
i

POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica Informazione e Bioingegneria

A Study of the Security Aspects of the Green

Move Vehicle Sharing System

Relatore: Prof. Rossi Matteo Giovanni
Correlatore: Ing. Edoardo Vannutelli Depoli

Tesina di Laurea di:
Fang Wenpiao, matricola 780709

Anno Accademico 2013-2014

ii

ABSTRACT

A Study of the Security Aspects of the Green Move Vehicle Sharing System

by

Fang Wenpiao, Master of Science

Politecnico di Milano, 2014

The idea of vehicle sharing system can be backdated to tens of years ago both

in Europe and USA. Vehicle Sharing can provide us numerous benefits by ways of

relieving the traffic jam problem, reducing the air pollution, giving back the cities

more space, cutting down the cost on one’s trip and so on. However, it was not until

the emergence of Electric Vehicles that vehicle sharing became more and more close

to us. In the meanwhile, the vehicle sharing systems are required to evolve to meet

several new important requirements: such as easier interactions with the system for

end users, more possibilities for both stakeholders and administrators to benefit from

the systems, smoother configurations.

The Green Move Project of Politecnico di Milano is exactly devised with all these

in mind: with Green Move Center one could easily reserve a vehicle and receive a

digital key from it, then use it to unlock the vehicle; the stakeholders can install

variety of dynamic green move applications such as advertisements in the Green e-

Box; the system can be easily configured for either scooters or four wheels’ vehicles.

This thesis looks inside the components of the Green Move Vehicle Sharing Sys-

tem (GMVSS), especially the Green e-Boxes which are installed in the vehicles and

iii

used to interact with them, analyzes the security issues inside, gives several experi-

ments to exploit the vulnerabilities, and then proposes solutions to avoid such vul-

nerabilities.

Keywords: Vehicle Sharing System, Electric Vehicles, Green Move, Vulnerabili-

ties

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to all those kind people around me, who

helped me a lot to make this thesis possible for me, to only some of them, it is

possible to mention here.

First of all, I would like to express my deepest sense of gratitude to my supervisor

Prof. Rossi Matteo Giovanni, who offered me his continuous encouragement and

advice throughout the course of this thesis, and allowed me to work in the lab, without

him, this thesis would not have been completed.

I am grateful to Prof. Cugola Gianpaolo for providing me the opportunity to

work on the Green Move project. I am impressed by his unsurpassed knowledge and

the ability to explain a complicated problem in such an easy and understandable way.

I am thankful to Ing. Edoardo Vannutelli Depoli for providing me the source

code of Green Move and a lot of technical guidances during the course of the project.

He spared a lot of his time to help me to understand the architecture of the project.

My sincere thanks also goes to Daniele Rogora for his kindness, friendship and

support during my writing of this thesis.

Last but not least, I would like to thank my family, for their endless support and

great patience during my study here in Politecnico di Milano.

v

CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

LIST OF FIGURES . vi

CHAPTER

1 Introduction . 1

2 Background . 4
2.1 Introduction to Android Platform . 4
2.2 Sandboxing Untrusted Code . 6
2.3 T-Rex Middleware . 7
2.4 Rails, JRuby on Rails . 7

3 The Green Move Architecture . 10
3.1 User Application . 10
3.2 Green Move Center . 11
3.3 Green e-Box . 11
3.4 Dynamic Applications . 14

4 Vulnerabilities of Green Move Vehicle Sharing System 18
4.1 Code to Load and Start a Dynamic Application 18
4.2 Exploit Vulnerabilities . 19

5 Solutions to Avoid the Vulnerabilities . 24
5.1 Java Sandbox . 25
5.2 Android Application Sandbox . 31
5.3 Application Sandbox for Dynamic Applicaitons 36
5.4 New Architecture of the GEB Application 37

6 Conclusions . 47

REFERENCES . 48

vi

LIST OF FIGURES

Figure Page

2.1 Architecture of Android Platform . 4

2.2 Android Dalvik Virtual Machine . 5

2.3 The high-level view of an CEP application 7

3.1 Green Move Vehicle Sharing System Components 10

3.2 Green e-Box . 12

3.3 DataModel Class Diagram . 13

3.4 Green EBox Application . 14

3.5 Green Move Container Class Diagram 15

3.6 Sequence Diagram – Download and Start a Dynamic Application (1) 16

3.7 Sequence Diagram – Download and Start a Dynamic Application (2) 16

5.1 Java 2 Platform Security Model . 27

5.2 Java 2 Sandbox . 28

5.3 Android Application Sandbox . 32

5.4 Android Binder IPC . 35

5.5 New Architecture for Green e-Box Application 38

5.6 Delegation of Permissions . 41

5.7 New Sequence to Download and Start A Dynamic Application 41

5.8 Fine Grained Http Channel Control (1) 42

5.9 Fine Grained Http Channel Control (2) 42

5.10 Http Channel Permission Delegation Model 43

CHAPTER 1

Introduction

The term “vehicle sharing” is now the widely accepted international term. The

principle of vehicle sharing is that individuals gain the benefits of private cars without

the costs and responsibilities of ownership [1]. Instead a household accesses a fleet of

vehicles on an as-needed basis.Vehicle Sharing has sprung up in different parts of the

world and operations are organized in many different ways in different places.

However, in order to become a real alternative to the private owned diesel or

petrol cars, the existing vehicle sharing systems still need a push. The system needs

to cover a wide variety of vehicles to fulfill the requirements from different types of

end users [2], for example, while parents may decide to choose a 4-wheeled, 4-seats

vehicle to send their kids to schools, an office employee could get a 2-seats vehicle to

take him home from work. Additionally, end users are willing to use multi-functional

and easy-using systems to enjoy the benefits of technological evolutions, for example,

users would like the system to be smart enough to faciliate their driving, to remind

them of important notifications.

The Green Move Vehicle Sharing System (GMVSS) could answer the above needs

by its key component, Green e-Box, and its flexible mechanism that allows appli-

cations to be dynamically installed and removed from vehicles, to tailor in-vehicle

functions to the needs of the user. The Green e-Box (GEB) is a hardware/software

interface, which allows the system to interact with heterogeneous fleet of vehicles in a

uniform way (described in more detail in the backgroud chapter). Those dynamically

installed or removed applications are called Green Move Applicaitons or Dynmamic

Applications in the system. They are bundles of java code that, packeaged into JAR

files, can be sent to the GEBs, where they are executed within the Green Move An-

2

droid application running on the GEB. The Dynamic Applications could provide users

more convenience and better feedbacks during their trip using the system. For exam-

ple, the Drive Style Dynamic Application developed by the Green Move group could

offer the drivers excellent drive experience, the Advertisement Dynamic Application

can provide the users interesting ads during the trip.

Since the developers of the Dynamic Applications may be be different from origi-

nal members of the green move team, all Dynamic Applications should be guaranteed

to run in a secure enviroment so that they could not misuse the security-sensitive

data, or access the security-sensitive operations improperly. Therefore it is necessary

to build specified sandboxes for the Dynamic Applications running within them.

In the Java platform, a normal way for sandboxing a Java application usually

involves two steps: first we have to make sure that only the needed permissions to the

untrusted code are granted in the policy file; then we need to customize a Security

Manager to control all the accesses to the protected system resources carefully.

This thesis first analyzes the interactions between the Dynamic Applications and

the rest part of the system, and then builds a customized Security Manager to avoid

the vulnerabilities found in the system.

However, all Dynamic Applications are designed to run on the Android plat-

form, which takes a different security model from the Java sandbox model. We are

more encouraged to take advantage of the applcation sandbox model on the Android

platform. Android platform adopts the user based securiy mechanism in Linux, by

default, each Android application runs as a separate process in the platform. Based

on such application sandbox model, I proposed a new implementation of the GEB

application to avoid the vulnerabilities of the existing system described in this thesis.

