;

 0=a.Iim+b.Iim;

 a.Vre-b.Vre=(s2*unitCurrent)*(if control then 1 else Ron);

 a.Vim-b.Vim=(s3*unitCurrent)*(if control then 1 else Ron);

 a.Ire=(s2*unitVoltage)*(if control then Goff else 1);

 a.Iim=(s3*unitVoltage)*(if control then Goff else 1);

Listing 2.13: Ideal opening and closing switch

A physical event that can initiate the transition between domains. It is

possible to execute the transitions between domains on an event based way

instead of switching defined on the system level where the switching is requested

based on time.

When the generators are connected, which means the switches are closed,

the system is simulated in the time domain. At this version of the presented

library, whenever a single generator is connected to the network, the whole

system is simulated in the time domain.

For the case of opening switch, whenever the control signal is false the

system goes into the time domain and stays in the time domain as long as the

control signal is false.

The vectors of the time varying components and the switches are summed

together, the unanimity is preserved for switching back to phasor domain, even

only once switch is sending a time domain flag, entire system operates in the

43

time domain. Whenever the control signal is true, the synchronization methods

can be applied for switching back to phasor domain.

algorithm

when control==true then

L:=0;

end when;

when control==false then

L:=1;

end when;

Listing 2.14: vote of the switch

2.5. Transformers

The transformer model takes three inductance inputs: two for the main

inductances and one for the coupling one. This component has two different

currents following through. the transformer takes also the utility frequency and

the status of the domain as inputs.

 parameter SI.Inductance L1(start=1) "Primary inductance";

 parameter SI.Inductance L2(start=1) "Secondary inductance";

 parameter SI.Inductance M(start=1) "Coupling inductance";

 0 = a1.i + b1.i;

 0=a1.Ire+b1.Ire;

 0=a1.Iim+b1.Iim;

 0 = a2.i + b2.i;

 0=a2.Ire+b2.Ire;

 0=a2.Iim+b2.Iim;

 //v1=a1.v-b1.v;

 //v2=a2.v-b2.v;

 a1.v-b1.v = L1*der(a1.i) + M*der(a2.i);

 a2.v-b2.v = M*der(a1.i) + L2*der(a2.i);

 (L1*C1.freqHz*2*Modelica.Constants.pi)*sqrt(a1.Ire^2+a1.Iim^2)*cos(Modelica.Math.atan

2(a1.Iim,a1.Ire)+Modelica.Constants.pi/2) + (M*C1.freqHz*2*Modelica.Constants.pi)*sqrt(a

44

2.Ire^2+a2.Iim^2)*cos(Modelica.Math.atan2(a2.Iim,a2.Ire)+Modelica.Constants.pi/2)=

a1.Vre-b1.Vre ;

(L1*C1.freqHz*2*Modelica.Constants.pi)*sqrt(a1.Ire^2+a1.Iim^2)*sin(Modelica.Math.atan2

(a1.Iim,a1.Ire)+Modelica.Constants.pi/2) + (M*C1.freqHz*2*Modelica.Constants.pi)*sqrt(a2

.Ire^2+a2.Iim^2)*sin(Modelica.Math.atan2(a2.Iim,a2.Ire)+Modelica.Constants.pi/2)=

a1.Vim-b1.Vim;

(M*C2.freqHz*2*Modelica.Constants.pi)*sqrt(a1.Ire^2+a1.Iim^2)*cos(Modelica.Math.atan2

(a1.Iim,a1.Ire)+Modelica.Constants.pi/2) + (L2*C2.freqHz*2*Modelica.Constants.pi)*sqrt(a

2.Ire^2+a2.Iim^2)*cos(Modelica.Math.atan2(a2.Iim,a2.Ire)+Modelica.Constants.pi/2)=

a2.Vre-b2.Vre;

 (M*C2.freqHz*2*Modelica.Constants.pi)*sqrt(a1.Ire^2+a1.Iim^2)*sin(Modelica.Math.atan2

(a1.Iim,a1.Ire)+Modelica.Constants.pi/2) + (L2*C2.freqHz*2*Modelica.Constants.pi)*sqrt(a

2.Ire^2+a2.Iim^2)*sin(Modelica.Math.atan2(a2.Iim,a2.Ire)+Modelica.Constants.pi/2)=

a2.Vim-b2.Vim;

Listing 2.15: The time domain and the phasor domain relationships

The code above expresses the basic transformer model in mixed approach. The

ideal transformer has another input (n) in order to defined the turns ratio between

primary and secondary winding. The code in developed library for this purpose

as:

 a1.v-b1.v = n*(a2.v-b2.v);

 a1.Vre-b1.Vre=n*(a2.Vre-b2.Vre);

 a1.Vim-b1.Vim=n*(a2.Vim-b2.Vim);

45

Figure 2.10: Symbol of Ideal transformer

2.5. The supervisor

The role of the supervisor is to take decisions on which mode to be utilized, by

considering the the information which is received from the components. It creates

a link between the components and status of the domain which is an input for the

involved components.

The link between the components and the supervisor is constructed by

using the “inner” and “outer” clauses of the Modelica language. Its variables are

coded with the “inner’ command, whereas all the components including

the supervisor take place under the model and their variables are coded

with the “outer” command.