The rest of this thesis is organized as follows. Chapter 2 introduces the relevant

technologies, chapter 3 presents the architecture of the Green Move Vehicle Sharing

System, chapter 4 presents several vulnerabilities of the system and shows how they

can be exploited, then chapter 5 proposes some solutions to them, and finally there

3

is the conclusion part in chapter 6.

4

CHAPTER 2

Background

As explained in Chapter 3, the Green Move system relies on a number of tech-

nologies, which are introduced in this chapter to make the document self-contained.

2.1 Introduction to Android Platform

Android is a software stack for mobile devices which includes a Linux-based

operating system, middle-wares and key applications. The Linux kernel handles core

system services and acts as hardware abstraction layer (HAL) between the physical

layer and the Android Software Stack. Figure 2.1 shows the software layers of the

Android Platform.

Figure 2.1: Architecture of Android Platform

Android applications are written in Java programming language, and run inside in

the Google customized virtual machine called Dalvik, quite different from the normal

5

Java Virtual Machine (JVM). Each Android application runs within an instance the

Dalvik Virtual Machine (DVM), which resides in a Linux kernel managed process,

see Figure 2.2.

Figure 2.2: Android Dalvik Virtual Machine

Typically an android application contains one or more of the following indepen-

dent components [3] [4]:

Activities

An Activity is an application component that provides a screen with which users

can interact in order to do something, such as dial the phone, take a photo, send

an email, or view a map. Each activity is given a window in which to draw its

user interface.

Services

A service is a component that runs in the background to perform long-running

operations or to perform work for remote processes. A service does not provide

a user interface.

Content providers

A content provider acts as an simplified database service. Its main job is to

6

manage accesses to the persisted data, whether they are located in the local file

system, a SQLite database, or any other persistent storage.

Broadcast receivers

A broadcast receiver responds to the broadcast events from the system, and the

events could be: the screen is turned off, a requirement to start a service from

another application and so on.

All the above components could either be configured in the same Linux process,

or they could also run in separate processes.

2.2 Sandboxing Untrusted Code

Sandboxing is a technique related to executing untrusted code in a environment

without letting it tamper with the surrounding code, to make sure that the untrusted

code can not alter the way the surrounding program behaves. The sandbox should

also prevent untrusted code from accessing sensitive resources and operations of a

system without giving required permissions.

In the Java platform, a sandbox can be implemented using the Security Manager

and the Permission:

100SecurityManager secur ityManager = System . getSecur ityManager () ;

101i f (secur ityManager != null) {
102Permiss ion permis s ion = . . . ;

103secur ityManager . checkPermiss ion (permis s ion) ;

104}

A permission represents an access to a system resource, like the following per-

mission defines the access to the thesis.pdf file:

100Permiss ion readPermiss ion = new java . i o . F i l ePe rmi s s i on (’ /home/ fang / t h e s i s .

pdf ’ , ’ read ’) ;

7

Finally one could grant a specified permission to an untrusted program via the

policy file in Java.

2.3 T-Rex Middleware

T-Rex [5] is a specially designed Complex Event Processing middleware, which

could be used to generate Composite Events from a big amounts of event notifications

flowing from peripheral to the T-Rex complex event processing engine. Along with

T-Rex there is the TESLA language, which is used to define the rules for generating

new events. So users are allowed to customize a complex rule for an appropriate case,

then make an subscription from the middleware, and wait for the publication of a

new event notification.

The general architecture of such event-based applications is shown in Figure 2.3.

At the peripheral of the system are the sources and the sinks. The former observe

primitive events and report them, while the latter receive composite event notifica-

tions and react to them. The task of identifying composite events from primitive ones

is performed by the Complex Event Processing (CEP) Engine.

Figure 2.3: The high-level view of an CEP application

2.4 Rails, JRuby on Rails

Rails is a poluplar web application framework, which offers the developers the

8

tools to create web applications in an intuitive and agile way. It has gained great

success in the past few years, because of its unique solution to the developing of web

applications [6]. The two most important principles of Rails are:

Dont Repeat Yourself (DRY) According to the DRY principle, each piece of in-

formation should live in exactly one place. If you’re writing a payroll app where

each Employee needs a name and a salary, you shouldn’t have to define those

fields in the database and your Ruby class. And indeed, in Rails, you don’t –

property information resides only in the database.

Convention over Configuration Also known as “sensible defaults” – when you do

things the way Rails expects you to, you will not need to configure much. For

example, Rails will automatically find the table for your Recipe class, provided

the table is named recipes in the database.

Rails is designed to support the Model-View-Controller (MVC) pattern, and is

mainly constituted by the following components:

ActiveRecord The ActiveRecord component constitutes the model part of the MVC

pattern, by paring database tables with simple wrapper classes that embody the

program’s logic. The implementation takes advantage of Ruby language features

and relieve the programmers the pain of defining model classes. It supports

almost all the popular databases, such as MySQL, PostgreSQL, and so on.

ActionPack ActionPack takes care of presenting the models to users and respond-

ing to the actions they perform. It consists of three parts: ActionView and

ActionController correspond to the View and Controller parts of MVC, while

ActionDispatch connects a request to a controller.

The other important components are: ActionSupport which includes a lot of exten-

sions to the Ruby core classes; ActionResource, which helps users to consume the

application services in a RESTful way; ActionMailer, helps to deal with emails.

9

JRuby is a implementation of Ruby programming that runs on Java Virtual

Machine (JVM). With JRuby on Rails, web application developers can not only fully

exploit all the benefits from the Rails framework, but also take advantage of the Java

Platform.

10

CHAPTER 3

The Green Move Architecture

As explained in chapter Introduction, the Green Move Vehicle Sharing System

(GMVSS) is designed to be flexible, highly configurable and able to accommodate a

wide variety of the vehicles. As shown in Figure 3.1, the GMVSS is based on three

main components: the User Side Application, the Green Move Center and the Green

e-Box [7] [8].

Figure 3.1: Green Move Vehicle Sharing System Components

The rest of this chapter presents the components of the GMVSS, with particular

focus on the Green e-Box and the notion of dynamic applications.

3.1 User Application

User Application resides on the smartphones of end users. It is used to interact

with the Green Move Center and the Green e-Box, for example it could be used to

check the nearest available Electric Vehicles around the end user, make a reservation

for an available vehicle and receive the Digital Key for that specified vehicle; obtain

11

the basic information about it, and access all the other useful information about the

system. All the communications between the User Application and the Green Move

Center are directed through the well-known http/https protocols.

When it comes to use the vehicle for a trip, the end user can use the received

Digital Key to contact the Green e-Box installed in the vehicle to unlock it via the

Bluetooth or NFC channels.

3.2 Green Move Center

Green Move Center acts as the portal of the GMVSS, it is built on the JRuby on

Rails framework, easy for system developers to extend and bring new features into

the system. As illustrated in Figure 3.1, the Green Move Center has the mentioned

T-Rex middleware running within it. System administrators are allowed to manage

the vehicle information through the Green Move Center, application developers are

encouraged to upload here diverse Dynamic Applications which would be installed in

the Green e-Box later.

The T-Rex middleware is installed with specified rules for generating complex

events for the Green e-Box, such as the event to install a dynamic application in the

Green e-Box. The events could either be broadcast to all receivers (all Green e-Boxes

) in the system, or only sent to a specified receiver.

3.3 Green e-Box

Green e-Box (GEB) represents the core part of the GMVSS, it makes the GMVSS

a big difference from the other existing vehicle sharing systems. The GMVSS is

designed to be able to deal with a heterogeneous fleet of vehicles, of different makers,

so it is crucial to abstract away from the details of each vehicle. Therefore, the goal

of the GEB is to provide such an abstraction layer that allows the system to interact

with any GEB-equipped vehicle in an high-level way.

The GEB is composed of a low-level embedded board and a high-level Android

12

Figure 3.2: Green e-Box

board, see Figure 3.2, and it is directly connected to the 12V line of the Electric

Vehicle to guarantee a non-stop service. The low-level embedded board, Embedded

Electronic Board (Hardware Abstraction Layer), is wired to the vehicle electronics

and is designed to abstract the vehicle-specific details; thus, it creates a virtual layer

between software applications and the actual hardware, providing a general commu-

nication protocol to the high-level layers built on top of it. To achieve this, the

embedded board has a CAN-bus to retrieve data directly from the vehicle ECU and

several analog and digital input/output channels so that the GEB can be installed

on a large variety of heterogeneous vehicles. A microcontroller handles each signal,

acquiring the vehicle data at a constant rate and, since the set of available signals is

strongly vehicle-dependent, it collects them into well-defined packets so that they can

be easily transmitted to the high- level Android board. While the high-level Android

board, Software Abstraction Layer, receives (in a vehicle-independent way) the data

from the low-level board, store them in a object, instance of DataModel, and allows

the Dynamic Applications residing on it to access the object easily. Applications

running on the Android board can also send commands to the low-level embedded

board, which further are delivered to the vehicle electronics [7].

13

As one may notice in the figure, the Green e-Box is equipped with the NFC/R-

FID and Bluetooth links, thus it is possible for end users of the GMVSS to use an

smartphone to contact the Green e-Box even without GPS or 3G networks.

The mentioned DataModel class is implemented by the Singleton design pattern

to guarantee there is only one instance for a running GEB application. It acts as a

data center for Dynamic Applications, and there are mainly two kinds of data that

may interest a Dynamic Application:

1. Data from the vehicle.

2. Location related data

The left side of the class diagram in Figure 3.3 shows the attributes in the existing

DataModel class, while the right part presents the existing operations inside it.

Figure 3.3: DataModel Class Diagram

All setXXX operations here are quite security-sensitive; they are designed to

change the state of the single DataModel instance shared among all Dynamic Ap-

plications, so they need to be hidden away from Dynamic Applications, or at least

14

should be provided with special security mechanisms.

3.4 Dynamic Applications

With the help of Android Board, it is possible to develop an Android application

atop the Android platform. The GMVSS has developed the GEB application to

dynamically install applications (Dynamic Applications) from the Green Move Center,

thanks to the mechanisms explained later.

The GEB application relies on its Green Move Container component to hold

the data from Hardware Abstraction Layer, and consume the data for management.

Furthermore, the Green Move Container offers Dynamic Applications (Green Move

Applications) the runtime environment, such as the T-Rex channel to communicate

with Green Move Center, the GUI handler to show messages on the screen, and the

mechanism to reed vehicle data and so on. It is depicted as Figure 3.4.

Figure 3.4: Green EBox Application

Dynamic Applications are key elements of the GMVSS, they could be loaded and

unloaded automatically in the Green e-Box (to be more accurate, in the Green Move

Container). Basically, they are Java applications packaged as Jar files, they could

offer users meaningful services, for example, the developed Driving Style Dynamic

Application could help the driver to reduce the energy consumption of the vehicle.

All Dynamic Applications rely on the tools provided by the Green Move Container

to interact with the system. For example the following tools can be provided to a

15

Figure 3.5: Green Move Container Class Diagram

Dynamic Application by the Green Move Container:

1. DataModel, the Green Move Container contains a reference to the DataModel

instance mentioned in the above section.

2. TransportManager, used to connect to the T-Rex Server, subscribe to events of

the T-Rex Server and receive the published events from it.

3. UI handler, used for showing information on the GMVSS main UI.

It is shown in Figure 3.5 that the Green Move Container extends the Service

class, the Service which again is a subclass of Android Context class. Thus, it would

be quite serious if one Dynamic Application has a direct reference of the Green Move

Container, however, such issue exists in the system right now. The following chapter

shows several ways to exploit such vulnerability.

The sequence diagrams in Figure 3.6 and Figure 3.7 help to understand the work-

flow for downloading and starting a Dynamic Application in the system. Here may

16

Figure 3.6: Sequence Diagram – Download and Start a Dynamic Application (1)

Figure 3.7: Sequence Diagram – Download and Start a Dynamic Application (2)

be a proper place to point out that all the steps involving in launching a Dynamic

Application run in the same Linux process space. It is because of this, Dynamic

Applications may affect each other.

As pointed out in Figure 3.7, after the package is downloaded by HttpURLCon-

nection, the Android DexClassLoader is used to load the entry class of the package

17

into the Dalvik Virtual Machine, then Java Reflection methods are used to initialize

and start a Dynamic Application from the entry point. Although Dynamic Appli-

cations are designed to run in separate threads to secure themselves in thread level,

however, the security model for an android application is based on the concept of

Linux process, so the thread level security mechanism is not sufficient for a Dynamic

Application.

On one hand GMVSS relies on Dynamic Applications for its powerful function-

alities, on the other hand since Green Move Dynamic Applications are loaded from

remote sources, which means they are kinds of untrusted code, hence they may bring

the system security issues, therefore the system needs some proprietary mechanisms

to guarantee they behave in the expected way. However, the existing implementation

of GEB application lacks such mechanisms.

18

CHAPTER 4

Vulnerabilities of Green Move Vehicle Sharing System

This chapter presents several vulnerabilities and shows how they can be exploited.

All the developed android applications (Dynamic Applications) are written in pure

Java language here, and the experiments are done with the help of Android Emulator

running on Linux 3.2.0-60-generic-pae; the tests have been carried out using Androird

4.3 Jelly Bean.

4.1 Code to Load and Start a Dynamic Application

The detailed work-flow of downloading and starting a Dynamic Application is

already explained in the previous chapter, here the related source code is presented

to help to understand the ways to exploit vulnerabilities in the following section.

As shown in the following code, all Dynamic Applcations must implement the

GMComponentInterface interface, where the public void init(GMContainerInterface

container) method is designed to be called by the GEB application program, to start

the Dynamic Application. The argument container of the init method is designed

to hold the reference of the GMContainer. The GMContainer, as explained in the

previous chapter, is used to offer Dynamic Applications services like T-Rex Channel,

GUI handler and so on. Finally, it is the JarRetriever object of the GEB application

that really downloads and starts a Dynamic Application.

Listing 4.1: GMContainer.java

100public class GMContainer extends Se rv i c e implements GMContainerInterface ,

GMContainerAdminInterface , PacketL i s tener

19

Notice GMContainer is a subclass of Service and also implements the GMCon-

tainerInterface, this is used to exploit the vulnerabilities later on.

Listing 4.2: JarRetriever.java

100

101private GMContainer gMContainer ;

102\\ sk ip some other p i e c e o f code here

103DexClassLoader c l a s s l o a d e r = new DexClassLoader (

104l ibPath , tmpDir . getAbsolutePath () ,null , this . g e tC la s s () . getClassLoader ()) ;

105Class<?> classToLoad = c l a s s l o a d e r . l oadClas s (c lass name) ;

106Object myInstance = classToLoad . newInstance () ;

107\\ sk ip some other p i e c e o f code here

108Class<?> partypes [] = new Class [1] ;

109partypes [0]= Class . forName (” i t . po l imi . greenmove . code agent .