An code written on the “parent” model can be given:

inner Real S [4] " Switch vector " ;

inner Real R[24] " Vector of Capacitors and Inductors " ;

inner Modelica.SIunits.Frequency freq Hz = 50 " Utility frequency system " ;

inner discrete Boolean TimeDom(s t a r t =f a l s e) " Value of this parameter is

set on the component , Supervisor " ;

Listing 2.16: the supervisor in developed library

The switches, capacitors and inductors send data to the model. These sent

data can be considered as votes for the domain change. The votes can either be

46

“0” or “1” for every component that has the privilege to vote. “0” votes stand for

the request of phasor domain and “1” votes stand for the request of time domain.

when sum of the votes equal to zero,it means that there is no request of

time domain, then the system can operate under the phasor mode. In contrary as

long as one of the components send the request of time domain, thus the system

operates under the time domain.

for i in 1:n loop

 Sum:=R[i]+Sum;

 end for;

 for j in 1:m loop

 Sum2:=S[j] + Sum2;

 end for;

Sum:=Sum+Sum2;

t:=max(Sum);

Sum:=0;

Sum2:=0;

if t>0 then

 TimeDom:=true;

 else

 TimeDom:=false;

end if;

 if time<=3 then

 TimeDom:=true;

 end if;

Listing 2.17: decision made by supervisor based on status of switches and components

By bringing the last “if” , it guarantees to start in the time domain at the

beginning of the simulation.

47

Chapter 3

Simulation Examples

This chapter reports and discusses some simulation results, evidencing the

obtained advantages with respect to a purely time-domain modelling context, and

also depending some operating condition boundary that actually makes the

presented approach advantageous.

The components of MSL can be expected to function optimally and any

modification to MSL puts more computational burden to the compiler. With the

introduction of conditional loops, the simulations with modified components

become slower. Moreover, when the system operates under the time domain,

capacitors and inductors perform derivation operations on either voltage or

current values respectively.

48

The most visible reflection of this phenomenon is on the number of the

Jacobian evaluations;with the excessive use of time domain the number of

Jacobian evaluations is expected to be much higher than its MSL counterpart.

Due to the inefficiency of the components coded according to the mixed

approach in the time domain, the feasibility of the application of the mixed

approach is questionable under some conditions. If the time domain is requested

for a large portion of the simulation time, the usage of the MSL components is

clearly preferable. It is the genuine task of identifying the conditions where mixed

approach becomes advantageous over MSL.

In order to validate the mixed approach in the sense of performance, two

examples are presented. The examples are prepared to reflect real networks thus

the approach can be evaluated realistically.

An illustrative simulation example

We now shows a simple simulation example to demonstrate the operation of the

proposed modelling framework, and specifically of the changeover management.

The example refers to the small network model depicted in Figure 5. The switch

SW1 , initially closed, is opened at t = 1 s and re-closed at t = 2 s.

49

Figure 3.1: basic simulation example

Figure 3.2: signals in the frequency detectors of the two inductors.

50

Figure 3.2 shows the yy(t) variables in the frequency detectors of the

inductor. Recall that those variables are meant to indicate, by assuming a nearly

constant unity value, the settling of the locally measured frequency to freqHz

(here set to 50 Hz).

As can be seen, the expected effect is obtained, and the normalized nature

of the involved signals produces comparable transients also in the presence of

different values for the components’ electric parameters.

Figure 3.3: bolean flags

In Figure 3.3, the relevant Boolean flags at the system level are instead

represented. The changeover mechanism catches the switch events, passing to

time domain instantaneously, while the time domain periods are not equal,

correctly depending on the transient behavior of the monitored electric variables.

51

Figure 3.4: forcing time domain on the part of a switch

Figure 3.4 illustrates how a commuting component forces the transition to

time domain mode by means of xsd and the role of the threshold and the time

constant of its dynamics in determining the width of the generated pulse. Note

that the rising edge of that pulse is structurally synchronous to the switch

command, which is consistent with the defined specifications.

52

Figure 3.5: current in R1in time domain representation

Figure 3.6: current in R1 phasor representation.

Figures 3.5 and 3.6 show the behaviour of the current flowing through

resistor R1, viewed respectively in the time domain and as a phasor (for which

the real and the imaginary part are plotted). Notice that when the simulation

switches back to phasor mode after a period in time domain mode triggered by a

switch event,

53

Chapter 4

Conclusions

A Modelica library was presented to allow modeling an AC network in

both the time and the phasor domain.A primary characteristic of the presented

models is that the changeover between the two modes above is managed

automatically, requiring a minimal effort on the part of the user.

This allows to deal with simulation studies where long periods of quasi-

stationary operation are interspersed with abrupt events.Simulation examples

show the correctness of the proposed approach, and its efficacy in terms of

simulation speed improvement.

Future work will concern further extensions to the library, and in

erspective, the integration of the presented mixed-mode modeling approach, and

in particular of the changeover mechanism, into libraries coming from

neighboring research lines, in a view to unifying efforts.

54

Bibliography

[1] R. Caldon, F. Rossetto, and R. Turri. Temporary islanded operation of

dispersed generation on distribution networks. In Universities Power

Engineering Conference, 2004. UPEC 2004. 39th International, volume 3, pages

987{991. IEEE, 2004.

[2] F. Casella and A. Leva. Modelling of thermo-hydraulic power

generation processes using modelica. Mathematical and Computer Modelling of

Dynamical Systems, 12(1):19{33, 2006.

[3] S. Mattsson, H. Elmqvist, and M. Otter. Physical system modeling

with Modelica. Control Engineering Practice, 6:501{510, 1998.

[4] G. Kariniotakis, N. Soultanis, A. Tsouchnikas, S. Papathanasiou,and N.

D. Hatziargyriou. Dynamic modeling of microgrids. In Future Power Systems,

2005 International Conference on, pages 7-pp.IEEE, 2005.