GMContainerInterface ”) ;

110Method i n i t = classToLoad . getMethod (” i n i t ” , partypes) ;

111i n i t . invoke (myInstance , gMContainer) ;

The Attribute gMContainer is initialized with the reference of the GMContainer

instance. And the method init is defined in GMComponentInterface that each Dy-

namic Application must implement.

Listing 4.3: GMComponentInterface.java

100public interface GMComponentInterface {
101public void i n i t (GMContainerInterface conta ine r) ;

102public boolean stop () ;

103}

4.2 Exploit Vulnerabilities

The rest of this section presents the vulnerabilities of the dynamic applications

framework that have been identified, and how they can be exploited. Chapter 5 then

shows how these vulnerabilities can be fixed or, at least mitigated.

I would like to remark that, in the following, the GEB application means the Android

20

program designed to run on the Android board of the Green e-Box. The GMContainer

component is exactly contained in the GEB application.

1. It is possible for a Dynamic Application to shutdown the GEB application.

Because all Dynamic Applications run in the same Linux process space as the

GEB application, thus it would be quite dangerous if one Dynamic Application stops

the process. In such case, not only all the other Dynamic Applications stop working,

but also the interaction between the User Application and Green eBox will be stopped,

hence it is impossible for end users to unlock or lock the vehicle; moreover, the

connection between Green eBox and Green Move Center will be cut too, so there is

no way to monitor the status of the vehicle anymore. In fact, to stop the mentioned

Linux process, one only needs to insert the instructions like following in the init

method of a Dynamic Application.

100System . e x i t (1) ;

2. A Dynamic Application is allowed to download and execute malicious code.

Because the GEB application needs to access Internet, so it declares its permission

for Internet access in the AndroidManifest.xml manifest file, like

100<uses−permis s ion android : name=”android . permis s ion .INTERNET”/>

And due to the Android security model, such permission is granted based on

the application granularity; to be more precise, it is based on the Linux process

granularity, that is to say that the whole process would have the permission to access

Internet. And it is exactly because of this, one could design a program that is harmful

to the GEB application, such as writing out a lot of useless data only to take up the

memory space, stealing sensitive data from the system and so on. Such a program

could be packaged in a jar file, and downloaded by a Dynamic Application. Once

21

the Dynamic Application gets this program, it could use the DexClassLoader to load

the class (suppose the program is written in Java), and starts to run the malicious

program inside.

The following piece of information is adapted from the result of executing Down-

loadMaliousCode.java

100D/DownloadMaliciousCode (32127) : Test Download ma l i c i ou s code and execute

i n i t i a l i s e d !

101D/DownloadMaliciousCode (32127) : Begin to download ma l i c i ou s code

102D/DownloadMaliciousCode (32127) : Mal i c ious code downloaded s u c c e s s f u l l y !

103D/DownloadMaliciousCode (32127) : Begin to execute the ma l i c i ou s code

104D/DownloadMaliciousCode (32127) : Mal i c ious code executed s u c c e s s f u l l y ! with

r e s u l t : HELLO WORLD FROM MALICIOUS CODE, I AM A BAD GUY

3. Dynamic Applications could access security-sensitive operations in the GEB

application which are not supposed to be accessed, for example, it is possible for a

Dynamic Application to access the unloadClass method of GMContainer class.

In the GMContainer class, there are several security-sensitive operations defined

to manage the Dynamic Applications, and thus should be hidden away from Dynamic

Applications. These security-sensitive operations include:

100public St r ing [] l i s t C l a s s e s () ; \\ l i s t a l l loaded dynamic app l i c a t i o n s .

101public void unloadClass (S t r ing c lass name) ; \\unload a Dynamic Appl i ca t ion

However, as presented in the above piece of code, when the GEB application starts

to load and run a Dynamic Application, the reference of GMContainer instance is

passed to the Dynamic Application, then, although the starting point of a Dynamic

Application is defined as:

100public void i n i t (GMContainerInterface conta ine r) ;

which means Dynamic Applications are designed to access only the APIs exposed

in GMContainerInterface, still a Dynamic Application programmer could make a cast

22

in a Dynamic Application like,

100GMContainer gmContainer = (GMContainer) conta ine r ;

thereafter nothing of GMContainer is hidden away from the programmer any-

more.

4. There is a way for a Dynamic Application to stop services that are key com-

ponents of the GEB application.

Due to the fact that GMContainer is a subclass of android Service class which

again is the subclass of android Context class, it is possible to use the same trick

presented in previous example to get the reference of the Context instance, and then

use it to stop the services of Green Move Container:

100Context context = (Context) conta ine r ;

101Log . d(TAG, ”Try to Stop Trex Se rv i c e ! context . s t opSe rv i c e (t r e xS e r v i c e) ”) ;

102Intent t r e xS e r v i c e = new In tent (context , TRexService . class) ;

103context . s t opSe rv i c e (t r e xS e r v i c e) ;

104Log . d(TAG, ”Stop Trex Se rv i c e Su c c e f u l l y ! ”) ;

The above piece of code could stop the key service, TrexService, which is used to

communicate with the T-Rex Server residing in the Green Move Center.

5. Dynamic Applications are allowed to change the data in DataModel which are

supposed to be changed only by the sensors.

Logically, the security-sensitive data represented in the DataModel class should

be changed only by the management part of the GEB application, and all Dynamic

Applications could only read such data. In this way, it is guaranteed that all the

modifications are made by the low layer sensors but not via an untrusted Dynamic

Application.

However, as shown in the DataModel class diagram, once a Dynamic Application

gets the reference of the only DataModel instance, which is shared among all Dynamic

23

Applications, by calling operations like,

100public synchronized void setTemperature (f loat temperature) ;

101public synchronized void s e tBat t e rySta tus (int ba t t e r y s t a tu s) ;

it is possible to fool all the other Dynamic Applications in the system.

24

CHAPTER 5

Solutions to Avoid the Vulnerabilities

The existence of the first vulnerability described in the previous chapter is simply

due to the reason that both Dynamic Applications and the the other parts of the GEB

application all run in the same process space. Therefore, to avoid it, no Dynamic

applications should be allowed to execute instructions like System.exit, or each of

them should run in its own process space.

In a Java Virtual Machine, it is possible to prevent an application from running

security-sensitive operations like System.exit by putting a Java sandbox around it.

While to make an application run in another process, the Linux system call fork could

come to help, unfortunately, it is discouraged by the Android world, hence it is not

considered here.

The second vulnerability metioned in chapter 4 is because Dynamic Applications

are given too many permissions; again this could be avoided by a sandbox. In fact,

the Java platform allows application designers to grant permissions to some specified

hosts and ports for the Internet Access.

As to the third vulnerability, it is quite important to expose Dynamic applications

only the needed APIs. One also has to pay attention to the effects of polymorphism,

which could allow the methods of an object to be exposed unexpectedly.

The fourth one is similar to the third one, and it could be solved in the same

way.

Lastly, for the fifth, the DataModel object should be split into two or more parts,

and provides Dynamic Applications the read-only parts. In another way, a Dynamic

Application could only have a copy of the DataModel object, thus it is allowed to

change the data itself but not to affect the other Dynamic Applications in the system.

25

The following sections first explores the Java sandbox way to prevent a Dynamic

Application from stopping the whole application process, then explain why it is not

applied in the project, after that, the Android application sandbox and Android IPC

mechanisms are introduced, and then the new architecture of the GEB application,

based on application sandbox and Binder IPC, is presented.

5.1 Java Sandbox

The Java sandbox strongly relies on the Java Security Model, therefore a brief

introduction to Java 2 Security Model is presented here.

5.1.1 Java 2 Security Model

The Java 2 security model is based on controlling the operations that a class

can perform when it is loaded into JVM. The Bytecode Verifier, Class Loader and

Security Manager are three key components of the security model [9].

Bytecode Verifier

Before executing in a JVM, a Java source program must be compiled into

platform-independent Java byte code. The bytecode verifier is then used to

check such byte code; it is meant to prevent the byte code from violating speci-

fied safety rules. The byte code can be from anywhere, it is unknown whether

it is compiled by trusty compiler or not, so practically the Java runtime simply

subjects it to series of tests by bytecode verifier.

Mainly the bytecode verifier is used to ensure that:

1. the form of compiled code is correct

2. internal stacks will not overflow or underflow

3. no illegal conversions will happen

4. the types of parameters are correct when there is method call

26

5. all class member accesses do not violate the scope (private, protected, public

etc.)

Class Loader

All Java objects belong to classes; the class loader is used to load classes, be it

local or remote, into the running environment. Classes loaded by different class

loaders have different name spaces, thus name spaces could be used to separate

classes into groups, and by placing special rules on the group, class loaders are

enabled to prevent sensitive system resources from being accessed by untrusted

code [10].

Security Manager

Security manager is a key component of the Java security model. If it is enabled

by a Java application, the security manager is used to check whether a security-

sensitive operation should be accepted or not based on the permissions.

Figure 5.1 illustrates the positions where these three components are placed in

the Java 2 platform.

5.1.2 Java Sandbox Based on Java 2 Security Model

The Java 2 Platform is designed with the sandbox model inside it to run re-

mote untrusted code in a safe way. It uses the three components mentioned before:

bytecode verifier, class loader and security manager. Together with the help from

elements like permissions, protection domains and security policies, it is possible to

build a Java sandbox for a program to run inside.

Permissions

A permission defines the set of operations that could be performed on a collection

of resources. A Java class is associated with a special set permissions based on

some policies, when it is loaded into runtime environment.

27

Figure 5.1: Java 2 Platform Security Model

In Java 2 platform, there are many kinds of permissions that are used to se-

cure the system, such as: java.io.FilePermission is used to declare the access to

the filesystem, the permission of RuntimePermission(”exitVM”) type would be

checked to decide if the program has the privilege to execute System.exit(code)

instruction, and the SocketPermission is put there to control Internet access.

Protection Domains and Security Policies

A protection domain is a grouping of a code source and permissions; that is, a

protection domain represents all the permissions that are granted to a particular

code source.

A security policy is the facility to specify which permissions should apply to

which code sources, it is encapsulated by the Policy class java.security.Policy.

For example the following policy object defined in a policy file creates a pro-

tection domain for classes residing in http://it.polimi.gmc/foo.jar with the read

permission for files in directory ${user.dir} and its subdirectories.

28

grant CodeBase http://it.polimi.gmc/foo.jar {

permission java.io.FilePermission ${user.dir}/-, read;

};

Figure 5.2 illustrates the Java 2 sandbox model in the Java 2 platform.

Figure 5.2: Java 2 Sandbox

5.1.3 Using Java Sandbox to Avoid System.exit

Before showing the solution for preventing the System.exit call, let us take a brief

look at what happens when the System.exit gets called.

Listing 5.1: System.java

100public f ina l class System {
101\\ . . .

102public stat ic void e x i t (int s t a tu s) {
103Runtime . getRuntime () . e x i t (s t a tu s) ;

104}
105\\ . . .

106}

Listing 5.2: Runtime.java

100public class Runtime {
101\\ . . .

102public void e x i t (int ta tus) {

29

103SecurityManager s e c u r i t y = System . getSecur ityManager () ;

104i f (s e c u r i t y != null) {
105s e c u r i t y . checkExit (s t a tu s)

106}
107Shutdown . e x i t (s t a tu s) ;

108}
109\ \ . . .
110}

Listing 5.3: SecurityManager.java

100public class SecurityManager {
101\\ . . .

102public void checkExit (int s t a tu s) {
103checkPermiss ion (new RuntimePermission (”exitVM . ”+s ta tu s)) ;

104}
105public vo i checkPermiss ion (Permiss ion perm) {
106java . s e c u r i t y . Acce s sCont ro l l e r . checkPermiss ion (perm) ;

107}
108\\ . . .

109}

As shown in the above pieces of code, all that System.exit does is to call the

exit(int) method of the Runtime class. Then the checkExit(int) method of the Secu-

rityManager is called to create a RuntimePermission(exitVM) permission, and passed

it to the checkPermission(perm) method. Finally, the AccessController is delegated

to check if the calling class has been granted the RuntimePermission(exitVM) per-

mission; if the permission has been granted, the checkPermission method of the Ac-

cessController will return silently, otherwise it will throw out a SecurityException.

Thus, the RuntimePermission(exitVM) permission should not be granted to classes

that are forbidden to call System.exit(int). However, such a permission is granted to

all code loaded from the application class path by default, this is described in the

Javadoc of RuntimePermission:

This allows an attacker to mount a denial-of-service attack by automatically forc-

ing the virtual machine to halt. Note: The ”exitVM.*” permission is automatically

30

granted to all code loaded from the application class path, thus enabling applications

to terminate themselves. Also, the ”exitVM” permission is equivalent to ”exitVM.*”.

Therefore, a new customized SecurityManager should be brought into the runtime

environment to avoid System.exit(int) call. The following NoExitSecurityManager

class gives an example of such SecurityManager.

Listing 5.4: NoExitSecurityManager.java

100public class NoExitSecurityManager extends SecurityManager {
101@Override

102public void checkPermiss ion (Permiss ion perm) {
103i f (perm . getName () . conta in s (”exitVM”)) {
104throw new Secur i tyExcept ion (” e x i t vm i s not a l lowed ”) ;

105}
106super . checkPermiss ion (perm) ;

107}
108}

5.1.4 Why Java Sandbox is not Suitable for an Android Application

As mentioned in the previous section, by customizing a Security Manager like the

NoExitSecurityManager, it is possible to prevent the GEB application halting prob-

lem. In the same way, by building a Java sandbox with granting SocketPermission to

a certain trusted hosts, it is possible avoid the problem of downloading and executing

malicious code inside the GEB application.

However, the Android Dalvik virtual machine is different from standard Java

virtual machine, and the implementations of core Java libraries are modified a little

bit for Android applications, although the interfaces are almost the same. Thus, the

above methods may work quite well in a normal Java application, but it is not suitable

for an Android application. It is impossible to build a Java sandbox using elements

like SecurityManager, Permissions mentioned before, without modifying the core java

libraries of Android Dalvik Virtual Machine.

31

For example, the SecurityManager is described in the following way in the An-

droid documentation:

Legacy security code; do not use. Security managers do not provide a secure

environment for executing untrusted code. Untrusted code cannot be safely isolated

within the Dalvik VM.

And the SocketPermission is described as:

Legacy security code; do not use.

And if one checks the source code of core Java libraries in Android platfrom, it

could be found that the Java2 security model is not implemnted there, as a conse-

quence, a reimplementation of parts of the core Java libraries which are related to

Java sandbox must be considered. It is not a simple task, not to mention the per-

formance issues. Therefore, a new model for the sandbox is required for the GEB

application.

5.2 Android Application Sandbox

5.2.1 Android Security Model

Android is a Linux kernel based platform with Dalvik virtual machine embedded

inside to support the Java programming language, and has its own security mecha-

nisms tuned especially for mobile applications. Android combines Linux OS features

like multi-users, multi-processes, and file permissions for its new security model –

application sandbox [11].

Unlike the desktop environments Linux operating systems, where all applications

of a user run as the same User Identifier (UID), the Android applications are installed

32

and run as different UIDs, and individually isolated from each other. Each Android

application could run in a separate process space with distinct permissions. By de-

fault, applications can not interact with each other and they have limited accesses to

the underlying resources.

Figure 5.3 illustrates the Application Sandbox Model for Android platform.

Figure 5.3: Android Application Sandbox

With the Android platform, developers can not only build applications to use

the resources in an efficient way, but also protect the platform by minimizing the

consequences of bugs and malicious software. The process isolation obviates the need

for a complicated policy configuration file for the application sandbox. The Android-

Manifest.xml file of an Android application gives application developers opportunities

to grant specified permissions to an application. Such permissions are used to check

whether an application has the rights to use the Internet to access the outside world,

use the Bluetooth to connect to another device, use the GPS to indicate the current

location, use the camera to take a photo, and so on.

All permissions of an Android application must be declared before it is installed,

33

then a user could decide whether to accept the installation or no by the required

permissions. Application developers are not allowed to grant permissions dynami-

cally, all the granted permissions must be declared in the AndroidManifest.xml file

statically.

Here is the configuration used in the GEB application, which allows the appli-

cation to use Bluetooth Channel, access the Internet, read the phone state and so

on.

100<uses−permis s ion android : name=”android . permis s ion .BLUETOOTHADMIN” />

101<uses−permis s ion android : name=”android . permis s ion .BLUETOOTH” />

102<uses−permis s ion android : name=”android . permis s ion .ACCESS FINE LOCATION” />

103<uses−permis s ion android : name=”android . permis s ion .ACCESS NETWORK STATE” />

104<uses−permis s ion android : name=”android . permis s ion .INTERNET” />

105<uses−permis s ion android : name=”android . permis s ion .READ PHONE STATE” />

106<uses−permis s ion android : name=”android . permis s ion .WAKELOCK” />

107<uses−permis s ion android : name=”android . permis s ion .ACCESS MOCK LOCATION” />

108<uses−permis s ion android : name=”android . permis s ion .WRITE EXTERNAL STORAGE” />

As mentioned in the Background chapter, a typical Android application usually

contains components like: Activities, Services, Content Providers and Broadcast Re-

ceivers, most of the time these components are designed to share the same Linux

process space.

Despite applications are designed to run in a separate Linux process space by

default, still there is a way to configure two or more applications to run in the same

process space on Android platform, as long as they are declared to use the same

process name and signed by the same user. Furthermore, Android allows Activities,

Services, Content Providers and Broadcast Receivers to run in different processes

even though they are from the same application.

Since different components of an application could be configured to run in differ-

ent processes, there is a need for mechanisms that allow them to communicate with

each other. Android gets these done in its inter-process communication (IPC) part

indeed.

34

5.2.2 Android IPC

Inter-process communication (IPC) is a mechanism for the exchange of signals

and data across multiple process. It could be used to enable computational speedup,

information sharing, data isolation. Linux provides a variety of mechanisms for IPC:

Signals

A process can send signals to processes with the same UID and GID or in the

same process group. It is an old IPC mechanism.

Pipes

Pipes are unidirectional bytestreams that connect the standard output from one

process to the standard input of another process.

Sockets

Sockets could be used for bidirectional communications. Two processes could

communicate with bytestreams by opening a socket.

Message Queues

Message queues are used for asynchronous communications. A process can send

a message to a message queue for another process to consume.

Semaphores

A semaphore is shared variable that can be read and written by many processes.

Shared Memory

A location in system memory mapped into virtual address spaces of two or more

processes, each process is free to access the shared memory.

All the above IPC mechanisms are commonly used in the desktop or normal server

environments applications. However, Android is designed specially as a platform for

mobile applications, where applications and system services run in separate processes.

The number of inter-process communcations here is much greater than that of a

35

desktop or a normal server platform, therefore, the Binder IPC mechanism is brought

into Android to avoid the overhead of the above traditional IPC mechanisms.

The Binder IPC mechanism relies heavily on the Binder driver, which is imple-

mented in the Linux kernel space. The Binder driver can be used by the standard

Linux system call ioctl() to offer a efficient way for communications between processes,

including exchange data between processes, remotely call a method on another pro-

cess. Figure 5.4 shows how binder IPC is used for two processes.

Figure 5.4: Android Binder IPC

The Binder has the following main features:

1. With its built-in reference-counting of object references and death-notification

mechanism, the Binder is quite suitable for “hostile” environments. For example,

if an application process goes away, all of its windows should be removed. This

is made easy by the binder’s death-notification facility, which allows a process

to get a callback when another process hosting a binder object goes away.

2. When a binder service is no longer referenced by any client, its owner is auto-

matically notified to dispose of it.

36

3. Methods on remote objects can be invoked as if they were local – the thread

appears to jump to the other process.

4. The interface of a binder object can be auto-generated by the simple Android

Interface Definition Language (AIDL).

5. Building support for un/marshalling common data types.

6. Simplified invocation model via atuo-generated proxies and stubs

To summarize, because Green Move Dynamic Applications could be considered as

untrusted codes, therefore, each Dynamic Application should be required to run inside

a sandbox. In a standard Java virtual machine environment, it is quite common to

build a sandbox using elements like SecurityManager, Permissions and so on, however,

in an Android platform one needs re-implement parts of the core Java libraries in order

to have a similar sandbox. Consequently, the Android application sandbox model

which takes advantage of the Linux user-based protection, together with the Binder

IPC, are brought into the GEB application to avoid the vulnerabilities mentioned

before.

5.3 Application Sandbox for Dynamic Applicaitons

This section simply describes how to use the application sandbox model and

Android permission mechanisms to customize a sandbox model for Dynamic Appli-

cations, and how the found vulnerabilities can be avoided in this model. Then the

following section is given to explain all these in more detail.

In the application sandbox model, each Dynamic Application is designed to run

in a separate sandboxed process. Initially, the sandboxed Dynamic Application, by

default, is granted only the permission to read and write its own internal storage.

Therefore, it is impossible for a Dynamic Application to download malicious code

directly from the Internet (this requires android.permission.INTERNET Permission).

37

Also, the GEB application and the Dynamic Applications do not run in the

same process space anymore. The GEB application is designed to provide all the

needed remote services to a Dynamic Application, like the HTTP Channel and T-Rex

Channel. All these remote services are implemented through the AIDL mechanism

provided in Android platform, and the Binder IPC mechanism is used by Dynamic

Applications to make a remote procedure call to the remote services.

Since a Dynamic Application runs in a seperate process, therefore, in case it mali-

ciously executes instructions like System.exit(int), it could only stop its own process,

but not the GEB application process or the other sandboxed Dynamic Application

processes. And due to fact that the GEB application and a Dynamic Application

are separated in different processes, a Dynamic Application now is impossible to

obtain the reference of the GMContainer, thus it is impossible to access the security-

sensitive operations defined in GMContainer anymore. Similarly, because Dynamic

Applications could only contact the GEB application by remote calls (they are not

given the reference of the GEB application’s Context instance anymore), there is no

way for them to stop the key services, like the mentioned TRexService, in the GEB

application.

Lastly, a Dynamic Application could only remotely ask for a copy of the original

DataModel object. The original DataModel object is kept in the Dynamic Application

to receive the modifications of the data from the sensors and the vehicle; is never

referenced by any Dynamic Application directly. Hence, even a Dynamic Application

tries to modify the received copy of the DataModel object, neither the other Dynamic

Applications, nor the GEB application would be affected.

5.4 New Architecture of the GEB Application

This section presents a new architecture that is designed to avoid the vulnera-

bilities. I would like to point out here that, althogh the new architecture has been

designed, it has not been fully implemented yet. The implementation of the its Http

38

Channel Service in the following subsection is given as an example to illustrate the

design in more detail.

Obviously, we need a sandbox for each Dynamic Application, however, due to the

reason mentioned before, the Java sandbox model is not suitable to be applied here.

Therefore the architecture relies on the Android application sandbox to guarantee

each Dynamic Application runs in a non-harmful way. In the mean while, since

each sandboxed Dynamic Application runs in a separate process, the Binder IPC

discussed above would be used for communications between the core part of the GEB

application and Dynamic Applications.

The original GEB application is now divided into two applications, the Server side

GEB application, and the Client side GEB application, it is depicted as Figure 5.5.

Figure 5.5: New Architecture for Green e-Box Application

Besides the basic functionalities in the original GEB application, the Server side

GEB application keeps also the following remote services in addition:

GMContainerService

A Dynamic Application could call this service remotely to retrieve the data

repesented in DataModel, and also the basic Green e-Box information such as

the serial number, the version number, etc.

39

GUIService

It is used to remotely show messages from a Dynamic Application on the GUI

of the Server side GEB application.

HTTPChannelService

A Dynamic Application can not access Internet directly, it has to delegate its

requests to this remote service.

TRexChannelServcie

Remotely handle TrexChannel requests for Dynamic Applicaitons.

BluetoothChannelService

Remotely handle BluetoothChannel requests for Dynamic Applicaitons

The Server side is given all the required permissions, like permission to access

Internet, permission to Access the Bluetooth and so on.

100<uses−permis s ion android : name=”android . permis s ion .BLUETOOTHADMIN” />

101<uses−permis s ion android : name=”android . permis s ion .BLUETOOTH” />

102<uses−permis s ion android : name=”android . permis s ion .ACCESS FINE LOCATION” />

103<uses−permis s ion android : name=”android . permis s ion .ACCESS NETWORK STATE” />

104<uses−permis s ion android : name=”android . permis s ion .INTERNET” />

105<uses−permis s ion android : name=”android . permis s ion .READ PHONE STATE” />

106<uses−permis s ion android : name=”android . permis s ion .WAKELOCK” />

107<uses−permis s ion android : name=”android . permis s ion .ACCESS MOCK LOCATION” />

108<uses−permis s ion android : name=”android . permis s ion .WRITE EXTERNAL STORAGE” />

While in the Client side, none of such permissions are granted, they have to

delegate all the requests that require the mentioned permissions to the server side

remote services. Furthermore, each Dynamic Application contained in the client side

is configured to run in a separate process. The following piece of configuration is

extracted from the client side configuration file.

100<s e r v i c e

101android : name=” i t . po l imi . dynapp . s e r v i c e . GMDynamicAppService0”

102android : enabled=” true ”

40

103android : exported=” true ”

104android : permis s ion=” i t . po l imi . greenmove .SANDBOXEDDYNAMICAPPPERM”

105android : p roce s s=”sandboxed . dynamic . app l i c a t i on0 ”>

106<in tent− f i l t e r >

107<ac t i on android : name=” i t . po l imi . dynapp .MANAGEMENT” />

108</intent− f i l t e r >

109</s e rv i c e>

110

111<s e r v i c e

112android : name=” i t . po l imi . dynapp . s e r v i c e . GMDynamicAppService1”

113android : enabled=” true ”

114android : exported=” true ”

115android : permis s ion=” i t . po l imi . greenmove .SANDBOXEDDYNAMICAPPPERM”

116android : p roce s s=”sandboxed . dynamic . app l i c a t i on1 ”>

117<in tent− f i l t e r >

118<ac t i on android : name=” i t . po l imi . dynapp .MANAGEMENT” />

119</intent− f i l t e r >

120</s e rv i c e>

121

122<s e r v i c e

123android : name=” i t . po l imi . dynapp . s e r v i c e . GMDynamicAppService2”

124android : enabled=” true ”

125android : exported=” true ”

126android : permis s ion=” i t . po l imi . greenmove .SANDBOXEDDYNAMICAPPPERM”

127android : p roce s s=”sandboxed . dynamic . app l i c a t i on2 ”>

128<in tent− f i l t e r >

129<ac t i on android : name=” i t . po l imi . dynapp .MANAGEMENT” />

130</intent− f i l t e r >

131</s e rv i c e>

Since the sandboxed Dynamic Applcation is only granted the default permis-

sion to access the Android internal storage, if it needs more services from the server

side, the Binder IPC mechanism would be applied for them. Figure 5.6 presents the

delegation model of permissions.

Finally, based on the new architecture, the work-flow to download and start a

Dynamic Application is like Figure 5.7:

The following section illustrates how the HttpChannelService is implemented, and

how the sandboxed Dynamic Application interacts with the HttpChannelService.

41

Figure 5.6: Delegation of Permissions

Figure 5.7: New Sequence to Download and Start A Dynamic Application

5.4.1 HTTP Channel Using the Applicaton Sandbox

A Dynamic Applciation could only delegate the http request to the the HttpChan-

nelService residing in the server side GEB application. Furthermore, it is quite im-

portant to make sure that they can not access all the urls as they desire to, and this is

implemented in the HttpSecurityManager with a white list of urls inside. The Proxy

design pattern is applied here to make the HttpSecurityManager to add new policies

for controlling the accesses more easily, see Figure 5.8 and Figure 5.9.

42

The HttpChannelProxy is then used by the remote HttpChannelService to imple-

ment the interface exposed by HttpChannelApi, which is auto-generated by Android

AIDL, the interface is then exposed to a remote Dynamic Application by the Stub

(auto-generated by AIDL) class and the Binder mechanism.

Figure 5.8: Fine Grained Http Channel Control (1)

Figure 5.9: Fine Grained Http Channel Control (2)

43

The Delegation Model of the HttpChannelService could be depicted as Fig-

ure 5.10.

Figure 5.10: Http Channel Permission Delegation Model

44

5.4.2 Experiments on HTTP Channel

This section presents two Dynamic Applications to test the security aspects of

the Internet Access.

The first Dynamic Application tries to access the Internet directly in the sandbox,

and we can see from the result, it is denied because of the lack of permission.

Listing 5.5: Source Code of the Dynamic Application that Accesses Internet Directly

100public class HttpChannelServiceTest implements GMComponentInterface {
101private stat ic f ina l St r ing TAG = ”HttpChannelServiceTest ” ;

102private GMContainerInterface context ;

103@Override

104public void i n i t (GMContainerInterface context) {
105this . context = context ;

106Log . d(TAG, ”Test Case −− HttpChannelServiceTest ”) ;

107

108try {
109this . t e s tHttpDi rec tAcces s (” http ://www. goog l e . com”) ;

110

111} catch (Exception e) {
112Log . e (TAG, e . getMessage ()) ;

113}
114}
115

116@Override

117public boolean stop () {
118return fa lse ;

119}
120

121private void t e s tHttpDi rec tAcce s s (S t r ing s t rUr l) throws IOException {
122Log . d(TAG, ”Test Case −− t e s tHttpDi rec tAcce s s ”) ;

123

124HttpURLConnection conn = null ;

125

126try {
127URL ur l = new URL(s t rUr l) ;

128conn = (HttpURLConnection) u r l . openConnection () ;

129conn . setDoInput (true) ;

130

131Log . d(TAG, ”Test Case −− t e s tHttpDi rec tAcce s s r e s u l t : ” + conn .

getResponseMessage ()) ;

45

132}catch (IOException e) {
133Log . e (TAG, e . getMessage ()) ;

134throw e ;

135}
136

137}
138}

Here is the result from the adb console for the above Dynamic Application:

Listing 5.6: Result for the Direct Internet Access: Permission Denied

100D/GMDynamicAppService (19472) : GMDynamicAppService s t a r t ed

101D/GMDynamicAppService (19472) : r e c e i v e j a r u r l : /data/data/com . po l imi . greenMove

. moveGroup/ f i l e s /oo . j a r

102D/GMDynamicAppService (19472) : r e c e i v e clsName : i t . po l imi . greenmove . s e c u r i t y .

HttpChannelServiceTest

103D/DynamicAppStarter (19472) : Dynamic Appl i ca t ion loaded

104D/HttpChannelServiceTest (19472) : Test Case −− HttpChannelServiceTest

105D/HttpChannelServiceTest (19472) : Test Case −− t e s tHttpDi rec tAcce s s

106E/HttpChannelServiceTest (19472) : Permiss ion denied (miss ing INTERNET

permis s ion ?)

The second Dynamic Application tries to access the Internet via the HttpChan-

nelService metioned before, the key part of the code is listed as following:

Listing 5.7: Dynamic Application Delegates Internet Access to HttpChannelService

100private void testHttpRemoteAccess (S t r ing s t rUr l) {
101Log . d(TAG, ”Test Case −− testHttpRemoteAccess ”) ;

102IHttpChannel channel = this . context . getHttpChannel () ;

103i f (channel != null) {
104St r ing r e s = channel . get (s t rUr l) . getResponseMessage () ;

105Log . d(TAG, ”HttpChannelServiceTest#testHttpRemoteAccess−−re sponse code : ”

+ r e s) ;

106} else {
107Log . d(TAG, ”HttpChannelServiceTest#testHttpRemoteAccess−−nu l l channel ”) ;

108}
109}

The HttpChannelService responses to the Dynamic Application, and sends it

back the result of the Internet access successfully:

46

Listing 5.8: HttpChannelService Sends Back the Result of Internet Access Successfully

100D/GMDynamicAppService (19321) : GMDynamicAppService s t a r t ed

101D/GMDynamicAppService (19321) : r e c e i v e j a r u r l :

102/data/data/com . po l imi . greenMove . moveGroup/ f i l e s /oo . j a r

103D/GMDynamicAppService (19321) : r e c e i v e clsName :

104i t . po l imi . greenmove . s e c u r i t y . HttpChannelServiceTest

105D/DynamicAppStarter (19321) : Dynamic Appl i ca t ion loaded

106D/HttpChannelServiceTest (19321) : Test Case −− HttpChannelServiceTest

107D/HttpChannelServiceTest (19321) : Test Case −− testHttpRemoteAccess

108W/ContextImpl (19321) : Imp l i c i t i n t e n t s with s t a r t S e r v i c e are not s a f e :

109Intent { act=i t . po l imi . s e r v i c e . HttpChannelService } android . content .

ContextWrapper . b indServ i c e :517

110i t . po l imi . gebapp . GEBAppContextWrapper . getHttpChannl : 66

111i t . po l imi . greenmove .GMAppContext . getHttpChannel : 44

112I /GEBAppContext (19321) : HttpChannel S e rv i c e connect ion e s t ab l i s h ed

113D/HttpChannel (19184) : HttpChannel Constructor

114D/dalvikvm (19184) : GC FOR ALLOC f r e ed 8780K, 26% f r e e 26141K/34960K,

115paused 11ms , t o t a l 12ms

116D/dalvikvm (19321) : GC FOR ALLOC f r e ed 225K, 2% f r e e 17021K/17292K,

117paused 10ms , t o t a l 10ms

118D/dalvikvm (19321) : GC FOR ALLOC f r e ed 213K, 3% f r e e 17126K/17548K,

119paused 8ms , t o t a l 8ms

120D/HttpChannelServiceTest (19321) : HttpChannelServiceTest#testHttpRemoteAccess

121−− re sponse code : OK

122D/DynamicAppStarter (19321) : Dynmic Appl i ca t ion s t a r t ed

47

CHAPTER 6

Conclusions

This work has laid the foundations to make the GM system more secure, by

identifying some key vulnerabilities and suggesting countermeasures. However, some

aspects have not been tackled, and could be the object of future works on this topic:

1. An automatic analysis tool for malicious code used to check the Dynamic Ap-

plication programs before they are uploaded to the Green Move Center [12].

2. Encrypt the output data of each Dynamic Application.

3. Build a mechanism to manage the running Dynamic Applications, for example

to stop a Dynamic Application once it is discovered to behave maliciously.

4. Secure the T-Rex Channel, right now the T-Rex Channel is based on the plain

sockets, it is possible for one to use the Man-in-the-middle attack. The com-

mands sent in the T-Rex channel are quite security-sensitive, like one could send

a command to unload Dynamic Applications for all the Green e-Boxes in the

system.

5. Common security issues with a Android application, like the Intent-Hijack.

48

REFERENCES

[1] S. Shaheen, D. Sperling, and C. Wagner, “Carsharing in Europe and North

America:Past, Present, and Future,” Transportation Quarterly, vol. 52, no. 3,

pp. 35–52, 1998.

[2] A. G. Bianchessi, G. Cugola, S. Formentin, A. Morzenti, C. Ongini, E. Panigati,

M. Rossi, S. M. Savaresi, L. T. Fabio A. Schreiber, and E. G. V. Depoli, “Green

Move: a platform for highly configurable, heterogeneous electric vehicle sharing.”

[3] M. Gargenta, Learning Android. OReilly Media, Inc., 2011.

[4] “Application Fundamentals,” http://developer.android.com/guide/components/

fundamentals.html, [Online; accessed March 12, 2014].

[5] G. Cugola and A. Margara, “Complex event processing with T-REX,” Journals

of Systems and Software, vol. 85, no. 8, pp. 1709–1728, 2012.

[6] C. O. Nutter, N. Sieger, and T. Enebo, Using JRuby: Bringing Ruby to Java.

Pragmatic Programmers LLC, 2011.

[7] A. G. Bianchessi, C. Ongini, S. Rotond, M. Tanelli, M. Rossi, G. Cugola, and

S. M. Savaresi, “A Flexible Architecture for Managing Vehicle Sharing Systems,”

IEEE Embedded Systems Letters, vol. 5, no. 3, pp. 30–33, 2013.

[8] G. Alli, L. Baresi, A. Bianchessi, G. Cugola, A. Margara, A. Morzenti, C. Ongini,

E. Panigati, M. Rossi, S. Rotondi, S. Savaresi, F. A. Schreiber, A. Sivieri,

L. Tanca, and E. V. Depoli, “Green Move: towards next generation sustainable

http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html

49

smartphone-based vehicle sharing,” Sustainable Internet and ICT for Sustain-

ability (SustainIT), 2012, pp. 1–5, 2012.

[9] L. Gong, Inside Java 2 Platform Security (2nd Edition). Addison-Wesley, 2003.

[10] G. McGraw and E. Felten, Java Security: Hostile Applets, Holes, and Antidotes.

John Wiley & Sons, 1997.

[11] “Security and Permissions, Android Developers,” http://developer.android.com/

guide/topics/security/security.html, [Online; accessed March 12, 2014].

[12] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An

Android Application Sandbox System for Suspicious Software Detection,” 5th

International Conference on Malicious and Unwanted Softwar, 2010.

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	Introduction
	Background
	Introduction to Android Platform
	Sandboxing Untrusted Code
	T-Rex Middleware
	Rails, JRuby on Rails

	The Green Move Architecture
	User Application
	Green Move Center
	Green e-Box
	Dynamic Applications

	Vulnerabilities of Green Move Vehicle Sharing System
	Code to Load and Start a Dynamic Application
	Exploit Vulnerabilities

	Solutions to Avoid the Vulnerabilities
	Java Sandbox
	Android Application Sandbox
	Application Sandbox for Dynamic Applicaitons
	New Architecture of the GEB Application

	Conclusions
	REFERENCES

